WorldWideScience

Sample records for self-absorption

  1. Self-absorption corrections for well-type germanium detectors

    International Nuclear Information System (INIS)

    Appleby, P.G.; Richardson, N.; Nolan, P.J.

    1992-01-01

    Corrections for self-absorption are of vital importance to accurate determination by gamma spectrometry of radionuclides such as 210 Pb, 241 Am and 234 Th which emit low energy gamma radiation. A simple theoretical model for determining the necessary corrections for well-type germanium detectors is presented. In this model, self-absorption factors are expressed in terms of the mass attenuation coefficient of the sample and a parameter characterising the well geometry. Experimental measurements of self-absorption are used to evaluate the model and to determine a semi-empirical algorithm for improved estimates of the geometrical parameter. (orig.)

  2. SELF-ABSORPTION CORRECTIONS BASED ON MONTE CARLO SIMULATIONS

    Directory of Open Access Journals (Sweden)

    Kamila Johnová

    2016-12-01

    Full Text Available The main aim of this article is to demonstrate how Monte Carlo simulations are implemented in our gamma spectrometry laboratory at the Department of Dosimetry and Application of Ionizing Radiation in order to calculate the self-absorption within the samples. A model of real HPGe detector created for MCNP simulations is presented in this paper. All of the possible parameters, which may influence the self-absorption, are at first discussed theoretically and lately described using the calculated results.

  3. The γ-ray self-absorption correction for sources with random geometrical shape

    International Nuclear Information System (INIS)

    Lu Xiangdong

    2003-01-01

    The regularities followed by γ-ray self-absorption corrections of nuclear materials under common geometry conditions have been studied by the numeric simulation. Many models were adopted. The results show that the self-absorption corrections are not related to shape and size of the sources. The method is succinct, and the conclusions are useful for actual situation and offer bases for data analyzing. The component of a sample is analyzed by means of the self-absorption correction

  4. Compensation of self-absorption losses in luminescent solar concentrators by increasing luminophore concentration

    NARCIS (Netherlands)

    Krumer, Zachar; van Sark, Wilfried G.J.H.M.; Schropp, Ruud E.I.; de Mello Donegá, Celso

    2017-01-01

    Self-absorption in luminophores is considered a major obstacle on the way towards efficient luminescent solar concentrators (LSCs). It is commonly expected that upon increasing luminophore concentration in an LSC the absorption of the luminophores increases as well and therefore self-absorption

  5. Self-absorption corrections for gamma ray spectral measurements of 210Pb in environmental samples

    International Nuclear Information System (INIS)

    Miller, K.M.

    1987-01-01

    Theoretical considerations and experimental data are used to demonstrate the basic behaviour of the self-absorption effect of a sample matrix in gamma ray spectrometry, particularly as it relates to the analysis of 210 Pb in environmental media. The results indicate that it may not be appropriate to apply the commonly used self-absorption function in all cases. (orig.)

  6. Determination of self-absorption in emission lines from some optically thick plasmas

    International Nuclear Information System (INIS)

    Pianarosa, P.; Gagne, J.M.; Larin, G.; Saint-Dizier, J.P.

    1982-01-01

    We present a relatively simple method by which the amount of self-absorption in laboratory-produced plasmas can be evaluated. As an illustration we apply it here to the evaluation of self-absorption of a U I resonance transition from a hollow-cathode-generated plasma. The method can be generalized to include more-complex situations

  7. Effect of density increase on self-absorption property of bulk samples

    International Nuclear Information System (INIS)

    Dao Anh Minh; Tran Duc Thiep

    1990-01-01

    Asymptotic behaviour due to self-absorption of photon attenuation function in terms of material density for bulk samples has been considered. Some practical applications have also been presented. (author). 9 refs., 4 figs., 2 tabs

  8. Accounting for the self-absorption of betas in cobalt-60 hot particles

    International Nuclear Information System (INIS)

    Lantz, M.W.; Steward, J.B.

    1988-01-01

    This paper reports that the assumptions used dose calculations can be overly conservative for discrete hot particles (activated satellite chips and irradiated fuel fragments) due to self-absorption of betas within the particles. Using data from tests with a Co-60 hot particle, a model is developed to estimate the dose reduction factor afforded by self-absorption in a satellite chip with a known thickness. The model can be applied indirectly using ion chamber survey instrument readings (the thickness of the particle does not have to be measured). Tests with Co-60 particles found at the Palo Verde Nuclear Generating Station verify that self-absorption is significant -- in one case, a dose reduction factor of 7 was measured in a satellite chip with a visible thickness

  9. Results of Self-Absorption Study on the Versapor 3000 Filters for Radioactive Particulate Air Sampling

    International Nuclear Information System (INIS)

    Barnett, J.M.

    2008-01-01

    Since the mid-1980s the Pacific Northwest National Laboratory (PNNL) has used a value of 0.85 as a correction factor for the self absorption of activity of particulate radioactive air samples. More recently, an effort was made to evaluate the current particulate radioactive air sample filters (Versapor(reg s ign) 3000) used at PNNL for self absorption effects. There were two methods used in the study, (1) to compare the radioactivity concentration by direct gas-flow proportional counting of the filter to the results obtained after acid digestion of the filter and counting again by gas-flow proportional detection and (2) to evaluate sample filters by high resolution visual/infrared microscopy to determine the depth of material loading on or in the filter fiber material. Sixty samples were selected from the archive for acid digestion in the first method and about 30 samples were selected for high resolution visual/infrared microscopy. Mass loading effects were also considered. From the sample filter analysis, large error is associated with the average self absorption factor, however, when the data is compared directly one-to-one, statistically, there appears to be good correlation between the two analytical methods. The mass loading of filters evaluated was <0.2 mg cm-2 and was also compared against other published results. The microscopy analysis shows the sample material remains on the top of the filter paper and does not imbed into the filter media. Results of the microscopy evaluation lead to the conclusion that there is not a mechanism for significant self absorption. The overall conclusion is that self-absorption is not a significant factor in the analysis of filters used at PNNL for radioactive air stack sampling of radionuclide particulates and that an applied correction factor is conservative in determining overall sample activity. A new self absorption factor of 1.0 is recommended

  10. Effect of self-absorption correction on surface hardness estimation of Fe-Cr-Ni alloys via LIBS.

    Science.gov (United States)

    Ramezanian, Zahra; Darbani, Seyyed Mohammad Reza; Majd, Abdollah Eslami

    2017-08-20

    The effect of self-absorption was investigated on the estimation of surface hardness of Fe-Cr-Ni metallic alloys by the laser-induced breakdown spectroscopy (LIBS) technique. For this purpose, the linear relationship between the ratio of chromium ionic to atomic line intensities (CrII/CrI) and surface hardness was studied, both before and after correcting the self-absorption effect. The correlation coefficient significantly increased from 47% to 90% after self-absorption correction. The results showed the measurements of surface hardness using LIBS can be more accurate and valid by correcting the self-absorption effect.

  11. Correction for sample self-absorption in activity determination by gamma spectrometry

    International Nuclear Information System (INIS)

    Galloway, R.B.

    1991-01-01

    Gamma ray spectrometry is a convenient method of determining the activity of the radioactive components in environmental samples. Commonly samples vary in gamma absorption or differ in absorption from the calibration standards available, so that accurate correction for self-absorption in the sample is essential. A versatile correction procedure is described. (orig.)

  12. Radiation accompanied by self absorption in nonequilibrium argon plasma flow in a circular tube

    International Nuclear Information System (INIS)

    Shirai, Hiroyuki; Tabei, Katsuine; Koaizawa, Hisashi.

    1983-01-01

    In high temperature, nonequilibrium plasma flow, generally strong radiation arises, but the radiation phenomena are complicated by the thermo-chemical nonequilibrium of gas and the self absorption in light path, accordingly it is important to correctly understand and estimate their effects. In this research, for the radiation from the argon afterglow plasma flow with large nonequilibrium property in a circular tube, the experimental and theoretical studies were carried out taking the self absorption in consideration. Experimentally, the absolute intensity distribution of the radiated spectrum lines was measured from outside of the tube, and converted to the true radial distribution of atom number density at excited level using the mathematical conversion theory for the radiation accompanied by absorption of Elder et al. Theoretically, the radial distributions of electron temperature, electron density and atom temperature measured in the tube were applied to the collision-radiation process model including self absorption, and the distribution of the atom number density at excited level was calculated. Fairly good agreement was obtained between both results, and it was found that the consideration of self absorption was important. The theory, the experiment, the numerical examination of a number of physical quantities and the simplification of the theory, and the results are reported. (Kako, I.)

  13. New data on the self-absorption of betas in cobalt-60 hot particles

    International Nuclear Information System (INIS)

    Lantz, M.W.; Steward, J.B.

    1988-01-01

    The authors demonstrated that standard dose calculation methods for hot particles could seriously overestimate the beta dose rate component to skin. The reason-self-absorption within an activated satellite particle that has a finite thickness can lead to dramatic reductions in beta output, as compared to that predicted by calculation models that assume the particle has zero thickness. In this paper, the authors demonstrate the self-absorption effect with a particle model and confirmed it with measurements on two high-activity Co-60 particles found at the Palo Verde Nuclear Power Station. The authors then described a method for using an Eberline RO-2 ion chamber survey instrument to estimate the beta dose rate reduction related to self-absorption within a particle. This method relied on the comparison of the uncorrected beta/gamma ratio [(open window-closed window) divided-by closed window] for a particle expected of exhibiting self-absorption to the ratio obtained for a particle of zero thickness

  14. Absolute activity determinations on large volume geological samples independent of self-absorption effects

    International Nuclear Information System (INIS)

    Wilson, W.E.

    1980-01-01

    This paper describes a method for measuring the absolute activity of large volume samples by γ-spectroscopy independent of self-absorption effects using Ge detectors. The method yields accurate matrix independent results at the expense of replicative counting of the unknown sample. (orig./HP)

  15. Direct analysis of 210Pb in sediment samples: Self-absorption corrections

    International Nuclear Information System (INIS)

    Cutshall, N.H.; Larsen, I.L.; Olsen, C.R.

    1983-01-01

    A procedure for the direct #betta#-ray instrumental analysis of 210 Pb in sediment samples is presented. The problem of dependence of self-absorption on sample composition is solved by making a direct transmission measurement on each sample. The procedure has been verified by intercalibrations and other tests. (orig.)

  16. A new method to make gamma-ray self-absorption correction

    International Nuclear Information System (INIS)

    Tian Dongfeng; Xie Dong; Ho Yukun; Yang Fujia

    2001-01-01

    This paper is devoted to discuss a new method to directly extract the information of the geometric self-absorption correction through the measurement of characteristic γ radiation emitted spontaneously from nuclear fissile material. The numerical simulation tests show that this method can extract the purely original information needed for nondestructive assay method by the γ-ray spectra to be measured, even though the geometric shape of the sample and materials between sample and detector are not known in advance. (author)

  17. SFAK, Unscattered Gamma Self-Absorption from Regular Fuel Rod Assemblies

    International Nuclear Information System (INIS)

    Wand, H.

    1982-01-01

    1 - Description of problem or function: Calculation of the self- absorption of unscattered (gamma-) radiation from fuel assemblies which contain a regular arrangement of identical fuel rods. 2 - Method of solution: The point-kernel is integrated over the radiation sources, i.e. the fuel rods. A uniform mesh of integration points is used for each of the fuel rods. 3 - Restrictions on the complexity of the problem: Number of fuel rods is dynamically allocated

  18. Self-absorption influence on the optical spectroscopy of zinc oxide laser produced plasma

    Energy Technology Data Exchange (ETDEWEB)

    De Posada, E; Arronte, M A; Ponce, L; Rodriguez, E; Flores, T [Centro de Investigacion en Ciencia Aplicada y TecnologIa Avanzada-Unidad Altamira, Tamaulipas (Mexico); Lunney, J G, E-mail: edeposada@ipn.mx [School of Physics, Trinity College Dublin (Ireland)

    2011-01-01

    Optical spectroscopy is used to study the laser ablation process of ZnO targets. It is demonstrated that even if Partial Local Thermal Equilibrium is present, self absorption process leads to a decrease of recorded lines emission intensities and have to be taken into account to obtain correct values of such parameters. It is presented a method that combines results of both Langmuir probe technique and Anisimov model to obtain correct values of plasma parameters.

  19. A code for the calculation of self-absorption fractions of photons

    International Nuclear Information System (INIS)

    Jaegers, P.; Landsberger, S.

    1988-01-01

    Neutron activation analysis (NAA) is now a well-established technique used by many researchers and commercial companies. It is often wrongly assumed that these NAA methods are matrix independent over a wide variety of samples. Accuracy at the level of a few percent is often difficult to achieve, since components such as timing, pulse pile-up, high dead-time corrections, sample positioning, and chemical separations may severely compromise the results. One area that has received little attention is the calculation of the effect of self-absorption of gamma-rays (including low-energy ones) in samples, particularly those with major components of high-Z values. The analysis of trace components in lead samples is an obvious example, but other high-Z matrices such as various permutations and combinations of zinc, tin, lead, copper, silver, antimony, etc.; ore concentrates; and meteorites are also affected. The authors have developed a simple but effective personal-computer-compatible user-friendly code, however, which can calculate the amount of energy signal that is lost due to the presence of any amount of one or more Z components. The program is based on Dixon's paper of 1951 for the calculation of self-absorption corrections for linear, cylindrical, and spherical sources. To determine the self-absorption fraction of a photon in a source, the FORTRAN computer code SELFABS was written

  20. Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements

    International Nuclear Information System (INIS)

    El Sherbini, A.M.; El Sherbini, Th.M.; Hegazy, H.; Cristoforetti, G.; Legnaioli, S.; Palleschi, V.; Pardini, L.; Salvetti, A.; Tognoni, E.

    2005-01-01

    In quantitative Laser Induced Breakdown Spectroscopy (LIBS) measurements it is essential to account for the effect of self-absorption on the emission lines intensity. In order to quantify this effect, in this paper we propose a simple method for evaluating the ratio between the actual measured line intensity and the intensity expected in absence of self-absorption and, if necessary, correcting the effect of self-absorption on line intensity. The method, based on a homogeneous plasma model, is applicable when the plasma electron density is known and in particular to lines whose Stark broadening parameter is available

  1. The influence of the self-absorption on the measure of the total alpha activity in water samples

    International Nuclear Information System (INIS)

    Acena, M.L.; Gonzalez, J.A.; De Pablo, A.

    1981-01-01

    The self-absorption is an important difficulty in measuring α-activities in river water samples. A semiempirical equation for calculating the self-absorption versus sample thickness has been obtained. This equation is valid for the regular saline residues in spanish rivers and for thicknesses lower than 2 mg x cm -2 . This figure sets a limit for the amount of water to be evaporated from the sample. (author)

  2. Research on self-absorption corrections for laboratory γ spectral analysis of soil samples

    International Nuclear Information System (INIS)

    Tian Zining; Jia Mingyan; Li Huibin; Cheng Ziwei; Ju Lingjun; Shen Maoquan; Yang Xiaoyan; Yan Ling; Fen Tiancheng

    2010-01-01

    Based on the calibration results of the point sources,dimensions of HPGe crystal were characterized.Linear attenuation coefficients and detection efficiencies of all kinds of samples were calculated,and the function F(μ) of φ75 mm x 25 mm sample was established. Standard surface source was used to simulate the source of different heights in the soil sample. And the function ε(h) which reflect the relationship between detection efficiencies and heights of the surface sources was determined. The detection efficiency of calibration source can be obtained by integration, F(μ) functions of soil samples established is consistent with the result of MCNP calculation code. Several φ75 mm x 25 mm soil samples were measured by the HPGe spectrometer,and the function F(μ) was used to correct the self absorption. F(μ) functions of soil samples of various dimensions can be calculated by MCNP calculation code established, and self absorption correction can be done. To verify the efficiency of calculation results, φ75 mm x 75 mm soil samples were measured. Several φ75 mm x 25 mm soil samples from aerosphere nuclear testing field was measured by the HPGe spectrometer,and the function F(μ) was used to correct the self absorption. The function F(m) was established, and the technical method which is used to correct the soil samples of unknown area is also given. The correction method of surface source greatly improves the gamma spectrum's metrical accuracy, and it will be widely applied to environmental radioactive investigation. (authors)

  3. Results of Self-Absorption Study on the Versapor 3000 Filters for Radioactive Particulate Air Sampling

    International Nuclear Information System (INIS)

    Barnett, J.M.; Cullinan, Valerie I.; Barnett, Debra S.; Trang-Le, Truc LT; Bliss, Mary; Greenwood, Lawrence R.; Ballinger, Marcel Y.

    2009-01-01

    Since the mid-1980s, Pacific Northwest National Laboratory (PNNL) has used a value of 0.85 as the correction factor for self absorption of activity for particulate radioactive air samples collected from building exhaust for environmental monitoring. This value accounts for activity that cannot be detected by direct counting of alpha and beta particles. Emissions can be degraded or blocked by filter fibers for particles buried in the filter material or by inactive dust particles collected with the radioactive particles. These filters are used for monitoring air emissions from PNNL stacks for radioactive particles. This paper describes an effort to re-evaluate self-absorption effects in particulate radioactive air sample filters (Versapor(reg s ign) 3000, 47 mm diameter) used at PNNL. There were two methods used to characterize the samples. Sixty samples were selected from the archive for acid digestion to compare the radioactivity measured by direct gas-flow proportional counting of filters to the results obtained after acid digestion of the filter and counting again by gas-flow proportional detection. Thirty different sample filters were selected for visible light microscopy to evaluate filter loading and particulate characteristics. Mass-loading effects were also considered. Filter ratios were calculated by dividing the initial counts by the post-digestion counts with the expectation that post-digestion counts would be higher because digestion would expose radioactivity embedded in the filter in addition to that on top of the filter. Contrary to expectations, the post digestion readings were almost always lower than initial readings and averaged approximately half the initial readings for both alpha and beta activity. Before and after digestion readings appeared to be related to each other, but with a low coefficient of determination (R 2 ) value. The ratios had a wide range of values indicating that this method did not provide sufficient precision to quantify

  4. Self-absorption alpha particle factor in water: interest in the monitoring of specific military sites

    International Nuclear Information System (INIS)

    Cazoulat, A.; Lecompte, Y.; Bohand, S.; Gerasimo, P.

    2007-01-01

    Self-absorption alpha particle factor validation in water: Interest in the monitoring of specific military sites. The population internal intake prevention by radionuclides present in water needs to monitor the radioactive Level of this water. The French public health legislation introduces four radiological parameters for monitoring water, such as the gross alpha radioactivity. Regarding the alpha particle characteristics, a self-absorption factor has to be established beforehand, not to underestimate the real alpha radioactivity in water samples. The aim of this paper is to describe the procedure used by the laboratory of the French army radioprotection service to determine this f factor, which depends on the water residue mass m after evaporation. The relation is f = 0.0253 m + 1.2813. This formula can be employed for such waters used in this experiment and for masses between 0 and 100 mg. The uncertainty associated is about 11% (k = 2). Some water monitoring examples are given. It is specially the case of depleted uranium shells experiment centres, localized in Gramat and Bourges. (authors)

  5. Self-absorption of neutron capture gamma-rays in gold samples

    International Nuclear Information System (INIS)

    Wisshak, K.; Walter, G.; Kaeppeler, F.

    1983-06-01

    The self absorption of neutron capture gamma rays in gold samples has been determined experimentally for two standard setups used in measurements of neutron capture cross sections. One makes use of an artificially collimated neutron beam and two C 6 D 6 detectors, the other of kinematically collimated neutrons and three Moxon-Rae detectors. Correction factors for an actual measurement of a neutron capture cross section using a gold standard of 1 mm thickness up to 12% were found for the first setup while they are only 4% for the second setup. The present data allow to determine the correction in an actual measurement with an accuracy of 0.5-1%. (orig.) [de

  6. The self-absorption effect of gamma rays in 239Pu

    International Nuclear Information System (INIS)

    Hsiaohua Hsu

    1989-01-01

    Nuclear materials assay with gamma-ray spectrum measurement is a well-established method for safeguards. However, for a thick source, the self-absorption of characteristic low-energy gamma rays has been a handicap to accurate assay. The author has carried out Monte Carlo simulations to study this effect using the 239 Pu α-decay gamma-ray spectrum as an example. The thickness of a plutonium metal source can be considered a function of gamma-ray intensity ratios. In a practical application, gamma-ray intensity ratios can be obtained from a measured spectrum. With the help of calculated curves, scientists can find the source thickness and make corrections to gamma-ray intensities, which then lead to an accurate quantitative determination of radioactive isotopes in the material

  7. Self-absorption corrections of various sample-detector geometries in gamma-ray spectrometry using sample Monte Carlo Simulations

    International Nuclear Information System (INIS)

    Ahmad Saat; Appleby, P.G.; Nolan, P.J.

    1997-01-01

    Corrections for self-absorption in gamma-ray spectrometry have been developed using a simple Monte Carlo simulation technique. The simulation enables the calculation of gamma-ray path lengths in the sample which, using available data, can be used to calculate self-absorption correction factors. The simulation was carried out on three sample geometries: disk, Marinelli beaker, and cylinder (for well-type detectors). Mathematical models and experimental measurements are used to evaluate the simulations. A good agreement of within a few percents was observed. The simulation results are also in good agreement with those reported in the literature. The simulation code was carried out in FORTRAN 90,

  8. Development of a self-absorption correction method used for a HPGe detector by means of a Monte Carlo simulation

    International Nuclear Information System (INIS)

    Itadzu, Hidesuke; Iguchi, Tetsuo; Suzuki, Toshikazu

    2013-01-01

    Quantitative analysis for food products and natural samples, to determine the activity of each radionuclide, can be made by using a high-purity germanium (HPGe) gamma-ray spectrometer system. The analysis procedure is, in general, based upon the guidelines established by the Nuclear Safety Division of the Ministry of Education, Culture, Sports, Science and Technology in Japan (JP MEXT). In the case of gamma-ray spectrum analysis for large volume samples, re-entrant (marinelli) containers are commonly used. The effect of photon attenuation in a large-volume sample, so-called “self-absorption”, should be corrected for precise determination of the activity. As for marinelli containers, two accurate geometries are shown in the JP MEXT guidelines for 700 milliliter and 2 liter volumes. In the document, the functions to obtain the self-absorption coefficients for these specific shapes are also shown. Therefore, self-absorption corrections have been carried out only for these two containers with practical media. However, to measure radioactivity for samples in containers of volumes other than those described in the guidelines, the self-absorption correction functions must be obtained by measuring at least two standard multinuclide volume sources, which consist of different media or different linear attenuation coefficients. In this work, we developed a method to obtain these functions over a wide range of linear attenuation coefficients for self-absorption in various shapes of marinelli containers using a Monte Carlo simulation. This method was applied to a 1-liter marinelli container, which is widely used for the above quantitative analysis, although its self-absorption correction function has not yet been established. The validity of this method was experimentally checked through an analysis of natural samples with known activity levels. (author)

  9. Simulation about Self-absorption of Ni-63 Nuclear Battery Using Monte Carlo Code

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Ho; Kim, Ji Hyun [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-05-15

    The radioisotope batteries have an energy density of 100-10000 times greater than chemical batteries. Also, Li ion battery has the fundamental problems such as short life time and requires recharge system. In addition to these things, the existing batteries are hard to operate at internal human body, national defense arms or space environment. Since the development of semiconductor process and materials technology, the micro device is much more integrated. It is expected that, based on new semiconductor technology, the conversion device efficiency of betavoltaic battery will be highly increased. Furthermore, the radioactivity from the beta particle cannot penetrate a skin of human body, so it is safer than Li battery which has the probability to explosion. In the other words, the interest for radioisotope battery is increased because it can be applicable to an artificial internal organ power source without recharge and replacement, micro sensor applied to arctic and special environment, small size military equipment and space industry. However, there is not enough data for beta particle fluence from radioisotope source using nuclear battery. Beta particle fluence directly influences on battery efficiency and it is seriously affected by radioisotope source thickness because of self-absorption effect. Therefore, in this article, we present a basic design of Ni-63 nuclear battery and simulation data of beta particle fluence with various thickness of radioisotope source and design of battery.

