WorldWideScience

Sample records for self-assembled ordered gold

  1. A Novel Strategy for Synthesis of Gold Nanoparticle Self Assemblies

    NARCIS (Netherlands)

    Verma, Jyoti; Lal, Sumit; van Veen, Henk A.; van Noorden, Cornelis J. F.

    2014-01-01

    Gold nanoparticle self assemblies are one-dimensional structures of gold nanoparticles. Gold nanoparticle self assemblies exhibit unique physical properties and find applications in the development of biosensors. Methodologies currently available for lab-scale and commercial synthesis of gold

  2. Self-assembly of gibberellic amide assemblies and their applications in the growth and fabrication of ordered gold nanoparticles

    International Nuclear Information System (INIS)

    Smoak, Evan M; Carlo, Andrew D; Fowles, Catherine C; Banerjee, Ipsita A

    2010-01-01

    Gibberellins are a group of naturally occurring diterpenoid based phytohormones that play a vital role in plant growth and development. In this work, we have studied the self-assembly of gibberellic acid, a phytohormone, which belongs to the family of gibberellins, and designed amide derivatives of gibberellic acid (GA 3 ) for the facile, green synthesis of gold nanoparticles. It was found that the derivatives self-assembled into nanofibers and nanoribbons in aqueous solutions at varying pH. Further, upon incubation with tetrachloroaurate, the self-assembled GA 3 -amide derivatives efficiently nucleated and formed gold nanoparticles when heated to 60 deg. C. Energy dispersive x-ray spectroscopy, transmission electron microscopy and scanning electron microscopy analyses revealed that uniform coatings of gold nanoparticles in the 10-20 nm range were obtained at low pH on the nanowire surfaces without the assistance of additional reducing agents. This simple method for the development of morphology controlled gold nanoparticles using a plant hormone derivative opens doors for a new class of plant biomaterials which can efficiently yield gold nanoparticles in an environmentally friendly manner. The gold encrusted nanowires formed using biomimetic methods may lead on to the formation of conductive nanowires, which may be useful for a wide range of applications such as in optoelectronics and sensors. Further, the spontaneous formation of highly organized nanostructures obtained from plant phytohormone derivatives such as gibberellic acid is of particular interest as it might help in further understanding the supramolecular assembly mechanism of more highly organized biological structures.

  3. Mixed carboranethiol self-assembled monolayers on gold surfaces

    Science.gov (United States)

    Yavuz, Adem; Sohrabnia, Nima; Yilmaz, Ayşen; Danışman, M. Fatih

    2017-08-01

    Carboranethiol self-assembled monolayers on metal surfaces have been shown to be very convenient systems for surface engineering. Here we have studied pure and mixed self-assembled monolayers (SAMs) of three different carboranethiol (CT) isomers on gold surfaces. The isomers were chosen with dipole moments pointing parallel to (m-1-carboranethiol, M1), out of (m-9-carboranethiol, M9) and into (o-1-carboranethiol, O1) the surface plane, in order to investigate the effect of dipole moment orientation on the film properties. In addition, influence of the substrate surface morphology on the film properties was also studied by using flame annealed (FA) and template stripped (TS) gold surfaces. Contact angle measurements indicate that in M1/M9 and M1/O1 mixed SAMs, M1 is the dominant species on the surface even for low M1 ratio in the growth solution. Whereas for O1/M9 mixed SAMs no clear evidence could be observed indicating dominance of one of the species over the other one. Though contact angle values were lower and hysteresis values were higher for SAMs grown on TS gold surfaces, the trends in the behavior of the contact angles with changing mixing ratio were identical for SAMs grown on both substrates. Atomic force microscopy images of the SAMs on TS gold surfaces indicate that the films have similar morphological properties regardless of mixing ratio.

  4. Mixed carboranethiol self-assembled monolayers on gold surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Yavuz, Adem [Micro and Nanotechnology Department, Graduate School of Natural and Applied Science, Middle East Technical University, Ankara 06800 (Turkey); Sohrabnia, Nima [Department of Chemistry, Middle East Technical University, Ankara 06800 (Turkey); Yilmaz, Ayşen [Micro and Nanotechnology Department, Graduate School of Natural and Applied Science, Middle East Technical University, Ankara 06800 (Turkey); Department of Chemistry, Middle East Technical University, Ankara 06800 (Turkey); Danışman, M. Fatih, E-mail: danisman@metu.edu.tr [Micro and Nanotechnology Department, Graduate School of Natural and Applied Science, Middle East Technical University, Ankara 06800 (Turkey); Department of Chemistry, Middle East Technical University, Ankara 06800 (Turkey)

    2017-08-15

    Highlights: • M1 binds to the gold surface preferentially when co-deposited with M9 or O1. • Contact angles show similar trends regardless of the gold substrate roughness. • Contact angles were lower, with higher hysteresis, on template stripped gold. • Mixed carboranethiol SAMs have similar morphological properties regardless of mixing ratio. - Abstract: Carboranethiol self-assembled monolayers on metal surfaces have been shown to be very convenient systems for surface engineering. Here we have studied pure and mixed self-assembled monolayers (SAMs) of three different carboranethiol (CT) isomers on gold surfaces. The isomers were chosen with dipole moments pointing parallel to (m-1-carboranethiol, M1), out of (m-9-carboranethiol, M9) and into (o-1-carboranethiol, O1) the surface plane, in order to investigate the effect of dipole moment orientation on the film properties. In addition, influence of the substrate surface morphology on the film properties was also studied by using flame annealed (FA) and template stripped (TS) gold surfaces. Contact angle measurements indicate that in M1/M9 and M1/O1 mixed SAMs, M1 is the dominant species on the surface even for low M1 ratio in the growth solution. Whereas for O1/M9 mixed SAMs no clear evidence could be observed indicating dominance of one of the species over the other one. Though contact angle values were lower and hysteresis values were higher for SAMs grown on TS gold surfaces, the trends in the behavior of the contact angles with changing mixing ratio were identical for SAMs grown on both substrates. Atomic force microscopy images of the SAMs on TS gold surfaces indicate that the films have similar morphological properties regardless of mixing ratio.

  5. Synthesis, characterization and self-assembly with gold nanoparticles

    Indian Academy of Sciences (India)

    Administrator

    characterization and self-assembly with gold nanoparticles. JUN-BO LI. 1, ... gold surface lead to the enhancement of device prop- erties. 36,37 ... Reactions were monitored by thin-layer ..... plasmon (SP) absorption band (figure 5) of TOAB-.

  6. Encapsulation of gold nanoparticles into self-assembling protein nanoparticles

    OpenAIRE

    Yang Yongkun; Burkhard Peter

    2012-01-01

    Abstract Background Gold nanoparticles are useful tools for biological applications due to their attractive physical and chemical properties. Their applications can be further expanded when they are functionalized with biological molecules. The biological molecules not only provide the interfaces for interactions between nanoparticles and biological environment, but also contribute their biological functions to the nanoparticles. Therefore, we used self-assembling protein nanoparticles (SAPNs...

  7. Encapsulation of gold nanoparticles into self-assembling protein nanoparticles

    Directory of Open Access Journals (Sweden)

    Yang Yongkun

    2012-10-01

    Full Text Available Abstract Background Gold nanoparticles are useful tools for biological applications due to their attractive physical and chemical properties. Their applications can be further expanded when they are functionalized with biological molecules. The biological molecules not only provide the interfaces for interactions between nanoparticles and biological environment, but also contribute their biological functions to the nanoparticles. Therefore, we used self-assembling protein nanoparticles (SAPNs to encapsulate gold nanoparticles. The protein nanoparticles are formed upon self-assembly of a protein chain that is composed of a pentameric coiled-coil domain at the N-terminus and trimeric coiled-coil domain at the C-terminus. The self-assembling protein nanoparticles form a central cavity of about 10 nm in size, which is ideal for the encapsulation of gold nanoparticles with similar sizes. Results We have used SAPNs to encapsulate several commercially available gold nanoparticles. The hydrodynamic size and the surface coating of gold nanoparticles are two important factors influencing successful encapsulation by the SAPNs. Gold nanoparticles with a hydrodynamic size of less than 15 nm can successfully be encapsulated. Gold nanoparticles with citrate coating appear to have stronger interactions with the proteins, which can interfere with the formation of regular protein nanoparticles. Upon encapsulation gold nanoparticles with polymer coating interfere less strongly with the ability of the SAPNs to assemble into nanoparticles. Although the central cavity of the SAPNs carries an overall charge, the electrostatic interaction appears to be less critical for the efficient encapsulation of gold nanoparticles into the protein nanoparticles. Conclusions The SAPNs can be used to encapsulate gold nanoparticles. The SAPNs can be further functionalized by engineering functional peptides or proteins to either their N- or C-termini. Therefore encapsulation of gold

  8. Self-assembling layers created by membrane proteins on gold.

    Science.gov (United States)

    Shah, D S; Thomas, M B; Phillips, S; Cisneros, D A; Le Brun, A P; Holt, S A; Lakey, J H

    2007-06-01

    Membrane systems are based on several types of organization. First, amphiphilic lipids are able to create monolayer and bilayer structures which may be flat, vesicular or micellar. Into these structures membrane proteins can be inserted which use the membrane to provide signals for lateral and orientational organization. Furthermore, the proteins are the product of highly specific self-assembly otherwise known as folding, which mostly places individual atoms at precise places in three dimensions. These structures all have dimensions in the nanoscale, except for the size of membrane planes which may extend for millimetres in large liposomes or centimetres on planar surfaces such as monolayers at the air/water interface. Membrane systems can be assembled on to surfaces to create supported bilayers and these have uses in biosensors and in electrical measurements using modified ion channels. The supported systems also allow for measurements using spectroscopy, surface plasmon resonance and atomic force microscopy. By combining the roles of lipids and proteins, highly ordered and specific structures can be self-assembled in aqueous solution at the nanoscale.

  9. Directing self-assembly of gold nanoparticles in diblock copolymer scaffold

    Science.gov (United States)

    Li, Qifang; He, Jinbo; Glogowski, Elizabeth; Emrick, Todd; Russell, Thomas

    2007-03-01

    A versatile hierarchical approach for directing self -assembly of gold nanostructures with size 2-3nm in diblock copolymer scaffolds is found. Diblock copolymer polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) is used to form a regular scaffold of highly anisotropic, stripe-like domains, and controlled differential wetting by dichloromethane and thermal annealing guides gold nanoparticles with half hydrophilic ligand to aggregate selectively along the scaffold, producing highly organized metal nanostructures. In as-cast block-copolymer and gold nanoparticles thin films, micelle structure and gold nanoparticles random distribution on scaffold are typically observed. However, samples annealed in dichloromethane exhibit well-defined short-range ordered nanostructure with gold nanoparticles located at the interface of PS and P2VP nanoscale domain. After annealing at 170 C, the gold nanoparticles at interface migrated into the middle of P2VP phase and exhibited long-range ordered hierarchical structures. Synergistic interactions between the gold nanoparticles and the PS-b-P2VP caused an orientation of the microdomains normal to the film surface.

  10. Self-assembled ordered carbon-nanotube arrays and membranes.

    Energy Technology Data Exchange (ETDEWEB)

    Overmyer, Donald L.; Siegal, Michael P.; Yelton, William Graham

    2004-11-01

    Imagine free-standing flexible membranes with highly-aligned arrays of carbon nanotubes (CNTs) running through their thickness. Perhaps with both ends of the CNTs open for highly controlled nanofiltration? Or CNTs at heights uniformly above a polymer membrane for a flexible array of nanoelectrodes or field-emitters? How about CNT films with incredible amounts of accessible surface area for analyte adsorption? These self-assembled crystalline nanotubes consist of multiple layers of graphene sheets rolled into concentric cylinders. Tube diameters (3-300 nm), inner-bore diameters (2-15 nm), and lengths (nanometers - microns) are controlled to tailor physical, mechanical, and chemical properties. We proposed to explore growth and characterize nanotube arrays to help determine their exciting functionality for Sandia applications. Thermal chemical vapor deposition growth in a furnace nucleates from a metal catalyst. Ordered arrays grow using templates from self-assembled hexagonal arrays of nanopores in anodized-aluminum oxide. Polymeric-binders can mechanically hold the CNTs in place for polishing, lift-off, and membrane formation. The stiffness, electrical and thermal conductivities of CNTs make them ideally suited for a wide-variety of possible applications. Large-area, highly-accessible gas-adsorbing carbon surfaces, superb cold-cathode field-emission, and unique nanoscale geometries can lead to advanced microsensors using analyte adsorption, arrays of functionalized nanoelectrodes for enhanced electrochemical detection of biological/explosive compounds, or mass-ionizers for gas-phase detection. Materials studies involving membrane formation may lead to exciting breakthroughs in nanofiltration/nanochromatography for the separation of chemical and biological agents. With controlled nanofilter sizes, ultrafiltration will be viable to separate and preconcentrate viruses and many strains of bacteria for 'down-stream' analysis.

  11. Modeling the self-assembly of ordered nanoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Monson, Peter [Univ. of Massachusetts, Amherst, MA (United States); Auerbach, Scott [Univ. of Massachusetts, Amherst, MA (United States)

    2017-11-13

    This report describes progress on a collaborative project on the multiscale modeling of the assembly processes in the synthesis of nanoporous materials. Such materials are of enormous importance in modern technology with application in the chemical process industries, biomedicine and biotechnology as well as microelectronics. The project focuses on two important classes of materials: i) microporous crystalline materials, such as zeolites, and ii) ordered mesoporous materials. In the first case the pores are part of the crystalline structure, while in the second the structures are amorphous on the atomistic length scale but where surfactant templating gives rise to order on the length scale of 2 - 20 nm. We have developed a modeling framework that encompasses both these kinds of materials. Our models focus on the assembly of corner sharing silica tetrahedra in the presence of structure directing agents. We emphasize a balance between sufficient realism in the models and computational tractibility given the complex many-body phenomena. We use both on-lattice and off-lattice models and the primary computational tools are Monte Carlo simulations with sampling techniques and ensembles appropriate to specific situations. Our modeling approach is the first to capture silica polymerization, nanopore crystallization, and mesopore formation through computer-simulated self assembly.

  12. Self-Assembly on Gold and Graphene for Molecular Electronics

    DEFF Research Database (Denmark)

    Reeler, Nini Elisabeth Abildgaard

    In this work, different bottom-up approaches were pursued to develop a method to mass produce dimers of gold nanorods (AuNRs) or large gold nanoparticles (AuNPs) bridged by a conducting molecule for later use in a device. Two types of AuNPs with a size of 3-5 nm and 50-75 nm respectively were syn...

  13. Glucose Oxidase Catalyzed Self-Assembly of Bioelectroactive Gold Nanostructures

    Science.gov (United States)

    2010-01-01

    polymer matrix), however, electrons generated at the FAD/FADH2 active site of glucose oxidase (GOx) must tunnel ca. 15 through the protein shell...described as a surface bound thiolate [33]. Recently, the presence of free thiol groups has been proposed as a mechanism for gold reduction in pure enzymes...simultaneously [38]. The oxidative polymerization of the amines proceeds simulta- neously with the formation of gold nanoparticles such that the polymerized amine

  14. Synthesis, electrochemistry, STM investigation of oligothiophene self-assemblies with superior structural order and electronic properties

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Cheng-Yu [C-PCS, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Liu, Yinghao; Yarotski, Dmitry [Center of Integrated Nanotechnologies, Materials Physics and Application Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Li, Hao [Theory Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Xu, Ping; Yen, Hung-Ju [C-PCS, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Tretiak, Sergei, E-mail: serg@lanl.gov [Theory Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Wang, Hsing-Lin, E-mail: hwang@lanl.gov [C-PCS, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2016-12-20

    Graphical abstract: STM imaging reveals differently oriented domains of self-assembled tetrathiophene molecules. - Highlights: • Optical and redox properties of oligothiophene derivatives are studied. • Packing pattern of self-assembly monolayer depends on the conjugation length. • Strong electronic coupling and three redox couples in cyclic voltamogram are observed in the hierarchical self-assembly. - Abstract: Three oligothiophene (terthiophene, tetrathiophene and pentathiophene) derivatives are synthesized and their monolayer self-assemblies on gold (Au) are prepared via Au–S covalent bond. Our UV–Vis experimental characterization of solution reveals the dependence of the optical properties on the conjugation length of the oligothiophenes, which compares well with Time-Dependent Density Functional Theory (TDDFT) simulations of spectra of individual chromophores. Photoluminescent spectra of thin films show pronounced red shifts compared to that of solutions, suggesting strong inter-oligomer interactions. The comparative studies of cyclic voltammograms of tetrathiophene from solution, cast film and self-assembled monolayer (SAM) indicate presence of one, two, and three oxidized species in these samples, respectively, suggesting a very strong electronic coupling between tetrathiophene molecules in the SAM. Scanning tunneling microscopy (STM) imaging of SAMs of the tetrathiophene on an atomically flat Au surface exhibits formation of monolayer assemblies with molecular order, and the molecular packing appears to show an overlay of oligothiophene molecules on top of another one. In contrast, the trimer and pentamer images show only aggregated species lacking long-range order on the molecular level. Such trends in going from disordered–ordered–disordered monolayer assemblies are mainly due to a delicate balance between inter-chromophore π–π couplings, hydrophobic interaction and the propensity to form Au–S covalent bond. Such hypothesis has been

  15. Watching Nanoscale Self-Assembly Kinetics of Gold Prisms in Liquids

    Science.gov (United States)

    Kim, Juyeong; Ou, Zihao; Jones, Matthew R.; Chen, Qian

    We use liquid-phase transmission electron microscopy to watch self-assembly of gold triangular prisms into polymer-like structures. The in situ dynamics monitoring enabled by liquid-phase transmission electron microscopy, single nanoparticle tracking, and the marked conceptual similarity between molecular reactions and nanoparticle self-assembly combined elucidate the following mechanistic understanding: a step-growth polymerization based assembly statistics, kinetic pathways sampling particle curvature dependent energy minima and their interconversions, and directed assembly into polymorphs (linear or cyclic chains) through in situ modulation of the prism bonding geometry. Our study bridges the constituent kinetics on the molecular and nanoparticle length scales, which enriches the design rules in directed self-assembly of anisotropic nanoparticles.

  16. Self-Assembly of Gold Nanoparticles at the Liquid/Liquid Interface

    International Nuclear Information System (INIS)

    Lee, Kang Yeol; Han, Sang Woo

    2005-01-01

    We have shown that the crown ether derivative can mediate the transfer of gold nanoparticles in water solution to water/oil interface, results in directing the self-assembly of nanoparticles in the form of a novel nanocomposite film. The interfacial film of nanoparticles could be transferred to various solid substrates. The experimental results indicate the formation of nanoparticles monolayers at water/oil interfaces. Our work is an important step towards interfacial entrapment and self-assembly of nanoparticles for efficient creation of 2D nanostructures. These types of materials may be used in developing catalysts, sensors, and nanoelectronic devices. Currently, we are attempting to synthesize other composite films by using specific interactions between suitable organic or inorganic ligands and various nanoparticles. The intense research activity in the field of nanoparticles is motivated by the search for new materials in order to further miniaturize electronic devices, as well as by the fundamental question of how molecular electronic properties evolve with increasing size in this intermediate region between molecular and solid-state physics. In this respect, molecularly bridged nanoparticle aggregates have been attracting growing interest. The properties of two-dimensional assemblies of metal nanoparticles are controlled by the composition, geometry, and spatial arrangement of the nanoparticle building blocks. Such structures have been used for a variety of important applications in catalysis, photonics, electronics, and biological sensing. The 2D/3D control over the spatial arrangement of nanoparticles is primarily based on the thiolamphilic nature of metal nanoparticles, hydrogenbonding interactions, the highly specific recognition interaction of antigens/antibodies, and specific base-pairing interactions between DNA and its complementary strand

  17. One-pot reaction for the preparation of biofunctionalized self-assembled monolayers on gold surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Raigoza, Annette F.; Fies, Whitney; Lim, Amber; Onyirioha, Kristeen; Webb, Lauren J., E-mail: lwebb@cm.utexas.edu

    2017-02-01

    Highlights: • One-pot synthesis of α-helical-terminated self-assembled monolayers on Au(111). • Synthesis of high density, structured, and covalently bound α-helices on Au(111). • Characterization by surface-averaged and single molecule techniques. • Peptide-terminated surfaces for fabrication of biomaterials and sensors. - Abstract: The Huisgen cycloaddition reaction (“click” chemistry) has been used extensively to functionalize surfaces with macromolecules in a straightforward manner. We have previously developed a procedure using the copper(I)-catalyzed click reaction to tether synthetic α-helical peptides carrying two alkyne groups to a well-ordered azide-terminated alkanethiol self-assembled monolayer (SAM) on a Au(111) surface. While convenient, click-based strategies potentially pose significant problems from reagents, solvents, and reaction temperatures that may irreversibly damage some molecules or substrates. Tuning click chemistry conditions would allow individual optimization of reaction conditions for a wide variety of biomolecules and substrate materials. Here, we explore the utility of simultaneous SAM formation and peptide-attachment chemistry in a one-pot reaction. We demonstrate that a formerly multistep reaction can be successfully carried out concurrently by mixing azide-terminated alkanethiols, CuCl, and a propargylglycine-containing peptide over a bare gold surface in ethanol and reacting at 70 °C. X-ray photoelectron spectroscopy (XPS), surface infrared spectroscopy, surface circular dichroic (CD) spectroscopy, and scanning tunneling microscopy (STM) were used to determine that this one-pot reaction strategy resulted in a high density of surface-bound α-helices without aggregation. This work demonstrates the simplicity and versatility of a SAM-plus-click chemistry strategy for functionalizing Au surfaces with structured biomolecules.

  18. Recovery and redispersion of gold nanoparticles using the self-assembly of a pH sensitive zwitterionic amphiphile.

    Science.gov (United States)

    Morita-Imura, Clara; Imura, Yoshiro; Kawai, Takeshi; Shindo, Hitoshi

    2014-11-04

    The pH-responsive self-assembly of zwitterionic amphiphile C16CA was expanded to the recovery of gold (Au) nanoparticles for environmentally friendly chemistry applications. Multilayered lamellae at pH ∼ 4 were successfully incorporated into nanoparticles by dispersion. Redispersion of nanoparticles was achieved under basic conditions by the transition of self-assembly.

  19. Ultrasensitive colorimetric detection of heparin based on self-assembly of gold nanoparticles on graphene oxide.

    Science.gov (United States)

    Fu, Xiuli; Chen, Lingxin; Li, Jinhua

    2012-08-21

    A novel colorimetric method was developed for ultrasensitive detection of heparin based on self-assembly of gold nanoparticles (AuNPs) onto the surface of graphene oxide (GO). Polycationic protamine was used as a medium for inducing the self-assembly of citrate-capped AuNPs on GO through electrostatic interaction, resulting in a shift in the surface plasmon resonance (SPR) absorption of AuNPs and exhibiting a blue color. Addition of polyanionic heparin disturbed the self-assemble of AuNPs due to its strong affinity to protamine. With the increase of heparin concentration, the amounts of self-assembly AuNPs decreased and the color changed from blue to red in solution. Therefore, a "blue-to-red" colorimetric sensing strategy based on self-assembly of AuNPs could be established for heparin detection. Compared with the commonly reported aggregation-based methods ("red-to-blue"), the color change from blue to red was more eye-sensitive, especially in low concentration of target. Moreover, stronger interaction between protamine and heparin led to distinguish heparin from its analogues as well as various potentially coexistent physiological species. The strategy was simply achieved by the self-assembly nature of AuNPs and the application of two types of polyionic media, showing it to be label-free, simple, rapid and visual. This method could selectively detect heparin with a detection limit of 3.0 ng mL(-1) in standard aqueous solution and good linearity was obtained over the range 0.06-0.36 μg mL(-1) (R = 0.9936). It was successfully applied to determination of heparin in fetal bovine serum samples as low as 1.7 ng mL(-1) with a linear range of 0-0.8 μg mL(-1).

  20. Room temperature Coulomb blockade mediated field emission via self-assembled gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fei [College of Physics and Electronics, Central South University, Changsha, Hunan 410073 (China); College of Science, National University of Defense Technology, Changsha, Hunan 410073 (China); Fang, Jingyue, E-mail: fjynudt@aliyun.com [College of Science, National University of Defense Technology, Changsha, Hunan 410073 (China); Chang, Shengli; Qin, Shiqiao; Zhang, Xueao [College of Science, National University of Defense Technology, Changsha, Hunan 410073 (China); Xu, Hui, E-mail: cmpxhg@csu.edu.cn [College of Physics and Electronics, Central South University, Changsha, Hunan 410073 (China)

    2017-02-05

    Coulomb blockade mediated field-emission current was observed in single-electron tunneling devices based on self-assembled gold nanoparticles at 300 K. According to Raichev's theoretical model, by fixing a proper geometric distribution of source, island and drain, the transfer characteristics can be well explained through a combination of Coulomb blockade and field emission. Coulomb blockade and field emission alternately happen in our self-assembled devices. The Coulomb island size derived from the experimental data is in good agreement with the average size of the gold nanoparticles used in the device. The integrated tunneling can be adjusted via a gate electrode. - Highlights: • The phenomenon of single-electron field emission in a transistor setting using self-assembled gold nanoparticles was investigated. • The transfer characteristics can be well explained by the model that is a combination of Coulomb blockage and field emission. • This transport mechanism is novel and may be used in many applications in field emission devices.

  1. Temperature and anion responsive self-assembly of ionic liquid block copolymers coating gold nanoparticles

    Science.gov (United States)

    Li, Junbo; Zhao, Jianlong; Wu, Wenlan; Liang, Ju; Guo, Jinwu; Zhou, Huiyun; Liang, Lijuan

    2016-06-01

    In this paper, double hydrophilic ionic liquid block copolymers (ILBCs), poly poly[1-methyl-3-(2-methacryloyloxy propylimidazolium bromine)]- block-(N-isopropylacrylamide) (PMMPImB- b-PNIPAAm) was first synthesized by reversible additionfragmentation chain transfer (RAFT) and then attached on the surface of gold nanoparticles (Au NPs) via a strong gold-sulfur bonding for preparing hybrid nanoparticles (PMMPImB- b-PNIPAAm-@-Au NPs). The hybrid NPs had a three layers micelle-like structure, including a gold core, thermo-responsive inner shell and anion responsive outer corona. The self-assembling behavior of thermal- and anion-response from shell and corona were respectively investigated by change of temperature and addition of (CF3SO2)2N-. The results showed the hybrid NPs retained a stable dispersion beyond the lower critical solution temperature (LCST) because of the space or electrostatic protecting by outer PMMPImB. However, with increasing concentration of (CF3SO2)2N-, the micellization of self-assembling PMMPImB- b-PNIPAAm-@-Au NPs was induced to form micellar structure containing the core with hydrophobic PMMPImB-(CF3SO2)2N- surrounded by composite shell of Au NPs-PNIPAAm via the anionresponsive properties of ILBCs. These results indicated that the block copolymers protected plasmonic nanoparticles remain self-assembling properties of block copolymers when phase transition from outer corona polymer.

  2. Realization of thermally durable close-packed 2D gold nanoparticle arrays using self-assembly and plasma etching

    International Nuclear Information System (INIS)

    Sivaraman, Sankar K; Santhanam, Venugopal

    2012-01-01

    Realization of thermally and chemically durable, ordered gold nanostructures using bottom-up self-assembly techniques are essential for applications in a wide range of areas including catalysis, energy generation, and sensing. Herein, we describe a modular process for realizing uniform arrays of gold nanoparticles, with interparticle spacings of 2 nm and above, by using RF plasma etching to remove ligands from self-assembled arrays of ligand-coated gold nanoparticles. Both nanoscale imaging and macroscale spectroscopic characterization techniques were used to determine the optimal conditions for plasma etching, namely RF power, operating pressure, duration of treatment, and type of gas. We then studied the effect of nanoparticle size, interparticle spacing, and type of substrate on the thermal durability of plasma-treated and untreated nanoparticle arrays. Plasma-treated arrays showed enhanced chemical and thermal durability, on account of the removal of ligands. To illustrate the application potential of the developed process, robust SERS (surface-enhanced Raman scattering) substrates were formed using plasma-treated arrays of silver-coated gold nanoparticles that had a silicon wafer or photopaper as the underlying support. The measured value of the average SERS enhancement factor (2 × 10 5 ) was quantitatively reproducible on both silicon and paper substrates. The silicon substrates gave quantitatively reproducible results even after thermal annealing. The paper-based SERS substrate was also used to swab and detect probe molecules deposited on a solid surface. (paper)

  3. Facile preparation of luminescent and intelligent gold nanodots based on supramolecular self-assembly

    International Nuclear Information System (INIS)

    Shi Yunfeng; Li Sujuan; Zhou Yahui; Zhai Qingpan; Hu Mengyue; Cai Fensha; Du Jimin; Liang Jiamiao; Zhu Xinyuan

    2012-01-01

    A new strategy for preparing luminescent and intelligent gold nanodots based on supramolecular self-assembly is described in this paper. The supramolecular self-assembly was initiated through electrostatic interactions and ion pairing between palmitic acid and hyperbranched poly(ethylenimine). The resulting structures not only have the dynamic reversible properties of supramolecules but also possess torispherical and highly branched architectures. Thus they can be regarded as a new kind of ideal nanoreactor for preparing intelligent Au nanodots. By preparing Au nanodots within this kind of supramolecular self-assembly, the environmental sensitivity of intelligent polymers and the optical, electrical properties of Au nanodots can be combined, endowing the Au nanodots with intelligence. In this paper, a supramolecular self-assembly process based on dendritic poly(ethylenimine) and palmitic acid was designed and then applied to prepare fluorescent and size-controlled Au nanodots. The pH response of Au nanodots embodied by phase transfer from oil phase to water phase was also investigated. (paper)

  4. Ordered patterns and structures via interfacial self-assembly: superlattices, honeycomb structures and coffee rings.

    Science.gov (United States)

    Ma, Hongmin; Hao, Jingcheng

    2011-11-01

    Self-assembly is now being intensively studied in chemistry, physics, biology, and materials engineering and has become an important "bottom-up" approach to create intriguing structures for different applications. Self-assembly is not only a practical approach for creating a variety of nanostructures, but also shows great superiority in building hierarchical structures with orders on different length scales. The early work in self-assembly focused on molecular self-assembly in bulk solution, including the resultant dye aggregates, liposomes, vesicles, liquid crystals, gels and so on. Interfacial self-assembly has been a great concern over the last two decades, largely because of the unique and ingenious roles of this method for constructing materials at interfaces, such as self-assembled monolayers, Langmuir-Blodgett films, and capsules. Nanocrystal superlattices, honeycomb films and coffee rings are intriguing structural materials with more complex features and can be prepared by interfacial self-assembly on different length scales. In this critical review, we outline the recent development in the preparation and application of colloidal nanocrystal superlattices, honeycomb-patterned macroporous structures by the breath figure method, and coffee-ring-like patterns (247 references). This journal is © The Royal Society of Chemistry 2011

  5. Electrical resistivity of nanoporous gold modified with thiol self-assembled monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Hakamada, Masataka, E-mail: hakamada.masataka.3x@kyoto-u.ac.jp; Kato, Naoki, E-mail: katou.naoki.75w@st.kyoto-u.ac.jp; Mabuchi, Mamoru, E-mail: mabuchi@energy.kyoto-u.ac.jp

    2016-11-30

    Highlights: • Nanoporous gold is modified with thiol-containing self-assembled monolayers. • The electrical resistivity of the thiol-modified nanoporous gold increases. • The electrical resistivity increases with increasing thiol concentration. • Monolayer tail groups enhance the atmosphere dependence of electrical resistivity. - Abstract: The electrical resistivity of nanoporous gold (NPG) modified with thiol self-assembled monolayers (SAMs) has been measured at 298 K using a four-probe method. We found that the adsorption of thiol SAMs increases the electrical resistivity of NPG by up to 22.2%. Dependence of the electrical resistivity on the atmosphere (air or water) was also observed in SAMs-modified NPG, suggesting that the electronic states of the tail groups affect the electrons of the binding sulfur and adjacent surface gold atoms. The present results suggest that adsorption of thiol molecules can influence the behavior of the conducting electrons in NPG and that modification of NPG with SAMs may be useful for environmental sensing.

  6. DNA-mediated self-assembly of carbon nanotubes on gold

    International Nuclear Information System (INIS)

    Sanchez-Pomales, Germarie; Rivera-Velez, Nelson E; Cabrera, Carlos R

    2007-01-01

    This report presents the use of disulfide-modified single-stranded DNA (ssDNA) to form DNA self-assembled monolayers (SAMs) and mixed DNA-carbon nanotube (CNT) hybrids SAMs on gold substrates. Mixed DNA-CNT SAMs are composed of DNA, mercaptohexanol (MCH) and DNA-CNT aggregates. Both, DNA-CNT and DNA areas of the mixed SAMs were analyzed and compared to traditional DNA SAMs. The results suggest the formation of a more compact and densely packed monolayer of DNA-CNT in comparison with DNA. The use of DNA-CNT hybrids to form SAMs on gold substrates might represent a new approach to improve the immobilization of DNA strands on gold, and might therefore help with the development of enhanced DNA sensors

  7. Fabrication of Localized Surface Plasmon Resonance Fiber Probes Using Ionic Self-Assembled Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    Miao Wan

    2010-07-01

    Full Text Available An nm-thickness composite gold thin film consisting of gold nanoparticles and polyelectrolytes is fabricated through ionic self-assembled multilayers (ISAM technique and is deposited on end-faces of optical fibers to construct localized surface plasmon resonance (LSPR fiber probes. We demonstrate that the LSPR spectrum induced by ISAM gold films can be fine-tuned through the ISAM procedure. We investigate variations of reflection spectra of the probe with respect to the layer-by-layer adsorption of ISAMs onto end-faces of fibers, and study the spectral variation mechanism. Finally, we demonstrated using this fiber probe to detect the biotin-streptavidin bioconjugate pair. ISAM adsorbed on optical fibers potentially provides a simple, fast, robust, and low-cost, platform for LSPR biosensing applications.

  8. Self-assembly of gold nanoparticles as colloidal crystals induced by polymerization of amphiphilic monomers

    Czech Academy of Sciences Publication Activity Database

    Zucchi, I. A.; Hoppe, C. E.; Galante, M. J.; Williams, R. J. J.; López-Quintela, M. A.; Matějka, Libor; Šlouf, Miroslav; Pleštil, Josef

    2008-01-01

    Roč. 41, č. 13 (2008), s. 4895-4903 ISSN 0024-9297 R&D Projects: GA AV ČR IAA400500701 Grant - others:National Agency for the Promotion of Science and Technology(AR) PICT03-14738; Ministry of Science and Technology(ES) MAT2005-07554-C02-01 Institutional research plan: CEZ:AV0Z40500505 Keywords : self -assembly * gold nanoparticles * hierarchical structure * colloidal crystals Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.407, year: 2008

  9. Studies on the effect of solvents on self-assembly of thioctic acid and Mercaptohexanol on gold

    Energy Technology Data Exchange (ETDEWEB)

    Li Zhiguo; Niu Tianxing [School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry of China and Key Laboratory of MOE for Life Science, Nanjing University, Nanjing 210093 (China); Zhang Zhenjiang [School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry of China and Key Laboratory of MOE for Life Science, Nanjing University, Nanjing 210093 (China); College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215006 (China); Feng Guiying [School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry of China and Key Laboratory of MOE for Life Science, Nanjing University, Nanjing 210093 (China); Bi Shuping, E-mail: bisp@nju.edu.c [School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry of China and Key Laboratory of MOE for Life Science, Nanjing University, Nanjing 210093 (China)

    2011-04-29

    In this article we investigated the effect of solvents (CCl{sub 4}, CH{sub 3}CN, DMF, ethanol, ethanol-H{sub 2}O and H{sub 2}O) on self-assembly of Thioctic acid (TA) and Mercaptohexanol (MCH) on gold by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Electrochemical characteristics of TA and MCH self-assembled monolayers (SAMs) formed in different solvents were evaluated by inspecting the ions permeability (interfacial capacitance C and phase angle {phi}{sub 1Hz}) and electron transfer capability (current density difference {Delta}i and charge transfer resistance R{sub ct}). Experimental results indicated that the ability of solvents availing the ordering of SAMs was: for TA, CCl{sub 4} > ethanol > CH{sub 3}CN > ethanol-H{sub 2}O > DMF; for MCH, H{sub 2}O > ethanol-H{sub 2}O {approx} CCl{sub 4} > ethanol {approx} CH{sub 3}CN > DMF. Through relating the C, {phi}{sub 1Hz}, {Delta}i and R{sub ct} of SAMs (TA and MCH) with parameters of solvent (polarity E{sub T}{sup N}, solubility parameter {delta} and octanol/water partition coefficients logP{sub ow}), it was found that solvents with bigger logP{sub ow} (smaller E{sub T}{sup N} and {delta}) availed the ordering of TA-SAMs but the effect of solvents on MCH self-assembly was complex and MCH-SAMs formed in H{sub 2}O (the biggest E{sub T}{sup N}, {delta} and the smallest logP{sub ow}) and CCl{sub 4} (the smallest E{sub T}{sup N}, {delta} and the biggest logP{sub ow}) were more ordered than in other solvents.

  10. Self-assembly of bacitracin-gold nanoparticles and their toxicity analysis.

    Science.gov (United States)

    Li, Xiaoling; Wang, Zi; Li, Yanji; Bian, Kexin; Yin, Tian; Gao, Dawei

    2018-01-01

    As the widely use of gold nanoparticles (AuNPs) in drug delivery, the precise control on the size and morphology of the AuNPs is urgently required. In this scenario, traditional synthesis methods cannot meet current requirement because of their inherent defects. We have depicted here a novel method for fabricating monodispersed large size gold nanoparticles, based on the self-assembly of bacitracin. The AuNPs could be facilely, low-cost, and green synthesized with repeatability and controllability in this method. The Bac gold nanoparticles (Bac-AuNPs), composed by bacitracin core and gold shell, exhibited a spherical morphology in TEM and a face-centered cubic crystal structure in X-Ray diffraction and selected area electron diffraction. The mean diameter of the Bac-AuNPs was 89nm. The nanoparticles were mono-dispersed and the zeta potential of the nanoparticles was 4.1±0.64mV. Notably, in cell viability assay, the Bac-AuNPs showed less toxicity to HepG2 cells and HEK293 cells compared to small size AuNPs. Collectively, the size, rheological characteristic and the biocompatibility supported the use of the gold nanoparticles as intracellular delivery vehicles for drug delivery, especially for tumor therapy. And this study could provide a maneuverable, controllable and green strategy for the synthesis of AuNPs, which would be applied in disease diagnosis and therapy with biosafety. Copyright © 2017. Published by Elsevier B.V.

  11. Heterogeneous local order in self-assembled nanoparticle films revealed by X-ray cross-correlations

    Directory of Open Access Journals (Sweden)

    Felix Lehmkühler

    2018-05-01

    Full Text Available We report on the self-assembly of gold nanoparticles coated with a soft poly(ethylene glycol shell studied by X-ray cross-correlation analysis. Depending on the initial concentration of gold nanoparticles used, structurally heterogeneous films were formed. The films feature hot spots of dominating four- and sixfold local order with patch sizes of a few micrometres, containing 104–105 particles. The amplitude of the order parameters suggested that a minimum sample amount was necessary to form well ordered local structures. Furthermore, the increasing variation in order parameters with sample thickness demonstrated a high degree of structural heterogeneity. This wealth of information cannot be obtained by the conventional microscopy techniques that are commonly used to study nanocrystal superstructures, as illustrated by complementary scanning electron microscopy measurements.

  12. One-dimensional self-assembly of gold nanoparticles for tunable surface plasmon resonance properties

    International Nuclear Information System (INIS)

    Yang Yong; Matsubara, Shigemasha; Nogami, Masayuki; Shi Jianlin; Huang Weiming

    2006-01-01

    The localized surface plasmon resonance (LSPR) is a collective oscillation of the nanoparticle conduction electrons. LSPR excitation in silver and gold nanoparticles produces strong extinction and scattering spectra that in recent years have been used for important sensing and spectroscopy applications. Tuning the optoelectronic properties by controlling coupled SP modes in metals is one of the major challenges in the area of metal nanomaterials. Here we develop a simple method to fabricate linear-chainlike aggregates of gold nanoparticles (so-called nanochains), tuning the linear optical properties in a wide wavelength range from visible to the near infrared. The aggregation behaviour and linear self-assembly mechanism of citrate-stabilized gold colloids as provoked by the addition of cetyltrimethylammonium bromide (CTAB) are also analysed. The CTAB with appropriate concentration serves as the 'glue' that can link the {100} facets of two neighbour Au NPs, which leads to an anisotropic distribution of the residual surface charge, and this extrinsic electric dipole formation is responsible for the linear organization of the gold NPs into short chains

  13. Adsorption characteristics of self-assembled thiol and dithiol layer on gold

    International Nuclear Information System (INIS)

    Tlili, A.; Abdelghani, A.; Aguir, K.; Gillet, M.; Jaffrezic-Renault, N.

    2007-01-01

    Monolayers of functional proteins are important in many fields related to pure and applied biochemistry and biophysics. The formation of extended uniform protein monolayers by single- or multiple-step self-chemisorption depends on the quality of the functionalized gold surface. The optical and the electrical properties of the 1-nonanethiol and 1,9-nonanedithiol deposited on gold with the self-assembled technique were investigated. We use cyclic voltammetry and impedance spectroscopy to characterize the insulating properties of the two layers. The analysis of the impedance spectra in terms of equivalent circuit of the gold/electrolyte and gold/SAM/electrolyte interface allows defining the thickness of the two thiols and the percentage of coverage area. Atomic force microscopy, contact angle measurement and Fourier transform infra-red spectroscopy have been used for homogeneity, hydrophobic properties and molecular structure of the formed thiols layer, respectively. The measured thickness with impedance spectroscopy fit well the results found with atomic force microscopy

  14. Self-assembly of single "square" quantum rings in gold-free GaAs nanowires.

    Science.gov (United States)

    Zha, Guowei; Shang, Xiangjun; Su, Dan; Yu, Ying; Wei, Bin; Wang, Li; Li, Mifeng; Wang, Lijuan; Xu, Jianxing; Ni, Haiqiao; Ji, Yuan; Sun, Baoquan; Niu, Zhichuan

    2014-03-21

    Single nanostructures embedded within nanowires (NWs) represent one of the most promising technologies for applications in quantum photonics. However, fabrication imperfections and etching-induced defects are inevitable for top-down fabrications, whereas self-assembly bottom-up approaches cannot avoid the difficulties of its stochastic nature and are limited to restricted heterogeneous material systems. Here we demonstrate the versatile self-assembly of single "square" quantum rings (QR) on the sidewalls of gold-free GaAs NWs for the first time. By tuning the deposition temperature, As overpressure and amount of gallium-droplets, we were able to control the density and morphology of the structure, yielding novel single quantum dots, QR, coupled QRs, and nano-antidots. A proposed model based on a strain-driven, transport-dependent nucleation of gallium droplets at high temperature accounts for the formation mechanism of these structures. We achieved a single-QR-in-NW structure, of which the optical properties were analyzed using micro-photoluminescence at 10 K and a spatially resolved cathodoluminescence technique at 77 K. The spectra show sharp discrete peaks; of these peaks, the narrowest linewidth (separation) was 578 μeV (1-3 meV), reflecting the quantized nature of the ring-type electronic states.

  15. Self-assembly of polyhedral metal–organic framework particles into three-dimensional ordered superstructures

    NARCIS (Netherlands)

    Avci, Civan; Imaz, Inhar; Carné-Sánchez, Arnau; Pariente, Jose Angel; Tasios, Nikos; Pérez-Carvajal, Javier; Alonso, Maria Isabel; Blanco, Alvaro; Dijkstra, M.; López, Cefe; Maspoch, Daniel

    Self-assembly of particles into long-range, three-dimensional, ordered superstructures is crucial for the design of a variety of materials, including plasmonic sensing materials, energy or gas storage systems, catalysts and photonic crystals. Here, we have combined experimental and simulation data

  16. Light-assisted, templated self-assembly of gold nanoparticle chains.

    Science.gov (United States)

    Jaquay, Eric; Martínez, Luis Javier; Huang, Ningfeng; Mejia, Camilo A; Sarkar, Debarghya; Povinelli, Michelle L

    2014-09-10

    We experimentally demonstrate the technique of light-assisted, templated self-assembly (LATS) to trap and assemble 200 nm diameter gold nanoparticles. We excite a guided-resonance mode of a photonic-crystal slab with 1.55 μm laser light to create an array of optical traps. Unlike our previous demonstration of LATS with polystyrene particles, we find that the interparticle interactions play a significant role in the resulting particle patterns. Despite a two-dimensionally periodic intensity profile in the slab, the particles form one-dimensional chains whose orientations can be controlled by the incident polarization of the light. The formation of chains can be understood in terms of a competition between the gradient force due to the excitation of the mode in the slab and optical binding between particles.

  17. Formation of self-assembled monolayer of curcuminoid molecules on gold surfaces

    International Nuclear Information System (INIS)

    Berlanga, Isadora; Etcheverry-Berríos, Álvaro; Mella, Andy; Jullian, Domingo; Gómez, Victoria Alejandra; Aliaga-Alcalde, Núria; Fuenzalida, Victor; Flores, Marcos

    2017-01-01

    Highlights: • Thiophene curcuminoid molecules deposited on a gold surface by immersion. • Molecular dynamic studies of the molecular arrangement approaching the surface. • XPS and STM studies showing different arrangement of the molecules on the surface. • Molecular Interaction with surface depends on the sulfur position in thiophene rings. • Temporal evolution of the molecular arrangement on the surface. - Abstract: We investigated the formation of self-assembled monolayers of two thiophene curcuminoid molecules, 2-thphCCM (1) and 3-thphCCM (2), on polycrystalline gold substrates prepared by immersion of the surfaces in a solution of the molecules during 24 h. The functionalized surfaces were studied by scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). Despite the fact that both molecules have the same composition and almost the same structure, these molecules exhibit different behavior on the gold surface, which can be explained by the different positions of the sulfur atoms in the terminal aromatic rings. In the case of molecule 1, the complete formation of a SAM can be observed after 24 h of immersion. In the case of molecule 2, the transition from flat-lying to upright configuration on the surface is still in process after 24 h of immersion. This is attributed to the fact that molecule 2 have the sulfur atoms more exposed than molecule 1.

  18. Fluorescence enhancement in large-scale self-assembled gold nanoparticle double arrays

    International Nuclear Information System (INIS)

    Chekini, M.; Bierwagen, J.; Cunningham, A.; Bürgi, T.; Filter, R.; Rockstuhl, C.

    2015-01-01

    Localized surface plasmon resonances excited in metallic nanoparticles confine and enhance electromagnetic fields at the nanoscale. This is particularly pronounced in dimers made from two closely spaced nanoparticles. When quantum emitters, such as dyes, are placed in the gap of those dimers, their absorption and emission characteristics can be modified. Both processes have to be considered when aiming to enhance the fluorescence from the quantum emitters. This is particularly challenging for dimers, since the electromagnetic properties and the enhanced fluorescence sensitively depend on the distance between the nanoparticles. Here, we use a layer-by-layer method to precisely control the distances in such systems. We consider a dye layer deposited on top of an array of gold nanoparticles or integrated into a central position of a double array of gold nanoparticles. We study the effect of the spatial arrangement and the average distance on the plasmon-enhanced fluorescence. We found a maximum of a 99-fold increase in the fluorescence intensity of the dye layer sandwiched between two gold nanoparticle arrays. The interaction of the dye layer with the plasmonic system also causes a spectral shift in the emission wavelengths and a shortening of the fluorescence life times. Our work paves the way for large-scale, high throughput, and low-cost self-assembled functionalized plasmonic systems that can be used as efficient light sources

  19. Formation of self-assembled monolayer of curcuminoid molecules on gold surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Berlanga, Isadora [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Av. Blanco Encalada 2008, Santiago (Chile); Etcheverry-Berríos, Álvaro; Mella, Andy; Jullian, Domingo [Departamento de Ciencia de los Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Beaucheff 851, Santiago (Chile); Gómez, Victoria Alejandra [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Av. Blanco Encalada 2008, Santiago (Chile); Aliaga-Alcalde, Núria [ICREA (Institució Catalana de Recerca i Estudis Avançats), Passeig Lluís Companys, 23, 08018, Barcelona (Spain); CSIC-ICMAB (Institut de Ciència dels Materials de Barcelona), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra (Spain); Fuenzalida, Victor [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Av. Blanco Encalada 2008, Santiago (Chile); Flores, Marcos, E-mail: mflorescarra@ing.uchile.cl [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Av. Blanco Encalada 2008, Santiago (Chile); and others

    2017-01-15

    Highlights: • Thiophene curcuminoid molecules deposited on a gold surface by immersion. • Molecular dynamic studies of the molecular arrangement approaching the surface. • XPS and STM studies showing different arrangement of the molecules on the surface. • Molecular Interaction with surface depends on the sulfur position in thiophene rings. • Temporal evolution of the molecular arrangement on the surface. - Abstract: We investigated the formation of self-assembled monolayers of two thiophene curcuminoid molecules, 2-thphCCM (1) and 3-thphCCM (2), on polycrystalline gold substrates prepared by immersion of the surfaces in a solution of the molecules during 24 h. The functionalized surfaces were studied by scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). Despite the fact that both molecules have the same composition and almost the same structure, these molecules exhibit different behavior on the gold surface, which can be explained by the different positions of the sulfur atoms in the terminal aromatic rings. In the case of molecule 1, the complete formation of a SAM can be observed after 24 h of immersion. In the case of molecule 2, the transition from flat-lying to upright configuration on the surface is still in process after 24 h of immersion. This is attributed to the fact that molecule 2 have the sulfur atoms more exposed than molecule 1.

  20. Properties of the gold-sulphur interface: from self-assembled monolayers to clusters.

    Science.gov (United States)

    Bürgi, Thomas

    2015-10-14

    The gold-sulphur interface of self-assembled monolayers (SAMs) was extensively studied some time ago. More recently tremendous progress has been made in the preparation and characterization of thiolate-protected gold clusters. In this feature article we address different properties of the two systems such as their structure, the mobility of the thiolates on the surface and other dynamical aspects, the chirality of the structures and characteristics related to it and their vibrational properties. SAMs and clusters are in the focus of different communities that typically use different experimental approaches to study the respective systems. However, it seems that the nature of the Au-S interfaces in the two cases is quite similar. Recent single crystal X-ray structures of thiolate-protected gold clusters reveal staple motifs characterized by gold ad-atoms sandwiched between two sulphur atoms. This finding contradicts older work on SAMs. However, newer studies on SAMs also reveal ad-atoms. Whether this finding can be generalized remains to be shown. In any case, more and more studies highlight the dynamic nature of the Au-S interface, both on flat surfaces and in clusters. At temperatures slightly above ambient thiolates migrate on the gold surface and on clusters. Evidence for desorption of thiolates at room temperature, at least under certain conditions, has been demonstrated for both systems. The adsorbed thiolate can lead to chirality at different lengths scales, which has been shown both on surfaces and for clusters. Chirality emerges from the organization of the thiolates as well as locally at the molecular level. Chirality can also be transferred from a chiral surface to an adsorbate, as evidenced by vibrational spectroscopy.

  1. Properties of the gold-sulphur interface: from self-assembled monolayers to clusters

    Science.gov (United States)

    Bürgi, Thomas

    2015-09-01

    The gold-sulphur interface of self-assembled monolayers (SAMs) was extensively studied some time ago. More recently tremendous progress has been made in the preparation and characterization of thiolate-protected gold clusters. In this feature article we address different properties of the two systems such as their structure, the mobility of the thiolates on the surface and other dynamical aspects, the chirality of the structures and characteristics related to it and their vibrational properties. SAMs and clusters are in the focus of different communities that typically use different experimental approaches to study the respective systems. However, it seems that the nature of the Au-S interfaces in the two cases is quite similar. Recent single crystal X-ray structures of thiolate-protected gold clusters reveal staple motifs characterized by gold ad-atoms sandwiched between two sulphur atoms. This finding contradicts older work on SAMs. However, newer studies on SAMs also reveal ad-atoms. Whether this finding can be generalized remains to be shown. In any case, more and more studies highlight the dynamic nature of the Au-S interface, both on flat surfaces and in clusters. At temperatures slightly above ambient thiolates migrate on the gold surface and on clusters. Evidence for desorption of thiolates at room temperature, at least under certain conditions, has been demonstrated for both systems. The adsorbed thiolate can lead to chirality at different lengths scales, which has been shown both on surfaces and for clusters. Chirality emerges from the organization of the thiolates as well as locally at the molecular level. Chirality can also be transferred from a chiral surface to an adsorbate, as evidenced by vibrational spectroscopy.

  2. In situ WetSTEM observation of gold nanorod self-assembly dynamics in a drying colloidal droplet

    Czech Academy of Sciences Publication Activity Database

    Novotný, F.; Wandrol, P.; Proška, J.; Šlouf, Miroslav

    2014-01-01

    Roč. 20, č. 2 (2014), s. 385-393 ISSN 1431-9276 R&D Projects: GA TA ČR TE01020118; GA ČR GAP205/10/0348 Institutional support: RVO:61389013 Keywords : gold nanorods * self-assembly * in situ Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.877, year: 2014

  3. Insitu synthesis of self-assembled gold nanoparticles on glass or silicon substrates through reactive inkjet printing

    KAUST Repository

    Abulikemu, Mutalifu; Da'As, Eman Husni; Haverinen, Hanna M.; Cha, Dong Kyu; Malik, Mohammad A.; Jabbour, Ghassan Elie

    2013-01-01

    A facile and low cost method for the synthesis of self-assembled nanoparticles (NPs) with minimal size variation and chemical waste by using reactive inkjet printing was developed. Gold NPs with diameters as small as (8±2)nm can be made at low

  4. DNA-directed self-assembly of gold nanoparticles into binary and ternary nanostructures

    International Nuclear Information System (INIS)

    Yao Hui; Yi Changqing; Tzang Chihung; Zhu Junjie; Yang Mengsu

    2007-01-01

    The assembly and characterization of gold nanoparticle-based binary and ternary structures are reported. Two strategies were used to assemble gold nanoparticles into ordered nanoscale architectures: in strategy 1, gold nanoparticles were functionalized with single-strand DNA (ssDNA) first, and then hybridized with complementary ssDNA-labelled nanoparticles to assemble designed architectures. In strategy 2, the designed architectures were constructed through hybridization between complementary ssDNA first, then by assembling gold nanoparticles to the scaffolding through gold-sulfur bonds. Both TEM measurements and agarose gel electrophoresis confirmed that the latter strategy is more efficient in generating the designed nanostructures

  5. Characterization of self-assembled redox polymer and antibody molecules on thiolated gold electrodes.

    Science.gov (United States)

    Calvo, E J; Danilowicz, C; Lagier, C M; Manrique, J; Otero, M

    2004-05-15

    Multilayer immobilization of antibody and redox polymer molecules on a gold electrode was achieved, as a strategy for the potential development of an amperometric immunosensor. The step-by-step assembly of antibiotin IgG on Os(bpy)(2)ClPyCH(2)NH poly(allylamine) redox polymer (PAH-Os) adsorbed on thiolated gold electrodes was proved by quartz crystal microbalance (QCM) and atomic force microscopy (AFM) experiments, confirming the electrochemical evidence. The increase of redox charge during the layer-by-layer deposition demonstrated that charge propagation within the layers is feasible. The multilayer structure proved to be effective for the molecular recognition of horseradish peroxidase-biotin conjugate (HRP-biotin), as confirmed by the QCM measurements and the electrocatalytic reduction current obtained upon H(2)O(2) addition. The catalytic current resulting from PAH-Os mediation was shown to increase with the number of assembled layers. Furthermore, the inventory of IgG molecules on the supramolecular self-assembled structure and the specific and non-specific binding of HRP-biotin conjugate were confirmed by the QCM transient studies, giving information on the kinetics of IgG deposition and HRP-biotin conjugate binding to the IgG.

  6. Self-assembled gold coating enhances X-ray imaging of alginate microcapsules

    Science.gov (United States)

    Qie, Fengxiang; Astolfo, Alberto; Wickramaratna, Malsha; Behe, Martin; Evans, Margaret D. M.; Hughes, Timothy C.; Hao, Xiaojuan; Tan, Tianwei

    2015-01-01

    Therapeutic biomolecules produced from cells encapsulated within alginate microcapsules (MCs) offer a potential treatment for a number of diseases. However the fate of such MCs once implanted into the body is difficult to establish. Labelling the MCs with medical imaging contrast agents may aid their detection and give researchers the ability to track them over time thus aiding the development of such cellular therapies. Here we report the preparation of MCs with a self-assembled gold nanoparticle (AuNPs) coating which results in distinctive contrast and enables them to be readily identified using a conventional small animal X-ray micro-CT scanner. Cationic Reversible Addition-Fragmentation chain Transfer (RAFT) homopolymer modified AuNPs (PAuNPs) were coated onto the surface of negatively charged alginate MCs resulting in hybrids which possessed low cytotoxicity and high mechanical stability in vitro. As a result of their high localized Au concentration, the hybrid MCs exhibited a distinctive bright circular ring even with a low X-ray dose and rapid scanning in post-mortem imaging experiments facilitating their positive identification and potentially enabling them to be used for in vivo tracking experiments over multiple time-points.Therapeutic biomolecules produced from cells encapsulated within alginate microcapsules (MCs) offer a potential treatment for a number of diseases. However the fate of such MCs once implanted into the body is difficult to establish. Labelling the MCs with medical imaging contrast agents may aid their detection and give researchers the ability to track them over time thus aiding the development of such cellular therapies. Here we report the preparation of MCs with a self-assembled gold nanoparticle (AuNPs) coating which results in distinctive contrast and enables them to be readily identified using a conventional small animal X-ray micro-CT scanner. Cationic Reversible Addition-Fragmentation chain Transfer (RAFT) homopolymer modified Au

  7. Towards Ordered Silicon Nanostructures through Self-Assembling Mechanisms and Processes

    Directory of Open Access Journals (Sweden)

    R. A. Puglisi

    2015-01-01

    Full Text Available The design and development of innovative architectures for memory storage and energy conversion devices are at the forefront of current research efforts driving us towards a sustainable future. However, issues related to the cost, efficiency, and reliability of current technologies are still severely limiting their overtake of the standard designs. The use of ordered nanostructured silicon is expected to overcome these limitations and push the advancement of the alternative technologies. Specifically, self-assembling of block copolymers has been recognized as a promising and cost-effective approach to organize silicon nanostructures. This work reviews some of the most important findings on block copolymer self-assembling and complements those with the results of new experimental studies. First of all, a quantitative analysis is presented on the ordering and fluctuations expected in the synthesis of silicon nanostructures by using standard synthesis methods like chemical vapour deposition. Then the effects of the several parameters guiding the ordering mechanisms in the block copolymer systems, such as film thickness, molecular weight, annealing conditions, solvent, and substrate topography are discussed. Finally, as a proof of concept, an in-house developed example application to solar cells is presented, based on silicon nanostructures resulting from self-assembling of block copolymers.

  8. Polymer-templated self-assembly of a 2-dimensional gold nanoparticle network

    DEFF Research Database (Denmark)

    Hansen, Christian Rein; Westerlund, Fredrik; Moth-Poulsen, Kasper

    2008-01-01

    We here report on the formation of well-ordered 2D gold nanostructures at the air/water interface. Spreading a mixture of alkanethiol-capped gold nanoparticles (AuNPs) and an amphiphilic poly(p-phenylene) on a water surface and compressing the mixture to a surface pressure of 40 mN/m lead...

  9. A one-pot strategy for biomimetic synthesis and self-assembly of gold nanoparticles

    International Nuclear Information System (INIS)

    Wang Yi; Li Yuanfang; Zhao Xijuan; Huang Chengzhi; Chen Liqiang; Peng Li

    2010-01-01

    A simple, one-pot and controllable strategy is reported in this contribution for biomimetic synthesis and self-assembly of gold nanoparticles (Au-NPs). It involves our synthesized polyaldehyde dextran (PAD), which has been proved to be a biomacromolecule with excellent biocompatibility and biodegradability, acting as both a reducing agent and a stabilizer. The morphology of the as-prepared Au-NP assemblies can be controlled by adjusting the reaction conditions, such as the concentration of aldehyde in PAD, the reaction time and the temperature. Investigations of the mechanism suggest that stabilizers may distribute on different crystal facets of NPs non-uniformly owing to the different binding forces, and dipole-dipole interaction of NPs could be the main driving force for the assembly of Au-NPs. In addition, intermolecular hydrogen bonding interaction of stabilizers could also act as a possible driving force. The excellent biocompatibility of the Au-NP assemblies makes them promising candidates for fabricating future optical nanodevices and application in biological systems.

  10. A one-pot strategy for biomimetic synthesis and self-assembly of gold nanoparticles

    Science.gov (United States)

    Wang, Yi; Chen, Li Qiang; Li, Yuan Fang; Zhao, Xi Juan; Peng, Li; Zhi Huang, Cheng

    2010-07-01

    A simple, one-pot and controllable strategy is reported in this contribution for biomimetic synthesis and self-assembly of gold nanoparticles (Au-NPs). It involves our synthesized polyaldehyde dextran (PAD), which has been proved to be a biomacromolecule with excellent biocompatibility and biodegradability, acting as both a reducing agent and a stabilizer. The morphology of the as-prepared Au-NP assemblies can be controlled by adjusting the reaction conditions, such as the concentration of aldehyde in PAD, the reaction time and the temperature. Investigations of the mechanism suggest that stabilizers may distribute on different crystal facets of NPs non-uniformly owing to the different binding forces, and dipole-dipole interaction of NPs could be the main driving force for the assembly of Au-NPs. In addition, intermolecular hydrogen bonding interaction of stabilizers could also act as a possible driving force. The excellent biocompatibility of the Au-NP assemblies makes them promising candidates for fabricating future optical nanodevices and application in biological systems.

  11. Self-assembled monolayers of a disulphide-derivatised cobalt-porphyrin on gold

    International Nuclear Information System (INIS)

    Viana, A.S.; Leupold, S.; Montforts, F.-P.; Abrantes, L.M.

    2005-01-01

    A self-assembled monolayer (SAM) of a novel cobalt(II)porphyrin disulphide derivative was prepared on flat gold(1 1 1) electrode. Evidence for surface modification was provided by electrochemical reductive desorption of the monolayer and ellipsometry, consistent with a coverage of 2.5 x 10 -10 mol cm -2 and a thickness of 13 A, respectively. Both results support the presence of SAMs where the molecules share an intermediate position between perpendicular and flat orientation. Scanning tunnelling microscopy have also proven the formation of CoPSS SAMs, however high-resolution images could only be obtained when the CoPSS molecules were diluted in an hexanethiol SAM. The electrocatalytic activity of the surface confined Co-porphyrin was evaluated for the oxygen reduction. Voltammetric data indicate that reaction involves two electrons consistent with the formation of hydrogen peroxide. Under similar experimental conditions the data obtained for an iron-porphyrin analogue points for a full reduction of dioxygen to water

  12. Electrochemical evaluation of avidin-biotin interaction on self-assembled gold electrodes

    International Nuclear Information System (INIS)

    Ding, S.-J.; Chang, B.-W.; Wu, C.-C.; Lai, M.-F.; Chang, H.-C.

    2005-01-01

    The avidin-biotin interaction on 11-mercaptoundecanoic acid self-assembled gold electrodes was investigated by means of cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The interfacial properties of the modified electrodes were evaluated in the presence of the Fe(China) 6 3-/4- couple redox as a probe. A simple equivalent circuit model with a constant phase element was used to interpret the obtained impedance spectra. The results of cyclic voltammetry showed that the voltammetric behavior of the redox probe was influenced by the electrode surface modification. It is evident that the accumulation of treated substances and the binding of biotin to avidin on the electrode surface resulted in the increasing electron-transfer resistance and the decreasing capacitance. The changes in the electron-transfer resistance on the avidin-modified electrodes were more sensitive than that in the capacitance while detecting biotin over the 2-10 μg/mL concentration. The detection amount can be as low as 20 ng/mL based on the electron-transfer resistance that presented the change of 4.3 kΩ without the use of labels. The development of a rapid, facile, and sensitive method for the quantitation of nanogram quantities of biomolecules utilizing EIS may be achieved

  13. Formation of high-quality self-assembled monolayers of conjugated dithiols on gold: base matters.

    Science.gov (United States)

    Valkenier, Hennie; Huisman, Everardus H; van Hal, Paul A; de Leeuw, Dago M; Chiechi, Ryan C; Hummelen, Jan C

    2011-04-06

    This Article reports a systematic study on the formation of self-assembled monolayers (SAMs) of conjugated molecules for molecular electronic (ME) devices. We monitored the deprotection reaction of acetyl protected dithiols of oligophenylene ethynylenes (OPEs) in solution using two different bases and studied the quality of the resulting SAMs on gold. We found that the optimal conditions to reproducibly form dense, high-quality monolayers are 9-15% triethylamine (Et(3)N) in THF. The deprotection base tetrabutylammonium hydroxide (Bu(4)NOH) leads to less dense SAMs and the incorporation of Bu(4)N into the monolayer. Furthermore, our results show the importance of the equilibrium concentrations of (di)thiolate in solution on the quality of the SAM. To demonstrate the relevance of these results for molecular electronics applications, large-area molecular junctions were fabricated using no base, Et(3)N, and Bu(4)NOH. The magnitude of the current-densities in these devices is highly dependent on the base. A value of β=0.15 Å(-1) for the exponential decay of the current-density of OPEs of varying length formed using Et(3)N was obtained. © 2011 American Chemical Society

  14. Light-driven self-assembly of hetero-shaped gold nanorods

    Science.gov (United States)

    Liaw, Jiunn-Woei; Chao, Hsueh-Yu; Huang, Cheng-Wei; Kuo, Mao-Kuen

    2018-01-01

    Light-driven self-assembly and coalescence of two nearby hetero-shaped gold nanorods (GNRs) with different lengths are studied theoretically. The optical forces and torques, in terms of Maxwell's stress tensor, upon these GNRs provided by a linearly polarized (LP) plane wave are analyzed using the multiple multipole (MMP) method. Numerical results show that the optical torque dominates their alignments and the optical force their attraction. The most likely outcome of the plasmon-mediated light-matter interaction is wavelength dependent. Three different coalescences of the two GNRs could be induced by a LP light in three different wavelength regimes, respectively. For example, the side-by-side coalescence of two GNRs with radius of 15 nm and different lengths (120 and 240 nm) is induced in water as irradiated by a LP light at 633 nm, the T-shaped one at 1064 nm, and the end-to-end one at 1700 nm. The plasmonic attractive force and heating power densities inside GNRs with different gaps are also studied; the smaller the gap, the larger the attractive force and heating power. The results imply that the plasmonic coalescence and heating of two discrete GNRs may cause the local fusion at the junction of the assembly and the subsequent annealing (even recrystallization). Because the heating makes the two discrete GNRs fused to become a new nanostructure, the plasmonic coalescence of optical manipulation is irreversible.

  15. Multi-scale ordering of self-assembled InAs/GaAs(001 quantum dots

    Directory of Open Access Journals (Sweden)

    Kiravittaya S

    2006-01-01

    Full Text Available AbstractOrdering phenomena related to the self-assembly of InAs quantum dots (QD grown on GaAs(001 substrates are experimentally investigated on different length scales. On the shortest length-scale studied here, we examine the QD morphology and observe two types of QD shapes, i.e., pyramids and domes. Pyramids are elongated along the 12345678910 directions and are bounded by {137} facets, while domes have a multi-facetted shape. By changing the growth rates, we are able to control the size and size homogeneity of freestanding QDs. QDs grown by using low growth rate are characterized by larger sizes and a narrower size distribution. The homogeneity of buried QDs is measured by photoluminescence spectroscopy and can be improved by low temperature overgrowth. The overgrowth induces the formation of nanostructures on the surface. The fabrication of self-assembled nanoholes, which are used as a template to induce short-range positioning of QDs, is also investigated. The growth of closely spaced QDs (QD molecules containing 2–6 QDs per QD molecule is discussed. Finally, the long-range positioning of self-assembled QDs, which can be achieved by the growth on patterned substrates, is demonstrated. Lateral QD replication observed during growth of three-dimensional QD crystals is reported.

  16. In-situ visualization and order quantification of symmetric diblock copolymer directed self-assembly

    International Nuclear Information System (INIS)

    Salaün, M.; Le Gallic, M.; Picard, E.; Zelsmann, M.

    2013-01-01

    In this work, atomic force microscopy (AFM) investigations of lamellar PS-b-PMMA block copolymer layers are performed during the self-assembly process. These in-situ experiments are made on both un-patterned planar substrates and topographical substrates (graphoepitaxy experiments) at different temperatures and for different durations. Image processing software is used to produce AFM movies of the same location on the sample and to measure polymer micro-phase domain lengths versus annealing time. We observed that micro-domain formation starts after only a few minutes of heating. On planar substrates, the micro-domain length evolution with time (t) is in accordance with the literature, following a power law ∼ t 0.29 . On the other hand, in substrate channels and in conditions used, we show that the domain length dependence follows a two-step process. Initially, the system adopts a similar kinetic dependence as that of the planar substrate, but at longer times, drastically reduced time dependence is observed due to the topographical confinement of the domains. - Highlights: ► Live atomic force microscopy of block copolymer directed self-assembly is performed. ► Values of polymer self-assembly kinetic in topographical trenches are measured. ► Opens the way to a better understanding of graphoepitaxy order nucleation and growth

  17. Nanocylindrical confinement imparts highest structural order in molecular self-assembly of organophosphonates on aluminum oxide.

    Science.gov (United States)

    Pathak, Anshuma; Bora, Achyut; Braunschweig, Björn; Meltzer, Christian; Yan, Hongdan; Lemmens, Peter; Daum, Winfried; Schwartz, Jeffrey; Tornow, Marc

    2017-05-18

    We report the impact of geometrical constraint on intramolecular interactions in self-assembled monolayers (SAMs) of alkylphosphonates grown on anodically oxidized aluminum (AAO). Molecular order in these films was determined by sum frequency generation (SFG) spectroscopy, a more sensitive measure of order than infrared absorption spectroscopy. Using SFG we show that films grown on AAO are, within detection limits, nearly perfectly ordered in an all-trans alkyl chain configuration. In marked contrast, films formed on planar, plasma-oxidized aluminum oxide or α-Al 2 O 3 (0001) are replete with gauche defects. We attribute these differences to the nanocylindrical structure of AAO, which enforces molecular confinement.

  18. Driving Forces of the Self-Assembly of Supramolecular Systems: Partially Ordered Mesophases

    Science.gov (United States)

    Shcherbina, M. A.; Chvalun, S. N.

    2018-06-01

    The main aspects are considered of the self-organization of a new class of liquid crystalline compounds, rigid sector-shaped and cone-shaped dendrons. Theoretical approaches to the self-assembly of different amphiphilic compounds (lipids, bolaamphiphiles, block copolymers, and polyelectrolytes) are described. Particular attention is given to the mesophase structures that emerge during the self-organization of mesophases characterized by intermediate degrees of ordering, e.g., plastic crystals, the rotation-crystalline phase in polymers, ordered and disordered two-dimensional columnar phases, and bicontinuous cubic phases of different symmetry.

