WorldWideScience

Sample records for self-assembled nano structured

  1. Self-Assembly in the Ferritin Nano-Cage Protein Superfamily

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2011-08-01

    Full Text Available Protein self-assembly, through specific, high affinity, and geometrically constraining protein-protein interactions, can control and lead to complex cellular nano-structures. Establishing an understanding of the underlying principles that govern protein self-assembly is not only essential to appreciate the fundamental biological functions of these structures, but could also provide a basis for their enhancement for nano-material applications. The ferritins are a superfamily of well studied proteins that self-assemble into hollow cage-like structures which are ubiquitously found in both prokaryotes and eukaryotes. Structural studies have revealed that many members of the ferritin family can self-assemble into nano-cages of two types. Maxi-ferritins form hollow spheres with octahedral symmetry composed of twenty-four monomers. Mini-ferritins, on the other hand, are tetrahedrally symmetric, hollow assemblies composed of twelve monomers. This review will focus on the structure of members of the ferritin superfamily, the mechanism of ferritin self-assembly and the structure-function relations of these proteins.

  2. Nano-structured micropatterns by combination of block copolymer self-assembly and UV photolithography

    International Nuclear Information System (INIS)

    Gorzolnik, B; Mela, P; Moeller, M

    2006-01-01

    A procedure for the fabrication of nano-structured micropatterns by direct UV photo-patterning of a monolayer of a self-assembled block copolymer/transition metal hybrid structure is described. The method exploits the selective photochemical modification of a self-assembled monolayer of hexagonally ordered block copolymer micelles loaded with a metal precursor salt. Solvent development of the monolayer after irradiation results in the desired pattern of micelles on the surface. Subsequent plasma treatment of the pattern leaves ordered metal nanodots. The presented technique is a simple and low-cost combination of 'top-down' and 'bottom-up' approaches that allows decoration of large areas with periodic and aperiodic patterns of nano-objects, with good control over two different length scales: nano- and micrometres

  3. Elucidating dominant pathways of the nano-particle self-assembly process.

    Science.gov (United States)

    Zeng, Xiangze; Li, Bin; Qiao, Qin; Zhu, Lizhe; Lu, Zhong-Yuan; Huang, Xuhui

    2016-09-14

    Self-assembly processes play a key role in the fabrication of functional nano-structures with widespread application in drug delivery and micro-reactors. In addition to the thermodynamics, the kinetics of the self-assembled nano-structures also play an important role in determining the formed structures. However, as the self-assembly process is often highly heterogeneous, systematic elucidation of the dominant kinetic pathways of self-assembly is challenging. Here, based on mass flow, we developed a new method for the construction of kinetic network models and applied it to identify the dominant kinetic pathways for the self-assembly of star-like block copolymers. We found that the dominant pathways are controlled by two competing kinetic parameters: the encounter time Te, characterizing the frequency of collision and the transition time Tt for the aggregate morphology change from rod to sphere. Interestingly, two distinct self-assembly mechanisms, diffusion of an individual copolymer into the aggregate core and membrane closure, both appear at different stages (with different values of Tt) of a single self-assembly process. In particular, the diffusion mechanism dominates the middle-sized semi-vesicle formation stage (with large Tt), while the membrane closure mechanism dominates the large-sized vesicle formation stage (with small Tt). Through the rational design of the hydrophibicity of the copolymer, we successfully tuned the transition time Tt and altered the dominant self-assembly pathways.

  4. Dynamic stability of nano-fibers self-assembled from short amphiphilic A6D peptides.

    Science.gov (United States)

    Nikoofard, Narges; Maghsoodi, Fahimeh

    2018-04-07

    Self-assembly of A 6 D amphiphilic peptides in explicit water is studied by using coarse-grained molecular dynamics simulations. It is observed that the self-assembly of randomly distributed A 6 D peptides leads to the formation of a network of nano-fibers. Two other simulations with cylindrical nano-fibers as the initial configuration show the dynamic stability of the self-assembled nano-fibers. As a striking feature, notable fluctuations occur along the axes of the nano-fibers. Depending on the number of peptides per unit length of the nano-fiber, flat-shaped bulges or spiral shapes along the nano-fiber axis are observed at the fluctuations. Analysis of the particle distribution around the nano-fiber indicates that the hydrophobic core and the hydrophilic shell of the nano-structure are preserved in both simulations. The size of the deformations and their correlation times are different in the two simulations. This study gives new insights into the dynamics of the self-assembled nano-structures of short amphiphilic peptides.

  5. Dynamic stability of nano-fibers self-assembled from short amphiphilic A6D peptides

    Science.gov (United States)

    Nikoofard, Narges; Maghsoodi, Fahimeh

    2018-04-01

    Self-assembly of A6D amphiphilic peptides in explicit water is studied by using coarse-grained molecular dynamics simulations. It is observed that the self-assembly of randomly distributed A6D peptides leads to the formation of a network of nano-fibers. Two other simulations with cylindrical nano-fibers as the initial configuration show the dynamic stability of the self-assembled nano-fibers. As a striking feature, notable fluctuations occur along the axes of the nano-fibers. Depending on the number of peptides per unit length of the nano-fiber, flat-shaped bulges or spiral shapes along the nano-fiber axis are observed at the fluctuations. Analysis of the particle distribution around the nano-fiber indicates that the hydrophobic core and the hydrophilic shell of the nano-structure are preserved in both simulations. The size of the deformations and their correlation times are different in the two simulations. This study gives new insights into the dynamics of the self-assembled nano-structures of short amphiphilic peptides.

  6. Self-assembled DNA Structures for Nanoconstruction

    Science.gov (United States)

    Yan, Hao; Yin, Peng; Park, Sung Ha; Li, Hanying; Feng, Liping; Guan, Xiaoju; Liu, Dage; Reif, John H.; LaBean, Thomas H.

    2004-09-01

    In recent years, a number of research groups have begun developing nanofabrication methods based on DNA self-assembly. Here we review our recent experimental progress to utilize novel DNA nanostructures for self-assembly as well as for templates in the fabrication of functional nano-patterned materials. We have prototyped a new DNA nanostructure known as a cross structure. This nanostructure has a 4-fold symmetry which promotes its self-assembly into tetragonal 2D lattices. We have utilized the tetragonal 2D lattices as templates for highly conductive metallic nanowires and periodic 2D protein nano-arrays. We have constructed and characterized a DNA nanotube, a new self-assembling superstructure composed of DNA tiles. We have also demonstrated an aperiodic DNA lattice composed of DNA tiles assembled around a long scaffold strand; the system translates information encoded in the scaffold strand into a specific and reprogrammable barcode pattern. We have achieved metallic nanoparticle linear arrays templated on self-assembled 1D DNA arrays. We have designed and demonstrated a 2-state DNA lattice, which displays expand/contract motion switched by DNA nanoactuators. We have also achieved an autonomous DNA motor executing unidirectional motion along a linear DNA track.

  7. Self-Assembly, Pattern Formation and Growth Phenomena in Nano-Systems

    CERN Document Server

    Nepomnyashchy, Alexander A

    2006-01-01

    Nano-science and nano-technology are rapidly developing scientific and technological areas that deal with physical, chemical and biological processes that occur on nano-meter scale – one millionth of a millimeter. Self-organization and pattern formation play crucial role on nano-scales and promise new, effective routes to control various nano-scales processes. This book contains lecture notes written by the lecturers of the NATO Advanced Study Institute "Self-Assembly, Pattern Formation and Growth Phenomena in Nano-Systems" that took place in St Etienne de Tinee, France, in the fall 2004. They give examples of self-organization phenomena on micro- and nano-scale as well as examples of the interplay between phenomena on nano- and macro-scales leading to complex behavior in various physical, chemical and biological systems. They discuss such fascinating nano-scale self-organization phenomena as self-assembly of quantum dots in thin solid films, pattern formation in liquid crystals caused by light, self-organi...

  8. A nanoscale bio-inspired light-harvesting system developed from self-assembled alkyl-functionalized metallochlorin nano-aggregates

    Science.gov (United States)

    Ocakoglu, Kasim; Joya, Khurram S.; Harputlu, Ersan; Tarnowska, Anna; Gryko, Daniel T.

    2014-07-01

    Self-assembled supramolecular organization of nano-structured biomimetic light-harvesting modules inside solid-state nano-templates can be exploited to develop excellent light-harvesting materials for artificial photosynthetic devices. We present here a hybrid light-harvesting system mimicking the chlorosomal structures of the natural photosynthetic system using synthetic zinc chlorin units (ZnChl-C6, ZnChl-C12 and ZnChl-C18) that are self-aggregated inside the anodic aluminum oxide (AAO) nano-channel membranes. AAO nano-templates were modified with a TiO2 matrix and functionalized with long hydrophobic chains to facilitate the formation of supramolecular Zn-chlorin aggregates. The transparent Zn-chlorin nano-aggregates inside the alkyl-TiO2 modified AAO nano-channels have a diameter of ~120 nm in a 60 μm length channel. UV-Vis studies and fluorescence emission spectra further confirm the formation of the supramolecular ZnChl aggregates from monomer molecules inside the alkyl-functionalized nano-channels. Our results prove that the novel and unique method can be used to produce efficient and stable light-harvesting assemblies for effective solar energy capture through transparent and stable nano-channel ceramic materials modified with bio-mimetic molecular self-assembled nano-aggregates.Self-assembled supramolecular organization of nano-structured biomimetic light-harvesting modules inside solid-state nano-templates can be exploited to develop excellent light-harvesting materials for artificial photosynthetic devices. We present here a hybrid light-harvesting system mimicking the chlorosomal structures of the natural photosynthetic system using synthetic zinc chlorin units (ZnChl-C6, ZnChl-C12 and ZnChl-C18) that are self-aggregated inside the anodic aluminum oxide (AAO) nano-channel membranes. AAO nano-templates were modified with a TiO2 matrix and functionalized with long hydrophobic chains to facilitate the formation of supramolecular Zn-chlorin aggregates. The

  9. Self-assembled metal nano-multilayered film prepared by co-sputtering method

    Science.gov (United States)

    Xie, Tianle; Fu, Licai; Qin, Wen; Zhu, Jiajun; Yang, Wulin; Li, Deyi; Zhou, Lingping

    2018-03-01

    Nano-multilayered film is usually prepared by the arrangement deposition of different materials. In this paper, a self-assembled nano-multilayered film was deposited by simultaneous sputtering of Cu and W. The Cu/W nano-multilayered film was accumulated by W-rich layer and Cu-rich layer. Smooth interfaces with consecutive composition variation and semi-coherent even coherent relationship were identified, indicating that a spinodal-like structure with a modulation wavelength of about 20 nm formed during co-deposition process. The participation of diffusion barrier element, such as W, is believed the essential to obtain the nano-multilayered structure besides the technological parameters.

  10. A nanoscale bio-inspired light-harvesting system developed from self-assembled alkyl-functionalized metallochlorin nano-aggregates

    KAUST Repository

    Ocakoǧlu, Kasim; Joya, Khurram Saleem; Harputlu, Ersan; Tarnowska, Anna; Gryko, Daniel T.

    2014-01-01

    Self-assembled supramolecular organization of nano-structured biomimetic light-harvesting modules inside solid-state nano-templates can be exploited to develop excellent light-harvesting materials for artificial photosynthetic devices. We present here a hybrid light-harvesting system mimicking the chlorosomal structures of the natural photosynthetic system using synthetic zinc chlorin units (ZnChl-C6, ZnChl-C12 and ZnChl-C 18) that are self-aggregated inside the anodic aluminum oxide (AAO) nano-channel membranes. AAO nano-templates were modified with a TiO2 matrix and functionalized with long hydrophobic chains to facilitate the formation of supramolecular Zn-chlorin aggregates. The transparent Zn-chlorin nano-aggregates inside the alkyl-TiO2 modified AAO nano-channels have a diameter of ∼120 nm in a 60 μm length channel. UV-Vis studies and fluorescence emission spectra further confirm the formation of the supramolecular ZnChl aggregates from monomer molecules inside the alkyl-functionalized nano-channels. Our results prove that the novel and unique method can be used to produce efficient and stable light-harvesting assemblies for effective solar energy capture through transparent and stable nano-channel ceramic materials modified with bio-mimetic molecular self-assembled nano-aggregates. © 2014 the Partner Organisations.

  11. Small angle neutron and x-ray scattering studies of self-assembled nano structured materials

    International Nuclear Information System (INIS)

    Choi, Sung Min

    2009-01-01

    Full text: Small angle neutron and x-ray scattering are very powerful techniques to investigate nano structured materials. In this presentation, examples of nano structured materials investigated by neutron and x-ray scattering will be presented. Part I: The unique anisotropic physical properties of columnar discotic liquid crystals (DLCs) have attracted considerable interest for their potential applications as electronic devices. For many practical applications, however, it is crucial to obtain uniaxially oriented and highly ordered columnar superstructures of DLC molecules covering macroscopic area. Here, we present a simple and straight-forward approach to fabricate uniaxially oriented and highly ordered columnar superstructures of cobalt octa(n-decylthio) porphyrazine (CoS 1 0), a discotic supra-molecule, in bulk and on substrates [1] over a macroscopic length scale, utilizing an applied magnetic field and the interaction of CoS 1 0 with an OTS-functionalized substrate. The details of the oriented and ordered columnar nano-structures are investigated by SANS and GISAXS. Part II: Self-assembly of one-dimensional (1D) nanoparticles with metallic or semiconducting properties into highly ordered superstructures using various interactions has been of great interest as a route towards materials with new functionalities. Here, we report a new phase diagram of negatively charged 1D nanoparticle (cROD) and cationic liposome (CL) complexes in water which exhibit three different highly ordered phases [2]. Small angle neutron and x-ray scattering measurements show that the cROD-CL complexes exhibit three different highly ordered phases, intercalated lamellar, doubly intercalated lamellar and centered rectangular phases, depending on particle curvature and electrostatic interactions. The new phase diagram can be used to understand and design new highly ordered self-assemblies of 1D nanoparticles in soft matter which provide new functionalities. (author)

  12. Self-Assembly of Large-Scale Shape-Controlled DNA Nano-Structures

    Science.gov (United States)

    2014-12-16

    for single-molecule imaging. Nano Lett. 11, 657-660 (2011). 46. Dang, X. N. et at. Virus -templated self-assembled single-walled carbon nanotubes for...email: alik(a)rics.bwh.harvard edu). NATURE C0,M.MUN! CAT !0N5 14:2275 I DOI: 10.1038/ncomm53275 | wwwnature.com/naturecommunications 1 @ 2013 Macmillan...prevent non-specific binding between hydrogel and microtube, the inside surface of microtube was treated with a corona treater (BD-20AC from Electro

  13. Evaluation of dose dependent antimicrobial activity of self-assembled chitosan, nano silver and chitosan-nano silver composite against several pathogens.

    Science.gov (United States)

    Tareq, Foysal Kabir; Fayzunnesa, Mst; Kabir, Md Shahariar; Nuzat, Musrat

    2018-01-01

    The aim of this investigation to preparation of silver nanoparticles organized chitosan nano polymer, which effective against microbial and pathogens, when apply to liquid medium and edible food products surface, will rescue the growth of microbes. Self-assembly approach used to synthesis of silver nanoparticles and silver nanoparticles organized chitosan nano polymer. Silver nanoparticles and silver nanoparticles organized chitosan nano polymer and film characterized using Ultra-violate visible spectrometer (UV-vis), X-ray diffraction (X-ray), and Scanning electronic microscope (SEM). The crystalline structured protein capped nano silver successfully synthesized at range of 12 nm-29 nm and organized into chitosan nano polymer. Antimicrobial ingredient in liquid medium and food product surface provide to rescue oxidative change and growth of microorganism to provide higher safety. The silver nanoparticles organized chitosan nano polymer caused the death of microorganism. The materials in nano scale synthesized successfully using self-assembly method, which showed good antimicrobial properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Self-assembled Nano-layering at the Adhesive interface.

    Science.gov (United States)

    Yoshida, Y; Yoshihara, K; Nagaoka, N; Hayakawa, S; Torii, Y; Ogawa, T; Osaka, A; Meerbeek, B Van

    2012-04-01

    According to the 'Adhesion-Decalcification' concept, specific functional monomers within dental adhesives can ionically interact with hydroxyapatite (HAp). Such ionic bonding has been demonstrated for 10-methacryloyloxydecyl dihydrogen phosphate (MDP) to manifest in the form of self-assembled 'nano-layering'. However, it remained to be explored if such nano-layering also occurs on tooth tissue when commercial MDP-containing adhesives (Clearfil SE Bond, Kuraray; Scotchbond Universal, 3M ESPE) were applied following common clinical application protocols. We therefore characterized adhesive-dentin interfaces chemically, using x-ray diffraction (XRD) and energy-dispersive x-ray spectroscopy (EDS), and ultrastructurally, using (scanning) transmission electron microscopy (TEM/STEM). Both adhesives revealed nano-layering at the adhesive interface, not only within the hybrid layer but also, particularly for Clearfil SE Bond (Kuraray), extending into the adhesive layer. Since such self-assembled nano-layering of two 10-MDP molecules, joined by stable MDP-Ca salt formation, must make the adhesive interface more resistant to biodegradation, it may well explain the documented favorable clinical longevity of bonds produced by 10-MDP-based adhesives.

  15. Mechanical Self-Assembly Science and Applications

    CERN Document Server

    2013-01-01

    Mechanical Self-Assembly: Science and Applications introduces a novel category of self-assembly driven by mechanical forces. This book discusses self-assembly in various types of small material structures including thin films, surfaces, and micro- and nano-wires, as well as the practice's potential application in micro and nanoelectronics, MEMS/NEMS, and biomedical engineering. The mechanical self-assembly process is inherently quick, simple, and cost-effective, as well as accessible to a large number of materials, such as curved surfaces for forming three-dimensional small structures. Mechanical self-assembly is complementary to, and sometimes offer advantages over, the traditional micro- and nano-fabrication. This book also: Presents a highly original aspect of the science of self-assembly Describes the novel methods of mechanical assembly used to fabricate a variety of new three-dimensional material structures in simple and cost-effective ways Provides simple insights to a number of biological systems and ...

  16. Self-assembly and transformation of hybrid nano-objects and nanostructures under equilibrium and non-equilibrium conditions

    Science.gov (United States)

    Mann, Stephen

    2009-10-01

    Understanding how chemically derived processes control the construction and organization of matter across extended and multiple length scales is of growing interest in many areas of materials research. Here we review present equilibrium and non-equilibrium self-assembly approaches to the synthetic construction of discrete hybrid (inorganic-organic) nano-objects and higher-level nanostructured networks. We examine a range of synthetic modalities under equilibrium conditions that give rise to integrative self-assembly (supramolecular wrapping, nanoscale incarceration and nanostructure templating) or higher-order self-assembly (programmed/directed aggregation). We contrast these strategies with processes of transformative self-assembly that use self-organizing media, reaction-diffusion systems and coupled mesophases to produce higher-level hybrid structures under non-equilibrium conditions. Key elements of the constructional codes associated with these processes are identified with regard to existing theoretical knowledge, and presented as a heuristic guideline for the rational design of hybrid nano-objects and nanomaterials.

  17. Chemical Functionalization, Self-Assembly, and Applications of Nano materials and Nano composites 2014

    International Nuclear Information System (INIS)

    Yan, X.; Jiao, T.; Balan, L.; Chen, X.; Hu, M.Z.; Liu, W.

    2014-01-01

    The growing interests in nano materials and nano composites call for the development of processing techniques to obtain multiple functionalization nano structures and achieve the tailoring of specific features of the nanometer size. Functional nano materials and nano composites will expand the applied range of the original material and at the same time promote the development of inter discipline. Thus, the chemical functionalization and bottom-up assemblies of nano materials and subsequent applications will accelerate the development of nano science and nano technology.

  18. Molecular interactions in self-assembled nano-structures of chitosan-sodium alginate based polyelectrolyte complexes.

    Science.gov (United States)

    Wasupalli, Geeta Kumari; Verma, Devendra

    2018-03-16

    We report here the self-assembled structures of polyelectrolyte complexes (PECs) of polyanionic sodium alginate with the polycationic chitosan at room temperature. The PECs prepared at different pH values exhibited two distinct morphologies. The chitosan-alginate PECs self-assembled into the fibrous structure in a low pH range of pH3 to 7. The PECs obtained at high pH series around pH8 and above resulted in the formation of colloidal nanoparticles in the range of 120±9.48nm to 46.02±16.66nm. The zeta potential measurement showed that PECs prepared at lower pH (pHPECs prepared at higher pH than 6 exhibited highly negative surface charge. The molecular interactions in nano-colloids and fibers were evaluated using FTIR analysis. The results attest that the ionic state of the chitosan and alginate plays an important role controlling the morphologies of the PECS. The present study has identified the enormous potential of the polyelectrolytes complexes to exploit shape by the alteration of ionic strength. These findings might be useful in the development of novel biomaterial. The produced fibers and nanocolloids could be applied as a biomaterial for tissue engineering and drug delivery. Copyright © 2017. Published by Elsevier B.V.

  19. Epitaxial growth of sexi-thiophene and para-hexaphenyl and its implications for the fabrication of self-assembled lasing nano-fibres

    International Nuclear Information System (INIS)

    Simbrunner, Clemens

    2013-01-01

    Over the last few years, epitaxially grown self-assembled organic nano-structures became of increasing interest due to their high potential for implementation within opto-electronic devices. Exemplarily, the epitaxial growth of the rod-like molecules para-hexaphenyl (p-6P) and α-sexi-thiophene (6T) is discussed within this review. Both molecules tend to crystallize in highly asymmetric elongated entities which are also called nano-fibres. It is demonstrated that the obtained needle orientations and morphologies result from a complex interplay between various parameters e.g. substrate surface symmetry, molecular adsorption, crystal structure and contact plane. The interplay and its implications on the fabrication of self-assembled waveguiding nano-fibres and optical resonator structures are discussed and substantiated by a comparison with the reported literature. In further consequence, it is demonstrated that a precise control on the molecular adsorption geometry and the crystal contact plane represents a fundamental key parameter for the fabrication of self-assembled nano-fibres. As both parameters are basically determined by the chosen molecule–substrate material couple, the possible spectrum of molecular building blocks for the fabrication of waveguiding and lasing nano-structures can be predicted by the discussed growth model. A possible expansion of this common valid concept is presented by the utilization of organic–organic heteroepitaxy. Based on the reported p-6P/6T heterostructures which have been fabricated on various substrate surfaces, it is substantiated that the fabrication of organic–organic interfaces can be effectively used to gain control on the molecular adsorption geometry. As the proposed strategy still lacks a precise control of the obtained crystal contact plane, further strategies are discussed which potentially lead to a controlled fabrication of opto-electronic devices based on self-assembled organic nano-structures. (invited review)

  20. Silicon based near infrared photodetector using self-assembled organic crystalline nano-pillars

    Energy Technology Data Exchange (ETDEWEB)

    Ajiki, Yoshiharu, E-mail: yoshiharu-ajiki@ot.olympus.co.jp, E-mail: isao@i.u-tokyo.ac.jp [Micromachine Center, 67 Kanda Sakumagashi, Chiyoda-ku, Tokyo 100-0026 (Japan); Kan, Tetsuo [Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Yahiro, Masayuki; Hamada, Akiko; Adachi, Chihaya [Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Adachi, Junji [Office for Strategic Research Planning, Kyushu University, 6-10-1 Hakozaki, Higashi, Fukuoka 812-8581 (Japan); Matsumoto, Kiyoshi [IRT Research Initiative, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Shimoyama, Isao, E-mail: yoshiharu-ajiki@ot.olympus.co.jp, E-mail: isao@i.u-tokyo.ac.jp [Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); IRT Research Initiative, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan)

    2016-04-11

    We propose a silicon (Si) based near-infrared photodetector using self-assembled organic crystalline nano-pillars, which were formed on an n-type Si substrate and were covered with an Au thin-film. These structures act as antennas for near-infrared light, resulting in an enhancement of the light absorption on the Au film. Because the Schottky junction is formed between the Au/n-type Si, the electron excited by the absorbed light can be detected as photocurrent. The optical measurement revealed that the nano-pillar structures enhanced the responsivity for the near-infrared light by 89 (14.5 mA/W) and 16 (0.433 mA/W) times compared with those of the photodetector without nano-pillars at the wavelengths of 1.2 and 1.3 μm, respectively. Moreover, no polarization dependency of the responsivity was observed, and the acceptable incident angle ranged from 0° to 30°. These broad responses were likely to be due to the organic nano-pillar structures' having variation in their orientation, which is advantageous for near-infrared detector uses.

  1. Hierarchical Micro/Nano Structures by Combined Self-Organized Dewetting and Photopatterning of Photoresist Thin Films.

    Science.gov (United States)

    Sachan, Priyanka; Kulkarni, Manish; Sharma, Ashutosh

    2015-11-17

    Photoresists are the materials of choice for micro/nanopatterning and device fabrication but are rarely used as a self-assembly material. We report for the first time a novel interplay of self-assembly and photolithography for fabrication of hierarchical and ordered micro/nano structures. We create self-organized structures by the intensified dewetting of unstable thin (∼10 nm to 1 μm) photoresist films by annealing them in an optimal solvent and nonsolvent liquid mixture that allows spontaneous dewetting to form micro/nano smooth dome-like structures. The density, size (∼100 nm to millimeters), and curvature/contact angle of the dome/droplet structures are controlled by the film thickness, composition of the dewetting liquid, and time of annealing. Ordered dewetted structures are obtained simply by creating spatial variation of viscosity by ultraviolet exposure or by photopatterning before dewetting. Further, the structures thus fabricated are readily photopatterned again on the finer length scales after dewetting. We illustrate the approach by fabricating several three-dimensional structures of varying complexity with secondary and tertiary features.

  2. Self-organised nano-structuring of thin oxide-films under swift heavy ion bombardment

    International Nuclear Information System (INIS)

    Bolse, Wolfgang

    2006-01-01

    Surface instabilities and the resulting self-organisation processes play an important role in nano-technology since they allow for large-array nano-structuring. We have recently found that the occurrence of such instabilities in thin film systems can be triggered by energetic ion bombardment and the subsequent self-assembly of the surface can be nicely controlled by fine-tuning of the irradiation conditions. The role of the ion in such processes is of double nature: If the instability is latently present already in the virgin sample, but self-assembly cannot take place because of kinetic barriers, the ion impact may just supply the necessary atomic mobility. On the other hand, the surface may become instable due to the ion beam induced material modifications and further irradiation then results in its reorganisation. In the present paper, we will review recently observed nano-scale self-organisation processes in thin oxide-films induced by the irradiation with swift heavy ions (SHI) at some MeV/amu energies. The first example is about SHI induced dewetting, which is driven by capillary forces already present in the as-deposited samples. The achieved dewetting pattern show an amazing similarity to those observed for liquid polymer films on Si, although in the present case the samples were kept at 80 K and hence have never reached their melting point. The second example is about self-organised lamellae formation driven by planar stresses, which are induced by SHI bombardment under grazing incidence and result in a surface instability and anisotropic plastic deformation (hammering effect). Taking advantage of these effects and modifying the irradiation procedure, we were able to generate more complex structures like NiO-'nano-towers' of 2 μm height and 200 nm in diameter

  3. Self-Assembly of Infinite Structures

    Directory of Open Access Journals (Sweden)

    Scott M. Summers

    2009-06-01

    Full Text Available We review some recent results related to the self-assembly of infinite structures in the Tile Assembly Model. These results include impossibility results, as well as novel tile assembly systems in which shapes and patterns that represent various notions of computation self-assemble. Several open questions are also presented and motivated.

  4. Sub-15 nm nano-pattern generation by spacer width control for high density precisely positioned self-assembled device nanomanufacturing

    KAUST Repository

    Rojas, Jhonathan Prieto; Hussain, Muhammad Mustafa

    2012-01-01

    We present a conventional micro-fabrication based thin film vertical sidewall (spacer) width controlled nano-gap fabrication process to create arrays of nanopatterns for high density precisely positioned self-assembled nanoelectronics device integration. We have used conventional optical lithography to create base structures and then silicon nitride (Si 3N4) based spacer formation via reactive ion etching. Control of Si3N4 thickness provides accurate control of vertical sidewall (spacer) besides the base structures. Nano-gaps are fabricated between two adjacent spacers whereas the width of the gap depends on the gap between two adjacent base structures minus width of adjacent spacers. We demonstrate the process using a 32 nm node complementary metal oxide semiconductor (CMOS) platform to show its compatibility for very large scale heterogeneous integration of top-down and bottom-up fabrication as well as conventional and selfassembled nanodevices. This process opens up clear opportunity to overcome the decade long challenge of high density integration of self-assembled devices with precise position control. © 2012 IEEE.

  5. Sub-15 nm nano-pattern generation by spacer width control for high density precisely positioned self-assembled device nanomanufacturing

    KAUST Repository

    Rojas, Jhonathan Prieto

    2012-08-01

    We present a conventional micro-fabrication based thin film vertical sidewall (spacer) width controlled nano-gap fabrication process to create arrays of nanopatterns for high density precisely positioned self-assembled nanoelectronics device integration. We have used conventional optical lithography to create base structures and then silicon nitride (Si 3N4) based spacer formation via reactive ion etching. Control of Si3N4 thickness provides accurate control of vertical sidewall (spacer) besides the base structures. Nano-gaps are fabricated between two adjacent spacers whereas the width of the gap depends on the gap between two adjacent base structures minus width of adjacent spacers. We demonstrate the process using a 32 nm node complementary metal oxide semiconductor (CMOS) platform to show its compatibility for very large scale heterogeneous integration of top-down and bottom-up fabrication as well as conventional and selfassembled nanodevices. This process opens up clear opportunity to overcome the decade long challenge of high density integration of self-assembled devices with precise position control. © 2012 IEEE.

  6. Self-assembly of micro- and nano-scale particles using bio-inspired events

    International Nuclear Information System (INIS)

    McNally, H.; Pingle, M.; Lee, S.W.; Guo, D.; Bergstrom, D.E.; Bashir, R.

    2003-01-01

    High sensitivity chemical and biological detection techniques and the development of future electronic systems can greatly benefit from self-assembly processes and techniques. We have approached this challenge using biologically inspired events such as the hybridization of single (ss)- to double-stranded (ds) DNA and the strong affinity between the protein avidin and its associated Vitamin, biotin. Using these molecules, micro-scale polystyrene beads and nano-scale gold particles were assembled with high efficiency on gold patterns and the procedures used for these processes were optimized. The DNA and avidin-biotin complex was also used to demonstrate the attachment of micro-scale silicon islands to each other in a fluid. This work also provides insight into the techniques for the self-assembly of heterogeneous materials

  7. Fabrication and characteristics of self-assembly nano-polystyrene films by laser induced CVD

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Tingting [Department of Applied Physics, Chongqing University, Chongqing 401331 (China); Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, CAEP, Mianyang 621900 (China); Cai, Congzhong [Department of Applied Physics, Chongqing University, Chongqing 401331 (China); Peng, Liping [Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, CAEP, Mianyang 621900 (China); Wu, Weidong, E-mail: wuweidongding@163.com [Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, CAEP, Mianyang 621900 (China)

    2013-10-01

    The self-assembly nano-polystyrene (PS) films have been prepared by laser induced CVD at room temperature. The XPS, Raman and UV–vis absorption spectra all indicated that the films were PS. The optical properties, microstructure and controllable nanostructure of PS films have been investigated. Dewetting-like microstructure in PS films was investigated and uniform island structures with a diameter of about 200 nm were observed at the deposition pressure of 14 Pa. The films possess good toughness and precisely controlled thicknesses. The free-standing PS films with thickness of 10 nm could be obtained by this method though a series of process.

  8. Assembly and structural analysis of a covalently closed nano-scale DNA cage

    DEFF Research Database (Denmark)

    Andersen, Félicie Faucon; Knudsen, Bjarne; Oliveira, Cristiano Luis Pinto De

    2008-01-01

    for investigations of DNA-interacting enzymes. More recently, strategies for synthesis of more complex two-dimensional (2D) and 3D DNA structures have emerged. However, the building of such structures is still in progress and more experiences from different research groups and different fields of expertise...... be described as a nano-scale DNA cage, Hence, in theory it could hold proteins or other bio-molecules to enable their investigation in certain harmful environments or even allow their organization into higher order structures...... The inherent properties of DNA as a stable polymer with unique affinity for partner molecules determined by the specific Watson-Crick base pairing makes it an ideal component in self-assembling structures. This has been exploited for decades in the design of a variety of artificial substrates...

  9. Synthesis of self-assembled Ge nano crystals employing reactive RF sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez H, A. [Universidad Autonoma del Estado de Hidalgo, Escuela Superior de Apan, Calle Ejido de Chimalpa Tlalayote s/n, Col. Chimalpa, Apan, Hidalgo (Mexico); Hernandez H, L. A. [IPN, Escuela Superior de Fisica y Matematicas, San Pedro Zacatenco, 07730 Ciudad de Mexico (Mexico); Monroy, B. M.; Santana R, G. [UNAM, Instituto de Investigaciones en Materiales, Apdo. Postal 70-360, 04510 Ciudad de Mexico (Mexico); Santoyo S, J.; Gallardo H, S. [IPN, Centro de Investigacion y de Estudios Avanzados, Departamento de Fisica, Apdo. Postal 14740, 07300 Ciudad de Mexico (Mexico); Marquez H, A. [Universidad de Guanajuato, Campus Irapuato-Salamanca, Departamento de Ingenieria Agricola, Km. 9 Carretera Irapuato-Silao, 36500 Irapuato, Guanajuato (Mexico); Mani G, P. G.; Melendez L, M. [Universidad Autonoma de Ciudad Juarez, Instituto de Ingenieria y Tecnologia, Departamento de Fisica y Matematicas, 32310 Ciudad Juarez, Chihuahua (Mexico)

    2016-11-01

    This work presents the results of a simple methodology able to control crystal size, dispersion and spatial distribution of germanium nano crystals (Ge-NCs). It takes advantage of a self-assembled process taken place during the deposit of the system SiO{sub 2}/Ge/SiO{sub 2} by reactive RF sputtering. Nanoparticles formation is controlled mainly by the roughness of the first SiO{sub 2} layer buy the ulterior interaction of the interlayer with the top layer also play a role. Structural quality of germanium nano crystals increases with roughness and the interlayer thickness. The tetragonal phase of germanium is produced and its crystallographic quality improves with interlayer thickness and oxygen partial pressure. Room temperature photoluminescence emission without a post growth thermal annealing process indicates that our methodology produces a low density of non-radiative traps. The surface topography of SiO{sub 2} reference samples was carried out by atomic force microscopy. The crystallographic properties of the samples were studied by grazing incidence X-ray diffraction at 1.5 degrees carried out in a Siemens D-5000 system employing the Cu Kα wavelength. (Author)

  10. Photocatalytic activity of self-assembled porous TiO2 nano-columns array fabricated by oblique angle sputter deposition

    Science.gov (United States)

    Shi, Pengjun; Li, Xibo; Zhang, Qiuju; Yi, Zao; Luo, Jiangshan

    2018-04-01

    A well-separated and oriented TiO2 nano-columns arrays with porous structure were fabricated by the oblique angle sputter deposition technique and subsequently annealing at 450 °C in Ar/O2 mixed atmosphere. The deposited substrate was firstly modified by a template of self-assembled close-packed arrays of 500 nm-diameter silica (SiO2) spheres. Scanning electronic microscopic (SEM) images show that the porous columnar nanostructure is formed as a result of the geometric shadowing effect and surface diffusion of the adatoms in oblique angle deposition (OAD). X-ray diffraction (XRD) measurements reveal that the physically OAD film with annealing treatment are generally mixed phase of rutile and anatase TiO2 polymorphic forms. The morphology induced absorbance and band gap tuning by different substrates was demonstrated by the UV–vis spectroscopy. The well-separated one-dimensional (1D) nano-columns array with specific large porous surface area is beneficial for charge separation in photocatalytic degradation. Compared with compact thin film, such self-assembled porous TiO2 nano-columns array fabricated by oblique angle sputter deposition performed an enhanced visible light induced photocatalytic activity by decomposing methyl orange (MO) solution. The well-designed periodic array-structured porous TiO2 films by using modified patterned substrates has been demonstrated significantly increased absorption edge in the UV-visible light region with a narrower optical band gap, which are expected to be favorable for application in photovoltaic, lithium-ion insertion and photocatalytic, etc.

  11. A simple route for renewable nano-sized arjunolic and asiatic acids and self-assembly of arjuna-bromolactone

    Directory of Open Access Journals (Sweden)

    2008-07-01

    Full Text Available While separating two natural nano-sized triterpenic acids via bromolactonization, we serendipitously discovered that arjuna-bromolactone is an excellent gelator of various organic solvents. A simple and efficient method for the separation of two triterpenic acids and the gelation ability and solid state 1D-helical self-assembly of nano-sized arjuna-bromolactone are reported.

  12. PEGylated Self-Assembled Nano-Bacitracin A: Probing the Antibacterial Mechanism and Real-Time Tracing of Target Delivery in Vivo.

    Science.gov (United States)

    Hong, Wei; Zhao, Yining; Guo, Yuru; Huang, Chengcheng; Qiu, Peng; Zhu, Jia; Chu, Chun; Shi, Hong; Liu, Mingchun

    2018-04-04

    Although nano-self-assemblies of hydrophobic-modified bacitracin A with poly(d,l-lactic- co-glycolic acid) (PLGA) (nano-BA PLGA ) have demonstrated promising antibacterial activities, the application of nano-BA PLGA was severely compromised by low water solubility. In this study, a series of PEGylated PLGA copolymers were selected to conjugate with the N-terminus of bacitracin A to construct PEGylated self-assembled nano-BAs and to further develop nano-self-assemblies of bacitracin A with strong antibacterial potency and high solubility. Compared with nano-BA PLGA , all PEGylated nano-BAs, except nano-BA 5k , exhibited strong antibacterial efficiency against both Gram-positive and Gram-negative bacteria by inducing loss of cytoplasmic membrane potential, membrane permeabilization, and leakage of calcein from artificial cell membranes. Studies elucidating the underlying mechanism of PEGylated nano-BAs against Gram-negative bacteria indicated that the strong hydrophobic and van der Waals interactions between PLGA and lipopolysaccharide (LPS) could bind, neutralize, and disassociate LPS, facilitating cellular uptake of the nanoparticles, which could destabilize the membrane, resulting in cell death. Moreover, PEGylated nano-BAs (nano-BA 12k ) with a longer PLGA block were expected to occupy a higher local density of BA mass on the surface and result in stronger hydrophobic and van der Waals interactions with LPS, which were responsible for the enhanced antibacterial activity against Gram-positive and emerging antibacterial activity against Gram-negative bacteria, respectively. In vivo imaging verified that PEGylated nano-BAs exhibited higher inflammatory tissue distribution and longer circulation time than nano-BA PLGA . Therefore, although PEGylation did not affect antibacterial activity, it is necessary for target delivery and resistance to clearance of the observed PEGylated nano-BAs. In vivo, nano-BA 12k also showed the highest therapeutic index against infection

  13. Self-assembled nanostructures

    CERN Document Server

    Zhang, Jin Z; Liu, Jun; Chen, Shaowei; Liu, Gang-yu

    2003-01-01

    Nanostructures refer to materials that have relevant dimensions on the nanometer length scales and reside in the mesoscopic regime between isolated atoms and molecules in bulk matter. These materials have unique physical properties that are distinctly different from bulk materials. Self-Assembled Nanostructures provides systematic coverage of basic nanomaterials science including materials assembly and synthesis, characterization, and application. Suitable for both beginners and experts, it balances the chemistry aspects of nanomaterials with physical principles. It also highlights nanomaterial-based architectures including assembled or self-assembled systems. Filled with in-depth discussion of important applications of nano-architectures as well as potential applications ranging from physical to chemical and biological systems, Self-Assembled Nanostructures is the essential reference or text for scientists involved with nanostructures.

  14. Dynamics of magnetic nano-particle assembly

    International Nuclear Information System (INIS)

    Kondratyev, V N

    2010-01-01

    Ferromagnetically coupled nano-particle assembly is analyzed accounting for inter- and intra- particle electronic structures within the randomly jumping interacting moments model including quantum fluctuations due to the discrete levels and disorder. At the magnetic jump anomalies caused by quantization the magnetic state equation and phase diagram are found to indicate an existence of spinodal regions and critical points. Arrays of magnetized nano-particles with multiple magnetic response anomalies are predicted to display some specific features. In a case of weak coupling such arrays exhibit the well-separated instability regions surrounding the anomaly positions. With increasing coupling we observe further structure modification, plausibly, of bifurcation type. At strong coupling the dynamical instability region become wide while the stable regime arises as a narrow islands at small disorders. It is shown that exploring correlations of magnetic noise amplitudes represents convenient analytical tool for quantitative definition, description and study of supermagnetism, as well as self-organized criticality.

  15. Self-assembly of nano/micro-structured Fe3O4 microspheres among 3D rGO/CNTs hierarchical networks with superior lithium storage performances

    International Nuclear Information System (INIS)

    Liu, Jinlong; Feng, Haibo; Wang, Xipeng; Qian, Dong; Jiang, Jianbo; Li, Junhua; Peng, Sanjun; Deng, Miao; Liu, Youcai

    2014-01-01

    Nano/micro-structured Fe 3 O 4 microspheres among three-dimensional (3D) reduced graphene oxide (rGO)/carbon nanotubes (CNTs) hierarchical networks (the ternary composite is denoted as rGCFs) have been synthesized using a facile, self-assembled and one-pot hydrothermal approach. The rGCFs composite exhibits superior lithium storage performances: initial discharge and charge capacities of 1452 and 1036 mAh g −1 , respectively, remarkable rate capability at current densities from 100 mA g −1 to 10 A g −1 and outstanding cycling performance up to 200 cycles. The highly enhanced electrochemical performances of rGCFs depend heavily on the robust 3D rGO/CNTs hierarchical networks, the stable nano/microstructures of active Fe 3 O 4 microspheres and the positive synergistic effects of building components. The systematic structure characterizations and electrochemical investigations provide insightful understanding towards the relationship between structure/morphology and lithium storage performances, which may pave the way for the rational design of composite materials with desirable goals. (papers)

  16. Microsecond MD Simulations of Nano-patterned Polymer Brushes on Self-Assembled Monolayers

    Science.gov (United States)

    Buie, Creighton; Qiu, Liming; Cheng, Kwan; Park, Soyeun

    2010-03-01

    Nano-patterned polymer brushes end-grafted onto self-assembled monolayers have gained increasing research interests due to their unique thermodynamic properties and their chemical and biomedical applications in colloids, biosensing and tissue engineering. So far, the interactions between the polymer brushes with the surrounding environments such as the floor and solvent at the nanometer length scale and microsecond time scale are still difficult to obtained experimentally and computationally. Using a Coarse-Grained MD approach, polymer brushes of different monomeric lengths, grafting density and hydrophobicity of the monomers grafted on self-assembled monolayers and in explicit solvent were studied. Molecular level information, such as lateral diffusion, transverse height and volume contour of the brushes, were calculated from our microsecond-MD simulations. Our results demonstrated the significance of the hydration of the polymer in controlling the conformational arrangement of the polymer brushes.

  17. Systematic Study on the Self-Assembled Hexagonal Au Voids, Nano-Clusters and Nanoparticles on GaN (0001.

    Directory of Open Access Journals (Sweden)

    Puran Pandey

    Full Text Available Au nano-clusters and nanoparticles (NPs have been widely utilized in various electronic, optoelectronic, and bio-medical applications due to their great potentials. The size, density and configuration of Au NPs play a vital role in the performance of these devices. In this paper, we present a systematic study on the self-assembled hexagonal Au voids, nano-clusters and NPs fabricated on GaN (0001 by the variation of annealing temperature and deposition amount. At relatively low annealing temperatures between 400 and 600°C, the fabrication of hexagonal shaped Au voids and Au nano-clusters are observed and discussed based on the diffusion limited aggregation model. The size and density of voids and nano-clusters can systematically be controlled. The self-assembled Au NPs are fabricated at comparatively high temperatures from 650 to 800°C based on the Volmer-Weber growth model and also the size and density can be tuned accordingly. The results are symmetrically analyzed and discussed in conjunction with the diffusion theory and thermodynamics by utilizing AFM and SEM images, EDS maps and spectra, FFT power spectra, cross-sectional line-profiles and size and density plots.

  18. Ultrafine luminescent structures through nanoparticle self-assembly

    International Nuclear Information System (INIS)

    Prabhakaran, K; Goetzinger, S; Shafi, K V P M; Mazzei, A; Schietinger, S; Benson, O

    2006-01-01

    We report the fabrication of ultrafine structures consisting of regular arrays of nanoemitters through the self-assembly of luminescent nanoparticles on a silicon wafer. Nanoparticles of yttrium aluminium garnet (YAG) doped with Eu 3+ ions were synthesized by a sonochemical technique. These particles, suspended in ethanol, are introduced onto a pre-patterned silicon wafer, covered with a thin oxide layer. On annealing the sample in an ultrahigh-vacuum chamber, the nanoparticles self-assemble along the pattern. We demonstrate this 'chemical lithography' by assembling the nanoparticles along a variety of patterns. We believe that such self-organized nanopatterning of functional structures is important for the realization of nanodevices

  19. Quantitative self-assembly prediction yields targeted nanomedicines

    Science.gov (United States)

    Shamay, Yosi; Shah, Janki; Işık, Mehtap; Mizrachi, Aviram; Leibold, Josef; Tschaharganeh, Darjus F.; Roxbury, Daniel; Budhathoki-Uprety, Januka; Nawaly, Karla; Sugarman, James L.; Baut, Emily; Neiman, Michelle R.; Dacek, Megan; Ganesh, Kripa S.; Johnson, Darren C.; Sridharan, Ramya; Chu, Karen L.; Rajasekhar, Vinagolu K.; Lowe, Scott W.; Chodera, John D.; Heller, Daniel A.

    2018-02-01

    Development of targeted nanoparticle drug carriers often requires complex synthetic schemes involving both supramolecular self-assembly and chemical modification. These processes are generally difficult to predict, execute, and control. We describe herein a targeted drug delivery system that is accurately and quantitatively predicted to self-assemble into nanoparticles based on the molecular structures of precursor molecules, which are the drugs themselves. The drugs assemble with the aid of sulfated indocyanines into particles with ultrahigh drug loadings of up to 90%. We devised quantitative structure-nanoparticle assembly prediction (QSNAP) models to identify and validate electrotopological molecular descriptors as highly predictive indicators of nano-assembly and nanoparticle size. The resulting nanoparticles selectively targeted kinase inhibitors to caveolin-1-expressing human colon cancer and autochthonous liver cancer models to yield striking therapeutic effects while avoiding pERK inhibition in healthy skin. This finding enables the computational design of nanomedicines based on quantitative models for drug payload selection.

  20. Co-Assembled Supported Catalysts: Synthesis of Nano-Structured Supported Catalysts with Hierarchic Pores through Combined Flow and Radiation Induced Co-Assembled Nano-Reactors

    Directory of Open Access Journals (Sweden)

    Galip Akay

    2016-05-01

    Full Text Available A novel generic method of silica supported catalyst system generation from a fluid state is presented. The technique is based on the combined flow and radiation (such as microwave, thermal or UV induced co-assembly of the support and catalyst precursors forming nano-reactors, followed by catalyst precursor decomposition. The transformation from the precursor to supported catalyst oxide state can be controlled from a few seconds to several minutes. The resulting nano-structured micro-porous silica supported catalyst system has a surface area approaching 300 m2/g and X-ray Diffraction (XRD-based catalyst size controlled in the range of 1–10 nm in which the catalyst structure appears as lamellar sheets sandwiched between the catalyst support. These catalyst characteristics are dependent primarily on the processing history as well as the catalyst (Fe, Co and Ni studied when the catalyst/support molar ratio is typically 0.1–2. In addition, Ca, Mn and Cu were used as co-catalysts with Fe and Co in the evaluation of the mechanism of catalyst generation. Based on extensive XRD, Scanning Electron Microscopy (SEM and Transmission Electron Microscopy (TEM studies, the micro- and nano-structure of the catalyst system were evaluated. It was found that the catalyst and silica support form extensive 0.6–2 nm thick lamellar sheets of 10–100 nm planar dimensions. In these lamellae, the alternate silica support and catalyst layer appear in the form of a bar-code structure. When these lamellae structures pack, they form the walls of a micro-porous catalyst system which typically has a density of 0.2 g/cm3. A tentative mechanism of catalyst nano-structure formation is provided based on the rheology and fluid mechanics of the catalyst/support precursor fluid as well as co-assembly nano-reactor formation during processing. In order to achieve these structures and characteristics, catalyst support must be in the form of silane coated silica nano

  1. Self-assembly strategies for the synthesis of functional nanostructured materials

    Science.gov (United States)

    Perego, M.; Seguini, G.

    2016-06-01

    Self-assembly is the autonomous organization of components into patterns or structures without human intervention. This is the approach followed by nature to generate living cells and represents one of the practical strategies to fabricate ensembles of nanostructures. In static self-assembly the formation of ordered structures could require energy but once formed the structures are stable. The introduction of additional regular features in the environment could be used to template the self-assembly guiding the organization of the components and determining the final structure they form. In this regard self-assembly of block copolymers represents a potent platform for fundamental studies at the nanoscale and for application-driven investigation as a tool to fabricate functional nanostructured materials. Block copolymers can hierarchically assemble into chemically distinct domains with size and periodicity on the order of 10nm or below, offering a potentially inexpensive route to generate large-area nanostructured materials. The final structure characteristics of these materials are dictated by the properties of the elementary block copolymers, like chain length, volume fraction or degree of block incompatibility. Modern synthetic chemistry offers the possibility to design these macromolecules with very specific length scales and geometries, directly embodying in the block copolymers the code that drives their self- assembling process. The understanding of the kinetics and thermodynamics of the block copolymer self-assembly process in the bulk phase as well as in thin films represents a fundamental prerequisite toward the exploitation of these materials. Incorporating block copolymer into device fabrication procedures or directly into devices, as active elements, will lead to the development of a new generation of devices fabricated using the fundamental law of nature to our advantage in order to minimize cost and power consumption in the fabrication process

  2. Self-assembly formation of palm-based esters nano-emulsion: A molecular dynamics study

    Science.gov (United States)

    Abdul Rahman, Mohd. Basyaruddin; Huan, Qiu-Yi; Tejo, Bimo A.; Basri, Mahiran; Salleh, Abu Bakar; Rahman, Raja Noor Zaliha Abdul

    2009-10-01

    Palm-oil esters (POEs) are unsaturated and non-ionic esters that can be prepared by enzymatic synthesis from palm oil. Their nano-emulsion properties possess great potential to act as drug carrier for transdermal drug delivery system. A ratio of 75:5:20 (water/POEs/Span20) was chosen from homogenous region in the phase diagram of our previous experimental work to undergo molecular dynamics simulation. A 15 ns molecular dynamics simulation of nano-emulsion system (water/POEs/Span20) was carried out using OPLS-AA force field. The aggregations of the oil and surfactant molecules are observed throughout the simulation. After 8 ns of simulation, the molecules start to aggregate to form one spherical micelle where the POEs molecules are surrounded by the non-ionic surfactant (Span20) molecules with an average size of 4.2 ± 0.05 nm. The size of the micelle and the ability of palm-based nano-emulsion to self-assemble suggest that this nano-emulsion can potentially use in transdermal drug delivery system.

  3. Self-assembled hybrid materials based on conjugated polymers and semiconductors nano-crystals for plastic solar cells

    International Nuclear Information System (INIS)

    Girolamo, J. de

    2007-11-01

    This work is devoted to the elaboration of self-assembled hybrid materials based on poly(3- hexyl-thiophene) and CdSe nano-crystals for photovoltaic applications. For that, complementary molecular recognition units were introduced as side chain groups on the polymer and at the nano-crystals' surface. Diamino-pyrimidine groups were introduced by post-functionalization of a precursor copolymer, namely poly(3-hexyl-thiophene-co-3- bromo-hexyl-thiophene) whereas thymine groups were introduced at the nano-crystals' surface by a ligand exchange reaction with 1-(6-mercapto-hexyl)thymine. However, due to their different solubility, the mixing of the two components by solution processes is difficult. A 'one-pot' procedure was developed, but this method led to insoluble aggregates without control of the hybrid composition. To overcome the solubility problem, the layer-by-layer method was used to prepare the films. This method allows a precise control of the deposition process. Experimental parameters were tested in order to evaluate their impact on the resulting film. The films morphology was investigated by microscopy and X-Ray diffraction techniques. These analyses reveal an interpenetrated structure of nano-crystals within the polymer matrix rather than a multilayered structure. Electrochemical and spectro electrochemical studies were performed on the hybrid material deposited by the LBL process. Finally the materials were tested in a solar cell configuration and the I=f(V) curves reveals a clear photovoltaic behaviour. (author)

  4. Control of Partial Coalescence of Self-Assembled Metal Nano-Particles across Lyotropic Liquid Crystals Templates towards Long Range Meso-Porous Metal Frameworks Design

    Directory of Open Access Journals (Sweden)

    Ludovic F. Dumée

    2015-10-01

    Full Text Available The formation of purely metallic meso-porous metal thin films by partial interface coalescence of self-assembled metal nano-particles across aqueous solutions of Pluronics triblock lyotropic liquid crystals is demonstrated for the first time. Small angle X-ray scattering was used to study the influence of the thin film composition and processing conditions on the ordered structures. The structural characteristics of the meso-structures formed demonstrated to primarily rely on the lyotropic liquid crystal properties while the nature of the metal nano-particles used as well as the their diameters were found to affect the ordered structure formation. The impact of the annealing temperature on the nano-particle coalescence and efficiency at removing the templating lyotropic liquid crystals was also analysed. It is demonstrated that the lyotropic liquid crystal is rendered slightly less thermally stable, upon mixing with metal nano-particles and that low annealing temperatures are sufficient to form purely metallic frameworks with average pore size distributions smaller than 500 nm and porosity around 45% with potential application in sensing, catalysis, nanoscale heat exchange, and molecular separation.

  5. Self-assembled domain structures: From micro- to nanoscale

    Directory of Open Access Journals (Sweden)

    Vladimir Shur

    2015-06-01

    Full Text Available The recent achievements in studying the self-assembled evolution of micro- and nanoscale domain structures in uniaxial single crystalline ferroelectrics lithium niobate and lithium tantalate have been reviewed. The results obtained by visualization of static domain patterns and kinetics of the domain structure by different methods from common optical microscopy to more sophisticated scanning probe microscopy, scanning electron microscopy and confocal Raman microscopy, have been discussed. The kinetic approach based on various nucleation processes similar to the first-order phase transition was used for explanation of the domain structure evolution scenarios. The main mechanisms of self-assembling for nonequilibrium switching conditions caused by screening ineffectiveness including correlated nucleation, domain growth anisotropy, and domain–domain interaction have been considered. The formation of variety of self-assembled domain patterns such as fractal-type, finger and web structures, broad domain boundaries, and dendrites have been revealed at each of all five stages of domain structure evolution during polarization reversal. The possible applications of self-assembling for micro- and nanodomain engineering were reviewed briefly. The review covers mostly the results published by our research group.

  6. Photoinitiated Polymerization-Induced Self-Assembly of Glycidyl Methacrylate for the Synthesis of Epoxy-Functionalized Block Copolymer Nano-Objects.

    Science.gov (United States)

    Tan, Jianbo; Liu, Dongdong; Huang, Chundong; Li, Xueliang; He, Jun; Xu, Qin; Zhang, Li

    2017-08-01

    Herein, a novel photoinitiated polymerization-induced self-assembly formulation via photoinitiated reversible addition-fragmentation chain transfer dispersion polymerization of glycidyl methacrylate (PGMA) in ethanol-water at room temperature is reported. It is demonstrated that conducting polymerization-induced self-assembly (PISA) at low temperatures is crucial for obtaining colloidal stable PGMA-based diblock copolymer nano-objects. Good control is maintained during the photo-PISA process with a high rate of polymerization. The polymerization can be switched between "ON" and "OFF" in response to visible light. A phase diagram is constructed by varying monomer concentration and degree of polymerization. The PGMA-based diblock copolymer nano-objects can be further cross-linked by using a bifunctional primary amine reagent. Finally, silver nanoparticles are loaded within cross-linked vesicles via in situ reduction, exhibiting good catalytic properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Self-assembly strategies for the synthesis of functional nanostructured materials

    International Nuclear Information System (INIS)

    Perego, M.; Seguini, G.

    2016-01-01

    Self-assembly is the autonomous organization of components into patterns or structures without human intervention. This is the approach followed by nature to generate living cells and represents one of the practical strategies to fabricate ensembles of nanostructures. In static self-assembly the formation of ordered structures could require energy but once formed the structures are stable. The introduction of additional regular features in the environment could be used to template the self-assembly guiding the organization of the components and determining the final structure they form. In this regard self-assembly of block copolymers represents a potent platform for fundamental studies at the nanoscale and for application-driven investigation as a tool to fabricate functional nanostructured materials. Block copolymers can hierarchically assemble into chemically distinct domains with size and periodicity on the order of 10 nm or below, offering a potentially inexpensive route to generate large-area nanostructured materials. The final structure characteristics of these materials are dictated by the properties of the elementary block copolymers, like chain length, volume fraction or degree of block incompatibility. Modern synthetic chemistry offers the possibility to design these macromolecules with very specific length scales and geometries, directly embodying in the block copolymers the code that drives their self- assembling process. The understanding of the kinetics and thermodynamics of the block copolymer selfassembly process in the bulk phase as well as in thin films represents a fundamental prerequisite toward the exploitation of these materials. Incorporating block copolymer into device fabrication procedures or directly into devices, as active elements, will lead to the development of a new generation of devices fabricated using the fundamental law of nature to our advantage in order to minimize cost and power consumption in the fabrication process

  8. Ordered patterns and structures via interfacial self-assembly: superlattices, honeycomb structures and coffee rings.

    Science.gov (United States)

    Ma, Hongmin; Hao, Jingcheng

    2011-11-01

    Self-assembly is now being intensively studied in chemistry, physics, biology, and materials engineering and has become an important "bottom-up" approach to create intriguing structures for different applications. Self-assembly is not only a practical approach for creating a variety of nanostructures, but also shows great superiority in building hierarchical structures with orders on different length scales. The early work in self-assembly focused on molecular self-assembly in bulk solution, including the resultant dye aggregates, liposomes, vesicles, liquid crystals, gels and so on. Interfacial self-assembly has been a great concern over the last two decades, largely because of the unique and ingenious roles of this method for constructing materials at interfaces, such as self-assembled monolayers, Langmuir-Blodgett films, and capsules. Nanocrystal superlattices, honeycomb films and coffee rings are intriguing structural materials with more complex features and can be prepared by interfacial self-assembly on different length scales. In this critical review, we outline the recent development in the preparation and application of colloidal nanocrystal superlattices, honeycomb-patterned macroporous structures by the breath figure method, and coffee-ring-like patterns (247 references). This journal is © The Royal Society of Chemistry 2011

  9. Electrostatic Force Microscopy of Self Assembled Peptide Structures

    DEFF Research Database (Denmark)

    Clausen, Casper Hyttel; Dimaki, Maria; Pantagos, Spyros P.

    2011-01-01

    In this report electrostatic force microscopy (EFM) is used to study different peptide self-assembled structures, such as tubes and particles. It is shown that not only geometrical information can be obtained using EFM, but also information about the composition of different structures. In partic......In this report electrostatic force microscopy (EFM) is used to study different peptide self-assembled structures, such as tubes and particles. It is shown that not only geometrical information can be obtained using EFM, but also information about the composition of different structures...

  10. Crystal-Structure-Guided Design of Self-Assembling RNA Nanotriangles.

    Science.gov (United States)

    Boerneke, Mark A; Dibrov, Sergey M; Hermann, Thomas

    2016-03-14

    RNA nanotechnology uses RNA structural motifs to build nanosized architectures that assemble through selective base-pair interactions. Herein, we report the crystal-structure-guided design of highly stable RNA nanotriangles that self-assemble cooperatively from short oligonucleotides. The crystal structure of an 81 nucleotide nanotriangle determined at 2.6 Å resolution reveals the so-far smallest circularly closed nanoobject made entirely of double-stranded RNA. The assembly of the nanotriangle architecture involved RNA corner motifs that were derived from ligand-responsive RNA switches, which offer the opportunity to control self-assembly and dissociation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Structural Polymorphism in a Self-Assembled Tri-Aromatic Peptide System.

    Science.gov (United States)

    Brown, Noam; Lei, Jiangtao; Zhan, Chendi; Shimon, Linda J W; Adler-Abramovich, Lihi; Wei, Guanghong; Gazit, Ehud

    2018-04-24

    Self-assembly is a process of key importance in natural systems and in nanotechnology. Peptides are attractive building blocks due to their relative facile synthesis, biocompatibility, and other unique properties. Diphenylalanine (FF) and its derivatives are known to form nanostructures of various architectures and interesting and varied characteristics. The larger triphenylalanine peptide (FFF) was found to self-assemble as efficiently as FF, forming related but distinct architectures of plate-like and spherical nanostructures. Here, to understand the effect of triaromatic systems on the self-assembly process, we examined carboxybenzyl-protected diphenylalanine (z-FF) as a minimal model for such an arrangement. We explored different self-assembly conditions by changing solvent compositions and peptide concentrations, generating a phase diagram for the assemblies. We discovered that z-FF can form a variety of structures, including nanowires, fibers, nanospheres, and nanotoroids, the latter were previously observed only in considerably larger or co-assembly systems. Secondary structure analysis revealed that all assemblies possessed a β-sheet conformation. Additionally, in solvent combinations with high water ratios, z-FF formed rigid and self-healing hydrogels. X-ray crystallography revealed a "wishbone" structure, in which z-FF dimers are linked by hydrogen bonds mediated by methanol molecules, with a 2-fold screw symmetry along the c-axis. All-atom molecular dynamics (MD) simulations revealed conformations similar to the crystal structure. Coarse-grained MD simulated the assembly of the peptide into either fibers or spheres in different solvent systems, consistent with the experimental results. This work thus expands the building block library for the fabrication of nanostructures by peptide self-assembly.

  12. Impact of cationic surfactant on the self-assembly of sodium caseinate.

    Science.gov (United States)

    Vinceković, Marko; Curlin, Marija; Jurašin, Darija

    2014-08-27

    The impact of a cationic surfactant, dodecylammonium chloride (DDACl), on the self-assembly of sodium caseinate (SC) has been investigated by light scattering, zeta potential, and rheological measurements as well as by microscopy (transmission electron and confocal laser scanning microscopy). In SC dilute solutions concentration-dependent self-assembly proceeds through the formation of spherical associates and their aggregation into elongated structures composed of connected spheres. DDACl interacts with SC via its hydrophilic and hydrophobic groups, inducing changes in SC self-assembled structures. These changes strongly depend on the surfactant aggregation states (monomeric or micellar) as well as concentration ratio of both components, leading to the formation of soluble and insoluble complexes of nano- to microdimensions. DDACl monomers interact with SC self-assembled entities in a different way compared to their micelles. Surfactant monomers form soluble complexes (similar to surfactant mixed micelles) at lower SC concentration but insoluble gelatinous complexes at higher SC concentration. At surfactant micellar concentration soluble complexes with casein chains wrapped around surfactant micelles are formed. This study suggests that the use of proper cationic surfactant concentration will allow modification and control of structural changes of SC self-assembled entities.

  13. Self-Sensing Thermal Management System Using Multifunctional Nano-Enhanced Structures

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this project is to develop a thermal management system with self-sensing capabilities using new multifunctional nano-enhanced structures. Currently,...

  14. Hydrazine-mediated construction of nanocrystal self-assembly materials.

    Science.gov (United States)

    Zhou, Ding; Liu, Min; Lin, Min; Bu, Xinyuan; Luo, Xintao; Zhang, Hao; Yang, Bai

    2014-10-28

    Self-assembly is the basic feature of supramolecular chemistry, which permits to integrate and enhance the functionalities of nano-objects. However, the conversion of self-assembled structures to practical materials is still laborious. In this work, on the basis of studying one-pot synthesis, spontaneous assembly, and in situ polymerization of aqueous semiconductor nanocrystals (NCs), NC self-assembly materials are produced and applied to design high performance white light-emitting diode (WLED). In producing self-assembly materials, the additive hydrazine (N2H4) is curial, which acts as the promoter to achieve room-temperature synthesis of aqueous NCs by favoring a reaction-controlled growth, as the polyelectrolyte to weaken inter-NC electrostatic repulsion and therewith facilitate the one-dimensional self-assembly, and in particular as the bifunctional monomers to polymerize with mercapto carboxylic acid-modified NCs via in situ amidation reaction. This strategy is versatile for mercapto carboxylic acid-modified aqueous NCs, for example CdS, CdSe, CdTe, CdSe(x)Te(1-x), and Cd(y)Hg(1-y)Te. Because of the multisite modification with carboxyl, the NCs act as macromonomers, thus producing cross-linked self-assembly materials with excellent thermal, solvent, and photostability. The assembled NCs preserve strong luminescence and avoid unpredictable fluorescent resonance energy transfer, the main problem in design WLED from multiple NC components. These advantages allow the fabrication of NC-based WLED with high color rendering index (86), high luminous efficacy (41 lm/W), and controllable color temperature.

  15. Structures of self-assembled amphiphilic peptide-heterodimers: effects of concentration, pH, temperature and ionic strength

    KAUST Repository

    Luo, Zhongli

    2010-01-01

    The amphiphilic double-tail peptides AXG were studied regarding secondary structure and self-assembly in aqueous solution. The two tails A = Ala 6 and G = Gly6 are connected by a central pair X of hydrophilic residues, X being two aspartic acids in ADG, two lysines in AKG and two arginines in ARG. The peptide AD (Ala6Asp) served as a single-tail reference. The secondary structure of the four peptides was characterized by circular dichroism spectroscopy under a wide range of peptide concentrations (0.01-0.8 mM), temperatures (20-98 °C), pHs (4-9.5) and ionic strengths. In salt-free water both ADG and AD form a β-sheet type of structure at high concentration, low pH and low temperature, in a peptide-peptide driven assembly of individual peptides. The transition has a two-state character for ADG but not for AD, which indicates that the added tail in ADG makes the assembly more cooperative. By comparison the secondary structures of AKG and ARG are comparatively stable over the large range of conditions covered. According to dynamic light scattering the two-tail peptides form supra-molecular aggregates in water, but high-resolution AFM-imaging indicate that ordered (self-assembled) structures are only formed when salt (0.1 M NaCl) is added. Since the CD-studies indicate that the NaCl has only a minor effect on the peptide secondary structure we propose that the main role of the added salt is to screen the electrostatic repulsion between the peptide building blocks. According to the AFM images ADG and AKG support a correlation between nanofibers and a β-sheet or unordered secondary structure, whereas ARG forms fibers in spite of lacking β-sheet structure. Since the AKG and ARG double-tail peptides self-assemble into distinct nanostructures while their secondary structures are resistant to environment factors, these new peptides show potential as robust building blocks for nano-materials in various medical and nanobiotechnical applications. © 2010 The Royal Society

  16. Synthesis, construction, and evaluation of self-assembled nano-bacitracin A as an efficient antibacterial agent in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Hong W

    2017-06-01

    Full Text Available Wei Hong,1 Xiang Gao,1 Peng Qiu,1 Jie Yang,1 Mingxi Qiao,2 Hong Shi,3 Dexian Zhang,1 Chunlian Tian,1 Shengli Niu,1 Mingchun Liu1 1Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenhe, Shenyang, Liaoning, People’s Republic of China; 2Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Jiangning, Nanjing, 3Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, People’s Republic of China Abstract: Bacitracin A (BA is an excellent polypeptide antibiotic that is active against gram-positive bacteria without triggering multidrug resistance. However, BA is inactive against gram-negative bacteria because of its inability to cross the outer membrane of these cells, and it has strong nephrotoxicity, thus limiting its clinical applications. Nanoantibiotics can effectively localize antibiotics to the periplasmic space of bacteria while decreasing the adverse effects of antibiotics. In this study, biodegradable hydrophobic copolymers of poly (D,L-lactide-co-glycolide (PLGA were attached to the N-termini of BA to design a novel class of self-assembled nano-bacitracin A (nano-BAs, and their potential as antibacterial agents was evaluated in vitro and in vivo. Nano-BAs had a core-shell structure with a mean diameter <150 nm. Impressively, nano-BAs had strong antibacterial properties against both gram-positive and gram-negative bacteria, and the distribution of antibacterial activity as a function of PLGA block length was skewed toward longer PLGA chains. No cytotoxicity against HK-2 cells or human red blood cells (hRBCs was observed in vitro, suggesting good biocompatibility. A high local density of BA mass on the surface promoted endocytotic cellular uptake, and hydrophobic interactions between the PLGA block and lipopolysaccharide (LPS facilitated the uptake of nano-BAs, thereby leading to

  17. Fluid-Mediated Stochastic Self-Assembly at Centimetric and Sub-Millimetric Scales: Design, Modeling, and Control

    Directory of Open Access Journals (Sweden)

    Bahar Haghighat

    2016-08-01

    Full Text Available Stochastic self-assembly provides promising means for building micro-/nano-structures with a variety of properties and functionalities. Numerous studies have been conducted on the control and modeling of the process in engineered self-assembling systems constituted of modules with varied capabilities ranging from completely reactive nano-/micro-particles to intelligent miniaturized robots. Depending on the capabilities of the constituting modules, different approaches have been utilized for controlling and modeling these systems. In the quest of a unifying control and modeling framework and within the broader perspective of investigating how stochastic control strategies can be adapted from the centimeter-scale down to the (sub-millimeter-scale, as well as from mechatronic to MEMS-based technology, this work presents the outcomes of our research on self-assembly during the past few years. As the first step, we leverage an experimental platform to study self-assembly of water-floating passive modules at the centimeter scale. A dedicated computational framework is developed for real-time tracking, modeling and control of the formation of specific structures. Using a similar approach, we then demonstrate controlled self-assembly of microparticles into clusters of a preset dimension in a microfluidic chamber, where the control loop is closed again through real-time tracking customized for a much faster system dynamics. Finally, with the aim of distributing the intelligence and realizing programmable self-assembly, we present a novel experimental system for fluid-mediated programmable stochastic self-assembly of active modules at the centimeter scale. The system is built around the water-floating 3-cm-sized Lily robots specifically designed to be operative in large swarms and allows for exploring the whole range of fully-centralized to fully-distributed control strategies. The outcomes of our research efforts extend the state-of-the-art methodologies

  18. Dynamic transformation of self-assembled structures using anisotropic magnetized hydrogel microparticles

    Science.gov (United States)

    Yoshida, Satoru; Takinoue, Masahiro; Iwase, Eiji; Onoe, Hiroaki

    2016-08-01

    This paper describes a system through which the self-assembly of anisotropic hydrogel microparticles is achieved, which also enables dynamic transformation of the assembled structures. Using a centrifuge-based microfluidic device, anisotropic hydrogel microparticles encapsulating superparamagnetic materials on one side are fabricated, which respond to a magnetic field. We successfully achieve dynamic assembly using these hydrogel microparticles and realize three different self-assembled structures (single and double pearl chain structures, and close-packed structures), which can be transformed to other structures dynamically via tuning of the precessional magnetic field. We believe that the developed system has potential application as an effective platform for a dynamic cell manipulation and cultivation system, in biomimetic autonomous microrobot organization, and that it can facilitate further understanding of the self-organization and complex systems observed in nature.

  19. Lithographic stress control for the self-assembly of polymer MEMS structures

    International Nuclear Information System (INIS)

    Lee, S-W; Sameoto, D; Parameswaran, M; Mahanfar, A

    2008-01-01

    We present a novel self-assembly mechanism to produce an assortment of predetermined three-dimensional micromechanical structures in polymer MEMS technology using lithographically defined areas of stress and mechanical reinforcement within a single structural material. This self-assembly technology is based on the tensile stress that arises during the cross-linking of the negative tone, epoxy-based photoresist SU-8. Two different thicknesses of SU-8 are used in a single compliant structure. The first SU-8 layer forms the main structural element and the second SU-8 layer determines the aspects of self-assembly. The second SU-8 layer thickness acts to both to create a stress differential within the structure as well as define the direction in which the induced stress will cause the structure to deform. In this manner, both the magnitude and direction of self-assembled structures can be controlled using a single lithographic step. Although this technique uses a single structural material, the basic concept may be adapted for other processes, with different material choices, for a wide variety of applications

  20. Nano crystals-Related Synthesis, Assembly, and Energy Applications

    International Nuclear Information System (INIS)

    Dai, Q.; Hu, M.Z.; Yu, B.Z.; William, W.; Seo, J.