  10. Simulation about Self-absorption of Ni-63 Nuclear Battery Using Monte Carlo Code

    International Nuclear Information System (INIS)

    Kim, Tae Ho; Kim, Ji Hyun

    2014-01-01

    The radioisotope batteries have an energy density of 100-10000 times greater than chemical batteries. Also, Li ion battery has the fundamental problems such as short life time and requires recharge system. In addition to these things, the existing batteries are hard to operate at internal human body, national defense arms or space environment. Since the development of semiconductor process and materials technology, the micro device is much more integrated. It is expected that, based on new semiconductor technology, the conversion device efficiency of betavoltaic battery will be highly increased. Furthermore, the radioactivity from the beta particle cannot penetrate a skin of human body, so it is safer than Li battery which has the probability to explosion. In the other words, the interest for radioisotope battery is increased because it can be applicable to an artificial internal organ power source without recharge and replacement, micro sensor applied to arctic and special environment, small size military equipment and space industry. However, there is not enough data for beta particle fluence from radioisotope source using nuclear battery. Beta particle fluence directly influences on battery efficiency and it is seriously affected by radioisotope source thickness because of self-absorption effect. Therefore, in this article, we present a basic design of Ni-63 nuclear battery and simulation data of beta particle fluence with various thickness of radioisotope source and design of battery

  11. The effect of self-absorption in hollow cathode lamp on its temperature

    International Nuclear Information System (INIS)

    Sobhanian, S.; Naghshara, H.

    2014-01-01

    It has been shown experimentally that even a small error in the calculation of the temperature inside the hollow-cathode lamp (HCL) and the current applied to the lamp, may cause a tremendous error in determination of the absorption ratio in optical resonance absorption (ORA) method. This effect is intensified nonlinearity for large absorption ratios. If a higher current is applied to a copper hollow cathode lamp, the copper density inside the lamp is increasing rapidly. Due to the cylindrical (axisymmetric) form of the lamp, the density of atoms around the main axis of the lamp becomes greater than that near the internal wall. In this case the auto-absorption (or self-absorption) is occurred and as its result, the emission spectrum produced by copper atoms is locally absorbed before going out from the lamp. This absorption is stronger near the main axis compared with the areas near the wall because of the Gaussian profile of the spectral line. Two different Cu atoms ground state lines with the similar lower state (327.4 nm and 324.7 nm) are used in this work as optical resonance absorption and the absorption coefficient is obtained for three different pressures (0.6, 4.5 and 14 µbar). The best values for copper HCL temperature and for maximum HCL current were found respectively 450 K, and 5mA. (author)

  12. Self-absorption theory applied to rocket measurements of the nitric oxide (1, 0) gamma band in the daytime thermosphere

    Science.gov (United States)

    Eparvier, F. G.; Barth, C. A.

    1992-01-01

    Observations of the UV fluorescent emissions of the NO (1, 0) and (0, 1) gamma bands in the lower-thermospheric dayglow, made with a sounding rocket launched on March 7, 1989 from Poker Flat, Alaska, were analyzed. The resonant (1, 0) gamma band was found to be attenuated below an altitude of about 120 km. A self-absorption model based on Holstein transmission functions was developed for the resonant (1, 0) gamma band under varying conditions of slant column density and temperature and was applied for the conditions of the rocket flight. The results of the model agreed with the measured attenuation of the band, indicating the necessity of including self-absorption theory in the analysis of satellite and rocket limb data of NO.

  13. Semi-empirical γ-ray peak efficiency determination including self-absorption correction based on numerical integration

    International Nuclear Information System (INIS)

    Noguchi, M.; Takeda, K.; Higuchi, H.

    1981-01-01

    A method of γ-ray efficiency determination for extended (plane or bulk) samples based on numerical integration of point source efficiency is studied. The proposed method is widely applicable to samples of various shapes and materials. The geometrical factor in the peak efficiency can easily be corrected for by simply changing the integration region, and γ-ray self-absorption is also corrected by the absorption coefficients for the sample matrix. (author)

  14. Determination of self absorption correction factor (SAF) for gross alpha measurement in water samples by BIS method

    International Nuclear Information System (INIS)

    Raveendran, Nanda; Baburajan, A.; Ravi, P.M.

    2018-01-01

    The laboratories accredited by AERB undertake the measurement of gross alpha and gross beta in packaged drinking water from manufactures across the country and analyze as per the procedure of Bureau of Indian standards. The accurate measurements of gross alpha in the drinking water sample is a challenge due to the self absorption of alpha particle from varying precipitate (Fe(OH) 3 +BaSO 4 ) thickness and total dissolved solids (TDS). This paper deals with a study on tracer recovery generation and self absorption correction factor (SAF). ESL, Tarapur has participated in an inter-laboratory comparison exercise conducted by IDS, RSSD, BARC as per the recommendation of AERB for the accredited laboratories. The thickness of the precipitate is an important aspect which affected the counting process. The activity was reported after conducting multiple experiments with uranium tracer recovery and precipitate thickness. Later on to make our efforts simplified, an average tracer recovery and Self Absorption correction Factor (SAF) was derived by the present experiment and the same was used for the re-calculation of activity from the count rate reported earlier

  15. Efficiency calibration and measurement of self-absorption correction of environmental gamma spectroscopy of soils samples using Marinelli beaker

    International Nuclear Information System (INIS)

    Abdi, M. R.; Mostajaboddavati, M.; Hassanzadeh, S.; Faghihian, H.; Rezaee, Kh.; Kamali, M.

    2006-01-01

    A nonlinear function in combination with the method of mixing activity calibrated is applied for fitting the experimental peak efficiency of HPGe spectrometers in 59-2614 keV energy range. The preparation of Marinelli beaker standards of mixed gamma and RG-set at secular equilibrium with its daughter radionuclides was studied. Standards were prepared by mixing of known amounts of 13B a, 241 Am, 152 Eu, 207 Bi, 24 Na, Al 2 O 3 powder and soil. The validity of these standards was checked by comparison with certified standard reference material RG-set and IAEA-Soil-6 Self-absorption was measured for the activity calculation of the gamma-ray lines about series of 238 U daughter, 232 Th series, 137 Cs and 40 K in soil samples. Self-absorption in the sample will depend on a number of factor including sample composition, density, sample size and gamma-ray energy. Seven Marinelli beaker standards were prepared in different degrees of compaction with bulk density ( ρ) of 1.000 to 1.600 g cm -3 . The detection efficiency versus density was obtained and the equation of self-absorption correction factors calculated for soil samples

  16. Determination of the separation between the soft X-ray K-emission and K-absorption edges in beryllium metal from self-absorption studies

    International Nuclear Information System (INIS)

    Crisp, R.S.

    1979-01-01

    Recent theoretical studies have aroused interest in the phonon broadening of the soft X-ray emission and absorption edges and the shift between them. Using a self-absorption technique a separation of about 0.2 eV is shown to exist between the edges in Be metal. This shift explains the very small self-absorption effects previously observed in Be by Crisp (1977). (Auth.)

  17. Determination of the separation between the soft X-ray K-emission and K-absorption edges in beryllium metal from self-absorption studies

    International Nuclear Information System (INIS)

    Crisp, R.S.

    1979-01-01

    Recent theoretical studies have aroused interest in the phonon broadening of the soft X-ray emission and absorption edges and the shift between them. Using a self-absorption technique a separation of about 0.2 eV is shown to exist between the edges in Be metal. This shift explains the very small self-absorption effects previously observed in Be. (Auth.)

  18. Determination of self-absorption coefficient in measurement of solid sample activity using 4π ionization chamber

    International Nuclear Information System (INIS)

    Dryak, P.

    1982-01-01

    Computation based on the Monte Carlo method was tested for a 4π cylindrical ionization chamber with a detection volume of 7 litres, filled with argon. The sources are placed in the geometrical centre. The correction coefficient for self-absorption was determined as being the ratio of ionization currents induced by a source of finite size and by a massless point source. A flowchart of the program is given. The computations were experimentally tested for cylindrical sources of aqueous 137 Cs and 57 Co solutions. (M.D.)

  19. A self-sufficient and general method for self-absorption correction in gamma-ray spectrometry using GEANT4

    International Nuclear Information System (INIS)

    Hurtado, S.; Villa, M.; Manjon, G.; Garcia-Tenorio, R.

    2007-01-01

    This paper presents a self-sufficient and general method for measurement of the activity of low-level gamma-emitters in voluminous samples by gamma-ray spectrometry with a coaxial germanium detector. Due to self-absorption within the sample, the full-energy peak efficiency of low-energy emitters in semiconductor gamma-spectrometers depends strongly on a number of factors including sample composition, density, sample size and gamma-ray energy. As long as those commented factors are well characterized, the influence of self-absorption in the full-energy peak efficiency of low-energy emitters can be calculated using Monte Carlo method based on GEANT4 code for each individual sample. However this task is quite tedious and time consuming. In this paper, we propose an alternative method to determine this influence for voluminous samples of unknown composition. Our method combines both transmission measurements and Monte Carlo simulations, avoiding the application of Monte Carlo full-energy peak efficiency determinations for each individual sample. To test the accuracy and precision of the proposed method, we have calculated 210 Pb activity in sediments samples from an estuary located in the vicinity of several phosphates factories with the proposed method, comparing the obtained results with the ones determined in the same samples using two alternative radiometric techniques

  20. Confinement effect of laser ablation plume in liquids probed by self-absorption of C2 Swan band emission

    International Nuclear Information System (INIS)

    Sakka, Tetsuo; Saito, Kotaro; Ogata, Yukio H.

    2005-01-01

    The (0,0) Swan band of the C 2 molecules in a laser ablation plume produced on the surface of graphite target submerged in water was used as a probe to estimate the density of C 2 molecules in the plume. Observed emission spectra were reproduced excellently by introducing a self-absorption parameter to the theoretical spectral profile expected by a rotational population distribution at a certain temperature. The optical density of the ablation plume as a function of time was determined as a best-fit parameter by the quantitative fitting of the whole spectral profile. The results show high optical densities for the laser ablation plume in water compared with that in air. It is related to the plume confinement or the expansion, which are the important phenomena influencing the characteristics of laser ablation plumes in liquids

  1. Simulations about self-absorption of tritium in titanium tritide and the energy deposition in a silicon Schottky barrier diode

    International Nuclear Information System (INIS)

    Li, Hao; Liu, Yebing; Hu, Rui; Yang, Yuqing; Wang, Guanquan; Zhong, Zhengkun; Luo, Shunzhong

    2012-01-01

    Simulations on the self-absorption of tritium electrons in titanium tritide films and the energy deposition in a silicon Schottky barrier diode are carried out using the Geant4 radiation transport toolkit. Energy consumed in each part of the Schottky radiovoltaic battery is simulated to give a clue about how to make the battery work better. The power and energy-conversion efficiency of the tritium silicon Schottky radiovoltaic battery in an optimized design are simulated. Good consistency with experiments is obtained. - Highlights: ► Simulation of the energy conversion inside the radiovoltaic battery is carried out. ► Energy-conversion efficiency in the simulation shows good consistency with experimental result. ► Inadequacy of the present configuration is studied in this work and improvements are proposed.

  2. Quantitative methods for compensation of matrix effects and self-absorption in Laser Induced Breakdown Spectroscopy signals of solids

    Science.gov (United States)

    Takahashi, Tomoko; Thornton, Blair

    2017-12-01

    This paper reviews methods to compensate for matrix effects and self-absorption during quantitative analysis of compositions of solids measured using Laser Induced Breakdown Spectroscopy (LIBS) and their applications to in-situ analysis. Methods to reduce matrix and self-absorption effects on calibration curves are first introduced. The conditions where calibration curves are applicable to quantification of compositions of solid samples and their limitations are discussed. While calibration-free LIBS (CF-LIBS), which corrects matrix effects theoretically based on the Boltzmann distribution law and Saha equation, has been applied in a number of studies, requirements need to be satisfied for the calculation of chemical compositions to be valid. Also, peaks of all elements contained in the target need to be detected, which is a bottleneck for in-situ analysis of unknown materials. Multivariate analysis techniques are gaining momentum in LIBS analysis. Among the available techniques, principal component regression (PCR) analysis and partial least squares (PLS) regression analysis, which can extract related information to compositions from all spectral data, are widely established methods and have been applied to various fields including in-situ applications in air and for planetary explorations. Artificial neural networks (ANNs), where non-linear effects can be modelled, have also been investigated as a quantitative method and their applications are introduced. The ability to make quantitative estimates based on LIBS signals is seen as a key element for the technique to gain wider acceptance as an analytical method, especially in in-situ applications. In order to accelerate this process, it is recommended that the accuracy should be described using common figures of merit which express the overall normalised accuracy, such as the normalised root mean square errors (NRMSEs), when comparing the accuracy obtained from different setups and analytical methods.

  3. Evaluation of the self-absorption of 14C beta-rays in gel-suspension samples by Monte Carlo simulation

    International Nuclear Information System (INIS)

    Wakabayashi, G.; Nagao, K.; Okai, T.; Matoba, M.

    2003-01-01

    In order to investigate the self-absorption of the β-rays from 14 C in a gel-suspension sample, the Monte Carlo code, simulating the sequence of stages occurring in the sample, has been developed. The trajectory of the electron was calculated by the continuous slowing down approximation and the multiple Coulomb scattering theory. The effects of the self-absorption, strong quenching and particle size distribution of calcium carbonate on the output counting efficiency and the shape of the energy spectrum were evaluated. (author)

  4. The effect of Lyman α self-absorption on population inversions between quantum states 2 and 3 of hydrogen-like ions in recombining plasmas

    International Nuclear Information System (INIS)

    Tallents, G.J.

    1978-01-01

    The effect in recombining plasmas of Lyman α self-absorption on quasi-steady-state population inversions between quantum states n = 2 and 3 of hydrogen-like ions is theoretically investigated. It is shown how the electron density range over which population inversion is possible diminishes as Lyman α self-absorption increases. The highest degree of absorption which can be tolerated and still achieve an inversion is shown to occur when the thermal limit corresponds to n approximately equal to 4. The results of the computations are related to the conditions to be found in the expansion plume of laser-produced plasmas. (author)

  5. An expression for the atomic fluorescence and thermal-emission intensity under conditions of near saturation and arbitrary self-absorption

    NARCIS (Netherlands)

    Omenetto, N.; Winefordner, J.D.; Alkemade, C.T.J.

    An expression for the effect of self-absorption on the fluorescence and thermal emission intensities is derived by taking into account stimulated emission. A simple, idealized case is considered, consisting of a two level atomic system, in a flame, homogeneous with respect to temperature and

  6. Exploration of parameters influencing the self-absorption losses in luminescent solar concentrators with an experimentally validated combined ray-tracing/Monte-Carlo model

    Science.gov (United States)

    Krumer, Zachar; van Sark, Wilfried G. J. H. M.; de Mello Donegá, Celso; Schropp, Ruud E. I.

    2013-09-01

    Luminescent solar concentrators (LSCs) are low cost photovoltaic devices, which reduce the amount of necessary semiconductor material per unit area of a photovoltaic solar energy converter by means of concentration. The device is comprised of a thin plastic plate in which luminescent species (fluorophores) have been incorporated.The fluorophores absorb the solar light and radiatively re-emit a part of the energy. Total internal reflection traps most of the emitted light inside the plate and wave-guides it to a narrow side facet with a solar cell attached, where conversion into electricity occurs. The eciency of such devices is as yet rather low, due to several loss mechanisms, of which self-absorption is of high importance. Combined ray-tracing and Monte-Carlosimulations is a widely used tool for efficiency estimations of LSC-devices prior to manufacturing. We have applied this method to a model experiment, in which we analysed the impact of self-absorption onto LSC-efficiency of fluorophores with different absorption/emission-spectral overlap (Stokes-shift): several organic dyes and semiconductor quantum dots (single compound and core/shell of type-II). These results are compared with the ones obtained experimentally demonstrating a good agreement. The validated model is used to investigate systematically the influence of spectral separation and luminescence quantum efficiency on the intensity loss inconsequence of increased self-absorption. The results are used to adopt a quantity called the self-absorption cross-section and establish it as reliable criterion for self-absorption properties of materials that can be obtained from fundamental data and has a more universal scope of application, than the currently used Stokes-shift.

  7. Spectrum interpretation problems with well-type Ge(Li) detectors due to self-absorption variations

    International Nuclear Information System (INIS)

    Bruin, M. de; Korthoven, P.J.M.; Bode, P.

    1979-01-01

    For use in instrumental neutron activation analysis, a well-type Ge(Li) detector compares favourably with a comparable detector without well. It combines a good energy resolution with a relatively high detector efficiency. Moreover, this efficiency is almost independent of sample dimensions. But the use of a well-type Ge(Li) detector also has been some drawbacks, as large summation effects will result from the high detector efficiency. The least severe aspect of this summation is the additional formation of many extra sum peaks in gamma-ray spectra of nuclides with moderate or highly complex decay schemes. This leads to higher computation times, but in general, the accuracy of the analysis will not be affected. A far more important aspect of the summation is found in the fact that the intensity ratios between high energy peaks and the sum peaks of self-absorption effects, which in a flat detector is limited to only the low energy part of the spectrum, may be extended to the high energy region. This leads to sample-dependent distortion of the high energy part of the gamma-ray spectrum which may result in misinterpretation of instrumental neutron activation analysis data. The only solution to this problem seems to be to prevent the relevant low energy photons from reaching the detector. This can be accomplished by using a high Z absorber inside the detector well. (Auth.)

  8. Quantitative analysis of the self-absorption and reemission effects on the emission spectrum of photoluminescence in right-angle excitation—detection configuration

    International Nuclear Information System (INIS)

    Wang Zhen-Hua; Wu Yu-E; Zhang Xin-Zheng; Yun Zhi-Qiang; Li Wei; Xu Jing-Jun

    2013-01-01

    A theoretical approach based on differential radiative transport is proposed to quantitatively analyze the self-absorption and reemission effects on the emission spectrum for right angle excitation—detection photoluminescence measurements, and the wavelength dependence of the reemission effect is taken into account. Simulations and experiments are performed using rhodamine 6G solutions in ethanol as model samples. It is shown that the self-absorption effect is the dominant effect on the detected spectrum by inducing pseudo red-shift and reducing total intensity; whereas the reemission effect partly compensates for signal decrease and also results in an apparent signal gain at the wavelengths without absorption. Both effects decrease with the decrease in the sample concentration and the propagation distance of the emission light inside the sample. We therefore suggest that diluted solutions are required for accurate photoluminescence spectrum measurements and photoluminescence-based measurements

  9. Effects of self-absorption on simultaneous estimation of temperature distribution and concentration fields of soot and metal-oxide nanoparticles in nanofluid fuel flames using a spectrometer

    Science.gov (United States)

    Liu, Guannan; Liu, Dong

    2018-06-01

    An improved inverse reconstruction model with consideration of self-absorption effect for the temperature distribution and concentration fields of soot and metal-oxide nanoparticles in nanofluid fuel flames was proposed based on the flame emission spectrometry. The effects of self-absorption on the temperature profile and concentration fields were investigated for various measurement errors, flame optical thicknesses and detecting lines numbers. The model neglecting the self-absorption caused serious reconstruction errors especially in the nanofluid fuel flames with large optical thicknesses, while the improved model was used to successfully recover the temperature distribution and concentration fields of soot and metal-oxide nanoparticles for the flames regardless of the optical thickness. Through increasing detecting lines number, the reconstruction accuracy can be greatly improved due to more flame emission information received by the spectrometer. With the adequate detecting lines number, the estimations for the temperature distribution and concentration fields of soot and metal-oxide nanoparticles in flames with large optical thicknesses were still satisfying even from the noisy radiation intensities with signal to noise ratio (SNR) as low as 46 dB. The results showed that the improved reconstruction model was effective and robust to concurrently retrieve the temperature distribution and volume fraction fields of soot and metal-oxide nanoparticles for the exact and noisy data in nanofluid fuel sooting flames with different optical thicknesses.

  10. Evaluation of Optical Depths and Self-Absorption of Strontium and Aluminum Emission Lines in Laser-Induced Breakdown Spectroscopy (LIBS).

    Science.gov (United States)

    Alfarraj, Bader A; Bhatt, Chet R; Yueh, Fang Yu; Singh, Jagdish P

    2017-04-01

    Laser-induced breakdown spectroscopy (LIBS) is a widely used laser spectroscopic technique in various fields, such as material science, forensic science, biological science, and the chemical and pharmaceutical industries. In most LIBS work, the analysis is performed using radiative transitions from atomic emissions. In this study, the plasma temperature and the product [Formula: see text] (the number density N and the absorption path length [Formula: see text]) were determined to evaluate the optical depths and the self-absorption of Sr and Al lines. A binary mixture of strontium nitrate and aluminum oxide was used as a sample, consisting of variety of different concentrations in powder form. Laser-induced breakdown spectroscopy spectra were collected by varying various parameters, such as laser energy, gate delay time, and gate width time to optimize the LIBS signals. Atomic emission from Sr and Al lines, as observed in the LIBS spectra of different sample compositions, was used to characterize the laser induced plasma and evaluate the optical depths and self-absorption of LIBS.

  11. Parameter study of self-absorption effects in Total Reflection X-ray Fluorescence-X-ray Absorption Near Edge Structure analysis of arsenic

    International Nuclear Information System (INIS)

    Meirer, F.; Pepponi, G.; Streli, C.; Wobrauschek, P.; Kregsamer, P.; Zoeger, N.; Falkenberg, G.

    2008-01-01

    Total reflection X-ray Fluorescence (TXRF) analysis in combination with X-ray Absorption Near Edge Structure (XANES) analysis is a powerful method to perform chemical speciation studies at trace element levels. However, when measuring samples with higher concentrations and in particular standards, damping of the oscillations is observed. In this study the influence of self-absorption effects on TXRF-XANES measurements was investigated by comparing measurements with theoretical calculations. As(V) standard solutions were prepared at various concentrations and dried on flat substrates. The measurements showed a correlation between the damping of the oscillations and the As mass deposited. A Monte-Carlo simulation was developed using data of the samples shapes obtained from confocal white light microscopy. The results showed good agreement with the measurements; they confirmed that the key parameters are the density of the investigated atom in the dried residues and the shape of the residue, parameters that combined define the total mass crossed by a certain portion of the incident beam. The study presents a simple approach for an a priori evaluation of the self-absorption in TXRF X-ray absorption studies. The consequences for Extended X-ray Absorption Fine Structure (EXAFS) and XANES measurements under grazing incidence conditions are discussed, leading to the conclusion that the damping of the oscillations seems to make EXAFS of concentrated samples non feasible. For XANES 'fingerprint' analysis samples should be prepared with a deposited mass and sample shape leading to an acceptable absorption for the actual investigation

  12. A practical method for determining γ-ray full-energy peak efficiency considering coincidence-summing and self-absorption corrections for the measurement of environmental samples after the Fukushima reactor accident

    Energy Technology Data Exchange (ETDEWEB)

    Shizuma, Kiyoshi, E-mail: shizuma@hiroshima-u.ac.jp [Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527 (Japan); Oba, Yurika; Takada, Momo [Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521 (Japan)

    2016-09-15

    A method for determining the γ-ray full-energy peak efficiency at positions close to three Ge detectors and at the well port of a well-type detector was developed for measuring environmental volume samples containing {sup 137}Cs, {sup 134}Cs and {sup 40}K. The efficiency was estimated by considering two correction factors: coincidence-summing and self-absorption corrections. The coincidence-summing correction for a cascade transition nuclide was estimated by an experimental method involving measuring a sample at the far and close positions of a detector. The derived coincidence-summing correction factors were compared with those of analytical and Monte Carlo simulation methods and good agreements were obtained. Differences in the matrix of the calibration source and the environmental sample resulted in an increase or decrease of the full-energy peak counts due to the self-absorption of γ-rays in the sample. The correction factor was derived as a function of the densities of several matrix materials. The present method was applied to the measurement of environmental samples and also low-level radioactivity measurements of water samples using the well-type detector.