  19. Supramolecular domains in mixed peptide self-assembled monolayers on gold nanoparticles.

    Science.gov (United States)

    Duchesne, Laurence; Wells, Geoff; Fernig, David G; Harris, Sarah A; Lévy, Raphaël

    2008-09-01

    Self-organization in mixed self-assembled monolayers of small molecules provides a route towards nanoparticles with complex molecular structures. Inspired by structural biology, a strategy based on chemical cross-linking is introduced to probe proximity between functional peptides embedded in a mixed self-assembled monolayer at the surface of a nanoparticle. The physical basis of the proximity measurement is a transition from intramolecular to intermolecular cross-linking as the functional peptides get closer. Experimental investigations of a binary peptide self-assembled monolayer show that this transition happens at an extremely low molar ratio of the functional versus matrix peptide. Molecular dynamics simulations of the peptide self-assembled monolayer are used to calculate the volume explored by the reactive groups. Comparison of the experimental results with a probabilistic model demonstrates that the peptides are not randomly distributed at the surface of the nanoparticle, but rather self-organize into supramolecular domains.

  20. Understanding the ordering mechanisms of self-assembled nanostructures of block copolymers during zone annealing

    Energy Technology Data Exchange (ETDEWEB)

    Cong, Zhinan; Zhang, Liangshun, E-mail: zhangls@ecust.edu.cn, E-mail: jlin@ecust.edu.cn; Wang, Liquan; Lin, Jiaping, E-mail: zhangls@ecust.edu.cn, E-mail: jlin@ecust.edu.cn [Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2016-03-21

    A theoretical method based on dynamic version of self-consistent field theory is extended to investigate directed self-assembly behaviors of block copolymers subjected to zone annealing. The ordering mechanisms and orientation modulation of microphase-separated nanostructures of block copolymers are discussed in terms of sweep velocity, wall preference, and Flory-Huggins interaction parameter. The simulated results demonstrate that the long-range ordered nanopatterns are achieved by lowering the sweep velocity of zone annealing due to the incorporation of templated ordering of block copolymers. The surface enrichment by one of the two polymer species induces the orientation modulation of defect-free nanostructures through finely tuning the composition of block copolymers and the preference of walls. Additionally, the Flory-Huggins interaction parameters of block copolymers in the distinct regions are main factors to design the zone annealing process for creating the highly ordered nanostructures with single orientation.

  1. DNA biosensor for detection of Salmonella typhi from blood sample of typhoid fever patient using gold electrode modified by self-assembled monolayers of thiols

    Science.gov (United States)

    Suryapratiwi, Windha Novita; Paat, Vlagia Indira; Gaffar, Shabarni; Hartati, Yeni Wahyuni

    2017-05-01

    Electrochemical biosensors are currently being developed in order to handle various clinical problems in diagnosing infectious diseases caused by pathogenic bacteria, or viruses. On this research, voltammetric DNA biosensor using gold electrode modified by thiols with self-assembled monolayers had been developed to detect a certain sequence of Salmonella typhi DNA from blood sample of typhoid fever patient. Thiol groups of cysteamines (Cys) and aldehyde groups from glutaraldehydes (Glu) were used as a link to increase the performance of gold electrode in detecting guanine oxidation signal of hybridized S. typhi DNA and ssDNA probe. Standard calibration method was used to determine analytical parameters from the measurements. The result shown that, the detection of S. typhi DNA from blood sample of typhoid fever patient can be carried out by voltammetry using gold electrode modified by self-assembled monolayers of thiols. A characteristic oxidation potential of guanine using Au/Cys/Gluwas obtained at +0.17 until +0.20 V. Limit of detection and limit of quantification from this measurements were 1.91μg mL-1 and 6.35 μg mL-1. The concentration of complement DNA from sample was 6.96 μg mL-1.

  2. Observation of higher-order diffraction features in self-assembled photonic crystals

    International Nuclear Information System (INIS)

    Nair, Rajesh V.; Vijaya, R.

    2007-01-01

    The optical response of high quality three dimensionally (3D) ordered photonic crystals is analyzed in the high energy region. By tuning the reflectance with the angle of incidence of light, the peaks in the reflection spectrum that correspond to the first, second, and third order photonic stop bands and the van Hove singular point in the photon density of states are clearly distinguished. The high energy features have been observed for photonic crystals made from colloids of different diameters, having different index contrast and fabricated by two different self-assembly routes. The observation of van Hove singularity at near-normal incidence of light and its presence even in low index-contrast photonic crystals provide conclusive evidence that these high energy features are due to the perfect periodic ordering present in the photonic crystals with less defects and disorder

  3. Ordered CdSe nanoparticles within self-assembled block copolymer domains on surfaces.

    Science.gov (United States)

    Zou, Shan; Hong, Rui; Emrick, Todd; Walker, Gilbert C

    2007-02-13

    Hierarchical, high-density, ordered patterns were fabricated on Si substrates by self-assembly of CdSe nanoparticles within approximately 20-nm-thick diblock copolymer films in a controlled manner. Surface-modified CdSe nanoparticles formed well-defined structures within microphase-separated polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) domains. Trioctylphosphine oxide (TOPO)-coated CdSe nanoparticles were incorporated into PS domains and polyethylene glycol-coated CdSe nanoparticles were located primarily in the P2VP domains. Nearly close-packed CdSe nanoparticles were clearly identified within the highly ordered patterns on Si substrates by scanning electron microscopy (SEM). Contact angle measurements together with SEM results indicate that TOPO-CdSe nanoparticles were partially placed at the air/copolymer interface.

  4. Formation of high-quality self-assembled monolayers of conjugated dithiols on gold : Base matters

    NARCIS (Netherlands)

    Valkenier, Hennie; Huisman, Everardus H.; Hal, Paul A. van; de Leeuw, Dagobert; Chiechi, Ryan C.; Hummelen, Jan C.

    2011-01-01

    This Article reports a systematic study on the formation of self-assembled monolayers (SAMs) of conjugated molecules for molecular electronic (ME) devices. We monitored the deprotection reaction of acetyl protected dithiols of oligophenylene ethynylenes (OPEs) in solution using two different bases

  5. Self-assembled nanogaps via seed-mediated growth of end-to-end linked gold nanorods

    DEFF Research Database (Denmark)

    Jain, Titoo; Westerlund, Axel Rune Fredrik; Johnson, Erik

    2009-01-01

    Gold nanorods (AuNRs) are of interest for a wide range of applications, ranging from imaging to molecular electronics, and they have been studied extensively for the past decade. An important issue in AuNR applications is the ability to self-assemble the rods in predictable structures...... on the nanoscale. We here present a new way to end-to-end link AuNRs with a single or few linker molecules. Whereas methods reported in the literature so far rely on modification of the AuNRs after the synthesis, we here dimerize gold nanoparticle seeds with a water-soluble dithiol-functionalized polyethylene...... that a large fraction of the rods are flexible around the hinging molecule in solution, as expected for a molecularly linked nanogap. By using excess of gold nanoparticles relative to the linking dithiol molecule, this method can provide a high probability that a single molecule is connecting the two rods...

  6. pH-Sensitive Reversible Programmed Targeting Strategy by the Self-Assembly/Disassembly of Gold Nanoparticles.

    Science.gov (United States)

    Ma, Jinlong; Hu, Zhenpeng; Wang, Wei; Wang, Xinyu; Wu, Qiang; Yuan, Zhi

    2017-05-24

    A reversible programmed targeting strategy could achieve high tumor accumulation due to its long blood circulation time and high cellular internalization. Here, targeting ligand-modified poly(ethylene glycol) (PEG-ligand), dibutylamines (Bu), and pyrrolidinamines (Py) were introduced on the surface of gold nanoparticles (Au NPs) for reversible shielding/deshielding of the targeting ligands by pH-responsive self-assembly. Hydrophobic interaction and steric repulsion are the main driving forces for the self-assembly/disassembly of Au NPs. The precise self-assembly (pH ≥ 7.2) and disassembly (pH ≤ 6.8) of Au NPs with different ligands could be achieved by fine-tuning the modifying molar ratio of Bu and Py (R m ), which followed the formula R m = 1/(-0.0013X 2 + 0.0323X + 1), in which X is the logarithm of the partition coefficient of the targeting ligand. The assembled/disassembled behavior of Au NPs at pH 7.2 and 6.8 was confirmed by transmission electron microscopy and dynamic light scattering. Enzyme-linked immunosorbent assays and cellular uptake studies showed that the ligands could be buried inside the assembly and exposed when disassembled. More importantly, this process was reversible, which provides the possibility of prolonging blood circulation by shielding ligands associated with the NPs that were effused from tumor tissue.

  7. Monoatomic and cluster beam effect on ToF-SIMS spectra of self-assembled monolayers on gold

    Energy Technology Data Exchange (ETDEWEB)

    Tuccitto, N. [Dipartimento di Scienze Chimiche Universita degli Studi di Catania, v.le A. Doria 6, 95125, Catania (Italy)], E-mail: n.tuccitto@unict.it; Torrisi, V.; Delfanti, I.; Licciardello, A. [Dipartimento di Scienze Chimiche Universita degli Studi di Catania, v.le A. Doria 6, 95125, Catania (Italy)

    2008-12-15

    Self-assembled monolayers represent well-defined systems that is a good model surface to study the effect of primary ion beams used in secondary ion mass spectrometry. The effect of polyatomic primary beams on both aliphatic and aromatic self-assembled monolayers has been studied. In particular, we analysed the variation of the relative secondary ion yield of both substrate metal-cluster (Au{sub n}{sup -}) in comparison with the molecular ions (M{sup -}) and clusters (M{sub x}Au{sub y}{sup -}) by using Bi{sup +}, Bi{sub 3}{sup +}, Bi{sub 5}{sup +} beams. Moreover, the differences in the secondary ion generation efficiency are discussed. The main effect of the cluster beams is related to an increased formation of low-mass fragments and to the enhancement of the substrate related gold-clusters. The results show that, at variance of many other cases, the static SIMS of self-assembled monolayers does not benefit of the use of polyatomic primary ions.

  8. Cyclodextrin inclusion complexes with thiocholesterol and their self-assembly on gold: A combined electrochemical and lateral force microscopy analysis

    International Nuclear Information System (INIS)

    Pandey, Rakesh K.; Lakshminarayanan, V.

    2014-01-01

    The present study is an attempt to understand the properties of an interesting self-assembled monolayer system composed of inclusion complexes of thiocholesterol and cyclodextrins. Cyclodextrins were used as host compound while thiocholesterol was used as the entrant molecule into the cavity of cyclodextrins. The improved electron transfer barrier property towards a redox couple indicates a sturdy inclusion complex monolayer. A very large R ct value, 64.6 kΩ·cm 2 for a redox system was obtained in the case of methyl-β-cyclodextrin and thiocholesterol inclusion complex self-assembled monolayer. A rather low value of capacitance 1.2 μF cm −2 measured in supporting electrolyte further signifies the fact that inclusion complex monolayer is quite impermeable for ionic species. In addition lateral force microscopy combined with force–distance analysis revealed the presence of an interesting mixed hydrophilic/hydrophobic surface. - Highlights: • Self-assembled monolayer of inclusion complexes on gold surface • Lateral force microscopy study of the regions of varying hydrophilicities • Could find applications in patterning surfaces to be hydrophilic/hydrophobic • Improved electron transfer barrier properties

  9. Plasmon-enhanced photocurrent generation from self-assembled monolayers of phthalocyanine by using gold nanoparticle films.

    Science.gov (United States)

    Sugawa, Kosuke; Akiyama, Tsuyoshi; Kawazumi, Hirofumi; Yamada, Sunao

    2009-04-09

    The effect of localized electric fields on the photocurrent responses of phthalocyanine that was self-assembled on a gold nanoparticle film was investigated by comparing the conventional and the total internal reflection (TIR) experimental systems. In the case of photocurrent measurements, self-assembled monolayers (SAMs) of a thiol derivative of palladium phthalocyanine (PdPc) were prepared on the surface of gold-nanoparticle film that was fixed on the surface of indium-tin-oxide (ITO) substrate via a polyion (PdPc/AuP/polyion/ITO) or on the ITO surface (PdPc/ITO). Photocurrent action spectra from the two samples were compared by using the conventional spectrometer, and were found that PdPc/AuP/polyion/ITO gave considerably larger photocurrent signals than PdPc/ITO under the identical concentration of PdPc. In the case of the TIR experiments for the PdPc/AuP/polyion/ITO and the PdPc/AuP/Glass systems, incident-angle profiles of photocurrent and emission signals were correlated with each other, and they were different from that of the PdPc/ITO system. Accordingly, it was demonstrated that the photocurrent signals were certainly enhanced by the localized electric fields of the gold-nanoparticle film.

  10. Impact of the self-assembly of multilayer polyelectrolyte functionalized gold nanorods and its application to biosensing

    International Nuclear Information System (INIS)

    Li Xin; Qian Jun; He Sailing

    2008-01-01

    Multilayered polyelectrolyte functionalized gold nanorods (GNRs) are reported for the conjugation of and sensitive detection of bio-molecules. Multilayered polyelectrolyte functionalized GNRs can significantly improve the biocompatibility of cetyltrimethylammonium bromide (CTAB) coated GNRs in a bio-environment and can diminish the toxicity induced by CTAB. Biotin, bovine serum albumin (BSA)-biotin and streptavidin are conjugated to polyelectrolyte functionalized GNRs, and the conjugates can serve as a platform for many biotin-streptavidin-based biological applications. Through the robust self-assembly effect of GNRs, biotin-conjugated GNRs are also utilized as a very sensitive probe for the detection of a small amount of streptavidin

  11. Gold cleaning methods for preparation of cell culture surfaces for self-assembled monolayers of zwitterionic oligopeptides.

    Science.gov (United States)

    Enomoto, Junko; Kageyama, Tatsuto; Myasnikova, Dina; Onishi, Kisaki; Kobayashi, Yuka; Taruno, Yoko; Kanai, Takahiro; Fukuda, Junji

    2018-05-01

    Self-assembled monolayers (SAMs) have been used to elucidate interactions between cells and material surface chemistry. Gold surfaces modified with oligopeptide SAMs exhibit several unique characteristics, such as cell-repulsive surfaces, micropatterns of cell adhesion and non-adhesion regions for control over cell microenvironments, and dynamic release of cells upon external stimuli under culture conditions. However, basic procedures for the preparation of oligopeptide SAMs, including appropriate cleaning methods of the gold surface before modification, have not been fully established. Because gold surfaces are readily contaminated with organic compounds in the air, cleaning methods may be critical for SAM formation. In this study, we examined the effects of four gold cleaning methods: dilute aqua regia, an ozone water, atmospheric plasma, and UV irradiation. Among the methods, UV irradiation most significantly improved the formation of oligopeptide SAMs in terms of repulsion of cells on the surfaces. We fabricated an apparatus with a UV light source, a rotation table, and HEPA filter, to treat a number of gold substrates simultaneously. Furthermore, UV-cleaned gold substrates were capable of detaching cell sheets without serious cell injury. This may potentially provide a stable and robust approach to oligopeptide SAM-based experiments for biomedical studies. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Comparing the performances of electrochemical sensors using p-aminophenol redox cycling by different reductants on gold electrodes modified with self-assembled monolayers

    International Nuclear Information System (INIS)

    Xia, Ning; Ma, Fengji; Zhao, Feng; He, Qige; Du, Jimin; Li, Sujuan; Chen, Jing; Liu, Lin

    2013-01-01

    Highlights: • Performances of p-AP redox cycling using different reductants on gold surface are compared. • Background current decreases in order of hydrazine, Na 2 SO 3 , NaBH 4 , NADH, cysteamine, and TCEP. • Chemical reaction rate with QI increases in order of NADH, TCEP, and cysteamine. • NADH, TCEP and cysteamine are suitable for p-AP redox cycling on gold electrode. -- Abstract: p-Aminophenol (p-AP) redox cycling using chemical reductants is one strategy for developing sensitive electrochemical sensors. However, most of the reported reductants are only used on indium-tin oxide (ITO) electrodes but not gold electrodes due to the high background current caused by the oxidation reaction of the reductants on the highly electrocatalytic gold electrodes. Therefore, new strategies and/or reductants are in demand for expanding the application of p-AP redox cycling on gold electrodes. In this work, we compared the performances of several reductants in p-AP redox cycling on self-assembled monolayers (SAMs)-modified gold electrodes. Among the tested reagents, nicotinamide adenine dinucleotide (NADH), tris(2-carboxyethyl)phosphine (TCEP) and cysteamine were demonstrated to be suitable for p-AP redox cycling on the alkanethiol-modified gold electrodes because of their low background current. The rate of chemical reaction between reductants and p-quinone imine (QI, the electrochemically oxidized product of p-AP) increases in the order of NADH −1 was achieved. We believe that our work will be valuable for the development of electrochemical sensors using p-AP redox cycling on gold electrodes

  13. Sample preconcentration utilizing nanofractures generated by junction gap breakdown assisted by self-assembled monolayer of gold nanoparticles.

    Directory of Open Access Journals (Sweden)

    Chun-Ping Jen

    Full Text Available The preconcentration of proteins with low concentrations can be used to increase the sensitivity and accuracy of detection. A nonlinear electrokinetic flow is induced in a nanofluidic channel due to the overlap of electrical double layers, resulting in the fast accumulation of proteins, referred to as the exclusion-enrichment effect. The proposed chip for protein preconcentration was fabricated using simple standard soft lithography with a polydimethylsiloxane replica. This study extends our previous paper, in which gold nanoparticles were manually deposited onto the surface of a protein preconcentrator. In the present work, nanofractures were formed by utilizing the self-assembly of gold-nanoparticle-assisted electric breakdown. This reliable method for nanofracture formation, involving self-assembled monolayers of nanoparticles at the junction gap between microchannels, also decreases the required electric breakdown voltage. The experimental results reveal that a high concentration factor of 1.5×10(4 for a protein sample with an extremely low concentration of 1 nM was achieved in 30 min by using the proposed chip, which is faster than our previously proposed chip at the same conditions. Moreover, an immunoassay of bovine serum albumin (BSA and anti-BSA was carried out to demonstrate the applicability of the proposed chip.

  14. High-Yield Excited Triplet States in Pentacene Self-Assembled Monolayers on Gold Nanoparticles through Singlet Exciton Fission.

    Science.gov (United States)

    Kato, Daiki; Sakai, Hayato; Tkachenko, Nikolai V; Hasobe, Taku

    2016-04-18

    One of the major drawbacks of organic-dye-modified self-assembled monolayers on metal nanoparticles when employed for efficient use of light energy is the fact that singlet excited states on dye molecules can be easily deactivated by means of energy transfer to the metal surface. In this study, a series of 6,13-bis(triisopropylsilylethynyl)pentacene-alkanethiolate monolayer protected gold nanoparticles with different particle sizes and alkane chain lengths were successfully synthesized and were employed for the efficient generation of excited triplet states of the pentacene derivatives by singlet fission. Time-resolved transient absorption measurements revealed the formation of excited triplet states in high yield (172±26 %) by suppressing energy transfer to the gold surface. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Time-of-flight secondary-ion mass spectrometry on thiole self-assembly monolayers on gold; Flugzeit-Sekundaerionenmassenspektrometrie an Thiol self assembly Monolagen auf Gold

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, M.

    2006-07-01

    Aim of this thesis was to get a deeper understanding for the influence of different matrix effects on the emission of molecular secondary ions. For the estimation of the influence of the primary-ion surface interaction a series of different primary-ion species was applied, which differ by mass, kinetic energy, and composition (monoatomic or polyatomic). In the framework of the presented results different matrix effects were studied. For this systematically the influence of the substrate-thiolate, the thiolate-thiolate, and the primary-ion substrate interaction on the formation of characteristic secondary ions was quantified. For the corresponding considerations beside the thiolate secondary ions M{sup -} the gold-thiolate clusters of the type Au{sub x+1}M{sub x}{sup -} were referred to.

  16. Solvent-dependent self-assembly and ordering in slow-drying semi-crystalline conjugated polymer solutions

    KAUST Repository

    Zhao, Kui

    2015-09-07

    The mechanistic understanding of the intrinsic molecular self-assembly of conjugated polymers is of immense importance to controlling the microstructure development in organic semiconducting thin films, with meaningful impact on charge transport and optoelectronic properties. Yet, to date the vast majority of studies have focused on the fast solution process itself, with studies of slower intrinsic molecular self-assembly in formulations lagging behind. Here we have investigated molecular self-assembly during spontaneous organization and uncovered how changes in formulation influence the microstructure, morphology and transport properties of conjugated polymer thin films. Our results suggest that the polymer-solvent interaction is the key factor for the molecular self-assembly and changes in macroscopic charge transport, which is in contrast with most solution processes, such as spin-coating and blade coating, where solvent drying kinetics dominates the aggregation and crystallization processes. Energetically favourable interactions between the polymer and its solvent are shown to cause chain expansion, resulting in a large hydrodynamic volume and few chain entanglements in solution. This provides molecular freedom for self-assembly and is shown to greatly enhance the local and long range order of the polymer, intra-chain backbone planarity and crystallite size. These improvements, in turn, are shown to endow the conjugated polymer with high carrier transport, as demonstrated by organic thin film transistors.

  17. Non-equilibrium magnetic colloidal dispersions at liquid-air interfaces: dynamic patterns, magnetic order and self-assembled swimmers

    International Nuclear Information System (INIS)

    Snezhko, Alexey

    2011-01-01

    Colloidal dispersions of interacting particles subjected to an external periodic forcing often develop nontrivial self-assembled patterns and complex collective behavior. A fundamental issue is how collective ordering in such non-equilibrium systems arises from the dynamics of discrete interacting components. In addition, from a practical viewpoint, by working in regimes far from equilibrium new self-organized structures which are generally not available through equilibrium thermodynamics can be created. In this review spontaneous self-assembly phenomena in magnetic colloidal dispersions suspended at liquid-air interfaces and driven out of equilibrium by an alternating magnetic field are presented. Experiments reveal a new type of nontrivially ordered self-assembled structures emerging in such systems in a certain range of excitation parameters. These dynamic structures emerge as a result of the competition between magnetic and hydrodynamic forces and have complex unconventional magnetic ordering. Nontrivial self-induced hydrodynamic fields accompany each out-of-equilibrium pattern. Spontaneous symmetry breaking of the self-induced surface flows leading to a formation of self-propelled microstructures has been discovered. Some features of the self-localized structures can be understood in the framework of the amplitude equation (Ginzburg-Landau type equation) for parametric waves coupled to the conservation law equation describing the evolution of the magnetic particle density and the Navier-Stokes equation for hydrodynamic flows. To understand the fundamental microscopic mechanisms governing self-assembly processes in magnetic colloidal dispersions at liquid-air interfaces a first-principle model for a non-equilibrium self-assembly is presented. The latter model allows us to capture in detail the entire process of out-of-equilibrium self-assembly in the system and reproduces most of the observed phenomenology. (topical review)

  18. Highly ordered self-assembly of one-dimensional nanoparticles in amphiphilic molecular systems

    International Nuclear Information System (INIS)

    Kim, Tae Hwan

    2009-02-01

    Two kinds of one-dimensional (1D) nanoparticles, stable rod-like nanoparticles with highly controlled surface charge density (cROD) and non-covalently functionalized isolated single wall carbon nanotubes (p-SWNT) that were readily redispersible in water, have been developed. Using these 1D nanoparticles, various highly ordered superstructures of 1D nanoparticles by molecular self-assembling based on electrostatic interaction in amphiphilic molecular systems (two different cationic liposome systems) have been investigated. To our knowledge, this is the first demonstration of highly ordered self-assembly of 1D nanoparticles based on electrostatic interaction between 1D nanoparticles and amphiphilic molecules. The cRODs have been developed by free radical polymerization of a mixture of polymerizable cationic surfactant, cetyltrimethylammonium 4-vinylbenzoate (CTVB), and hydrotropic salt sodium 4-styrenesulfonate (NaSS) in aqueous solution. The surface charge of the cROD was controlled by varying the NaSS concentration during the polymerization process and the charge variation was interpreted in terms of the overcharging effect in colloidal systems. The small angle neutron scattering (SANS) measurements showed that the diameter of cROD is constant at 4 nm and the particle length ranges from 20 nm to 85 nm, depending on the NaSS concentration. The cRODs are longest when the NaSS concentration is 5 mol % which corresponds to the charge inversion or neutral point. The SANS and zeta potential measurements showed that the Coulomb interactions between the particles are strongly dependent on the NaSS concentration and the zeta potential of the cRODs changes from positive to negative (+ 12.8 mV ∼ - 44.2 mV) as the concentration of NaSS increases from 0 mol % to 40 mol %. As the NaSS concentration is further increased, the zeta potential is saturated at approximately - 50 mV. The p-SWNTs have been developed by 1) dispersing single wall carbon nanotubes (SWNTs) in water using

  19. Insitu synthesis of self-assembled gold nanoparticles on glass or silicon substrates through reactive inkjet printing

    KAUST Repository

    Abulikemu, Mutalifu

    2013-12-18

    A facile and low cost method for the synthesis of self-assembled nanoparticles (NPs) with minimal size variation and chemical waste by using reactive inkjet printing was developed. Gold NPs with diameters as small as (8±2)nm can be made at low temperature (120 °C). The size of the resulting NPs can be readily controlled through the concentration of the gold precursor and oleylamine ink. The pure gold composition of the synthesized NPs was confirmed by energy-dispersive X-ray spectroscopy (EDXS) analysis. High-resolution SEM (HRSEM) and TEM (HRTEM), and X-ray diffraction revealed their size and face-centered cubic (fcc) crystal structure, respectively. Owing to the high density of the NP film, UV/Vis spectroscopy showed a red shift in the intrinsic plasmonic resonance peak. We envision the extension of this approach to the synthesis of other nanomaterials and the production of tailored functional nanomaterials and devices. Midas touch: The use of low-cost manufacturing approaches in the synthesis of nanoparticles is critical for many applications. Reactive inkjet printing, along with a judicious choice of precursor/solvent system, was used to synthesize a relatively uniform assembly of crystalline gold nanoparticles, with diameters as small as (8±2)nm, over a given substrate surface. © 2014 WILEY-VCH Verlag GmbH.

  20. End-to-end self-assembly of gold nanorods in isopropanol solution: experimental and theoretical studies

    Energy Technology Data Exchange (ETDEWEB)

    Gordel, M., E-mail: marta.gordel@pwr.edu.pl [Wrocław University of Technology, Advanced Materials Engineering and Modelling Group, Faculty of Chemistry (Poland); Piela, K., E-mail: katarzyna.piela@pwr.edu.pl [Wrocław University of Technology, Department of Physical and Quantum Chemistry (Poland); Kołkowski, R. [Wrocław University of Technology, Advanced Materials Engineering and Modelling Group, Faculty of Chemistry (Poland); Koźlecki, T. [Wrocław University of Technology, Department of Chemical Engineering, Faculty of Chemistry (Poland); Buckle, M. [CNRS, École Normale Supérieure de Cachan, Laboratoire de Biologie et Pharmacologie Appliquée (France); Samoć, M. [Wrocław University of Technology, Advanced Materials Engineering and Modelling Group, Faculty of Chemistry (Poland)

    2015-12-15

    We describe here a modification of properties of colloidal gold nanorods (NRs) resulting from the chemical treatment used to carry out their transfer into isopropanol (IPA) solution. The NRs acquire a tendency to attach one to another by their ends (end-to-end assembly). We focus on the investigation of the change in position and shape of the longitudinal surface plasmon (l-SPR) band after self-assembly. The experimental results are supported by a theoretical calculation, which rationalizes the dramatic change in optical properties when the NRs are positioned end-to-end at short distances. The detailed spectroscopic characterization performed at the consecutive stages of transfer of the NRs from water into IPA solution revealed the features of the interaction between the polymers used as ligands and their contribution to the final stage, when the NRs were dispersed in IPA solution. The efficient method of aligning the NRs detailed here may facilitate applications of the self-assembled NRs as building blocks for optical materials and biological sensing.Graphical Abstract.

  1. Optical properties of self assembled oriented island evolution of ultra-thin gold layers

    International Nuclear Information System (INIS)

    Worsch, Christian; Kracker, Michael; Wisniewski, Wolfgang; Rüssel, Christian

    2012-01-01

    Gold layers with a thickness of only 8 to 21 nm were sputtered on soda–lime–silica glasses. Subsequent annealing at 300 and 400 °C for 1 and 24 h resulted in the formation of separated round gold particles with diameters from 8 to 200 nm. Crystal orientations were described using X-ray diffraction and electron backscatter diffraction. The gold particles are oriented with their (111) planes perpendicular to the surface. Most gold nano particles are single crystalline, some particles are twinned. Thermal annealing of sputtered gold layers resulted in purple samples with a coloration comparable to that of gold ruby glasses. The color can be controlled by the thickness of the sputtered gold layer and the annealing conditions. The simple method of gold film preparation and the annealing temperature dependent properties of the layers make them appropriate for practical applications. - Highlights: ► We produce gold nano particle layers on amorphous substrates. ► Thin sputtered gold layers were annealed at low temperatures. ► Various colors can be achieved reproducibly and UV–vis-NIR spectra are reported. ► A 111-texture of the particles is described as well as twinning. ► The process is suitable for mass production.

  2. Human serum albumin mediated self-assembly of gold nanoparticles into hollow spheres

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, Nimai C [Singapore-MIT Alliance, Manufacturing Systems and Technology Programme, Nanyang Technological University, 65 Nanyang Drive, 637460 (Singapore); Shin, Kwanwoo [Interdisciplinary Program of Integrated Biotechnology, Sogang University, Shinsoo-dong, Mapo-gu, Seoul 121-742 (Korea, Republic of)], E-mail: ncnayak@gmail.com

    2008-07-02

    The assembly of nanoparticles in topologically predefined superstructures is an important area in nanoscale architecture. In this paper, we report an unusual aggregation phenomenon involving L-lysine capped gold nanoparticles and human serum albumin into hollow nanospheres. The electrostatic interaction between positively charged L-lysine capped gold nanoparticles and negatively charged human serum albumin at physiological pH led to the assembly of the gold nanoparticles into hollow spheres. The phenomenon can be explained by the dry hole opening mechanism.

  3. Human serum albumin mediated self-assembly of gold nanoparticles into hollow spheres

    International Nuclear Information System (INIS)

    Nayak, Nimai C; Shin, Kwanwoo

    2008-01-01

    The assembly of nanoparticles in topologically predefined superstructures is an important area in nanoscale architecture. In this paper, we report an unusual aggregation phenomenon involving L-lysine capped gold nanoparticles and human serum albumin into hollow nanospheres. The electrostatic interaction between positively charged L-lysine capped gold nanoparticles and negatively charged human serum albumin at physiological pH led to the assembly of the gold nanoparticles into hollow spheres. The phenomenon can be explained by the dry hole opening mechanism

  4. Molecular dynamics of contact behavior of self-assembled monolayers on gold using nanoindentation

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Te-Hua [Institute of Mechanical and Electromechanical Engineering National Formosa University, Yunlin 632, Taiwan (China); Chang, Win-Jin, E-mail: changwj@mail.ksu.edu.tw [Department of Mechanical Engineering Kun Shan University, Tainan 710, Taiwan (China); Fan, Yu-Cheng [Institute of Mechanical and Electromechanical Engineering National Formosa University, Yunlin 632, Taiwan (China); Weng, Cheng-I [Department of Mechanical Engineering National Cheng Kung University, Tainan, 710, Taiwan (China)

    2009-08-15

    Molecular dynamics simulation is used to study nanoindentation of the self-assembled monolayers (SAMs) on an Au surface. The interaction of SAM atoms is described by a general universal force field (UFF), the tight-binding second-moment approximation (TB-SMA) is used for Au substrate, and the Lennard-Jones potential function is employed to describe interaction among the indenter, the SAMs, and the Au substrate atoms. The model consists of a planar Au substrate with n-hexadecanethiol SAM chemisorbed to the substrate. The simulation results show that the contact pressure increases as the SAMs temperature increases. In addition, the contact pressure also increases as the depth and velocity of indentation increase.

  5. Molecular dynamics of contact behavior of self-assembled monolayers on gold using nanoindentation

    International Nuclear Information System (INIS)

    Fang, Te-Hua; Chang, Win-Jin; Fan, Yu-Cheng; Weng, Cheng-I

    2009-01-01

    Molecular dynamics simulation is used to study nanoindentation of the self-assembled monolayers (SAMs) on an Au surface. The interaction of SAM atoms is described by a general universal force field (UFF), the tight-binding second-moment approximation (TB-SMA) is used for Au substrate, and the Lennard-Jones potential function is employed to describe interaction among the indenter, the SAMs, and the Au substrate atoms. The model consists of a planar Au substrate with n-hexadecanethiol SAM chemisorbed to the substrate. The simulation results show that the contact pressure increases as the SAMs temperature increases. In addition, the contact pressure also increases as the depth and velocity of indentation increase.

  6. Self-assembled monolayers of semi-fluorinated thiols and disulfides with a potentially antibacterial terminal fragment on gold surfaces

    International Nuclear Information System (INIS)

    Thebault, P.; Taffin de Givenchy, E.; Guittard, F.; Guimon, C.; Geribaldi, S.

    2008-01-01

    Attempts to elaborate the best organized cationic self-assembled monolayers (SAMs) with sulfur derivatives containing potentially bactericidal quaternary ammonium salt moieties have been performed on gold with the final aim to obtain contact-active antibacterial surfaces. Four molecules bearing two hydrocarbon spacers with different lengths between the sulfur atom and the quaternized nitrogen atom, and two different terminal semi-fluorinated alkyl chains have been synthesised and used in view to evaluate their capacity for leading to the highest densities and the highest organization of potentially active molecules on the metal surface. The formation and quality of SAMs characterized by X-ray photoelectron spectroscopy, Internal Reflexion Infra Red Imaging, contact angle and blocking factor measurements depend on the lengths of both the hydrocarbon spacer and terminal perfluorinated chain

  7. Scanning Tunneling Microscopic Observation of Adatom-Mediated Motifs on Gold-Thiol Self-assembled Monolayers at High Coverage

    DEFF Research Database (Denmark)

    Wang, Yun; Chi, Qijin; Hush, Noel S.

    2009-01-01

    the structural motifs observed on surfaces at low coverage and on gold nanoparticles to the observed spectroscopic properties of high-coverage SAMs formed by methanethiol. However, the significant role attributed to intermolecular steric packing effects suggests a lack of generality for the adatom-mediated motif......Self-assembled monolayers (SAMs) formed by chemisorption of a branched-chain alkanethiol, 2-methyl-1-propanethiol, on Au(111) surfaces were studied by in situ scanning tunneling microscopy (STM) under electrochemical potential control and analyzed using extensive density functional theory (DFT...... two R−S−Au−S−R adatom-mediated motifs per surface cell, with steric-induced variations in the adsorbate alignment inducing the observed STM image contrasts. Observed pits covering 5.6 ± 0.5% of the SAM surface are consistent with this structure. These results provide the missing link from...

  8. Flower-like self-assembly of gold nanoparticles for highly sensitive electrochemical detection of chromium(VI)

    International Nuclear Information System (INIS)

    Ouyang Ruizhuo; Bragg, Stefanie A.; Chambers, James Q.; Xue Ziling

    2012-01-01

    Highlights: ► Fabrication of a flower-like self-assembly of two AuNP layers on a GCE. ► Cr(VI) detection: 10–1200 ng L −1 concentration range; 2.9 ng L −1 detection limit. ► The 1st AuNP layer on the GCE surface as anchors for a thiol sol–gel film. ► The sol–gel film link the 1st AuNP layer to the 2nd AuNP layer. ► Functionalization of the 2nd AuNP layer by a thiol pyridinium for HCrO 4 − detection. - Abstract: We report here the fabrication of a flower-like self-assembly of gold nanoparticles (AuNPs) on a glassy carbon electrode (GCE) as a highly sensitive platform for ultratrace Cr(VI) detection. Two AuNP layers are used in the current approach, in which the first is electroplated on the GCE surface as anchors for binding to an overcoated thiol sol–gel film derived from 3-mercaptopropyltrimethoxysilane (MPTS). The second AuNP layer is then self-assembled on the surface of the sol–gel film, forming flower-like gold nanoelectrodes enlarging the electrode surface. When functionalized by a thiol pyridinium, the fabricated electrode displays a well-defined peak for selective Cr(VI) reduction with an unusually large, linear concentration range of 10–1200 ng L −1 and a low detection limit of 2.9 ng L −1 . In comparison to previous approaches using MPTS and AuNPs on Au electrodes, the current work expands the use of AuNPs to the GCE. Subsequent functionalization of the secondary AuNPs by a thiol pyridinium and adsorption/preconcentration of Cr(VI) lead to the unusually large detection range and high sensitivity. The stepwise preparation of the electrode has been characterized by electrochemical impedance spectroscopy (EIS), scanning electronic microscopy (SEM), and IR. The newly designed electrode exhibits good stability, and has been successfully employed to measure chromium in a pre-treated blood sample. The method demonstrates acceptable fabrication reproducibility and accuracy.

  9. Two-dimensional self-assembly of DNA-functionalized gold nanoparticles

    Science.gov (United States)

    Wang, Wenjie; Zhang, Honghu; Hagen, Noah; Kuzmenko, Ivan; Akinc, Mufit; Travesset, Alex; Mallapragada, Surya; Vaknin, David

    2D superlattices of nanoparticles (NPs) are promising candidates for nano-devices. It is still challenging to develop a simple yet efficient protocol to assemble NPs in a controlled manner. Here, we report on formation of 2D Gibbs monolayers of single-stranded DNA-coated gold nanoparticles (ssDNA-AuNPs) at the air-water interface by manipulation of salts contents. MgCl2 and CaCl2 in solutions facilitate the accumulation of the non-complementary ssDNA-AuNPs on aqueous surfaces. Grazing-incidence small-angle X-ray scattering (GISAXS) and X-ray reflectivity show that the surface AuNPs assembly forms a mono-particle layer and undergoes a transformation from short-range to long-range (hexagonal) order above a threshold of [MgCl2] or [CaCl2]. For solutions that include two kinds of ssDNA-AuNPs with complementary base-pairing, the surface AuNPs form a thicker film and only in-plane short-range order is observed. By using other salts (NaCl or LaCl3) at concentrations of similar ionic strength to those of MgCl2 or CaCl2, we find that surface adsorbed NPs lack any orders. X-ray fluorescence measurements provide direct evidence of surface enrichment of AuNPs and divalent ions (Ca2 +) . The work was supported by the Office of Basic Energy Sciences, USDOE under Contract No. DE-AC02-07CH11358 and DE-AC02-06CH11357.

  10. A Switchable Gold Catalyst by Encapsulation in a Self-Assembled Cage

    KAUST Repository

    Jans, Anne C. H.

    2016-08-19

    Dinuclear gold complexes have the ability to interact with one or more substrates in a dual-activation mode, leading to different reactivity and selectivity than their mononuclear relatives. In this contribution, this difference was used to control the catalytic properties of a gold-based catalytic system by site-isolation of mononuclear gold complexes by selective encapsulation. The typical dual-activation mode is prohibited by this catalyst encapsulation, leading to typical behavior as a result of mononuclear activation. This strategy can be used as a switch (on/off) for a catalytic reaction and also permits reversible control over the product distribution during the course of a reaction.

  11. A Switchable Gold Catalyst by Encapsulation in a Self-Assembled Cage

    KAUST Repository

    Jans, Anne C. H.; Gó mez-Suá rez, Adriá n; Nolan, Steven P.; Reek, Joost N. H.

    2016-01-01

    Dinuclear gold complexes have the ability to interact with one or more substrates in a dual-activation mode, leading to different reactivity and selectivity than their mononuclear relatives. In this contribution, this difference was used to control the catalytic properties of a gold-based catalytic system by site-isolation of mononuclear gold complexes by selective encapsulation. The typical dual-activation mode is prohibited by this catalyst encapsulation, leading to typical behavior as a result of mononuclear activation. This strategy can be used as a switch (on/off) for a catalytic reaction and also permits reversible control over the product distribution during the course of a reaction.

  12. Disulfide-induced self-assembled targets : A novel strategy for the label free colorimetric detection of DNAs/RNAs via unmodified gold nanoparticles

    NARCIS (Netherlands)

    Shokri, Ehsan; Hosseini, Morteza; Davari, Mehdi D.; Ganjali, Mohammad R.; Peppelenbosch, Maikel P.; Rezaee, Farhad

    2017-01-01

    A modified non-cross-linking gold-nanoparticles (Au-NPs) aggregation strategy has been developed for the label free colorimetric detection of DNAs/RNAs based on self-assembling target species in the presence of thiolated probes. Two complementary thiol-modified probes, each of which specifically

  13. Disulfide-induced self-assembled targets: A novel strategy for the label free colorimetric detection of DNAs/RNAs via unmodified gold nanoparticles

    NARCIS (Netherlands)

    Shokri, E. (Ehsan); M. Hosseini (Morteza); Davari, M.D. (Mehdi D.); Ganjali, M.R. (Mohammad R.); M.P. Peppelenbosch (Maikel); F. Rezaee (Farhad)

    2017-01-01

    textabstractA modified non-cross-linking gold-nanoparticles (Au-NPs) aggregation strategy has been developed for the label free colorimetric detection of DNAs/RNAs based on self-assembling target species in the presence of thiolated probes. Two complementary thiol- modified probes, each of which

  14. IMPACT OF POLYCYCLIC AROMATIC HYDROCARBONS OF THE ELECTROCHEMICAL RESPONSES OF A FERRICYNIDE PROBE AT TEMPLATE-MODIFIED SELF ASSEMBLED MONOLAYERS ON GOLD ELECTRODES

    Science.gov (United States)

    The impact of pyrene on the electrochemical response of the ferricyanide probe using Self Assembled Monolayer (SAM)-modified gold electrodes was investigated using Cyclic Voltammetry (CV) and Square Wave Voltammetry (SWV). These results suggest the feasibility of using SAMs, par...

  15. Self-assembled Thiolated Calix[n]arene (n=4, 6, 8) Films on Gold Electrodes and Application for Electrochemical Determination Dopamine

    International Nuclear Information System (INIS)

    Zheng, Gang; Chen, Ming; Liu, Xinyue; Zhou, Jun; Xie, Ju; Diao, Guowang

    2014-01-01

    Highlights: • TCnA/GE was prepared by using a simple self-assembled strategy. • Multilayer self-assembled films of TCnA molecules were fabricated on GE. • TCnA/GE exhibited high supramolecular recognition and enrichment capability. • TC8A/GE showed excellent electrochemical performance for DA. - Abstract: In this study, gold electrodes (GE) modified with three kinds of thiolated calix[4,6,8]arenes (TCnA: TC4A, TC6A, TC8A) were successfully prepared using a simple self-assembly strategy. Three self-assembled films were characterized by cyclic voltammetry measurement, electrochemical impedance spectroscopy, static contact angle measurement and atomic force microscopy. The results confirmed that TCnA molecules effectively absorbed onto the surface of gold electrodes to fabricate the multilayer self-assembled films. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) measurement showed that the TCnA/GE exhibited high supramolecular recognition and enrichment capability and consequently displayed good electrochemical response toward dopamine (DA). Especially, TC8A/GE exhibited an excellent electrochemical performance for DA with high current densities of 1.5 mA mmol −1 L cm −2 , broad linear range (1 × 10 −6 to 1 × 10 −3 mol L −1 ) and low detection limit (5 × 10 −7 mol L −1 ). The mechanism of supramolecular recognition and enrichment capability of TCnA/GE was discussed

  16. Indirect amperometric sensing of dopamine using a redox-switchable naphthoquinone-terminated self-assembled monolayer on gold electrode

    International Nuclear Information System (INIS)

    Hammami, Asma; Raouafi, Noureddine; Sahli, Rihab

    2016-01-01

    We report on the design of a simple yet sensitive and selective electrode for amperometric determination of dopamine at a cathodic potential as low as −0.30 V vs. Ag/AgCl. The electrode was obtained by self-assembly of ω-mercaptopropyl naphthoquinone (NQ-SAM) on the surface of a polycrystalline gold electrode. The presence of dopamine induces an increase of the reduction current peak at −0.30 V corresponding to the reduction of naphthoquinone to hydronaphthoquinone. Dopamine and dopamine-quinone accumulate on the surface to form a 3D network linked by hydrogen bonds. Raman and infrared spectroscopy as well as atomic force microscopy confirmed the multilayer formation. The method allows dopamine to be indirectly detected at a working potential that is lower by 0.50 V than the standard oxidation potential at a bare gold electrode. The sensor shows distinct oxidation potentials for dopamine (120 mV), ascorbic acid (280 mV) and uric acid (520 mV) which makes the method fairly selective. The analytical range extends from 1 to 100 μM concentrations of dopamine, and the limits of detection and quantification are 0.040 and 0.134 μM, respectively. (author)

  17. Oxidation and sensing of ascorbic acid and dopamine on self-assembled gold nanoparticles incorporated within polyaniline film

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Wenya [College of Chemistry, Chemical Engineering and Materials Science, and Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Soochow University, Suzhou 215123 (China); Zhou, Qun, E-mail: zhq@suda.edu.cn [College of Chemistry, Chemical Engineering and Materials Science, and Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Soochow University, Suzhou 215123 (China); Li, Shuangshuang [College of Chemistry, Chemical Engineering and Materials Science, and Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Soochow University, Suzhou 215123 (China); College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006 (China); Zhao, Wei; Li, Na [College of Chemistry, Chemical Engineering and Materials Science, and Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Soochow University, Suzhou 215123 (China); Zheng, Junwei, E-mail: jwzheng@suda.edu.cn [College of Chemistry, Chemical Engineering and Materials Science, and Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Soochow University, Suzhou 215123 (China); College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006 (China)

    2015-10-30

    Highlights: • Gold nanoparticles assembled on electrodes are incorporated into polyaniline film. • Composite film electrodes exhibit synergistic effect on electrocatalytic oxidation. • Ascorbic acid and dopamine can be detected simultaneously on composite electrodes. - Abstract: Electrochemical biosensors based on conducting polymers incorporated with metallic nanoparticles can greatly enhance sensitivity and selectivity. Herein, we report a facile fabrication approach for polyaniline (PAN) incorporated with a gold nanoparticle (AuNP) composite electrode by electrodeposition of PAN on a self-assembled AuNP layer on the surface of an indium tin oxide electrode. The resulting AuNP/PAN composite electrode exhibits a remarkable synergistic effect on the electrocatalytic oxidation of ascorbic acid (AA) and dopamine (DA). It is demonstrated that the oxidation reaction of AA mainly occurs at AuNPs inside the PAN film as the ascorbate anions are doped into the polymer during the oxidation of the PAN film. Conversely, the oxidation of positively charged DA may only take place at the PAN/solution interface. The different mechanisms of the electrode reactions result in the oxidation of AA and DA occurring at different potentials. As a result, the AuNP/PAN composite electrode can be employed to simultaneously detect AA and DA with a good linear range, high sensitivity, and low detection limit.

  18. Oxidation and sensing of ascorbic acid and dopamine on self-assembled gold nanoparticles incorporated within polyaniline film

    International Nuclear Information System (INIS)

    Chu, Wenya; Zhou, Qun; Li, Shuangshuang; Zhao, Wei; Li, Na; Zheng, Junwei

    2015-01-01

    Highlights: • Gold nanoparticles assembled on electrodes are incorporated into polyaniline film. • Composite film electrodes exhibit synergistic effect on electrocatalytic oxidation. • Ascorbic acid and dopamine can be detected simultaneously on composite electrodes. - Abstract: Electrochemical biosensors based on conducting polymers incorporated with metallic nanoparticles can greatly enhance sensitivity and selectivity. Herein, we report a facile fabrication approach for polyaniline (PAN) incorporated with a gold nanoparticle (AuNP) composite electrode by electrodeposition of PAN on a self-assembled AuNP layer on the surface of an indium tin oxide electrode. The resulting AuNP/PAN composite electrode exhibits a remarkable synergistic effect on the electrocatalytic oxidation of ascorbic acid (AA) and dopamine (DA). It is demonstrated that the oxidation reaction of AA mainly occurs at AuNPs inside the PAN film as the ascorbate anions are doped into the polymer during the oxidation of the PAN film. Conversely, the oxidation of positively charged DA may only take place at the PAN/solution interface. The different mechanisms of the electrode reactions result in the oxidation of AA and DA occurring at different potentials. As a result, the AuNP/PAN composite electrode can be employed to simultaneously detect AA and DA with a good linear range, high sensitivity, and low detection limit.

  19. Self-Assembled Monolayers on Gold of β-Cyclodextrin Adsorbates with Different Anchoring Groups

    NARCIS (Netherlands)

    Méndez Ardoy, Alejandro; Steentjes, Tom; Kudernac, Tibor; Huskens, Jurriaan

    2014-01-01

    We designed multivalent β-cyclodextrin-based adsorbates bearing different anchoring groups aiming to yield stable monolayers with improved packing and close contact of the cavity to the gold surface. Toward this end the primary rim of the β-cyclodextrin was decorated with several functional groups,

  20. Highly ordered self-assembling polymer/clay nanocomposite barrier film.

    Science.gov (United States)

    Cook, Ray; Chen, Yihong; Beall, Gary W

    2015-05-27

    Efforts to mimic complex-structured biologically based materials such as abalone shell have occupied substantial research time and effort in science and engineering. The majority of the efforts involve tedious and expensive techniques and processes. Layer-by-layer (LBL) is one such technique that can produce materials with quite unique physical properties, approaching, and in some cases surpassing, those seen in nature. The LBL technique, however, is quite tedious and difficult to implement commercially. We report here the discovery of an organic/inorganic spontaneous self-assembling system that forms a highly structured nanocomposite. The driving force behind this self-assembly appears to be entropy. This discovery should open up completely new avenues to designing hierarchical composites and structures. The films have been studied by X-ray diffraction and the barrier properties for oxygen diffusion measured.

  1. Water ordering controls the dynamic equilibrium of micelle-fibre formation in self-assembly of peptide amphiphiles.

    Science.gov (United States)

    Deshmukh, Sanket A; Solomon, Lee A; Kamath, Ganesh; Fry, H Christopher; Sankaranarayanan, Subramanian K R S

    2016-08-24

    Understanding the role of water in governing the kinetics of the self-assembly processes of amphiphilic peptides remains elusive. Here, we use a multistage atomistic-coarse-grained approach, complemented by circular dichroism/infrared spectroscopy and dynamic light scattering experiments to highlight the dual nature of water in driving the self-assembly of peptide amphiphiles (PAs). We show computationally that water cage formation and breakage near the hydrophobic groups control the fusion dynamics and aggregation of PAs in the micellar stage. Simulations also suggest that enhanced structural ordering of vicinal water near the hydrophilic amino acids shifts the equilibrium towards the fibre phase and stimulates structure and order during the PA assembly into nanofibres. Experiments validate our simulation findings; the measured infrared O-H bond stretching frequency is reminiscent of an ice-like bond which suggests that the solvated water becomes increasingly ordered with time in the assembled peptide network, thus shedding light on the role of water in a self-assembly process.

  2. Self-Assembled Gold Nano-Ripple Formation by Gas Cluster Ion Beam Bombardment.

    Science.gov (United States)

    Tilakaratne, Buddhi P; Chen, Quark Y; Chu, Wei-Kan

    2017-09-08

    In this study, we used a 30 keV argon cluster ion beam bombardment to investigate the dynamic processes during nano-ripple formation on gold surfaces. Atomic force microscope analysis shows that the gold surface has maximum roughness at an incident angle of 60° from the surface normal; moreover, at this angle, and for an applied fluence of 3 × 10 16 clusters/cm², the aspect ratio of the nano-ripple pattern is in the range of ~50%. Rutherford backscattering spectrometry analysis reveals a formation of a surface gradient due to prolonged gas cluster ion bombardment, although the surface roughness remains consistent throughout the bombarded surface area. As a result, significant mass redistribution is triggered by gas cluster ion beam bombardment at room temperature. Where mass redistribution is responsible for nano-ripple formation, the surface erosion process refines the formed nano-ripple structures.

  3. Synthesis and controlled self-assembly of UV-responsive gold nanoparticles in block copolymer templates.

    Science.gov (United States)

    Song, Dong-Po; Wang, Xinyu; Lin, Ying; Watkins, James J

    2014-11-06

    We demonstrate the facile synthesis of gold nanoparticles (GNPs) functionalized by UV-responsive block copolymer ligands, poly(styrene)-b-poly(o-nitrobenzene acrylate)-SH (PS-b-PNBA-SH), followed by their targeted distribution within a lamellae-forming poly(styrene)-b-poly(2-vinylpyridine) (PS-b-P2VP) block copolymer. The multilayer, micelle-like structure of the GNPs consists of a gold core, an inner PNBA layer, and an outer PS layer. The UV-sensitive PNBA segment can be deprotected into a layer containing poly(acrylic acid) (PAA) when exposed to UV light at 365 nm, which enables the simple and precise tuning of GNP surface properties from hydrophobic to amphiphilic. The GNPs bearing ligands of different chemical compositions were successfully and selectively incorporated into the PS-b-P2VP block copolymer, and UV light showed a profound influence on the spatial distributions of GNPs. Prior to UV exposure, GNPs partition along the interfaces of PS and P2VP domains, while the UV-treated GNPs are incorporated into P2VP domains as a result of hydrogen bond interactions between PAA on the gold surface and P2VP domains. This provides an easy way of controlling the arrangement of nanoparticles in polymer matrices by tailoring the nanoparticle surface using UV light.

  4. Efficient surface enhanced Raman scattering on confeito-like gold nanoparticle-adsorbed self-assembled monolayers.

    Science.gov (United States)

    Chang, Chia-Chi; Imae, Toyoko; Chen, Liang-Yih; Ujihara, Masaki

    2015-12-28

    Confeito-like gold nanoparticles (AuNPs; average diameter = 80 nm) exhibiting a plasmon absorption band at 590 nm were adsorbed through immersion-adsorption on two self-assembled monolayers (SAMs) of 3-aminopropyltriethoxysilane (APTES-SAM) and polystyrene spheres coated with amine-terminated poly(amido amine) dendrimers (DEN/PS-SAM). The surface enhanced Raman scattering (SERS) effect on the SAM substrates was examined using the molecules of a probe dye, rhodamine 6G (R6G). The Raman scattering was strongly intensified on both substrates, but the enhancement factor (>10,000) of the AuNP/DEN/PS-SAM hierarchy substrate was 5-10 times higher than that of the AuNP/APTES-SAM substrate. This strong enhancement is attributed to the large surface area of the substrate and the presence of hot spots. Furthermore, analyzing the R6G concentration dependence of SERS suggested that the enhancement mechanism effectively excited the R6G molecules in the first layer on the hot spots and invoked the strong SERS effect. These results indicate that the SERS activity of confeito-like AuNPs on SAM substrates has high potential in molecular electronic devices and ultrasensitive analyses.

  5. Electrochemical detection of Cd2+ ions by a self-assembled monolayer of 1,9-nonanedithiol on gold

    International Nuclear Information System (INIS)

    Malel, Esteban; Sinha, Jatin K.; Zawisza, Izabella; Wittstock, Gunther; Mandler, Daniel

    2008-01-01

    The application of 1,9-nonanedithiol (NDT) self-assembled monolayer (SAM) on gold for the electrochemical determination of Cd 2+ was studied. Interestingly, we found that a NDT SAM strongly affects the stripping wave of Cd, resulting in a sharp peak that was used for electroanalytical determination of Cd 2+ in aqueous solutions. The different parameters, such as potential and time of deposition of Cd, were examined. Furthermore, polarization-modulated infrared reflection absorption spectroscopy (PM IRRAS) and X-ray photoelectron spectroscopy (XPS) were used for exploring the interaction between the deposited Cd and the thiol groups on Au. FTIR measurements clearly indicate that NDT is assembled in a disordered liquid type monolayer interacting with the Au electrode via both thiol moieties. XPS reveals that Cd is stripped at two different potentials and that the signal of sulfur is almost unchanged by deposition and desorption of Cd. All these finding allude to the interesting conclusion that Cd is deposited on Au lifting to some extent the thiol groups

  6. Oxidation and sensing of ascorbic acid and dopamine on self-assembled gold nanoparticles incorporated within polyaniline film

    Science.gov (United States)

    Chu, Wenya; Zhou, Qun; Li, Shuangshuang; Zhao, Wei; Li, Na; Zheng, Junwei

    2015-10-01

    Electrochemical biosensors based on conducting polymers incorporated with metallic nanoparticles can greatly enhance sensitivity and selectivity. Herein, we report a facile fabrication approach for polyaniline (PAN) incorporated with a gold nanoparticle (AuNP) composite electrode by electrodeposition of PAN on a self-assembled AuNP layer on the surface of an indium tin oxide electrode. The resulting AuNP/PAN composite electrode exhibits a remarkable synergistic effect on the electrocatalytic oxidation of ascorbic acid (AA) and dopamine (DA). It is demonstrated that the oxidation reaction of AA mainly occurs at AuNPs inside the PAN film as the ascorbate anions are doped into the polymer during the oxidation of the PAN film. Conversely, the oxidation of positively charged DA may only take place at the PAN/solution interface. The different mechanisms of the electrode reactions result in the oxidation of AA and DA occurring at different potentials. As a result, the AuNP/PAN composite electrode can be employed to simultaneously detect AA and DA with a good linear range, high sensitivity, and low detection limit.

  7. Self-Assembled Core-Satellite Gold Nanoparticle Networks for Ultrasensitive Detection of Chiral Molecules by Recognition Tunneling Current.

    Science.gov (United States)

    Zhang, Yuanchao; Liu, Jingquan; Li, Da; Dai, Xing; Yan, Fuhua; Conlan, Xavier A; Zhou, Ruhong; Barrow, Colin J; He, Jin; Wang, Xin; Yang, Wenrong

    2016-05-24

    Chirality sensing is a very challenging task. Here, we report a method for ultrasensitive detection of chiral molecule l/d-carnitine based on changes in the recognition tunneling current across self-assembled core-satellite gold nanoparticle (GNP) networks. The recognition tunneling technique has been demonstrated to work at the single molecule level where the binding between the reader molecules and the analytes in a nanojunction. This process was observed to generate a unique and sensitive change in tunneling current, which can be used to identify the analytes of interest. The molecular recognition mechanism between amino acid l-cysteine and l/d-carnitine has been studied with the aid of SERS. The different binding strength between homo- or heterochiral pairs can be effectively probed by the copper ion replacement fracture. The device resistance was measured before and after the sequential exposures to l/d-carnitine and copper ions. The normalized resistance change was found to be extremely sensitive to the chirality of carnitine molecule. The results suggested that a GNP networks device optimized for recognition tunneling was successfully built and that such a device can be used for ultrasensitive detection of chiral molecules.

  8. The Self-Assembly of Nanogold for Optical Metamaterials

    Science.gov (United States)

    Nidetz, Robert A.

    2011-12-01

    Optical metamaterials are an emerging field that enables manipulation of light like never before. Producing optical metamaterials requires sub-wavelength building blocks. The focus here was to develop methods to produce building blocks for metamaterials from nanogold. Electron-beam lithography was used to define an aminosilane patterned chemical template in order to electrostatically self-assemble citrate-capped gold nanoparticles. Equilibrium self-assembly was achieved in 20 minutes by immersing chemical templates into gold nanoparticle solutions. The number of nanoparticles that self-assembled on an aminosilane dot was controlled by manipulating the diameters of the dots and nanoparticles. Adding salt to the nanoparticle solution enabled the nanoparticles to self-assemble in greater numbers on the same sized dot. However, the preparation of the nanoparticle solution containing salt was sensitive to spikes in the salt concentration which led to aggregation of the nanoparticles and non-specific deposition. Gold nanorods were also electrostatically self-assembled. Polyelectrolyte-coated gold nanorods were patterned with limited success. A polyelectrolyte chemical template also patterned gold nanorods, but the gold nanorods preferred to pattern on the edges of the pattern. Ligand-exchanged gold nanorods displayed the best self-assembly, but suffered from slow kinetics. Self-assembled gold nanoparticles were cross-linked with poly(diallyldimethylammonium chloride). The poly(diallyldimethylammonium chloride) allowed additional nanoparticles to pattern on top of the already patterned nanoparticles. Cross-linked nanoparticles were lifted-off of the substrate by sonication in a sodium hydroxide solution. The presence of van der Waals forces and/or amine bonding prevent the nanogold from lifting-off without sonication. A good-solvent evaporation process was used to self-assemble poly(styrene) coated gold nanoparticles into spherical microbead assemblies. The use of larger

  9. Reducing HAuCl4 by the C60 dianion: C60-directed self-assembly of gold nanoparticles into novel fullerene bound gold nanoassemblies

    International Nuclear Information System (INIS)

    Liu Wei; Gao Xiang

    2008-01-01

    The C 60 dianion is used to reduce tetrachloroauric acid (HAuCl 4 ) for the first time; three-dimensional C 60 bound gold (Au-C 60 ) nanoclusters are obtained from C 60 -directed self-assembly of gold nanoparticles due to the strong affinities of Au-C 60 and C 60 -C 60 . The process was monitored in situ by UV-vis-NIR spectroscopy. The resulting Au-C 60 nanoclusters were characterized using transmission electron microscopy (TEM), selected area electron diffraction (SAED), energy-dispersive spectroscopy (EDS), x-ray powder diffraction (XRD), x-ray photoelectron spectroscopy (XPS), and FT-IR and Raman spectroscopies. TEM demonstrates the formation of 3D nanonetwork aggregates, which are composed of discrete gold nanocores covered with a C 60 monolayer. The SAED and XRD patterns indicate that the gold nanocores inside the capped C 60 molecules belong to the face-centred cubic crystal structure, while the C 60 molecules are amorphous. The EDS and XPS measurements validate that the Au-C 60 nanoclusters contain only Au and C elements and Au 3+ is reduced to Au 0 . FT-IR spectroscopy shows the chemiadsorption of C 60 to the gold nanocores, while Raman spectroscopy demonstrates the electron transfer from the gold nanocores to the chemiadsorbed C 60 molecules. Au-C 60 nanoclusters embedded in tetraoctyl-n-ammonium bromide (TOAB) on glassy carbon electrodes (GCEs) have been fabricated and have shown stable and well-defined electrochemical responses in aqueous solution

  10. Self-assembled gold nanoparticles modified ITO electrodes: The monolayer binder molecule effect

    Energy Technology Data Exchange (ETDEWEB)

    Ballarin, Barbara; Cassani, Maria Cristina; Scavetta, Erika; Tonelli, Domenica [Dipartimento di Chimica Fisica ed Inorganica, Universita di Bologna, V.le Risorgimento 4, 40136 Bologna, INSTM, UdR Bologna (Italy)

    2008-11-15

    The fabrication of gold attached organosilane-coated indium tin oxide Au{sub NPs}-MPTMS/ITO and Au{sub NPs}-APTES/ITO electrodes [MPTMS 3-(mercaptopropyl)-trimethoxysilane, APTES = 3-(aminopropyl)-triethoxysilane, ITO = indium tin oxide] was carried out making use of a well-known two-step procedure and the role played by the -SH and -NH{sub 2} functional groups in the two electrodes has been examined and compared using different techniques. Information about particle coverage and inter-particle spacing has been obtained using transmission electron microscopy (TEM), scanning electron microscopy (SEM) and atomic force microscopy (AFM) whereas, bulk surface properties have been probed with UV-vis spectroscopy, CV and electrochemical impedance spectroscopy (EIS). The catalytic activity of the two electrodes has been evaluated studying the electrooxidation of methanol in alkaline conditions. The results obtained show that the NH{sub 2} functionality in the APTES binder molecule favours the formation of isle-like Au nanoparticle aggregates that lead to both a higher electron transfer and electrocatalytic activity. (author)

  11. Natural Deposition Strategy for Interfacial, Self-Assembled, Large-Scale, Densely Packed, Monolayer Film with Ligand-Exchanged Gold Nanorods for In Situ Surface-Enhanced Raman Scattering Drug Detection.

    Science.gov (United States)

    Mao, Mei; Zhou, Binbin; Tang, Xianghu; Chen, Cheng; Ge, Meihong; Li, Pan; Huang, Xingjiu; Yang, Liangbao; Liu, Jinhuai

    2018-03-15

    Liquid interfacial self-assembly of metal nanoparticles holds great promise for its various applications, such as in tunable optical devices, plasmonics, sensors, and catalysis. However, the construction of large-area, ordered, anisotropic, nanoparticle monolayers and the acquisition of self-assembled interface films are still significant challenges. Herein, a rapid, validated method to fabricate large-scale, close-packed nanomaterials at the cyclohexane/water interface, in which hydrophilic cetyltrimethylammonium bromide coated nanoparticles and gold nanorods (AuNRs) self-assemble into densely packed 2D arrays by regulating the surface ligand and suitable inducer, is reported. Decorating AuNRs with polyvinylpyrrolidone not only extensively decreases the charge of AuNRs, but also diminishes repulsive forces. More importantly, a general, facile, novel technique to transfer an interfacial monolayer through a designed in situ reaction cell linked to a microfluidic chip is revealed. The self-assembled nanofilm can then automatically settle on the substrate and be directly detected in the reaction cell in situ by means of a portable Raman spectrometer. Moreover, a close-packed monolayer of self-assembled AuNRs provides massive, efficient hotspots to create great surface-enhanced Raman scattering (SERS) enhancement, which provides high sensitivity and reproducibility as the SERS-active substrate. Furthermore, this strategy was exploited to detect drug molecules in human urine for cyclohexane-extracted targets acting as the oil phase to form an oil/water interface. A portable Raman spectrometer was employed to detect methamphetamine down to 100 ppb levels in human urine, exhibiting excellent practicability. As a universal platform, handy tool, and fast pretreatment method with a good capability for drug detection in biological systems, this technique shows great promise for rapid, credible, and on-spot drug detection. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Ordered self-assembled monolayers terminated with different chemical functional groups direct neural stem cell linage behaviours

    International Nuclear Information System (INIS)

    Yao, Shenglian; Liu, Xi; He, Jin; Wang, Xiumei; Wang, Ying; Cui, Fu-Zhai

    2016-01-01

    Neural stem cells (NSCs) have been a promising candidate for stem cell-based nerve tissue regeneration. Therefore, the design of idea biomaterials that deliver precise regulatory signals to control stem cell fate is currently a crucial issue that depends on a profound understanding of the interactions between NSCs with the surrounding micro-environment. In this work, self-assembled monolayers of alkanethiols on gold with different chemical groups, including hydroxyl (−OH), amino (−NH 2 ), carboxyl (−COOH) and methyl (−CH 3 ), were used as a simple model to study the effects of surface chemistry on NSC fate decisions. Contact angle measurement and x-ray photoelectron spectroscopy (XPS) examination implied that all types of alkanethiols self-assembled on gold into a close-packed phase structure with similar molecular densities. In this study, we evaluated NSC adhesion, migration and differentiation in response to different chemical functional groups cultured under serum-free conditions. Our studies showed that NSCs exhibited certain phenotypes with extreme sensitivity to surface chemical groups. Compared with other functional groups, the SAMs with hydroxyl end-groups provided the best micro-environment in promoting NSC migration and maintaining an undifferentiated or neuronal differentiation state.  −NH 2 surfaces directed neural stem cells into astrocytic lineages, while NSCs on  −COOH and  −CH 3 surfaces had a similar potency to differentiate into three nerve lineages. To further investigate the possible signaling pathway, the gene expression of integrin β1 and β4 were examined. The results indicated that a high expression of β1 integrin would probably have a tight correlation with the expression of nestin, which implied the stemness of NSCs, while β4 integrin seemed to correspond to the differentiated NSCs. The results presented here give useful information for the future design of biomaterials to regulate the preservation

  13. Molecular Simulations of Gold Nanoparticles Coated With Self-Assembled Alkanethiolate Monolayers

    National Research Council Canada - National Science Library

    Henz, Brian J; Fischer, James W; Zachariah, Michael R

    2006-01-01

    In order to utilize the novel electrical, magnetic, optical, and physical properties of coated metal nanoparticles, one must be able to efficiently predict the nanoparticle size-dependent properties...

  14. Order from the disorder: hierarchical nanostructures self-assembled from the gas phase (Conference Presentation)

    Science.gov (United States)

    Di Fonzo, Fabio

    2017-02-01

    The assembly of nanoscale building blocks in engineered mesostructures is one of the fundamental goals of nanotechnology. Among the various processes developed to date, self-assembly emerges as one of the most promising, since it relays solely on basic physico-chemical forces. Our research is focused on a new type of self-assembly strategy from the gas-phase: Scattered Ballistic Deposition (SBD). SBD arises from the interaction of a supersonic molecular beam with a static gas and enables the growth of quasi-1D hierarchical mesostructures. Overall, they resemble a forest composed of individual, high aspect-ratio, tree-like structures, assembled from amorphous or crystalline nanoparticles. SBD is a general occurring phenomenon and can be obtained with different vapour or cluster sources. In particular, SBD by Pulsed Laser Deposition is a convenient physical vapor technique that allows the generation of supersonic plasma jets from any inorganic material irrespective of melting temperature, preserving even the most complex stoichiometries. One of the advantages of PLD over other vapour deposition techniques is extremely wide operational pressure range, from UHV to ambient pressure. These characteristics allowed us to develop quasi-1D hierarchical nanostructures from different transition metal oxides, semiconductors and metals. The precise control offered by the SBD-PLD technique over material properties at the nanoscale allowed us to fabricate ultra-thin, high efficiency hierarchical porous photonic crystals with Bragg reflectivity up to 85%. In this communication we will discuss the application of these materials to solar energy harvesting and storage, stimuli responsive photonic crystals and smart surfaces with digital control of their wettability behaviour.

  15. Direct electrochemistry and intramolecular electron transfer of ascorbate oxidase confined on L-cysteine self-assembled gold electrode.

    Science.gov (United States)

    Patil, Bhushan; Kobayashi, Yoshiki; Fujikawa, Shigenori; Okajima, Takeyoshi; Mao, Lanqun; Ohsaka, Takeo

    2014-02-01

    A direct electrochemistry and intramolecular electron transfer of multicopper oxidases are of a great importance for the fabrication of these enzyme-based bioelectrochemical-devices. Ascorbate oxidase from Acremonium sp. (ASOM) has been successfully immobilized via a chemisorptive interaction on the l-cysteine self-assembled monolayer modified gold electrode (cys-SAM/AuE). Thermodynamics and kinetics of adsorption of ASOM on the cys-SAM/AuE were studied using cyclic voltammetry. A well-defined redox wave centered at 166±3mV (vs. Ag│AgCl│KCl(sat.)) was observed in 5.0mM phosphate buffer solution (pH7.0) at the fabricated ASOM electrode, abbreviated as ASOM/cys-SAM/AuE, confirming a direct electrochemistry, i.e., a direct electron transfer (DET) between ASOM and cys-SAM/AuE. The direct electrochemistry of ASOM was further confirmed by taking into account the chemical oxidation of ascorbic acid (AA) by O2 via an intramolecular electron transfer in the ASOM as well as the electrocatalytic oxidation of AA at the ASOM/cys-SAM/AuE. Thermodynamics and kinetics of the adsorption of ASOM on the cys-SAM/AuE have been elaborated along with its direct electron transfer at the modified electrodes on the basis of its intramolecular electron transfer and electrocatalytic activity towards ascorbic acid oxidation and O2 reduction. ASOM saturated surface area was obtained as 2.41×10(-11)molcm(-2) with the apparent adsorption coefficient of 1.63×10(6)Lmol(-1). The ASOM confined on the cys-SAM/AuE possesses its essential enzymatic function. © 2013.