    2011-01-01

    Fundamental material properties have been dramatically altered in the nano scale regime because of quantum confinement effect. The unique size-tunable functionalities of nano materials make them involved in an extensive variety of energy applications, such as light-emitting diodes and solar cells. These applications have been demonstrated to cut energy consumption. In response to the ever-growing energy demands as well as the concerns of global warming, researchers are actively placing their enormous emphasis on the exploration of energy savings. During this exploration, the primary stage requires the design of appropriate strategies for the synthesis of high-quality nano crystals in terms of size uniformity and superior optical/electronic properties. Especially, there is a need to seek green-chemistry approaches for the synthesis of environmentally benign and user-friendly nano crystals. Another recent area of focus is the use of individual nano crystals as building blocks for self-assembly, providing new opportunities to improve the nano crystal performance

  1. Self-assembly of self-assembled molecular triangles

    Indian Academy of Sciences (India)

    While the solution state structure of 1 can be best described as a trinuclear complex, in the solidstate well-fashioned intermolecular - and CH- interactions are observed. Thus, in the solid-state further self-assembly of already self-assembled molecular triangle is witnessed. The triangular panels are arranged in a linear ...

  2. Core-shell architectures as nano-size transporters

    International Nuclear Information System (INIS)

    Adeli, M.; Zarnegar, Z.; Kabiri, R.; Salimi, F.; Dadkah, A.

    2006-01-01

    Core-shell architectures containing poly (ethylene imine) (PEI) as a core and poly (lactide) (PLA) as arms were prepared. PEI was used as macro initiator for ring opening polymerization of lactide. PEI-PLA core-shell architectures were able to encapsulate guest molecules. Size of the core-shell architectures was between 10- 100 nm, hence they can be considered as nano carriers to transport the guest molecules. Transport capacity of nano carriers depends on their nano-environments and type of self-assembly in solvent. In solid state nano carriers self-assemble as long structures with nano-size diameter or they form network structures. Aggregations type depends on the concentration of nano carriers in solution. Effect of the shell thickness and aggregation type on the release rate are also investigated

  3. Fabrication of nanostructure via self-assembly of nanowires within the AAO template

    Directory of Open Access Journals (Sweden)

    Brust Mathias

    2006-01-01

    Full Text Available AbstractThe novel nanostructures are fabricated by the spatial chemical modification of nanowires within the anodic aluminum oxide (AAO template. To make the nanowires better dispersion in the aqueous solution, the copper is first deposited to fill the dendrite structure at the bottom of template. During the process of self-assembly, the dithiol compound was used as the connector between the nanowires and nanoparticles by a self-assembly method. The nanostructures of the nano cigars and structure which is containing particles junction are characterized by transmission electron microscopy (TEM. These kinds of novel nanostructure will be the building blocks for nanoelectronic and nanophotonic devices.

  4. Self-assembled biomimetic superhydrophobic hierarchical arrays.

    Science.gov (United States)

    Yang, Hongta; Dou, Xuan; Fang, Yin; Jiang, Peng

    2013-09-01

    Here, we report a simple and inexpensive bottom-up technology for fabricating superhydrophobic coatings with hierarchical micro-/nano-structures, which are inspired by the binary periodic structure found on the superhydrophobic compound eyes of some insects (e.g., mosquitoes and moths). Binary colloidal arrays consisting of exemplary large (4 and 30 μm) and small (300 nm) silica spheres are first assembled by a scalable Langmuir-Blodgett (LB) technology in a layer-by-layer manner. After surface modification with fluorosilanes, the self-assembled hierarchical particle arrays become superhydrophobic with an apparent water contact angle (CA) larger than 150°. The throughput of the resulting superhydrophobic coatings with hierarchical structures can be significantly improved by templating the binary periodic structures of the LB-assembled colloidal arrays into UV-curable fluoropolymers by a soft lithography approach. Superhydrophobic perfluoroether acrylate hierarchical arrays with large CAs and small CA hysteresis can be faithfully replicated onto various substrates. Both experiments and theoretical calculations based on the Cassie's dewetting model demonstrate the importance of the hierarchical structure in achieving the final superhydrophobic surface states. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. From one to many: dynamic assembly and collective behavior of self-propelled colloidal motors.

    Science.gov (United States)

    Wang, Wei; Duan, Wentao; Ahmed, Suzanne; Sen, Ayusman; Mallouk, Thomas E

    2015-07-21

    The assembly of complex structures from simpler, individual units is a hallmark of biology. Examples include the pairing of DNA strands, the assembly of protein chains into quaternary structures, the formation of tissues and organs from cells, and the self-organization of bacterial colonies, flocks of birds, and human beings in cities. While the individual behaviors of biomolecules, bacteria, birds, and humans are governed by relatively simple rules, groups assembled from many individuals exhibit complex collective behaviors and functions that do not exist in the absence of the hierarchically organized structure. Self-assembly is a familiar concept to chemists who study the formation and properties of monolayers, crystals, and supramolecular structures. In chemical self-assembly, disorder evolves to order as the system approaches equilibrium. In contrast, living assemblies are typically characterized by two additional features: (1) the system constantly dissipates energy and is not at thermodynamic equilibrium; (2) the structure is dynamic and can transform or disassemble in response to stimuli or changing conditions. To distinguish them from equilibrium self-assembled structures, living (or nonliving) assemblies of objects with these characteristics are referred to as active matter. In this Account, we focus on the powered assembly and collective behavior of self-propelled colloids. These nano- and microparticles, also called nano- and micromotors or microswimmers, autonomously convert energy available in the environment (in the form of chemical, electromagnetic, acoustic, or thermal energy) into mechanical motion. Collections of these colloids are a form of synthetic active matter. Because of the analogy to living swimmers of similar size such as bacteria, the dynamic interactions and collective behavior of self-propelled colloids are interesting in the context of understanding biological active matter and in the development of new applications. The progression

  6. Construction of Supramolecular Architectures via Self-assembly

    Institute of Scientific and Technical Information of China (English)

    Takeharu; Haino

    2007-01-01

    1 Results In this paper we report supramolecular polymeric nano networks formed by the molecular-recognition-directed self-assembly between a calix[5]arene and C60[1]. Covalently-linked double-calix[5]arenes take up C60 into their cavities[2]. This complementary interaction creates a strong non-covalent bonding; thus,the iterative self-assembly between dumbbell fullerene 1 and ditopic host 2 can produce the supramolecular polymer networks (See Fig.1).

  7. Preparation of disk-like particles with micro/nano hierarchical structures.

    Science.gov (United States)

    Meng, Zhen; Yang, Wenbo; Chen, Pengpeng; Wang, Weina; Jia, Xudong; Xi, Kai

    2013-10-15

    A facile, reproductive method has been successfully developed to produce disk-like microparticles self-assembled from monodispersed hybrid silica nanoparticles under certain circumstance. The disk-like microparticles with micro/nano hierarchical structures could be obtained in large amount under a mild condition and further used to biomimetic design of the superhydrophobic surface of lotus leaf. After traditional surface modification with dodecyltrichlorosiliane, the static contact angle of water on the surface with micro/nano hierarchical structure could reach 168.8°. The method of surface modification could be further simplified by click reaction with the introduction of thiol groups under mild condition. The present strategy for constructing the surface with micro/nano hierarchical structures offers the advantage of simple and large area fabrication, which enables a variety of superhydrophobic applications. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. PREFACE: IUMRS-ICA 2008 Symposium, Sessions 'X. Applications of Synchrotron Radiation and Neutron Beam to Soft Matter Science' and 'Y. Frontier of Polymeric Nano-Soft-Materials - Precision Polymer Synthesis, Self-assembling and Their Functionalization'

    Science.gov (United States)

    Takahara, Atsushi; Kawahara, Seiichi

    2009-09-01

    Tashiro (Toyota Technological Institute) Professor Kazuo Sakurai(Kitakyushu University) Professor Keiji Tanaka (Kyushu University) Dr Sono Sasaki (JASRI/Spring-8) Professor Naoya Torikai (KENS) Professor Moonhor Ree (POSTECH) Professor Kookheon Char (Seoul National University) Professor Charles C Han (CAS) Professor Atsushi Takahara(Kyushu University) Frontier of Polymeric Nano-Soft-Materials, Precision Polymer Synthesis, Self-assembling and Their Functionalization (Symposium Y of IUMRS-ICA2008) Seiichi Kawahara, Rong-Ming Ho, Hiroshi Jinnai, Masami Kamigaito, Takashi Miyata, Hiroshi Morita, Hideyuki Otsuka, Daewon Sohn, Keiji Tanaka It is our great pleasure and honor to publish peer-reviewed papers, presented in Symposium Y 'Frontier of Polymeric Nano-Soft-Materials Precision Polymer Synthesis, Self-assembling and Their Functionalization' at the International Union of Materials Research Societies International Conference in Asia 2008 (IUMRS-ICA2008), which was held on 9-13 December 2008, at Nagoya Congress Center, Nagoya, Japan. 'Polymeric nano-soft-materials' are novel outcomes based on a recent innovative evolution in polymer science, i.e. precision polymer synthesis, self-assembling and functionalization of multi-component systems. The materials are expected to exhibit specific functions and unique properties due to their hierarchic morphologies brought either by naturally-generated ordering or by artificial manipulation of the systems, e.g., crystallization and phase-separation. The emerging precision synthesis has brought out new types of polymers with well-controlled primary structures. Furthermore, the surface and interface of the material are recognized to play an important role in the outstanding mechanical, electrical and optical properties, which are required for medical and engineering applications. In order to understand structure-property relationships in the nano-soft-materials, it is indispensable to develop novel characterization techniques. Symposium Y

  9. New archetypes in self-assembled Phe-Phe motif induced nanostructures from nucleoside conjugated-diphenylalanines.

    Science.gov (United States)

    Datta, Dhrubajyoti; Tiwari, Omshanker; Ganesh, Krishna N

    2018-02-15

    During the last two decades, the molecular self-assembly of the short peptide diphenylalanine (Phe-Phe) motif has attracted increasing focus due to its unique morphological structure and utility for potential applications in biomaterial chemistry, sensors and bioelectronics. Due to the ease of their synthetic modifications and a plethora of available experimental tools, the self-assembly of free and protected diphenylalanine scaffolds (H-Phe-Phe-OH, Boc-Phe-Phe-OH and Boc-Phe-Phe-OMe) has unfurled interesting tubular, vesicular or fibrillar morphologies. Developing on this theme, here we attempt to examine the effect of structure and properties (hydrophobic and H-bonding) modifying the functional C-terminus conjugated substituents on Boc-Phe-Phe on its self-assembly process. The consequent self-sorting due to H-bonding, van der Waals force and π-π interactions, generates monodisperse nano-vesicles from these peptides characterized via their SEM, HRTEM, AFM pictures and DLS experiments. The stability of these vesicles to different external stimuli such as pH and temperature, encapsulation of fluorescent probes inside the vesicles and their release by external trigger are reported. The results point to a new direction in the study and applications of the Phe-Phe motif to rationally engineer new functional nano-architectures.

  10. A nano-structured Ni(II)-chelidamic acid modified gold nanoparticle self-assembled electrode for electrocatalytic oxidation and determination of methanol

    Energy Technology Data Exchange (ETDEWEB)

    Gholivand, Mohammad Bagher, E-mail: mbgholivand@yahoo.com [Department of Analytical Chemistry, Faculty of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Azadbakht, Azadeh [Department of Chemistry, Faculty of Basic Science, Khorramabad Branch, Islamic Azad University, Khorramabad (Iran, Islamic Republic of)

    2012-10-01

    A nano-structured Ni(II)-chelidamic acid (2,6-dicarboxy-4-hydroxypyridine) film was electrodeposited on a gold nanoparticle-cysteine-gold electrode. The morphology of Ni(II)-chelidamic acid gold nanoparticle self-assembled electrode was investigated by scanning electron microscopy (SEM). Electrocatalytic oxidation of methanol on the surface of modified electrode was studied by cyclic voltammetry and chronoamperometry methods. The hydrodynamic amperometry at a rotating modified electrode at constant potential versus reference electrode was used for detection of methanol. Under optimized conditions the calibration plots are linear in the concentration range 0-50 mM with a detection limit of 15 {mu}M. The formed matrix in our work possessed a 3D porous network structure with a large effective surface area, high catalytic activity and behaved like microelectrode ensembles. The modified electrode indicated reproducible behavior and a high level stability during the experiments, making it particularly suitable for analytical purposes. - Highlights: Black-Right-Pointing-Pointer The Au electrode modified with thin Ni(II)/CHE-AuNP film shows stable and reproducible behavior. Black-Right-Pointing-Pointer Long stability and excellent electrochemical reversibility were observed. Black-Right-Pointing-Pointer This modified electrode shows excellent catalytic activity for methanol oxidation. Black-Right-Pointing-Pointer Combination of unique properties of AuNP and Ni(II)/CHE resulted in improvement of current responses.

  11. Cotton fibers nano-TiO2 composites prepared by as-assembly process and the photocatalytic activities

    International Nuclear Information System (INIS)

    Xia, J.H.; Hsu, C.T.; Qin, D.D.

    2012-01-01

    Graphical abstract: Display Omitted Highlights: ► TiO 2 nanoparticles self-assemble process under the assistant of carboxylic group. ► The carboxylic group was introduced by displacement reaction. ► The loading amount of nano-TiO 2 was depended on the displacement degree of C-6-OH. ► UV–Vis experiments showed these fibers had efficient photocatalysis. ► The degradation reaction Rhodamine 6G under UV light obeys zero-order rate law. -- Abstract: This paper describes photocatalytic cotton fibers produced by a TiO 2 nanoparticle self-assembly process with the assistance of carboxylic groups. The carboxylic group was introduced by a displacement reaction, the molecular structure of the glucose unit was studied by utilizing solid 13 C NMR. The appearance of the prepared fibers was observed by scanning electron microscopy, it was found that nano-TiO 2 coated uniformly on the fiber surface. The loading amount of nano-TiO 2 was depended on the displacement degree of C-6-OH. UV–Vis experiments showed these coated fibers undergo photocatalysis efficiently. The degradation reaction of Rhodamine 6G under UV light obeys the zero-order rate law.

  12. Superhydrophobic and transparent coatings prepared by self-assembly of dual-sized silica particles

    Science.gov (United States)

    Xu, Qian-Feng; Wang, Jian-Nong

    2010-06-01

    Superhydrophobic and transparent coatings have been prepared by self-assembly of dual-sized silica particles from a mixed dispersion. The desirable micro/nano hierarchical structure for superhydrophobicity is constructed simply by adjusting the size and ratio of the dual-sized particles without organic/inorganic templates. The transparency of the prepared coatings is also researched, and the light scattering can be reduced by lowering the ratio of big sub-micro particles while the superhydrophobicity maintains unchanged. When nano particles with a diameter of 50 nm and sub-micro particles with a diameter of 350 nm are assembled, a superhydrophobic property with a water contact angle of 161° is achieved. Additionally, the coated glass is also very transparent. The highest transmittance of the coated glass can reach 85%. Compared to traditional colloid self-assembly approach, which often involves dozens of steps of layer-by-layer processing and organic/inorganic templates, the present approach is much simpler and has advantages for large-scale coating.

  13. 6. international conference on Nano-technology in Carbon: from synthesis to applications of nano-structured carbon and related materials

    International Nuclear Information System (INIS)

    2004-01-01

    This is the sixth international conference sponsored this year by the French Carbon Group (GFEC), the European Research Group on Nano-tubes GDRE 'Nano-E', in collaboration with the British Carbon Group and the 'Institut des Materiaux Jean Rouxel' (local organizer). The aim of this conference is to promote carbon science in the nano-scale as, for example, nano-structured carbons, nano-tubes, nano-wires, fullerenes, etc. This conference is designed to introduce those with an interest in materials to current research in nano-technology and to bring together research scientists working in various disciplines in the broad area of nano-structured carbons, nano-tubes and fullerene-related nano-structures. Elemental carbon is the simplest exemplar of this nano-technology based on covalent bonding, however other systems (for example containing hetero-atoms) are becoming important from a research point of view, and provide alternative nano-materials with unique properties opening a broad field of applications. Nano-technology requires an understanding of these materials on a structural and textural point of view and this will be the central theme. This year the conference will feature sessions on: S1. Control and synthesis of nano-materials 1.1 Nano-structured carbons: pyrolysis of polymers, activation, templates,... 1.2 Nano-tubes: Catalytic method, HiPCO, graphite vaporization, electrolysis,... 1.3 Fullerenes S2. Chemistry of carbon nano-materials 2.1 Purification of carbon nano-tubes 2.2 Functionalization - Self-assembling S3. Structural characterization S4. Theory and modelling S5. Relationship between structure and properties S6. Applications Water and air purification, Gas and energy storage, Composite materials, Field emission, Nano-electronics, Biotechnology,... S7. Environmental impact. Only one paper concerning carbon under irradiation has been added to the INIS database. (authors)

  14. Dynamic Self-Assembly of Homogenous Microcyclic Structures Controlled by a Silver-Coated Nanopore.

    Science.gov (United States)

    Gao, Rui; Lin, Yao; Ying, Yi-Lun; Liu, Xiao-Yuan; Shi, Xin; Hu, Yong-Xu; Long, Yi-Tao; Tian, He

    2017-07-01

    The self-assembly of nanoparticles is a challenging process for organizing precise structures with complicated and ingenious structures. In the past decades, a simple, high-efficiency, and reproducible self-assembly method from nanoscale to microscale has been pursued because of the promising and extensive application prospects in bioanalysis, catalysis, photonics, and energy storage. However, microscale self-assembly still faces big challenges including improving the stability and homogeneity as well as pursuing new assembly methods and templates for the uniform self-assembly. To address these obstacles, here, a novel silver-coated nanopore is developed which serves as a template for electrochemically generating microcyclic structures of gold nanoparticles at micrometers with highly homogenous size and remarkable reproducibility. Nanopore-induced microcyclic structures are further applied to visualize the diffusion profile of ionic flux. Based on this novel strategy, a nanopore could potentially facilitate the delivery of assembled structures for many practical applications including drug delivery, cellular detection, catalysis, and plasmonic sensing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Green-fuel-mediated synthesis of self-assembled NiO nano-sticks for dual applications—photocatalytic activity on Rose Bengal dye and antimicrobial action on bacterial strains

    Science.gov (United States)

    Iyyappa Rajan, P.; Vijaya, J. Judith; Jesudoss, S. K.; Kaviyarasu, K.; Kennedy, L. John; Jothiramalingam, R.; Al-Lohedan, Hamad A.; Vaali-Mohammed, Mansoor-Ali

    2017-08-01

    With aim of promoting the employability of green fuels in the synthesis of nano-scaled materials with new kinds of morphologies for multiple applications, successful synthesis of self-assembled NiO nano-sticks was achieved through a 100% green-fuel-mediated hot-plate combustion reaction. The synthesized NiO nano-sticks show excellent photocatalytic activity on Rose Bengal dye and superior antibacterial potential towards both Gram-positive and Gram-negative bacteria.

  16. Solid structures of the stepwise self-assembled copillar[5]arene-based supramolecular polymers

    International Nuclear Information System (INIS)

    Park, Yeon Sil; Hwang, Seong Min; Shin, Jae Yeon; Paek, Kyung Soo

    2016-01-01

    Development of supramolecular polymer has attracted much interest because of their interesting properties such as stimuli-responsiveness, recycling, self-healing and degradability, and their consequential applications. The essential feature of this class of polymers is the self-assembly of discrete monomeric subunits via non-covalent interactions or dynamic covalent bonds. Among the many monomeric subunits, pillar[n]arenes have been ideal building blocks for the fabrication of polymeric supramolecules because of their intrinsic characteristics. The ring-shaped morphologies in supramolecular polymer P are probably due to the tendency of the end-to-end connection in the solid state of long flexible supramolecular chains. The size increase of nano-rings as the stepwise addition increases might be due to the fact that the linear supramolecular polymer P in solution seems to be maintained until the nano-ring formation by solidification

  17. Solid structures of the stepwise self-assembled copillar[5]arene-based supramolecular polymers

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yeon Sil; Hwang, Seong Min; Shin, Jae Yeon; Paek, Kyung Soo [Dept. of Chemistry, Soongsil University, Seoul (Korea, Republic of)

    2016-10-15

    Development of supramolecular polymer has attracted much interest because of their interesting properties such as stimuli-responsiveness, recycling, self-healing and degradability, and their consequential applications. The essential feature of this class of polymers is the self-assembly of discrete monomeric subunits via non-covalent interactions or dynamic covalent bonds. Among the many monomeric subunits, pillar[n]arenes have been ideal building blocks for the fabrication of polymeric supramolecules because of their intrinsic characteristics. The ring-shaped morphologies in supramolecular polymer P are probably due to the tendency of the end-to-end connection in the solid state of long flexible supramolecular chains. The size increase of nano-rings as the stepwise addition increases might be due to the fact that the linear supramolecular polymer P in solution seems to be maintained until the nano-ring formation by solidification.

  18. Self-Assembly of Colloidal Spheres into One, Two, and Three Dimensional Structures

    NARCIS (Netherlands)

    Guo, Y.

    2017-01-01

    The main goal of this thesis is to increase our understanding of colloidal self-assembly processes and develop new strategies to assemble colloidal building blocks into more sophisticated and well-defined super-structures. Self-assembly is a spontaneous process in which a disordered system of

  19. Two-Dimensional Fluidization of Nanomaterials via Biomimetic Membranes towards Assisted Self Assembly

    Science.gov (United States)

    Kelly, Kathleen

    Materials that take advantage of the exceptional properties of nano-meter sized aggregates of atoms are poised to play an important role in future technologies. Prime examples for such nano-materials that have an extremely large surface to volume ratio and thus are physically determined by surface related effects are quantum dots (qdots) and carbon nanotubes (CNTs). The production of such manmade nano-objects has by now become routine and even commercialized. However, the controlled assembly of individual nano-sized building blocks into larger structures of higher geometric and functional complexity has proven to be much more challenging. Yet, this is exactly what is required for many applications that have transformative potential for new technologies. If the tedious procedure to sequentially position individual nano-objects is to be forgone, the assembly of such objects into larger structures needs to be implicitly encoded and many ways to bestow such self-assembly abilities onto nano objects are being developed. Yet, as overall size and complexity of such self-assembled structures increases, kinetic and geometric frustration begin to prevent the system to achieve the desired configuration. In nature, this problem is solved by relying on guided or forced variants of the self-assembly approach. To translate such concepts into the realm of man-made nano-technology, ways to dynamically manipulate nano-materials need to be devised. Thus, in the first part of this work, I provide a proof of concept that supported lipid bilayers (SLBs) that exhibit free lateral diffusion of their constituents can be utilized as a two-dimensional platform for active nano-material manipulation. We used streptavidin coated quantum dots (Q-dots) as a model nano-building-block. Q-dots are 0-dimensional nanomaterials engineered to be fluorescent based solely on their diameter making visualization convenient. Biotinylated lipids were used to tether Q-dots to a SLB and we observed that the 2

  20. Observation of self-assembled periodic nano-structures induced by femtosecond laser in both ablation and deposition regimes

    Science.gov (United States)

    Tang, Mingzhen; Zhang, Haitao; Her, Tsing-Hua

    2008-02-01

    We observed the spontaneous formation of periodic nano-structures in both femtosecond laser ablation and deposition. The former involved 400-nm femtosecond pulses from a 250-KHz regenerated amplified mode-locked Ti:sapphire laser and periodic nanocracks and the nano-structure are in the form of periodic nanocracks in the substrate, the latter applied an 80-MHz mode-locked Ti:sapphire oscillator with pulse energy less than half nanojoule in a laser-induced chemical vapor deposition configuration and tungsten nanogratings grow heterogeneously on top of the substrates. These two observed periodic nanostructures have opposite orientations respecting to laser polarization: the periodic nanocracks are perpendicular to, whereas the deposited tungsten nanogratings are parallel to laser polarization direction. By translating the substrate respecting to the laser focus, both the periodic nanocrack and tungsten nanograting extend to the whole scanning range. The deposited tungsten nanogratings possess excellent uniformity on both the grating period and tooth length. Both the attributes can be tuned precisely by controlling the laser power and scanning speed. Furthermore, we discovered that the teeth of transverse tungsten nanogratings are self aligned along their axial direction during multiple scanning with appropriate offset between scans. We demonstrate the feasibility of fabricating large-area one-dimensional grating by exploiting such unique property. These distinct phenomena of nanocracks and tungsten nanogratings indicate different responsible mechanisms.

  1. Nano Cu interaction with single amino acid tyrosine derived self-assemblies; study through XRD, AFM, confocal Raman microscopy, SERS and DFT methods

    Science.gov (United States)

    Govindhan, Raman; Karthikeyan, Balakrishnan

    2017-12-01

    3,5-Bis(trifluoromethyl)benzylamine derivatives of single amino acid tyrosine produced self-assembled nanotubes (BTTNTs) as simple Phe-Phe. It has been observed that tyrosine derivative gives exclusively micro and nano tubes irrespective of the concentration of the precursor monomer. However, the introduced xenobiotic trifluoromethyl group (TFM) present in key backbone positionsof the self assembly gives the specific therapeutic function has been highlighted. Herein this work study of such self assembled nanotubes were studied through experimental and theoretical methods. The interaction of nanocopper cluster with the nanotubes (Cu@BTTNTs) were extensively studied by various methods like XRD, AFM, confocal Raman microscopy, SERS and theoretical methods like Mulliken's atomic charge analysis. SERS reveals that the interactions of Cu cluster with NH2, OH, NH and phenyl ring π-electrons system of BTTNTs. DFT studies gave the total dipole moment values of Cu@BTTNTs and explained the nature of interaction.

  2. A novel self-assembly with zinc porphyrin coordination polymer for enhanced photocurrent conversion in supramolecular solar cells

    International Nuclear Information System (INIS)

    Cao, Jing; Liu, Jia-Cheng; Deng, Wen-Ting; Li, Ren-Zhi; Jin, Neng-Zhi

    2013-01-01

    Graphical abstract: An innovative type of self-assembly based on acetohydrazide zinc porphyrin coordination polymer has been prepared in supramolecular solar cells. - Highlights: • A novel assembly with acetohydrazide porphyrin coordination polymer. • The assembly based on porphyrin is prepared as parallel sample. • Coordination polymer-based assembly shows enhanced photoelectronic behavior. • A series of different organic acid ligands as anchoring groups are prepared. - Abstract: In this work, a novel acetohydrazide zinc porphyrin-based coordination polymer (CP)-isonicotinic acid self-assembly by metal-ligand axial coordination to modify the nano-structured TiO 2 electrode surface has been investigated in photoelectrochemical device. Compared to the assembly based on corresponding zinc porphyrin combined with isonicotinic acid by metal-ligand axial coordination, CP-isonicotinic acid assembly exhibits a significantly enhanced photoelectronic behavior. In addition, a series of different organic acid ligands were prepared to probe the impact of their structures on the photoelectronic performances of their corresponding assemblies-sensitized cells. This study affords a novel type of self-assembly to functionalize the nanostructured TiO 2 electrode surface in supramolecular solar cells

  3. Nanomanufacturing : nano-structured materials made layer-by-layer.

    Energy Technology Data Exchange (ETDEWEB)

    Cox, James V.; Cheng, Shengfeng; Grest, Gary Stephen; Tjiptowidjojo, Kristianto (University of New Mexico); Reedy, Earl David, Jr.; Fan, Hongyou; Schunk, Peter Randall; Chandross, Michael Evan; Roberts, Scott A.

    2011-10-01

    Large-scale, high-throughput production of nano-structured materials (i.e. nanomanufacturing) is a strategic area in manufacturing, with markets projected to exceed $1T by 2015. Nanomanufacturing is still in its infancy; process/product developments are costly and only touch on potential opportunities enabled by growing nanoscience discoveries. The greatest promise for high-volume manufacturing lies in age-old coating and imprinting operations. For materials with tailored nm-scale structure, imprinting/embossing must be achieved at high speeds (roll-to-roll) and/or over large areas (batch operation) with feature sizes less than 100 nm. Dispersion coatings with nanoparticles can also tailor structure through self- or directed-assembly. Layering films structured with these processes have tremendous potential for efficient manufacturing of microelectronics, photovoltaics and other topical nano-structured devices. This project is designed to perform the requisite R and D to bring Sandia's technology base in computational mechanics to bear on this scale-up problem. Project focus is enforced by addressing a promising imprinting process currently being commercialized.

  4. Towards Crystals of Crystals of NanoCrystals : a Self-Assembly Study

    NARCIS (Netherlands)

    de Nijs, B.

    2014-01-01

    In this thesis several methods to synthesise monodisperse nanoparticles and how to self-assembled them within emulsion droplets are presented. The self-assembly behaviour of nanoparticles within the spherical confinement of emulsion droplets resulted in highly ordered crystalline supraparticles that

  5. Self-assembly of three-dimensional open structures using patchy colloidal particles.

    Science.gov (United States)

    Rocklin, D Zeb; Mao, Xiaoming

    2014-10-14

    Open structures can display a number of unusual properties, including a negative Poisson's ratio, negative thermal expansion, and holographic elasticity, and have many interesting applications in engineering. However, it is a grand challenge to self-assemble open structures at the colloidal scale, where short-range interactions and low coordination number can leave them mechanically unstable. In this paper we discuss the self-assembly of three-dimensional open structures using triblock Janus particles, which have two large attractive patches that can form multiple bonds, separated by a band with purely hard-sphere repulsion. Such surface patterning leads to open structures that are stabilized by orientational entropy (in an order-by-disorder effect) and selected over close-packed structures by vibrational entropy. For different patch sizes the particles can form into either tetrahedral or octahedral structural motifs which then compose open lattices, including the pyrochlore, the hexagonal tetrastack and the perovskite lattices. Using an analytic theory, we examine the phase diagrams of these possible open and close-packed structures for triblock Janus particles and characterize the mechanical properties of these structures. Our theory leads to rational designs of particles for the self-assembly of three-dimensional colloidal structures that are possible using current experimental techniques.

  6. Programming molecular self-assembly of intrinsically disordered proteins containing sequences of low complexity

    Science.gov (United States)

    Simon, Joseph R.; Carroll, Nick J.; Rubinstein, Michael; Chilkoti, Ashutosh; López, Gabriel P.

    2017-06-01

    Dynamic protein-rich intracellular structures that contain phase-separated intrinsically disordered proteins (IDPs) composed of sequences of low complexity (SLC) have been shown to serve a variety of important cellular functions, which include signalling, compartmentalization and stabilization. However, our understanding of these structures and our ability to synthesize models of them have been limited. We present design rules for IDPs possessing SLCs that phase separate into diverse assemblies within droplet microenvironments. Using theoretical analyses, we interpret the phase behaviour of archetypal IDP sequences and demonstrate the rational design of a vast library of multicomponent protein-rich structures that ranges from uniform nano-, meso- and microscale puncta (distinct protein droplets) to multilayered orthogonally phase-separated granular structures. The ability to predict and program IDP-rich assemblies in this fashion offers new insights into (1) genetic-to-molecular-to-macroscale relationships that encode hierarchical IDP assemblies, (2) design rules of such assemblies in cell biology and (3) molecular-level engineering of self-assembled recombinant IDP-rich materials.

  7. Self-assembling hybrid diamond–biological quantum devices

    International Nuclear Information System (INIS)

    Albrecht, A; B Plenio, M; Koplovitz, G; Yochelis, S; Paltiel, Y; Retzker, A; Nevo, Y; Shoseyov, O; Jelezko, F; Porath, D

    2014-01-01

    The realization of scalable arrangements of nitrogen vacancy (NV) centers in diamond remains a key challenge on the way towards efficient quantum information processing, quantum simulation and quantum sensing applications. Although technologies based on implanting NV-centers in bulk diamond crystals or hybrid device approaches have been developed, they are limited by the achievable spatial resolution and by the intricate technological complexities involved in achieving scalability. We propose and demonstrate a novel approach for creating an arrangement of NV-centers, based on the self-assembling capabilities of biological systems and their beneficial nanometer spatial resolution. Here, a self-assembled protein structure serves as a structural scaffold for surface functionalized nanodiamonds, in this way allowing for the controlled creation of NV-structures on the nanoscale and providing a new avenue towards bridging the bio–nano interface. One-, two- as well as three-dimensional structures are within the scope of biological structural assembling techniques. We realized experimentally the formation of regular structures by interconnecting nanodiamonds using biological protein scaffolds. Based on the achievable NV-center distances of 11 nm, we evaluate the expected dipolar coupling interaction with neighboring NV-centers as well as the expected decoherence time. Moreover, by exploiting these couplings, we provide a detailed theoretical analysis on the viability of multiqubit quantum operations, suggest the possibility of individual addressing based on the random distribution of the NV intrinsic symmetry axes and address the challenges posed by decoherence and imperfect couplings. We then demonstrate in the last part that our scheme allows for the high-fidelity creation of entanglement, cluster states and quantum simulation applications. (papers)

  8. Self-assembling hybrid diamond-biological quantum devices

    Science.gov (United States)

    Albrecht, A.; Koplovitz, G.; Retzker, A.; Jelezko, F.; Yochelis, S.; Porath, D.; Nevo, Y.; Shoseyov, O.; Paltiel, Y.; Plenio, M. B.

    2014-09-01

    The realization of scalable arrangements of nitrogen vacancy (NV) centers in diamond remains a key challenge on the way towards efficient quantum information processing, quantum simulation and quantum sensing applications. Although technologies based on implanting NV-centers in bulk diamond crystals or hybrid device approaches have been developed, they are limited by the achievable spatial resolution and by the intricate technological complexities involved in achieving scalability. We propose and demonstrate a novel approach for creating an arrangement of NV-centers, based on the self-assembling capabilities of biological systems and their beneficial nanometer spatial resolution. Here, a self-assembled protein structure serves as a structural scaffold for surface functionalized nanodiamonds, in this way allowing for the controlled creation of NV-structures on the nanoscale and providing a new avenue towards bridging the bio-nano interface. One-, two- as well as three-dimensional structures are within the scope of biological structural assembling techniques. We realized experimentally the formation of regular structures by interconnecting nanodiamonds using biological protein scaffolds. Based on the achievable NV-center distances of 11 nm, we evaluate the expected dipolar coupling interaction with neighboring NV-centers as well as the expected decoherence time. Moreover, by exploiting these couplings, we provide a detailed theoretical analysis on the viability of multiqubit quantum operations, suggest the possibility of individual addressing based on the random distribution of the NV intrinsic symmetry axes and address the challenges posed by decoherence and imperfect couplings. We then demonstrate in the last part that our scheme allows for the high-fidelity creation of entanglement, cluster states and quantum simulation applications.

  9. Design and Assembly of DNA Nano-Objects and 2D DNA Origami Arrays

    Science.gov (United States)

    Liu, Wenyan

    DNA, which plays a central role in biology as the carrier of genetic information, is also an excellent candidate for structural nanotechnology. Researches have proven that a variety of complicated DNA assemblies, such as objects, 2D & 3D crystals, and nanomechanical devices, can be fabricated through the combination of robust branched DNA motifs and sticky ends. This dissertation focuses on the design and construction of DNA nano--objects and 2D DNA origami arrays. In this dissertation, we first describe the formation of a triangular species that has four strands per edge, held together by PX interactions. We demonstrate by nondenaturing gel electrophoresis and by atomic force microscopy (AFM) that we can combine a partial triangle with other strands to form a robust four--stranded molecule. By combining them with a novel three--domain molecule, we also demonstrate by AFM that these triangles can be self--assembled into a linear array. Second, we demonstrate our attempts to design and self--assemble 2D DNA origami arrays using several different strategies. Specifically, we introduce the self--assembly of 2D DNA origami lattices using a symmetric cross--like design. This design strategy resulted in a well--ordered woven latticework array with edge dimensions of 2--3 mum. This size is likely to be large enough to connect bottom-up methods of patterning with top--down approaches. Third, we illustrate the design and construction of DNA nano--objects for exploring the substrate preferences of topoisomerase (topo) II. We designed and fabricated four double rhombus--like DNA molecules, each of which contains a different conformation of crossover in the middle, as possible substrates to establish the structural preferences for topo II. We characterized the formation of each substrate molecule by gel electrophoresis. Finally, we study the effect of M13 DNA knotting on the formation of the DNA origami tiles. We demonstrate by atomic force microscopy (AFM) that knotted M13

  10. Directed Self-Assembly of Nanodispersions

    Energy Technology Data Exchange (ETDEWEB)

    Furst, Eric M [University of Delaware

    2013-11-15

    Directed self-assembly promises to be the technologically and economically optimal approach to industrial-scale nanotechnology, and will enable the realization of inexpensive, reproducible and active nanostructured materials with tailored photonic, transport and mechanical properties. These new nanomaterials will play a critical role in meeting the 21st century grand challenges of the US, including energy diversity and sustainability, national security and economic competitiveness. The goal of this work was to develop and fundamentally validate methods of directed selfassembly of nanomaterials and nanodispersion processing. The specific aims were: 1. Nanocolloid self-assembly and interactions in AC electric fields. In an effort to reduce the particle sizes used in AC electric field self-assembly to lengthscales, we propose detailed characterizations of field-driven structures and studies of the fundamental underlying particle interactions. We will utilize microscopy and light scattering to assess order-disorder transitions and self-assembled structures under a variety of field and physicochemical conditions. Optical trapping will be used to measure particle interactions. These experiments will be synergetic with calculations of the particle polarizability, enabling us to both validate interactions and predict the order-disorder transition for nanocolloids. 2. Assembly of anisotropic nanocolloids. Particle shape has profound effects on structure and flow behavior of dispersions, and greatly complicates their processing and self-assembly. The methods developed to study the self-assembled structures and underlying particle interactions for dispersions of isotropic nanocolloids will be extended to systems composed of anisotropic particles. This report reviews several key advances that have been made during this project, including, (1) advances in the measurement of particle polarization mechanisms underlying field-directed self-assembly, and (2) progress in the

  11. Improved cladding nano-structured materials with self-repairing capabilities

    International Nuclear Information System (INIS)

    Popa-Simil, L.

    2012-01-01

    When designing nuclear reactors or the materials that go into them, one of the key challenges is finding materials that can withstand an outrageously extreme environment. In addition to constant bombardment by radiation, reactor materials may be subjected to extremes in temperature, physical stress, and corrosive conditions. A limitation in fuel burnup is and usage of the nuclear fuel material is related to the structural material radiation damage, that makes the fuel be removed with low-burnup and immobilized in the waste storage pools. The advanced burnup brings cladding material embitterment due to radiation damage effects corroborated with corrosion effects makes the fuel pellet life shorter. The novel nano-clustered structured sintered material may mitigate simultaneously the radiation damage and corrosion effects driving to more robust structural materials that may make the nuclear reactor safer and more reliable. The development of nano-clustered sinter alloys provides new avenues for further examination of the role of grain boundaries and engineered material interfaces in self-healing of radiation-induced defects driving to the design of highly radiation-tolerant materials for the next generation of nuclear energy applications. (authors)

  12. Facile fabrication of a superhydrophobic cage by laser direct writing for site-specific colloidal self-assembled photonic crystal.

    Science.gov (United States)

    Yoo, Jae-Hyuck; Kwon, Hyuk-Jun; Paeng, Dongwoo; Yeo, Junyeob; Elhadj, Selim; Grigoropoulos, Costas P

    2016-04-08

    Micron-sized ablated surface structures with nano-sized 'bumpy' structures were produced by femtosecond (fs) laser ablation of polytetrafluoroethylene (PTFE) film under ambient conditions. Upon just a single step, the processed surface exhibited hierarchical micro/nano morphology. In addition, due to the tribological properties of PTFE, polydimethylsiloxane (PDMS) could be replicated from the laser-ablated PTFE surface without anti-adhesive surface treatment. By controlling the design of the ablated patterns, tunable wettability and superhydrophobicity were achieved on both PTFE and PDMS replica surfaces. Furthermore, using fs laser ablation direct writing, a flexible superhydrophobic PDMS cage formed by superhydrophobic patterns encompassing the unmodified region was demonstrated for aqueous droplet positioning and trapping. Through evaporation-driven colloidal self-assembly in this superhydrophobic cage, a colloidal droplet containing polystyrene (PS) particles dried into a self-assembled photonic crystal, whose optical band gap could be manipulated by the particle size.

  13. Polarization switching and patterning in self-assembled peptide tubular structures

    Science.gov (United States)

    Bdikin, Igor; Bystrov, Vladimir; Delgadillo, Ivonne; Gracio, José; Kopyl, Svitlana; Wojtas, Maciej; Mishina, Elena; Sigov, Alexander; Kholkin, Andrei L.

    2012-04-01

    Self-assembled peptide nanotubes are unique nanoscale objects that have great potential for a multitude of applications, including biosensors, nanotemplates, tissue engineering, biosurfactants, etc. The discovery of strong piezoactivity and polar properties in aromatic dipeptides [A. Kholkin, N. Amdursky, I. Bdikin, E. Gazit, and G. Rosenman, ACS Nano 4, 610 (2010)] opened up a new perspective for their use as biocompatible nanoactuators, nanomotors, and molecular machines. Another, as yet unexplored functional property is the ability to switch polarization and create artificial polarization patterns useful in various electronic and optical applications. In this work, we demonstrate that diphenylalanine peptide nanotubes are indeed electrically switchable if annealed at a temperature of about 150 °C. The new orthorhombic antipolar structure that appears after annealing allows for the existence of a radial polarization component, which is directly probed by piezoresponse force microscopy (PFM) measurements. Observation of the relatively stable polarization patterns and hysteresis loops via PFM testifies to the local reorientation of molecular dipoles in the radial direction. The experimental results are complemented with rigorous molecular calculations and create a solid background of electric-field induced deformation of aromatic rings and corresponding polarization switching in this emergent material.

  14. Self-Assembly and Nanotechnology: Real-Time, Hands-On, and Safe Experiments for K-12 Students

    Science.gov (United States)

    Bagaria, Hitesh G.; Dean, Michelle R.; Nichol, Carolyn A.; Wong, Michael S.

    2011-01-01

    What students and teachers often ask is, how are nano-sized materials made when they are so small? One answer is through the process of self-assembly in which molecules, polymers, and nanoparticles connect to form larger objects of a defined structure and shape. Two hands-on experiments are presented in which students prepare capsules in real time…

  15. Formation of the self-assembled structures by the ultrasonic cavitation erosion-corrosion effect on carbon steel

    Directory of Open Access Journals (Sweden)

    Dayun Yan

    2015-11-01

    Full Text Available The cavitation erosion-corrosion effect on the metal surface always forms irregular oxide structures. In this study, we reported the formation of regular self-assembled structures of amorphous nanoparticles around the cavitation erosion pits on carbon steel upon the ultrasonic cavitation in methylene blue solution. Each self-assembled structure was composed of linearly aligned nanoparticles of about 100 nm. The formation of self-assembled structures might be due to the combined effect of corrosion, specific sonochemical reaction in methylene blue solution, and the magnetic domain structures on the carbon steel.

  16. Self-assembly of heterogeneous supramolecular structures with uniaxial anisotropy.

    Science.gov (United States)

    Ruiz-Osés, M; Gonzalez-Lakunza, N; Silanes, I; Gourdon, A; Arnau, A; Ortega, J E

    2006-12-28

    Uniaxial anisotropy in two-dimensional self-assembled supramolecular structures is achieved by the coadsorption of two different linear molecules with complementary amine and imide functionalization. The two-dimensional monolayer is defined by a one-dimensional stack of binary chains, which can be forced to line up along steps in vicinal surfaces. The competing driving forces in the self-organization process are discussed in light of the structures observed during single molecule adsorption and coadsorption on flat and vicinal surfaces and the corresponding theoretical calculations.

  17. Complex Colloidal Structures by Self-assembly in Electric Fields

    NARCIS (Netherlands)

    Vutukuri, H.R.

    2012-01-01

    The central theme of this thesis is exploiting the directed self-assembly of both isotropic and anisotropic colloidal particles to achieve the fabrication of one-, two-, and three-dimensional complex colloidal structures using external electric fields and/or a simple in situ thermal annealing

  18. Self-Assembled Formation of Well-Aligned Cu-Te Nano-Rods on Heavily Cu-Doped ZnTe Thin Films

    Science.gov (United States)

    Liang, Jing; Cheng, Man Kit; Lai, Ying Hoi; Wei, Guanglu; Yang, Sean Derman; Wang, Gan; Ho, Sut Kam; Tam, Kam Weng; Sou, Iam Keong

    2016-11-01

    Cu doping of ZnTe, which is an important semiconductor for various optoelectronic applications, has been successfully achieved previously by several techniques. However, besides its electrical transport characteristics, other physical and chemical properties of heavily Cu-doped ZnTe have not been reported. We found an interesting self-assembled formation of crystalline well-aligned Cu-Te nano-rods near the surface of heavily Cu-doped ZnTe thin films grown via the molecular beam epitaxy technique. A phenomenological growth model is presented based on the observed crystallographic morphology and measured chemical composition of the nano-rods using various imaging and chemical analysis techniques. When substitutional doping reaches its limit, the extra Cu atoms favor an up-migration toward the surface, leading to a one-dimensional surface modulation and formation of Cu-Te nano-rods, which explain unusual observations on the reflection high energy electron diffraction patterns and apparent resistivity of these thin films. This study provides an insight into some unexpected chemical reactions involved in the heavily Cu-doped ZnTe thin films, which may be applied to other material systems that contain a dopant having strong reactivity with the host matrix.

  19. Live visualizations of single isolated tubulin protein self-assembly via tunneling current: effect of electromagnetic pumping during spontaneous growth of microtubule.

    Science.gov (United States)

    Sahu, Satyajit; Ghosh, Subrata; Fujita, Daisuke; Bandyopadhyay, Anirban

    2014-12-03

    As we bring tubulin protein molecules one by one into the vicinity, they self-assemble and entire event we capture live via quantum tunneling. We observe how these molecules form a linear chain and then chains self-assemble into 2D sheet, an essential for microtubule, --fundamental nano-tube in a cellular life form. Even without using GTP, or any chemical reaction, but applying particular ac signal using specially designed antenna around atomic sharp tip we could carry out the self-assembly, however, if there is no electromagnetic pumping, no self-assembly is observed. In order to verify this atomic scale observation, we have built an artificial cell-like environment with nano-scale engineering and repeated spontaneous growth of tubulin protein to its complex with and without electromagnetic signal. We used 64 combinations of plant, animal and fungi tubulins and several doping molecules used as drug, and repeatedly observed that the long reported common frequency region where protein folds mechanically and its structures vibrate electromagnetically. Under pumping, the growth process exhibits a unique organized behavior unprecedented otherwise. Thus, "common frequency point" is proposed as a tool to regulate protein complex related diseases in the future.

  20. Controlled synthesis of pompon-like self-assemblies of Pd nanoparticles under microwave irradiation

    International Nuclear Information System (INIS)

    Tong Xia; Zhao Yanxi; Huang Tao; Liu Hanfan; Liew, Kong Yong

    2009-01-01

    Pd nanoparticles with uniform, self-assembled pompon-like nanostructure were synthesized by thermal decomposition of palladium acetate under microwave irradiation with methyl isobutyl ketone (MIBK) as a solvent in the presence of a little amount of ethylene glycol (EG) and KOH without using any special stabilizers. The as-synthesized Pd nano-pompons were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy and X-ray powder diffraction. The results show that the as-prepared Pd nano-pompons with the average diameters in the range of 28-81 nm were self-assemblies organized by hundreds of smaller primary nanoparticles with an average dimension of about 2.4 nm. The sizes of Pd nano-pompons can be well controlled by adjusting the concentration of palladium acetate. A little amount of EG and KOH also plays an important role in controlling the size, uniformity and dispersion of Pd nano-pompons. The Pd nano-pompons can be easily supported on γ-Al 2 O 3 and their catalytic activity was examined preliminarily.

  1. Evolution of self-organization in nano-structured PVD coatings under extreme tribological conditions

    Energy Technology Data Exchange (ETDEWEB)

    Fox-Rabinovich, G., E-mail: gfox@mcmaster.ca [Department of Mechanical Engineering, McMaster University, 1280 Main St. W., Hamilton, ON, Canada L8S 4L7 (Canada); Kovalev, A. [Surface Phenomena Researches Group, CNIICHERMET, 9/23, 2-nd Baumanskaya Street, Moscow 105005 (Russian Federation); Aguirre, M.H. [Laboratory of Advanced Microscopy, Institute of Nanoscience of Aragón, University of Zaragoza, 50018 Zaragoza (Spain); Yamamoto, K. [Materials Research Laboratory, Kobe Steel Ltd, 1-5-5 Takatsuda-dai, Nishi-ku, Kobe 651-2271, Hyogo (Japan); Veldhuis, S. [Department of Mechanical Engineering, McMaster University, 1280 Main St. W., Hamilton, ON, Canada L8S 4L7 (Canada); Gershman, I. [All-Russian Railway Research Institute, 10 Third Mytishchinskaya Street, Moscow 29851 (Russian Federation); Rashkovskiy, A. [Surface Phenomena Researches Group, CNIICHERMET, 9/23, 2-nd Baumanskaya Street, Moscow 105005 (Russian Federation); Endrino, J.L. [Albengoa Research, Energia Solar 1, Palmas Altas, Seville 41014 (Spain); Beake, B. [Micro Materials Limited, Willow House, Yale Business Village, Ellice Way, Wrexham LL13 7YL (United Kingdom); Dosbaeva, G. [Department of Mechanical Engineering, McMaster University, 1280 Main St. W., Hamilton, ON, Canada L8S 4L7 (Canada); Wainstein, D. [Surface Phenomena Researches Group, CNIICHERMET, 9/23, 2-nd Baumanskaya Street, Moscow 105005 (Russian Federation); Yuan, Junifeng; Bunting, J.W. [Department of Mechanical Engineering, McMaster University, 1280 Main St. W., Hamilton, ON, Canada L8S 4L7 (Canada)

    2014-04-01

    Highlights: • The evolution of self-organization under extreme frictional conditions has been studied. • Comprehensive characterization of the tribo-films was made using various surface analytical techniques. • During the running-in stage, mullite tribo-ceramics predominate on the surface of the nano-multilayer coating, establishing a functional hierarchy within the layer of tribo-films. • It is possible to control tribo-film evolution during self-organization by means of an increase in structural complexity and the non-equilibrium state of the surface engineered layer. - Abstract: The evolution of the self-organization process where dissipative structures are formed under the extreme frictional conditions associated with high performance dry machining of hardened steels has been studied in detail. The emphasis was on the progressive studies of surface transformations within multilayer and monolayer TiAlCrSiYN-based PVD coatings during the running-in stage of wear when self-organization process occurs. The coating layer was characterized by high resolution electron energy-loss spectroscopy (HREELS). It is shown that the nano-multilayer coating possesses higher non-equilibrium structure in comparison to the monolayer. Comprehensive studies of the tribo-films (dissipative structures) formed on the friction surface were made using a number of advanced surface characterization techniques such as X-ray photoelectron spectroscopy (XPS) and X-ray absorption near edge structure (XANES). The data obtained for the tribo-films was combined with the detailed TEM studies of the structural and phase transformations within the underlying coating layer. This data was related to the micro-mechanical characteristics of the coating layer and its wear resistance. It was demonstrated that the evolution of the self-organization process is strongly controlled by the characteristics of the tribo-films formed at different stages of the wear process. Within running-in stage (after

  2. Fabrication of biomolecules self-assembled on Au nanodot array for bioelectronic device.

    Science.gov (United States)

    Lee, Taek; Kumar, Ajay Yagati; Yoo, Si-Youl; Jung, Mi; Min, Junhong; Choi, Jeong-Woo

    2013-09-01

    In the present study, an nano-platform composed of Au nanodot arrays on which biomolecules could be self-assembled was developed and investigated for a stable bioelectronic device platform. Au nanodot pattern was fabricated using a nanoporous alumina template. Two different biomolecules, a cytochrome c and a single strand DNA (ssDNA), were immobilized on the Au nanodot arrays. Cytochorme c and single stranded DNA could be immobilized on the Au nanodot using the chemical linker 11-MUA and thiol-modification by covalent bonding, respectively. The atomic structure of the fabricated nano-platform device was characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The electrical conductivity of biomolecules immobilized on the Au nanodot arrays was confirmed by scanning tunneling spectroscopy (STS). To investigate the activity of biomolecule-immobilized Au-nano dot array, the cyclic voltammetry was carried out. This proposed nano-platform device, which is composed of biomolecules, can be used for the construction of a novel bioelectronic device.

  3. The structure and assembly of surface layer proteins : a combined approach of in silico and experimental methods

    International Nuclear Information System (INIS)

    Horejs, C.

    2011-01-01

    Self-assembly of matter is one of nature's most sophisticated strategies to organize molecules on a large scale and to create order from disorder. Surface (S-)layer proteins self-assemble in a highly reproducible and robust fashion in order to form crystalline layers that completely cover and protect prokaryotic cells. Long conserved during evolution, S-layers constitute a unique model system to study the molecular mechanisms of functional self-assembly, while additionally, they provide a basic matrix for the specific construction of ordered nanostructures. Due to their intrinsic capabilities to self-assemble into two-dimensional crystals, the elucidation of the three-dimensional structure of single S-layer proteins demands an approach beyond conventional structure determination methods. In this work, computer simulations were combined with experimental techniques in order to study the structure and intra- and intermolecular potentials guiding the proteins to self-assemble into lattices with different symmetries. Molecular dynamics, Monte Carlo methods, small-angle X-ray scattering involving a new theoretical description, and AFM-based single-molecule force spectroscopy yield new insights into the three-dimensional structure of S-layer proteins, the location, type and distribution of amino acids in S-layer lattices, the molecular mechanisms behind the self-assembly process, the mechanical stability and adaptive structural conformations that S-layer proteins are able to establish. In silico studies - embedded in an adequate experimental and theoretical scaffold - offer the possibility to calculate structural and thermodynamic features of proteins, while this work demonstrates the growing impact of such theoretical techniques in the fascinating field of biophysics at the nano-scale. (author) [de

  4. Self-Assembly of Diblock Molecular Polymer Brushes in the Spherical Confinement of Nanoemulsion Droplets.

    Science.gov (United States)

    Steinhaus, Andrea; Pelras, Théophile; Chakroun, Ramzi; Gröschel, André H; Müllner, Markus

    2018-05-02

    Understanding the self-assembly behavior of polymers of various topologies is key to a reliable design of functional polymer materials. Self-assembly under confinement conditions emerges as a versatile avenue to design polymer particles with complex internal morphologies while simultaneously facilitating scale-up. However, only linear block copolymers have been studied to date, despite the increasing control over macromolecule composition and architecture available. This study extends the investigation of polymer self-assembly in confinement from regular diblock copolymers to diblock molecular polymer brushes (MPBs). Block-type MPBs with polystyrene (PS) and polylactide (PLA) compartments of different sizes are incorporated into surfactant-stabilized oil-in-water (chloroform/water) emulsions. The increasing confinement in the nanoemulsion droplets during solvent evaporation directs the MPBs to form solid nano/microparticles. Microscopy studies reveal an intricate internal particle structure, including interpenetrating networks and axially stacked lamellae of PS and PLA, depending on the PS/PLA ratio of the brushes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Inverse Problem in Self-assembly

    Science.gov (United States)

    Tkachenko, Alexei

    2012-02-01

    By decorating colloids and nanoparticles with DNA, one can introduce highly selective key-lock interactions between them. This leads to a new class of systems and problems in soft condensed matter physics. In particular, this opens a possibility to solve inverse problem in self-assembly: how to build an arbitrary desired structure with the bottom-up approach? I will present a theoretical and computational analysis of the hierarchical strategy in attacking this problem. It involves self-assembly of particular building blocks (``octopus particles''), that in turn would assemble into the target structure. On a conceptual level, our approach combines elements of three different brands of programmable self assembly: DNA nanotechnology, nanoparticle-DNA assemblies and patchy colloids. I will discuss the general design principles, theoretical and practical limitations of this approach, and illustrate them with our simulation results. Our crucial result is that not only it is possible to design a system that has a given nanostructure as a ground state, but one can also program and optimize the kinetic pathway for its self-assembly.

  6. Bioorthogonal cyclization-mediated in situ self-assembly of small-molecule probes for imaging caspase activity in vivo

    Science.gov (United States)

    Ye, Deju; Shuhendler, Adam J.; Cui, Lina; Tong, Ling; Tee, Sui Seng; Tikhomirov, Grigory; Felsher, Dean W.; Rao, Jianghong

    2014-06-01

    Directed self-assembly of small molecules in living systems could enable a myriad of applications in biology and medicine, and already this has been used widely to synthesize supramolecules and nano/microstructures in solution and in living cells. However, controlling the self-assembly of synthetic small molecules in living animals is challenging because of the complex and dynamic in vivo physiological environment. Here we employ an optimized first-order bioorthogonal cyclization reaction to control the self-assembly of a fluorescent small molecule, and demonstrate its in vivo applicability by imaging caspase-3/7 activity in human tumour xenograft mouse models of chemotherapy. The fluorescent nanoparticles assembled in situ were imaged successfully in both apoptotic cells and tumour tissues using three-dimensional structured illumination microscopy. This strategy combines the advantages offered by small molecules with those of nanomaterials and should find widespread use for non-invasive imaging of enzyme activity in vivo.

  7. Self-assembled manganese oxide structures through direct oxidation

    KAUST Repository

    Zhao, Chao; Wang, Qingxiao; Yang, Yang; Zhang, Bei; Zhang, Xixiang

    2012-01-01

    The morphology and phase of self-assembled manganese oxides during different stages of thermal oxidation were studied. Very interesting morphological patterns of Mn oxide films were observed. At the initial oxidation stage, the surface was characterized by the formation of ring-shaped patterns. As the oxidation proceeded to the intermediate stage, concentric plates formed to relax the compressive stress. Our experimental results gave a clear picture of the evolution of the structures. We also examined the properties of the structures. © 2012 Elsevier B.V.

  8. Self-assembled manganese oxide structures through direct oxidation

    KAUST Repository

    Zhao, Chao

    2012-12-01

    The morphology and phase of self-assembled manganese oxides during different stages of thermal oxidation were studied. Very interesting morphological patterns of Mn oxide films were observed. At the initial oxidation stage, the surface was characterized by the formation of ring-shaped patterns. As the oxidation proceeded to the intermediate stage, concentric plates formed to relax the compressive stress. Our experimental results gave a clear picture of the evolution of the structures. We also examined the properties of the structures. © 2012 Elsevier B.V.

  9. Self-Assembly of Organic Ferroelectrics by Evaporative Dewetting: A Case of β-Glycine.

    Science.gov (United States)

    Seyedhosseini, Ensieh; Romanyuk, Konstantin; Vasileva, Daria; Vasilev, Semen; Nuraeva, Alla; Zelenovskiy, Pavel; Ivanov, Maxim; Morozovska, Anna N; Shur, Vladimir Ya; Lu, Haidong; Gruverman, Alexei; Kholkin, Andrei L

    2017-06-14

    Self-assembly of ferroelectric materials attracts significant interest because it offers a promising fabrication route to novel structures useful for microelectronic devices such as nonvolatile memories, integrated sensors/actuators, or energy harvesters. In this work, we demonstrate a novel approach for self-assembly of organic ferroelectrics (as exemplified by ferroelectric β-glycine) using evaporative dewetting, which allows forming quasi-regular arrays of nano- and microislands with preferred orientation of polarization axes. Surprisingly, self-assembled islands are crystallographically oriented in a radial direction from the center of organic "grains" formed during dewetting process. The kinetics of dewetting process follows the t -1/2 law, which is responsible for the observed polygon shape of the grain boundaries and island coverage as a function of radial position. The polarization in ferroelectric islands of β-glycine is parallel to the substrate and switchable under a relatively small dc voltage applied by the conducting tip of piezoresponse force microscope. Significant size effect on polarization is observed and explained within the Landau-Ginzburg-Devonshire phenomenological formalism.

  10. Rapidly patterning micro/nano devices by directly assembling ions and nanomaterials

    OpenAIRE

    Na Liu; Feifei Wang; Lianqing Liu; Haibo Yu; Shaorong Xie; Jun Wang; Yuechao Wang; Gwo-Bin Lee; Wen J. Li

    2016-01-01

    The synthesis and assembly of components are key steps in micro/nano device manufacturing. In this article, we report an optically controlled assembly method that can rapidly pattern micro/nano devices by directly assembling ions and nanomaterials without expensive physical masks and complex etching processes. Utilizing this controllable process, different types of device components (e.g., metallic and semiconductor) can be fabricated and assembled in 10?30?seconds, which is far more rapid an...

  11. Hybrid Silicon-Based Organic/Inorganic Block Copolymers with Sol-Gel Active Moieties: Synthetic Advances, Self-Assembly and Applications in Biomedicine and Materials Science.

    Science.gov (United States)

    Czarnecki, Sebastian; Bertin, Annabelle

    2018-03-07

    Hybrid silicon-based organic/inorganic (multi)block copolymers are promising polymeric precursors to create robust nano-objects and nanomaterials due to their sol-gel active moieties via self-assembly in solution or in bulk. Such nano-objects and nanomaterials have great potential in biomedicine as nanocarriers or scaffolds for bone regeneration as well as in materials science as Pickering emulsifiers, photonic crystals or coatings/films with antibiofouling, antibacterial or water- and oil-repellent properties. Thus, this Review outlines recent synthetic efforts in the preparation of these hybrid inorganic/organic block copolymers, gives an overview of their self-assembled structures and finally presents recent examples of their use in the biomedical field and material science. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Self-assembled biomimetic nanoreactors I: Polymeric template

    Science.gov (United States)

    McTaggart, Matt; Malardier-Jugroot, Cecile; Jugroot, Manish

    2015-09-01

    The variety of nanoarchitectures made feasible by the self-assembly of alternating copolymers opens new avenues for biomimicry. Indeed, self-assembled structures allow the development of nanoreactors which combine the efficiency of high surface area metal active centres to the effect of confinement due to the very small cavities generated by the self-assembly process. A novel self-assembly of high molecular weight alternating copolymers is characterized in the present study. The self-assembly is shown to organize into nanosheets, providing a 2 nm hydrophobic cavity with a 1D confinement.

  13. 2D and 3D organisation of nano-particles: synthesis and specific properties

    International Nuclear Information System (INIS)

    Taleb, Abdelhafed

    1998-01-01

    The first part of this research thesis addresses the synthesis of nano-particles of silver and cobalt in the inverse micellar system, and highlights the feasibility of two- and three-dimensional structures of these particles. The author first presents the micellar system (micro-emulsions, surfactant, properties of inverse micelles, functionalized inverse micelles, application to the synthesis of nano-particles), and then reports the study of the synthesis and organisation of colloids in 2D and 3D. He also reports the study of optical properties of metallic colloids: free electron approximation, optical properties of electron gases, optical properties of colloids, optical response of two-dimensional and three-dimensional nano-structures. The magnetic properties of colloids are then studied: magnetism of the massive metallic state, magnetic properties of nano-particles (influence of size, interactions and field, notions of magnetic order and disorder), effect of organisation. The second part of this thesis is made of a set of published articles: Synthesis of highly mono-disperse silver nano-particles from AOT reverse micelles (a way to 2D and 3D self-organisation), Optical properties of self-assembled 2D and 3D super-lattices of silver nano-particles, Collective optical properties of silver nano-particles organised in 2D super-lattices, Self assembled in 2D cobalt nano-sized particles, Self organisation of magnetic nano-sized cobalt particles, Organisation in 2D cobalt nano-particles (synthesis, characterization and magnetic properties) [fr

  14. Structural and thermodynamic analysis of modified nucleosides in self-assembled DNA cross-tiles.

    Science.gov (United States)

    Hakker, Lauren; Marchi, Alexandria N; Harris, Kimberly A; LaBean, Thomas H; Agris, Paul F

    2014-01-01

    DNA Holliday junctions are important natural strand-exchange structures that form during homologous recombination. Immobile four-arm junctions, analogs to Holliday junctions, have been designed to self-assemble into cross-tile structures by maximizing Watson-Crick base pairing and fixed crossover points. The cross-tiles, self-assembled from base pair recognition between designed single-stranded DNAs, form higher order lattice structures through cohesion of self-associating sticky ends. These cross-tiles have 16 unpaired nucleosides in the central loop at the junction of the four duplex stems. The importance of the centralized unpaired nucleosides to the structure's thermodynamic stability and self-assembly is unknown. Cross-tile DNA nanostructures were designed and constructed from nine single-stranded DNAs with four shell strands, four arms, and a central loop containing 16 unpaired bases. The 16 unpaired bases were either 2'-deoxyribothymidines, 2'-O-methylribouridines, or abasic 1',2'-dideoxyribonucleosides. Thermodynamic profiles and structural base-stacking contributions were assessed using UV absorption spectroscopy during thermal denaturation and circular dichroism spectroscopy, respectively, and the resulting structures were observed by atomic force microscopy. There were surprisingly significant changes in the thermodynamic and structural properties of lattice formation as a result of altering only the 16 unpaired, centralized nucleosides. The 16 unpaired 2'-O-methyluridines were stabilizing and produced uniform tubular structures. In contrast, the abasic nucleosides were destabilizing producing a mixture of structures. These results strongly indicate the importance of a small number of centrally located unpaired nucleosides within the structures. Since minor modifications lead to palpable changes in lattice formation, DNA cross-tiles present an easily manipulated structure convenient for applications in biomedical and biosensing devices.

  15. Physicochemical characterization of cellulose nanocrystal and nanoporous self-assembled CNC membrane derived from Ceiba pentandra.

    Science.gov (United States)

    Mohamed, Mohamad Azuwa; W Salleh, W N; Jaafar, Juhana; Ismail, A F; Abd Mutalib, Muhazri; Mohamad, Abu Bakar; M Zain, M F; Awang, Nor Asikin; Mohd Hir, Zul Adlan

    2017-02-10

    This research involves the rare utilisation of the kapok fibre (Ceiba pentandra) as a raw material for the fabrication of cellulose nanocrystal (CNC) and self-assembled CNC membranes. The isolation of CNC from Ceiba pentandra began with the extraction of cellulose via the chemical alkali extraction by using 5wt% NaOH, followed by the typical acidified bleaching method and, finally, the CNC production through acid hydrolysis with 60wt% H 2 SO 4 at the optimum time of 60min. The prepared CNC was then employed for the preparation of self-assembled membrane through the water suspension casting evaporation technique. The obtained CNC membrane was characterised in terms of its composition, crystallinity, thermal stability, as well as, structural and morphological features with the use of several techniques including FTIR, XRD, AFM, TEM, FESEM, and TGA. The FESEM and AFM analyses had illustrated the achievement of a self-assembled CNC membrane with a smooth surface and a well-distributed nano-porous structure, with the porosity of 52.82±7.79%. In addition, the findings proved that the self-assembled CNC membrane displayed good adsorption capability indicated by the recorded efficiency of 79% and 85% for 10mg/L and 5mg/L of methylene blue in an aqueous solution, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Self-organized semiconductor nano-network on graphene

    Science.gov (United States)

    Son, Dabin; Kim, Sang Jin; Lee, Seungmin; Bae, Sukang; Kim, Tae-Wook; Kang, Jae-Wook; Lee, Sang Hyun

    2017-04-01

    A network structure consisting of nanomaterials with a stable structural support and charge path on a large area is desirable for various electronic and optoelectronic devices. Generally, network structures have been fabricated via two main strategies: (1) assembly of pre-grown nanostructures onto a desired substrate and (2) direct growth of nanomaterials onto a desired substrate. In this study, we utilized the surface defects of graphene to form a nano-network of ZnO via atomic layer deposition (ALD). The surface of pure and structurally perfect graphene is chemically inert. However, various types of point and line defects, including vacancies/adatoms, grain boundaries, and ripples in graphene are generated by growth, chemical or physical treatments. The defective sites enhance the chemical reactivity with foreign atoms. ZnO nanoparticles formed by ALD were predominantly deposited at the line defects and agglomerated with increasing ALD cycles. Due to the formation of the ZnO nano-network, the photocurrent between two electrodes was clearly changed under UV irradiation as a result of the charge transport between ZnO and graphene. The line patterned ZnO/graphene (ZnO/G) nano-network devices exhibit sensitivities greater than ten times those of non-patterned structures. We also confirmed the superior operation of a fabricated flexible photodetector based on the line patterned ZnO/G nano-network.

  17. Physical principles for DNA tile self-assembly.

    Science.gov (United States)

    Evans, Constantine G; Winfree, Erik

    2017-06-19

    DNA tiles provide a promising technique for assembling structures with nanoscale resolution through self-assembly by basic interactions rather than top-down assembly of individual structures. Tile systems can be programmed to grow based on logical rules, allowing for a small number of tile types to assemble large, complex assemblies that can retain nanoscale resolution. Such algorithmic systems can even assemble different structures using the same tiles, based on inputs that seed the growth. While programming and theoretical analysis of tile self-assembly often makes use of abstract logical models of growth, experimentally implemented systems are governed by nanoscale physical processes that can lead to very different behavior, more accurately modeled by taking into account the thermodynamics and kinetics of tile attachment and detachment in solution. This review discusses the relationships between more abstract and more physically realistic tile assembly models. A central concern is how consideration of model differences enables the design of tile systems that robustly exhibit the desired abstract behavior in realistic physical models and in experimental implementations. Conversely, we identify situations where self-assembly in abstract models can not be well-approximated by physically realistic models, putting constraints on physical relevance of the abstract models. To facilitate the discussion, we introduce a unified model of tile self-assembly that clarifies the relationships between several well-studied models in the literature. Throughout, we highlight open questions regarding the physical principles for DNA tile self-assembly.

  18. Polymorphism of lipid self-assembly systems

    International Nuclear Information System (INIS)

    Takahashi, Hiroshi

    2002-01-01

    When lipid molecules are dispersed into an aqueous medium, various self-organized structures are formed, depending on conditions (temperature, concentration, etc), in consequence of the amphipathic nature of the molecules. In addition, lipid self-assembly systems exhibit polymorphic phase transition behavior. Since lipids are one of main components of biomembranes, studies on the structure and thermodynamic properties of lipid self-assembly systems are fundamentally important for the consideration of the stability of biomembranes. (author)

  19. Biomedical Applications of Self-Assembling Peptides

    NARCIS (Netherlands)

    Radmalekshahi, Mazda; Lempsink, Ludwijn; Amidi, Maryam; Hennink, Wim E.; Mastrobattista, Enrico

    2016-01-01

    Self-assembling peptides have gained increasing attention as versatile molecules to generate diverse supramolecular structures with tunable functionality. Because of the possibility to integrate a wide range of functional domains into self-assembling peptides including cell attachment sequences,

  20. Two-Dimensional Layered Oxide Structures Tailored by Self-Assembled Layer Stacking via Interfacial Strain.

    Science.gov (United States)

    Zhang, Wenrui; Li, Mingtao; Chen, Aiping; Li, Leigang; Zhu, Yuanyuan; Xia, Zhenhai; Lu, Ping; Boullay, Philippe; Wu, Lijun; Zhu, Yimei; MacManus-Driscoll, Judith L; Jia, Quanxi; Zhou, Honghui; Narayan, Jagdish; Zhang, Xinghang; Wang, Haiyan

    2016-07-06

    Study of layered complex oxides emerge as one of leading topics in fundamental materials science because of the strong interplay among intrinsic charge, spin, orbital, and lattice. As a fundamental basis of heteroepitaxial thin film growth, interfacial strain can be used to design materials that exhibit new phenomena beyond their conventional forms. Here, we report a strain-driven self-assembly of bismuth-based supercell (SC) with a two-dimensional (2D) layered structure. With combined experimental analysis and first-principles calculations, we investigated the full SC structure and elucidated the fundamental growth mechanism achieved by the strain-enabled self-assembled atomic layer stacking. The unique SC structure exhibits room-temperature ferroelectricity, enhanced magnetic responses, and a distinct optical bandgap from the conventional double perovskite structure. This study reveals the important role of interfacial strain modulation and atomic rearrangement in self-assembling a layered singe-phase multiferroic thin film, which opens up a promising avenue in the search for and design of novel 2D layered complex oxides with enormous promise.