  13. Self-Absorption Studies with a 4 {pi} {beta}-Proportional Flow Counter; Etudes sur l'autoabsorption avec un compteur {beta} 4 {pi} proportionnel a courant; Izuchenie samopogloshcheniya pri pomoshchi {beta} proportsional'no-potochnogo 4 {pi} schetchika; Estudios sobre autoabsorcion con un contador de flujo proporcional {beta}4 {pi}

    Energy Technology Data Exchange (ETDEWEB)

    Yaffe, L; Fishman, J B [Radiochemistry Laboratory, Dept. of Chemistry, McGill University, Montreal, Quebec (Canada)

    1960-06-15

    Self-absorption studies of {beta} emitters have been made by means of the techniques outlined by Pate and Yaffe [Can. J. Chem. 34, 265 (1956)]. Volatile compounds of H''3, C''1''4, Co''6''0, Hg''2''0''3, As''7''7, and P{sup 32} (E{sub max} ranging from 0.018 to 1.7 MeV) were distilled on to thin VYNS mounts and the self-absorption characteristics determined. An empirically determined series of curves relating E{sub max}, source thickness, and self-absorption is given. The self-absorption data have been subjected to a theoretical analysis for counters of small angle and 4{pi} geometry. The experimentally determined self-absorption curves for 4 {pi} geometry lie in between the theoretical small angles and 4 {pi} geometry curves. (author) [French] Des etudes sur l'autoabsorption des emetteurs {beta} ont ete faites selon les techniques indiquees par Pate and Yaffe [Can. J. Chem. 34, 265 (1956)]. Des composes volatils de H{sup 3}, S{sup 14}, Co{sup 60}, Hg{sup 203}, As{sup 77} et P{sup 32} (E{sub max} allant de 0,018 a 1,7 MeV), ont ete recueillis par distillation sur des supports minces en resine vynilique (VYNS) et les caracteristiques de l'autoabsorption ont ete determinees. Le memoire contient une serie de courbes determinees empiriquement, qui donnent les relations entre E{sub max} l'epaisseur de la source et l'autoabsorption . Les donnees sur l'autoabsorption ont fait l'objet d'une analyse theorique pour les compteurs a geometrie de petit angle solide et 4 {pi}. Les courbes d'auto- absorption determinees experimentalemen t pour la geometrie 4 {pi} sont comprises entre les courbes theoriques correspondant a la geometrie de petit angle solide et a la geometrie 4 {pi}. (author) [Spanish] Les autores han estudiado la autoabsorcion de los emisores {beta} utilizando las tecnicas descritas por Pate y Yaffe [Can. J. Chem. 34, 265 (1956)]. Han destilado compuestos volatiles de H{sup 3}, S{sup 14}, So{sup 60}, Hg{sup 203}, As{sup 77} y P{sup 32} (E{sub max} comprendida

  14. Self-absorption and self-scattering in emitter source of alpha particles

    International Nuclear Information System (INIS)

    Terini, R.A.

    1990-01-01

    This paper describes preliminary results on spectrometric analysis and activity measurements of alpha-emitting sources prepared by evaporation on mylar. The measurements were made with a Si surface barrier detector. By the analysis of the angular distribuition of the alpha particles emitted, it was possible to observe that the width of the spectrum low energy tail increases with the emission angle θ, due to the energy degradation in the source material, which affects the measured particles energy. The source activity was also measured from detection solid angles of approx. 10 -1 and aprox. 10 -3 Sr, as a function of θ. The absolute activity of the alpha source was determined and a discussion is present on the ideal conditions necessary for such measurements. (author) [pt

  15. Self-absorption paradox is not a paradox: illuminating the dark side of self-reflection.

    Science.gov (United States)

    Simsek, Omer Faruk

    2013-01-01

    Although considered an important component of a healthy personality, self-reflection has not so far been shown to have any specific benefits for mental health. This research addresses this issue by taking into consideration two important suppressor variables, self-rumination and the need for absolute truth. The latter is an innovative variable, defined and presented in this research. The first two studies aimed to validate a new measure that acts as an operational definition of the need for absolute truth. The first study was conducted with two group of participants; the first group consisted of 129 females and 67 males, mean age = 20 years, and the second 182 females and 104 males, mean age = 27. In the second study, participants were 22 females and 18 males, mean age = 20.5. In the final study, conducted with 296 female, 163 male participants (mean age = 37), suppressor effects were tested using structural equation modeling. The results showed that by taking account of these two suppressor variables, particularly the need for absolute truth, the expected relationship between self-reflection and mental health was revealed. The need for absolute truth was shown to be crucial for understanding the effects of self-reflection on mental health, therefore it should be considered in all processes of psychotherapy.

  16. Determination Of Activity Of Radionuclides In Moss-Soil Sample With Self-Absorption Correction

    International Nuclear Information System (INIS)

    Tran Thien Thanh; Chau Van Tao; Truong Thi Hong Loan; Hoang Duc Tam

    2011-01-01

    Hyper Pure Germanium (HPGe) spectrometer system is a very powerful tool for radioactivity measurements. The systematic uncertainty in the full energy peak efficiency is due to the differences between the matrix (density and chemical composition) of the reference and the other bulk samples. For getting precision from the gamma spectrum analysis, the absorbed correction in the sample should be considered. For gamma spectral analysis, a correction for absorption effects in sample should be considered, especially for bulk samples. The results were presented and discussed in this paper. (author)

  17. Tow efficiency correction functions of source self-absorption of an HPGe detector

    International Nuclear Information System (INIS)

    Gao Zheng; Ma Yusheng; Luo Jianghua; Chen Luning

    2007-01-01

    The efficiency correction function of source absorption of an HPGe γ detector is determined by experiment in energy range from 59.5 keV to 1408 keV and density range from 0.3 g/cm 3 to 2.0 g/cm 3 . Fit Polynomial and fit Sigmoidal are compared. The results show that fit Sigmoidal is better than fit polynomial, and the detection efficiency at any points of energy and density could be conveniently calculated with it in calibrated range. (authors)

  18. Measurement of gamma attenuation coefficients in UO2 and zirconium for self-absorption corrections of burn-up determination

    International Nuclear Information System (INIS)

    Podest, M.; Klima, J.; Stecher, P.; Stecherova, E.

    1978-01-01

    UO 2 pellets from ALUOX fuel elements were used in measuring the absorption coefficient of gamma radiation in UO 2 . The results of measurements of the energy dependence of the linear absorption coefficient (within 622 to 796 keV) and of the dependence on pellet density showed that in the given density interval the absorption coefficient was almost constant. The density interval was chosen to be typical for pellet fuel used in water cooled and water moderated power reactors. The results are also shown of the dependence of the mass absorption coefficient of gamma radiation in Zr on radiation energy and compared with the mass absorption coefficient of Mo; these also showed the independence of the absorption coefficient on density. The linear and mass absorption coefficients of UO 2 are considerably high and correspond approximately to the absorption coefficient of lead. For the measured energy range the variation of absorption coefficient is about 40%, which causes errors in burnup determination. The efficiency was also determined of Ge(Li) detectors for the energy range 0.5 to 1.2 MeV. The determination of the above coefficients was used for improving the gamma fuel scanning technique in determining the activity and burnup of spent fuel elements. (J.P.)

  19. Exploration of parameters influencing the self-absorption losses in luminescent solar concentrators with an experimentally validated combined ray-tracing/Monte-Carlo model

    NARCIS (Netherlands)

    Krumer, Z.; van Sark, W.G.J.H.M.; de Mello Donegá, C.; Schropp, R.E.I.; Plesniak, A.P.

    2013-01-01

    Luminescent solar concentrators (LSCs) are low cost photovoltaic devices, which reduce the amount of necessary semiconductor material per unit area of a photovoltaic solar energy converter by means of concentration. The device is comprised of a thin plastic plate in which luminescent species

  20. Calculation of self-absorption coefficients of calcium resonance lines in the case of a CaCl2-water plasma

    International Nuclear Information System (INIS)

    Hannachi, R.; Cressault, Y.; Teulet, Ph.; Gleizes, A.; Lakhdar, Z. Ben

    2008-01-01

    The resonance escape factors for the lines emitted by a neutral calcium atom Ca I at 4226.73 A and of ionic calcium Ca II at 3933.66 A and at 3968.47 A are calculated assuming a Voigt profile and in the case of CaCl 2 -water plasma. The dependence of the escape factor on the optical thickness f 0 from the line center which itself depends on the two main spectral line shape broadening mechanisms (pressure and Doppler effects) are considered. The variation of the resonance escape factors with the temperature, the CaCl 2 molar proportion and the size of the plasma are also investigated. This calculation is useful for the application of Laser-Induced Breakdown Spectroscopy in the quantitative analysis of elemental composition. Its application allows us to reduce the non-linearities in the relation between resonance lines intensities of calcium in our case and its concentration

  1. The CO2 absorption spectrum in the 2.3 μm transparency window by high sensitivity CRDS: (II) Self-absorption continuum

    Science.gov (United States)

    Mondelain, D.; Vasilchenko, S.; Čermák, P.; Kassi, S.; Campargue, A.

    2017-01-01

    The CO2 absorption continuum near 2.3 μm is determined for a series of sub atmospheric pressures (250-750 Torr) by high sensitivity Cavity Ring Down Spectroscopy. An experimental procedure consisting in injecting successively a gas flow of CO2 and synthetic air, keeping constant the gas pressure in the CRDS cell, has been developed. This procedure insures a high stability of the spectra baseline by avoiding changes of the optical alignment due to pressure changes. The CO2 continuum was obtained as the difference between the CO2 absorption coefficient and a local lines simulation using a Voigt profile truncated at ±25 cm-1. Following the results of the preceding analysis of the CO2 rovibrational lines (Vasilchenko S et al. J Quant Spectrosc Radiat Transfer 10.1016/j.jqsrt.2016.07.002, a CO2 line list with intensities obtained by variational calculations and empirical line positions was preferred to the HITRAN line list. A quadratic pressure dependence of the absorption continuum is observed, with an average binary absorption coefficient increasing from 2 to 4×10-8 cm-1 amagat-2 between 4320 and 4380 cm-1. The obtained continuum is found in good agreement with a previous measurement using much higher densities (20 amagat) and a low resolution grating spectrograph and is consistent with values currently used in the analysis of Venus spectra.

  2. The CO_2 absorption spectrum in the 2.3 µm transparency window by high sensitivity CRDS: (II) Self-absorption continuum

    International Nuclear Information System (INIS)

    Mondelain, D.; Vasilchenko, S.; Čermák, P.; Kassi, S.; Campargue, A.

    2017-01-01

    The CO_2 absorption continuum near 2.3 µm is determined for a series of sub atmospheric pressures (250–750 Torr) by high sensitivity Cavity Ring Down Spectroscopy. An experimental procedure consisting in injecting successively a gas flow of CO_2 and synthetic air, keeping constant the gas pressure in the CRDS cell, has been developed. This procedure insures a high stability of the spectra baseline by avoiding changes of the optical alignment due to pressure changes. The CO_2 continuum was obtained as the difference between the CO_2 absorption coefficient and a local lines simulation using a Voigt profile truncated at ±25 cm"−"1. Following the results of the preceding analysis of the CO_2 rovibrational lines (Vasilchenko S et al. J Quant Spectrosc Radiat Transfer (10.1016/j.jqsrt.2016.07.002), a CO_2 line list with intensities obtained by variational calculations and empirical line positions was preferred to the HITRAN line list. A quadratic pressure dependence of the absorption continuum is observed, with an average binary absorption coefficient increasing from 2 to 4×10"−"8 cm"−"1 amagat"−"2 between 4320 and 4380 cm"−"1. The obtained continuum is found in good agreement with a previous measurement using much higher densities (20 amagat) and a low resolution grating spectrograph and is consistent with values currently used in the analysis of Venus spectra. - Highlights: • The CO_2 absorption continuum is measured by CRDS in the 2.3 µm window. • The achieved sensitivity and stability allow measurements at sub-atmospheric pressure. • The absorption coefficient is on the order of 3×10"−"8 cm"−"1 amagat"−"2 near 4350 cm"−"1. • A good agreement is obtained with previous results at much higher density (20 amagat).

  3. Analysis of uncertainty of the uranium safeguard in CORAL-I; Analisis de incertidumbre de la Salvaguardia del Uranio en Coral-I

    Energy Technology Data Exchange (ETDEWEB)

    Blazquez, J.; Barrado, J. M.

    2013-07-01

    In this work is described the experimental procedure safeguard of U-235, it is possible to measure the enrichment and self-absorption coefficient of gamma discs using a Nal scintillation detector. Details are in the uncertainty analysis.

  4. Calibration-Free Laser-Induced Breakdown Spectroscopy (CF-LIBS) with Standard Reference Line for the Analysis of Stainless Steel.

    Science.gov (United States)

    Fu, Hongbo; Dong, Fengzhong; Wang, Huadong; Jia, Junwei; Ni, Zhibo

    2017-08-01

    In this work, calibration-free laser-induced breakdown spectroscopy (CF-LIBS) is used to analyze a certified stainless steel sample. Due to self-absorption of the spectral lines from the major element Fe and the sparse lines of trace elements, it is usually not easy to construct the Boltzmann plots of all species. A standard reference line method is proposed here to solve this difficulty under the assumption of local thermodynamic equilibrium so that the same temperature value for all elements present into the plasma can be considered. Based on the concentration and rich spectral lines of Fe, the Stark broadening of Fe(I) 381.584 nm and Saha-Boltzmann plots of this element are used to calculate the electron density and the plasma temperature, respectively. In order to determine the plasma temperature accurately, which is seriously affected by self-absorption, a pre-selection procedure for eliminating those spectral lines with strong self-absorption is employed. Then, one spectral line of each element is selected to calculate its corresponding concentration. The results from the standard reference lines with and without self-absorption of Fe are compared. This method allows us to measure trace element content and effectively avoid the adverse effects due to self-absorption.

  5. Radiological responses of different types of Egyptian Mediterranean coastal sediments

    Energy Technology Data Exchange (ETDEWEB)

    El-Gamal, A., E-mail: ayman_elgamal@yahoo.co [Department of Oceanography, Coastal Research Institute, National Water Research Center, 15 Elpharaana St., Elshallalat, Postal code 21514, Alexandria (Egypt); Rashad, M. [Land and Water Technologies Department, Arid Land Cultivation and Development Research Institute, Mubarak City for Scientific Research, Burg El-Arab, Alexandria (Egypt); Ghatass, Z. [Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria (Egypt)

    2010-08-15

    The aim of this study was to identify gamma self-absorption correction factors for different types of Egyptian Mediterranean coastal sediments. Self-absorption corrections based on direct transmission through different thicknesses of the most dominant sediment species have been tested against point sources with gamma-ray energies of {sup 241}Am, {sup 137}Cs and {sup 60}Co with 2% uncertainties. Black sand samples from the Rashid branch of the Nile River quantitatively absorbed the low energy of {sup 241}Am through a thickness of 5 cm. In decreasing order of gamma energy self-absorption of {sup 241}Am, the samples under investigation ranked black sand, Matrouh sand, Sidi Gaber sand, shells, Salloum sand, and clay. Empirical self-absorption correction formulas were also deduced. Chemical analyses such as pH, CaCO{sub 3}, total dissolved solids, Ca{sup 2+}, Mg{sup 2+}, CO{sub 3}{sup 2-}, HCO{sub 3}{sup -} and total Fe{sup 2+} have been carried out for the sediments. The relationships between self absorption corrections and the other chemical parameters of the sediments were also examined.

  6. Radiological responses of different types of Egyptian Mediterranean coastal sediments

    Science.gov (United States)

    El-Gamal, A.; Rashad, M.; Ghatass, Z.

    2010-08-01

    The aim of this study was to identify gamma self-absorption correction factors for different types of Egyptian Mediterranean coastal sediments. Self-absorption corrections based on direct transmission through different thicknesses of the most dominant sediment species have been tested against point sources with gamma-ray energies of 241Am, 137Cs and 60Co with 2% uncertainties. Black sand samples from the Rashid branch of the Nile River quantitatively absorbed the low energy of 241Am through a thickness of 5 cm. In decreasing order of gamma energy self-absorption of 241Am, the samples under investigation ranked black sand, Matrouh sand, Sidi Gaber sand, shells, Salloum sand, and clay. Empirical self-absorption correction formulas were also deduced. Chemical analyses such as pH, CaCO 3, total dissolved solids, Ca 2+, Mg 2+, CO 32-, HCO 3- and total Fe 2+ have been carried out for the sediments. The relationships between self absorption corrections and the other chemical parameters of the sediments were also examined.

  7. Calorimetric measurement of strong γ emitting sources

    International Nuclear Information System (INIS)

    Brangier, B.; Herczeg, C.; Henry, R.

    1968-01-01

    This publication gives the principle and a description of an adiabatic calorimeter for measuring the real activity of strong gamma-emitting sources by absorbing the emitted energy in a mass of copper. Because of the difficulty of evaluating the amount self- absorption, we have built a calorimeter for measuring the self- absorption, and a description of it is given.The results of these three measurements are fairly satisfactory. The calibration and the actual measurements obtained are given with a few corrections made necessary by the design of the apparatus. The correlation of the various results is discussed. (author) [fr

  8. A Response of coaxial Ge (Li) detector to the extended source of gamma radiation

    International Nuclear Information System (INIS)

    Coffou, E.; Knapp, V.; Petkovic, T.

    1980-01-01

    In measurements of the absolute source strength of extended source of γ radiation, two main limitations on the accuracy are dues to the difficulties in accounting for the self-absorption in the source and for geometrical dependence of detector efficiency. Two problems were separated by introduction of the average only energy dependent efficiency, which lends itself to calculational and experimental determination (to be reported), and the response of coaxial Ge(Li) detector to cylindrical extended source with self-absorption has been developed here to a reduced analytical form convenient gu numerical calculations. (author)

  9. Technical Basis for the Use of Alpha Absorption Corrections on RCF Gross Alpha Data

    International Nuclear Information System (INIS)

    Ceffalo, G.M.

    1999-01-01

    This document provides the supporting data and rationale for making absorption corrections to gross alpha data to correct alpha data for loss due to absorption in the sample matrix. For some time there has been concern that the gross alpha data produced by the Environmental Restoration Contractor Radiological Counting Facility, particularly gross alpha analysis on soils, has been biased toward low results, as no correction for self-absorption was applied to the counting data. The process was investigated, and a new methodology for alpha self-absorption has been developed

  10. An instrument for measurement of 125I with automatic efficiency correction

    International Nuclear Information System (INIS)

    Holford, R.M.

    1979-10-01

    Counting efficiencies for 125 I are often uncertain because of self-absorption of the low-energy radiation. A special purpose instrument, AEP-5285, has been designed to simplify the measurement of 125 I activities using a known technique in which the observed counting rate is compensated for self-absorption and any other uncertainties in the counting efficiency by making use of the coicidence properties of the radiation. The instrument contains pulse amplifiers, discriminators to define the energy regions of interest, and operational amplifier circuits to perform the necessary calculations automatically, and it displays an estimate of the source activity in becquerels. (auth)

  11. Quenching of Einstein-coefficients by photons

    International Nuclear Information System (INIS)

    Aumayr, F.; Skinner, C.H.; Suckewer, S.; Princeton Univ., NJ; Lee, W.

    1991-02-01

    Experimental evidence is presented for the change of Einstein's A-coefficients for spontaneous transitions from the upper laser level of an argon ion laser discharge due to the presence of the high-intensity laser flux. To demonstrate that this quenching effect cannot be attributed to a reduction in self-absorption of the strong spontaneous emission line, absorption and line profile measurements have been performed. Computer modelling of the reduction of self absorption due to Rabi splitting also indicated that this effect is too small to explain the observed quenching of spontaneous line emissions. 13 refs., 11 figs

  12. Quenching of Einstein-coefficients by photons

    International Nuclear Information System (INIS)

    Aumayr, F.; Lee, W.; Skinner, C.H.; Suckewer, S.

    1991-03-01

    Experimental evidence is presented for the change of Einstein's A- coefficients for spontaneous transitions from the upper laser level of argon ion laser discharge due to the presence of the high- intensity laser flux. To demonstrate that this quenching effect cannot be attributed to a reduction in self-absorption of the strong spontaneous emission line, absorption and line profile measurements have been performed. Computer modelling of the reduction of self absorption due to Rabi splitting also indicated that this effect is too small to explain the observed quenching of spontaneous line emissions. 13 refs., 11 figs

  13. Radiochemical determination of 210Pb using crown ether

    International Nuclear Information System (INIS)

    Vajda, N.; Bodizs, D.; Vodicska, M.

    1994-01-01

    Gamma spectrometric determination of 210 Pb following chemical separation has been performed very precisely and with high sensitivity, due to the low and constant self-absorption of the chemically pure sample. A simple and quick method for the chemical separation of lead using crown ether has been developed. Its four steps are described in detail. The new method was verified using phosphate ore and gypsum samples that were measured in an interlaboratory comparison and with a standard reference material. This method can also be used for self-absorption correction in direct gamma spectrometry of 210 Pb. (N.T.) 4 refs.; 2 figs.; 2 tabs

  14. Cultural Narcissism and Education Reform

    Science.gov (United States)

    Pajak, Edward F.

    2011-01-01

    Background/Context: Scholars have described American culture in recent decades as narcissistic, manifested by displays of self-absorption tantamount to a pathological syndrome that has reached epidemic proportions. An education reform movement that is highly critical of public schools, teachers, and students has simultaneously emerged, espousing a…

  15. Point kernel technique for calculating dose rates due to cobalt-60 hot particles

    International Nuclear Information System (INIS)

    Thornhill, M.J.; McCarthy, J.T.; Morrissette, R.R.; Leach, B.N.

    1989-01-01

    This paper reports on a computer code called BETA that has been developed by health physicists at the Vermont Yankee Nuclear Power Station which accounts for the mass and size of hot particles of Cobalt-60, and therefore corrects the Loevinger-based dose calculation for self-absorption

  16. Optical waveguiding and temperature dependent photoluminescence of nanotubulars grown from molecular building blocks

    DEFF Research Database (Denmark)

    Maibohm, Christian; Rastedt, Maren; Kutscher, Frauke

    2013-01-01

    -Tbf). The propagating blue light is strongly attenuated due to self-absorption. Vibronic spectra for both nanotubulars and macroscopic crystallites for temperatures between 5 and 300 K show a behavior of TMS-Tbf that resembles that of long chained molecules while 17H-TbF resembles that of small organic molecules...

  17. Jet simulations and gamma-ray burst afterglow jet breaks

    NARCIS (Netherlands)

    van Eerten, H.J.; Meliani, Z.; Wijers, R.A.M.J.; Keppens, R.

    2011-01-01

    The conventional derivation of the gamma-ray burst afterglow jet break time uses only the blast wave fluid Lorentz factor and therefore leads to an achromatic break. We show that in general gamma-ray burst afterglow jet breaks are chromatic across the self-absorption break. Depending on

  18. Jet simulations and gamma-ray burst afterglow jet breaks

    NARCIS (Netherlands)

    van Eerten, H. J.; Meliani, Z.; Wijers, R.A.M.J.; Keppens, R.

    2010-01-01

    The conventional derivation of the gamma-ray burst afterglow jet break time uses only the blast wave fluid Lorentz factor and therefore leads to an achromatic break. We show that in general gamma-ray burst afterglow jet breaks are chromatic across the self-absorption break. Depending on

  19. Synchrotron radiation from spherically accreting black holes

    International Nuclear Information System (INIS)

    Ipser, J.R.; Price, R.H.