  16. Tuning the EDTA-induced self-assembly and plasmonic spectral properties of gold nanorods: application in surface-enhanced Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jian-jun [Xi’an Jiaotong University, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Analytical Technology and Instrumentation, School of Life Science and Technology (China); Zhang, Ning; Wang, Jingyuan [The First Affiliated Hospital of Xi’an Jiaotong University, Department of Clinical Laboratory (China); Yang, Chun-yu; Zhu, Jian, E-mail: nanoptzj@163.com; Zhao, Jun-wu, E-mail: nanoptzhao@163.com [Xi’an Jiaotong University, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Analytical Technology and Instrumentation, School of Life Science and Technology (China)

    2016-02-15

    Self-assembly of cetyl trimethyl ammonium bromide-protected colloidal gold nanorods with different aspect ratios has been studied by adding the ethylene diamine tetraacetic acid (EDTA). Both the assembly strength and assembly configuration fashion of the gold nanorods could be tuned by changing the aspect ratio. For gold nanorods with small aspect ratio, side-by-side assembly takes the major role in the aggregation. In this case, the blue shift of the longitudinal absorption and the increase of the transverse absorption lead to the great uplift of the middle spectrum dip as the EDTA is increased. For gold nanorods with large aspect ratio, end-to-end assembly takes the major role in the aggregation. In this case, the longitudinal absorption peak fades down rapidly and a tailing absorption peak at longer wavelength uplifts greatly as the EDTA is increased. The surface-enhanced Raman scattering (SERS) activity of the assembled gold nanorods has been studied using alpha-fetoprotein (AFP) as the Raman active probe. It has been found that both the side-by-side assembly and end-to-end assembly of the gold nanorods could effectively improve the Raman signal of the AFP. And the gold nanorod substrate with side-by-side assembly has higher SERS activity. Graphical Abstract: Side-by-side assembly of gold nanorods leads to the middle spectrum dip of LSPR uplift greatly as the EDTA is increased, which also effectively improves the SERS activity.

  17. Tuning the EDTA-induced self-assembly and plasmonic spectral properties of gold nanorods: application in surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Li, Jian-jun; Zhang, Ning; Wang, Jingyuan; Yang, Chun-yu; Zhu, Jian; Zhao, Jun-wu

    2016-01-01

    Self-assembly of cetyl trimethyl ammonium bromide-protected colloidal gold nanorods with different aspect ratios has been studied by adding the ethylene diamine tetraacetic acid (EDTA). Both the assembly strength and assembly configuration fashion of the gold nanorods could be tuned by changing the aspect ratio. For gold nanorods with small aspect ratio, side-by-side assembly takes the major role in the aggregation. In this case, the blue shift of the longitudinal absorption and the increase of the transverse absorption lead to the great uplift of the middle spectrum dip as the EDTA is increased. For gold nanorods with large aspect ratio, end-to-end assembly takes the major role in the aggregation. In this case, the longitudinal absorption peak fades down rapidly and a tailing absorption peak at longer wavelength uplifts greatly as the EDTA is increased. The surface-enhanced Raman scattering (SERS) activity of the assembled gold nanorods has been studied using alpha-fetoprotein (AFP) as the Raman active probe. It has been found that both the side-by-side assembly and end-to-end assembly of the gold nanorods could effectively improve the Raman signal of the AFP. And the gold nanorod substrate with side-by-side assembly has higher SERS activity. Graphical Abstract: Side-by-side assembly of gold nanorods leads to the middle spectrum dip of LSPR uplift greatly as the EDTA is increased, which also effectively improves the SERS activity

  18. FET immunosensor for hemoglobin A1c using a gold nanofilm grown by a seed-mediated technique and covered with mixed self-assembled monolayers

    International Nuclear Information System (INIS)

    Xue, Q.; Bian, C.; Tong, J.; Sun, J.; Zhang, H.; Xia, S.

    2012-01-01

    A micro FET-based immunosensor was developed for the determination of hemoglobin-A1c (HbA1c). The HbA1c/hemoglobin ratio is an important index in diabetes control. The sensor was fabricated by Complementary Metal-Oxide-Semiconductor Transistor (CMOS) and Micro Electronic Mechanical System (MEMS) techniques. The antibodies were immobilized via mixed self-assembled monolayers (SAMs) on a gold nanofilm. The nanofilm was deposited on a gold electrode by seed-mediated growth and gave a uniform and well distributed coverage. Nonspecific sites and interferences by noise were eliminated by covering the AuNPs with mixed SAMs. Compared to the immunosensor fabricated via the mixed SAMs method without gold nanofilm, the immunosensor displays a more than 2-fold sensitivity. The immunosensor is capable of detecting HbA1c and hemoglobin in hemolyzed and diluted whole blood, and results showed good agreement with the established clinical method. (author)

  19. Layer-by-Layer Self-Assembling Gold Nanorods and Glucose Oxidase onto Carbon Nanotubes Functionalized Sol-Gel Matrix for an Amperometric Glucose Biosensor.

    Science.gov (United States)

    Wu, Baoyan; Hou, Shihua; Miao, Zhiying; Zhang, Cong; Ji, Yanhong

    2015-09-18

    A novel amperometric glucose biosensor was fabricated by layer-by-layer self-assembly of gold nanorods (AuNRs) and glucose oxidase (GOD) onto single-walled carbon nanotubes (SWCNTs)-functionalized three-dimensional sol-gel matrix. A thiolated aqueous silica sol containing SWCNTs was first assembled on the surface of a cleaned Au electrode, and then the alternate self-assembly of AuNRs and GOD were repeated to assemble multilayer films of AuNRs-GOD onto SWCNTs-functionalized silica gel for optimizing the biosensor. Among the resulting glucose biosensors, the four layers of AuNRs-GOD-modified electrode showed the best performance. The sol-SWCNTs-(AuNRs- GOD)₄/Au biosensor exhibited a good linear range of 0.01-8 mM glucose, high sensitivity of 1.08 μA/mM, and fast amperometric response within 4 s. The good performance of the proposed glucose biosensor could be mainly attributed to the advantages of the three-dimensional sol-gel matrix and stereo self-assembly films, and the natural features of one-dimensional nanostructure SWCNTs and AuNRs. This study may provide a new facile way to fabricate the enzyme-based biosensor with high performance.

  20. Layer-by-Layer Self-Assembling Gold Nanorods and Glucose Oxidase onto Carbon Nanotubes Functionalized Sol-Gel Matrix for an Amperometric Glucose Biosensor

    Directory of Open Access Journals (Sweden)

    Baoyan Wu

    2015-09-01

    Full Text Available A novel amperometric glucose biosensor was fabricated by layer-by-layer self-assembly of gold nanorods (AuNRs and glucose oxidase (GOD onto single-walled carbon nanotubes (SWCNTs-functionalized three-dimensional sol-gel matrix. A thiolated aqueous silica sol containing SWCNTs was first assembled on the surface of a cleaned Au electrode, and then the alternate self-assembly of AuNRs and GOD were repeated to assemble multilayer films of AuNRs-GOD onto SWCNTs-functionalized silica gel for optimizing the biosensor. Among the resulting glucose biosensors, the four layers of AuNRs-GOD-modified electrode showed the best performance. The sol-SWCNTs-(AuNRs- GOD4/Au biosensor exhibited a good linear range of 0.01–8 mM glucose, high sensitivity of 1.08 μA/mM, and fast amperometric response within 4 s. The good performance of the proposed glucose biosensor could be mainly attributed to the advantages of the three-dimensional sol-gel matrix and stereo self-assembly films, and the natural features of one-dimensional nanostructure SWCNTs and AuNRs. This study may provide a new facile way to fabricate the enzyme-based biosensor with high performance.

  1. Understanding the self-assembly of proteins onto gold nanoparticles and quantum dots driven by metal-histidine coordination.

    Science.gov (United States)

    Aldeek, Fadi; Safi, Malak; Zhan, Naiqian; Palui, Goutam; Mattoussi, Hedi

    2013-11-26

    Coupling of polyhistidine-appended biomolecules to inorganic nanocrystals driven by metal-affinity interactions is a greatly promising strategy to form hybrid bioconjugates. It is simple to implement and can take advantage of the fact that polyhistidine-appended proteins and peptides are routinely prepared using well established molecular engineering techniques. A few groups have shown its effectiveness for coupling proteins onto Zn- or Cd-rich semiconductor quantum dots (QDs). Expanding this conjugation scheme to other metal-rich nanoparticles (NPs) such as AuNPs would be of great interest to researchers actively seeking effective means for interfacing nanostructured materials with biology. In this report, we investigated the metal-affinity driven self-assembly between AuNPs and two engineered proteins, a His7-appended maltose binding protein (MBP-His) and a fluorescent His6-terminated mCherry protein. In particular, we investigated the influence of the capping ligand affinity to the nanoparticle surface, its density, and its lateral extension on the AuNP-protein self-assembly. Affinity gel chromatography was used to test the AuNP-MPB-His7 self-assembly, while NP-to-mCherry-His6 binding was evaluated using fluorescence measurements. We also assessed the kinetics of the self-assembly between AuNPs and proteins in solution, using time-dependent changes in the energy transfer quenching of mCherry fluorescent proteins as they immobilize onto the AuNP surface. This allowed determination of the dissociation rate constant, Kd(-1) ∼ 1-5 nM. Furthermore, a close comparison of the protein self-assembly onto AuNPs or QDs provided additional insights into which parameters control the interactions between imidazoles and metal ions in these systems.

  2. Debye ring diffraction elucidation of 2D photonic crystal self-assembly and ordering at the air-water interface.

    Science.gov (United States)

    Smith, N L; Coukouma, A; Dubnik, S; Asher, S A

    2017-12-06

    We fabricate 2D photonic crystals (2DPC) by spreading a dispersion of charged colloidal particles (diameters = 409, 570, and 915 nm) onto the surface of electrolyte solutions using a needle tip flow method. When the interparticle electrostatic interaction potential is large, particles self-assemble into highly ordered hexagonal close packed (hcp) monolayers. Ordered 2DPC efficiently forward diffract monochromatic light to produce a Debye ring on a screen parallel to the 2DPC. The diameter of the Debye ring is inversely proportional to the 2DPC particle spacing, while the Debye ring brightness and thickness depends on the 2DPC ordering. The Debye ring thickness increases as the 2DPC order decreases. The Debye ring ordering measurements of 2DPC attached to glass slides track measurements of the 2D pair correlation function order parameter calculated from SEM micrographs. The Debye ring method was used to investigate the 2DPC particle spacing, and ordering at the air-solution interface of NaCl solutions, and for 2DPC arrays attached to glass slides. Surprisingly, the 2DPC ordering does not monotonically decrease as the salt concentration increases. This is because of chloride ion adsorption onto the anionic particle surfaces. This adsorption increases the particle surface charge and compensates for the decreased Debye length of the electric double layer when the NaCl concentration is below a critical value.

  3. Disulfide-induced self-assembled targets: A novel strategy for the label free colorimetric detection of DNAs/RNAs via unmodified gold nanoparticles

    Science.gov (United States)

    Shokri, Ehsan; Hosseini, Morteza; Davari, Mehdi D.; Ganjali, Mohammad R.; Peppelenbosch, Maikel P.; Rezaee, Farhad

    2017-04-01

    A modified non-cross-linking gold-nanoparticles (Au-NPs) aggregation strategy has been developed for the label free colorimetric detection of DNAs/RNAs based on self-assembling target species in the presence of thiolated probes. Two complementary thiol- modified probes, each of which specifically binds at one half of the target introduced SH groups at both ends of dsDNA. Continuous disulfide bond formation at 3‧ and 5‧ terminals of targets leads to the self-assembly of dsDNAs into the sulfur- rich and flexible products with different lengths. These products have a high affinity for the surface of Au-NPs and efficiently protect the surface from salt induced aggregation. To evaluate the assay efficacy, a small part of the citrus tristeza virus (CTV) genome was targeted, leading to a detection limit of about 5 × 10-9 mol.L-1 over a linear ranged from 20 × 10-9 to 10 × 10-7 mol.L-1. This approach also exhibits good reproducibility and recovery levels in the presence of plant total RNA or human plasma total circulating RNA extracts. Self-assembled targets can be then sensitively distinguished from non-assembled or mismatched targets after gel electrophoresis. The disulfide reaction method and integrating self-assembled DNAs/RNAs targets with bare AuNPs as a sensitive indicator provide us a powerful and simple visual detection tool for a wide range of applications.

  4. Manipulation of extinction spectra of P3HT/PMMA medium arrays on silicon substrate containing self-assembled gold nanoparticles

    International Nuclear Information System (INIS)

    Wu, Ming-Chung; Chen, Shih-Wen; Li, Jia-Han; Chou, Yi; Lin, Jhih-Fong; Chen, Yang-Fang; Su, Wei-Fang

    2012-01-01

    In this study, we report a simple novel approach to modulate the extinction spectra of P3HT/PMMA by manipulating the medium arrays on a substrate that is coated with self-assembled gold nanoparticles. The 20 nm gold nanoparticles were synthesized and then self-assembled on the APTMS/silicon substrate surface by immersing the substrate into the gold colloid suspension. A high-resolution P3HT/PMMA photoluminescent electron beam resist was used to fabricate various square hole arrays on the substrate containing gold nanoparticles. The P3HT/PMMA medium composition causes the blue shifts in the extinction peaks of up to 40.6 nm by decreasing the period from 500 nm to 200 nm for P3HT/PMMA square hole arrays with a diameter of 100 nm. The magnitude of blue shift is directly proportional to the product of the changes of medium refractive index and the array structure factor. These peak shifts and intensity of extinction spectra for various P3HT/PMMA medium arrays are well described by the finite-difference time-domain (FDTD) simulation results. Since this simple cost-effective technique can tune the extinction spectrum of medium and adding the gold nanoparticles can give more functionalities for sensing applications, such as surface-enhanced Raman scattering (SERS), that provides good opportunities for the design and fabrication of new optoelectronic devices and sensors. Highlights: ► We can tune the extinction spectra of P3HT/PMMA by manipulating the medium arrays. ► These optical behaviors of P3HT/PMMA medium arrays are well described by FDTD simulation results. ► Adding the Au nanoparticles can give more functionalities for sensing applications.

  5. Manipulation of extinction spectra of P3HT/PMMA medium arrays on silicon substrate containing self-assembled gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Ming-Chung [Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 333-02, Taiwan (China); Chen, Shih-Wen; Li, Jia-Han [Department of Engineering Science and Ocean Engineering, National Taiwan University, Taipei 106-17, Taiwan (China); Chou, Yi; Lin, Jhih-Fong [Department of Materials Science and Engineering, National Taiwan University, Taipei 106-17, Taiwan (China); Chen, Yang-Fang [Department of Physics, National Taiwan University, Taipei 106-17, Taiwan (China); Su, Wei-Fang, E-mail: suwf@ntu.edu.tw [Department of Materials Science and Engineering, National Taiwan University, Taipei 106-17, Taiwan (China)

    2012-11-15

    In this study, we report a simple novel approach to modulate the extinction spectra of P3HT/PMMA by manipulating the medium arrays on a substrate that is coated with self-assembled gold nanoparticles. The 20 nm gold nanoparticles were synthesized and then self-assembled on the APTMS/silicon substrate surface by immersing the substrate into the gold colloid suspension. A high-resolution P3HT/PMMA photoluminescent electron beam resist was used to fabricate various square hole arrays on the substrate containing gold nanoparticles. The P3HT/PMMA medium composition causes the blue shifts in the extinction peaks of up to 40.6 nm by decreasing the period from 500 nm to 200 nm for P3HT/PMMA square hole arrays with a diameter of 100 nm. The magnitude of blue shift is directly proportional to the product of the changes of medium refractive index and the array structure factor. These peak shifts and intensity of extinction spectra for various P3HT/PMMA medium arrays are well described by the finite-difference time-domain (FDTD) simulation results. Since this simple cost-effective technique can tune the extinction spectrum of medium and adding the gold nanoparticles can give more functionalities for sensing applications, such as surface-enhanced Raman scattering (SERS), that provides good opportunities for the design and fabrication of new optoelectronic devices and sensors. Highlights: Black-Right-Pointing-Pointer We can tune the extinction spectra of P3HT/PMMA by manipulating the medium arrays. Black-Right-Pointing-Pointer These optical behaviors of P3HT/PMMA medium arrays are well described by FDTD simulation results. Black-Right-Pointing-Pointer Adding the Au nanoparticles can give more functionalities for sensing applications.

  6. Unique self-assembly behavior of a triblock copolymer and fabrication of catalytically active gold nanoparticle/polymer thin films at the liquid/liquid interface

    International Nuclear Information System (INIS)

    Shang, Ke; Geng, Yuanyuan; Xu, Xingtao; Wang, Changwei; Lee, Yong-Ill; Hao, Jingcheng; Liu, Hong-Guo

    2014-01-01

    Gold nanoparticle-doped poly(2-vinylpyridine)-block-polystyrene-block-poly(2-vinylpyridine) (P2VP-b-PS-b-P2VP) thin films were prepared at the planar liquid/liquid interface between the chloroform solution of the polymer and aqueous solution of HAuCl 4 . Transmission electron microscopic (TEM) investigations revealed that foam films composed of microcapsules as well as one-dimensional belts were formed, and numerous Au nanoparticles were incorporated in the walls of the microcapsules and the nanobelts. The walls and the belts have layered structure. The formation mechanism of the foams and the belts was attributed to adsorption of the polymer molecules, combination of the polymer molecules with AuCl 4 − ions, microphase separation and self-assembly of the composite molecules at the interface. This microstructure is different apparently from those formed in solutions, in casting or spin-coating thin films and at the air/water interface of this triblock copolymer, reflecting unique self-assembly behavior at the liquid/liquid interface. This microstructure is also different from those formed by homo-P2VP and P4VP-b-PS-b-P4VP at the liquid/liquid interface, indicating the effects of molecular structures on the self-assembly behaviors of the polymers. After further treatment by UV-light irradiation and KBH 4 aqueous solution, the gold species were reduced completely, as indicated by UV–vis spectra and X-ray photoelectron spectra (XPS). Thermogravimetric analysis indicated that the composite films have high thermal stability, and the content of gold was estimated to be about 9.1%. These composite films exhibited high catalytic activity for the reduction of 4-nitrophenol by KBH 4 in aqueous solutions. - Highlights: • P2VP-b-PS-b-P2VP formed microcapsules and nanobelts at the liquid/liquid interface. • Its self-assembly behavior differs from P4VP-b-PS-b-P4VP at the interface. • This behavior also differs from those in solution, in film and at air/water interface

  7. Unique self-assembly behavior of a triblock copolymer and fabrication of catalytically active gold nanoparticle/polymer thin films at the liquid/liquid interface

    Energy Technology Data Exchange (ETDEWEB)

    Shang, Ke; Geng, Yuanyuan; Xu, Xingtao [Key Laboratory for Colloid and Interface Chemistry of Education Ministry, Shandong University, Jinan 250100 (China); Wang, Changwei [Environmental Monitoring Center of Shandong Province, Jinan 250013 (China); Lee, Yong-Ill [Anastro Laboratory, Department of Chemistry, Changwon National University, Changwon 641-773 (Korea, Republic of); Hao, Jingcheng [Key Laboratory for Colloid and Interface Chemistry of Education Ministry, Shandong University, Jinan 250100 (China); Liu, Hong-Guo, E-mail: hgliu@sdu.edu.cn [Key Laboratory for Colloid and Interface Chemistry of Education Ministry, Shandong University, Jinan 250100 (China)

    2014-07-01

    Gold nanoparticle-doped poly(2-vinylpyridine)-block-polystyrene-block-poly(2-vinylpyridine) (P2VP-b-PS-b-P2VP) thin films were prepared at the planar liquid/liquid interface between the chloroform solution of the polymer and aqueous solution of HAuCl{sub 4}. Transmission electron microscopic (TEM) investigations revealed that foam films composed of microcapsules as well as one-dimensional belts were formed, and numerous Au nanoparticles were incorporated in the walls of the microcapsules and the nanobelts. The walls and the belts have layered structure. The formation mechanism of the foams and the belts was attributed to adsorption of the polymer molecules, combination of the polymer molecules with AuCl{sub 4}{sup −} ions, microphase separation and self-assembly of the composite molecules at the interface. This microstructure is different apparently from those formed in solutions, in casting or spin-coating thin films and at the air/water interface of this triblock copolymer, reflecting unique self-assembly behavior at the liquid/liquid interface. This microstructure is also different from those formed by homo-P2VP and P4VP-b-PS-b-P4VP at the liquid/liquid interface, indicating the effects of molecular structures on the self-assembly behaviors of the polymers. After further treatment by UV-light irradiation and KBH{sub 4} aqueous solution, the gold species were reduced completely, as indicated by UV–vis spectra and X-ray photoelectron spectra (XPS). Thermogravimetric analysis indicated that the composite films have high thermal stability, and the content of gold was estimated to be about 9.1%. These composite films exhibited high catalytic activity for the reduction of 4-nitrophenol by KBH{sub 4} in aqueous solutions. - Highlights: • P2VP-b-PS-b-P2VP formed microcapsules and nanobelts at the liquid/liquid interface. • Its self-assembly behavior differs from P4VP-b-PS-b-P4VP at the interface. • This behavior also differs from those in solution, in film and

  8. Self-assembled fluids with order-parameter-dependent mobility: The ...

    Indian Academy of Sciences (India)

    The study is for quenching from an uncorrelated high temperature state into the Lifshitz line within the microemulsion phase. In the later stage of the ordering process, the structure factor exhibits multiscaling behavior with characteristic length scale (/ ln )1/2(2+3). The order-parameter-dependent mobility is found to slow ...

  9. Electrochemical detection of Hg(II in water using self-assembled single walled carbon nanotube-poly(m-amino benzene sulfonic acid on gold electrode

    Directory of Open Access Journals (Sweden)

    Gauta Gold Matlou

    2016-09-01

    Full Text Available This work reports on the detection of mercury using single walled carbon nanotube-poly (m-amino benzene sulfonic acid (SWCNT-PABS modified gold electrode by self-assembled monolayers (SAMs technique. A thiol containing moiety (dimethyl amino ethane thiol (DMAET was used to facilitate the assembly of the SWCNT-PABS molecules onto the Au electrode surface. The successfully assembled monolayers were characterised using atomic force microscopy (AFM. Cyclic voltammetric and electrochemical impedance spectroscopic studies of the modified electrode (Au-DMAET-(SWCNT-PABS showed improved electron transfer over the bare Au electrode and the Au-DMAET in [Fe (CN6]3−/4− solution. The Au-DMAET-(SWCNT-PABS was used for the detection of Hg in water by square wave anodic stripping voltammetry (SWASV analysis at the following optimized conditions: deposition potential of −0.1 V, deposition time of 30 s, 0.1 M HCl electrolyte and pH 3. The sensor showed a good sensitivity and a limit of detection of 0.06 μM with a linear concentration range of 20 ppb to 250 ppb under the optimum conditions. The analytical applicability of the proposed method with the sensor electrode was tested with real water sample and the method was validated with inductively coupled plasma – optical emission spectroscopy. Keywords: Self-assembly, Gold electrode, Carbon nanotubes, Electrochemical detection, Mercury

  10. Tuning of metal work functions with self-assembled monolayers

    NARCIS (Netherlands)

    de Boer, B; Hadipour, A; Mandoc, MM; van Woudenbergh, T; Blom, PWM

    2005-01-01

    Work functions of gold and silver are varied by over 1.4 and 1.7 eV, respectively, by using self-assembled monolayers. Using these modified electrodes, the hole current in a poly(2-methoxy-5-(2'-ethylhexyloxy)- 1,4-phenylene vinylene) light-emitting diode is tuned by more than six orders of

  11. Solvent-dependent self-assembly and ordering in slow-drying semi-crystalline conjugated polymer solutions

    KAUST Repository

    Zhao, Kui; Yu, Xinhong; Li, Ruipeng; Amassian, Aram; Han, Yanchun

    2015-01-01

    The mechanistic understanding of the intrinsic molecular self-assembly of conjugated polymers is of immense importance to controlling the microstructure development in organic semiconducting thin films, with meaningful impact on charge transport

  12. Linear self-assembly and grafting of gold nanorods into arrayed micrometer-long nanowires on a silicon wafer via a combined top-down/bottom-up approach.

    Science.gov (United States)

    Lestini, Elena; Andrei, Codrin; Zerulla, Dominic

    2018-01-01

    Macroscopically long wire-like arrangements of gold nanoparticles were obtained by controlled evaporation and partial coalescence of an aqueous colloidal solution of capped CTAB-Au nanorods onto a functionalised 3-mercaptopropyl trimethoxysilane (MPTMS) silicon substrate, using a removable, silicon wafer with a hydrophobic surface that serves as a "handrail" for the initial nanorods' linear self-assembly. The wire-like structures display a quasi-continuous pattern by thermal annealing of the gold nanorods when the solvent (i.e. water) is evaporated at temperatures rising from 20°C to 140°C. Formation of both single and self-replicating parallel 1D-superstructures consisting of two or even three wires is observed and explained under such conditions.

  13. Highly selective piezoelectric sensor for lead(II) based on the lead-catalyzed release of gold nanoparticles from a self-assembled nanosurface

    International Nuclear Information System (INIS)

    Xie, Yunfeng; Jin, Yulong; Huang, Yanyan; Liu, Guoquan; Zhao, Rui

    2014-01-01

    A novel quartz crystal microbalance (QCM) sensor has been developed for highly selective and sensitive detection of Pb 2+ by exploiting the catalytic effect of Pb 2+ ions on the leaching of gold nanoparticles from the surface of a QCM sensor. The use of self-assembled gold nanoparticles (AuNPs) strongly enlarges the size of the interface and thus amplifies the analytical response resulting from the loss of mass. This results in a very low detection limit for Pb 2+ (30 nM). The high selectivity is demonstrated by studying the effect of potentially interfering ions both in the absence and presence of Pb 2+ ions. This simple and well reproducible sensor was applied to the determination of lead in the spiked drinking water. This work provides a novel strategy for fabricating QCM sensors towards Pb 2+ in real samples. (author)

  14. Determination of low levels of cadmium ions by the under potential deposition on a self-assembled monolayer on gold electrode

    Energy Technology Data Exchange (ETDEWEB)

    Noyhouzer, Tomer [Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem 91904 (Israel); Mandler, Daniel, E-mail: mandler@vms.huji.ac.il [Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem 91904 (Israel)

    2011-01-17

    The electrochemical determination of low levels of Cd using a self-assembled monolayer (SAM) modified Au electrode is reported. Determination was based on the stripping of Cd, which was deposited by under potential deposition (UPD). A series of short alkanethiol SAMs bearing different end groups, i.e., sulfonate, carboxylate and ammonium, were examined. Lowest level of detection (ca. 50 ng L{sup -1}) was achieved with a 3-mercaptopropionic acid (MPA) monolayer using subtractive anodic square wave voltammetry (SASV). Additional surface methods, namely, reductive desorption and X-ray photoelectron spectroscopy, were applied to determine the interfacial structure of the electrodeposited Cd on the modified electrodes. We conclude that the deposited Cd forms a monoatomic layer, which bridges between the gold surface and the alkanethiol monolayer associating with both the gold and the sulfur atoms.

  15. Ionic self-assembly of surface functionalized metal-organic polyhedra nanocages and their ordered honeycomb architecture at the air/water interface.

    Science.gov (United States)

    Li, Yantao; Zhang, Daojun; Gai, Fangyuan; Zhu, Xingqi; Guo, Ya-nan; Ma, Tianliang; Liu, Yunling; Huo, Qisheng

    2012-08-18

    Metal-organic polyhedra (MOP) nanocages were successfully surface functionalized via ionic self-assembly and the ordered honeycomb architecture of the encapsulated MOP nanocages was also fabricated at the air/water surface. The results provide a novel synthetic method and membrane processing technique of amphiphilic MOP nanocages for various applications.

  16. Self-assembled highly ordered ethane-bridged periodic mesoporous organosilica and its application in HPLC.

    Science.gov (United States)

    Huang, Lili; Lu, Juan; Di, Bin; Feng, Fang; Su, Mengxiang; Yan, Fang

    2011-09-01

    Monodisperse spherical periodic mesoporous organosilicas (PMOs) with ethane integrated in the framework were synthesized and their application as stationary phase for chromatographic separation is demonstrated. The ethane-PMOs were prepared by condensation of 1,2-bis(triethoxysilyl)ethane (BTSE) in basic condition using octadecyltrimethylammonium chloride (C(18)TMACl) as template and ethanol as co-solvent. The morphology and mesoporous structure of ethane-PMOs were controlled under different concentrations of sodium hydroxide (NaOH) and EtOH. The results of scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (XRD), nitrogen sorption measurement, Fourier transform infrared spectroscopy (FT-IR) and elemental analysis showed that ethane-PMOs have spherical morphology, uniform particle distribution, highly ordered pore structure, high surface area and narrow pore-size distribution. The column packed with these materials exhibits good permeability, high chemical stability and good selectivity of mixtures of aromatic hydrocarbons in normal phase high-performance liquid chromatography (HPLC). Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Highly-Ordered Magnetic Nanostructures on Self-Assembled α-Al2O3 and Diblock Copolymer Templates

    International Nuclear Information System (INIS)

    Erb, Denise

    2015-08-01

    This thesis shows the preparation of nanostructured systems with a high degree of morphological uniformity and regularity employing exclusively selfassembly processes, and documents the investigation of these systems by means of atomic force microscopy (AFM), grazing incidence small angle X-ray scattering (GISAXS), and nuclear resonant scattering of synchrotron radiation (NRS). Whenever possible, the X-ray scattering methods are applied in-situ and simultaneously in order to monitor and correlate the evolution of structural and magnetic properties of the nanostructured systems. The following systems are discussed, where highly-ordered magnetic nanostructures are grown on α-Al 2 O 3 substrates with topographical surface patterning and on diblock copolymer templates with chemical surface patterning: - Nanofaceted surfaces of α-Al 2 O 3 - Magnetic nanostructures on nanofaceted α-Al 2 O 3 substrates - Thin films of microphase separated diblock copolymers - Magnetic nanostructures on diblock copolymer thin film templates The fact that the underlying self-assembly processes can be steered by external factors is utilized to optimize the degree of structural order in the nanostructured systems. The highly-ordered systems are well-suited for investigations with X-ray scattering methods, since due to their uniformity the inherently averaged scattered signal of a sample yields meaningful information on the properties of the contained nanostructures: By means of an in-situ GISAXS experiment at temperatures above 1000 C, details on the facet formation on α-Al 2 O 3 surfaces are determined. A novel method, merging in-situ GISAXS and NRS, shows the evolution of magnetic states in a system with correlated structural and magnetic inhomogeneity with lateral resolution. The temperature-dependence of the shape of Fe nanodots growing on diblock copolymer templates is revealed by in-situ GISAXS during sputter deposition of Fe. Combining in-situ GISAXS and NRS, the magnetization

  18. Valence States Modulation Strategy for Picomole Level Assay of Hg2+ in Drinking and Environmental Water by Directional Self-Assembly of Gold Nanorods.

    Science.gov (United States)

    Chen, Lu; Lu, Linlin; Wang, Sufan; Xia, Yunsheng

    2017-06-23

    In this study, we present a valence states modulation strategy for picomole level assay of Hg 2+ using directional self-assembly of gold nanorods (AuNRs) as signal readout. Hg 2+ ions are first controllably reduced to Hg + ions by appropriate ascorbic acid, and the reduced Hg + ions react with the tips of the preadded AuNRs and form gold amalgam. Such Hg + decorated AuNRs then end-to-end self-assemble into one-dimensional architectures by the bridging effects of lysine based on the high affinity of NH 2 -Hg + interactions. Correspondingly, the AuNRs' longitudinal surface plasmon resonance is gradually reduced and a new broad band appears at 900-1100 nm region simultaneously. The resulting distinctly ratiometric signal output is not only favorable for Hg 2+ ions detection but competent for their quantification. Under optimal conditions, the linear range is 22.8 pM to 11.4 nM, and the detection limit is as low as 8.7 pM. Various transition/heavy metal ions, such as Pb 2+ , Ti 2+ , Co 2+ , Fe 3+ , Mn 2+ , Ba 2+ , Fe 2+ , Ni 2+ , Al 3+ , Cu 2+ , Ag + , and Au 3+ , do not interfere with the assay. Because of ultrahigh sensitivity and excellent selectivity, the proposed system can be employed for assaying ultratrace of Hg 2+ containing in drinking and commonly environmental water samples, which is difficult to be achieved by conventional colorimetric systems. These results indicate that the present platform possesses specific advantages and potential applications in the assay of ultratrace amounts of Hg 2+ ions.

  19. A nano-structured Ni(II)-chelidamic acid modified gold nanoparticle self-assembled electrode for electrocatalytic oxidation and determination of methanol

    Energy Technology Data Exchange (ETDEWEB)

    Gholivand, Mohammad Bagher, E-mail: mbgholivand@yahoo.com [Department of Analytical Chemistry, Faculty of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Azadbakht, Azadeh [Department of Chemistry, Faculty of Basic Science, Khorramabad Branch, Islamic Azad University, Khorramabad (Iran, Islamic Republic of)

    2012-10-01

    A nano-structured Ni(II)-chelidamic acid (2,6-dicarboxy-4-hydroxypyridine) film was electrodeposited on a gold nanoparticle-cysteine-gold electrode. The morphology of Ni(II)-chelidamic acid gold nanoparticle self-assembled electrode was investigated by scanning electron microscopy (SEM). Electrocatalytic oxidation of methanol on the surface of modified electrode was studied by cyclic voltammetry and chronoamperometry methods. The hydrodynamic amperometry at a rotating modified electrode at constant potential versus reference electrode was used for detection of methanol. Under optimized conditions the calibration plots are linear in the concentration range 0-50 mM with a detection limit of 15 {mu}M. The formed matrix in our work possessed a 3D porous network structure with a large effective surface area, high catalytic activity and behaved like microelectrode ensembles. The modified electrode indicated reproducible behavior and a high level stability during the experiments, making it particularly suitable for analytical purposes. - Highlights: Black-Right-Pointing-Pointer The Au electrode modified with thin Ni(II)/CHE-AuNP film shows stable and reproducible behavior. Black-Right-Pointing-Pointer Long stability and excellent electrochemical reversibility were observed. Black-Right-Pointing-Pointer This modified electrode shows excellent catalytic activity for methanol oxidation. Black-Right-Pointing-Pointer Combination of unique properties of AuNP and Ni(II)/CHE resulted in improvement of current responses.

  20. Modelling Polar Self Assembly

    Science.gov (United States)

    Olvera de La Cruz, Monica; Sayar, Mehmet; Solis, Francisco J.; Stupp, Samuel I.

    2001-03-01

    Recent experimental studies in our group have shown that self assembled thin films of noncentrosymmetric supramolecular objects composed of triblock rodcoil molecules exhibit finite polar order. These aggregates have both long range dipolar and short range Ising-like interactions. We study the ground state of a simple model with these competing interactions. We find that the competition between Ising-like and dipolar forces yield a periodic domain structure, which can be controlled by adjusting the force constants and film thickness. When the surface forces are included in the potential, the system exhibits a finite macroscopic polar order.

  1. On the influence of the aliphatic linker on fabrication of highly ordered and orientated self-assembled monolayers of aromatic selenols on AU(111)

    KAUST Repository

    Azzam, Waleed

    2014-03-06

    Self-assembled monolayers (SAMs) formed by adsorption of 1,2-dibenzyldiselenide (DPMSe) and 1,2-diphenyldiselenide (DBSe) on Au(111) substrates at room temperature have been characterized using scanning tunnelling microscopy, X-ray photoelectron spectroscopy, infrared reflection absorption spectroscopy, near-edge X-ray absorption fine structure spectroscopy, and low-energy electron diffraction. Upon adsorption, the Se-Se bonds in DPMSe and DBSe were cleaved on the gold surface to form phenylmethaneselenolate (PMSe) and benzeneselenolate (BSe) species, respectively. Although both PMSe and BSe molecular entities only differ in their structure (an additional methyl group in PMSe), the resulting monolayer films revealed noteworthy dissimilarities regarding their adlayer SAM structure and surface morphology. The molecular adlayer structure and orientation of PMSe and BSe species were found to vary significantly with the immersion time (IT). The resulting PMSe films were poorly organized, and the structure was described by a (4√3 × 2) rectangular unit cell for the SAMs prepared with 24 h of IT. Moreover, the PMSe-SAMs were found to be unstable upon exposure to air for a long time. Our results showed that exposure to air for 48 h results in the formation of small bright ad-islands, which have a height corresponding to that of a single atomic step on the Au(111). Contrary, BSe-SAMs exhibited densely packed and well-ordered monolayers, and two different structural phases were resolved at short and long ITs. The most densely packed structure was obtained for SAMs prepared with very short ITs (10 min). Upon increasing the IT, the SAMs exhibited structural changes to a lower density of molecular packing structure. The spectroscopic data also confirmed this structural transformation by suggesting an upright orientation for BSe-SAMs prepared after short ITs and strongly inclined adsorption geometry for SAMs prepared after long ITs. © 2014 American Chemical Society.

  2. Self-assembled lipoprotein based gold nanoparticles for detection and photothermal disaggregation of β-amyloid aggregates

    KAUST Repository

    Martins, P. A. T.; Alsaiari, Shahad K.; Julfakyan, Khachatur; Nie, Z.; Khashab, Niveen M.

    2017-01-01

    We present a reconstituted lipoprotein-based nanoparticle platform comprising a curcumin fluorescent motif and an NIR responsive gold core. This multifunctional nanosystem is successfully used for aggregation-dependent fluorescence detection and photothermal disassembly of insoluble amyloid aggregates.

  3. Self-assembled lipoprotein based gold nanoparticles for detection and photothermal disaggregation of β-amyloid aggregates

    KAUST Repository

    Martins, P. A. T.

    2017-01-10

    We present a reconstituted lipoprotein-based nanoparticle platform comprising a curcumin fluorescent motif and an NIR responsive gold core. This multifunctional nanosystem is successfully used for aggregation-dependent fluorescence detection and photothermal disassembly of insoluble amyloid aggregates.

  4. Electrochemistry of the Self-Assembled Monolayers of Dyads Consisting of Tripod-Shaped Trithiol and Bithiophene on Gold

    Directory of Open Access Journals (Sweden)

    Toshikazu Kitagawa

    2014-09-01

    Full Text Available Self-assembled monolayers (SAMs of tripod-shaped trithiols, consisting of an adamantane core with three CH2SH legs and a bithiophene group, were prepared on a Au(111 surface. Adsorption in a tripod-like fashion was supported by polarization modulation-infrared reflection absorption spectroscopy (PM-IRRAS of the SAMs, which indicated the absence of free SH groups. Cyclic voltammetry showed an irreversible cathodic wave due to reductive desorption. The SAM also showed an anodic wave due to the single-electron oxidation of the bithiophene moiety without concomitant desorption of the molecules. Although oxidation was irreversible in the absence of a protecting group, it became reversible with the introduction of a terminal phenyl group. The charge of the oxidation was one-third that of the reductive desorption, confirming a three-point adsorption. The surface coverage was ca. 50% of that expected for the anti bithiophene conformation, which suggested that an increase in the surface area per molecule had been caused by the presence of an energetically high-lying syn conformer. In accordance with this, the line shape of the oxidation wave suggested an electrostatic repulsive interaction between neighboring molecules.

  5. Solvent-free directed patterning of a highly ordered liquid crystalline organic semiconductor via template-assisted self-assembly for organic transistors.

    Science.gov (United States)

    Kim, Aryeon; Jang, Kwang-Suk; Kim, Jinsoo; Won, Jong Chan; Yi, Mi Hye; Kim, Hanim; Yoon, Dong Ki; Shin, Tae Joo; Lee, Myong-Hoon; Ka, Jae-Won; Kim, Yun Ho

    2013-11-20

    Highly ordered organic semiconductor micropatterns of the liquid-crystalline small molecule 2,7-didecylbenzothienobenzothiophene (C10 -BTBT) are fabricated using a simple method based on template-assisted self-assembly (TASA). The liquid crystallinity of C10 -BTBT allows solvent-free fabrication of high-performance printed organic field-effect transistors (OFETs). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Fabrication of new carbon paste electrodes based on gold nano-particles self-assembled to mercapto compounds as suitable ionophores for potentiometric determination of copper ions

    Directory of Open Access Journals (Sweden)

    Rasoul Pourtaghavi Talemi

    2013-12-01

    Full Text Available In the present study, we investigate the potentiometric behavior of Cu2+ carbon paste electrodes based on two mercapto compounds 2-ethylmino-5-mercapto-1,3,4-thiadiazole (EAMT and 2-acetylamino-5-mercapto-1,3,4-thiadiazole (AAMT self-assembled on gold nano-paricle (GNP as ionophore. Then, the obtained results from the modified electrodes are compared. The self-assembled ionophores exhibit a high selectivity for copper ion (Cu2+, in which the sulfur and nitrogen atoms in their structure play a significant role as the effective coordination donor site for the copper ion. Among these electrodes, the best performance was obtained with the sensor with a EAMT/graphite powder/paraffin oil weight ratio of 4.0/68/28 with 200 µL of GNP which exhibits the working concentration range of 1.6×10−9 to 6.3×10−2 M and a nernstian slope of 28.9±0.4 mVdecade−1 of copper(II activity. The detection limit of electrode was 2.9(±0.2×10−10M and potential response was pH ; in other words, it was independent across the range of 2.8–6.3. The proposed electrode presented very good selectivity and sensitivity towards the Cu2+ ions over a wide variety of cations including alkali, alkaline earth, transition and heavy metal ions. Moreover, the proposed electrode was successfully applied as an indicator electrode in the potentiometric titration of Cu(II ions with EDTA and also the potentiometric determination of copper ions in spiked water samples.

  7. Switching on/off the chemisorption of thioctic-based self-assembled monolayers on gold by applying a moderate cathodic/anodic potential.

    Science.gov (United States)

    Sahli, Rihab; Fave, Claire; Raouafi, Noureddine; Boujlel, Khaled; Schöllhorn, Bernd; Limoges, Benoît

    2013-04-30

    An in situ and real-time electrochemical method has been devised for quantitatively monitoring the self-assembly of a ferrocene-labeled cyclic disulfide derivative (i.e., a thioctic acid derivative) on a polycrystalline gold electrode under electrode polarization. Taking advantage of the high sensitivity, specificity, accuracy, and temporal resolution of this method, we were able to demonstrate an unexpectedly facilitated formation of the redox-active SAM when the electrode was held at a moderate cathodic potential (-0.4 V vs SCE in CH3CN), affording a saturated monolayer from only micromolar solutions in less than 10 min, and a totally impeded SAM growth when the electrode was polarized at a slightly anodic potential (+0.5 V vs SCE in CH3CN). This method literally allows for switching on/off the formation of SAMs under "soft" conditions. Moreover the cyclic disulfide-based SAM was completely desorbed at this potential contrary to the facilitated deposition of a ferrocene-labeled alkanethiol. Such a strikingly contrasting behavior could be explained by an energetically favored release of the thioctic-based SAM through homolytic cleavage of the Au-S bond followed by intramolecular cyclization of the generated thiyl diradicals. Moreover, the absence of a discernible transient faradaic current response during the potential-assisted adsorption/desorption of the redox-labeled cyclic disulfide led us to conclude in a potential-dependent reversible surface reaction where no electron is released or consumed. These results provide new insights into the formation of disulfide-based SAMs on gold but also raise some fundamental questions about the intimate mechanism involved in the facilitated adsorption/desorption of SAMs under electrode polarization. Finally, the possibility to easily and selectively address the formation/removal of thioctic-based SAMs on gold by applying a moderate cathodic/anodic potential offers another degree of freedom in tailoring their properties and

  8. Efficient self-assembly of DNA-functionalized fluorophores and gold nanoparticles with DNA functionalized silicon surfaces: the effect of oligomer spacers

    Science.gov (United States)

    Milton, James A.; Patole, Samson; Yin, Huabing; Xiao, Qiang; Brown, Tom; Melvin, Tracy

    2013-01-01

    Although strategies for the immobilization of DNA oligonucleotides onto surfaces for bioanalytical and top-down bio-inspired nanobiofabrication approaches are well developed, the effect of introducing spacer molecules between the surface and the DNA oligonucleotide for the hybridization of nanoparticle–DNA conjugates has not been previously assessed in a quantitative manner. The hybridization efficiency of DNA oligonucleotides end-labelled with gold nanoparticles (1.4 or 10 nm diameter) with DNA sequences conjugated to silicon surfaces via hexaethylene glycol phosphate diester oligomer spacers (0, 1, 2, 6 oligomers) was found to be independent of spacer length. To quantify both the density of DNA strands attached to the surfaces and hybridization with the surface-attached DNA, new methodologies have been developed. Firstly, a simple approach based on fluorescence has been developed for determination of the immobilization density of DNA oligonucleotides. Secondly, an approach using mass spectrometry has been created to establish (i) the mean number of DNA oligonucleotides attached to the gold nanoparticles and (ii) the hybridization density of nanoparticle–oligonucleotide conjugates with the silicon surface–attached complementary sequence. These methods and results will be useful for application with nanosensors, the self-assembly of nanoelectronic devices and the attachment of nanoparticles to biomolecules for single-molecule biophysical studies. PMID:23361467

  9. Direct electrochemistry and electrocatalysis of hemoglobin at three-dimensional gold film electrode modified with self-assembled monolayers of 3-mercaptopropylphosphonic acid

    International Nuclear Information System (INIS)

    Chen Yu; Yang Xiaojing; Guo Lirong; Li Jing; Xia Xinghua; Zheng Limin

    2009-01-01

    Multilayered hemoglobin (Hb) molecules were successfully immobilized on three-dimensional gold film electrode modified with self-assembled monolayers (SAMs) of 3-mercaptopropylphosphonic acid. Direct electrochemistry of the immobilized multilayered Hb occurs with high thermal stability and electrochemical stability. In the multilayered Hb film, the most inner Hb molecules can directly transfer electron with the electrode, while the Hb protein beyond this layer communicates electron with the electrode via protein-protein electron exchange. In addition, the proposed functional interface can greatly enhance electron transfer rate of the immobilized Hb protein (k s = 15.8 ± 2.0 s -1 ) due to the increase of roughness of the gold substrate. Under optimized experimental conditions, the multilayered Hb film displays good bioelectrocatalytic activity toward the reduction of hydrogen peroxide. This electrochemical sensor shows fast response (less than 1 s), wide linear range (7.8 x 10 -8 to 9.1 x 10 -5 M) and low detection limit (2.5 x 10 -8 M), which can be attributed to good mass transport, large Hb proteins loading per unit area and fast electron transfer rate of Hb protein.

  10. Modification of a Polycrystalline Gold Electrode by Thiolated Calix[4]arene and Undecanethiol: Self-assembly Process versus Electrochemical Deposition

    Czech Academy of Sciences Publication Activity Database

    Šustrová, Barbora; Štulík, Karel; Mareček, Vladimír

    2013-01-01

    Roč. 8, č. 4 (2013), s. 4367-4383 ISSN 1452-3981 R&D Projects: GA ČR(CZ) GAP208/12/1645; GA AV ČR IAA400400806 Institutional support: RVO:61388955 Keywords : Thiolated calixarene * Polycrystalline gold * Surface modification Subject RIV: CG - Electrochemistry Impact factor: 1.956, year: 2013

  11. An Electrochemical Immunosensor for Detection of Staphylococcus aureus Bacteria Based on Immobilization of Antibodies on Self-Assembled Monolayers-Functionalized Gold Electrode

    Directory of Open Access Journals (Sweden)

    Abderrazak Maaref

    2012-10-01

    Full Text Available The detection of pathogenic bacteria remains a challenge for the struggle against biological weapons, nosocomial diseases, and for food safety. In this research, our aim was to develop an easy-to-use electrochemical immunosensor for the detection of pathogenic Staphylococcus aureus ATCC25923. The biosensor was elaborated by the immobilization of anti-S. aureus antibodies using a self-assembled monolayer (SAMs of 3-Mercaptopropionic acid (MPA. These molecular assemblies were spontaneously formed by the immersion of the substrate in an organic solvent containing the SAMs that can covalently bond to the gold surface. The functionalization of the immunosensor was characterized using two electrochemical techniques: cyclic voltammetry (CV and electrochemical impedance spectroscopy (EIS. Here, the analysis was performed in phosphate buffer with ferro/ferricyanide as the redox probe. The EIS technique was used for affinity assays: antibody-cell binding. A linear relationship between the increment in the electron transfer resistance (RCT and the logarithmic value of S. aureus concentration was observed between 10 and 106 CFU/mL. The limit of detection (LOD was observed at 10 CFU/mL, and the reproducibility was calculated to 8%. Finally, a good selectivity versus E. coli and S. epidermidis was obtained for our developed immunosensor demonstrating its specificity towards only S. aureus.

  12. Integrated electrochemical gluconic acid biosensor based on self-assembled monolayer-modified gold electrodes. Application to the analysis of gluconic acid in musts and wines.

    Science.gov (United States)

    Campuzano, S; Gamella, M; Serra, B; Reviejo, A J; Pingarrón, J M

    2007-03-21

    An integrated amperometric gluconic acid biosensor constructed using a gold electrode (AuE) modified with a self-assembled monolayer (SAM) of 3-mercaptopropionic acid (MPA) on which gluconate dehydrogenase (GADH, 0.84 U) and the mediator tetrathiafulvalene (TTF, 1.5 micromol) were coimmobilized by covering the electrode surface with a dialysis membrane is reported. The working conditions selected were Eapp=+0.15 V and 25+/-1 degrees C. The useful lifetime of one single TTF-GADH-MPA-AuE was surprisingly long. After 53 days of continuous use, the biosensor exhibited 86% of the original sensitivity. A linear calibration plot was obtained for gluconic acid over the 6.0x10(-7) to 2.0x10(-5) M concentration range, with a limit of detection of 1.9x10(-7) M. The effect of potential interferents (glucose, fructose, galactose, arabinose, and tartaric, citric, malic, ascorbic, gallic, and caffeic acids) on the biosensor response was evaluated. The behavior of the biosensor in a flow-injection system in connection with amperometric detection was tested. The analytical usefulness of the biosensor was evaluated by determining gluconic acid in wine and must samples, and the results obtained were validated by comparison with those provided by using a commercial enzyme test kit.

  13. Highly Sensitive Aluminium(III) Ion Sensor Based on a Self-assembled Monolayer on a Gold Nanoparticles Modified Screen-printed Carbon Electrode.

    Science.gov (United States)

    See, Wong Pooi; Heng, Lee Yook; Nathan, Sheila

    2015-01-01

    A new approach for the development of a highly sensitive aluminium(III) ion sensor via the preconcentration of aluminium(III) ion with a self-assembled monolayer on a gold nanoparticles modified screen-printed carbon electrode and current mediation by potassium ferricyanide redox behavior during aluminium(III) ion binding has been attempted. A monolayer of mercaptosuccinic acid served as an effective complexation ligand for the preconcentration of trace aluminium; this led to an enhancement of aluminium(III) ion capture and thus improved the sensitivity of the sensor with a detection limit of down to the ppb level. Under the optimum experimental conditions, the sensor exhibited a wide linear dynamic range from 0.041 to 12.4 μM. The lower detection limit of the developed sensor was 0.037 μM (8.90 ppb) using a 10 min preconcentration time. The sensor showed excellent selectivity towards aluminium(III) ion over other interference ions.

  14. Thermal conductance of interfaces with molecular layers - low temperature transient absorption study on gold nanorods supported on self assembled monolayers

    Science.gov (United States)

    Wang, Wei; Huang, Jingyu; Murphy, Catherine; Cahill, David; University of Illinois At Urbana Champaign, Department of Materials Science; Engineering Team; Department Collaboration

    2011-03-01

    While heat transfer via phonons across solid-solid boundary has been a core field in condense matter physics for many years, vibrational energy transport across molecular layers has been less well elucidated. We heat rectangular-shaped gold nanocrystals (nanorods) with Ti-sapphire femtosecond pulsed laser at their longitudinal surface plasmon absorption wavelength to watch how their temperature evolves in picoseconds transient. We observed single exponential decay behavior, which suggests that the heat dissipation is only governed by a single interfacial conductance value. The ``RC'' time constant was 300ps, corresponding to a conductance value of 95MW/ m 2 K. This interfacial conductance value is also a function of ambient temperature since at temperatures as low as 80K, which are below the Debye temperature of organic layers, several phonon modes were quenched, which shut down the dominating channels that conduct heat at room temperature.

  15. Self-assembling peptide semiconductors

    Science.gov (United States)

    Tao, Kai; Makam, Pandeeswar; Aizen, Ruth; Gazit, Ehud

    2017-01-01

    Semiconductors are central to the modern electronics and optics industries. Conventional semiconductive materials bear inherent limitations, especially in emerging fields such as interfacing with biological systems and bottom-up fabrication. A promising candidate for bioinspired and durable nanoscale semiconductors is the family of self-assembled nanostructures comprising short peptides. The highly ordered and directional intermolecular π-π interactions and hydrogen-bonding network allow the formation of quantum confined structures within the peptide self-assemblies, thus decreasing the band gaps of the superstructures into semiconductor regions. As a result of the diverse architectures and ease of modification of peptide self-assemblies, their semiconductivity can be readily tuned, doped, and functionalized. Therefore, this family of electroactive supramolecular materials may bridge the gap between the inorganic semiconductor world and biological systems. PMID:29146781

  16. Self-assembled nanogaps for molecular electronics

    DEFF Research Database (Denmark)

    Tang, Qingxin; Tong, Yanhong; Jain, Titoo

    2009-01-01

    A nanogap for molecular devices was realized using solution-based self-assembly. Gold nanorods were assembled to gold nanoparticle-coated conducting SnO2:Sb nanowires via thiol end-capped oligo(phenylenevinylene)s (OPVs). The molecular gap was easily created by the rigid molecule itself during se...

  17. Using Polarized Spectroscopy to Investigate Order in Thin-Films of Ionic Self-Assembled Materials Based on Azo-Dyes

    Science.gov (United States)

    Ahmad, Mariam; Andersen, Frederik; Brend Bech, Ári; Bendixen, H. Krestian L.; Nawrocki, Patrick R.; Bloch, Anders J.; Bora, Ilkay; Bukhari, Tahreem A.; Bærentsen, Nicolai V.; Carstensen, Jens; Chima, Smeeah; Colberg, Helene; Dahm, Rasmus T.; Daniels, Joshua A.; Dinckan, Nermin; El Idrissi, Mohamed; Erlandsen, Ricci; Førster, Marc; Ghauri, Yasmin; Gold, Mikkel; Hansen, Andreas; Hansen, Kenn; Helmsøe-Zinck, Mathias; Henriksen, Mathias; Hoffmann, Sophus V.; Hyllested, Louise O. H.; Jensen, Casper; Kallenbach, Amalie S.; Kaur, Kirandip; Khan, Suheb R.; Kjær, Emil T. S.; Kristiansen, Bjørn; Langvad, Sylvester; Lund, Philip M.; Munk, Chastine F.; Møller, Theis; Nehme, Ola M. Z.; Nejrup, Mathilde Rove; Nexø, Louise; Nielsen, Simon Skødt Holm; Niemeier, Nicolai; Nikolajsen, Lasse V.; Nøhr, Peter C. T.; Skaarup Ovesen, Jacob; Paustian, Lucas; Pedersen, Adam S.; Petersen, Mathias K.; Poulsen, Camilla M.; Praeger-Jahnsen, Louis; Qureshi, L. Sonia; Schiermacher, Louise S.; Simris, Martin B.; Smith, Gorm; Smith, Heidi N.; Sonne, Alexander K.; Zenulovic, Marko R.; Winther Sørensen, Alma; Vogt, Emil; Væring, Andreas; Westermann, Jonas; Özcan, Sevin B.

    2018-01-01

    Three series of ionic self-assembled materials based on anionic azo-dyes and cationic benzalkonium surfactants were synthesized and thin films were prepared by spin-casting. These thin films appear isotropic when investigated with polarized optical microscopy, although they are highly anisotropic. Here, three series of homologous materials were studied to rationalize this observation. Investigating thin films of ordered molecular materials relies to a large extent on advanced experimental methods and large research infrastructure. A statement that in particular is true for thin films with nanoscopic order, where X-ray reflectometry, X-ray and neutron scattering, electron microscopy and atom force microscopy (AFM) has to be used to elucidate film morphology and the underlying molecular structure. Here, the thin films were investigated using AFM, optical microscopy and polarized absorption spectroscopy. It was shown that by using numerical method for treating the polarized absorption spectroscopy data, the molecular structure can be elucidated. Further, it was shown that polarized optical spectroscopy is a general tool that allows determination of the molecular order in thin films. Finally, it was found that full control of thermal history and rigorous control of the ionic self-assembly conditions are required to reproducibly make these materials of high nanoscopic order. Similarly, the conditions for spin-casting are shown to be determining for the overall thin film morphology, while molecular order is maintained. PMID:29462883

  18. Using Polarized Spectroscopy to Investigate Order in Thin-Films of Ionic Self-Assembled Materials Based on Azo-Dyes

    Directory of Open Access Journals (Sweden)

    Miguel R. Carro-Temboury Martin Kühnel

    2018-02-01

    Full Text Available Three series of ionic self-assembled materials based on anionic azo-dyes and cationic benzalkonium surfactants were synthesized and thin films were prepared by spin-casting. These thin films appear isotropic when investigated with polarized optical microscopy, although they are highly anisotropic. Here, three series of homologous materials were studied to rationalize this observation. Investigating thin films of ordered molecular materials relies to a large extent on advanced experimental methods and large research infrastructure. A statement that in particular is true for thin films with nanoscopic order, where X-ray reflectometry, X-ray and neutron scattering, electron microscopy and atom force microscopy (AFM has to be used to elucidate film morphology and the underlying molecular structure. Here, the thin films were investigated using AFM, optical microscopy and polarized absorption spectroscopy. It was shown that by using numerical method for treating the polarized absorption spectroscopy data, the molecular structure can be elucidated. Further, it was shown that polarized optical spectroscopy is a general tool that allows determination of the molecular order in thin films. Finally, it was found that full control of thermal history and rigorous control of the ionic self-assembly conditions are required to reproducibly make these materials of high nanoscopic order. Similarly, the conditions for spin-casting are shown to be determining for the overall thin film morphology, while molecular order is maintained.

  19. Using Polarized Spectroscopy to Investigate Order in Thin-Films of Ionic Self-Assembled Materials Based on Azo-Dyes.

    Science.gov (United States)

    Kühnel, Miguel R Carro-Temboury Martin; Ahmad, Mariam; Andersen, Frederik; Bech, Ári Brend; Bendixen, H Krestian L; Nawrocki, Patrick R; Bloch, Anders J; Bora, Ilkay; Bukhari, Tahreem A; Bærentsen, Nicolai V; Carstensen, Jens; Chima, Smeeah; Colberg, Helene; Dahm, Rasmus T; Daniels, Joshua A; Dinckan, Nermin; Idrissi, Mohamed El; Erlandsen, Ricci; Førster, Marc; Ghauri, Yasmin; Gold, Mikkel; Hansen, Andreas; Hansen, Kenn; Helmsøe-Zinck, Mathias; Henriksen, Mathias; Hoffmann, Sophus V; Hyllested, Louise O H; Jensen, Casper; Kallenbach, Amalie S; Kaur, Kirandip; Khan, Suheb R; Kjær, Emil T S; Kristiansen, Bjørn; Langvad, Sylvester; Lund, Philip M; Munk, Chastine F; Møller, Theis; Nehme, Ola M Z; Nejrup, Mathilde Rove; Nexø, Louise; Nielsen, Simon Skødt Holm; Niemeier, Nicolai; Nikolajsen, Lasse V; Nøhr, Peter C T; Orlowski, Dominik B; Overgaard, Marc; Ovesen, Jacob Skaarup; Paustian, Lucas; Pedersen, Adam S; Petersen, Mathias K; Poulsen, Camilla M; Praeger-Jahnsen, Louis; Qureshi, L Sonia; Ree, Nicolai; Schiermacher, Louise S; Simris, Martin B; Smith, Gorm; Smith, Heidi N; Sonne, Alexander K; Zenulovic, Marko R; Sørensen, Alma Winther; Sørensen, Karina; Vogt, Emil; Væring, Andreas; Westermann, Jonas; Özcan, Sevin B; Sørensen, Thomas Just

    2018-02-15

    Three series of ionic self-assembled materials based on anionic azo-dyes and cationic benzalkonium surfactants were synthesized and thin films were prepared by spin-casting. These thin films appear isotropic when investigated with polarized optical microscopy, although they are highly anisotropic. Here, three series of homologous materials were studied to rationalize this observation. Investigating thin films of ordered molecular materials relies to a large extent on advanced experimental methods and large research infrastructure. A statement that in particular is true for thin films with nanoscopic order, where X-ray reflectometry, X-ray and neutron scattering, electron microscopy and atom force microscopy (AFM) has to be used to elucidate film morphology and the underlying molecular structure. Here, the thin films were investigated using AFM, optical microscopy and polarized absorption spectroscopy. It was shown that by using numerical method for treating the polarized absorption spectroscopy data, the molecular structure can be elucidated. Further, it was shown that polarized optical spectroscopy is a general tool that allows determination of the molecular order in thin films. Finally, it was found that full control of thermal history and rigorous control of the ionic self-assembly conditions are required to reproducibly make these materials of high nanoscopic order. Similarly, the conditions for spin-casting are shown to be determining for the overall thin film morphology, while molecular order is maintained.

  20. Self-assembled nanogaps for molecular electronics.

    Science.gov (United States)

    Tang, Qingxin; Tong, Yanhong; Jain, Titoo; Hassenkam, Tue; Wan, Qing; Moth-Poulsen, Kasper; Bjørnholm, Thomas

    2009-06-17

    A nanogap for molecular devices was realized using solution-based self-assembly. Gold nanorods were assembled to gold nanoparticle-coated conducting SnO2:Sb nanowires via thiol end-capped oligo(phenylenevinylene)s (OPVs). The molecular gap was easily created by the rigid molecule itself during self-assembly and the gap length was determined by the molecule length. The gold nanorods and gold nanoparticles, respectively covalently bonded at the two ends of the molecule, had very small dimensions, e.g. a width of approximately 20 nm, and hence were expected to minimize the screening effect. The ultra-long conducting SnO2:Sb nanowires provided the bridge to connect one of the electrodes of the molecular device (gold nanoparticle) to the external circuit. The tip of the atomic force microscope (AFM) was contacted onto the other electrode (gold nanorod) for the electrical measurement of the OPV device. The conductance measurement confirmed that the self-assembly of the molecules and the subsequent self-assembly of the gold nanorods was a feasible method for the fabrication of the nanogap of the molecular devices.

  1. Self-assembled nanogaps for molecular electronics

    International Nuclear Information System (INIS)

    Tang Qingxin; Tong Yanhong; Jain, Titoo; Hassenkam, Tue; Moth-Poulsen, Kasper; Bjoernholm, Thomas; Wan Qing

    2009-01-01

    A nanogap for molecular devices was realized using solution-based self-assembly. Gold nanorods were assembled to gold nanoparticle-coated conducting SnO 2 :Sb nanowires via thiol end-capped oligo(phenylenevinylene)s (OPVs). The molecular gap was easily created by the rigid molecule itself during self-assembly and the gap length was determined by the molecule length. The gold nanorods and gold nanoparticles, respectively covalently bonded at the two ends of the molecule, had very small dimensions, e.g. a width of ∼20 nm, and hence were expected to minimize the screening effect. The ultra-long conducting SnO 2 :Sb nanowires provided the bridge to connect one of the electrodes of the molecular device (gold nanoparticle) to the external circuit. The tip of the atomic force microscope (AFM) was contacted onto the other electrode (gold nanorod) for the electrical measurement of the OPV device. The conductance measurement confirmed that the self-assembly of the molecules and the subsequent self-assembly of the gold nanorods was a feasible method for the fabrication of the nanogap of the molecular devices.

  2. Generation of Transparent Oxygen Evolution Electrode Consisting of Regularly Ordered Nanoparticles from Self-Assembly Cobalt Phthalocyanine as a Template

    KAUST Repository

    Ziani, Ahmed

    2016-11-04

    The decoration of (photo)electrodes for efficient photoresponse requires the use of electrocatalysts with good dispersion and high transparency for efficient light absorption by the photoelectrode. As a result of the ease of thermal evaporation and particulate self-assembly growth, the phthalocyanine molecular species can be uniformly deposited layer-by-layer on the surface of substrates. This structure can be used as a template to achieve a tunable amount of catalysts, high dispersion of the nanoparticles, and transparency of the catalysts. In this study, we present a systematic study of the structural and optical properties, surface morphologies, and electrochemical oxygen evolution reaction (OER) performance of cobalt oxide prepared from a phthalocyanine metal precursor. Cobalt phthalocyanine (CoPc) films with different thicknesses were deposited by thermal evaporation on different substrates. The films were annealed at 400 °C in air to form a material with the cobalt oxide phase. The final Co oxide catalysts exhibit high transparency after thermal treatment. Their OER measurements demonstrate well expected mass activity for OER. Thermally evaporated and treated transition metal oxide nanoparticles are attractive for the functionalization of (photo)anodes for water oxidation.

  3. A 3D Optical Metamaterial Made by Self-Assembly

    KAUST Repository

    Vignolini, Silvia

    2011-10-24

    Optical metamaterials have unusual optical characteristics that arise from their periodic nanostructure. Their manufacture requires the assembly of 3D architectures with structure control on the 10-nm length scale. Such a 3D optical metamaterial, based on the replication of a self-assembled block copolymer into gold, is demonstrated. The resulting gold replica has a feature size that is two orders of magnitude smaller than the wavelength of visible light. Its optical signature reveals an archetypal Pendry wire metamaterial with linear and circular dichroism. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A 3D Optical Metamaterial Made by Self-Assembly

    KAUST Repository

    Vignolini, Silvia; Yufa, Nataliya A.; Cunha, Pedro S.; Guldin, Stefan; Rushkin, Ilia; Stefik, Morgan; Hur, Kahyun; Wiesner, Ulrich; Baumberg, Jeremy J.; Steiner, Ullrich

    2011-01-01

    Optical metamaterials have unusual optical characteristics that arise from their periodic nanostructure. Their manufacture requires the assembly of 3D architectures with structure control on the 10-nm length scale. Such a 3D optical metamaterial, based on the replication of a self-assembled block copolymer into gold, is demonstrated. The resulting gold replica has a feature size that is two orders of magnitude smaller than the wavelength of visible light. Its optical signature reveals an archetypal Pendry wire metamaterial with linear and circular dichroism. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Gold Mining by Alkanethiol Radicals: Vacancies and Pits in the Self-Assembled Monolayers of 1-Propanethiol and 1-Butanethiol on Au(111)

    DEFF Research Database (Denmark)

    Wang, Yun; Chi, Qijin; Hush, Noel S.

    2011-01-01

    Scanning-tunneling microscopy (STM) under electrochemical control (in situ STM) in aqueous solution, combined with a priori density functional theory (DFT) image simulations at room temperature, reveals the atomic nature of the interface between Au(111) and self-assembled monolayers (SAMs) of 1-p...

  6. Recognition of anti-mycolic acid antibody at self-assembled mycolic acid antigens on a gold electrode: a potential impedimetric immunosensing platform for active tuberculosis

    CSIR Research Space (South Africa)

    Mathebula, NS

    2009-01-01

    Full Text Available Electrochemical impedimetric recognition by anti-mycolic acid antibodies, present in tuberculosis (TB)-positive human serum co-infected with human immunodeficiency virus (HIV), of mycolic acids (MA) integrated into a self-assembled monolayer of N-(2...

  7. Self-assembled nanostructures

    CERN Document Server

    Zhang, Jin Z; Liu, Jun; Chen, Shaowei; Liu, Gang-yu

    2003-01-01

    Nanostructures refer to materials that have relevant dimensions on the nanometer length scales and reside in the mesoscopic regime between isolated atoms and molecules in bulk matter. These materials have unique physical properties that are distinctly different from bulk materials. Self-Assembled Nanostructures provides systematic coverage of basic nanomaterials science including materials assembly and synthesis, characterization, and application. Suitable for both beginners and experts, it balances the chemistry aspects of nanomaterials with physical principles. It also highlights nanomaterial-based architectures including assembled or self-assembled systems. Filled with in-depth discussion of important applications of nano-architectures as well as potential applications ranging from physical to chemical and biological systems, Self-Assembled Nanostructures is the essential reference or text for scientists involved with nanostructures.

  8. Facile preparation of surface-exchangeable core@shell iron oxide@gold nanoparticles for magnetic solid-phase extraction: Use of gold shell as the intermediate platform for versatile adsorbents with varying self-assembled monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yaping [Beijing National Laboratory of Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Graduate School, University of Chinese Academy of Sciences, Beijing 100049 (China); Qi, Li, E-mail: qili@iccas.ac.cn [Beijing National Laboratory of Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Shen, Ying [Beijing National Laboratory of Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Graduate School, University of Chinese Academy of Sciences, Beijing 100049 (China); Ma, Huimin [Beijing National Laboratory of Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-02-06

    Graphical abstract: -- Highlights: •The core@shell Fe{sub 3}O{sub 4}@Au nanoparticles functionalized with SAMs were successfully constructed. •The SAMs could be transformed from one kind to another via thiol exchange process. •The developed nanomaterials could be applied in mode switching MSPE. -- Abstract: The core@shell Fe{sub 3}O{sub 4}@Au nanoparticles (NPs) functionalized with exchangeable self-assembled monolayers have been developed for mode switching magnetic solid-phase extraction (MSPE) using high performance liquid chromatography with ultraviolet detection. The adsorbents were synthesized by chemical coprecipitation to prepare magnetic cores followed by sonolysis to produce gold shells. Functionalization of Fe{sub 3}O{sub 4}@Au NPs surface was realized through self-assembly of commercially available low molecular weight thiol-containing ligands using gold shells as intermediate platform and the dynamic nature of Au–S chemistry allowed substituent of one thiol-containing ligand with another simply by thiol exchange process. The resultant adsorbents were characterized by transmission electronic microscopy, Fourier transform infrared spectroscopy, elemental analysis, contact angle measurement, and vibrating sample magnetometry. To evaluate the versatile performance of the developed MSPE adsorbents, they were applied for normal-phase SPE followed by reversed-phase SPE. A few kinds of diphenols and polycyclic aromatic hydrocarbons (PAHs) were employed as model analytes, respectively. The predominant parameters affecting extraction efficiency were investigated and optimized. Under the optimum experimental conditions, wide dynamic linear range (6.25–1600 μg L{sup −1} for diphenols and 1.56–100 μg L{sup −1} for PAHs) with good linearity (r{sup 2} ≥ 0.989) and low detection limits (0.34–16.67 μg L{sup −1} for diphenols and 0.26–0.52 μg L{sup −1} for PAHs) were achieved. The advantage of the developed method is that the Fe{sub 3}O

  9. The effect of Au amount on size uniformity of self-assembled Au nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S-H; Wang, D-C; Chen, G-Y; Chen, K-Y [Graduate School of Engineering Science and Technology, National Yunlin University of Science and Technology, Taiwan (China)

    2008-03-15

    The self-assembled fabrication of nanostructure, a dreaming approach in the area of fabrication engineering, is the ultimate goal of this research. A finding was proved through previous research that the size of the self-assembled gold nanoparticles could be controlled with the mole ratio between AuCl{sub 4}{sup -} and thiol. In this study, the moles of Au were fixed, only the moles of thiol were adjusted. Five different mole ratios of Au/S with their effect on size uniformity were investigated. The mole ratios were 1:1/16, 1:1/8, 1:1, 1:8, 1:16, respectively. The size distributions of the gold nanoparticles were analyzed by Mac-View analysis software. HR-TEM was used to derive images of self-assembled gold nanoparticles. The result reached was also the higher the mole ratio between AuCl{sub 4}{sup -} and thiol the bigger the self-assembled gold nanoparticles. Under the condition of moles of Au fixed, the most homogeneous nanoparticles in size distribution derived with the mole ratio of 1:1/8 between AuCl{sub 4}{sup -} and thiol. The obtained nanoparticles could be used, for example, in uniform surface nanofabrication, leading to the fabrication of ordered array of quantum dots.