  1. Electrochemically synthesized Si nano wire arrays and thermoelectric nano structures

    International Nuclear Information System (INIS)

    Khuan, N.I.; Ying, K.K.; Nur Ubaidah Saidin; Foo, C.T.

    2012-01-01

    Thermoelectric nano structures hold great promise for capturing and directly converting into electricity some vast amount of low-grade waste heats now being lost to the environment (for example from nuclear power plant, fossil fuel burning, automotive and household appliances). In this study, large-area vertically-aligned silicon nano wire (SiNW) arrays were synthesized in an aqueous solution containing AgNO 3 and HF on p-type Si (100) substrate by self-selective electroless etching process. The etching conditions were systematically varied in order to achieve different stages of nano wire formation. Diameters of the SiNWs obtained varied from approximately 50 to 200 nm and their lengths ranged from several to a few tens of μm. Te/ Bi 2 Te 3 -Si thermoelectric core-shell nano structures were subsequently obtained via galvanic displacement of SiNWs in acidic HF electrolytes containing HTeO 2 + and Bi 3+ / HTeO 2 + ions. The reactions were basically a nano-electrochemical process due to the difference in redox potentials between the materials. the surface-modified SiNWs of core-shell structures had roughened surface morphologies and therefore, higher surface-t-bulk ratios compared to unmodified SiNWs. They have potential applications in sensors, photovoltaic and thermoelectric nano devices. Growth study on the SiNWs and core-shell nano structures produced is presented using various microscopy, diffraction and probe-based techniques for microstructural, morphological and chemical characterizations. (Author)

  2. Surface characterization on binary nano/micro-domain composed of alkyl- and amino-terminated self-assembled monolayer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.H. [Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553 (Japan); Ishizaki, T. [Materials Research Institute for Sustainable Development, National Institute of Advanced Industrial Science and Technology, 2266-98 Anagahora, Shimo-Shidami, Moriyama-ku, Nagoya 463-8560 (Japan); Saito, N. [Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagano 464-8603 (Japan)], E-mail: hiro@eco-t.esi.nagoya-u.ac.jp; Takai, O. [EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603 (Japan)

    2008-09-15

    The binary alkyl- and amino-terminated self-assembled monolayers (SAMs) composed of nano/micro-sized domains was prepared though a self-assembly technique. In addition, the wetting and electrostatic property of the binary SAMs was investigated by the analysis of the static and dynamic water contact angle and zeta-potentials measurement. The binary SAMs were also characterized by atomic force microscope (AFM), Kelvin probe force microscope (KPFM) and X-ray photoelectron spectroscopy (XPS). The domains on the binary SAMs were observed in topographic and surface potential images. The height of domain and the surface potential between octadecyltrichlorosilanes (OTS)-domain and n-(6-aminohexl)aminopropyl-trimethoxysilane (AHAPS)-SAM were about 1.1 nm and -30 mV. These differences of height and surface potential correspond to the ones between OTS and AHAPS. In XPS N 1s spectra, we confirmed the formation of binary SAMs by an amino peak observed at 399.15 eV. The dynamic and the static water contact angles indicated that the wetting property of the binary SAMs was depended on the OTS domain size. In addition, static water contact angles were measured under the conditions of different pH water and zeta-potential also indicated that the electrostatic property of the binary SAMs depended on OTS domain size. Thus, these results showed that the wetting and electrostatic property on the binary SAMs could be regulated by controlling the domain size.

  3. Simulation of macromolecule self-assembly in solution: A multiscale approach

    Energy Technology Data Exchange (ETDEWEB)

    Lavino, Alessio D., E-mail: alessiodomenico.lavino@studenti.polito.it; Barresi, Antonello A., E-mail: antonello.barresi@polito.it; Marchisio, Daniele L., E-mail: daniele.marchisio@polito.it [Dipartimento di Scienza Applicata e Tecnologia, Istituto di Ingegneria Chimica, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino (Italy); Pasquale, Nicodemo di, E-mail: nicodemo.dipasquale@manchester.ac.uk [School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, UnitedKingdom (United Kingdom); Carbone, Paola, E-mail: paola.carbone@manchester.ac.uk [School of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UnitedKingdom (United Kingdom)

    2015-12-17

    One of the most common processes to produce polymer nanoparticles is to induce self-assembly by using the solvent-displacement method, in which the polymer is dissolved in a “good” solvent and the solution is then mixed with an “anti-solvent”. The polymer ability to self-assemble in solution is therefore determined by its structural and transport properties in solutions of the pure solvents and at the intermediate compositions. In this work, we focus on poly-ε-caprolactone (PCL) which is a biocompatible polymer that finds widespread application in the pharmaceutical and biomedical fields, performing simulation at three different scales using three different computational tools: full atomistic molecular dynamics (MD), population balance modeling (PBM) and computational fluid dynamics (CFD). Simulations consider PCL chains of different molecular weight in solution of pure acetone (good solvent), of pure water (anti-solvent) and their mixtures, and mixing at different rates and initial concentrations in a confined impinging jets mixer (CIJM). Our MD simulations reveal that the nano-structuring of one of the solvents in the mixture leads to an unexpected identical polymer structure irrespectively of the concentration of the two solvents. In particular, although in pure solvents the behavior of the polymer is, as expected, very different, at intermediate compositions, the PCL chain shows properties very similar to those found in pure acetone as a result of the clustering of the acetone molecules in the vicinity of the polymer chain. We derive an analytical expression to predict the polymer structural properties in solution at different solvent compositions and use it to formulate an aggregation kernel to describe the self-assembly in the CIJM via PBM and CFD. Simulations are eventually validated against experiments.

  4. Programmed Nanomaterial Assemblies in Large Scales: Applications of Synthetic and Genetically- Engineered Peptides to Bridge Nano-Assemblies and Macro-Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, Hiroshi

    2014-09-09

    Work is reported in these areas: Large-scale & reconfigurable 3D structures of precise nanoparticle assemblies in self-assembled collagen peptide grids; Binary QD-Au NP 3D superlattices assembled with collagen-like peptides and energy transfer between QD and Au NP in 3D peptide frameworks; Catalytic peptides discovered by new hydrogel-based combinatorial phage display approach and their enzyme-mimicking 2D assembly; New autonomous motors of metal-organic frameworks (MOFs) powered by reorganization of self-assembled peptides at interfaces; Biomimetic assembly of proteins into microcapsules on oil-in-water droplets with structural reinforcement via biomolecular recognition-based cross-linking of surface peptides; and Biomimetic fabrication of strong freestanding genetically-engineered collagen peptide films reinforced by quantum dot joints. We gained the broad knowledge about biomimetic material assembly from nanoscale to microscale ranges by coassembling peptides and NPs via biomolecular recognition. We discovered: Genetically-engineered collagen-like peptides can be self-assembled with Au NPs to generate 3D superlattices in large volumes (> μm{sup 3}); The assembly of the 3D peptide-Au NP superstructures is dynamic and the interparticle distance changes with assembly time as the reconfiguration of structure is triggered by pH change; QDs/NPs can be assembled with the peptide frameworks to generate 3D superlattices and these QDs/NPs can be electronically coupled for the efficient energy transfer; The controlled assembly of catalytic peptides mimicking the catalytic pocket of enzymes can catalyze chemical reactions with high selectivity; and, For the bacteria-mimicking swimmer fabrication, peptide-MOF superlattices can power translational and propellant motions by the reconfiguration of peptide assembly at the MOF-liquid interface.

  5. Self-aligned periodic Ni nano dots embedded in nano-oxide layer

    International Nuclear Information System (INIS)

    Doi, M.; Izumi, M.; Kawasaki, S.; Miyake, K.; Sahashi, M.

    2007-01-01

    The Ni nano constriction dots embedded in the Ta-nano-oxide layer (NOL) was prepared by the ion beam sputtering (IBS) method. After the various conditions of the oxidations, the structural analyses of the NOL were performed by RHEED, AES and in situ STM/AFM observations. From the current image of the conductive AFM for NOL, the periodically aligned metallic dots with the size around 5-10 nm were successfully observed. The mechanism of the formation of the self-organized aligned Ni nano constriction dots is discussed from the standpoint of the grain size, the crystal orientation, the preferred oxidation of Ta at the diffused interface

  6. Self-Assembled Polymeric Ionic Liquid-Functionalized Cellulose Nano-crystals: Constructing 3D Ion-conducting Channels Within Ionic Liquid-based Composite Polymer Electrolytes.

    Science.gov (United States)

    Shi, Qing Xuan; Xia, Qing; Xiang, Xiao; Ye, Yun Sheng; Peng, Hai Yan; Xue, Zhi Gang; Xie, Xiao Lin; Mai, Yiu-Wing

    2017-09-04

    Composite polymeric and ionic liquid (IL) electrolytes are some of the most promising electrolyte systems for safer battery technology. Although much effort has been directed towards enhancing the transport properties of polymer electrolytes (PEs) through nanoscopic modification by incorporating nano-fillers, it is still difficult to construct ideal ion conducting networks. Here, a novel class of three-dimensional self-assembled polymeric ionic liquid (PIL)-functionalized cellulose nano-crystals (CNC) confining ILs in surface-grafted PIL polymer chains, able to form colloidal crystal polymer electrolytes (CCPE), is reported. The high-strength CNC nano-fibers, decorated with PIL polymer chains, can spontaneously form three-dimensional interpenetrating nano-network scaffolds capable of supporting electrolytes with continuously connected ion conducting networks with IL being concentrated in conducting domains. These new CCPE have exceptional ionic conductivities, low activation energies (close to bulk IL electrolyte with dissolved Li salt), high Li + transport numbers, low interface resistances and improved interface compatibilities. Furthermore, the CCPE displays good electrochemical properties and a good battery performance. This approach offers a route to leak-free, non-flammable and high ionic conductivity solid-state PE in energy conversion devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Self-cleaning poly(dimethylsiloxane) film with functional micro/nano hierarchical structures.

    Science.gov (United States)

    Zhang, Xiao-Sheng; Zhu, Fu-Yun; Han, Meng-Di; Sun, Xu-Ming; Peng, Xu-Hua; Zhang, Hai-Xia

    2013-08-27

    This paper reports a novel single-step wafer-level fabrication of superhydrophobic micro/nano dual-scale (MNDS) poly(dimethylsiloxane) (PDMS) films. The MNDS PDMS films were replicated directly from an ultralow-surface-energy silicon substrate at high temperature without any surfactant coating, achieving high precision. An improved deep reactive ion etching (DRIE) process with enhanced passivation steps was proposed to easily realize the ultralow-surface-energy MNDS silicon substrate and also utilized as a post-treatment process to strengthen the hydrophobicity of the MNDS PDMS film. The chemical modification of this enhanced passivation step to the surface energy has been studied by density functional theory, which is also the first investigation of C4F8 plasma treatment at molecular level by using first-principle calculations. From the results of a systematic study on the effect of key process parameters (i.e., baking temperature and time) on PDMS replication, insight into the interaction of hierarchical multiscale structures of polymeric materials during the micro/nano integrated fabrication process is experimentally obtained for the first time. Finite element simulation has been employed to illustrate this new phenomenon. Additionally, hierarchical PDMS pyramid arrays and V-shaped grooves have been developed and are intended for applications as functional structures for a light-absorption coating layer and directional transport of liquid droplets, respectively. This stable, self-cleaning PDMS film with functional micro/nano hierarchical structures, which is fabricated through a wafer-level single-step fabrication process using a reusable silicon mold, shows attractive potential for future applications in micro/nanodevices, especially in micro/nanofluidics.

  8. Synthetic Self-Assembled Materials in Biological Environments

    NARCIS (Netherlands)

    Versluis, F.; van Esch, J.H.; Eelkema, R.

    2016-01-01

    Synthetic self-assembly has long been recognized as an excellent approach for the formation of ordered structures on the nanoscale. Although the development of synthetic self-assembling materials has often been inspired by principles observed in nature (e.g., the assembly of lipids, DNA,

  9. Design strategies for self-assembly of discrete targets

    International Nuclear Information System (INIS)

    Madge, Jim; Miller, Mark A.

    2015-01-01

    Both biological and artificial self-assembly processes can take place by a range of different schemes, from the successive addition of identical building blocks to hierarchical sequences of intermediates, all the way to the fully addressable limit in which each component is unique. In this paper, we introduce an idealized model of cubic particles with patterned faces that allows self-assembly strategies to be compared and tested. We consider a simple octameric target, starting with the minimal requirements for successful self-assembly and comparing the benefits and limitations of more sophisticated hierarchical and addressable schemes. Simulations are performed using a hybrid dynamical Monte Carlo protocol that allows self-assembling clusters to rearrange internally while still providing Stokes-Einstein-like diffusion of aggregates of different sizes. Our simulations explicitly capture the thermodynamic, dynamic, and steric challenges typically faced by self-assembly processes, including competition between multiple partially completed structures. Self-assembly pathways are extracted from the simulation trajectories by a fully extendable scheme for identifying structural fragments, which are then assembled into history diagrams for successfully completed target structures. For the simple target, a one-component assembly scheme is most efficient and robust overall, but hierarchical and addressable strategies can have an advantage under some conditions if high yield is a priority

  10. Heteroepitaxy of zinc-blende SiC nano-dots on Si substrate by organometallic ion beam

    International Nuclear Information System (INIS)

    Matsumoto, T.; Kiuchi, M.; Sugimoto, S.; Goto, S.

    2006-01-01

    The self-assembled SiC nano-dots were fabricated on Si(111) substrate at low-temperatures using the organometallic ion beam deposition technique. The single precursor of methylsilicenium ions (SiCH 3 + ) with the energy of 100 eV was deposited on Si(111) substrate at 500, 550 and 600 deg. C. The characteristics of the self-assembled SiC nano-dots were analyzed by reflection high-energy electron diffraction (RHEED), Raman spectroscopy and atomic force microscope (AFM). The RHEED patterns showed that the crystal structure of the SiC nano-dots formed on Si(111) substrate was zinc-blende SiC (3C-SiC) and it was heteroepitaxy. The self-assembled SiC nano-dots were like a dome in shape, and their sizes were the length of 200-300 nm and the height of 10-15 nm. Despite the low-temperature of 500 deg. C as SiC crystallization the heteroepitaxial SiC nano-dots were fabricated on Si(111) substrate using the organometallic ion beam

  11. Template mediated protein self-assembly as a valuable tool in regenerative therapy.

    Science.gov (United States)

    Kundu, B; Eltohamy, M; Yadavalli, V K; Reis, R L; Kim, H W

    2018-04-11

    The assembly of natural proteinaceous biopolymers into macro-scale architectures is of great importance in synthetic biology, soft-material science and regenerative therapy. The self-assembly of protein tends to be limited due to anisotropic interactions among protein molecules, poor solubility and stability. Here, we introduce a unique platform to self-immobilize diverse proteins (fibrous and globular, positively and negatively charged, low and high molecular weight) using silicon surfaces with pendant -NH 2 groups via a facile one step diffusion limited aggregation (DLA) method. All the experimental proteins (type I collagen, bovine serum albumin and cytochrome C) self-assemble into seaweed-like branched dendritic architectures via classical DLA in the absence of any electrolytes. The notable differences in branching architectures are due to dissimilarities in protein colloidal sub-units, which is typical for each protein type, along with the heterogeneous distribution of surface -NH 2 groups. Fractal analysis of assembled structures is used to explain the underlying route of fractal deposition; which concludes how proteins with different functionality can yield similar assembly. Further, the nano-micro-structured surfaces can be used to provide functional topographical cues to study cellular responses, as demonstrated using rat bone marrow stem cells. The results indicate that the immobilization of proteins via DLA does not affect functionality, instead serving as topographical cues to guide cell morphology. This indicates a promising design strategy at the tissue-material interface and is anticipated to guide future surface modifications. A cost-effective standard templating strategy is therefore proposed for fundamental and applied particle aggregation studies, which can be used at multiple length scales for biomaterial design and surface reformation.

  12. Self-assembled nanomaterials for photoacoustic imaging

    Science.gov (United States)

    Wang, Lei; Yang, Pei-Pei; Zhao, Xiao-Xiao; Wang, Hao

    2016-01-01

    In recent years, extensive endeavors have been paid to construct functional self-assembled nanomaterials for various applications such as catalysis, separation, energy and biomedicines. To date, different strategies have been developed for preparing nanomaterials with diversified structures and functionalities via fine tuning of self-assembled building blocks. In terms of biomedical applications, bioimaging technologies are urgently calling for high-efficient probes/contrast agents for high-performance bioimaging. Photoacoustic (PA) imaging is an emerging whole-body imaging modality offering high spatial resolution, deep penetration and high contrast in vivo. The self-assembled nanomaterials show high stability in vivo, specific tolerance to sterilization and prolonged half-life stability and desirable targeting properties, which is a kind of promising PA contrast agents for biomedical imaging. Herein, we focus on summarizing recent advances in smart self-assembled nanomaterials with NIR absorption as PA contrast agents for biomedical imaging. According to the preparation strategy of the contrast agents, the self-assembled nanomaterials are categorized into two groups, i.e., the ex situ and in situ self-assembled nanomaterials. The driving forces, assembly modes and regulation of PA properties of self-assembled nanomaterials and their applications for long-term imaging, enzyme activity detection and aggregation-induced retention (AIR) effect for diagnosis and therapy are emphasized. Finally, we conclude with an outlook towards future developments of self-assembled nanomaterials for PA imaging.

  13. Self-assembled nanomaterials for photoacoustic imaging.

    Science.gov (United States)

    Wang, Lei; Yang, Pei-Pei; Zhao, Xiao-Xiao; Wang, Hao

    2016-02-07

    In recent years, extensive endeavors have been paid to construct functional self-assembled nanomaterials for various applications such as catalysis, separation, energy and biomedicines. To date, different strategies have been developed for preparing nanomaterials with diversified structures and functionalities via fine tuning of self-assembled building blocks. In terms of biomedical applications, bioimaging technologies are urgently calling for high-efficient probes/contrast agents for high-performance bioimaging. Photoacoustic (PA) imaging is an emerging whole-body imaging modality offering high spatial resolution, deep penetration and high contrast in vivo. The self-assembled nanomaterials show high stability in vivo, specific tolerance to sterilization and prolonged half-life stability and desirable targeting properties, which is a kind of promising PA contrast agents for biomedical imaging. Herein, we focus on summarizing recent advances in smart self-assembled nanomaterials with NIR absorption as PA contrast agents for biomedical imaging. According to the preparation strategy of the contrast agents, the self-assembled nanomaterials are categorized into two groups, i.e., the ex situ and in situ self-assembled nanomaterials. The driving forces, assembly modes and regulation of PA properties of self-assembled nanomaterials and their applications for long-term imaging, enzyme activity detection and aggregation-induced retention (AIR) effect for diagnosis and therapy are emphasized. Finally, we conclude with an outlook towards future developments of self-assembled nanomaterials for PA imaging.

  14. Self-assembled structures of amphiphilic ionic block copolymers: Theory, self-consistent field modeling and experiment

    NARCIS (Netherlands)

    Borisov, O.V.; Zhulina, E.B.; Leermakers, F.A.M.; Muller, A.H.E.

    2011-01-01

    We present an overview of statistical thermodynamic theories that describe the self-assembly of amphiphilic ionic/hydrophobic diblock copolymers in dilute solution. Block copolymers with both strongly and weakly dissociating (pH-sensitive) ionic blocks are considered. We focus mostly on structural

  15. Synthesis, structural characterization and selectively catalytic properties of metal-organic frameworks with nano-sized channels: A modular design strategy

    International Nuclear Information System (INIS)

    Qiu Lingguang; Gu Lina; Hu Gang; Zhang Lide

    2009-01-01

    Modular design method for designing and synthesizing microporous metal-organic frameworks (MOFs) with selective catalytical activity was described. MOFs with both nano-sized channels and potential catalytic activities could be obtained through self-assembly of a framework unit and a catalyst unit. By selecting hexaaquo metal complexes and the ligand BTC (BTC=1,3,5-benzenetricarboxylate) as framework-building blocks and using the metal complex [M(phen) 2 (H 2 O) 2 ] 2+ (phen=1,10-phenanthroline) as a catalyst unit, a series of supramolecular MOFs 1-7 with three-dimensional nano-sized channels, i.e. [M 1 (H 2 O) 6 ].[M 2 (phen) 2 (H 2 O) 2 ] 2 .2(BTC).xH 2 O (M 1 , M 2 =Co(II), Ni(II), Cu(II), Zn(II), or Mn(II), phen=1,10-phenanthroline, BTC=1,3,5-benzenetricarboxylate, x=22-24), were synthesized through self-assembly, and their structures were characterized by IR, elemental analysis, and single-crystal X-ray diffraction. These supramolecular microporous MOFs showed significant size and shape selectivity in the catalyzed oxidation of phenols, which is due to catalytic reactions taking place in the channels of the framework. Design strategy, synthesis, and self-assembly mechanism for the construction of these porous MOFs were discussed. - Grapical abstract: A modular design strategy has been developed to synthesize microporous metal-organic frameworks with potential catalytic activity by self-assembly of the framework-building blocks and the catalyst unit

  16. Duplex-imprinted nano well arrays for promising nanoparticle assembly

    Science.gov (United States)

    Li, Xiangping; Manz, Andreas

    2018-02-01

    A large area nano-duplex-imprint technique is presented in this contribution using natural cicada wings as stamps. The glassy wings of the cicada, which are abundant in nature, exhibit strikingly interesting nanopillar structures over their membrane. This technique, with excellent performance despite the nonplanar surface of the wings, combines both top-down and bottom-up nanofabrication techniques. It transitions micro-nanofabrication from a cleanroom environment to the bench. Two different materials, dicing tape with an acrylic layer and a UV optical adhesive, are used to make replications at the same time, thus achieving duplex imprinting. The promise of a large volume of commercial manufacturing of these nanostructure elements can be envisaged through this contribution to speeding up the fabrication process and achieving a higher throughput. The contact angle of the replicated nanowell arrays before and after oxygen plasma was measured. Gold nanoparticles (50 nm) were used to test how the nanoparticles behaved on the untreated and plasma-treated replica surface. The experiments show that promising nanoparticle self-assembly can be obtained.

  17. Nano sized bismuth oxy chloride by metal organic chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Jagdale, Pravin, E-mail: pravin.jagdale@polito.it [Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 (Italy); Castellino, Micaela [Center for Space Human Robotics, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Marrec, Françoise [Laboratory of Condensed Matter Physics, University of Picardie Jules Verne (UPJV), Amiens 80039 (France); Rodil, Sandra E. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexicom (UNAM), Mexico D.F. 04510 (Mexico); Tagliaferro, Alberto [Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 (Italy)

    2014-06-01

    Metal organic chemical vapour deposition (MOCVD) method was used to prepare thin films of bismuth based nano particles starting from bismuth salts. Nano sized bismuth oxy chloride (BiOCl) crystals were synthesized from solution containing bismuth chloride (BiCl{sub 3}) in acetone (CH{sub 3}-CO-CH{sub 3}). Self-assembly of nano sized BiOCl crystals were observed on the surface of silicon, fused silica, copper, carbon nanotubes and aluminium substrates. Various synthesis parameters and their significant impact onto the formation of self-assembled nano-crystalline BiOCl were investigated. BiOCl nano particles were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and Micro-Raman spectroscopy. These analyses confirm that bismuth nanometer-sized crystal structures showing a single tetragonal phase were indeed bismuth oxy chloride (BiOCl) square platelets 18–250 nm thick and a few micrometres wide.

  18. Cobalt oxide polymorph growth on electrostatic self-assembled nanoparticle arrays for dually tunable nano-textures

    International Nuclear Information System (INIS)

    Bulliard, Xavier; Benayad, Anass; Lee, Kwang-Hee; Choi, Yun-Hyuk; Lee, Jae Cheol; Park, Jong-Jin; Kim, Jong-Min

    2011-01-01

    We report on a method for surface nano-texturing on a plastic substrate. Nano-objects with a silica nanoparticle core and a textured cobalt oxide crown are created with selectable density on the plastic substrate. The resulting dual morphology is easily tuned over large areas, either by changing the parameters directing nanoparticle deposition through electrostatic self-arrangement for nano-object density control, or the parameter directing cobalt oxide deposition for shape control. The entire process takes place at room temperature, with no chemicals harmful to the plastic substrate. The ready modulation of the dual morphology is used to control the wettability properties of the plastic film, which is covered by nano-objects.

  19. Self-assembling peptide semiconductors

    Science.gov (United States)

    Tao, Kai; Makam, Pandeeswar; Aizen, Ruth; Gazit, Ehud

    2017-01-01

    Semiconductors are central to the modern electronics and optics industries. Conventional semiconductive materials bear inherent limitations, especially in emerging fields such as interfacing with biological systems and bottom-up fabrication. A promising candidate for bioinspired and durable nanoscale semiconductors is the family of self-assembled nanostructures comprising short peptides. The highly ordered and directional intermolecular π-π interactions and hydrogen-bonding network allow the formation of quantum confined structures within the peptide self-assemblies, thus decreasing the band gaps of the superstructures into semiconductor regions. As a result of the diverse architectures and ease of modification of peptide self-assemblies, their semiconductivity can be readily tuned, doped, and functionalized. Therefore, this family of electroactive supramolecular materials may bridge the gap between the inorganic semiconductor world and biological systems. PMID:29146781

  20. Polymorphism in Self-Assembled Structures of 9-Anthracene Carboxylic Acid on Ag(111

    Directory of Open Access Journals (Sweden)

    Bo Xu

    2012-06-01

    Full Text Available Surface self-assembly process of 9-anthracene carboxylic acid (AnCA on Ag(111 was investigated using STM. Depending on the molecular surface density, four spontaneously formed and one annealed AnCA ordered phases were observed, namely a straight belt phase, a zigzag double-belt phase, two simpler dimer phases, and a kagome phase. The two high-density belt phases possess large unit cells on the scale length of 10 nm, which are seldom observed in molecular self-assembled structures. This structural diversity stems from a complicated competition of different interactions of AnCA molecules on metal surface, including intermolecular and molecular-substrate interactions, as well as the steric demand from high molecular surface density.

  1. Self-assembled materials and supramolecular chemistry within microfluidic environments: from common thermodynamic states to non-equilibrium structures.

    Science.gov (United States)

    Sevim, S; Sorrenti, A; Franco, C; Furukawa, S; Pané, S; deMello, A J; Puigmartí-Luis, J

    2018-05-01

    Self-assembly is a crucial component in the bottom-up fabrication of hierarchical supramolecular structures and advanced functional materials. Control has traditionally relied on the use of encoded building blocks bearing suitable moieties for recognition and interaction, with targeting of the thermodynamic equilibrium state. On the other hand, nature leverages the control of reaction-diffusion processes to create hierarchically organized materials with surprisingly complex biological functions. Indeed, under non-equilibrium conditions (kinetic control), the spatio-temporal command of chemical gradients and reactant mixing during self-assembly (the creation of non-uniform chemical environments for example) can strongly affect the outcome of the self-assembly process. This directly enables a precise control over material properties and functions. In this tutorial review, we show how the unique physical conditions offered by microfluidic technologies can be advantageously used to control the self-assembly of materials and of supramolecular aggregates in solution, making possible the isolation of intermediate states and unprecedented non-equilibrium structures, as well as the emergence of novel functions. Selected examples from the literature will be used to confirm that microfluidic devices are an invaluable toolbox technology for unveiling, understanding and steering self-assembly pathways to desired structures, properties and functions, as well as advanced processing tools for device fabrication and integration.

  2. Fabrication of Thermo-Responsive Molecular Layers from Self-Assembling Elastin-Like Oligopeptides Containing Cell-Binding Domain for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Tomoyuki Koga

    2015-01-01

    Full Text Available Novel thermo-responsive elastin-like oligopeptides containing cell-binding epitope (Arg-Gly-Asp-Ser sequence; arginine-glycine-aspartic acid-serine (RGDS-elastin-like peptides (ELP and RGDS-deg-ELP; were newly prepared as building blocks of self-assembled molecular layer for artificial extra cellular matrix. A detailed analysis of the conformation of the oligo(ELPs in water and their self-assembling behavior onto hydrophobic surfaces were performed by using circular dichroism, Fourier transform infrared spectroscopy (FTIR, atomic force microscopy and water contact angle measurements. The experimental results revealed that both oligo(ELPs self-assembled onto hydrophobic surfaces and formed molecular layers based on their thermo-responsive conformational change from hydrous random coil to dehydrated β-turn structure. Effective cell adhesion and spreading behaviors were observed on these self-assembled oligo(ELP layers. In addition, attached cells were found to be recovered successfully as a cell-sheet by temperature-induced disassembly of oligo(ELP layer. This achievement provides an important insight to construct novel oligopeptide-based nano-surfaces for the design of smart artificial extra-cellular matrix.

  3. Flat-on ambipolar triphenylamine/C60 nano-stacks formed from the self-organization of a pyramid-sphere-shaped amphiphile.

    Science.gov (United States)

    Liang, Wei-Wei; Huang, Chi-Feng; Wu, Kuan-Yi; Wu, San-Lien; Chang, Shu-Ting; Cheng, Yen-Ju; Wang, Chien-Lung

    2016-04-21

    A giant amphiphile, which is constructed with an amorphous nano-pyramid (triphenylamine, TPA) and a crystalline nano-sphere (C 60 ), was synthesized. Structural characterization indicates that this pyramid-sphere-shaped amphiphile ( TPA-C 60 ) forms a solvent-induced ordered phase, in which the two constituent units self-assemble into alternating stacks of two-dimensional (2D) TPA and C 60 nano-sheets. Due to the complexity of the molecular structure and the amorphous nature of the nano-pyramid, phase formation was driven by intermolecular C 60 -C 60 interactions and the ordered phase could not be reformed from the TPA-C 60 melt. Oriented crystal arrays of TPA-C 60 , which contain flat-on TPA/C 60 nano-stacks, can be obtained via a PDMS-assisted crystallization (PAC) technique. The flat-on dual-channel supramolecular structure of TPA-C 60 delivered ambipolar and balanced charge-transport characteristics with an average μ e of 2.11 × 10 -4 cm 2 V -1 s -1 and μ h of 3.37 × 10 -4 cm 2 V -1 s -1 . The anisotropic charge-transport ability of the pyramid-sphere-shaped amphiphile was further understood based on the lattice structure and the lattice orientation of TPA-C 60 revealed from electron diffraction analyses.

  4. Synthesis, fabrication, and spectroscopy of nano-scale photonic noble metal materials

    Science.gov (United States)

    Egusa, Shunji

    Nanometer is an interesting scale for physicists, chemists, and materials scientists, in a sense that it lies between the macroscopic and the atomic scales. In this regime, materials exhibit distinct physical and chemical properties that are clearly different from those of atoms or macroscopic bulk. This thesis is concerned about both physics and chemistry of noble metal nano-structures. Novel chemical syntheses and physical fabrications of various noble metal nano-structures, and the development of spectroscopic techniques for nano-structures are presented. Scanning microscopy/spectroscopy techniques inherently perturbs the true optical responses of the nano-structures. However, by using scanning tunneling microscope (STM) tip as the nanometer-confined excitation source of surface plasmons in the samples, and subsequently collecting the signals in the Fourier space, it is shown that the tip-perturbed part of the signals can be deconvoluted. As a result, the collected signal in this approach is the pure response of the sample. Coherent light is employed to study the optical response of nano-structures, in order to avoid complication from tip-perturbation as discussed above. White-light super-continuum excites the nano-structure, the monolayer of Au nanoparticles self-assembled on silicon nitride membrane substrates. The coherent excitation reveals asymmetric surface plasmon resonance in the nano-structures. One of the most important issues in nano-scale science is to gain control over the shape, size, and assembly of nanoparticles. A novel method is developed to chemically synthesize ligand-passivated atomic noble metal clusters in solution phase. The method, named thermal decomposition method, enables facile yet robust synthesis of fluorescent atomic clusters. Thus synthesized atomic clusters are very stable, and show behaviors of quantum dots. A novel and versatile approach for creation of nanoparticle arrays is developed. This method is different from the

  5. The sequence d(CGGCGGCCGC) self-assembles into a two dimensional rhombic DNA lattice

    International Nuclear Information System (INIS)

    Venkadesh, S.; Mandal, P.K.; Gautham, N.

    2011-01-01

    Highlights: → This is the first crystal structure of a four-way junction with sticky ends. → Four junction structures bind to each other and form a rhombic cavity. → Each rhombus binds to others to form 'infinite' 2D tiles. → This is an example of bottom-up fabrication of a DNA nano-lattice. -- Abstract: We report here the crystal structure of the partially self-complementary decameric sequence d(CGGCGGCCGC), which self assembles to form a four-way junction with sticky ends. Each junction binds to four others through Watson-Crick base pairing at the sticky ends to form a rhombic structure. The rhombuses bind to each other and form two dimensional tiles. The tiles stack to form the crystal. The crystal diffracted in the space group P1 to a resolution of 2.5 A. The junction has the anti-parallel stacked-X conformation like other junction structures, though the formation of the rhombic net noticeably alters the details of the junction geometry.

  6. Three-Dimensional Self-Assembled Photonic Crystal Waveguide

    Science.gov (United States)

    Baek, Kang-Hyun

    Photonic crystals (PCs), two- or three-dimensionally periodic, artificial, and dielectric structures, have a specific forbidden band for electromagnetic waves, referred to as photonic bandgap (PBG). The PBG is analogous to the electronic bandgap in natural crystal structures with periodic atomic arrangement. A well-defined and embedded planar, line, or point defect within the PCs causes a break in its structural periodicity, and introduces a state in the PBG for light localization. It offers various applications in integrated optics and photonics including optical filters, sharp bending light guides and very low threshold lasers. Using nanofabrication processes, PCs of the 2-D slab-type and 3-D layer-by-layer structures have been investigated widely. Alternatively, simple and low-cost self-assembled PCs with full 3-D PBG, inverse opals, have been suggested. A template with face centered cubic closed packed structure, opal, may initially be built by self-assembly of colloidal spheres, and is selectively removed after infiltrating high refractive index materials into the interstitials of spheres. In this dissertation, the optical waveguides utilizing the 3-D self-assembled PCs are discussed. The waveguides were fabricated by microfabrication technology. For high-quality colloidal silica spheres and PCs, reliable synthesis, self-assembly, and characterization techniques were developed. Its theoretical and experimental demonstrations are provided and correlated. They suggest that the self-assembled PCs with PBG are feasible for the applications in integrated optics and photonics.

  7. Diffuse x-ray scattering study of interfacial structure of self-assembled conjugated polymers

    International Nuclear Information System (INIS)

    Wang Jun; Park, Y.J.; Lee, K.-B.; Hong, H.; Davidov, D.

    2002-01-01

    The interfacial structures of self-assembled heterostructures through alternate deposition of conjugated and nonconjugated polymers were studied by x-ray reflectivity and nonspecular scattering. We found that the interfacial width including the effects of both interdiffusion and interfacial roughness (correlated) was mainly contributed by the latter one. The self-assembled deposition induced very small interdiffusion between layers. The lateral correlation length ξ parallel grew as a function of deposition time (or film thickness) described by a power law ξ parallel ∝t β/H and was also observed from the off-specular scattering

  8. DNA assisted self-assembly of PAMAM dendrimers.

    Science.gov (United States)

    Mandal, Taraknath; Kumar, Mattaparthi Venkata Satish; Maiti, Prabal K

    2014-10-09

    We report DNA assisted self-assembly of polyamidoamine (PAMAM) dendrimers using all atom Molecular Dynamics (MD) simulations and present a molecular level picture of a DNA-linked PAMAM dendrimer nanocluster, which was first experimentally reported by Choi et al. (Nano Lett., 2004, 4, 391-397). We have used single stranded DNA (ssDNA) to direct the self-assembly process. To explore the effect of pH on this mechanism, we have used both the protonated (low pH) and nonprotonated (high pH) dendrimers. In all cases studied here, we observe that the DNA strand on one dendrimer unit drives self-assembly as it binds to the complementary DNA strand present on the other dendrimer unit, leading to the formation of a DNA-linked dendrimer dimeric complex. However, this binding process strongly depends on the charge of the dendrimer and length of the ssDNA. We observe that the complex with a nonprotonated dendrimer can maintain a DNA length dependent inter-dendrimer distance. In contrast, for complexes with a protonated dendrimer, the inter-dendrimer distance is independent of the DNA length. We attribute this observation to the electrostatic complexation of a negatively charged DNA strand with the positively charged protonated dendrimer.

  9. Self-Assembled Gold Nano-Ripple Formation by Gas Cluster Ion Beam Bombardment.

    Science.gov (United States)

    Tilakaratne, Buddhi P; Chen, Quark Y; Chu, Wei-Kan

    2017-09-08

    In this study, we used a 30 keV argon cluster ion beam bombardment to investigate the dynamic processes during nano-ripple formation on gold surfaces. Atomic force microscope analysis shows that the gold surface has maximum roughness at an incident angle of 60° from the surface normal; moreover, at this angle, and for an applied fluence of 3 × 10 16 clusters/cm², the aspect ratio of the nano-ripple pattern is in the range of ~50%. Rutherford backscattering spectrometry analysis reveals a formation of a surface gradient due to prolonged gas cluster ion bombardment, although the surface roughness remains consistent throughout the bombarded surface area. As a result, significant mass redistribution is triggered by gas cluster ion beam bombardment at room temperature. Where mass redistribution is responsible for nano-ripple formation, the surface erosion process refines the formed nano-ripple structures.

  10. Fabrication of Silicon nanostructures by UHV-STM lithography in Self-Assembled Monolayers

    International Nuclear Information System (INIS)

    Sundermann, M.; Brechling, A.; Rott, K.; Meyners, D.; Kleineberg, U.; Heinzmann, U.; Knueller, A.; Eck, W.; Goelzhueuser, A.; Grunze, M.

    2002-01-01

    Our approach utilizes UHV-STM writing in Self-Assembled Monolayers (SAM). SAMs form highly-ordered ultrathin (∼2-3 nm) monomolecular layers on top of pre-activated Si(100) or Si(111) surfaces. After patterning by UHV-STM writing in constant-current mode at different write parameters (gap voltage, electron dose) the modified Self-Assembled Monolayer serves as an etch mask for an anisotropic wet etch transfer (two-step etch process in aqueous solutions of 5 % HF and 1 M KOH), of the write structure into the silicon substrate. The corresponding silicon nano-structures have been analyzed afterwards by AFM or SEM to characterize the pattern accuracy. We have studied the suitability of three different types of SAMs on silicon single-crystals. Alkyl-chain-type SAMs like Octadecylsilane (ODS) monolayer have been formed by immersion of hydroxylated Si(100) in Octadecyltrichlorosilane (CH 3 (CH 27 SiCl 3 ) while SAMs with aromatic spacer groups such as Hydroxybiphenyl (HBP, (C 6 H 6 ) 2 OH) and Ethoxybiphenyl silane (EBP, (C 6 H 6 ) 2 O(CH 2 ) 3 Si(OCH 3 ) 3 ) are formed on Si(111). (Authors)

  11. Structural Diversity of Self-Assembled Iridescent Arthropod Biophotonic Nanostructures

    Science.gov (United States)

    Saranathan, Vinod Kumar; Prum, Richard O.

    2015-03-01

    Many organisms, especially arthropods, produce vivid interference colors using diverse mesoscopic (100-350 nm) integumentary biophotonic nanostructures that are increasingly being investigated for technological applications. Despite a century of interest, we lack precise structural knowledge of many biophotonic nanostructures and mechanisms controlling their development, when such knowledge can open novel biomimetic routes to facilely self-assemble tunable, multi-functional materials. Here, we use synchrotron small angle X-ray scattering and electron microscopy to characterize the photonic nanostructure of 140 iridescent integumentary scales and setae from 127 species of terrestrial arthropods in 85 genera from 5 orders. We report a rich nanostructural diversity, including triply-periodic bicontinuous networks, close-packed spheres, inverse columnar, perforated lamellar, and disordered sponge-like morphologies, commonly observed as stable phases of amphiphilic surfactants, block copolymer, and lyotropic lipid-water systems. Diverse arthropod lineages appear to have independently evolved to utilize the self-assembly of infolding bilayer membranes to develop biophotonic nanostructures that span the phase-space of amphiphilic morphologies, but at optical length scales.

  12. Effects of micro- and nano-structures on the self-cleaning behaviour of lotus leaves

    Science.gov (United States)

    Cheng, Y. T.; Rodak, D. E.; Wong, C. A.; Hayden, C. A.

    2006-03-01

    When rain falls on lotus leaves water beads up with a high contact angle. The water drops promptly roll off the leaves, collecting dirt along the way. This self-cleaning ability or lotus effect has, in recent years, stimulated much research effort worldwide for a variety of applications ranging from self-cleaning window glasses, paints, and fabrics to low friction surfaces. What are the mechanisms giving rise to the lotus effect? Although chemical composition and surface structure are believed important, a systematic experimental investigation of their effects is still lacking. By altering the surface structure of the leaves while keeping their chemical composition approximately the same, we report in this study the influence of micro- and nano-scale structures on the wetting behaviour of lotus leaves. The findings of this work may help design self-cleaning surfaces and improve our understanding of wetting mechanisms.

  13. Colloidal Self-Assembly Driven by Deformability & Near-Critical Phenomena

    NARCIS (Netherlands)

    Evers, C.H.J.|info:eu-repo/dai/nl/338775188

    2016-01-01

    Self-assembly is the spontaneous formation of patterns or structures without human intervention. This thesis aims to increase our understanding of self-assembly. In self-assembly of proteins, the building blocks are very small and complex. Consequently, grasping the basic principles that drive the

  14. Self assembly of organic nanostructures and dielectrophoretic assembly of inorganic nanowires.

    Science.gov (United States)

    Dholakia, Geetha; Kuo, Steven; Allen, E. L.

    2007-03-01

    Self assembly techniques enable the organization of organic molecules into nanostructures. Currently engineering strategies for efficient assembly and routine integration of inorganic nanoscale objects into functional devices is very limited. AC Dielectrophoresis is an efficient technique to manipulate inorganic nanomaterials into higher dimensional structures. We used an alumina template based sol-gel synthesis method for the growth of various metal oxide nanowires with typical diameters of 100-150 nm, ranging in length from 3-10 μm. Here we report the dielectrophoretic assembly of TiO2 nanowires, an important material for photocatalysis and photovoltaics, onto interdigitated devices. Self assembly in organic nanostructures and its dependence on structure and stereochemistry of the molecule and dielectrophoretic field dependence in the assembly of inorganic nanowires will be compared and contrasted. Tunneling spectroscopy and DOS of these nanoscale systems will also be discussed.

  15. Nano crystals-Related Synthesis, Assembly, and Energy Applications 2012

    International Nuclear Information System (INIS)

    Zou, B.; Yu, W.W.; Seo, J.; Zhu, T.; Hu, M.Z.

    2012-01-01

    During the past decades, nano crystals have attracted broad attention due to their unique shape- and size-dependent physical and chemical properties that differ drastically from their bulk counterparts. Hitherto, much effort has been dedicated to achieving rational controlling over the morphology, assembly, and related energy applications of the nano materials. Therefore, the ability to manipulate the morphology, size, and size distribution of inorganic nano materials is still an important goal in modern materials physics and chemistry. Especially, the world's demand for energy supply is causing a dramatic escalation of social and political unrest. Likewise, the environmental impact of the global climate change due to the combustion of fossil fuel is becoming increasingly alarming. These problems compel us to search for effective routes to build devices that can supply sustainable energy, with not only high efficiency but also environmental friendship. One of ways to relieve the energy crisis is to exploit devices based on renewable energy sources, such as solar energy and water power. Aiming at this exploration, the primary stage requires the design of appropriate strategies for the synthesis of high-quality nano crystals with respect to size uniformity and superior electrochemical performances. As a consequence, we organize the current special issue for Journal of Nano materials to provide the authors with a platform and readers with the latest achievements of nano crystals-related synthesis, assembly, and energy applications.

  16. Hematite Thin Films with Various Nanoscopic Morphologies Through Control of Self-Assembly Structures

    Science.gov (United States)

    Liu, Jingling; Kim, Yong-Tae; Kwon, Young-Uk

    2015-05-01

    Hematite (α-Fe2O3) thin films with various nanostructures were synthesized through self-assembly between iron oxide hydroxide particles, generated by hydrolysis and condensation of Fe(NO3)3 · 6H2O, and a Pluronic triblock copolymer (F127, (EO)106(PO)70(EO)106, EO = ethylene oxide, PO = propylene oxide), followed by calcination. The self-assembly structure can be tuned by introducing water in a controlled manner through the control of the humidity level in the surrounding of the as-cast films during aging stage. For the given Fe(NO3)3 · 6H2O:F127 ratio, there appear to be three different thermodynamically stable self-assembly structures depending on the water content in the film material, which correspond to mesoporous, spherical micellar, and rod-like micellar structures after removal of F127. Coupled with the thermodynamic driving forces, the kinetics of the irreversible reactions of coalescence of iron oxide hydroxide particles into larger ones induce diverse nanostructures of the resultant films. The length scale of so-obtained nanostructures ranges from 6 nm to a few hundred nanometers. In addition to water content, the effects of other experimental parameters such as aging temperature, spin rate during spin coating, type of substrate, and type of iron reagent were investigated.

  17. Driven self-assembly of hard nanoplates on soft elastic shells

    International Nuclear Information System (INIS)

    Zhang Yao-Yang; Hua Yun-Feng; Deng Zhen-Yu

    2015-01-01

    The driven self-assembly behaviors of hard nanoplates on soft elastic shells are investigated by using molecular dynamics (MD) simulation method, and the driven self-assembly structures of adsorbed hard nanoplates depend on the shape of hard nanoplates and the bending energy of soft elastic shells. Three main structures for adsorbed hard nanoplates, including the ordered aggregation structures of hard nanoplates for elastic shells with a moderate bending energy, the collapsed structures for elastic shells with a low bending energy, and the disordered aggregation structures for hard shells, are observed. The self-assembly process of adsorbed hard nanoplates is driven by the surface tension of the elastic shell, and the shape of driven self-assembly structures is determined on the basis of the minimization of the second moment of mass distribution. Meanwhile, the deformations of elastic shells can be controlled by the number of adsorbed rods as well as the length of adsorbed rods. This investigation can help us understand the complexity of the driven self-assembly of hard nanoplates on elastic shells. (paper)

  18. Stereochemistry in subcomponent self-assembly.

    Science.gov (United States)

    Castilla, Ana M; Ramsay, William J; Nitschke, Jonathan R

    2014-07-15

    CONSPECTUS: As Pasteur noted more than 150 years ago, asymmetry exists in matter at all organization levels. Biopolymers such as proteins or DNA adopt one-handed conformations, as a result of the chirality of their constituent building blocks. Even at the level of elementary particles, asymmetry exists due to parity violation in the weak nuclear force. While the origin of homochirality in living systems remains obscure, as does the possibility of its connection with broken symmetries at larger or smaller length scales, its centrality to biomolecular structure is clear: the single-handed forms of bio(macro)molecules interlock in ways that depend upon their handednesses. Dynamic artificial systems, such as helical polymers and other supramolecular structures, have provided a means to study the mechanisms of transmission and amplification of stereochemical information, which are key processes to understand in the context of the origins and functions of biological homochirality. Control over stereochemical information transfer in self-assembled systems will also be crucial for the development of new applications in chiral recognition and separation, asymmetric catalysis, and molecular devices. In this Account, we explore different aspects of stereochemistry encountered during the use of subcomponent self-assembly, whereby complex structures are prepared through the simultaneous formation of dynamic coordinative (N → metal) and covalent (N═C) bonds. This technique provides a useful method to study stereochemical information transfer processes within metal-organic assemblies, which may contain different combinations of fixed (carbon) and labile (metal) stereocenters. We start by discussing how simple subcomponents with fixed stereogenic centers can be incorporated in the organic ligands of mononuclear coordination complexes and communicate stereochemical information to the metal center, resulting in diastereomeric enrichment. Enantiopure subcomponents were then

  19. Unknown Aspects of Self-Assembly of PbS Microscale Superstructures

    Science.gov (United States)

    Querejeta-Fernández, Ana; Hernández-Garrido, Juan C.; Yang, Hengxi; Zhou, Yunlong; Varela, Aurea; Parras, Marina; Calvino-Gámez, José J.; González-Calbet, Jose M.; Green, Peter F.; Kotov, Nicholas A.

    2012-01-01

    A lot of interesting and sophisticated examples of nanoparticle (NP) self-assembly (SA) are known. From both fundamental and technological standpoints this field requires advancements in three principle directions: a) understanding the mechanism and driving forces of three-dimensional (3D) SA with both nano- and micro-levels of organization; b) understanding of disassembly/deconstruction processes; and c) finding synthetic methods of assembly into continuous superstructures without insulating barriers. From this perspective, we investigated the formation of well-known star-like PbS superstructures and found a number of previously unknown or overlooked aspects that can advance the knowledge of NP self-assembly in these three directions. The primary one is that the formation of large seemingly monocrystalline PbS superstructures with multiple levels of octahedral symmetry can be explained only by SA of small octahedral NPs. We found five distinct periods in the formation PbS hyperbranched stars: 1) nucleation of early PbS NPs with an average diameter of 31 nm; 2) assembly into 100–500 nm octahedral mesocrystals; 3) assembly into 1000–2500 nm hyperbranched stars; 4) assembly and ionic recrystallization into six-arm rods accompanied by disappearance of fine nanoscale structure; 5) deconstruction into rods and cubooctahedral NPs. The switches in assembly patterns between the periods occur due to variable dominance of pattern–determining forces that include vander Waals and electrostatic (charge-charge, dipole-dipole, and polarization) interactions. The superstructure deconstruction is triggered by chemical changes in the deep eutectic solvent (DES) used as the media. PbS superstructures can be excellent models for fundamental studies of nanoscale organization and SA manufacturing of (opto)electronics and energy harvesting devices which require organization of PbS components at multiple scales. PMID:22515512

  20. Study of the spectra of silica colloidal crystals with assembled silver obtained from a photolysis method

    Science.gov (United States)

    Li, Wenjiang; He, Jinglong; He, Sailing

    2005-02-01

    The colorful artificial 3D silica colloidal crystals (opal) were prepared through self-assembly of silica spheres in the visible frequency range. We directly synthesized nano silver particles in the void of the silica artificial opal film using the photolysis of silver nitrate under UV light, nano silver particles were self-deposited around the surface of silica sphere. The shifts of the stop band of the artificial crystals after exposing different time under UV light were studied. Synthetic silica opal with three-dimensional (3D) structure is potentially useful for the development of diffractive optical devices, micro mechanical systems, and sensory elements because photonic band gaps obtained from self-assembled closely packed periodic structures.

  1. Large branched self-assembled DNA complexes

    International Nuclear Information System (INIS)

    Tosch, Paul; Waelti, Christoph; Middelberg, Anton P J; Davies, A Giles

    2007-01-01

    Many biological molecules have been demonstrated to self-assemble into complex structures and networks by using their very efficient and selective molecular recognition processes. The use of biological molecules as scaffolds for the construction of functional devices by self-assembling nanoscale complexes onto the scaffolds has recently attracted significant attention and many different applications in this field have emerged. In particular DNA, owing to its inherent sophisticated self-organization and molecular recognition properties, has served widely as a scaffold for various nanotechnological self-assembly applications, with metallic and semiconducting nanoparticles, proteins, macromolecular complexes, inter alia, being assembled onto designed DNA scaffolds. Such scaffolds may typically contain multiple branch-points and comprise a number of DNA molecules selfassembled into the desired configuration. Previously, several studies have used synthetic methods to produce the constituent DNA of the scaffolds, but this typically constrains the size of the complexes. For applications that require larger self-assembling DNA complexes, several tens of nanometers or more, other techniques need to be employed. In this article, we discuss a generic technique to generate large branched DNA macromolecular complexes

  2. Hollow inorganic nanospheres and nanotubes with tunable wall thicknesses by atomic layer deposition on self-assembled polymeric templates

    NARCIS (Netherlands)

    Ras, Robin H. A.; Kemell, Marianna; de Wit, Joost; Ritala, Mikko; ten Brinke, Gerrit; Leskela, Markku; Ikkala, Olli; Leskelä, Markku

    2007-01-01

    The construction of inorganic nanostructures with hollow interiors is demonstrated by coating self-assembled polymeric nano-objects with a thin Al2O3 layer by atomic layer deposition (ALD), followed by removal of the polymer template upon heating. The morphology of the nano-object (i.e., spherical

  3. Synthesis, electrochemistry, STM investigation of oligothiophene self-assemblies with superior structural order and electronic properties

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Cheng-Yu [C-PCS, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Liu, Yinghao; Yarotski, Dmitry [Center of Integrated Nanotechnologies, Materials Physics and Application Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Li, Hao [Theory Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Xu, Ping; Yen, Hung-Ju [C-PCS, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Tretiak, Sergei, E-mail: serg@lanl.gov [Theory Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Wang, Hsing-Lin, E-mail: hwang@lanl.gov [C-PCS, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2016-12-20

    Graphical abstract: STM imaging reveals differently oriented domains of self-assembled tetrathiophene molecules. - Highlights: • Optical and redox properties of oligothiophene derivatives are studied. • Packing pattern of self-assembly monolayer depends on the conjugation length. • Strong electronic coupling and three redox couples in cyclic voltamogram are observed in the hierarchical self-assembly. - Abstract: Three oligothiophene (terthiophene, tetrathiophene and pentathiophene) derivatives are synthesized and their monolayer self-assemblies on gold (Au) are prepared via Au–S covalent bond. Our UV–Vis experimental characterization of solution reveals the dependence of the optical properties on the conjugation length of the oligothiophenes, which compares well with Time-Dependent Density Functional Theory (TDDFT) simulations of spectra of individual chromophores. Photoluminescent spectra of thin films show pronounced red shifts compared to that of solutions, suggesting strong inter-oligomer interactions. The comparative studies of cyclic voltammograms of tetrathiophene from solution, cast film and self-assembled monolayer (SAM) indicate presence of one, two, and three oxidized species in these samples, respectively, suggesting a very strong electronic coupling between tetrathiophene molecules in the SAM. Scanning tunneling microscopy (STM) imaging of SAMs of the tetrathiophene on an atomically flat Au surface exhibits formation of monolayer assemblies with molecular order, and the molecular packing appears to show an overlay of oligothiophene molecules on top of another one. In contrast, the trimer and pentamer images show only aggregated species lacking long-range order on the molecular level. Such trends in going from disordered–ordered–disordered monolayer assemblies are mainly due to a delicate balance between inter-chromophore π–π couplings, hydrophobic interaction and the propensity to form Au–S covalent bond. Such hypothesis has been

  4. Bio-inspired Structural Colors from Deposition of Synthetic Melanin Nanoparticles by Evaporative Self-assembly

    Science.gov (United States)

    Xiao, Ming; Li, Yiwen; Deheyn, Dimitri; Yue, Xiujun; Gianneschi, Nathan; Shawkey, Matthew; Dhinojwala, Ali

    2015-03-01

    Melanin, a ubiquitous black or brown pigment in the animal kingdom, is a unique but poorly understood biomaterial. Many bird feathers contain melanosomes (melanin-containing organelles), which pack into ordered nanostructures, like multilayer or two-dimensional photonic crystal structures, to produce structural colors. To understand the optical properties of melanin and how melanosomes assemble into certain structures to produce colors, we prepared synthetic melanin (polydopamine) particles with variable sizes and aspect ratios. We have characterized the absorption and refractive index of the synthetic melanin particles. We have also shown that we can use an evaporative process to self-assemble melanin films with a wide range of colors. The colors obtained using this technique is modeled using a thin-film interference model and the optical properties of the synthetic melanin nanoparticles. Our results on self-assembly of synthetic melanin nanoparticles provide an explanation as why the use of melanosomes to produce colors is prevalent in the animal kingdom. National science foundation, air force office of scientific research, human frontier science program.

  5. Signatures of self-assembly in size distributions of wood members in dam structures of Castor canadensis

    Directory of Open Access Journals (Sweden)

    David M. Blersch

    2014-12-01

    Full Text Available Beavers (Castor canadensis construct dams on rivers throughout most of their historical range in North America, and their impact on water patterns in the landscape is considerable. Dam formation by beavers involves two processes: (1 intentional construction through the selection and placement of wood and sediment, which facilitates (2 the passive capture and accretion of suspended wood and sediment. The second process is a self-assembly mechanism that the beavers leverage by utilizing energy subsidies of watershed transport processes. The relative proportion of beaver activity to self-assembly processes in dam construction, however, is unknown. Here we show that lotic self-assembly processes account for a substantial portion of the work expended in beaver dam construction. We found through comprehensive measurement of the stick dimensions that the distributions for diameter, length, and volume are log-normal. By noting evidence of teeth markings, we determined that size distributions skewed significantly larger for wood handled by beavers compared to those that were not. Subsequent mass calculations suggest that beavers perform 50%–70% of the work of wood member placement for dam assembly, with riparian self-assembly processes contributing the remainder. Additionally, our results establish a benchmark for assessing the proportion of self-assembly work in similar riparian structures. Keywords: Beaver dam, Construction, Castor canadensis, Self-assembly, Distribution, Wood

  6. Building polyhedra by self-assembly: theory and experiment.

    Science.gov (United States)

    Kaplan, Ryan; Klobušický, Joseph; Pandey, Shivendra; Gracias, David H; Menon, Govind

    2014-01-01

    We investigate the utility of a mathematical framework based on discrete geometry to model biological and synthetic self-assembly. Our primary biological example is the self-assembly of icosahedral viruses; our synthetic example is surface-tension-driven self-folding polyhedra. In both instances, the process of self-assembly is modeled by decomposing the polyhedron into a set of partially formed intermediate states. The set of all intermediates is called the configuration space, pathways of assembly are modeled as paths in the configuration space, and the kinetics and yield of assembly are modeled by rate equations, Markov chains, or cost functions on the configuration space. We review an interesting interplay between biological function and mathematical structure in viruses in light of this framework. We discuss in particular: (i) tiling theory as a coarse-grained description of all-atom models; (ii) the building game-a growth model for the formation of polyhedra; and (iii) the application of these models to the self-assembly of the bacteriophage MS2. We then use a similar framework to model self-folding polyhedra. We use a discrete folding algorithm to compute a configuration space that idealizes surface-tension-driven self-folding and analyze pathways of assembly and dominant intermediates. These computations are then compared with experimental observations of a self-folding dodecahedron with side 300 μm. In both models, despite a combinatorial explosion in the size of the configuration space, a few pathways and intermediates dominate self-assembly. For self-folding polyhedra, the dominant intermediates have fewer degrees of freedom than comparable intermediates, and are thus more rigid. The concentration of assembly pathways on a few intermediates with distinguished geometric properties is biologically and physically important, and suggests deeper mathematical structure.

  7. Effect of linear alcohol molecular size on the self-assembly of fullerene whiskers

    International Nuclear Information System (INIS)

    Amer, Maher S.; Todd, T. Kyle; Busbee, John D.

    2011-01-01

    Highlights: → The longer the alcohol molecule, the shorter the length of the assembled whisker. → Interaction between alcohol and fullerene solvent is the key factor. → The stronger the alcohol/solvent interaction, the longer the whisker. - Abstract: The recent development of self-assembled fullerene whiskers and wires has created an enormous potential and resolved a serious challenge for utilizing such unique class of carbon material in advanced nano-scale, molecular-based electronic, optical, and thermal devices. In this paper we investigate, the self-assembly of C 60 molecules into one-dimensional whiskers using a series of linear alcohols H(CH 2 ) n OH, with n changing from 1 (methanol) to 3 (isopropyl alcohol), to elucidate the effect of alcohol molecular size on the size distribution of the self-assemble fullerene whiskers. Our results show that the length of the produced fullerene whiskers is affected by the molecular size of the alcohol used in the process. The crucial role played by solvent/alcohol interaction in the assembly process is discussed. In addition, Raman spectroscopy measurements support the notion that the self-assembled whiskers are primarily held by depletion forces and no evidence of fullerene polymerization was observed.

  8. Self-assembly of single "square" quantum rings in gold-free GaAs nanowires.

    Science.gov (United States)

    Zha, Guowei; Shang, Xiangjun; Su, Dan; Yu, Ying; Wei, Bin; Wang, Li; Li, Mifeng; Wang, Lijuan; Xu, Jianxing; Ni, Haiqiao; Ji, Yuan; Sun, Baoquan; Niu, Zhichuan

    2014-03-21

    Single nanostructures embedded within nanowires (NWs) represent one of the most promising technologies for applications in quantum photonics. However, fabrication imperfections and etching-induced defects are inevitable for top-down fabrications, whereas self-assembly bottom-up approaches cannot avoid the difficulties of its stochastic nature and are limited to restricted heterogeneous material systems. Here we demonstrate the versatile self-assembly of single "square" quantum rings (QR) on the sidewalls of gold-free GaAs NWs for the first time. By tuning the deposition temperature, As overpressure and amount of gallium-droplets, we were able to control the density and morphology of the structure, yielding novel single quantum dots, QR, coupled QRs, and nano-antidots. A proposed model based on a strain-driven, transport-dependent nucleation of gallium droplets at high temperature accounts for the formation mechanism of these structures. We achieved a single-QR-in-NW structure, of which the optical properties were analyzed using micro-photoluminescence at 10 K and a spatially resolved cathodoluminescence technique at 77 K. The spectra show sharp discrete peaks; of these peaks, the narrowest linewidth (separation) was 578 μeV (1-3 meV), reflecting the quantized nature of the ring-type electronic states.

  9. Self-Organization and the Self-Assembling Process in Tissue Engineering

    Science.gov (United States)

    Eswaramoorthy, Rajalakshmanan; Hadidi, Pasha; Hu, Jerry C.

    2015-01-01

    In recent years, the tissue engineering paradigm has shifted to include a new and growing subfield of scaffoldless techniques which generate self-organizing and self-assembling tissues. This review aims to provide a cogent description of this relatively new research area, with special emphasis on applications toward clinical use and research models. Particular emphasis is placed on providing clear definitions of self-organization and the self-assembling process, as delineated from other scaffoldless techniques in tissue engineering and regenerative medicine. Significantly, during formation, self-organizing and self-assembling tissues display biological processes similar to those that occur in vivo. These help lead to the recapitulation of native tissue morphological structure and organization. Notably, functional properties of these tissues also approach native tissue values; some of these engineered tissues are already in clinical trials. This review aims to provide a cohesive summary of work in this field, and to highlight the potential of self-organization and the self-assembling process to provide cogent solutions to current intractable problems in tissue engineering. PMID:23701238

  10. Understanding emergent functions in self-assembled fibrous networks

    Science.gov (United States)

    Sinko, Robert; Keten, Sinan

    2015-09-01

    Understanding self-assembly processes of nanoscale building blocks and characterizing their properties are both imperative for designing new hierarchical, network materials for a wide range of structural, optoelectrical, and transport applications. Although the characterization and choices of these material building blocks have been well studied, our understanding of how to precisely program a specific morphology through self-assembly still must be significantly advanced. In the recent study by Xie et al (2015 Nanotechnology 26 205602), the self-assembly of end-functionalized nanofibres is investigated using a coarse-grained molecular model and offers fundamental insight into how to control the structural morphology of nanofibrous networks. Varying nanoscale networks are observed when the molecular interaction strength is changed and the findings suggest that self-assembly through the tuning of molecular interactions is a key strategy for designing nanostructured networks with specific topologies.

  11. Programming Cells for Dynamic Assembly of Inorganic Nano-Objects with Spatiotemporal Control.

    Science.gov (United States)

    Wang, Xinyu; Pu, Jiahua; An, Bolin; Li, Yingfeng; Shang, Yuequn; Ning, Zhijun; Liu, Yi; Ba, Fang; Zhang, Jiaming; Zhong, Chao

    2018-04-01

    Programming living cells to organize inorganic nano-objects (NOs) in a spatiotemporally precise fashion would advance new techniques for creating ordered ensembles of NOs and new bio-abiotic hybrid materials with emerging functionalities. Bacterial cells often grow in cellular communities called biofilms. Here, a strategy is reported for programming dynamic biofilm formation for the synchronized assembly of discrete NOs or hetero-nanostructures on diverse interfaces in a dynamic, scalable, and hierarchical fashion. By engineering Escherichia coli to sense blue light and respond by producing biofilm curli fibers, biofilm formation is spatially controlled and the patterned NOs' assembly is simultaneously achieved. Diverse and complex fluorescent quantum dot patterns with a minimum patterning resolution of 100 µm are demonstrated. By temporally controlling the sequential addition of NOs into the culture, multilayered heterostructured thin films are fabricated through autonomous layer-by-layer assembly. It is demonstrated that biologically dynamic self-assembly can be used to advance a new repertoire of nanotechnologies and materials with increasing complexity that would be otherwise challenging to produce. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Self-assembly of silica microparticles in magnetic multiphase flows: Experiment and simulation

    Science.gov (United States)

    Li, Xiang; Niu, Xiao-Dong; Li, You; Chen, Mu-Feng

    2018-04-01

    Dynamic self-assembly, especially self-assembly under magnetic field, is vital not only for its marvelous phenomenon but also for its mechanisms. Revealing the underlying mechanisms is crucial for a deeper understanding of self-assembly. In this paper, several magnetic induced self-assembly experiments by using the mixed magnetic multiphase fluids comprised of silica microspheres were carried out. The relations of the strength of external magnetic field, the inverse magnetorheological effect, and the structures of self-assembled particles were investigated. In addition, a momentum-exchanged immersed boundary-based lattice Boltzmann method (MEIB-LBM) for modeling multi-physical coupling multiphase flows was employed to numerically study the magnetic induced self-assembly process in detail. The present work showed that the external magnetic field can be used to control the form of self-assembly of nonmagnetic microparticles in a chain-like structure, and the self-assembly process can be classified into four stages with magnetic hysteresis, magnetization of nonmagnetic microparticles, self-assembly in chain-like structures, and the stable chain state. The combination of experimental and numerical results could offer a method to control the self-assembled nonmagnetic microparticles, which can provide the technical and theoretical support for the design and fabrication of micro/nanomaterials.

  13. Tuning peptide self-assembly by an in-tether chiral center

    Science.gov (United States)

    Hu, Kuan; Xiong, Wei; Li, Hu; Zhang, Pei-Yu; Yin, Feng; Zhang, Qianling; Jiang, Fan; Li, Zigang

    2018-01-01

    The self-assembly of peptides into ordered nanostructures is important for understanding both peptide molecular interactions and nanotechnological applications. However, because of the complexity and various self-assembling pathways of peptide molecules, design of self-assembling helical peptides with high controllability and tunability is challenging. We report a new self-assembling mode that uses in-tether chiral center-induced helical peptides as a platform for tunable peptide self-assembly with good controllability. It was found that self-assembling behavior was governed by in-tether substitutional groups, where chirality determined the formation of helical structures and aromaticity provided the driving force for self-assembly. Both factors were essential for peptide self-assembly to occur. Experiments and theoretical calculations indicate long-range crystal-like packing in the self-assembly, which was stabilized by a synergy of interpeptide π-π and π-sulfur interactions and hydrogen bond networks. In addition, the self-assembled peptide nanomaterials were demonstrated to be promising candidate materials for applications in biocompatible electrochemical supercapacitors.

  14. Strain distributions in nano-onions with uniform and non-uniform compositions

    International Nuclear Information System (INIS)

    Duan, H L; Karihaloo, B L; Wang, J; Yi, X

    2006-01-01

    Nano-onions are ellipsoidal or spherical particles consisting of a core surrounded by concentric shells of nanometre size. Nano-onions produced by self-assembly and colloidal techniques have different structures and compositions, and thus differ in the state of strains. The mismatch of the thermal expansion coefficients and lattice constants between neighbouring shells induces stress/strain fields in the core and shells, which in turn affect their physical/mechanical properties and/or the properties of the composites containing them. In this paper, the strains in embedded and free-standing nano-onions with uniform and non-uniform compositions are studied in detail. It is found that the strains in the nano-onions can be modified by adjusting their compositions and structures. The results are useful for the band structure engineering of semiconductor nano-onions

  15. Ternary self-assemblies in water

    DEFF Research Database (Denmark)

    Hill, Leila R.; Blackburn, Octavia A.; Jones, Michael W.

    2013-01-01

    The self-assembly of higher order structures in water is realised by using the association of 1,3-biscarboxylates to binuclear meta-xylyl bridged DO3A complexes. Two dinicotinate binding sites are placed at a right-angle in a rhenium complex, which is shown to form a 1 : 2 complex with α,α'-bis(E......The self-assembly of higher order structures in water is realised by using the association of 1,3-biscarboxylates to binuclear meta-xylyl bridged DO3A complexes. Two dinicotinate binding sites are placed at a right-angle in a rhenium complex, which is shown to form a 1 : 2 complex with α...

  16. Self-assembly from milli- to nanoscales: methods and applications

    International Nuclear Information System (INIS)

    Mastrangeli, M; Celis, J-P; Abbasi, S; Varel, C; Böhringer, K F; Van Hoof, C

    2009-01-01

    The design and fabrication techniques for microelectromechanical systems (MEMS) and nanodevices are progressing rapidly. However, due to material and process flow incompatibilities in the fabrication of sensors, actuators and electronic circuitry, a final packaging step is often necessary to integrate all components of a heterogeneous microsystem on a common substrate. Robotic pick-and-place, although accurate and reliable at larger scales, is a serial process that downscales unfavorably due to stiction problems, fragility and sheer number of components. Self-assembly, on the other hand, is parallel and can be used for device sizes ranging from millimeters to nanometers. In this review, the state-of-the-art in methods and applications for self-assembly is reviewed. Methods for assembling three-dimensional (3D) MEMS structures out of two-dimensional (2D) ones are described. The use of capillary forces for folding 2D plates into 3D structures, as well as assembling parts onto a common substrate or aggregating parts to each other into 2D or 3D structures, is discussed. Shape matching and guided assembly by magnetic forces and electric fields are also reviewed. Finally, colloidal self-assembly and DNA-based self-assembly, mainly used at the nanoscale, are surveyed, and aspects of theoretical modeling of stochastic assembly processes are discussed. (topical review)

  17. Generic concept to program the time domain of self-assemblies with a self-regulation mechanism.

    Science.gov (United States)

    Heuser, Thomas; Steppert, Ann-Kathrin; Lopez, Catalina Molano; Zhu, Baolei; Walther, Andreas

    2015-04-08

    Nature regulates complex structures in space and time via feedback loops, kinetically controlled transformations, and under energy dissipation to allow non-equilibrium processes. Although man-made static self-assemblies realize excellent control over hierarchical structures via molecular programming, managing their temporal destiny by self-regulation is a largely unsolved challenge. Herein, we introduce a generic concept to control the time domain by programming the lifetimes of switchable self-assemblies in closed systems. We conceive dormant deactivators that, in combination with fast promoters, enable a unique kinetic balance to establish an autonomously self-regulating, transient pH-state, whose duration can be programmed over orders of magnitude-from minutes to days. Coupling this non-equilibrium state to pH-switchable self-assemblies allows predicting their assembly/disassembly fate in time, similar to a precise self-destruction mechanism. We demonstrate a platform approach by programming self-assembly lifetimes of block copolymers, nanoparticles, and peptides, enabling dynamic materials with a self-regulation functionality.

  18. Activity and lifetime of urease immobilized using layer-by-layer nano self-assembly on silicon microchannels.

    Science.gov (United States)

    Forrest, Scott R; Elmore, Bill B; Palmer, James D

    2005-01-01

    Urease has been immobilized and layered onto the walls of manufactured silicon microchannels. Enzyme immobilization was performed using layer-by-layer nano self-assembly. Alternating layers of oppositely charged polyelectrolytes, with enzyme layers "encased" between them, were deposited onto the walls of the silicon microchannels. The polycations used were polyethylenimine (PEI), polydiallyldimethylammonium (PDDA), and polyallylamine (PAH). The polyanions used were polystyrenesulfonate (PSS) and polyvinylsulfate (PVS). The activity of the immobilized enzyme was tested by pumping a 1 g/L urea solution through the microchannels at various flow rates. Effluent concentration was measured using an ultraviolet/visible spectrometer by monitoring the absorbance of a pH sensitive dye. The architecture of PEI/PSS/PEI/urease/PEI with single and multiple layers of enzyme demonstrated superior performance over the PDDA and PAH architectures. The precursor layer of PEI/PSS demonstrably improved the performance of the reactor. Conversion rates of 70% were achieved at a residence time of 26 s, on d 1 of operation, and >50% at 51 s, on d 15 with a six-layer PEI/urease architecture.