    1982-01-01

    Spherical accretion onto a Schwartzchild black hole, of gas with frozen-in magnetic field, is studied numerically and analytically for a range of hole masses and accretion rates in which synchrotron emission is the dominant radiative mechanism. At small radii the equipartition of magnetic, kinetic, and gravitational energy is assumed to apply, and the gas is heated by dissipation of infalling magnetic energy, turbulent energy, etc. The models can be classified into three types: (a) synchrotron cooling negligible, (b) synchrotron cooling important but synchrotron self-absorption negligible, (c) synchrotron cooling and self-absorption important. In the first case gas temperatures become very high near the horizon but luminosity efficiencies (luminosity/mass-energy accretion rate) are low. In cases (b) and (c) the gas flow near the horizon is essentially isothermal and luminosity efficiencies are fairly high. The analysis and results for the isothermal cases (b) and (c) are valid only for moderate dissipative heating and synchrotron self-absorption. If self-absorption is very strong or if dissipated energy is comparable to infall energy, Comptonization effects, not included in the analysis, become important

  20. Multiple scattering in synchrotron studies of disordered materials

    International Nuclear Information System (INIS)

    Poulsen, H.F.; Neuefeind, J.

    1995-01-01

    A formalism for the multiple scattering and self-absorption in synchrotron studies of disordered materials is presented. The formalism goes beyond conventionally used approximations and treat the cross sections, the beam characteristics, the state of polarization, and the electronic correction terms in full. Using hard X-rays it is shown how the simulated distributions can be directly compared to experimental data. ((orig.))

  1. X-ray magnetic circular dichroism experiments and theory of transuranium Laves phase compounds

    Czech Academy of Sciences Publication Activity Database

    Wilhelm, F.; Eloirdi, R.; Rusz, Ján; Springell, R.; Colineau, E.; Griveau, J.C.; Oppeneer, P. M.; Caciuffo, R.; Rogalev, A.; Lander, G.H.

    2013-01-01

    Roč. 88, č. 2 (2013), "024424-1"-"024424-14" ISSN 1098-0121 Institutional support: RVO:68378271 Keywords : electronic-structure * uranium-compounds * self -absorption * moments Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.664, year: 2013

  2. Resonance Raman scattering of β-carotene solution excited by visible laser beams into second singlet state.

    Science.gov (United States)

    Lu, Luyao; Shi, Lingyan; Secor, Jeff; Alfano, Robert

    2018-02-01

    This study aimed to use self-absorption correction to determine the Raman enhancement of β-carotene. The Raman spectra of β-carotene solutions were measured using 488nm, 514nm, 532nm and 633nm laser beams, which exhibited significant resonance Raman (RR) enhancement when the laser energy approaches the electronic transition energy from S 0 to S 2 state. The Raman intensity and the actual resonance Raman gain without self-absorption from S 2 state by β-carotene were also obtained to evaluate the effect of self-absorption on RR scattering. Moreover, we observed the Raman intensity strength followed the absorption spectra. Our study found that, although 488nm and 514nm pumps seemed better for stronger RR enhancement, 532nm would be the optimum Raman pump laser with moderate RR enhancement due to reduced fluorescence and self-absorption. The 532nm excitation will be helpful for applying resonance Raman spectroscopy to investigate biological molecules in tissues. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Determination of the shape factor of {sup 90}Sr by means of the cutoff energy yield method

    Energy Technology Data Exchange (ETDEWEB)

    Grau Carles, A. [Instituto de Matematicas y Fisica Fundamental (CSIC), Dcho. 211, C/Serrano 113b, 28006 Madrid (Spain)], E-mail: agrau@imaff.cfmac.csic.es; Kossert, K. [Physikalisch-Technische Bundesanstalt, Department 6.1, Bundesallee 100, D-38116 Braunschweig (Germany); Grau Malonda, A. [CIEMAT, Departamento de Proyectos Estrategicos, Avda. Complutense 22, 28040 Madrid (Spain)

    2008-06-15

    Usually, Kurie plots are used to analyze beta-spectra shape-factor functions measured by means of semiconductor and magnetic spectrometers. A drawback of these techniques is the occurrence of self-absorption within the samples through which the emission spectrum is altered. In liquid-scintillation samples self-absorption does not occur, but the poor energy resolution makes the analysis of the spectra difficult. To overcome this problem, two resolution-invariant observables are used for determining the shape-factor function of {sup 90}Sr: (1) the maximum point energy and (2) the cutoff energy yield. The measured shape-factor function of {sup 90}Sr agrees with the one which is predicted by theory for the first-forbidden unique transition.

  4. Interferometric measurement of lines shift in flames in connection with interpretation of lined absorption method in atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    L'vov, B.V.; Polzik, L.K.; Katskov, D.A.; Kruglikova, L.P.

    1975-01-01

    This paper is concerned with interferometric measuring of the line shift in flames in the view of interpretation of absorption lines in the atomic absorption spectroscopy. The newly measured line shifts were compared to the known data on Lorentz broadening of the same lines obtained by methods free of the systematic errors. The resonant lines of the alkaline earth elements (Sr, Ca, Ba) were investigated. To reduce self-absorption in the flame the solutions with minimum concentrations of the elements were used. The computation scheme includes the spectrometer apparatus width and line broadening due to the self-absorption. Formulae are given for computing the values studied. Good agreement was observed between the computed and experimental results. Error analysis was performed. It was concluded that any line shifts in the hydrocarbons were correctly taken into an account in the absolute computations of absorption

  5. Thermal Electrons in Gamma-Ray Burst Afterglows

    Energy Technology Data Exchange (ETDEWEB)

    Ressler, Sean M.; Laskar, Tanmoy [Department of Astronomy, University of California, 501 Campbell Hall, Berkeley, CA 94720-3411 (United States)

    2017-08-20

    To date, nearly all multi-wavelength modeling of long-duration γ -ray bursts has ignored synchrotron radiation from the significant population of electrons expected to pass the shock without acceleration into a power-law distribution. We investigate the effect of including the contribution of thermal, non-accelerated electrons to synchrotron absorption and emission in the standard afterglow model, and show that these thermal electrons provide an additional source of opacity to synchrotron self-absorption, and yield an additional emission component at higher energies. The extra opacity results in an increase in the synchrotron self-absorption frequency by factors of 10–100 for fiducial parameters. The nature of the additional emission depends on the details of the thermal population, but is generally observed to yield a spectral peak in the optical brighter than radiation from the nonthermal population by similar factors a few seconds after the burst, remaining detectable at millimeter and radio frequencies several days later.

  6. High resolution gamma-ray spectroscopy applied to bulk sample analysis

    International Nuclear Information System (INIS)

    Kosanke, K.L.; Koch, C.D.; Wilson, R.D.

    1980-01-01

    A high resolution Ge(Li) gamma-ray spectrometer has been installed and made operational for use in routine bulk sample analysis by the Bendix Field Engineering Corporation (BFEC) geochemical analysis department. The Ge(Li) spectrometer provides bulk sample analyses for potassium, uranium, and thorium that are superior to those obtained by the BFEC sodium iodide spectrometer. The near term analysis scheme permits a direct assay for uranium that corrects for bulk sample self-absorption effects and is independent of the uranium/radium disequilibrium condition of the sample. A more complete analysis scheme has been developed that fully utilizes the gamma-ray data provided by the Ge(Li) spectrometer and that more properly accounts for the sample self-absorption effect. This new analysis scheme should be implemented on the BFEC Ge(Li) spectrometer at the earliest date

  7. Optically thick model for radiative and collisional effects in nonequilibrium argon plasma flows in a circular tube

    International Nuclear Information System (INIS)

    Shirai, Hiroyuki; Tabei, Katsuine; Koaizawa, Hisashi.

    1984-01-01

    Experimental and theoretical studies were made to gain a deeper understanding of the radiative properties of nonequilibrium argon plasma flows in a circular tube. The self-absorption effects were taken into account as rigorously as possible. Experimentally, the radial profiles of the population densities of argon atoms at the excited 4s, 4p, 5p, and 5d levels were obtained from the lateral distributions of the absolute intensities of ArI spectral lines originating from these levels. On the other hand, theoretical profiles of the population densities for the same levels were calculated based on the optically thick model for collisional and radiative processes proposed by Bates et al. and experimentally measured atom temperature, electron temperature, electron density and gas pressure. Comparison of the experimental and theoretical results showed a reasonably good agreement and the importance of the self-absorption effects. (author)

  8. Application of 42K to Arabidopsis tissues using real-time radioisotope imaging system (RRIS)

    International Nuclear Information System (INIS)

    Aramaki, Toshinori; Sugita, Ryohei; Hirose, Atsushi; Kobayashi, Natsuko I.; Tanoi, Keitaro; Nakanishi, Tomoko M.

    2015-01-01

    We performed an imaging analysis of 42 K in Arabidopsis using real-time radioisotope imaging system (RRIS). First, we purified 42 K from an 42 Ar - 42 K generator. And then, we characterized RRIS performance by quantitatively determining 42 K using standard series. As a result, the dynamic range for 42 K was determined to be at least three orders of magnitude. Next, we evaluated the level of self-absorption in Arabidopsis organs by comparing the signal intensity detected using RRIS and the actual radioactivity detected by a gamma-counting method. There was no significant difference in detection efficiency between the thick bolt(stem) tissue and the thin leaf tissue. The reason for scarce self-absorption could be related to the relatively strong β ray emissions that have a maximum energy of 3525.4 keV. (author)

  9. Observations of the J = 2 → 1 CO line in molecular clouds near compact H+ regions

    International Nuclear Information System (INIS)

    Riley, P.W.; Little, L.T.; Brown, A.T.; Hills, R.E.; Padman, R.; Vizard, D.; Lesurf, J.C.G.; Cronin, N.J.

    1982-01-01

    Observations of the J = 2 → 1 transitions of 12 CO and 13 CO at 230 and 220 GHz in 13 molecular clouds near compact H + regions have been made at UKIRT using an uncooled Schottky diode mixer and a digital auto-correlation spectrometer. The sources were chosen on the basis of their ammonia emission. A comparison between 12 CO and 13 CO spectra reveals a variety of self-absorption effects, ranging from slight asymmetries in the 12 CO profiles relative to their 13 CO counterparts (W43S, S88), to a deep narrow self-absorption dip (S68). The asymmetry observed in six sources out of ten is most easily explained if the clouds are collapsing; there is no clear evidence for expansion. The 13 CO linewidths are systematically wider than those from the NH 3 cores, suggesting that the velocity dispersion in the sources increases with distance from the centre. (author)

  10. Spectroscopic evaluation of the effect of the microparticles on radiofrequency argon plasma

    International Nuclear Information System (INIS)

    Mitic, S; Pustylnik, M Y; Morfill, G E

    2009-01-01

    Axial distributions of 1s excited states of argon were measured in a radiofrequency (RF) discharge by a self-absorption method. Experiments were performed in the PK-3+ chamber, designed for microgravity experiments in complex (dusty) plasmas on board the International Space Station. A correction of a standard self-absorption method for the extinction of the light by the levitating microparticles is proposed. Distributions, measured at the same discharge conditions in a microparticle-free discharge and a discharge containing a cloud of levitating microparticles, revealed the non-local influence of the microparticle cloud on the discharge plasma. The most probable cause of this influence is the disturbance of the ionization balance by the levitating microparticles.

  11. Effect of the levitating microparticle cloud on radiofrequency argon plasma

    International Nuclear Information System (INIS)

    Mitic, S.; Pustylnik, M. Y.; Klumov, B. A.; Morfill, G. E.

    2010-01-01

    The effect of a levitating cloud of microparticles on the parameters of a radiofrequency (RF) plasma has been studied by means of two experimental techniques. Axial distributions of 1s excited states of argon were measured by a self-absorption method. A correction of a standard self-absorption method for the extinction of the light by the levitating microparticles is proposed. In addition the electron temperature was estimated using the optical emission spectroscopy. Measurements at the same discharge conditions in a microparticle-free discharge and discharge, containing a cloud of levitating microparticles, revealed the non-local influence of the microparticle cloud on the discharge plasma. The most probable cause of this influence is the disturbance of the ionization balance by the levitating microparticles.

  12. Improvement of passive shielding to reduce background components to determinate radioactivity at low energy gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Thanh, Tran Thien [VNUHCM-Univ. of Science, Ho Chi Minh City (Viet Nam). Dept. of Nuclear Engineering Physics; Ton Duc Thang Univ., Ho Chi Minh City (Viet Nam). Div. of Nuclear Physics; Loan, T.T.H.; Nhon, M.V.; Tao, C.V. [VNUHCM-Univ. of Science, Ho Chi Minh City (Viet Nam). Dept. of Nuclear Engineering Physics

    2014-06-15

    This paper describes a new system that has the ability to reduce background components to apply for environmental studies. This system uses gamma spectrometry with semi-empirical self-absorption correction and practical method for routine measurements of the mass activity radionuclides at low energy such as {sup 210}Pb (46.5 keV), {sup 234}Th (63.3 keV) and {sup 226}Ra (186.2 keV). The reliability and precision of proficiency test must pass for final scores all the analytical determinations of received ''acceptable'' for all radionuclides. Our work shows an experiment developed for the calculation of self-absorption correction in that case that the sample's chemical composition is unknown.

  13. Diagnostics of the influence of levitating microparticles on the radiofrequency argon plasma

    International Nuclear Information System (INIS)

    Pustylnik, Mikhail Y.; Mitic, Slobodan; Klumov, Boris A.; Morfill, Gregor E.

    2010-01-01

    The effect of a levitating cloud of microparticles on the parameters of a radiofrequency (RF) plasma has been studied by means of two experimental techniques. Axial distributions of 1 s excited states of argon were measured by a self-absorption method. A correction of a standard self-absorption method for the extinction of the light by the levitating microparticles is proposed. In addition the electron temperature was estimated using the optical emission spectroscopy. Measurements at the same discharge conditions in a microparticle-free discharge and discharge, containing a cloud of levitating microparticles, revealed the non-local influence of the microparticle cloud on the discharge plasma. The most probable cause of this influence is the disturbance of the ionization balance by the levitating microparticles.

  14. Instrumental dead-time and its relationship with matrix corrections in X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Thomas, I.L.; Haukka, M.T.; Anderson, D.H.

    1979-01-01

    The relationship between instrumental dead-time and the self-absorption coefficients, αsub(ii) in x.r.f. matrix correction by means of influence coefficients, is not generally recognized but has important analytical consequences. Systematic errors of the order of 1% (relative) for any analyte result from experimental uncertainties in instrumental dead-time. Such errors are applied unevenly across a given range of concentration because the error depends on the calibration standards and on the instrumental conditions used. Refinement of the instrumental dead-time value and other calibration parameters to conform with influence coefficients determined elsewhere assumes exact knowledge of dead-time of the instrument used originally, and quite similar excitation conditions and spectrometer geometry for the two instruments. Though these qualifications may not be met, adjustment of any of the parameters (dead-time, reference concentration, background concentration, self-absorption and other influence coefficients) can be easily achieved. (Auth.)

  15. Determination of the shape factor of 90Sr by means of the cutoff energy yield method

    International Nuclear Information System (INIS)

    Grau Carles, A.; Kossert, K.; Grau Malonda, A.

    2008-01-01

    Usually, Kurie plots are used to analyze beta-spectra shape-factor functions measured by means of semiconductor and magnetic spectrometers. A drawback of these techniques is the occurrence of self-absorption within the samples through which the emission spectrum is altered. In liquid-scintillation samples self-absorption does not occur, but the poor energy resolution makes the analysis of the spectra difficult. To overcome this problem, two resolution-invariant observables are used for determining the shape-factor function of 90 Sr: (1) the maximum point energy and (2) the cutoff energy yield. The measured shape-factor function of 90 Sr agrees with the one which is predicted by theory for the first-forbidden unique transition

  16. Quantitative analysis of Al-Si alloy using calibration free laser induced breakdown spectroscopy (CF-LIBS)

    Science.gov (United States)

    Shakeel, Hira; Haq, S. U.; Aisha, Ghulam; Nadeem, Ali

    2017-06-01

    The quantitative analysis of the standard aluminum-silicon alloy has been performed using calibration free laser induced breakdown spectroscopy (CF-LIBS). The plasma was produced using the fundamental harmonic (1064 nm) of the Nd: YAG laser and the emission spectra were recorded at 3.5 μs detector gate delay. The qualitative analysis of the emission spectra confirms the presence of Mg, Al, Si, Ti, Mn, Fe, Ni, Cu, Zn, Sn, and Pb in the alloy. The background subtracted and self-absorption corrected emission spectra were used for the estimation of plasma temperature as 10 100 ± 300 K. The plasma temperature and self-absorption corrected emission lines of each element have been used for the determination of concentration of each species present in the alloy. The use of corrected emission intensities and accurate evaluation of plasma temperature yield reliable quantitative analysis up to a maximum 2.2% deviation from reference sample concentration.

  17. Reversible Concentration-Dependent Photoluminescence Quenching and Change of Emission Color in CsPbBr3 Nanowires and Nanoplatelets.

    Science.gov (United States)

    Di Stasio, Francesco; Imran, Muhammad; Akkerman, Quinten A; Prato, Mirko; Manna, Liberato; Krahne, Roman

    2017-06-15

    We discuss the photoluminescence (PL) of quantum-confined CsPbBr 3 colloidal nanocrystals of two different shapes (nanowires and nanoplatelets) at different concentrations in solution and in solid-state films. Upon increasing the nanocrystal concentration in solution, a constant drop in photoluminescence quantum yield is observed, accompanied by a significant PL red shift. This effect is reversible, and the original PL can be restored by diluting to the original concentration. We show that this effect can be in part attributed to self-absorption and partly to aggregation. In particular, for nanoplatelets, where the aggregation is mostly irreversible, while the self-absorption effect is reversible, the two contributions can be well separated. Finally, when dry solid-state films are prepared, the emission band is shifted into the green spectral region, close to the bulk CsPbBr 3 band gap, thus preventing blue emission from such films.

  18. Standardization of {sup 32}P radioactive solution

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Caio Pinheiros; Koskinas, Marina Fallone; Almeida, Jamille da Silveira; Yamazaki, Ione M.; Dias, Mauro da Silva, E-mail: cpmarques@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2016-07-01

    The standardization of {sup 32}P radioactive solution using three different methods is presented. The disintegration rate was determined by the CIEMAT/NIST and TDCR methods in liquid scintillator systems and self-absorption extrapolation method using 4π(PC)-β system. The results obtained for the activity of the {sup 32}P solution were compared and they agree within the experimental uncertainties. (author)

  19. On some investigation features of sorption of flotation reagents labelled by soft β-emitters on mineral surface

    International Nuclear Information System (INIS)

    Korobochkin, V.P.; Gladyshev, V.P.; Latypova, O.A.

    1983-01-01

    A correction for self-absorption, taking into account concrete dimensions of mineral grain during sorption of flotation reagents on mineral surface is deduced. On the basis of the regularity obtained problems of the sensitivity of the determination method of reagent activity sorbed by minerals which are labelled by radioactive isotopes are considered. Improved technique is described and statistical analysis of the experimental data obtained is carried out

  20. A new calculation method adapted to the experimental conditions for determining samples γ-activities induced by 14 MeV neutrons

    International Nuclear Information System (INIS)

    Rzama, A.; Erramli, H.; Misdaq, M.A.

    1994-01-01

    Induced gamma-activities of different disk shaped irradiated samples and standards with 14 MeV neutrons have been determined by using a Monte Carlo calculation method adapted to the experimental conditions. The self-absorption of the multienergetic emitted gamma rays has been taken into account in the final samples activities. The influence of the different activation parameters has been studied. Na, K, Cl and P contents in biological (red beet) samples have been determined. ((orig.))

  1. Determination of the Absolute Disintegration Rate of Cs-137 sources by the Tracer Method

    Energy Technology Data Exchange (ETDEWEB)

    Hellstroem, S; Brune, D

    1963-07-15

    {sup 137}Cs - sources were absolutely measured by the 'tracer method', with {sup 82}Br as a tracer nuclide and with application of the 4{pi} {beta}-{gamma} coincidence technique. A self-absorption of 6 % was found in sources obtained from a solution with a carrier-content of 400 {mu}g/ml. The precision of the method for the determination of the {beta}-emission rate was estimated to {+-} 1 %. The results were compared with those of other works.

  2. A small flat fission chamber

    International Nuclear Information System (INIS)

    Li Yijun; Wang Dalun; Chen Suhe

    1999-01-01

    With fission materials of depleted uranium, natural uranium, enriched uranium, 239 Pu, and 237 Np, the authors have designed and made a series of small flat fission chamber. The authors narrated the construction of the fission chamber and its technological process of manufacture, and furthermore, the authors have measured and discussed the follow correct factor, self-absorption, boundary effect, threshold loss factor, bottom scatter and or so

  3. Analysis of tin-ore samples by the ratio of Rayleigh to Compton backscattering

    International Nuclear Information System (INIS)

    Ao Qi; Cao Liguo; Ding Yimin

    1990-01-01

    The relationship between the ratio of gamma-ray Rayleigh to Compton backscattering intensities (R/C) and the weight fraction of heavy element in light matrixes were investigated. An improved (R/C) eff analytical technique for tin-ore samples was described. The technique can be regarded as a substitute for the XRF method in which the self-absorption process worsens the analytical accuracy of heavy elements

  4. Gamma-ray self-attenuation corrections in environmental samples

    International Nuclear Information System (INIS)

    Robu, E.; Giovani, C.

    2009-01-01

    Gamma-spectrometry is a commonly used technique in environmental radioactivity monitoring. Frequently the bulk samples that should be measured differ with respect to composition and density from the reference sample used for efficiency calibration. Correction factors should be applied in these cases for activity measurement. Linear attenuation coefficients and self-absorption correction factors have been evaluated for soil, grass and liquid sources with different densities and geometries.(authors)

  5. Determination of gold in gold ores

    International Nuclear Information System (INIS)

    Keedy, C.R.; Parson, L.; Shen, J.

    1989-01-01

    The gold content of placer gold flakes and gold bearing ores was determined by instrumental and radiochemical neutron activation analysis, respectively. It was discovered that significant errors result in the instrumental method for gold flakes as small as 10 mg due to sample self-absorption of neutrons during irradiation. Reliable results were obtained for both ore samples and gold flakes by dissolving the samples in aqua regia prior to irradiation. (author) 7 refs.; 3 tabs

  6. CREPT-MCNP code for efficiency calibration of HPGe detectors with the representative point method.

    Science.gov (United States)

    Saegusa, Jun

    2008-01-01

    The representative point method for the efficiency calibration of volume samples has been previously proposed. For smoothly implementing the method, a calculation code named CREPT-MCNP has been developed. The code estimates the position of a representative point which is intrinsic to each shape of volume sample. The self-absorption correction factors are also given to make correction on the efficiencies measured at the representative point with a standard point source. Features of the CREPT-MCNP code are presented.

  7. Determination of the Absolute Disintegration Rate of Cs-137 sources by the Tracer Method

    International Nuclear Information System (INIS)

    Hellstroem, S.; Brune, D.

    1963-07-01

    137 Cs - sources were absolutely measured by the 'tracer method', with 82 Br as a tracer nuclide and with application of the 4π β-γ coincidence technique. A self-absorption of 6 % was found in sources obtained from a solution with a carrier-content of 400 μg/ml. The precision of the method for the determination of the β-emission rate was estimated to ± 1 %. The results were compared with those of other works

  8. Tritiation and Stability Measurements of Nitroxide for Betavoltaic Cells

    Science.gov (United States)

    2016-09-01

    source compounds include low beta-flux power, intrinsic isotope leakage , and beta self-absorption. The figure of merit for a tritiated compound is...graphane, fully hydrogenated graphene. Graphane is not reactive in water or air; it has theoretical higher mechanical and thermal strength than graphene...bonded to the side group of the nitroxide radical TEMPO 6-membered ring. The ester-cleaved product is detectable and is used to assess the specific

  9. FT-Raman spectra of cellulose and lignocellulose materials : “self-absorption” phenomenon and its implications for quantitative work

    Science.gov (United States)

    Umesh Agarwal; Nancy Kawai

    2003-01-01

    The phenomenon of “self-absorption” was found to exist in the FT-Raman spectra of cellulose and thermomechanical pulp (TMP), but not in the spectrum of milled wood lignin. For cellulose and TMP, the effect was responsible for reducing the intensity of the Raman bands in the C-H stretch region. Several factors including sampling position, sample thickness, and moisture...