  10. Macroscopic magnetic Self assembly

    NARCIS (Netherlands)

    Löthman, Per Arvid

    2018-01-01

    Exploring the macroscopic scale's similarities to the microscale is part and parcel of this thesis as reflected in the research question: what can we learn about the microscopic scale by studying the macroscale? Investigations of the environment in which the self-assembly takes place, and the

  11. A facile one-pot self-assembly approach to incorporate SnOx nanoparticles in ordered mesoporous carbon with soft templating for fuel cells

    Science.gov (United States)

    Huang, Yingqiang; Zhai, Zhicheng; Luo, Zhigang; Liu, Yingju; Liang, Zhurong; Fang, Yueping

    2014-04-01

    Unique SnOx (x = 1,2)/ordered mesoporous carbon nanocomposites (denoted as SnOx/OMC) are firstly synthesized through a ‘one-pot’ synthesis together with the soft template self-assembly approach. The obtained SnOx/OMC nanocomposites with various SnOx contents exhibit uniform pore sizes between 3.9 and 4.2 nm, high specific surface areas between 497 and 595 m2 g-1, and high pore volumes between 0.39 and 0.48 cm3 g-1. With loading of Pt, Pt-SnOx/OMC with relatively low SnOx content exhibits superior electrocatalytic performance, long-term durability, and resistance to CO poisoning for methanol oxidation, as compared to Pt/OMC, PtRu/C and Pt-SnOx/C, which may be attributed not only to the synergetic effect of embedded SnOx, but also to the highly ordered mesostructure with high specific surface areas and large pore volumes affording plenty of surface area for support of Pt nanoparticles. This work supplies an efficient way to synthesize novel ordered mesoporous carbon self-supported metallic oxide as catalyst support and its further potential application to reduce the cost of catalysts in direct methanol fuel cells.

  12. A facile one-pot self-assembly approach to incorporate SnOx nanoparticles in ordered mesoporous carbon with soft templating for fuel cells

    International Nuclear Information System (INIS)

    Huang, Yingqiang; Zhai, Zhicheng; Luo, Zhigang; Liu, Yingju; Liang, Zhurong; Fang, Yueping

    2014-01-01

    Unique SnO x  (x = 1,2)/ordered mesoporous carbon nanocomposites (denoted as SnO x /OMC) are firstly synthesized through a ‘one-pot’ synthesis together with the soft template self-assembly approach. The obtained SnO x /OMC nanocomposites with various SnO x contents exhibit uniform pore sizes between 3.9 and 4.2 nm, high specific surface areas between 497 and 595 m 2  g −1 , and high pore volumes between 0.39 and 0.48 cm 3  g −1 . With loading of Pt, Pt–SnO x /OMC with relatively low SnO x content exhibits superior electrocatalytic performance, long-term durability, and resistance to CO poisoning for methanol oxidation, as compared to Pt/OMC, PtRu/C and Pt–SnO x /C, which may be attributed not only to the synergetic effect of embedded SnO x , but also to the highly ordered mesostructure with high specific surface areas and large pore volumes affording plenty of surface area for support of Pt nanoparticles. This work supplies an efficient way to synthesize novel ordered mesoporous carbon self-supported metallic oxide as catalyst support and its further potential application to reduce the cost of catalysts in direct methanol fuel cells. (paper)

  13. Ordered and disordered evolution of the pore mesostructure in hybrid silica anti-reflective films obtained by one-pot self-assembly method

    Energy Technology Data Exchange (ETDEWEB)

    Ghazzal, Mohamed N., E-mail: g_nawfel@yahoo.fr; Debecker, Damien P.; Gaigneaux, Eric M.

    2016-07-29

    Hybrid mesoporous silica films were prepared in acid-catalysed medium using a one-pot self-assembly method. A gradual content of methyl groups was introduced into the inorganic framework by co-condensation of tetraethyl orthosilicate and methyltriethoxysilane. To better understand how the ordered and disordered transition occurs in mesoporous hybrid organosilica sytem as function of the MTES molar ratio in the starting solution, textural, chemical and optical properties of the films were studied by transmission electronic microscopy (TEM), grazing-incident small angle X-ray scattering (GISAXS), transmission Fourier transformed infrared (FTIR) and UV–visible spectroscopy. Increasing the loading of the incorporated organic groups (up to 40% in the starting solution) led simultaneously to a disorganization of the pore mesostructure and a reduction in the pore diameter. Concomitantly, a disordered domain of the silica rings in the walls was observed, which created bond strains in the silica wall contributing also to the disorganization of the pore mesostructure. Furthermore, an optimal MTES content was identified in order to obtain antireflection coatings, exhibiting low reflection in the visible range. - Highlights: • Mesoporous hybrid silica films where prepared by one-pot co-condensation of MTES and TEOS. • Ordered and disordered mesostructures were studied as function as variable MTES molar ratio. • A rearrangement of the silica cyclic species occurred as the molar ratio of MTES increases. • Transmittance of the silica coatings is affected by the MTES molar ratio.

  14. Dynamic Self-Assembly of Gold/Polymer Nanocomposites: pH-Encoded Switching between 1D Nanowires and 3D Nanosponges.

    Science.gov (United States)

    Zhang, Qi; Xu, Tian-Yi; Zhao, Cai-Xin; Jin, Wei-Hang; Wang, Qian; Qu, Da-Hui

    2017-10-05

    The design of tunable dynamic self-assembly of nanoparticles with switchable assembled dimensions and morphologies is a challenging goal whose realization is vital for the evolution of smart nanomaterials. Herein, we report on chitosan polymer as an effective supramolecular "glue" for aldehyde-modified Au nanoparticles to reversibly modulate the states of self-assembled nanocomposites. By simultaneous integration of dynamic covalent Schiff base interactions and noncovalent hydrogen bonds, the chitosan/Au nanocomposites could reversibly transform their assembled morphologies from one-dimensional nanowires to three-dimensional nanosponges in response to the variation of pH value. Moreover, the obtained nanosponges could be used as an efficient pH-controlled cargo release system. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Controlled tuning of the radiative lifetime in InAs self-assembled quantum dots through vertical ordering

    Science.gov (United States)

    Colocci, M.; Vinattieri, A.; Lippi, L.; Bogani, F.; Rosa-Clot, M.; Taddei, S.; Bosacchi, A.; Franchi, S.; Frigeri, P.

    1999-01-01

    Multilayer structures of InAs quantum dots have been studied by means of photoluminescence techniques. A strong increase of the radiative lifetime with increasing number of stacked dot layers has been observed at low temperatures. Moreover, a strong temperature dependence of the radiative lifetime, which is not present in the single layer samples, has been found in the multistacked structures. The observed effects are nicely explained as a consequence of the electronic coupling between electrons and holes induced by vertical ordering.

  16. Effects of self-assembled monolayer structural order, surface homogeneity and surface energy on pentacene morphology and thin film transistor device performance.

    Science.gov (United States)

    Hutchins, Daniel Orrin; Weidner, Tobias; Baio, Joe; Polishak, Brent; Acton, Orb; Cernetic, Nathan; Ma, Hong; Jen, Alex K-Y

    2013-01-04

    A systematic study of six phosphonic acid (PA) self-assembled monolayers (SAMs) with tailored molecular structures is performed to evaluate their effectiveness as dielectric modifying layers in organic field-effect transistors (OFETs) and determine the relationship between SAM structural order, surface homogeneity, and surface energy in dictating device performance. SAM structures and surface properties are examined by near edge X-ray absorption fine structure (NEXAFS) spectroscopy, contact angle goniometry, and atomic force microscopy (AFM). Top-contact pentacene OFET devices are fabricated on SAM modified Si with a thermally grown oxide layer as a dielectric. For less ordered methyl- and phenyl-terminated alkyl ~(CH 2 ) 12 PA SAMs of varying surface energies, pentacene OFETs show high charge carrier mobilities up to 4.1 cm 2 V -1 s -1 . It is hypothesized that for these SAMs, mitigation of molecular scale roughness and subsequent control of surface homogeneity allow for large pentacene grain growth leading to high performance pentacene OFET devices. PA SAMs that contain bulky terminal groups or are highly crystalline in nature do not allow for a homogenous surface at a molecular level and result in charge carrier mobilities of 1.3 cm 2 V -1 s -1 or less. For all molecules used in this study, no causal relationship between SAM surface energy and charge carrier mobility in pentacene FET devices is observed.

  17. Directed Self-Assembly of Nanodispersions

    Energy Technology Data Exchange (ETDEWEB)

    Furst, Eric M [University of Delaware

    2013-11-15

    Directed self-assembly promises to be the technologically and economically optimal approach to industrial-scale nanotechnology, and will enable the realization of inexpensive, reproducible and active nanostructured materials with tailored photonic, transport and mechanical properties. These new nanomaterials will play a critical role in meeting the 21st century grand challenges of the US, including energy diversity and sustainability, national security and economic competitiveness. The goal of this work was to develop and fundamentally validate methods of directed selfassembly of nanomaterials and nanodispersion processing. The specific aims were: 1. Nanocolloid self-assembly and interactions in AC electric fields. In an effort to reduce the particle sizes used in AC electric field self-assembly to lengthscales, we propose detailed characterizations of field-driven structures and studies of the fundamental underlying particle interactions. We will utilize microscopy and light scattering to assess order-disorder transitions and self-assembled structures under a variety of field and physicochemical conditions. Optical trapping will be used to measure particle interactions. These experiments will be synergetic with calculations of the particle polarizability, enabling us to both validate interactions and predict the order-disorder transition for nanocolloids. 2. Assembly of anisotropic nanocolloids. Particle shape has profound effects on structure and flow behavior of dispersions, and greatly complicates their processing and self-assembly. The methods developed to study the self-assembled structures and underlying particle interactions for dispersions of isotropic nanocolloids will be extended to systems composed of anisotropic particles. This report reviews several key advances that have been made during this project, including, (1) advances in the measurement of particle polarization mechanisms underlying field-directed self-assembly, and (2) progress in the

  18. Solid-phase submonomer synthesis of peptoid polymers and their self-assembly into highly-ordered nanosheets.

    Science.gov (United States)

    Tran, Helen; Gael, Sarah L; Connolly, Michael D; Zuckermann, Ronald N

    2011-11-02

    Peptoids are a novel class of biomimetic, non-natural, sequence-specific heteropolymers that resist proteolysis, exhibit potent biological activity, and fold into higher order nanostructures. Structurally similar to peptides, peptoids are poly N-substituted glycines, where the side chains are attached to the nitrogen rather than the alpha-carbon. Their ease of synthesis and structural diversity allows testing of basic design principles to drive de novo design and engineering of new biologically-active and nanostructured materials. Here, a simple manual peptoid synthesis protocol is presented that allows the synthesis of long chain polypeptoids (up to 50mers) in excellent yields. Only basic equipment, simple techniques (e.g. liquid transfer, filtration), and commercially available reagents are required, making peptoids an accessible addition to many researchers' toolkits. The peptoid backbone is grown one monomer at a time via the submonomer method which consists of a two-step monomer addition cycle: acylation and displacement. First, bromoacetic acid activated in situ with N,N'-diisopropylcarbodiimide acylates a resin-bound secondary amine. Second, nucleophilic displacement of the bromide by a primary amine follows to introduce the side chain. The two-step cycle is iterated until the desired chain length is reached. The coupling efficiency of this two-step cycle routinely exceeds 98% and enables the synthesis of peptoids as long as 50 residues. Highly tunable, precise and chemically diverse sequences are achievable with the submonomer method as hundreds of readily available primary amines can be directly incorporated. Peptoids are emerging as a versatile biomimetic material for nanobioscience research because of their synthetic flexibility, robustness, and ordering at the atomic level. The folding of a single-chain, amphiphilic, information-rich polypeptoid into a highly-ordered nanosheet was recently demonstrated. This peptoid is a 36-mer that consists of only

  19. Bactericidal activity of self-assembled palmitic and stearic fatty acid crystals on highly ordered pyrolytic graphite.

    Science.gov (United States)

    Ivanova, Elena P; Nguyen, Song Ha; Guo, Yachong; Baulin, Vladimir A; Webb, Hayden K; Truong, Vi Khanh; Wandiyanto, Jason V; Garvey, Christopher J; Mahon, Peter J; Mainwaring, David E; Crawford, Russell J

    2017-09-01

    The wings of insects such as cicadas and dragonflies have been found to possess nanostructure arrays that are assembled from fatty acids. These arrays can physically interact with the bacterial cell membranes, leading to the death of the cell. Such mechanobactericidal surfaces are of significant interest, as they can kill bacteria without the need for antibacterial chemicals. Here, we report on the bactericidal effect of two of the main lipid components of the insect wing epicuticle, palmitic (C16) and stearic (C18) fatty acids. Films of these fatty acids were re-crystallised on the surface of highly ordered pyrolytic graphite. It appeared that the presence of two additional CH 2 groups in the alkyl chain resulted in the formation of different surface structures. Scanning electron microscopy and atomic force microscopy showed that the palmitic acid microcrystallites were more asymmetric than those of the stearic acid, where the palmitic acid microcrystallites were observed to be an angular abutment in the scanning electron micrographs. The principal differences between the two types of long-chain saturated fatty acid crystallites were the larger density of peaks in the upper contact plane of the palmitic acid crystallites, as well as their greater proportion of asymmetrical shapes, in comparison to that of the stearic acid film. These two parameters might contribute to higher bactericidal activity on surfaces derived from palmitic acid. Both the palmitic and stearic acid crystallite surfaces displayed activity against Gram-negative, rod-shaped Pseudomonas aeruginosa and Gram-positive, spherical Staphylococcus aureus cells. These microcrystallite interfaces might be a useful tool in the fabrication of effective bactericidal nanocoatings. Nanostructured cicada and dragonfly wing surfaces have been discovered to be able physically kill bacterial cells. Here, we report on the successful fabrication of bactericidal three-dimensional structures of two main lipid

  20. Prediction of the percolation threshold and electrical conductivity of self-assembled antimony-doped tin oxide nanoparticles into ordered structures in PMMA/ATO nanocomposites.

    Science.gov (United States)

    Jin, Youngho; Gerhardt, Rosario A

    2014-12-24

    Electrical percolation in nanocomposites consisting of poly(methyl methacrylate) (PMMA) and antimony tin oxide (ATO) nanoparticles was investigated experimentally using monosize and polydisperse polymer particles. The nanocomposites were fabricated by compression molding at 170 °C. The matrix PMMA was transformed into space filling polyhedra while the ATO nanoparticles distributed along the sharp edges of the matrix, forming a 3D interconnected network. The measured electrical resistivity showed that percolation was achieved in these materials at a very low ATO content of 0.99 wt % ATO when monosize PMMA was used, whereas 1.48 wt % ATO was needed to achieve percolation when the PMMA was polydispersed. A parametric finite element approach was chosen to model this unique microstructure-driven self-assembling percolation behavior. COMSOL Multiphysics was used to solve the effects of phase segregation between the matrix and the filler using a 2D simplified model in the frequency domain of the AC/DC module. It was found that the percolation threshold (pc) is affected by the size ratio between the matrix and the filler in a systematic way. Furthermore, simulations indicate that small deviations from perfect interconnection result mostly in changes in the electrical resistivity while the minimum DC resistivity achievable in any given composite is governed by the electrical conductivity of the filler, which must be accurately known in order to obtain an accurate prediction. The model is quite general and is able to predict percolation behavior in a number of other similarly processed segregated network nanocomposites.

  1. Photoinduced electron transfer through peptide-based self-assembled monolayers chemisorbed on gold electrodes: directing the flow-in and flow-out of electrons through peptide helices.

    Science.gov (United States)

    Venanzi, Mariano; Gatto, Emanuela; Caruso, Mario; Porchetta, Alessandro; Formaggio, Fernando; Toniolo, Claudio

    2014-08-21

    Photoinduced electron transfer (PET) experiments have been carried out on peptide self-assembled monolayers (SAM) chemisorbed on a gold substrate. The oligopeptide building block was exclusively formed by C(α)-tetrasubstituted α-aminoisobutyric residues to attain a helical conformation despite the shortness of the peptide chain. Furthermore, it was functionalized at the C-terminus by a pyrene choromophore to enhance the UV photon capture cross-section of the compound and by a lipoic group at the N-terminus for linking to gold substrates. Electron transfer across the peptide SAM has been studied by photocurrent generation experiments in an electrochemical cell employing a gold substrate modified by chemisorption of a peptide SAM as a working electrode and by steady-state and time-resolved fluorescence experiments in solution and on a gold-coated glass. The results show that the electronic flow through the peptide bridge is strongly asymmetric; i.e., PET from the C-terminus to gold is highly favored with respect to PET in the opposite direction. This effect arises from the polarity of the Au-S linkage (Au(δ+)-S(δ-), junction effect) and from the electrostatic field generated by the peptide helix.

  2. Directed self-assembly of nanogold using a chemically modified nanopatterned surface

    Science.gov (United States)

    Nidetz, Robert; Kim, Jinsang

    2012-02-01

    Electron-beam lithography (EBL) was used to define an aminosilane nanopatterned surface in order to electrostatically self-assemble gold nanoparticles (Au NPs). The chemically modified nanopatterned surfaces were immersed into a Au NP solution to allow the Au NPs to self-assemble. Equilibrium self-assembly was achieved in only 20 min. The number of Au NPs that self-assembled on an aminosilane dot was controlled by manipulating the diameters of both the Au NPs and the dots. Adding salt to the Au NP solution enabled the Au NPs to self-assemble in greater numbers on the same sized dot. However, the preparation of the Au NP solution containing salt was sensitive to spikes in the salt concentration. These spikes led to aggregation of the Au NPs and non-specific deposition of Au NPs on the substrate. The Au NP patterned surfaces were immersed in a sodium hydroxide solution in order to lift-off the patterned Au NPs, but no lift-off was observed without adequate physical agitation. The van der Waals forces are too strong to allow for lift-off despite the absence of electrostatic forces.

  3. Directed self-assembly of nanogold using a chemically modified nanopatterned surface

    International Nuclear Information System (INIS)

    Nidetz, Robert; Kim, Jinsang

    2012-01-01

    Electron-beam lithography (EBL) was used to define an aminosilane nanopatterned surface in order to electrostatically self-assemble gold nanoparticles (Au NPs). The chemically modified nanopatterned surfaces were immersed into a Au NP solution to allow the Au NPs to self-assemble. Equilibrium self-assembly was achieved in only 20 min. The number of Au NPs that self-assembled on an aminosilane dot was controlled by manipulating the diameters of both the Au NPs and the dots. Adding salt to the Au NP solution enabled the Au NPs to self-assemble in greater numbers on the same sized dot. However, the preparation of the Au NP solution containing salt was sensitive to spikes in the salt concentration. These spikes led to aggregation of the Au NPs and non-specific deposition of Au NPs on the substrate. The Au NP patterned surfaces were immersed in a sodium hydroxide solution in order to lift-off the patterned Au NPs, but no lift-off was observed without adequate physical agitation. The van der Waals forces are too strong to allow for lift-off despite the absence of electrostatic forces. (paper)

  4. Formation and electrochemical investigation of ordered cobalt coordinated peptide monolayers on gold substrates

    International Nuclear Information System (INIS)

    Wang Xinxin; Nagata, Kenji; Higuchi, Masahiro

    2012-01-01

    The monolayers composed of cobalt coordinated peptides were prepared on gold substrates by two different approaches. One was the self-assembly method, which was used to prepare a peptide monolayer on the gold substrate via the spontaneous attachment of peptides owing to the interaction between gold and sulfur at the N-terminal of the peptide. The other one was the stepwise polymerization method that was utilized to fabricate the unidirectionally arranged peptide monolayer by the stepwise condensation of amino acids from the initiator fixed on the gold substrate. Leu 2 Ala(4-Pyri)Leu 6 Ala(4-Pyri)Leu 6 sequence was chosen as the cobalt coordinated peptide. The 4-pyridyl alanines, Ala(4-Pyri)s, were introduced as ligands for cobalt to the leucine-rich sequential peptide. The complexation between cobalt and pyridyl groups of the peptide induced the formation of a stable α-helical bundle, which oriented perpendicularly to the substrate surface. In the case of the monolayer fabricated by the stepwise polymerization method, the direction of the peptide macro-dipole moment aligned unidirectionally, and the cobalt complexes were fixed in the monolayer to form the ordered arrangement. On the other hand, the peptides prepared by the self-assembly method formed the mixture of parallel and antiparallel packing owing to the dipole-dipole interaction. The spatial location of the cobalt complexes in the monolayer prepared by the self-assembly method was distorted, compared with that in the monolayer fabricated by the stepwise polymerization method. The vectorial electron flow through the peptide monolayer was achieved by the regular alignment of the peptide macro-dipole moment and the cobalt complexes in the monolayer fabricated by the stepwise polymerization method. - Highlights: ► We fabricated ordered Co coordinated peptide monolayers on the gold substrates. ► The Co complexes in peptide monolayer formed an ordered arrangement of the peptide. ► The peptide macro

  5. Self-assembled organic monolayers on gold nanoparticles: A study by sum-frequency generation combined with UV-vis spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Humbert, C. [LURE, CNRS-UMR 130, Centre Universitaire Paris-Sud, Ba-hat t. 209D, B.P. 34, 91898 Orsay Cedex (France) and Laboratoire de Spectroscopie Moleculaire de Surface, University of Namur, 61 Rue de Bruxelles, B-5000 Namur (Belgium)]. E-mail: christophe.humbert@fundp.ac.be; Busson, B. [LURE, CNRS-UMR 130, Centre Universitaire Paris-Sud, Ba-hat t. 209D, B.P. 34, 91898 Orsay Cedex (France); Abid, J.-P. [Ecole Polytechnique Federale de Lausanne, Laboratoire d' Electrochimie Physique et Analytique, CH-1015 Lausanne (Switzerland); Six, C. [LURE, CNRS-UMR 130, Centre Universitaire Paris-Sud, Ba-hat t. 209D, B.P. 34, 91898 Orsay Cedex (France); Girault, H.H. [Ecole Polytechnique Federale de Lausanne, Laboratoire d' Electrochimie Physique et Analytique, CH-1015 Lausanne (Switzerland); Tadjeddine, A. [LURE, CNRS-UMR 130, Centre Universitaire Paris-Sud, Ba-hat t. 209D, B.P. 34, 91898 Orsay Cedex (France)

    2005-05-20

    We use sum-frequency generation spectroscopy (SFG) in the infrared 2800-3000 cm{sup -1} spectral range and UV-vis spectroscopy (transmission) in the 450-650 nm spectral range in order to characterize vibrational and electronic properties of various interfaces composed of organic monolayers adsorbed on gold nanoparticles (AuNPs) with 19 nm average diameter. SFG signal is observed for AuNPs films deposited on glass substrates using the following silane intermediates: 3-(aminopropyl) triethoxysilane and 3-(mercaptopropyl) trimethoxysilane. The density of AuNPs and their aggregates are measured with a scanning electron microscope. For the samples showing a strong well-defined surface plasmon resonance (SPR), we also observe an enhancement of their non-linear optical properties. Furthermore, the SFG measurements show that 1-dodecanethiol films are rather well ordered on specific AuNPs substrates. In this way, the presence of the SFG signal, which comes from both the bulk electronic s-d interband transition and the vibrational states of the adsorbed molecules, depends on a SPR process. This phenomenon is evidenced on the AuNPs by the incident visible beam located at 532 nm, i.e. near the SPR energy maximum of these interfaces. These results open the door to experiments involving macromolecular and biological materials networks deposited on ultrathin metal electrodes in a controlled electrochemical environment.

  6. Self-assembled organic monolayers on gold nanoparticles: A study by sum-frequency generation combined with UV-vis spectroscopy

    International Nuclear Information System (INIS)

    Humbert, C.; Busson, B.; Abid, J.-P.; Six, C.; Girault, H.H.; Tadjeddine, A.

    2005-01-01

    We use sum-frequency generation spectroscopy (SFG) in the infrared 2800-3000 cm -1 spectral range and UV-vis spectroscopy (transmission) in the 450-650 nm spectral range in order to characterize vibrational and electronic properties of various interfaces composed of organic monolayers adsorbed on gold nanoparticles (AuNPs) with 19 nm average diameter. SFG signal is observed for AuNPs films deposited on glass substrates using the following silane intermediates: 3-(aminopropyl) triethoxysilane and 3-(mercaptopropyl) trimethoxysilane. The density of AuNPs and their aggregates are measured with a scanning electron microscope. For the samples showing a strong well-defined surface plasmon resonance (SPR), we also observe an enhancement of their non-linear optical properties. Furthermore, the SFG measurements show that 1-dodecanethiol films are rather well ordered on specific AuNPs substrates. In this way, the presence of the SFG signal, which comes from both the bulk electronic s-d interband transition and the vibrational states of the adsorbed molecules, depends on a SPR process. This phenomenon is evidenced on the AuNPs by the incident visible beam located at 532 nm, i.e. near the SPR energy maximum of these interfaces. These results open the door to experiments involving macromolecular and biological materials networks deposited on ultrathin metal electrodes in a controlled electrochemical environment

  7. Combined atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and quartz crystal microbalance (QCM) studies of glucose oxidase (GOx) immobilised onto self-assembled monolayer on the gold film

    International Nuclear Information System (INIS)

    Losic, D.; Shapter, J.; Gooding, J.; Erokin, P.; Short, K.

    1999-01-01

    In fabrication of biosensors, self-assembled monolayers (SAM) are an attractive method of immobilising enzymes at electrode surface since it allows precise control over the amount and spatial distribution of the immobilized enzyme. The covalent attachment of glucose oxidase (GOx) to a carboxylic terminated SAM chemisorbed onto gold films was achieved via carbodiimide activation of the carboxylic acids to a reactive intermediate susceptible to nucleophilic attack by amines on free lysine chains of the enzyme. Atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and quartz crystal microbalance (QCM) measurements were used for characterisation of GOx modified gold surfaces. Tapping mode AFM studies have revealed that GOx molecules form slightly disordered arrays of pentagonal or hexagonal clusters. Observed features of immobilised GOx are distributed as a submonolayer on the SAM surface which has allowed visualisation of native and unfolded enzyme structure. The presence of the SAM and enzyme on the gold surface was detected by XPS spectroscopy. Spectra show typical peaks for the C 1s, O 1s and N 1s regions. A kinetic study of the adsorption of GOx onto activated SAM using in-situ QCM allowed determination the amount of immobilised GOx on the layer and consequently the optimal immobilisation conditions. Performance parameters of the biosensor such as sensitivity to glucose concentration as a function of enzyme loading were evaluated amperometrically using the redox mediator p-benzoquinone

  8. Self-assembly of self-assembled molecular triangles

    Indian Academy of Sciences (India)

    While the solution state structure of 1 can be best described as a trinuclear complex, in the solidstate well-fashioned intermolecular - and CH- interactions are observed. Thus, in the solid-state further self-assembly of already self-assembled molecular triangle is witnessed. The triangular panels are arranged in a linear ...

  9. Ordered arrays of nanoporous gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2012-09-01

    Full Text Available A combination of a “top-down” approach (substrate-conformal imprint lithography and two “bottom-up” approaches (dewetting and dealloying enables fabrication of perfectly ordered 2-dimensional arrays of nanoporous gold nanoparticles. The dewetting of Au/Ag bilayers on the periodically prepatterned substrates leads to the interdiffusion of Au and Ag and the formation of an array of Au–Ag alloy nanoparticles. The array of alloy nanoparticles is transformed into an array of nanoporous gold nanoparticles by a following dealloying step. Large areas of this new type of material arrangement can be realized with this technique. In addition, this technique allows for the control of particle size, particle spacing, and ligament size (or pore size by varying the period of the structure, total metal layer thickness, and the thickness ratio of the as-deposited bilayers.

  10. Self-assembled two-dimensional gold nanoparticle film for sensitive nontargeted analysis of food additives with surface-enhanced Raman spectroscopy.

    Science.gov (United States)

    Wu, Yiping; Yu, Wenfang; Yang, Benhong; Li, Pan

    2018-05-15

    The use of different food additives and their active metabolites has been found to cause serious problems to human health. Thus, considering the potential effects on human health, developing a sensitive and credible analytical method for different foods is important. Herein, the application of solvent-driven self-assembled Au nanoparticles (Au NPs) for the rapid and sensitive detection of food additives in different commercial products is reported. The assembled substrates are highly sensitive and exhibit excellent uniformity and reproducibility because of uniformly distributed and high-density hot spots. The sensitive analyses of ciprofloxacin (CF), diethylhexyl phthalate (DEHP), tartrazine and azodicarbonamide at the 0.1 ppm level using this surface-enhanced Raman spectroscopy (SERS) substrate are given, and the results show that Au NP arrays can serve as efficient SERS substrates for the detection of food additives. More importantly, SERS spectra of several commercial liquors and sweet drinks are obtained to evaluate the addition of illegal additives. This SERS active platform can be used as an effective strategy in the detection of prohibited additives in food.

  11. Ultrathin self-assembled anionic polymer membranes for superfast size-selective separation

    Science.gov (United States)

    Deng, Chao; Zhang, Qiu Gen; Han, Guang Lu; Gong, Yi; Zhu, Ai Mei; Liu, Qing Lin

    2013-10-01

    Nanoporous membranes with superior separation performance have become more crucial with increasing concerns in functional nanomaterials. Here novel ultrahigh permeable nanoporous membranes have been fabricated on macroporous supports by self-assembly of anionic polymer on copper hydroxide nanostrand templates in organic solution. This facile approach has a great potential for the fabrication of ultrathin anionic polymer membranes as a general method. The as-fabricated self-assembled membranes have a mean pore size of 5-12 nm and an adjustable thickness as low as 85 nm. They allow superfast permeation of water, and exhibit excellent size-selective separation properties and good fouling resistance for negatively-charged solutes during filtration. The 85 nm thick membrane has an ultrahigh water flux (3306 l m-2 h-1 bar-1) that is an order of magnitude larger than commercial membranes, and can highly efficiently separate 5 and 15 nm gold nanoparticles from their mixtures. The newly developed nanoporous membranes have a wide application in separation and purification of biomacromolecules and nanoparticles.Nanoporous membranes with superior separation performance have become more crucial with increasing concerns in functional nanomaterials. Here novel ultrahigh permeable nanoporous membranes have been fabricated on macroporous supports by self-assembly of anionic polymer on copper hydroxide nanostrand templates in organic solution. This facile approach has a great potential for the fabrication of ultrathin anionic polymer membranes as a general method. The as-fabricated self-assembled membranes have a mean pore size of 5-12 nm and an adjustable thickness as low as 85 nm. They allow superfast permeation of water, and exhibit excellent size-selective separation properties and good fouling resistance for negatively-charged solutes during filtration. The 85 nm thick membrane has an ultrahigh water flux (3306 l m-2 h-1 bar-1) that is an order of magnitude larger than

  12. Electrocatalytic oxidation of alcohols on single gold particles in highly ordered SiO2 cavities

    International Nuclear Information System (INIS)

    Li, Na; Zhou, Qun; Tian, Shu; Zhao, Hong; Li, Xiaowei; Adkins, Jason; Gu, Zhuomin; Zhao, Lili; Zheng, Junwei

    2013-01-01

    In the present work, we report a new and simple approach for preparing a highly ordered Au (1 1 1) nanoparticle (NP) array in SiO 2 cavities on indium-doped tin oxide (ITO) electrodes. We fabricated a SiO 2 cavity array on the surface of an ITO electrode using highly ordered self-assembly of polystyrene spheres as a template. Gold NPs were electrodeposited at the bottom of the SiO 2 cavities, and single gold NPs dominated with (1 1 1) facets were generated in each cavity by annealing the electrode at a high temperature. Such (1 1 1) facets were the predominate trait of the single gold particle which exhibited considerable electrocatalytic activity toward oxidation of methanol, ethanol, and glycerol. This has been attributed to the formation of incipient hydrous oxides at unusually low potential on the specific (1 1 1) facet of the gold particles. Moreover, each cavity of the SiO 2 possibly behaves as an independent electrochemical cell in which the methanol molecules are trapped; this produces an environment advantageous to catalyzing electrooxidation. The oxidation of methanol on the electrodes is a mixed control mechanism (both by diffusion and electrode kinetics). This strategy both provided an approach to study electrochemical reactions on a single particle in a microenvironment and may supply a way to construct alcohols sensors

  13. Synthetic Self-Assembled Materials in Biological Environments

    NARCIS (Netherlands)

    Versluis, F.; van Esch, J.H.; Eelkema, R.

    2016-01-01

    Synthetic self-assembly has long been recognized as an excellent approach for the formation of ordered structures on the nanoscale. Although the development of synthetic self-assembling materials has often been inspired by principles observed in nature (e.g., the assembly of lipids, DNA,

  14. Model non-equilibrium molecular dynamics simulations of heat transfer from a hot gold surface to an alkylthiolate self-assembled monolayer.

    Science.gov (United States)

    Zhang, Yue; Barnes, George L; Yan, Tianying; Hase, William L

    2010-05-07

    Model non-equilibrium molecular dynamics (MD) simulations are presented of heat transfer from a hot Au {111} substrate to an alkylthiolate self-assembled monolayer (H-SAM) to assist in obtaining an atomic-level understanding of experiments by Wang et al. (Z. Wang, J. A. Carter, A. Lagutchev, Y. K. Koh, N.-H. Seong, D. G. Cahill, and D. D. Dlott, Science, 2007, 317, 787). Different models are considered to determine how they affect the heat transfer dynamics. They include temperature equilibrated (TE) and temperature gradient (TG) thermostat models for the Au(s) surface, and soft and stiff S/Au(s) models for bonding of the S-atoms to the Au(s) surface. A detailed analysis of the non-equilibrium heat transfer at the heterogeneous interface is presented. There is a short time temperature gradient within the top layers of the Au(s) surface. The S-atoms heat rapidly, much faster than do the C-atoms in the alkylthiolate chains. A high thermal conductivity in the H-SAM, perpendicular to the interface, results in nearly identical temperatures for the CH(2) and CH(3) groups versus time. Thermal-induced disorder is analyzed for the Au(s) substrate, the S/Au(s) interface and the H-SAM. Before heat transfer occurs from the hot Au(s) substrate to the H-SAM, there is disorder at the S/Au(s) interface and within the alkylthiolate chains arising from heat-induced disorder near the surface of hot Au(s). The short-time rapid heating of the S-atoms enhances this disorder. The increasing disorder of H-SAM chains with time results from both disorder at the Au/S interface and heat transfer to the H-SAM chains.

  15. Mechanism underlying bioinertness of self-assembled monolayers of oligo(ethyleneglycol)-terminated alkanethiols on gold: protein adsorption, platelet adhesion, and surface forces.

    Science.gov (United States)

    Hayashi, Tomohiro; Tanaka, Yusaku; Koide, Yuki; Tanaka, Masaru; Hara, Masahiko

    2012-08-07

    The mechanism underlying the bioinertness of the self-assembled monolayers of oligo(ethylene glycol)-terminated alkanethiol (OEG-SAM) was investigated with protein adsorption experiments, platelet adhesion tests, and surface force measurements with an atomic force microscope (AFM). In this work, we performed systematic analysis with SAMs having various terminal groups (-OEG, -OH, -COOH, -NH(2), and -CH(3)). The results of the protein adsorption experiment by the quartz crystal microbalance (QCM) method suggested that having one EG unit and the neutrality of total charges of the terminal groups are essential for protein-resistance. In particular, QCM with energy dissipation analyses indicated that proteins absorb onto the OEG-SAM via a very weak interaction compared with other SAMs. Contrary to the protein resistance, at least three EG units as well as the charge neutrality of the SAM are found to be required for anti-platelet adhesion. When the identical SAMs were formed on both AFM probe and substrate, our force measurements revealed that only the OEG-SAMs possessing more than two EG units showed strong repulsion in the range of 4 to 6 nm. In addition, we found that the SAMs with other terminal groups did not exhibit such repulsion. The repulsion between OEG-SAMs was always observed independent of solution conditions [NaCl concentration (between 0 and 1 M) and pH (between 3 and 11)] and was not observed in solution mixed with ethanol, which disrupts the three-dimensional network of the water molecules. We therefore concluded that the repulsion originated from structured interfacial water molecules. Considering the correlation between the above results, we propose that the layer of the structured interfacial water with a thickness of 2 to 3 nm (half of the range of the repulsion observed in the surface force measurements) plays an important role in deterring proteins and platelets from adsorption or adhesion.

  16. Gold electrode modified with a self-assembled glucose oxidase and 2,6-pyridinedicarboxylic acid as novel glucose bioanode for biofuel cells

    NARCIS (Netherlands)

    Ammam, Malika; Fransaer, Jan

    2014-01-01

    In this study, we have constructed a gold electrode modified with (3-aminopropyl)trimethoxysilane/2,6-pyridinedicarboxylic acid/glucose oxidase (abbreviated as, Au/ATS/PDA/GOx) by sequential chemical adsorption. Au/ATS/PDA/GOx electrode was characterized by Fourier Transform Infrared Spectroscopy

  17. Equilibrium polymerization models of re-entrant self-assembly

    Science.gov (United States)

    Dudowicz, Jacek; Douglas, Jack F.; Freed, Karl F.

    2009-04-01

    As is well known, liquid-liquid phase separation can occur either upon heating or cooling, corresponding to lower and upper critical solution phase boundaries, respectively. Likewise, self-assembly transitions from a monomeric state to an organized polymeric state can proceed either upon increasing or decreasing temperature, and the concentration dependent ordering temperature is correspondingly called the "floor" or "ceiling" temperature. Motivated by the fact that some phase separating systems exhibit closed loop phase boundaries with two critical points, the present paper analyzes self-assembly analogs of re-entrant phase separation, i.e., re-entrant self-assembly. In particular, re-entrant self-assembly transitions are demonstrated to arise in thermally activated equilibrium self-assembling systems, when thermal activation is more favorable than chain propagation, and in equilibrium self-assembly near an adsorbing boundary where strong competition exists between adsorption and self-assembly. Apparently, the competition between interactions or equilibria generally underlies re-entrant behavior in both liquid-liquid phase separation and self-assembly transitions.

  18. Light extraction improvement of InGaN light-emitting diodes with large-area highly ordered ITO nanobowls photonic crystal via self-assembled nanosphere lithography

    Directory of Open Access Journals (Sweden)

    Kui Wu

    2013-09-01

    Full Text Available The InGaN multiple quantum well light-emitting diodes (LEDs with different sizes of indium-tin-oxide (ITO nanobowl photonic crystal (PhC structure has been fabricated using self-assembled monolayer nanosphere lithography. The light output power (LOP of PhC LEDs (at 350 mA has been enhanced by 63.5% and the emission divergence exhibits a 28.8° reduction compared to conventional LEDs without PhC structure. Current-Voltage curves have shown that these PhC structures on ITO layer will not degrade the LED electrical properties. The finite-difference time-domain simulation (FDTD has also been performed for light extraction and emission characteristics, which is consistent with the experimental results.

  19. Amperometric aptasensor for saxitoxin using a gold electrode modified with carbon nanotubes on a self-assembled monolayer, and methylene blue as an electrochemical indicator probe

    International Nuclear Information System (INIS)

    Hou, Li; Jiang, Lingshan; Song, Yunping; Ding, Yunhua; Wu, Xiaoping; Tang, Dianping; Zhang, Jianhua

    2016-01-01

    A label-free electrochemical aptasensor was developed for selective detection of saxitoxin (STX). It is taking advantage of target-induced conformational change of an STX-specific aptamer when it binds to the toxin. A monolayer of octadecanethiol was deposited on a gold electrode, and then coated with a film of multiwalled carbon nanotubes (MWCNTs) to which the aptamer was covalently conjugated. Methylene blue (MB) was electrostatically anchored on carboxylated MWCNTs and used as the electrochemical indicator that produced a strong differential pulse voltammetric signal in the absence of target (STX). If, however, STX binds to its aptamer, this triggers a conformational change of the aptamer and results in the establishment of a barrier for heterogeneous electron transfer. The oxidation peak current of MB, acquired at −0.27 V (vs. Ag/AgCl), linearly decreases with increasing concentrations of STX in the 0.9 and 30 nM concentration range. The detection limit is 0.38 nM. Marine toxins that maybe present along with STX do not interfere even if they have a similar chemical structure. The assay was applied to the determination of STX in mussels samples and was found to be acceptably accurate. Hence, the method introduced here provides a rapid and sensitive tool for monitoring red tide pollution. (author)

  20. Ternary self-assemblies in water

    DEFF Research Database (Denmark)

    Hill, Leila R.; Blackburn, Octavia A.; Jones, Michael W.

    2013-01-01

    The self-assembly of higher order structures in water is realised by using the association of 1,3-biscarboxylates to binuclear meta-xylyl bridged DO3A complexes. Two dinicotinate binding sites are placed at a right-angle in a rhenium complex, which is shown to form a 1 : 2 complex with α,α'-bis(E......The self-assembly of higher order structures in water is realised by using the association of 1,3-biscarboxylates to binuclear meta-xylyl bridged DO3A complexes. Two dinicotinate binding sites are placed at a right-angle in a rhenium complex, which is shown to form a 1 : 2 complex with α...

  1. Short-range order structures of self-assembled Ge quantum dots probed by multiple-scattering extended x-ray absorption fine structure

    International Nuclear Information System (INIS)

    Sun Zhihu; Wei Shiqiang; Kolobov, A.V.; Oyanagi, H.; Brunner, K.

    2005-01-01

    Multiple-scattering extended x-ray absorption fine structure (MS-EXAFS) has been used to investigate the local structures around Ge atoms in self-assembled Ge-Si quantum dots (QDs) grown on Si(001) substrate. The MS effect of Ge QDs is dominated by the scattering path Ge 0 →B 1 →B 2 →Ge 0 (DS2), which contributes a signal destructively interfering with that of the second shell single-scattering path (SS2). MS-EXAFS analysis reveals that the degree of Ge-Si intermixing for Ge-Si QDs strongly depends on the temperature at which the silicon cap layer is overgrown. It is found that the interatomic distances (R Ge-Ge and R Ge-Si ) within the third nearest-neighbor shells in Ge-Si QDs indicate the compressively strained nature of QDs. The present study demonstrates that the MS-EXAFS provides detailed information on the QDs strain and the Ge-Si mixing beyond the nearest neighbors

  2. Onset of self-assembly

    International Nuclear Information System (INIS)

    Chitanvis, S.M.

    1998-01-01

    We have formulated a theory of self-assembly based on the notion of local gauge invariance at the mesoscale. Local gauge invariance at the mesoscale generates the required long-range entropic forces responsible for self-assembly in binary systems. Our theory was applied to study the onset of mesostructure formation above a critical temperature in estane, a diblock copolymer. We used diagrammatic methods to transcend the Gaussian approximation and obtain a correlation length ξ∼(c-c * ) -γ , where c * is the minimum concentration below which self-assembly is impossible, c is the current concentration, and γ was found numerically to be fairly close to 2/3. The renormalized diffusion constant vanishes as the critical concentration is approached, indicating the occurrence of critical slowing down, while the correlation function remains finite at the transition point. copyright 1998 The American Physical Society

  3. Self-assembly of cyclodextrins

    DEFF Research Database (Denmark)

    Fülöp, Z.; Kurkov, S.V.; Nielsen, T.T.

    2012-01-01

    The design of functional cyclodextrin (CD) nanoparticles is a developing area in the field of nanomedicine. CDs can not only help in the formation of drug carriers but also increase the local concentration of drugs at the site of action. CD monomers form aggregates by self-assembly, a tendency...... that increases upon formation of inclusion complexes with lipophilic drugs. However, the stability of such aggregates is not sufficient for parenteral administration. In this review CD polymers and CD containing nanoparticles are categorized, with focus on self-assembled CD nanoparticles. It is described how...

  4. Hybrid nanostructures of well-organized arrays of colloidal quantum dots and a self-assembled monolayer of gold nanoparticles for enhanced fluorescence

    Science.gov (United States)

    Liu, Xiaoying; McBride, Sean P.; Jaeger, Heinrich M.; Nealey, Paul F.

    2016-07-01

    Hybrid nanomaterials comprised of well-organized arrays of colloidal semiconductor quantum dots (QDs) in close proximity to metal nanoparticles (NPs) represent an appealing system for high-performance, spectrum-tunable photon sources with controlled photoluminescence. Experimental realization of such materials requires well-defined QD arrays and precisely controlled QD-metal interspacing. This long-standing challenge is tackled through a strategy that synergistically combines lateral confinement and vertical stacking. Lithographically generated nanoscale patterns with tailored surface chemistry confine the QDs into well-organized arrays with high selectivity through chemical pattern directed assembly, while subsequent coating with a monolayer of close-packed Au NPs introduces the plasmonic component for fluorescence enhancement. The results show uniform fluorescence emission in large-area ordered arrays for the fabricated QD structures and demonstrate five-fold fluorescence amplification for red, yellow, and green QDs in the presence of the Au NP monolayer. Encapsulation of QDs with a silica shell is shown to extend the design space for reliable QD/metal coupling with stronger enhancement of 11 times through the tuning of QD-metal spatial separation. This approach provides new opportunities for designing hybrid nanomaterials with tailored array structures and multiple functionalities for applications such as multiplexed optical coding, color display, and quantum transduction.

  5. Heterogeneous electron transfer kinetics and electrocatalytic behaviour of mixed self-assembled ferrocenes and SWCNT layers

    CSIR Research Space (South Africa)

    Nkosi, D

    2010-01-01

    Full Text Available The electron transfer dynamics and electrocatalytic behaviour of ferrocene-terminated self-assembled monolayers (SAMs), co-adsorbed with single-walled carbon nanotubes (SWCNTs) on a gold electrode, have been interrogated for the first time...

  6. Adsorption Dynamics and Self-Assembled L-cysteine on Au(100)

    DEFF Research Database (Denmark)

    Engelbrekt, Christian; Nazmutdinov, Renat R.; Yan, Jiawei

    As the only amino acid with a functional thiol group, L - cysteine offers a strong perspective both for binding to gold and other metals, and for gentle immobilization of biomolecules. Binding to single - crystal, atomically planar surfaces offers the additional perspective that bound L - cysteine...... can be structurally mapped at the single - molecule level . In this work, we have followed the adsorption of L - cysteine on single - crystal Au(100) by measuring the electrode potential dynamics during the adsorption process. In situ STM revealed the structure of the self - assembled ordered layers...

  7. Self-assembled isoporous block copolymer membranes with tuned pore sizes

    KAUST Repository

    Yu, Haizhou

    2014-07-23

    The combination of nonsolvent-induced phase separation and the self-assembly of block copolymers can lead to asymmetric membranes with a thin highly ordered isoporous skin layer. The effective pore size of such membranes is usually larger than 15 nm. We reduced the pore size of these membranes by electroless gold deposition. We demonstrate that the pore sizes can be controlled precisely between 3 and 20 nm leading to a tunable sharp size discrimination in filtration processes. Besides fractionation of nanoparticles and biomaterials, controlled drug delivery is an attractive potential application. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Self-assembled isoporous block copolymer membranes with tuned pore sizes

    KAUST Repository

    Yu, Haizhou; Qiu, Xiaoyan; Nunes, Suzanapereira; Peinemann, Klaus-Viktor

    2014-01-01

    The combination of nonsolvent-induced phase separation and the self-assembly of block copolymers can lead to asymmetric membranes with a thin highly ordered isoporous skin layer. The effective pore size of such membranes is usually larger than 15 nm. We reduced the pore size of these membranes by electroless gold deposition. We demonstrate that the pore sizes can be controlled precisely between 3 and 20 nm leading to a tunable sharp size discrimination in filtration processes. Besides fractionation of nanoparticles and biomaterials, controlled drug delivery is an attractive potential application. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Self-assembled isoporous block copolymer membranes with tuned pore sizes.

    Science.gov (United States)

    Yu, Haizhou; Qiu, Xiaoyan; Nunes, Suzana P; Peinemann, Klaus-Viktor

    2014-09-15

    The combination of nonsolvent-induced phase separation and the self-assembly of block copolymers can lead to asymmetric membranes with a thin highly ordered isoporous skin layer. The effective pore size of such membranes is usually larger than 15 nm. We reduced the pore size of these membranes by electroless gold deposition. We demonstrate that the pore sizes can be controlled precisely between 3 and 20 nm leading to a tunable sharp size discrimination in filtration processes. Besides fractionation of nanoparticles and biomaterials, controlled drug delivery is an attractive potential application. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Biomedical Applications of Self-Assembling Peptides

    NARCIS (Netherlands)

    Radmalekshahi, Mazda; Lempsink, Ludwijn; Amidi, Maryam; Hennink, Wim E.; Mastrobattista, Enrico

    2016-01-01

    Self-assembling peptides have gained increasing attention as versatile molecules to generate diverse supramolecular structures with tunable functionality. Because of the possibility to integrate a wide range of functional domains into self-assembling peptides including cell attachment sequences,

  11. 3D Programmable Micro Self Assembly

    National Research Council Canada - National Science Library

    Bohringer, Karl F; Parviz, Babak A; Klavins, Eric

    2005-01-01

    .... We have developed a "self assembly tool box" consisting of a range of methods for micro-scale self-assembly in 2D and 3D We have shown physical demonstrations of simple 3D self-assemblies which lead...

  12. Directed Self-Assembly of Diblock Copolymer Thin Films on Prepatterned Metal Nanoarrays.

    Science.gov (United States)

    Chang, Tongxin; Huang, Haiying; He, Tianbai

    2016-01-01

    The sequential layer by layer self-assembly of block copolymer (BCP) nanopatterns is an effective approach to construct 3D nanostructures. Here large-scale highly ordered metal nano-arrays prepared from solvent annealed thin films of polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) diblock copolymer are used to direct the assembly of the same BCP. The influence of initial loading concentration of metal precursor, the type of metal nanoparticle (gold, platinum, and silver), and the nanoparticle-substrate interaction on the directed assembly behavior of the upper BCP layer have been focused. It is found that the upper BCP film can be completely directed by the gold nanoarray with P2VP domain exclusively located between two adjacent gold nanowires or nanodots, which behaves the same way as on the platinum nanoarray. While the silver nanoarray can be destroyed during the upper BCP self-assembly with the silver nanoparticles assembled into the P2VP domain. Based on the discussions of the surface energy of nanoparticles and the interplay between nanoparticle-substrate interaction and nanoparticle-polymer interaction, it is concluded that the effect of immobilization of nanoparticles on the substrate, together with entropy effect to minimize the energetically unfavorable chain stretching contributes to the most effective alignment between each layer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Self-assembled tethered bimolecular lipid membranes.

    Science.gov (United States)

    Sinner, Eva-Kathrin; Ritz, Sandra; Naumann, Renate; Schiller, Stefan; Knoll, Wolfgang

    2009-01-01

    This chapter describes some of the strategies developed in our group for designing, constructing and structurally and functionally characterizing tethered bimolecular lipid membranes (tBLM). We introduce this platform as a novel model membrane system that complements the existing ones, for example, Langmuir monolayers, vesicular liposomal dispersions and bimolecular ("black") lipid membranes. Moreover, it offers the additional advantage of allowing for studies of the influence of membrane structure and order on the function of integral proteins, for example, on how the composition and organization of lipids in a mixed membrane influence the ion translocation activity of integral channel proteins. The first strategy that we introduce concerns the preparation of tethered monolayers by the self-assembly of telechelics. Their molecular architecture with a headgroup, a spacer unit (the "tether") and the amphiphile that mimics the lipid molecule allows them to bind specifically to the solid support thus forming the proximal layer of the final architecture. After fusion of vesicles that could contain reconstituted proteins from a liposomal dispersion in contact to this monolayer the tethered bimolecular lipid membrane is obtained. This can then be characterized by a broad range of surface analytical techniques, including surface plasmon spectroscopies, the quartz crystal microbalance, fluorescence and IR spectroscopies, and electrochemical techniques, to mention a few. It is shown that this concept allows for the construction of tethered lipid bilayers with outstanding electrical properties including resistivities in excess of 10 MOmega cm2. A modified strategy uses the assembly of peptides as spacers that couple covalently via their engineered sulfhydryl or lipoic acid groups at the N-terminus to the employed gold substrate, while their C-terminus is being activated afterward for the coupling of, for example, dimyristoylphosphatidylethanol amine (DMPE) lipid molecules

  14. Tuning peptide self-assembly by an in-tether chiral center

    Science.gov (United States)

    Hu, Kuan; Xiong, Wei; Li, Hu; Zhang, Pei-Yu; Yin, Feng; Zhang, Qianling; Jiang, Fan; Li, Zigang

    2018-01-01

    The self-assembly of peptides into ordered nanostructures is important for understanding both peptide molecular interactions and nanotechnological applications. However, because of the complexity and various self-assembling pathways of peptide molecules, design of self-assembling helical peptides with high controllability and tunability is challenging. We report a new self-assembling mode that uses in-tether chiral center-induced helical peptides as a platform for tunable peptide self-assembly with good controllability. It was found that self-assembling behavior was governed by in-tether substitutional groups, where chirality determined the formation of helical structures and aromaticity provided the driving force for self-assembly. Both factors were essential for peptide self-assembly to occur. Experiments and theoretical calculations indicate long-range crystal-like packing in the self-assembly, which was stabilized by a synergy of interpeptide π-π and π-sulfur interactions and hydrogen bond networks. In addition, the self-assembled peptide nanomaterials were demonstrated to be promising candidate materials for applications in biocompatible electrochemical supercapacitors.

  15. Third-order susceptibility of gold for ultrathin layers

    DEFF Research Database (Denmark)

    Lysenko, Oleg; Bache, Morten; Lavrinenko, Andrei

    2016-01-01

    This Letter presents an experimental study of nonlinear plasmonic effects in gold-stripe waveguides. The optical characterization is performed by a picosecond laser and reveals two nonlinear effects related to propagation of long-range surface plasmon polaritons: nonlinear power transmission...... of plasmonic modes and spectral broadening of plasmonic modes. The experimental values of the third-order susceptibility of the gold layers are extracted. They exhibit a clear dependence on layer thickness. (C) 2016 Optical Society of America...

  16. Fabrication of bioinspired nanostructured materials via colloidal self-assembly

    Science.gov (United States)

    Huang, Wei-Han

    Through millions of years of evolution, nature creates unique structures and materials that exhibit remarkable performance on mechanicals, opticals, and physical properties. For instance, nacre (mother of pearl), bone and tooth show excellent combination of strong minerals and elastic proteins as reinforced materials. Structured butterfly's wing and moth's eye can selectively reflect light or absorb light without dyes. Lotus leaf and cicada's wing are superhydrophobic to prevent water accumulation. The principles of particular biological capabilities, attributed to the highly sophisticated structures with complex hierarchical designs, have been extensively studied. Recently, a large variety of novel materials have been enabled by natural-inspired designs and nanotechnologies. These advanced materials will have huge impact on practical applications. We have utilized bottom-up approaches to fabricate nacre-like nanocomposites with "brick and mortar" structures. First, we used self-assembly processes, including convective self-assembly, dip-coating, and electrophoretic deposition to form well oriented layer structure of synthesized gibbsite (aluminum hydroxide) nanoplatelets. Low viscous monomer was permeated into layered nanoplatelets and followed by photo-curing. Gibbsite-polymer composite displays 2 times higher tensile strength and 3 times higher modulus when compared with pure polymer. More improvement occurred when surface-modified gibbsite platelets were cross-linked with the polymer matrix. We observed ˜4 times higher strength and nearly 1 order of magnitude higher modulus than pure polymer. To further improve the mechanical strength and toughness of inorganicorganic nanocomposites, we exploited ultrastrong graphene oxide (GO), a single atom thick hexagonal carbon sheet with pendant oxidation groups. GO nanocomposite is made by co-filtrating GO/polyvinyl alcohol suspension on 0.2 im pore-sized membrane. It shows ˜2 times higher strength and ˜15 times higher

  17. Chemical reactions directed Peptide self-assembly.

    Science.gov (United States)

    Rasale, Dnyaneshwar B; Das, Apurba K

    2015-05-13

    Fabrication of self-assembled nanostructures is one of the important aspects in nanoscience and nanotechnology. The study of self-assembled soft materials remains an area of interest due to their potential applications in biomedicine. The versatile properties of soft materials can be tuned using a bottom up approach of small molecules. Peptide based self-assembly has significant impact in biology because of its unique features such as biocompatibility, straight peptide chain and the presence of different side chain functionality. These unique features explore peptides in various self-assembly process. In this review, we briefly introduce chemical reaction-mediated peptide self-assembly. Herein, we have emphasised enzymes, native chemical ligation and photochemical reactions in the exploration of peptide self-assembly.

  18. Self-assembly of charged microclusters of CdSe/ZnS core/shell nanodots and nanorods into hierarchically ordered colloidal arrays

    International Nuclear Information System (INIS)

    Sukhanova, Alyona; Baranov, Alexander V; Klinov, Dmitriy; Oleinikov, Vladimir; Berwick, Kevin; Cohen, Jacques H M; Pluot, Michel; Nabiev, Igor

    2006-01-01

    A thermodynamically driven self-organization of microclusters of semiconductor nanocrystals with a narrow size distribution into periodic two-dimensional (2D) arrays is an attractive low-cost technique for the fabrication of 2D photonic crystals. We have found that CdSe/ZnS core/shell quantum dots or quantum rods, transferred in aqueous phase after capping with the bifunctional surface-active agent DL-cysteine, form on a poly-L-lysine coated surface homogeneously sized micro-particles, droplet-like spheroid clusters and hexagon-like colloidal crystals self-organized into millimetre-sized 2D hexagonal assemblies. The presence of an organic molecular layer around the micro-particles prevents immediate contact between them, forming an interstitial space which may be varied in thickness by changing the origin of the molecular layer capping nanocrystals. Due to the high refractive index of CdSe and the low refractive index of the interstitial spaces, these structures are expected to have deep gaps in their photonic band, forming hierarchically ordered 2D arrays of potentially photonic materials

  19. Optical constants and self-assembly of phenylene ethynylene oligomer monolayers

    DEFF Research Database (Denmark)

    Marx, E.; Walzer, Karsten; Less, R.J.

    2004-01-01

    This paper studies the self-assembly on gold surfaces of 1,4-ethynylphenyl-4'-ethynylphenyl-2'-nitro-1-benzenedithiolate (EP2NO(2)), a substituted phenylene ethynylene trimer with applications in molecular electronics. We develop an ellipsometric technique to measure the optical constants...... of these self-assembled monolayers, and we also use attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and scanning tunneling microscopy (STM) to confirm the structure of the films....

  20. DNA-mediated self-assembly of tetrahedral plasmonic clusters for metafluids

    Science.gov (United States)

    Schade, Nicholas; Sun, Li; Lee, You-Jin; Fan, Jonathan; Capasso, Federico; Yi, Gi-Ra; Manoharan, Vinothan

    2014-03-01

    We direct the self-assembly of clusters of gold nanospheres with the goal of creating a bulk, isotropic, optical metafluid. We use spherical gold nanoparticles that are exceptionally smooth, monocrystalline, and monodisperse. These particles exhibit highly reproducible scattering spectra compared with commercially available gold colloids. We label them with DNA sequences and mix them together to self-assemble small clusters. By controlling the particle sizes and the interactions between them, we maximize the yield of tetrahedral clusters, the ideal structures for isotropic metamaterials.

  1. Characterization of self-assembled monolayers (SAMs) on silicon substrate comparative with polymer substrate for Escherichia coli O157:H7 detection

    International Nuclear Information System (INIS)

    Moldovan, Carmen; Mihailescu, Carmen; Stan, Dana; Ruta, Lavinia; Iosub, Rodica; Gavrila, Raluca; Purica, Munizer; Vasilica, Schiopu

    2009-01-01

    This article presents the characterization of two substrates, silicon and polymer coated with gold, that are functionalized by mixed self-assembled monolayers (SAMs) in order to efficiently immobilize the anti-Escherichia coli O157:H7 polyclonal purified antibody. A biosurface functionalized by SAMs (self-assembled monolayers) technique has been developed. Immobilization of goat anti-E. coli O157:H7 antibody was performed by covalently bonding of thiolate mixed self-assembled monolayers (SAMs) realized on two substrates: polymer coated with gold and silicon coated with gold. The F(ab') 2 fragments of the antibodies have been used for eliminating nonspecific bindings between the Fc portions of antibodies and the Fc receptor on cells. The properties of the monolayers and the biofilm formatted with attached antibody molecules were analyzed at each step using infrared spectroscopy (FTIR-ATR), atomic force microscopy (AFM), scanning electron microscopy (SEM) and cyclic voltammetry (CV). In our study the gold-coated silicon substrates approach yielded the best results. These experimental results revealed the necessity to investigate each stage of the immobilization process taking into account in the same time the factors that influence the chemistry of the surface and the further interactions as well and also provide a solid basis for further studies aiming at elaborating sensitive and specific immunosensor or a microarray for the detection of E. coli O157:H7.

  2. Characterization of self-assembled monolayers (SAMs) on silicon substrate comparative with polymer substrate for Escherichia coli O157:H7 detection

    Energy Technology Data Exchange (ETDEWEB)

    Moldovan, Carmen, E-mail: carmen.moldovan@imt.ro [National Institute for R and D in Microtechnologies, IMT-Bucharest, 126A Erou Iancu Nicolae, 077190 Bucharest (Romania); Mihailescu, Carmen, E-mail: carmen_mihail28@yahoo.com [University of Bucharest, 90-92 Sos Panduri, Bucharest (Romania); Stan, Dana, E-mail: dana_stan2005@yahoo.com [DDS Diagnostic, 1 Segovia Street, Bucharest (Romania); Ruta, Lavinia, E-mail: laviniacoco@yahoo.com [University of Bucharest, 90-92 Sos Panduri, Bucharest (Romania); Iosub, Rodica, E-mail: rodica.iosub@imt.ro [National Institute for R and D in Microtechnologies, IMT-Bucharest, 126A Erou Iancu Nicolae, 077190 Bucharest (Romania); Gavrila, Raluca, E-mail: raluca.gavrila@imt.ro [National Institute for R and D in Microtechnologies, IMT-Bucharest, 126A Erou Iancu Nicolae, 077190 Bucharest (Romania); Purica, Munizer, E-mail: munizer.purica@imt.ro [National Institute for R and D in Microtechnologies, IMT-Bucharest, 126A Erou Iancu Nicolae, 077190 Bucharest (Romania); Vasilica, Schiopu, E-mail: vasilica.schiopu@imt.ro [National Institute for R and D in Microtechnologies, IMT-Bucharest, 126A Erou Iancu Nicolae, 077190 Bucharest (Romania)

    2009-08-30

    This article presents the characterization of two substrates, silicon and polymer coated with gold, that are functionalized by mixed self-assembled monolayers (SAMs) in order to efficiently immobilize the anti-Escherichia coli O157:H7 polyclonal purified antibody. A biosurface functionalized by SAMs (self-assembled monolayers) technique has been developed. Immobilization of goat anti-E. coli O157:H7 antibody was performed by covalently bonding of thiolate mixed self-assembled monolayers (SAMs) realized on two substrates: polymer coated with gold and silicon coated with gold. The F(ab'){sub 2} fragments of the antibodies have been used for eliminating nonspecific bindings between the Fc portions of antibodies and the Fc receptor on cells. The properties of the monolayers and the biofilm formatted with attached antibody molecules were analyzed at each step using infrared spectroscopy (FTIR-ATR), atomic force microscopy (AFM), scanning electron microscopy (SEM) and cyclic voltammetry (CV). In our study the gold-coated silicon substrates approach yielded the best results. These experimental results revealed the necessity to investigate each stage of the immobilization process taking into account in the same time the factors that influence the chemistry of the surface and the further interactions as well and also provide a solid basis for further studies aiming at elaborating sensitive and specific immunosensor or a microarray for the detection of E. coli O157:H7.

  3. Anisotropic Self-Assembly of Organic–Inorganic Hybrid Microtoroids

    KAUST Repository

    Al-Rehili, Safa’a

    2016-10-24

    Toroidal structures based on self-assembly of predesigned building blocks are well-established in the literature, but spontaneous self-organization to prepare such structures has not been reported to date. Here, organic–inorganic hybrid microtoroids synthesized by simultaneous coordination-driven assembly of amphiphilic molecules and hydrophilic polymers are reported. Mixing amphiphilic molecules with iron(III) chloride and hydrophilic polymers in water leads, within minutes, to the formation of starlike nanostructures. A spontaneous self-organization of these nanostructures is then triggered to form stable hybrid microtoroids. Interestingly, the toroids exhibit anisotropic hierarchical growth, giving rise to a layered toroidal framework. These microstructures are mechanically robust and can act as templates to host metallic nanoparticles such as gold and silver. Understanding the nature of spontaneous assembly driven by coordination multiple non-covalent interactions can help explain the well-ordered complexity of many biological organisms in addition to expanding the available tools to mimic such structures at a molecular level.

  4. Synthesis and Self-Assembly of Chiral Cylindrical Molecular Complexes: Functional Heterogeneous Liquid-Solid Materials Formed by Helicene Oligomers

    Directory of Open Access Journals (Sweden)

    Nozomi Saito

    2018-01-01

    Full Text Available Chiral cylindrical molecular complexes of homo- and hetero-double-helices derived from helicene oligomers self-assemble in solution, providing functional heterogeneous liquid-solid materials. Gels and liotropic liquid crystals are formed by fibril self-assembly in solution; molecular monolayers and fibril films are formed by self-assembly on solid surfaces; gels containing gold nanoparticles emit light; silica nanoparticles aggregate and adsorb double-helices. Notable dynamics appears during self-assembly, including multistep self-assembly, solid surface catalyzed double-helix formation, sigmoidal and stairwise kinetics, molecular recognition of nanoparticles, discontinuous self-assembly, materials clocking, chiral symmetry breaking and homogeneous-heterogeneous transitions. These phenomena are derived from strong intercomplex interactions of chiral cylindrical molecular complexes.

  5. Electrostatic Self-Assembly of Polysaccharides into Nanofibers

    DEFF Research Database (Denmark)

    Mendes, Ana Carina Loureiro; Strohmenger, Timm; Goycoolea, Francisco

    2017-01-01

    In this study, the anionic polysaccharide Xanthan gum (X) was mixed with positively charged Chitosan oligomers (ChO), and used as building blocks, to generate novel nanofibers by electrostatic self-assembly in aqueous conditions. Different concentrations, ionic strength and order of mixing of both...

  6. Self-Assembly of Infinite Structures

    Directory of Open Access Journals (Sweden)

    Scott M. Summers

    2009-06-01

    Full Text Available We review some recent results related to the self-assembly of infinite structures in the Tile Assembly Model. These results include impossibility results, as well as novel tile assembly systems in which shapes and patterns that represent various notions of computation self-assemble. Several open questions are also presented and motivated.

  7. Bola-amphiphile self-assembly

    DEFF Research Database (Denmark)

    Svaneborg, Carsten

    2012-01-01

    Bola-amphiphiles are rod-like molecules where both ends of the molecule likes contact with water, while the central part of the molecule dislikes contact with water. What do such molecules do when they are dissolved in water? They self-assemble into micelles. This is a Dissipartive particle...... dynamics simulation of this self-assembly behaviour....

  8. Self-assembled nanomaterials for photoacoustic imaging

    Science.gov (United States)

    Wang, Lei; Yang, Pei-Pei; Zhao, Xiao-Xiao; Wang, Hao

    2016-01-01

    In recent years, extensive endeavors have been paid to construct functional self-assembled nanomaterials for various applications such as catalysis, separation, energy and biomedicines. To date, different strategies have been developed for preparing nanomaterials with diversified structures and functionalities via fine tuning of self-assembled building blocks. In terms of biomedical applications, bioimaging technologies are urgently calling for high-efficient probes/contrast agents for high-performance bioimaging. Photoacoustic (PA) imaging is an emerging whole-body imaging modality offering high spatial resolution, deep penetration and high contrast in vivo. The self-assembled nanomaterials show high stability in vivo, specific tolerance to sterilization and prolonged half-life stability and desirable targeting properties, which is a kind of promising PA contrast agents for biomedical imaging. Herein, we focus on summarizing recent advances in smart self-assembled nanomaterials with NIR absorption as PA contrast agents for biomedical imaging. According to the preparation strategy of the contrast agents, the self-assembled nanomaterials are categorized into two groups, i.e., the ex situ and in situ self-assembled nanomaterials. The driving forces, assembly modes and regulation of PA properties of self-assembled nanomaterials and their applications for long-term imaging, enzyme activity detection and aggregation-induced retention (AIR) effect for diagnosis and therapy are emphasized. Finally, we conclude with an outlook towards future developments of self-assembled nanomaterials for PA imaging.

  9. Self-assembled nanomaterials for photoacoustic imaging.

    Science.gov (United States)

    Wang, Lei; Yang, Pei-Pei; Zhao, Xiao-Xiao; Wang, Hao

    2016-02-07

    In recent years, extensive endeavors have been paid to construct functional self-assembled nanomaterials for various applications such as catalysis, separation, energy and biomedicines. To date, different strategies have been developed for preparing nanomaterials with diversified structures and functionalities via fine tuning of self-assembled building blocks. In terms of biomedical applications, bioimaging technologies are urgently calling for high-efficient probes/contrast agents for high-performance bioimaging. Photoacoustic (PA) imaging is an emerging whole-body imaging modality offering high spatial resolution, deep penetration and high contrast in vivo. The self-assembled nanomaterials show high stability in vivo, specific tolerance to sterilization and prolonged half-life stability and desirable targeting properties, which is a kind of promising PA contrast agents for biomedical imaging. Herein, we focus on summarizing recent advances in smart self-assembled nanomaterials with NIR absorption as PA contrast agents for biomedical imaging. According to the preparation strategy of the contrast agents, the self-assembled nanomaterials are categorized into two groups, i.e., the ex situ and in situ self-assembled nanomaterials. The driving forces, assembly modes and regulation of PA properties of self-assembled nanomaterials and their applications for long-term imaging, enzyme activity detection and aggregation-induced retention (AIR) effect for diagnosis and therapy are emphasized. Finally, we conclude with an outlook towards future developments of self-assembled nanomaterials for PA imaging.