  19. Understanding the structure and performance of self-assembled triblock terpolymer membranes

    KAUST Repository

    Pendergast, MaryTheresa M.; Mika Dorin, Rachel; Phillip, William A.; Wiesner, Ulrich; Hoek, Eric M.V.

    2013-01-01

    Nanoporous membranes represent a possible route towards more precise particle and macromolecular separations, which are of interest across many industries. Here, we explored membranes with vertically-aligned nanopores formed from a poly(isoprene-. b-styrene-. b-4 vinyl pyridine) (ISV) triblock terpolymer via a hybrid self-assembly/nonsolvent induced phase separation process (S-NIPS). ISV concentration, solvent composition, and evaporation time in the S-NIPS process were varied to tailor ordering of the selective layer and produce enhanced water permeability. Here, water permeability was doubled over previous versions of ISV membranes. This was achieved by increasing volatile solvent concentration, thereby decreasing the evaporation period required for self-assembly. Fine-tuning was required, however, since overly-rapid evaporation did not yield the desired pore structure. Transport models, used to relate the in-. situ structure to the performance of these materials, revealed narrowing of pores and blocking by the dense region below. It was shown that these vertically aligned nanoporous membranes compare favorably with commercial ultrafiltration membranes formed by NIPS and track-etching processes, which suggests that there is practical value in further developing and optimizing these materials for specific industrial separations. © 2013 Elsevier B.V.

  20. Understanding the structure and performance of self-assembled triblock terpolymer membranes

    KAUST Repository

    Pendergast, MaryTheresa M.

    2013-10-01

    Nanoporous membranes represent a possible route towards more precise particle and macromolecular separations, which are of interest across many industries. Here, we explored membranes with vertically-aligned nanopores formed from a poly(isoprene-. b-styrene-. b-4 vinyl pyridine) (ISV) triblock terpolymer via a hybrid self-assembly/nonsolvent induced phase separation process (S-NIPS). ISV concentration, solvent composition, and evaporation time in the S-NIPS process were varied to tailor ordering of the selective layer and produce enhanced water permeability. Here, water permeability was doubled over previous versions of ISV membranes. This was achieved by increasing volatile solvent concentration, thereby decreasing the evaporation period required for self-assembly. Fine-tuning was required, however, since overly-rapid evaporation did not yield the desired pore structure. Transport models, used to relate the in-. situ structure to the performance of these materials, revealed narrowing of pores and blocking by the dense region below. It was shown that these vertically aligned nanoporous membranes compare favorably with commercial ultrafiltration membranes formed by NIPS and track-etching processes, which suggests that there is practical value in further developing and optimizing these materials for specific industrial separations. © 2013 Elsevier B.V.

  1. SERS Substrates by the Assembly of Silver Nano cubes: High-Throughput and Enhancement Reliability Considerations

    International Nuclear Information System (INIS)

    Rabin, O.; Lee, S.Y.; Rabin, O.

    2012-01-01

    Small clusters of nanoparticles are ideal substrates for SERS measurements, but the SERS signal enhancement by a particular cluster is strongly dependent on its structural characteristics and the measurement conditions. Two methods for high-throughput assembly of silver nano cubes into small clusters at predetermined locations on a substrate are presented. These fabrication techniques make it possible to study both the structure and the plasmonic properties of hundreds of nanoparticle clusters. The variations in SERS enhancement factors from cluster to cluster were analyzed and correlated with cluster size and configuration, and laser frequency and polarization. Using Raman instruments with 633 nm and 785 nm lasers and linear clusters of nano cubes, an increase in the reproducibility of the enhancement and an increase in the average enhancement values were achieved by increasing the number of nano cubes in the cluster, up to 4 nano cubes per cluster. By examining the effect of cluster configuration, it is shown that linear clusters with nano cubes attached in a face-to-face configuration are not as effective SERS substrates as linear clusters in which nano cubes are attached along an edge

  2. Formation of a stable, three-dimensional porous structure with self-assembled glass spheres using the plasma-induced electromeniscus phenomenon

    International Nuclear Information System (INIS)

    Matsuura, Hiroshi; Tanikawa, Tamio; Ando, Yasuhisa; Miyake, Koji; Sasaki, Shinya

    2006-01-01

    We develop a method for fabricating a stable, three-dimensional porous structure with self-assembled glass spheres. This three-dimensional (3D) self-assembly of glass spheres is achieved using the electromeniscus phenomenon, which is associated with a microscale solution current. The current encloses a group of glass spheres, carries the spheres, and assembles them three dimensionally with its surface tension at the desired site. The assembled glass spheres are fixed using a plasma-induced reaction combined with thermal treatment of the solution. These assembled microscale spheres create a large number of openings with extensive surface areas. This extensive area among 3D porous structures would be particularly useful for fabricating high-performance catalysts and high-resolution hydrogen sensors

  3. Self-assembled nano- to micron-size fibers from molten R11Ni4In9 intermetallics

    Energy Technology Data Exchange (ETDEWEB)

    Provino, Alessia; Manfrinetti, Pietro; Gschneidner, Karl A; Dhar, Sudesh K; Schlagel, Deborah L; Lograsso, Thomas A; Miller, Gordon J; Thimmaiah, Srinivasa; Wang, Hui; Russell, Alan M; Becker, Andrew; Mudryk, Yaroslav

    2014-07-01

    A study of the formation of Gd11M4In9 (M = Ni, Pd, Pt) and R11Ni4In9 (R = rare earth) compounds revealed a unique and peculiar property, which is to naturally crystallize in a bundle of self-assembled fibers when cooled from the melt. The fibers, which are nano- to millimeters in cross-section and approximate to 11-40 mm long, grow unidirectionally along a temperature gradient. These compounds adopt the orthorhombic Nd11Pd4In9 structure type (oC48-Cmmm). This structure is layered, with slabs of R atoms alternating with slabs of Ni/In atoms along a short c-axis (much shorter than either the a- or b-axis). The growth direction of the fibers is along the crystallographic c-axis, orthogonal to the a-b plane. Two strong and short In In bonds lie in the a-b plane, which are even shorter than in In metal. Integrated crystal orbital Hamilton population calculations show that the In In bonds create isolated "R8Ni4In9" rods growing along the c-axis, with the In In bonds being part of the rods. This appears to be an important factor explaining the microfibrous nature of these phases. Some physical properties have been measured on the Gd11Ni4In9 homolog. The compound orders ferrimagnetically at T-c approximate to 88 K, and at lower temperatures (46 and 10 K), two other magnetic anomalies were observed, probably due to spin reorientations. As expected from the bonding features, the mechanical, magnetic and electrical properties are strongly anisotropic. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Surface coating of siRNA-peptidomimetic nano-self-assemblies with anionic lipid bilayers: enhanced gene silencing and reduced adverse effects in vitro

    Science.gov (United States)

    Zeng, Xianghui; de Groot, Anne Marit; Sijts, Alice J. A. M.; Broere, Femke; Oude Blenke, Erik; Colombo, Stefano; van Eden, Willem; Franzyk, Henrik; Nielsen, Hanne Mørck; Foged, Camilla

    2015-11-01

    Cationic vectors have demonstrated the potential to facilitate intracellular delivery of therapeutic oligonucleotides. However, enhanced transfection efficiency is usually associated with adverse effects, which also proves to be a challenge for vectors based on cationic peptides. In this study a series of proteolytically stable palmitoylated α-peptide/β-peptoid peptidomimetics with a systematically varied number of repeating lysine and homoarginine residues was shown to self-assemble with small interfering RNA (siRNA). The resulting well-defined nanocomplexes were coated with anionic lipids giving rise to net anionic liposomes. These complexes and the corresponding liposomes were optimized towards efficient gene silencing and low adverse effects. The optimal anionic liposomes mediated a high silencing effect, which was comparable to that of the control (cationic Lipofectamine 2000), and did not display any noticeable cytotoxicity and immunogenicity in vitro. In contrast, the corresponding nanocomplexes mediated a reduced silencing effect with a more narrow safety window. The surface coating with anionic lipid bilayers led to partial decomplexation of the siRNA-peptidomimetic nanocomplex core of the liposomes, which facilitated siRNA release. Additionally, the optimal anionic liposomes showed efficient intracellular uptake and endosomal escape. Therefore, these findings suggest that a more efficacious and safe formulation can be achieved by surface coating of the siRNA-peptidomimetic nano-self-assemblies with anionic lipid bilayers.Cationic vectors have demonstrated the potential to facilitate intracellular delivery of therapeutic oligonucleotides. However, enhanced transfection efficiency is usually associated with adverse effects, which also proves to be a challenge for vectors based on cationic peptides. In this study a series of proteolytically stable palmitoylated α-peptide/β-peptoid peptidomimetics with a systematically varied number of repeating lysine

  5. Toward a molecular programming language for algorithmic self-assembly

    Science.gov (United States)

    Patitz, Matthew John

    Self-assembly is the process whereby relatively simple components autonomously combine to form more complex objects. Nature exhibits self-assembly to form everything from microscopic crystals to living cells to galaxies. With a desire to both form increasingly sophisticated products and to understand the basic components of living systems, scientists have developed and studied artificial self-assembling systems. One such framework is the Tile Assembly Model introduced by Erik Winfree in 1998. In this model, simple two-dimensional square 'tiles' are designed so that they self-assemble into desired shapes. The work in this thesis consists of a series of results which build toward the future goal of designing an abstracted, high-level programming language for designing the molecular components of self-assembling systems which can perform powerful computations and form into intricate structures. The first two sets of results demonstrate self-assembling systems which perform infinite series of computations that characterize computably enumerable and decidable languages, and exhibit tools for algorithmically generating the necessary sets of tiles. In the next chapter, methods for generating tile sets which self-assemble into complicated shapes, namely a class of discrete self-similar fractal structures, are presented. Next, a software package for graphically designing tile sets, simulating their self-assembly, and debugging designed systems is discussed. Finally, a high-level programming language which abstracts much of the complexity and tedium of designing such systems, while preventing many of the common errors, is presented. The summation of this body of work presents a broad coverage of the spectrum of desired outputs from artificial self-assembling systems and a progression in the sophistication of tools used to design them. By creating a broader and deeper set of modular tools for designing self-assembling systems, we hope to increase the complexity which is

  6. Surface Patterning of Benzene Carboxylic Acids on Graphite: Influence of structure, solvent, and concentration on molecular self-assembly

    Science.gov (United States)

    Florio, Gina; Stiso, Kimberly; Campanelli, Joseph; Dessources, Kimberly; Folkes, Trudi

    2012-02-01

    Scanning tunneling microscopy (STM) was used to investigate the molecular self-assembly of four different benzene carboxylic acid derivatives at the liquid/graphite interface: pyromellitic acid (1,2,4,5-benzenetetracarboxylic acid), trimellitic acid (1,2,4-benzenetricarboxylic acid), trimesic acid (1,3,5-benzenetricarboxylic acid), and 1,3,5-benzenetriacetic acid. A range of two dimensional networks are observed that depend sensitively on the number of carboxylic acids present, the nature of the solvent, and the solution concentration. We will describe our recent efforts to determine (a) the preferential two-dimensional structure(s) for each benzene carboxylic acid at the liquid/graphite interface, (b) the thermodynamic and kinetic factors influencing self-assembly (or lack thereof), (c) the role solvent plays in the assembly, (e) the effect of in situ versus ex situ dilution on surface packing density, and (f) the temporal evolution of the self-assembled monolayer. Results of computational analysis of analog molecules and model monolayer films will also be presented to aid assignment of network structures and to provide a qualitative picture of surface adsorption and network formation.

  7. Tailoring the Structure of Two-Dimensional Self-Assembled Nanoarchitectures Based on NiII–Salen Building Blocks

    DEFF Research Database (Denmark)

    Viciano-Chumillas, Marta; Li, Dongzhe; Smogunov, Alexander

    2014-01-01

    -butyl) is presented. Their electronic structure and self-assembly was studied. The organic ligands of the salen complexes are functionalized with peripheral carboxylic groups for driving molecular self-assembly through hydrogen bonding. In addition, other substituents, that is, tert-butyl and diamine bridges (2...

  8. Simple down conversion nano-crystal coatings for enhancing Silicon-solar cells efficiency

    Directory of Open Access Journals (Sweden)

    Gur Mittelman

    2016-09-01

    Full Text Available Utilizing self-assembled nano-structured coatings on top of existing solar cells has thepotential to increase the total quantum efficiency of the cell using a simple and cheap process. In ourwork we have exploited the controlled absorption of nano-crystal with different band gaps to realizedown conversion artificial antennas that self-assembled on the device surface. The UV sun light isconverted to the visible light enhancing the solar cell performance in two complementary routes; a.protecting the solar cell and coatings from the UV illumination and therefore reducing the UVradiation damage. b. enhancing the total external quantum efficiency of the cell by one percent. Thisis achieved using a simple cheap process that can be adjusted to many different solar cells.

  9. Self-assembled three-dimensional chiral colloidal architecture

    Science.gov (United States)

    Ben Zion, Matan Yah; He, Xiaojin; Maass, Corinna C.; Sha, Ruojie; Seeman, Nadrian C.; Chaikin, Paul M.

    2017-11-01

    Although stereochemistry has been a central focus of the molecular sciences since Pasteur, its province has previously been restricted to the nanometric scale. We have programmed the self-assembly of micron-sized colloidal clusters with structural information stemming from a nanometric arrangement. This was done by combining DNA nanotechnology with colloidal science. Using the functional flexibility of DNA origami in conjunction with the structural rigidity of colloidal particles, we demonstrate the parallel self-assembly of three-dimensional microconstructs, evincing highly specific geometry that includes control over position, dihedral angles, and cluster chirality.

  10. Nano-scale Materials and Nano-technology Processes in Environmental Protection

    International Nuclear Information System (INIS)

    Vissokov, Gh; Tzvetkoff, T.

    2003-01-01

    A number of environmental and energy technologies have benefited substantially from nano-scale technology: reduced waste and improved energy efficiency; environmentally friendly composite structures; waste remediation; energy conversion. In this report examples of current achievements and paradigm shifts are presented: from discovery to application; a nano structured materials; nanoparticles in the environment (plasma chemical preparation); nano-porous polymers and their applications in water purification; photo catalytic fluid purification; hierarchical self-assembled nano-structures for adsorption of heavy metals, etc. Several themes should be considered priorities in developing nano-scale processes related to environmental management: 1. To develop understanding and control of relevant processes, including protein precipitation and crystallisation, desorption of pollutants, stability of colloidal dispersion, micelle aggregation, microbe mobility, formation and mobility of nanoparticles, and tissue-nanoparticle interaction. Emphasis should be given to processes at phase boundaries (solid-liquid, solid-gas, liquid-gas) that involve mineral and organic soil components, aerosols, biomolecules (cells, microbes), bio tissues, derived components such as bio films and membranes, and anthropogenic additions (e.g. trace and heavy metals); 2. To carry out interdisciplinary research that initiates Noel approaches and adopts new methods for characterising surfaces and modelling complex systems to problems at interfaces and other nano-structures in the natural environment, including those involving biological or living systems. New technological advances such as optical traps, laser tweezers, and synchrotrons are extending examination of molecular and nano-scale processes to the single-molecule or single-cell level; 3. To integrate understanding of the roles of molecular and nano-scale phenomena and behaviour at the meso- and/or macro-scale over a period of time

  11. Bioinspired synthesis and self-assembly of hybrid organic–inorganic nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Honghu [Iowa State Univ., Ames, IA (United States)

    2016-12-17

    Nature is replete with complex organic–inorganic hierarchical materials of diverse yet specific functions. These materials are intricately designed under physiological conditions through biomineralization and biological self-assembly processes. Tremendous efforts have been devoted to investigating mechanisms of such biomineralization and biological self-assembly processes as well as gaining inspiration to develop biomimetic methods for synthesis and self-assembly of functional nanomaterials. In this work, we focus on the bioinspired synthesis and self-assembly of functional inorganic nanomaterials templated by specialized macromolecules including proteins, DNA and polymers. The in vitro biomineralization process of the magnetite biomineralizing protein Mms6 has been investigated using small-angle X-ray scattering. Templated by Mms6, complex magnetic nanomaterials can be synthesized on surfaces and in the bulk. DNA and synthetic polymers have been exploited to construct macroscopic two- and three-dimensional (2D and 3D) superlattices of gold nanocrystals. Employing X-ray scattering and spectroscopy techniques, the self-assembled structures and the self-assembly mechanisms have been studied, and theoretical models have been developed. Our results show that specialized macromolecules including proteins, DNA and polymers act as effective templates for synthesis and self-assembly of nanomaterials. These bottom-up approaches provide promising routes to fabricate hybrid organic–inorganic nanomaterials with rationally designed hierarchical structures, targeting specific functions.

  12. Integrating DNA strand-displacement circuitry with DNA tile self-assembly

    Science.gov (United States)

    Zhang, David Yu; Hariadi, Rizal F.; Choi, Harry M.T.; Winfree, Erik

    2013-01-01

    DNA nanotechnology has emerged as a reliable and programmable way of controlling matter at the nanoscale through the specificity of Watson–Crick base pairing, allowing both complex self-assembled structures with nanometer precision and complex reaction networks implementing digital and analog behaviors. Here we show how two well-developed frameworks, DNA tile self-assembly and DNA strand-displacement circuits, can be systematically integrated to provide programmable kinetic control of self-assembly. We demonstrate the triggered and catalytic isothermal self-assembly of DNA nanotubes over 10 μm long from precursor DNA double-crossover tiles activated by an upstream DNA catalyst network. Integrating more sophisticated control circuits and tile systems could enable precise spatial and temporal organization of dynamic molecular structures. PMID:23756381

  13. Size-dependent magnetic and structural properties of CoCrFeO4 nano-powder prepared by solution self-combustion

    Science.gov (United States)

    Sijo, A. K.; Dutta, Dimple P.

    2018-04-01

    The study reports the tuning of magnetic and structural properties of nano-sized CoCrFeO4 via post-annealing treatment. CoCrFeO4 nano-powder has been prepared by solution self-combustion method. The structural and magnetic properties have been studied over a range of annealing temperatures (300-900 °C). The formation of the phase pure CoCrFeO4 spinel has been confirmed from powder XRD analysis. The crystallite size is observed to increase with an increase in annealing temperature. On annealing, the value of magnetic parameters-remanence, coercivity and saturation magnetization have enhanced. All the samples exhibit irreversibility at low-temperature measurements.

  14. From Nano Structure to Systems: Fabrication and Characterization

    International Nuclear Information System (INIS)

    Uda Hashim

    2011-01-01

    Currently, the interest in nano technology research has been grown rapidly. With the latest technology, it is possible to arrange atoms into structures that are only a few nanometers in size. Dimension for nano structure is between 0.1 and 100nm where the actual size of 1nm is equal to 10-9 m or just about a few atoms thick. In other word, a nano structure is an object which it size is about four atom diameters or 1/50000 of a human hair. Due to the connecting of a patterned silicon substrate with biomolecules and the small size and large surface-to-volume ratio, it opens much new possibility for assembling nano structures.The ultimate goal is to fabricate devices that have every atom in the right place. Such technology would give the opportunity to minimize the size of a device and to reduce the material, energy and time necessary to perform its task. Potential applications include electrical circuits, mechanical devices and medical instruments. There are two most important nano structures that are extensively studied and researched in various organizations which are nano wire and nano gap. Nano wires is a new class of nano structure that have attracted attention and great research interest in the last few years because of their potential applications in nano technology such as nano electronic, nano mechanical and biomedical engineering. Fabrication of Nano wires is one of the great challenges today. Conventional lithography methods are not capable to produce Nano wires and even with advance nano lithography sizes below 100 nm may not easily be achieved. Nano wire can be produced in two approaches, which are top down and bottom-up method. Very small nano wires which can be produced by using top-down nano fabrication methods are Scanning Electron Microscope (SEM) based Electron Beam Lithography (EBL) method, and Spacer Patterning Lithography (SPL) method. The top-down nano fabrication method based on EBL was the design of the Nano wires Pattern Design (NPD). The

  15. Editorial Emerging Multifunctional Nano structures

    International Nuclear Information System (INIS)

    Fan, H.; Lu, Y.; Ramanath, G.; Pomposo, J.A.

    2009-01-01

    The interest in emerging nano structures is growing exponentially since they are promising building blocks for advanced multifunctional nano composites. In recent years, an evolution from the controlled synthesis of individual monodisperse nanoparticles to the tailored preparation of hybrid spherical and also unsymmetrical multiparticle nano structures is clearly observed. As a matter of fact, the field of nano structures built around a nano species such as inside, outside, and next to a nanoparticle is becoming a new evolving area of research and development with potential applications in improved drug delivery systems, innovative magnetic devices, biosensors, and highly efficient catalysts, among several others Emerging nano structures with improved magnetic, conducting and smart characteristics are currently based on the design, synthesis, characterization and modeling of multifunctional nano object-based materials. In fact, core-shell nanoparticles and other related complex nano architectures covering a broad spectrum of materials (from metal and metal oxide to fused carbon, synthetic polymer, and bio polymer structures) to nano structure morphologies (spherical, cylindrical, star-like, etc.) are becoming the main building blocks for next generation of drug delivery systems, advanced sensors and biosensors, or improved nano composites. The five papers presented in this special issue examine the preparation and characterization of emerging multifunctional materials, covering from hybrid asymmetric structures to engineering nano composites.

  16. Design of calamitic self-assembling reactive mesogenic units: mesomorphic behaviour and rheological characterization

    Czech Academy of Sciences Publication Activity Database

    Bubnov, Alexej M.; Cigl, Martin; Machado, A.; Pociecha, D.; Hamplová, Věra; Cidade, M.T.

    2017-01-01

    Roč. 44, Aug (2017), s. 1-13 ISSN 0267-8292 R&D Projects: GA ČR GA16-12150S Institutional support: RVO:68378271 Keywords : functional reactive mesogens * liquid crystals * self-assembling behaviour * nematic * smectic * electrorheological fluids Subject RIV: JJ - Other Materials OBOR OECD: Nano-materials (production and properties) Impact factor: 2.661, year: 2016

  17. Direct self-assembling and patterning of semiconductor quantum dots on transferable elastomer layer

    Energy Technology Data Exchange (ETDEWEB)

    Coppola, Sara [Institute of Applied Sciences and Intelligent System- CNR, Via Campi Flegrei 34, Pozzuoli, 80078 (Italy); Vespini, Veronica, E-mail: v.vespini@isasi.cnr.it [Institute of Applied Sciences and Intelligent System- CNR, Via Campi Flegrei 34, Pozzuoli, 80078 (Italy); Olivieri, Federico [Institute of Applied Sciences and Intelligent System- CNR, Via Campi Flegrei 34, Pozzuoli, 80078 (Italy); University of Naples Federico II, Department of Chemical Materials and Production Engineering, Piazzale Tecchio 80, Naples 80125 (Italy); Nasti, Giuseppe; Todino, Michele; Mandracchia, Biagio; Pagliarulo, Vito; Ferraro, Pietro [Institute of Applied Sciences and Intelligent System- CNR, Via Campi Flegrei 34, Pozzuoli, 80078 (Italy)

    2017-03-31

    Highlights: • A quantum dots self-patterning on micrometrical polymeric array is proposed. • The effect of a quantum dots mix on the array is evaluated. • A PDMS membrane is exploited to transfer the pattern on it. - Abstract: Functionalization of thin and stretchable polymer layers by nano- and micro-patterning of nanoparticles is a very promising field of research that can lead to many different applications in biology and nanotechnology. In this work, we present a new procedure to self-assemble semiconductor quantum dots (QDs) nanoparticles by a simple fabrication process on a freestanding flexible PolyDiMethylSiloxane (PDMS) membrane. We used a Periodically Poled Lithium Niobate (PPLN) crystal to imprint a micrometrical pattern on the PDMS membrane that drives the QDs self-structuring on its surface. This process allows patterning QDs with different wavelength emissions in a single step in order to tune the overall emission spectrum of the composite, tuning the QDs mixing ratio.

  18. Self-assembled software and method of overriding software execution

    Science.gov (United States)

    Bouchard, Ann M.; Osbourn, Gordon C.

    2013-01-08

    A computer-implemented software self-assembled system and method for providing an external override and monitoring capability to dynamically self-assembling software containing machines that self-assemble execution sequences and data structures. The method provides an external override machine that can be introduced into a system of self-assembling machines while the machines are executing such that the functionality of the executing software can be changed or paused without stopping the code execution and modifying the existing code. Additionally, a monitoring machine can be introduced without stopping code execution that can monitor specified code execution functions by designated machines and communicate the status to an output device.

  19. Proteins evolve on the edge of supramolecular self-assembly

    Science.gov (United States)

    Garcia-Seisdedos, Hector; Empereur-Mot, Charly; Elad, Nadav; Levy, Emmanuel D.

    2017-08-01

    The self-association of proteins into symmetric complexes is ubiquitous in all kingdoms of life. Symmetric complexes possess unique geometric and functional properties, but their internal symmetry can pose a risk. In sickle-cell disease, the symmetry of haemoglobin exacerbates the effect of a mutation, triggering assembly into harmful fibrils. Here we examine the universality of this mechanism and its relation to protein structure geometry. We introduced point mutations solely designed to increase surface hydrophobicity among 12 distinct symmetric complexes from Escherichia coli. Notably, all responded by forming supramolecular assemblies in vitro, as well as in vivo upon heterologous expression in Saccharomyces cerevisiae. Remarkably, in four cases, micrometre-long fibrils formed in vivo in response to a single point mutation. Biophysical measurements and electron microscopy revealed that mutants self-assembled in their folded states and so were not amyloid-like. Structural examination of 73 mutants identified supramolecular assembly hot spots predictable by geometry. A subsequent structural analysis of 7,471 symmetric complexes showed that geometric hot spots were buffered chemically by hydrophilic residues, suggesting a mechanism preventing mis-assembly of these regions. Thus, point mutations can frequently trigger folded proteins to self-assemble into higher-order structures. This potential is counterbalanced by negative selection and can be exploited to design nanomaterials in living cells.

  20. Quantifying quality in DNA self-assembly

    Science.gov (United States)

    Wagenbauer, Klaus F.; Wachauf, Christian H.; Dietz, Hendrik

    2014-01-01

    Molecular self-assembly with DNA is an attractive route for building nanoscale devices. The development of sophisticated and precise objects with this technique requires detailed experimental feedback on the structure and composition of assembled objects. Here we report a sensitive assay for the quality of assembly. The method relies on measuring the content of unpaired DNA bases in self-assembled DNA objects using a fluorescent de-Bruijn probe for three-base ‘codons’, which enables a comparison with the designed content of unpaired DNA. We use the assay to measure the quality of assembly of several multilayer DNA origami objects and illustrate the use of the assay for the rational refinement of assembly protocols. Our data suggests that large and complex objects like multilayer DNA origami can be made with high strand integration quality up to 99%. Beyond DNA nanotechnology, we speculate that the ability to discriminate unpaired from paired nucleic acids in the same macromolecule may also be useful for analysing cellular nucleic acids. PMID:24751596

  1. Molecular Motions in Functional Self-Assembled Nanostructures

    Directory of Open Access Journals (Sweden)

    Jean-Marc Saiter

    2013-01-01

    Full Text Available The construction of “smart” materials able to perform specific functions at the molecular scale through the application of various stimuli is highly attractive but still challenging. The most recent applications indicate that the outstanding flexibility of self-assembled architectures can be employed as a powerful tool for the development of innovative molecular devices, functional surfaces and smart nanomaterials. Structural flexibility of these materials is known to be conferred by weak intermolecular forces involved in self-assembly strategies. However, some fundamental mechanisms responsible for conformational lability remain unexplored. Furthermore, the role played by stronger bonds, such as coordination, ionic and covalent bonding, is sometimes neglected while they can be employed readily to produce mechanically robust but also chemically reversible structures. In this review, recent applications of structural flexibility and molecular motions in self-assembled nanostructures are discussed. Special focus is given to advanced materials exhibiting significant performance changes after an external stimulus is applied, such as light exposure, pH variation, heat treatment or electromagnetic field. The crucial role played by strong intra- and weak intermolecular interactions on structural lability and responsiveness is highlighted.

  2. Self-assembled hybrid materials based on conjugated polymers and semiconductors nano-crystals for plastic solar cells; Architectures hybrides auto-assemblees a base de systemes polyconjugues et de nanocristaux de semi-conducteurs pour le photovoltaique plastique

    Energy Technology Data Exchange (ETDEWEB)

    Girolamo, J. de

    2007-11-15

    This work is devoted to the elaboration of self-assembled hybrid materials based on poly(3- hexyl-thiophene) and CdSe nano-crystals for photovoltaic applications. For that, complementary molecular recognition units were introduced as side chain groups on the polymer and at the nano-crystals' surface. Diamino-pyrimidine groups were introduced by post-functionalization of a precursor copolymer, namely poly(3-hexyl-thiophene-co-3- bromo-hexyl-thiophene) whereas thymine groups were introduced at the nano-crystals' surface by a ligand exchange reaction with 1-(6-mercapto-hexyl)thymine. However, due to their different solubility, the mixing of the two components by solution processes is difficult. A 'one-pot' procedure was developed, but this method led to insoluble aggregates without control of the hybrid composition. To overcome the solubility problem, the layer-by-layer method was used to prepare the films. This method allows a precise control of the deposition process. Experimental parameters were tested in order to evaluate their impact on the resulting film. The films morphology was investigated by microscopy and X-Ray diffraction techniques. These analyses reveal an interpenetrated structure of nano-crystals within the polymer matrix rather than a multilayered structure. Electrochemical and spectro electrochemical studies were performed on the hybrid material deposited by the LBL process. Finally the materials were tested in a solar cell configuration and the I=f(V) curves reveals a clear photovoltaic behaviour. (author)

  3. Controlled self-assembly of multiferroic core-shell nanoparticles exhibiting strong magneto-electric effects

    Energy Technology Data Exchange (ETDEWEB)

    Sreenivasulu, Gollapudi; Hamilton, Sean L.; Lehto, Piper R.; Srinivasan, Gopalan, E-mail: srinivas@oakland.edu [Physics Department, Oakland University, Rochester, Michigan 48309-4401 (United States); Popov, Maksym [Physics Department, Oakland University, Rochester, Michigan 48309-4401 (United States); Radiophysics Department, Taras Shevchenko National University of Kyiv, Kyiv 01601 (Ukraine); Chavez, Ferman A. [Chemistry Department, Oakland University, Rochester, Michigan 48309-4401 (United States)

    2014-02-03

    Ferromagnetic-ferroelectric composites show strain mediated coupling between the magnetic and electric sub-systems due to magnetostriction and piezoelectric effects associated with the ferroic phases. We have synthesized core-shell multiferroic nano-composites by functionalizing 10–100 nm barium titanate and nickel ferrite nanoparticles with complementary coupling groups and allowing them to self-assemble in the presence of a catalyst. The core-shell structure was confirmed by electron microscopy and magnetic force microscopy. Evidence for strong strain mediated magneto-electric coupling was obtained by static magnetic field induced variations in the permittivity over 16–18 GHz and polarization and by electric field induced by low-frequency ac magnetic fields.

  4. Radiation Induced Polyvinylpyrrolidone/Polyacrylic Acid Nano-Gel Formation for Biomedical Applications

    International Nuclear Information System (INIS)

    AbdEl-Rehim, H.; Hegazy, E.A.; Eid, A.; Amr; Ali, A.

    2010-01-01

    Adopting polyvinylpyrrolidone as template macromolecules and acrylic acid (AA) as monomers, at a concentration ranged from .05 to 1.5%, pH sensitive nano-particle colloids were successfully prepared via template polymerization using gamma radiation in which polymerization of the monomer and self-assembly between the polymer and the template take place simultaneously. The self-assembly was driven by specific interactions between PVP and PAA produced in-situ, leading to PVP/PAAc nano-particles with insoluble inter-polymer complexes. Dynamic light scattering technique was used to indicate size shrinkage and surface charge increase of the PVP/PAAc nano-particles. Many factors affecting the PVP/PAAc nano-particle size such as irradiation dose rate, exposure dose, irradiation temperature and atmosphere, PVP MWt, and feed composition and concentration were investigated. It was found that the reactant feed composition and irradiation temperatures have a great influence on particle size of the prepared nanogel. The structure and morphology of the nano-particles were characterized by FT-IR, UV, viscometry and AFM methods. The structure stability of the nano-particles was studied at different pH solutions. The nano-particles exhibit excellent pH response. When pH changed from acid to base, the particles‘ volume expanded 100 times depending on the irradiation dose at which the nanogel was prepared. The prepared nanogel was loaded with flutamide anticancer drug in the presence of ethanol-water mixture solution and the amount of loaded flutamide was determined. The prepared nano scale polyvinylpyrrolidone/polyacrylic acid bio-polymeric system loaded with flutamide drug is being investigated as anticancer target drug. Also this system will be tested for the treatment of dry-eye-syndrome. (author)

  5. Radiation Induced Polyvinylpyrrolidone/Polyacrylic Acid Nano-Gel Formation for Biomedical Applications

    Energy Technology Data Exchange (ETDEWEB)

    AbdEl-Rehim, H.; Hegazy, E. A.; Eid, A.; Amr,; Ali, A., E-mail: ha_rehim@hotmail.com [National Centre for Radiation Research, Research Centre (NCRRT), Atomic Energy Authority NCRRT, P.O.Box 29, Nasr City, Cairo (Egypt)

    2010-07-01

    Adopting polyvinylpyrrolidone as template macromolecules and acrylic acid (AA) as monomers, at a concentration ranged from .05 to 1.5%, pH sensitive nano-particle colloids were successfully prepared via template polymerization using gamma radiation in which polymerization of the monomer and self-assembly between the polymer and the template take place simultaneously. The self-assembly was driven by specific interactions between PVP and PAA produced in-situ, leading to PVP/PAAc nano-particles with insoluble inter-polymer complexes. Dynamic light scattering technique was used to indicate size shrinkage and surface charge increase of the PVP/PAAc nano-particles. Many factors affecting the PVP/PAAc nano-particle size such as irradiation dose rate, exposure dose, irradiation temperature and atmosphere, PVP MWt, and feed composition and concentration were investigated. It was found that the reactant feed composition and irradiation temperatures have a great influence on particle size of the prepared nanogel. The structure and morphology of the nano-particles were characterized by FT-IR, UV, viscometry and AFM methods. The structure stability of the nano-particles was studied at different pH solutions. The nano-particles exhibit excellent pH response. When pH changed from acid to base, the particles‘ volume expanded 100 times depending on the irradiation dose at which the nanogel was prepared. The prepared nanogel was loaded with flutamide anticancer drug in the presence of ethanol-water mixture solution and the amount of loaded flutamide was determined. The prepared nano scale polyvinylpyrrolidone/polyacrylic acid bio-polymeric system loaded with flutamide drug is being investigated as anticancer target drug. Also this system will be tested for the treatment of dry-eye-syndrome. (author)

  6. Gold and TiO2 Nanostructure Surfaces for Assembling of Electrochemical Biosensors

    International Nuclear Information System (INIS)

    Curulli, A.; Zane, D.

    2008-01-01

    Devices based on nano materials are emerging as a powerful and general class of ultrasensitive sensors for the direct detection of biological and chemical species. In this work, we report the preparation and the full characterization of nano materials such as gold nano wires and TiO 2 nano structured films to be used for assembling of electrochemical biosensors. Gold nano wires were prepared by electroless deposition within the pores of polycarbonate particle track-etched membranes (PMS). Glucose oxidase was deposited onto the nano wires using self-assembling monolayer as an anchor layer for the enzyme molecules. Finally, cyclic voltammetry was performed for different enzymes to test the applicability of gold nano wires as biosensors. Considering another interesting nano material, the realization of functionalized TiO 2 thin films on Si substrates for the immobilization of enzymes is reported. Glucose oxidase and horseradish peroxidase immobilized onto TiO 2 -based nano structured surfaces exhibited a pair of well-defined and quasi reversible voltammetric peaks. The electron exchange between the enzyme and the electrodes was greatly enhanced in the TiO 2 nano structured environment. The electrocatalytic activity of HRP and GOD embedded in TiO 2 electrodes toward H 2 O 2 and glucose, respectively, may have a potential perspective in the fabrication of third-generation biosensors based on direct electrochemistry of enzymes.

  7. Nanomaterial processing using self-assembly-bottom-up chemical and biological approaches

    International Nuclear Information System (INIS)

    Thiruvengadathan, Rajagopalan; Gangopadhyay, Keshab; Gangopadhyay, Shubhra; Korampally, Venumadhav; Ghosh, Arkasubhra; Chanda, Nripen

    2013-01-01

    Nanotechnology is touted as the next logical sequence in technological evolution. This has led to a substantial surge in research activities pertaining to the development and fundamental understanding of processes and assembly at the nanoscale. Both top-down and bottom-up fabrication approaches may be used to realize a range of well-defined nanostructured materials with desirable physical and chemical attributes. Among these, the bottom-up self-assembly process offers the most realistic solution toward the fabrication of next-generation functional materials and devices. Here, we present a comprehensive review on the physical basis behind self-assembly and the processes reported in recent years to direct the assembly of nanoscale functional blocks into hierarchically ordered structures. This paper emphasizes assembly in the synthetic domain as well in the biological domain, underscoring the importance of biomimetic approaches toward novel materials. In particular, two important classes of directed self-assembly, namely, (i) self-assembly among nanoparticle–polymer systems and (ii) external field-guided assembly are highlighted. The spontaneous self-assembling behavior observed in nature that leads to complex, multifunctional, hierarchical structures within biological systems is also discussed in this review. Recent research undertaken to synthesize hierarchically assembled functional materials have underscored the need as well as the benefits harvested in synergistically combining top-down fabrication methods with bottom-up self-assembly. (review article)

  8. Anisotropic Self-Assembly of Organic–Inorganic Hybrid Microtoroids

    KAUST Repository

    Al-Rehili, Safa’a

    2016-10-24

    Toroidal structures based on self-assembly of predesigned building blocks are well-established in the literature, but spontaneous self-organization to prepare such structures has not been reported to date. Here, organic–inorganic hybrid microtoroids synthesized by simultaneous coordination-driven assembly of amphiphilic molecules and hydrophilic polymers are reported. Mixing amphiphilic molecules with iron(III) chloride and hydrophilic polymers in water leads, within minutes, to the formation of starlike nanostructures. A spontaneous self-organization of these nanostructures is then triggered to form stable hybrid microtoroids. Interestingly, the toroids exhibit anisotropic hierarchical growth, giving rise to a layered toroidal framework. These microstructures are mechanically robust and can act as templates to host metallic nanoparticles such as gold and silver. Understanding the nature of spontaneous assembly driven by coordination multiple non-covalent interactions can help explain the well-ordered complexity of many biological organisms in addition to expanding the available tools to mimic such structures at a molecular level.

  9. Self-assembly as a design tool for the integration of photonic structures into excitonic solar cells

    KAUST Repository

    Guldin, S.

    2011-09-20

    One way to successfully enhance light harvesting of excitonic solar cells is the integration of optical elements that increase the photon path length in the light absorbing layer. Device architectures which incorporate structural order in form of one- or three-dimensional refractive index lattices can lead to the localization of light in specific parts of the spectrum, while retaining the cell\\'s transparency in others. Herein, we present two routes for the integration of photonic crystals (PCs) into dye-sensitized solar cells (DSCs). In both cases, the self-assembly of soft matter plays a key role in the fabrication process of the TiO2 electrode. One approach relies on a combination of colloidal self-assembly and the self-assembly of block copolymers, resulting in a double layer dye-sensitized solar cell with increased light absorption from the 3D PC element. An alternative route is based on the fact that the refractive index of the mesoporous layer can be finely tuned by the interplay between block copolymer self-assembly and hydrolytic TiO2 sol-gel chemistry. Alternating deposition of high and low refractive index layers enables the integration of a 1D PC into a DSC.

  10. A Novel Strategy for Synthesis of Gold Nanoparticle Self Assemblies

    NARCIS (Netherlands)

    Verma, Jyoti; Lal, Sumit; van Veen, Henk A.; van Noorden, Cornelis J. F.

    2014-01-01

    Gold nanoparticle self assemblies are one-dimensional structures of gold nanoparticles. Gold nanoparticle self assemblies exhibit unique physical properties and find applications in the development of biosensors. Methodologies currently available for lab-scale and commercial synthesis of gold

  11. Nano-indentation at the surface contact level: applying a harmonic frequency for measuring contact stiffness of self-assembled monolayers adsorbed on Au

    International Nuclear Information System (INIS)

    Chang, C.-W.; Liao, J.-D.

    2008-01-01

    In this study, the well-ordered alkanethiolate self-assembled monolayers (SAMs) of varied chain lengths and tail groups were employed as examples for nano-characterization on their mechanical properties. A novel nano-indentation technique with a constant harmonic frequency was applied on SAMs chemically adsorbed on Au to explore their contact mechanics, and furthermore to interpret how SAM molecules respond to an infinitesimal oscillation force without pressing them. Experimental results demonstrated that the harmonic contact stiffness along with the measured displacement of SAMs/Au was distinguishable using a dynamic contact modulus with the distinct feature of phase angles. Phase angles resulted from the relaxing continuation of an applied harmonic frequency and mostly influenced by the outermost tail group of SAM molecules. The harmonic contact stiffness of SAM molecules obviously increased with the densely packed alkyl chains and relatively intense agglomeration of the head group at the anchoring site. As a consequence, the result of this work is relevant to contact mechanics at the surface contact level for the distinction of molecular substances attached on a solid surface. Furthermore it is particularly anticipated to identify biological molecules of variable qualities under a fluid-like micro-environment

  12. Nano-indentation at the surface contact level: applying a harmonic frequency for measuring contact stiffness of self-assembled monolayers adsorbed on Au

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C.-W.; Liao, J.-D. [Department of Materials Science and Engineering, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan (China)], E-mail: jdliao@mail.ncku.edu.tw

    2008-08-06

    In this study, the well-ordered alkanethiolate self-assembled monolayers (SAMs) of varied chain lengths and tail groups were employed as examples for nano-characterization on their mechanical properties. A novel nano-indentation technique with a constant harmonic frequency was applied on SAMs chemically adsorbed on Au to explore their contact mechanics, and furthermore to interpret how SAM molecules respond to an infinitesimal oscillation force without pressing them. Experimental results demonstrated that the harmonic contact stiffness along with the measured displacement of SAMs/Au was distinguishable using a dynamic contact modulus with the distinct feature of phase angles. Phase angles resulted from the relaxing continuation of an applied harmonic frequency and mostly influenced by the outermost tail group of SAM molecules. The harmonic contact stiffness of SAM molecules obviously increased with the densely packed alkyl chains and relatively intense agglomeration of the head group at the anchoring site. As a consequence, the result of this work is relevant to contact mechanics at the surface contact level for the distinction of molecular substances attached on a solid surface. Furthermore it is particularly anticipated to identify biological molecules of variable qualities under a fluid-like micro-environment.

  13. Mesoscopic Self-Assembly: A Shift to Complexity

    Directory of Open Access Journals (Sweden)

    Massimo eMastrangeli

    2015-06-01

    Full Text Available By focusing on the construction of thermodynamically stable structures, the self-assembly of mesoscopic systems has proven capable of formidable achievements in the bottom-up engineering of micro- and nanosystems. Yet, inspired by an analogous evolution in supramolecular chemistry, synthetic mesoscopic self-assembly may have a lot more ahead, within reach of a shift toward fully three-dimensional architectures, collective interactions of building blocks and kinetic control. All over these challenging fronts, complexity holds the key.

  14. Lipid self-assembly and lectin-induced reorganization of the plasma membrane.

    Science.gov (United States)

    Sych, Taras; Mély, Yves; Römer, Winfried

    2018-05-26

    The plasma membrane represents an outstanding example of self-organization in biology. It plays a vital role in protecting the integrity of the cell interior and regulates meticulously the import and export of diverse substances. Its major building blocks are proteins and lipids, which self-assemble to a fluid lipid bilayer driven mainly by hydrophobic forces. Even if the plasma membrane appears-globally speaking-homogeneous at physiological temperatures, the existence of specialized nano- to micrometre-sized domains of raft-type character within cellular and synthetic membrane systems has been reported. It is hypothesized that these domains are the origin of a plethora of cellular processes, such as signalling or vesicular trafficking. This review intends to highlight the driving forces of lipid self-assembly into a bilayer membrane and the formation of small, transient domains within the plasma membrane. The mechanisms of self-assembly depend on several factors, such as the lipid composition of the membrane and the geometry of lipids. Moreover, the dynamics and organization of glycosphingolipids into nanometre-sized clusters will be discussed, also in the context of multivalent lectins, which cluster several glycosphingolipid receptor molecules and thus create an asymmetric stress between the two membrane leaflets, leading to tubular plasma membrane invaginations.This article is part of the theme issue 'Self-organization in cell biology'. © 2018 The Author(s).

  15. Nondeterministic self-assembly of two tile types on a lattice.

    Science.gov (United States)

    Tesoro, S; Ahnert, S E

    2016-04-01

    Self-assembly is ubiquitous in nature, particularly in biology, where it underlies the formation of protein quaternary structure and protein aggregation. Quaternary structure assembles deterministically and performs a wide range of important functions in the cell, whereas protein aggregation is the hallmark of a number of diseases and represents a nondeterministic self-assembly process. Here we build on previous work on a lattice model of deterministic self-assembly to investigate nondeterministic self-assembly of single lattice tiles and mixtures of two tiles at varying relative concentrations. Despite limiting the simplicity of the model to two interface types, which results in 13 topologically distinct single tiles and 106 topologically distinct sets of two tiles, we observe a wide variety of concentration-dependent behaviors. Several two-tile sets display critical behaviors in the form of a sharp transition from bound to unbound structures as the relative concentration of one tile to another increases. Other sets exhibit gradual monotonic changes in structural density, or nonmonotonic changes, while again others show no concentration dependence at all. We catalog this extensive range of behaviors and present a model that provides a reasonably good estimate of the critical concentrations for a subset of the critical transitions. In addition, we show that the structures resulting from these tile sets are fractal, with one of two different fractal dimensions.

  16. Manufacture of Nano Structures in Polymer Material

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Pedersen, H.C.; Staun, Jacob

    2003-01-01

    The incorporation of micro and nano technology into the products of the future is an area of increasing interest. The ideas for new products based on this technology often take their starting point in specific scientific fields whereas the subsequent design and product development not necessarily...... is based on a systematic approach including manufacturing processes and production system capabilities. The process chain associated with micro and nano injection moulding usually comprises silicon or photoresist mastering, electroforming and polymer processing. Additionally, if the produced polymer...... components are to be used in a microsystem, subsequent handling and assembly is necessary. The present paper describes the process chain related to the manufacture of optical gratings with nanometer-sized structures. The problems of each process step and the challenges of establishing a coherent production...

  17. Three-dimensional visualization and characterization of polymeric self-assemblies by Transmission Electron Microtomography

    NARCIS (Netherlands)

    H. Jinnai (Hiroshi); T. Higuchi (Takeshi); X. Zhuge (Jason); A. Kumamoto (Akihito); K.J. Batenburg (Joost); Y. Ikuhara (Yuichi)

    2017-01-01

    textabstractSelf-assembling structures and their dynamical processes in polymeric systems have been investigated using three-dimensional transmission electron microscopy (3D-TEM). Block copolymers (BCPs) self-assemble into nanoscale periodic structures called microphase-separated structures, a deep

  18. DNA-Based Self-Assembly of Fluorescent Nanodiamonds.

    Science.gov (United States)

    Zhang, Tao; Neumann, Andre; Lindlau, Jessica; Wu, Yuzhou; Pramanik, Goutam; Naydenov, Boris; Jelezko, Fedor; Schüder, Florian; Huber, Sebastian; Huber, Marinus; Stehr, Florian; Högele, Alexander; Weil, Tanja; Liedl, Tim

    2015-08-12

    As a step toward deterministic and scalable assembly of ordered spin arrays we here demonstrate a bottom-up approach to position fluorescent nanodiamonds (NDs) with nanometer precision on DNA origami structures. We have realized a reliable and broadly applicable surface modification strategy that results in DNA-functionalized and perfectly dispersed NDs that were then self-assembled in predefined geometries. With optical studies we show that the fluorescence properties of the nitrogen-vacancy color centers in NDs are preserved during surface modification and DNA assembly. As this method allows the nanoscale arrangement of fluorescent NDs together with other optically active components in complex geometries, applications based on self-assembled spin lattices or plasmon-enhanced spin sensors as well as improved fluorescent labeling for bioimaging could be envisioned.

  19. Supramolecular domains in mixed peptide self-assembled monolayers on gold nanoparticles.

    Science.gov (United States)

    Duchesne, Laurence; Wells, Geoff; Fernig, David G; Harris, Sarah A; Lévy, Raphaël

    2008-09-01

    Self-organization in mixed self-assembled monolayers of small molecules provides a route towards nanoparticles with complex molecular structures. Inspired by structural biology, a strategy based on chemical cross-linking is introduced to probe proximity between functional peptides embedded in a mixed self-assembled monolayer at the surface of a nanoparticle. The physical basis of the proximity measurement is a transition from intramolecular to intermolecular cross-linking as the functional peptides get closer. Experimental investigations of a binary peptide self-assembled monolayer show that this transition happens at an extremely low molar ratio of the functional versus matrix peptide. Molecular dynamics simulations of the peptide self-assembled monolayer are used to calculate the volume explored by the reactive groups. Comparison of the experimental results with a probabilistic model demonstrates that the peptides are not randomly distributed at the surface of the nanoparticle, but rather self-organize into supramolecular domains.

  20. Self-assembly of coiled coil peptides into nanoparticles vs 2-d plates: effects of assembly pathway

    Science.gov (United States)

    Kim, Kyunghee; Pochan, Darrin

    Molecular solution assembly, or self-assembly, is a process by which ordered nanostructures or patterns are formed by non-covalent interactions during assembly. Biomimicry, the use of bioinspired molecules or biologically relevant materials, is an important area of self-assembly research with peptides serving a critical role as molecular tools. The morphology of peptide assemblies can be controlled by adjusting solution conditions such as the concentration of peptides, the temperature, and pH. Herein, spherical nanostructures, which have potential for creating an encapsulation system, are formed by self-assembly when coiled coil peptides are combined in solution. These peptides are homotrimeric and heterodimeric coiled-coil bundles and the homotrimer is connected with each of heterodimer through their external surfaces via disulfide bonds. The resultant covalent constructs could co-assemble into complementary trimeric hubs, respectively. The two peptide constructs are directly mixed and assembled in solution in order to produce either spherical particles or 2-d plates depending on the solution conditions and kinetic pathway of assembly. In particular, structural changes of the self-assembled peptides are explored by control of the thermal history of the assembly solution.

  1. From self-organization to self-assembly: a new materialism?

    Science.gov (United States)

    Vincent, Bernadette Bensaude

    2016-09-01

    While self-organization has been an integral part of academic discussions about the distinctive features of living organisms, at least since Immanuel Kant's Critique of Judgement, the term 'self-assembly' has only been used for a few decades as it became a hot research topic with the emergence of nanotechnology. Could it be considered as an attempt at reducing vital organization to a sort of assembly line of molecules? Considering the context of research on self-assembly I argue that the shift of attention from self-organization to self-assembly does not really challenge the boundary between chemistry and biology. Self-assembly was first and foremost investigated in an engineering context as a strategy for manufacturing without human intervention and did not raise new perspectives on the emergence of vital organization itself. However self-assembly implies metaphysical assumptions that this paper tries to disentangle. It first describes the emergence of self-assembly as a research field in the context of materials science and nanotechnology. The second section outlines the metaphysical implications and will emphasize a sharp contrast between the ontology underlying two practices of self-assembly developed under the umbrella of synthetic biology. And unexpectedly, we shall see that chemists are less on the reductionist side than most synthetic biologists. Finally, the third section ventures some reflections on the kind of design involved in self-assembly practices.

  2. Nano- and micro-structured assemblies for encapsulation of food ingredients.

    Science.gov (United States)

    Augustin, Mary Ann; Hemar, Yacine

    2009-04-01

    This tutorial review provides an overview of the science of food materials and encapsulation techniques that underpin the development of delivery vehicles for functional food components, nutrients and bioactives. Examples of how the choice of materials, formulation and process affect the structure of micro- and nano-encapsulated ingredients and the release of the core are provided. The review is of relevance to chemists, material scientists, food scientists, engineers and nutritionists who are interested in addressing delivery challenges in the food and health industries.

  3. Fabrication of new carbon paste electrodes based on gold nano-particles self-assembled to mercapto compounds as suitable ionophores for potentiometric determination of copper ions

    Directory of Open Access Journals (Sweden)

    Rasoul Pourtaghavi Talemi

    2013-12-01

    Full Text Available In the present study, we investigate the potentiometric behavior of Cu2+ carbon paste electrodes based on two mercapto compounds 2-ethylmino-5-mercapto-1,3,4-thiadiazole (EAMT and 2-acetylamino-5-mercapto-1,3,4-thiadiazole (AAMT self-assembled on gold nano-paricle (GNP as ionophore. Then, the obtained results from the modified electrodes are compared. The self-assembled ionophores exhibit a high selectivity for copper ion (Cu2+, in which the sulfur and nitrogen atoms in their structure play a significant role as the effective coordination donor site for the copper ion. Among these electrodes, the best performance was obtained with the sensor with a EAMT/graphite powder/paraffin oil weight ratio of 4.0/68/28 with 200 µL of GNP which exhibits the working concentration range of 1.6×10−9 to 6.3×10−2 M and a nernstian slope of 28.9±0.4 mVdecade−1 of copper(II activity. The detection limit of electrode was 2.9(±0.2×10−10M and potential response was pH ; in other words, it was independent across the range of 2.8–6.3. The proposed electrode presented very good selectivity and sensitivity towards the Cu2+ ions over a wide variety of cations including alkali, alkaline earth, transition and heavy metal ions. Moreover, the proposed electrode was successfully applied as an indicator electrode in the potentiometric titration of Cu(II ions with EDTA and also the potentiometric determination of copper ions in spiked water samples.

  4. Long-range energy transfer in self-assembled quantum dot-DNA cascades

    Science.gov (United States)

    Goodman, Samuel M.; Siu, Albert; Singh, Vivek; Nagpal, Prashant

    2015-11-01

    The size-dependent energy bandgaps of semiconductor nanocrystals or quantum dots (QDs) can be utilized in converting broadband incident radiation efficiently into electric current by cascade energy transfer (ET) between layers of different sized quantum dots, followed by charge dissociation and transport in the bottom layer. Self-assembling such cascade structures with angstrom-scale spatial precision is important for building realistic devices, and DNA-based QD self-assembly can provide an important alternative. Here we show long-range Dexter energy transfer in QD-DNA self-assembled single constructs and ensemble devices. Using photoluminescence, scanning tunneling spectroscopy, current-sensing AFM measurements in single QD-DNA cascade constructs, and temperature-dependent ensemble devices using TiO2 nanotubes, we show that Dexter energy transfer, likely mediated by the exciton-shelves formed in these QD-DNA self-assembled structures, can be used for efficient transport of energy across QD-DNA thin films.The size-dependent energy bandgaps of semiconductor nanocrystals or quantum dots (QDs) can be utilized in converting broadband incident radiation efficiently into electric current by cascade energy transfer (ET) between layers of different sized quantum dots, followed by charge dissociation and transport in the bottom layer. Self-assembling such cascade structures with angstrom-scale spatial precision is important for building realistic devices, and DNA-based QD self-assembly can provide an important alternative. Here we show long-range Dexter energy transfer in QD-DNA self-assembled single constructs and ensemble devices. Using photoluminescence, scanning tunneling spectroscopy, current-sensing AFM measurements in single QD-DNA cascade constructs, and temperature-dependent ensemble devices using TiO2 nanotubes, we show that Dexter energy transfer, likely mediated by the exciton-shelves formed in these QD-DNA self-assembled structures, can be used for efficient

  5. Programmed self-assembly of DNA/RNA for biomedical applications

    Science.gov (United States)

    Wang, Pengfei

    Three self-assembly strategies were utilized for assembly of novel functional DNA/RNA nanostructures. RNA-DNA hybrid origami method was developed to fabricate nano-objects (ribbon, rectangle, and triangle) with precisely controlled geometry. Unlike conventional DNA origami which use long DNA single strand as scaffold, a long RNA single strand was used instead, which was folded by short DNA single strands (staples) into prescribed objects through sequence specific hybridization between RNA and DNA. Single stranded tiles (SST) and RNA-DNA hybrid origami were utilized to fabricate a variety of barcode-like nanostructures with unique patterns by expanding a plain rectangle via introducing spacers (10-bp dsDNA segment) between parallel duplexes. Finally, complex 2D array and 3D polyhedrons with multiple patterns within one structure were assembled from simple DNA motifs. Two demonstrations of biomedical applications of DNA nanotechnology were presented. Firstly, lambda-DNA was used as template to direct the fabrication of multi-component magnetic nanoparticle chains. Nuclear magnetic relaxation (NMR) characterization showed superb magnetic relaxativity of the nanoparticle chains which have large potential to be utilized as MRI contrast agents. Secondly, DNA nanotechnology was introduced into the conformational study of a routinely used catalytic DNAzyme, the RNA-cleaving 10-23 DNAzyme. The relative angle between two flanking duplexes of the catalytic core was determined (94.8°), which shall be able to provide a clue to further understanding of the cleaving mechanism of this DNAzyme from a conformational perspective.

  6. Self-organized titanium oxide nano-channels for resistive memory application

    Energy Technology Data Exchange (ETDEWEB)

    Barman, A.; Saini, C. P.; Dhar, S.; Kanjilal, A., E-mail: aloke.kanjilal@snu.edu.in [Department of Physics, School of Natural Sciences, Shiv Nadar University, NH-91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh 201 314 (India); Sarkar, P. [Department of Physics, National Institute of Technology, Silchar, Assam 788 010 (India); Satpati, B.; Bhattacharyya, S. R. [Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064 (India); Kabiraj, D.; Kanjilal, D. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067 (India)

    2015-12-14

    Towards developing next generation scalable TiO{sub 2}-based resistive switching (RS) memory devices, the efficacy of 50 keV Ar{sup +}-ion irradiation to achieve self-organized nano-channel based structures at a threshold fluence of 5 × 10{sup 16} ions/cm{sup 2} at ambient temperature is presented. Although x-ray diffraction results suggest the amorphization of as-grown TiO{sub 2} layers, detailed transmission electron microscopy study reveals fluence-dependent evolution of voids and eventual formation of self-organized nano-channels between them. Moreover, gradual increase of TiO/Ti{sub 2}O{sub 3} in the near surface region, as monitored by x-ray photoelectron spectroscopy, establishes the upsurge in oxygen deficient centers. The impact of structural and chemical modification on local RS behavior has also been investigated by current-voltage measurements in conductive atomic force microscopy, while memory application is manifested by fabricating Pt/TiO{sub 2}/Pt/Ti/SiO{sub 2}/Si devices. Finally, the underlying mechanism of our experimental results has been analyzed and discussed in the light of oxygen vacancy migration through nano-channels.

  7. DNA Self-Assembly: From Chirality to Evolution

    Directory of Open Access Journals (Sweden)

    Youri Timsit

    2013-04-01

    Full Text Available Transient or long-term DNA self-assembly participates in essential genetic functions. The present review focuses on tight DNA-DNA interactions that have recently been found to play important roles in both controlling DNA higher-order structures and their topology. Due to their chirality, double helices are tightly packed into stable right-handed crossovers. Simple packing rules that are imposed by DNA geometry and sequence dictate the overall architecture of higher order DNA structures. Close DNA-DNA interactions also provide the missing link between local interactions and DNA topology, thus explaining how type II DNA topoisomerases may sense locally the global topology. Finally this paper proposes that through its influence on DNA self-assembled structures, DNA chirality played a critical role during the early steps of evolution.

  8. Chemical reactions directed Peptide self-assembly.

    Science.gov (United States)

    Rasale, Dnyaneshwar B; Das, Apurba K

    2015-05-13

    Fabrication of self-assembled nanostructures is one of the important aspects in nanoscience and nanotechnology. The study of self-assembled soft materials remains an area of interest due to their potential applications in biomedicine. The versatile properties of soft materials can be tuned using a bottom up approach of small molecules. Peptide based self-assembly has significant impact in biology because of its unique features such as biocompatibility, straight peptide chain and the presence of different side chain functionality. These unique features explore peptides in various self-assembly process. In this review, we briefly introduce chemical reaction-mediated peptide self-assembly. Herein, we have emphasised enzymes, native chemical ligation and photochemical reactions in the exploration of peptide self-assembly.

  9. Identification of Factors Promoting HBV Capsid Self-Assembly by Assembly-Promoting Antivirals.

    Science.gov (United States)

    Rath, Soumya Lipsa; Liu, Huihui; Okazaki, Susumu; Shinoda, Wataru

    2018-02-26

    Around 270 million individuals currently live with hepatitis B virus (HBV) infection. Heteroaryldihydropyrimidines (HAPs) are a family of antivirals that target the HBV capsid protein and induce aberrant self-assembly. The capsids formed resemble the native capsid structure but are unable to propagate the virus progeny because of a lack of RNA/DNA. Under normal conditions, self-assembly is initiated by the viral genome. The mode of action of HAPs, however, remains largely unknown. In this work, using molecular dynamics simulations, we attempted to understand the action of HAP by comparing the dynamics of capsid proteins with and without HAPs. We found that the inhibitor is more stable in higher oligomers. It retains its stability in the hexamer throughout 1 μs of simulation. Our results also show that the inhibitor might help in stabilizing the C-terminus, the HBc 149-183 arginine-rich domain of the capsid protein. The C-termini of dimers interact with each other, assisted by the HAP inhibitor. During capsid assembly, the termini are supposed to directly interact with the viral genome, thereby suggesting that the viral genome might work in a similar way to stabilize the capsid protein. Our results may help in understanding the underlying molecular mechanism of HBV capsid self-assembly, which should be crucial for exploring new drug targets and structure-based drug design.

  10. Electrodeposition of nickel nano wire arrays

    International Nuclear Information System (INIS)

    Nur Ubaidah Saidin; Kok Kuan Ying; Ng Inn Khuan; Nurazila Mat Zali; Siti Salwa Zainal Abidin

    2010-01-01

    Synthesis, characterization and assembly of one-dimensional nickel nano wires prepared by template directed electrodeposition are discussed in this paper. Parallel arrays of high aspect ratio nickel nano wires were electrodeposited using electrolytes with different cations and pH. The nano wires were characterized using X-ray diffractometry and scanning electron microscopy. It was found that the orientations of the electro deposited Ni nano wires were governed by the deposition current and the electrolyte conditions. Free standing nickel nano wires can be obtained by dissolving the template. Due to the magnetic nature of the nano wires, magnetic alignment was employed to assemble and position the free standing nano wires in the device structure. (author)

  11. Aligned Layers of Silver Nano-Fibers

    Directory of Open Access Journals (Sweden)

    Andrii B. Golovin

    2012-02-01

    Full Text Available We describe a new dichroic polarizers made by ordering silver nano-fibers to aligned layers. The aligned layers consist of nano-fibers and self-assembled molecular aggregates of lyotropic liquid crystals. Unidirectional alignment of the layers is achieved by means of mechanical shearing. Aligned layers of silver nano-fibers are partially transparent to a linearly polarized electromagnetic radiation. The unidirectional alignment and density of the silver nano-fibers determine degree of polarization of transmitted light. The aligned layers of silver nano-fibers might be used in optics, microwave applications, and organic electronics.

  12. Watching Nanoscale Self-Assembly Kinetics of Gold Prisms in Liquids

    Science.gov (United States)

    Kim, Juyeong; Ou, Zihao; Jones, Matthew R.; Chen, Qian

    We use liquid-phase transmission electron microscopy to watch self-assembly of gold triangular prisms into polymer-like structures. The in situ dynamics monitoring enabled by liquid-phase transmission electron microscopy, single nanoparticle tracking, and the marked conceptual similarity between molecular reactions and nanoparticle self-assembly combined elucidate the following mechanistic understanding: a step-growth polymerization based assembly statistics, kinetic pathways sampling particle curvature dependent energy minima and their interconversions, and directed assembly into polymorphs (linear or cyclic chains) through in situ modulation of the prism bonding geometry. Our study bridges the constituent kinetics on the molecular and nanoparticle length scales, which enriches the design rules in directed self-assembly of anisotropic nanoparticles.

  13. Fatigue crack propagation in self-assembling nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Klingler, Andreas; Wetzel, Bernd [Institute for Composite Materials (IVW GmbH) Technical University of Kaiserslautern, 67633 Kaiserslautern (Germany)

    2016-05-18

    Self-assembling block-copolymers allow the easy manufacturing of nanocomposites due to the thermodynamically driven in situ formation of nanosized phases in thermosetting resins during the curing process. Complex mechanical dispersion processes can be avoided. The current study investigates the effect of a block-copolymer on the fatigue crack propagation resistance of a cycloaliphatic amine cured epoxy resin. It was found that a small amount of MAM triblock-copolymer significantly increases the resistance to fatigue crack propagation of epoxy. Crack growth rate and the Paris law exponent for fatigue-crack growth were considerably reduced from m=15.5 of the neat epoxy to m=8.1 of the nanocomposite. To identify the related reinforcing and fracture mechanisms structural analyses of the fractured surfaces were performed by scanning electron microscope. Characteristic features were identified to be deformation, debonding and fracture of the nano-phases as well as crack pinning. However, the highest resistance against fatigue crack propagation was achieved in a bi-continuous microstructure that consisted of an epoxy-rich phase with embedded submicron sized MAM inclusions, and which was surrounded by a block-copolymer-rich phase that showed rupture and plastic deformation.

  14. Fatigue crack propagation in self-assembling nanocomposites

    Science.gov (United States)

    Klingler, Andreas; Wetzel, Bernd

    2016-05-01

    Self-assembling block-copolymers allow the easy manufacturing of nanocomposites due to the thermodynamically driven in situ formation of nanosized phases in thermosetting resins during the curing process. Complex mechanical dispersion processes can be avoided. The current study investigates the effect of a block-copolymer on the fatigue crack propagation resistance of a cycloaliphatic amine cured epoxy resin. It was found that a small amount of MAM triblock-copolymer significantly increases the resistance to fatigue crack propagation of epoxy. Crack growth rate and the Paris law exponent for fatigue-crack growth were considerably reduced from m=15.5 of the neat epoxy to m=8.1 of the nanocomposite. To identify the related reinforcing and fracture mechanisms structural analyses of the fractured surfaces were performed by scanning electron microscope. Characteristic features were identified to be deformation, debonding and fracture of the nano-phases as well as crack pinning. However, the highest resistance against fatigue crack propagation was achieved in a bi-continuous microstructure that consisted of an epoxy-rich phase with embedded submicron sized MAM inclusions, and which was surrounded by a block-copolymer-rich phase that showed rupture and plastic deformation.

  15. Fatigue crack propagation in self-assembling nanocomposites

    International Nuclear Information System (INIS)

    Klingler, Andreas; Wetzel, Bernd

    2016-01-01

    Self-assembling block-copolymers allow the easy manufacturing of nanocomposites due to the thermodynamically driven in situ formation of nanosized phases in thermosetting resins during the curing process. Complex mechanical dispersion processes can be avoided. The current study investigates the effect of a block-copolymer on the fatigue crack propagation resistance of a cycloaliphatic amine cured epoxy resin. It was found that a small amount of MAM triblock-copolymer significantly increases the resistance to fatigue crack propagation of epoxy. Crack growth rate and the Paris law exponent for fatigue-crack growth were considerably reduced from m=15.5 of the neat epoxy to m=8.1 of the nanocomposite. To identify the related reinforcing and fracture mechanisms structural analyses of the fractured surfaces were performed by scanning electron microscope. Characteristic features were identified to be deformation, debonding and fracture of the nano-phases as well as crack pinning. However, the highest resistance against fatigue crack propagation was achieved in a bi-continuous microstructure that consisted of an epoxy-rich phase with embedded submicron sized MAM inclusions, and which was surrounded by a block-copolymer-rich phase that showed rupture and plastic deformation.

  16. Morphology and Pattern Control of Diphenylalanine Self-Assembly via Evaporative Dewetting.

    Science.gov (United States)

    Chen, Jiarui; Qin, Shuyu; Wu, Xinglong; Chu, And Paul K

    2016-01-26

    Self-assembled peptide nanostructures have unique physical and biological properties and promising applications in electrical devices and functional molecular recognition. Although solution-based peptide molecules can self-assemble into different morphologies, it is challenging to control the self-assembly process. Herein, controllable self-assembly of diphenylalanine (FF) in an evaporative dewetting solution is reported. The fluid mechanical dimensionless numbers, namely Rayleigh, Marangoni, and capillary numbers, are introduced to control the interaction between the solution and FF molecules in the self-assembly process. The difference in the film thickness reflects the effects of Rayleigh and Marangoni convection, and the water vapor flow rate reveals the role of viscous fingering in the emergence of aligned FF flakes. By employing dewetting, various FF self-assembled patterns, like concentric and spokelike, and morphologies, like strips and hexagonal tubes/rods, can be produced, and there are no significant lattice structural changes in the FF nanostructures.

  17. Coupling DNA nano-breadboards to solid state conductors

    International Nuclear Information System (INIS)

    Wang, Liqian; Morales, Piero; Dalmastri, Claudia; Rapone, Bruno; Gothelf, Kurt; Krissanaprasit, Abhichart; Rettere, Scott

    2015-01-01

    DNA is not only a most extraordinary information storage medium: the programmable pairing of DNA single strands into precisely engineered, connecting double helices make it an extremely appealing material for assemblage of nanoscale architectures. This is the basis of DNA nanotechnology, and designing almost any structure made of DNA at the nanometer scale, decorating it with a variety of functional molecules, and accomplishing it by virtually inexpensive self-assembly, is already a reality in many research laboratories in the world. But can we extend the range of applications of this technology by coupling DNA grafted molecular electronic nano circuitry to solid state devices, and interface molecular smart functions to our senses? This challenging research is addressed by a collaborative research among ENEA, the Universities of Roma 'Tor Vergata' and 'Aarhus', and the CNMS of the Oak Ridge National Laboratory. The first results obtained by our consortium pave the way to the technological ability to interface and use completely self-assembled, DNA-based electronic nano-breadboards, endowed with ultra-high-density functional organic components [it

  18. Multifunctional Nanoparticles Self-Assembled from Small Organic Building Blocks for Biomedicine.

    Science.gov (United States)

    Xing, Pengyao; Zhao, Yanli

    2016-09-01

    Supramolecular self-assembly shows significant potential to construct responsive materials. By tailoring the structural parameters of organic building blocks, nanosystems can be fabricated, whose performance in catalysis, energy storage and conversion, and biomedicine has been explored. Since small organic building blocks are structurally simple, easily modified, and reproducible, they are frequently employed in supramolecular self-assembly and materials science. The dynamic and adaptive nature of self-assembled nanoarchitectures affords an enhanced sensitivity to the changes in environmental conditions, favoring their applications in controllable drug release and bioimaging. Here, recent significant research advancements of small-organic-molecule self-assembled nanoarchitectures toward biomedical applications are highlighted. Functionalized assemblies, mainly including vesicles, nanoparticles, and micelles are categorized according to their topological morphologies and functions. These nanoarchitectures with different topologies possess distinguishing advantages in biological applications, well incarnating the structure-property relationship. By presenting some important discoveries, three domains of these nanoarchitectures in biomedical research are covered, including biosensors, bioimaging, and controlled release/therapy. The strategies regarding how to design and characterize organic assemblies to exhibit biomedical applications are also discussed. Up-to-date research developments in the field are provided and research challenges to be overcome in future studies are revealed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Nano-soldering of magnetically aligned three-dimensional nanowire networks

    International Nuclear Information System (INIS)

    Gao Fan; Gu Zhiyong

    2010-01-01

    It is extremely challenging to fabricate 3D integrated nanostructures and hybrid nanoelectronic devices. In this paper, we report a simple and efficient method to simultaneously assemble and solder nanowires into ordered 3D and electrically conductive nanowire networks. Nano-solders such as tin were fabricated onto both ends of multi-segmented nanowires by a template-assisted electrodeposition method. These nanowires were then self-assembled and soldered into large-scale 3D network structures by magnetic field assisted assembly in a liquid medium with a high boiling point. The formation of junctions/interconnects between the nanowires and the scale of the assembly were dependent on the solder reflow temperature and the strength of the magnetic field. The size of the assembled nanowire networks ranged from tens of microns to millimeters. The electrical characteristics of the 3D nanowire networks were measured by regular current-voltage (I-V) measurements using a probe station with micropositioners. Nano-solders, when combined with assembling techniques, can be used to efficiently connect and join nanowires with low contact resistance, which are very well suited for sensor integration as well as nanoelectronic device fabrication.