  10. Power output and efficiency of beta-emitting microspheres

    International Nuclear Information System (INIS)

    Cheneler, David; Ward, Michael

    2015-01-01

    Current standard methods to calculate the dose of radiation emitted during medical applications by beta-minus emitting microspheres rely on an over-simplistic formalism. This formalism is a function of the average activity of the radioisotope used and the physiological dimensions of the patient only. It neglects the variation in energy of the emitted beta particle due to self-attenuation, or self-absorption, effects related to the finite size of the sphere. Here it is assumed the sphere is comprised of a pure radioisotope with beta particles being emitted isotropically throughout the material. The full initial possible kinetic energy distribution of a beta particle is taken into account as well as the energy losses due to scattering by other atoms in the microsphere and bremsstrahlung radiation. By combining Longmire’s theory of the mean forward range of charged particles and the Rayleigh distribution to take into account the statistical nature of scattering and energy straggling, the linear attenuation, or self-absorption, coefficient for beta-emitting radioisotopes has been deduced. By analogy with gamma radiation transport in spheres, this result was used to calculate the rate of energy emitted by a beta-emitting microsphere and its efficiency. Comparisons to standard point dose kernel formulations generated using Monte Carlo data show the efficacy of the proposed method. Yttrium-90 is used as a specific example throughout, as a medically significant radioisotope, frequently used in radiation therapy for treating cancer. - Highlights: • Range-energy relationship for the beta particles in yttrium-90 is calculated. • Formalism for the semi-analytical calculation of self-absorption coefficients. • Energy-dependent self-absorption coefficient calculated for yttrium-90. • Flux rate of beta particles from a self-attenuating radioactive sphere is shown. • The efficiency of beta particle emitting radioactive microspheres is calculated

  11. Evaluation of a radioisotope labelling technique for measuring bacterial adherence on fabrics

    International Nuclear Information System (INIS)

    Youlo Hsieh; Timm, Debra; Merry, Joanne

    1986-01-01

    A technique utilizing tritiated thymidine labelled bacteria to quantify bacteria on fabrics has been evaluated. Quenching or self-absorption of isotope solution and labelled bacteria suspension by some of the fabrics has been observed. The extents of self-absorption of both isotope and labelled bacteria solutions on various fabrics was found to be dependent upon the fiber contents, i.e. the chemical compositions, of the substrata. This observation confirms that reduction of scintillation efficiency or self-absorption does occur when radio-labelled substances in suspensions were measured with the presence of some fabrics. Cautions should be taken when radio-labelling techniques are applied to detect isotope-labelled micro-organisms or other substances which are in contact with fabrics in the form of solutions. However, when there is no excess and nonattached labelled bacteria in the aqueous surrounding of the fabric, scintillation counting efficiency of the labelled bacteria on all fabrics studied remained constant over a period of 8 h. This indicates that the application of the described isotope labelling procedure is appropriate for quantifying adherent bacteria on fibrous substrate. (author)

  12. Population inversion and threshold condition for laser oscillation in optically thin and thick recombining plasmas

    International Nuclear Information System (INIS)

    Oda, Toshiatsu; Furukane, Utaro.

    1982-03-01

    Overpopulation density δn sub(ij) which is defined as difference between the population densities per unit statistical weight of the upper and lower excited levels i and j is calculated as a function of the electron density n sub(e) for various electron temperatures T sub(e) in recombining hydrogen plasmas. The calculation is made for the line pairs with the principal quantum numbers, (2, 3), (3, 4) and (4, 5). Effect of the ground level population density n sub(l) on δn sub(ij) is calculated. In this calculation the atom-atom collision and the self-absorption of the resonance lines are taken account of. The n sub(l)-dependence of δn sub(ij) remains almost constant until the self-absorption becomes significant. When n sub(l) is zero, an optimum value of n sub(e) exists for δn sub(ij). The threshold condition for laser oscillation is discussed in relation to the calculated δn sub(ij). Laser oscillation is possible for the line pair (2, 3) at an electron density and temperature higher than for the other pairs (3, 4) and (4, 5) when the self-absorption is negligible. (author)

  13. Design of a tritium gas cell for beta-ray induced X-ray spectrometry using Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Hara, Masanori, E-mail: masahara@ctg.u-toyama.ac.jp [Hydrogen Isotope Research Center, Organization for Promotion of Research, University of Toyama, 3190 Gofuku, Toyama City, Toyama 930-8555 (Japan); Abe, Shinsuke; Matsuyama, Masao [Hydrogen Isotope Research Center, Organization for Promotion of Research, University of Toyama, 3190 Gofuku, Toyama City, Toyama 930-8555 (Japan); Aso, Tsukasa [Electronics and Computer Engineering, National Institute of Technology, Toyama College, 1-2 Ebie-neriya, Imizu City, Toyama 933-0293 (Japan); Tatenuma, Katsuyoshi; Kawakami, Tomohiko; Ito, Takeshi [KAKEN Company Limited, 1044 Horimachi, Mito City, Ibaraki 310-0903 (Japan)

    2017-06-15

    Highlights: • Beta-ray induced X-ray spectrometry (BIXS) is a method for tritium gas analysis. • Gas cell for BIXS was designed by Monte Carlo simulations. • The optimum thickness of the gold layer on a beryllium window was around 150 nm. • This simulation model considered the self-absorption with increasing the cell length. - Abstract: One of the methods used for tritium gas analysis is beta-ray induced X-ray spectrometry (BIXS). Gas cell design is important in this method. The structure of the gas cell for BIXS was optimized by Monte Carlo simulation of beta-ray induced X-ray spectra in various window geometries using the Geant4 tool kit (version 10.01.p02). The simulated spectrum from tritium decay fitted the observed one, and the simulation model was used to obtain the cell parameters for BIXS. The optimum thickness of the gold layer on a beryllium window was around 150 nm. This simulation model also considered the relationship between self-absorption by hydrogen gas and the cell length. Self-absorption increased with increasing cell length and the relationship between the sample pressure and cell length was formulated.

  14. Grazing exit versus grazing incidence geometry for x-ray absorption near edge structure analysis of arsenic traces

    International Nuclear Information System (INIS)

    Meirer, F.; Streli, C.; Wobrauschek, P.; Zoeger, N.; Pepponi, G.

    2009-01-01

    In the presented study the grazing exit x-ray fluorescence was tested for its applicability to x-ray absorption near edge structure analysis of arsenic in droplet samples. The experimental results have been compared to the findings of former analyses of the same samples using a grazing incidence (GI) setup to compare the performance of both geometries. Furthermore, the investigations were accomplished to gain a better understanding of the so called self-absorption effect, which was observed and investigated in previous studies using a GI geometry. It was suggested that a normal incidence-grazing-exit geometry would not suffer from self-absorption effects in x-ray absorption fine structure (XAFS) analysis due to the minimized path length of the incident beam through the sample. The results proved this assumption and in turn confirmed the occurrence of the self-absorption effect for GI geometry. Due to its lower sensitivity it is difficult to apply the GE geometry to XAFS analysis of trace amounts (few nanograms) of samples but the technique is well suited for the analysis of small amounts of concentrated samples

  15. Determination of total alpha activity index in samples of radioactive wastes

    International Nuclear Information System (INIS)

    Galicia C, F. J.

    2015-01-01

    This study aimed to develop a methodology of preparation and quantification of samples containing radionuclides beta and/or alpha emitters, to determine the rates of alpha and beta total activity of radioactive waste samples. For this, a device of planchettes preparer was designed, to assist the planchettes preparation in a controlled environment and free of corrosive vapors. Planchettes were prepared in three means: nitrate, carbonate and sulfate, to different mass thickness, natural uranium (alpha and beta emitter) and in case of Sr-90 (beta emitter pure) only in half nitrate; and these planchettes were quantified in an alpha/beta counter, in order to construct the self-absorption curves for alpha and beta particles. These curves are necessary to determine the rate of alpha-beta activity of any sample because they provide the self-absorption correction factor to be applied in calculating the index. Samples with U were prepared with the help of the device of planchettes preparer and subsequently were analyzed in the proportional counter Mpc-100 Pic brand. Samples with Sr-90 were prepared without the device to see if there was a different behavior with respect to obtaining mass thickness. Similarly they were calcined and carried out count in the Mpc-100. To perform the count, first the parameters of counter operating were determined: operating voltages for alpha and beta particles 630 and 1500 V respectively, a count routine was generated where the time and count type were adjusted, and counting efficiencies for alpha and beta particles, with the aid of calibration sources of 210 Po for alphas and 90 Sr for betas. According to the results, the counts per minute will decrease as increasing the mass thickness of the sample (self-absorption curve), adjusting this behavior to an exponential function in all cases studied. The minor self-absorption of alpha and beta particles in the case of U was obtained in sulfate medium. The self-absorption curves of Sr-90 follow the

  16. Determination of total alpha activity index in samples of radioactive wastes; Determinacion del indice de actividad alfa total en muestras de desechos radiactivos

    Energy Technology Data Exchange (ETDEWEB)

    Galicia C, F. J.

    2015-07-01

    This study aimed to develop a methodology of preparation and quantification of samples containing radionuclides beta and/or alpha emitters, to determine the rates of alpha and beta total activity of radioactive waste samples. For this, a device of planchettes preparer was designed, to assist the planchettes preparation in a controlled environment and free of corrosive vapors. Planchettes were prepared in three means: nitrate, carbonate and sulfate, to different mass thickness, natural uranium (alpha and beta emitter) and in case of Sr-90 (beta emitter pure) only in half nitrate; and these planchettes were quantified in an alpha/beta counter, in order to construct the self-absorption curves for alpha and beta particles. These curves are necessary to determine the rate of alpha-beta activity of any sample because they provide the self-absorption correction factor to be applied in calculating the index. Samples with U were prepared with the help of the device of planchettes preparer and subsequently were analyzed in the proportional counter Mpc-100 Pic brand. Samples with Sr-90 were prepared without the device to see if there was a different behavior with respect to obtaining mass thickness. Similarly they were calcined and carried out count in the Mpc-100. To perform the count, first the parameters of counter operating were determined: operating voltages for alpha and beta particles 630 and 1500 V respectively, a count routine was generated where the time and count type were adjusted, and counting efficiencies for alpha and beta particles, with the aid of calibration sources of {sup 210}Po for alphas and {sup 90}Sr for betas. According to the results, the counts per minute will decrease as increasing the mass thickness of the sample (self-absorption curve), adjusting this behavior to an exponential function in all cases studied. The minor self-absorption of alpha and beta particles in the case of U was obtained in sulfate medium. The self-absorption curves of Sr-90

  17. X-ray magnetic circular dichroism strongly influenced by non-magnetic cover layers

    International Nuclear Information System (INIS)

    Zafar, K.; Audehm, P.; Schütz, G.; Goering, E.; Pathak, M.; Chetry, K.B.; LeClair, P.R.; Gupta, A.

    2013-01-01

    Highlights: •Energy filtering gives much larger sampling depth and escape length as expected. •XMCD sum rules could be dramatically altered by this effect. •Strong enhanced effective escape length for buried layers. •A “universal curve” model gives semi quantitative understanding. •Buried layers are more sensitive to self-absorption phenomena. -- Abstract: Total electron yield (TEY) is the dominating measurement mode in soft X-ray absorption spectroscopy (XAS), where the sampling depth is generally assumed to be quite small and constant, and the related self-absorption or saturation phenomena are about to be negligible at normal incidence conditions. From the OK edge to CrL 2,3 edge XAS ratio we determined a strong change in the effective electron escape length between an uncovered and a RuO 2 covered CrO 2 sample. This effect has been explained by a simple electron energy filtering model, providing a semi quantitative description. In addition, this simple model can quantitatively describe the unexpected reduced and positive CrL 2,3 X-ray magnetic circular dichroism (XMCD) signal of a RuO 2 /CrO 2 bilayer, while previous results have identified a clear negative Cr magnetization at the RuO 2 /CrO 2 interface. In our case this escape length enhancement has strong impact on the XMCD sum rule results and in general it provides much deeper sampling depth, but also larger self-absorption or saturation effects

  18. Alternative procedure to determine radionuclide concentrations for marine sediment dating

    International Nuclear Information System (INIS)

    Palacios, D; Sajo-Bohus, L.; Alfonso, J.; Perez, K.; Trujillo, M.

    2006-01-01

    The development of an alternative method to prepare and to measure marine sediment samples for dating purpose using high resolution gamma spectrometry is given. To calculate the 137 Cs and the supported and unsupported 210 Pb concentrations, cylindrical tablets subjected to different pressures were analyzed. Mass attenuation coefficients (MAC) were determined by our variant of the transmission method, the Bragg law (using MACs provided by the web program XCOM) and the method of average composition of the analyzed sediment samples. The differences between obtained results are smaller than the experimental error (10%). The influence of pressure and sediment mass on the MAC, mechanical stability of the sample, and self-absorption corrections for different gamma energies is studied. Optimal dimensions of the tablets were determined from considerations on the infinite thickness, minimum detectable activity, precision of results, radiation self-absorption and geometric efficiency. Based on the differential peak absorption analysis, through a relative efficiency curve, a new method to evaluate the existence of radioactive equilibrium between 226 Ra, 222 Rn and its progeny is given. Experimental error of the proposed methodology is evaluated, as well as accuracy, precision and detection limit. With the use of developed methodology, the 210 Pb, 226 Ra and 137 Cs activities in recent sediment samples from near shore of the Orinoco River Delta were determined. The results were comparable with the obtained by two of the most used methods, while precision is improved and radiation self-absorption in sample container is avoided since sample encapsulation is not required. (Full Text)

  19. Luminescence properties of pure and Eu-doped SrI{sub 2} crystals purified by a “Liquinert” process and grown by vertical Bridgman method

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, Taketoshi, E-mail: buri@p.s.osakafu-u.ac.jp [Osaka Prefecture University, Gakuen-cho 1-1, Naka-ku, Sakai, Osaka 599-8531 (Japan); Sakuragi, Shiro; Hashimoto, Satoshi [Union Materials Inc. 1640 Oshido, Tone-machi, Ibaraki 300-1602 (Japan)

    2016-08-15

    We have prepared high quality crystals of pure SrI{sub 2} and Eu-doped SrI{sub 2} by our original “Liquinert” process and investigated their luminescence properties. Under the excitation with the 193 nm light of an ArF excimer laser, which corresponds to the wavelength above the bandgap of SrI{sub 2} bulk crystals, the pure and Eu doped SrI{sub 2} crystals exhibit no luminescence band related to defects or impurities around 560 nm. This fact indicates that the crystals prepared by the “Liquinert” process contain lower defects and/or impurities. When the Eu-doped SrI{sub 2} crystals are excited with the 325 nm light of a He–Cd laser, only the luminescence band due to the 5d→4f transition in the Eu{sup 2+} ions is observed around 425 nm. The 425 nm band observed at a forward configuration exhibits the shift to the longer wavelength side and the decrease of the luminescence intensity with increasing Eu concentration. The Eu concentration dependences of the peak wavelength and luminescence intensity are simulated on the basis of a simple self-absorption model. - Highlights: • Our original “Liquinert” process allows us to prepare high quality crystals of SrI{sub 2}. • No luminescence band related with impurities and/or defects is observed. • The 425 nm luminescence bands due to Eu{sup 2+} ions are affected by a self-absorption. • A simple self-absorption model reproduces the changes of the 425 nm bands.

  20. Prediction of 4H–SiC betavoltaic microbattery characteristics based on practical Ni-63 sources

    International Nuclear Information System (INIS)

    Gui, Gui; Zhang, Kan; Blanchard, James P.; Ma, Zhenqiang

    2016-01-01

    We have investigated the performance of 4H–SiC betavoltaic microbatteries under exposure to the practical Ni-63 sources using the Monte Carlo method and Synopsys® Medici device simulator. A typical planar p–n junction betavoltaic device with the Ni-63 source of 20% purity on top is modeled in the simulation. The p–n junction structure includes a p+ layer, a p− layer, an n+ layer, and an n− layer. In order to obtain an accurate and valid predication, our simulations consider several practical factors, including isotope impurities, self-absorption, and full beta energy spectra. By simulating the effects of both the p–n junction configuration and the isotope source thickness on the battery output performance, we have achieved the optimal design of the device and maximum energy conversion efficiency. Our simulation results show that the energy conversion efficiency increases as the doping concentration and thickness of the p− layer increase, whereas it is independent of the total depth of the p–n junction. Furthermore, the energy conversion efficiency decreases as the thickness of the practical Ni-63 source increases, because of self-absorption in the isotope source. Therefore, we propose that a p–n junction betavoltaic cell with a thicker and heavily doped p− layer under exposure to a practical Ni-63 source with an appreciable thickness could produce the optimal energy conversion efficiency. - Highlights: • Different thicknesses of Ni-63 isotope sources with 20% purity were employed. • A self-absorption model was constructed for the beta energy spectra of Ni-63 sources. • The optimization strategies for betavoltaic microbatteries were outlined.

  1. GAMMA-RAY BURST REVERSE SHOCK EMISSION IN EARLY RADIO AFTERGLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Resmi, Lekshmi [Indian Institute of Space Science and Technology, Trivandrum (India); Zhang, Bing, E-mail: l.resmi@iist.ac.in [Department of Physics and Astronomy, University of Nevada, Las Vegas (United States)

    2016-07-01

    Reverse shock (RS) emission from gamma-ray bursts is an important tool in investigating the nature of the ejecta from the central engine. If the magnetization of the ejecta is not high enough to suppress the RS, a strong RS emission component, usually peaking in the optical/IR band early on, would provide an important contribution to early afterglow light curve. In the radio band, synchrotron self-absorption may suppress early RS emission and also delay the RS peak time. In this paper, we calculate the self-absorbed RS emission in the radio band under different dynamical conditions. In particular, we stress that the RS radio emission is subject to self-absorption in both RSs and forward shocks (FSs). We calculate the ratio between the RS to FS flux at the RS peak time for different frequencies, which is a measure of the detectability of the RS emission component. We then constrain the range of physical parameters for a detectable RS, in particular the role of magnetization. We notice that unlike optical RS emission which is enhanced by moderate magnetization, moderately magnetized ejecta do not necessarily produce a brighter radio RS due to the self-absorption effect. For typical parameters, the RS emission component would not be detectable below 1 GHz unless the medium density is very low (e.g., n < 10{sup −3} cm{sup −3} for the interstellar medium and A {sub *} < 5 × 10{sup −4} for wind). These predictions can be tested using the afterglow observations from current and upcoming radio facilities such as the Karl G. Jansky Very Large Array, the Low-Frequency Array, the Five Hundred Meter Aperture Spherical Telescope, and the Square Kilometer Array.

  2. Colliding clouds and star formation in NGC 1333

    International Nuclear Information System (INIS)

    Loren, R.B.

    1976-01-01

    Ongoing star formation in the NGC 1333 molecular cloud is found to be the result of a cloud-cloud collision. Two velocity components at 6.3 and 8.3 km s -1 are observable in the CO and 13 CO spectra, with strong self-abosorption occurring only in the 8.3 km s -1 component. The cloud-cloud collision provides compression and heating of the back side of the 8.3 km s -1 cloud, while cool, unshocked gas on the front side of this cloud results in the observed self-absorption. With the 6.3 km s -1 cloud on the far side of the collision interface, no self-absorption occurs at this velocity. One result of the collision is the coalescence of the two velocity components into a single, intermediate velocity component observed at 7.5 km s -1 . Associated with this postcollision gas is a chain of newly formed stars which illuminates and heats the nebulosity of NGC 1333.At one end of this chain of stars is a region of enhanced CO line broadening, indicating a nonhomologous gravitational collapse of this portion of the cloud. The infrared stars closest to the part of the cloud which is collapsing are completely obscured at visual wavelengths, and several are associated with Herbig-Haro (HH) objects. With increasing displacement from the region of collapse, the stars become more visible, are probably older, and the CO self-absorption decreases at these positions in the cloud.The observed region in which the cloud-cloud collision is occurring is located at the intersection of an expanding neutral hydrogen shell and lower-velocity background H I

  3. El universo plástico y sensorial de la mano (Wong Kar Wai, 2004

    Directory of Open Access Journals (Sweden)

    Ana MELENDO CRUZ

    2014-10-01

    Full Text Available In this article, we show how Wong Kar Wai, heir to a filmography closely linked to cinematographic modernity, explores themes such as loneliness, melancholy, or self-absorption in his short film The Hand (2004. These themes, together with his study of geometry, saturated colours and pictorial qualities through the prism of metaphysical realism, give rise to purely optical, sonorous and tactile situations. In this way, the Chinese film director reveals, through the presence of a body fragment and metonymy, the colourful and sonorous textures that form the sensory-motor spaces of the underworld in which the story is set

  4. Correction factor for hair analysis by PIXE

    International Nuclear Information System (INIS)

    Montenegro, E.C.; Baptista, G.B.; Castro Faria, L.V. de; Paschoa, A.S.

    1980-01-01

    The application of the Particle Induced X-ray Emission (PIXE) technique to analyse quantitatively the elemental composition of hair specimens brings about some difficulties in the interpretation of the data. The present paper proposes a correction factor to account for the effects of the energy loss of the incident particle with penetration depth, and X-ray self-absorption when a particular geometrical distribution of elements in hair is assumed for calculational purposes. The correction factor has been applied to the analysis of hair contents Zn, Cu and Ca as a function of the energy of the incident particle. (orig.)

  5. Experiments in nuclear science

    CERN Document Server

    Katz, Sidney A

    2011-01-01

    Characteristics of Geiger-Muller CountersResolving TimeBackground CorrectionsInverse Square LawCorrections for Geometry FactorsBack Scatter of RadiationCorrections for Self-absorptionRange of Beta RadiationsAbsorption of Beta RadiationAbsorption of Gamma RadiationRadioactive Decay and Instrument EfficiencyHalf-life DeterminationInvestigation of Two IndependentlyDecaying RadionuclidesHalf-life of a Long-lived RadionuclideAutoradiographyCalibration and Operation of the ElectroscopeProperties of Proportional CountersIntegral SpectraGamma Spectrometry IGamma Spectrometry IILiquid Scintillation Cou

  6. Historical perspectives on autism: its past record of discovery and its present state of solipsism, skepticism, and sorrowful suspicion.

    Science.gov (United States)

    Greydanus, Donald E; Toledo-Pereyra, Luis H

    2012-02-01

    Concepts of autism have evolved over the twentieth century after Bleuler coined the term to refer to symptoms of self-absorption in those with schizophrenia. Autism nosology changed to the current sesquipedalian constellation of autism spectrum disorders with a confusing archipelago of 5 conditions that often serve as islands of confusion to both the general public and professionals. This article reviews historical links that have led to the current confusing and controversial situation that is encouraging some people to return to magic, mysticism, and mantics for health care, despite the amazing accumulation of progress in vaccinology over the past 2 centuries. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Infrared absorption in PbTe single crystals

    International Nuclear Information System (INIS)

    Kudykina, T.A.

    1982-01-01

    A group-theoretical analysis is conducted to select rules for optical transitions between bands in PbTe single crystals. It is shown that transitions between valence bands which are near a forbidden band are also forbidden. The extra absorption observed in p-PbTe and p-Pbsub(1-x)Snsub(x)Te in the region between the self-absorption edge and the free-carrier absorption edge is probably connected with transitions between one of valence bands and the p-state of the impurity

  8. Comparison of conventional and total reflection excitation geometry for fluorescence X-ray absorption spectroscopy on droplet samples

    International Nuclear Information System (INIS)

    Falkenberg, G.; Pepponi, G.; Streli, C.; Wobrauschek, P.