  10. Molecular self-assembly advances and applications

    CERN Document Server

    Dequan, Alex Li

    2012-01-01

    In the past several decades, molecular self-assembly has emerged as one of the main themes in chemistry, biology, and materials science. This book compiles and details cutting-edge research in molecular assemblies ranging from self-organized peptide nanostructures and DNA-chromophore foldamers to supramolecular systems and metal-directed assemblies, even to nanocrystal superparticles and self-assembled microdevices

  11. Magnetic self-assembly of small parts

    Science.gov (United States)

    Shetye, Sheetal B.

    Modern society's propensity for miniaturized end-user products is compelling electronic manufacturers to assemble and package different micro-scale, multi-technology components in more efficient and cost-effective manners. As the size of the components gets smaller, issues such as part sticking and alignment precision create challenges that slow the throughput of conventional robotic pick-n-place systems. As an alternative, various self-assembly approaches have been proposed to manipulate micro to millimeter scale components in a parallel fashion without human or robotic intervention. In this dissertation, magnetic self-assembly (MSA) is demonstrated as a highly efficient, completely parallel process for assembly of millimeter scale components. MSA is achieved by integrating permanent micromagnets onto component bonding surfaces using wafer-level microfabrication processes. Embedded bonded powder methods are used for fabrication of the magnets. The magnets are then magnetized using pulse magnetization methods, and the wafers are then singulated to form individual components. When the components are randomly mixed together, self-assembly occurs when the intermagnetic forces overcome the mixing forces. Analytical and finite element methods (FEM) are used to study the force interactions between the micromagnets. The multifunctional aspects of MSA are presented through demonstration of part-to-part and part-to-substrate assembly of 1 mm x 1mm x 0.5 mm silicon components. Part-to-part assembly is demonstrated by batch assembly of free-floating parts in a liquid environment with the assembly yield of different magnetic patterns varying from 88% to 90% in 20 s. Part-to-substrate assembly is demonstrated by assembling an ordered array onto a fixed substrate in a dry environment with the assembly yield varying from 86% to 99%. In both cases, diverse magnetic shapes/patterns are used to control the alignment and angular orientation of the components. A mathematical model is

  12. Towards Crystals of Crystals of NanoCrystals : a Self-Assembly Study

    NARCIS (Netherlands)

    de Nijs, B.

    2014-01-01

    In this thesis several methods to synthesise monodisperse nanoparticles and how to self-assembled them within emulsion droplets are presented. The self-assembly behaviour of nanoparticles within the spherical confinement of emulsion droplets resulted in highly ordered crystalline supraparticles that

  13. Influence of gold species (AuCl4(-) and AuCl2(-)) on self-assembly of PS-b-P2VP in solutions and morphology of composite thin films fabricated at the air/liquid interfaces.

    Science.gov (United States)

    Zhao, Xingjuan; Wang, Qian; Zhang, Xiaokai; Lee, Yong-Ill; Liu, Hong-Guo

    2016-01-21

    Composite thin films doped with Au species were fabricated at an air/liquid interface via a series of steps, including the mass transfer of polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) across the liquid/liquid interface between a DMF/CHCl3 solution and an aqueous solution containing either AuCl4(-) or AuCl2(-), self-assembly of PS-b-P2VP in a mixed DMF-water solution, and adsorption and further self-organization of the formed aggregates at the air/liquid interface. This is a new approach for fabricating composite polymer films and can be completed within a very short time. AuCl4(-) and AuCl2(-) ions were found to significantly influence the self-assembly behavior of the block copolymer and the morphologies of the composite films, leading to the formation of nanowire arrays and a foam structure at the air/liquid interface, respectively, which originated from rod-like micelles and microcapsules that had formed in the respective solutions. The effect of the metal complex was analyzed based on the packing parameters of the amphiphilic polymer molecules in different microenvironments and the interactions between the pyridine groups and the metal chloride anions. In addition, these composite thin films exhibited stable and durable performance as heterogeneous catalysts for the hydrogenation of nitroaromatics in aqueous solutions.

  14. Influence of solution pH on the electron transport of the self-assembled nanoarrays of single-walled carbon nanotube-cobalt tetra-aminophthalocyanine on gold electrodes: Electrocatalytic detection of epinephrine

    Energy Technology Data Exchange (ETDEWEB)

    Ozoemena, Kenneth I. [Chemistry Department, University of Pretoria, Pretoria 0002 (South Africa)], E-mail: kenneth.ozoemena@up.ac.za; Nkosi, Dudu; Pillay, Jeseelan [Chemistry Department, University of Pretoria, Pretoria 0002 (South Africa)

    2008-02-15

    This paper provides first evidence of the impact of solution pH on the heterogeneous electron transfer rate constants of self-assembled films of single-walled carbon nanotubes (SWCNT) and SWCNT integrated to cobalt(II)tetra-aminophthalocyanine (SWCNT-CoTAPc) by sequential self-assembly. Using cyclic voltammetry and electrochemical impedance spectroscopy, we proved that both SAMs exhibit notable differences in their response to different buffered solution pH, with and without the presence of redox probe, [Fe(CN){sub 6}]{sup 4-}/[Fe(CN){sub 6}]{sup 3-}. Surface pK{sub a} value for the Au-Cys-SWCNT-CoTAPc was estimated as ca. 7.8, compared to that of the Au-Cys-SWCNT of about 5.5. Interestingly, both redox-active SAMs gave similar analytical response for epinephrine, giving well-resolved square wave voltammograms, with linear concentration range up to 130 {mu}M, sensitivity of ca. 9.4 x 10{sup -3} AM{sup -1}, and limit of detection ca. 6 {mu}M. This analytical result implies that there is no detectable advantage of one of the SAMs over the other in the electrocatalytic detection of this neurotransmitter.

  15. Bioinspired synthesis and self-assembly of hybrid organic–inorganic nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Honghu [Iowa State Univ., Ames, IA (United States)

    2016-12-17

    Nature is replete with complex organic–inorganic hierarchical materials of diverse yet specific functions. These materials are intricately designed under physiological conditions through biomineralization and biological self-assembly processes. Tremendous efforts have been devoted to investigating mechanisms of such biomineralization and biological self-assembly processes as well as gaining inspiration to develop biomimetic methods for synthesis and self-assembly of functional nanomaterials. In this work, we focus on the bioinspired synthesis and self-assembly of functional inorganic nanomaterials templated by specialized macromolecules including proteins, DNA and polymers. The in vitro biomineralization process of the magnetite biomineralizing protein Mms6 has been investigated using small-angle X-ray scattering. Templated by Mms6, complex magnetic nanomaterials can be synthesized on surfaces and in the bulk. DNA and synthetic polymers have been exploited to construct macroscopic two- and three-dimensional (2D and 3D) superlattices of gold nanocrystals. Employing X-ray scattering and spectroscopy techniques, the self-assembled structures and the self-assembly mechanisms have been studied, and theoretical models have been developed. Our results show that specialized macromolecules including proteins, DNA and polymers act as effective templates for synthesis and self-assembly of nanomaterials. These bottom-up approaches provide promising routes to fabricate hybrid organic–inorganic nanomaterials with rationally designed hierarchical structures, targeting specific functions.

  16. Colorimetric Analysis on Flocculation of Bioinspired Au Self-Assembly for Biophotonic Application

    Directory of Open Access Journals (Sweden)

    Wan-Joong Kim

    2009-01-01

    Full Text Available Gold nanoparticles exhibited strong surface plasmon absorption and couplings between neighboring particles within bioactivated self-assembly modified their optical properties. Colorimetric analysis on the optical modification of surface plasmon resoanance (SPR shift and flocculation parameter functionalized bioinspired gold assembly for biophotonic application. The physical origin of bioinspired gold aggregation-induced shifting, decreasing, or broadening of the plasmon absorption spectra could be explained in terms of dynamic depolarization, collisional damping, and shadowing effects.

  17. Self-assembled domain structures: From micro- to nanoscale

    Directory of Open Access Journals (Sweden)

    Vladimir Shur

    2015-06-01

    Full Text Available The recent achievements in studying the self-assembled evolution of micro- and nanoscale domain structures in uniaxial single crystalline ferroelectrics lithium niobate and lithium tantalate have been reviewed. The results obtained by visualization of static domain patterns and kinetics of the domain structure by different methods from common optical microscopy to more sophisticated scanning probe microscopy, scanning electron microscopy and confocal Raman microscopy, have been discussed. The kinetic approach based on various nucleation processes similar to the first-order phase transition was used for explanation of the domain structure evolution scenarios. The main mechanisms of self-assembling for nonequilibrium switching conditions caused by screening ineffectiveness including correlated nucleation, domain growth anisotropy, and domain–domain interaction have been considered. The formation of variety of self-assembled domain patterns such as fractal-type, finger and web structures, broad domain boundaries, and dendrites have been revealed at each of all five stages of domain structure evolution during polarization reversal. The possible applications of self-assembling for micro- and nanodomain engineering were reviewed briefly. The review covers mostly the results published by our research group.

  18. Dynamics of self-assembled cytosine nucleobases on graphene

    Science.gov (United States)

    Saikia, Nabanita; Johnson, Floyd; Waters, Kevin; Pandey, Ravindra

    2018-05-01

    Molecular self-assembly of cytosine (C n ) bases on graphene was investigated using molecular dynamics methods. For free-standing C n bases, simulation conditions (gas versus aqueous) determine the nature of self-assembly; the bases prefer to aggregate in the gas phase and are stabilized by intermolecular H-bonds, while in the aqueous phase, the water molecules disrupt base-base interactions, which facilitate the formation of π-stacked domains. The substrate-induced effects, on the other hand, find the polarity and donor-acceptor sites of the bases to govern the assembly process. For example, in the gas phase, the assembly of C n bases on graphene displays short-range ordered linear arrays stabilized by the intermolecular H-bonds. In the aqueous phase, however, there are two distinct configurations for the C n bases assembly on graphene. For the first case corresponding to low surface coverage, the bases are dispersed on graphene and are isolated. The second configuration archetype is disordered linear arrays assembled with medium and high surface coverage. The simulation results establish the role of H-bonding, vdW π-stacking, and the influence of graphene surface towards the self-assembly. The ability to regulate the assembly into well-defined patterns can aid in the design of self-assembled nanostructures for the next-generation DNA based biosensors and nanoelectronic devices.

  19. Self-assembled block copolymer membranes: From basic research to large-scale manufacturing

    KAUST Repository

    Nunes, Suzana Pereira; Behzad, Ali Reza; Peinemann, Klaus-Viktor

    2013-01-01

    Order and porosity of block copolymer membranes have been controlled by solution thermodynamics, self-assembly, and macrophase separation. We have demonstrated how the film manufacture with long-range order can be up-scaled with the use

  20. Layer-by-layer self-assembled nanostructured phthalocyaninatoiron(II)/SWCNT-poly(m-aminobenzenesulfonic acid) hybrid system on gold surface: Electron transfer dynamics and amplification of H{sub 2}O{sub 2} response

    Energy Technology Data Exchange (ETDEWEB)

    Pillay, Jeseelan [Molecular and Nanomaterials Electrochemistry laboratory, Department of Chemistry, University of Pretoria, Pretoria 0002 (South Africa); Ozoemena, Kenneth I. [Molecular and Nanomaterials Electrochemistry laboratory, Department of Chemistry, University of Pretoria, Pretoria 0002 (South Africa)], E-mail: kenneth.ozoemena@up.ac.za

    2009-09-01

    The fabrication of nanostructured platform of poly(m-aminobenzenesulfonic acid) functionalised single-walled carbon nanotubes (SWCNTs-PABS)-iron(II)phthalocyanine nanoparticles (nanoFePc) using layer-by-layer(LBL) self-assembly strategy is described. The substrate build-up, via strong electrostatic interaction, was monitored using atomic force microscopy (AFM) and electrochemical measurements. As the number of bilayers is increased, the electron transfer kinetics of the ferricyaninde/ferrocyanide redox probe is decreased, while the electrochemical reduction of H{sub 2}O{sub 2} at a constant concentration is amplified. The amplification of the electrochemical response to H{sub 2}O{sub 2} detection suggests that this type of electrode could provide an important nano-architectural sensing platform for the development of a sensor.

  1. Self-assembling peptide hydrogels immobilized on silicon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Franchi, Stefano; Battocchio, Chiara; Galluzzi, Martina; Navisse, Emanuele [Department of Sciences, University “Roma Tre”, Via della Vasca Navale 79, Roma, 00146 (Italy); Zamuner, Annj; Dettin, Monica [Department of Industrial Engineering, University of Padua, Via Marzolo, 9, Padua, 35131 (Italy); Iucci, Giovanna, E-mail: giovanna.iucci@uniroma3.it [Department of Sciences, University “Roma Tre”, Via della Vasca Navale 79, Roma, 00146 (Italy)

    2016-12-01

    The hydrogels of self-assembling ionic complementary peptides have collected in the scientific community increasing consensus as mimetics of the extracellular matrix that can offer 3D supports for cell growth or be vehicles for the delivery of stem cells or drugs. Such scaffolds have also been proposed as bone substitutes for small defects as they promote beneficial effects on human osteoblasts. In this context, our research deals with the introduction of a layer of self-assembling peptides on a silicon surface by covalent anchoring and subsequent physisorption. In this work, we present a spectroscopic investigation of the proposed bioactive scaffolds, carried out by surface-sensitive spectroscopic techniques such as XPS (X-ray photoelectron spectroscopy) and RAIRS (Reflection Absorption Infrared Spectroscopy) and by state-of-the-art synchrotron radiation methodologies such as angle dependent NEXAFS (Near Edge X-ray Absorption Fine Structure). XPS studies confirmed the change in the surface composition in agreement with the proposed enrichments, and led to assess the self-assembling peptide chemical stability. NEXAFS spectra, collected in angular dependent mode at the N K-edge, allowed to investigate the self-assembling behavior of the macromolecules, as well as to determine their molecular orientation on the substrate. Furthermore, Infrared Spectroscopy measurements demonstrated that the peptide maintains its secondary structure (β-sheet anti-parallel) after deposition on the silicon surface. The complementary information acquired by means of XPS, NEXAFS and RAIRS lead to hypothesize a “layer-by-layer” arrangement of the immobilized peptides, giving rise to an ordered 3D nanostructure. - Highlights: • A self-assembling peptide (SAP) was covalently immobilized of on a flat silicon surface. • A physisorbed SAP layer was grown on top of the covalently immobilized peptide layer. • Molecular order and orientation of the peptide overlayer on the flat silicon

  2. Self-assembling peptide hydrogels immobilized on silicon surfaces

    International Nuclear Information System (INIS)

    Franchi, Stefano; Battocchio, Chiara; Galluzzi, Martina; Navisse, Emanuele; Zamuner, Annj; Dettin, Monica; Iucci, Giovanna

    2016-01-01

    The hydrogels of self-assembling ionic complementary peptides have collected in the scientific community increasing consensus as mimetics of the extracellular matrix that can offer 3D supports for cell growth or be vehicles for the delivery of stem cells or drugs. Such scaffolds have also been proposed as bone substitutes for small defects as they promote beneficial effects on human osteoblasts. In this context, our research deals with the introduction of a layer of self-assembling peptides on a silicon surface by covalent anchoring and subsequent physisorption. In this work, we present a spectroscopic investigation of the proposed bioactive scaffolds, carried out by surface-sensitive spectroscopic techniques such as XPS (X-ray photoelectron spectroscopy) and RAIRS (Reflection Absorption Infrared Spectroscopy) and by state-of-the-art synchrotron radiation methodologies such as angle dependent NEXAFS (Near Edge X-ray Absorption Fine Structure). XPS studies confirmed the change in the surface composition in agreement with the proposed enrichments, and led to assess the self-assembling peptide chemical stability. NEXAFS spectra, collected in angular dependent mode at the N K-edge, allowed to investigate the self-assembling behavior of the macromolecules, as well as to determine their molecular orientation on the substrate. Furthermore, Infrared Spectroscopy measurements demonstrated that the peptide maintains its secondary structure (β-sheet anti-parallel) after deposition on the silicon surface. The complementary information acquired by means of XPS, NEXAFS and RAIRS lead to hypothesize a “layer-by-layer” arrangement of the immobilized peptides, giving rise to an ordered 3D nanostructure. - Highlights: • A self-assembling peptide (SAP) was covalently immobilized of on a flat silicon surface. • A physisorbed SAP layer was grown on top of the covalently immobilized peptide layer. • Molecular order and orientation of the peptide overlayer on the flat silicon

  3. Self-Assembly of Colloidal Particles

    Indian Academy of Sciences (India)

    is self-assembly where one engineers interaction between nanoscopic building blocks so ..... big question in the field how this microscopic chirality of the virus gets translated ... shape emerges due to a competition between the surface tension.

  4. Characterization of self-assembled electrodes based on Au-Pt nanoparticles for PEMFC application

    Energy Technology Data Exchange (ETDEWEB)

    Valenzuela, E. [Univ. Politecnica de Chiapas (Mexico). Energia y Sustentabilidad; Sebastian, P.J.; Gamboa, S.A.; Joseph, S. [Univ. Nacional Autonoma de Mexico, Morelos (Mexico). Centrode Investigacion en Energia; Pal, U. [Univ. Autonoma de Puebla, Pue (Mexico). Inst. de Fisica; Gonzalez, I. [Univ. Autonoma Metropolitana, Mexico City (Mexico). Dept. de Quimica

    2010-07-01

    This paper described the synthesis and characterization of gold (Au), platinum (Pt) and Au-Pt nanoparticles impregnated on a Nafion membrane in a proton exchange membrane fuel cell (PEMFC). The aim of the study was to fabricate the membrane electrode assembly (MEA) by depositing the nanoparticles on the membrane using an immersion technique. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were used to study the deposition process. Electrochemical impedance spectroscopy (EIS) was used to study the membrane proton conduction process. An elemental mapping analysis was performed in order to study the location of the Au and Pt in the self-assemblies. Results of the study showed that the particles deposited on the Nafion had good stability and a homogenous distribution along the membrane surface. The particles showed a direct relation in size and location with the hydrophilic and hydrophobic distribution phases of the membrane. The main membrane resistance was located between the membrane and the electrolyte. The self-assembled electrodes demonstrated a good performance at standard conditions. 33 refs., 4 tabs., 11 figs.

  5. Effects of interface roughness on cohesive strength of self-assembled monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chen [Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, IL 61801 (United States); Awasthi, Amnaya P. [Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, 32611 (United States); Geubelle, Philippe H., E-mail: geubelle@illinois.edu [Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, IL 61801 (United States); Grady, Martha E.; Sottos, Nancy R. [Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, IL 61801 (United States)

    2017-03-01

    Highlights: • Self-assembled monolayer/transfer-printed gold interface modeled using continuum-level simulation. • Initial deformed film profile analyzed and instability assessed. • Effective cohesive response of SAM-enhanced interface extracted from spallation model. • Reduction of up to 70% cohesive strength of the interface from incorporation of roughness demonstrated. - Abstract: Self-assembled monolayers (SAMs) are aggregates of small molecular chains that have the property to form highly ordered assemblies. The choice of terminal groups on the chains makes them excellent contenders of molecular-level tailoring. Molecular dynamics (MD) simulations and experimental observations of spallation of two SAM-enhanced gold-film/silicon-substrate interfaces have shown that the cohesive strength of SAM-enriched transfer-printed interfaces is strongly dependent on the choice of terminal groups. Though the MD results of perfectly ordered atomistic surfaces show the same qualitative trend as the experiments, they over-predict the interfacial cohesive strengths by a factor of about 50. Results from AFM studies have revealed that the roughness of these interfaces is of the same order (∼1 nm) as the range of atomistic interactions. Hence, surface roughness is a key contributor in significantly reducing interfacial cohesive strength in these systems. In this manuscript, a continuum-level study is performed to investigate the influence of surface roughness on the cohesive strength of the interface between a Si/SAM substrate and a transfer-printed gold film. We approximate the film as a deformable continuum interacting with a rough substrate of SAMs represented by a harmonic function. Using a cohesive law derived from MD, spallation is simulated to evaluate the effective traction-separation characteristics for the rough SAM–gold interface. Our analysis shows that incorporating roughness may reduce the interfacial cohesive strength by an order of magnitude depending

  6. Synthesis of nanocrystals and nanocrystal self-assembly

    Science.gov (United States)

    Chen, Zhuoying

    Chapter 1. A general introduction is presented on nanomaterials and nanoscience. Nanoparticles are discussed with respect to their structure and properties. Ferroelectric materials and nanoparticles in particular are highlighted, especially in the case of the barium titanate, and their potential applications are discussed. Different nanocrystal synthetic techniques are discussed. Nanoparticle superlattices, the novel "meta-materials" built from self-assembly at the nanoscale, are introduced. The formation of nanoparticle superlattices and the importance and interest of synthesizing these nanostructures is discussed. Chapter 2. Advanced applications for high k dielectric and ferroelectric materials in the electronics industry continues to demand an understanding of the underlying physics in decreasing dimensions into the nanoscale. The first part of this chapter presents the synthesis, processing, and electrical characterization of nanostructured thin films (thickness ˜100 nm) of barium titanate BaTiO3 built from uniform nanoparticles (alcohols were used to study the effect of size and morphological control over the nanocrystals. Techniques including X-ray diffraction, transmission electron microscopy, selected area electron diffraction, and high-resolution electron microscopy are used to examine crystallinity and morphology. Chapter 3. By investigating the self-assembly of cadmium selenide-gold (CdSe-Au) nanoparticle mixtures by transmission electron microscopy after solvent evaporation, the effect of solvents in the formation process of CdSe-Au binary nanoparticle superlattices (BNSLs) was studied. 1-dodecanethiol was found to be critical in generating conditions necessary for superlattice formation, prior to the other factors that likely determine structure, highlighting the dual role of this organic polar molecule as both ligand and high boiling point/crystallization solvent. The influence of thiol was investigated under various concentrations (and also

  7. Predicting supramolecular self-assembly on reconstructed metal surfaces

    Science.gov (United States)

    Roussel, Thomas J.; Barrena, Esther; Ocal, Carmen; Faraudo, Jordi

    2014-06-01

    The prediction of supramolecular self-assembly onto solid surfaces is still challenging in many situations of interest for nanoscience. In particular, no previous simulation approach has been capable to simulate large self-assembly patterns of organic molecules over reconstructed surfaces (which have periodicities over large distances) due to the large number of surface atoms and adsorbing molecules involved. Using a novel simulation technique, we report here large scale simulations of the self-assembly patterns of an organic molecule (DIP) over different reconstructions of the Au(111) surface. We show that on particular reconstructions, the molecule-molecule interactions are enhanced in a way that long-range order is promoted. Also, the presence of a distortion in a reconstructed surface pattern not only induces the presence of long-range order but also is able to drive the organization of DIP into two coexisting homochiral domains, in quantitative agreement with STM experiments. On the other hand, only short range order is obtained in other reconstructions of the Au(111) surface. The simulation strategy opens interesting perspectives to tune the supramolecular structure by simulation design and surface engineering if choosing the right molecular building blocks and stabilising the chosen reconstruction pattern.The prediction of supramolecular self-assembly onto solid surfaces is still challenging in many situations of interest for nanoscience. In particular, no previous simulation approach has been capable to simulate large self-assembly patterns of organic molecules over reconstructed surfaces (which have periodicities over large distances) due to the large number of surface atoms and adsorbing molecules involved. Using a novel simulation technique, we report here large scale simulations of the self-assembly patterns of an organic molecule (DIP) over different reconstructions of the Au(111) surface. We show that on particular reconstructions, the molecule

  8. Polymorphism of lipid self-assembly systems

    International Nuclear Information System (INIS)

    Takahashi, Hiroshi

    2002-01-01

    When lipid molecules are dispersed into an aqueous medium, various self-organized structures are formed, depending on conditions (temperature, concentration, etc), in consequence of the amphipathic nature of the molecules. In addition, lipid self-assembly systems exhibit polymorphic phase transition behavior. Since lipids are one of main components of biomembranes, studies on the structure and thermodynamic properties of lipid self-assembly systems are fundamentally important for the consideration of the stability of biomembranes. (author)

  9. Mechanical Self-Assembly Science and Applications

    CERN Document Server

    2013-01-01

    Mechanical Self-Assembly: Science and Applications introduces a novel category of self-assembly driven by mechanical forces. This book discusses self-assembly in various types of small material structures including thin films, surfaces, and micro- and nano-wires, as well as the practice's potential application in micro and nanoelectronics, MEMS/NEMS, and biomedical engineering. The mechanical self-assembly process is inherently quick, simple, and cost-effective, as well as accessible to a large number of materials, such as curved surfaces for forming three-dimensional small structures. Mechanical self-assembly is complementary to, and sometimes offer advantages over, the traditional micro- and nano-fabrication. This book also: Presents a highly original aspect of the science of self-assembly Describes the novel methods of mechanical assembly used to fabricate a variety of new three-dimensional material structures in simple and cost-effective ways Provides simple insights to a number of biological systems and ...

  10. DNA Self-Assembly: From Chirality to Evolution

    Directory of Open Access Journals (Sweden)

    Youri Timsit

    2013-04-01

    Full Text Available Transient or long-term DNA self-assembly participates in essential genetic functions. The present review focuses on tight DNA-DNA interactions that have recently been found to play important roles in both controlling DNA higher-order structures and their topology. Due to their chirality, double helices are tightly packed into stable right-handed crossovers. Simple packing rules that are imposed by DNA geometry and sequence dictate the overall architecture of higher order DNA structures. Close DNA-DNA interactions also provide the missing link between local interactions and DNA topology, thus explaining how type II DNA topoisomerases may sense locally the global topology. Finally this paper proposes that through its influence on DNA self-assembled structures, DNA chirality played a critical role during the early steps of evolution.

  11. Sensitive detection of plastic explosives with self-assembled monolayer-coated microcantilevers

    Science.gov (United States)

    Pinnaduwage, L. A.; Boiadjiev, V.; Hawk, J. E.; Thundat, T.

    2003-08-01

    We report the detection of 10-30 parts-per-trillion levels of pentaerythritol tetranitrate and hexahydro-1,3,5-triazine within 20 s of exposure to a silicon microcantilever with its gold surface modified with a self-assembled monolayer of 4-mercaptobenzoic acid. These measurements correspond to a limit of detection of a few fg.

  12. UV/Vis and NIR Light-Responsive Spiropyran Self-Assembled Monolayers

    NARCIS (Netherlands)

    Ivashenko, Oleksii; Herpt, Jochem T. van; Feringa, Ben L.; Rudolf, Petra; Browne, Wesley R.

    2013-01-01

    Self-assembled monolayers of a 6-nitro BIPS spiropyran (SP) modified with a disulfide-terminated aliphatic chain were prepared on polycrystalline gold surfaces and characterized by UV/vis absorption, surface-enhanced Raman scattering (SEAS), and X-ray photoelectron spectroscopies (XPS). The SAMs

  13. Self-assembled diphenylalanine nanowires for cellular studies and sensor applications

    DEFF Research Database (Denmark)

    Sasso, Luigi; Vedarethinam, Indumathi; Emnéus, Jenny

    2012-01-01

    In this paper we present a series of experiments showing that vertical self-assembled diphenylalanine peptide nanowires (PNWs) are a suitable candidate material for cellular biosensing. We grew HeLa and PC12 cells onto PNW modified gold surfaces and observed no hindrance of cell growth caused by ...

  14. Self-assembled DNA Structures for Nanoconstruction

    Science.gov (United States)

    Yan, Hao; Yin, Peng; Park, Sung Ha; Li, Hanying; Feng, Liping; Guan, Xiaoju; Liu, Dage; Reif, John H.; LaBean, Thomas H.

    2004-09-01

    In recent years, a number of research groups have begun developing nanofabrication methods based on DNA self-assembly. Here we review our recent experimental progress to utilize novel DNA nanostructures for self-assembly as well as for templates in the fabrication of functional nano-patterned materials. We have prototyped a new DNA nanostructure known as a cross structure. This nanostructure has a 4-fold symmetry which promotes its self-assembly into tetragonal 2D lattices. We have utilized the tetragonal 2D lattices as templates for highly conductive metallic nanowires and periodic 2D protein nano-arrays. We have constructed and characterized a DNA nanotube, a new self-assembling superstructure composed of DNA tiles. We have also demonstrated an aperiodic DNA lattice composed of DNA tiles assembled around a long scaffold strand; the system translates information encoded in the scaffold strand into a specific and reprogrammable barcode pattern. We have achieved metallic nanoparticle linear arrays templated on self-assembled 1D DNA arrays. We have designed and demonstrated a 2-state DNA lattice, which displays expand/contract motion switched by DNA nanoactuators. We have also achieved an autonomous DNA motor executing unidirectional motion along a linear DNA track.

  15. A Self-Assembling Protein Hydrogel Technology for Enzyme Incorporation onto Electrodes in Biofuel Cells

    Science.gov (United States)

    2015-10-26

    an ordered 3-dimentional space. In the first stage, we constructed protein building blocks able to self-assemble into 3D protein hydrogel upon...Chem 23, 1891-1901 (2012). 26. Jung, S. & Yi, H. Facile Strategy for Protein Conjugation with Chitosan -Poly(ethylene glycol) Hybrid Microparticle...multiple enzymes in an ordered 3-dimentional space. In the first stage, we constructed protein building blocks able to self-assemble into 3D protein

  16. Electrodeposition of self-assembled poly(3,4-ethylenedioxythiophene) @gold nanoparticles on stainless steel wires for the headspace solid-phase microextraction and gas chromatographic determination of several polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Yang, Liu; Zhang, Jie; Zhao, Faqiong; Zeng, Baizhao

    2016-11-04

    In this work, a novel poly(3,4-ethylenedioxythiophene)@Au nanoparticles (PEDOT@AuNPs) hybrid coating was prepared and characterized. Firstly, the monomer 3,4-ethylenedioxythiophene was self-assembled on AuNPs, and then electropolymerization was performed on a stainless steel wire by cyclic voltammetry. The obtained PEDOT@AuNPs coating was rough and showed cauliflower-like micro-structure with thickness of ∼40μm. It displayed high thermal stability (up to 330°C) and mechanical stability and could be used for at least 160 times of solid phase microextraction (SPME) without decrease of extraction performance. The coating exhibited high extraction capacity for some environmental pollutants (e.g. naphthalene, 2-methylnaphthalene, acenaphthene, fluorene and phenathrene) due to the hydrophobic interaction between the analytes and PEDOT and the additional physicochemical affinity between polycyclic aromatic hydrocarbons and AuNPs. Through coupling with GC detection, good linearity (correlation coefficients higher than 0.9894), wide linear range (0.01-100μgL -1 ), low limits of detection (2.5-25ngL -1 ) were achieved for these analytes. The reproducibility (defined as RSD) was 1.1-4.0% and 5.8-9.9% for single fiber (n=5) and fiber-to-fiber (n=5), respectively. The SPME-GC method was successfully applied for the determination of three real samples, and the recoveries for standards added were 89.9-106% for lake water, 95.7-112% for rain water and 93.2-109% for soil saturated water, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Self-Assembly of Molecular Threads into Reversible Gels

    Science.gov (United States)

    Sayar, Mehmet; Stupp, Samuel I.

    2001-03-01

    Reversible gels formed by low concentrations of molecular gelators that self-assemble into fibers with molecular width and extremely long length have been studied via Monte Carlo simulations. The gelators of interest have two kinds of interactions, one governs self-assembly into fibers and the other provides inter-fiber connectivity to drive the formation of a network. The off-lattice Monte Carlo simulation presented here is based on a point particle representation of gelators. In this model each particle can form only two strong bonds, that enable linear fiber formation, but a variable number of weak bonds which provide inter-fiber connectivity. The gel formation has been studied as a function of concentration of monomers, the strength of interactions, number of bonding sites per particle for weak interactions, and the stiffness of the fibers. The simulation results are compared with two experimental systems synthesized in our group in order to understand gelation mechanisms.

  18. DNA-Based Self-Assembly of Fluorescent Nanodiamonds.

    Science.gov (United States)

    Zhang, Tao; Neumann, Andre; Lindlau, Jessica; Wu, Yuzhou; Pramanik, Goutam; Naydenov, Boris; Jelezko, Fedor; Schüder, Florian; Huber, Sebastian; Huber, Marinus; Stehr, Florian; Högele, Alexander; Weil, Tanja; Liedl, Tim

    2015-08-12

    As a step toward deterministic and scalable assembly of ordered spin arrays we here demonstrate a bottom-up approach to position fluorescent nanodiamonds (NDs) with nanometer precision on DNA origami structures. We have realized a reliable and broadly applicable surface modification strategy that results in DNA-functionalized and perfectly dispersed NDs that were then self-assembled in predefined geometries. With optical studies we show that the fluorescence properties of the nitrogen-vacancy color centers in NDs are preserved during surface modification and DNA assembly. As this method allows the nanoscale arrangement of fluorescent NDs together with other optically active components in complex geometries, applications based on self-assembled spin lattices or plasmon-enhanced spin sensors as well as improved fluorescent labeling for bioimaging could be envisioned.

  19. Formation of Self-assembled Nanostructure on Noble Metal Islands Based on Anodized Aluminum Oxide

    International Nuclear Information System (INIS)

    Park, Jong Bae; Kim, Young Sic; Kim, Seong Kyu; Lee, Hae Seong

    2004-01-01

    We have developed the methodology to produce nanoscale gold rods using an AAO template. Each gold rod was generated in every AAO pore. This nanoislands array of gold formed over the AAO pores can be used as corner stones for building nanostructures. We demonstrated this by forming a nanostructure on the Au/AAO by binding a self-assembly class of molecules onto the metal islands. Anodized aluminum oxide (AAO) has been considered an attractive template for simple fabrication of highly-ordered nanostructures. It provides a 2-dimensional array of hexagonal cells with pores of uniform diameter and inter-pore distance that are adjustable in the range of a few tens to hundreds of nanometers. It can be easily grown on an aluminum sheet with high purity by a sequence of several electrochemical steps; electro-polishing, the 1st anodization, etching, and the 2nd anodization. The pores are grown vertically with respect to the AAO surface. The regularity of the pore structure is usually limited by the inherent grain domain in the aluminum sheet to a few micrometers, but can be improved to cover many millimeters of monodomain by pre-indenting the aluminum sheet with SiC 7 or Si 3 N 4 molds. Although fabrication of such molds requires elaborate and costly processes with e-beam nanolithography, such potentially superb regularity can be practically applied to fabrication of nanoscale devices in electronics, optics, biosensors, etc

  20. Self-assembling segmented coiled tubing

    Science.gov (United States)

    Raymond, David W.

    2016-09-27

    Self-assembling segmented coiled tubing is a concept that allows the strength of thick-wall rigid pipe, and the flexibility of thin-wall tubing, to be realized in a single design. The primary use is for a drillstring tubular, but it has potential for other applications requiring transmission of mechanical loads (forces and torques) through an initially coiled tubular. The concept uses a spring-loaded spherical `ball-and-socket` type joint to interconnect two or more short, rigid segments of pipe. Use of an optional snap ring allows the joint to be permanently made, in a `self-assembling` manner.

  1. Microcontact printing of self-assembled monolayers to pattern the light-emission of polymeric light-emitting diodes

    NARCIS (Netherlands)

    Brondijk, J. J.; Li, X.; Akkerman, H. B.; Blom, P. W. M.; de Boer, B.

    By patterning a self-assembled monolayer (SAM) of thiolated molecules with opposing dipole moments on a gold anode of a polymer light-emitting diode (PLED), the charge injection and, therefore, the light-emission of the device can be controlled with a micrometer-scale resolution. Gold surfaces were

  2. Surface self-assembled hybrid nanocomposites with electroactive nanoparticles and enzymes confined in a polymer matrix for controlled electrocatalysis

    DEFF Research Database (Denmark)

    Zhu, Nan; Ulstrup, Jens; Chi, Qijin

    2015-01-01

    A three-dimensional network of highly branched poly(ethyleneimine) (PEI) is designed and synthesized on gold electrode surfaces. A self-assembled monolayer (SAM) of dithiobis(succinimidyl propionate) (DTSP) on a gold electrode was first prepared, which is confirmed by the reductive desorption of ...

  3. A three-layer model of self-assembly induced surface-energy variation experimentally extracted by using nanomechanically sensitive cantilevers

    International Nuclear Information System (INIS)

    Zuo Guomin; Li Xinxin

    2011-01-01

    This research is aimed at elucidating surface-energy (or interfacial energy) variation during the process of molecule-layer self-assembly on a solid surface. A quasi-quantitative plotting model is proposed and established to distinguish the surface-energy variation contributed by the three characteristic layers of a thiol-on-gold self-assembled monolayer (SAM), namely the assembly-medium correlative gold/head-group layer, the chain/chain interaction layer and the tail/medium layer, respectively. The data for building the model are experimentally extracted from a set of correlative thiol self-assemblies in different media. The variation in surface-energy during self-assembly is obtained by in situ recording of the self-assembly induced nanomechanical surface-stress using integrated micro-cantilever sensors. Based on the correlative self-assembly experiment, and by using the nanomechanically sensitive self-sensing cantilevers to monitor the self-assembly induced surface-stressin situ, the experimentally extracted separate contributions of the three layers to the overall surface-energy change aid a comprehensive understanding of the self-assembly mechanism. Moreover, the quasi-quantitative modeling method is helpful for optimal design, molecule synthesis and performance evaluation of molecule self-assembly for application-specific surface functionalization.

  4. Dispersion of nanoparticulate suspensions using self-assembled surfactant aggregates

    Science.gov (United States)

    Singh, Pankaj Kumar

    The dispersion of particles is critical for several industrial applications such as paints, inks, coatings, and cosmetics. Several emerging applications such as abrasives for precision polishing, and drug delivery systems are increasingly relying on nanoparticulates to achieve the desired performance. In the case of nanoparticles, the dispersion becomes more challenging because of the lack of fundamental understanding of dispersant adsorption and interparticle force prediction. Additionally, many of these processes use severe processing environments such as high normal forces (>100 mN/m), high shear forces (>10,000 s -1), and high ionic strengths (>0.1 M). Under such processing conditions, traditionally used dispersants based on electrostatics, and steric force repulsion mechanism may not be adequate. Hence, the development of optimally performing dispersants requires a fundamental understanding of the dispersion mechanism at the atomic/molecular scale. This study explores the use of self-assembled surfactant aggregates at the solid-liquid interface for dispersing nanoparticles in severe processing environments. Surfactant molecules can provide a feasible alternative to polymeric or inorganic dispersants for stabilizing ultrafine particles. The barrier to aggregation in the presence of surfactant molecules was measured using atomic force microscopy. The barrier heights correlated to suspension stability. To understand the mechanism for nanoparticulate suspension stability in the presence of surfactant films, the interface was characterized using zeta potential, contact angle, adsorption, and FT-IR (adsorbed surfactant film structure measurements). The effect of solution conditions such as pH and ionic strength on the suspension stability, and the self-assembled surfactant films was also investigated. It was determined that a transition from a random to an ordered orientation of the surfactant molecules at the interface was responsible for stability of

  5. Large branched self-assembled DNA complexes

    International Nuclear Information System (INIS)

    Tosch, Paul; Waelti, Christoph; Middelberg, Anton P J; Davies, A Giles

    2007-01-01

    Many biological molecules have been demonstrated to self-assemble into complex structures and networks by using their very efficient and selective molecular recognition processes. The use of biological molecules as scaffolds for the construction of functional devices by self-assembling nanoscale complexes onto the scaffolds has recently attracted significant attention and many different applications in this field have emerged. In particular DNA, owing to its inherent sophisticated self-organization and molecular recognition properties, has served widely as a scaffold for various nanotechnological self-assembly applications, with metallic and semiconducting nanoparticles, proteins, macromolecular complexes, inter alia, being assembled onto designed DNA scaffolds. Such scaffolds may typically contain multiple branch-points and comprise a number of DNA molecules selfassembled into the desired configuration. Previously, several studies have used synthetic methods to produce the constituent DNA of the scaffolds, but this typically constrains the size of the complexes. For applications that require larger self-assembling DNA complexes, several tens of nanometers or more, other techniques need to be employed. In this article, we discuss a generic technique to generate large branched DNA macromolecular complexes

  6. Self-assembly of patchy colloidal dumbbells

    NARCIS (Netherlands)

    Avvisati, Guido|info:eu-repo/dai/nl/407630198; Vissers, Teun|info:eu-repo/dai/nl/304829943; Dijkstra, Marjolein|info:eu-repo/dai/nl/123538807

    2015-01-01

    We employ Monte Carlo simulations to investigate the self-assembly of patchy colloidal dumbbells interacting via a modified Kern-Frenkel potential by probing the system concentration and dumbbell shape. We consider dumbbells consisting of one attractive sphere with diameter sigma(1) and one

  7. Inverse Problem in Self-assembly

    Science.gov (United States)

    Tkachenko, Alexei

    2012-02-01

    By decorating colloids and nanoparticles with DNA, one can introduce highly selective key-lock interactions between them. This leads to a new class of systems and problems in soft condensed matter physics. In particular, this opens a possibility to solve inverse problem in self-assembly: how to build an arbitrary desired structure with the bottom-up approach? I will present a theoretical and computational analysis of the hierarchical strategy in attacking this problem. It involves self-assembly of particular building blocks (``octopus particles''), that in turn would assemble into the target structure. On a conceptual level, our approach combines elements of three different brands of programmable self assembly: DNA nanotechnology, nanoparticle-DNA assemblies and patchy colloids. I will discuss the general design principles, theoretical and practical limitations of this approach, and illustrate them with our simulation results. Our crucial result is that not only it is possible to design a system that has a given nanostructure as a ground state, but one can also program and optimize the kinetic pathway for its self-assembly.

  8. Fluorescent Self-Assembled Polyphenylene Dendrimer Nanofibers

    NARCIS (Netherlands)

    Liu, Daojun; Feyter, Steven De; Cotlet, Mircea; Wiesler, Uwe-Martin; Weil, Tanja; Herrmann, Andreas; Müllen, Klaus; Schryver, Frans C. De

    2003-01-01

    A second-generation polyphenylene dendrimer 1 self-assembles into nanofibers on various substrates such as HOPG, silicon, glass, and mica from different solvents. The investigation with noncontact atomic force microscopy (NCAFM) and scanning electron microscopy (SEM) shows that the morphology of the

  9. Self-assembled nanomaterials based on beta (β"3) tetrapeptides

    International Nuclear Information System (INIS)

    Seoudi, Rania S; Hinds, Mark G; Wilson, David J D; Adda, Christopher G; Mechler, Adam; Del Borgo, Mark; Aguilar, Marie-Isabel; Perlmutter, Patrick

    2016-01-01

    β "3-amino acid based polypeptides offer a unique starting material for the design of self-assembled nanostructures such as fibres and hierarchical dendritic assemblies, due to their well-defined helical geometry in which the peptide side chains align at 120° due to the 3.0–3.1 residue pitch of the helix. In a previous work we have described the head-to-tail self-assembly of N-terminal acetylated β "3-peptides into infinite helical nanorods that was achieved by designing a bioinspired supramolecular self-assembly motif. Here we describe the effect of consecutively more polar side chains on the self-assembly characteristics of β "3-tetrapeptides Ac-β "3Ala-β "3Leu-β "3Ile-β "3Ala (Ac-β"3[ALIA]), Ac-β "3Ser-β "3Leu-β "3Ile-β "3Ala (Ac-β"3[SLIA]) and Ac-β "3Lys-β "3Leu-β "3Ile-β "3Glu (Ac-β"3[KLIE]). β "3-tetrapeptides complete 1 1/3 turns of the helix: thus in the oligomeric form the side chain positions shift 120° with each added monomer, forming a regular periodic pattern along the nanorod. Dynamic light scattering (DLS) measurements confirmed that these peptides self-assemble even in highly polar solvents such as water and DMSO, while diffusion-ordered NMR spectroscopy revealed the presence of a substantial monomeric population. Temperature dependence of the size distribution in DLS measurements suggests a dynamic equilibrium between monomers and oligomers. Solution casting produced distinct fibrillar deposits after evaporating the solvent. In the case of the apolar Ac-β "3[ALIA] the longitudinal helix morphology gives rise to geometrically defined (∼70°) junctions between fibres, forming a mesh that opens up possibilities for applications e.g. in tissue scaffolding. The deposits of polar Ac-β "3[SLIA] and Ac-β "3[KLIE] exhibit fibres in regular parallel alignment over surface areas in the order of 10 μm. (paper)

  10. Self-assembly of phosphorylated dihydroceramide at Au(111) electrode surface

    Energy Technology Data Exchange (ETDEWEB)

    Pawłowski, Jan; Juhaniewicz, Joanna; Sęk, Sławomir, E-mail: slasek@chem.uw.edu.pl

    2017-01-15

    Although the adsorption of lipids on reconstructed Au(111) surface and formation of highly ordered stripe-like domains are well-known phenomena, the exact orientation of the molecules with respect to the substrate remains unclear. Therefore, in this study we have focused on the structure and arrangement of lipid molecules forming highly ordered stripe-like domains at gold electrode-electrolyte interface. N-palmitoyl-D-erythro-dihydroceramide-1-phosphate was selected as model compound since its ability to transform into hemimicellar structure is limited. This way it was possible to get very stable lipid film with characteristic stripe-like pattern. Application of complementary techniques such as atomic force microscopy and scanning tunneling microscopy enabled detailed characteristics of lipid adlayer adsorbed on Au(111) electrode. Based on careful analysis of the experimental results, we have proposed a model which describes the arrangement of the molecules within the film. In general, it assumes flat-lying orientation of the lipids but only one hydrocarbon chain of phosphorylated dihydroceramide is involved in direct interaction with gold. - Highlights: • STM and AFM methods were used to examine adsorption of model lipid on Au(111). • Self-assembly of model lipid leads to formation of highly organized molecular film. • The model is proposed which reproduces the STM contrast.

  11. A novel probe density controllable electrochemiluminescence biosensor for ultra-sensitive detection of Hg2+ based on DNA hybridization optimization with gold nanoparticles array patterned self-assembly platform.

    Science.gov (United States)

    Gao, Wenhua; Zhang, An; Chen, Yunsheng; Chen, Zixuan; Chen, Yaowen; Lu, Fushen; Chen, Zhanguang

    2013-11-15

    Biosensor based on DNA hybridization holds great potential to get higher sensitivity as the optimal DNA hybridization efficiency can be achieved by controlling the distribution and orientation of probe strands on the transducer surface. In this work, an innovative strategy is reported to tap the sensitivity potential of current electrochemiluminescence (ECL) biosensing system by dispersedly anchoring the DNA beacons on the gold nanoparticles (GNPs) array which was electrodeposited on the glassy carbon electrode surface, rather than simply sprawling the coil-like strands onto planar gold surface. The strategy was developed by designing a "signal-on" ECL biosensing switch fabricated on the GNPs nanopatterned electrode surface for enhanced ultra-sensitivity detection of Hg(2+). A 57-mer hairpin-DNA labeled with ferrocene as ECL quencher and a 13-mer DNA labeled with Ru(bpy)3(2+) as reporter were hybridized to construct the signal generator in off-state. A 31-mer thymine (T)-rich capture-DNA was introduced to form T-T mismatches with the loop sequence of the hairpin-DNA in the presence of Hg(2+) and induce the stem-loop open, meanwhile the ECL "signal-on" was triggered. The peak sensitivity with the lowest detection limit of 0.1 nM was achieved with the optimal GNPs number density while exorbitant GNPs deposition resulted in sensitivity deterioration for the biosensor. We expect the present strategy could lead the renovation of the existing probe-immobilized ECL genosensor design to get an even higher sensitivity in ultralow level of target detection such as the identification of genetic diseases and disorders in basic research and clinical application. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Self-organization of a self-assembled supramolecular rectangle, square, and three-dimensional cage on Au111 surfaces.

    Science.gov (United States)

    Yuan, Qun-Hui; Wan, Li-Jun; Jude, Hershel; Stang, Peter J

    2005-11-23

    The structure and conformation of three self-assembled supramolecular species, a rectangle, a square, and a three-dimensional cage, on Au111 surfaces were investigated by scanning tunneling microscopy. These supramolecular assemblies adsorb on Au111 surfaces and self-organize to form highly ordered adlayers with distinct conformations that are consistent with their chemical structures. The faces of the supramolecular rectangle and square lie flat on the surface, preserving their rectangle and square conformations, respectively. The three-dimensional cage also forms well-ordered adlayers on the gold surface, forming regular molecular rows of assemblies. When the rectangle and cage were mixed together, the assemblies separated into individual domains, and no mixed adlayers were observed. These results provide direct evidence of the noncrystalline solid-state structures of these assemblies and information about how they self-organize on Au111 surfaces, which is of importance in the potential manufacturing of functional nanostructures and devices.

  13. Calculation of Quasi-Particle Energies of Aromatic Self-Assembled Monolayers on Au(111).

    Science.gov (United States)

    Li, Yan; Lu, Deyu; Galli, Giulia

    2009-04-14

    We present many-body perturbation theory calculations of the electronic properties of phenylene diisocyanide self-assembled monolayers (SAMs) on a gold surface. Using structural models obtained within density functional theory (DFT), we have investigated how the SAM molecular energies are modified by self-energy corrections and how they are affected by the presence of the surface. We have employed a combination of GW (G = Green's function; W = screened Coulomb interaction) calculations of the SAM quasi-particle energies and a semiclassical image potential model to account for surface polarization effects. We find that it is essential to include both quasi-particle corrections and surface screening in order to provide a reasonable estimate of the energy level alignment at a SAM-metal interface. In particular, our results show that within the GW approximation the energy distance between phenylene diisocyanide SAM energy levels and the gold surface Fermi level is much larger than that found within DFT, e.g., more than double in the case of low packing densities of the SAM.

  14. The self-assembly of redox active peptides: Synthesis and electrochemical capacitive behavior.

    Science.gov (United States)

    Piccoli, Julia P; Santos, Adriano; Santos-Filho, Norival A; Lorenzón, Esteban N; Cilli, Eduardo M; Bueno, Paulo R

    2016-05-01

    The present work reports on the synthesis of a redox-tagged peptide with self-assembling capability aiming applications in electrochemically active capacitive surfaces (associated with the presence of the redox centers) generally useful in electroanalytical applications. Peptide containing ferrocene (fc) molecular (redox) group (Ac-Cys-Ile-Ile-Lys(fc)-Ile-Ile-COOH) was thus synthesized by solid phase peptide synthesis (SPPS). To obtain the electrochemically active capacitive interface, the side chain of the cysteine was covalently bound to the gold electrode (sulfur group) and the side chain of Lys was used to attach the ferrocene in the peptide chain. After obtaining the purified redox-tagged peptide, the self-assembly and redox capability was characterized by cyclic voltammetry (CV) and electrochemical impedance-based capacitance spectroscopy techniques. The obtained results confirmed that the redox-tagged peptide was successfully attached by forming an electroactive self-assembled monolayer onto gold electrode. The design of redox active self-assembly ferrocene-tagged peptide is predictably useful in the development of biosensor devices precisely to detect, in a label-free platform, those biomarkers of clinical relevance. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 357-367, 2016. © 2016 Wiley Periodicals, Inc.

  15. Photon Upconversion and Molecular Solar Energy Storage by Maximizing the Potential of Molecular Self-Assembly.

    Science.gov (United States)

    Kimizuka, Nobuo; Yanai, Nobuhiro; Morikawa, Masa-Aki

    2016-11-29

    The self-assembly of functional molecules into ordered molecular assemblies and the fulfillment of potentials unique to their nanotomesoscopic structures have been one of the central challenges in chemistry. This Feature Article provides an overview of recent progress in the field of molecular self-assembly with the focus on the triplet-triplet annihilation-based photon upconversion (TTA-UC) and supramolecular storage of photon energy. On the basis of the integration of molecular self-assembly and photon energy harvesting, triplet energy migration-based TTA-UC has been achieved in varied molecular systems. Interestingly, some molecular self-assemblies dispersed in solution or organogels revealed oxygen barrier properties, which allowed TTA-UC even under aerated conditions. The elements of molecular self-assembly were also introduced to the field of molecular solar thermal fuel, where reversible photoliquefaction of ionic crystals to ionic liquids was found to double the molecular storage capacity with the simultaneous pursuit of switching ionic conductivity. A future prospect in terms of innovating molecular self-assembly toward molecular systems chemistry is also discussed.

  16. Nanomaterial processing using self-assembly-bottom-up chemical and biological approaches

    International Nuclear Information System (INIS)

    Thiruvengadathan, Rajagopalan; Gangopadhyay, Keshab; Gangopadhyay, Shubhra; Korampally, Venumadhav; Ghosh, Arkasubhra; Chanda, Nripen

    2013-01-01

    Nanotechnology is touted as the next logical sequence in technological evolution. This has led to a substantial surge in research activities pertaining to the development and fundamental understanding of processes and assembly at the nanoscale. Both top-down and bottom-up fabrication approaches may be used to realize a range of well-defined nanostructured materials with desirable physical and chemical attributes. Among these, the bottom-up self-assembly process offers the most realistic solution toward the fabrication of next-generation functional materials and devices. Here, we present a comprehensive review on the physical basis behind self-assembly and the processes reported in recent years to direct the assembly of nanoscale functional blocks into hierarchically ordered structures. This paper emphasizes assembly in the synthetic domain as well in the biological domain, underscoring the importance of biomimetic approaches toward novel materials. In particular, two important classes of directed self-assembly, namely, (i) self-assembly among nanoparticle–polymer systems and (ii) external field-guided assembly are highlighted. The spontaneous self-assembling behavior observed in nature that leads to complex, multifunctional, hierarchical structures within biological systems is also discussed in this review. Recent research undertaken to synthesize hierarchically assembled functional materials have underscored the need as well as the benefits harvested in synergistically combining top-down fabrication methods with bottom-up self-assembly. (review article)

  17. Self-assembling membranes and related methods thereof

    Science.gov (United States)

    Capito, Ramille M; Azevedo, Helena S; Stupp, Samuel L

    2013-08-20

    The present invention relates to self-assembling membranes. In particular, the present invention provides self-assembling membranes configured for securing and/or delivering bioactive agents. In some embodiments, the self-assembling membranes are used in the treatment of diseases, and related methods (e.g., diagnostic methods, research methods, drug screening).

  18. Self-assembled Nanomaterials for Chemotherapeutic Applications

    Science.gov (United States)

    Shieh, Aileen

    The self-assembly of short designed peptides into functional nanostructures is becoming a growing interest in a wide range of fields from optoelectronic devices to nanobiotechnology. In the medical field, self-assembled peptides have especially attracted attention with several of its attractive features for applications in drug delivery, tissue regeneration, biological engineering as well as cosmetic industry and also the antibiotics field. We here describe the self-assembly of peptide conjugated with organic chromophore to successfully deliver sequence independent micro RNAs into human non-small cell lung cancer cell lines. The nanofiber used as the delivery vehicle is completely non-toxic and biodegradable, and exhibit enhanced permeability effect for targeting malignant tumors. The transfection efficiency with nanofiber as the delivery vehicle is comparable to that of the commercially available RNAiMAX lipofectamine while the toxicity is significantly lower. We also conjugated the peptide sequence with camptothecin (CPT) and observed the self-assembly of nanotubes for chemotherapeutic applications. The peptide scaffold is non-toxic and biodegradable, and drug loading of CPT is high, which minimizes the issue of systemic toxicity caused by extensive burden from the elimination of drug carriers. In addition, the peptide assembly drastically increases the solubility and stability of CPT under physiological conditions in vitro, while active CPT is gradually released from the peptide chain under the slight acidic tumor cell environment. Cytotoxicity results on human colorectal cancer cells and non-small cell lung cancer cell lines display promising anti-cancer properties compared to the parental CPT drug, which cannot be used clinically due to its poor solubility and lack of stability in physiological conditions. Moreover, the peptide sequence conjugated with 5-fluorouracil formed a hydrogel with promising topical chemotherapeutic applications that also display

  19. Centrioles: Some Self-Assembly Required

    OpenAIRE

    Song, Mi Hye; Miliaras, Nicholas B.; Peel, Nina; O'Connell, Kevin F.

    2008-01-01

    Centrioles play an important role in organizing microtubules and are precisely duplicated once per cell cycle. New (daughter) centrioles typically arise in association with existing (mother) centrioles (canonical assembly), suggesting that mother centrioles direct the formation of daughter centrioles. However, under certain circumstances, centrioles can also self-assemble free of an existing centriole (de novo assembly). Recent work indicates that the canonical and de novo pathways utilize a ...

  20. Self-assembled organic radicals on Au(111) surfaces: a combined ToF-SIMS, STM, and ESR study.

    Science.gov (United States)

    Mannini, Matteo; Sorace, Lorenzo; Gorini, Lapo; Piras, Federica M; Caneschi, Andrea; Magnani, Agnese; Menichetti, Stefano; Gatteschi, Dante

    2007-02-27

    Electron spin resonance (ESR), time-of-flight secondary ion mass spectrometry (ToF-SIMS), and scanning tunneling microscopy (STM) have been used in parallel to characterize the deposition on gold surface of a series of nitronyl nitroxide radicals. These compounds have been specifically synthesized with methyl-thio linking groups suitable to interact with the gold surface to form self-assembled monolayers (SAMs), which can be considered relevant in the research for molecular-based spintronics devices, as suggested in recent papers. The degree of the expected ordering on the surface of these SAMs has been tuned by varying the chemical structure of synthesized radicals. ToF-SIMS has been used to support the evidence of the occurrence of the deposition process. STM has shown the different qualities of the obtained SAMs, with the degree of local order increasing as the degree of freedom of the molecules on the surface is decreased. Finally, ESR has confirmed that the deposition process does not affect the paramagnetic characteristics of radicals and that it affords a complete single-layered coverage of the surface. Further, the absence of angular dependence in the spectra indicates that the small regions of local ordering do not give rise to a long-range order and suggests a quite large mobility of the radical on the surface, probably due to the weak interaction with gold provided by the methyl-thio linking group.

  1. Directed Formation of DNA Nanoarrays through Orthogonal Self-Assembly

    Directory of Open Access Journals (Sweden)

    Eugen Stulz

    2011-06-01

    Full Text Available We describe the synthesis of terpyridine modified DNA strands which selectively form DNA nanotubes through orthogonal hydrogen bonding and metal complexation interactions. The short DNA strands are designed to self-assemble into long duplexes through a sticky-end approach. Addition of weakly binding metals such as Zn(II and Ni(II induces the formation of tubular arrays consisting of DNA bundles which are 50-200 nm wide and 2-50 nm high. TEM shows additional long distance ordering of the terpy-DNA complexes into fibers.

  2. Nanoporous network channels from self-assembled triblock copolymer supramolecules.

    Science.gov (United States)

    du Sart, Gerrit Gobius; Vukovic, Ivana; Vukovic, Zorica; Polushkin, Evgeny; Hiekkataipale, Panu; Ruokolainen, Janne; Loos, Katja; ten Brinke, Gerrit

    2011-02-16

    Supramolecular complexes of a poly(tert-butoxystyrene)-block-polystyrene-block-poly(4-vinylpyridine) triblock copolymers and less than stoichiometric amounts of pentadecylphenol (PDP) are shown to self-assemble into a core-shell gyroid morphology with the core channels formed by the hydrogen-bonded P4VP(PDP)complexes. After structure formation, PDP was removed using a simple washing procedure, resulting in well-ordered nanoporous films that were used as templates for nickel plating. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Self-assembled biomimetic nanoreactors I: Polymeric template

    Science.gov (United States)

    McTaggart, Matt; Malardier-Jugroot, Cecile; Jugroot, Manish

    2015-09-01

    The variety of nanoarchitectures made feasible by the self-assembly of alternating copolymers opens new avenues for biomimicry. Indeed, self-assembled structures allow the development of nanoreactors which combine the efficiency of high surface area metal active centres to the effect of confinement due to the very small cavities generated by the self-assembly process. A novel self-assembly of high molecular weight alternating copolymers is characterized in the present study. The self-assembly is shown to organize into nanosheets, providing a 2 nm hydrophobic cavity with a 1D confinement.

  4. Forces that Drive Nanoscale Self-assembly on Solid Surfaces

    International Nuclear Information System (INIS)

    Suo, Z.; Lu, W.

    2000-01-01

    Experimental evidence has accumulated in the recent decade that nanoscale patterns can self-assemble on solid surfaces. A two-component monolayer grown on a solid surface may separate into distinct phases. Sometimes the phases select sizes about 10 nm, and order into an array of stripes or disks. This paper reviews a model that accounts for these behaviors. Attention is focused on thermodynamic forces that drive the self-assembly. A double-welled, composition-dependent free energy drives phase separation. The phase boundary energy drives phase coarsening. The concentration-dependent surface stress drives phase refining. It is the competition between the coarsening and the refining that leads to size selection and spatial ordering. These thermodynamic forces are embodied in a nonlinear diffusion equation. Numerical simulations reveal rich dynamics of the pattern formation process. It is relatively fast for the phases to separate and select a uniform size, but exceedingly slow to order over a long distance, unless the symmetry is suitably broken

  5. Self-assembly of micro- and nano-scale particles using bio-inspired events

    International Nuclear Information System (INIS)

    McNally, H.; Pingle, M.; Lee, S.W.; Guo, D.; Bergstrom, D.E.; Bashir, R.

    2003-01-01

    High sensitivity chemical and biological detection techniques and the development of future electronic systems can greatly benefit from self-assembly processes and techniques. We have approached this challenge using biologically inspired events such as the hybridization of single (ss)- to double-stranded (ds) DNA and the strong affinity between the protein avidin and its associated Vitamin, biotin. Using these molecules, micro-scale polystyrene beads and nano-scale gold particles were assembled with high efficiency on gold patterns and the procedures used for these processes were optimized. The DNA and avidin-biotin complex was also used to demonstrate the attachment of micro-scale silicon islands to each other in a fluid. This work also provides insight into the techniques for the self-assembly of heterogeneous materials

  6. Self-assembly of amorphous biophotonic nanostructures by phase separation

    Energy Technology Data Exchange (ETDEWEB)

    Dufresne, Eric R.; Noh, Heeso; Saranathan, Vinodkumar; Mochrie, Simon G.J.; Cao, Hui; Prum, Richard O.; (Yale)

    2009-04-23

    Some of the most vivid colors in the animal kingdom are created not by pigments, but by wavelength-selective scattering of light from nanostructures. Here we investigate quasi-ordered nanostructures of avian feather barbs which produce vivid non-iridescent colors. These {beta}-keratin and air nanostructures are found in two basic morphologies: tortuous channels and amorphous packings of spheres. Each class of nanostructure is isotropic and has a pronounced characteristic length scale of variation in composition. These local structural correlations lead to strong backscattering over a narrow range of optical frequencies and little variation with angle of incidence. Such optical properties play important roles in social and sexual communication. To be effective, birds need to precisely control the development of these nanoscale structures, yet little is known about how they grow. We hypothesize that multiple lineages of birds have convergently evolved to exploit phase separation and kinetic arrest to self-assemble spongy color-producing nanostructures in feather barbs. Observed avian nanostructures are strikingly similar to those self-assembled during the phase separation of fluid mixtures; the channel and sphere morphologies are characteristic of phase separation by spinodal decomposition and nucleation and growth, respectively. These unstable structures are locked-in by the kinetic arrest of the {beta}-keratin matrix, likely through the entanglement or cross-linking of supermolecular {beta}-keratin fibers. Using the power of self-assembly, birds can robustly realize a diverse range of nanoscopic morphologies with relatively small physical and chemical changes during feather development.

  7. Self-assembled vertically aligned Au nanorod arrays for surface-enhanced Raman scattering (SERS) detection of Cannabinol

    Science.gov (United States)

    Milliken, Sarah; Fraser, Jeff; Poirier, Shawn; Hulse, John; Tay, Li-Lin

    2018-05-01

    Self-assembled multi-layered vertically aligned gold nanorod (AuNR) arrays have been fabricated by a simple preparation process that requires a balance between the particle concentration and the ionic strength of the solvent. An experimentally determined critical AuNR concentration of 2.0 nM and 50 mM NaCl produces well-ordered vertically aligned hexagonally close-packed AuNR arrays. We demonstrate surface treatment via UV Ozone cleaning of such samples to allow introduction of analyte molecules (benzenethiol and cannabinol) for effective surface enhanced Raman scattering detection. This is the first demonstration of the SERS analysis of cannabinol. This approach demonstrates a cost-effective, high-yield and simple fabrication route to SERS sensors with application in the screening for the cannabinoids.

  8. Self-assembly via anisotropic interactions : Modeling association kinetics of patchy particle systems and self-assembly induced by critical Casimir forces

    NARCIS (Netherlands)

    Newton, A.C.

    2017-01-01

    Self-assembly, the non-dissipative spontaneous formation of structural order spans many length scales, from amphiphilic molecules forming micelles to stars forming galaxies. This thesis mainly deals with systems on the colloidal length scale where the size of a particle is between a nanometer and a

  9. Self-assembling monolayers of helical oligopeptides with applications in molecular electronics

    International Nuclear Information System (INIS)

    Strong, A.E.

    1997-01-01

    The aim of this project was to develop a generic method of preparing a 'molecular architecture' containing functional groups on a surface at predetermined relative positions several nm apart. This would be of great utility in molecular electronics, chemical sensors and other fields. It was proposed that such an architecture could be prepared on gold using linked, helical oligopeptides that contained the components of interest and sulphur functions able to form monolayers on gold by the self-assembly technique. Towards this ultimate aim Self-Assembled Monolayers (SAMs) of monomeric oligopeptides (13-17 residues) were prepared and characterised. Peptides containing three Met residues spaced in the sequence so that their side-chains lay on the same side of the helix were shown by circular dichroism (CD) to be strongly helical in organic solvents. Their self-assembled films on gold were characterised by Reflection-Absorption Infrared Spectroscopy (RAIRS) which showed the peptides adsorbed with the helix axes parallel to the surface, the orientation expected for self-assembly. However the surface coverage measured by cyclic voltammetry (CV) of the peptides' ferrocenyl derivatives on gold electrodes were less than expected for monolayers. Comparison of the films of ferrocenyl derivatives of Met and Cys showed that the thiolate bound more strongly than the thioether. Accordingly an oligopeptide containing two Cys residues at i, i+3, designed to be 3 10 -helical, was prepared. Transformation of the two (Trt)Cys residues of the resin-bound peptide to the intramolecular disulphide by iodine was achieved in acetonitrile but not in DMF. CD suggested that the conformation of this peptide was a mixture of helix and random coil. Films of the peptide-disulphide and the peptide-dithiol adsorbed from protic solvents were characterised as multilayers by ellipsometry. However CV and ellipsometry showed that a monolayer was successfully prepared from acetonitrile. Future targets for

  10. Triazolobithiophene Light Absorbing Self-Assembled Monolayers: Synthesis and Mass Spectrometry Applications

    Directory of Open Access Journals (Sweden)

    Denis Séraphin

    2011-10-01

    Full Text Available The synthesis of five light absorbing triazolobithiophenic thiols, which were utilized for producing self-assembled monolayers (SAMs on gold surfaces, is presented. The monolayer formation was monitored by cyclic voltammetry, indicating excellent surface coverage. The new triazolobithiophenic compounds exhibited an absorption maximum around 340 nm, which is close to the emission wavelength of a standard nitrogen laser. Consequently these compounds could be used to aid ionization in laser desorption mass spectrometry (MS.

  11. New self-assembly strategies for next generation lithography

    Science.gov (United States)

    Schwartz, Evan L.; Bosworth, Joan K.; Paik, Marvin Y.; Ober, Christopher K.

    2010-04-01

    Future demands of the semiconductor industry call for robust patterning strategies for critical dimensions below twenty nanometers. The self assembly of block copolymers stands out as a promising, potentially lower cost alternative to other technologies such as e-beam or nanoimprint lithography. One approach is to use block copolymers that can be lithographically patterned by incorporating a negative-tone photoresist as the majority (matrix) phase of the block copolymer, paired with photoacid generator and a crosslinker moiety. In this system, poly(α-methylstyrene-block-hydroxystyrene)(PαMS-b-PHOST), the block copolymer is spin-coated as a thin film, processed to a desired microdomain orientation with long-range order, and then photopatterned. Therefore, selfassembly of the block copolymer only occurs in select areas due to the crosslinking of the matrix phase, and the minority phase polymer can be removed to produce a nanoporous template. Using bulk TEM analysis, we demonstrate how the critical dimension of this block copolymer is shown to scale with polymer molecular weight using a simple power law relation. Enthalpic interactions such as hydrogen bonding are used to blend inorganic additives in order to enhance the etch resistance of the PHOST block. We demonstrate how lithographically patternable block copolymers might fit in to future processing strategies to produce etch-resistant self-assembled features at length scales impossible with conventional lithography.

  12. Self-assembly of dodecaphenyl POSS thin films

    Science.gov (United States)

    Handke, Bartosz; Klita, Łukasz; Niemiec, Wiktor

    2017-12-01

    The self-assembly abilities of Dodecaphenyl Polyhedral Oligomeric Silsesquioxane thin films on Si(1 0 0) surfaces were studied. Due to their thermal properties - relatively low sublimation temperature and preservation of molecular structure - cage type silsesquioxanes are ideal material for the preparation of a thin films by Physical Vapor Deposition. The Ultra-High Vacuum environment and the deposition precision of the PVD method enable the study of early stages of thin film growth and its molecular organization. X-ray Reflectivity and Atomic Force Microscopy measurements allow to pursuit size-effects in the structure of thin films with thickness ranges from less than a single molecular layer up to several tens of layers. Thermal treatment of the thin films triggered phase change: from a poorly ordered polycrystalline film into a well-ordered multilayer structure. Self-assembly of the layers is the effect of the π-stacking of phenyl rings, which force molecules to arrange in a superlattice, forming stacks of alternating organic-inorganic layers.

  13. Self-assembly of silk fibroin under osmotic stress

    Science.gov (United States)

    Sohn, Sungkyun

    The supramolecular self-assembly behavior of silk fibroin was investigated using osmotic stress technique. In Chapter 2, a ternary phase diagram of water-silk-LiBr was constructed based on X-ray results on the osmotically stressed regenerated silk fibroin of Bombyx mori silkworm. Microscopic data indicated that silk I is a hydrated structure and a rough estimate of the number of water molecules lost by the structure upon converting from silk I to silk II has been made, and found to be about 2.2 per [GAGAGS] hexapeptide. In Chapter 3, wet-spinning of osmotically stressed, regenerated silk fibroin was performed, based on the prediction that the enhanced control over structure and phase behavior using osmotic stress method helps improve the physical properties of wet-spun regenerated silk fibroin fibers. The osmotic stress was applied in order to pre-structure the regenerated silk fibroin molecule from its original random coil state to more oriented state, manipulating the phase of the silk solution in the phase diagram before the start of spinning. Monofilament fiber with a diameter of 20 microm was produced. In Chapter 4, we investigated if there is a noticeable synergistic osmotic pressure increase between co-existing polymeric osmolyte and salt when extremely highly concentrated salt molecules are present both at sample subphase and stressing subphase, as is the case of silk fibroin self-assembly. The equilibration method that measures osmotic pressure relative to a reference with known osmotic pressure was introduced. Osmotic pressure of aqueous LiBr solution up to 2.75M was measured and it was found that the synergistic effect was insignificant up to this salt concentration. Solution parameters of stressing solutions and Arrhenius kinetics based on time-temperature relationship for the equilibration process were derived as well. In Chapter 5, self-assembly behavior of natural silk fibroin within the gland of Bombyx mori silkworm was investigated using osmotic

  14. Centrioles: some self-assembly required.

    Science.gov (United States)

    Song, Mi Hye; Miliaras, Nicholas B; Peel, Nina; O'Connell, Kevin F

    2008-12-01

    Centrioles play an important role in organizing microtubules and are precisely duplicated once per cell cycle. New (daughter) centrioles typically arise in association with existing (mother) centrioles (canonical assembly), suggesting that mother centrioles direct the formation of daughter centrioles. However, under certain circumstances, centrioles can also selfassemble free of an existing centriole (de novo assembly). Recent work indicates that the canonical and de novo pathways utilize a common mechanism and that a mother centriole spatially constrains the self-assembly process to occur within its immediate vicinity. Other recently identified mechanisms further regulate canonical assembly so that during each cell cycle, one and only one daughter centriole is assembled per mother centriole.