  20. Self-organization of a self-assembled supramolecular rectangle, square, and three-dimensional cage on Au111 surfaces.

    Science.gov (United States)

    Yuan, Qun-Hui; Wan, Li-Jun; Jude, Hershel; Stang, Peter J

    2005-11-23

    The structure and conformation of three self-assembled supramolecular species, a rectangle, a square, and a three-dimensional cage, on Au111 surfaces were investigated by scanning tunneling microscopy. These supramolecular assemblies adsorb on Au111 surfaces and self-organize to form highly ordered adlayers with distinct conformations that are consistent with their chemical structures. The faces of the supramolecular rectangle and square lie flat on the surface, preserving their rectangle and square conformations, respectively. The three-dimensional cage also forms well-ordered adlayers on the gold surface, forming regular molecular rows of assemblies. When the rectangle and cage were mixed together, the assemblies separated into individual domains, and no mixed adlayers were observed. These results provide direct evidence of the noncrystalline solid-state structures of these assemblies and information about how they self-organize on Au111 surfaces, which is of importance in the potential manufacturing of functional nanostructures and devices.

  1. Structure and self-assembly of the calcium binding matrix protein of human metapneumovirus.

    Science.gov (United States)

    Leyrat, Cedric; Renner, Max; Harlos, Karl; Huiskonen, Juha T; Grimes, Jonathan M

    2014-01-07

    The matrix protein (M) of paramyxoviruses plays a key role in determining virion morphology by directing viral assembly and budding. Here, we report the crystal structure of the human metapneumovirus M at 2.8 Å resolution in its native dimeric state. The structure reveals the presence of a high-affinity Ca²⁺ binding site. Molecular dynamics simulations (MDS) predict a secondary lower-affinity site that correlates well with data from fluorescence-based thermal shift assays. By combining small-angle X-ray scattering with MDS and ensemble analysis, we captured the structure and dynamics of M in solution. Our analysis reveals a large positively charged patch on the protein surface that is involved in membrane interaction. Structural analysis of DOPC-induced polymerization of M into helical filaments using electron microscopy leads to a model of M self-assembly. The conservation of the Ca²⁺ binding sites suggests a role for calcium in the replication and morphogenesis of pneumoviruses. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Modeling of block copolymer dry etching for directed self-assembly lithography

    Science.gov (United States)

    Belete, Zelalem; Baer, Eberhard; Erdmann, Andreas

    2018-03-01

    Directed self-assembly (DSA) of block copolymers (BCP) is a promising alternative technology to overcome the limits of patterning for the semiconductor industry. DSA exploits the self-assembling property of BCPs for nano-scale manufacturing and to repair defects in patterns created during photolithography. After self-assembly of BCPs, to transfer the created pattern to the underlying substrate, selective etching of PMMA (poly (methyl methacrylate)) to PS (polystyrene) is required. However, the etch process to transfer the self-assemble "fingerprint" DSA patterns to the underlying layer is still a challenge. Using combined experimental and modelling studies increases understanding of plasma interaction with BCP materials during the etch process and supports the development of selective process that form well-defined patterns. In this paper, a simple model based on a generic surface model has been developed and an investigation to understand the etch behavior of PS-b-PMMA for Ar, and Ar/O2 plasma chemistries has been conducted. The implemented model is calibrated for etch rates and etch profiles with literature data to extract parameters and conduct simulations. In order to understand the effect of the plasma on the block copolymers, first the etch model was calibrated for polystyrene (PS) and poly (methyl methacrylate) (PMMA) homopolymers. After calibration of the model with the homopolymers etch rate, a full Monte-Carlo simulation was conducted and simulation results are compared with the critical-dimension (CD) and selectivity of etch profile measurement. In addition, etch simulations for lamellae pattern have been demonstrated, using the implemented model.

  3. Investigation of Supramolecular Coordination Self-Assembly and Polymerization Confined on Metal Surfaces Using Scanning Tunneling Microscopy

    Science.gov (United States)

    Lin, Tao

    derivatives. Firstly, we investigated the coordination self-assembly of a series of peripheral bromo-phenyl and pyridyl substituted porphyrins with Fe. The self-assembly of the porphyrin derivatives in which phenyl groups are substituted by bromo-phenyl results in coordination networks exhibiting identical structures to that of the parent compounds, but contained nanopores that are functionalized by bromine substitutes. Secondly, we studied a two-dimensional coordination networks formed by 5,10,15,20-tetra(4-pyridyl)porphyrin and Fe. We discovered a novel coordination motif in which a pair of vertically aligned Fe atoms is ligated by four equatorial pyridyl groups. Lateral manipulation, vertical manipulation and tunneling spectroscopy were employed to characterize the networks. These novel coordination networks decorated with Br or vertically aligned Fe atoms may provide potential functions as nano-receptor, molecular magnetism or catalyst. Part III addresses the mechanism of on-surface Ullmann coupling reaction. We studied Pd- and Cu-catalyzed Ullmann coupling reactions between phenyl bromide functionalized porphyrin derivatives. We discovered that the reactions catalyzed by Pd or Cu can be described as a two-phase process that involves an initial activation followed by C-C bond formation. Analysis of rate constants of the Pd-catalyzed reactions allowed us to determine its activation energy as (0.41 +/- 0.03) eV. These results provide a quantitative understanding of on-surface Ullmann coupling reaction. Part IV addresses the on-surface self-assembly driven by a combination of coordination bonds and covalent bonds. Firstly, we utilized metal-directed template to control the on-surface polymerization process. Taking advantage of efficient topochemical enhancement owing to the conformation flexibility of the Cu-pyridyl bonds, macromolecular porphyrin structures that exhibit a narrow size distribution were synthesized. The results reveal that the polymerization process profited

  4. Structure formation in binary mixtures of lipids and detergents: self-assembly and vesicle division.

    Science.gov (United States)

    Noguchi, Hiroshi

    2013-01-14

    Self-assembly dynamics in binary surfactant mixtures and structure changes of lipid vesicles induced by detergent solution are studied using coarse-grained molecular simulations. Disk-shaped micelles, the bicelles, are stabilized by detergents surrounding the rim of a bilayer disk of lipids. The self-assembled bicelles are considerably smaller than bicelles formed from vesicle rupture, and their size is determined by the concentrations of lipids and detergents and the interactions between the two species. The detergent-adsorption induces spontaneous curvature of the vesicle bilayer and results in vesicle division into two vesicles or vesicle rupture into worm-like micelles. The division occurs mainly via the inverse pathway of the modified stalk model. For large spontaneous curvature of the monolayers of the detergents, a pore is often opened, thereby leading to vesicle division or worm-like micelle formation.

  5. Shrink-induced graphene sensor for alpha-fetoprotein detection with low-cost self-assembly and label-free assay

    Science.gov (United States)

    Sando, Shota; Zhang, Bo; Cui, Tianhong

    2017-12-01

    Combination of shrink induced nano-composites technique and layer-by-layer (LbL) self-assembled graphene challenges controlling surface morphology. Adjusting shrink temperature achieves tunability on graphene surface morphology on shape memory polymers, and it promises to be an alternative in fields of high-surface-area conductors and molecular detection. In this study, self-assembled graphene on a shrink polymer substrate exhibits nanowrinkles after heating. Induced nanowrinkles on graphene with different shrink temperature shows distinct surface roughness and wettability. As a result, it becomes more hydrophilic with higher shrink temperatures. The tunable wettability promises to be utilized in, for example, microfluidic devices. The graphene on shrink polymer also exhibits capability of being used in sensing applications for pH and alpha-fetoprotein (AFP) detection with advantages of label free and low cost, due to self-assembly technique, easy functionalization, and antigen-antibody reaction on graphene surface. The detection limit of AFP detection is down to 1 pg/mL, and therefore the sensor also has a significant potential for biosensing as it relies on low-cost self-assembly and label-free assay.

  6. Development of self-assembled molecular structures on polymeric surfaces and their applications as ultrasonically responsive barrier coatings for on-demand, pulsatile drug delivery

    Science.gov (United States)

    Kwok, Connie Sau-Kuen

    Nature in the form of DNA, proteins, and cells has the remarkable ability to interact with its environment by processing biological information through specific molecular recognition at the interface. As such, materials that are capable of triggering an appropriate biological response need to be engineered at the biomaterial surface. Chemically and structurally well-defined self-assembled monolayers (SAMs), biomimetics of the lipid bilayer in cell membranes, have been created and studied mostly on rigid metallic surfaces. This dissertation is motivated by the lack of methods to generate a molecularly designed surface for biomedical polymers and thus provides an enabling technology to engineer a polymeric surface precisely at a molecular and cellular level. To take this innovation one step further, we demonstrated that such self-assembled molecular structure coated on drug-containing polymeric devices could act as a stimulus-responsive barrier for controlled drug delivery. A simple, one-step procedure for generating ordered, crystalline methylene chains on polymeric surfaces via urethane linkages was successfully developed. The self-assemblies and molecular structures of these crystalline methylene chains are comparable to the SAM model surfaces, as evidenced by various surface characterization techniques (XPS, TOF-SIMS, and FTIR-ATR). For the first time, these self-assembled molecular structures are shown to function collectively as an ultrasound-responsive barrier membrane for pulsatile drug delivery, including delivery of low-molecular-weight ciprofloxacin and high-molecular-weight insulin. Encouraging results, based on the insulin-activated deoxyglucose uptakes in adipocytes, indicate that the released insulin remained biologically active. Both chemical and acoustic analyses suggest that the ultrasound-assisted release mechanism is primarily induced by transient cavitation, which causes temporary disruption of the self-assembled overlayer, and thus allows

  7. Nano structures for Medical Diagnostics Md

    International Nuclear Information System (INIS)

    Bellah, M.; Iqbal, S.M.; Bellah, M.; Iqbal, S.M.; Christensen, S.M.; Iqbal, S.M.; Iqbal, S.M.

    2012-01-01

    Nano technology is the art of manipulating materials on atomic or molecular scales especially to build nano scale structures and devices. The field is expanding quickly, and a lot of work is ongoing in the design, characterization, synthesis, and application of materials, structures, devices, and systems by controlling shape and size at nanometer scale. In the last few years, much work has been focused on the use of nano structures toward problems of biology and medicine. In this paper, we focus on the application of various nano structures and nano devices in clinical diagnostics and detection of important biological molecules. The discussion starts by introducing some basic techniques of micro-/nano scale fabrication that have enabled reproducible production of nano structures. The prospects, benefits, and limitations of using these novel techniques in the fields of bio detection and medical diagnostics are then discussed. Finally, the challenges of mass production and acceptance of nano technology by the medical community are considered.

  8. Multifunctional Materials Based on Self Assembly of Molecular Nanostructures

    National Research Council Canada - National Science Library

    Stupp, Samuel

    2001-01-01

    .... The objective was to integrate self assembly, encoded in the triblock structure, luminescent properties, and the properties characteristic of materials that have macroscopically polar structure...

  9. Functional self-assembled lipidic systems derived from renewable resources.

    Science.gov (United States)

    Silverman, Julian R; Samateh, Malick; John, George

    2016-01-01

    Self-assembled lipidic amphiphile systems can create a variety of multi-functional soft materials with value-added properties. When employing natural reagents and following biocatalytic syntheses, self-assembling monomers may be inherently designed for degradation, making them potential alternatives to conventional and persistent polymers. By using non-covalent forces, self-assembled amphiphiles can form nanotubes, fibers, and other stimuli responsive architectures prime for further applied research and incorporation into commercial products. By viewing these lipid derivatives under a lens of green principles, there is the hope that in developing a structure-function relationship and functional smart materials that research may remain safe, economic, and efficient.

  10. Directed self-assembly of large scaffold-free multi-cellular honeycomb structures

    International Nuclear Information System (INIS)

    Tejavibulya, Nalin; Youssef, Jacquelyn; Bao, Brian; Ferruccio, Toni-Marie; Morgan, Jeffrey R

    2011-01-01

    A significant challenge to the field of biofabrication is the rapid construction of large three-dimensional (3D) living tissues and organs. Multi-cellular spheroids have been used as building blocks. In this paper, we create large multi-cellular honeycomb building blocks using directed self-assembly, whereby cell-to-cell adhesion, in the context of the shape and obstacles of a micro-mold, drives the formation of a 3D structure. Computer-aided design, rapid prototyping and replica molding were used to fabricate honeycomb-shaped micro-molds. Nonadhesive hydrogels cast from these micro-molds were equilibrated in the cell culture medium and seeded with two types of mammalian cells. The cells settled into the honeycomb recess were unable to attach to the nonadhesive hydrogel and so cell-to-cell adhesion drove the self-assembly of a large multi-cellular honeycomb within 24 h. Distinct morphological changes occurred to the honeycomb and its cells indicating the presence of significant cell-mediated tension. Unlike the spheroid, whose size is constrained by a critical diffusion distance needed to maintain cell viability, the overall size of the honeycomb is not limited. The rapid production of the honeycomb building unit, with its multiple rings of high-density cells and open lumen spaces, offers interesting new possibilities for biofabrication strategies.

  11. “Click” Synthesis of Dextran Macrostructures for Combinatorial-Designed Self-Assembled Nanoparticles Encapsulating Diverse Anticancer Therapeutics

    Science.gov (United States)

    Abeylath, Sampath C.; Amiji, Mansoor

    2011-01-01

    With the non-specific toxicity of anticancer drugs to healthy tissues upon systemic administration, formulations capable of enhanced selectivity in delivery to the tumor mass and cells are highly desirable. Based on the diversity of the drug payloads, we have investigated a combinatorial-designed strategy where the nano-sized formulations are tailored based on the physicochemical properties of the drug and the delivery needs. Individually functionalized C2 to C12 lipid-, thiol-, and poly(ethylene glycol) (PEG)-modified dextran derivatives were synthesized via “click” chemistry from O-pentynyl dextran and relevant azides. These functionalized dextrans in combination with anticancer drugs form nanoparticles by self-assembling in aqueous medium having PEG surface functionalization and intermolecular disulfide bonds. Using anticancer drugs with logP values ranging from −0.5 to 3.0, the optimized nanoparticles formulations were evaluated for preliminary cellular delivery and cytotoxic effects in SKOV3 human ovarian adenocarcinoma cells. The results show that with the appropriate selection of lipid-modified dextran, one can effectively tailor the self-assembled nano-formulation for intended therapeutic payload. PMID:21978947

  12. Non-uniform self-assembly : On the anisotropic architecture of α-synuclein supra-fibrillar aggregates

    NARCIS (Netherlands)

    Semerdzhiev, Slav A.; Shvadchak, Volodymyr V.; Subramaniam, Vinod; Claessens, Mireille M.A.E.

    2017-01-01

    Although the function of biopolymer hydrogels in nature depends on structural anisotropy at mesoscopic length scales, the self-assembly of such anisotropic structures in vitro is challenging. Here we show that fibrils of the protein α-synuclein spontaneously self-assemble into structurally

  13. Novel apigenin-loaded sodium hyaluronate nano-assemblies for targeting tumor cells.

    Science.gov (United States)

    Zhao, Ting; He, Yue; Chen, Huali; Bai, Yan; Hu, Wenjing; Zhang, Liangke

    2017-12-01

    We aimed to construct a novel nano-assembly carrying apigenin (APG), a hydrophobic drug, and to evaluate its in vitro targeting ability for A549 cells overexpressing CD44 receptors. The apigenin-loaded sodium hyaluronate nano-assemblies (APG/SH-NAs) were assembled by multiple non-covalent interactions between sodium hyaluronate (SH) and APG. The prepared APG/SH-NAs exhibited a small average size and narrow particle size distribution. In addition, satisfactory encapsulation efficiency and drug loading were obtained. The drug release curves indicated that APG/SH-NAs achieved a sustainable drug-release effect due to the presence of hydrophilic materials. The in vitro cytotoxicity of APG/SH-NAs against A549 cells and HepG2 cells was evaluated, and the results indicated that the prepared APG/SH-NA showed higher cytotoxicity compared to apigenin suspensions. When CD44 receptors on the surface of A549 cells were blocked by the addition of excess SH, the cytotoxicity of APG/SH-NA was significantly reduced. However, similar phenomena were not observed in HepG2 cells with relatively low CD44 receptor expression. The resulting APG/SH-NAs could efficiently facilitate the internalization of APG into A549 cells, which might be due to their high affinity for CD44 receptors. Moreover, the apoptotic rate of APG/SH-NAs through receptor-mediated endocytosis mechanism was higher than that of the other groups in A549 cells. Thus, such nano-assemblies were considered to be an effective transport system with excellent affinity for CD44 receptors to allow the SH-mediated targeted delivery of APG. Copyright © 2017. Published by Elsevier Ltd.

  14. 3D Programmable Micro Self Assembly

    National Research Council Canada - National Science Library

    Bohringer, Karl F; Parviz, Babak A; Klavins, Eric

    2005-01-01

    .... We have developed a "self assembly tool box" consisting of a range of methods for micro-scale self-assembly in 2D and 3D We have shown physical demonstrations of simple 3D self-assemblies which lead...

  15. Formation of surface nano-structures by plasma expansion induced by highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Moslem, W. M. [Department of Physics, Faculty of Science, Port Said University, Port Said (Egypt); Centre for Theoretical Physics, The British University in Egypt (BUE), El-Shorouk City, Cairo (Egypt) and International Centre for Advanced Studies in Physical Sciences, Faculty of Physics and Astronomy, Ruhr University Bochum, D-44780 Bochum (Germany); El-Said, A. S. [Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Nuclear and Radiation Physics Laboratory, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura (Egypt) and Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstr. 128, 01328 Dresden (Germany)

    2012-12-15

    Slow highly charged ions (HCIs) create surface nano-structures (nano-hillocks) on the quartz surface. The formation of hillocks was only possible by surpassing a potential energy threshold. By using the plasma expansion approach with suitable hydrodynamic equations, the creation mechanism of the nano-hillocks induced by HCIs is explained. Numerical analysis reveal that within the nanoscale created plasma region, the increase of the temperature causes an increase of the self-similar solution validity domain, and consequently the surface nano-hillocks become taller. Furthermore, the presence of the negative (positive) nano-dust particles would lead to increase (decrease) the nano-hillocks height.

  16. Self-assembly of inorganic nanoparticles: Ab ovo

    Science.gov (United States)

    Kotov, Nicholas A.

    2017-09-01

    There are numerous remarkable studies related to the self-organization of polymers, coordination compounds, microscale particles, biomolecules, macroscale particles, surfactants, and reactive molecules on surfaces. The focus of this paper is on the self-organization of nanoscale inorganic particles or simply nanoparticles (NPs). Although there are fascinating and profound discoveries made with other self-assembling structures, the ones involving NPs deserve particular attention because they (a) are omnipresent in Nature; (b) have relevance to numerous disciplines (physics, chemistry, biology, astronomy, Earth sciences, and others); (c) embrace most of the features, geometries, and intricacies observed for the self-organization of other chemical species; (d) offer new tools for studies of self-organization phenomena; and (e) have a large economic impact, extending from energy and construction industries, to optoelectronics, biomedical technologies, and food safety. Despite the overall success of the field it is necessary to step back from its multiple ongoing research venues and consider two questions: What is self-assembly of nanoparticles? and Why do we need to study it? The reason to bring them up is to achieve greater scientific depth in the understanding of these omnipresent phenomena and, perhaps, deepen their multifaceted impact. Contribution to the Focus Issue Self-assemblies of Inorganic and Organic Nanomaterials edited by Marie-Paule Pileni.

  17. Biocompatible and Biomimetic Self-Assembly of Functional

    National Research Council Canada - National Science Library

    Brinker, Jeffrey

    2007-01-01

    Understand cell-directed assembly and use it to direct the formation of new bio/nano interfaces and unique cellular behaviors -Investigated the inclusion of multiple amphipathic components to control...

  18. Synthesis, optical properties and growth mechanism of MnO nano structures

    Science.gov (United States)

    Pandey, B. K.; Shahi, A. K.; Gopal, R.

    2013-10-01

    Manganese oxide (MnO) colloidal nanoparticles have been successfully synthesized by pulse laser ablation in double distilled water. Nd: YAG laser with focused output operating at different pulse energies (20, 30, 40, 50 mJ/pulse) was used for ablation. Synthesized MnO nano crystal phase and structure were confirmed by X-ray diffraction and SAED pattern. Optical properties of as synthesized MnO nano colloidal solution were studied by UV-vis absorption spectroscopy. Optical particle size and band gap of as synthesized MnO colloidal nanoparticles were calculated. Particle shape and size were determined by TEM/SEM image. It is observed that MnO nano colloidal particles assembled to make different structures after aging in the liquid media. Aspect ratio has been calculated from SEM picture. MnO nanoparticles show weak antiferromagnetic behavior at room temperature as measured by VSM. A typical mechanism has been proposed for the formation of different nanostructures.

  19. Molecular self-assembly advances and applications

    CERN Document Server

    Dequan, Alex Li

    2012-01-01

    In the past several decades, molecular self-assembly has emerged as one of the main themes in chemistry, biology, and materials science. This book compiles and details cutting-edge research in molecular assemblies ranging from self-organized peptide nanostructures and DNA-chromophore foldamers to supramolecular systems and metal-directed assemblies, even to nanocrystal superparticles and self-assembled microdevices

  20. Passivation effects in B doped self-assembled Si nanocrystals

    International Nuclear Information System (INIS)

    Puthen Veettil, B.; Wu, Lingfeng; Jia, Xuguang; Lin, Ziyun; Zhang, Tian; Yang, Terry; Johnson, Craig; Conibeer, Gavin; Perez-Würfl, Ivan; McCamey, Dane

    2014-01-01

    Doping of semiconductor nanocrystals has enabled their widespread technological application in optoelectronics and micro/nano-electronics. In this work, boron-doped self-assembled silicon nanocrystal samples have been grown and characterised using Electron Spin Resonance and photoluminescence spectroscopy. The passivation effects of boron on the interface dangling bonds have been investigated. Addition of boron dopants is found to compensate the active dangling bonds at the interface, and this is confirmed by an increase in photoluminescence intensity. Further addition of dopants is found to reduce the photoluminescence intensity by decreasing the minority carrier lifetime as a result of the increased number of non-radiative processes

  1. Self-assembling peptide hydrogels immobilized on silicon surfaces

    International Nuclear Information System (INIS)

    Franchi, Stefano; Battocchio, Chiara; Galluzzi, Martina; Navisse, Emanuele; Zamuner, Annj; Dettin, Monica; Iucci, Giovanna

    2016-01-01

    The hydrogels of self-assembling ionic complementary peptides have collected in the scientific community increasing consensus as mimetics of the extracellular matrix that can offer 3D supports for cell growth or be vehicles for the delivery of stem cells or drugs. Such scaffolds have also been proposed as bone substitutes for small defects as they promote beneficial effects on human osteoblasts. In this context, our research deals with the introduction of a layer of self-assembling peptides on a silicon surface by covalent anchoring and subsequent physisorption. In this work, we present a spectroscopic investigation of the proposed bioactive scaffolds, carried out by surface-sensitive spectroscopic techniques such as XPS (X-ray photoelectron spectroscopy) and RAIRS (Reflection Absorption Infrared Spectroscopy) and by state-of-the-art synchrotron radiation methodologies such as angle dependent NEXAFS (Near Edge X-ray Absorption Fine Structure). XPS studies confirmed the change in the surface composition in agreement with the proposed enrichments, and led to assess the self-assembling peptide chemical stability. NEXAFS spectra, collected in angular dependent mode at the N K-edge, allowed to investigate the self-assembling behavior of the macromolecules, as well as to determine their molecular orientation on the substrate. Furthermore, Infrared Spectroscopy measurements demonstrated that the peptide maintains its secondary structure (β-sheet anti-parallel) after deposition on the silicon surface. The complementary information acquired by means of XPS, NEXAFS and RAIRS lead to hypothesize a “layer-by-layer” arrangement of the immobilized peptides, giving rise to an ordered 3D nanostructure. - Highlights: • A self-assembling peptide (SAP) was covalently immobilized of on a flat silicon surface. • A physisorbed SAP layer was grown on top of the covalently immobilized peptide layer. • Molecular order and orientation of the peptide overlayer on the flat silicon

  2. Self-assembling peptide hydrogels immobilized on silicon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Franchi, Stefano; Battocchio, Chiara; Galluzzi, Martina; Navisse, Emanuele [Department of Sciences, University “Roma Tre”, Via della Vasca Navale 79, Roma, 00146 (Italy); Zamuner, Annj; Dettin, Monica [Department of Industrial Engineering, University of Padua, Via Marzolo, 9, Padua, 35131 (Italy); Iucci, Giovanna, E-mail: giovanna.iucci@uniroma3.it [Department of Sciences, University “Roma Tre”, Via della Vasca Navale 79, Roma, 00146 (Italy)

    2016-12-01

    The hydrogels of self-assembling ionic complementary peptides have collected in the scientific community increasing consensus as mimetics of the extracellular matrix that can offer 3D supports for cell growth or be vehicles for the delivery of stem cells or drugs. Such scaffolds have also been proposed as bone substitutes for small defects as they promote beneficial effects on human osteoblasts. In this context, our research deals with the introduction of a layer of self-assembling peptides on a silicon surface by covalent anchoring and subsequent physisorption. In this work, we present a spectroscopic investigation of the proposed bioactive scaffolds, carried out by surface-sensitive spectroscopic techniques such as XPS (X-ray photoelectron spectroscopy) and RAIRS (Reflection Absorption Infrared Spectroscopy) and by state-of-the-art synchrotron radiation methodologies such as angle dependent NEXAFS (Near Edge X-ray Absorption Fine Structure). XPS studies confirmed the change in the surface composition in agreement with the proposed enrichments, and led to assess the self-assembling peptide chemical stability. NEXAFS spectra, collected in angular dependent mode at the N K-edge, allowed to investigate the self-assembling behavior of the macromolecules, as well as to determine their molecular orientation on the substrate. Furthermore, Infrared Spectroscopy measurements demonstrated that the peptide maintains its secondary structure (β-sheet anti-parallel) after deposition on the silicon surface. The complementary information acquired by means of XPS, NEXAFS and RAIRS lead to hypothesize a “layer-by-layer” arrangement of the immobilized peptides, giving rise to an ordered 3D nanostructure. - Highlights: • A self-assembling peptide (SAP) was covalently immobilized of on a flat silicon surface. • A physisorbed SAP layer was grown on top of the covalently immobilized peptide layer. • Molecular order and orientation of the peptide overlayer on the flat silicon

  3. Self-Assembly Carbon Nanotubes on Cantilever Biosensor for Sensitivity Enhancement

    Energy Technology Data Exchange (ETDEWEB)

    He, Johnny H [Institute of Microelectronics, 11 Science Park Road, Science Park II, Singapore 117685 (Singapore); Sun Shaoqing [Institute of Microelectronics, 11 Science Park Road, Science Park II, Singapore 117685 (Singapore); Ye Jianshan [Department of Biological Science, National University of Singapore, 14 Science Drive 4, Singapore 117543 (Singapore); Lim, T M [Department of Biological Science, National University of Singapore, 14 Science Drive 4, Singapore 117543 (Singapore)

    2006-04-01

    In recent years, highly sensitive and selective as well as cost-effective sensing and detection of biomolecules (e.g. virus, bacterial, DNA and protein) by MEMS/NEMS (Micro- /Nano Electro- Mechanical-System) structures have attracted extensive attention for its importance in clinical diagnostics, treatment, and various genome projects. Meanwhile, Substantial research efforts have been spent on the improvement of sensitivity of bioMEMS structures. Among a variety of methods that have been investigated, surface modification by nanoparticles (NPs) turns out to be an attractive way, which provides a platform for the enhancement of the sensitivity for biosensor devices. However, conventional applications for surface modification were mostly implemented on microelectrodes. Thus, in this paper, we demonstrate a new approach for surface enhancement on Au-coated silicon microcantilevers in micro-/nano-system. By self-assembly surface binding of multi-walled carbon nanotubes (MWCNTs) on the Au monolayer on top of the Si microcantilever surfaces, much larger surface area could be created for bio-molecular binding (such as antibodies or single DNA strands, which act as probes to capture target molecules). Therefore, this could enable specific interactions and selective binding to target biomolecules with a very low sample size, which greatly increases the sensitivity of detection. It should be noted that functionalization of MWCNTs with terminal carboxylic functionalities (in DCC solution) onto the Au surfaces of Si microchips have been introduced in our study. Further applications of MWCNTs functionalization are worth exploring in biomolecular detection for their exceptional mechanical and unique electronic properties. The successful binding of MWCNTs was testified as shown obviously on AFM image.

  4. Thermal dewetting with a chemically heterogeneous nano-template for self-assembled L1(0) FePt nanoparticle arrays.

    Science.gov (United States)

    Wang, Liang-Wei; Cheng, Chung-Fu; Liao, Jung-Wei; Wang, Chiu-Yen; Wang, Ding-Shuo; Huang, Kuo-Feng; Lin, Tzu-Ying; Ho, Rong-Ming; Chen, Lih-Juann; Lai, Chih-Huang

    2016-02-21

    A design for the fabrication of metallic nanoparticles is presented by thermal dewetting with a chemically heterogeneous nano-template. For the template, we fabricate a nanostructured polystyrene-b-polydimethylsiloxane (PS-b-PDMS) film on a Si|SiO2 substrate, followed by a thermal annealing and reactive ion etching (RIE) process. This gives a template composed of an ordered hexagonal array of SiOC hemispheres emerging in the polystyrene matrix. After the deposition of a FePt film on this template, we utilize the rapid thermal annealing (RTA) process, which provides in-plane stress, to achieve thermal dewetting and structural ordering of FePt simultaneously. Since the template is composed of different composition surfaces with periodically varied morphologies, it offers more tuning knobs to manipulate the nanostructures. We show that both the decrease in the area of the PS matrix and the increase in the strain energy relaxation transfer the dewetted pattern from the randomly distributed nanoparticles into a hexagonal periodic array of L10 FePt nanoparticles. Transmission electron microscopy with the in situ heating stage reveals the evolution of the dewetting process, and confirms that the positions of nanoparticles are aligned with those of the SiOC hemispheres. The nanoparticles formed by this template-dewetting show an average diameter and center-to-center distance of 19.30 ± 2.09 nm and 39.85 ± 4.80 nm, respectively. The hexagonal array of FePt nanoparticles reveals a large coercivity of 1.5 T, much larger than the nanoparticles fabricated by top-down approaches. This approach offers an efficient pathway toward self-assembled nanostructures in a wide range of material systems.

  5. Amphiphilic building blocks for self-assembly: from amphiphiles to supra-amphiphiles.

    Science.gov (United States)

    Wang, Chao; Wang, Zhiqiang; Zhang, Xi

    2012-04-17

    The process of self-assembly spontaneously creates well-defined structures from various chemical building blocks. Self-assembly can include different levels of complexity: it can be as simple as the dimerization of two small building blocks driven by hydrogen bonding or as complicated as a cell membrane, a remarkable supramolecular architecture created by a bilayer of phospholipids embedded with functional proteins. The study of self-assembly in simple systems provides a fundamental understanding of the driving forces and cooperativity behind these processes. Once the rules are understood, these guidelines can facilitate the research of highly complex self-assembly processes. Among the various components for self-assembly, an amphiphilic molecule, which contains both hydrophilic and hydrophobic parts, forms one of the most powerful building blocks. When amphiphiles are dispersed in water, the hydrophilic component of the amphiphile preferentially interacts with the aqueous phase while the hydrophobic portion tends to reside in the air or in the nonpolar solvent. Therefore, the amphiphiles aggregate to form different molecular assemblies based on the repelling and coordinating forces between the hydrophilic and hydrophobic parts of the component molecules and the surrounding medium. In contrast to conventional amphiphiles, supra-amphiphiles are constructed on the basis of noncovalent interactions or dynamic covalent bonds. In supra-amphiphiles, the functional groups can be attached to the amphiphiles by noncovalent synthesis, greatly speeding their construction. The building blocks for supra-amphiphiles can be either small organic molecules or polymers. Advances in the development of supra-amphiphiles will not only enrich the family of conventional amphiphiles that are based on covalent bonds but will also provide a new kind of building block for the preparation of complex self-assemblies. When polymers are used to construct supra-amphiphiles, the resulting

  6. Self-assembly as a design tool for the integration of photonic structures into excitonic solar cells

    KAUST Repository

    Guldin, S.; Docampo, P.; Hü ttner, S.; Kohn, P.; Stefik, M.; Snaith, H. J.; Wiesner, U.; Steiner, U.

    2011-01-01

    ) into dye-sensitized solar cells (DSCs). In both cases, the self-assembly of soft matter plays a key role in the fabrication process of the TiO2 electrode. One approach relies on a combination of colloidal self-assembly and the self-assembly of block

  7. Low-temperature poly(oxymethylene) direct bonding via self-assembled monolayer

    Science.gov (United States)

    Fu, Weixin; Ma, Bo; Kuwae, Hiroyuki; Shoji, Shuichi; Mizuno, Jun

    2018-02-01

    A direct bonding of poly(oxymethylene) (POM) was feasible at 100 °C by using self-assembled monolayer (SAM) as a surface modification method. (3-aminopropyl)triethoxysilane (APTES) and (3-glycidyloxypropyl)trimethoxysilane (GOPTS) were used in our work. X-ray photoelectron spectroscopy showed that both APTES and GOPTS modified the POM surface successfully. Bonding strength evaluation revealed that surface modification was affected by pretreatment (VUV/O3) process time. In addition, the bonding condition with highest strength had an average strength of 372 kPa. This technology is expected to be used in packaging for micro-/nano-electromechanical systems, such as biomedical devices.

  8. Nano-sized Adsorbate Structure Formation in Anisotropic Multilayer System

    Science.gov (United States)

    Kharchenko, Vasyl O.; Kharchenko, Dmitrii O.; Yanovsky, Vladimir V.

    2017-05-01

    In this article, we study dynamics of adsorbate island formation in a model plasma-condensate system numerically. We derive the generalized reaction-diffusion model for adsorptive multilayer system by taking into account anisotropy in transfer of adatoms between neighbor layers induced by electric field. It will be found that with an increase in the electric field strength, a structural transformation from nano-holes inside adsorbate matrix toward separated nano-sized adsorbate islands on a substrate is realized. Dynamics of adsorbate island sizes and corresponding distributions are analyzed in detail. This study provides an insight into details of self-organization of adatoms into nano-sized adsorbate islands in anisotropic multilayer plasma-condensate systems.

  9. Vortex pinning in superconductors laterally modulated by nanoscale self-assembled arrays

    DEFF Research Database (Denmark)

    Vanacken, J.; Vinckx, W.; Moshchalkov, V.V.

    2008-01-01

    Being the exponent of the so-called "bottom-up" approach, self-assembled structures are now-a-days attracting a lot of attention in the fields of science and technology. In this work, we show that nanoscale self-assembled arrays used as templates can provide periodic modulation in superconducting...

  10. Preparations, Properties, and Applications of Periodic Nano Arrays using Anodized Aluminum Oxide and Di-block Copolymer

    Science.gov (United States)

    Noh, Kunbae

    2011-12-01

    Self-ordered arrangements observed in various materials systems such as anodic aluminum oxide, polystyrene nanoparticles, and block copolymer are of great interest in terms of providing new opportunities in nanofabrication field where lithographic techniques are broadly used in general. Investigations on self-assembled nano arrays to understand how to obtain periodic nano arrays in an efficient yet inexpensive way, and how to realize advanced material and device systems thereof, can lead to significant impacts on science and technology for many forefront device applications. In this thesis, various aspects of periodic nano-arrays have been discussed including novel preparations, properties and applications of anodized aluminum oxide (AAO) and PS-b-P4VP (S4VP) di-block copolymer self-assembly. First, long-range ordered AAO arrays have been demonstrated. Nanoimprint lithography (NIL) process allowed a faithful pattern transfer of the imprint mold pattern onto Al thin film, and interesting self-healing and pattern tripling phenomena were observed, which could be applicable towards fabrication of the NIL master mold having highly dense pattern over large area, useful for fabrication of a large-area substrate for predictable positioning of arrayed devices. Second, S4VP diblock copolymer self-assembly and S4VP directed AAO self-assembly have been demonstrated in the Al thin film on Si substrate. Such a novel combination of two dissimilar self-assembly techniques demonstrated a potential as a versatile tool for nanopatterning formation on a Si substrate, capable of being integrated into Si process technology. As exemplary applications, vertically aligned Ni nanowires have been synthesized into an S4VP-guided AAO membrane on a Si substrate in addition to anti-dot structured [Co/Pd]n magnetic multilayer using S4VP self assembly. Third, a highly hexagonally ordered, vertically parallel aluminum oxide nanotube array was successfully fabricated via hard anodization technique

  11. Self-sensing and thermal energy experimental characterization of multifunctional cement-matrix composites with carbon nano-inclusions

    Science.gov (United States)

    D'Alessandro, A.; Pisello, A. L.; Sambuco, Sara; Ubertini, F.; Asdrubali, F.; Materazzi, A. L.; Cotana, F.

    2016-04-01

    The recent progress of Nanotechnology allowed the development of new smart materials in several fields of engineering. In particular, innovative construction materials with multifunctional enhanced properties can be produced. The paper presents an experimental characterization on cement-matrix pastes doped with Carbon Nanotubes, Carbon Nano-fibers, Carbon Black and Graphene Nano-platelets. Both electro-mechanical and thermo-physical investigations have been carried out. The conductive nano-inclusions provide the cementitious matrix with piezo-resistive properties allowing the detection of external strain and stress changes. Thereby, traditional building materials, such as concrete and cementitious materials in general, would be capable of self-monitoring the state of deformation they are subject to, giving rise to diffuse sensing systems of structural integrity. Besides supplying self-sensing abilities, carbon nano-fillers may change mechanical, physical and thermal properties of cementitious composites. The experimental tests of the research have been mainly concentrated on the thermal conductivity and the optical properties of the different nano-modified materials, in order to make a critical comparison between them. The aim of the work is the characterization of an innovative multifunctional composite capable of combining self-monitoring properties with proper mechanical and thermal-energy efficiency characteristics. The potential applications of these nano-modified materials cover a wide range of possibilities, such as structural elements, floors, geothermal piles, radiant systems and more.

  12. Self-assembling enzymes and the origins of the cytoskeleton

    Science.gov (United States)

    Barry, Rachael; Gitai, Zemer

    2011-01-01

    The bacterial cytoskeleton is composed of a complex and diverse group of proteins that self-assemble into linear filaments. These filaments support and organize cellular architecture and provide a dynamic network controlling transport and localization within the cell. Here, we review recent discoveries related to a newly appreciated class of self-assembling proteins that expand our view of the bacterial cytoskeleton and provide potential explanations for its evolutionary origins. Specifically, several types of metabolic enzymes can form structures similar to established cytoskeletal filaments and, in some cases, these structures have been repurposed for structural uses independent of their normal role. The behaviors of these enzymes suggest that some modern cytoskeletal proteins may have evolved from dual-role proteins with catalytic and structural functions. PMID:22014508

  13. Light-assisted, templated self-assembly using a photonic-crystal slab.

    Science.gov (United States)

    Jaquay, Eric; Martínez, Luis Javier; Mejia, Camilo A; Povinelli, Michelle L

    2013-05-08

    We experimentally demonstrate the technique of light-assisted, templated self-assembly (LATS). We excite a guided-resonance mode of a photonic-crystal slab with 1.55 μm laser light to create an array of optical traps. We demonstrate assembly of a square lattice of 520 nm diameter polystyrene particles spaced by 860 nm. Our results demonstrate how LATS can be used to fabricate reconfigurable structures with symmetries different from traditional colloidal self-assembly, which is limited by free energetic constraints.

  14. Tile-based self-assembly of a triple-helical polysaccharide into cell wall-like mesoporous nanocapsules.

    Science.gov (United States)

    Wu, Chaoxi; Wang, Xiaoying; Wang, Jianjing; Zhang, Zhen; Wang, Zhiping; Wang, Yifei; Tang, Shunqing

    2017-07-20

    Tile-based self-assembly is a robust system in the construction of three-dimensional DNA nanostructures but it has been rarely applied to other helical biopolymers. β-Glucan is an immunoactive natural polymer which exists in a triple helical conformation. Herein, we report that β-glucan, after modification using two types of short chain acyl groups, can self-assemble into tiles with inactivated sticky ends at the interface of two solvents. These tiles consist of a single layer of helices laterally aligned, and the sticky ends can be activated when a few acyl groups at the ends are removed; these tiles can further pack into mesoporous nanocapsules, in a similar process as the sticky DNA tiles pack into complex polyhedral nano-objects. These nanocapsules were found to have targeted effects to antigen presenting cells in a RAW264.7 cell model. Our study suggests that tile-based self-assembly can be a general strategy for helical biopolymers, and on fully exploiting this strategy, various new functional nanostructures will become accessible in the future.

  15. Collagen I self-assembly: revealing the developing structures that generate turbidity.

    Science.gov (United States)

    Zhu, Jieling; Kaufman, Laura J

    2014-04-15

    Type I collagen gels are routinely used in biophysical studies and bioengineering applications. The structural and mechanical properties of these fibrillar matrices depend on the conditions under which collagen fibrillogenesis proceeds, and developing a fuller understanding of this process will enhance control over gel properties. Turbidity measurements have long been the method of choice for monitoring developing gels, whereas imaging methods are regularly used to visualize fully developed gels. In this study, turbidity and confocal reflectance microscopy (CRM) were simultaneously employed to track collagen fibrillogenesis and reconcile the information reported by the two techniques, with confocal fluorescence microscopy (CFM) used to supplement information about early events in fibrillogenesis. Time-lapse images of 0.5 mg/ml, 1.0 mg/ml, and 2.0 mg/ml acid-solubilized collagen I gels forming at 27°C, 32°C, and 37°C were collected. It was found that in situ turbidity measured in a scanning transmittance configuration was interchangeable with traditional turbidity measurements using a spectrophotometer. CRM and CFM were employed to reveal the structures responsible for the turbidity that develops during collagen self-assembly. Information from CRM and transmittance images was collapsed into straightforward single variables; total intensity in CRM images tracked turbidity development closely for all collagen gels investigated, and the two techniques were similarly sensitive to fibril number and dimension. Complementary CRM, CFM, and in situ turbidity measurements revealed that fibril and network formation occurred before substantial turbidity was present, and the majority of increasing turbidity during collagen self-assembly was due to increasing fibril thickness. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. Surface-assisted DNA self-assembly: An enzyme-free strategy towards formation of branched DNA lattice

    International Nuclear Information System (INIS)

    Bhanjadeo, Madhabi M.; Nayak, Ashok K.; Subudhi, Umakanta

    2017-01-01

    DNA based self-assembled nanostructures and DNA origami has proven useful for organizing nanomaterials with firm precision. However, for advanced applications like nanoelectronics and photonics, large-scale organization of self-assembled branched DNA (bDNA) into periodic lattices is desired. In this communication for the first time we report a facile method of self-assembly of Y-shaped bDNA nanostructures on the cationic surface of Aluminum (Al) foil to prepare periodic two dimensional (2D) bDNA lattice. Particularly those Y-shaped bDNA structures having smaller overhangs and unable to self-assemble in solution, they are easily assembled on the surface of Al foil in the absence of ligase. Field emission scanning electron microscopy (FESEM) analysis shows homogenous distribution of two-dimensional bDNA lattices across the Al foil. When the assembled bDNA structures were recovered from the Al foil and electrophoresed in nPAGE only higher order polymeric bDNA structures were observed without a trace of monomeric structures which confirms the stability and high yield of the bDNA lattices. Therefore, this enzyme-free economic and efficient strategy for developing bDNA lattices can be utilized in assembling various nanomaterials for functional molecular components towards development of DNA based self-assembled nanodevices. - Highlights: • Al foil surface-assisted self-assembly of monomeric structures into larger branched DNA lattice. • FESEM study confirms the uniform distribution of two-dimensional bDNA lattice structures across the surface of Al foil. • Enzyme-free and economic strategy to prepare higher order structures from simpler DNA nanostructures have been confirmed by recovery assay. • Use of well proven sequences for the preparation of pure Y-shaped monomeric DNA nanostructure with high yield.

  17. Directed Self-Assembly of Diblock Copolymer Thin Films on Prepatterned Metal Nanoarrays.

    Science.gov (United States)

    Chang, Tongxin; Huang, Haiying; He, Tianbai

    2016-01-01

    The sequential layer by layer self-assembly of block copolymer (BCP) nanopatterns is an effective approach to construct 3D nanostructures. Here large-scale highly ordered metal nano-arrays prepared from solvent annealed thin films of polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) diblock copolymer are used to direct the assembly of the same BCP. The influence of initial loading concentration of metal precursor, the type of metal nanoparticle (gold, platinum, and silver), and the nanoparticle-substrate interaction on the directed assembly behavior of the upper BCP layer have been focused. It is found that the upper BCP film can be completely directed by the gold nanoarray with P2VP domain exclusively located between two adjacent gold nanowires or nanodots, which behaves the same way as on the platinum nanoarray. While the silver nanoarray can be destroyed during the upper BCP self-assembly with the silver nanoparticles assembled into the P2VP domain. Based on the discussions of the surface energy of nanoparticles and the interplay between nanoparticle-substrate interaction and nanoparticle-polymer interaction, it is concluded that the effect of immobilization of nanoparticles on the substrate, together with entropy effect to minimize the energetically unfavorable chain stretching contributes to the most effective alignment between each layer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Synthesis and Self-Assembly of Triangulenium Salts

    DEFF Research Database (Denmark)

    Shi, Dong

    in influencing the assembling process and morphology of the assembled nanostructures. Tailoring the ATOTA+ system with alkyl chains of different length showed large effect on the final morphology of assembled supramolecular structures. The first two chapters give a brief introduction to molecular self....... Addition of soft counter ion into the nanosheets solution could induce gluing of the nanosheets. The solid thin film formed from the formed nanosheets after water evaporation showed crystalline patterning order as revealed by x-ray diffraction (XRD) measurements. Chpater 5 reports the counter ion effect...

  19. Bola-amphiphile self-assembly

    DEFF Research Database (Denmark)

    Svaneborg, Carsten

    2012-01-01

    Bola-amphiphiles are rod-like molecules where both ends of the molecule likes contact with water, while the central part of the molecule dislikes contact with water. What do such molecules do when they are dissolved in water? They self-assemble into micelles. This is a Dissipartive particle...... dynamics simulation of this self-assembly behaviour....

  20. Controlled self-assembly of PbS nanoparticles into macrostar-like hierarchical structures

    International Nuclear Information System (INIS)

    Li, Guowei; Li, Changsheng; Tang, Hua; Cao, Kesheng; Chen, Juan

    2011-01-01

    Graphical abstract: The aggregation and rotation of nanoparticles to adopt parallel orientations in three dimensions was indirectly illustrated by TEM and HRTEM images. Highlights: → Macrostar-like PbS hierarchical structures was successfully synthesized by a simple hydrothermal method and mesostars were assembled from the PbS nanocube building blocks with edge lengths of about 100 nm. → Ostwald-ripening-assisted oriented attachment is believed to play a key role in the growth behavior of novel 3D structures. → Optical properties indicating few defects on the surface of the PbS structure and exhibit large blue-shifts compared to bulk PbS. -- Abstract: The synthesis of macrostar-like PbS hierarchical structures by a simple hydrothermal method at 180 o C for 24 h is proven successful with the assistance of a new surfactant called tetrabutylammonium bromide (TBAB). The as-obtained product is characterized by means of X-ray powder diffraction, field emission scanning electron microscopy, energy dispersive spectrometry, high resolution transmission electron microscopy, and selected area electron diffraction. The presence of TBAB and NaF plays an important role in the formation of PbS macrostructures. Ostwald-ripening-assisted oriented attachment is believed to play a key role in the growth behavior of novel 3D structures. As such, a possible self-assembly mechanism is proposed to explain the formation of the said structures. The present study aims to introduce new insights into understanding the formation process of such unique hierarchical superstructures.

  1. Self-assembly of dodecaphenyl POSS thin films

    Science.gov (United States)

    Handke, Bartosz; Klita, Łukasz; Niemiec, Wiktor

    2017-12-01

    The self-assembly abilities of Dodecaphenyl Polyhedral Oligomeric Silsesquioxane thin films on Si(1 0 0) surfaces were studied. Due to their thermal properties - relatively low sublimation temperature and preservation of molecular structure - cage type silsesquioxanes are ideal material for the preparation of a thin films by Physical Vapor Deposition. The Ultra-High Vacuum environment and the deposition precision of the PVD method enable the study of early stages of thin film growth and its molecular organization. X-ray Reflectivity and Atomic Force Microscopy measurements allow to pursuit size-effects in the structure of thin films with thickness ranges from less than a single molecular layer up to several tens of layers. Thermal treatment of the thin films triggered phase change: from a poorly ordered polycrystalline film into a well-ordered multilayer structure. Self-assembly of the layers is the effect of the π-stacking of phenyl rings, which force molecules to arrange in a superlattice, forming stacks of alternating organic-inorganic layers.

  2. Self-assembled morphologies of an amphiphilic Y-shaped weak polyelectrolyte in a thin film.

    Science.gov (United States)

    Mu, Dan; Li, Jian-Quan; Feng, Sheng-Yu

    2017-11-29

    Different from the self-assembly of neutral polymers, polyelectrolytes self-assemble into smaller aggregates with a more loosely assembled structure, which results from the repulsive forces acting between similar electrical compositions with the introduction of ions. The Y-shaped weak polyelectrolytes self-assemble into a core-shell type cylindrical structure with a hexagonal arrangement in a thin film, whose thickness is smaller than the gyration radius of the polymer chain. The corresponding formation mechanism consists of enrichment of the same components, adjustment of the shape of the aggregate, and the subsequent separation into individual aggregates. With the increase in the thickness of the thin film until it exceeds the gyration radius of the polymer chain, combined with the greater freedom of movement along the direction of thin film thickness, the self-assembled structure changes into a micellar structure. Under confinement, the repulsive force to the polymeric components is weakened by the repulsive forces among polyelectrolyte components with like charges, and this helps in generating aggregates with more uniform size and density distribution. In particular, when the repulsive force between the walls and the core forming components is greater than that between the walls and the shell forming components, such asymmetric confinement produces a crossed-cylindrical structure with nearly perpendicular arrangement of two cylinder arrays. Similarly, a novel three-crossed cylinder morphology is self-assembled upon removal of confinement.

  3. Self-Assembly of DNA-Coated Particles: Experiment, Simulation and Theory

    Science.gov (United States)

    Song, Minseok

    The bottom-up assembly of material architectures with tunable complexity, function, composition, and structure is a long sought goal in rational materials design. One promising approach aims to harnesses the programmability and specificity of DNA hybridization in order to direct the assembly of oligonucleotide-functionalized nano- and micro-particles by tailoring, in part, interparticle interactions. DNA-programmable assembly into three-dimensionally ordered structures has attracted extensive research interest owing to emergent applications in photonics, plasmonics and catalysis and potentially many other areas. Progress on the rational design of DNA-mediated interactions to create useful two-dimensional structures (e.g., structured films), on the other hand, has been rather slow. In this thesis, we establish strategies to engineer a diversity of 2D crystalline arrangements by designing and exploiting DNA-programmable interparticle interactions. We employ a combination of simulation, theory and experiments to predict and confirm accessibility of 2D structural diversity in an effort to establish a rational approach to 2D DNA-mediated particle assembly. We start with the experimental realization of 2D DNA-mediated assembly by decorating micron-sized silica particles with covalently attached single-stranded DNA through a two-step reaction. Subsequently, we elucidate sensitivity and ultimate controllability of DNA-mediated assembly---specifically the melting transition from dispersed singlet particles to aggregated or assembled structures---through control of the concentration of commonly employed nonionic surfactants. We relate the observed tunability to an apparent coupling with the critical micelle temperature in these systems. Also, both square and hexagonal 2D ordered particle arrangements are shown to evolve from disordered aggregates under appropriate annealing conditions defined based upon pre-established melting profiles. Subsequently, the controlled mixing of

  4. Cooperative effects of fibronectin matrix assembly and initial cell-substrate adhesion strength in cellular self-assembly.

    Science.gov (United States)

    Brennan, James R; Hocking, Denise C

    2016-03-01

    The cell-dependent polymerization of intercellular fibronectin fibrils can stimulate cells to self-assemble into multicellular structures. The local physical cues that support fibronectin-mediated cellular self-assembly are largely unknown. Here, fibronectin matrix analogs were used as synthetic adhesive substrates to model cell-matrix fibronectin fibrils having different integrin-binding specificity, affinity, and/or density. We utilized this model to quantitatively assess the relationship between adhesive forces derived from cell-substrate interactions and the ability of fibronectin fibril assembly to induce cellular self-assembly. Results indicate that the strength of initial, rather than mature, cell-substrate attachments correlates with the ability of substrates to support fibronectin-mediated cellular self-assembly. The cellular response to soluble fibronectin was bimodal and independent of the integrin-binding specificity of the substrate; increasing soluble fibronectin levels above a critical threshold increased aggregate cohesion on permissive substrates. Once aggregates formed, continuous fibronectin polymerization was necessary to maintain cohesion. During self-assembly, soluble fibronectin decreased cell-substrate adhesion strength and induced aggregate cohesion via a Rho-dependent mechanism, suggesting that the balance of contractile forces derived from fibronectin fibrils within cell-cell versus cell-substrate adhesions controls self-assembly and aggregate cohesion. Thus, initial cell-substrate attachment strength may provide a quantitative basis with which to build predictive models of fibronectin-mediated microtissue fabrication on a variety of substrates. Cellular self-assembly is a process by which cells and extracellular matrix (ECM) proteins spontaneously organize into three-dimensional (3D) tissues in the absence of external forces. Cellular self-assembly can be initiated in vitro, and represents a potential tool for tissue engineers to

  5. Multivalent protein assembly using monovalent self-assembling building blocks

    NARCIS (Netherlands)

    Petkau - Milroy, K.; Sonntag, M.H.; Colditz, A.; Brunsveld, L.

    2013-01-01

    Discotic molecules, which self-assemble in water into columnar supramolecular polymers, emerged as an alternative platform for the organization of proteins. Here, a monovalent discotic decorated with one single biotin was synthesized to study the self-assembling multivalency of this system in regard

  6. Polymersomes with asymmetric membranes and self-assembled superstructures using pentablock quintopolymers resolved by electron tomography

    KAUST Repository

    Haataja, J. S.

    2018-01-09

    Polystyrene-block-poly(1,4-isoprene)-block-poly(dimethyl siloxane)-block-poly(tert-butyl methacrylate)-block-poly(2-vinyl pyridine), PS-b-PI-b-PDMS-b-PtBMA-b-P2VP, self-assembles in acetone into polymersomes with asymmetric (directional) PI-b-PDMS membranes. The polymersomes, in turn, self-assemble into superstructures. Analogically to supravesicular structures at a smaller length scale, we refer to them as suprapolymersome structures. Electron tomograms are shown to be invaluable in the structural assessment of such complex self-assemblies.

  7. Bio-Based Nano Composites from Plant Oil and Nano Clay

    Science.gov (United States)

    Lu, Jue; Hong, Chang K.; Wool, Richard P.

    2003-03-01

    We explored the combination of nanoclay with new chemically functionalized, amphiphilic, plant oil resins to form bio-based nanocomposites with improved physical and mechanical properties. These can be used in many new applications, including the development of self-healing nanocomposites through controlled reversible exfoliation/intercalation, and self-assembled nano-structures. Several chemically modified triglyceride monomers of varying polarity, combined with styrene (ca 30include acrylated epoxidized soybean oil (AESO), maleated acrylated epoxidized soybean oil (MAESO) and soybean oil pentaerythritol glyceride maleates (SOPERMA), containing either hydroxyl group or acid functionality or both. The clay used is a natural montmorillonite modified with methyl tallow bis-2-hydroxyethyl quaternary ammonium chloride, which has hydroxyl groups. Both XRD and TEM showed a completely exfoliated structure at 3 wtwhen the clay content is above 5 wtconsidered a mix of intercalated and partially exfoliated structure. The controlled polarity of the monomer has a major effect on the reversible dispersion of clay in the polymer matrix. The bio-based nanocomposites showed a significant increase in flexural modulus and strength. Supported by EPA and DoE

  8. Aluminum Templates of Different Sizes with Micro-, Nano- and Micro/Nano-Structures for Cell Culture

    Directory of Open Access Journals (Sweden)

    Ming-Liang Yen

    2017-10-01

    Full Text Available This study investigates the results of cell cultures on aluminum (Al templates with flat-structures, micro-structures, nano-structures and micro/nano-structures. An Al template with flat-structure was obtained by electrolytic polishing; an Al template with micro-structure was obtained by micro-powder blasting; an Al template with nano-structure was obtained by aluminum anodization; and an Al template with micro/nano-structure was obtained by micro-powder blasting and then anodization. Osteoblast-like cells were cultured on aluminum templates with various structures. The microculture tetrazolium test assay was utilized to assess the adhesion, elongation, and proliferation behaviors of cultured osteoblast-like cells on aluminum templates with flat-structures, micro-structures, nano-structures, and micro/nano-structures. The results showed that the surface characterization of micro/nano-structure of aluminum templates had superhydrophilic property, and these also revealed that an aluminum template with micro/nano-structure could provide the most suitable growth situation for cell culture.

  9. Structural and optical studies of local disorder sensitivity in natural organic-inorganic self-assembled semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Vijaya Prakash, G; Pradeesh, K [Nanophotonics Lab, Department of Physics, Indian Institute of Technology Delhi, New Delhi (India); Ratnani, R; Saraswat, K [Department of Pure and Applied Chemistry, MDS University, Ajmer (India); Light, M E [School of Chemistry, University of Southampton, Southampton (United Kingdom); Baumberg, J J, E-mail: prakash@physics.iitd.ac.i [Nanophotonic Centre, Cavendish Laboratory, University Cambridge, Cambridge CB3 OHE (United Kingdom)

    2009-09-21

    The structural and optical spectra of two related lead iodide (PbI) based self-assembled hybrid organic-inorganic semiconductors are compared. During the synthesis, depending on the bridging of organic moiety intercalated between the PbI two-dimensional planes, different crystal structures are produced. These entirely different networks show different structural and optical features, including excitonic bandgaps. In particular, the modified organic environment of the excitons is sensitive to the local disorder both in single crystal and thin film forms. Such information is vital for incorporating these semiconductors into photonic device architectures.

  10. Opal-like Multicolor Appearance of Self-Assembled Photonic Array.

    Science.gov (United States)

    Arnon, Zohar A; Pinotsi, Dorothea; Schmidt, Matthias; Gilead, Sharon; Guterman, Tom; Sadhanala, Aditya; Ahmad, Shahab; Levin, Aviad; Walther, Paul; Kaminski, Clemens F; Fändrich, Marcus; Kaminski Schierle, Gabriele S; Adler-Abramovich, Lihi; Shimon, Linda J W; Gazit, Ehud

    2018-06-20

    Molecular self-assembly of short peptide building blocks leads to the formation of various material architectures that may possess unique physical properties. Recent studies had confirmed the key role of biaromaticity in peptide self-assembly, with the diphenylalanine (FF) structural family as an archetypal model. Another significant direction in the molecular engineering of peptide building blocks is the use of fluorenylmethoxycarbonyl (Fmoc) modification, which promotes the assembly process and may result in nanostructures with distinctive features and macroscopic hydrogel with supramolecular features and nanoscale order. Here, we explored the self-assembly of the protected, noncoded fluorenylmethoxycarbonyl-β,β-diphenyl-Ala-OH (Fmoc-Dip) amino acid. This process results in the formation of elongated needle-like crystals with notable aromatic continuity. By altering the assembly conditions, arrays of spherical particles were formed that exhibit strong light scattering. These arrays display vivid coloration, strongly resembling the appearance of opal gemstones. However, unlike the Rayleigh scattering effect produced by the arrangement of opal, the described optical phenomenon is attributed to Mie scattering. Moreover, by controlling the solution evaporation rate, i.e., the assembly kinetics, we were able to manipulate the resulting coloration. This work demonstrates a bottom-up approach, utilizing self-assembly of a protected amino acid minimal building block, to create arrays of organic, light-scattering colorful surfaces.

  11. Quantum-Chemical Insights into the Self-Assembly of Carbon-Based Supramolecular Complexes

    Directory of Open Access Journals (Sweden)

    Joaquín Calbo

    2018-01-01

    Full Text Available Understanding how molecular systems self-assemble to form well-organized superstructures governed by noncovalent interactions is essential in the field of supramolecular chemistry. In the nanoscience context, the self-assembly of different carbon-based nanoforms (fullerenes, carbon nanotubes and graphene with, in general, electron-donor molecular systems, has received increasing attention as a means of generating potential candidates for technological applications. In these carbon-based systems, a deep characterization of the supramolecular organization is crucial to establish an intimate relation between supramolecular structure and functionality. Detailed structural information on the self-assembly of these carbon-based nanoforms is however not always accessible from experimental techniques. In this regard, quantum chemistry has demonstrated to be key to gain a deep insight into the supramolecular organization of molecular systems of high interest. In this review, we intend to highlight the fundamental role that quantum-chemical calculations can play to understand the supramolecular self-assembly of carbon-based nanoforms through a limited selection of supramolecular assemblies involving fullerene, fullerene fragments, nanotubes and graphene with several electron-rich π-conjugated systems.

  12. Flow chemistry to control the synthesis of nano and microparticles for biomedical applications.

    Science.gov (United States)

    Hassan, Natalia; Oyarzun-Ampuero, Felipe; Lara, Pablo; Guerrero, Simón; Cabuil, Valérie; Abou-Hassan, Ali; Kogan, Marcelo J

    2014-03-01

    In this article we review the flow chemistry methodologies for the controlled synthesis of different kind of nano and microparticles for biomedical applications. Injection mechanism has emerged as new alternative for the synthesis of nanoparticles due to this strategy allows achieving superior levels of control of self-assemblies, leading to higher-ordered structures and rapid chemical reactions. Self-assembly events are strongly dependent on factors such as the local concentration of reagents, the mixing rates, and the shear forces, which can be finely tuned, as an example, in a microfluidic device. Injection methods have also proved to be optimal to elaborate microsystems comprising polymer solutions. Concretely, extrusion based methods can provide controlled fluid transport, rapid chemical reactions, and cost-saving advantages over conventional reactors. We provide an update of synthesis of nano and microparticles such as core/shell, Janus, nanocrystals, liposomes, and biopolymeric microgels through flow chemistry, its potential bioapplications and future challenges in this field are discussed.

  13. Self-assembling layers created by membrane proteins on gold.

    Science.gov (United States)

    Shah, D S; Thomas, M B; Phillips, S; Cisneros, D A; Le Brun, A P; Holt, S A; Lakey, J H

    2007-06-01

    Membrane systems are based on several types of organization. First, amphiphilic lipids are able to create monolayer and bilayer structures which may be flat, vesicular or micellar. Into these structures membrane proteins can be inserted which use the membrane to provide signals for lateral and orientational organization. Furthermore, the proteins are the product of highly specific self-assembly otherwise known as folding, which mostly places individual atoms at precise places in three dimensions. These structures all have dimensions in the nanoscale, except for the size of membrane planes which may extend for millimetres in large liposomes or centimetres on planar surfaces such as monolayers at the air/water interface. Membrane systems can be assembled on to surfaces to create supported bilayers and these have uses in biosensors and in electrical measurements using modified ion channels. The supported systems also allow for measurements using spectroscopy, surface plasmon resonance and atomic force microscopy. By combining the roles of lipids and proteins, highly ordered and specific structures can be self-assembled in aqueous solution at the nanoscale.

  14. The magneto-elastica: from self-buckling to self-assembly

    KAUST Repository

    Vella, D.; du Pontavice, E.; Hall, C. L.; Goriely, A.

    2013-01-01

    Spherical neodymium-iron-boron magnets are permanent magnets that can be assembled into a variety of structures owing to their high magnetic strength. A one-dimensional chain of these magnets responds to mechanical loadings in a manner reminiscent of an elastic rod. We investigate the macroscopic mechanical properties of assemblies of ferromagnetic spheres by considering chains, rings and chiral cylinders of magnets. Based on energy estimates and simple experiments, we introduce an effective magnetic bending stiffness for a chain of magnets and show that, used in conjunction with classic results for elastic rods, it provides excellent estimates for the buckling and vibration dynamics of magnetic chains. We then use this estimate to understand the dynamic self-assembly of a cylinder from an initially straight chain of magnets.

  15. The magneto-elastica: from self-buckling to self-assembly

    KAUST Repository

    Vella, D.

    2013-12-04

    Spherical neodymium-iron-boron magnets are permanent magnets that can be assembled into a variety of structures owing to their high magnetic strength. A one-dimensional chain of these magnets responds to mechanical loadings in a manner reminiscent of an elastic rod. We investigate the macroscopic mechanical properties of assemblies of ferromagnetic spheres by considering chains, rings and chiral cylinders of magnets. Based on energy estimates and simple experiments, we introduce an effective magnetic bending stiffness for a chain of magnets and show that, used in conjunction with classic results for elastic rods, it provides excellent estimates for the buckling and vibration dynamics of magnetic chains. We then use this estimate to understand the dynamic self-assembly of a cylinder from an initially straight chain of magnets.

  16. Ag nanoparticles formed by femtosecond pulse laser ablation in water: self-assembled fractal structures

    Energy Technology Data Exchange (ETDEWEB)

    Santillán, Jesica M. J. [CONICET La Plata-CIC, Centro de Investigaciones Ópticas (CIOp) (Argentina); Fernández van Raap, Marcela B., E-mail: raap@fisica.unlp.edu.ar; Mendoza Zélis, Pedro; Coral, Diego [CONICET, Instituto de Física La Plata (IFLP) (Argentina); Muraca, Diego [Universidade Estadual de Campinas, Instituto de Física “Gleb Wataghin” (IFGW) (Brazil); Schinca, Daniel C.; Scaffardi, Lucía B., E-mail: lucias@ciop.unlp.edu.ar [CONICET La Plata-CIC, Centro de Investigaciones Ópticas (CIOp) (Argentina)

    2015-02-15

    We report for the first time on the formation of self-assembled fractals of spherical Ag nanoparticles (Nps) fabricated by femtosecond pulse laser ablation of a solid silver target in water. Fractal structures grew both in two and three Euclidean dimensions (d). Ramified-fractal assemblies of 2 nm height and 5–14 μm large, decorated with Ag Nps of 3 nm size, were obtained in a 2d geometry when highly diluted drops of colloidal suspension were dried at a fast heating rate over a mica substrate. When less-diluted drops were dried at slow heating rate, isolated single Nps or rosette-like structures were formed. Fractal aggregates about 31 nm size in 3d geometry were observed in the as-prepared colloidal suspension. Electron diffraction and optical extinction spectroscopy (OES) analyses performed on the samples confirmed the presence of Ag and Ag{sub 2}O. The analysis of the optical extinction spectrum, using the electrostatic approximation of Mie theory for small spheres, showed the existence of Ag bare core, Ag–Ag{sub 2}O and air–Ag core–shell Nps, Ag–Ag{sub 2}O being the most frequent type [69 % relative abundance (r.a.)]. Core-size and shell-thickness distribution was derived from OES. In situ scattering measurements of the Ag colloidal suspension, carried out by small-angle X-ray scattering, indicate a mass fractal composed of packaged 〈D{sub SAXS}〉 = (5 ± 1) nm particles and fractal dimension d{sub f} = 2.5. Ex situ atomic force microscopy imaging displayed well-ramified structures, which, analyzed with box-counting method, yield a fractal dimension d{sub f} = 1.67. The growing behavior of these 2d and 3d self-assembled fractals is consistent with the diffusion-limited aggregation model.

  17. Supramolecular ribbons from amphiphilic trisamides self-assembly.

    Science.gov (United States)

    García, Fátima; Buendía, Julia; Sánchez, Luis

    2011-08-05

    Two amphiphilic C(3)-symmetric OPE-based trisamides have been synthesized and their self-assembling features investigated in solution and on surface. Variable-temperature UV-vis experiments demonstrate the cooperative supramolecular polymerization of these trisamides that self-assemble by the operation of triple C═O···H-N H-bonding arrays between the amide functional groups and π-π stacking between the aromatic units. The helical organization of the aggregates has been demonstrated by circular dichroism at a concentration as low as 1 × 10(-4) M in acetonitrile. In the reported trisamides, the large hydrophobic aromatic core acts as a solvophobic module impeding the interaction between the polar TEG chains and the amide H-bonds. This strategy makes unnecessary the separation of the amide functional groups to the polar tri(ethylene glycol) chains by paraffinic fragments. Achiral trisamide 1 self-assembles into flat ribbon-like structures that experience an amplification of chirality by the addition of a small amount of chiral 2 that generates twisted stripes.

  18. Structure and property relations of macromolecular self-assemblies at interfaces

    Science.gov (United States)

    Yang, Zhihao

    Hydrophilic polymer chains, poly(ethylene glycol) (PEG), are attached to glass surfaces by silylation of the silanol groups on glass surfaces with the omega-(methoxyl terminated PEG) trimethoxysilanes. These tethered polymer chains resemble the self-assembled monolayers (SAMs) of PEG, which exhibit excellent biocompatibility and provide a model system for studying the interactions of proteins with polymer surfaces. The low molecular weight PEGs tend to extend, forming a brush-like monolayer, whereas the longer polymer chains tend to interpenetrate each other, forming a mushroom-like PEG monolayer at the interface. Interactions between a plasma protein, bovine serum albumin, and the PEG-SAMs are investigated in terms of protein adsorption and diffusion on the surfaces by the technique of fluorescence recovery after photobleaching (FRAP). The diffusion and aggregation behaviors of the protein on the two monolayers are found to be quite different despite the similarities in adsorption and desorption behaviors. The results are analyzed with a hypothesis of the hydrated surface dynamics. A method of covalently bonding phospholipid molecules to silica substrates followed by loading with free phospholipids is demonstrated to form well organized and stable phospholipid self-assembled monolayers. Surfaces of such SAMs structurally mimic the aqueous sides of phospholipid bilayer membranes. The dynamics of phospholipids and an adsorbed protein, lipase, in the SAMs are probed with FRAP, in terms of lateral diffusion of both phospholipids and protein molecules. The esterase activity of lipase on the SAM surfaces is confirmed by the hydrolysis reaction of a substrate, umbelliferone stearate, showing such lipid SAMs posess biomembrane functionality in terms of interfacial activation of the membranous enzymes. Dynamics of polyethylene oxide and polypropylene oxide tri-block copolymers, PEO-PPO-PEO and PPO-PEO-PPO, at the air/water interface upon thermal stimulation is studied by

  19. Engineering Plasmonic Nanocrystal Coupling through Template-Assisted Self-Assembly

    Science.gov (United States)

    Greybush, Nicholas J.