    2003-01-01

    X-ray absorption fine structure (XAFS) experiments in fluorescence mode have been performed in total reflection excitation geometry and conventional 45 deg. /45 deg. excitation/detection geometry for comparison. The experimental results have shown that XAFS measurements are feasible under normal total reflection X-ray fluorescence (TXRF) conditions, i.e. on droplet samples, with excitation in grazing incidence and using a TXRF experimental chamber. The application of the total reflection excitation geometry for XAFS measurements increases the sensitivity compared to the conventional geometry leading to lower accessible concentration ranges. However, XAFS under total reflection excitation condition fails for highly concentrated samples because of the self-absorption effect

  9. Gamma-ray spectroscopy applications in radiation control and environmental monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Manushev, B [Sofia Univ. (Bulgaria). Fizicheski Fakultet; Koleva, K [National Metrology Centre, Sofia (Bulgaria)

    1996-12-31

    A method for stabilization of gamma-ray spectrometers energy calibration is proposed. It is based on recalibration of the spectrum by numerical filtration. The possibility of efficiency auto-calibration is considered in the case when a reference source with appropriate shape is unavailable. The method is tested by estimation of the effective thickness of a lead plate (self-absorption). Potential applications include the evaluation of surface pollution infiltration depth as well as the development of pure beta sources (e.g. Sr-90) using the registration of their Bremsstrahlung. 6 refs.

  10. Atomic hydrogen in and around the giant molecular cloud near W3 and W4

    International Nuclear Information System (INIS)

    Hasegawa, T.; Sato, F.; Fukui, Y.

    1980-01-01

    Cold HI gas appears as self-absorption dips in the 21-cm line profiles in and around the giant molecular cloud near W3 and W4. The cold HI cloud is approximately 150 pc long and extends along the galactic plane. It consists of several fragments, each of which is typically approximately 25 pc in diameter and (1 - 4) X 10 4 solar masses. The [H 2 ]/[HI] ratio is estimated to be 15 - 50. The mass of the entire HI cloud amounts to approximately 10 5 solar masses which is comparable to that observed in CO emission. (Auth.)

  11. Transient Infrared Emission Spectroscopy

    Science.gov (United States)

    Jones, Roger W.; McClelland, John F.

    1989-12-01

    Transient Infrared Emission Spectroscopy (TIRES) is a new technique that reduces the occurrence of self-absorption in optically thick solid samples so that analytically useful emission spectra may be observed. Conventional emission spectroscopy, in which the sample is held at an elevated, uniform temperature, is practical only for optically thin samples. In thick samples the emission from deep layers of the material is partially absorbed by overlying layers.1 This self-absorption results in emission spectra from most optically thick samples that closely resemble black-body spectra. The characteristic discrete emission bands are severely truncated and altered in shape. TIRES bypasses this difficulty by using a laser to heat only an optically thin surface layer. The increased temperature of the layer is transient since the layer will rapidly cool and thicken by thermal diffusion; hence the emission collection must be correlated with the laser heating. TIRES may be done with both pulsed and cw lasers.2,3 When a pulsed laser is used, the spectrometer sampling must be synchronized with the laser pulsing so that only emission during and immediately after each laser pulse is observed.3 If a cw laser is used, the sample must move rapidly through the beam. The hot, transient layer is then in the beam track on the sample at and immediately behind the beam position, so the spectrometer field of view must be limited to this region near the beam position.2 How much self-absorption the observed emission suffers depends on how thick the heated layer has grown by thermal diffusion when the spectrometer samples the emission. Use of a pulsed laser synchronized with the spectrometer sampling readily permits reduction of the time available for heat diffusion to about 100 acs .3 When a cw laser is used, the heat-diffusion time is controlled by how small the spectrometer field of view is and by how rapidly the sample moves past within this field. Both a very small field of view and a

  12. Comparative study of two drying techniques used in radioactive source preparation: Freeze-drying and evaporation using hot dry nitrogen jets

    International Nuclear Information System (INIS)

    Branger, T.; Bobin, C.; Iroulart, M.-G.; Lepy, M.-C.; Le Garreres, I.; Morelli, S.; Lacour, D.; Plagnard, J.

    2008-01-01

    Quantitative solid sources are used widely in the field of radionuclide metrology. With the aim to improve the detection efficiency for electrons and x-rays, a comparative study between two source drying techniques has been undertaken at LNE-Laboratoire National Henri Becquerel (LNE-LNHB, France). In this paper, freeze-drying using commercial equipment is compared with a system of drying using hot jets of nitrogen developed at Institute for Reference Materials and Measurements (IRMM, Belgium). In order to characterize the influence of self-absorption, the detection efficiencies for 51 Cr sources have been measured by coincidence counting and photon spectrometry

  13. A new plastic scintillator with large Stokes shift

    International Nuclear Information System (INIS)

    Destruel, P.; Taufer, M.

    1989-01-01

    We have developed a new plastic scintillator with the novel characteristic of highly localized light emission; scintillation and wavelength shifting take place within a few tens of micrometers of the primary ionization. The new scintillator consists of a scintillating polymer base [polyvinyl toluene (PVT) or polystyrene (PS)] doped with a single wavelength shifter, 1-phenyl-3-mesityl-2-pyrazoline (PMP), which has an exceptionally large Stokes shift and therefore a comparatively small self-absorption of its emitted light. In other characteristics (e.g. scintillation efficiency and decay time) the performance of the new scintillator is similar to a good quality commercial plastic scintillator such as NE110. (orig.)

  14. ''Top-down'' versus ''side-on'' viewing of the inductively coupled plasma

    International Nuclear Information System (INIS)

    Faires, L.M.; Bieniewski, T.M.; Apel, C.T.; Niemczyk, T.M.

    1985-01-01

    The inductively coupled plasma is viewed by a ''top-down'' optical configuration, and the analytical performance is compared to conventional ''side-on'' viewing in terms of sensitivity, detection limits, linear dynamical range, self-reversal effects, and multielement performance. This comparison is made for a selection of eleven atom and ion lines of eight elements. The results of this study indicate distinct advantages in ''top-down'' viewing including improved sensitivity, lower detection limits, better signal-to-background ratios, and better compromise viewing position for multielement analysis. An exception to these advantages is increased self-absorption effects observed for the alkali elements

  15. Low-pressure appraoch to the formation and study of exciplex systems

    International Nuclear Information System (INIS)

    Sanzone, G.

    1977-11-01

    Studies on the formation and properties of new materials for high-energy, gas-phase lasers are described. Attention is directed mainly to systems having bound excited states but unbound ground states. An important class of such excimer/exciplex systems has a van der Waals dimer/oligomer as its ground state. This research attempts to probe the relative rates of electron pumping of excited-state manifolds and the preferentially pumped vibronic states within each manifold. Reactive quenching of emission, resonant self-absorption of laser emissions, and collision- and noncollision-induced intersystem crossing are also considered. 11 figures, 2 tables

  16. Estimation of 239Pu in urine, influence of Sulkowich reagent

    International Nuclear Information System (INIS)

    Kalaiselvan, S.; Prasad, M.V.R.; Jeevanram, R.K.

    1988-01-01

    Plutonium is known to be co-precipitated with Sulkowich reagent as calcium ammonium oxalate. In adopting this technique for bio-assay of plutonium, its accuracy depends on the self-absorption of the resulting precipitate in each urine sample. Pu recovery experiments were carried out with varying concentration of Ca and Mg, using different volumes of Sulkowich reagent. When the sample volume is 500 ml, Pu in urine can be estimated with an accuracy and precision of 74.38%+-7.4%, with a detection limit of 0.06 Bq (1.6 pCi) per dm 3 . (author) 3 refs.; 2 figs.; 2 tabs

  17. Conversion electron spectrometry of Pu isotopes with a silicon drift detector

    OpenAIRE

    Pommé, S.; Paepen, J.; Peräjärvi, K.; Turunen, J.; Pöllänen, R.

    2016-01-01

    An electron spectrometry set-up was built at IRMM consisting of a vacuum chamber with a moveable source holder and windowless Peltier-cooled silicon drift detector (SDD). The SDD is well suited for measuring low-energy x rays and electrons emitted from thin radioactive sources with low self-absorption. The attainable energy resolution is better than 0.5 keV for electrons of 30 keV. It has been used to measure the conversion electron spectra of three plutonium isotopes, i.e. 238Pu, 239Pu, 240P...

  18. Some considerations for future instrumentation and software in N.A.A

    International Nuclear Information System (INIS)

    Bruin, M. de; Korthoven, P.J.M.; Houtman, J.P.W.

    1976-09-01

    This paper deals with the optimization of known techniques and equipment in neutron activation analysis, specifically dealing with simple and rapid multi-element analysis. It points to the need for improvement either of precision and accuracy without an appreciable increase in analysis costs, or for a decrease in the costs per analysis without affecting precision and accuracy. Specifically it deals with well-type Ge(Li)-detectors and low-energy photon detectors (keV range) coupled with a computer to correct automatically for self-absorption without a priori knowledge of sample composition

  19. Loss of selenium in drying and storage of agronomic plant species

    DEFF Research Database (Denmark)

    Nielsen, Gunnar Gissel

    1970-01-01

    In two experiments with Se75, loss of selenium from agricultural species was noted during both drying and storage. The loss of selenium during drying was to some extent overshadowed by the influence of self-absorption caused by the water in the fresh material. The results showed that even plant...... material of non-indicator plantslose volatile selenium at drying temperatures of 60°C or higher, and in some cases even at temperatures below 60°C. The results also showed that storage as briquettes gives the lowest storage loss of selenium....

  20. Radiation of powdered milk produced at Londrina; PR, Brazil

    CERN Document Server

    Melquiades, F L

    2001-01-01

    This work deals with the measurement of radioactive activities in powdered milk, with high resolution gamma-ray spectrometry, using a HPGe detector. Preliminary measurements were accomplished to define the kind of the system shield, the geometry of the sample recipient, the size of the sampling and the self absorption correction. It was possible to measure the radionuclides sup 4 sup 0 K, sup 1 sup 3 sup 7 Cs and sup 2 sup 0 sup 8 Tl. Tukey's average comparison test was used to check the repeatability of the measurements.

  1. Low-pressure approach to the formation and study of exciplex systems

    International Nuclear Information System (INIS)

    Sanzone, G.

    1977-10-01

    Studies on the formation and properties of new materials for high-energy, gas-phase lasers are described. Attention is directed mainly to systems having bound excited states but unbound ground states. An important class of such excimer/exciplex systems has a van der Waals dimer/oligomer as its ground state. This research attempts to probe the relative rates of electron pumping of excited-state manifolds and the preferentially pumped vibronic states within each manifold. Reactive quenching of emission, resonant self-absorption of laser emissions, and collision- and noncollision-induced intersystem crossing are also considered. Lists of personnel and facilities are included. 8 figures, 2 tables

  2. A rapid method of radium-226 analysis in water samples using an alpha spectroscopic technique

    International Nuclear Information System (INIS)

    Lim, T.P.

    1981-01-01

    A fast, reliable and accurate method for radium-226 determination in environmental water samples has been devised, using an alpha spectroscopic technique. The correlation between barium-133 and radium-226 in the barium-radium sulphate precipitation mechanism was studied and in the limited experimental recovery range, the coefficient of correlation was r = 0.986. A self-absorption study for various barium carrier concentrations was also undertaken to obtain the least broadening of alpha energy line widths. An optimum value of 0.3 mg barium carrier was obtained for chemical recovery in the range of 85 percent. (auth)

  3. Study on the Effects of Sample Density on Gamma Spectrometry System Measurement Efficiency at Radiochemistry and Environment Laboratory

    International Nuclear Information System (INIS)

    Wo, Y.M.; Dainee Nor Fardzila Ahmad Tugi; Khairul Nizam Razali

    2015-01-01

    The effects of sample density on the measurement efficiency of the gamma spectrometry system were studied by using four sets multi nuclide standard sources of various densities between 0.3 - 1.4 g/ ml. The study was conducted on seven unit 25 % coaxial HPGe detector gamma spectrometry systems in Radiochemistry and Environment Laboratory (RAS). Difference on efficiency against gamma emitting radionuclides energy and measurement systems were compared and discussed. Correction factor for self absorption caused by difference in sample matrix density of the gamma systems were estimated. The correction factors are to be used in quantification of radionuclides concentration in various densities of service and research samples in RAS. (author)

  4. Correction factor for hair analysis by PIXE

    International Nuclear Information System (INIS)

    Montenegro, E.C.; Baptista, G.B.; Castro Faria, L.V. de; Paschoa, A.S.

    1979-06-01

    The application of the Particle Induced X-ray Emission (PIXE) technique to analyse quantitatively the elemental composition of hair specimens brings about some difficulties in the interpretation of the data. The present paper proposes a correction factor to account for the effects of energy loss of the incident particle with penetration depth, and x-ray self-absorption when a particular geometrical distribution of elements in hair is assumed for calculational purposes. The correction factor has been applied to the analysis of hair contents Zn, Cu and Ca as a function of the energy of the incident particle.(Author) [pt

  5. Radiation dose reduction by water shield

    International Nuclear Information System (INIS)

    Zeb, J.; Arshed, W.; Ahmad, S.S.

    2007-06-01

    This report is an operational manual of shielding software W-Shielder, developed at Health Physics Division (HPD), Pakistan Institute of Nuclear Science and Technology (PINSTECH), Pakistan Atomic Energy Commission. The software estimates shielding thickness for photons having their energy in the range 0.5 to 10 MeV. To compute the shield thickness, self absorption in the source has been neglected and the source has been assumed as a point source. Water is used as a shielding material in this software. The software is helpful in estimating the water thickness for safe handling, storage of gamma emitting radionuclide. (author)

  6. Measuring Pu in a glove box using portable NaI and germanium detectors

    International Nuclear Information System (INIS)

    Hankins, D.E.

    1984-01-01

    A NaI crystal or germanium detector inside a portable lead shield can determine the amount of plutonium in a glove box. The number of counts required are defined and the locations outside the box where the detector needs to be positioned are given. The calculated accuracy for measuring the Pu when these locations are used is within +/-30% for most glove boxes. Other factors that may affect this accuracy, such as γ-ray absorption by glove-box materials, self-absorption by Pu, absorption by equipment in the glove box, and the limits of the counting equipment are also discussed

  7. Time-resolved measurement of emission profiles in pulsed radiofrequency glow discharge optical emission spectroscopy: Investigation of the pre-peak

    International Nuclear Information System (INIS)

    Alberts, D.; Horvath, P.; Nelis, Th.; Pereiro, R.; Bordel, N.; Michler, J.; Sanz-Medel, A.

    2010-01-01

    Radiofrequency glow discharge coupled to optical emission spectroscopy has been used in pulsed mode in order to perform a detailed study of the measured temporal emission profiles for a wide range of copper transitions. Special attention has been paid to the early emission peak (or so-called pre-peak), observed at the beginning of the emission pulse profile. The effects of the important pulse parameters such as frequency, duty cycle, pulse width and power-off time, have been studied upon the Cu pulse emission profiles. The influence of discharge parameters, such as pressure and power, was studied as well. Results have shown that the intensity observed in the pre-peak can be 10 times as large as the plateau value for resonant lines and up to 5 times in case of transitions to the metastable levels. Increasing pressure or power increased the pre-peak intensity while its appearance in time changed. The pre-peak decreased when the discharge off-time was shorter than 100 μs. According to such results, the presence of the pre-peak could be probably due to the lack of self-absorption during the first 50 μs, and not to the ignition of the plasma. Under the selected operation conditions, the use of the pre-peak emission as analytical signals increases the linearity of calibration curves for resonant lines subjected to self-absorption at high concentrations.

  8. Plasma diagnostics using the He I 447.1 nm line at high and low densities

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Manuel A [Departamento de Fisica Aplicada, E.T.S.I. Informatica, Universidad de Valladolid, 47071 Valladolid (Spain); Ivkovic, Milivoje; Jovicevic, Sonja; Konjevic, Nikola [Institute of Physics, University of Belgrade, 11081 Belgrade, PO Box 68 (Serbia); Gigosos, Marco A; Lara, Natividad, E-mail: manuelgd@termo.uva.es, E-mail: gigosos@coyanza.opt.cie.uva.es [Departamento de Fisica Teorica, Atomica y Optica, Facultad de Ciencias, Universidad de Valladolid, 47071 Valladolid (Spain)

    2011-05-18

    The broadening of the He I 447.1 nm line and its forbidden components in plasmas is studied using computer simulation techniques and the results are compared with our and other experiments. In these calculations wide ranges of electron densities and temperatures are considered. Experimental measurements are performed with a high electron density pulsed discharge and with a low electron density microwave torch at atmospheric pressure. Both calculations and experimental measurements are extended from previous works towards low electron densities in order to study the accuracy of plasma diagnostics using this line in ranges of interest in different practical applications. The calculation results are compared with experimental profiles registered in plasmas diagnosed using independent techniques. The obtained agreement justifies the use of these line parameters for plasma diagnostics. The influence of self-absorption on line parameters is also analysed. It is shown that the separation between the peaks of the allowed and forbidden components exhibits a clear dependence upon plasma electron density free of self-absorption influence. This allows the peak separation to be used as a good parameter for plasma diagnostics. From the simulation results, a simple fitting formula is applied that permits obtaining the electron number density plasma diagnostics in the range 5 x 10{sup 22}-7 x 10{sup 23} m{sup -3}. At lower densities the fitting of simulated to experimental full profiles is a reliable method for N{sub e} determination.

  9. On the efficiency calibration of Si(Li) detector in the low-energy region using thick-target bremsstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    An, Z. E-mail: anzhu@scu.edu.cn; Liu, M.T

    2002-10-01

    In this paper, the efficiency calibration of a Si(Li) detector in the low-energy region down to 0.58 keV has been performed using thick-carbon-target bremsstrahlung by 19 keV electron impact. The shape of the efficiency calibration curve was determined from the thick-carbon-target bremsstrahlung spectrum, and the absolute value for the efficiency calibration was obtained from the use of {sup 241}Am radioactive standard source. The modified Wentzel's formula for thick-target bremsstrahlung was employed and it was also compared with the most recently developed theoretical model based upon the doubly differential cross-sections for bremsstrahlung of Kissel, Quarles and Pratt. In the present calculation of theoretical bremsstrahlung, the self-absorption correction and the convolution of detector's response function with the bremsstrahlung spectrum have simultaneously been taken into account. The accuracy for the efficiency calibration in the low-energy region with the method described here was estimated to be about 6%. Moreover, the self-absorption correction calculation based upon the prescription of Wolters et al. has also been presented as an analytical factor with the accuracy of {approx}1%.

  10. SYNCHROTRON HEATING BY A FAST RADIO BURST IN A SELF-ABSORBED SYNCHROTRON NEBULA AND ITS OBSERVATIONAL SIGNATURE

    International Nuclear Information System (INIS)

    Yang, Yuan-Pei; Dai, Zi-Gao; Zhang, Bing

    2016-01-01

    Fast radio bursts (FRBs) are mysterious transient sources. If extragalactic, as suggested by their relative large dispersion measures, their brightness temperatures must be extremely high. Some FRB models (e.g., young pulsar model, magnetar giant flare model, or supra-massive neutron star collapse model) suggest that they may be associated with a synchrotron nebula. Here we study a synchrotron-heating process by an FRB in a self-absorbed synchrotron nebula. If the FRB frequency is below the synchrotron self-absorption frequency of the nebula, electrons in the nebula would absorb FRB photons, leading to a harder electron spectrum and enhanced self-absorbed synchrotron emission. In the meantime, the FRB flux is absorbed by the nebula electrons. We calculate the spectra of FRB-heated synchrotron nebulae, and show that the nebula spectra would show a significant hump in several decades near the self-absorption frequency. Identifying such a spectral feature would reveal an embedded FRB in a synchrotron nebula

  11. Alpha-particle autoradiography by solid state track detectors to spatial distribution of radioactivity in alpha-counting source

    International Nuclear Information System (INIS)

    Ishigure, Nobuhito; Nakano, Takashi; Enomoto, Hiroko; Koizumi, Akira; Miyamoto, Katsuhiro

    1989-01-01

    A technique of autoradiography using solid state track detectors is described by which spatial distribution of radioactivity in an alpha-counting source can easily be visualized. As solid state track detectors, polymer of allyl diglycol carbonate was used. The advantage of the present technique was proved that alpha-emitters can be handled in the light place alone through the whole course of autoradiography, otherwise in the conventional autoradiography the alpha-emitters, which requires special carefulness from the point of radiation protection, must be handled in the dark place with difficulty. This technique was applied to rough examination of self-absorption of the plutonium source prepared by the following different methods; the source (A) was prepared by drying at room temperature, (B) by drying under an infrared lamp, (C) by drying in ammonia atmosphere after redissolving by the addition of a drop of distilled water which followed complete evaporation under an infrared lamp and (D) by drying under an infrared lamp after adding a drop of diluted neutral detergent. The difference in the spatial distributions of radioactivity could clearly be observed on the autoradiographs. For example, the source (C) showed the most diffuse distribution, which suggested that the self-absorption of this source was the smallest. The present autoradiographic observation was in accordance with the result of the alpha-spectrometry with a silicon surface-barrier detector. (author)

  12. Self-attenuation of gamma rays during radioactivity concentration analysis of environmental samples

    International Nuclear Information System (INIS)

    Watson, D.; Dharmasiri, J.; Akber, R.

    2001-01-01

    Gamma spectroscopy using HPGe detector systems is a readily used technique for routine analysis of radioactivity in environmental samples. The systems are generally calibrated using standards of known radioactivity and composition. Radioactivity in environmental samples is generally distributed in the bulk of the material. When a sample of finite thickness is analysed through gamma spectroscopy, a proportion of the gamma rays emitted from the sample is either stopped or scattered from the sample material itself. These processes of self-absorption and self-attenuation depend upon the physical and elemental composition of the sample and the energy of the gamma radiation. Since environmental samples vary in composition, instrument calibration using a fixed matrix composition may not be valid for a diversity of samples. We selected and analysed five sample matrices to investigate the influence of self-absorption and self-attenuation in environmental samples. Our selection consisted of bentonite and kaolin representing clay, quartz representing silica, ash representing prepared biota, and analytical grade MnO 2 representing a co-precipitant used for extractive radioactivity from aqueous samples. Our findings show that within 5% of uncertainty the silica based standards can be used to cover the environmental samples of varying clay (silica content). The detection efficiency for ash and MnO 2 could be different particularly in the 30 - 100 keV energy range. The differences in sample behaviour can be explained on the basis of atomic number, mass number and density

  13. Absolute Standardization Of 90Sr Using 4 pi(PC) Detector

    International Nuclear Information System (INIS)

    Pujadi; Wardiyanto, Gatot; Wijaya I, Nazar; Sudarsono

    2000-01-01

    Standardization of exp.90 Sr with absolute measurement using 4 pi proporsional detector has been carried out. The counting efficiency of beta particle mainly depends on self and VYNS absorption. The correction of self absorption were determined by means of the beta maximum energy vs. absorption curve. Self absorption value of exp.90 Sr with Emax. 0,55 MeV is 2,5%, and exp.90 Y with Emax. 2,28% MeV is 0,5%. The VYNS absorptions were determined by counting using variations of VYNS thickness. The corrections of VYNS are 0,70% at Eeta max. 0,55 MeV and 0,1% at Ebeta max. 2,28 MeV, for every VYNS sheet having thickness of n 15 mugr/cm exp.2. The samples were made from the source without dilution, and with dilution factors of 6,9 and 9,9. The activity of samples were determined by counting using two methods, with and without variation of VYNS thickness. The result of measurement by variation dilution of solution and VYNS thickness is fairly good, the difference is 1,68%. The difference between result of activity measurement of exp.90 Sr with this methods and the activity of master solution is fairly good, with the discrepancies are from 0,5 to 1,16%

  14. Optimization of Counting Times, Figure of Merit and Mass Thickness for Low-background Alpha/beta Proportional Counter in Sea Water

    International Nuclear Information System (INIS)

    Pakkong, Pannee; Wongsanit, Sarinya; Tumnoi, Yutthana; Udomsomporn, Suchin

    2011-06-01

    Full text: The determination of gross alpha and beta activity in environmental aqueous samples can be done by using a low-background alpha/beta proportional counter with multiple detector type (Bert hold LB770). The co precipitate sea water samples were considered for optimal regime of counting time, the minimum detectable activity (MDA), mass thickness of samples (mg/cm-2) and figure of merit (FOM). The result showed that the MDA of the measurements were estimated to be 0.07 Bq/l for gross alpha and 0.05 Bq/l for gross beta at counting time of 100 and 200 minute, respectively. The thickness of samples prepared by coprecipitation technique indicated more parochial range when compared to evaporation to dryness method. In addition, the samples were in the suitable range that can be corrected by the previous self-absorption correction factor (F a ) as 0.0003w 2 -0.0414 w+1.692; where F a is the self-absorption correction factor and w is the weight of the final precipitate in milligrams

  15. Apparatus and method for transient thermal infrared spectrometry

    Science.gov (United States)

    McClelland, John F.; Jones, Roger W.