  15. Dynamic Self-Assembly of Homogenous Microcyclic Structures Controlled by a Silver-Coated Nanopore.

    Science.gov (United States)

    Gao, Rui; Lin, Yao; Ying, Yi-Lun; Liu, Xiao-Yuan; Shi, Xin; Hu, Yong-Xu; Long, Yi-Tao; Tian, He

    2017-07-01

    The self-assembly of nanoparticles is a challenging process for organizing precise structures with complicated and ingenious structures. In the past decades, a simple, high-efficiency, and reproducible self-assembly method from nanoscale to microscale has been pursued because of the promising and extensive application prospects in bioanalysis, catalysis, photonics, and energy storage. However, microscale self-assembly still faces big challenges including improving the stability and homogeneity as well as pursuing new assembly methods and templates for the uniform self-assembly. To address these obstacles, here, a novel silver-coated nanopore is developed which serves as a template for electrochemically generating microcyclic structures of gold nanoparticles at micrometers with highly homogenous size and remarkable reproducibility. Nanopore-induced microcyclic structures are further applied to visualize the diffusion profile of ionic flux. Based on this novel strategy, a nanopore could potentially facilitate the delivery of assembled structures for many practical applications including drug delivery, cellular detection, catalysis, and plasmonic sensing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Quantifying quality in DNA self-assembly

    Science.gov (United States)

    Wagenbauer, Klaus F.; Wachauf, Christian H.; Dietz, Hendrik

    2014-01-01

    Molecular self-assembly with DNA is an attractive route for building nanoscale devices. The development of sophisticated and precise objects with this technique requires detailed experimental feedback on the structure and composition of assembled objects. Here we report a sensitive assay for the quality of assembly. The method relies on measuring the content of unpaired DNA bases in self-assembled DNA objects using a fluorescent de-Bruijn probe for three-base ‘codons’, which enables a comparison with the designed content of unpaired DNA. We use the assay to measure the quality of assembly of several multilayer DNA origami objects and illustrate the use of the assay for the rational refinement of assembly protocols. Our data suggests that large and complex objects like multilayer DNA origami can be made with high strand integration quality up to 99%. Beyond DNA nanotechnology, we speculate that the ability to discriminate unpaired from paired nucleic acids in the same macromolecule may also be useful for analysing cellular nucleic acids. PMID:24751596

  17. Oxide nanostructures through self-assembly

    Science.gov (United States)

    Aggarwal, S.; Ogale, S. B.; Ganpule, C. S.; Shinde, S. R.; Novikov, V. A.; Monga, A. P.; Burr, M. R.; Ramesh, R.; Ballarotto, V.; Williams, E. D.

    2001-03-01

    A prominent theme in inorganic materials research is the creation of uniformly flat thin films and heterostructures over large wafers, which can subsequently be lithographically processed into functional devices. This letter proposes an approach that will lead to thin film topographies that are directly counter to the above-mentioned philosophy. Recent years have witnessed considerable research activity in the area of self-assembly of materials, stimulated by observations of self-organized behavior in biological systems. We have fabricated uniform arrays of nonplanar surface features by a spontaneous assembly process involving the oxidation of simple metals, especially under constrained conditions on a variety of substrates, including glass and Si. In this letter we demonstrate the pervasiveness of this process through examples involving the oxidation of Pd, Cu, Fe, and In. The feature sizes can be controlled through the grain size and thickness of the starting metal thin film. Finally, we demonstrate how such submicron scale arrays can serve as templates for the design and development of self-assembled, nanoelectronic devices.

  18. Effective interactions between nanoparticles: Creating temperature-independent solvation environments for self-assembly

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Hari O. S., E-mail: cyz108802@chemistry.iitd.ac.in, E-mail: hariyadav.iitd@gmail.com; Shrivastav, Gourav; Agarwal, Manish; Chakravarty, Charusita [Department of Chemistry, Indian Institute of Technology-Delhi, New Delhi 110016 (India)

    2016-06-28

    The extent to which solvent-mediated effective interactions between nanoparticles can be predicted based on structure and associated thermodynamic estimators for bulk solvents and for solvation of single and pairs of nanoparticles is studied here. As a test of the approach, we analyse the strategy for creating temperature-independent solvent environments using a series of homologous chain fluids as solvents, as suggested by an experimental paper [M. I. Bodnarchuk et al., J. Am. Chem. Soc. 132, 11967 (2010)]. Our conclusions are based on molecular dynamics simulations of Au{sub 140}(SC{sub 10}H{sub 21}){sub 62} nanoparticles in n-alkane solvents, specifically hexane, octane, decane and dodecane, using the TraPPE-UA potential to model the alkanes and alkylthiols. The 140-atom gold core of the nanocrystal is held rigid in a truncated octahedral geometry and the gold-thiolate interaction is modeled using a Morse potential. The experimental observation was that the structural and rheological properties of n-alkane solvents are constant over a temperature range determined by equivalent solvent vapour pressures. We show that this is a consequence of the fact that long chain alkane liquids behave to a good approximation as simple liquids formed by packing of monomeric methyl/methylene units. Over the corresponding temperature range (233–361 K), the solvation environment is approximately constant at the single and pair nanoparticle levels under good solvent conditions. However, quantitative variations of the order of 10%–20% do exist in various quantities, such as molar volume of solute at infinite dilution, entropy of solvation, and onset distance for soft repulsions. In the opposite limit of a poor solvent, represented by vacuum in this study, the effective interactions between nanoparticles are no longer temperature-independent with attractive interactions increasing by up to 50% on decreasing the temperature from 361 K to 290 K, accompanied by an increase in

  19. Manipulation of charge carrier injection into organic field-effect transistors by self-assembled monolayers of alkanethiols

    NARCIS (Netherlands)

    Asadi, Kamal; Gholamrezaie, Fatemeh; Smits, Edsger C. P.; Blom, Paul W. M.; de Boer, Bert

    2007-01-01

    Charge carrier injection into two semiconducting polymers is investigated in field-effect transistors using gold source and drain electrodes that are modified by self-assembled monolayers of alkanethiols and perfluorinated alkanethiols. The presence of an interfacial dipole associated with the

  20. Sulfonic acid-functionalized golf nanoparticles: A colloid-bound catalyst for soft lithographic application on self-assembled monolayers

    NARCIS (Netherlands)

    Li, X.; Paraschiv, V.; Huskens, Jurriaan; Reinhoudt, David

    2003-01-01

    In this report, we present a new lithographic approach to prepare patterned surfaces. Self-assembled monolayers (SAMs) of the acid-labile trimethylsilyl ether (TMS-OC11H22S)2 (TMS adsorbate) was formed on gold. 5-Mercapto-2-benzimidazole sulfonic acid sodium salt (MBS-Na+) was used as a ligand for

  1. Self-assembled rosette nanotubes encapsulate and slowly release dexamethasone

    Directory of Open Access Journals (Sweden)

    Chen Y

    2011-05-01

    Full Text Available Yupeng Chen1,2, Shang Song2, Zhimin Yan3, Hicham Fenniri3, Thomas J Webster2,41Department of Chemistry, Brown University, Providence, RI, USA; 2School of Engineering, Brown University, Providence, RI, USA; 3National Institute for Nanotechnology and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada; 4Department of Orthopedics, Brown University, Providence, RI, USAAbstract: Rosette nanotubes (RNTs are novel, self-assembled, biomimetic, synthetic drug delivery materials suitable for numerous medical applications. Because of their amphiphilic character and hollow architecture, RNTs can be used to encapsulate and deliver hydrophobic drugs otherwise difficult to deliver in biological systems. Another advantage of using RNTs for drug delivery is their biocompatibility, low cytotoxicity, and their ability to engender a favorable, biologically-inspired environment for cell adhesion and growth. In this study, a method to incorporate dexamethasone (DEX, an inflammatory and a bone growth promoting steroid into RNTs was developed. The drug-loaded RNTs were characterized using diffusion ordered nuclear magnetic resonance spectroscopy (DOSY NMR and UV-Vis spectroscopy. Results showed for the first time that DEX can be easily and quickly encapsulated into RNTs and released to promote osteoblast (bone-forming cell functions over long periods of time. As a result, RNTs are presented as a novel material for the targeted delivery of hydrophobic drugs otherwise difficult to deliver.Keywords: nanotubes, drug delivery, self-assembly, physiological conditions

  2. Silver nanoprisms self-assembly on differently functionalized silica surface

    International Nuclear Information System (INIS)

    Pilipavicius, J; Chodosovskaja, A; Beganskiene, A; Kareiva, A

    2015-01-01

    In this work colloidal silica/silver nanoprisms (NPRs) composite coatings were made. Firstly colloidal silica sols were synthesized by sol-gel method and produced coatings on glass by dip-coating technique. Next coatings were silanized by (3-Aminopropyl)triethoxysilane (APTES), N-[3-(Trimethoxysilyl)propyl]ethylenediamine (AEAPTMS), (3- Mercaptopropyl)trimethoxysilane (MPTMS). Silver NPRs where synthesized via seed-mediated method and high yield of 94±15 nm average edge length silver NPRs were obtained with surface plasmon resonance peak at 921 nm. Silica-Silver NPRs composite coatings obtained by selfassembly on silica coated-functionalized surface. In order to find the most appropriate silanization way for Silver NPRs self-assembly, the composite coatings were characterized by scanning electron microscopy (SEM), dynamic light scattering (DLS), water contact angle (CA) and surface free energy (SFE) methods. Results have showed that surface functionalization is necessary to achieve self-assembled Ag NPRs layer. MPTMS silanized coatings resulted sparse distribution of Ag NPRs. Most homogeneous, even distribution composite coatings obtained on APTES functionalized silica coatings, while AEAPTMS induced strong aggregation of Silver NPRs

  3. Stochastic lag time in nucleated linear self-assembly

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Nitin S. [Group Theory of Polymers and Soft Matter, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Schoot, Paul van der [Group Theory of Polymers and Soft Matter, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Institute for Theoretical Physics, Utrecht University, Leuvenlaan 4, 3584 CE Utrecht (Netherlands)

    2016-06-21

    Protein aggregation is of great importance in biology, e.g., in amyloid fibrillation. The aggregation processes that occur at the cellular scale must be highly stochastic in nature because of the statistical number fluctuations that arise on account of the small system size at the cellular scale. We study the nucleated reversible self-assembly of monomeric building blocks into polymer-like aggregates using the method of kinetic Monte Carlo. Kinetic Monte Carlo, being inherently stochastic, allows us to study the impact of fluctuations on the polymerization reactions. One of the most important characteristic features in this kind of problem is the existence of a lag phase before self-assembly takes off, which is what we focus attention on. We study the associated lag time as a function of system size and kinetic pathway. We find that the leading order stochastic contribution to the lag time before polymerization commences is inversely proportional to the system volume for large-enough system size for all nine reaction pathways tested. Finite-size corrections to this do depend on the kinetic pathway.

  4. Structural Diversity of Self-Assembled Iridescent Arthropod Biophotonic Nanostructures

    Science.gov (United States)

    Saranathan, Vinod Kumar; Prum, Richard O.

    2015-03-01

    Many organisms, especially arthropods, produce vivid interference colors using diverse mesoscopic (100-350 nm) integumentary biophotonic nanostructures that are increasingly being investigated for technological applications. Despite a century of interest, we lack precise structural knowledge of many biophotonic nanostructures and mechanisms controlling their development, when such knowledge can open novel biomimetic routes to facilely self-assemble tunable, multi-functional materials. Here, we use synchrotron small angle X-ray scattering and electron microscopy to characterize the photonic nanostructure of 140 iridescent integumentary scales and setae from 127 species of terrestrial arthropods in 85 genera from 5 orders. We report a rich nanostructural diversity, including triply-periodic bicontinuous networks, close-packed spheres, inverse columnar, perforated lamellar, and disordered sponge-like morphologies, commonly observed as stable phases of amphiphilic surfactants, block copolymer, and lyotropic lipid-water systems. Diverse arthropod lineages appear to have independently evolved to utilize the self-assembly of infolding bilayer membranes to develop biophotonic nanostructures that span the phase-space of amphiphilic morphologies, but at optical length scales.

  5. Managing lifelike behavior in a dynamic self-assembled system

    Science.gov (United States)

    Ropp, Chad; Bachelard, Nicolas; Wang, Yuan; Zhang, Xiang

    Self-organization can arise outside of thermodynamic equilibrium in a process of dynamic self-assembly. This is observed in nature, for example in flocking birds, but can also be created artificially with non-living entities. Such dynamic systems often display lifelike properties, including the ability to self-heal and adapt to environmental changes, which arise due to the collective and often complex interactions between the many individual elements. Such interactions are inherently difficult to predict and control, and limit the development of artificial systems. Here, we report a fundamentally new method to manage dynamic self-assembly through the direct external control of collective phenomena. Our system consists of a waveguide filled with mobile scattering particles. These particles spontaneously self-organize when driven by a coherent field, self-heal when mechanically perturbed, and adapt to changes in the drive wavelength. This behavior is governed by particle interactions that are completely mediated by coherent wave scattering. Compared to hydrodynamic interactions which lead to compact ordered structures, our system displays sinusoidal degeneracy and many different steady-state geometries that can be adjusted using the external field.

  6. Proteins evolve on the edge of supramolecular self-assembly

    Science.gov (United States)

    Garcia-Seisdedos, Hector; Empereur-Mot, Charly; Elad, Nadav; Levy, Emmanuel D.

    2017-08-01

    The self-association of proteins into symmetric complexes is ubiquitous in all kingdoms of life. Symmetric complexes possess unique geometric and functional properties, but their internal symmetry can pose a risk. In sickle-cell disease, the symmetry of haemoglobin exacerbates the effect of a mutation, triggering assembly into harmful fibrils. Here we examine the universality of this mechanism and its relation to protein structure geometry. We introduced point mutations solely designed to increase surface hydrophobicity among 12 distinct symmetric complexes from Escherichia coli. Notably, all responded by forming supramolecular assemblies in vitro, as well as in vivo upon heterologous expression in Saccharomyces cerevisiae. Remarkably, in four cases, micrometre-long fibrils formed in vivo in response to a single point mutation. Biophysical measurements and electron microscopy revealed that mutants self-assembled in their folded states and so were not amyloid-like. Structural examination of 73 mutants identified supramolecular assembly hot spots predictable by geometry. A subsequent structural analysis of 7,471 symmetric complexes showed that geometric hot spots were buffered chemically by hydrophilic residues, suggesting a mechanism preventing mis-assembly of these regions. Thus, point mutations can frequently trigger folded proteins to self-assemble into higher-order structures. This potential is counterbalanced by negative selection and can be exploited to design nanomaterials in living cells.

  7. Stereochemistry in subcomponent self-assembly.

    Science.gov (United States)

    Castilla, Ana M; Ramsay, William J; Nitschke, Jonathan R

    2014-07-15

    CONSPECTUS: As Pasteur noted more than 150 years ago, asymmetry exists in matter at all organization levels. Biopolymers such as proteins or DNA adopt one-handed conformations, as a result of the chirality of their constituent building blocks. Even at the level of elementary particles, asymmetry exists due to parity violation in the weak nuclear force. While the origin of homochirality in living systems remains obscure, as does the possibility of its connection with broken symmetries at larger or smaller length scales, its centrality to biomolecular structure is clear: the single-handed forms of bio(macro)molecules interlock in ways that depend upon their handednesses. Dynamic artificial systems, such as helical polymers and other supramolecular structures, have provided a means to study the mechanisms of transmission and amplification of stereochemical information, which are key processes to understand in the context of the origins and functions of biological homochirality. Control over stereochemical information transfer in self-assembled systems will also be crucial for the development of new applications in chiral recognition and separation, asymmetric catalysis, and molecular devices. In this Account, we explore different aspects of stereochemistry encountered during the use of subcomponent self-assembly, whereby complex structures are prepared through the simultaneous formation of dynamic coordinative (N → metal) and covalent (N═C) bonds. This technique provides a useful method to study stereochemical information transfer processes within metal-organic assemblies, which may contain different combinations of fixed (carbon) and labile (metal) stereocenters. We start by discussing how simple subcomponents with fixed stereogenic centers can be incorporated in the organic ligands of mononuclear coordination complexes and communicate stereochemical information to the metal center, resulting in diastereomeric enrichment. Enantiopure subcomponents were then

  8. Self-assembled block copolymer membranes: From basic research to large-scale manufacturing

    KAUST Repository

    Nunes, Suzana Pereira

    2013-09-24

    Order and porosity of block copolymer membranes have been controlled by solution thermodynamics, self-assembly, and macrophase separation. We have demonstrated how the film manufacture with long-range order can be up-scaled with the use of conventional membrane production technology.

  9. Development of an Electrochemical Metal-Ion Biosensor Using Self-Assembled Peptide Nanofibrils

    DEFF Research Database (Denmark)

    Viguier, Bruno; Zor, Kinga; Kasotakis, Emmanouil

    2011-01-01

    . These nanofibrils were obtained under aqueous conditions, at room temperature and outside the clean room. The functionalized gold electrode was evaluated by cyclic voltammetry, impedance spectroscopy, energy dispersive X-ray and atomic force microscopy. The obtained results displayed a layer of nanofibrils able......This article describes the combination of self-assembled peptide nanofibrils with metal electrodes for the development of an electrochemical metal-ion biosensor. The biological nanofibrils were immobilized on gold electrodes and used as biorecognition elements for the complexation with copper ions...

  10. Beta-Sheet-Forming, Self-Assembled Peptide Nanomaterials towards Optical, Energy, and Healthcare Applications.

    Science.gov (United States)

    Kim, Sungjin; Kim, Jae Hong; Lee, Joon Seok; Park, Chan Beum

    2015-08-12

    Peptide self-assembly is an attractive route for the synthesis of intricate organic nanostructures that possess remarkable structural variety and biocompatibility. Recent studies on peptide-based, self-assembled materials have expanded beyond the construction of high-order architectures; they are now reporting new functional materials that have application in the emerging fields such as artificial photosynthesis and rechargeable batteries. Nevertheless, there have been few reviews particularly concentrating on such versatile, emerging applications. Herein, recent advances in the synthesis of self-assembled peptide nanomaterials (e.g., cross β-sheet-based amyloid nanostructures, peptide amphiphiles) are selectively reviewed and their new applications in diverse, interdisciplinary fields are described, ranging from optics and energy storage/conversion to healthcare. The applications of peptide-based self-assembled materials in unconventional fields are also highlighted, such as photoluminescent peptide nanostructures, artificial photosynthetic peptide nanomaterials, and lithium-ion battery components. The relation of such functional materials to the rapidly progressing biomedical applications of peptide self-assembly, which include biosensors/chips and regenerative medicine, are discussed. The combination of strategies shown in these applications would further promote the discovery of novel, functional, small materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Driven self-assembly of hard nanoplates on soft elastic shells

    International Nuclear Information System (INIS)

    Zhang Yao-Yang; Hua Yun-Feng; Deng Zhen-Yu

    2015-01-01

    The driven self-assembly behaviors of hard nanoplates on soft elastic shells are investigated by using molecular dynamics (MD) simulation method, and the driven self-assembly structures of adsorbed hard nanoplates depend on the shape of hard nanoplates and the bending energy of soft elastic shells. Three main structures for adsorbed hard nanoplates, including the ordered aggregation structures of hard nanoplates for elastic shells with a moderate bending energy, the collapsed structures for elastic shells with a low bending energy, and the disordered aggregation structures for hard shells, are observed. The self-assembly process of adsorbed hard nanoplates is driven by the surface tension of the elastic shell, and the shape of driven self-assembly structures is determined on the basis of the minimization of the second moment of mass distribution. Meanwhile, the deformations of elastic shells can be controlled by the number of adsorbed rods as well as the length of adsorbed rods. This investigation can help us understand the complexity of the driven self-assembly of hard nanoplates on elastic shells. (paper)

  12. The self-assembly of monodisperse nanospheres within microtubes

    International Nuclear Information System (INIS)

    Zheng Yuebing; Juluri, Bala Krishna; Huang, Tony Jun

    2007-01-01

    Self-assembled monodisperse nanospheres within microtubes have been fabricated and characterized. In comparison with colloidal crystals formed on planar substrates, colloidal nanocrystals self-assembled in microtubes demonstrate high spatial symmetry in their optical transmission and reflection properties. The dynamic self-assembly process inside microtubes is investigated by combining temporal- and spatial-spectrophotometric measurements. The understanding of this process is achieved through both experimentally recorded reflection spectra and finite difference time domain (FDTD)-based simulation results

  13. Gold nanodots self-assembled polyelectrolyte film as reusable ...

    Indian Academy of Sciences (India)

    PERUMAL VISWANATHAN

    2018-02-01

    Feb 1, 2018 ... To address this issue, a new class of multifunctional catalyst in the form of film ... chemical manufacturing processes in industries rely on heterogeneous catalysis, it has a significant impact on world economy.1 Though heterogeneous catalytic sys- ..... present in safety and environmental issues associated.

  14. Multifunctional Materials Based on Self Assembly of Molecular Nanostructures

    National Research Council Canada - National Science Library

    Stupp, Samuel

    2001-01-01

    .... The objective was to integrate self assembly, encoded in the triblock structure, luminescent properties, and the properties characteristic of materials that have macroscopically polar structure...

  15. Self-assembled software and method of overriding software execution

    Science.gov (United States)

    Bouchard, Ann M.; Osbourn, Gordon C.

    2013-01-08

    A computer-implemented software self-assembled system and method for providing an external override and monitoring capability to dynamically self-assembling software containing machines that self-assemble execution sequences and data structures. The method provides an external override machine that can be introduced into a system of self-assembling machines while the machines are executing such that the functionality of the executing software can be changed or paused without stopping the code execution and modifying the existing code. Additionally, a monitoring machine can be introduced without stopping code execution that can monitor specified code execution functions by designated machines and communicate the status to an output device.

  16. Self-Assembled Asymmetric Block Copolymer Membranes: Bridging the Gap from Ultra- to Nanofiltration

    KAUST Repository

    Yu, Haizhou

    2015-09-21

    The self-assembly of block copolymers is an emerging strategy to produce isoporous ultrafiltration membranes. However, thus far, it has not been possible to bridge the gap from ultra- to nanofiltration and decrease the pore size of self-assembled block copolymer membranes to below 5 nm without post-treatment. It is now reported that the self-assembly of blends of two chemically interacting copolymers can lead to highly porous membranes with pore diameters as small as 1.5 nm. The membrane containing an ultraporous, 60 nm thin separation layer can fully reject solutes with molecular weights of 600 g mol−1 in aqueous solutions with a water flux that is more than one order of magnitude higher than the permeance of commercial nanofiltration membranes. Simulations of the membrane formation process by dissipative particle dynamics (DPD) were used to explain the dramatic observed pore size reduction combined with an increase in water flux.

  17. Surface Structures and Thermal Desorption Behaviors of Cyclopentanethiol Self-Assembled Monolayers on Au(111)

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hun Gu; Kim, You Young; Park, Tae Sun; Noh, Jae Geun [Hanyang University, Seoul (Korea, Republic of); Park, Joon B. [Chonbuk National University, Jeonju (Korea, Republic of); Ito, Eisuke; Hara, Masahiko [RIKEN-HYU Collaboration Center, Saitama (Japan)

    2011-04-15

    The surface structures, adsorption conditions, and thermal desorption behaviors of cyclopentanethiol (CPT) self-assembled monolayers (SAMs) on Au(111) were investigated by scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and thermal desorption spectroscopy (TDS). STM imaging revealed that although the adsorption of CPT on Au(111) at room temperature generates disordered SAMs, CPT molecules at 50 .deg. C formed well-ordered SAMs with a (2√3 x √5)R41{sup .}deg. packing structure. XPS measurements showed that CPT SAMs at room temperature were formed via chemical reactions between the sulfur atoms and gold surfaces. TDS measurements showed two dominant TD peaks for the decomposed fragments (C{sub 5}H{sub 9} {sup +}, m/e = 69) generated via C-S bond cleavage and the parent molecular species (C{sub 5}H{sub 9}SH{sup +}, m/e = 102) derived from a recombination of the chemisorbed thiolates and hydrogen atoms near 440 K. Interestingly, dimerization of sulfur atoms in n-alkanethiol SAMs usually occurs during thermal desorption and the same reaction did not happen for CPT SAMs, which may be due to the steric hindrance of cyclic rings of the CPT molecules. In this study, we demonstrated that the alicyclic ring of organic thiols strongly affected the surface structure and thermal desorption behavior of SAMs, thus providing a good method for controlling chemical and physical properties of organic thiol SAMs.

  18. Surface Structures and Thermal Desorption Behaviors of Cyclopentanethiol Self-Assembled Monolayers on Au(111)

    International Nuclear Information System (INIS)

    Kang, Hun Gu; Kim, You Young; Park, Tae Sun; Noh, Jae Geun; Park, Joon B.; Ito, Eisuke; Hara, Masahiko

    2011-01-01

    The surface structures, adsorption conditions, and thermal desorption behaviors of cyclopentanethiol (CPT) self-assembled monolayers (SAMs) on Au(111) were investigated by scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and thermal desorption spectroscopy (TDS). STM imaging revealed that although the adsorption of CPT on Au(111) at room temperature generates disordered SAMs, CPT molecules at 50 .deg. C formed well-ordered SAMs with a (2√3 x √5)R41".deg. packing structure. XPS measurements showed that CPT SAMs at room temperature were formed via chemical reactions between the sulfur atoms and gold surfaces. TDS measurements showed two dominant TD peaks for the decomposed fragments (C_5H_9 "+, m/e = 69) generated via C-S bond cleavage and the parent molecular species (C_5H_9SH"+, m/e = 102) derived from a recombination of the chemisorbed thiolates and hydrogen atoms near 440 K. Interestingly, dimerization of sulfur atoms in n-alkanethiol SAMs usually occurs during thermal desorption and the same reaction did not happen for CPT SAMs, which may be due to the steric hindrance of cyclic rings of the CPT molecules. In this study, we demonstrated that the alicyclic ring of organic thiols strongly affected the surface structure and thermal desorption behavior of SAMs, thus providing a good method for controlling chemical and physical properties of organic thiol SAMs

  19. Covalently attached metalloporphyrins in LBL self-assembled redox polyelectrolyte thin films

    International Nuclear Information System (INIS)

    Carballo, R.R.; Campodall' Orto, V.; Hurst, J.A.; Spiaggi, A.; Bonazzola, C.; Rezzano, I.N.

    2008-01-01

    A formylporphyrin has been covalently bound to Poly (Allylamine Hydrochloride) (PAH) and electrostatically self-assembled polyelectrolyte films, containing the attached metalloporphyrin, have been constructed. The UV-vis absorption band at 390 nm has been followed as core porphyrin marker. The reflection-absorption IR spectra of the gold films modified with layer-by-layer (LBL) polyelectrolytes were recorded after 6 and 12 layers. Characteristic infrared absorbance bands of porphyrin, PAH and PVS became more evident on increasing the number of bilayers. The absorption bands at 750, 1214 and 2960 cm -1 , attributed at ν(S-O), ν s (SO 3 - ) and ν(=NH 2 + ), respectively, showed a linear growth (R 2 > 0.99) with the number of adsorbed layers. A lower correlation coefficient was observed for the band at 1585 cm -1 attributed to Fe-protoporphyrin. In order to evaluate the electron transfer (ET) rate, the ΔE p of the [Fe(CN) 6 ] 4- /[Fe(CN) 6 ] 3- couple in solution was measured after covering the electrode. A proportional increase of the ΔE p with the number of layers is observed up to the 4th layer. After the second bilayer, the magnitude of the peak separation is highly related to the charge of the topmost layer. The method allowed controlling the film thickness via the number of deposited layers (LBL). The electrode described, resulted in a good catalyst for O 2 reduction and sulfite oxidation

  20. Heterogeneous self-assembled media for biopolymerization

    DEFF Research Database (Denmark)

    Monnard, Pierre-Alain

    2011-01-01

    Heterogeneous media, such as micro-structured aqueous environments, could offer an alternative approach to the synthesis of biopolymers with novel functions. Structured media are here defined as specialized, self-assembled structures that are formed, e.g, by amphiphiles, such as liposomes, emulsion...... polymerization, the initial elongation rates clearly depended on the complementarity of the monomers with the templating nucleobases3. However, metal-ion catalyzed reactions deliver RNA analogs with heterogeneous linkages. Moreover, the usefulness of this medium in the form of quasi-compartmentalization extends...... beyond metal-ion catalysis reactions, as we have recently demonstrated the catalytic power of a dipeptide, SerHis, for the regioselective formation of phosphodiester bonds. These results in conjonction with the synthesis of nucleobases at -78˚C, the demonstration of ribozyme activity (RNA ligase ribozyme...

  1. Controlling water evaporation through self-assembly.

    Science.gov (United States)

    Roger, Kevin; Liebi, Marianne; Heimdal, Jimmy; Pham, Quoc Dat; Sparr, Emma

    2016-09-13

    Water evaporation concerns all land-living organisms, as ambient air is dryer than their corresponding equilibrium humidity. Contrarily to plants, mammals are covered with a skin that not only hinders evaporation but also maintains its rate at a nearly constant value, independently of air humidity. Here, we show that simple amphiphiles/water systems reproduce this behavior, which suggests a common underlying mechanism originating from responding self-assembly structures. The composition and structure gradients arising from the evaporation process were characterized using optical microscopy, infrared microscopy, and small-angle X-ray scattering. We observed a thin and dry outer phase that responds to changes in air humidity by increasing its thickness as the air becomes dryer, which decreases its permeability to water, thus counterbalancing the increase in the evaporation driving force. This thin and dry outer phase therefore shields the systems from humidity variations. Such a feedback loop achieves a homeostatic regulation of water evaporation.

  2. Beam damage of self-assembled monolayers

    International Nuclear Information System (INIS)

    Rieke, P.C.; Baer, D.R.; Fryxell, G.E.; Engelhard, M.H.; Porter, M.S.

    1993-01-01

    X-ray and electron beam damage studies were performed on Br-terminated and methyl-terminated alkylsilane self-assembled monolayers. X-ray beam initiated damage was primarily limited to removal of the labile Br group and did not significantly damage the hydrocarbon chain. Some of the x-ray beam damage could be attributed to low-energy electrons emitted by the non-monochromatic source, but further damage was attributed to secondary electrons produced in the sample by x-ray exposure. Electron beams caused significant damage to the hydrocarbon chains. Maximum damage occurred with a beam energy of 600 eV and a dosage of 6x10 -3 C/cm 2

  3. Formation of self-assembled stripes on the anodic aluminum oxide

    International Nuclear Information System (INIS)

    Liu Hongwen; Guo Haiming; Wang Yeliang; Shen Chengmin; Yang Haitao; Wang Yutian; Wei Long

    2004-01-01

    Non-polished aluminum sheets were anodized and the coexistence of self-assembled stripes and porous arrays on the Al surface was observed. The nanostructures were investigated in details using an atomic force microscope. And the formation mechanism of the stripes was discussed and simulated using Brusselator model in this work. The authors demonstrated that the self-assembled patterns on the Al surface were governed by the competition of formation and dissolution of alumina film during the reaction process. Moreover, this type of ordered structure could only form in certain conditions

  4. Self-assembled peptide nanotubes as an etching material for the rapid fabrication of silicon wires

    DEFF Research Database (Denmark)

    Larsen, Martin Benjamin Barbour Spanget; Andersen, Karsten Brandt; Svendsen, Winnie Edith

    2011-01-01

    This study has evaluated self-assembled peptide nanotubes (PNTS) and nanowires (PNWS) as etching mask materials for the rapid and low-cost fabrication of silicon wires using reactive ion etching (RIE). The self-assembled peptide structures were fabricated under mild conditions and positioned on c...... characterization by SEM and I-V measurements. Additionally, the fabricated silicon structures were functionalized with fluorescent molecules via a biotin-streptavidin interaction in order to probe their potential in the development of biosensing devices....

  5. A simple method to prepare self-assembled organic-organic heterobilayers on metal substrates

    Directory of Open Access Journals (Sweden)

    L. D. Sun

    2011-06-01

    Full Text Available We demonstrate a self-assembly based simple method to prepare organic-organic heterobilayers on a metal substrate. By either sequential- or co-deposition of para-sexiphenyl (p-6P and pentacene molecules onto the Cu(110 surface in ultrahigh vacuum, p-6P/pentacene/Cu(110 heterobilayer is synthesized at room temperature. The layer sequence of the heterostructure is independent of the growth scenario indicating the p-6P/pentacene/Cu(110 is a self-assembled structure with lowest energy. Besides, the bilayer shows a very high orientational ordering and is thermally stable up to 430K.

  6. Dynamics of decanethiol self-assembled monolayers on Au(111) studied by Scanning tunnelling microscopy

    NARCIS (Netherlands)

    Wu, Hairong; Sotthewes, Kai; Kumar, Avijit; Vancso, Gyula J.; Schön, Peter Manfred; Zandvliet, Henricus J.W.

    2013-01-01

    We investigated the dynamics of decanethiol self-assembled monolayers on Au(111) surfaces using time-resolved scanning tunneling microscopy at room temperature. The expected ordered phases (β, δ, χ*, and ) and a disordered phase (ε) were observed. Current–time traces with the feedback loop disabled

  7. Selective intercalation of six ligands molecules in a self-assembled triple helix

    NARCIS (Netherlands)

    Mateos timoneda, Miguel; Kerckhoffs, J.M.C.A.; Reinhoudt, David; Crego Calama, Mercedes

    2007-01-01

    The addition of a ligand molecule to an artificial self-assembled triple helix leads to the selective intercalation of two hydrogen-bonded trimers in specific binding pockets. Furthermore, the triple helix suffers large conformational rearrangements in order to accommodate the ligand molecules in a

  8. Self assembled linear polymeric chains with tuneable semiflexibility using isotropic interactions

    Science.gov (United States)

    Abraham, Alex; Chatterji, Apratim

    2018-04-01

    We propose a two-body spherically symmetric (isotropic) potential such that particles interacting by the potential self-assemble into linear semiflexible polymeric chains without branching. By suitable control of the potential parameters, we can control the persistence length of the polymer and can even introduce a controlled number of branches. Thus we show how to achieve effective directional interactions starting from spherically symmetric potentials. The self-assembled polymers have an exponential distribution of chain lengths akin to what is observed for worm-like micellar systems. On increasing particle density, the polymeric chains self-organize to an ordered line-hexagonal phase where every chain is surrounded by six parallel chains, the transition is first order. On further increase in monomer density, the order is destroyed and we get a branched gel-like phase. This potential can be used to model semi-flexible equilibrium polymers with tunable semiflexibility and excluded volume. The use of the potential is computationally cheap and hence can be used to simulate and probe equilibrium polymer dynamics with long chains. The potential also gives a plausible method of tuning colloidal interactions in experiments such that one can obtain self-assembling polymeric chains made up of colloids and probe polymer dynamics using an optical microscope. Furthermore, we show how a modified potential leads to the observation of an intermediate nematic phase of self-assembled chains in between the low density disordered phase and the line-ordered hexagonal phase.

  9. Phase Diagrams of Electrostatically Self-Assembled Amphiplexes

    Energy Technology Data Exchange (ETDEWEB)

    V Stanic; M Mancuso; W Wong; E DiMasi; H Strey

    2011-12-31

    We present the phase diagrams of electrostatically self-assembled amphiplexes (ESA) comprised of poly(acrylic acid) (PAA), cetyltrimethylammonium chloride (CTACl), dodecane, pentanol, and water at three different NaCl salt concentrations: 100, 300, and 500 mM. This is the first report of phase diagrams for these quinary complexes. Adding a cosurfactant, we were able to swell the unit cell size of all long-range ordered phases (lamellar, hexagonal, Pm3n, Ia3d) by almost a factor of 2. The added advantage of tuning the unit cell size makes such complexes (especially the bicontinuous phases) attractive for applications in bioseparation, drug delivery, and possibly in oil recovery.

  10. Infrared spectroscopy of self-assembled monolayer films on silicon

    Science.gov (United States)

    Rowell, N. L.; Tay, Lilin; Boukherroub, R.; Lockwood, D. J.

    2007-07-01

    Infrared vibrational spectroscopy in an attenuated total reflection (ATR) geometry has been employed to investigate the presence of organic thin layers on Si-wafer surfaces. The phenomena have been simulated to show there can be a field enhancement with the presented single-reflection ATR (SR-ATR) approach which is substantially larger than for conventional ATR or specular reflection. In SR-ATR, a discontinuity of the field normal to the film contributes a field enhancement in the lower index thin film causing a two order of magnitude increase in sensitivity. SR-ATR was employed to characterize a single monolayer of undecylenic acid self-assembled on Si(1 1 1) and to investigate a two monolayer system obtained by adding a monolayer of bovine serum albumin protein.

  11. Lipid dip-pen nanolithography on self-assembled monolayers

    International Nuclear Information System (INIS)

    Gavutis, Martynas; Navikas, Vytautas; Rakickas, Tomas; Vaitekonis, Šarūnas; Valiokas, Ramūnas

    2016-01-01

    Dip-pen nanolithography (DPN) with lipids as an ink enables functional micro/nanopatterning on different substrates at high process speeds. However, only a few studies have addressed the influence of the physicochemical properties of the surface on the structure and phase behavior of DPN-printed lipid assemblies. Therefore, by combining the scanning probe and optical imaging techniques in this work we have analyzed lipid microdomain formation on the self-assembled monolayers (SAMs) on gold as well-defined model surfaces that displayed hydrophilic (protein-repellent) or hydrophobic (protein-adhesive) characteristics. We have found that on the tri(ethylene glycol)-terminated SAM the lipid ink transfer was fast (∼10 –1 μm 3 s −1 ), quasi-linear and it yielded unstable, sparsely packed lipid microspots. Contrary to this, on the methyl-terminated SAM the lipid transfer was ∼20 times slower, nonlinear, and the obtained stable dots of ∼1 μm in diameter consisted of lipid multilayers. Our comparative analysis indicated that the measured lipid transfer was consistent with the previously reported so-called polymer transfer model (Felts et al 2012, Nanotechnology 23 215301). Further on, by employing the observed distinct contrast in the DPN ink behavior we constructed confined lipid microdomains on pre-patterned SAMs, in which the lipids assembled either into monolayer or multilamellar phases. Such microdomains can be further utilized for lipid membrane mimetics in microarray and lab-on-a-chip device formats. (paper)

  12. Multicomponent and Dissipative Self-Assembly Approaches : Towards functional materials

    NARCIS (Netherlands)

    Boekhoven, J.

    2012-01-01

    The use of self-assembly has proven to be a powerful approach to create smart and functional materials and has led to a vast variety of successful examples. However, the full potential of self-assembly has not been reached. Despite the number of successful artificial materials based on

  13. Multivalent protein assembly using monovalent self-assembling building blocks

    NARCIS (Netherlands)

    Petkau - Milroy, K.; Sonntag, M.H.; Colditz, A.; Brunsveld, L.

    2013-01-01

    Discotic molecules, which self-assemble in water into columnar supramolecular polymers, emerged as an alternative platform for the organization of proteins. Here, a monovalent discotic decorated with one single biotin was synthesized to study the self-assembling multivalency of this system in regard

  14. Self-assembly behaviour of conjugated terthiophene surfactants in water

    NARCIS (Netherlands)

    van Rijn, Patrick; Janeliunas, Dainius; Brizard, Aurelie M.; Stuart, Marc C. A.; Koper, Ger J. M.; Eelkema, Rienk; van Esch, Jan H.

    2011-01-01

    Conjugated self-assembled systems in water are of great interest because of their potential application in biocompatible supramolecular electronics, but so far their supramolecular chemistry remains almost unexplored. Here we present amphiphilic terthiophenes as a general self-assembling platform

  15. Freezing-induced self-assembly of amphiphilic molecules

    Science.gov (United States)

    Albouy, P. A.; Deville, S.; Fulkar, A.; Hakouk, K.; Impéror-Clerc, M.; Klotz, M.; Liu, Q.; Marcellini, M.; Perez, J.

    The self-assembly of amphiphilic molecules usually takes place in a liquid phase, near room temperature. Here, using small angle X-ray scattering (SAXS) experiments performed in real time, we show that freezing of aqueous solutions of copolymer amphiphilic molecules can induce self-assembly below 0{\\deg}C.

  16. Characterization of self-assembled electrodes based on Au-Pt nanoparticles for PEMFC application

    Energy Technology Data Exchange (ETDEWEB)

    Valenzuela, E. [Politecnica Univ. de Chiapas, Tuxtla Gutierrez, Chiapas (Mexico). Energia y Sustentabilidad; Sebastian, P.J. [Politecnica Univ. de Chiapas, Chiapas (Mexico). Energia y Sustentabilidad; Centro de Investigacion en Energia, UNAM, Morelos (Mexico); Gamboa, S.A. [Centro de Investigacion en Energia, UNAM, Morelos (Mexico); Pal, U. [Inst. de Fisica, Universidad Autonoma de Puebla Univ., Puebla (Mexico). Inst. de Fisica; Gonzalez, I. [Autonoma Metropolitana Univ. (Mexico). Dept. de Quimica

    2008-07-01

    This paper reported on a study in which membrane electrode assemblies (MEAs) were fabricated by depositing Au, Pt and AuPt nanoparticles on Nafion 115 membrane for use in a proton exchange membrane fuel cell (PEMFC). A Rotating Disc Electrode (RDE) was used to measure the nanoparticle catalyst activity. After deposition of the nanoparticles on the membrane, the surface was studied by Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). The membrane proton conduction process was studied by Electrochemical Impedance Spectroscopy (EIS) with the 4 probe technique. The MEAs fabricated with Nafion/Metal membranes were evaluated in a PEMFC under standard conditions. Colloidal solutions were used to prepare self-assembled electrodes with nanoparticles deposited on Nafion membrane. The particles deposited on Nafion showed good stability and had homogeneous distribution along the membrane surface. The impedance results revealed an increase in the membrane proton resistance of the self-assembled electrodes compared to unmodified Nafion. The Au-Pt nanoparticles were obtained by chemical reduction. The nanoparticle size in the three systems was about 2 nm. The self-assembled electrodes performed well in standard conditions. The optimum colloidal concentration and immersion time must be determined in order to obtain good catalytic activity and high membrane conductance. The self-assembled Nafion/AuPt had the best open circuit potential (887 mV). The Au and Pt self-assemblies showed a similar performance in terms of maximum power and maximum current density. The performance of the Nafion/Au self-assembly was influenced more by ohmic losses, particularly in the membrane. The maximum power generation was obtained at 0.35 V. The mass transport losses increased after this value, thereby affecting the efficiency of the PEMFC. 2 figs.

  17. Electron transfer dynamics across self-assembled N-(2-mercaptoethyl) octadecanamide/mycolic acid layers: impedimetric insights into the structural integrity and interaction with anti-mycolic acid antibodies

    CSIR Research Space (South Africa)

    Ozoemena, KI

    2010-01-01

    Full Text Available The integrity and properties of mycolic acid (MA) antigens integrated into a self-assembled monolayer (SAM) of N-(2-mercaptoethyl)octadecanamide, (MEODA), on a gold electrode have been interrogated using cyclic voltammetry (CV) and electrochemical...

  18. Self-assembling triblock proteins for biofunctional surface modification

    Science.gov (United States)

    Fischer, Stephen E.

    of the triblock protein hydrogels, and the ease of introducing multiple functionalities to a substrate surface, a surface coating is tailored for neural stem cell culture in order to improve proliferation on the scaffold, while maintaining the stem cell phenotype. These studies demonstrate the unique advantages of genetic engineering over traditional techniques for surface modification. In addition to their unmatched sequence fidelity, recombinant proteins can easily be modified with bioactive ligands and their organization into coherent, supramolecular structures mimics natural self-assembly processes.

  19. Toward a molecular programming language for algorithmic self-assembly

    Science.gov (United States)

    Patitz, Matthew John

    Self-assembly is the process whereby relatively simple components autonomously combine to form more complex objects. Nature exhibits self-assembly to form everything from microscopic crystals to living cells to galaxies. With a desire to both form increasingly sophisticated products and to understand the basic components of living systems, scientists have developed and studied artificial self-assembling systems. One such framework is the Tile Assembly Model introduced by Erik Winfree in 1998. In this model, simple two-dimensional square 'tiles' are designed so that they self-assemble into desired shapes. The work in this thesis consists of a series of results which build toward the future goal of designing an abstracted, high-level programming language for designing the molecular components of self-assembling systems which can perform powerful computations and form into intricate structures. The first two sets of results demonstrate self-assembling systems which perform infinite series of computations that characterize computably enumerable and decidable languages, and exhibit tools for algorithmically generating the necessary sets of tiles. In the next chapter, methods for generating tile sets which self-assemble into complicated shapes, namely a class of discrete self-similar fractal structures, are presented. Next, a software package for graphically designing tile sets, simulating their self-assembly, and debugging designed systems is discussed. Finally, a high-level programming language which abstracts much of the complexity and tedium of designing such systems, while preventing many of the common errors, is presented. The summation of this body of work presents a broad coverage of the spectrum of desired outputs from artificial self-assembling systems and a progression in the sophistication of tools used to design them. By creating a broader and deeper set of modular tools for designing self-assembling systems, we hope to increase the complexity which is

  20. Self-assembled nanostructures in oxide ceramics

    Science.gov (United States)

    Ansari, Haris Masood

    Self-assembled nanoislands in the gadolinia-doped ceria (GDC)/ yttria-stabilized zirconia (YSZ) system have recently been discovered. This dissertation is an attempt to study the mechanism by which these nanoislands form. Nanoislands in the GDC/YSZ system form via a strain based mechanism whereby the stress accumulated in the GDC-doped surface layer on the YSZ substrate is relieved by creation of self-assembled nanoislands by a mechanism similar to the ATG instability. Unlike what was previously believed, a modified surface layer is not required prior to annealing, that is, this modification can occur during annealing by surface diffusion of dopants from the GDC sources (distributed on the YSZ surface in either lithographically defined patch or powder form) with simultaneous breakup, which occurs at the hold temperature independent of the subsequent cooling. Additionally, we have developed a simple powder based process of producing nanoislands which bypasses lithography and thin film deposition setups. The versatility of the process is apparent in the fact that it allows us to study the effect of experimental parameters such as soak time, temperature, cooling rate and the effect of powder composition on nanoisland properties in a facile way. With the help of this process, we have shown that nanoislands are not peculiar to Gd containing oxide source materials on YSZ substrates and can also be produced with other source materials such as La2O3, Nd2O3, Sm 2O3, Eu2O3, Tb2O3 and even Y2O3, which is already present in the substrate and hence simplifies the system further. We have extended our work to include YSZ substrates of the (110) surface orientation and have found that instead of nanoisland arrays, we obtain an array of parallel nanobars which have their long axes oriented along the [1-10] direction on the YSZ-(110) surface. STEM EDS performed on both the bars and the nanoislands has revealed that they are solid YSZ-rich solid solutions with the dopant species and

  1. Self-assembled biomimetic superhydrophobic hierarchical arrays.

    Science.gov (United States)

    Yang, Hongta; Dou, Xuan; Fang, Yin; Jiang, Peng

    2013-09-01

    Here, we report a simple and inexpensive bottom-up technology for fabricating superhydrophobic coatings with hierarchical micro-/nano-structures, which are inspired by the binary periodic structure found on the superhydrophobic compound eyes of some insects (e.g., mosquitoes and moths). Binary colloidal arrays consisting of exemplary large (4 and 30 μm) and small (300 nm) silica spheres are first assembled by a scalable Langmuir-Blodgett (LB) technology in a layer-by-layer manner. After surface modification with fluorosilanes, the self-assembled hierarchical particle arrays become superhydrophobic with an apparent water contact angle (CA) larger than 150°. The throughput of the resulting superhydrophobic coatings with hierarchical structures can be significantly improved by templating the binary periodic structures of the LB-assembled colloidal arrays into UV-curable fluoropolymers by a soft lithography approach. Superhydrophobic perfluoroether acrylate hierarchical arrays with large CAs and small CA hysteresis can be faithfully replicated onto various substrates. Both experiments and theoretical calculations based on the Cassie's dewetting model demonstrate the importance of the hierarchical structure in achieving the final superhydrophobic surface states. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Self-assembly strategies for the synthesis of functional nanostructured materials

    Science.gov (United States)

    Perego, M.; Seguini, G.

    2016-06-01

    Self-assembly is the autonomous organization of components into patterns or structures without human intervention. This is the approach followed by nature to generate living cells and represents one of the practical strategies to fabricate ensembles of nanostructures. In static self-assembly the formation of ordered structures could require energy but once formed the structures are stable. The introduction of additional regular features in the environment could be used to template the self-assembly guiding the organization of the components and determining the final structure they form. In this regard self-assembly of block copolymers represents a potent platform for fundamental studies at the nanoscale and for application-driven investigation as a tool to fabricate functional nanostructured materials. Block copolymers can hierarchically assemble into chemically distinct domains with size and periodicity on the order of 10nm or below, offering a potentially inexpensive route to generate large-area nanostructured materials. The final structure characteristics of these materials are dictated by the properties of the elementary block copolymers, like chain length, volume fraction or degree of block incompatibility. Modern synthetic chemistry offers the possibility to design these macromolecules with very specific length scales and geometries, directly embodying in the block copolymers the code that drives their self- assembling process. The understanding of the kinetics and thermodynamics of the block copolymer self-assembly process in the bulk phase as well as in thin films represents a fundamental prerequisite toward the exploitation of these materials. Incorporating block copolymer into device fabrication procedures or directly into devices, as active elements, will lead to the development of a new generation of devices fabricated using the fundamental law of nature to our advantage in order to minimize cost and power consumption in the fabrication process

  3. Flash Light Millisecond Self-Assembly of High χ Block Copolymers for Wafer-Scale Sub-10 nm Nanopatterning.

    Science.gov (United States)

    Jin, Hyeong Min; Park, Dae Yong; Jeong, Seong-Jun; Lee, Gil Yong; Kim, Ju Young; Mun, Jeong Ho; Cha, Seung Keun; Lim, Joonwon; Kim, Jun Soo; Kim, Kwang Ho; Lee, Keon Jae; Kim, Sang Ouk

    2017-08-01

    One of the fundamental challenges encountered in successful incorporation of directed self-assembly in sub-10 nm scale practical nanolithography is the process compatibility of block copolymers with a high Flory-Huggins interaction parameter (χ). Herein, reliable, fab-compatible, and ultrafast directed self-assembly of high-χ block copolymers is achieved with intense flash light. The instantaneous heating/quenching process over an extremely high temperature (over 600 °C) by flash light irradiation enables large grain growth of sub-10 nm scale self-assembled nanopatterns without thermal degradation or dewetting in a millisecond time scale. A rapid self-assembly mechanism for a highly ordered morphology is identified based on the kinetics and thermodynamics of the block copolymers with strong segregation. Furthermore, this novel self-assembly mechanism is combined with graphoepitaxy to demonstrate the feasibility of ultrafast directed self-assembly of sub-10 nm nanopatterns over a large area. A chemically modified graphene film is used as a flexible and conformal light-absorbing layer. Subsequently, transparent and mechanically flexible nanolithography with a millisecond photothermal process is achieved leading the way for roll-to-roll processability. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Functional self-assembled lipidic systems derived from renewable resources.

    Science.gov (United States)

    Silverman, Julian R; Samateh, Malick; John, George

    2016-01-01

    Self-assembled lipidic amphiphile systems can create a variety of multi-functional soft materials with value-added properties. When employing natural reagents and following biocatalytic syntheses, self-assembling monomers may be inherently designed for degradation, making them potential alternatives to conventional and persistent polymers. By using non-covalent forces, self-assembled amphiphiles can form nanotubes, fibers, and other stimuli responsive architectures prime for further applied research and incorporation into commercial products. By viewing these lipid derivatives under a lens of green principles, there is the hope that in developing a structure-function relationship and functional smart materials that research may remain safe, economic, and efficient.

  5. Equation of State for Phospholipid Self-Assembly

    DEFF Research Database (Denmark)

    Marsh, Derek

    2016-01-01

    Phospholipid self-assembly is the basis of biomembrane stability. The entropy of transfer from water to self-assembled micelles of lysophosphatidylcholines and diacyl phosphatidylcholines with different chain lengths converges to a common value at a temperature of 44°C. The corresponding enthalpies...... of transfer converge at ∼-18°C. An equation of state for the free energy of self-assembly formulated from this thermodynamic data depends on the heat capacity of transfer as the sole parameter needed to specify a particular lipid. For lipids lacking calorimetric data, measurement of the critical micelle...

  6. Preparation and ion sensing property of the self-assembled microgels by QCM

    Directory of Open Access Journals (Sweden)

    Cao Zheng

    2018-03-01

    Full Text Available The polyanion polystyrene sulfonate (PSS, the polycation poly (allylamine hydrochloride (PAH, and the anionic poly (N-isopropylacrylamide-co-acrylic acid [P(NIPAM-co-AA] microgels were self-assembled onto the polyethylene imine (PEI adsorbed gold surfaces of quartz crystal microbalance (QCM because of the electrostatic attractions. The interactions of various metal particles including Ca2+, Bi3+, Cu2+, Zn2+, Ni2+, Sn2+, Co2+, and Cd2+ with the obtained PEI/PSS/PAH/microgel layer in aqueous solutions were evaluated by QCM. The PEI/PSS/PAH/Microgel covered QCM sensor demonstrates the lowest detection limit of 0.1 ppm in aqueous solutions and the obviously linear connection between the frequency response and Ni2+ concentration from 0.1 to 20 ppm, which is due to the complexation of Ni2+ with the carboxyl groups of microgels. Atomic force microscopy (AFM was used to reveal the morphology and stability of the self-assembled polyelectrolyte/microgel layer before and after adsorbing heavy metal ions. These self-assembled materials of polyelectrolyte/microgel layer will be helpful for manufacturing ion-selective materials for separation and identification purposes.

  7. Silk fibroin/gold nanocrystals: a new example of biopolymer-based nanocomposites

    Science.gov (United States)

    Noinville, S.; Garnier, A.; Courty, A.

    2017-05-01

    The dispersion of nanoparticles in ordered polymer nanostructures can provide control over particle location and orientation, and pave the way for tailored nanomaterials that have enhanced mechanical, electrical, or optical properties. Here we used silk fibroin, a natural biopolymer, to embed gold nanocrystals (NCs), so as to obtain well-ordered structures such as nanowires and self-assembled triangular nanocomposites. Monodisperse gold NCs synthesized in organic media are mixed to silk fibroin and the obtained nanocomposites are characterized by UV-visible spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and Infrared spectroscopy. The optical properties study of gold NCs and silk-gold nanocomposites shows that the Surface Plasmon band is blue shifted compared to gold NCs. The size and shape of NCs gold superlattices can be well controlled by the presence of silk fibroin giving nanowires and also self-assembled triangular nanocomposites as characterized by TEM, FE-SEM and AFM. The strong interaction between gold NCs and silk fibroin is also revealed by the conformation change of silk protein in presence of gold NCs, as shown by FTIR analysis. The formation of such ordered nanocomposites (gold NCs/silk fibroin) will provide new nanoplasmonic devices.

  8. Onset wear in self-assembled monolayers

    International Nuclear Information System (INIS)

    D'Acunto, Mario

    2006-01-01

    Self-assembled monolayers (SAMs) are very useful for the systematic modification of the physical, chemical and structural properties of a surface by varying the chain length, tail group and composition. Many of these properties can be studied making use of atomic force microscopy (AFM), and the interaction between the AFM probe tip and the SAMs can also be considered an excellent reference to study the fundamental properties of dissipation phenomena and onset wear for viscoelastic materials on the nanoscale. We have performed a numerical study showing that the fundamental mechanism for the onset wear is a process of nucleation of domains starting from initial defects. An SAM surface repeatedly sheared by an AFM probe tip with enough applied loads shows the formation of progressive damages nucleating in domains. The AFM induced surface damages involve primarily the formation of radicals from the carbon chain backbones, but the deformations of the chains resulting in changes of period lattice also have to be taken into consideration. The nucleation of the wear domains generally starts at the initial surface defects where the energy cohesion between chains is lower. Moreover, the presence of surface defects is consistent with the changes in lateral force increasing the probability of the activation for the removal of carbon debris from the chain backbone. The quantification of the progressive worn area is performed making use of the Kolmogorov-Johnson-Mehl-Avrami (KJMA) theory for phase transition kinetic processes. The advantage of knowing the general conditions for onset wear on the SAM surfaces can help in studying the fundamental mechanisms for the tribological properties of viscoelastic materials, in solid lubrication applications and biopolymer mechanics

  9. Optical orientation in self assembled quantum dots

    International Nuclear Information System (INIS)

    Stevens, Gregory C.

    2002-01-01

    We examined Zeeman splitting in a series of ln x Ga (1-x) As/GaAs self assembled quantum dots (SAQD's) with different pump polarisations. All these measurements were made in very low external magnetic fields where direct determination of the Zeeman splitting energy is impossible due to its small value in comparison to the photoluminescence linewidths. The use of a technique developed by M. J. Snelling allowed us to obtain the Zeeman splitting and hence the excitonic g-factors indirectly. We observed a linear low field splitting, becoming increasingly non-linear at higher fields. We attribute this non-linearity to field induced level mixing. It is believed these are the first low field measurements in these structures. A number of apparent nuclear effects in the Zeeman splitting measurements led us onto the examination of nuclear effects in these structures. The transverse and oblique Hanie effects then allowed us to obtain the sign of the electronic g-factors in two of our samples, for one sample, a (311) grown In 0.5 Ga 0.5 As/GaAs SAQD sample, we were able to ascertain the spin relaxation time, the maximum value of the nuclear field, and provide evidence of the existence of nuclear spin freezing in at least one of our samples. We have then used a novel technique investigated by D. J. Guerrier, to examine optically detected nuclear magnetic resonance in our samples. We believe this is the first such study on these structures. We could not ascertain the dipolar indium resonance signal, even though all other isotopes were seen. We have therefore suggested a number of possible mechanisms that may be responsible for the lack of an indium resonance signal. (author)

  10. Opal-like Multicolor Appearance of Self-Assembled Photonic Array.

    Science.gov (United States)

    Arnon, Zohar A; Pinotsi, Dorothea; Schmidt, Matthias; Gilead, Sharon; Guterman, Tom; Sadhanala, Aditya; Ahmad, Shahab; Levin, Aviad; Walther, Paul; Kaminski, Clemens F; Fändrich, Marcus; Kaminski Schierle, Gabriele S; Adler-Abramovich, Lihi; Shimon, Linda J W; Gazit, Ehud

    2018-06-20

    Molecular self-assembly of short peptide building blocks leads to the formation of various material architectures that may possess unique physical properties. Recent studies had confirmed the key role of biaromaticity in peptide self-assembly, with the diphenylalanine (FF) structural family as an archetypal model. Another significant direction in the molecular engineering of peptide building blocks is the use of fluorenylmethoxycarbonyl (Fmoc) modification, which promotes the assembly process and may result in nanostructures with distinctive features and macroscopic hydrogel with supramolecular features and nanoscale order. Here, we explored the self-assembly of the protected, noncoded fluorenylmethoxycarbonyl-β,β-diphenyl-Ala-OH (Fmoc-Dip) amino acid. This process results in the formation of elongated needle-like crystals with notable aromatic continuity. By altering the assembly conditions, arrays of spherical particles were formed that exhibit strong light scattering. These arrays display vivid coloration, strongly resembling the appearance of opal gemstones. However, unlike the Rayleigh scattering effect produced by the arrangement of opal, the described optical phenomenon is attributed to Mie scattering. Moreover, by controlling the solution evaporation rate, i.e., the assembly kinetics, we were able to manipulate the resulting coloration. This work demonstrates a bottom-up approach, utilizing self-assembly of a protected amino acid minimal building block, to create arrays of organic, light-scattering colorful surfaces.

  11. Modeling Textural Processes during Self-Assembly of Plant-Based Chiral-Nematic Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Yogesh K. Murugesan

    2010-12-01

    Full Text Available Biological liquid crystalline polymers are found in cellulosic, chitin, and DNA based natural materials. Chiral nematic liquid crystalline orientational order is observed frozen-in in the solid state in plant cell walls and is known as a liquid crystal analogue characterized by a helicoidal plywood architecture. The emergence of the plywood architecture by directed chiral nematic liquid crystalline self assembly has been postulated as the mechanism that leads to optimal cellulose fibril organization. In natural systems, tissue growth and development takes place in the presence of inclusions and secondary phases leaving behind characteristic defects and textures, which provide a unique testing ground for the validity of the liquid crystal self-assembly postulate. In this work, a mathematical model, based on the Landau-de Gennes theory of liquid crystals, is used to simulate defect textures arising in the domain of self assembly, due to presence of secondary phases representing plant cells, lumens and pit canals. It is shown that the obtained defect patterns observed in some plant cell walls are those expected from a truly liquid crystalline phase. The analysis reveals the nature and magnitude of the viscoelastic material parameters that lead to observed patterns in plant-based helicoids through directed self-assembly. In addition, the results provide new guidance to develop biomimetic plywoods for structural and functional applications.

  12. Self-assembly of Archimedean tilings with enthalpically and entropically patchy polygons.

    Science.gov (United States)

    Millan, Jaime A; Ortiz, Daniel; van Anders, Greg; Glotzer, Sharon C

    2014-03-25

    Considerable progress in the synthesis of anisotropic patchy nanoplates (nanoplatelets) promises a rich variety of highly ordered two-dimensional superlattices. Recent experiments of superlattices assembled from nanoplates confirm the accessibility of exotic phases and motivate the need for a better understanding of the underlying self-assembly mechanisms. Here, we present experimentally accessible, rational design rules for the self-assembly of the Archimedean tilings from polygonal nanoplates. The Archimedean tilings represent a model set of target patterns that (i) contain both simple and complex patterns, (ii) are comprised of simple regular shapes, and (iii) contain patterns with potentially interesting materials properties. Via Monte Carlo simulations, we propose a set of design rules with general applicability to one- and two-component systems of polygons. These design rules, specified by increasing levels of patchiness, correspond to a reduced set of anisotropy dimensions for robust self-assembly of the Archimedean tilings. We show for which tilings entropic patches alone are sufficient for assembly and when short-range enthalpic interactions are required. For the latter, we show how patchy these interactions should be for optimal yield. This study provides a minimal set of guidelines for the design of anisostropic patchy particles that can self-assemble all 11 Archimedean tilings.

  13. Programming Hierarchical Self-Assembly of Patchy Particles into Colloidal Crystals via Colloidal Molecules.

    Science.gov (United States)

    Morphew, Daniel; Shaw, James; Avins, Christopher; Chakrabarti, Dwaipayan

    2018-03-27

    Colloidal self-assembly is a promising bottom-up route to a wide variety of three-dimensional structures, from clusters to crystals. Programming hierarchical self-assembly of colloidal building blocks, which can give rise to structures ordered at multiple levels to rival biological complexity, poses a multiscale design problem. Here we explore a generic design principle that exploits a hierarchy of interaction strengths and employ this design principle in computer simulations to demonstrate the hierarchical self-assembly of triblock patchy colloidal particles into two distinct colloidal crystals. We obtain cubic diamond and body-centered cubic crystals via distinct clusters of uniform size and shape, namely, tetrahedra and octahedra, respectively. Such a conceptual design framework has the potential to reliably encode hierarchical self-assembly of colloidal particles into a high level of sophistication. Moreover, the design framework underpins a bottom-up route to cubic diamond colloidal crystals, which have remained elusive despite being much sought after for their attractive photonic applications.

  14. Spiral patterns of gold nanoclusters in silicon (100) produced by metal vapour vacuum arc implantation of gold ions

    International Nuclear Information System (INIS)

    Venkatachalam, Dinesh Kumar; Sood, Dinesh Kumar; Bhargava, Suresh Kumar

    2008-01-01

    Self-assembled gold nanoclusters are attractive building blocks for future nanoscale sensors and optical devices due to their exciting catalytic properties. In this work, we report direct bottom-up synthesis of spiral patterns of gold nanoclusters in silicon (100) substrates by Au ion implantation followed by thermal annealing. This unique phenomenon is observed only above a critical threshold implantation dose and annealing temperature. Systematic study by electron microscopy, analytical x-ray diffraction and atomic force microscopy shows the temperature- and time-dependent nucleation, growth of Au nanoclusters and evolution of the spiral patterns. The observed patterns of gold nanoclusters bear a resemblance to the spiral growth prevalent in some directionally solidified eutectic alloys. Based on this systematic study of the growth and morphology of nanoclusters, a tentative model has been proposed for the formation mechanism of this unusual self-assembled pattern in an amorphous Si/Au system. This model shows that melting of the implanted layer is essential and without which no spiral patterns are observed. A better understanding of this self-assembly process will open up new ways to fabricate ordered arrays of gold nanoclusters in silicon substrates for seeding selective growth of one-dimensional nanostructures

  15. Self-assembled synthesis of 3D Cu(In1 − xGax)Se2 nanoarrays by one-step electroless deposition into ordered AAO template

    International Nuclear Information System (INIS)

    Zhang, Bin; Zheng, Maojun; Xiong, Zuzhou; Zhu, Changqing; Li, Hong; Wang, Faze; Shen, Wenzhong; Zhou, Tao; Ma, Li

    2014-01-01

    Quaternary nanostructured Cu(In 1 − x Ga x )Se 2 (CIGS) arrays were successfully fabricated via a novel and simple solution-based protocol on the electroless deposition method, using a flexible, highly ordered anodic aluminium oxide (AAO) substrate. This method does not require electric power, complicated sensitization processes, or complexing agents, but provides nearly 100% pore fill factor to AAO templates. The field emission scanning electron microscopy (FE-SEM) images show that we obtained uniformly three-dimensional nanostructured CIGS arrays, and we can tailor the diameter and wall thicknesses of the nanostructure by adjusting the pore diameter of the AAO and metal Mo layer. Their chemical composition was determined by energy-dispersive spectroscopy analysis, which is very close to the stoichiometric value. The Raman spectroscopy, x-ray diffraction (XRD) pattern, and transmission electron microscopy (TEM) further confirm the formation of nanostructured CIGS with prominent chalcopyrite structure. The nanostructured CIGS arrays can support the design of low-cost, highlight-trapping, and enhanced carrier collection nanostructured solar cells. (paper)

  16. Self-assembled metallic nanoparticle template — a new approach of surface nanostructuring at nanometer scale

    Directory of Open Access Journals (Sweden)

    A. Taleb

    2017-09-01

    Full Text Available In the present work, the formation of silver and copper nanostructures on highly oriented pyrolytic graphite (HOPG modified with self-assembled gold nanoparticles (Au NPs is demonstrated. Surface patterning with nanometer resolution was achieved. Different methods such as field emission scanning electron microscopy (FEGSEM, energy dispersive spectrometry (EDS and X-ray photoelectron spectroscopy (XPS were used to illustrate a selective deposition of silver and copper on Au NPs. The mechanism of silver and copper ions reduction on Au NP with n-dodecanethiol coating is discussed.

  17. Self-Assembled Nanostructured Health Monitoring Sensors, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the proposed NASA SBIR program is to design, fabricate and evaluate the performance of self-assembled nanostructured sensors for the health...

  18. Self-Assembling Wireless Autonomous Reconfigurable Modules (SWARM), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Payload Systems Inc. and the MIT Space Systems Laboratory propose Self-assembling, Wireless, Autonomous, Reconfigurable Modules (SWARM) as an innovative approach to...

  19. Self-Assembly of Rod-Coil Block Copolymers

    National Research Council Canada - National Science Library

    Jenekhe, S

    1999-01-01

    ... the self-assembly of new rod-coil diblock, rod- coil-rod triblock, and coil-rod-coil triblock copolymers from solution and the resulting discrete and periodic mesostmctares with sizes in the 100...

  20. Preparation and self-assembly of amphiphilic polylysine dendrons

    DEFF Research Database (Denmark)

    Mirsharghi, Sahar; Knudsen, Kenneth D.; Bagherifam, Shahla

    2016-01-01

    Polylysine dendrons with lipid tails prepared by divergent solid-phase synthesis showed self-assembling properties in aqueous solutions., Herein, we present the synthesis of new amphiphilic polylysine dendrons with variable alkyl chain lengths (C1–C18) at the C-terminal. The dendrons were...... synthesized in moderate to quantitative yields by divergent solid-phase synthesis (SPS) employing an aldehyde linker. The self-assembling properties of the dendrons in aqueous solutions were studied by small angle neutron scattering (SANS) and dynamic light scattering (DLS). The self-assembling properties...... were influenced by the length of the alkyl chain and the generation number (Gn). Increasing the temperature and concentration did not have significant impact on the hydrodynamic diameter, but the self-assembling properties were influenced by the pH value. This demonstrated the need for positively...

  1. Enabling complex nanoscale pattern customization using directed self-assembly.

    Science.gov (United States)

    Doerk, Gregory S; Cheng, Joy Y; Singh, Gurpreet; Rettner, Charles T; Pitera, Jed W; Balakrishnan, Srinivasan; Arellano, Noel; Sanders, Daniel P

    2014-12-16

    Block copolymer directed self-assembly is an attractive method to fabricate highly uniform nanoscale features for various technological applications, but the dense periodicity of block copolymer features limits the complexity of the resulting patterns and their potential utility. Therefore, customizability of nanoscale patterns has been a long-standing goal for using directed self-assembly in device fabrication. Here we show that a hybrid organic/inorganic chemical pattern serves as a guiding pattern for self-assembly as well as a self-aligned mask for pattern customization through cotransfer of aligned block copolymer features and an inorganic prepattern. As informed by a phenomenological model, deliberate process engineering is implemented to maintain global alignment of block copolymer features over arbitrarily shaped, 'masking' features incorporated into the chemical patterns. These hybrid chemical patterns with embedded customization information enable deterministic, complex two-dimensional nanoscale pattern customization through directed self-assembly.