    The construction of materials from nanocrystal building blocks represents a powerful new paradigm for materials design. Just as nature's materials orchestrate intricate combinations of atoms from the library of the periodic table, nanocrystal "metamaterials" integrate individual nanocrystals into larger architectures with emergent collective properties. The individual nanocrystal "meta-atoms" that make up these materials are themselves each a nanoscale atomic system with tailorable size, shape, and elemental composition, enabling the creation of hierarchical materials with predesigned structure at multiple length scales. However, an improved fundamental understanding of the interactions among individual nanocrystals is needed in order to translate this structural control into enhanced functionality. The ability to form precise arrangements of nanocrystals and measure their collective properties is therefore essential for the continued development of nanocrystal metamaterials. In this dissertation, we utilize template-assisted self-assembly and spatially-resolved spectroscopy to form and characterize individual nanocrystal oligomers. At the intersection of "top-down" and "bottom-up" nanoscale patterning schemes, template-assisted self-assembly combines the design freedom of lithography with the chemical control of colloidal synthesis to achieve unique nanocrystal configurations. Here, we employ shape-selective templates to assemble new plasmonic structures, including heterodimers of Au nanorods and upconversion phosphors, a series of hexagonally-packed Au nanocrystal oligomers, and triangular formations of Au nanorods. Through experimental analysis and numerical simulation, we elucidate the means through which inter-nanocrystal coupling imparts collective optical properties to the plasmonic assemblies. Our self-assembly and measurement strategy offers a versatile platform for exploring optical interactions in a wide range of material systems and application areas.

  20. Self-Assembled PbSe Nanowire:Perovskite Hybrids

    KAUST Repository

    Yang, Zhenyu

    2015-12-02

    © 2015 American Chemical Society. Inorganic semiconductor nanowires are of interest in nano- and microscale photonic and electronic applications. Here we report the formation of PbSe nanowires based on directional quantum dot alignment and fusion regulated by hybrid organic-inorganic perovskite surface ligands. All material synthesis is carried out at mild temperatures. Passivation of PbSe quantum dots was achieved via a new perovskite ligand exchange. Subsequent in situ ammonium/amine substitution by butylamine enables quantum dots to be capped by butylammonium lead iodide, and this further drives the formation of a PbSe nanowire superlattice in a two-dimensional (2D) perovskite matrix. The average spacing between two adjacent nanowires agrees well with the thickness of single atomic layer of 2D perovskite, consistent with the formation of a new self-assembled semiconductor nanowire:perovskite heterocrystal hybrid.

  1. Self-Assembled PbSe Nanowire:Perovskite Hybrids

    KAUST Repository

    Yang, Zhenyu; Yassitepe, Emre; Voznyy, Oleksandr; Janmohamed, Alyf; Lan, Xinzheng; Levina, Larissa; Comin, Riccardo; Sargent, Edward H.

    2015-01-01

    © 2015 American Chemical Society. Inorganic semiconductor nanowires are of interest in nano- and microscale photonic and electronic applications. Here we report the formation of PbSe nanowires based on directional quantum dot alignment and fusion regulated by hybrid organic-inorganic perovskite surface ligands. All material synthesis is carried out at mild temperatures. Passivation of PbSe quantum dots was achieved via a new perovskite ligand exchange. Subsequent in situ ammonium/amine substitution by butylamine enables quantum dots to be capped by butylammonium lead iodide, and this further drives the formation of a PbSe nanowire superlattice in a two-dimensional (2D) perovskite matrix. The average spacing between two adjacent nanowires agrees well with the thickness of single atomic layer of 2D perovskite, consistent with the formation of a new self-assembled semiconductor nanowire:perovskite heterocrystal hybrid.

  2. Fabrication and tribological properties of self-assembled monolayer of n-alkyltrimethoxysilane on silicon: Effect of SAM alkyl chain length

    Science.gov (United States)

    Huo, Lixia; Du, Pengcheng; Zhou, Hui; Zhang, Kaifeng; Liu, Peng

    2017-02-01

    It is well known that the self-assembled organic molecules on a solid surface exhibit the friction-reducing performance. However, the effect of the molecular size of the self-assembled organic molecules has not been established. In the present work, self-assembled monolayers (SAMs) of n-alkyltrimethoxysilanes with different alkyl chain lengths (C6, C12, or C18) were fabricated on silicon substrate. The water contact angles of the SAMs increased from 26.8° of the hydroxylated silicon substrate to near 60° after self-assembly. The atomic force microscopy (AFM) analysis results showed that the mean roughness (Ra) of the SAMs decreased with increasing the alkyl chain length. The tribological properties of the SAMs sliding against Al2O3 ball were evaluated on an UMT-2 tribometer, and the worn surfaces of the samples were analyzed by means of Nano Scratch Tester and surface profilometry. It was found that lowest friction coefficient and smallest width of wear were achieved with the SAMs of C12 alkyl chain (C12-SAM). The superior friction reduction and wear resistance of the SAMs in comparison with the bare silicon substrate are attributed to good adhesion of the self-assembled films to the substrate, especially the C12-SAM with desirable alkyl chain length.

  3. Micellar Self-Assembly of Recombinant Resilin-/Elastin-Like Block Copolypeptides.

    Science.gov (United States)

    Weitzhandler, Isaac; Dzuricky, Michael; Hoffmann, Ingo; Garcia Quiroz, Felipe; Gradzielski, Michael; Chilkoti, Ashutosh

    2017-08-14

    Reported here is the synthesis of perfectly sequence defined, monodisperse diblock copolypeptides of hydrophilic elastin-like and hydrophobic resilin-like polypeptide blocks and characterization of their self-assembly as a function of structural parameters by light scattering, cryo-TEM, and small-angle neutron scattering. A subset of these diblock copolypeptides exhibit lower critical solution temperature and upper critical solution temperature phase behavior and self-assemble into spherical or cylindrical micelles. Their morphologies are dictated by their chain length, degree of hydrophilicity, and hydrophilic weight fraction of the ELP block. We find that (1) independent of the length of the corona-forming ELP block there is a minimum threshold in the length of the RLP block below which self-assembly does not occur, but that once that threshold is crossed, (2) the RLP block length is a unique molecular parameter to independently tune self-assembly and (3) increasing the hydrophobicity of the corona-forming ELP drives a transition from spherical to cylindrical morphology. Unlike the self-assembly of purely ELP-based block copolymers, the self-assembly of RLP-ELPs can be understood by simple principles of polymer physics relating hydrophilic weight fraction and polymer-polymer and polymer-solvent interactions to micellar morphology, which is important as it provides a route for the de novo design of desired nanoscale morphologies from first principles.

  4. Editorial Nano structures for Medicine and Pharmaceuticals

    International Nuclear Information System (INIS)

    Xing-Jie, L.; Kumar, A.; Donglu, S.; Daxiang, C.

    2012-01-01

    The rapid developments in nano structured materials and nano technology will have profound impact in many areas of biomedical applications including delivery of drugs and biomolecules, tissue engineering, detection of bio markers, cancer diagnosis, cancer therapy, and imaging. This field is expanding quickly, and a lot of work is ongoing in the design, characterization, synthesis, and application of materials, for controlling shape and size at nanometer scale to develop highly advanced materials for biomedical application and even to design better pharmaceutical products. In recent years, novel nano structure with multi functionalities has been focused on the use of nano structures toward solving problems of biology and medicine. The main scope of this special issue is to demonstrate the latest achievement of nano technology and its application in nano medicine particularly in new approaches for drug delivery such as targeted drug delivery system, nano structure for drug storage, nano materials for tissue engineering, medical diagnosis and treatment, and generation of new kinds of materials from biological sources. Therefore, many critical issues in nano structured materials, particularly their applications in biomedicine, must be addressed before clinical applications. This special issue devotes several review and research articles encompassing various aspects of nano materials for medicine and pharmaceuticals.

  5. Synthesis and self-assembly of dumbbell shaped ZnO sub-micron structures using low temperature chemical bath deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Borade, P. [National Centre for Nanoscience and Nanotechnology, University of Mumbai, Kalina Campus, Santacruz (E), Mumbai 400098 (India); Joshi, K.U. [Anton-Paar India Pvt. Ltd., Thane (W), 400607 (India); Gokarna, A.; Lerondel, G. [Laboratoire de Nanotechnologie et D' Instrumentation Optique, Institut Charles Delaunay, CNRS UMR 6281, Université de Technologie de Troyes, 12 Rue Marie Curie, BP 2060, 10010 Troyes (France); Walke, P. [National Centre for Nanoscience and Nanotechnology, University of Mumbai, Kalina Campus, Santacruz (E), Mumbai 400098 (India); Late, D. [National Chemical Laboratory (NCL), Pune 400027 (India); Jejurikar, S.M., E-mail: jejusuhas@gmail.com [National Centre for Nanoscience and Nanotechnology, University of Mumbai, Kalina Campus, Santacruz (E), Mumbai 400098 (India)

    2016-02-01

    We report well dispersed horizontal growth of ZnO sub-micron structures using simplest technique ever known i.e. chemical bath deposition (CBD). A set of samples were prepared under two different cases A) dumbbell shaped ZnO grown in CBD bath and B) tubular ZnO structures evolved from dumbbell shaped structures by dissolution mechanism. Single phase wurtzite ZnO formation is confirmed using X-ray diffraction (XRD) technique in both cases. From the morphological investigations performed using scanning electron microscopy (SEM), sample prepared under case A indicate formation of hex bit tool (HBT) shaped ZnO crystals, which observed to self-organize to form dumbbell structures. Further these microstructures are then converted into tubular structures as a fragment of post CBD process. The possible mechanism responsible for the self-assembly of HBT units to form dumbbell structures is discussed. Observed free excitonic peak located at 370 nm in photoluminescence (PL) spectra recorded at 18 K indicate that the micro/nanostructures synthesized using CBD are of high optical quality. - Highlights: • Controlled growth of Dumbbell shaped ZnO using Chemical Bath Deposition (CBD). • Growth mechanism of dumbbell shaped ZnO by self-assembling was discussed. • Quick Transformation of ZnO dumbbell structures in to tubular structures by dissolution. • Sharp UV Emission at 370 nm from both dumbbell and tubular structures.

  6. Investigation of the structural anisotropy in a self-assembling glycinate layer on Cu(100) by scanning tunneling microscopy and density functional theory calculations

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmin, Mikhail [Surface Science Laboratory, Optoelectronics Research Centre, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere (Finland); Ioffe Physical Technical Institute, Russian Academy of Sciences, 26 Polytekhnicheskaya, St Petersburg 194021 (Russian Federation); Lahtonen, Kimmo; Vuori, Leena [Surface Science Laboratory, Optoelectronics Research Centre, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere (Finland); Sánchez-de-Armas, Rocío [Materials Theory Division, Department of Physics and Astronomy, Uppsala University, P.O. Box 516, S75120 Uppsala (Sweden); Hirsimäki, Mika, E-mail: mikahirsi@gmail.com [Surface Science Laboratory, Optoelectronics Research Centre, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere (Finland); Valden, Mika [Surface Science Laboratory, Optoelectronics Research Centre, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere (Finland)

    2017-07-01

    Highlights: • Deprotonation reaction of glycine and self-assembly of glycinate is observed on Cu. • Bias-dependent scanning tunneling microscopy indicates two glycinate geometries. • Density functional theory calculations confirm the two non-identical configurations. • Non-identical adsorption explains the anisotropy in adlayer’s electronic structure. - Abstract: Self-assembling organic molecule-metal interfaces exhibiting free-electron like (FEL) states offers an attractive bottom-up approach to fabricating materials for molecular electronics. Accomplishing this, however, requires detailed understanding of the fundamental driving mechanisms behind the self-assembly process. For instance, it is still unresolved as to why the adsorption of glycine ([NH{sub 2}(CH{sub 2})COOH]) on isotropic Cu(100) single crystal surface leads, via deprotonation and self-assembly, to a glycinate ([NH{sub 2}(CH{sub 2})COO–]) layer that exhibits anisotropic FEL behavior. Here, we report on bias-dependent scanning tunneling microscopy (STM) experiments and density functional theory (DFT) calculations for glycine adsorption on Cu(100) single crystal surface. We find that after physical vapor deposition (PVD) of glycine on Cu(100), glycinate self-assembles into an overlayer exhibiting c(2 × 4) and p(2 × 4) symmetries with non-identical adsorption sites. Our findings underscore the intricacy of electrical conductivity in nanomolecular organic overlayers and the critical role the structural anisotropy at molecule-metal interface plays in the fabrication of materials for molecular electronics.

  7. Swell Gels to Dumbbell Micelles: Construction of Materials and Nanostructure with Self-assembly

    Science.gov (United States)

    Pochan, Darrin

    2007-03-01

    Bionanotechnology, the emerging field of using biomolecular and biotechnological tools for nanostructure or nanotecnology development, provides exceptional opportunity in the design of new materials. Self-assembly of molecules is an attractive materials construction strategy due to its simplicity in application. By considering peptidic or charged synthetic polymer molecules in the bottom-up materials self-assembly design process, one can take advantage of inherently biomolecular attributes; intramolecular folding events, secondary structure, and electrostatic interactions; in addition to more traditional self-assembling molecular attributes such as amphiphilicty, to define hierarchical material structure and consequent properties. Several molecular systems will be discussed. Synthetic block copolymers with charged corona blocks can be assembled in dilute solution containing multivalent organic counterions to produce micelle structures such as toroids. These ring-like micelles are similar to the toroidal bundling of charged semiflexible biopolymers like DNA in the presence of multivalent counterions. Micelle structure can be tuned between toroids, cylinders, and disks simply by using different concentrations or molecular volumes of organic counterion. In addition, these charged blocks can consist of amino acids as monomers producing block copolypeptides. In addition to the above attributes, block copolypeptides provide the control of block secondary structure to further control self-assembly. Design strategies based on small (less than 24 amino acids) beta-hairpin peptides will be discussed. Self-assembly of the peptides is predicated on an intramolecular folding event caused by desired solution properties. Importantly, the intramolecular folding event impart a molecular-level mechanism for environmental responsiveness at the material level (e.g. infinite change in viscosity of a solution to a gel with changes in pH, ionic strength, temperature).

  8. A Springloaded Metal-Ligand Mesocate Allows Access to Trapped Intermediates of Self-Assembly.

    Science.gov (United States)

    Bogie, Paul M; Holloway, Lauren R; Lyon, Yana; Onishi, Nicole C; Beran, Gregory J O; Julian, Ryan R; Hooley, Richard J

    2018-04-02

    A strained, "springloaded" Fe 2 L 3 iminopyridine mesocate shows highly variable reactivity upon postassembly reaction with competitive diamines. The strained assembly is reactive toward transimination in minutes at ambient temperature and allows observation of kinetically trapped intermediates in the self-assembly pathway. When diamines are used that can only form less favored cage products upon full equilibration, trapped ML 3 fragments with pendant, "hanging" NH 2 groups are selectively formed instead. Slight variations in diamine structure have large effects on the product outcome: less rigid diamines convert the mesocate to more favored self-assembled cage complexes under mild conditions and allow observation of heterocomplex intermediates in the displacement pathway. The mesocate allows control of equilibrium processes and direction of product outcomes via small, iterative changes in added subcomponent structure and provides a method of accessing metal-ligand cage structures not normally observed in multicomponent Fe-iminopyridine self-assembly.

  9. Hierarchical self-assembly of hexagonal single-crystal nanosheets into 3D layered superlattices with high conductivity

    Science.gov (United States)

    Tao, Yulun; Shen, Yuhua; Yang, Liangbao; Han, Bin; Huang, Fangzhi; Li, Shikuo; Chu, Zhuwang; Xie, Anjian

    2012-05-01

    While the number of man-made nano superstructures realized by self-assembly is growing in recent years, assemblies of conductive polymer nanocrystals, especially for superlattices, are still a significant challenge, not only because of the simplicity of the shape of the nanocrystal building blocks and their interactions, but also because of the poor control over these parameters in the fabrication of more elaborate nanocrystals. Here, we firstly report a facile and general route to a new generation of 3D layered superlattices of polyaniline doped with CSA (PANI-CSA) and show how PANI crystallize and self-assemble, in a suitable single solution environment. In cyclohexane, 1D amorphous nanofibers transformed to 1D nanorods as building blocks, and then to 2D single-crystal nanosheets with a hexagonal phase, and lastly to 3D ordered layered superlattices with the narrowest polydispersity value (Mw/Mn = 1.47). Remarkably, all the instructions for the hierarchical self-assembly are encoded in the layered shape in other non-polar solvents (hexane, octane) and their conductivity in the π-π stacking direction is improved to about 50 S cm-1, which is even higher than that of the highest previously reported value (16 S cm-1). The method used in this study is greatly expected to be readily scalable to produce superlattices of conductive polymers with high quality and low cost.While the number of man-made nano superstructures realized by self-assembly is growing in recent years, assemblies of conductive polymer nanocrystals, especially for superlattices, are still a significant challenge, not only because of the simplicity of the shape of the nanocrystal building blocks and their interactions, but also because of the poor control over these parameters in the fabrication of more elaborate nanocrystals. Here, we firstly report a facile and general route to a new generation of 3D layered superlattices of polyaniline doped with CSA (PANI-CSA) and show how PANI crystallize and

  10. Equilibrium polymerization models of re-entrant self-assembly

    Science.gov (United States)

    Dudowicz, Jacek; Douglas, Jack F.; Freed, Karl F.

    2009-04-01

    As is well known, liquid-liquid phase separation can occur either upon heating or cooling, corresponding to lower and upper critical solution phase boundaries, respectively. Likewise, self-assembly transitions from a monomeric state to an organized polymeric state can proceed either upon increasing or decreasing temperature, and the concentration dependent ordering temperature is correspondingly called the "floor" or "ceiling" temperature. Motivated by the fact that some phase separating systems exhibit closed loop phase boundaries with two critical points, the present paper analyzes self-assembly analogs of re-entrant phase separation, i.e., re-entrant self-assembly. In particular, re-entrant self-assembly transitions are demonstrated to arise in thermally activated equilibrium self-assembling systems, when thermal activation is more favorable than chain propagation, and in equilibrium self-assembly near an adsorbing boundary where strong competition exists between adsorption and self-assembly. Apparently, the competition between interactions or equilibria generally underlies re-entrant behavior in both liquid-liquid phase separation and self-assembly transitions.

  11. NMR derived model of GTPase effector domain (GED self association: relevance to dynamin assembly.

    Directory of Open Access Journals (Sweden)

    Swagata Chakraborty

    Full Text Available Self-association of dynamin to form spiral structures around lipidic vesicles during endocytosis is largely mediated by its 'coiled coil' GTPase Effector Domain (GED, which, in vitro, self-associates into huge helical assemblies. Residue-level structural characterizations of these assemblies and understanding the process of association have remained a challenge. It is also impossible to get folded monomers in the solution phase. In this context, we have developed here a strategy to probe the self-association of GED by first dissociating the assembly using Dimethyl Sulfoxide (DMSO and then systematically monitoring the refolding into helix and concomitant re-association using NMR spectroscopy, as DMSO concentration is progressively reduced. The short segment, Arg109 - Met116, acts as the nucleation site for helix formation and self-association. Hydrophobic and complementary charge interactions on the surfaces drive self-association, as the helices elongate in both the directions resulting in an antiparallel stack. A small N-terminal segment remains floppy in the assembly. Following these and other published results on inter-domain interactions, we have proposed a plausible mode of dynamin self assembly.

  12. Optical constants and self-assembly of phenylene ethynylene oligomer monolayers

    DEFF Research Database (Denmark)

    Marx, E.; Walzer, Karsten; Less, R.J.

    2004-01-01

    This paper studies the self-assembly on gold surfaces of 1,4-ethynylphenyl-4'-ethynylphenyl-2'-nitro-1-benzenedithiolate (EP2NO(2)), a substituted phenylene ethynylene trimer with applications in molecular electronics. We develop an ellipsometric technique to measure the optical constants...... of these self-assembled monolayers, and we also use attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and scanning tunneling microscopy (STM) to confirm the structure of the films....

  13. Highly ordered self-assembling polymer/clay nanocomposite barrier film.

    Science.gov (United States)

    Cook, Ray; Chen, Yihong; Beall, Gary W

    2015-05-27

    Efforts to mimic complex-structured biologically based materials such as abalone shell have occupied substantial research time and effort in science and engineering. The majority of the efforts involve tedious and expensive techniques and processes. Layer-by-layer (LBL) is one such technique that can produce materials with quite unique physical properties, approaching, and in some cases surpassing, those seen in nature. The LBL technique, however, is quite tedious and difficult to implement commercially. We report here the discovery of an organic/inorganic spontaneous self-assembling system that forms a highly structured nanocomposite. The driving force behind this self-assembly appears to be entropy. This discovery should open up completely new avenues to designing hierarchical composites and structures. The films have been studied by X-ray diffraction and the barrier properties for oxygen diffusion measured.

  14. Super-Hydrophobic/Icephobic Coatings Based on Silica Nanoparticles Modified by Self-Assembled Monolayers

    Directory of Open Access Journals (Sweden)

    Junpeng Liu

    2016-12-01

    Full Text Available A super-hydrophobic surface has been obtained from nanocomposite materials based on silica nanoparticles and self-assembled monolayers of 1H,1H,2H,2H-perfluorooctyltriethoxysilane (POTS using spin coating and chemical vapor deposition methods. Scanning electron microscope images reveal the porous structure of the silica nanoparticles, which can trap small-scale air pockets. An average water contact angle of 163° and bouncing off of incoming water droplets suggest that a super-hydrophobic surface has been obtained based on the silica nanoparticles and POTS coating. The monitored water droplet icing test results show that icing is significantly delayed by silica-based nano-coatings compared with bare substrates and commercial icephobic products. Ice adhesion test results show that the ice adhesion strength is reduced remarkably by silica-based nano-coatings. The bouncing phenomenon of water droplets, the icing delay performance and the lower ice adhesion strength suggest that the super-hydrophobic coatings based on a combination of silica and POTS also show icephobicity. An erosion test rig based on pressurized pneumatic water impinging impact was used to evaluate the durability of the super-hydrophobic/icephobic coatings. The results show that durable coatings have been obtained, although improvement will be needed in future work aiming for applications in aerospace.

  15. Onset of self-assembly

    International Nuclear Information System (INIS)

    Chitanvis, S.M.

    1998-01-01

    We have formulated a theory of self-assembly based on the notion of local gauge invariance at the mesoscale. Local gauge invariance at the mesoscale generates the required long-range entropic forces responsible for self-assembly in binary systems. Our theory was applied to study the onset of mesostructure formation above a critical temperature in estane, a diblock copolymer. We used diagrammatic methods to transcend the Gaussian approximation and obtain a correlation length ξ∼(c-c * ) -γ , where c * is the minimum concentration below which self-assembly is impossible, c is the current concentration, and γ was found numerically to be fairly close to 2/3. The renormalized diffusion constant vanishes as the critical concentration is approached, indicating the occurrence of critical slowing down, while the correlation function remains finite at the transition point. copyright 1998 The American Physical Society

  16. Self-Assembly of Octopus Nanoparticles into Pre-Programmed Finite Clusters

    Science.gov (United States)

    Halverson, Jonathan; Tkachenko, Alexei

    2012-02-01

    The precise control of the spatial arrangement of nanoparticles (NP) is often required to take full advantage of their novel optical and electronic properties. NPs have been shown to self-assemble into crystalline structures using either patchy surface regions or complementary DNA strands to direct the assembly. Due to a lack of specificity of the interactions these methods lead to only a limited number of structures. An emerging approach is to bind ssDNA at specific sites on the particle surface making so-called octopus NPs. Using octopus NPs we investigate the inverse problem of the self-assembly of finite clusters. That is, for a given target cluster (e.g., arranging the NPs on the vertices of a dodecahedron) what are the minimum number of complementary DNA strands needed for the robust self-assembly of the cluster from an initially homogeneous NP solution? Based on the results of Brownian dynamics simulations we have compiled a set of design rules for various target clusters including cubes, pyramids, dodecahedrons and truncated icosahedrons. Our approach leads to control over the kinetic pathway and has demonstrated nearly perfect yield of the target.

  17. The Self- and Directed Assembly of Nanowires

    Science.gov (United States)

    Smith, Benjamin David

    This thesis explores the self- and directed assembly of nanowires. Specifically, we examine the driving forces behind nanowire self-assembly and the macro-structures that are formed. Particle-dense, oriented nanowire structures show promise in the fields of photonics, energy, sensing, catalysis, and electronics. Arrays of spherical particles have already found uses in electronic inks, sensing arrays, and many other commercial applications; but, it is a challenge to create specific arrays of morphologically and/or compositionally anisotropic particles. The following chapters illuminate the interactions that drive the assembly of anisotropic particles in high density solutions in the absence of applied fields or solution drying. Special emphasis is placed on the structures that are formed. The properties of micro- and nanoparticles and their assembly are introduced in Chapter 1. In particular, the properties of shape and material anisotropic particles are highlighted, while challenges in producing desired arrays are discussed. In this thesis, metallic nanowires of increasing complexity were used to examine the self-assembly behavior of both shape and material anisotropic particles. Nanowires were synthesized through templated electrodeposition. In this process, porous alumina membranes served as a template in which metal salts were reduced to form particles. Upon template dissolution, billions of nominally identical particles were released. We specifically focused on segmented, metallic nanowires 2-13 mum in length and 180 to 350 nm in diameter. Since these particles have strong van der Waals (VDWs) attractions, an electrostatically repulsive coating was necessary to prevent aggregation; we used small molecule, DNA, or amorphous silica coatings. Nanowires and their coatings were characterized by electron microscopy. In order to study self-assembly behavior, particle-dense aqueous suspensions were placed within an assembly chamber defined by a silicone spacer. The

  18. Self assembly of rectangular shapes on concentration programming and probabilistic tile assembly models.

    Science.gov (United States)

    Kundeti, Vamsi; Rajasekaran, Sanguthevar

    2012-06-01

    Efficient tile sets for self assembling rectilinear shapes is of critical importance in algorithmic self assembly. A lower bound on the tile complexity of any deterministic self assembly system for an n × n square is [Formula: see text] (inferred from the Kolmogrov complexity). Deterministic self assembly systems with an optimal tile complexity have been designed for squares and related shapes in the past. However designing [Formula: see text] unique tiles specific to a shape is still an intensive task in the laboratory. On the other hand copies of a tile can be made rapidly using PCR (polymerase chain reaction) experiments. This led to the study of self assembly on tile concentration programming models. We present two major results in this paper on the concentration programming model. First we show how to self assemble rectangles with a fixed aspect ratio ( α:β ), with high probability, using Θ( α + β ) tiles. This result is much stronger than the existing results by Kao et al. (Randomized self-assembly for approximate shapes, LNCS, vol 5125. Springer, Heidelberg, 2008) and Doty (Randomized self-assembly for exact shapes. In: proceedings of the 50th annual IEEE symposium on foundations of computer science (FOCS), IEEE, Atlanta. pp 85-94, 2009)-which can only self assembly squares and rely on tiles which perform binary arithmetic. On the other hand, our result is based on a technique called staircase sampling . This technique eliminates the need for sub-tiles which perform binary arithmetic, reduces the constant in the asymptotic bound, and eliminates the need for approximate frames (Kao et al. Randomized self-assembly for approximate shapes, LNCS, vol 5125. Springer, Heidelberg, 2008). Our second result applies staircase sampling on the equimolar concentration programming model (The tile complexity of linear assemblies. In: proceedings of the 36th international colloquium automata, languages and programming: Part I on ICALP '09, Springer-Verlag, pp 235

  19. Self-assembling nano-diameter needlelike pinning centers in YBCO, utilizing a foreign element dopant

    Energy Technology Data Exchange (ETDEWEB)

    Sawh, Ravi-Persad [Texas Center for Superconductivity and Physics Department, University of Houston, 632 Science and Research Bldg 1, Houston Texas 77204-5005 (United States); Weinstein, Roy [Texas Center for Superconductivity and Physics Department, University of Houston, 632 Science and Research Bldg 1, Houston Texas 77204-5005 (United States); Obot, Victor [Department of Mathematics, Texas Southern University, 3100 Cleburne St, Houston Texas 77004-4597 (United States); Parks, Drew [Texas Center for Superconductivity and Physics Department, University of Houston, 632 Science and Research Bldg 1, Houston Texas 77204-5005 (United States); Gandini, Alberto [Texas Center for Superconductivity and Physics Department, University of Houston, 632 Science and Research Bldg 1, Houston Texas 77204-5005 (United States); Skorpenske, Harley [Texas Center for Superconductivity and Physics Department, University of Houston, 632 Science and Research Bldg 1, Houston Texas 77204-5005 (United States)

    2006-06-01

    Although pinning centers created by irradiation presently produce the highest J{sub c}, it is probable that ultimately these will be emulated by chemical pinning centers. The best pinning centers produced by irradiation nevertheless provide guidelines for desirable morphology of chemical pinning structures. The highest J{sub c} produced earlier in textured HTS was obtained using isotropic high-energy ions produced by fission of {sup 235}U. This so-called U/n process produces pinning centers of diameter {<=} 4.5 nm, with an effective length of {approx}2.7 {mu}m. Maximum J{sub c} occurs for pinning center density of {approx}10{sup 10} cm{sup -3}. We use this as a model for desired chemical pinning centers. Our approach to introducing chemical pinning centers has been to produce precipitates within the HTS containing elements not native to the HTS, and to seek needlelike (columnar) deposits of small diameter. We report here on the formation of needlelike or columnar deposits in textured Y123 containing a dopant foreign to Y123. It serves as a demonstration that self-assembling nanometer diameter columns utilizing a dopant foreign to the HTS system are a feasible goal. These deposits, however, do not fully meet the ultimate requirements of pinning centers because the desired deposits should be smaller. The self-assembling columns formed contain titanium, are {approx}500 nm in diameter, and up to 10 {mu}m long. The size and morphology of the deposits vary with the mass of admixed Ti dopant. J{sub c} is decreased for small dopant mass. At larger dopant masses needlelike precipitates form, and J{sub c} increases again. A small range of mass of admixed Ti exists in which J{sub c} is enhanced by pinning. In the range of admixed Ti mass studied in these experiments there is a negligible effect on T{sub c}. Magnetization studies of J{sub c} are also reported.

  20. Self-assembling membranes and related methods thereof

    Science.gov (United States)

    Capito, Ramille M; Azevedo, Helena S; Stupp, Samuel L

    2013-08-20

    The present invention relates to self-assembling membranes. In particular, the present invention provides self-assembling membranes configured for securing and/or delivering bioactive agents. In some embodiments, the self-assembling membranes are used in the treatment of diseases, and related methods (e.g., diagnostic methods, research methods, drug screening).

  1. Programming Hierarchical Self-Assembly of Patchy Particles into Colloidal Crystals via Colloidal Molecules.

    Science.gov (United States)

    Morphew, Daniel; Shaw, James; Avins, Christopher; Chakrabarti, Dwaipayan

    2018-03-27

    Colloidal self-assembly is a promising bottom-up route to a wide variety of three-dimensional structures, from clusters to crystals. Programming hierarchical self-assembly of colloidal building blocks, which can give rise to structures ordered at multiple levels to rival biological complexity, poses a multiscale design problem. Here we explore a generic design principle that exploits a hierarchy of interaction strengths and employ this design principle in computer simulations to demonstrate the hierarchical self-assembly of triblock patchy colloidal particles into two distinct colloidal crystals. We obtain cubic diamond and body-centered cubic crystals via distinct clusters of uniform size and shape, namely, tetrahedra and octahedra, respectively. Such a conceptual design framework has the potential to reliably encode hierarchical self-assembly of colloidal particles into a high level of sophistication. Moreover, the design framework underpins a bottom-up route to cubic diamond colloidal crystals, which have remained elusive despite being much sought after for their attractive photonic applications.

  2. Molecular Gels Materials with Self-Assembled Fibrillar Networks

    CERN Document Server

    Weiss, Richard G

    2006-01-01

    Molecular gels and fibrillar networks – a comprehensive guide to experiment and theory Molecular Gels: Materials with Self-Assembled Fibrillar Networks provides a comprehensive treatise on gelators, especially low molecular-mass gelators (LMOGs), and the properties of their gels. The structures and modes of formation of the self-assembled fibrillar networks (SAFINs) that immobilize the liquid components of the gels are discussed experimentally and theoretically. The spectroscopic, rheological, and structural features of the different classes of LMOGs are also presented. Many examples of the application of the principal analytical techniques for investigation of molecular gels (including SANS, SAXS, WAXS, UV-vis absorption, fluorescence and CD spectroscopies, scanning electron, transmission electron and optical microscopies, and molecular modeling) are presented didactically and in-depth, as are several of the theories of the stages of aggregation of individual LMOG molecules leading to SAFINs. Several actua...

  3. Healing assessment of tile sets for error tolerance in DNA self-assembly.

    Science.gov (United States)

    Hashempour, M; Mashreghian Arani, Z; Lombardi, F

    2008-12-01

    An assessment of the effectiveness of healing for error tolerance in DNA self-assembly tile sets for algorithmic/nano-manufacturing applications is presented. Initially, the conditions for correct binding of a tile to an existing aggregate are analysed using a Markovian approach; based on this analysis, it is proved that correct aggregation (as identified with a so-called ideal tile set) is not always met for the existing tile sets for nano-manufacturing. A metric for assessing tile sets for healing by utilising punctures is proposed. Tile sets are investigated and assessed with respect to features such as error (mismatched tile) movement, punctured area and bond types. Subsequently, it is shown that the proposed metric can comprehensively assess the healing effectiveness of a puncture type for a tile set and its capability to attain error tolerance for the desired pattern. Extensive simulation results are provided.

  4. Understanding the self-assembly of TCNQ on Cu(111)

    DEFF Research Database (Denmark)

    Stradi, Daniele; Borca, Bogdana; Barja, Sara

    2016-01-01

    The structure of self-assembled monolayers of 7,7',8,8'-tetracyano-p-quinodimethane (TCNQ) adsorbed on Cu(111) has been studied using a combination of scanning tunnelling microscopy (STM) experiments and density functional theory (DFT) calculations. We show that the polymorphism of the self......-assembled molecular layer can be controlled by tuning of the experimental conditions under which the deposition is carried out. When the Cu(111) substrate is held above room temperature (T-Cu(111) = 350 K) during deposition, a structure is formed in which the two molecules in the unit cell are oriented one...... perpendicular to the other. Conversely, when the substrate is held at room temperature during deposition and slightly annealed afterwards, a more complex structure with five molecules per unit cell is formed. DFT calculations complement the experimental results by revealing that the building blocks of the two...

  5. Silica promoted self-assembled mesoporous aluminas. Impact of the silica precursor on the structural, textural and acidic properties

    NARCIS (Netherlands)

    Perez, Lidia Lopez; Zarubina, Valeriya; Mayoral, Alvaro; Melian-Cabrera, Ignacio

    2015-01-01

    This paper investigates the effect of silica addition on the structural, textural and acidic properties of an evaporation induced self-assembled (EISA) mesoporous alumina. Two silica addition protocols were applied while maintaining the EISA synthesis route. The first route is based on the addition

  6. Radiation induced nano structures

    International Nuclear Information System (INIS)

    Ibragimova, E.M.; Kalanov, M.U.; Khakimov, Z.

    2006-01-01

    Full text: Nanometer-size silicon clusters have been attracting much attention due to their technological importance, in particular, as promising building blocks for nano electronic and nano photonic systems. Particularly, silicon wires are of great of interest since they have potential for use in one-dimensional quantum wire high-speed field effect transistors and light-emitting devices with extremely low power consumption. Carbon and metal nano structures are studied very intensely due to wide possible applications. Radiation material sciences have been dealing with sub-micron objects for a long time. Under interaction of high energy particles and ionizing radiation with solids by elastic and inelastic mechanisms, at first point defects are created, then they form clusters, column defects, disordered regions (amorphous colloids) and finally precipitates of another crystal phase in the matrix. Such irradiation induced evolution of structure defects and phase transformations was observed by X-diffraction techniques in dielectric crystals of quartz and corundum, which exist in and crystal modifications. If there is no polymorphism, like in alkali halide crystals, then due to radiolysis halogen atoms are evaporated from the surface that results in non-stoichiometry or accumulated in the pores formed by metal vacancies in the sub-surface layer. Nano-pores are created by intensive high energy particles irradiation at first chaotically and then they are ordered and in part filled by inert gas. It is well-known mechanism of radiation induced swelling and embrittlement of metals and alloys, which is undesirable for construction materials for nuclear reactors. Possible solution of this problem may come from nano-structured materials, where there is neither swelling nor embrittlement at gas absorption due to very low density of the structure, while strength keeps high. This review considers experimental observations of radiation induced nano-inclusions in insulating

  7. Direct writing of large-area micro/nano-structural arrays on single crystalline germanium substrates using femtosecond lasers

    Science.gov (United States)

    Li, Lin; Wang, Jun

    2017-06-01

    A direct writing technique for fabricating micro/nano-structural arrays without using a multi-scanning process, multi-beam interference, or any assisted microlens arrays is reported. Various sub-wavelength micro/nano-structural arrays have been directly written on single crystalline germanium substrate surfaces using femtosecond laser pulses. The evolution of the multiscale surface morphology from periodic micro/nano-structures to V-shaped microgrooves has been achieved, and the relationship between array characteristics and laser polarization directions has been discussed. The self-organization model agrees well with the experimental results in this study.

  8. The structural coloration of textile materials using self-assembled silica nanoparticles.

    Science.gov (United States)

    Gao, Weihong; Rigout, Muriel; Owens, Huw

    2017-01-01

    The work presented investigates how to produce structural colours on textile materials by applying a surface coating of silica nanoparticles (SNPs). Uniform SNPs with particle diameters in a controlled micron size range (207-350 nm) were synthesized using a Stöber-based solvent varying (SV) method which has been reported previously. Photonic crystals (PCs) were formed on the surface of a piece of textile fabric through a process of natural sedimentation self-assembly of the colloidal suspension containing uniform SNPs. Due to the uniformity and a particular diameter range of the prepared SNPs, structural colours were observed from the fabric surface due to the Bragg diffraction of white light with the ordered structure of the silica PCs. By varying the mean particle diameter, a wide range of spectral colours from red to blue were obtained. The comparison of structural colours on fabrics and on glasses suggests that a smooth substrate is critical when producing materials with high colour intensity and spatial uniformity. This work suggested a promising approach to colour textile materials without the need for traditional dyes and/or pigments. Graphical abstract.

  9. Engineering self-assembled bioreactors from protein microcompartments

    Energy Technology Data Exchange (ETDEWEB)

    Savage, David [Univ. of California, Berkeley, CA (United States)

    2016-10-12

    The goals of this research are to understand how organisms such as bacteria segregate certain metabolic processes inside of specific structures, or “microcompartments,” in the cell and apply this knowledge to develop novel engineered microcompartments for use in nanotechnology and metabolic engineering. For example, in some bacteria, self-assembling protein microcompartments called carboxysomes encapsulate the enzymes involved in carbon fixation, enabling the cell to utilize carbon dioxide more effectively than if the enzymes were free in the cell. The proposed research will determine how structures such as carboxysomes assemble and function in bacteria and develop a means for creating novel, synthetic microcompartments for optimizing production of specific energy-rich compounds.

  10. Self-assembly and speed distributions of active granular particles

    Science.gov (United States)

    Sánchez, R.; Díaz-Leyva, P.

    2018-06-01

    The relationship between the dynamics of self-propelled systems and the self-assembly of structured clusters are studied via the experimental speed distributions of submonolayers of self-propelled granular particles. A distribution developed for non-self-propelled granular particles describes the speed distributions remarkably well, despite some of the assumptions behind its original derivation not being applicable. This is explained in terms of clustering and dissipation being the key phenomena governing this regime.

  11. DNA-mediated self-assembly of tetrahedral plasmonic clusters for metafluids

    Science.gov (United States)

    Schade, Nicholas; Sun, Li; Lee, You-Jin; Fan, Jonathan; Capasso, Federico; Yi, Gi-Ra; Manoharan, Vinothan

    2014-03-01

    We direct the self-assembly of clusters of gold nanospheres with the goal of creating a bulk, isotropic, optical metafluid. We use spherical gold nanoparticles that are exceptionally smooth, monocrystalline, and monodisperse. These particles exhibit highly reproducible scattering spectra compared with commercially available gold colloids. We label them with DNA sequences and mix them together to self-assemble small clusters. By controlling the particle sizes and the interactions between them, we maximize the yield of tetrahedral clusters, the ideal structures for isotropic metamaterials.

  12. Metal Oxide Nano structures: Synthesis, Properties, and Applications

    International Nuclear Information System (INIS)

    Xu, L. H.; Patil, D. S.; Yang, J.; Xiao, J.

    2015-01-01

    In recent years, nano structured materials have attracted wide attention due to their fascinating optical and electrical properties, which make these materials potentially suitable for applications in electronics, optics, photonics, and sensors. Some metal oxides show a wide variety of morphologies such as nano wires, nano rods, nano tubes, nano rings, and nano belts. Synthesis and investigation of these metal-oxide nano structures are beneficial not only for understanding the fundamental phenomena in low dimensional systems, but also for developing new-generation nano devices with high performance.

  13. Volatile release from self-assembly structured emulsions: effect of monoglyceride content, oil content, and oil type.

    Science.gov (United States)

    Mao, Like; Roos, Yrjö H; Miao, Song

    2013-02-20

    Monoglycerides (MGs) can form self-assembled structures in emulsions, which can be used to control volatile release. In this study, initial headspace concentrations (C(initial)), maximum headspace concentrations (C(max)), release rates, and partition coefficients of propanol, diacetyl, hexanal, and limonene were determined in MG structured oil-in-water emulsions using dynamic and static headspace analyses. For all of the volatile compounds, C(initial) values above structured emulsions were significantly lower than those above unstructured emulsions and decreased with increasing MG contents (p triglyceride emulsions than in soybean oil emulsions (p structured emulsions than in unstructured emulsions (p structured emulsions can be potentially used as delivery systems to modulate volatile release.

  14. Modulating β-lactoglobulin nanofibril self-assembly at pH 2 using glycerol and sorbitol.

    Science.gov (United States)

    Dave, Anant C; Loveday, Simon M; Anema, Skelte G; Jameson, Geoffrey B; Singh, Harjinder

    2014-01-13

    β-Lactoglobulin (β-lg) forms fibrils when heated at 80 °C, pH 2, and low ionic strength (sorbitol (0-50% w/v) on β-lg self-assembly at pH 2. Glycerol and sorbitol stabilize native protein structure and modulate protein functionality by preferential exclusion. In our study, both polyols decreased the rate of β-lg self-assembly but had no effect on the morphology of fibrils. The mechanism of these effects was studied using circular dichroism spectroscopy and SDS-PAGE. Sorbitol inhibited self-assembly by stabilizing β-lg against unfolding and hydrolysis, resulting in fewer fibrillogenic species, whereas glycerol inhibited nucleation without inhibiting hydrolysis. Both polyols increased the viscosity of the solutions, but viscosity appeared to have little effect on fibril assembly, and we believe that self-assembly was not diffusion-limited under these conditions. This is in agreement with previous reports for other proteins assembling under different conditions. The phenomenon of peptide self-assembly can be decoupled from protein hydrolysis using glycerol.

  15. S-layer architectures : extending the morphogenetic potential of S-layer protein self-assembly

    International Nuclear Information System (INIS)

    Schuster, D.

    2013-01-01

    Self-assembly of molecular building blocks is a common principle for bottom up based building principles in nature. One example are crystalline bacterial surface layers, termed S-layers, which are the most commonly observed cell surface structures in prokaryotic organisms. They recrystallize into highly ordered, porous protein meshworks with unit cell sizes of 3 to 30 nm and pore sizes of 2 to 8 nm. In this work, S-layers were self-assembled on various three dimensional scaffolds in order to fabricate novel S-layer architectures. Exploiting the stabilizing effect of silica deposited on the S-layer protein meshwork led to the construction of hollow S-layer nano-containers derived from coated liposomes. Transmission electron microscopy (TEM) techniques and release experiments with fluorescent dyes confirmed the dissolution of the supporting lipids. Silica deposition on different spherical particles in solution, as well as on planar S-layer coated surfaces, could be monitored by measuring the ζ-potential, the decline of monosilicic acid in solution, by using scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis or by quartz crystal microbalance with dissipation monitoring (QCM-D). Both, ζ-potential and release experiments showed differences between silicified plain liposomes and silicified S-layer coated liposomes. In addition, nanocapsules with calcium carbonate cores served as another template for the construction of silica supported S-layer architectures. These were investigated by SEM and fluorescence microscopy after fluorescence labeling. Additional coating with polyelectrolytes increased the stability of the nanocapsules. Their mechanical properties were characterized by atomic force microscopy (AFM). The influence of silica deposition was investigated by AFM and SEM. Further on, emulsomes and gas filled lipid supported microbubbles may serve as other templates for the design of spherical protein constructs although extraction of the

  16. In situ microscopy of the self-assembly of branched nanocrystals in solution

    Science.gov (United States)

    Sutter, Eli; Sutter, Peter; Tkachenko, Alexei V.; Krahne, Roman; de Graaf, Joost; Arciniegas, Milena; Manna, Liberato

    2016-04-01

    Solution-phase self-assembly of nanocrystals into mesoscale structures is a promising strategy for constructing functional materials from nanoscale components. Liquid environments are key to self-assembly since they allow suspended nanocrystals to diffuse and interact freely, but they also complicate experiments. Real-time observations with single-particle resolution could have transformative impact on our understanding of nanocrystal self-assembly. Here we use real-time in situ imaging by liquid-cell electron microscopy to elucidate the nucleation and growth mechanism and properties of linear chains of octapod-shaped nanocrystals in their native solution environment. Statistical mechanics modelling based on these observations and using the measured chain-length distribution clarifies the relative importance of dipolar and entropic forces in the assembly process and gives direct access to the interparticle interaction. Our results suggest that monomer-resolved in situ imaging combined with modelling can provide unprecedented quantitative insight into the microscopic processes and interactions that govern nanocrystal self-assembly in solution.

  17. Systematic Moiety Variations of Ultrashort Peptides Produce Profound Effects on Self-Assembly, Nanostructure Formation, Hydrogelation, and Phase Transition

    KAUST Repository

    Chan, Kiat Hwa

    2017-10-04

    Self-assembly of small biomolecules is a prevalent phenomenon that is increasingly being recognised to hold the key to building complex structures from simple monomeric units. Small peptides, in particular ultrashort peptides containing up to seven amino acids, for which our laboratory has found many biomedical applications, exhibit immense potential in this regard. For next-generation applications, more intricate control is required over the self-assembly processes. We seek to find out how subtle moiety variation of peptides can affect self-assembly and nanostructure formation. To this end, we have selected a library of 54 tripeptides, derived from systematic moiety variations from seven tripeptides. Our study reveals that subtle structural changes in the tripeptides can exert profound effects on self-assembly, nanostructure formation, hydrogelation, and even phase transition of peptide nanostructures. By comparing the X-ray crystal structures of two tripeptides, acetylated leucine-leucine-glutamic acid (Ac-LLE) and acetylated tyrosine-leucine-aspartic acid (Ac-YLD), we obtained valuable insights into the structural factors that can influence the formation of supramolecular peptide structures. We believe that our results have major implications on the understanding of the factors that affect peptide self-assembly. In addition, our findings can potentially assist current computational efforts to predict and design self-assembling peptide systems for diverse biomedical applications.

  18. Self-Assembling Multi-Component Nanofibers for Strong Bioinspired Underwater Adhesives

    Science.gov (United States)

    Zhong, Chao; Gurry, Thomas; Cheng, Allen A; Downey, Jordan; Deng, Zhengtao; Stultz, Collin M.; Lu, Timothy K

    2014-01-01

    Many natural underwater adhesives harness hierarchically assembled amyloid nanostructures to achieve strong and robust interfacial adhesion under dynamic and turbulent environments. Despite recent advances, our understanding of the molecular design, self-assembly, and structure-function relationship of those natural amyloid fibers remains limited. Thus, designing biomimetic amyloid-based adhesives remains challenging. Here, we report strong and multi-functional underwater adhesives obtained from fusing mussel foot proteins (Mfps) of Mytilus galloprovincialis with CsgA proteins, the major subunit of Escherichia coli amyloid curli fibers. These hybrid molecular materials hierarchically self-assemble into higher-order structures, in which, according to molecular dynamics simulations, disordered adhesive Mfp domains are exposed on the exterior of amyloid cores formed by CsgA. Our fibers have an underwater adhesion energy approaching 20.9 mJ/m2, which is 1.5 times greater than the maximum of bio-inspired and bio-derived protein-based underwater adhesives reported thus far. Moreover, they outperform Mfps or curli fibers taken on their own at all pHs and exhibit better tolerance to auto-oxidation than Mfps at pH ≥7.0. This work establishes a platform for engineering multi-component self-assembling materials inspired by nature. PMID:25240674

  19. The role of ultra-fast solvent evaporation on the directed self-assembly of block polymer thin films

    Science.gov (United States)

    Drapes, Chloe; Nelson, G.; Grant, M.; Wong, J.; Baruth, A.

    The directed self-assembly of nano-structures in block polymer thin films viasolvent vapor annealing is complicated by several factors, including evaporation rate. Solvent vapor annealing exposes a disordered film to solvent(s) in the vapor phase, increasing mobility and tuning surface energy, with the intention of producing an ordered structure. Recent theoretical predictions reveal the solvent evaporation affects the resultant nano-structuring. In a competition between phase separation and kinetic trapping during drying, faster solvent removal can enhance the propagation of a given morphology into the bulk of the thin film down to the substrate. Recent construction of a purpose-built, computer controlled solvent vapor annealing chamber provides control over forced solvent evaporation down to 15 ms. This is accomplished using pneumatically actuated nitrogen flow into and out of the chamber. Furthermore, in situ spectral reflectance, with 10 ms temporal resolution, monitors the swelling and evaporation. Presently, cylinder-forming polystyrene-block-polylactide thin films were swollen with 40% (by volume) tetrahydrofuran, followed by immediate evaporation under a variety of designed conditions. This includes various evaporation times, ranging from 15 ms to several seconds, and four unique rate trajectories, including linear, exponential, and combinations. Atomic force microscopy reveals specific surface, free and substrate, morphologies of the resultant films, dependent on specific evaporation conditions. Funded by the Clare Boothe Luce Foundation and Nebraska EPSCoR.

  20. Effects of heat treatment on optical absorption properties of Ni-P/AAO nano-array composite structure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yi-Fan; Wang, Feng-Hua; Guo, Dong-Lai; Huang, Sheng-You; Zou, Xian-Wu [Wuhan University, Department of Physics, Wuhan (China); Sang, Jian-Ping [Wuhan University, Department of Physics, Wuhan (China); Jianghan University, Department of Physics, Wuhan (China)

    2009-11-15

    Ni-P/AAO nano-array composite structure assemblies with Ni and P grown in the pores of anodic aluminum oxide (AAO) membranes were prepared by electroless deposition. The results of SEM, TEM and SAED show that as-deposited Ni-P nanowires have an amorphous structure and a few nanocrystallites form after annealing. The optical absorption spectra reveal that, as the annealing temperature increases, the absorption band edge of the Ni-P/AAO composite structure is obviously blue shifted, which is attributed to a decrease of the internal pressure after heat treatment. Meanwhile, the annealed Ni-P/AAO nano-array composite structure exhibits the absorption behavior of a direct band gap semiconductor. Details of this behavior are discussed together with the implications for potential device applications. (orig.)

  1. Structural design principles for self-assembled coordination polygons and polyhedra.

    Science.gov (United States)

    Young, Neil J; Hay, Benjamin P

    2013-02-18

    Strategies for the design of ligands that combine with metal ions to form high-symmetry coordination assemblies are reviewed. Evaluation of crystal structure evidence reveals that prior design approaches, based on the concept of complementary bonding vector angles, fail to predict the majority of known examples. After explaining the reasons for this failure, it is shown how an alternative approach, de novo structure-based design, provides a practical method that predicts a much wider range of component shapes encoded to direct the formation of such assemblies.

  2. Lipid-bilayer-assisted two-dimensional self-assembly of DNA origami nanostructures

    Science.gov (United States)

    Endo, Masayuki; Sugiyama, Hiroshi

    2015-01-01

    Self-assembly is a ubiquitous approach to the design and fabrication of novel supermolecular architectures. Here we report a strategy termed ‘lipid-bilayer-assisted self-assembly' that is used to assemble DNA origami nanostructures into two-dimensional lattices. DNA origami structures are electrostatically adsorbed onto a mica-supported zwitterionic lipid bilayer in the presence of divalent cations. We demonstrate that the bilayer-adsorbed origami units are mobile on the surface and self-assembled into large micrometre-sized lattices in their lateral dimensions. Using high-speed atomic force microscopy imaging, a variety of dynamic processes involved in the formation of the lattice, such as fusion, reorganization and defect filling, are successfully visualized. The surface modifiability of the assembled lattice is also demonstrated by in situ decoration with streptavidin molecules. Our approach provides a new strategy for preparing versatile scaffolds for nanofabrication and paves the way for organizing functional nanodevices in a micrometer space. PMID:26310995

  3. Lipid-bilayer-assisted two-dimensional self-assembly of DNA origami nanostructures

    Science.gov (United States)

    Suzuki, Yuki; Endo, Masayuki; Sugiyama, Hiroshi

    2015-08-01

    Self-assembly is a ubiquitous approach to the design and fabrication of novel supermolecular architectures. Here we report a strategy termed `lipid-bilayer-assisted self-assembly' that is used to assemble DNA origami nanostructures into two-dimensional lattices. DNA origami structures are electrostatically adsorbed onto a mica-supported zwitterionic lipid bilayer in the presence of divalent cations. We demonstrate that the bilayer-adsorbed origami units are mobile on the surface and self-assembled into large micrometre-sized lattices in their lateral dimensions. Using high-speed atomic force microscopy imaging, a variety of dynamic processes involved in the formation of the lattice, such as fusion, reorganization and defect filling, are successfully visualized. The surface modifiability of the assembled lattice is also demonstrated by in situ decoration with streptavidin molecules. Our approach provides a new strategy for preparing versatile scaffolds for nanofabrication and paves the way for organizing functional nanodevices in a micrometer space.

  4. Self-assembly via anisotropic interactions : Modeling association kinetics of patchy particle systems and self-assembly induced by critical Casimir forces

    NARCIS (Netherlands)

    Newton, A.C.

    2017-01-01

    Self-assembly, the non-dissipative spontaneous formation of structural order spans many length scales, from amphiphilic molecules forming micelles to stars forming galaxies. This thesis mainly deals with systems on the colloidal length scale where the size of a particle is between a nanometer and a

  5. Surfaces wettability and morphology modulation in a fluorene derivative self-assembly system

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Xinhua, E-mail: caoxhchem@163.com; Gao, Aiping; Zhao, Na; Yuan, Fangyuan; Liu, Chenxi; Li, Ruru

    2016-04-15

    Graphical abstract: - Highlights: • The different structures could be obtained in this self-assembly system. • A water-drop could freely roll on the xerogel film with the sliding angle of 15.0. • The superhydrophobic surface can be obtained via supramolecular self-assembly. - Abstract: A new organogelator based on fluorene derivative (gelator 1) was designed and synthesized. Organogels could be obtained via the self-assembly of the derivative in acetone, toluene, ethyl acetate, hexane, DMSO and petroleum ether. The self-assembly process was thoroughly characterized using field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), UV–vis, FT-IR and the contact angle. Surfaces with different morphologies and wetting properties were formed via the self-assembly of gelator 1 in the six different solvents. Interestingly, a superhydrophobic surface with a contact angle of 150° was obtained from organogel 1 in DMSO and exhibited the lotus-effect. The sliding angle necessary for a water droplet to move on the glass was only 15°. Hydrogen bonding and van der Waals forces were attributed as the main driving forces for gel formation.

  6. Self-organized nano-structuring of CoO islands on Fe(001)

    Science.gov (United States)

    Brambilla, A.; Picone, A.; Giannotti, D.; Riva, M.; Bussetti, G.; Berti, G.; Calloni, A.; Finazzi, M.; Ciccacci, F.; Duò, L.

    2016-01-01

    The realization of nanometer-scale structures through bottom-up strategies can be accomplished by exploiting a buried network of dislocations. We show that, by following appropriate growth steps in ultra-high vacuum molecular beam epitaxy, it is possible to grow nano-structured films of CoO coupled to Fe(001) substrates, with tunable sizes (both the lateral size and the maximum height scale linearly with coverage). The growth mode is discussed in terms of the evolution of surface morphology and chemical interactions as a function of the CoO thickness. Scanning tunneling microscopy measurements reveal that square mounds of CoO with lateral dimensions of less than 25 nm and heights below 10 atomic layers are obtained by growing few-nanometers-thick CoO films on a pre-oxidized Fe(001) surface covered by an ultra-thin Co buffer layer. In the early stages of growth, a network of misfit dislocations develops, which works as a template for the CoO nano-structuring. From a chemical point of view, at variance with typical CoO/Fe interfaces, neither Fe segregation at the surface nor Fe oxidation at the buried interface are observed, as seen by Auger electron spectroscopy and X-ray Photoemission Spectroscopy, respectively.

  7. One-Dimensional SnO2 Nano structures: Synthesis and Applications

    International Nuclear Information System (INIS)

    Pan, J.; Shen, H.; Mathur, S.; Pan, J.

    2012-01-01

    Nano scale semiconducting materials such as quantum dots (0-dimensional) and one-dimensional (1D) structures, like nano wires, nano belts, and nano tubes, have gained tremendous attention within the past decade. Among the variety of 1D nano structures, tin oxide (SnO 2 ) semiconducting nano structures are particularly interesting because of their promising applications in optoelectronic and electronic devices due to both good conductivity and transparence in the visible region. This article provides a comprehensive review of the recent research activities that focus on the rational synthesis and unique applications of 1D SnO 2 nano structures and their optical and electrical properties. We begin with the rational design and synthesis of 1D SnO 2 nano structures, such as nano tubes, nano wires, nano belts, and some heterogeneous nano structures, and then highlight a range of applications (e.g., gas sensor, lithium-ion batteries, and nano photonics) associated with them. Finally, the review is concluded with some perspectives with respect to future research on 1D SnO 2 nano structures

  8. Self-assembly behaviours of peptide-drug conjugates: influence of multiple factors on aggregate morphology and potential self-assembly mechanism

    Science.gov (United States)

    Fan, Qin; Ji, Yujie; Wang, Jingjing; Wu, Li; Li, Weidong; Chen, Rui; Chen, Zhipeng

    2018-04-01

    Peptide-drug conjugates (PDCs) as self-assembly prodrugs have the unique and specific features to build one-component nanomedicines. Supramolecular structure based on PDCs could form various morphologies ranging from nanotube, nanofibre, nanobelt to hydrogel. However, the assembly process of PDCs is too complex to predict or control. Herein, we investigated the effects of extrinsic factors on assembly morphology and the possible formation of nanostructures based on PDCs. To this end, we designed a PDC consisting of hydrophobic drug (S)-ketoprofen (Ket) and valine-glutamic acid dimeric repeats peptide (L-VEVE) to study their assembly behaviour. Our results showed that the critical assembly concentration of Ket-L-VEVE was 0.32 mM in water to form various nanostructures which experienced from micelle, nanorod, nanofibre to nanoribbon. The morphology was influenced by multiple factors including molecular design, assembly time, pH and hydrogen bond inhibitor. On the basis of experimental results, we speculated the possible assembly mechanism of Ket-L-VEVE. The π-π stacking interaction between Ket molecules could serve as an anchor, and hydrogen bonded-induced β-sheets and hydrophilic/hydrophobic balance between L-VEVE peptide play structure-directing role in forming filament-like or nanoribbon morphology. This work provides a new sight to rationally design and precisely control the nanostructure of PDCs based on aromatic fragment.

  9. Nano crystals for Electronic and Optoelectronic Applications

    International Nuclear Information System (INIS)

    Zhu, T.; Cloutier, S.G.; Ivanov, I; Knappenberger Jr, K.L.; Robel, I.; Zhang, F

    2012-01-01

    Electronic and optoelectronic devices, from computers and smart cell phones to solar cells, have become a part of our life. Currently, devices with featured circuits of 45 nm in size can be fabricated for commercial use. However, further development based on traditional semiconductor is hindered by the increasing thermal issues and the manufacturing cost. During the last decade, nano crystals have been widely adopted in various electronic and optoelectronic applications. They provide alternative options in terms of ease of processing, low cost, better flexibility, and superior electronic/optoelectronic properties. By taking advantage of solution-processing, self-assembly, and surface engineering, nano crystals could serve as new building blocks for low-cost manufacturing of flexible and large area devices. Tunable electronic structures combined with small exciton binding energy, high luminescence efficiency, and low thermal conductivity make nano crystals extremely attractive for FET, memory device, solar cell, solid-state lighting/display, photodetector, and lasing applications. Efforts to harness the nano crystal quantum tunability have led to the successful demonstration of many prototype devices, raising the public awareness to the wide range of solutions that nano technology can provide for an efficient energy economy. This special issue aims to provide the readers with the latest achievements of nano crystals in electronic and optoelectronic applications, including the synthesis and engineering of nano crystals towards the applications and the corresponding device fabrication, characterization and computer modeling.

  10. Programmable DNA tile self-assembly using a hierarchical sub-tile strategy.

    Science.gov (United States)

    Shi, Xiaolong; Lu, Wei; Wang, Zhiyu; Pan, Linqiang; Cui, Guangzhao; Xu, Jin; LaBean, Thomas H

    2014-02-21

    DNA tile based self-assembly provides a bottom-up approach to construct desired nanostructures. DNA tiles have been directly constructed from ssDNA and readily self-assembled into 2D lattices and 3D superstructures. However, for more complex lattice designs including algorithmic assemblies requiring larger tile sets, a more modular approach could prove useful. This paper reports a new DNA 'sub-tile' strategy to easily create whole families of programmable tiles. Here, we demonstrate the stability and flexibility of our sub-tile structures by constructing 3-, 4- and 6-arm DNA tiles that are subsequently assembled into 2D lattices and 3D nanotubes according to a hierarchical design. Assembly of sub-tiles, tiles, and superstructures was analyzed using polyacrylamide gel electrophoresis and atomic force microscopy. DNA tile self-assembly methods provide a bottom-up approach to create desired nanostructures; the sub-tile strategy adds a useful new layer to this technique. Complex units can be made from simple parts. The sub-tile approach enables the rapid redesign and prototyping of complex DNA tile sets and tiles with asymmetric designs.

  11. Self-assembled nanogaps for molecular electronics.

    Science.gov (United States)

    Tang, Qingxin; Tong, Yanhong; Jain, Titoo; Hassenkam, Tue; Wan, Qing; Moth-Poulsen, Kasper; Bjørnholm, Thomas

    2009-06-17

    A nanogap for molecular devices was realized using solution-based self-assembly. Gold nanorods were assembled to gold nanoparticle-coated conducting SnO2:Sb nanowires via thiol end-capped oligo(phenylenevinylene)s (OPVs). The molecular gap was easily created by the rigid molecule itself during self-assembly and the gap length was determined by the molecule length. The gold nanorods and gold nanoparticles, respectively covalently bonded at the two ends of the molecule, had very small dimensions, e.g. a width of approximately 20 nm, and hence were expected to minimize the screening effect. The ultra-long conducting SnO2:Sb nanowires provided the bridge to connect one of the electrodes of the molecular device (gold nanoparticle) to the external circuit. The tip of the atomic force microscope (AFM) was contacted onto the other electrode (gold nanorod) for the electrical measurement of the OPV device. The conductance measurement confirmed that the self-assembly of the molecules and the subsequent self-assembly of the gold nanorods was a feasible method for the fabrication of the nanogap of the molecular devices.

  12. Self-assembled nanogaps for molecular electronics

    International Nuclear Information System (INIS)

    Tang Qingxin; Tong Yanhong; Jain, Titoo; Hassenkam, Tue; Moth-Poulsen, Kasper; Bjoernholm, Thomas; Wan Qing

    2009-01-01

    A nanogap for molecular devices was realized using solution-based self-assembly. Gold nanorods were assembled to gold nanoparticle-coated conducting SnO 2 :Sb nanowires via thiol end-capped oligo(phenylenevinylene)s (OPVs). The molecular gap was easily created by the rigid molecule itself during self-assembly and the gap length was determined by the molecule length. The gold nanorods and gold nanoparticles, respectively covalently bonded at the two ends of the molecule, had very small dimensions, e.g. a width of ∼20 nm, and hence were expected to minimize the screening effect. The ultra-long conducting SnO 2 :Sb nanowires provided the bridge to connect one of the electrodes of the molecular device (gold nanoparticle) to the external circuit. The tip of the atomic force microscope (AFM) was contacted onto the other electrode (gold nanorod) for the electrical measurement of the OPV device. The conductance measurement confirmed that the self-assembly of the molecules and the subsequent self-assembly of the gold nanorods was a feasible method for the fabrication of the nanogap of the molecular devices.

  13. Synthesis and characterization of Mn.sup.2+./sup. doped ZnS nanocrystals self-assembled in a tight mesoporous structure

    Czech Academy of Sciences Publication Activity Database

    Nistor, S.V.; Nistor, L.C.; Stefan, M.; Mateescu, C.D.; Birjega, R.; Solovieva, Natalia; Nikl, Martin

    2009-01-01

    Roč. 46, 1-2 (2009), s. 306-311 ISSN 0749-6036 Institutional research plan: CEZ:AV0Z10100521 Keywords : nanocrystalline ZnS:Mn * mesoporous structure * self-assembly * photoluminescence Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.910, year: 2009

  14. Predicting supramolecular self-assembly on reconstructed metal surfaces

    Science.gov (United States)

    Roussel, Thomas J.; Barrena, Esther; Ocal, Carmen; Faraudo, Jordi

    2014-06-01

    The prediction of supramolecular self-assembly onto solid surfaces is still challenging in many situations of interest for nanoscience. In particular, no previous simulation approach has been capable to simulate large self-assembly patterns of organic molecules over reconstructed surfaces (which have periodicities over large distances) due to the large number of surface atoms and adsorbing molecules involved. Using a novel simulation technique, we report here large scale simulations of the self-assembly patterns of an organic molecule (DIP) over different reconstructions of the Au(111) surface. We show that on particular reconstructions, the molecule-molecule interactions are enhanced in a way that long-range order is promoted. Also, the presence of a distortion in a reconstructed surface pattern not only induces the presence of long-range order but also is able to drive the organization of DIP into two coexisting homochiral domains, in quantitative agreement with STM experiments. On the other hand, only short range order is obtained in other reconstructions of the Au(111) surface. The simulation strategy opens interesting perspectives to tune the supramolecular structure by simulation design and surface engineering if choosing the right molecular building blocks and stabilising the chosen reconstruction pattern.The prediction of supramolecular self-assembly onto solid surfaces is still challenging in many situations of interest for nanoscience. In particular, no previous simulation approach has been capable to simulate large self-assembly patterns of organic molecules over reconstructed surfaces (which have periodicities over large distances) due to the large number of surface atoms and adsorbing molecules involved. Using a novel simulation technique, we report here large scale simulations of the self-assembly patterns of an organic molecule (DIP) over different reconstructions of the Au(111) surface. We show that on particular reconstructions, the molecule

  15. Measuring excess free energies of self-assembled membrane structures.

    Science.gov (United States)

    Norizoe, Yuki; Daoulas, Kostas Ch; Müller, Marcus

    2010-01-01

    Using computer simulation of a solvent-free, coarse-grained model for amphiphilic membranes, we study the excess free energy of hourglass-shaped connections (i.e., stalks) between two apposed bilayer membranes. In order to calculate the free energy by simulation in the canonical ensemble, we reversibly transfer two apposed bilayers into a configuration with a stalk in three steps. First, we gradually replace the intermolecular interactions by an external, ordering field. The latter is chosen such that the structure of the non-interacting system in this field closely resembles the structure of the original, interacting system in the absence of the external field. The absence of structural changes along this path suggests that it is reversible; a fact which is confirmed by expanded-ensemble simulations. Second, the external, ordering field is changed as to transform the non-interacting system from the apposed bilayer structure to two-bilayers connected by a stalk. The final external field is chosen such that the structure of the non-interacting system resembles the structure of the stalk in the interacting system without a field. On the third branch of the transformation path, we reversibly replace the external, ordering field by non-bonded interactions. Using expanded-ensemble techniques, the free energy change along this reversible path can be obtained with an accuracy of 10(-3)k(B)T per molecule in the n VT-ensemble. Calculating the chemical potential, we obtain the free energy of a stalk in the grandcanonical ensemble, and employing semi-grandcanonical techniques, we calculate the change of the excess free energy upon altering the molecular architecture. This computational strategy can be applied to compute the free energy of self-assembled phases in lipid and copolymer systems, and the excess free energy of defects or interfaces.

  16. Micro-Masonry: Construction of 3D Structures by Mesoscale Self-Assembly

    Science.gov (United States)

    Fernandez, Javier G.; Khademhosseini, Ali

    2010-01-01

    A general method for construction of three dimensional structures by directed assembly of microscale polymeric sub-units is presented. Shape-controlled microgels are directed to assemble into different shapes by limiting their movement onto a molded substrate. The capillary forces, resulting from the presence of a liquid polymer, assemble the microgels in close contact with the rest of the units and with the free surface, the latter imposing the final geometry of the resulting construct. The result is a freestanding structure composed of one or multiple layers of sub-units assembled in a tightly packed conformation. The applicability of the technique for the construction of scaffolds with cell-laden sub-units is demonstrated. In addition, scaffolds formed by the sequential aggregation of sub-units are produced. PMID:20440697

  17. Self-assembly of cyclodextrins

    DEFF Research Database (Denmark)

    Fülöp, Z.; Kurkov, S.V.; Nielsen, T.T.

    2012-01-01

    The design of functional cyclodextrin (CD) nanoparticles is a developing area in the field of nanomedicine. CDs can not only help in the formation of drug carriers but also increase the local concentration of drugs at the site of action. CD monomers form aggregates by self-assembly, a tendency...... that increases upon formation of inclusion complexes with lipophilic drugs. However, the stability of such aggregates is not sufficient for parenteral administration. In this review CD polymers and CD containing nanoparticles are categorized, with focus on self-assembled CD nanoparticles. It is described how...

  18. Modelling Polar Self Assembly

    Science.gov (United States)

    Olvera de La Cruz, Monica; Sayar, Mehmet; Solis, Francisco J.; Stupp, Samuel I.

    2001-03-01

    Recent experimental studies in our group have shown that self assembled thin films of noncentrosymmetric supramolecular objects composed of triblock rodcoil molecules exhibit finite polar order. These aggregates have both long range dipolar and short range Ising-like interactions. We study the ground state of a simple model with these competing interactions. We find that the competition between Ising-like and dipolar forces yield a periodic domain structure, which can be controlled by adjusting the force constants and film thickness. When the surface forces are included in the potential, the system exhibits a finite macroscopic polar order.

  19. Hollow Nanospheres Array Fabrication via Nano-Conglutination Technology.

    Science.gov (United States)

    Zhang, Man; Deng, Qiling; Xia, Liangping; Shi, Lifang; Cao, Axiu; Pang, Hui; Hu, Song

    2015-09-01

    Hollow nanospheres array is a special nanostructure with great applications in photonics, electronics and biochemistry. The nanofabrication technique with high resolution is crucial to nanosciences and nano-technology. This paper presents a novel nonconventional nano-conglutination technology combining polystyrenes spheres (PSs) self-assembly, conglutination and a lift-off process to fabricate the hollow nanospheres array with nanoholes. A self-assembly monolayer of PSs was stuck off from the quartz wafer by the thiol-ene adhesive material, and then the PSs was removed via a lift-off process and the hollow nanospheres embedded into the thiol-ene substrate was obtained. Thiolene polymer is a UV-curable material via "click chemistry" reaction at ambient conditions without the oxygen inhibition, which has excellent chemical and physical properties to be attractive as the adhesive material in nano-conglutination technology. Using the technique, a hollow nanospheres array with the nanoholes at the diameter of 200 nm embedded into the rigid thiol-ene substrate was fabricated, which has great potential to serve as a reaction container, catalyst and surface enhanced Raman scattering substrate.