    1991-12-03

    A method and apparatus for enabling analysis of a material (16, 42) by applying a cooling medium (20, 54) to cool a thin surface layer portion of the material and to transiently generate a temperature differential between the thin surface layer portion and the lower portion of the material sufficient to alter the thermal infrared emission spectrum of the material from the black-body thermal infrared emission spectrum of the material. The altered thermal infrared emission spectrum of the material is detected by a spectrometer/detector (28, 50) while the altered thermal infrared emission spectrum is sufficiently free of self-absorption by the material of the emitted infrared radiation. The detection is effected prior to the temperature differential propagating into the lower portion of the material to an extent such that the altered thermal infrared emission spectrum is no longer sufficiently free of self-absorption by the material of emitted infrared radiation, so that the detected altered thermal infrared emission spectrum is indicative of the characteristics relating to the molecular composition of the material.

  16. Apparatus and method for transient thermal infrared spectrometry of flowable enclosed materials

    Science.gov (United States)

    McClelland, John F.; Jones, Roger W.

    1993-03-02

    A method and apparatus for enabling analysis of a flowable material enclosed in a transport system having an infrared transparent wall portion. A temperature differential is transiently generated between a thin surface layer portion of the material and a lower or deeper portion of the material sufficient to alter the thermal infrared emission spectrum of the material from the black-body thermal infrared emission spectrum of the material, and the altered thermal infrared emission spectrum is detected through the infrared transparent portion of the transport system while the altered thermal infrared emission spectrum is sufficiently free of self-absorption by the material of emitted infrared radiation. The detection is effected prior to the temperature differential propagating into the lower or deeper portion of the material to an extent such that the altered thermal infrared emission spectrum is no longer sufficiently free of self-absorption by the material of emitted infrared radiation. By such detection, the detected altered thermal infrared emission spectrum is indicative of characteristics relating to molecular composition of the material.

  17. Prospects for higher spatial resolution quantitative X-ray analysis using transition element L-lines

    Science.gov (United States)

    Statham, P.; Holland, J.

    2014-03-01

    Lowering electron beam kV reduces electron scattering and improves spatial resolution of X-ray analysis. However, a previous round robin analysis of steels at 5 - 6 kV using Lα-lines for the first row transition elements gave poor accuracies. Our experiments on SS63 steel using Lα-lines show similar biases in Cr and Ni that cannot be corrected with changes to self-absorption coefficients or carbon coating. The inaccuracy may be caused by different probabilities for emission and anomalous self-absorption for the La-line between specimen and pure element standard. Analysis using Ll(L3-M1)-lines gives more accurate results for SS63 plausibly because the M1-shell is not so vulnerable to the atomic environment as the unfilled M4,5-shell. However, Ll-intensities are very weak and WDS analysis may be impractical for some applications. EDS with large area SDD offers orders of magnitude faster analysis and achieves similar results to WDS analysis with Lα-lines but poorer energy resolution precludes the use of Ll-lines in most situations. EDS analysis of K-lines at low overvoltage is an alternative strategy for improving spatial resolution that could give higher accuracy. The trade-off between low kV versus low overvoltage is explored in terms of sensitivity for element detection for different elements.

  18. Numerical study of overpopulation density for laser oscillation in recombining hydrogen plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Oda, T.; Furukane, U.

    1983-06-01

    The dependence of overpopulation density (OD) on ground-level population density (n1) and electron temperature (Te) in a recombining hydrogen plasma is evaluated for line pairs with the principal quantum numbers (2,3), (3,4), and (4,5). The approach is based on the simultaneouss solution of the quasi-steady-state rate equation (including interatomic-collision terms) and the optical-escape-factor equation for the Lyman series with Doppler profile. Calculations are performed for optically thin and thick plasmas at a fixed atomic temperature of 0.15 eV, over a Te range from 0.1 to 1 eV and an electron-density (ne) range from 10 to the 11th to 10 to the 17th per cu cm. It is shown that peak OD occurs at an ne slightly below that at which population inversion is destroyed, that peak OD is inversely sensitive to Te, and that peak OD(2,3) is the highest of the three peak OD. Laser oscillation is determined to be possible for (2,3) at Te higher than for (3,4) and (4,5), if self-absorption is negligible. The OD remains constant as n1 increases, up to the point at which significant self-absorption occurs. No laser oscillation is expected at level (4,5), nor in optically thick plasma at any level, for the realistic cavity parameters and temperatures used in the calculations. 21 references.

  19. Quantitative analysis of a brass alloy using CF-LIBS and a laser ablation time-of-flight mass spectrometer

    Science.gov (United States)

    Ahmed, Nasar; Abdullah, M.; Ahmed, Rizwan; Piracha, N. K.; Aslam Baig, M.

    2018-01-01

    We present a quantitative analysis of a brass alloy using laser induced breakdown spectroscopy, energy dispersive x-ray spectroscopy (EDX) and laser ablation time-of-flight mass spectrometry (LA-TOF-MS). The emission lines of copper (Cu I) and zinc (Zn I), and the constituent elements of the brass alloy were used to calculate the plasma parameters. The plasma temperature was calculated from the Boltzmann plot as (10 000  ±  1000) K and the electron number density was determined as (2.0  ±  0.5)  ×  1017 cm-3 from the Stark-broadened Cu I line as well as using the Saha-Boltzmann equation. The elemental composition was deduced using these techniques: the Boltzmann plot method (70% Cu and 30% Zn), internal reference self-absorption correction (63.36% Cu and 36.64% Zn), EDX (61.75% Cu and 38.25% Zn), and LA-TOF (62% Cu and 38% Zn), whereas, the certified composition is (62% Cu and 38% Zn). It was observed that the internal reference self-absorption correction method yields analytical results comparable to that of EDX and LA-TOF-MS.

  20. High-resolution VUV spectra of carbon, neon and argon in a wavelength range of 250 to 2300 A for plasma diagnostics observed with a 3 m normal incidence spectrometer in LHD

    International Nuclear Information System (INIS)

    Katai, Ryuji; Morita, Shigeru; Goto, Motoshi

    2007-01-01

    Intrinsic impurities have been much reduced in toroidal fusion devices through the development of several wall-conditioning techniques as well as by the use of carbon materials in the first wall and divertor plates. Impurity elements useful for passive plasma spectroscopy have been then extremely limited. At present, only carbon is a subject for spectroscopic diagnostics in most discharges except for fuel atoms. The use of rare gas as a brighter light source is a method to overcome the present difficulty in passive spectroscopy. Recently, rare gases have also been used for edge cooling to reduce the divertor heat flux. Therefore, high-resolution spectra (Δλ - 0.2 A) from neon and argon in a 250 to 2300 A wavelength range have been measured using a 3 m normal incidence spectrometer in Large Helical Device (LHD) and the measured spectra were precisely analyzed. The VUV spectra of carbon, neon and argon are presented for spectroscopic use and their wavelengths are tabulated with their relative intensities. The spectral profiles of almost all the spectral lines measured here are formed by the Doppler broadening and self-absorption processes. The Doppler broadening of neon and argon spectra are plotted against the ionization energies and Doppler spectra from carbon lines are presented. The self-absorption spectra of the hydrogen Lyman-α line, which are found in the LHD high-density discharge, are also presented and the neutral density is analytically estimated. (author)

  1. Alpha particle analysis using PEARLS spectrometry

    International Nuclear Information System (INIS)

    McKlveen, J.W.; Klingler, G.W.; McDowell, W.J.; Case, G.N.

    1984-01-01

    Alpha particle assay by conventional plate-counting methods is difficult because chemical separation, tracer techniques, and/or self-absorption losses in the final sample may cause either non-reproducible results or create unacceptable errors. PEARLS (Photon-Electron Rejecting Alpha Liquid Scintillation) Spectrometry is an attractive alternative since radionuclides may be extracted into a scintillator in which there would be no self-absorption or geometry problems and in which up to 100% chemical recovery and counting efficiency is possible. Sample preparation may include extraction of the alpha emitter of interest by a specific organic-phase-soluble compound directly into the liquid scintillator. Detection electronics use energy and pulse-shape discrimination to provide discrete alpha spectra and virtual absence of beta and gamma backgrounds. Backgrounds on the order of 0.01 cpm are readily achievable. Accuracy and reproducibility are typically in the 100 +-1% range. Specific procedures have been developed for gross alpha, uranium, plutonium, thorium, and polonium assay. This paper will review liquid scintillation alpha counting methods and reference some of the specific applications. 8 refs., 1 fig

  2. Development of computerized dose planning system and applicator for high dose rate remote afterloading irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, T. J. [Keimyung Univ., Taegu (Korea); Kim, S. W. [Fatima Hospital, Taegu (Korea); Kim, O. B.; Lee, H. J.; Won, C. H. [Keimyung Univ., Taegu (Korea); Yoon, S. M. [Dong-a Univ., Pusan (Korea)

    2000-04-01

    To design and fabricate of the high dose rate source and applicators which are tandem, ovoids and colpostat for OB/Gyn brachytherapy includes the computerized dose planning system. Designed the high dose rate Ir-192 source with nuclide atomic power irradiation and investigated the dose characteristics of fabricated brachysource. We performed the effect of self-absorption and determining the gamma constant and output factor and determined the apparent activity of designed source. he automated computer planning system provided the 2D distribution and 3D includes analysis programs. Created the high dose rate source Ir-192, 10 Ci(370GBq). The effective attenuation factor from the self-absorption and source wall was examined to 0.55 of the activity of bare source and this factor is useful for determination of the apparent activity and gamma constant 4.69 Rcm{sup 2}/mCi-hr. Fabricated the colpostat was investigated the dose distributions of frontal, axial and sagittal plane in intra-cavitary radiation therapy for cervical cancer. The reduce dose at bladder and rectum area was found about 20 % of original dose. The computerized brachytherapy planning system provides the 2-dimensional isodose and 3-D include the dose-volume histogram(DVH) with graphic-user-interface mode. emoted afterloading device was built for experiment of created Ir-192 source with film dosimetry within {+-}1 mm discrepancy. 34 refs., 25 figs., 11 tabs. (Author)

  3. Evaluation of Uncertainties in the Determination of Phosphorus by RNAA

    International Nuclear Information System (INIS)

    Rick L. Paul

    2000-01-01

    A radiochemical neutron activation analysis (RNAA) procedure for the determination of phosphorus in metals and other materials has been developed and critically evaluated. Uncertainties evaluated as type A include those arising from measurement replication, yield determination, neutron self-shielding, irradiation geometry, measurement of the quantity for concentration normalization (sample mass, area, etc.), and analysis of standards. Uncertainties evaluated as type B include those arising from beta contamination corrections, beta decay curve fitting, and beta self-absorption corrections. The evaluation of uncertainties in the determination of phosphorus is illustrated for three different materials in Table I. The metal standard reference materials (SRMs) 2175 and 861 were analyzed for value assignment of phosphorus; implanted silicon was analyzed to evaluate the technique for certification of phosphorus. The most significant difference in the error evaluation of the three materials lies in the type B uncertainties. The relatively uncomplicated matrix of the high-purity silicon allows virtually complete purification of phosphorus from other beta emitters; hence, minimal contamination correction is needed. Furthermore, because the chemistry is less rigorous, the carrier yield is more reproducible, and self-absorption corrections are less significant. Improvements in the chemical purification procedures for phosphorus in complex matrices will decrease the type B uncertainties for all samples. Uncertainties in the determination of carrier yield, the most significant type A error in the analysis of the silicon, also need to be evaluated more rigorously and minimized in the future

  4. Absolute measurements with a 4 π-counter

    International Nuclear Information System (INIS)

    Martinsson, Kerstin

    1959-06-01

    Measurements on standardized p-emitters have been made in a 4 it proportional flow-counter. The counter efficiency is found to be near 100 %. Absorption curves have been determined with plastic foils and aluminium. A comparison is made between the self-absorption arising in different methods of source preparation which include precipitates and the use of wetting agents The most reliable results have been obtained with sources on aluminium foils, where the foil absorption is calculated from the absorption curves and the self-absorption is supposed to be negligible for isotopes with end point energy above 0.5 MeV. The β-emitters studied have energies ranging from 1.71 MeV ( 32 P) to 0.167 MeV ( 35 S). Most of them have been obtained from National Physical Laboratory and Atomic Energy Research Establishment, Harwell, England. The agreement between their calibration and our measurements is very good except in the case of Co 60

  5. Fluorine-18 heart dosimetry in myocardial perfusion imaging

    Energy Technology Data Exchange (ETDEWEB)

    Toledo, Janine M.; Trindade, Bruno; Campos, Tarcísio P.R., E-mail: janine.toledo@gmail.com [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Programa de Pós-Graduação em Ciências e Técnicas Nucleares

    2017-07-01

    This paper conducts a recalling in myocardial perfusion imaging (MPI) followed by a spatial dosimetric investigation of the Fluorine-18 distributed at the myocardium by self-absorption of the heart uptake. Methods and Results: Radiological data manipulation was prepared and a computational heart voxelized model was assembled. A set of images from the abdominal aorta and angiotomography of the thorax was set up providing anatomic and functional information for heart modeling in SISCODES code. A homogeneous distribution of fluorine-18 was assumed into the heart myocardial wall. MCNP – Monte Carlo Code was used to provide the photon transport into the heart model taken in consideration the interactions into the tissues. The spatial dose distribution and histogram dose versus volume are presented. An analytical alternative model was addressed to the data validation. The present developed tools can produce spatial dose distribution in MPI at heart. Specially, the dosimetry performed elucidates imparted dose in the myocardial muscle per unit of injected Fluorine-18 activity by self-absorption of the heart uptake, which can contribute to future deterministic effect investigations. (author)

  6. Absolute measurements with a 4 {pi}-counter

    Energy Technology Data Exchange (ETDEWEB)

    Martinsson, Kerstin

    1959-06-15

    Measurements on standardized p-emitters have been made in a 4 it proportional flow-counter. The counter efficiency is found to be near 100 %. Absorption curves have been determined with plastic foils and aluminium. A comparison is made between the self-absorption arising in different methods of source preparation which include precipitates and the use of wetting agents The most reliable results have been obtained with sources on aluminium foils, where the foil absorption is calculated from the absorption curves and the self-absorption is supposed to be negligible for isotopes with end point energy above 0.5 MeV. The {beta}-emitters studied have energies ranging from 1.71 MeV ({sup 32}P) to 0.167 MeV ({sup 35}S). Most of them have been obtained from National Physical Laboratory and Atomic Energy Research Establishment, Harwell, England. The agreement between their calibration and our measurements is very good except in the case of Co 60.

  7. Polymer optical fiber with Rhodamine doped cladding for fiber light systems

    Energy Technology Data Exchange (ETDEWEB)

    Narro-García, R., E-mail: roberto.narro@gmail.com [Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230 (Mexico); Quintero-Torres, R. [Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230 (Mexico); Domínguez-Juárez, J.L. [Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230 (Mexico); Cátedras CONACyT, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230 (Mexico); Ocampo, M.A. [Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230 (Mexico)

    2016-01-15

    Both preform and polymer optical fiber with a Poly(methyl methacrylate) core and THV–Rhodamine 6G cladding were characterized. UV–vis absorbance, photoluminescence spectra and lifetime of the preform were measured. Axial and lateral photoluminescence spectra of the polymer optical fiber were studied under 404 nm excitation in order to study the illumination performance of the fiber. It was observed that the peak wavelength from the fiber photoluminescence spectra is higher than the peak wavelength from the fiber preform and that the peak wavelength from the fiber photoluminescence spectra is red shifted with the fiber length in the case of axial emission. The obtained results suggest the influence of self-absorption on the photoluminescence shape. Strong lateral emission along the fiber was observed with the naked eyes in all the cases. The lateral photoluminescence spectra show that the lateral emission is a combination between the pump laser and the Rh6G molecule photoluminescence. The results suggest that this polymer optical fiber could be a potential candidate for the development of fiber lighting systems. - Highlights: • Axial and lateral emission along the fiber was studied. • Self-absorption effect was confirmed in the case of axial photoluminescence. • The lateral emission is a combination between the laser and the RhG6 emission. • This fiber could be a potential candidate for the development of lighting systems.

  8. Interference of dissolved salts in Cerenkov and liquid scintillation estimation of 90Sr

    International Nuclear Information System (INIS)

    Pulhani, Vandana; Jha, S.K.; Tripathi, R.M.; Reddy, Priyanka; Bhade, Sonali

    2014-01-01

    Quenching is the most important effect occurring in Cerenkov and LSC because it affects the efficiency of conversion of β particles into light. Bore well water samples are very often concentrated by evaporation to reduce the detection limit which can also increase the dissolved solid content (TDS) in the sample. Some ground waters are inherently having higher TDS. Self-absorption of beta-particle radiation by the sample especially the lower-energy beta particles depends on sample thickness and density. Environmental samples, after applying the radiochemical procedure, are also estimated by Cerenkov/LSC and might be affected by colour quenching. To get best measurements using Liquid Scintillation and Cerenkov radiations, it is necessary to avoid high salt concentrations and colors which may weaken energy transfers within scintillator cocktails and sample medium. Therefore the degree of self-absorption and quench should be evaluated and taken into account in the calibration. Efficiency is represented as a function spectral quench parameter of external standard SQP(E). The quenching effect of dissolved solids on the efficiency of estimation of 90 Sr by Cerenkov and Liquid Scintillation are studied

  9. Object and subject relations in adulthood--towards an integrative model of interpersonal relationships.

    Science.gov (United States)

    Zvelc, Gregor

    2010-12-01

    In the article the author presents a model of interpersonal relationships based on integration of object relations theory and theory of attachment. He proposes three main bipolar dimensions of interpersonal relationships: Independence - Dependence, Connectedness - Alienation and Reciprocity - Self-absorption. The author also proposes that it is important to distinguish between two main types of adult interpersonal relationships: object and subject relations. Object relations describe relationships in which the other person is perceived as an object that serves the satisfaction of the first person's needs. Object relations are a manifestation of the right pole of the three main dimensions of interpersonal relationships (Dependence, Alienation and Self-absorption). Subject relations are a counter-pole to the concept of object relations. They describe relationships with other people who are experienced as subjects with their own wishes, interests and needs. Subject relations are a manifestation of the left pole of the main dimensions (Independence, Connectedness and Reciprocity). In this article the author specifically focuses on definitions of object relations in adulthood through a description of six sub-dimensions of object relations: Symbiotic Merging, Separation Anxiety, Social Isolation, Fear of Engulfment, Egocentrism and Narcissism. Every sub-dimension is described in connection to adaptive and pathological functioning. Further research is needed to test the clinical and scientific validity of the model.

  10. Monte Carlo analysis of megavoltage x-ray interaction-induced signal and noise in detectors for container inspection

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jinwoo; Park, Jiwoong; Kim, Junwoo; Kim, Dong Woon; Kim, Ho Kyung [Pusan National University, Busan (Korea, Republic of); Lim, Chang Hwy [Korea Research Institute of Ships and Ocean Engineering, Daejeon (Korea, Republic of)

    2016-10-15

    In a scanner system, a scintillation crystal is the first stage in the cascaded imaging chain transferring x-ray interaction information in cargo to be investigated to the final user who investigates x-ray images. On the other hand, the signal and noise is irreversibly transferred through the cascaded imaging chain. Therefore, the imaging performance of the first stage scintillator mainly governs the ultimate imaging performance of the system. In MV imaging, it is generally accepted that high-density scintillators, because of their sufficient optical yield, and low optical self-absorption and scattering coefficients. We chose the CdWO{sub 4} as the scintillation material. CdWO{sub 4} has a high density (7.9 g/cm{sup 3}), high atomic number (64), resistance to radiation, high optical yield, and low optical self-absorption. For the given MV spectrum, the improvement of QE from a detector with a thickness of 10 mm to 30 mm is 27% whereas the improvement from 30 mm to 50 mm is only 7%. On the other hand, the Swank noise is almost independent of the detector thickness. Consequently, the improvement of DQE from a detector with a thickness of 10 mm to 30 mm is 46% whereas the improvement from 30 mm to 50 mm is only 11%. In conclusion, the detector thickness of 30 mm would be the best for x-ray interaction-induced signal and noise performance as well as cost.

  11. Transition probabilities for lines of Cr II, Na II and Sb I by laser produced plasma atomic emission spectroscopy

    International Nuclear Information System (INIS)

    Gonzalez, A. M.; Ortiz, M.; Campos, J.

    1995-01-01

    Absolute transition probabilities for lines of CR II, Na II and Sb I were determined by emission spectroscopy of laser induced plasmas. the plasma was produced focusing the emission of a pulsed Nd-Yag laser on solid samples containing the atom in study. the light arising from the plasma region was collected by and spectrometer. the detector used was a time-resolved optical multichannel analyzer (OMA III EG and G). The wavelengths of the measured transitions range from 2000 sto 4100 A. The spectral resolution of the system was 0. 2 A. The method can be used in insulators materials as Cl Na crystals and in metallic samples as Al-Cr and Sn-Sn alloys. to avoid self-absorption effects the alloys were made with low Sb or Cr content. Relative transition probabilities have been determined from measurements of emission-line intensities and were placed on an absolute scale by using, where possible, accurate experimental lifetime values form the literature or theoretical data. From these measurements, values for plasma temperature (8000-24000 K), electron densities (∼∼ 10''16 cm ''-3) and self-absorption coefficients have been obtained. (Author) 56 refs

  12. Transition probabilities for lines of Cr II, Na II and Sb I by laser produced plasma atomic emission spectroscopy

    International Nuclear Information System (INIS)

    Gonzalez, A.M.; Ortiz, M.; Campos, J.

    1995-09-01

    Absolute transition probabilities for lines of Cr II, Na II and Sb I were determined by emission spectroscopy of laser induced plasmas. The plasma was produced focusing the emission of a pulsed Nd-Yag laser on solid samples containing the atom in study. The light arising from the plasma region was collected by and spectrometer. the detector used was a time-resolved optical multichannel analyzer (OMA III EG and G). The wavelengths of the measured transitions range from 2000 to 4100 A. The spectral resolution of the system was 0.2 A. The method can be used in insulators materials as Cl Na crystals and in metallic samples as Al-Cr and Sn-Sb alloys. To avoid self-absorption effects the alloys were made with low Sb or Cr content. Relative transition probabilities have been determined from measurements of emission-line intensities and were placed on an absolute scale by using, where possible, accurate experimental lifetime values form the literature or theoretical data. From these measurements, values for plasma temperature (8000-24000K), electron densities (approx 10 ''16 cm''-3) and self-absorption coefficients have been obtained

  13. Liquid scintillation alpha spectrometry techniques

    International Nuclear Information System (INIS)

    McKlveen, J.W.; McDowell, W.J.