  2. Understanding emergent functions in self-assembled fibrous networks

    Science.gov (United States)

    Sinko, Robert; Keten, Sinan

    2015-09-01

    Understanding self-assembly processes of nanoscale building blocks and characterizing their properties are both imperative for designing new hierarchical, network materials for a wide range of structural, optoelectrical, and transport applications. Although the characterization and choices of these material building blocks have been well studied, our understanding of how to precisely program a specific morphology through self-assembly still must be significantly advanced. In the recent study by Xie et al (2015 Nanotechnology 26 205602), the self-assembly of end-functionalized nanofibres is investigated using a coarse-grained molecular model and offers fundamental insight into how to control the structural morphology of nanofibrous networks. Varying nanoscale networks are observed when the molecular interaction strength is changed and the findings suggest that self-assembly through the tuning of molecular interactions is a key strategy for designing nanostructured networks with specific topologies.

  3. Synthesis and self-assembly of complex hollow materials

    KAUST Repository

    Zeng, Hua Chun

    2011-01-01

    aspects of this field of development. The synthetic methodologies can be broadly divided into three major categories: (i) template-assisted synthesis, (ii) self-assembly with primary building blocks, and (iii) induced matter relocations. In most cases

  4. RT Self-assembly of Silica Nanoparticles on Optical Fibres

    DEFF Research Database (Denmark)

    Canning, John; Lindoy, Lachlan; Huyang, George

    2013-01-01

    The room temperature deposition of self-assembling silica nanoparticles onto D-shaped optical fibres x201c;D-fibrex201d;), drawn from milled preforms fabricated by modified chemical vapor deposition, is studied and preliminary results reported here.......The room temperature deposition of self-assembling silica nanoparticles onto D-shaped optical fibres x201c;D-fibrex201d;), drawn from milled preforms fabricated by modified chemical vapor deposition, is studied and preliminary results reported here....

  5. Mesoscopic Self-Assembly: A Shift to Complexity

    Directory of Open Access Journals (Sweden)

    Massimo eMastrangeli

    2015-06-01

    Full Text Available By focusing on the construction of thermodynamically stable structures, the self-assembly of mesoscopic systems has proven capable of formidable achievements in the bottom-up engineering of micro- and nanosystems. Yet, inspired by an analogous evolution in supramolecular chemistry, synthetic mesoscopic self-assembly may have a lot more ahead, within reach of a shift toward fully three-dimensional architectures, collective interactions of building blocks and kinetic control. All over these challenging fronts, complexity holds the key.

  6. Construction of Supramolecular Architectures via Self-assembly

    Institute of Scientific and Technical Information of China (English)

    Takeharu; Haino

    2007-01-01

    1 Results In this paper we report supramolecular polymeric nano networks formed by the molecular-recognition-directed self-assembly between a calix[5]arene and C60[1]. Covalently-linked double-calix[5]arenes take up C60 into their cavities[2]. This complementary interaction creates a strong non-covalent bonding; thus,the iterative self-assembly between dumbbell fullerene 1 and ditopic host 2 can produce the supramolecular polymer networks (See Fig.1).

  7. In Situ Atomic Force Microscopy Studies on Nucleation and Self-Assembly of Biogenic and Bio-Inspired Materials

    Directory of Open Access Journals (Sweden)

    Cheng Zeng

    2017-08-01

    Full Text Available Through billions of years of evolution, nature has been able to create highly sophisticated and ordered structures in living systems, including cells, cellular components and viruses. The formation of these structures involves nucleation and self-assembly, which are fundamental physical processes associated with the formation of any ordered structure. It is important to understand how biogenic materials self-assemble into functional and highly ordered structures in order to determine the mechanisms of biological systems, as well as design and produce new classes of materials which are inspired by nature but equipped with better physiochemical properties for our purposes. An ideal tool for the study of nucleation and self-assembly is in situ atomic force microscopy (AFM, which has been widely used in this field and further developed for different applications in recent years. The main aim of this work is to review the latest contributions that have been reported on studies of nucleation and self-assembly of biogenic and bio-inspired materials using in situ AFM. We will address this topic by introducing the background of AFM, and discussing recent in situ AFM studies on nucleation and self-assembly of soft biogenic, soft bioinspired and hard materials.

  8. Side-chain-controlled self-assembly of polystyrene-polypeptide miktoarm star copolymers

    KAUST Repository

    Junnila, Susanna

    2012-03-27

    We show how the self-assembly of miktoarm star copolymers can be controlled by modifying the side chains of their polypeptide arms, using A 2B and A 2B 2 type polymer/polypeptide hybrids (macromolecular chimeras). Initially synthesized PS 2PBLL and PS 2PBLL 2 (PS, polystyrene; PBLL, poly(ε-tert-butyloxycarbonyl-l-lysine) ) miktoarms were first deprotected to PS 2PLLHCl and PS 2PLLHCl 2 miktoarms (PLLHCl, poly(l-lysine hydrochloride)) and then complexed ionically with sodium dodecyl sulfonate (DS) to give the supramolecular complexes PS 2PLL(DS) and PS 2(PLL(DS)) 2. The solid-state self-assemblies of these six miktoarm systems were studied by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and small- and wide-angle X-ray scattering (SAXS, WAXS). The side chains of the polypeptide arms were observed to have a large effect on the solubility, polypeptide conformation, and self-assembly of the miktoarms. Three main categories were observed: (i) lamellar self-assemblies at the block copolymer length scale with packed layers of α-helices in PS 2PBLL and PS 2PBLL 2; (ii) charge-clustered polypeptide micelles with less-defined conformations in a nonordered lattice within a PS matrix in PS 2PLLHCl and PS 2PLLHCl 2; (iii) lamellar polypeptide-surfactant self-assemblies with β-sheet conformation in PS 2PLL(DS) and PS 2(PLL(DS)) 2 which dominate over the formation of block copolymer scale structures. Differences between the 3- and 4-arm systems illustrate how packing frustration between the coil-like PS arms and rigid polypeptide conformations can be relieved by the right number of arms, leading to differences in the extent of order. © 2012 American Chemical Society.

  9. Design strategies for self-assembly of discrete targets

    International Nuclear Information System (INIS)

    Madge, Jim; Miller, Mark A.

    2015-01-01

    Both biological and artificial self-assembly processes can take place by a range of different schemes, from the successive addition of identical building blocks to hierarchical sequences of intermediates, all the way to the fully addressable limit in which each component is unique. In this paper, we introduce an idealized model of cubic particles with patterned faces that allows self-assembly strategies to be compared and tested. We consider a simple octameric target, starting with the minimal requirements for successful self-assembly and comparing the benefits and limitations of more sophisticated hierarchical and addressable schemes. Simulations are performed using a hybrid dynamical Monte Carlo protocol that allows self-assembling clusters to rearrange internally while still providing Stokes-Einstein-like diffusion of aggregates of different sizes. Our simulations explicitly capture the thermodynamic, dynamic, and steric challenges typically faced by self-assembly processes, including competition between multiple partially completed structures. Self-assembly pathways are extracted from the simulation trajectories by a fully extendable scheme for identifying structural fragments, which are then assembled into history diagrams for successfully completed target structures. For the simple target, a one-component assembly scheme is most efficient and robust overall, but hierarchical and addressable strategies can have an advantage under some conditions if high yield is a priority

  10. Self-assembly of ordered graphene nanodot arrays

    DEFF Research Database (Denmark)

    Camilli, Luca; Jørgensen, Jakob H.; Tersoff, Jerry

    2017-01-01

    The ability to fabricate nanoscale domains of uniform size in two-dimensional materials could potentially enable new applications in nanoelectronics and the development of innovative metamaterials. However, achieving even minimal control over the growth of two-dimensional lateral heterostructures...

  11. Self-assembled fluids with order-parameter- dependent mobility ...

    Indian Academy of Sciences (India)

    process, the structure factor exhibits multiscaling behavior with characteristic length scale. (t/ ln t)1/2(2α+3). ... Morphological instability; phase changes; nonequilibrium; irreversible ther- ..... M S Green (Academic Press, New York, 1976) vol. 6.

  12. Percolation Diffusion into Self-Assembled Mesoporous Silica Microfibres

    Directory of Open Access Journals (Sweden)

    John Canning

    2014-03-01

    Full Text Available Percolation diffusion into long (11.5 cm self-assembled, ordered mesoporous microfibres is studied using optical transmission and laser ablation inductive coupled mass spectrometry (LA-ICP-MS. Optical transmission based diffusion studies reveal rapid penetration (<5 s, D > 80 μm2∙s−1 of Rhodamine B with very little percolation of larger molecules such as zinc tetraphenylporphyrin (ZnTPP observed under similar loading conditions. The failure of ZnTPP to enter the microfibre was confirmed, in higher resolution, using LA-ICP-MS. In the latter case, LA-ICP-MS was used to determine the diffusion of zinc acetate dihydrate, D~3 × 10−4 nm2∙s−1. The large differences between the molecules are accounted for by proposing ordered solvent and structure assisted accelerated diffusion of the Rhodamine B based on its hydrophilicity relative to the zinc compounds. The broader implications and applications for filtration, molecular sieves and a range of devices and uses are described.

  13. Self-assembly strategies for the synthesis of functional nanostructured materials

    International Nuclear Information System (INIS)

    Perego, M.; Seguini, G.

    2016-01-01

    Self-assembly is the autonomous organization of components into patterns or structures without human intervention. This is the approach followed by nature to generate living cells and represents one of the practical strategies to fabricate ensembles of nanostructures. In static self-assembly the formation of ordered structures could require energy but once formed the structures are stable. The introduction of additional regular features in the environment could be used to template the self-assembly guiding the organization of the components and determining the final structure they form. In this regard self-assembly of block copolymers represents a potent platform for fundamental studies at the nanoscale and for application-driven investigation as a tool to fabricate functional nanostructured materials. Block copolymers can hierarchically assemble into chemically distinct domains with size and periodicity on the order of 10 nm or below, offering a potentially inexpensive route to generate large-area nanostructured materials. The final structure characteristics of these materials are dictated by the properties of the elementary block copolymers, like chain length, volume fraction or degree of block incompatibility. Modern synthetic chemistry offers the possibility to design these macromolecules with very specific length scales and geometries, directly embodying in the block copolymers the code that drives their self- assembling process. The understanding of the kinetics and thermodynamics of the block copolymer selfassembly process in the bulk phase as well as in thin films represents a fundamental prerequisite toward the exploitation of these materials. Incorporating block copolymer into device fabrication procedures or directly into devices, as active elements, will lead to the development of a new generation of devices fabricated using the fundamental law of nature to our advantage in order to minimize cost and power consumption in the fabrication process

  14. Coevolutionary constraints in the sequence-space of macromolecular complexes reflect their self-assembly pathways.

    Science.gov (United States)

    Mallik, Saurav; Kundu, Sudip

    2017-07-01

    Is the order in which biomolecular subunits self-assemble into functional macromolecular complexes imprinted in their sequence-space? Here, we demonstrate that the temporal order of macromolecular complex self-assembly can be efficiently captured using the landscape of residue-level coevolutionary constraints. This predictive power of coevolutionary constraints is irrespective of the structural, functional, and phylogenetic classification of the complex and of the stoichiometry and quaternary arrangement of the constituent monomers. Combining this result with a number of structural attributes estimated from the crystal structure data, we find indications that stronger coevolutionary constraints at interfaces formed early in the assembly hierarchy probably promotes coordinated fixation of mutations that leads to high-affinity binding with higher surface area, increased surface complementarity and elevated number of molecular contacts, compared to those that form late in the assembly. Proteins 2017; 85:1183-1189. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Self-Assembly of Narrowly Dispersed Brush Diblock Copolymers with Domain Spacing more than 100 nm

    Science.gov (United States)

    Gu, Weiyin; Sveinbjornsson, Benjamin; Hong, Sung Woo; Grubbs, Robert; Russell, Thomas

    2012-02-01

    Self-assembled structures of high molecular weight (MW), narrow molecular weight distribution brush block copolymers containing polylactic acid (PLA) and polystyrene (PS) side chains with similar MWs were studied in both the melt and thin films. The polynorbornene-backbone-based brush diblock copolymers containing approximately equal volume fractions of each block self-assembled into highly ordered lamellae with domain spacing over 100 nm, as revealed by SAXS, GISAXS and AFM. The domain size increased approximately linearly with backbone length, which indicated an extended conformation of the backbone in the ordered state. The length of side chains also played a significant role in terms of controlling the domain size. As the degree of polymerization (DP) increased, the symmetric brush diblock copolymers with longer side chains tended to form larger lamellar microdomains in comparison to those that have the same DP but shorter side chains.

  16. Designing spatial correlation of quantum dots: towards self-assembled three-dimensional structures

    International Nuclear Information System (INIS)

    Bortoleto, J R R; Zelcovit, J G; Gutierrez, H R; Bettini, J; Cotta, M A

    2008-01-01

    Buried two-dimensional arrays of InP dots were used as a template for the lateral ordering of self-assembled quantum dots. The template strain field can laterally organize compressive (InAs) as well as tensile (GaP) self-assembled nanostructures in a highly ordered square lattice. High-resolution transmission electron microscopy measurements show that the InAs dots are vertically correlated to the InP template, while the GaP dots are vertically anti-correlated, nucleating in the position between two buried InP dots. Finite InP dot size effects are observed to originate InAs clustering but do not affect GaP dot nucleation. The possibility of bilayer formation with different vertical correlations suggests a new path for obtaining three-dimensional pseudocrystals

  17. Micellar Self-Assembly of Block Copolymers for Fabrication of Nanostructured Membranes

    KAUST Repository

    Marques, Debora S.

    2013-11-01

    This research work examines the process of block copolymer membrane fabrication by self-assembly combined by non-solvent induced phase separation. Self-assembly takes place from the preparation of the primordial solution until the moment of immersion in a non-solvent bath. These mechanisms are driven thermodynamically but are limited by kinetic factors. It is shown in this work how the ordering of the assembly of micelles is improved by the solution parameters such as solvent quality and concentration of block copolymer. Order transitions are detected, yielding changes in the morphology. The evaporation of the solvents after casting is demonstrated to be essential to reach optimum membrane structure. The non-solvent bath stops the phase separation at an optimum evaporation time.

  18. Self-assembly scenarios of patchy colloidal particles in two dimensions

    International Nuclear Information System (INIS)

    Doppelbauer, Guenther; Bianchi, Emanuela; Kahl, Gerhard

    2010-01-01

    We have investigated the self-assembly scenario of patchy colloidal particles in a two-dimensional system. The energetically most favourable ordered particle arrangements have been identified via an optimization tool that is based on genetic algorithms. Assuming different simple models for patchy colloidal particles, which include binary mixtures as well as attraction and repulsion between the patches, we could identify a broad variety of highly non-trivial ordered structures. The strategies of the systems to self-assemble become evident from a systematic variation of the pressure: (i) saturation of patch bonds at low pressure and close packing at high pressure and (ii) for intermediate pressure values, the strategy is governed by a trade-off between these two energetic aspects. The present study is yet another demonstration of the efficiency and the high reliability of genetic algorithms as versatile optimization tools.

  19. Nano-structured micropatterns by combination of block copolymer self-assembly and UV photolithography

    International Nuclear Information System (INIS)

    Gorzolnik, B; Mela, P; Moeller, M

    2006-01-01

    A procedure for the fabrication of nano-structured micropatterns by direct UV photo-patterning of a monolayer of a self-assembled block copolymer/transition metal hybrid structure is described. The method exploits the selective photochemical modification of a self-assembled monolayer of hexagonally ordered block copolymer micelles loaded with a metal precursor salt. Solvent development of the monolayer after irradiation results in the desired pattern of micelles on the surface. Subsequent plasma treatment of the pattern leaves ordered metal nanodots. The presented technique is a simple and low-cost combination of 'top-down' and 'bottom-up' approaches that allows decoration of large areas with periodic and aperiodic patterns of nano-objects, with good control over two different length scales: nano- and micrometres

  20. Self-Assembly of Protein Monolayers Engineered for Improved Monoclonal Immunoglobulin G Binding

    Directory of Open Access Journals (Sweden)

    Jeremy H. Lakey

    2011-08-01

    Full Text Available Bacterial outer membrane proteins, along with a filling lipid molecule can be modified to form stable self-assembled monolayers on gold. The transmembrane domain of Escherichia coli outer membrane protein A has been engineered to create a scaffold protein to which functional motifs can be fused. In earlier work we described the assembly and structure of an antibody-binding array where the Z domain of Staphylococcus aureus protein A was fused to the scaffold protein. Whilst the binding of rabbit polyclonal immunoglobulin G (IgG to the array is very strong, mouse monoclonal IgG dissociates from the array easily. This is a problem since many immunodiagnostic tests rely upon the use of mouse monoclonal antibodies. Here we describe a strategy to develop an antibody-binding array that will bind mouse monoclonal IgG with lowered dissociation from the array. A novel protein consisting of the scaffold protein fused to two pairs of Z domains separated by a long flexible linker was manufactured. Using surface plasmon resonance the self-assembly of the new protein on gold and the improved binding of mouse monoclonal IgG were demonstrated.

  1. Screening of self-assembled monolayer for aflatoxin B1 detection using immune-capacitive sensor

    Directory of Open Access Journals (Sweden)

    Alvaro V. Gutierrez R

    2015-12-01

    Full Text Available A capacitive biosensor was used for detection of aflatoxin B1. Two different methods for cleaning gold electrodes were evaluated using cyclic voltammetry in the presence of ferricyanide as redox couple. The methods involve use of a sequence of cleaning steps avoiding the use of Piranha solution and plasma cleaner. Anti-aflatoxin B1 was immobilized on self-assembled monolayers (SAM. The immune-capacitive biosensor is able to detect aflatoxin B1 concentrations in a linear range of 3.2 × 10−12 M to 3.2 × 10−9 M when thiourea was used to form the SAM; 3.2 × 10−9 M to 3.2 × 10−7 M when thioctic acid was used. When the gold surface was isolated with tyramine-electropolymerization linear ranges of 3.2 × 10−13 M to 3.2 × 10−7 M and 3.2 × 10−9 M to 3.2 × 10−7 M where obtained, respectively. The results obtained show the difference in linear range, limit of detection, and limit of quantification when different self-assembled monolayers are used for aflatoxin B1 detection.

  2. Self-assembly Ag nanoparticle monolayer film as SERS Substrate for pesticide detection

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Li, E-mail: zhlisuzh@163.com [School of Chemistry and Life Science, Anhui Key Laboratory of Spin Electron and Nanomaterials (Cultivating Base), Suzhou University, SuZhou 234000 (China)

    2013-04-01

    A self-assembled protocol is introduced to provide effective platforms for the fabrication of ordered Ag nanosized monolayer film. The assembled Ag nanosized monolayer film was characterized using scanning electronic microscopy and surface-enhanced Raman scattering (SERS). The results show that the assembled SERS substrate own excellent Raman enhancement and reproducibility. The synthesized SERS-active substrate was further used to detect methyl-parathion, and the limitation of detection can reach 10{sup −7} M.

  3. Epitaxially Grown Ultra-Flat Self-Assembling Monolayers with Dendrimers

    Directory of Open Access Journals (Sweden)

    Takane Imaoka

    2018-02-01

    Full Text Available Mono-molecular films formed by physical adsorption and dendrimer self-assembly were prepared on various substrate surfaces. It was demonstrated that a uniform dendrimer-based monolayer on the subnanometer scale can be easily constructed via simple dip coating. Furthermore, it was shown that an epitaxially grown monolayer film reflecting the crystal structure of the substrate (highly ordered pyrolytic graphite (HOPG can also be formed by aligning specific conditions.

  4. Directed Self-assembly of Block Copolymer with Sub-15 nm Domain Spacing Using Nanoimprinted Photoresist Templates

    Science.gov (United States)

    Sun, Zhiwei; Chen, Zhenbin; Zhang, Wenxu; Coughlin, E. Bryan; Xiao, Shuaigang; Russell, Thomas

    There has been increasing interest in preparing block copolymer thin films with ultra-small domain spacings for use as etching masks for ultra-high resolution nanolithography. One method to prepare block copolymer materials with small feature sizes is salt doping, increasing the Flory-Huggins interaction and allowing microphase separation to be maintained at lower molecular weights. Lamellae-forming P2VP- b-PS- b-P2VP block copolymer with various molecular weight was synthesized using RAFT polymerization with a dual functional chain transfer agent. Copper (II) Chloride or Gold (III) chloride was found to be selectively associated with P2VP block and increase the unfavorable interactions between PS and P2VP blocks, driving the disordered block copolymer into the ordered state. A 14 nm lamellar spacing of P2VP- b-PS- b-P2VP thin film was prepared using copper (II) Chloride doping after acetone vapor annealing on neutral brushes. Metallic nano-wire arrays were prepared after selective infiltration of platinum salt into the P2VP domain and oxygen plasma treatment. The directed self-assembly of salt doped P2VP- b-PS- b-P2VP triblock copolymer having long-rang lateral order on nanoimprinted photoresist templates with shallow trenches was also studied.

  5. Self-Assembly of Protein Nanostructures to Enhance Biosensor Sensitivity

    Science.gov (United States)

    Olsen, Bradley; Dong, Xuehui; Obermeyer, Allie

    The Langmuir adsorption isotherm predicts that the number of bound species on a surface at a given concentration will be directly proportional to the number of binding sites on the surface. Therefore, the number of binding events in a biosensor may be increased at a given analyte concentration if the surface density of binding domains is increased. Here, we demonstrate the formation of block copolymers where one block is a human IgG antibody or a nanobody and self-assemble these molecules into nanostructured films with a high density of binding sites. The type of nanostructure formed and the rate of transport through the protein-polymer layers are explored as a function of coil fraction of the protein-polymer conjugate block copolymers, showing optima for transport and assembly that depend upon the identity of the protein. For small enough analytes, binding to the antibodies and nanobodies is linear with film thickness, indicating that the entire film is accessible. Consistent with the enhanced number of binding sites and the prediction of the Langmuir isotherm, the films improve sensitivity by several orders of magnitude relative to chemisorbed protein layers used in current sensor designs. Current research is integrating this new material technology into prototype sensors. Work supported by the Air Force Office of Scientific Reesearch (AFOSR).

  6. Electrochemical characterization of mixed self-assembled films of water-soluble single-walled carbon nanotube-poly(m-aminobenzene sulfonic acid) and Iron(II) tetrasulfophthalocyanine

    CSIR Research Space (South Africa)

    Agboola, BO

    2010-09-01

    Full Text Available The redox activities of water-soluble iron(II) tetrasulfophthalocyanine (FeTSPc) and single-walled carbon nanotube-poly(m-aminobenzene sulfonic acid) (SWCNT-PABS) adsorbed on a gold surface precoated with a self-assembled monolayer (SAM) of 2...

  7. Three-Dimensional Self-Assembled Photonic Crystal Waveguide

    Science.gov (United States)

    Baek, Kang-Hyun

    Photonic crystals (PCs), two- or three-dimensionally periodic, artificial, and dielectric structures, have a specific forbidden band for electromagnetic waves, referred to as photonic bandgap (PBG). The PBG is analogous to the electronic bandgap in natural crystal structures with periodic atomic arrangement. A well-defined and embedded planar, line, or point defect within the PCs causes a break in its structural periodicity, and introduces a state in the PBG for light localization. It offers various applications in integrated optics and photonics including optical filters, sharp bending light guides and very low threshold lasers. Using nanofabrication processes, PCs of the 2-D slab-type and 3-D layer-by-layer structures have been investigated widely. Alternatively, simple and low-cost self-assembled PCs with full 3-D PBG, inverse opals, have been suggested. A template with face centered cubic closed packed structure, opal, may initially be built by self-assembly of colloidal spheres, and is selectively removed after infiltrating high refractive index materials into the interstitials of spheres. In this dissertation, the optical waveguides utilizing the 3-D self-assembled PCs are discussed. The waveguides were fabricated by microfabrication technology. For high-quality colloidal silica spheres and PCs, reliable synthesis, self-assembly, and characterization techniques were developed. Its theoretical and experimental demonstrations are provided and correlated. They suggest that the self-assembled PCs with PBG are feasible for the applications in integrated optics and photonics.

  8. Physical principles for DNA tile self-assembly.

    Science.gov (United States)

    Evans, Constantine G; Winfree, Erik

    2017-06-19

    DNA tiles provide a promising technique for assembling structures with nanoscale resolution through self-assembly by basic interactions rather than top-down assembly of individual structures. Tile systems can be programmed to grow based on logical rules, allowing for a small number of tile types to assemble large, complex assemblies that can retain nanoscale resolution. Such algorithmic systems can even assemble different structures using the same tiles, based on inputs that seed the growth. While programming and theoretical analysis of tile self-assembly often makes use of abstract logical models of growth, experimentally implemented systems are governed by nanoscale physical processes that can lead to very different behavior, more accurately modeled by taking into account the thermodynamics and kinetics of tile attachment and detachment in solution. This review discusses the relationships between more abstract and more physically realistic tile assembly models. A central concern is how consideration of model differences enables the design of tile systems that robustly exhibit the desired abstract behavior in realistic physical models and in experimental implementations. Conversely, we identify situations where self-assembly in abstract models can not be well-approximated by physically realistic models, putting constraints on physical relevance of the abstract models. To facilitate the discussion, we introduce a unified model of tile self-assembly that clarifies the relationships between several well-studied models in the literature. Throughout, we highlight open questions regarding the physical principles for DNA tile self-assembly.

  9. Measuring excess free energies of self-assembled membrane structures.

    Science.gov (United States)

    Norizoe, Yuki; Daoulas, Kostas Ch; Müller, Marcus

    2010-01-01

    Using computer simulation of a solvent-free, coarse-grained model for amphiphilic membranes, we study the excess free energy of hourglass-shaped connections (i.e., stalks) between two apposed bilayer membranes. In order to calculate the free energy by simulation in the canonical ensemble, we reversibly transfer two apposed bilayers into a configuration with a stalk in three steps. First, we gradually replace the intermolecular interactions by an external, ordering field. The latter is chosen such that the structure of the non-interacting system in this field closely resembles the structure of the original, interacting system in the absence of the external field. The absence of structural changes along this path suggests that it is reversible; a fact which is confirmed by expanded-ensemble simulations. Second, the external, ordering field is changed as to transform the non-interacting system from the apposed bilayer structure to two-bilayers connected by a stalk. The final external field is chosen such that the structure of the non-interacting system resembles the structure of the stalk in the interacting system without a field. On the third branch of the transformation path, we reversibly replace the external, ordering field by non-bonded interactions. Using expanded-ensemble techniques, the free energy change along this reversible path can be obtained with an accuracy of 10(-3)k(B)T per molecule in the n VT-ensemble. Calculating the chemical potential, we obtain the free energy of a stalk in the grandcanonical ensemble, and employing semi-grandcanonical techniques, we calculate the change of the excess free energy upon altering the molecular architecture. This computational strategy can be applied to compute the free energy of self-assembled phases in lipid and copolymer systems, and the excess free energy of defects or interfaces.

  10. Hydrolysis of Surfactants Containing Ester Bonds: Modulation of Reaction Kinetics and Important Aspects of Surfactant Self-Assembly

    Science.gov (United States)

    Lundberg, Dan; Stjerndahl, Maria

    2011-01-01

    The effects of self-assembly on the hydrolysis kinetics of surfactants that contain ester bonds are discussed. A number of examples on how reaction rates and apparent reaction orders can be modulated by changes in the conditions, including an instance of apparent zero-order kinetics, are presented. Furthermore, it is shown that the examples on…

  11. Block copolymer self-assembly-directed synthesis of mesoporous gyroidal superconductors.

    Science.gov (United States)

    Robbins, Spencer W; Beaucage, Peter A; Sai, Hiroaki; Tan, Kwan Wee; Werner, Jörg G; Sethna, James P; DiSalvo, Francis J; Gruner, Sol M; Van Dover, Robert B; Wiesner, Ulrich

    2016-01-01

    Superconductors with periodically ordered mesoporous structures are expected to have properties very different from those of their bulk counterparts. Systematic studies of such phenomena to date are sparse, however, because of a lack of versatile synthetic approaches to such materials. We demonstrate the formation of three-dimensionally continuous gyroidal mesoporous niobium nitride (NbN) superconductors from chiral ABC triblock terpolymer self-assembly-directed sol-gel-derived niobium oxide with subsequent thermal processing in air and ammonia gas. Superconducting materials exhibit a critical temperature (T c) of about 7 to 8 K, a flux exclusion of about 5% compared to a dense NbN solid, and an estimated critical current density (J c) of 440 A cm(-2) at 100 Oe and 2.5 K. We expect block copolymer self-assembly-directed mesoporous superconductors to provide interesting subjects for mesostructure-superconductivity correlation studies.

  12. Photonic Resins: Designing Optical Appearance via Block Copolymer Self-Assembly.

    Science.gov (United States)

    Song, Dong-Po; Jacucci, Gianni; Dundar, Feyza; Naik, Aditi; Fei, Hua-Feng; Vignolini, Silvia; Watkins, James J

    2018-03-27

    Despite a huge variety of methodologies having been proposed to produce photonic structures by self-assembly, the lack of an effective fabrication approach has hindered their practical uses. These approaches are typically limited by the poor control in both optical and mechanical properties. Here we report photonic thermosetting polymeric resins obtained through brush block copolymer (BBCP) self-assembly. We demonstrate that the control of the interplay between order and disorder in the obtained photonic structure offers a powerful tool box for designing the optical appearance of the polymer resins in terms of reflected wavelength and scattering properties. The obtained materials exhibit excellent mechanical properties with hardness up to 172 MPa and Young's modulus over 2.9 GPa, indicating great potential for practical uses as photonic coatings on a variety of surfaces.

  13. Polymorphism in Self-Assembled Structures of 9-Anthracene Carboxylic Acid on Ag(111

    Directory of Open Access Journals (Sweden)

    Bo Xu

    2012-06-01

    Full Text Available Surface self-assembly process of 9-anthracene carboxylic acid (AnCA on Ag(111 was investigated using STM. Depending on the molecular surface density, four spontaneously formed and one annealed AnCA ordered phases were observed, namely a straight belt phase, a zigzag double-belt phase, two simpler dimer phases, and a kagome phase. The two high-density belt phases possess large unit cells on the scale length of 10 nm, which are seldom observed in molecular self-assembled structures. This structural diversity stems from a complicated competition of different interactions of AnCA molecules on metal surface, including intermolecular and molecular-substrate interactions, as well as the steric demand from high molecular surface density.

  14. Interplay between spherical confinement and particle shape on the self-assembly of rounded cubes.

    Science.gov (United States)

    Wang, Da; Hermes, Michiel; Kotni, Ramakrishna; Wu, Yaoting; Tasios, Nikos; Liu, Yang; de Nijs, Bart; van der Wee, Ernest B; Murray, Christopher B; Dijkstra, Marjolein; van Blaaderen, Alfons

    2018-06-08

    Self-assembly of nanoparticles (NPs) inside drying emulsion droplets provides a general strategy for hierarchical structuring of matter at different length scales. The local orientation of neighboring crystalline NPs can be crucial to optimize for instance the optical and electronic properties of the self-assembled superstructures. By integrating experiments and computer simulations, we demonstrate that the orientational correlations of cubic NPs inside drying emulsion droplets are significantly determined by their flat faces. We analyze the rich interplay of positional and orientational order as the particle shape changes from a sharp cube to a rounded cube. Sharp cubes strongly align to form simple-cubic superstructures whereas rounded cubes assemble into icosahedral clusters with additionally strong local orientational correlations. This demonstrates that the interplay between packing, confinement and shape can be utilized to develop new materials with novel properties.

  15. Nonequilibrium carrier dynamics in self-assembled InGaAs quantum dots

    International Nuclear Information System (INIS)

    Wesseli, M.; Ruppert, C.; Trumm, S.; Betz, M.; Krenner, H.J.; Finley, J.J.

    2006-01-01

    Carrier dynamics in InGaAs/GaAs quantum dots is analyzed with highly sensitive femtosecond transmission spectroscopy. In a first step, measurements on a large ensemble of nanoislands reveal the dynamical electronic filling of quantum dots from the surrounding wetting layer. Most interestingly, we find a spin-preserving phonon mediated scattering into fully localized states within a few picoseconds. Then, individual artificial atoms are isolated with metallic shadow masks. For the first time, a single self-assembled quantum dot is addressed in an ultrafast transmission experiment. We find bleaching signals in the order of 10 -5 that arise from individual interband transitions of one quantum dot. As a result, we have developed an ultrafast optical tool for both manipulation and read-out of a single self-assembled quantum dot. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Identifying the nature of surface chemical modification for directed self-assembly of block copolymers

    Directory of Open Access Journals (Sweden)

    Laura Evangelio

    2017-09-01

    Full Text Available In recent years, block copolymer lithography has emerged as a viable alternative technology for advanced lithography. In chemical-epitaxy-directed self-assembly, the interfacial energy between the substrate and each block copolymer domain plays a key role on the final ordering. Here, we focus on the experimental characterization of the chemical interactions that occur at the interface built between different chemical guiding patterns and the domains of the block copolymers. We have chosen hard X-ray high kinetic energy photoelectron spectroscopy as an exploration technique because it provides information on the electronic structure of buried interfaces. The outcome of the characterization sheds light onto key aspects of directed self-assembly: grafted brush layer, chemical pattern creation and brush/block co-polymer interface.

  17. Tunable and rapid self-assembly of block copolymers using mixed solvent vapors.

    Science.gov (United States)

    Park, Woon Ik; Tong, Sheng; Liu, Yuzi; Jung, Il Woong; Roelofs, Andreas; Hong, Seungbum

    2014-12-21

    Pattern generation of well-controlled block copolymers (BCPs) with a high Flory-Huggins interaction parameter (χ) is important for applications in sub-20 nm nanolithography. We used mixed solvents of dimethylformamide (DMF) and toluene to control the morphology as well as the time to achieve the targeted morphology via self-assembly of BCPs. By precisely controlling the volume ratio of DMF and toluene, well-ordered line, honeycomb, circular hole, and lamellar nanostructures were obtained from a cylinder-forming poly(styrene-b-2-vinylpyridine) (PS-b-P2VP) BCP with high χ. Furthermore, a well-aligned 12 nm line pattern was successfully achieved in the guiding template within one minute using the mixed solvents. This practical method may also be applicable to self-assembly of other BCPs, providing more opportunities for the next-generation sub-10 nm lithography applications.

  18. Fabrication of gold nanoparticle arrays by block copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiao Ling

    2011-02-15

    Gold nanoparticle is one of the widely research objects in various fields including catalysis and biotechnology. Precise control of gold nanoparticles placement and their integration is essential to take full advantage of these unique properties for applications. An approach to self-assembling of gold nanoparticles (AuNPs) from reconstructed block copolymer was introduced. Highly ordered polystyrene-block-poly(2-vinylpyridine)(PS-b-P2VP) micellar arrays were obtained by solvent annealing. Subsequent immersion of the films in a preferential solvent for P2VP caused a reorganization of the film to generate a porous structure upon drying. PEG-coated AuNPs were spin-coated onto this reconstruction PS-b-P2VP template. When such films were exposed to toluene vapor-which is non-selective solvent for PEO and P2VP, AuNPs were drawn into those porous to form ordered arrays. Gold nanospheres with size 12±1.8 nm were synthesized by reducing HAuCl{sub 4} via sodium citrate. Gold nanorods (aspect ratio about 6) were prepared from seed-mediated surfactant capping wet chemical method and the aspect ratio is tunable by changing surfactant amount. PEG ligand is used to modify gold nanoparticle surface by removing the original surfactant (sodium citrate -gold nanospheres: CTAB-gold nanorods), which have affinity with certain block copolymer component. Once gold nanoparticle is modified with PEG thiol, they were spin coated onto PS-b-P2VP template, which was prepared by solvent annealing and surface reconstruction process. So gold nanoparticle array was fabricated by this self-assembling process. The same idea can be applied on other nanoparticles.

  19. Fabrication of gold nanoparticle arrays by block copolymer

    International Nuclear Information System (INIS)

    Chen, Xiao Ling

    2011-02-01

    Gold nanoparticle is one of the widely research objects in various fields including catalysis and biotechnology. Precise control of gold nanoparticles placement and their integration is essential to take full advantage of these unique properties for applications. An approach to self-assembling of gold nanoparticles (AuNPs) from reconstructed block copolymer was introduced. Highly ordered polystyrene-block-poly(2-vinylpyridine)(PS-b-P2VP) micellar arrays were obtained by solvent annealing. Subsequent immersion of the films in a preferential solvent for P2VP caused a reorganization of the film to generate a porous structure upon drying. PEG-coated AuNPs were spin-coated onto this reconstruction PS-b-P2VP template. When such films were exposed to toluene vapor-which is non-selective solvent for PEO and P2VP, AuNPs were drawn into those porous to form ordered arrays. Gold nanospheres with size 12±1.8 nm were synthesized by reducing HAuCl 4 via sodium citrate. Gold nanorods (aspect ratio about 6) were prepared from seed-mediated surfactant capping wet chemical method and the aspect ratio is tunable by changing surfactant amount. PEG ligand is used to modify gold nanoparticle surface by removing the original surfactant (sodium citrate -gold nanospheres: CTAB-gold nanorods), which have affinity with certain block copolymer component. Once gold nanoparticle is modified with PEG thiol, they were spin coated onto PS-b-P2VP template, which was prepared by solvent annealing and surface reconstruction process. So gold nanoparticle array was fabricated by this self-assembling process. The same idea can be applied on other nanoparticles

  20. Bioprinting synthetic self-assembling peptide hydrogels for biomedical applications

    International Nuclear Information System (INIS)

    Loo, Yihua; Hauser, Charlotte A E

    2016-01-01

    Three-dimensional (3D) bioprinting is a disruptive technology for creating organotypic constructs for high-throughput screening and regenerative medicine. One major challenge is the lack of suitable bioinks. Short synthetic self-assembling peptides are ideal candidates. Several classes of peptides self-assemble into nanofibrous hydrogels resembling the native extracellular matrix. This is a conducive microenvironment for maintaining cell survival and physiological function. Many peptides also demonstrate stimuli-responsive gelation and tuneable mechanical properties, which facilitates extrusion before dispensing and maintains the shape fidelity of the printed construct in aqueous media. The inherent biocompatibility and biodegradability bodes well for in vivo applications as implantable tissues and drug delivery matrices, while their short length and ease of functionalization facilitates synthesis and customization. By applying self-assembling peptide inks to bioprinting, the dynamic complexity of biological tissue can be recreated, thereby advancing current biomedical applications of peptide hydrogel scaffolds. (paper)

  1. Regulating DNA Self-assembly by DNA-Surface Interactions.

    Science.gov (United States)

    Liu, Longfei; Li, Yulin; Wang, Yong; Zheng, Jianwei; Mao, Chengde

    2017-12-14

    DNA self-assembly provides a powerful approach for preparation of nanostructures. It is often studied in bulk solution and involves only DNA-DNA interactions. When confined to surfaces, DNA-surface interactions become an additional, important factor to DNA self-assembly. However, the way in which DNA-surface interactions influence DNA self-assembly is not well studied. In this study, we showed that weak DNA-DNA interactions could be stabilized by DNA-surface interactions to allow large DNA nanostructures to form. In addition, the assembly can be conducted isothermally at room temperature in as little as 5 seconds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Actinide Sequestration Using Self-Assembled Monolayers on Mesoporous Supports

    International Nuclear Information System (INIS)

    Fryxell, Glen E.; Lin, Yuehe; Fiskum, Sandra K.; Birnbaum, Jerome C.; Wu, Hong; Kemner, K. M.; Kelly, Shelley

    2005-01-01

    Surfactant templated synthesis of mesoporous ceramics provides a versatile foundation upon which to create high efficiency environmental sorbents. These nanoporous ceramic oxides condense a huge amount of surface area into a very small volume. The ceramic oxide interface is receptive to surface functionalization through molecular self-assembly. The marriage of mesoporous ceramics with self-assembled monolayer chemistry creates a powerful new class of environmental sorbent materials called self-assembled monolayers on mesoporous supports (SAMMS). These SAMMS materials are highly efficient sorbents, whose interfacial chemistry can be fine-tuned to selectively sequester a specific target species, such as heavy metals, tetrahedral oxometallate anions and radionuclides. Details addressing the design, synthesis and characterization of SAMMS materials specifically designed to sequester actinides, of central importance to the environmental clean-up necessary after 40 years of weapons grade plutonium production, as well as evaluation of their binding affinities and kinetics are presented

  3. Spontaneous phase separation during self-assembly in bi-dispersed spherical iron oxide nanoparticle monolayers

    International Nuclear Information System (INIS)

    Stanley, Jacob; Boucheron, Leandra; Shpyrko, Oleg; Lin, Binhua; Meron, Mati

    2015-01-01

    Recent developments in the synthesis of iron oxide nanoparticles have resulted in the ability to fabricate roughly spherical particles with extremely high size uniformity (low polydispersity). These particles can form self-assembled monolayer films at an air-water interface. When the polydispersity of the particles is low, these monolayers can be well-ordered over a length scale dozens of times the particle size. The van der Waals force between the particles is what drives this self-assembly. Through the use of Grazing Incidence X-Ray Diffraction we demonstrate that, when these films are formed at the liquid surface from bi-dispersed solutions containing 10 and 20 nm spherical particles suspended in chloroform, the particles phase separate into well-ordered patches during the self-assembly process. Furthermore, the domain sizes of these phase separated regions are at most 2–3 times smaller than that of a film comprising only mono-dispersed particles and their degree of disorder is comparable. This is shown for multiple solutions with differing ratios of 10 and 20 nm particles

  4. Spontaneous phase separation during self-assembly in bi-dispersed spherical iron oxide nanoparticle monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Stanley, Jacob; Boucheron, Leandra; Shpyrko, Oleg, E-mail: lin@cars.uchicago.edu, E-mail: oshpyrko@physics.ucsd.edu [Department of Physics, University of California, San Diego, La Jolla, California 92093 (United States); Lin, Binhua, E-mail: lin@cars.uchicago.edu, E-mail: oshpyrko@physics.ucsd.edu; Meron, Mati [Center for Advanced Radiation Sources (CARS), University of Chicago, Chicago, Illinois 60637 (United States)

    2015-04-20

    Recent developments in the synthesis of iron oxide nanoparticles have resulted in the ability to fabricate roughly spherical particles with extremely high size uniformity (low polydispersity). These particles can form self-assembled monolayer films at an air-water interface. When the polydispersity of the particles is low, these monolayers can be well-ordered over a length scale dozens of times the particle size. The van der Waals force between the particles is what drives this self-assembly. Through the use of Grazing Incidence X-Ray Diffraction we demonstrate that, when these films are formed at the liquid surface from bi-dispersed solutions containing 10 and 20 nm spherical particles suspended in chloroform, the particles phase separate into well-ordered patches during the self-assembly process. Furthermore, the domain sizes of these phase separated regions are at most 2–3 times smaller than that of a film comprising only mono-dispersed particles and their degree of disorder is comparable. This is shown for multiple solutions with differing ratios of 10 and 20 nm particles.

  5. Enhancing Self-Assembly in Cellulose Nanocrystal Suspensions Using High-Permittivity Solvents.

    Science.gov (United States)

    Bruckner, Johanna R; Kuhnhold, Anja; Honorato-Rios, Camila; Schilling, Tanja; Lagerwall, Jan P F

    2016-09-27

    Helical liquid crystal self-assembly in suspensions of cellulose nanocrystals (CNCs), bioderived nanorods exhibiting excellent mechanical and optical properties, opens attractive routes to sustainable production of advanced functional materials. For convenience, in most studies until now, the CNCs were suspended in water, leaving a knowledge gap concerning the influence of the solvent. Using a novel approach for aggregation-free solvent exchange in CNC suspensions, here we show that protic solvents with a high dielectric permittivity εr significantly speed up self-assembly (from days to hours) at high CNC mass fraction and reduce the concentration dependence of the helix period (variation reducing from more than 30 μm to less than 1 μm). Moreover, our computer simulations indicate that the degree of order at constant CNC content increases with increasing εr, leading to a shorter pitch and a reduced threshold for liquid crystallinity. In low-εr solvents, the onset of long-range orientational order is coupled to kinetic arrest, preventing the formation of a helical superstructure. Our results show that the choice of solvent is a powerful parameter for tuning the behavior of CNC suspensions, enhancing our ability to control the self-assembly and thereby harvesting valuable novel cellulose-based materials.

  6. Hydrazine-mediated construction of nanocrystal self-assembly materials.

    Science.gov (United States)

    Zhou, Ding; Liu, Min; Lin, Min; Bu, Xinyuan; Luo, Xintao; Zhang, Hao; Yang, Bai

    2014-10-28

    Self-assembly is the basic feature of supramolecular chemistry, which permits to integrate and enhance the functionalities of nano-objects. However, the conversion of self-assembled structures to practical materials is still laborious. In this work, on the basis of studying one-pot synthesis, spontaneous assembly, and in situ polymerization of aqueous semiconductor nanocrystals (NCs), NC self-assembly materials are produced and applied to design high performance white light-emitting diode (WLED). In producing self-assembly materials, the additive hydrazine (N2H4) is curial, which acts as the promoter to achieve room-temperature synthesis of aqueous NCs by favoring a reaction-controlled growth, as the polyelectrolyte to weaken inter-NC electrostatic repulsion and therewith facilitate the one-dimensional self-assembly, and in particular as the bifunctional monomers to polymerize with mercapto carboxylic acid-modified NCs via in situ amidation reaction. This strategy is versatile for mercapto carboxylic acid-modified aqueous NCs, for example CdS, CdSe, CdTe, CdSe(x)Te(1-x), and Cd(y)Hg(1-y)Te. Because of the multisite modification with carboxyl, the NCs act as macromonomers, thus producing cross-linked self-assembly materials with excellent thermal, solvent, and photostability. The assembled NCs preserve strong luminescence and avoid unpredictable fluorescent resonance energy transfer, the main problem in design WLED from multiple NC components. These advantages allow the fabrication of NC-based WLED with high color rendering index (86), high luminous efficacy (41 lm/W), and controllable color temperature.

  7. Sambot II: A self-assembly modular swarm robot

    Science.gov (United States)

    Zhang, Yuchao; Wei, Hongxing; Yang, Bo; Jiang, Cancan

    2018-04-01

    The new generation of self-assembly modular swarm robot Sambot II, based on the original generation of self-assembly modular swarm robot Sambot, adopting laser and camera module for information collecting, is introduced in this manuscript. The visual control algorithm of Sambot II is detailed and feasibility of the algorithm is verified by the laser and camera experiments. At the end of this manuscript, autonomous docking experiments of two Sambot II robots are presented. The results of experiments are showed and analyzed to verify the feasibility of whole scheme of Sambot II.

  8. Self-assembled three-dimensional chiral colloidal architecture

    Science.gov (United States)

    Ben Zion, Matan Yah; He, Xiaojin; Maass, Corinna C.; Sha, Ruojie; Seeman, Nadrian C.; Chaikin, Paul M.

    2017-11-01

    Although stereochemistry has been a central focus of the molecular sciences since Pasteur, its province has previously been restricted to the nanometric scale. We have programmed the self-assembly of micron-sized colloidal clusters with structural information stemming from a nanometric arrangement. This was done by combining DNA nanotechnology with colloidal science. Using the functional flexibility of DNA origami in conjunction with the structural rigidity of colloidal particles, we demonstrate the parallel self-assembly of three-dimensional microconstructs, evincing highly specific geometry that includes control over position, dihedral angles, and cluster chirality.

  9. Ultrafine luminescent structures through nanoparticle self-assembly

    International Nuclear Information System (INIS)

    Prabhakaran, K; Goetzinger, S; Shafi, K V P M; Mazzei, A; Schietinger, S; Benson, O

    2006-01-01

    We report the fabrication of ultrafine structures consisting of regular arrays of nanoemitters through the self-assembly of luminescent nanoparticles on a silicon wafer. Nanoparticles of yttrium aluminium garnet (YAG) doped with Eu 3+ ions were synthesized by a sonochemical technique. These particles, suspended in ethanol, are introduced onto a pre-patterned silicon wafer, covered with a thin oxide layer. On annealing the sample in an ultrahigh-vacuum chamber, the nanoparticles self-assemble along the pattern. We demonstrate this 'chemical lithography' by assembling the nanoparticles along a variety of patterns. We believe that such self-organized nanopatterning of functional structures is important for the realization of nanodevices

  10. Self-assembly of active amphiphilic Janus particles

    Science.gov (United States)

    Mallory, S. A.; Alarcon, F.; Cacciuto, A.; Valeriani, C.

    2017-12-01

    In this article, we study the phenomenology of a two dimensional dilute suspension of active amphiphilic Janus particles. We analyze how the morphology of the aggregates emerging from their self-assembly depends on the strength and the direction of the active forces. We systematically explore and contrast the phenomenologies resulting from particles with a range of attractive patch coverages. Finally, we illustrate how the geometry of the colloids and the directionality of their interactions can be used to control the physical properties of the assembled active aggregates and suggest possible strategies to exploit self-propulsion as a tunable driving force for self-assembly.

  11. Electrostatic Force Microscopy of Self Assembled Peptide Structures

    DEFF Research Database (Denmark)

    Clausen, Casper Hyttel; Dimaki, Maria; Pantagos, Spyros P.

    2011-01-01

    In this report electrostatic force microscopy (EFM) is used to study different peptide self-assembled structures, such as tubes and particles. It is shown that not only geometrical information can be obtained using EFM, but also information about the composition of different structures. In partic......In this report electrostatic force microscopy (EFM) is used to study different peptide self-assembled structures, such as tubes and particles. It is shown that not only geometrical information can be obtained using EFM, but also information about the composition of different structures...

  12. Self-Assembled Hydrogel Nanoparticles for Drug Delivery Applications

    Directory of Open Access Journals (Sweden)

    Miguel Gama

    2010-02-01

    Full Text Available Hydrogel nanoparticles—also referred to as polymeric nanogels or macromolecular micelles—are emerging as promising drug carriers for therapeutic applications. These nanostructures hold versatility and properties suitable for the delivery of bioactive molecules, namely of biopharmaceuticals. This article reviews the latest developments in the use of self-assembled polymeric nanogels for drug delivery applications, including small molecular weight drugs, proteins, peptides, oligosaccharides, vaccines and nucleic acids. The materials and techniques used in the development of self-assembling nanogels are also described.

  13. Bioorthogonal cyclization-mediated in situ self-assembly of small-molecule probes for imaging caspase activity in vivo

    Science.gov (United States)

    Ye, Deju; Shuhendler, Adam J.; Cui, Lina; Tong, Ling; Tee, Sui Seng; Tikhomirov, Grigory; Felsher, Dean W.; Rao, Jianghong

    2014-06-01

    Directed self-assembly of small molecules in living systems could enable a myriad of applications in biology and medicine, and already this has been used widely to synthesize supramolecules and nano/microstructures in solution and in living cells. However, controlling the self-assembly of synthetic small molecules in living animals is challenging because of the complex and dynamic in vivo physiological environment. Here we employ an optimized first-order bioorthogonal cyclization reaction to control the self-assembly of a fluorescent small molecule, and demonstrate its in vivo applicability by imaging caspase-3/7 activity in human tumour xenograft mouse models of chemotherapy. The fluorescent nanoparticles assembled in situ were imaged successfully in both apoptotic cells and tumour tissues using three-dimensional structured illumination microscopy. This strategy combines the advantages offered by small molecules with those of nanomaterials and should find widespread use for non-invasive imaging of enzyme activity in vivo.

  14. Surface-assisted DNA self-assembly: An enzyme-free strategy towards formation of branched DNA lattice

    International Nuclear Information System (INIS)

    Bhanjadeo, Madhabi M.; Nayak, Ashok K.; Subudhi, Umakanta

    2017-01-01

    DNA based self-assembled nanostructures and DNA origami has proven useful for organizing nanomaterials with firm precision. However, for advanced applications like nanoelectronics and photonics, large-scale organization of self-assembled branched DNA (bDNA) into periodic lattices is desired. In this communication for the first time we report a facile method of self-assembly of Y-shaped bDNA nanostructures on the cationic surface of Aluminum (Al) foil to prepare periodic two dimensional (2D) bDNA lattice. Particularly those Y-shaped bDNA structures having smaller overhangs and unable to self-assemble in solution, they are easily assembled on the surface of Al foil in the absence of ligase. Field emission scanning electron microscopy (FESEM) analysis shows homogenous distribution of two-dimensional bDNA lattices across the Al foil. When the assembled bDNA structures were recovered from the Al foil and electrophoresed in nPAGE only higher order polymeric bDNA structures were observed without a trace of monomeric structures which confirms the stability and high yield of the bDNA lattices. Therefore, this enzyme-free economic and efficient strategy for developing bDNA lattices can be utilized in assembling various nanomaterials for functional molecular components towards development of DNA based self-assembled nanodevices. - Highlights: • Al foil surface-assisted self-assembly of monomeric structures into larger branched DNA lattice. • FESEM study confirms the uniform distribution of two-dimensional bDNA lattice structures across the surface of Al foil. • Enzyme-free and economic strategy to prepare higher order structures from simpler DNA nanostructures have been confirmed by recovery assay. • Use of well proven sequences for the preparation of pure Y-shaped monomeric DNA nanostructure with high yield.

  15. Directed Self-Assembly of Star-Block Copolymers by Topographic Nanopatterns through Nucleation and Growth Mechanism.

    Science.gov (United States)

    Krishnan, Mohan Raj; Lu, Kai-Yuan; Chiu, Wen-Yu; Chen, I-Chen; Lin, Jheng-Wei; Lo, Ting-Ya; Georgopanos, Prokopios; Avgeropoulos, Apostolos; Lee, Ming-Chang; Ho, Rong-Ming

    2018-04-01

    Exploring the ordering mechanism and dynamics of self-assembled block copolymer (BCP) thin films under confined conditions are highly essential in the application of BCP lithography. In this study, it is aimed to examine the self-assembling mechanism and kinetics of silicon-containing 3-arm star-block copolymer composed of polystyrene (PS) and poly(dimethylsiloxane) blocks as nanostructured thin films with perpendicular cylinders and controlled lateral ordering by directed self-assembly using topographically patterned substrates. The ordering process of the star-block copolymer within fabricated topographic patterns with PS-functionalized sidewall can be carried out through the type of secondary (i.e., heterogeneous) nucleation for microphase separation initiated from the edge and/or corner of the topographic patterns, and directed to grow as well-ordered hexagonally packed perpendicular cylinders. The growth rate for the confined microphase separation is highly dependent upon the dimension and also the geometric texture of the preformed pattern. Fast self-assembly for ordering of BCP thin film can be achieved by lowering the confinement dimension and also increasing the concern number of the preformed pattern, providing a new strategy for the design of BCP lithography from the integration of top-down and bottom-up approaches. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Inorganic Nanoparticle Induced Morphological Transition for Confined Self-Assembly of Block Copolymers within Emulsion Droplets.

    Science.gov (United States)

    Zhang, Yan; He, Yun; Yan, Nan; Zhu, Yutian; Hu, Yuexin

    2017-09-07

    Recently, it has been reported that the incorporation of functional inorganic nanoparticles (NPs) into the three-dimensional (3D) confined self-assembly of block copolymers (BCPs) creates the unique nanostructured hybrid composites, which can not only introduce new functions to BCPs but also induce some interesting morphological transitions of BCPs. In the current study, we systematically investigate the cooperative self-assembly of a series of size-controlled and surface chemistry-tunable gold nanoparticles (AuNPs) and polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) diblock copolymer within the emulsion droplets. The influences of the size, content, and surface chemistry of the AuNPs on the coassembled nanostructures as well as the spatial distribution of AuNPs in the hybrid particles are examined. It is found that the size and content of the AuNPs are related to the entropic interaction, while the surface chemistry of AuNPs is related to the enthalpic interaction, which can be utilized to tailor the self-assembled morphologies of block copolymer confined in the emulsion droplets. As the content of PS-coated AuNPs increases, the morphology of the resulting AuNPs/PS-b-P2VP hybrid particles changes from the pupa-like particles to the bud-like particles and then to the onion-like particles. However, a unique morphological transition from the pupa-like particles to the mushroom-like particles is observed as the content of P4VP-coated AuNPs increases. More interestingly, it is observed that the large AuNPs are expelled to the surface of the BCP particles to reduce the loss in the conformational entropy of the block segment, which can arrange into the strings of necklaces on the surfaces of the hybrid particles.

  17. Modeling of block copolymer dry etching for directed self-assembly lithography

    Science.gov (United States)

    Belete, Zelalem; Baer, Eberhard; Erdmann, Andreas

    2018-03-01

    Directed self-assembly (DSA) of block copolymers (BCP) is a promising alternative technology to overcome the limits of patterning for the semiconductor industry. DSA exploits the self-assembling property of BCPs for nano-scale manufacturing and to repair defects in patterns created during photolithography. After self-assembly of BCPs, to transfer the created pattern to the underlying substrate, selective etching of PMMA (poly (methyl methacrylate)) to PS (polystyrene) is required. However, the etch process to transfer the self-assemble "fingerprint" DSA patterns to the underlying layer is still a challenge. Using combined experimental and modelling studies increases understanding of plasma interaction with BCP materials during the etch process and supports the development of selective process that form well-defined patterns. In this paper, a simple model based on a generic surface model has been developed and an investigation to understand the etch behavior of PS-b-PMMA for Ar, and Ar/O2 plasma chemistries has been conducted. The implemented model is calibrated for etch rates and etch profiles with literature data to extract parameters and conduct simulations. In order to understand the effect of the plasma on the block copolymers, first the etch model was calibrated for polystyrene (PS) and poly (methyl methacrylate) (PMMA) homopolymers. After calibration of the model with the homopolymers etch rate, a full Monte-Carlo simulation was conducted and simulation results are compared with the critical-dimension (CD) and selectivity of etch profile measurement. In addition, etch simulations for lamellae pattern have been demonstrated, using the implemented model.

  18. Surface Modification of Self-Assembled Graphene Oxide for Cell Culture Studies

    Science.gov (United States)

    Swain, John E., III

    Thin films show great promise for biological applications, from in situ monitoring to pharmaceutical testing. In this study, a graphene oxide (GO) thin film is prepared with the aim to further functionalize the film for pharmaceutical toxicity screening applications. GO was selected due to its capability to be reduced into an optically transparent and electrically conductive thin film. In addition, GO is derived from carbon, a widely abundant element, in contrast to many other thin films that rely on resource-limited precious metals. Special care was taken to select GO and GO film synthesis methods that minimize the amount of organic-based solvents, maintain reactions at atmospheric pressure and moderate temperatures, and are scalable for manufacturing. Chemical oxidation of graphite flakes was carried out via a modified Hummer's Method with a pre-oxidation step. The resulting GO flakes were self-assembled using commercially available 4-sulfocalix[4]arene. Analytical characterizations (e.g., elemental analysis, XRD, FTIR, Raman, SEM, AFM) were performed to evaluate the success of graphite oxidation and formation of the self-assembled thin film. In order to gain a better understanding of the interactions between GO and sulfocalix (SCX), equilibrium conformations of the SCX molecule and truncated GO were calculated using Spartan'16 Parallels. This study demonstrates that the interaction between the GO and the SCX molecule to create a self-assembled thin film is the result of pi-pi stacking, as hypothesized by Sundramoorthy et al. (2015). The self-assembled GO film was successfully deposited on a polyethylene terephthalate (PET) substrate and functionalized with 3-aminopropyl triethoxysilane (APTES), which renders the film capable of further functionalization with proteins for yielding a three-dimensional cell culture or co-culture platform for different applications.

  19. Self-Assembling Multi-Component Nanofibers for Strong Bioinspired Underwater Adhesives

    Science.gov (United States)

    Zhong, Chao; Gurry, Thomas; Cheng, Allen A; Downey, Jordan; Deng, Zhengtao; Stultz, Collin M.; Lu, Timothy K

    2014-01-01

    Many natural underwater adhesives harness hierarchically assembled amyloid nanostructures to achieve strong and robust interfacial adhesion under dynamic and turbulent environments. Despite recent advances, our understanding of the molecular design, self-assembly, and structure-function relationship of those natural amyloid fibers remains limited. Thus, designing biomimetic amyloid-based adhesives remains challenging. Here, we report strong and multi-functional underwater adhesives obtained from fusing mussel foot proteins (Mfps) of Mytilus galloprovincialis with CsgA proteins, the major subunit of Escherichia coli amyloid curli fibers. These hybrid molecular materials hierarchically self-assemble into higher-order structures, in which, according to molecular dynamics simulations, disordered adhesive Mfp domains are exposed on the exterior of amyloid cores formed by CsgA. Our fibers have an underwater adhesion energy approaching 20.9 mJ/m2, which is 1.5 times greater than the maximum of bio-inspired and bio-derived protein-based underwater adhesives reported thus far. Moreover, they outperform Mfps or curli fibers taken on their own at all pHs and exhibit better tolerance to auto-oxidation than Mfps at pH ≥7.0. This work establishes a platform for engineering multi-component self-assembling materials inspired by nature. PMID:25240674

  20. Self-assembly of three-dimensional open structures using patchy colloidal particles.

    Science.gov (United States)

    Rocklin, D Zeb; Mao, Xiaoming

    2014-10-14

    Open structures can display a number of unusual properties, including a negative Poisson's ratio, negative thermal expansion, and holographic elasticity, and have many interesting applications in engineering. However, it is a grand challenge to self-assemble open structures at the colloidal scale, where short-range interactions and low coordination number can leave them mechanically unstable. In this paper we discuss the self-assembly of three-dimensional open structures using triblock Janus particles, which have two large attractive patches that can form multiple bonds, separated by a band with purely hard-sphere repulsion. Such surface patterning leads to open structures that are stabilized by orientational entropy (in an order-by-disorder effect) and selected over close-packed structures by vibrational entropy. For different patch sizes the particles can form into either tetrahedral or octahedral structural motifs which then compose open lattices, including the pyrochlore, the hexagonal tetrastack and the perovskite lattices. Using an analytic theory, we examine the phase diagrams of these possible open and close-packed structures for triblock Janus particles and characterize the mechanical properties of these structures. Our theory leads to rational designs of particles for the self-assembly of three-dimensional colloidal structures that are possible using current experimental techniques.

  1. Integration of Self-Assembled Microvascular Networks with Microfabricated PEG-Based Hydrogels.

    Science.gov (United States)

    Cuchiara, Michael P; Gould, Daniel J; McHale, Melissa K; Dickinson, Mary E; West, Jennifer L

    2012-11-07

    Despite tremendous efforts, tissue engineered constructs are restricted to thin, simple tissues sustained only by diffusion. The most significant barrier in tissue engineering is insufficient vascularization to deliver nutrients and metabolites during development in vitro and to facilitate rapid vascular integration in vivo. Tissue engineered constructs can be greatly improved by developing perfusable microvascular networks in vitro in order to provide transport that mimics native vascular organization and function. Here a microfluidic hydrogel is integrated with a self-assembling pro-vasculogenic co-culture in a strategy to perfuse microvascular networks in vitro. This approach allows for control over microvascular network self-assembly and employs an anastomotic interface for integration of self-assembled micro-vascular networks with fabricated microchannels. As a result, transport within the system shifts from simple diffusion to vessel supported convective transport and extra-vessel diffusion, thus improving overall mass transport properties. This work impacts the development of perfusable prevascularized tissues in vitro and ultimately tissue engineering applications in vivo.

  2. Organic molecules deposited on graphene: A computational investigation of self-assembly and electronic structure

    International Nuclear Information System (INIS)

    Oliveira, I. S. S. de; Miwa, R. H.

    2015-01-01

    We use ab initio simulations to investigate the adsorption and the self-assembly processes of tetracyanoquinodimethane (TCNQ), tetrafluoro-tetracyanoquinodimethane (F4-TCNQ), and tetrasodium 1,3,6,8-pyrenetetrasulfonic acid (TPA) on the graphene surface. We find that there are no chemical bonds at the molecule–graphene interface, even at the presence of grain boundaries on the graphene surface. The molecules bond to graphene through van der Waals interactions. In addition to the molecule–graphene interaction, we performed a detailed study of the role played by the (lateral) molecule–molecule interaction in the formation of the, experimentally verified, self-assembled layers of TCNQ and TPA on graphene. Regarding the electronic properties, we calculate the electronic charge transfer from the graphene sheet to the TCNQ and F4-TCNQ molecules, leading to a p-doping of graphene. Meanwhile, such charge transfer is reduced by an order of magnitude for TPA molecules on graphene. In this case, it is not expected a significant doping process upon the formation of self-assembled layer of TPA molecules on the graphene sheet

  3. Ultrasensitive electrochemical biosensor based on the oligonucleotide self-assembled monolayer-mediated immunosensing interface

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dengyou; Luo, Qimei [Science College of Hunan Agricultural University, Changsha 410128 (China); Deng, Fawen [The Fourth Hospital of Chansha, Changsha 410006 (China); Li, Zhen [Science College of Hunan Agricultural University, Changsha 410128 (China); Li, Benxiang, E-mail: 172170960@qq.com [Science College of Hunan Agricultural University, Changsha 410128 (China); Shen, Zhifa, E-mail: shenzhifa@wmu.edu.cn [Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035 (China)

    2017-06-08

    Highly sensitive and selective quantitation of a variety of proteins over a wide concentration range is highly desirable for increased accuracy of biomarker detection or for multidisease diagnostics. In the present contribution, using human immunoglobulin G (HIgG) as the model target protein, an electrochemical ultrasensitive immunosensing platform was developed based on the oligonucleotide self-assembled monolayer-mediated (OSAM) sensing interface. For this immunosensor, the “signal-on” signaling mechanism and enzymatic signal amplification effect were integrated into one sensing architecture. Moreover, the thiolated flexible single-stranded DNAs immobilized onto gold electrode surface not only performs the wobbling motion to facilitate the electron transfer between the electrode surface and biosensing layer but also fundamentally prohibiting the direct interaction of proteins with gold substrate. Thus, the electrochemical signal could be efficiently enhanced and the unspecific adsorption or cross-reaction might be eliminated. As a result, utilizing the newly-proposed immunosensor, the HIgG can be detected down to 0.5 ng/mL, and the high detection specificity is offered. The successful design of OSAM and the highly desirable detection capability of new immunosensor are expected to provide a perspective for fabricating new robust immunosensing platform and for promising potential of oligonucleotide probe in biological research and biomedical diagnosis. - Highlights: • An electrochemical ultrasensitive immunosensing platform was developed based on the oligonucleotide self-assembled monolayer (OASM). • OASM severs as a flexible monolayer to promote electron transfer and prohibits the direct interaction of proteins with gold substrate. • The electrochemical signal is efficiently enhanced and the unspecific adsorption or cross-reaction is eliminated. • Target protein can be detected down to 0.5 ng/mL, and the high detection specificity can be obtained.

  4. Self-assembly from milli- to nanoscales: methods and applications

    International Nuclear Information System (INIS)

    Mastrangeli, M; Celis, J-P; Abbasi, S; Varel, C; Böhringer, K F; Van Hoof, C

    2009-01-01

    The design and fabrication techniques for microelectromechanical systems (MEMS) and nanodevices are progressing rapidly. However, due to material and process flow incompatibilities in the fabrication of sensors, actuators and electronic circuitry, a final packaging step is often necessary to integrate all components of a heterogeneous microsystem on a common substrate. Robotic pick-and-place, although accurate and reliable at larger scales, is a serial process that downscales unfavorably due to stiction problems, fragility and sheer number of components. Self-assembly, on the other hand, is parallel and can be used for device sizes ranging from millimeters to nanometers. In this review, the state-of-the-art in methods and applications for self-assembly is reviewed. Methods for assembling three-dimensional (3D) MEMS structures out of two-dimensional (2D) ones are described. The use of capillary forces for folding 2D plates into 3D structures, as well as assembling parts onto a common substrate or aggregating parts to each other into 2D or 3D structures, is discussed. Shape matching and guided assembly by magnetic forces and electric fields are also reviewed. Finally, colloidal self-assembly and DNA-based self-assembly, mainly used at the nanoscale, are surveyed, and aspects of theoretical modeling of stochastic assembly processes are discussed. (topical review)

  5. Applications of self-assembled monolayers in materials chemistry

    Indian Academy of Sciences (India)

    Unknown

    Physical and Materials Chemistry Division, National Chemical Laboratory,. Pune 411 008, India e-mail: viji@ems.ncl.res.in. Abstract. Self-assembly provides a simple route to organise suitable organic molecules on noble metal and selected nanocluster surfaces by using monolayers of long chain organic molecules with ...

  6. Complex Colloidal Structures by Self-assembly in Electric Fields

    NARCIS (Netherlands)

    Vutukuri, H.R.

    2012-01-01

    The central theme of this thesis is exploiting the directed self-assembly of both isotropic and anisotropic colloidal particles to achieve the fabrication of one-, two-, and three-dimensional complex colloidal structures using external electric fields and/or a simple in situ thermal annealing

  7. Characterization of self-assembled monolayers on a ruthenium surface

    NARCIS (Netherlands)

    Shaheen, Amrozia; Sturm, Jacobus Marinus; Ricciardi, R.; Huskens, Jurriaan; Lee, Christopher James; Bijkerk, Frederik

    2017-01-01

    We have modified and stabilized the ruthenium surface by depositing a self-assembled monolayer (SAM) of 1-hexadecanethiol on a polycrystalline ruthenium thin film. The growth mechanism, dynamics, and stability of these monolayers were studied. SAMs, deposited under ambient conditions, on

  8. Self-assembled fluorescent organic nanoparticles for live cell imaging

    NARCIS (Netherlands)

    Fischer, I.; Petkau, K.; Dorland, Y.L.; Schenning, A.P.H.J.; Brunsveld, L.

    2013-01-01

    Fluorescent, cell-permeable, organic nanoparticles based on self-assembled p-conjugated oligomers with high absorption cross-sections and high quantum yields have been developed. The nanoparticles are generated with a tuneable density of amino groups for charge-mediated cellular uptake by a

  9. Self-assembly of concentric quantum double rings.

    Science.gov (United States)

    Mano, Takaaki; Kuroda, Takashi; Sanguinetti, Stefano; Ochiai, Tetsuyuki; Tateno, Takahiro; Kim, Jongsu; Noda, Takeshi; Kawabe, Mitsuo; Sakoda, Kazuaki; Kido, Giyuu; Koguchi, Nobuyuki

    2005-03-01

    We demonstrate the self-assembled formation of concentric quantum double rings with high uniformity and excellent rotational symmetry using the droplet epitaxy technique. Varying the growth process conditions can control each ring's size. Photoluminescence spectra emitted from an individual quantum ring complex show peculiar quantized levels that are specified by the carriers' orbital trajectories.

  10. Oscillatory persistent currents in self-assembled quantum rings

    NARCIS (Netherlands)

    Kleemans, N.A.J.M.; Bominaar-Silkens, I.M.A.; Fomin, V.; Gladilin, V.N.; Granados, D.; Taboada, A.G.; Garcia, J.M.; Offermans, P.; Zeitler, U.; Christianen, P.C.M.; Maan, J.C.; Devreese, J.T.; Koenraad, P.M.

    2007-01-01

    We report the direct measurement of the persistent current carried by a single electron by means of magnetization experiments on self-assembled InAs/GaAs quantum rings. We measured the first Aharonov-Bohm oscillation at a field of 14 T, in perfect agreement with our model based on the structural

  11. Long lived coherence in self-assembled quantum dots

    DEFF Research Database (Denmark)

    Birkedal, Dan; Leosson, Kristjan; Hvam, Jørn Märcher

    2001-01-01

    We report measurements of ultralong coherence in self-assembled quantum dots. Transient four-wave mixing experiments at 5 K show an average dephasing time of 372 ps, corresponding to a homogeneous linewidth of 3.5 mu eV, which is significantly smaller than the linewidth observed in single...