  20. Non-equilibrium magnetic colloidal dispersions at liquid-air interfaces: dynamic patterns, magnetic order and self-assembled swimmers

    International Nuclear Information System (INIS)

    Snezhko, Alexey

    2011-01-01

    Colloidal dispersions of interacting particles subjected to an external periodic forcing often develop nontrivial self-assembled patterns and complex collective behavior. A fundamental issue is how collective ordering in such non-equilibrium systems arises from the dynamics of discrete interacting components. In addition, from a practical viewpoint, by working in regimes far from equilibrium new self-organized structures which are generally not available through equilibrium thermodynamics can be created. In this review spontaneous self-assembly phenomena in magnetic colloidal dispersions suspended at liquid-air interfaces and driven out of equilibrium by an alternating magnetic field are presented. Experiments reveal a new type of nontrivially ordered self-assembled structures emerging in such systems in a certain range of excitation parameters. These dynamic structures emerge as a result of the competition between magnetic and hydrodynamic forces and have complex unconventional magnetic ordering. Nontrivial self-induced hydrodynamic fields accompany each out-of-equilibrium pattern. Spontaneous symmetry breaking of the self-induced surface flows leading to a formation of self-propelled microstructures has been discovered. Some features of the self-localized structures can be understood in the framework of the amplitude equation (Ginzburg-Landau type equation) for parametric waves coupled to the conservation law equation describing the evolution of the magnetic particle density and the Navier-Stokes equation for hydrodynamic flows. To understand the fundamental microscopic mechanisms governing self-assembly processes in magnetic colloidal dispersions at liquid-air interfaces a first-principle model for a non-equilibrium self-assembly is presented. The latter model allows us to capture in detail the entire process of out-of-equilibrium self-assembly in the system and reproduces most of the observed phenomenology. (topical review)

  1. Formation of self-assembled stripes on the anodic aluminum oxide

    International Nuclear Information System (INIS)

    Liu Hongwen; Guo Haiming; Wang Yeliang; Shen Chengmin; Yang Haitao; Wang Yutian; Wei Long

    2004-01-01

    Non-polished aluminum sheets were anodized and the coexistence of self-assembled stripes and porous arrays on the Al surface was observed. The nanostructures were investigated in details using an atomic force microscope. And the formation mechanism of the stripes was discussed and simulated using Brusselator model in this work. The authors demonstrated that the self-assembled patterns on the Al surface were governed by the competition of formation and dissolution of alumina film during the reaction process. Moreover, this type of ordered structure could only form in certain conditions

  2. Fabrication of nano-structured UO2 fuel pellets

    International Nuclear Information System (INIS)

    Yang, Jae Ho; Kang, Ki Won; Rhee, Young Woo; Kim, Dong Joo; Kim, Jong Heon; Kim, Keon Sik; Song, Kun Woo

    2007-01-01

    Nano-structured materials have received much attention for their possibility for various functional materials. Ceramics with a nano-structured grain have some special properties such as super plasticity and a low sintering temperature. To reduce the fuel cycle costs and the total mass of spent LWR fuels, it is necessary to extend the fuel discharged burn-up. In order to increase the fuel burn-up, it is important to understand the fuel property of a highly irradiated fuel pellet. Especially, research has focused on the formation of a porous and small grained microstructure in the rim area of the fuel, called High Burn-up Structure (HBS). The average grain size of HBS is about 300nm. This paper deals with the feasibility study on the fabrication of nano-structured UO 2 pellets. The nano sized UO 2 particles are prepared by a combined process of a oxidation-reducing and a mechanical milling of UO 2 powder. Nano-structured UO 2 pellets (∼300nm) with a density of ∼93%TD can be obtained by sintering nano-sized UO 2 compacts. The SEM study reveals that the microstructure of the fabricated nano-structure UO 2 pellet is similar to that of HBS. Therefore, this bulk nano-structured UO 2 pellet can be used as a reference pellet for a measurement of the physical properties of HBS

  3. Programmable self-assembly of three-dimensional nanostructures from 10,000 unique components

    Science.gov (United States)

    Ong, Luvena L.; Hanikel, Nikita; Yaghi, Omar K.; Grun, Casey; Strauss, Maximilian T.; Bron, Patrick; Lai-Kee-Him, Josephine; Schueder, Florian; Wang, Bei; Wang, Pengfei; Kishi, Jocelyn Y.; Myhrvold, Cameron; Zhu, Allen; Jungmann, Ralf; Bellot, Gaetan; Ke, Yonggang; Yin, Peng

    2017-12-01

    Nucleic acids (DNA and RNA) are widely used to construct nanometre-scale structures with ever increasing complexity, with possible application in fields such as structural biology, biophysics, synthetic biology and photonics. The nanostructures are formed through one-pot self-assembly, with early kilodalton-scale examples containing typically tens of unique DNA strands. The introduction of DNA origami, which uses many staple strands to fold one long scaffold strand into a desired structure, has provided access to megadalton-scale nanostructures that contain hundreds of unique DNA strands. Even larger DNA origami structures are possible, but manufacturing and manipulating an increasingly long scaffold strand remains a challenge. An alternative and more readily scalable approach involves the assembly of DNA bricks, which each consist of four short binding domains arranged so that the bricks can interlock. This approach does not require a scaffold; instead, the short DNA brick strands self-assemble according to specific inter-brick interactions. First-generation bricks used to create three-dimensional structures are 32 nucleotides long, consisting of four eight-nucleotide binding domains. Protocols have been designed to direct the assembly of hundreds of distinct bricks into well formed structures, but attempts to create larger structures have encountered practical challenges and had limited success. Here we show that DNA bricks with longer, 13-nucleotide binding domains make it possible to self-assemble 0.1-1-gigadalton, three-dimensional nanostructures from tens of thousands of unique components, including a 0.5-gigadalton cuboid containing about 30,000 unique bricks and a 1-gigadalton rotationally symmetric tetramer. We also assembled a cuboid that contains around 10,000 bricks and about 20,000 uniquely addressable, 13-base-pair ‘voxels’ that serves as a molecular canvas for three-dimensional sculpting. Complex, user-prescribed, three-dimensional cavities can

  4. Homochiral Evolution in Self-Assembled Chiral Polymers and Block Copolymers.

    Science.gov (United States)

    Wen, Tao; Wang, Hsiao-Fang; Li, Ming-Chia; Ho, Rong-Ming

    2017-04-18

    The significance of chirality transfer is not only involved in biological systems, such as the origin of homochiral structures in life but also in man-made chemicals and materials. How the chiral bias transfers from molecular level (molecular chirality) to helical chain (conformational chirality) and then to helical superstructure or phase (hierarchical chirality) from self-assembly is vital for the chemical and biological processes in nature, such as communication, replication, and enzyme catalysis. In this Account, we summarize the methodologies for the examination of homochiral evolution at different length scales based on our recent studies with respect to the self-assembly of chiral polymers and chiral block copolymers (BCPs*). A helical (H*) phase to distinguish its P622 symmetry from that of normal hexagonally packed cylinder phase was discovered in the self-assembly of BCPs* due to the chirality effect on BCP self-assembly. Enantiomeric polylactide-containing BCPs*, polystyrene-b-poly(l-lactide) (PS-PLLA) and polystyrene-b-poly(d-lactide) (PS-PDLA), were synthesized for the examination of homochiral evolution. The optical activity (molecular chirality) of constituted chiral repeating unit in the chiral polylactide is detected by electronic circular dichroism (ECD) whereas the conformational chirality of helical polylactide chain can be explicitly determined by vibrational circular dichroism (VCD). The H* phases of the self-assembled polylactide-containing BCPs* can be directly visualized by 3D transmission electron microscopy (3D TEM) technique at which the handedness (hierarchical chirality) of the helical nanostructure is thus determined. The results from the ECD, VCD, and 3D TEM for the investigated chirality at different length scales suggest the homochiral evolution in the self-assembly of the BCPs*. For chiral polylactides, twisted lamellae in crystalline banded spherulite can be formed by dense packing scheme and effective interactions upon helical

  5. Predicting Chiral Nanostructures, Lattices and Superlattices in Complex Multicomponent Nanoparticle Self-Assembly

    KAUST Repository

    Hur, Kahyun; Hennig, Richard G.; Escobedo, Fernando A.; Wiesner, Ulrich

    2012-01-01

    "Bottom up" type nanoparticle (NP) self-assembly is expected to provide facile routes to nanostructured materials for various, for example, energy related, applications. Despite progress in simulations and theories, structure prediction of self

  6. Structural coloration of chitosan coated cellulose fabrics by electrostatic self-assembled poly (styrene-methyl methacrylate-acrylic acid) photonic crystals.

    Science.gov (United States)

    Yavuz, Gönül; Zille, Andrea; Seventekin, Necdet; Souto, Antonio P

    2018-08-01

    The structural coloration of a chitosan-coated woven cotton fabric obtained by glutaraldehyde-stabilized deposition of electrostatic self-assembled monodisperse and spherically uniform (250 nm) poly (styrene-methyl methacrylate-acrylic acid) photonic crystal nanospheres (P(St-MMA-AA)) was investigated. Bright iridescent coatings displaying different colors in function of the viewing angle were obtained. The SEM, diffuse reflectance spectroscopy, TGA, DSC and FTIR analyses confirm the presence of structural color and the glutaraldehyde and chitosan ability to provide durable chemical bonding between cotton fabric and photonic crystal (PCs) coating with the highest degradation temperature and the lowest enthalpy. The coatings are characterized by a mixture of face-centered cubic and hexagonal close-packed arrays alternating random packing regions. For the first time a cost-efficient structural coloration with high washing and light fastness using self-assembled P(St-MMA-AA) photonic crystals was successfully developed onto woven cotton fabric using chitosan and/or glutaraldehyde as stabilizing agent opening new strategies for the development of dye-free coloration of textiles. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Self-assembly of a double-helical complex of sodium.

    Science.gov (United States)

    Bell, T W; Jousselin, H

    1994-02-03

    Spontaneous self-organization of helical and multiple-helical molecular structures occurs on several levels in living organisms. Key examples are alpha-helical polypeptides, double-helical nucleic acids and helical protein structures, including F-actin, microtubules and the protein sheath of the tobacco mosaic virus. Although the self-assembly of double-helical transition-metal complexes bears some resemblance to the molecular organization of double-stranded DNA, selection between monohelical, double-helical and triple-helical structures is determined largely by the size and geometrical preference of the tightly bound metal. Here we present an example of double-helical assembly induced by the weaker and non-directional interactions of an alkali-metal ion with an organic ligand that is pre-organized into a coil. We have characterized the resulting complex by two-dimensional NMR and fast-atom-bombardment mass spectrometry. These results provide a step toward the creation of molecular tubes or ion channels consisting of intertwined coils.

  8. Designing spatial correlation of quantum dots: towards self-assembled three-dimensional structures

    International Nuclear Information System (INIS)

    Bortoleto, J R R; Zelcovit, J G; Gutierrez, H R; Bettini, J; Cotta, M A

    2008-01-01

    Buried two-dimensional arrays of InP dots were used as a template for the lateral ordering of self-assembled quantum dots. The template strain field can laterally organize compressive (InAs) as well as tensile (GaP) self-assembled nanostructures in a highly ordered square lattice. High-resolution transmission electron microscopy measurements show that the InAs dots are vertically correlated to the InP template, while the GaP dots are vertically anti-correlated, nucleating in the position between two buried InP dots. Finite InP dot size effects are observed to originate InAs clustering but do not affect GaP dot nucleation. The possibility of bilayer formation with different vertical correlations suggests a new path for obtaining three-dimensional pseudocrystals

  9. Self-assembly of amorphous biophotonic nanostructures by phase separation

    Energy Technology Data Exchange (ETDEWEB)

    Dufresne, Eric R.; Noh, Heeso; Saranathan, Vinodkumar; Mochrie, Simon G.J.; Cao, Hui; Prum, Richard O.; (Yale)

    2009-04-23

    Some of the most vivid colors in the animal kingdom are created not by pigments, but by wavelength-selective scattering of light from nanostructures. Here we investigate quasi-ordered nanostructures of avian feather barbs which produce vivid non-iridescent colors. These {beta}-keratin and air nanostructures are found in two basic morphologies: tortuous channels and amorphous packings of spheres. Each class of nanostructure is isotropic and has a pronounced characteristic length scale of variation in composition. These local structural correlations lead to strong backscattering over a narrow range of optical frequencies and little variation with angle of incidence. Such optical properties play important roles in social and sexual communication. To be effective, birds need to precisely control the development of these nanoscale structures, yet little is known about how they grow. We hypothesize that multiple lineages of birds have convergently evolved to exploit phase separation and kinetic arrest to self-assemble spongy color-producing nanostructures in feather barbs. Observed avian nanostructures are strikingly similar to those self-assembled during the phase separation of fluid mixtures; the channel and sphere morphologies are characteristic of phase separation by spinodal decomposition and nucleation and growth, respectively. These unstable structures are locked-in by the kinetic arrest of the {beta}-keratin matrix, likely through the entanglement or cross-linking of supermolecular {beta}-keratin fibers. Using the power of self-assembly, birds can robustly realize a diverse range of nanoscopic morphologies with relatively small physical and chemical changes during feather development.

  10. Self-assembly synthesis of 3D graphene-encapsulated hierarchical Fe3O4 nano-flower architecture with high lithium storage capacity and excellent rate capability

    Science.gov (United States)

    Ma, Yating; Huang, Jian; Lin, Liang; Xie, Qingshui; Yan, Mengyu; Qu, Baihua; Wang, Laisen; Mai, Liqiang; Peng, Dong-Liang

    2017-10-01

    Graphene-encapsulated hierarchical metal oxides architectures can efficiently combine the merits of graphene and hierarchical metal oxides, which are deemed as the potential anode material candidates for the next-generation lithium-ion batteries due to the synergistic effect between them. Herein, a cationic surfactant induced self-assembly method is developed to construct 3D Fe3O4@reduction graphene oxide (H-Fe3O4@RGO) hybrid architecture in which hierarchical Fe3O4 nano-flowers (H-Fe3O4) are intimately encapsulated by 3D graphene network. Each H-Fe3O4 particle is constituted of rod-shaped skeletons surrounded by petal-like nano-flakes that are made up of enormous nanoparticles. When tested as the anode material in lithium-ion batteries, a high reversible capacity of 2270 mA h g-1 after 460 cycles is achieved under a current density of 0.5 A g-1. More impressively, even tested at a large current density of 10 A g-1, a decent reversible capacity of 490 mA h g-1 can be retained, which is still higher than the theoretical capacity of traditional graphite anode, demonstrating the remarkable lithium storage properties. The reasons for the excellent electrochemical performance of H-Fe3O4@RGO electrode have been discussed in detail.

  11. Molecular self-assembly approaches for supramolecular electronic and organic electronic devices

    Science.gov (United States)

    Yip, Hin-Lap

    Molecular self-assembly represents an efficient bottom-up strategy to generate structurally well-defined aggregates of semiconducting pi-conjugated materials. The capability of tuning the chemical structures, intermolecular interactions and nanostructures through molecular engineering and novel materials processing renders it possible to tailor a large number of unprecedented properties such as charge transport, energy transfer and light harvesting. This approach does not only benefit traditional electronic devices based on bulk materials, but also generate a new research area so called "supramolecular electronics" in which electronic devices are built up with individual supramolecular nanostructures with size in the sub-hundred nanometers range. My work combined molecular self-assembly together with several novel materials processing techniques to control the nucleation and growth of organic semiconducting nanostructures from different type of pi-conjugated materials. By tailoring the interactions between the molecules using hydrogen bonds and pi-pi stacking, semiconducting nanoplatelets and nanowires with tunable sizes can be fabricated in solution. These supramolecular nanostructures were further patterned and aligned on solid substrates through printing and chemical templating methods. The capability to control the different hierarchies of organization on surface provides an important platform to study their structural-induced electronic properties. In addition to using molecular self-assembly to create different organic nanostructures, functional self-assembled monolayer (SAM) formed by spontaneous chemisorption on surfaces was used to tune the interfacial property in organic solar cells. Devices showed dramatically improved performance when appropriate SAMs were applied to optimize the contact property for efficiency charge collection.

  12. Influence of PEG Stoichiometry on Structure-Tuned Formation of Self-Assembled Submicron Nickel Particles

    Directory of Open Access Journals (Sweden)

    Bingxue Pu

    2018-01-01

    Full Text Available Self-assembled submicron nickel particles were successfully synthesized via the one-step surfactant-assisted solvothermal method. The impact of surfactant and reducing agent stoichiometry is investigated in this manuscript. Different morphologies and structures of Ni particles, including flower-like nanoflakes, hydrangea-like structures, chain structures, sphere-like structures, and hollow structures were prepared through different processing conditions with two parameters such as temperature and time. Based on scanning electron microscopy (SEM, X-ray diffraction (XRD, thermal gravimetric analysis (TGA and vibrating sample magnetometry (VSM, the submicron nickel particles show good saturation magnetization and excellent thermal stabilities with a possible growth mechanism for the variety of the structure-tuned formation. Importantly, the microwave absorption properties of the submicron nickel particles were studied. The lowest reflection loss of Ni-P9/T200/H15 with a thin layer thickness of 1.7 mm can reach −42.6 dB at 17.3 GHz.

  13. Template assisted self-assembly of iron oxide nanoparticles: An x-ray structural analysis

    International Nuclear Information System (INIS)

    Mishra, D.; Zabel, H.; Ulyanov, S. V.; Romanov, V. P.; Uzdin, V. M.

    2014-01-01

    We have fabricated by e-beam lithography periodic arrays of rectangular shaped trenches of different widths into Si substrates. The trenches were filled with iron oxide nanoparticles, 20 nm in diameter, by spin-coating them onto the Si substrate. The trenches have the purpose to assist the self-assembly of the iron oxide nanoparticles. Using x-ray scattering techniques, we have analyzed the structure factor of the trenches before and after filling in order to determine the filling factor. We present a theoretical analysis of the x-ray scattering function within the distorted-wave Born approximation and we present a quantitative comparison between theory and experiment

  14. Template assisted self-assembly of iron oxide nanoparticles: An x-ray structural analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, D. [Department of Physics, Ruhr-University Bochum, 44780 Bochum (Germany); Institut fuer Optik und Atomare Physik, Technische Universitaet Berlin, Strasse des 17. Juni 135, 10623 Berlin (Germany); Zabel, H. [Department of Physics, Ruhr-University Bochum, 44780 Bochum (Germany); Ulyanov, S. V. [St.-Petersburg State University, Ul' yanovskaya ul.1, Petrodvorets, St.-Petersburg 198904 (Russian Federation); St.-Petersburg University of Commerce and Economics, St.-Petersburg 194018 (Russian Federation); Romanov, V. P. [St.-Petersburg State University, Ul' yanovskaya ul.1, Petrodvorets, St.-Petersburg 198904 (Russian Federation); Uzdin, V. M. [St.-Petersburg State University, Ul' yanovskaya ul.1, Petrodvorets, St.-Petersburg 198904 (Russian Federation); St.-Petersburg National Research University of Information Technologies, Mechanics and Optics, 49, Kronverkskij, St.-Petersburg 197101 (Russian Federation)

    2014-02-07

    We have fabricated by e-beam lithography periodic arrays of rectangular shaped trenches of different widths into Si substrates. The trenches were filled with iron oxide nanoparticles, 20 nm in diameter, by spin-coating them onto the Si substrate. The trenches have the purpose to assist the self-assembly of the iron oxide nanoparticles. Using x-ray scattering techniques, we have analyzed the structure factor of the trenches before and after filling in order to determine the filling factor. We present a theoretical analysis of the x-ray scattering function within the distorted-wave Born approximation and we present a quantitative comparison between theory and experiment.

  15. Fabrication and tribological properties of self-assembled monolayer of n-alkyltrimethoxysilane on silicon: Effect of SAM alkyl chain length

    International Nuclear Information System (INIS)

    Huo, Lixia; Du, Pengcheng; Zhou, Hui; Zhang, Kaifeng; Liu, Peng

    2017-01-01

    Highlights: • n-Alkyltrimethoxysilanes with various chain lengths were self-assembled on silicon. • Effect of alkyl chain lengths (C6, C12, or C18) on the SAMs was investigated. • Surface roughness of the SAMs decreased with increasing the alkyl chain lengths. • The C 12 -SAM possessed superior friction reduction and wear resistance. - Abstract: It is well known that the self-assembled organic molecules on a solid surface exhibit the friction-reducing performance. However, the effect of the molecular size of the self-assembled organic molecules has not been established. In the present work, self-assembled monolayers (SAMs) of n-alkyltrimethoxysilanes with different alkyl chain lengths (C 6 , C 12 , or C 18 ) were fabricated on silicon substrate. The water contact angles of the SAMs increased from 26.8° of the hydroxylated silicon substrate to near 60° after self-assembly. The atomic force microscopy (AFM) analysis results showed that the mean roughness (R a ) of the SAMs decreased with increasing the alkyl chain length. The tribological properties of the SAMs sliding against Al 2 O 3 ball were evaluated on an UMT-2 tribometer, and the worn surfaces of the samples were analyzed by means of Nano Scratch Tester and surface profilometry. It was found that lowest friction coefficient and smallest width of wear were achieved with the SAMs of C 12 alkyl chain (C 12 -SAM). The superior friction reduction and wear resistance of the SAMs in comparison with the bare silicon substrate are attributed to good adhesion of the self-assembled films to the substrate, especially the C 12 -SAM with desirable alkyl chain length.

  16. Self-assembling bilayers of palladiumthiolates in organic media

    Indian Academy of Sciences (India)

    Unknown

    applications in catalytic systems, solubalizing agents and drug delivery matrices. Following the pioneering efforts of ... In this context, self-assembly of amphipiles in nonpolar organic media assumes significance 8 since .... structures in clear contrast to lamellar phases formed by the higher members. We sought to image the ...

  17. Guided assembly of nanoparticles on electrostatically charged nanocrystalline diamond thin films

    Directory of Open Access Journals (Sweden)

    Verveniotis Elisseos

    2011-01-01

    Full Text Available Abstract We apply atomic force microscope for local electrostatic charging of oxygen-terminated nanocrystalline diamond (NCD thin films deposited on silicon, to induce electrostatically driven self-assembly of colloidal alumina nanoparticles into micro-patterns. Considering possible capacitive, sp2 phase and spatial uniformity factors to charging, we employ films with sub-100 nm thickness and about 60% relative sp2 phase content, probe the spatial material uniformity by Raman and electron microscopy, and repeat experiments at various positions. We demonstrate that electrostatic potential contrast on the NCD films varies between 0.1 and 1.2 V and that the contrast of more than ±1 V (as detected by Kelvin force microscopy is able to induce self-assembly of the nanoparticles via coulombic and polarization forces. This opens prospects for applications of diamond and its unique set of properties in self-assembly of nano-devices and nano-systems.

  18. Investigation of the structural anisotropy in a self-assembling glycinate layer on Cu(100) by scanning tunneling microscopy and density functional theory calculations

    Science.gov (United States)

    Kuzmin, Mikhail; Lahtonen, Kimmo; Vuori, Leena; Sánchez-de-Armas, Rocío; Hirsimäki, Mika; Valden, Mika

    2017-07-01

    Self-assembling organic molecule-metal interfaces exhibiting free-electron like (FEL) states offers an attractive bottom-up approach to fabricating materials for molecular electronics. Accomplishing this, however, requires detailed understanding of the fundamental driving mechanisms behind the self-assembly process. For instance, it is still unresolved as to why the adsorption of glycine ([NH2(CH2)COOH]) on isotropic Cu(100) single crystal surface leads, via deprotonation and self-assembly, to a glycinate ([NH2(CH2)COO-]) layer that exhibits anisotropic FEL behavior. Here, we report on bias-dependent scanning tunneling microscopy (STM) experiments and density functional theory (DFT) calculations for glycine adsorption on Cu(100) single crystal surface. We find that after physical vapor deposition (PVD) of glycine on Cu(100), glycinate self-assembles into an overlayer exhibiting c(2 × 4) and p(2 × 4) symmetries with non-identical adsorption sites. Our findings underscore the intricacy of electrical conductivity in nanomolecular organic overlayers and the critical role the structural anisotropy at molecule-metal interface plays in the fabrication of materials for molecular electronics.

  19. Self-assembly behavior of a linear-star supramolecular amphiphile based on host-guest complexation.

    Science.gov (United States)

    Wang, Juan; Wang, Xing; Yang, Fei; Shen, Hong; You, Yezi; Wu, Decheng

    2014-11-04

    A star polymer, β-cyclodextrin-poly(l-lactide) (β-CD-PLLA), and a linear polymer, azobenzene-poly(ethylene glycol) (Azo-PEG), could self-assemble into a supramolecular amphiphilic copolymer (β-CD-PLLA@Azo-PEG) based on the host-guest interaction between β-CD and azobenzene moieties. This linear-star supramolecular amphiphilic copolymer further self-assembled into a variety of morphologies, including sphere-like micelle, carambola-like micelle, naan-like micelle, shuttle-like lamellae, tube-like fiber, and random curled-up lamellae, by tuning the length of hydrophilic or hydrophobic chains. The variation of morphology was closely related to the topological structure and block ratio of the supramolecular amphiphiles. These self-assembly structures could disassemble upon an ultraviolet (UV) light irradiation.

  20. Lifetime of Nano-Structured Black Silicon for Photovoltaic Applications

    DEFF Research Database (Denmark)

    Plakhotnyuk, Maksym; Davidsen, Rasmus Schmidt; Schmidt, Michael Stenbæk

    2016-01-01

    In this work, we present recent results of lifetime optimization for nano-structured black silicon and its photovoltaic applications. Black silicon nano-structures provide significant reduction of silicon surface reflection due to highly corrugated nanostructures with excellent light trapping pro......, respectively. This is promising for use of black silicon RIE nano-structuring in a solar cell process flow......In this work, we present recent results of lifetime optimization for nano-structured black silicon and its photovoltaic applications. Black silicon nano-structures provide significant reduction of silicon surface reflection due to highly corrugated nanostructures with excellent light trapping...

  1. Self-assembly of colloids with magnetic caps

    Energy Technology Data Exchange (ETDEWEB)

    Novak, E.V., E-mail: ekaterina.novak@urfu.ru [Ural Federal University, Lenin Av. 51, Ekaterinburg (Russian Federation); Kantorovich, S.S. [Ural Federal University, Lenin Av. 51, Ekaterinburg (Russian Federation); University of Vienna, Sensengasse 8, Vienna (Austria)

    2017-06-01

    In our earlier work (Steinbach et al., 2016 ) we investigated a homogeneous system of magnetically capped colloidal particles that self-assembled via two structural patterns of different symmetry. The particles could form a compact, equilateral triangle with a three-fold rotational symmetry and zero dipole moment and a staggered chain with mirror symmetry with a net magnetisation perpendicular to the chain. The system exhibited a bistability already in clusters of three particles. Based on observations of a real magnetic particles system, analytical calculations and molecular dynamics simulations, it has been shown that the bistability is a result of an anisotropic magnetisation distribution with rotational symmetry inside the particles. The present study is a logical extension of the above research and forms a preparatory stage for the study of a self-assembly of such magnetic particles under the influence of an external magnetic field. Since the magnetic field is only an additive contribution to the total ground state energy, we can study the interparticle interaction energies of candidate ground state structures based on the field-free terms. - Highlights: • Analytical calculations of the energies of ground state candidates for colloids with magnetic caps. • Computer simulations confirmed the theoretical model. • The structural transition between ground states was found.

  2. The Self-Assembly of Nanogold for Optical Metamaterials

    Science.gov (United States)

    Nidetz, Robert A.

    2011-12-01

    Optical metamaterials are an emerging field that enables manipulation of light like never before. Producing optical metamaterials requires sub-wavelength building blocks. The focus here was to develop methods to produce building blocks for metamaterials from nanogold. Electron-beam lithography was used to define an aminosilane patterned chemical template in order to electrostatically self-assemble citrate-capped gold nanoparticles. Equilibrium self-assembly was achieved in 20 minutes by immersing chemical templates into gold nanoparticle solutions. The number of nanoparticles that self-assembled on an aminosilane dot was controlled by manipulating the diameters of the dots and nanoparticles. Adding salt to the nanoparticle solution enabled the nanoparticles to self-assemble in greater numbers on the same sized dot. However, the preparation of the nanoparticle solution containing salt was sensitive to spikes in the salt concentration which led to aggregation of the nanoparticles and non-specific deposition. Gold nanorods were also electrostatically self-assembled. Polyelectrolyte-coated gold nanorods were patterned with limited success. A polyelectrolyte chemical template also patterned gold nanorods, but the gold nanorods preferred to pattern on the edges of the pattern. Ligand-exchanged gold nanorods displayed the best self-assembly, but suffered from slow kinetics. Self-assembled gold nanoparticles were cross-linked with poly(diallyldimethylammonium chloride). The poly(diallyldimethylammonium chloride) allowed additional nanoparticles to pattern on top of the already patterned nanoparticles. Cross-linked nanoparticles were lifted-off of the substrate by sonication in a sodium hydroxide solution. The presence of van der Waals forces and/or amine bonding prevent the nanogold from lifting-off without sonication. A good-solvent evaporation process was used to self-assemble poly(styrene) coated gold nanoparticles into spherical microbead assemblies. The use of larger

  3. Programmable DNA tile self-assembly using a hierarchical sub-tile strategy

    International Nuclear Information System (INIS)

    Shi, Xiaolong; Lu, Wei; Wang, Zhiyu; Pan, Linqiang; Cui, Guangzhao; Xu, Jin; LaBean, Thomas H

    2014-01-01

    DNA tile based self-assembly provides a bottom-up approach to construct desired nanostructures. DNA tiles have been directly constructed from ssDNA and readily self-assembled into 2D lattices and 3D superstructures. However, for more complex lattice designs including algorithmic assemblies requiring larger tile sets, a more modular approach could prove useful. This paper reports a new DNA ‘sub-tile’ strategy to easily create whole families of programmable tiles. Here, we demonstrate the stability and flexibility of our sub-tile structures by constructing 3-, 4- and 6-arm DNA tiles that are subsequently assembled into 2D lattices and 3D nanotubes according to a hierarchical design. Assembly of sub-tiles, tiles, and superstructures was analyzed using polyacrylamide gel electrophoresis and atomic force microscopy. DNA tile self-assembly methods provide a bottom-up approach to create desired nanostructures; the sub-tile strategy adds a useful new layer to this technique. Complex units can be made from simple parts. The sub-tile approach enables the rapid redesign and prototyping of complex DNA tile sets and tiles with asymmetric designs. (paper)

  4. Photon Upconversion and Molecular Solar Energy Storage by Maximizing the Potential of Molecular Self-Assembly.

    Science.gov (United States)

    Kimizuka, Nobuo; Yanai, Nobuhiro; Morikawa, Masa-Aki

    2016-11-29

    The self-assembly of functional molecules into ordered molecular assemblies and the fulfillment of potentials unique to their nanotomesoscopic structures have been one of the central challenges in chemistry. This Feature Article provides an overview of recent progress in the field of molecular self-assembly with the focus on the triplet-triplet annihilation-based photon upconversion (TTA-UC) and supramolecular storage of photon energy. On the basis of the integration of molecular self-assembly and photon energy harvesting, triplet energy migration-based TTA-UC has been achieved in varied molecular systems. Interestingly, some molecular self-assemblies dispersed in solution or organogels revealed oxygen barrier properties, which allowed TTA-UC even under aerated conditions. The elements of molecular self-assembly were also introduced to the field of molecular solar thermal fuel, where reversible photoliquefaction of ionic crystals to ionic liquids was found to double the molecular storage capacity with the simultaneous pursuit of switching ionic conductivity. A future prospect in terms of innovating molecular self-assembly toward molecular systems chemistry is also discussed.

  5. Predicting Chiral Nanostructures, Lattices and Superlattices in Complex Multicomponent Nanoparticle Self-Assembly

    KAUST Repository

    Hur, Kahyun

    2012-06-13

    "Bottom up" type nanoparticle (NP) self-assembly is expected to provide facile routes to nanostructured materials for various, for example, energy related, applications. Despite progress in simulations and theories, structure prediction of self-assembled materials beyond simple model systems remains challenging. Here we utilize a field theory approach for predicting nanostructure of complex and multicomponent hybrid systems with multiple types of short- and long-range interactions. We propose design criteria for controlling a range of NP based nanomaterial structures. In good agreement with recent experiments, the theory predicts that ABC triblock terpolymer directed assemblies with ligand-stabilized NPs can lead to chiral NP network structures. Furthermore, we predict that long-range Coulomb interactions between NPs leading to simple NP lattices, when applied to NP/block copolymer (BCP) assemblies, induce NP superlattice formation within the phase separated BCP nanostructure, a strategy not yet realized experimentally. We expect such superlattices to be of increasing interest to communities involved in research on, for example, energy generation and storage, metamaterials, as well as microelectronics and information storage. © 2012 American Chemical Society.

  6. Controllable self-assembly of sodium caseinate with a zwitterionic vitamin-derived bolaamphiphile.

    Science.gov (United States)

    Sun, Li-Hui; Sun, Yu-Long; Yang, Li-Jun; Zhang, Jian; Chen, Zhong-Xiu

    2013-11-06

    The control of self-assembly of sodium caseinate (SC) including the formation of mixed layers, microspheres, or nanoparticles is highly relevant to the microstructure of food and the design of promising drug delivery systems. In this paper, we designed a structure-switchable zwitterionic bolaamphiphile, 1,12-diaminododecanediorotate (DDO), from orotic acid, which has special binding sites and can guide the self-assembly of SC. Complexation between SC and DDO was investigated using dynamic light scattering, transmission electron microscopy, differential scanning calorimetry, and fluorescence spectra measurements. Monomeric DDO was bound to the negatively charged sites on the SC micelle and made the structure of SC more compact with decreased electrostatic repulsion between the head groups. Vesicular DDO led to reassociation of vesicles with enlarged size via preferable hydrophobic interactions. Moreover, the aggregation between SC and DDO was found to be temperature-dependent and reversible. This research provides an effective way to control the reversible self-assembly of SC by the zwitterionic vitamin-derived bolaamphiphile.

  7. Development of nano-fabrication technique utilizing self-organizational behavior of point defects induced by ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Nitta, Noriko [Department of Environmental Systems Engineering, Kochi University of Technology, Tosayamada-Cho, Kochi-Prefecture 782-8502 (Japan); Taniwaki, Masafumi [Department of Environmental Systems Engineering, Kochi University of Technology, Tosayamada-Cho, Kochi-Prefecture 782-8502 (Japan)]. E-mail: taniwaki.masafumi@kochi-tech.ac.jp

    2006-04-01

    The present authors proposed a novel nano-fabrication technique that is able to arrange the fine cells orderly, based on their finding in GaSb implanted at a low temperature. In this article, first the experimental results that anomalous cellular structure was formed in GaSb by ion implantation is introduced and the self-organizational formation mechanism of the structure is described. Next a nano-fabrication technique that utilizes focused ion beam is described. This technique consists of two procedures, i.e. the formation process of the voids array and the development of the initial array to ordered cellular structure. Finally, the nano-fabrication is actually performed by this technique and their results are reported. Fabrication succeeded in structures where the dot (cell) interval was 100 nm or larger. The minimum ion dose for initial voids which develops to the ordered cellular structure is evaluated. It is also shown that the substrate temperature during implantation is an essential parameter for this technique.

  8. Development of nano-fabrication technique utilizing self-organizational behavior of point defects induced by ion irradiation

    International Nuclear Information System (INIS)

    Nitta, Noriko; Taniwaki, Masafumi

    2006-01-01

    The present authors proposed a novel nano-fabrication technique that is able to arrange the fine cells orderly, based on their finding in GaSb implanted at a low temperature. In this article, first the experimental results that anomalous cellular structure was formed in GaSb by ion implantation is introduced and the self-organizational formation mechanism of the structure is described. Next a nano-fabrication technique that utilizes focused ion beam is described. This technique consists of two procedures, i.e. the formation process of the voids array and the development of the initial array to ordered cellular structure. Finally, the nano-fabrication is actually performed by this technique and their results are reported. Fabrication succeeded in structures where the dot (cell) interval was 100 nm or larger. The minimum ion dose for initial voids which develops to the ordered cellular structure is evaluated. It is also shown that the substrate temperature during implantation is an essential parameter for this technique

  9. Self-assembly of silk fibroin under osmotic stress

    Science.gov (United States)

    Sohn, Sungkyun

    The supramolecular self-assembly behavior of silk fibroin was investigated using osmotic stress technique. In Chapter 2, a ternary phase diagram of water-silk-LiBr was constructed based on X-ray results on the osmotically stressed regenerated silk fibroin of Bombyx mori silkworm. Microscopic data indicated that silk I is a hydrated structure and a rough estimate of the number of water molecules lost by the structure upon converting from silk I to silk II has been made, and found to be about 2.2 per [GAGAGS] hexapeptide. In Chapter 3, wet-spinning of osmotically stressed, regenerated silk fibroin was performed, based on the prediction that the enhanced control over structure and phase behavior using osmotic stress method helps improve the physical properties of wet-spun regenerated silk fibroin fibers. The osmotic stress was applied in order to pre-structure the regenerated silk fibroin molecule from its original random coil state to more oriented state, manipulating the phase of the silk solution in the phase diagram before the start of spinning. Monofilament fiber with a diameter of 20 microm was produced. In Chapter 4, we investigated if there is a noticeable synergistic osmotic pressure increase between co-existing polymeric osmolyte and salt when extremely highly concentrated salt molecules are present both at sample subphase and stressing subphase, as is the case of silk fibroin self-assembly. The equilibration method that measures osmotic pressure relative to a reference with known osmotic pressure was introduced. Osmotic pressure of aqueous LiBr solution up to 2.75M was measured and it was found that the synergistic effect was insignificant up to this salt concentration. Solution parameters of stressing solutions and Arrhenius kinetics based on time-temperature relationship for the equilibration process were derived as well. In Chapter 5, self-assembly behavior of natural silk fibroin within the gland of Bombyx mori silkworm was investigated using osmotic

  10. Oscillatory persistent currents in self-assembled quantum rings

    NARCIS (Netherlands)

    Kleemans, N.A.J.M.; Bominaar-Silkens, I.M.A.; Fomin, V.; Gladilin, V.N.; Granados, D.; Taboada, A.G.; Garcia, J.M.; Offermans, P.; Zeitler, U.; Christianen, P.C.M.; Maan, J.C.; Devreese, J.T.; Koenraad, P.M.

    2007-01-01

    We report the direct measurement of the persistent current carried by a single electron by means of magnetization experiments on self-assembled InAs/GaAs quantum rings. We measured the first Aharonov-Bohm oscillation at a field of 14 T, in perfect agreement with our model based on the structural

  11. Lead Selenide Nanostructures Self-Assembled across Multiple Length Scales and Dimensions

    Directory of Open Access Journals (Sweden)

    Evan K. Wujcik

    2016-01-01

    Full Text Available A self-assembly approach to lead selenide (PbSe structures that have organized across multiple length scales and multiple dimensions has been achieved. These structures consist of angstrom-scale 0D PbSe crystals, synthesized via a hot solution process, which have stacked into 1D nanorods via aligned dipoles. These 1D nanorods have arranged into nanoscale 2D sheets via directional short-ranged attraction. The nanoscale 2D sheets then further aligned into larger 2D microscale planes. In this study, the authors have characterized the PbSe structures via normal and cryo-TEM and EDX showing that this multiscale multidimensional self-assembled alignment is not due to drying effects. These PbSe structures hold promise for applications in advanced materials—particularly electronic technologies, where alignment can aid in device performance.

  12. Structure and assembly of scalable porous protein cages

    Science.gov (United States)

    Sasaki, Eita; Böhringer, Daniel; van de Waterbeemd, Michiel; Leibundgut, Marc; Zschoche, Reinhard; Heck, Albert J. R.; Ban, Nenad; Hilvert, Donald

    2017-03-01

    Proteins that self-assemble into regular shell-like polyhedra are useful, both in nature and in the laboratory, as molecular containers. Here we describe cryo-electron microscopy (EM) structures of two versatile encapsulation systems that exploit engineered electrostatic interactions for cargo loading. We show that increasing the number of negative charges on the lumenal surface of lumazine synthase, a protein that naturally assembles into a ~1-MDa dodecahedron composed of 12 pentamers, induces stepwise expansion of the native protein shell, giving rise to thermostable ~3-MDa and ~6-MDa assemblies containing 180 and 360 subunits, respectively. Remarkably, these expanded particles assume unprecedented tetrahedrally and icosahedrally symmetric structures constructed entirely from pentameric units. Large keyhole-shaped pores in the shell, not present in the wild-type capsid, enable diffusion-limited encapsulation of complementarily charged guests. The structures of these supercharged assemblies demonstrate how programmed electrostatic effects can be effectively harnessed to tailor the architecture and properties of protein cages.

  13. Managing lifelike behavior in a dynamic self-assembled system

    Science.gov (United States)

    Ropp, Chad; Bachelard, Nicolas; Wang, Yuan; Zhang, Xiang

    Self-organization can arise outside of thermodynamic equilibrium in a process of dynamic self-assembly. This is observed in nature, for example in flocking birds, but can also be created artificially with non-living entities. Such dynamic systems often display lifelike properties, including the ability to self-heal and adapt to environmental changes, which arise due to the collective and often complex interactions between the many individual elements. Such interactions are inherently difficult to predict and control, and limit the development of artificial systems. Here, we report a fundamentally new method to manage dynamic self-assembly through the direct external control of collective phenomena. Our system consists of a waveguide filled with mobile scattering particles. These particles spontaneously self-organize when driven by a coherent field, self-heal when mechanically perturbed, and adapt to changes in the drive wavelength. This behavior is governed by particle interactions that are completely mediated by coherent wave scattering. Compared to hydrodynamic interactions which lead to compact ordered structures, our system displays sinusoidal degeneracy and many different steady-state geometries that can be adjusted using the external field.

  14. Mechanical Behavior of Self-Compacting Concrete Containing Nano-Metakaolin

    Directory of Open Access Journals (Sweden)

    Mohammed Kareem Abed

    2017-08-01

    Full Text Available This paper presents the influence of nano- metakaolin addition for production self-compacting concrete (SCC. Nano-metakaolin material was used at four percentages (0, 1, 3 and 5 % as partial replacement by weight of cement [Reference mix (PC, (1%, 3%, 5% nano-metakaolin(1, 3, 5 NMK]. This research studied the influence of nano-metakaolin material on the fresh and mechanical properties which represented by the different tests were slump flow, T50cm, L-Box, V-funnel, compressive and flexural strength. From the results of this study, found that the SCC with 5% of nano-metakaolin material as partial replacement by weight of cement give the best results of fresh and mechanical properties of SCC mixes.

  15. In Situ Atomic Force Microscopy Studies on Nucleation and Self-Assembly of Biogenic and Bio-Inspired Materials

    Directory of Open Access Journals (Sweden)

    Cheng Zeng

    2017-08-01

    Full Text Available Through billions of years of evolution, nature has been able to create highly sophisticated and ordered structures in living systems, including cells, cellular components and viruses. The formation of these structures involves nucleation and self-assembly, which are fundamental physical processes associated with the formation of any ordered structure. It is important to understand how biogenic materials self-assemble into functional and highly ordered structures in order to determine the mechanisms of biological systems, as well as design and produce new classes of materials which are inspired by nature but equipped with better physiochemical properties for our purposes. An ideal tool for the study of nucleation and self-assembly is in situ atomic force microscopy (AFM, which has been widely used in this field and further developed for different applications in recent years. The main aim of this work is to review the latest contributions that have been reported on studies of nucleation and self-assembly of biogenic and bio-inspired materials using in situ AFM. We will address this topic by introducing the background of AFM, and discussing recent in situ AFM studies on nucleation and self-assembly of soft biogenic, soft bioinspired and hard materials.

  16. Perovskite structures in the formation of nano-rods in REBa2Cu3O7-δ films self-organization to perovskite structures

    International Nuclear Information System (INIS)

    Mukaida, Masashi; Kai, Hideki; Shingai, Yuki

    2009-01-01

    Cubic perovskite structure has been found to play an important role for the nano-rod formation in REBa 2 Cu 3 O 7-δ films. BaWO 4 , with a sheelite structure, and BaNb 2 O 6 , with a tungsten bronze structure, were doped into REBa 2 Cu 3 O 7-δ targets. Laser-deposited, these materials form nano-rods in REBa 2 Cu 3 O 7-δ films accompanied by Ln elements, resulting in the composition of a pseudo-cubic perovskite structure. This was confirmed by selected area electron diffraction patterns (SADP) and composition mapping using energy-dispersive X-ray spectroscopy scanning transmission electron microscope (EDS-STEM) analysis. BaWO 4 with a sheelite structure, and BaNb 2 O 6 with a tungsten bronze structure, doped into targets no longer retain their structures, but can form pseudo-cubic perovskite structures in laser-deposited REBa 2 Cu 3 O 7-δ films. The perovskite crystal structure is thought to be important for nano-rod formation in the laser deposited REBa 2 Cu 3 O 7-δ film. (author)

  17. Molecular structure of self-assembled chiral nanoribbons and nanotubules revealed in the hydrated state.

    Science.gov (United States)

    Oda, Reiko; Artzner, Franck; Laguerre, Michel; Huc, Ivan

    2008-11-05

    A detailed molecular organization of racemic 16-2-16 tartrate self-assembled multi-bilayer ribbons in the hydrated state is proposed where 16-2-16 amphiphiles, tartrate ions, and water molecules are all accurately positioned by comparing experimental X-ray powder diffraction and diffraction patterns derived from modeling studies. X-ray diffuse scattering studies show that molecular organization is not fundamentally altered when comparing the flat ribbons of the racemate to chirally twisted or helical ribbons of the pure tartrate enantiomer. Essential features of the three-dimensional molecular organizations of these structures include interdigitation of alkyl chains within each bilayer and well-defined networks of ionic and hydrogen bonds between cations, anions, and water molecules between bilayers. The detailed study of diffraction patterns also indicated that the gemini headgroups are oriented parallel to the long edge of the ribbons. The structure thus possesses a high cohesion and good crystallinity, and for the first time, we could relate the packing of the chiral molecules to the expression of the chirality at a mesoscopic scale. The organization of the ribbons at the molecular level sheds light on a number of their macroscopic features. Among these are the reason why enantiomerically pure 16-2-16 tartrate forms ribbons that consist of exactly two bilayers, and a plausible mechanism by which a chirally twisted or helical shape may emerge from the packing of chiral tartrate ions. Importantly, the distinction between commonly observed helical and twisted morphologies could be related to a subtle symmetry breaking. These results demonstrate that accurately solving the molecular structure of self-assembled soft materials--a process rarely achieved--is within reach, that it is a valid approach to correlate molecular parameters to macroscopic properties, and thus that it offers opportunities to modulate properties through molecular design.

  18. Electrostatically Driven Assembly of Charged Amphiphiles Forming Crystallized Membranes, Vesicles and Nanofiber Arrays

    Science.gov (United States)

    Leung, Cheuk Yui Curtis

    Charged amphiphilic molecules can self-assemble into a large variety of objects including membranes, vesicles and fibers. These micro to nano-scale structures have been drawing increasing attention due to their broad applications, especially in biotechnology and biomedicine. In this dissertation, three self-assembled systems were investigated: +3/-1 self-assembled catanionic membranes, +2/-1 self-assembled catanionic membranes and +1 self-assembled nanofibers. Transmission electron microscopy (TEM) combined with synchrotron small and wide angle x-ray scattering (SAXS and WAXS) were used to characterize the coassembled structures from the mesoscopic to nanometer scale. We designed a system of +3 and -1 ionic amphiphiles that coassemble into crystalline ionic bilayer vesicles with large variety of geometries that resemble polyhedral cellular crystalline shells and archaea wall envelopes. The degree of ionization of the amphiphiles and their intermolecular electrostatic interactions can be controlled by varying pH. The molecular packing of these membranes showed a hexagonal to rectangular-C to hexagonal phase transition with increasing pH, resulting in significant changes to the membrane morphology. A similar mixture of +2 and -1 ionic amphiphiles was also investigated. In addition to varying pH, which controls the headgroup attractions, we also adjust the tail length of the amphiphiles to control the van der Waals interactions between the tails. A 2D phase diagram was developed to show how pH and tail length can be used to control the intermolecular packing within the membranes. Another system of self-assembled nanofiber network formed by positively charged amphiphiles was also studied. These highly charged fibers repel each other and are packed in hexagonal lattice with lattice constant at least eight times of the fiber diameter. The d-spacing and the crystal structure can be controlled by varying the solution concentration and temperature.

  19. Exploring the properties and possibilities of self-assembling

    DEFF Research Database (Denmark)

    Andersen, Karsten Brandt; Castillo, Jaime

    2013-01-01

    structures ranging from piezo electricity over semi conductance to fluorescence. If such peptide nanotubes could be controlled and incorporated in sensors such as a biological field effect transistor it would greatly reduce the fabrication costs while at the same time providing researchers with new...... and exciting possibilities. The major driving forces supporting the interest in the peptide nanotubes is the fast and simple assembly process combined with their remarkable stability towards alcohols, organic solvents, and biological analytes that was presented shortly after the self-assembling properties...... and illustrated their potential use as sensitive temperature sensor....

  20. A multilayered supramolecular self-assembled structure from soybean oil by in situ polymerization and its applications.

    Science.gov (United States)

    Kavitha, Varadharajan; Gnanamani, Arumugam

    2013-05-01

    The present study emphasizes in situ transformation of soybean oil to self-assembled supramolecular multilayered biopolymer material. The said polymer material was characterized and the entrapment efficacy of both hydrophilic and hydrophobic moieties was studied. In brief, soybean oil at varying concentration was mixed with mineral medium and incubated under agitation (200 rpm) at 37 degrees C for 240 h. Physical observations were made till 240 h and the transformed biopolymer was separated and subjected to physical, chemical and functional characterization. The maximum size of the polymer material was measured as 2 cm in diameter and the cross sectional view displayed the multilayered onion rings like structures. SEM analysis illustrated the presence of multilayered honeycomb channeled structures. Thermal analysis demonstrated the thermal stability (200 degrees C) and high heat enthalpy (1999 J/g). Further, this multilayered assembly was able to entrap both hydrophilic and hydrophobic components simultaneously, suggesting the potential industrial application of this material.

  1. Photonic Resins: Designing Optical Appearance via Block Copolymer Self-Assembly.

    Science.gov (United States)

    Song, Dong-Po; Jacucci, Gianni; Dundar, Feyza; Naik, Aditi; Fei, Hua-Feng; Vignolini, Silvia; Watkins, James J

    2018-03-27

    Despite a huge variety of methodologies having been proposed to produce photonic structures by self-assembly, the lack of an effective fabrication approach has hindered their practical uses. These approaches are typically limited by the poor control in both optical and mechanical properties. Here we report photonic thermosetting polymeric resins obtained through brush block copolymer (BBCP) self-assembly. We demonstrate that the control of the interplay between order and disorder in the obtained photonic structure offers a powerful tool box for designing the optical appearance of the polymer resins in terms of reflected wavelength and scattering properties. The obtained materials exhibit excellent mechanical properties with hardness up to 172 MPa and Young's modulus over 2.9 GPa, indicating great potential for practical uses as photonic coatings on a variety of surfaces.

  2. Filamentous phages as building blocks for reconfigurable and hierarchical self-assembly

    Science.gov (United States)

    Gibaud, Thomas

    2017-12-01

    Filamentous bacteriophages such as fd-like viruses are monodisperse rod-like colloids that have well defined properties of diameter, length, rigidity, charge and chirality. Engineering these viruses leads to a library of colloidal rods, which can be used as building blocks for reconfigurable and hierarchical self-assembly. Their condensation in an aqueous solution with additive polymers, which act as depletants to induce attraction between the rods, leads to a myriad of fluid-like micronic structures ranging from isotropic/nematic droplets, colloid membranes, achiral membrane seeds, twisted ribbons, π-wall, pores, colloidal skyrmions, Möbius anchors, scallop membranes to membrane rafts. These structures, and the way that they shape-shift, not only shed light on the role of entropy, chiral frustration and topology in soft matter, but also mimic many structures encountered in different fields of science. On the one hand, filamentous phages being an experimental realization of colloidal hard rods, their condensation mediated by depletion interactions constitutes a blueprint for the self-assembly of rod-like particles and provides a fundamental foundation for bio- or material-oriented applications. On the other hand, the chiral properties of the viruses restrict the generalities of some results but vastly broaden the self-assembly possibilities.

  3. Synthesis of nanocrystals and nanocrystal self-assembly

    Science.gov (United States)

    Chen, Zhuoying

    Chapter 1. A general introduction is presented on nanomaterials and nanoscience. Nanoparticles are discussed with respect to their structure and properties. Ferroelectric materials and nanoparticles in particular are highlighted, especially in the case of the barium titanate, and their potential applications are discussed. Different nanocrystal synthetic techniques are discussed. Nanoparticle superlattices, the novel "meta-materials" built from self-assembly at the nanoscale, are introduced. The formation of nanoparticle superlattices and the importance and interest of synthesizing these nanostructures is discussed. Chapter 2. Advanced applications for high k dielectric and ferroelectric materials in the electronics industry continues to demand an understanding of the underlying physics in decreasing dimensions into the nanoscale. The first part of this chapter presents the synthesis, processing, and electrical characterization of nanostructured thin films (thickness ˜100 nm) of barium titanate BaTiO3 built from uniform nanoparticles (alcohols were used to study the effect of size and morphological control over the nanocrystals. Techniques including X-ray diffraction, transmission electron microscopy, selected area electron diffraction, and high-resolution electron microscopy are used to examine crystallinity and morphology. Chapter 3. By investigating the self-assembly of cadmium selenide-gold (CdSe-Au) nanoparticle mixtures by transmission electron microscopy after solvent evaporation, the effect of solvents in the formation process of CdSe-Au binary nanoparticle superlattices (BNSLs) was studied. 1-dodecanethiol was found to be critical in generating conditions necessary for superlattice formation, prior to the other factors that likely determine structure, highlighting the dual role of this organic polar molecule as both ligand and high boiling point/crystallization solvent. The influence of thiol was investigated under various concentrations (and also

  4. Template-assisted growth of nano structured functional materials

    International Nuclear Information System (INIS)

    Ying, K.K.; Nur Ubaidah Saidin; Khuan, N.I.; Suhaila Hani Ilias; Foo, C.T.

    2012-01-01

    Template-assisted growth is an important nano electrochemical deposition technique for synthesizing one-dimensional (1-D) nano structures with uniformly well-controlled shapes and sizes. A good template with well-defined dimensions is imperative for realizing this task. Porous anodic alumina (PAA) has been a favorable candidate for this purpose as it can be tailor-made with precise pore geometries, such as pore length and diameter as well as inter-pore distances, via the anodization of pure aluminium. This paper reports the fabrication of PAA templates and electrochemical synthesis of functional nano structures in the form of nano wires using PAA templates as scaffolds. Axial heterostructure and homogeneous nano wires formed by engineering materials configuration via composition and/ or layer thickness variations were fabricated for different functionalities. X-ray diffraction and imaging techniques were used to alucidate the microstructures, morphologies and chemical compositions of the nano wires produced. Due to their large surface area-to-volume ratios, and therefore high sensitivities, these functional nano structures have useful applications as critical components in nano sensor devices and various areas of nano technology. Potential applications include as hydrogen gas sensors in nuclear power plant for monitoring structural integrity of reactor components and containment building, as well as environmental monitoring of air pollution and leakages of toxic gases and chemicals. (Author)

  5. Effect of Structure and Disorder on the Charge Transport in Defined Self-Assembled Monolayers of Organic Semiconductors.

    Science.gov (United States)

    Schmaltz, Thomas; Gothe, Bastian; Krause, Andreas; Leitherer, Susanne; Steinrück, Hans-Georg; Thoss, Michael; Clark, Timothy; Halik, Marcus

    2017-09-26

    Self-assembled monolayer field-effect transistors (SAMFETs) are not only a promising type of organic electronic device but also allow detailed analyses of structure-property correlations. The influence of the morphology on the charge transport is particularly pronounced, due to the confined monolayer of 2D-π-stacked organic semiconductor molecules. The morphology, in turn, is governed by relatively weak van-der-Waals interactions and is thus prone to dynamic structural fluctuations. Accordingly, combining electronic and physical characterization and time-averaged X-ray analyses with the dynamic information available at atomic resolution from simulations allows us to characterize self-assembled monolayer (SAM) based devices in great detail. For this purpose, we have constructed transistors based on SAMs of two molecules that consist of the organic p-type semiconductor benzothieno[3,2-b][1]benzothiophene (BTBT), linked to a C 11 or C 12 alkylphosphonic acid. Both molecules form ordered SAMs; however, our experiments show that the size of the crystalline domains and the charge-transport properties vary considerably in the two systems. These findings were confirmed by molecular dynamics (MD) simulations and semiempirical molecular-orbital electronic-structure calculations, performed on snapshots from the MD simulations at different times, revealing, in atomistic detail, how the charge transport in organic semiconductors is influenced and limited by dynamic disorder.

  6. Strengthening of the RAFMS RUSFER-EK181 through nano structuring surface layers

    Energy Technology Data Exchange (ETDEWEB)

    Panin, A.; Melnikova, E.A. [Tomsk State Univ., lnstitute of Strength Physics and Materials Science, SB, RAS (Russian Federation); Chernov, V.M. [Bochvar Institute of Inorganic Materials, Moscow (Russian Federation); Leontieva-Smirnova, M.V. [A.A. Bochvar Research Institute of Inorganic Materials, Moscow (Russian Federation)

    2007-07-01

    Full text of publication follows: Surface nano-structuring increases yield point and strength of the reduced activation ferritic-martensitic steel (RAFMS ) RUSREF - EK181. Ultrasonic impact treatment was used to produce a nano-structure within the surface layers of the specimens. Using scanning tunnelling microscope reveals a new mechanism of mesoscale-level plastic deformation of nano-structured surface layers of the RAFMS RUSREF - EK181 as doubled spirals of localised-plastic deformation meso-bands. A linear dependence of their sizes on thickness of strengthened layer was obtained. The effect of localised deformation meso-bands on macro-mechanical properties of a material was demonstrated. A certain combination of thermal and mechanical treatment as well as optimum proportion of nano-structured surface layer thickness to thickness of a whole specimen are necessary to achieve maximum strength values. Tests performed at high temperatures in the range from 20 to 700 deg. C shows efficiency of the surface hardening of the RAFMS RUSREF - EK181. The effect of nano-structured surface layer on the character of plastic deformation and mechanical properties of the RAFMS RUSREF - EK181 was considered in the framework of a multilevel model in which loss of shear stability and generation of structural defects occur self-consistently at various scale levels such as nano-, micro-, meso-, and macro-Chessboard like distribution of stresses and misfit deformations was theoretical and experimentally shown to appear at the 'nano-structured surface layer - bulk of material' interface. Zones of compressive normal stresses alternates with zones of tensile normal stresses as on a chessboard. Plastic shear can generate only within local zones of tensile normal stresses. Critical meso-volume of non-equilibrium states required for local structure-phase transformation can be formed within these zones. Whereas within the zones of compressive normal stresses acting from both

  7. Self-Assembly of Microscale Parts through Magnetic and Capillary Interactions

    Directory of Open Access Journals (Sweden)

    Madan Dubey

    2011-03-01

    Full Text Available Self-assembly is a promising technique to overcome fundamental limitations with integrating, packaging, and general handling of individual electronic-related components with characteristic lengths significantly smaller than 1 mm. Here we describe the use of magnetic and capillary forces to self-assemble 280 µm sized silicon building blocks into interconnected structures which approach a three-dimensional crystalline configuration. Integrated permanent magnet microstructures provided magnetic forces, while a low-melting-point solder alloy provided capillary forces. A finite element model of forces between the magnetic features demonstrated the utility of magnetic forces at this size scale. Despite a slight departure from designed dimensions in the actual fabricated parts, the combination of magnetic and capillary forces improved the assembly yield to 8%, over approximately 0.1% achieved previously with capillary forces alone.

  8. Equation of State for Phospholipid Self-Assembly

    DEFF Research Database (Denmark)

    Marsh, Derek

    2016-01-01

    Phospholipid self-assembly is the basis of biomembrane stability. The entropy of transfer from water to self-assembled micelles of lysophosphatidylcholines and diacyl phosphatidylcholines with different chain lengths converges to a common value at a temperature of 44°C. The corresponding enthalpies...... of transfer converge at ∼-18°C. An equation of state for the free energy of self-assembly formulated from this thermodynamic data depends on the heat capacity of transfer as the sole parameter needed to specify a particular lipid. For lipids lacking calorimetric data, measurement of the critical micelle...

  9. Opto-electronic devices with nanoparticles and their assemblies

    Science.gov (United States)

    Nguyen, Chieu Van

    Nanotechnology is a fast growing field; engineering matters at the nano-meter scale. A key nanomaterial is nanoparticles (NPs). These sub-wavelength (background noise. The second device is based on a one-dimensional (1-D) self-directed self-assembly of Au NPs mediated by dielectric materials. Depending on the coverage density of the Au NPs assembly deposited on the device, electronic emission was observed at ultra-low bias of 40V, leading to low-power plasma generation in air at atmospheric pressure. Light emitted from the plasma is apparent to the naked eyes. Similarly, 1-D self-assembly of Au NPs mediated by iron oxide was fabricated and exhibits ferro-magnetic behavior. The multi-functional 1-D self-assembly of Au NPs has great potential in modern electronics such as solid state lighting, plasma-based nanoelectronics, and memory devices.

  10. Aerosolized droplet mediated self-assembly of photosynthetic pigment analogues and deposition onto substrates.

    Science.gov (United States)

    Shah, Vivek B; Biswas, Pratim

    2014-02-25

    Self-assembled photosynthetic molecules have a high extinction coefficient and a broad absorption in the infrared region, and these properties can be used to improve the efficiency of solar cells. We have developed a single-step method for the self-assembly of synthetic chlorin molecules (analogues of native bacteriochlorophylls) in aerosolized droplets, containing a single solvent and two solvents, to synthesize biomimetic light-harvesting structures. In the single-solvent approach, assembly is promoted by a concentration-driven process due to evaporation of the solvent. The peak absorbance of Zn(II) 3-(1-hydroxyethyl)-10-phenyl-13(1)-oxophorbine (1) in methanol shifted from 646 nm to 725 nm (∼ 80 nm shift) after assembly, which is comparable to the shift observed in the naturally occurring assembly of bacteriochlorophyll c. Although assembly is thermodynamically favorable, the kinetics of self-assembly play an important role, and this was demonstrated by varying the initial concentration of the pigment monomer. To overcome kinetic limitations, a two-solvent approach using a volatile solvent (tetrahydrofuran) in which the dye is soluble and a less volatile solvent (ethanol) in which the dye is sparingly soluble was demonstrated to be effective. The effect of molecular structure is demonstrated by spraying the sterically hindered Zn(II) 3-(1-hydroxyethyl)-10-mesityl-13(1)-oxophorbine (2), which is an analogue of 1, under similar conditions. The results illustrate a valuable and facile aerosol-based method for the formation of films of supramolecular assemblies.

  11. Organic molecules deposited on graphene: A computational investigation of self-assembly and electronic structure

    International Nuclear Information System (INIS)

    Oliveira, I. S. S. de; Miwa, R. H.

    2015-01-01

    We use ab initio simulations to investigate the adsorption and the self-assembly processes of tetracyanoquinodimethane (TCNQ), tetrafluoro-tetracyanoquinodimethane (F4-TCNQ), and tetrasodium 1,3,6,8-pyrenetetrasulfonic acid (TPA) on the graphene surface. We find that there are no chemical bonds at the molecule–graphene interface, even at the presence of grain boundaries on the graphene surface. The molecules bond to graphene through van der Waals interactions. In addition to the molecule–graphene interaction, we performed a detailed study of the role played by the (lateral) molecule–molecule interaction in the formation of the, experimentally verified, self-assembled layers of TCNQ and TPA on graphene. Regarding the electronic properties, we calculate the electronic charge transfer from the graphene sheet to the TCNQ and F4-TCNQ molecules, leading to a p-doping of graphene. Meanwhile, such charge transfer is reduced by an order of magnitude for TPA molecules on graphene. In this case, it is not expected a significant doping process upon the formation of self-assembled layer of TPA molecules on the graphene sheet

  12. Coevolutionary constraints in the sequence-space of macromolecular complexes reflect their self-assembly pathways.

    Science.gov (United States)

    Mallik, Saurav; Kundu, Sudip

    2017-07-01

    Is the order in which biomolecular subunits self-assemble into functional macromolecular complexes imprinted in their sequence-space? Here, we demonstrate that the temporal order of macromolecular complex self-assembly can be efficiently captured using the landscape of residue-level coevolutionary constraints. This predictive power of coevolutionary constraints is irrespective of the structural, functional, and phylogenetic classification of the complex and of the stoichiometry and quaternary arrangement of the constituent monomers. Combining this result with a number of structural attributes estimated from the crystal structure data, we find indications that stronger coevolutionary constraints at interfaces formed early in the assembly hierarchy probably promotes coordinated fixation of mutations that leads to high-affinity binding with higher surface area, increased surface complementarity and elevated number of molecular contacts, compared to those that form late in the assembly. Proteins 2017; 85:1183-1189. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Hierarchical self-assembly of a bow-shaped molecule bearing self-complementary hydrogen bonding sites into extended supramolecular assemblies.

    Science.gov (United States)

    Ikeda, Masato; Nobori, Tadahito; Schmutz, Marc; Lehn, Jean-Marie

    2005-01-07

    The bow-shaped molecule 1 bearing a self-complementary DAAD-ADDA (D=donor A=acceptor) hydrogen-bonding array generates, in hydrocarbon solvents, highly ordered supramolecular sheet aggregates that subsequently give rise to gels by formation of an entangled network. The process of hierarchical self-assembly of compound 1 was investigated by the concentration and temperature dependence of UV-visible and (1)H NMR spectra, fluorescence spectra, and electron microscopy data. The temperature dependence of the UV-visible spectra indicates a highly cooperative process for the self-assembly of compound 1 in decaline. The electron micrograph of the decaline solution of compound 1 (1.0 mM) revealed supramolecular sheet aggregates forming an entangled network. The selected area electronic diffraction patterns of the supramolecular sheet aggregates were typical for single crystals, indicative of a highly ordered assembly. The results exemplify the generation, by hierarchical self-assembly, of highly organized supramolecular materials presenting novel collective properties at each level of organization.

  14. Graphene decorated with Pd nanoparticles via electrostatic self-assembly: A highly active alcohol oxidation electrocatalyst

    International Nuclear Information System (INIS)

    Guo, Shujing; Li, Shuwen; Hu, Tengyue; Gou, Galian; Ren, Ren; Huang, Jingwei; Xie, Miao; Jin, Jun; Ma, Jiantai

    2013-01-01

    Graphical abstract: Novel perylene-connected ionic liquids (PTCDI-ILs) have been successfully synthesized in a convenient approach and used as linkers for three-component Pd/PTCDI-ILs/GS heterostructure when non-covalently attached on graphene. The obtained nano-hybrids represented high electrochemical surface area and enhanced electrocatalytic activity for DAFCs in alkaline media. -- Highlights: • A novel preparation of three-component Pd/ionic liquids/graphene heterostructure has been constructed. • The Pd-based nano-catalysts have relatively low price and higher resistance to CO poisoning when compared with Pt-based catalysts. • The nano-catalysts represent high electrochemical surface area and enhanced electrocatalytic activity for DAFCs in alkaline media. -- Abstract: Graphene nanosheets (GS) are non-covalently functionalized with novel N,N-bis-(n-butylimidazolium bromide salt)-3,4,9,10-perylene tetracarboxylic acid diimide (PTCDI-ILs) via the π–π stacking, and then employed as the support of Pd nanoparticles. The negatively charged Pd precursors are adsorbed on positively charged imidazolium ring moiety of PTCDI-ILs wrapping GS surface via electrostatic self-assembly and then in situ reduced by NaBH 4 . X-ray diffraction and transmission electron microscope images reveal that Pd nanoparticles with an average size of 2.7 nm are uniformly dispersed on GS surface. The Pd/PTCDI-ILs/GS exhibits unexpectedly high activity toward alcohol oxidation reaction, which can be attributed to the large electrochemical surface area of Pd nanoparticles. It also shows enhanced electrochemical stability due to the structural integrity of PTCDI-ILs/GS. This provides a facile approach to synthesize GS-based nanoelectrocatalysts

  15. Fabrication and tribological properties of self-assembled monolayer of n-alkyltrimethoxysilane on silicon: Effect of SAM alkyl chain length

    Energy Technology Data Exchange (ETDEWEB)

    Huo, Lixia [National Key Laboratory of Science and Technology on Vacuum Technology and Physics, Lanzhou Institute of Physics, Lanzhou, Gansu 730010 (China); Institute of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Lanzhou University, Gansu 730000 (China); Du, Pengcheng [Institute of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Lanzhou University, Gansu 730000 (China); Zhou, Hui; Zhang, Kaifeng [National Key Laboratory of Science and Technology on Vacuum Technology and Physics, Lanzhou Institute of Physics, Lanzhou, Gansu 730010 (China); Liu, Peng, E-mail: pliu@lzu.edu.cn [Institute of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Lanzhou University, Gansu 730000 (China)

    2017-02-28

    Highlights: • n-Alkyltrimethoxysilanes with various chain lengths were self-assembled on silicon. • Effect of alkyl chain lengths (C6, C12, or C18) on the SAMs was investigated. • Surface roughness of the SAMs decreased with increasing the alkyl chain lengths. • The C{sub 12}-SAM possessed superior friction reduction and wear resistance. - Abstract: It is well known that the self-assembled organic molecules on a solid surface exhibit the friction-reducing performance. However, the effect of the molecular size of the self-assembled organic molecules has not been established. In the present work, self-assembled monolayers (SAMs) of n-alkyltrimethoxysilanes with different alkyl chain lengths (C{sub 6}, C{sub 12}, or C{sub 18}) were fabricated on silicon substrate. The water contact angles of the SAMs increased from 26.8° of the hydroxylated silicon substrate to near 60° after self-assembly. The atomic force microscopy (AFM) analysis results showed that the mean roughness (R{sub a}) of the SAMs decreased with increasing the alkyl chain length. The tribological properties of the SAMs sliding against Al{sub 2}O{sub 3} ball were evaluated on an UMT-2 tribometer, and the worn surfaces of the samples were analyzed by means of Nano Scratch Tester and surface profilometry. It was found that lowest friction coefficient and smallest width of wear were achieved with the SAMs of C{sub 12} alkyl chain (C{sub 12}-SAM). The superior friction reduction and wear resistance of the SAMs in comparison with the bare silicon substrate are attributed to good adhesion of the self-assembled films to the substrate, especially the C{sub 12}-SAM with desirable alkyl chain length.

  16. Functional materials derived from block copolymer self-assembly

    DEFF Research Database (Denmark)

    Li, Tao

    deposition methods, namely nanocasting and atomic layer deposition (ALD) will be applied to fabricate compact, inter-connected, and continuous metal oxide films. In this way, the structure integrity will be preserved after template removal during the annealing procedure. Another objective of this project......-casting, the block copolymer self-organizes into monolayer packed sphere pattern, without any surface treatment of the substrate and annealing process. Arrays of nano-pillars and nanowells of various materials are fabricated in dry etch processes over wafer scale without defects. We also show an in situ Al2O3 hard...

  17. Controlled short-linkage assembly of functional nano-objects

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhary, Shilpi; Kamra, Tripta [Division of Pure and Applied Biochemistry, Lund University, Box 124, 221 00 Lund (Sweden); ENI AB, Malmö (Sweden); Division of Synchrotron Radiation Research, Lund University, Box 118, 221 00 Lund (Sweden); Uddin, Khan Mohammad Ahsan [Division of Pure and Applied Biochemistry, Lund University, Box 124, 221 00 Lund (Sweden); Snezhkova, Olesia [Division of Synchrotron Radiation Research, Lund University, Box 118, 221 00 Lund (Sweden); Jayawardena, H. Surangi N. [Department of Chemistry, University of Massachusetts Lowell, 1 University Ave., Lowell, MA 01854 (United States); Yan, Mingdi [Department of Chemistry, University of Massachusetts Lowell, 1 University Ave., Lowell, MA 01854 (United States); Department of Chemistry, KTH – Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm (Sweden); Montelius, Lars [ENI AB, Malmö (Sweden); Schnadt, Joachim, E-mail: joachim.schnadt@sljus.lu.se [Division of Synchrotron Radiation Research, Lund University, Box 118, 221 00 Lund (Sweden); Ye, Lei, E-mail: lei.ye@tbiokem.lth.se [Division of Pure and Applied Biochemistry, Lund University, Box 124, 221 00 Lund (Sweden)

    2014-05-01

    Graphical abstract: - Highlights: • Fast photoconjugation of nanoparticles on surface. • Non-destructive feature guarantees intact function of nanoparticles. • Direct contact between nano-objects allows efficient photon and electron transfer. • Possibility of generating patterned nanoparticle assemblies on surface. • Open new opportunities for assembling chemical sensors. - Abstract: In this work, we report a method that allows the deterministic, photo-controlled covalent assembly of nanoparticles directly on surface. As a model system, we study the conjugation of molecularly imprinted polymer (MIP) nanoparticles on a glass surface and confirm that the immobilized nanoparticles maintain their molecular recognition functionality. The glass slide was first modified with perfluorophenylazide and then used to bind MIP nanoparticles under UV irradiation. After each step the surface was analyzed by water contact angle measurement, fluorescence microscopy, scanning electron microscopy, and/or synchrotron-based X-ray photoelectron spectroscopy. The MIP nanoparticles immobilized on the glass surface remained stable and maintained specific binding for the template molecule, propranolol. The method developed in this work allows MIP nanoparticles to be directly coupled to a flat surface, offering a straightforward means to construct robust chemical sensors. Using the reported photo conjugation method, it is possible to generate patterned assembly of nanoparticles using a photomask. Since perfluorophenylazide-based photochemistry works with all kinds of organic material, the method developed in this work is expected to enable immobilization of not only MIPs but also other kinds of organic and inorganic–organic core–shell particles for various applications involving photon or electron transfer.

  18. Controlled short-linkage assembly of functional nano-objects

    International Nuclear Information System (INIS)

    Chaudhary, Shilpi; Kamra, Tripta; Uddin, Khan Mohammad Ahsan; Snezhkova, Olesia; Jayawardena, H. Surangi N.; Yan, Mingdi; Montelius, Lars; Schnadt, Joachim; Ye, Lei

    2014-01-01

    Graphical abstract: - Highlights: • Fast photoconjugation of nanoparticles on surface. • Non-destructive feature guarantees intact function of nanoparticles. • Direct contact between nano-objects allows efficient photon and electron transfer. • Possibility of generating patterned nanoparticle assemblies on surface. • Open new opportunities for assembling chemical sensors. - Abstract: In this work, we report a method that allows the deterministic, photo-controlled covalent assembly of nanoparticles directly on surface. As a model system, we study the conjugation of molecularly imprinted polymer (MIP) nanoparticles on a glass surface and confirm that the immobilized nanoparticles maintain their molecular recognition functionality. The glass slide was first modified with perfluorophenylazide and then used to bind MIP nanoparticles under UV irradiation. After each step the surface was analyzed by water contact angle measurement, fluorescence microscopy, scanning electron microscopy, and/or synchrotron-based X-ray photoelectron spectroscopy. The MIP nanoparticles immobilized on the glass surface remained stable and maintained specific binding for the template molecule, propranolol. The method developed in this work allows MIP nanoparticles to be directly coupled to a flat surface, offering a straightforward means to construct robust chemical sensors. Using the reported photo conjugation method, it is possible to generate patterned assembly of nanoparticles using a photomask. Since perfluorophenylazide-based photochemistry works with all kinds of organic material, the method developed in this work is expected to enable immobilization of not only MIPs but also other kinds of organic and inorganic–organic core–shell particles for various applications involving photon or electron transfer

  19. Crystallization of a self-assembled three-dimensional DNA nanostructure

    International Nuclear Information System (INIS)

    Rendek, Kimberly N.; Fromme, Raimund; Grotjohann, Ingo; Fromme, Petra

    2013-01-01

    In this work, the crystallization of a self-assembling three-dimensional B-DNA nanostructure is described. The powerful and specific molecular-recognition system present in the base-pairing of DNA allows for the design of a plethora of nanostructures. In this work, the crystallization of a self-assembling three-dimensional B-DNA nanostructure is described. The DNA nanostructure consists of six single-stranded oligonucleotides that hybridize to form a three-dimensional tetrahedron of 80 kDa in molecular mass and 20 bp on each edge. Crystals of the tetrahedron have been successfully produced and characterized. These crystals may form the basis for an X-ray structure of the tetrahedron in the future. Nucleotide crystallography poses many challenges, leading to the fact that only 1352 X-ray structures of nucleic acids have been solved compared with more than 80 000 protein structures. In this work, the crystallization optimization for three-dimensional tetrahedra is also described, with the eventual goal of producing nanocrystals to overcome the radiation-damage obstacle by the use of free-electron laser technology in the future

  20. Preparation and characterization of self-assembly hydrogels with exfoliated montmorillonite nanosheets and chitosan

    Science.gov (United States)

    Wang, Wei; Zhao, Yunliang; Yi, Hao; Chen, Tianxing; Kang, Shichang; Li, Hongqiang; Song, Shaoxian

    2018-01-01

    Novel montmorillonite-nanosheet/chitosan (MMTNS/CS) hydrogels fabricated via the self-assembly of exfoliated MMTNS and CS chains were investigated. The exfoliation of MMTNS, self-assembly mechanism and structure of MMTNS/CS hydrogels were characterized by an atomic force microscope, scanning electron microscope, transmission electron microscope, Fourier transform infrared spectroscope, energy-dispersive x-ray spectroscope and Brunauer-Emmett-Teller analyzer, respectively. The results indicated that MMT could be easily exfoliated to nanosheets with a thickness of 1 ˜ 5 nm in aqueous solution by an ultrasonic base upon interlayer hydration. The formation mechanism of the self-assembly hydrogels was due to the hydrogen bond (-OH ··· +NH3-) and electrostatic interaction between the MMTNS and CS. The MMTNSs were connected consecutively by CS in-plane to form a huge slice. The porous structure of the hydrogels was controllable by adjusting the MMTNS/CS mass ratio. The hydrogels could be used as adsorbents for sewage treatments, carriers for drugs, microorganisms and catalyzers due to their controllable porous structure and tremendous specific surface area which were derived from the completely exfoliated MMTNS.

  1. Understanding the Elementary Steps in DNA Tile-Based Self-Assembly.

    Science.gov (United States)

    Jiang, Shuoxing; Hong, Fan; Hu, Huiyu; Yan, Hao; Liu, Yan

    2017-09-26

    Although many models have been developed to guide the design and implementation of DNA tile-based self-assembly systems with increasing complexity, the fundamental assumptions of the models have not been thoroughly tested. To expand the quantitative understanding of DNA tile-based self-assembly and to test the fundamental assumptions of self-assembly models, we investigated DNA tile attachment to preformed "multi-tile" arrays in real time and obtained the thermodynamic and kinetic parameters of single tile attachment in various sticky end association scenarios. With more sticky ends, tile attachment becomes more thermostable with an approximately linear decrease in the free energy change (more negative). The total binding free energy of sticky ends is partially compromised by a sequence-independent energy penalty when tile attachment forms a constrained configuration: "loop". The minimal loop is a 2 × 2 tetramer (Loop4). The energy penalty of loops of 4, 6, and 8 tiles was analyzed with the independent loop model assuming no interloop tension, which is generalizable to arbitrary tile configurations. More sticky ends also contribute to a faster on-rate under isothermal conditions when nucleation is the rate-limiting step. Incorrect sticky end contributes to neither the thermostability nor the kinetics. The thermodynamic and kinetic parameters of DNA tile attachment elucidated here will contribute to the future improvement and optimization of tile assembly modeling, precise control of experimental conditions, and structural design for error-free self-assembly.

  2. Strong underwater adhesives made by self-assembling multi-protein nanofibres.

    Science.gov (United States)

    Zhong, Chao; Gurry, Thomas; Cheng, Allen A; Downey, Jordan; Deng, Zhengtao; Stultz, Collin M; Lu, Timothy K

    2014-10-01

    Many natural underwater adhesives harness hierarchically assembled amyloid nanostructures to achieve strong and robust interfacial adhesion under dynamic and turbulent environments. Despite recent advances, our understanding of the molecular design, self-assembly and structure-function relationships of these natural amyloid fibres remains limited. Thus, designing biomimetic amyloid-based adhesives remains challenging. Here, we report strong and multi-functional underwater adhesives obtained from fusing mussel foot proteins (Mfps) of Mytilus galloprovincialis with CsgA proteins, the major subunit of Escherichia coli amyloid curli fibres. These hybrid molecular materials hierarchically self-assemble into higher-order structures, in which, according to molecular dynamics simulations, disordered adhesive Mfp domains are exposed on the exterior of amyloid cores formed by CsgA. Our fibres have an underwater adhesion energy approaching 20.9 mJ m(-2), which is 1.5 times greater than the maximum of bio-inspired and bio-derived protein-based underwater adhesives reported thus far. Moreover, they outperform Mfps or curli fibres taken on their own and exhibit better tolerance to auto-oxidation than Mfps at pH ≥ 7.0.

  3. Fabrication of high-aspect-ratio nano structures using a nano x-ray shadow mask

    International Nuclear Information System (INIS)

    Kim, Yong Chul; Lee, Seung S

    2008-01-01

    This paper describes a novel method for the fabrication of high-aspect-ratio nano structures (HAR-nano structures) using a nano x-ray shadow mask and deep x-ray lithography (DXRL). The nano x-ray shadow mask is fabricated by depositing an x-ray absorber layer (Au, 3 µm) onto the back side of a nano shadow mask. The nano shadow mask is produced with nano-sized apertures whose dimensions are reduced to several tens of nanometers by the accumulation of low-stress silicon nitride (Si x N y ) using the LPCVD process on the shadow mask. A shadow mask containing apertures with a size of 1 µm is fabricated on a bulk micromachined Si x N y membrane. The thickness of an absorber layer must be in the range of several tens of micrometers in order to obtain a contrast of more than 100 for the conventional DXRL process at the Pohang Light Source (PLS). However, a 3 µm thick absorber layer can provide a sufficient contrast if the modified DXRL of the central beam-stop method is used, which blocks high-energy x-rays. A nano shadow mask with 30 nm sized apertures is fabricated and a nano x-ray shadow mask with 250 nm sized apertures is fabricated by depositing a 3 µm thick absorber layer on a nano shadow mask with 500 nm sized apertures. HAR-nano structures (circles with a diameter of 420 nm and lines with a width of 274 nm) with aspect ratios of over 10:1 on a 3.2 µm SU-8 are successfully fabricated by using the nano x-ray shadow mask and the central beam-stop method

  4. Self-assembled single-phase perovskite nanocomposite thin films.

    Science.gov (United States)

    Kim, Hyun-Suk; Bi, Lei; Paik, Hanjong; Yang, Dae-Jin; Park, Yun Chang; Dionne, Gerald F; Ross, Caroline A

    2010-02-10

    Thin films of perovskite-structured oxides with general formula ABO(3) have great potential in electronic devices because of their unique properties, which include the high dielectric constant of titanates, (1) high-T(C) superconductivity in cuprates, (2) and colossal magnetoresistance in manganites. (3) These properties are intimately dependent on, and can therefore be tailored by, the microstructure, orientation, and strain state of the film. Here, we demonstrate the growth of cubic Sr(Ti,Fe)O(3) (STF) films with an unusual self-assembled nanocomposite microstructure consisting of (100) and (110)-oriented crystals, both of which grow epitaxially with respect to the Si substrate and which are therefore homoepitaxial with each other. These structures differ from previously reported self-assembled oxide nanocomposites, which consist either of two different materials (4-7) or of single-phase distorted-cubic materials that exhibit two or more variants. (8-12) Moreover, an epitaxial nanocomposite SrTiO(3) overlayer can be grown on the STF, extending the range of compositions over which this microstructure can be formed. This offers the potential for the implementation of self-organized optical/ferromagnetic or ferromagnetic/ferroelectric hybrid nanostructures integrated on technologically important Si substrates with applications in magnetooptical or spintronic devices.

  5. Nanoscale assembly of lanthanum silica with dense and porous interfacial structures.

    Science.gov (United States)

    Ballinger, Benjamin; Motuzas, Julius; Miller, Christopher R; Smart, Simon; Diniz da Costa, João C

    2015-02-03

    This work reports on the nanoscale assembly of hybrid lanthanum oxide and silica structures, which form patterns of interfacial dense and porous networks. It was found that increasing the molar ratio of lanthanum nitrate to tetraethyl orthosilicate (TEOS) in an acid catalysed sol-gel process alters the expected microporous metal oxide silica structure to a predominantly mesoporous structure above a critical lanthanum concentration. This change manifests itself by the formation of a lanthanum silicate phase, which results from the reaction of lanthanum oxide nanoparticles with the silica matrix. This process converts the microporous silica into the denser silicate phase. Above a lanthanum to silica ratio of 0.15, the combination of growth and microporous silica consumption results in the formation of nanoscale hybrid lanthanum oxides, with the inter-nano-domain spacing forming mesoporous volume. As the size of these nano-domains increases with concentration, so does the mesoporous volume. The absence of lanthanum hydroxide (La(OH)3) suggests the formation of La2O3 surrounded by lanthanum silicate.

  6. Beta-Sheet-Forming, Self-Assembled Peptide Nanomaterials towards Optical, Energy, and Healthcare Applications.

    Science.gov (United States)

    Kim, Sungjin; Kim, Jae Hong; Lee, Joon Seok; Park, Chan Beum

    2015-08-12

    Peptide self-assembly is an attractive route for the synthesis of intricate organic nanostructures that possess remarkable structural variety and biocompatibility. Recent studies on peptide-based, self-assembled materials have expanded beyond the construction of high-order architectures; they are now reporting new functional materials that have application in the emerging fields such as artificial photosynthesis and rechargeable batteries. Nevertheless, there have been few reviews particularly concentrating on such versatile, emerging applications. Herein, recent advances in the synthesis of self-assembled peptide nanomaterials (e.g., cross β-sheet-based amyloid nanostructures, peptide amphiphiles) are selectively reviewed and their new applications in diverse, interdisciplinary fields are described, ranging from optics and energy storage/conversion to healthcare. The applications of peptide-based self-assembled materials in unconventional fields are also highlighted, such as photoluminescent peptide nanostructures, artificial photosynthetic peptide nanomaterials, and lithium-ion battery components. The relation of such functional materials to the rapidly progressing biomedical applications of peptide self-assembly, which include biosensors/chips and regenerative medicine, are discussed. The combination of strategies shown in these applications would further promote the discovery of novel, functional, small materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Structure and assembly of scalable porous protein cages

    NARCIS (Netherlands)

    Sasaki, Eita; Böhringer, Daniel; van de Waterbeemd, Michiel; Leibundgut, Marc; Zschoche, Reinhard; Heck, Albert J R; Ban, Nenad; Hilvert, Donald

    2017-01-01

    Proteins that self-assemble into regular shell-like polyhedra are useful, both in nature and in the laboratory, as molecular containers. Here we describe cryo-electron microscopy (EM) structures of two versatile encapsulation systems that exploit engineered electrostatic interactions for cargo

  8. Photoswitching in azobenzene self-assembled monolayers capped on zinc oxide: nanodots vs nanorods.

    Science.gov (United States)

    Shah, Syed Mujtaba; Martini, Cyril; Ackermann, Jörg; Fages, Frédéric

    2012-02-01

    We report the synthesis and spectroscopic characterization of nanohybrid structures consisting of an azobenzene compound grafted on the surface of zinc oxide nanoparticles. Characteristic bathochromic shifts indicate that the azobenzene photochromic molecules self-assemble onto the surface of the nanocrystals. The extent of packing is dependent on the shape of the nanoparticle. ZnO nanorods, with flat facets, enable a tighter organization of the molecules in the self-assembled monolayer than in the case of nanodots that display a more curvated shape. Consistently, the efficiency of photochromic switching of the self-assembled monolayer on ZnO nanoparticles is also shown to be strongly affected by nanoparticle shape. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Liquid Crystal Mediated Nano-assembled Gold Micro-shells

    Science.gov (United States)

    Quint, Makiko; Sarang, Som; Quint, David; Huang, Kerwyn; Gopinathan, Ajay; Hirst, Linda; Ghosh, Sayantani

    We have created 3D nano-assenbled micro-shell by using thermotropic liquid crystal (LC), 4-Cyano-4'-pentylbiphenyl (5CB), doped with mesogen-functionalized gold nanoparticles (AuNPs). The assembly process is driven by the isotropic-nematic phase transition dynamics. We uniformly disperse the functionalized AuNPs into isotropic liquid crystal matrix and the mixture is cooled from the isotropic to the nematic phase. During the phase transition, the separation of LC-AuNP rich isotropic and ordered 5CB rich domains cause the functionalized AuNPs to move into the shrinking isotropic regions. The mesogenic ligands are locally crystalized during this process, which leads to the formation of a spherical shell with a densely packed wall of AuNPs. These micro-shells are capable of encapsulating fluorescence dye without visible leakages for several months. Additionally, they demonstrate strong localized surface plasmon resonance, which leads to localized heating on optical excitation. This photothermal effect disrupts the structure, releasing contents within seconds. Our results exhibiting the capture and optically regulated release of encapsulated substances is a novel platform that combines drug-delivery and photothermal therapy in one versatile and multifunctional unit. This work is supported by the NSF Grants No. DMR-1056860, ECC-1227034, and a University of California Merced Faculty Mentor Fellowship.

  10. Centrioles: Some Self-Assembly Required

    OpenAIRE

    Song, Mi Hye; Miliaras, Nicholas B.; Peel, Nina; O'Connell, Kevin F.

    2008-01-01

    Centrioles play an important role in organizing microtubules and are precisely duplicated once per cell cycle. New (daughter) centrioles typically arise in association with existing (mother) centrioles (canonical assembly), suggesting that mother centrioles direct the formation of daughter centrioles. However, under certain circumstances, centrioles can also self-assemble free of an existing centriole (de novo assembly). Recent work indicates that the canonical and de novo pathways utilize a ...

  11. Localized synthesis, assembly and integration of silicon nanowires

    Science.gov (United States)

    Englander, Ongi

    Localized synthesis, assembly and integration of one-dimensional silicon nanowires with MEMS structures is demonstrated and characterized in terms of local synthesis processes, electric-field assisted self-assembly, and a proof-of-concept nanoelectromechanical system (HEMS) demonstration. Emphasis is placed on the ease of integration, process control strategies, characterization techniques and the pursuit of integrated devices. A top-down followed by a bottom-up integration approach is utilized. Simple MEMS heater structures are utilized as the microscale platforms for the localized, bottom-up synthesis of one-dimensional nanostructures. Localized heating confines the high temperature region permitting only localized nanostructure synthesis and allowing the surroundings to remain at room temperature thus enabling CMOS compatible post-processing. The vapor-liquid-solid (VLS) process in the presence of a catalytic nanoparticle, a vapor phase reactant, and a specific temperature environment is successfully employed locally. Experimentally, a 5nm thick gold-palladium layer is used as the catalyst while silane is the vapor phase reactant. The current-voltage behavior of the MEMS structures can be correlated to the approximate temperature range required for the VLS reaction to take place. Silicon nanowires averaging 45nm in diameter and up to 29mum in length synthesized at growth rates of up to 1.5mum/min result. By placing two MEMS structures in close proximity, 4--10mum apart, localized silicon nanowire growth can be used to link together MEMS structures to yield a two-terminal, self-assembled micro-to-nano system. Here, one MEMS structure is designated as the hot growth structure while a nearby structure is designated as the cold secondary structure, whose role is to provide a natural stopping point for the VLS reaction. The application of a localized electric-field, 5 to 13V/mum in strength, during the synthesis process, has been shown to improve nanowire

  12. Structure of a Venezuelan equine encephalitis virus assembly intermediate isolated from infected cells

    International Nuclear Information System (INIS)

    Lamb, Kristen; Lokesh, G.L.; Sherman, Michael; Watowich, Stanley

    2010-01-01

    Venezuelan equine encephalitis virus (VEEV) is a prototypical enveloped ssRNA virus of the family Togaviridae. To better understand alphavirus assembly, we analyzed newly formed nucleocapsid particles (termed pre-viral nucleocapsids) isolated from infected cells. These particles were intermediates along the virus assembly pathway, and ultimately bind membrane-associated viral glycoproteins to bud as mature infectious virus. Purified pre-viral nucleocapsids were spherical with a unimodal diameter distribution. The structure of one class of pre-viral nucleocapsids was determined with single particle reconstruction of cryo-electron microscopy images. These studies showed that pre-viral nucleocapsids assembled into an icosahedral structure with a capsid stoichiometry similar to the mature nucleocapsid. However, the individual capsomers were organized significantly differently within the pre-viral and mature nucleocapsids. The pre-viral nucleocapsid structure implies that nucleocapsids are highly plastic and undergo glycoprotein and/or lipid-driven rearrangements during virus self-assembly. This mechanism of self-assembly may be general for other enveloped viruses.

  13. Natural Rosin-based Phosphate Diester Surfactant Assisted One-step Synthesis of 3D Flowerlikeβ-Ni(OH)2/γ-Ni(OH)2 Composite Nano-microspheres

    Institute of Scientific and Technical Information of China (English)

    BoShi Wu; Juan Li; ChunRui Han; Feng Xu

    2018-01-01

    Self-assembled uniform 3Dflowerlikeβ-Ni(OH)2/g-Ni(OH)2composite nano-microspheres with hollow interiors were successfully synthesized via a facile aqueous-ethanol mixed solvothermal method, using nickel sulfate as a precursor, urea as a precipitant, and dehydroabietic based phosphate diester sodium (DDPDS) as a surfactant. The prepared 3D flowerlikeβ-Ni(OH)2/g-Ni(OH)2composite nano-microspheres were tested as supercapacitors in a two-electrode cell with 6 mol/L KOH electrolyte. In addition, the influence of DDPDS concentration on the morphology and size of 3Dflowerlikeβ-Ni(OH)2/g-Ni(OH)2composite nano-microspheres was studied at 180℃. X-ray diffraction (XRD), scanning electron microscopy (SEM), BET(Brunauer, Emmett and Teller)techniques, and equity default swap (EDS) were used to characterize the structure, morphology, and size of the as-prepared samples. Moreover, a possible formation mechanism of the 3Dflowerlikeβ-Ni(OH)2/g-Ni(OH)2composite nano-microspheres was proposed based on the effects of DDPDS concentrationand reaction time. The surfactant micelles were used as soft templates to induce the self-assembly of nanosheets. The crystallinity of the 3D flowerlikeβ-Ni(OH)2/g-Ni(OH)2composite nano-microspheres improved with the increase of DDPDS concentration, and the morphology and size of synthetic nano-microspheres could be controlled.

  14. Self-assembly of active amphiphilic Janus particles

    Science.gov (United States)

    Mallory, S. A.; Alarcon, F.; Cacciuto, A.; Valeriani, C.

    2017-12-01

    In this article, we study the phenomenology of a two dimensional dilute suspension of active amphiphilic Janus particles. We analyze how the morphology of the aggregates emerging from their self-assembly depends on the strength and the direction of the active forces. We systematically explore and contrast the phenomenologies resulting from particles with a range of attractive patch coverages. Finally, we illustrate how the geometry of the colloids and the directionality of their interactions can be used to control the physical properties of the assembled active aggregates and suggest possible strategies to exploit self-propulsion as a tunable driving force for self-assembly.

  15. Facile preparation of luminescent and intelligent gold nanodots based on supramolecular self-assembly

    International Nuclear Information System (INIS)

    Shi Yunfeng; Li Sujuan; Zhou Yahui; Zhai Qingpan; Hu Mengyue; Cai Fensha; Du Jimin; Liang Jiamiao; Zhu Xinyuan

    2012-01-01

    A new strategy for preparing luminescent and intelligent gold nanodots based on supramolecular self-assembly is described in this paper. The supramolecular self-assembly was initiated through electrostatic interactions and ion pairing between palmitic acid and hyperbranched poly(ethylenimine). The resulting structures not only have the dynamic reversible properties of supramolecules but also possess torispherical and highly branched architectures. Thus they can be regarded as a new kind of ideal nanoreactor for preparing intelligent Au nanodots. By preparing Au nanodots within this kind of supramolecular self-assembly, the environmental sensitivity of intelligent polymers and the optical, electrical properties of Au nanodots can be combined, endowing the Au nanodots with intelligence. In this paper, a supramolecular self-assembly process based on dendritic poly(ethylenimine) and palmitic acid was designed and then applied to prepare fluorescent and size-controlled Au nanodots. The pH response of Au nanodots embodied by phase transfer from oil phase to water phase was also investigated. (paper)

  16. Block copolymer templated self-assembly of disk-shaped molecules

    Science.gov (United States)

    Aragones, J. L.; Alexander-Katz, A.

    2017-08-01

    Stacking of disk-shaped organic molecules is a promising strategy to develop electronic and photovoltaic devices. Here, we investigate the capability of a soft block copolymer matrix that microphase separates into a cylindrical phase to direct the self-assembly of disk-shaped molecules by means of molecular simulations. We show that two disk molecules confined in the cylinder domain experience a depletion force, induced by the polymer chains, which results in the formation of stacks of disks. This entropic interaction and the soft confinement provided by the matrix are both responsible for the structures that can be self-assembled, which include slanted or columnar stacks. In addition, we evidence the transmission of stresses between the different minority domains of the microphase, which results in the establishment of a long-ranged interaction between disk molecules embedded in different domains; this interaction is of the order of the microphase periodicity and may be exploited to direct assembly of disks at larger scales.

  17. The self-assembly of monodisperse nanospheres within microtubes

    International Nuclear Information System (INIS)

    Zheng Yuebing; Juluri, Bala Krishna; Huang, Tony Jun

    2007-01-01

    Self-assembled monodisperse nanospheres within microtubes have been fabricated and characterized. In comparison with colloidal crystals formed on planar substrates, colloidal nanocrystals self-assembled in microtubes demonstrate high spatial symmetry in their optical transmission and reflection properties. The dynamic self-assembly process inside microtubes is investigated by combining temporal- and spatial-spectrophotometric measurements. The understanding of this process is achieved through both experimentally recorded reflection spectra and finite difference time domain (FDTD)-based simulation results

  18. Formation of Au nano-patterns on various substrates using simplified nano-transfer printing method

    Science.gov (United States)

    Kim, Jong-Woo; Yang, Ki-Yeon; Hong, Sung-Hoon; Lee, Heon

    2008-06-01

    For future device applications, fabrication of the metal nano-patterns on various substrates, such as Si wafer, non-planar glass lens and flexible plastic films become important. Among various nano-patterning technologies, nano-transfer print method is one of the simplest techniques to fabricate metal nano-patterns. In nano-transfer printing process, thin Au layer is deposited on flexible PDMS mold, containing surface protrusion patterns, and the Au layer is transferred from PDMS mold to various substrates due to the difference of bonding strength of Au layer to PDMS mold and to the substrate. For effective transfer of Au layer, self-assembled monolayer, which has strong bonding to Au, is deposited on the substrate as a glue layer. In this study, complicated SAM layer coating process was replaced to simple UV/ozone treatment, which can activates the surface and form the -OH radicals. Using simple UV/ozone treatments on both Au and substrate, Au nano-pattern can be successfully transferred to as large as 6 in. diameter Si wafer, without SAM coating process. High fidelity transfer of Au nano-patterns to non-planar glass lens and flexible PET film was also demonstrated.

  19. Micellar Self-Assembly of Block Copolymers for Fabrication of Nanostructured Membranes

    KAUST Repository

    Marques, Debora S.

    2013-11-01

    This research work examines the process of block copolymer membrane fabrication by self-assembly combined by non-solvent induced phase separation. Self-assembly takes place from the preparation of the primordial solution until the moment of immersion in a non-solvent bath. These mechanisms are driven thermodynamically but are limited by kinetic factors. It is shown in this work how the ordering of the assembly of micelles is improved by the solution parameters such as solvent quality and concentration of block copolymer. Order transitions are detected, yielding changes in the morphology. The evaporation of the solvents after casting is demonstrated to be essential to reach optimum membrane structure. The non-solvent bath stops the phase separation at an optimum evaporation time.

  20. Self-assembled peptide nanotubes as an etching material for the rapid fabrication of silicon wires

    DEFF Research Database (Denmark)

    Larsen, Martin Benjamin Barbour Spanget; Andersen, Karsten Brandt; Svendsen, Winnie Edith

    2011-01-01

    This study has evaluated self-assembled peptide nanotubes (PNTS) and nanowires (PNWS) as etching mask materials for the rapid and low-cost fabrication of silicon wires using reactive ion etching (RIE). The self-assembled peptide structures were fabricated under mild conditions and positioned on c...... characterization by SEM and I-V measurements. Additionally, the fabricated silicon structures were functionalized with fluorescent molecules via a biotin-streptavidin interaction in order to probe their potential in the development of biosensing devices....

  1. Functional Molecular Junctions Derived from Double Self-Assembled Monolayers.

    Science.gov (United States)

    Seo, Sohyeon; Hwang, Eunhee; Cho, Yunhee; Lee, Junghyun; Lee, Hyoyoung

    2017-09-25

    Information processing using molecular junctions is becoming more important as devices are miniaturized to the nanoscale. Herein, we report functional molecular junctions derived from double self-assembled monolayers (SAMs) intercalated between soft graphene electrodes. Newly assembled molecular junctions are fabricated by placing a molecular SAM/(top) electrode on another molecular SAM/(bottom) electrode by using a contact-assembly technique. Double SAMs can provide tunneling conjugation across the van der Waals gap between the terminals of each monolayer and exhibit new electrical functions. Robust contact-assembled molecular junctions can act as platforms for the development of equivalent contact molecular junctions between top and bottom electrodes, which can be applied independently to different kinds of molecules to enhance either the structural complexity or the assembly properties of molecules. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Quantitative computational models of molecular self-assembly in systems biology.

    Science.gov (United States)

    Thomas, Marcus; Schwartz, Russell

    2017-05-23

    Molecular self-assembly is the dominant form of chemical reaction in living systems, yet efforts at systems biology modeling are only beginning to appreciate the need for and challenges to accurate quantitative modeling of self-assembly. Self-assembly reactions are essential to nearly every important process in cell and molecular biology and handling them is thus a necessary step in building comprehensive models of complex cellular systems. They present exceptional challenges, however, to standard methods for simulating complex systems. While the general systems biology world is just beginning to deal with these challenges, there is an extensive literature dealing with them for more specialized self-assembly modeling. This review will examine the challenges of self-assembly modeling, nascent efforts to deal with these challenges in the systems modeling community, and some of the solutions offered in prior work on self-assembly specifically. The review concludes with some consideration of the likely role of self-assembly in the future of complex biological system models more generally.

  3. Probing Interactions in Complex Molecular Systems through Ordered Assembly

    International Nuclear Information System (INIS)

    De Yoreo, J.J.; Bartelt, M.C.; Orme, C.A.; Villacampa, A.; Weeks, B.L.; Miller, A.E.

    2002-01-01

    of three classes of ''super molecular'' nanostructured materials. These included (1) dendrimers, (2) DNA bonded nano-particles, and (3) colloids, all of which form solution-based self-organizing systems. To this end, our goals were, first, to learn how to modify models of epitaxy in small molecule systems so that they are useful, efficient, and applicable to assembly of super-molecular species; and, second, to learn how systematic variations in the structure and bonding of the building blocks affect the surface kinetics and energetics that control the assembly process and the subsequent dynamic behavior of the assembled structures. AFM imaging provided experimental data on morphology and kinetics, while kinetic Monte Carlo (KMC) simulations related these data to molecular-scale processes and features

  4. Hierarchical self-assembly of magnetic nanoclusters for theranostics: Tunable size, enhanced magnetic resonance imagability, and controlled and targeted drug delivery.

    Science.gov (United States)

    Nguyen, Dai Hai; Lee, Jung Seok; Choi, Jong Hoon; Park, Kyung Min; Lee, Yunki; Park, Ki Dong

    2016-04-15

    Nanoparticle-based imaging and therapy are of interest for theranostic nanomedicine. In particular, superparamagnetic iron oxide (SPIO) nanoparticles (NPs) have attracted much attention in cancer imaging, diagnostics, and treatment because of their superior imagability and biocompatibility (approved by the Food and Drug Administration). Here, we developed SPIO nanoparticles (NPs) that self-assembled into magnetic nanoclusters (SAMNs) in aqueous environments as a theranostic nano-system. To generate multi-functional SPIO NPs, we covalently conjugated β-cyclodextrin (β-CD) to SPIO NPs using metal-adhesive dopamine groups. Polyethylene glycol (PEG) and paclitaxel (PTX) were hosted in the β-CD cavity through high affinity complexation. The core-shell structure of the magnetic nanoclusters was elucidated based on the condensed SPIO core and a PEG shell using electron microscopy and the composition was analyzed by thermogravimetric analysis (TGA). Our results indicate that nanocluster size could be readily controlled by changing the SPIO/PEG ratio in the assemblies. Interestingly, we observed a significant enhancement in magnetic resonance contrast due to the large cluster size and dense iron oxide core. In addition, tethering a tumor-targeting peptide to the SAMNs enhanced their uptake into tumor cells. PTX was efficiently loaded into β-CDs and released in a controlled manner when exposed to competitive guest molecules. These results strongly indicate that the SAMNs developed in this study possess great potential for application in image-guided cancer chemotherapy. In this study, we developed multi-functional SPIO NPs that self-assembled into magnetic nanoclusters (SAMNs) in aqueous conditions as a theranostic nano-system. The beta-cyclodextrin (β-CD) was immobilized on the surfaces of SPIO NPs and RGD-conjugated polyethylene glycol (PEG) and paclitaxel (PTX) were hosted in the β-CD cavity through high affinity complexation. We found that nanocluster size could be

  5. Centrioles: some self-assembly required.

    Science.gov (United States)

    Song, Mi Hye; Miliaras, Nicholas B; Peel, Nina; O'Connell, Kevin F

    2008-12-01

    Centrioles play an important role in organizing microtubules and are precisely duplicated once per cell cycle. New (daughter) centrioles typically arise in association with existing (mother) centrioles (canonical assembly), suggesting that mother centrioles direct the formation of daughter centrioles. However, under certain circumstances, centrioles can also selfassemble free of an existing centriole (de novo assembly). Recent work indicates that the canonical and de novo pathways utilize a common mechanism and that a mother centriole spatially constrains the self-assembly process to occur within its immediate vicinity. Other recently identified mechanisms further regulate canonical assembly so that during each cell cycle, one and only one daughter centriole is assembled per mother centriole.

  6. Fabrication of bioinspired nanostructured materials via colloidal self-assembly

    Science.gov (United States)

    Huang, Wei-Han

    Through millions of years of evolution, nature creates unique structures and materials that exhibit remarkable performance on mechanicals, opticals, and physical properties. For instance, nacre (mother of pearl), bone and tooth show excellent combination of strong minerals and elastic proteins as reinforced materials. Structured butterfly's wing and moth's eye can selectively reflect light or absorb light without dyes. Lotus leaf and cicada's wing are superhydrophobic to prevent water accumulation. The principles of particular biological capabilities, attributed to the highly sophisticated structures with complex hierarchical designs, have been extensively studied. Recently, a large variety of novel materials have been enabled by natural-inspired designs and nanotechnologies. These advanced materials will have huge impact on practical applications. We have utilized bottom-up approaches to fabricate nacre-like nanocomposites with "brick and mortar" structures. First, we used self-assembly processes, including convective self-assembly, dip-coating, and electrophoretic deposition to form well oriented layer structure of synthesized gibbsite (aluminum hydroxide) nanoplatelets. Low viscous monomer was permeated into layered nanoplatelets and followed by photo-curing. Gibbsite-polymer composite displays 2 times higher tensile strength and 3 times higher modulus when compared with pure polymer. More improvement occurred when surface-modified gibbsite platelets were cross-linked with the polymer matrix. We observed ˜4 times higher strength and nearly 1 order of magnitude higher modulus than pure polymer. To further improve the mechanical strength and toughness of inorganicorganic nanocomposites, we exploited ultrastrong graphene oxide (GO), a single atom thick hexagonal carbon sheet with pendant oxidation groups. GO nanocomposite is made by co-filtrating GO/polyvinyl alcohol suspension on 0.2 im pore-sized membrane. It shows ˜2 times higher strength and ˜15 times higher

  7. DNAzyme-Based Logic Gate-Mediated DNA Self-Assembly.

    Science.gov (United States)

    Zhang, Cheng; Yang, Jing; Jiang, Shuoxing; Liu, Yan; Yan, Hao

    2016-01-13

    Controlling DNA self-assembly processes using rationally designed logic gates is a major goal of DNA-based nanotechnology and programming. Such controls could facilitate the hierarchical engineering of complex nanopatterns responding to various molecular triggers or inputs. Here, we demonstrate the use of a series of DNAzyme-based logic gates to control DNA tile self-assembly onto a prescribed DNA origami frame. Logic systems such as "YES," "OR," "AND," and "logic switch" are implemented based on DNAzyme-mediated tile recognition with the DNA origami frame. DNAzyme is designed to play two roles: (1) as an intermediate messenger to motivate downstream reactions and (2) as a final trigger to report fluorescent signals, enabling information relay between the DNA origami-framed tile assembly and fluorescent signaling. The results of this study demonstrate the plausibility of DNAzyme-mediated hierarchical self-assembly and provide new tools for generating dynamic and responsive self-assembly systems.

  8. Functionally Graded Materials using Plasma Spray with Nano Structured Ceramic

    International Nuclear Information System (INIS)

    Sioh, E L; Tok, A I Y

    2013-01-01

    In this paper, nano structured FGM was fabricated using DC plasma spray technique. Nano structured and micro structured powder were used as the feeding powder with steel substrate. The spray parameters was optimized and characterisation of nano-ceramic FGM and micro-ceramic FGM were done using bending test and micro-hardness test. Experimental results have shown that the nano-structured FGM exhibit 20% improvement flexure strength and 10% in hardness. A comparison was made between sintered micro ceramic tile and nano ceramic FGM using simple drop test method.

  9. Water ordering controls the dynamic equilibrium of micelle-fibre formation in self-assembly of peptide amphiphiles.

    Science.gov (United States)

    Deshmukh, Sanket A; Solomon, Lee A; Kamath, Ganesh; Fry, H Christopher; Sankaranarayanan, Subramanian K R S

    2016-08-24

    Understanding the role of water in governing the kinetics of the self-assembly processes of amphiphilic peptides remains elusive. Here, we use a multistage atomistic-coarse-grained approach, complemented by circular dichroism/infrared spectroscopy and dynamic light scattering experiments to highlight the dual nature of water in driving the self-assembly of peptide amphiphiles (PAs). We show computationally that water cage formation and breakage near the hydrophobic groups control the fusion dynamics and aggregation of PAs in the micellar stage. Simulations also suggest that enhanced structural ordering of vicinal water near the hydrophilic amino acids shifts the equilibrium towards the fibre phase and stimulates structure and order during the PA assembly into nanofibres. Experiments validate our simulation findings; the measured infrared O-H bond stretching frequency is reminiscent of an ice-like bond which suggests that the solvated water becomes increasingly ordered with time in the assembled peptide network, thus shedding light on the role of water in a self-assembly process.

  10. Freezing-induced self-assembly of amphiphilic molecules

    Science.gov (United States)

    Albouy, P. A.; Deville, S.; Fulkar, A.; Hakouk, K.; Impéror-Clerc, M.; Klotz, M.; Liu, Q.; Marcellini, M.; Perez, J.

    The self-assembly of amphiphilic molecules usually takes place in a liquid phase, near room temperature. Here, using small angle X-ray scattering (SAXS) experiments performed in real time, we show that freezing of aqueous solutions of copolymer amphiphilic molecules can induce self-assembly below 0{\\deg}C.

  11. Fabrication of self-assembled photonic-crystal structures by centrifugation and spin coating

    Science.gov (United States)

    Xu, Yan; Schneider, Garrett J.; Wetzel, Eric D.; Prather, Dennis W.

    2003-11-01

    We have developed a simple, low-cost process for the fabrication of high-quality three-dimensional artificial-opal and inverse-opal photonic crystals. The process is based on the self-assembly of a template from a uniform suspension of polystyrene microspheres, which is sintered for added strength and subsequently back-filled with high-index material. The template formation is assisted by a combination of centrifugation and spin-annealing, which requires relatively short process times and inexpensive laboratory equipment. The process has been used to fabricate polycrystalline photonic crystals with photonic stop gaps in the mid-IR portion of the spectrum. Details of the fabrication process and fabricated samples will be presented. In addition, Fourier-transform IR reflection spectroscopy has been used to characterize the samples; the results are shown to be in excellent agreement with band structure diffraction calculations.

  12. Oxide nanostructures through self-assembly

    Science.gov (United States)

    Aggarwal, S.; Ogale, S. B.; Ganpule, C. S.; Shinde, S. R.; Novikov, V. A.; Monga, A. P.; Burr, M. R.; Ramesh, R.; Ballarotto, V.; Williams, E. D.

    2001-03-01

    A prominent theme in inorganic materials research is the creation of uniformly flat thin films and heterostructures over large wafers, which can subsequently be lithographically processed into functional devices. This letter proposes an approach that will lead to thin film topographies that are directly counter to the above-mentioned philosophy. Recent years have witnessed considerable research activity in the area of self-assembly of materials, stimulated by observations of self-organized behavior in biological systems. We have fabricated uniform arrays of nonplanar surface features by a spontaneous assembly process involving the oxidation of simple metals, especially under constrained conditions on a variety of substrates, including glass and Si. In this letter we demonstrate the pervasiveness of this process through examples involving the oxidation of Pd, Cu, Fe, and In. The feature sizes can be controlled through the grain size and thickness of the starting metal thin film. Finally, we demonstrate how such submicron scale arrays can serve as templates for the design and development of self-assembled, nanoelectronic devices.

  13. Dynamics of self-assembled cytosine nucleobases on graphene

    Science.gov (United States)

    Saikia, Nabanita; Johnson, Floyd; Waters, Kevin; Pandey, Ravindra

    2018-05-01

    Molecular self-assembly of cytosine (C n ) bases on graphene was investigated using molecular dynamics methods. For free-standing C n bases, simulation conditions (gas versus aqueous) determine the nature of self-assembly; the bases prefer to aggregate in the gas phase and are stabilized by intermolecular H-bonds, while in the aqueous phase, the water molecules disrupt base-base interactions, which facilitate the formation of π-stacked domains. The substrate-induced effects, on the other hand, find the polarity and donor-acceptor sites of the bases to govern the assembly process. For example, in the gas phase, the assembly of C n bases on graphene displays short-range ordered linear arrays stabilized by the intermolecular H-bonds. In the aqueous phase, however, there are two distinct configurations for the C n bases assembly on graphene. For the first case corresponding to low surface coverage, the bases are dispersed on graphene and are isolated. The second configuration archetype is disordered linear arrays assembled with medium and high surface coverage. The simulation results establish the role of H-bonding, vdW π-stacking, and the influence of graphene surface towards the self-assembly. The ability to regulate the assembly into well-defined patterns can aid in the design of self-assembled nanostructures for the next-generation DNA based biosensors and nanoelectronic devices.

  14. Electrical Programming of Soft Matter: Using Temporally Varying Electrical Inputs To Spatially Control Self Assembly.

    Science.gov (United States)

    Yan, Kun; Liu, Yi; Zhang, Jitao; Correa, Santiago O; Shang, Wu; Tsai, Cheng-Chieh; Bentley, William E; Shen, Jana; Scarcelli, Giuliano; Raub, Christopher B; Shi, Xiao-Wen; Payne, Gregory F

    2018-02-12

    The growing importance of hydrogels in translational medicine has stimulated the development of top-down fabrication methods, yet often these methods lack the capabilities to generate the complex matrix architectures observed in biology. Here we show that temporally varying electrical signals can cue a self-assembling polysaccharide to controllably form a hydrogel with complex internal patterns. Evidence from theory and experiment indicate that internal structure emerges through a subtle interplay between the electrical current that triggers self-assembly and the electrical potential (or electric field) that recruits and appears to orient the polysaccharide chains at the growing gel front. These studies demonstrate that short sequences (minutes) of low-power (∼1 V) electrical inputs can provide the program to guide self-assembly that yields hydrogels with stable, complex, and spatially varying structure and properties.

  15. Active Self-Assembled Spinners: dynamic crystals, transport and induced surface flows

    Science.gov (United States)

    Snezhko, Alexey; Kokot, Gasper

    Strongly interacting colloids driven out-of-equilibrium by an external periodic forcing often develop nontrivial collective dynamics. Active magnetic colloids proved to be excellent model experimental systems to explore emergent behavior and active (out-of-equilibrium) self-assembly phenomena. Ferromagnetic micro-particles, suspended at a liquid interface and energized by a rotational homogeneous alternating magnetic field applied along the supporting interface, spontaneously form ensembles of synchronized self-assembled spinners with well-defined characteristic length. The size and the torque of an individual self-assembled spinner are controlled by the frequency of the driving magnetic field. Experiments reveal a rich collective dynamics in large ensembles of synchronized magnetic spinners that spontaneously form dynamic spinner lattices at the interface in a certain range of the excitation parameters. Non-trivial dynamics inside of the formed spinner lattices is observed. Transport of passive cargo particles and structure of the underlying self-induced surface flows is analyzed. The research was supported by the U.S. DOE, Office of Basic Energy Sciences, Division of Materials Science and Engineering.

  16. Self-assembled Block Copolymer Membranes with Bioinspired Artificial Channels

    KAUST Repository

    Sutisna, Burhannudin

    2018-04-01

    Nature is an excellent design that inspires scientists to develop smart systems. In the realm of separation technology, biological membranes have been an ideal model for synthetic membranes due to their ultrahigh permeability, sharp selectivity, and stimuliresponse. In this research, fabrications of bioinspired membranes from block copolymers were studied. Membranes with isoporous morphology were mainly prepared using selfassembly and non-solvent induced phase separation (SNIPS). An effective method that can dramatically shorten the path for designing new isoporous membranes from block copolymers via SNIPS was first proposed by predetermining a trend line computed from the solvent properties, interactions and copolymer block sizes of previously-obtained successful systems. Application of the method to new copolymer systems and fundamental studies on the block copolymer self-assembly were performed. Furthermore, the manufacture of bioinspired membranes was explored using (1) poly(styrene-b-4-hydroxystyrene-b-styrene) (PS-b-PHS-b-PS), (2) poly(styrene-bbutadiene- b-styrene) (PS-b-PB-b-PS) and (3) poly(styrene-b-γ-benzyl-L-glutamate) (PSb- PBLG) copolymers via SNIPS. The structure formation was investigated using smallangle X-ray scattering (SAXS) and time-resolved grazing-Incidence SAXS. The PS-b- PHS-b-PS membranes showed preferential transport for proteins, presumably due to the hydrogen bond interactions within the channels, electrostatic attraction, and suitable pore dimension. Well-defined nanochannels with pore sizes of around 4 nm based on PS-b- PB-b-PS copolymers could serve as an excellent platform to fabricate bioinspired channels due to the modifiable butadiene blocks. Photolytic addition of thioglycolic acid was demonstrated without sacrificing the self-assembled morphology, which led to a five-fold increase in water permeance compared to that of the unmodified. Membranes with a unique feather-like structure and a lamellar morphology for dialysis and

  17. Regulating DNA Self-assembly by DNA-Surface Interactions.

    Science.gov (United States)

    Liu, Longfei; Li, Yulin; Wang, Yong; Zheng, Jianwei; Mao, Chengde

    2017-12-14

    DNA self-assembly provides a powerful approach for preparation of nanostructures. It is often studied in bulk solution and involves only DNA-DNA interactions. When confined to surfaces, DNA-surface interactions become an additional, important factor to DNA self-assembly. However, the way in which DNA-surface interactions influence DNA self-assembly is not well studied. In this study, we showed that weak DNA-DNA interactions could be stabilized by DNA-surface interactions to allow large DNA nanostructures to form. In addition, the assembly can be conducted isothermally at room temperature in as little as 5 seconds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Preparation and self-assembly of amphiphilic polylysine dendrons

    DEFF Research Database (Denmark)

    Mirsharghi, Sahar; Knudsen, Kenneth D.; Bagherifam, Shahla

    2016-01-01

    Polylysine dendrons with lipid tails prepared by divergent solid-phase synthesis showed self-assembling properties in aqueous solutions., Herein, we present the synthesis of new amphiphilic polylysine dendrons with variable alkyl chain lengths (C1–C18) at the C-terminal. The dendrons were...... synthesized in moderate to quantitative yields by divergent solid-phase synthesis (SPS) employing an aldehyde linker. The self-assembling properties of the dendrons in aqueous solutions were studied by small angle neutron scattering (SANS) and dynamic light scattering (DLS). The self-assembling properties...... were influenced by the length of the alkyl chain and the generation number (Gn). Increasing the temperature and concentration did not have significant impact on the hydrodynamic diameter, but the self-assembling properties were influenced by the pH value. This demonstrated the need for positively...

  19. Chemical solution route to self-assembled epitaxial oxide nanostructures.

    Science.gov (United States)

    Obradors, X; Puig, T; Gibert, M; Queraltó, A; Zabaleta, J; Mestres, N

    2014-04-07

    Self-assembly of oxides as a bottom-up approach to functional nanostructures goes beyond the conventional nanostructure formation based on lithographic techniques. Particularly, chemical solution deposition (CSD) is an ex situ growth approach very promising for high throughput nanofabrication at low cost. Whereas strain engineering as a strategy to define nanostructures with tight control of size, shape and orientation has been widely used in metals and semiconductors, it has been rarely explored in the emergent field of functional complex oxides. Here we will show that thermodynamic modeling can be very useful to understand the principles controlling the growth of oxide nanostructures by CSD, and some attractive kinetic features will also be presented. The methodology of strain engineering is applied in a high degree of detail to form different sorts of nanostructures (nanodots, nanowires) of the oxide CeO2 with fluorite structure which then is used as a model system to identify the principles controlling self-assembly and self-organization in CSD grown oxides. We also present, more briefly, the application of these ideas to other oxides such as manganites or BaZrO3. We will show that the nucleation and growth steps are essentially understood and manipulated while the kinetic phenomena underlying the evolution of the self-organized networks are still less widely explored, even if very appealing effects have been already observed. Overall, our investigation based on a CSD approach has opened a new strategy towards a general use of self-assembly and self-organization which can now be widely spread to many functional oxide materials.

  20. Self-assembling segmented coiled tubing

    Science.gov (United States)

    Raymond, David W.

    2016-09-27

    Self-assembling segmented coiled tubing is a concept that allows the strength of thick-wall rigid pipe, and the flexibility of thin-wall tubing, to be realized in a single design. The primary use is for a drillstring tubular, but it has potential for other applications requiring transmission of mechanical loads (forces and torques) through an initially coiled tubular. The concept uses a spring-loaded spherical `ball-and-socket` type joint to interconnect two or more short, rigid segments of pipe. Use of an optional snap ring allows the joint to be permanently made, in a `self-assembling` manner.

  1. Optical and Structural Characterizations of GaN Nano structures

    International Nuclear Information System (INIS)

    Shekari, L.; Abu Hassan, H.; Thahab, S.M.

    2011-01-01

    We have grown wurtzite GaN nano wires (NWs) on polished silicon (Si) either with or without Au as catalyst, using commercial GaN powder by thermal evaporation in an atmosphere of argon (Ar) gas. Structural and optical characterizations were performed using high resolution X-ray diffraction (HR-XRD), scanning electron microscopy (SEM), photoluminescence (PL) and energy-dispersive X-ray spectroscopy (EDX) spectroscopy. Results indicate that the nano wires are of single-crystal hexagonal GaN and the nano wires on Si with Au catalyst are more oriented than those without Au catalyst; and using catalyst make the NWs grow much faster and quite well-ordered. The compositional quality of the grown nano wires on the substrates are mostly same, however the nano wires on the Au coated silicon are of low density, while the nano wires on the Si are of high density. (author)

  2. Positron annihilation lifetime spectroscopy (PALS) as a characterization technique for nanostructured self-assembled amphiphile systems.

    Science.gov (United States)

    Dong, Aurelia W; Pascual-Izarra, Carlos; Pas, Steven J; Hill, Anita J; Boyd, Ben J; Drummond, Calum J

    2009-01-08

    Positron annihilation lifetime spectroscopy (PALS) has potential as a novel rapid characterization method for self-assembly amphiphile systems; however, a lack of systematic correlation of PALS parameters with structural attributes has limited its more widespread application. In this study, using the well-characterized phytantriol/water and the phytantriol/vitamin E acetate/water self-assembly amphiphile systems, the impact of systematic structural changes controlled by changes in composition and temperature on PALS parameters has been studied. The PALS parameters (orthopositronium (oPs) lifetime and intensity signatures) were shown to be sensitive to the molecular packing and mobility of the self-assembled lipid molecules in various lyotropic liquid crystalline phases, enabling differentiation between liquid crystalline structures. The oPs lifetime, related to the molecular packing and mobility, is correlated with rheological properties of the individual mesophases. The oPs lifetime links the lipid chain packing and mobility in the various mesophases to resultant macroscopic properties, such as permeability, which is critical for the use of these mesophase structures as diffusion-controlled release matrices for active liposoluble compounds.

  3. Magnetic self-assembly of small parts

    Science.gov (United States)

    Shetye, Sheetal B.

    Modern society's propensity for miniaturized end-user products is compelling electronic manufacturers to assemble and package different micro-scale, multi-technology components in more efficient and cost-effective manners. As the size of the components gets smaller, issues such as part sticking and alignment precision create challenges that slow the throughput of conventional robotic pick-n-place systems. As an alternative, various self-assembly approaches have been proposed to manipulate micro to millimeter scale components in a parallel fashion without human or robotic intervention. In this dissertation, magnetic self-assembly (MSA) is demonstrated as a highly efficient, completely parallel process for assembly of millimeter scale components. MSA is achieved by integrating permanent micromagnets onto component bonding surfaces using wafer-level microfabrication processes. Embedded bonded powder methods are used for fabrication of the magnets. The magnets are then magnetized using pulse magnetization methods, and the wafers are then singulated to form individual components. When the components are randomly mixed together, self-assembly occurs when the intermagnetic forces overcome the mixing forces. Analytical and finite element methods (FEM) are used to study the force interactions between the micromagnets. The multifunctional aspects of MSA are presented through demonstration of part-to-part and part-to-substrate assembly of 1 mm x 1mm x 0.5 mm silicon components. Part-to-part assembly is demonstrated by batch assembly of free-floating parts in a liquid environment with the assembly yield of different magnetic patterns varying from 88% to 90% in 20 s. Part-to-substrate assembly is demonstrated by assembling an ordered array onto a fixed substrate in a dry environment with the assembly yield varying from 86% to 99%. In both cases, diverse magnetic shapes/patterns are used to control the alignment and angular orientation of the components. A mathematical model is

  4. Consequences of Molecular-Scale Non-Equilibrium Activity on the Dynamics and Mechanics of Self-Assembled Actin-Based Structures and Materials

    Science.gov (United States)

    Marshall Mccall, Patrick

    Living cells are hierarchically self-organized forms of active soft matter: molecules on the nanometer scale form functional structures and organelles on the micron scale, which then compose cells on the scale of 10s of microns. While the biological functions of intracellular organelles are defined by the composition and properties of the structures themselves, how those bulk properties emerge from the properties and interactions of individual molecules remains poorly understood. Actin, a globular protein which self-assembles into dynamic semi-flexible polymers, is the basic structural material of cells and the major component of many functional organelles. In this thesis, I have used purified actin as a model system to explore the interplay between molecular-scale dynamics and organelle-scale functionality, with particular focus on the role of molecular-scale non-equilibrium activity. One of the most canonical forms of molecular-scale non-equilibrium activity is that of mechanoenzymes, also called motor proteins. These proteins utilized the free energy liberated by hydrolysis of ATP to perform mechanical work, thereby introducing non-equilibrium "active" stresses on the molecular scale. Combining experiments with mathematical modeling, we demonstrate in this thesis that non-equilibrium motor activity is sufficient to drive self-organization and pattern formation of the multimeric actin-binding motor protein Myosin II on 1D reconstituted actomyosin bundles. Like myosin, actin is itself an ATPase. However, nono-equilibrium ATP hydrolysis on actin is known to regulate the stability and assembly kinetics of actin filaments rather than generate active stresses per se. At the level of single actin filaments, the inhomogeneous nucleotide composition generated along the filament length by hydrolysis directs binding of regulatory proteins like cofilin, which mediate filament disassembly and thereby accelerate actin filament turnover. The concequences of this non

  5. Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting

    Science.gov (United States)

    Fabbri, Emiliana; Nachtegaal, Maarten; Binninger, Tobias; Cheng, Xi; Kim, Bae-Jung; Durst, Julien; Bozza, Francesco; Graule, Thomas; Schäublin, Robin; Wiles, Luke; Pertoso, Morgan; Danilovic, Nemanja; Ayers, Katherine E.; Schmidt, Thomas J.

    2017-09-01

    The growing need to store increasing amounts of renewable energy has recently triggered substantial R&D efforts towards efficient and stable water electrolysis technologies. The oxygen evolution reaction (OER) occurring at the electrolyser anode is central to the development of a clean, reliable and emission-free hydrogen economy. The development of robust and highly active anode materials for OER is therefore a great challenge and has been the main focus of research. Among potential candidates, perovskites have emerged as promising OER electrocatalysts. In this study, by combining a scalable cutting-edge synthesis method with time-resolved X-ray absorption spectroscopy measurements, we were able to capture the dynamic local electronic and geometric structure during realistic operando conditions for highly active OER perovskite nanocatalysts. Ba0.5Sr0.5Co0.8Fe0.2O3-δ as nano-powder displays unique features that allow a dynamic self-reconstruction of the material’s surface during OER, that is, the growth of a self-assembled metal oxy(hydroxide) active layer. Therefore, besides showing outstanding performance at both the laboratory and industrial scale, we provide a fundamental understanding of the operando OER mechanism for highly active perovskite catalysts. This understanding significantly differs from design principles based on ex situ characterization techniques.

  6. Self-Assembly of Telechelic Tyrosine End-Capped PEO Star Polymers in Aqueous Solution.

    Science.gov (United States)

    Edwards-Gayle, Charlotte J C; Greco, Francesca; Hamley, Ian W; Rambo, Robert P; Reza, Mehedi; Ruokolainen, Janne; Skoulas, Dimitrios; Iatrou, Hermis

    2018-01-08

    We investigate the self-assembly of two telechelic star polymer-peptide conjugates based on poly(ethylene oxide) (PEO) four-arm star polymers capped with oligotyrosine. The conjugates were prepared via N-carboxy anhydride-mediated ring-opening polymerization from PEO star polymer macroinitiators. Self-assembly occurs above a critical aggregation concentration determined via fluorescence probe assays. Peptide conformation was examined using circular dichroism spectroscopy. The structure of self-assembled aggregates was probed using small-angle X-ray scattering and cryogenic transmission electron microscopy. In contrast to previous studies on linear telechelic PEO-oligotyrosine conjugates that show self-assembly into β-sheet fibrils, the star architecture suppresses fibril formation and micelles are generally observed instead, a small population of fibrils only being observed upon pH adjustment. Hydrogelation is also suppressed by the polymer star architecture. These peptide-functionalized star polymer solutions are cytocompatible at sufficiently low concentration. These systems present tyrosine at high density and may be useful in the development of future enzyme or pH-responsive biomaterials.

  7. Controlled Synthesis of Manganese Dioxide Nano structures via a Facile Hydrothermal

    International Nuclear Information System (INIS)

    Pang, R.S.C.; Chin, S.F.; Ye, Ch. Ling

    2012-01-01

    Manganese dioxide nano structures with controllable morphological structures and crystalline phases were synthesized via a facile hydrothermal route at low temperatures without using any templates or surfactants. Both the aging duration and aging temperatures were the main synthesis parameters used to influence and control the rate of morphological and structural evolution of MnO 2 nano structures. MnO 2 nano structures comprise of spherical nano particulate agglomerates and highly amorphous in nature were formed at lower temperature and/or short aging duration. In contrast, MnO 2 nano structures of sea-urchin-like and nano rods-like morphologies and nanocrystalline in nature were prepared at the combined higher aging temperatures and longer aging durations. These nano structures underwent notable phase transformation from d-MnO 2 to a-MnO 2 upon prolonged hydrothermal aging duration and exhibited accelerated rate of phase transformation at higher aging temperature.

  8. Biomimetic Structural Materials: Inspiration from Design and Assembly.

    Science.gov (United States)

    Yaraghi, Nicholas A; Kisailus, David

    2018-04-20

    Nature assembles weak organic and inorganic constituents into sophisticated hierarchical structures, forming structural composites that demonstrate impressive combinations of strength and toughness. Two such composites are the nacre structure forming the inner layer of many mollusk shells, whose brick-and-mortar architecture has been the gold standard for biomimetic composites, and the cuticle forming the arthropod exoskeleton, whose helicoidal fiber-reinforced architecture has only recently attracted interest for structural biomimetics. In this review, we detail recent biomimetic efforts for the fabrication of strong and tough composite materials possessing the brick-and-mortar and helicoidal architectures. Techniques discussed for the fabrication of nacre- and cuticle-mimetic structures include freeze casting, layer-by-layer deposition, spray deposition, magnetically assisted slip casting, fiber-reinforced composite processing, additive manufacturing, and cholesteric self-assembly. Advantages and limitations to these processes are discussed, as well as the future outlook on the biomimetic landscape for structural composite materials.

  9. Biomimetic Structural Materials: Inspiration from Design and Assembly

    Science.gov (United States)

    Yaraghi, Nicholas A.; Kisailus, David

    2018-04-01

    Nature assembles weak organic and inorganic constituents into sophisticated hierarchical structures, forming structural composites that demonstrate impressive combinations of strength and toughness. Two such composites are the nacre structure forming the inner layer of many mollusk shells, whose brick-and-mortar architecture has been the gold standard for biomimetic composites, and the cuticle forming the arthropod exoskeleton, whose helicoidal fiber-reinforced architecture has only recently attracted interest for structural biomimetics. In this review, we detail recent biomimetic efforts for the fabrication of strong and tough composite materials possessing the brick-and-mortar and helicoidal architectures. Techniques discussed for the fabrication of nacre- and cuticle-mimetic structures include freeze casting, layer-by-layer deposition, spray deposition, magnetically assisted slip casting, fiber-reinforced composite processing, additive manufacturing, and cholesteric self-assembly. Advantages and limitations to these processes are discussed, as well as the future outlook on the biomimetic landscape for structural composite materials.

  10. Communication: Theoretical prediction of free-energy landscapes for complex self-assembly

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, William M.; Reinhardt, Aleks; Frenkel, Daan [Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (United Kingdom)

    2015-01-14

    We present a technique for calculating free-energy profiles for the nucleation of multicomponent structures that contain as many species as building blocks. We find that a key factor is the topology of the graph describing the connectivity of the target assembly. By considering the designed interactions separately from weaker, incidental interactions, our approach yields predictions for the equilibrium yield and nucleation barriers. These predictions are in good agreement with corresponding Monte Carlo simulations. We show that a few fundamental properties of the connectivity graph determine the most prominent features of the assembly thermodynamics. Surprisingly, we find that polydispersity in the strengths of the designed interactions stabilizes intermediate structures and can be used to sculpt the free-energy landscape for self-assembly. Finally, we demonstrate that weak incidental interactions can preclude assembly at equilibrium due to the combinatorial possibilities for incorrect association.

  11. Photonic-structured fibers assembled from cellulose nanocrystals with tunable polarized selective reflection.

    Science.gov (United States)

    Meng, Xin; Pan, Hui; Lu, Tao; Chen, Zhixin; Chen, Yanru; Zhang, Di; Zhu, Shenmin

    2018-05-14

    Fibers with self-assembled photonic structures are of special interest for their unique photonic properties and potential applications in smart textile industry. Inspired by nature, photonic-structured fibers were fabricated through the self-assembly of chiral nematic cellulose nanocrystals (CNC) and the fibers show tunable brilliant and selectively reflected colors under crossed-polarization. A simple wet-spinning method was applied to prepare composite fibers of mixed CNC matrix and polyvinyl alcohol (PVA) additions. During the processing, cholesteric CNC phase formed photonic fibers through a self-assembly process. The selective reflection color of the composite fibers in polarized condition shows a typical red-shift tendency with the increase of the PVA content, which is attributed to the increased helical pitch of the CNC. Furthermore, polarized angle can also alter the reflected colors. Owing to the excellent selective reflection properties under polarized condition, CNC-based photonic fibers are promising as the next-generation smart fibers, applied in the fields of specific display and sensing. © 2018 IOP Publishing Ltd.

  12. Design and research of seal structure for thermocouple column assembly

    International Nuclear Information System (INIS)

    Rao Qiqi; Li Na; Zhao Wei; Ma Zhigang

    2015-01-01

    The new seal structure was designed to satisfy the function of thermocouple column assembly and the reactor structure. This seal structure uses the packing graphite ring and adopts the self-sealing principle. Cone angle is brought to the seal face of seal structure which is conveniently to assembly and disassembly. After the sealing principle analysis and stress calculation of graphite ring which adopt the cone angle, the cone angle increases the radial force of seal structure and improves the seal effect. The stress analysis result shows the seal structure strength satisfies the regulation requirement. The cold and hot function test results shows the sealing effect is good, and the design requirement is satisfied. (authors)

  13. Hydrogen Bond Induces Hierarchical Self-Assembly in Liquid-Crystalline Block Copolymers.

    Science.gov (United States)

    Huang, Shuai; Pang, Linlin; Chen, Yuxuan; Zhou, Liming; Fang, Shaoming; Yu, Haifeng

    2018-03-01

    Microphase-separated structures of block copolymers (BCs) with a size of sub-10 nm are usually obtained by hydrogen-bond-induced self-assembly of BCs through doping with small molecules as functional additives. Here, fabrication of hierarchically self-assembled sub-10 nm structures upon microphase separation of amphiphilic liquid-crystalline BCs (LCBCs) at the existence of hydrogen bonds but without any dopants is reported. The newly introduced urethane groups in the side chain of the hydrophobic block of LCBCs interact with the ether groups of the hydrophilic poly(ethylene oxide) (PEO) block, leading to imperfect crystallization of the PEO blocks. Both crystalline and amorphous domains coexist in the separated PEO phase, enabling a lamellar structure to appear inside the PEO nanocylinders. This provides an elegant method to fabricate controllable sub-10 nm microstructures in well-defined polymer systems without the introduction of any dopants. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Intracellular Peptide Self-Assembly: A Biomimetic Approach for in Situ Nanodrug Preparation.

    Science.gov (United States)

    Du, Wei; Hu, Xiaomu; Wei, Weichen; Liang, Gaolin

    2018-04-18

    Most nanodrugs are preprepared by encapsulating or loading the drugs with nanocarriers (e.g., dendrimers, liposomes, micelles, and polymeric nanoparticles). However, besides the low bioavailability and fast excretion of the nanodrugs in vivo, nanocarriers often exhibit in vitro and in vivo cytotoxicity, oxidative stress, and inflammation. Self-assembly is a ubiquitous process in biology where it plays important roles and underlies the formation of a wide variety of complex biological structures. Inspired by some cellular nanostructures (e.g., actin filaments, microtubules, vesicles, and micelles) in biological systems which are formed via molecular self-assembly, in recent decades, scientists have utilized self-assembly of oligomeric peptide under specific physiological or pathological environments to in situ construct nanodrugs for lesion-targeted therapies. On one hand, peptide-based nanodrugs always have some excellent intrinsic chemical (specificity, intrinsic bioactivity, biodegradability) and physical (small size, conformation) properties. On the other hand, stimuli-regulated intracellular self-assembly of nanodrugs is quite an efficient way to accumulate the drugs in lesion location and can realize an in situ slow release of the drugs. In this review article, we provided an overview on recent design principles for intracellular peptide self-assembly and illustrate how these principles have been applied for the in situ preparation of nanodrugs at the lesion location. In the last part, we list some challenges underlying this strategy and their possible solutions. Moreover, we envision the future possible theranostic applications of this strategy.

  15. Heterogeneous self-assembled media for biopolymerization

    DEFF Research Database (Denmark)

    Monnard, Pierre-Alain

    2011-01-01

    Heterogeneous media, such as micro-structured aqueous environments, could offer an alternative approach to the synthesis of biopolymers with novel functions. Structured media are here defined as specialized, self-assembled structures that are formed, e.g, by amphiphiles, such as liposomes, emulsion...... polymerization, the initial elongation rates clearly depended on the complementarity of the monomers with the templating nucleobases3. However, metal-ion catalyzed reactions deliver RNA analogs with heterogeneous linkages. Moreover, the usefulness of this medium in the form of quasi-compartmentalization extends...... beyond metal-ion catalysis reactions, as we have recently demonstrated the catalytic power of a dipeptide, SerHis, for the regioselective formation of phosphodiester bonds. These results in conjonction with the synthesis of nucleobases at -78˚C, the demonstration of ribozyme activity (RNA ligase ribozyme...

  16. Three dimensional nano-assemblies of noble metal nanoparticle-infinite coordination polymers as specific oxidase mimetics for degradation of methylene blue without adding any cosubstrate.

    Science.gov (United States)

    Wang, Lihua; Zeng, Yi; Shen, Aiguo; Zhou, Xiaodong; Hu, Jiming

    2015-02-07

    Novel three-dimensional (3D) nano-assemblies of noble metal nanoparticle (NP)-infinite coordination polymers (ICPs) are conveniently fabricated through the infiltration of HAuCl4 into hollow Au@Ag@ICPs core-shell nanostructures and its replacement reaction with Au@Ag NPs. The present 3D nano-assemblies exhibit highly efficient and specific intrinsic oxidase-like activity even without adding any cosubstrate.

  17. Self-assembly of diphenylalanine backbone homologues and their combination with functionalized carbon nanotubes.

    Science.gov (United States)

    Dinesh, Bhimareddy; Squillaci, Marco A; Ménard-Moyon, Cécilia; Samorì, Paolo; Bianco, Alberto

    2015-10-14

    The integration of carbon nanotubes (CNTs) into organized nanostructures is of great interest for applications in materials science and biomedicine. In this work we studied the self-assembly of β and γ homologues of diphenylalanine peptides under different solvent and pH conditions. We aimed to investigate the role of peptide backbone in tuning the formation of different types of nanostructures alone or in combination with carbon nanotubes. In spite of having the same side chain, β and γ peptides formed distinctively different nanofibers, a clear indication of the role played by the backbone homologation on the self-assembly. The variation of the pH allowed to transform the nanofibers into spherical structures. Moreover, the co-assembly of β and γ peptides with carbon nanotubes covalently functionalized with the same peptide generated unique dendritic assemblies. This comparative study on self-assembly using diphenylalanine backbone homologues and of the co-assembly with CNT covalent conjugates is the first example exploring the capacity of β and γ peptides to adopt precise nanostructures, particularly in combination with carbon nanotubes. The dendritic organization obtained by mixing carbon nanotubes and peptides might find interesting applications in tissue engineering and neuronal interfacing.

  18. Anatase TiO2 hierarchical structures composed of ultra-thin nano-sheets exposing high percentage {0 0 1} facets and their application in quantum-dot sensitized solar cells

    International Nuclear Information System (INIS)

    Wu, Dapeng; Zhang, Shuo; Jiang, Shiwei; He, Jinjin; Jiang, Kai

    2015-01-01

    Graphical abstract: TiO 2 hierarchical structures assembled from ultra-thin nanosheets exposing ∼90% {0 0 1} facets were employed as photoanode materials to improve the performance of CdS/CdSe co-sensitized solar cells. - Highlights: • THSs composited of nanosheets exposing high percent {0 0 1} facets were prepared. • THSs improve the QDs loading amount and light scattering of the photoanode. • THSs suppress the carrier recombination and finally lead to ∼25% PCE improvement. - Abstract: TiO 2 hierarchical structures (THSs) composed of ultra-thin nano-sheets exposing ∼90% {0 0 1} facets were prepared via a hydrothermal method. Time dependent trails revealed the formation of THSs experienced a self-assemble process. The as-prepared product were used as the photoanode materials for CdS/CdSe co-sensitized solar cells, and the THSs/nanoparticle hybrid photoanode demonstrated a power conversion efficiency of 3.47%, indicating ∼25% improvement compared with the nanoparticle cell