  12. Multiphonon capture processes in self-assembled quantum dots

    DEFF Research Database (Denmark)

    Magnúsdóttir, Ingibjörg; Uskov, A.; Bischoff, Svend

    2001-01-01

    We investigate capture of carriers from states in the continuous part of the energy spectrum into the discrete states of self-assembled InAs/GaAs QDs via emission of one or two phonons. We are not aware of any other investigations of two-phonon mediated capture processes in QDs, but we show...

  13. Coherence and dephasing in self-assembled quantum dots

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Leosson, K.; Birkedal, Dan

    2003-01-01

    We measured dephasing times in InGaAl/As self-assembled quantum dots at low temperature using degenerate four-wave mixing. At 0K, the coherence time of the quantum dots is lifetime limited, whereas at finite temperatures pure dephasing by exciton-phonon interactions governs the quantum dot...

  14. Extending the self-assembly of coiled-coil hybrids

    NARCIS (Netherlands)

    Robson Marsden, Hana

    2009-01-01

    Of the various biomolecular building blocks in use in nature, coiled-coil forming peptides are amongst those with the most potential as building blocks for the synthetic self-assembly of nanostructures. Native coiled coils have the ability to function in, and influence, complex systems composed of

  15. Self-assembly of hydrofluorinated Janus graphene monolayer

    DEFF Research Database (Denmark)

    Jin, Yakang; Xue, Qingzhong; Zhu, Lei

    2016-01-01

    With remarkably interesting surface activities, two-dimensional Janus materials arouse intensive interests recently in many fields. We demonstrate by molecular dynamic simulations that hydrofluorinated Janus graphene (J-GN) can self-assemble into Janus nanoscroll (J-NS) at room temperature. The van...

  16. Nanoporous Network Channels from Self-Assembled Triblock Copolymer Supramolecules

    NARCIS (Netherlands)

    du Sart, Gerrit Gobius; Vukovic, Ivana; Vukovic, Zorica; Polushkin, Evgeny; Hiekkataipale, Panu; Ruokolainen, Janne; Loos, Katja; ten Brinke, Gerrit

    2011-01-01

    Supramolecular complexes of a poly(tert-butoxystyrene)-block-polystyrene-block-poly(4-vinylpyridine) triblock copolymers and less than stoichiometric amounts of pentadecylphenol (PDP) are shown to self-assemble into a core-shell gyroid morphology with the core channels formed by the hydrogen-bonded

  17. Self-assembling bilayers of palladiumthiolates in organic media

    Indian Academy of Sciences (India)

    Unknown

    applications in catalytic systems, solubalizing agents and drug delivery matrices. Following the pioneering efforts of ... In this context, self-assembly of amphipiles in nonpolar organic media assumes significance 8 since .... structures in clear contrast to lamellar phases formed by the higher members. We sought to image the ...

  18. Self-assembling electroactive hydrogels for flexible display technology

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Scott L; Wong, Kok Hou; Ladouceur, Francois [School of Electrical Engineering and Telecommunications, University of NSW, Sydney, NSW, 2052 (Australia); Thordarson, Pall, E-mail: f.ladouceur@unsw.edu.a [School of Chemistry, University of NSW, Sydney, NSW, 2052 (Australia)

    2010-12-15

    We have assessed the potential of self-assembling hydrogels for use in conformal displays. The self-assembling process can be used to alter the transparency of the material to all visible light due to scattering by fibres. The reversible transition is shown to be of low energy by differential scanning calorimetry. For use in technology it is imperative that this transition is controlled electrically. We have thus synthesized novel self-assembling hydrogelator molecules which contain an electroactive group. The well-known redox couple of anthraquinone/anthrahydroquinone has been used as the hydrophobic component for a series of small molecule gelators. They are further functionalized with peptide combinations of L-phenylalanine and glycine to provide the hydrophilic group to complete 'head-tail' models of self-assembling gels. The gelation and electroactive characteristics of the series were assessed. Cyclic voltammetry shows the reversible redox cycle to be only superficially altered by functionalization. Additionally, spectroelectrochemical measurements show a reversible transparency and colour change induced by the redox process.

  19. Self-assembled monolayers on metal oxides : applications in nanotechnology

    NARCIS (Netherlands)

    Yildirim, O.

    2010-01-01

    The thesis describes the use of phosph(on)ate-based self-assembled monolayers (SAMs) to modify and pattern metal oxides. Metal oxides have interesting electronic and magnetic properties such as insulating, semiconducting, metallic, ferromagnetic etc. and SAMs can tailor the surface properties. FePt

  20. Self-assembling electroactive hydrogels for flexible display technology

    International Nuclear Information System (INIS)

    Jones, Scott L; Wong, Kok Hou; Ladouceur, Francois; Thordarson, Pall

    2010-01-01

    We have assessed the potential of self-assembling hydrogels for use in conformal displays. The self-assembling process can be used to alter the transparency of the material to all visible light due to scattering by fibres. The reversible transition is shown to be of low energy by differential scanning calorimetry. For use in technology it is imperative that this transition is controlled electrically. We have thus synthesized novel self-assembling hydrogelator molecules which contain an electroactive group. The well-known redox couple of anthraquinone/anthrahydroquinone has been used as the hydrophobic component for a series of small molecule gelators. They are further functionalized with peptide combinations of L-phenylalanine and glycine to provide the hydrophilic group to complete 'head-tail' models of self-assembling gels. The gelation and electroactive characteristics of the series were assessed. Cyclic voltammetry shows the reversible redox cycle to be only superficially altered by functionalization. Additionally, spectroelectrochemical measurements show a reversible transparency and colour change induced by the redox process.

  1. Isoporous PS-b-PEO ultrafiltration membranes via self-assembly and water-induced phase separation

    KAUST Repository

    Karunakaran, Madhavan; Nunes, Suzana Pereira; Qiu, Xiaoyan; Yu, Haizhou; Peinemann, Klaus-Viktor

    2014-01-01

    A simple and efficient approach towards the fabrication of a skinned membrane with highly ordered pores in the nanometer range is presented here. We successfully combined the self-assembly of PS-b-PEO block copolymer and water induced phase

  2. pH-dependent and pH-independent self-assembling behavior of surfactant-like peptides

    DEFF Research Database (Denmark)

    Gurevich, Leonid; Fojan, Peter

    2012-01-01

    formation of ordered aggregates with well-defined secondary structure from short unstructured peptides and provide a simple system where factors responsible for self-assembly can be singled out and studied one by one. The ability to control the shape and structure of peptide aggregates can provide basis...

  3. Molecular dynamics and energy landscape of decanethiolates in self-assembled monolayers on Au(111) by STM

    NARCIS (Netherlands)

    Sotthewes, Kai; Wu, Hairong; Kumar, Avijit; Vancso, Gyula J.; Schön, Peter Manfred; Zandvliet, Henricus J.W.

    2013-01-01

    The energetics and dynamics of the various phases of decanethiolate self-assembled monolayers on Au(111) surfaces were studied with scanning tunneling microscopy. We have observed five different phases of the decanethiolate monolayer on Au(111): four ordered phases (β, δ, χ*, and ) and one

  4. Gold and palladium adsorption from leached electronic scrap using ordered mesoporous carbon nanoscaffolds

    Energy Technology Data Exchange (ETDEWEB)

    McDowell, Rocklan; Dutech, Guy

    2014-09-01

    Ordered mesoporous carbon (OMC) nanoscaffolds are engineered agglomerates of carbon nanotubes held together by small carbon nanofibers with uniform pore sizes, high pore volume, and high channel permeability. These materials exhibit very high affinity for the adsorption of gold from aqueous acidic mixtures. The efficiency of gold recovery is comparable to those typically accomplished using biopolymer-based adsorbents. The adsorption efficiency for other precious metals such as palladium and platinum is lower. Studies on the precious metal (Au, Pd) adsorption on OMC materials from actual liquors of leached electronics will be presented. Adsorption properties will be compared for several different sorbents used for the recovery of precious metals. The leach liquor compositions for three different types of electronic scrap materials (personal computer board, cell phone and tv input/output board) will be presented. The sorption efficiencies for Au, Pd, together with a spectrum of competing and non-competing metals, from such leach mixtures will be compared.

  5. Gold and palladium adsorption from leached electronic scrap using ordered mesoporous carbon nanoscaffolds

    International Nuclear Information System (INIS)

    McDowell, Rocklan; Dutech, Guy

    2014-01-01

    Ordered mesoporous carbon (OMC) nanoscaffolds are engineered agglomerates of carbon nanotubes held together by small carbon nanofibers with uniform pore sizes, high pore volume, and high channel permeability. These materials exhibit very high affinity for the adsorption of gold from aqueous acidic mixtures. The efficiency of gold recovery is comparable to those typically accomplished using biopolymer-based adsorbents. The adsorption efficiency for other precious metals such as palladium and platinum is lower. Studies on the precious metal (Au, Pd) adsorption on OMC materials from actual liquors of leached electronics will be presented. Adsorption properties will be compared for several different sorbents used for the recovery of precious metals. The leach liquor compositions for three different types of electronic scrap materials (personal computer board, cell phone and tv input/output board) will be presented. The sorption efficiencies for Au, Pd, together with a spectrum of competing and non-competing metals, from such leach mixtures will be compared.

  6. Self-assembly of perylenediimide based semiconductor on polymer substrate

    Energy Technology Data Exchange (ETDEWEB)

    Wiatrowski, Michal, E-mail: Michal.Wiatrowski@p.lodz.p [Department of Molecular Physics, Technical University of Lodz, Zeromskiego 116, 90-924 Lodz (Poland); Dobruchowska, Ewa [Department of Molecular Physics, Technical University of Lodz, Zeromskiego 116, 90-924 Lodz (Poland); Maniukiewicz, Waldemar [Institute of General and Ecological Chemistry, Technical University of Lodz, Zeromskiego 116, 90-924 Lodz (Poland); Pietsch, Ulrich [FB7- Physik , Universitaet Siegen, 57068 Siegen (Germany); Kowalski, Jacek [Division of Non-Metallic Materials, Faculty of Mechanical Engineering, Technical University of Lodz, Stefanowskiego1/15, 90-924 Lodz (Poland); Szamel, Zbigniew; Ulanski, Jacek [Department of Molecular Physics, Technical University of Lodz, Zeromskiego 116, 90-924 Lodz (Poland)

    2010-02-01

    The continuous bi-layer composites consisting of top, ordered crystalline layer of perylenediimide derivative (2,9-di(pent-3-yl)-anthra[,1,9-def:6,5,10-d'e'f'] diisoquinoline-1,3,8,10-tetrone) - PTCDI-C5(3) and bottom poly(3-hexylthiophene-2,5-diyl) (P3HT) support were obtained from one solution, with a use of so called 'two-step reticulate doping' method. Optical, atomic force and scanning electron microscopy images show that the top crystalline layer is made of relatively large, anisotropic domains composed of long, parallel crystals. The crystalline character of the surface layer of PTCDI-C5(3) grown on the P3HT film was confirmed by wide angle X-ray scattering measurements. Furthermore, the grazing-incidence angle X-ray diffraction experiments revealed that the self-assembly of PTCDI-C5(3) molecules on P3HT is dominated by {pi}-{pi} interaction between the conjugated perylene cores, and the stacks are parallel to the long axis of the crystals and to the polymer surface. The surface conductivity, measured along the long axis of the crystals was estimated to be ca. 2.4 10{sup -8} {Omega}{sup -1} square{sup -}1 at 285 K. Temperature dependence of the conductivity in the range 140-285 K reveal semiconductor-like behaviour with activation energy ca. 150 meV.

  7. The infrared transmission through gold films on ordered two-dimensional non-close-packed colloidal crystals

    International Nuclear Information System (INIS)

    Ju Jing; Zhou Yuqin; Dong Gangqiang

    2014-01-01

    We studied the infrared transmission properties of gold films on ordered two-dimensional non-close-packed polystyrene (PS) colloidal crystal. The gold films consist of gold half-shells on the PS spheres and gold film with 2D arrays of holes on the glass substrate. An extraordinary optical transmission phenomenon could be found in such a structure. Simulations with the finite-difference time-domain method were also employed to get the transmission spectra and electric field distribution. The transmission response of the samples can be adjusted by controlling the thickness of the gold films. Angle-resolved measurements were performed using polarized light to obtain more information about the surface plasmon polariton resonances of the gold films. As the angle changes, the transmission spectra change a lot. The transmission spectra of p-polarized light have quite different properties compared to those of s-polarized light. (semiconductor physics)

  8. Self-Assembled Thin Films: Optical Characterization

    NARCIS (Netherlands)

    Wormeester, Herbert; Kooij, Ernst S.; Poelsema, Bene; Schwarz, James A.; Contescu, Cristian I.; Putyera, Karol

    2004-01-01

    Many different materials with truly new physical and chemical properties, consisting of controllably deposited colloid particles, are being developed. Particles with a variety of intrinsic properties are used, their sizes varying over at least three orders of magnitude. For photonic band gap

  9. Click functionalization of phenyl-capped bithiophene on azide-terminated self-assembled monolayers

    International Nuclear Information System (INIS)

    Zheng, Yijun; Cui, Jiaxi; Ikeda, Taichi

    2015-01-01

    Graphical abstract: - Highlights: • Electrochemically-active self-assembled monolayers with phenyl-capped bithiophene were prepared. • Post-functionalization method based on click chemistry solved the solubility issue of phenyl-capped thiophene alkanethiol. • The capture and release of the counter anions during the redox reaction were detectable by E-QCM. - Abstract: We immobilized tetra(ethylene glycol)-substituted phenyl-capped bithiophene with alkyne terminals (Ph2TPh-alkyne) on azide-terminated self-assembled monolayers (N 3 -SAMs) by Cu-catalyzed azide-alkyne cycloaddition reaction. Ph2TPh-functionalized SAMs on a gold substrate showed reversible electrochemical response. The surface densities of the azide groups in N 3 -SAMs and Ph2TPh units in Ph2TPh-functionalized SAMs were estimated to be 7.3 ± 0.3 × 10 −10 mol cm −2 and 4.6 ± 0.3 × 10 −10 mol cm −2 , respectively, by quartz crystal microbalance (QCM). Most of Ph2TPh-alkynes are considered to be anchored on N 3 -SAMs via both terminal groups. Ph2TPh-functionalized SAMs exhibited reversible redox peaks in cyclic voltammetry (CV). In redox reaction, reversible capture and release of the counter anion could be monitored by electrochemical QCM (E-QCM).

  10. Click functionalization of phenyl-capped bithiophene on azide-terminated self-assembled monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Yijun; Cui, Jiaxi [Max Planck Institute for Polymer Research (MPIP), Ackermannweg 10, Mainz 55128 (Germany); Ikeda, Taichi, E-mail: IKEDA.Taichi@nims.go.jp [Max Planck Institute for Polymer Research (MPIP), Ackermannweg 10, Mainz 55128 (Germany); Polymer Materials Unit, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044 (Japan)

    2015-11-15

    Graphical abstract: - Highlights: • Electrochemically-active self-assembled monolayers with phenyl-capped bithiophene were prepared. • Post-functionalization method based on click chemistry solved the solubility issue of phenyl-capped thiophene alkanethiol. • The capture and release of the counter anions during the redox reaction were detectable by E-QCM. - Abstract: We immobilized tetra(ethylene glycol)-substituted phenyl-capped bithiophene with alkyne terminals (Ph2TPh-alkyne) on azide-terminated self-assembled monolayers (N{sub 3}-SAMs) by Cu-catalyzed azide-alkyne cycloaddition reaction. Ph2TPh-functionalized SAMs on a gold substrate showed reversible electrochemical response. The surface densities of the azide groups in N{sub 3}-SAMs and Ph2TPh units in Ph2TPh-functionalized SAMs were estimated to be 7.3 ± 0.3 × 10{sup −10} mol cm{sup −2} and 4.6 ± 0.3 × 10{sup −10} mol cm{sup −2}, respectively, by quartz crystal microbalance (QCM). Most of Ph2TPh-alkynes are considered to be anchored on N{sub 3}-SAMs via both terminal groups. Ph2TPh-functionalized SAMs exhibited reversible redox peaks in cyclic voltammetry (CV). In redox reaction, reversible capture and release of the counter anion could be monitored by electrochemical QCM (E-QCM).

  11. Building polyhedra by self-assembly: theory and experiment.

    Science.gov (United States)

    Kaplan, Ryan; Klobušický, Joseph; Pandey, Shivendra; Gracias, David H; Menon, Govind

    2014-01-01

    We investigate the utility of a mathematical framework based on discrete geometry to model biological and synthetic self-assembly. Our primary biological example is the self-assembly of icosahedral viruses; our synthetic example is surface-tension-driven self-folding polyhedra. In both instances, the process of self-assembly is modeled by decomposing the polyhedron into a set of partially formed intermediate states. The set of all intermediates is called the configuration space, pathways of assembly are modeled as paths in the configuration space, and the kinetics and yield of assembly are modeled by rate equations, Markov chains, or cost functions on the configuration space. We review an interesting interplay between biological function and mathematical structure in viruses in light of this framework. We discuss in particular: (i) tiling theory as a coarse-grained description of all-atom models; (ii) the building game-a growth model for the formation of polyhedra; and (iii) the application of these models to the self-assembly of the bacteriophage MS2. We then use a similar framework to model self-folding polyhedra. We use a discrete folding algorithm to compute a configuration space that idealizes surface-tension-driven self-folding and analyze pathways of assembly and dominant intermediates. These computations are then compared with experimental observations of a self-folding dodecahedron with side 300 μm. In both models, despite a combinatorial explosion in the size of the configuration space, a few pathways and intermediates dominate self-assembly. For self-folding polyhedra, the dominant intermediates have fewer degrees of freedom than comparable intermediates, and are thus more rigid. The concentration of assembly pathways on a few intermediates with distinguished geometric properties is biologically and physically important, and suggests deeper mathematical structure.

  12. Self-assembly kinetics of microscale components: A parametric evaluation

    Science.gov (United States)

    Carballo, Jose M.

    The goal of the present work is to develop, and evaluate a parametric model of a basic microscale Self-Assembly (SA) interaction that provides scaling predictions of process rates as a function of key process variables. At the microscale, assembly by "grasp and release" is generally challenging. Recent research efforts have proposed adapting nanoscale self-assembly (SA) processes to the microscale. SA offers the potential for reduced equipment cost and increased throughput by harnessing attractive forces (most commonly, capillary) to spontaneously assemble components. However, there are challenges for implementing microscale SA as a commercial process. The existing lack of design tools prevents simple process optimization. Previous efforts have characterized a specific aspect of the SA process. However, the existing microscale SA models do not characterize the inter-component interactions. All existing models have simplified the outcome of SA interactions as an experimentally-derived value specific to a particular configuration, instead of evaluating it outcome as a function of component level parameters (such as speed, geometry, bonding energy and direction). The present study parameterizes the outcome of interactions, and evaluates the effect of key parameters. The present work closes the gap between existing microscale SA models to add a key piece towards a complete design tool for general microscale SA process modeling. First, this work proposes a simple model for defining the probability of assembly of basic SA interactions. A basic SA interaction is defined as the event where a single part arrives on an assembly site. The model describes the probability of assembly as a function of kinetic energy, binding energy, orientation and incidence angle for the component and the assembly site. Secondly, an experimental SA system was designed, and implemented to create individual SA interactions while controlling process parameters independently. SA experiments

  13. Assessing the plasmonics of gold nano-triangles with higher order laser modes

    Directory of Open Access Journals (Sweden)

    Laura E. Hennemann

    2012-10-01

    Full Text Available Regular arrays of metallic nano-triangles – so called Fischer patterns – are fabricated by nano-sphere lithography. We studied such gold nano-triangle arrays on silicon or glass substrates. A series of different samples was investigated with a parabolic mirror based confocal microscope where the sample is scanned through the laser focus. By employing higher order laser modes (azimuthally and radially polarised laser beams, we can excite the Fischer patterns using either a pure in-plane (x,y electric field or a strongly z-directional (optical axis of the optical microscope electric field. We collected and evaluated the emitted luminescence and thereby investigated the respectively excited plasmonic modes. These varied considerably: firstly with the light polarisation in the focus, secondly with the aspect ratio of the triangles and thirdly with the employed substrate. Moreover, we obtained strongly enhanced Raman spectra of an adenine (sub-monolayer on gold Fischer patterns on glass. We thus showed that gold Fischer patterns are promising surface-enhanced Raman scattering (SERS substrates.

  14. Using nanosphere lithography for fabrication of a multilayered system of ordered gold nanoparticles

    Directory of Open Access Journals (Sweden)

    V.I. Styopkin

    2017-07-01

    Full Text Available New modification of nanosphere lithography has been realized to obtain multilayered systems of ordered gold nanopartciles (NP. NP have been formed using vacuum deposition of 5…60-nm layer of gold on ionic etched multilayered regular coating consisted of several layers of 200-nm polystyrene spheres. Optical study shows that spectra of NP depend on their thickness and may be changed by heat treatment. Increasing the NP thickness within the 5…20-nm range leads to a shortwave displacement of the plasmon resonance peak position, while the longwave shift is observed in 20…60-nm range. Heat treatment of NP brings narrowing and displacement of spectral bands, rising the extinction. It has been supposed that variation of the NP shape is the most substantial factor for changes of optical properties in the 5…20 nm thickness region, while electromagnetic coupling between NP in different layers becomes more important for thicknesses larger than 40 nm. Optical properties inherent to the obtained system of NP can be tuned by changing the polystyrene spheres diameter, extent of etching, thickness of gold layer and with the heat treatment. It may be used in design of nanophotonic devices.

  15. Double smectic self-assembly in block copolypeptide complexes

    KAUST Repository

    Haataja, Johannes S.; Houbenov, Nikolay; Iatrou, Hermis; Hadjichristidis, Nikolaos; Karatzas, A.; Faul, Charl F. J.; Rannou, Patrice; Ikkala, Olli T.

    2012-01-01

    We show double smectic-like self-assemblies in the solid state involving alternating layers of different polypeptide α-helices. We employed rod-coil poly(γ-benzyl l-glutamate)-block-poly(l-lysine) (PBLG-b-PLL) as the polymeric scaffold, where the PLL amino residues were ionically complexed to di-n-butyl phosphate (diC4P), di(2-ethylhexyl) phosphate (diC2/6P), di(2-octyldodecyl) phosphate (diC8/12P), or di-n-dodecyl phosphate (diC12P), forming PBLG-b-PLL(diC4P), PBLG-b-PLL(diC2/6P), PBLG-b-PLL(diC8/12P), and PBLG-b-PLL(diC12P) complexes, respectively. The complexes contain PBLG α-helices of fixed diameter and PLL-surfactant complexes adopting either α-helices of tunable diameters or β-sheets. For PBLG-b-PLL(diC4P), that is, using a surfactant with short n-butyl tails, both blocks were α-helical, of roughly equal diameter and thus with minor packing frustrations, leading to alternating PBLG and PLL(diC4P) smectic layers of approximately perpendicular alignment of both types of α-helices. Surfactants with longer and branched alkyl tails lead to an increased diameter of the PLL-surfactant α-helices. Smectic alternating PBLG and PLL(diC2/6P) layers involve larger packing frustration, which leads to poor overall order and suggests an arrangement of tilted PBLG α-helices. In PBLG-b-PLL(diC8/12P), the PLL(diC8/12P) α-helices are even larger and the overall structure is poor. Using a surfactant with two linear n-dodecyl tails leads to well-ordered β-sheet domains of PLL(diC12P), consisting of alternating PLL and alkyl chain layers. This dominates the whole assembly, and at the block copolypeptide length scale, the PBLG α-helices do not show internal order and have poor organization. Packing frustration becomes an important aspect to design block copolypeptide assemblies, even if frustration could be relieved by conformational imperfections. The results suggest pathways to control hierarchical liquid-crystalline assemblies by competing interactions and by

  16. Double smectic self-assembly in block copolypeptide complexes

    KAUST Repository

    Haataja, Johannes S.

    2012-11-12

    We show double smectic-like self-assemblies in the solid state involving alternating layers of different polypeptide α-helices. We employed rod-coil poly(γ-benzyl l-glutamate)-block-poly(l-lysine) (PBLG-b-PLL) as the polymeric scaffold, where the PLL amino residues were ionically complexed to di-n-butyl phosphate (diC4P), di(2-ethylhexyl) phosphate (diC2/6P), di(2-octyldodecyl) phosphate (diC8/12P), or di-n-dodecyl phosphate (diC12P), forming PBLG-b-PLL(diC4P), PBLG-b-PLL(diC2/6P), PBLG-b-PLL(diC8/12P), and PBLG-b-PLL(diC12P) complexes, respectively. The complexes contain PBLG α-helices of fixed diameter and PLL-surfactant complexes adopting either α-helices of tunable diameters or β-sheets. For PBLG-b-PLL(diC4P), that is, using a surfactant with short n-butyl tails, both blocks were α-helical, of roughly equal diameter and thus with minor packing frustrations, leading to alternating PBLG and PLL(diC4P) smectic layers of approximately perpendicular alignment of both types of α-helices. Surfactants with longer and branched alkyl tails lead to an increased diameter of the PLL-surfactant α-helices. Smectic alternating PBLG and PLL(diC2/6P) layers involve larger packing frustration, which leads to poor overall order and suggests an arrangement of tilted PBLG α-helices. In PBLG-b-PLL(diC8/12P), the PLL(diC8/12P) α-helices are even larger and the overall structure is poor. Using a surfactant with two linear n-dodecyl tails leads to well-ordered β-sheet domains of PLL(diC12P), consisting of alternating PLL and alkyl chain layers. This dominates the whole assembly, and at the block copolypeptide length scale, the PBLG α-helices do not show internal order and have poor organization. Packing frustration becomes an important aspect to design block copolypeptide assemblies, even if frustration could be relieved by conformational imperfections. The results suggest pathways to control hierarchical liquid-crystalline assemblies by competing interactions and by

  17. 78 FR 72139 - Nevada Gold Corp.; Order of Suspension of Trading

    Science.gov (United States)

    2013-12-02

    ... current and accurate information concerning the securities of Nevada Gold Corp. (``Nevada Gold'') because of questions regarding the accuracy of assertions by Nevada Gold, and by others, to investors in..., and financial condition. Nevada Gold is a Delaware corporation based in Del Mar, California. The...

  18. Ionic interactions in electroactive self-assembled monolayers of ferrocene species

    Science.gov (United States)

    Delong, Hugh C.; Donohue, John J.; Buttry, Daniel A.

    1991-04-01

    The electrochemical and interfacial behavior of two types of electroactive self-assembled monolayer systems is investigated at gold electrodes. The first type is a ferrocene-based surfactant (a redox surfactant) derived from (dimethylamino)methylferrocene via quaternization of the amino group with various n-alkylbromides. These have a long alkyl chain with 16 or 18 carbons in the chain pendent from the cationic ammonium group. These are referred to as C16 and C18. The second type is a ferrocene-based dimeric species with a disulfide functional group capable of providing a permanent anchor to the Au electrode, thus endowing monolayers of this species with exceptional stability towards desorption. The electrochemical quartz crystal microbalance (EQM) is used to monitor the mass changes which occur at the electrode surface during the redox processes of these two species.

  19. Rectifying behaviour of self assembled porphyrin/fullerene dyads on Au(111)

    International Nuclear Information System (INIS)

    Matino, F; Arima, V; Maruccio, G; Phaneuf, R J; Sole, R Del; Mele, G; Vasapollo, G; Cingolani, R; Rinaldi, R

    2007-01-01

    Here we present an Ultra High Vacuum Scanning Tunnelling Microscopy (UHVSTM) and Scanning Tunnelling Spectroscopy (STS) study of self assembled donor-acceptor conjugate dyads, consisting of fulleropyrrolidines and metallo-porphyrins immobilized on gold. The coverage in the fulleropyrrolidine layers was optimized up to obtain isolated protrusions which we identify with isolated dyads since their lateral dimensions are consistent with the fullerene size. The STS study reveals a diode-like asymmetric behaviour of the dyads, different from the surrounding areas. We investigate also the influence of the tunneling conditions on the rectifying ratio which is found to be dependent on the initial set point conditions and to increase by increasing the tip-sample distance

  20. Measurement of molecular length of self-assembled monolayer probed by localized surface plasmon resonance

    Science.gov (United States)

    Ito, Juri; Kajikawa, Kotaro

    2016-02-01

    We propose a method to measure the variation of the molecular length of self-assembled monolayers (SAMs) when it is exposed to solutions at different pH conditions. The surface immobilized gold nanospheres (SIGNs) shows strong absorption peak at the wavelengths of 600-800 nm when p-polarized light is illuminated. The peak wavelength depends on the length of the gap distance between the SIGNs and the substrate. The gap is supported by the SAM molecules. According to the analytical calculation based on multiple expansion, the relation between the peak wavelength of the SIGN structures and the gap distance is calculated, to evaluate the molecular length of the SAM through the optical absorption spectroscopy for the SIGN structures. The molecular length of the SIGN structure was measured in air, water, acidic, and basic solutions. It was found that the molecular lengths are longer in acidic solutions.

  1. Rectifying behaviour of self assembled porphyrin/fullerene dyads on Au(111)

    Energy Technology Data Exchange (ETDEWEB)

    Matino, F [National Nanotechnology Laboratory (CNR-INFM)- Distretto Tecnologico ISUFI-Universita degli studi di Lecce - via Arnesano, 73100 Lecce (Italy); Arima, V [National Nanotechnology Laboratory (CNR-INFM)- Distretto Tecnologico ISUFI-Universita degli studi di Lecce - via Arnesano, 73100 Lecce (Italy); Maruccio, G [National Nanotechnology Laboratory (CNR-INFM)- Distretto Tecnologico ISUFI-Universita degli studi di Lecce - via Arnesano, 73100 Lecce (Italy); Phaneuf, R J [National Nanotechnology Laboratory (CNR-INFM)- Distretto Tecnologico ISUFI-Universita degli studi di Lecce - via Arnesano, 73100 Lecce (Italy); Sole, R Del [Dipartimento di Ingegneria dell' Innovazione - Universita degli Studi di Lecce- via Arnesano, 73100 Lecce (Italy); Mele, G [Dipartimento di Ingegneria dell' Innovazione - Universita degli Studi di Lecce- via Arnesano, 73100 Lecce (Italy); Vasapollo, G [Dipartimento di Ingegneria dell' Innovazione - Universita degli Studi di Lecce- via Arnesano, 73100 Lecce (Italy); Cingolani, R [National Nanotechnology Laboratory (CNR-INFM)- Distretto Tecnologico ISUFI-Universita degli studi di Lecce - via Arnesano, 73100 Lecce (Italy); Rinaldi, R [National Nanotechnology Laboratory (CNR-INFM)- Distretto Tecnologico ISUFI-Universita degli studi di Lecce - via Arnesano, 73100 Lecce (Italy)

    2007-04-15

    Here we present an Ultra High Vacuum Scanning Tunnelling Microscopy (UHVSTM) and Scanning Tunnelling Spectroscopy (STS) study of self assembled donor-acceptor conjugate dyads, consisting of fulleropyrrolidines and metallo-porphyrins immobilized on gold. The coverage in the fulleropyrrolidine layers was optimized up to obtain isolated protrusions which we identify with isolated dyads since their lateral dimensions are consistent with the fullerene size. The STS study reveals a diode-like asymmetric behaviour of the dyads, different from the surrounding areas. We investigate also the influence of the tunneling conditions on the rectifying ratio which is found to be dependent on the initial set point conditions and to increase by increasing the tip-sample distance.

  2. Synthesis of Photocrosslinkable and Amine Containing Multifunctional Nanoparticles via Polymerization-Induced Self-Assembly.

    Science.gov (United States)

    Huang, Jianbing; Li, Decai; Liang, Hui; Lu, Jiang

    2017-08-01

    Photo-crosslinkable and amine-containing block copolymer nanoparticles are synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization-induced self-assembly of a multifunctional core-forming monomer, 2-((3-(4-(diethylamino)phenyl)acryloyl)oxy)ethyl methacrylate (DEMA), using poly(2-hydroxypropyl methacrylate) macromolecular chain transfer agent as a steric stabilizer in methanol at 65 °C. By tuning the chain length of PDEMA, a range of nanoparticle morphologies (sphere, worm, and vesicle) can be obtained. Since cinnamate groups can easily undergo a [2 + 2] cycloaddition of the carbon-carbon double bonds upon UV irradiation, the as-prepared block copolymer nanoparticles are readily stabilized by photo-crosslinking to produce anisotropic nanoparticles. The crosslinked block copolymer nanoparticles can be used as templates for in situ formation polymer/gold hybrid nanoparticles. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Self-assembly of coiled coil peptides into nanoparticles vs 2-d plates: effects of assembly pathway

    Science.gov (United States)

    Kim, Kyunghee; Pochan, Darrin

    Molecular solution assembly, or self-assembly, is a process by which ordered nanostructures or patterns are formed by non-covalent interactions during assembly. Biomimicry, the use of bioinspired molecules or biologically relevant materials, is an important area of self-assembly research with peptides serving a critical role as molecular tools. The morphology of peptide assemblies can be controlled by adjusting solution conditions such as the concentration of peptides, the temperature, and pH. Herein, spherical nanostructures, which have potential for creating an encapsulation system, are formed by self-assembly when coiled coil peptides are combined in solution. These peptides are homotrimeric and heterodimeric coiled-coil bundles and the homotrimer is connected with each of heterodimer through their external surfaces via disulfide bonds. The resultant covalent constructs could co-assemble into complementary trimeric hubs, respectively. The two peptide constructs are directly mixed and assembled in solution in order to produce either spherical particles or 2-d plates depending on the solution conditions and kinetic pathway of assembly. In particular, structural changes of the self-assembled peptides are explored by control of the thermal history of the assembly solution.

  4. SELF-ASSEMBLY CE OXIDE/ORGANOPOLYSILOXANE COMPOSITE COATINGS.

    Energy Technology Data Exchange (ETDEWEB)

    SUGAMA,T.; SABATINI,R.; GAWLIK,K.

    2005-01-01

    A self-assembly composite synthesis technology was used to put together a Ce(OH){sub 3}-dispersed poly-acetamide-acetoxyl methyl-propylsiloxane (PAAMPA) organometallic polymer. Three spontaneous reactions were involved; condensation, amidation, and acetoxylation, between the Ce acetate and aminopropylsilane triol (APST) at 150 C. An increase in temperature to 200 C led to the in-situ phase transformation of Ce(OH){sub 3} into Ce{sub 2}O{sub 3} in the PAAMPA matrix. A further increase to 250 C caused oxidative degradation of the PAAMPA, thereby generating copious fissures in the composite. We assessed the potential of Ce(OH){sub 3}/ and Ce{sub 2}O{sub 3}/ PAAMPA composite materials as corrosion-preventing coatings for carbon steel and aluminum. The Ce{sub 2}O{sub 3} composite coating displayed better performance in protecting both metals against NaCl-caused corrosion than did the Ce(OH){sub 3} composite. Using this coating formed at 200 C, we demonstrated that the following four factors played an essential role in further mitigating the corrosion of the metals: First was a minimum susceptibility of coating's surface to moisture; second was an enhanced densification of the coating layer; third was the retardation of the cathodic oxygen reduction reaction at the metal's corrosion sites due to the deposition of Ce{sub 2}O{sub 3} as a passive film over the metal's surface; and, fourth was its good adherence to metals. The last two factors contributed to minimizing the cathodic delamination of coating film from the metal's surface. We also noted that the affinity of the composite with the surface of aluminum was much stronger than that with steel. Correspondingly, the rate of corrosion of aluminum was reduced as much as two orders of magnitude by a nanoscale thick coating. In contrast, its ability to reduce the corrosion rate of steel was lower than one order of magnitude.

  5. Adsorption of hyaluronic acid on solid supports: role of pH and surface chemistry in thin film self-assembly.

    Science.gov (United States)

    Choi, Jae-Hyeok; Kim, Seong-Oh; Linardy, Eric; Dreaden, Erik C; Zhdanov, Vladimir P; Hammond, Paula T; Cho, Nam-Joon

    2015-06-15

    Owing to its biocompatibility, resistance to biofouling, and desirable physicochemical and biological properties, hyaluronic acid (HA) has been widely used to modify the surface of various materials. The role of various physicochemical factors in HA adsorption remains, however, to be clarified. Herein, we employed quartz crystal microbalance with dissipation (QCM-D) in order to investigate HA adsorption at different pH conditions onto three substrates-silicon oxide, amine-terminated self-assembled monolayer (SAM) on gold, and carboxylic acid-terminated SAM on gold. The QCM-D experiments indicated specific pH conditions where either strong or weak HA adsorption occurs. The morphology of the adsorbed HA layers was investigated by atomic force microscopy (AFM), and we identified that strong HA adsorption produced a complete, homogenous and smooth HA layer, while weak HA adsorption resulted in rough and inhomogeneous HA layers. The observed specifics of the kinetics of HA adsorption, including a short initial linear phase and subsequent long non-linear phase, were described by using a mean-field kinetic model taking HA diffusion limitations and reconfiguration in the adsorbed state into account. The findings extend the physicochemical background of design strategies for improving the use of passive HA adsorption for surface modification applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Thermomechanical Response of Self-Assembled Nanoparticle Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yifan [Department; James; Chan, Henry [Center; Narayanan, Badri [Center; McBride, Sean P. [Department; Sankaranarayanan, Subramanian K. R. S. [Center; Lin, Xiao-Min [Center; Jaeger, Heinrich M. [Department; James

    2017-07-21

    Monolayers composed of colloidal nanoparticles, with a thickness of less than 10 nm, have remarkable mechanical moduli and can suspend over micrometer-sized holes to form free-standing membranes. In this paper, we discuss experiment's and coarse-grained molecular dynamics simulations characterizing the thermomechanical properties of these self-assembled nanoparticle membranes. These membranes remain strong and resilient up to temperatures much higher than previous simulation predictions and exhibit an unexpected hysteretic behavior during the first heating cooling cycle. We show this hysteretic behavior can be explained by an asymmetric ligand configuration from the self assembly process and can be controlled by changing the ligand coverage or cross-linking the ligand molecules. Finally, we show the screening effect of water molecules on the ligand interactions can strongly affect the moduli and thermomechanical behavior.

  7. The self-assembling process and applications in tissue engineering

    Science.gov (United States)

    Lee, Jennifer K.; Link, Jarrett M.; Hu, Jerry C. Y.; Athanasiou, Kyriacos A.

    2018-01-01

    Tissue engineering strives to create neotissues capable of restoring function. Scaffold-free technologies have emerged that can recapitulate native tissue function without the use of an exogenous scaffold. This chapter will survey, in particular, the self-assembling and self-organization processes as scaffold-free techniques. Characteristics and benefits of each process are described, and key examples of tissues created using these scaffold-free processes are examined to provide guidance for future tissue engineering developments. This chapter aims to explore the potential of self-assembly and self-organization scaffold-free approaches, detailing the recent progress in the in vitro tissue engineering of biomimetic tissues with these methods, toward generating functional tissue replacements. PMID:28348174

  8. Quantitative self-assembly prediction yields targeted nanomedicines

    Science.gov (United States)

    Shamay, Yosi; Shah, Janki; Işık, Mehtap; Mizrachi, Aviram; Leibold, Josef; Tschaharganeh, Darjus F.; Roxbury, Daniel; Budhathoki-Uprety, Januka; Nawaly, Karla; Sugarman, James L.; Baut, Emily; Neiman, Michelle R.; Dacek, Megan; Ganesh, Kripa S.; Johnson, Darren C.; Sridharan, Ramya; Chu, Karen L.; Rajasekhar, Vinagolu K.; Lowe, Scott W.; Chodera, John D.; Heller, Daniel A.

    2018-02-01

    Development of targeted nanoparticle drug carriers often requires complex synthetic schemes involving both supramolecular self-assembly and chemical modification. These processes are generally difficult to predict, execute, and control. We describe herein a targeted drug delivery system that is accurately and quantitatively predicted to self-assemble into nanoparticles based on the molecular structures of precursor molecules, which are the drugs themselves. The drugs assemble with the aid of sulfated indocyanines into particles with ultrahigh drug loadings of up to 90%. We devised quantitative structure-nanoparticle assembly prediction (QSNAP) models to identify and validate electrotopological molecular descriptors as highly predictive indicators of nano-assembly and nanoparticle size. The resulting nanoparticles selectively targeted kinase inhibitors to caveolin-1-expressing human colon cancer and autochthonous liver cancer models to yield striking therapeutic effects while avoiding pERK inhibition in healthy skin. This finding enables the computational design of nanomedicines based on quantitative models for drug payload selection.

  9. Molecular Gels Materials with Self-Assembled Fibrillar Networks

    CERN Document Server

    Weiss, Richard G

    2006-01-01

    Molecular gels and fibrillar networks – a comprehensive guide to experiment and theory Molecular Gels: Materials with Self-Assembled Fibrillar Networks provides a comprehensive treatise on gelators, especially low molecular-mass gelators (LMOGs), and the properties of their gels. The structures and modes of formation of the self-assembled fibrillar networks (SAFINs) that immobilize the liquid components of the gels are discussed experimentally and theoretically. The spectroscopic, rheological, and structural features of the different classes of LMOGs are also presented. Many examples of the application of the principal analytical techniques for investigation of molecular gels (including SANS, SAXS, WAXS, UV-vis absorption, fluorescence and CD spectroscopies, scanning electron, transmission electron and optical microscopies, and molecular modeling) are presented didactically and in-depth, as are several of the theories of the stages of aggregation of individual LMOG molecules leading to SAFINs. Several actua...

  10. Understanding the self-assembly of TCNQ on Cu(111)

    DEFF Research Database (Denmark)

    Stradi, Daniele; Borca, Bogdana; Barja, Sara

    2016-01-01

    The structure of self-assembled monolayers of 7,7',8,8'-tetracyano-p-quinodimethane (TCNQ) adsorbed on Cu(111) has been studied using a combination of scanning tunnelling microscopy (STM) experiments and density functional theory (DFT) calculations. We show that the polymorphism of the self......-assembled molecular layer can be controlled by tuning of the experimental conditions under which the deposition is carried out. When the Cu(111) substrate is held above room temperature (T-Cu(111) = 350 K) during deposition, a structure is formed in which the two molecules in the unit cell are oriented one...... perpendicular to the other. Conversely, when the substrate is held at room temperature during deposition and slightly annealed afterwards, a more complex structure with five molecules per unit cell is formed. DFT calculations complement the experimental results by revealing that the building blocks of the two...

  11. Self-assembling enzymes and the origins of the cytoskeleton

    Science.gov (United States)

    Barry, Rachael; Gitai, Zemer

    2011-01-01

    The bacterial cytoskeleton is composed of a complex and diverse group of proteins that self-assemble into linear filaments. These filaments support and organize cellular architecture and provide a dynamic network controlling transport and localization within the cell. Here, we review recent discoveries related to a newly appreciated class of self-assembling proteins that expand our view of the bacterial cytoskeleton and provide potential explanations for its evolutionary origins. Specifically, several types of metabolic enzymes can form structures similar to established cytoskeletal filaments and, in some cases, these structures have been repurposed for structural uses independent of their normal role. The behaviors of these enzymes suggest that some modern cytoskeletal proteins may have evolved from dual-role proteins with catalytic and structural functions. PMID:22014508

  12. Colloidal Self-Assembly Driven by Deformability & Near-Critical Phenomena

    NARCIS (Netherlands)

    Evers, C.H.J.|info:eu-repo/dai/nl/338775188

    2016-01-01

    Self-assembly is the spontaneous formation of patterns or structures without human intervention. This thesis aims to increase our understanding of self-assembly. In self-assembly of proteins, the building blocks are very small and complex. Consequently, grasping the basic principles that drive the

  13. Self-Assembled Monolayers of CdSe Nanocrystals on Doped GaAs Substrates

    DEFF Research Database (Denmark)

    Marx, E.; Ginger, D.S.; Walzer, Karsten

    2002-01-01

    This letter reports the self-assembly and analysis of CdSe nanocrystal monolayers on both p- and a-doped GaAs substrates. The self-assembly was performed using a 1,6-hexanedithiol self-assembled monolayer (SAM) to link CdSe nanocrystals to GaAs substrates. Attenuated total reflection Fourier tran...

  14. Use of piezoelectric-excited millimeter-sized cantilever sensors to measure albumin interaction with self-assembled monolayers of alkanethiols having different functional headgroups.

    Science.gov (United States)

    Campbell, Gossett A; Mutharasan, Raj

    2006-04-01

    In this paper, we describe a new modality of measuring human serum albumin (HSA) adsorption continuously on CH3-, COOH-, and OH-terminated self-assembled monolayers (SAMs) of C11-alkanethiols and the direct quantification of the adsorbed amount. A gold-coated piezoelectric-excited millimeter-sized cantilever (PEMC) sensor of 6-mm2 sensing area was fabricated, where resonant frequency decreases upon mass increase. The resonant frequency in air of the detection peak was 45.5 +/- 0.01 kHz. SAMs of C11-thiols (in absolute ethanol) with different end groups was prepared on the PEMC sensor and then exposed to buffer solution containing HSA at 10 microg/mL. The resonant frequency decreased exponentially and reached a steady-state value within 30 min. The decrease in resonant frequency indicates that the mass of the sensor increased due to HSA adsorption onto the SAM layer. The frequency change obtained for the HSA adsorption on CH3-, COOH-, and OH-terminated SAM were 520.8 +/- 8.6 (n = 3), 290.4 +/- 6.1 (n = 2), and 210.6 +/- 8.1 Hz (n = 3), respectively. These results confirm prior conclusions that albumin adsorption decreased in the order, CH(3) > COOH > OH. Observed binding rate constants were 0.163 +/- 0.003, 0.248 +/- 0.006, and 0.381 +/- 0.001 min(-1), for methyl, carboxylic, and hydroxyl end groups, respectively. The significance of the results reported here is that both the formation of self-assembled monolayers and adsorption of serum protein onto the formed layer can be measured continuously, and quantification of the adsorbed amount can be determined directly.

  15. Microtubule dynamics. II. Kinetics of self-assembly

    DEFF Research Database (Denmark)

    Flyvbjerg, H.; Jobs, E.

    1997-01-01

    Inverse scattering theory describes the conditions necessary and sufficient to determine an unknown potential from known scattering data. No similar theory exists for when and how one may deduce the kinetics of an unknown chemical reaction from quantitative information about its final state and i...... to analyze the self-assembly of microtubules from tubulin are general, and many other reactions and processes may be studied as inverse problems with these methods when enough experimental data are available....

  16. Fabrication of Nanostructures Using Self-Assembled Peptides as Templates

    DEFF Research Database (Denmark)

    Castillo, Jaime

    2015-01-01

    the advantages of diphenylalanine are explained step by step offering new alternatives to fabricate nanostructures in a simple and rapid way. The chapter is complemented with techniques to manipulate the self-assembled diphenylalanine nanostructures without changing its properties during the manipulation process.......This chapter evaluates the use of a short-aromatic dipeptide, diphenylalanine, as a template in the fabrication of new nanostructures (nanowires, coaxial nanocables, nanochannels) using materials such as silicon, conducting and non-conducting polymers. Diphenylalanine self...

  17. Spin State As a Probe of Vesicle Self-Assembly.

    Science.gov (United States)

    Kim, Sanghoon; Bellouard, Christine; Eastoe, Julian; Canilho, Nadia; Rogers, Sarah E; Ihiawakrim, Dris; Ersen, Ovidiu; Pasc, Andreea

    2016-03-02

    A novel system of paramagnetic vesicles was designed using ion pairs of iron-containing surfactants. Unilamellar vesicles (diameter ≈ 200 nm) formed spontaneously and were characterized by cryogenic transmission electron microscopy, nanoparticle tracking analysis, and light and small-angle neutron scattering. Moreover, for the first time, it is shown that magnetization measurements can be used to investigate self-assembly of such functionalized systems, giving information on the vesicle compositions and distribution of surfactants between the bilayers and the aqueous bulk.

  18. Spin State As a Probe of Vesicle Self-Assembly

    OpenAIRE

    Kim, Sanghoon; Bellouard, Christine; Eastoe, Julian; Canilho, Nadia; Rogers, Sarah E; Ihiawakrim, Dris; Ersen, Ovidiu; Pasc, Andreea

    2016-01-01

    A novel system of paramagnetic vesicles was designed using ion pairs of iron-containing surfactants. Unilamellar vesicles (diameter ≈ 200 nm) formed spontaneously and were characterized by cryogenic transmission electron microscopy, nanoparticle tracking analysis, and light and small-angle neutron scattering. Moreover, for the first time, it is shown that magnetization measurements can be used to investigate self-assembly of such functionalized systems, giving information on the vesicle compo...

  19. Phosphorylation Modulates Ameloblastin Self-assembly and Ca2+ Binding

    Czech Academy of Sciences Publication Activity Database

    Stakkestad, O.; Lyngstadaas, S. P.; Thiede, B.; Vondrášek, Jiří; Skalhegg, B. S.; Reseland, J. E.

    2017-01-01

    Roč. 8, Jul 27 (2017), č. článku 531. ISSN 1664-042X Institutional support: RVO:61388963 Keywords : ameloblastin * phosphorylation * self-assembly * Ca2+-binding * enamel * intrinsically disordered proteins Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 4.134, year: 2016 http://journal.frontiersin.org/article/10.3389/fphys.2017.00531/full

  20. Self-assembled containers based on extended tetrathiafulvalene.

    Science.gov (United States)

    Bivaud, Sébastien; Goeb, Sébastien; Croué, Vincent; Dron, Paul I; Allain, Magali; Sallé, Marc

    2013-07-10

    Two original self-assembled containers constituted each by six electroactive subunits are described. They are synthesized from a concave tetratopic π-extended tetrathiafulvalene ligand bearing four pyridyl units and cis-M(dppf)(OTf)2 (M = Pd or Pt; dppf = 1,1'-bis(diphenylphosphino)ferrocene; OTf = trifluoromethane-sulfonate) complexes. Both fully characterized assemblies present an oblate spheroidal cavity that can incorporate one perylene molecule.

  1. Self-assembly and speed distributions of active granular particles

    Science.gov (United States)

    Sánchez, R.; Díaz-Leyva, P.

    2018-06-01

    The relationship between the dynamics of self-propelled systems and the self-assembly of structured clusters are studied via the experimental speed distributions of submonolayers of self-propelled granular particles. A distribution developed for non-self-propelled granular particles describes the speed distributions remarkably well, despite some of the assumptions behind its original derivation not being applicable. This is explained in terms of clustering and dissipation being the key phenomena governing this regime.

  2. Biocompatible and Biomimetic Self-Assembly of Functional Nanostructures

    Science.gov (United States)

    2010-02-28

    evaporation induced self-assembly of aqueous silica precursors with a biologically compatible surfactant, glycerol monooleate ( GMO ) via dip-coating...film is first deposited, it has a relatively low contact angle with water and remains in a semi-solid state. Upon exposure to UV/ozone, the GMO begins...Figure 8. A) Water contact angle of a GMO -templated silica film as a function of UV light and ozone exposure time, B) Localization of fluorescently

  3. Self-assembly of inorganic nanoparticles: Ab ovo

    Science.gov (United States)

    Kotov, Nicholas A.

    2017-09-01

    There are numerous remarkable studies related to the self-organization of polymers, coordination compounds, microscale particles, biomolecules, macroscale particles, surfactants, and reactive molecules on surfaces. The focus of this paper is on the self-organization of nanoscale inorganic particles or simply nanoparticles (NPs). Although there are fascinating and profound discoveries made with other self-assembling structures, the ones involving NPs deserve particular attention because they (a) are omnipresent in Nature; (b) have relevance to numerous disciplines (physics, chemistry, biology, astronomy, Earth sciences, and others); (c) embrace most of the features, geometries, and intricacies observed for the self-organization of other chemical species; (d) offer new tools for studies of self-organization phenomena; and (e) have a large economic impact, extending from energy and construction industries, to optoelectronics, biomedical technologies, and food safety. Despite the overall success of the field it is necessary to step back from its multiple ongoing research venues and consider two questions: What is self-assembly of nanoparticles? and Why do we need to study it? The reason to bring them up is to achieve greater scientific depth in the understanding of these omnipresent phenomena and, perhaps, deepen their multifaceted impact. Contribution to the Focus Issue Self-assemblies of Inorganic and Organic Nanomaterials edited by Marie-Paule Pileni.

  4. Supramolecular ribbons from amphiphilic trisamides self-assembly.

    Science.gov (United States)

    García, Fátima; Buendía, Julia; Sánchez, Luis

    2011-08-05

    Two amphiphilic C(3)-symmetric OPE-based trisamides have been synthesized and their self-assembling features investigated in solution and on surface. Variable-temperature UV-vis experiments demonstrate the cooperative supramolecular polymerization of these trisamides that self-assemble by the operation of triple C═O···H-N H-bonding arrays between the amide functional groups and π-π stacking between the aromatic units. The helical organization of the aggregates has been demonstrated by circular dichroism at a concentration as low as 1 × 10(-4) M in acetonitrile. In the reported trisamides, the large hydrophobic aromatic core acts as a solvophobic module impeding the interaction between the polar TEG chains and the amide H-bonds. This strategy makes unnecessary the separation of the amide functional groups to the polar tri(ethylene glycol) chains by paraffinic fragments. Achiral trisamide 1 self-assembles into flat ribbon-like structures that experience an amplification of chirality by the addition of a small amount of chiral 2 that generates twisted stripes.

  5. Molecular Motions in Functional Self-Assembled Nanostructures

    Directory of Open Access Journals (Sweden)

    Jean-Marc Saiter

    2013-01-01

    Full Text Available The construction of “smart” materials able to perform specific functions at the molecular scale through the application of various stimuli is highly attractive but still challenging. The most recent applications indicate that the outstanding flexibility of self-assembled architectures can be employed as a powerful tool for the development of innovative molecular devices, functional surfaces and smart nanomaterials. Structural flexibility of these materials is known to be conferred by weak intermolecular forces involved in self-assembly strategies. However, some fundamental mechanisms responsible for conformational lability remain unexplored. Furthermore, the role played by stronger bonds, such as coordination, ionic and covalent bonding, is sometimes neglected while they can be employed readily to produce mechanically robust but also chemically reversible structures. In this review, recent applications of structural flexibility and molecular motions in self-assembled nanostructures are discussed. Special focus is given to advanced materials exhibiting significant performance changes after an external stimulus is applied, such as light exposure, pH variation, heat treatment or electromagnetic field. The crucial role played by strong intra- and weak intermolecular interactions on structural lability and responsiveness is highlighted.

  6. Self-assembled magnetic filter for highly efficient immunomagnetic separation.

    Science.gov (United States)

    Issadore, David; Shao, Huilin; Chung, Jaehoon; Newton, Andita; Pittet, Mikael; Weissleder, Ralph; Lee, Hakho

    2011-01-07

    We have developed a compact and inexpensive microfluidic chip, the self-assembled magnetic filter, to efficiently remove magnetically tagged cells from suspension. The self-assembled magnetic filter consists of a microfluidic channel built directly above a self-assembled NdFeB magnet. Micrometre-sized grains of NdFeB assemble to form alternating magnetic dipoles, creating a magnetic field with a very strong magnitude B (from the material) and field gradient ▽B (from the configuration) in the microfluidic channel. The magnetic force imparted on magnetic beads is measured to be comparable to state-of-the-art microfabricated magnets, allowing for efficient separations to be performed in a compact, simple device. The efficiency of the magnetic filter is characterized by sorting non-magnetic (polystyrene) beads from magnetic beads (iron oxide). The filter enriches the population of non-magnetic beads to magnetic beads by a factor of >10(5) with a recovery rate of 90% at 1 mL h(-1). The utility of the magnetic filter is demonstrated with a microfluidic device that sorts tumor cells from leukocytes using negative immunomagnetic selection, and concentrates the tumor cells on an integrated membrane filter for optical detection.

  7. Chitosan Based Self-Assembled Nanoparticles in Drug Delivery

    Directory of Open Access Journals (Sweden)

    Javier Pérez Quiñones

    2018-02-01

    Full Text Available Chitosan is a cationic polysaccharide that is usually obtained by alkaline deacetylation of chitin poly(N-acetylglucosamine. It is biocompatible, biodegradable, mucoadhesive, and non-toxic. These excellent biological properties make chitosan a good candidate for a platform in developing drug delivery systems having improved biodistribution, increased specificity and sensitivity, and reduced pharmacological toxicity. In particular, chitosan nanoparticles are found to be appropriate for non-invasive routes of drug administration: oral, nasal, pulmonary and ocular routes. These applications are facilitated by the absorption-enhancing effect of chitosan. Many procedures for obtaining chitosan nanoparticles have been proposed. Particularly, the introduction of hydrophobic moieties into chitosan molecules by grafting to generate a hydrophobic-hydrophilic balance promoting self-assembly is a current and appealing approach. The grafting agent can be a hydrophobic moiety forming micelles that can entrap lipophilic drugs or it can be the drug itself. Another suitable way to generate self-assembled chitosan nanoparticles is through the formation of polyelectrolyte complexes with polyanions. This paper reviews the main approaches for preparing chitosan nanoparticles by self-assembly through both procedures, and illustrates the state of the art of their application in drug delivery.

  8. DNA assisted self-assembly of PAMAM dendrimers.

    Science.gov (United States)

    Mandal, Taraknath; Kumar, Mattaparthi Venkata Satish; Maiti, Prabal K

    2014-10-09

    We report DNA assisted self-assembly of polyamidoamine (PAMAM) dendrimers using all atom Molecular Dynamics (MD) simulations and present a molecular level picture of a DNA-linked PAMAM dendrimer nanocluster, which was first experimentally reported by Choi et al. (Nano Lett., 2004, 4, 391-397). We have used single stranded DNA (ssDNA) to direct the self-assembly process. To explore the effect of pH on this mechanism, we have used both the protonated (low pH) and nonprotonated (high pH) dendrimers. In all cases studied here, we observe that the DNA strand on one dendrimer unit drives self-assembly as it binds to the complementary DNA strand present on the other dendrimer unit, leading to the formation of a DNA-linked dendrimer dimeric complex. However, this binding process strongly depends on the charge of the dendrimer and length of the ssDNA. We observe that the complex with a nonprotonated dendrimer can maintain a DNA length dependent inter-dendrimer distance. In contrast, for complexes with a protonated dendrimer, the inter-dendrimer distance is independent of the DNA length. We attribute this observation to the electrostatic complexation of a negatively charged DNA strand with the positively charged protonated dendrimer.

  9. Controlling Self-Assembly in Al(110) Homoepitaxy

    Science.gov (United States)

    Tiwary, Yogesh; Fichthorn, Kristen

    2010-03-01

    Homoepitaxial growth on Al(110) exhibits nanoscale self-assembly into huts with well-defined (100) and (111) facets [1]. Although some of the diffusion mechanisms underlying this kinetic self-assembly were identified and incorporated into a two-dimensional model [2], we used density-functional theory (DFT) to identify many other mechanisms that are needed to describe the three-dimensional assembly seen experimentally [3]. We developed a three-dimensional kinetic Monte Carlo (KMC) model of Al(110) homoepitaxy. The inputs to the model were obtained from DFT [3,4]. Our model is in agreement with experimentally observed trends for this system. We used KMC to predict self-assembly under various growth conditions. To achieve precise placement of Al nanohuts, we simulated thermal-field-directed assembly [5]. Our results indicate that this technique can be used to create uniform arrays of nanostructures. [1] F. Buatier de Mongeot, W. Zhu, A. Molle, R. Buzio, C. Boragno, U. Valbusa, E. Wang, and Z. Zhang, Phys. Rev. Lett. 91, 016102 (2003). [2] W. Zhu, F. Buatier de Mongeot, U. Valbusa, E. G. Wang, and Z. Y. Zhang, Phys. Rev. Lett. 92, 106102 (2004). [3] Y. Tiwary and K. A. Fichthorn, submitted to Phys. Rev. B. [4] Y. Tiwary and K. A. Fichthorn, Phys. Rev. B 78, 205418 (2008). [5] C. Zhang and R. Kalyanaraman, Appl. Phys. Lett. 83, 4827 (2003).

  10. Self-assembly and transformation of hybrid nano-objects and nanostructures under equilibrium and non-equilibrium conditions

    Science.gov (United States)

    Mann, Stephen

    2009-10-01

    Understanding how chemically derived processes control the construction and organization of matter across extended and multiple length scales is of growing interest in many areas of materials research. Here we review present equilibrium and non-equilibrium self-assembly approaches to the synthetic construction of discrete hybrid (inorganic-organic) nano-objects and higher-level nanostructured networks. We examine a range of synthetic modalities under equilibrium conditions that give rise to integrative self-assembly (supramolecular wrapping, nanoscale incarceration and nanostructure templating) or higher-order self-assembly (programmed/directed aggregation). We contrast these strategies with processes of transformative self-assembly that use self-organizing media, reaction-diffusion systems and coupled mesophases to produce higher-level hybrid structures under non-equilibrium conditions. Key elements of the constructional codes associated with these processes are identified with regard to existing theoretical knowledge, and presented as a heuristic guideline for the rational design of hybrid nano-objects and nanomaterials.

  11. Generic concept to program the time domain of self-assemblies with a self-regulation mechanism.

    Science.gov (United States)

    Heuser, Thomas; Steppert, Ann-Kathrin; Lopez, Catalina Molano; Zhu, Baolei; Walther, Andreas

    2015-04-08

    Nature regulates complex structures in space and time via feedback loops, kinetically controlled transformations, and under energy dissipation to allow non-equilibrium processes. Although man-made static self-assemblies realize excellent control over hierarchical structures via molecular programming, managing their temporal destiny by self-regulation is a largely unsolved challenge. Herein, we introduce a generic concept to control the time domain by programming the lifetimes of switchable self-assemblies in closed systems. We conceive dormant deactivators that, in combination with fast promoters, enable a unique kinetic balance to establish an autonomously self-regulating, transient pH-state, whose duration can be programmed over orders of magnitude-from minutes to days. Coupling this non-equilibrium state to pH-switchable self-assemblies allows predicting their assembly/disassembly fate in time, similar to a precise self-destruction mechanism. We demonstrate a platform approach by programming self-assembly lifetimes of block copolymers, nanoparticles, and peptides, enabling dynamic materials with a self-regulation functionality.

  12. Self-assembly as a design tool for the integration of photonic structures into excitonic solar cells

    KAUST Repository

    Guldin, S.

    2011-09-20

    One way to successfully enhance light harvesting of excitonic solar cells is the integration of optical elements that increase the photon path length in the light absorbing layer. Device architectures which incorporate structural order in form of one- or three-dimensional refractive index lattices can lead to the localization of light in specific parts of the spectrum, while retaining the cell\\'s transparency in others. Herein, we present two routes for the integration of photonic crystals (PCs) into dye-sensitized solar cells (DSCs). In both cases, the self-assembly of soft matter plays a key role in the fabrication process of the TiO2 electrode. One approach relies on a combination of colloidal self-assembly and the self-assembly of block copolymers, resulting in a double layer dye-sensitized solar cell with increased light absorption from the 3D PC element. An alternative route is based on the fact that the refractive index of the mesoporous layer can be finely tuned by the interplay between block copolymer self-assembly and hydrolytic TiO2 sol-gel chemistry. Alternating deposition of high and low refractive index layers enables the integration of a 1D PC into a DSC.

  13. Controlled modification of octadecyltrichlorosilane self-assembled monolayer by CO2 plasma

    International Nuclear Information System (INIS)

    Delorme, Nicolas; Bardeau, Jean-Francois; Bulou, Alain; Poncin-Epaillard, Fabienne

    2006-01-01

    CO 2 -plasma is used to introduce functional groups on the uppermost surface of an alkoxy silane self-assembled monolayer (Sam). The structural and chemical modifications of the material surface were monitored by X-ray reflectometry, atomic force microscopy, X-ray photoelectrons spectroscopy and water contact angle measurements. Optimization of the plasma parameters is performed in order to achieve a maximum functionalization and to prevent degradation of the SAM. Finally, the ability of grafting organic compounds onto the plasma modified SAMS was demonstrated by the formation of an alkoxysilane bilayer

  14. Environment-induced self-assembly in phase separated block copolymer systems: A SANS investigation

    International Nuclear Information System (INIS)

    Dutta, Naba K.; Thompson, Sandra; Roy Choudhury, Namita; Knott, Robert

    2006-01-01

    In this research, we examine the effect of non-selective solvent on the large-scale mesoscopic ordering in asymmetric block copolymers, poly(styrene-block-ethylene/butylene-block-styrene) (SEBS) using small angle neutron scattering technique (SANS). SANS measurements were carried out over a wide range of concentrations and temperatures. Evolution of the self-assembled phase morphology in such polymer with the thermodynamic selectivity of solvent, temperature and concentration has been discussed. Correlation between morphology and thermorheological behavior of the gels has also been established

  15. Toward tunable doping in graphene FETs by molecular self-assembled monolayers

    Science.gov (United States)

    Li, Bing; Klekachev, Alexander V.; Cantoro, Mirco; Huyghebaert, Cedric; Stesmans, André; Asselberghs, Inge; de Gendt, Stefan; de Feyter, Steven

    2013-09-01

    In this paper, we report the formation of self-assembled monolayers (SAMs) of oleylamine (OA) on highly oriented pyrolytic graphite (HOPG) and graphene surfaces and demonstrate the potential of using such organic SAMs to tailor the electronic properties of graphene. Molecular resolution Atomic Force Microscopy (AFM) and Scanning Tunneling Microscopy (STM) images reveal the detailed molecular ordering. The electrical measurements show that OA strongly interacts with graphene leading to n-doping effects in graphene devices. The doping levels are tunable by varying the OA deposition conditions. Importantly, neither hole nor electron mobilities are decreased by the OA modification. As a benefit from this noncovalent modification strategy, the pristine characteristics of the device are recoverable upon OA removal. From this study, one can envision the possibility to correlate the graphene-based device performance with the molecular structure and supramolecular ordering of the organic dopant.In this paper, we report the formation of self-assembled monolayers (SAMs) of oleylamine (OA) on highly oriented pyrolytic graphite (HOPG) and graphene surfaces and demonstrate the potential of using such organic SAMs to tailor the electronic properties of graphene. Molecular resolution Atomic Force Microscopy (AFM) and Scanning Tunneling Microscopy (STM) images reveal the detailed molecular ordering. The electrical measurements show that OA strongly interacts with graphene leading to n-doping effects in graphene devices. The doping levels are tunable by varying the OA deposition conditions. Importantly, neither hole nor electron mobilities are decreased by the OA modification. As a benefit from this noncovalent modification strategy, the pristine characteristics of the device are recoverable upon OA removal. From this study, one can envision the possibility to correlate the graphene-based device performance with the molecular structure and supramolecular ordering of the organic

  16. Controlled in situ growth of tunable plasmonic self-assembled nanoparticle arrays

    International Nuclear Information System (INIS)

    Verre, R; Fleischer, K; McGilp, J F; Fox, D; Behan, G; Zhang, H; Shvets, I V

    2012-01-01

    Self-assembled silver nanoparticle (NP) arrays were produced by deposition at glancing angles on transparent stepped Al 2 O 3 templates. The evolution of the plasmonic resonances has been monitored using reflection anisotropy spectroscopy (RAS) during growth. It is demonstrated that the morphology of the array can be tailored by changing the template structure, resulting in a large tunability of the optical resonances. In order to extract detailed information on the origin of the measured dichroic response of the system, a model based on dipolar interactions has been developed and the effect of tarnishing and morphological dispersion addressed. (paper)

  17. Photoligation of self-assembled DNA constructs containing anthracene-functionalized 2'-amino-LNA monomers

    DEFF Research Database (Denmark)

    Pasternak, Karol; Pasternak, Anna; Gupta, Pankaj

    2011-01-01

    Efficient synthesis of a novel anthracene-functionalized 2'-amino-LNA phosphoramidite derivative is described together with its incorporation into oligodeoxynucleotides. Two DNA strands with the novel 2'-N-anthracenylmethyl-2'-amino-LNA monomers can be effectively cross-linked by photoligation...... at 366nm in various types of DNA constructs. Successful application of three differently functionalized 2'-amino-LNA monomers in self-assembled higher ordered structures for simultaneous cross-linking and monitoring of assembly formation is furthermore demonstrated....

  18. Self-assembly of actin monomers into long filaments: Brownian Dynamics simulations

    DEFF Research Database (Denmark)

    Shillcock, Julian C.

    2009-01-01

    Brownian dynamics simulations are used to study the dynamical process of self-assembly of actin monomers into long filaments containing up to 1000 actin protomers. In order to overcome the large separation of time scales between the diffusive motion of the freemonomers and the relatively slow....../detachment events. When a single filament is allowed to grow in a bath of constant concentration of free ADP-actin monomers, its growth rate increases linearly with the free monomer concentration in quantitative agreement with in vitro experiments. Theresults also show that the waiting time is governed by...

  19. An introduction to ultrathin organic films from Langmuir-Blodgett to self-assembly

    CERN Document Server

    Ulman, Abraham

    1991-01-01

    The development of oriented organic monomolecular layers by the Langmuir-Blodgett (LB) and self-assembly (SA) techniques has led researchers toward their goal of assembling individual molecules into highly ordered architectures. Thus the continually growing contribution of LB and SA systems to the chemistry and physics of thin organic films is widely recognized. Equally well-known is the difficulty in keeping up to date with the burgeoning multidisciplinary research in this area. Dr. Ulman provides a massive survey of the available literature. The book begins with a section on analytical tools

  20. Real-time analysis of self-assembled nucleobases by Venturi easy ambient sonic-spray ionization mass spectrometry.

    Science.gov (United States)

    Na, Na; Shi, Ruixia; Long, Zi; Lu, Xin; Jiang, Fubin; Ouyang, Jin

    2014-10-01

    In this study, the real-time analysis of self-assembled nucleobases was employed by Venturi easy ambient sonic-spray ionization mass spectrometry (V-EASI-MS). With the analysis of three nucleobases including 6-methyluracil (6MU), uracil (U) and thymine (T) as examples, different orders of clusters centered with different metal ions were recorded in both positive and negative modes. Compared with the results obtained by traditional electrospray ionization mass spectrometry (ESI-MS) under the same condition, more clusters with high orders, such as [6MU7+Na](+), [6MU15+2NH4](2+), [6MU10+Na](+), [T7+Na](+), and [T15+2NH4](2+) were detected by V-EASI-MS, which demonstrated the soft ionization ability of V-EASI for studying the non-covalent interaction in a self-assembly process. Furthermore, with the injection of K(+) to the system by a syringe pumping, the real-time monitoring of the formation of nucleobases clusters was achieved by the direct extraction of samples from the system under the Venturi effect. Therefore, the effect of cations on the formation of clusters during self-assembly of nucleobases was demonstrated, which was in accordance with the reports. Free of high voltage, heating or radiation during the ionization, this technique is much soft and suitable for obtaining the real-time information of the self-assembly system, which also makes it quite convenient for extraction samples from the reaction system. This "easy and soft" ionization technique has provided a potential pathway for monitoring and controlling the self-assembly processes. Copyright © 2014 Elsevier B.V. All rights reserved.