    1984-01-01

    Accurate, quantitative determinations of alpha emitting nuclides by conventional plate counting methods are difficult, because of sample self-absorption problems in counting and because of non-reproducible losses in conventional sample separation methods. Liquid scintillation alpha spectrometry offers an attractive alternative with no sample self-absorption or geometry problems and with 100% counting efficiency. Sample preparation may include extraction of the alpha emitter of interest by a specific organic phase-soluble compound directly into the liquid scintillation counting medium. Detection electronics use energy and pulse-shape discrimination, to yield alpha spectra without beta and gamma background interference. Specific procedures have been developed for gross alpha, uranium, plutonium, thorium and colonium assay. Possibilities for a large number of other applications exist. Accuracy and reproducibility are typically in the 1% range. Backgrounds of the order of 0.01 cpm are readily achievable. The paper will present an overview of liquid scintillation alpha counting techniques and some of the results achieved for specific applications. (orig.)

  14. Time-resolved measurement of emission profiles in pulsed radiofrequency glow discharge optical emission spectroscopy: Investigation of the pre-peak

    Energy Technology Data Exchange (ETDEWEB)

    Alberts, D. [Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julian Claveria 8, 33006 Oviedo (Spain); Horvath, P. [Swiss Federal Laboratories for Materials Testing and Research (EMPA), Feuerwerkerstrasse 39, 3602 Thun (Switzerland); Nelis, Th. [LAPLACE, Universite Paul Sabatier, 118 rte de Narbonne, Bat3R2, 31062 Toulouse Cedex (France); CU Jean Francois Champollion, Place de Verdun 81012 Albi Cedex 9 (France); Pereiro, R. [Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julian Claveria 8, 33006 Oviedo (Spain); Bordel, N. [Department of Physics, Faculty of Science, University of Oviedo, Calvo Sotelo, 33007 Oviedo (Spain); Michler, J. [Swiss Federal Laboratories for Materials Testing and Research (EMPA), Feuerwerkerstrasse 39, 3602 Thun (Switzerland); Sanz-Medel, A., E-mail: asm@uniovi.e [Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julian Claveria 8, 33006 Oviedo (Spain)

    2010-07-15

    Radiofrequency glow discharge coupled to optical emission spectroscopy has been used in pulsed mode in order to perform a detailed study of the measured temporal emission profiles for a wide range of copper transitions. Special attention has been paid to the early emission peak (or so-called pre-peak), observed at the beginning of the emission pulse profile. The effects of the important pulse parameters such as frequency, duty cycle, pulse width and power-off time, have been studied upon the Cu pulse emission profiles. The influence of discharge parameters, such as pressure and power, was studied as well. Results have shown that the intensity observed in the pre-peak can be 10 times as large as the plateau value for resonant lines and up to 5 times in case of transitions to the metastable levels. Increasing pressure or power increased the pre-peak intensity while its appearance in time changed. The pre-peak decreased when the discharge off-time was shorter than 100 {mu}s. According to such results, the presence of the pre-peak could be probably due to the lack of self-absorption during the first 50 {mu}s, and not to the ignition of the plasma. Under the selected operation conditions, the use of the pre-peak emission as analytical signals increases the linearity of calibration curves for resonant lines subjected to self-absorption at high concentrations.

  15. Sample preparation for total reflection X-ray fluorescence analysis using resist pattern technique

    Science.gov (United States)

    Tsuji, K.; Yomogita, N.; Konyuba, Y.

    2018-06-01

    A circular resist pattern layer with a diameter of 9 mm was prepared on a glass substrate (26 mm × 76 mm; 1.5 mm thick) for total reflection X-ray fluorescence (TXRF) analysis. The parallel cross pattern was designed with a wall thickness of 10 μm, an interval of 20 μm, and a height of 1.4 or 0.8 μm. This additional resist layer did not significantly increase background intensity on the XRF peaks in TXRF spectra. Dotted residue was obtained from a standard solution (10 μL) containing Ti, Cr, Ni, Pb, and Ga, each at a final concentration of 10 ppm, on a normal glass substrate with a silicone coating layer. The height of the residue was more than 100 μm, where self-absorption in the large residue affected TXRF quantification (intensity relative standard deviation (RSD): 12-20%). In contrast, from a droplet composed of a small volume of solution dropped and cast on the resist pattern structure, the obtained residue was not completely film but a film-like residue with a thickness less than 1 μm, where self-absorption was not a serious problem. In the end, this sample preparation was demonstrated to improve TXRF quantification (intensity RSD: 2-4%).

  16. Fluorine-18 heart dosimetry in myocardial perfusion imaging

    International Nuclear Information System (INIS)

    Toledo, Janine M.; Trindade, Bruno; Campos, Tarcísio P.R.

    2017-01-01

    This paper conducts a recalling in myocardial perfusion imaging (MPI) followed by a spatial dosimetric investigation of the Fluorine-18 distributed at the myocardium by self-absorption of the heart uptake. Methods and Results: Radiological data manipulation was prepared and a computational heart voxelized model was assembled. A set of images from the abdominal aorta and angiotomography of the thorax was set up providing anatomic and functional information for heart modeling in SISCODES code. A homogeneous distribution of fluorine-18 was assumed into the heart myocardial wall. MCNP – Monte Carlo Code was used to provide the photon transport into the heart model taken in consideration the interactions into the tissues. The spatial dose distribution and histogram dose versus volume are presented. An analytical alternative model was addressed to the data validation. The present developed tools can produce spatial dose distribution in MPI at heart. Specially, the dosimetry performed elucidates imparted dose in the myocardial muscle per unit of injected Fluorine-18 activity by self-absorption of the heart uptake, which can contribute to future deterministic effect investigations. (author)

  17. Transition probabilities for lines of Cr II, Na II and Sb I by laser produced plasma atomic emission spectroscopy; Probabilidades de transicion de algunos niveles de Cr II, Na II y Sb I medediante espectroscopia de plasma producidos por laser

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, A. M.; Ortiz, M.; Campos, J.

    1995-07-01

    Absolute transition probabilities for lines of CR II, Na II and Sb I were determined by emission spectroscopy of laser induced plasmas. the plasma was produced focusing the emission of a pulsed Nd-Yag laser on solid samples containing the atom in study. the light arising from the plasma region was collected by and spectrometer. the detector used was a time-resolved optical multichannel analyzer (OMA III EG and G). The wavelengths of the measured transitions range from 2000 sto 4100 A. The spectral resolution of the system was 0. 2 A. The method can be used in insulators materials as Cl Na crystals and in metallic samples as Al-Cr and Sn-Sn alloys. to avoid self-absorption effects the alloys were made with low Sb or Cr content. Relative transition probabilities have been determined from measurements of emission-line intensities and were placed on an absolute scale by using, where possible, accurate experimental lifetime values form the literature or theoretical data. From these measurements, values for plasma temperature (8000-24000 K), electron densities ({approx}{approx} 10''16 cm ''-3) and self-absorption coefficients have been obtained. (Author) 56 refs.

  18. Angle-resolved photoluminescence spectrum of a uniform phosphor layer

    Science.gov (United States)

    Fujieda, Ichiro; Ohta, Masamichi

    2017-10-01

    A photoluminescence spectrum depends on an emission angle due to self-absorption in a phosphor material. Assuming isotropic initial emission and Lambert-Beer's law, we have derived simple expressions for the angle-resolved spectra emerging from the top and bottom surfaces of a uniform phosphor layer. The transmittance of an excitation light through the phosphor layer can be regarded as a design parameter. For a strongly-absorbing phosphor layer, the forward flux is less intense and more red-shifted than the backward flux. The red-shift is enhanced as the emission direction deviates away from the plane normal. When we increase the transmittance, the backward flux decreases monotonically. The forward flux peaks at a certain transmittance value. The two fluxes become similar to each other for a weakly-absorbing phosphor layer. We have observed these behaviors in experiment. In a practical application, self-absorption decreases the efficiency of conversion and results in angle-dependent variations in chromaticity coordinates. A patterned phosphor layer with a secondary optical element such as a remote reflector alleviates these problems.

  19. SYNCHROTRON HEATING BY A FAST RADIO BURST IN A SELF-ABSORBED SYNCHROTRON NEBULA AND ITS OBSERVATIONAL SIGNATURE

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yuan-Pei; Dai, Zi-Gao [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Zhang, Bing, E-mail: zhang@physics.unlv.edu [Department of Physics and Astronomy, University of Nevada, Las Vegas, NV 89154 (United States)

    2016-03-01

    Fast radio bursts (FRBs) are mysterious transient sources. If extragalactic, as suggested by their relative large dispersion measures, their brightness temperatures must be extremely high. Some FRB models (e.g., young pulsar model, magnetar giant flare model, or supra-massive neutron star collapse model) suggest that they may be associated with a synchrotron nebula. Here we study a synchrotron-heating process by an FRB in a self-absorbed synchrotron nebula. If the FRB frequency is below the synchrotron self-absorption frequency of the nebula, electrons in the nebula would absorb FRB photons, leading to a harder electron spectrum and enhanced self-absorbed synchrotron emission. In the meantime, the FRB flux is absorbed by the nebula electrons. We calculate the spectra of FRB-heated synchrotron nebulae, and show that the nebula spectra would show a significant hump in several decades near the self-absorption frequency. Identifying such a spectral feature would reveal an embedded FRB in a synchrotron nebula.

  20. Zero-reabsorption doped-nanocrystal luminescent solar concentrators.

    Science.gov (United States)

    Erickson, Christian S; Bradshaw, Liam R; McDowall, Stephen; Gilbertson, John D; Gamelin, Daniel R; Patrick, David L

    2014-04-22

    Optical concentration can lower the cost of solar energy conversion by reducing photovoltaic cell area and increasing photovoltaic efficiency. Luminescent solar concentrators offer an attractive approach to combined spectral and spatial concentration of both specular and diffuse light without tracking, but they have been plagued by luminophore self-absorption losses when employed on practical size scales. Here, we introduce doped semiconductor nanocrystals as a new class of phosphors for use in luminescent solar concentrators. In proof-of-concept experiments, visibly transparent, ultraviolet-selective luminescent solar concentrators have been prepared using colloidal Mn(2+)-doped ZnSe nanocrystals that show no luminescence reabsorption. Optical quantum efficiencies of 37% are measured, yielding a maximum projected energy concentration of ∼6× and flux gain for a-Si photovoltaics of 15.6 in the large-area limit, for the first time bounded not by luminophore self-absorption but by the transparency of the waveguide itself. Future directions in the use of colloidal doped nanocrystals as robust, processable spectrum-shifting phosphors for luminescent solar concentration on the large scales required for practical application of this technology are discussed.

  1. Utilizing the ratio and the summation of two spectral lines for estimation of optical depth: Focus on thick plasmas

    Science.gov (United States)

    Rezaei, Fatemeh; Tavassoli, Seyed Hassan

    2016-11-01

    In this paper, a study is performed on the spectral lines of plasma radiations created from focusing of the Nd:YAG laser on Al standard alloys at atmospheric air pressure. A new theoretical method is presented to investigate the evolution of the optical depth of the plasma based on the radiative transfer equation, in LTE condition. This work relies on the Boltzmann distribution, lines broadening equations, and as well as the self-absorption relation. Then, an experimental set-up is devised to extract some of plasma parameters such as temperature from modified line ratio analysis, electron density from Stark broadening mechanism, line intensities of two spectral lines in the same order of ionization from similar species, and the plasma length from the shadowgraphy section. In this method, the summation and the ratio of two spectral lines are considered for evaluation of the temporal variations of the plasma parameters in a LIBS homogeneous plasma. The main advantage of this method is that it comprises the both of thin and thick laser induced plasmas without straight calculation of self-absorption coefficient. Moreover, the presented model can also be utilized for evaluation the transition of plasma from the thin condition to the thick one. The results illustrated that by measuring the line intensities of two spectral lines at different evolution times, the plasma cooling and the growth of the optical depth can be followed.

  2. Biokinetics and internal dosimetry of inhaled metal tritide particles

    Science.gov (United States)

    Wang, Yansheng

    1998-12-01

    Metal tritides (MT), stable chemical compounds of tritium, are widely used in nuclear engineering facilities. MT particles can be released as aerosols. Inhaling MT particles is a potential occupational radiation hazard. Little information is available on their dissolution behavior, biokinetics, and dosimetry. The objectives of present dissertation are to estimate dissolution rates, to develop biokinetic models, to improve internal dosimetric considerations, and to classify MT materials. This study consisted of three phases: In vitro dissolution in a simulated lung fluid, In vivo rat experiments on retention and clearance, and biokinetic modeling and dosimetric evaluation. There was a supporting study on self- absorption of tritium beta in MT particles. MT materials used in this study were titanium (Ti) and zirconium (Zr) tritides. Results shows considerable self-absorption of beta particles and their energy, even for respirable MT particles smaller than 5 μm. The self-absorption factors should be required for counting MT particle samples and for estimating absorbed dose to tissues. In vitro and in vivo dissolution data indicate that Ti and Zr tritides are poorly soluble materials. Ti tritide belongs to the W class or M type while Zr tritide can be classified as Y class or S type. Due to long retention time of the MT particles, tritium betas directly from the particles contribute over 90% of the absorbed dose to lung. The lung dose contributes most of the effective dose to the whole body. Dissolved tritium including tritiated water (HTO) and organically bound tritium (OBT) has less effect on the lung dose and effective dose. Results on the annual limit on intake (ALI) indicate that the current radiation protection guideline based on HTO is not adequate for inhalation exposure to MT particles and needs to be modified. The biokinetic models developed in this study have predictive powers to estimate the consequences of a human inhalation exposure to MT aerosols. The

  3. High-Sensitivity AGN Polarimetry at Sub-Millimeter Wavelengths

    Directory of Open Access Journals (Sweden)

    Ivan Martí-Vidal

    2017-10-01

    Full Text Available The innermost regions of radio loud Active Galactic Nuclei (AGN jets are heavily affected by synchrotron self-absorption, due to the strong magnetic fields and high particle densities in these extreme zones. The only way to overcome this absorption is to observe at sub-millimeter wavelengths, although polarimetric observations at such frequencies have so far been limited by sensitivity and calibration accuracy. However, new generation instruments such as the Atacama Large mm/sub-mm Array (ALMA overcome these limitations and are starting to deliver revolutionary results in the observational studies of AGN polarimetry. Here we present an overview of our state-of-the-art interferometric mm/sub-mm polarization observations of AGN jets with ALMA (in particular, the gravitationally-lensed sources PKS 1830−211 and B0218+359, which allow us to probe the magneto-ionic conditions at the regions closest to the central black holes.

  4. The use of cuprous iodide as a precipitation matrix in the radiochemical determination of 131I in milk

    International Nuclear Information System (INIS)

    McCurdy, D.E.; Mellor, R.A.; Lambdin, R.W.; McLain, M.E. Jr.

    1980-01-01

    As a result of the implementation of the As Low As is Reasonably Achievable philosophy to the nuclear power industry, recent U.S. Nuclear Regulatory Commission requirements have prompted high sensitivity radiochemical analysis for the measurement of 131 I in milk. The most recognized and commonly employed technique incorporates costly palladium iodide as the final precipitate in the radiochemical purification of the iodine chemical species. The procedure presented in this paper outlines the many advantages of using cuprous iodide as the final precipitate. These include lower cost per analysis, consistent recoveries, better precipitate matrix and good self absorption characteristics. Typical lower limit of detection values and operating characteristics obtained for high sensitivity β-γ analysis as well as gas proportional counting and a comparison of radiochemical and Ge(Li) spectrometric results for environmental samples collected during a recent Chinese weapons fallout incident are presented. (author)

  5. Estimation of annual dose equivalent (internal and external) for new thorium plant workers of IRE OSCOM, Orissa

    International Nuclear Information System (INIS)

    Vidya Sagar, D.; Tripathy, S.K.; Khan, A.H.; Maharana, L.N.

    2001-01-01

    In addition to thoron, thoron daughters and gamma radiation, the New Thorium Plant workers are exposed to long lived alpha emitters due to inhalation of thorium fine dust present in the working environment. Air samplers were used for measurement of thoron daughters and long lived alpha concentration. Each sample was counted for 3-4 hours for alpha activity and the long lived alpha concentration was calculated after taking the self absorption effect of the deposit on the filter paper into account. Internal dose of individual workers due to thoron daughter concentration and long lived alpha concentration was determined using time weighted factors. Based on the results, it is observed that contribution of thoron daughters, long lived alpha and external gamma is about 2 mSv /y, 1 mSv /y and 5 mSv/y, respectively, to total dose to the workers. (author)

  6. Characteristics of plasma streams and optimization of operational regimes for magnetoplasma compressor

    International Nuclear Information System (INIS)

    Bandura, A.N.; Byrka, O.V.; Garkusha, I.E.; Ladygina, M.S.; Marchenko, A.K.; Petrov, Yu.V.; Solyakov, D.G.; Chebotarev, V.V.; Chuvilo, A.A.

    2011-01-01

    The main objective of these studies is characterization of dense xenon plasma streams generated by magnetoplasma compressor (MPC) in different operational regimes. Optimization of plasma compression in MPC allows increase of the plasma stream pressure up to 22...25 bar, average temperature of electrons of 10...20 eV and plasma stream velocity varied in the range of (2...9)x10 6 cm/s depending on operation regime. Spectroscopy measurements demonstrate that in these conditions most of Xe spectral lines are reabsorbed. In the case of known optical thickness, the real value of electron density can be calculated with accounting self-absorption. Estimations of optical thickness were performed and resulting electron density in focus region was evaluated as 10 18 cm -3 .

  7. Gamma scanning of full scale HTR fuel elements

    International Nuclear Information System (INIS)

    Harrison, T.A.; Simpson, J.A.H.; Nabielek, H.

    1983-04-01

    Gamma scanning for the determination of burn-up and fission product inventory has been developed at the Dragon Project, suitable for measurements on fuel elements and segments from full-sized integral block elements. This involved the design and construction of a new lead flask with sophisticated collimator design. State-of-the art gamma spectrometric equipment was set up to cope with strong variations of count-rate and high data throughput. Software efforts concentrated on the calculation of the self absorption and absorption corrections in the complicated geometry of multi-hole graphite block segments with a corrugated circumference. The techniques described here are applicable to the non-destructive examination of a wide range of fuel element designs. (author)

  8. RADIO EMISSION FROM SN 1994I IN NGC 5194 (M 51): THE BEST-STUDIED TYPE Ib/c RADIO SUPERNOVA

    International Nuclear Information System (INIS)

    Weiler, Kurt W.; Panagia, Nino; Stockdale, Christopher; Rupen, Michael; Sramek, Richard A.; Williams, Christopher L.

    2011-01-01

    We present the results of detailed monitoring of the radio emission from the Type Ic supernova SN 1994I from three days after optical discovery on 1994 March 31 until eight years later at age 2927 days on 2002 April 5. The data were mainly obtained using the Very Large Array at the five wavelengths of λλ1.3, 2.0, 3.6, 6.2, and 21 cm and from the Cambridge 5 km Ryle Telescope at λ2.0 cm. Two additional measurements were obtained at millimeter wavelengths. This data set represents the most complete, multifrequency radio observations ever obtained for a Type Ib/c supernova. The radio emission evolves regularly in both time and frequency and is well described by established supernova emission/absorption models. It is the first radio supernova with sufficient data to show that it is clearly dominated by the effects of synchrotron self-absorption at early times.

  9. Fast neutron activation analysis of fossil fuels and liquefaction products

    International Nuclear Information System (INIS)

    Ehmann, W.D.; Khalil, S.R.; Koppenaal, D.W.

    1982-01-01

    The problems associated with neutron absorption/thermalization, gamma-ray self-absorption, and variable irradiation and counting geometries associated with the composition, densities and physical states of the samples and standards of fossil fuels are considered. Two sets of liquid organic reagent primary standards and several solid standards are selected and evaluated for use in the determiation of oxygen and nitrogen in coals, coal conversion liquids, and residual solids. Analyses of a number of coals, conversion products and NBS reference standards are presented. Problems associated with selecting a reproducible pre-analysis drying procedure for oxygen determinations in coal and discussed. It is suggested that a brief freeze-drying procedure may result in minimal matrix alternation and yield reproducible values for bulk oxygen contents of coals

  10. Strontium-90 and cesium-137 in freshwater (from Sept. 1983 to Dec. 1983)

    International Nuclear Information System (INIS)

    1983-01-01

    Fresh water, 100 l each, was collected, and to which the carriers of strontium and cesium were added immediately after the sampling. The sample was vigorously stirred and filtered, and passed through a cation exchange column. Strontium and cesium were eluted with hydrochloric acid from the cation exchange column. The eluate was used for radiochemical analysis. The chemical separation of strontium-90 and cesium-137 was carried out, and the chemical yields were determined. The precipitates were counted for the activity using low background beta counters normally for 60 min. The net sample counting rate was corrected for the counter efficiency, recovery, self-absorption and decay, to obtain the radioactivity per sample aliquot, and the concentrations of these nuclides in the original samples were calculated. The data at six sampling locations in Japan from September to December, 1983, on fresh water are reported. (Kako, I.)

  11. Simple measurement of 14C in the environment using a gel suspension method

    International Nuclear Information System (INIS)

    Wakabayashi, G.; Ohura, H.; Okai, T.; Matoba, M.

    1999-01-01

    A simple analytical method for environmental 14 C with a low background liquid scintillation counter was developed. A new gelling agent, N-lauroyl-L-glutamic-α,γ-dibutylamide was used, for the liquid scintillation counting of 14 C as CaCO 3 (gel suspension method). Our procedure for sample preparation was much simpler than that of conventional methods and required no special equipment. The samples prepared with the standard sample of CaCO 3 were measured to evaluate the self absorption of the sample, the optimum condition of counting and the detection limit. Our results indicated that the newly developed technique could be efficiently applied for the monitoring of environmental 14 C. (author)

  12. Apparatus and method for transient thermal infrared emission spectrometry

    Science.gov (United States)

    McClelland, John F.; Jones, Roger W.

    1991-12-24

    A method and apparatus for enabling analysis of a solid material (16, 42) by applying energy from an energy source (20, 70) top a surface region of the solid material sufficient to cause transient heating in a thin surface layer portion of the solid material (16, 42) so as to enable transient thermal emission of infrared radiation from the thin surface layer portion, and by detecting with a spectrometer/detector (28, 58) substantially only the transient thermal emission of infrared radiation from the thin surface layer portion of the solid material. The detected transient thermal emission of infrared radiation is sufficiently free of self-absorption by the solid material of emitted infrared radiation, so as to be indicative of characteristics relating to molecular composition of the solid material.

  13. A new method for evaluating annual absorbed gamma dose rates in an archaeological site by combining the SSNTD technique with Monte Carlo simulations

    CERN Document Server

    Misdaq, M A; Erramli, H; Mikdad, A; Rzama, A; Yousif-Charif, M L

    1998-01-01

    Uranium and thorium contents in different layers of an archaeological site have been determined by using CR-39 and LR-115 type II solid state nuclear track detectors (SSNTD) and calculating the probabilities for alpha-particles emitted by the uranium and thorium series to reach and be registered on the SSNTD films. A new method has been developed based on calculating the self-absorption coefficient of the gamma-photons emitted by the uranium ( sup 2 sup 3 sup 8 U), thorium ( sup 2 sup 3 sup 2 Th) and their corresponding decay products as well as the potassium-40 ( sup 4 sup 0 K) isotope for evaluating the annual absorbed gamma dose rates in the considered material samples. Results obtained have been compared with data obtained by using the TL dosimetry and Bell's methods. Ceramic samples belonging to the studied archaeological site have been dated.

  14. The structure and spectrum of the accretion shock in the atmospheres of young stars

    Science.gov (United States)

    Dodin, Alexandr

    2018-04-01

    The structure and spectrum of the accretion shock have been self-consistently simulated for a wide range of parameters typical for Classical T Tauri Stars (CTTS). Radiative cooling of the shocked gas was calculated, taking into account the self-absorption and non-equilibrium (time-dependent) effects in the level populations. These effects modify the standard cooling curve for an optically thin plasma in coronal equilibrium, however the shape of high-temperature (T > 3 × 105 K) part of the curve remains unchanged. The applied methods allow us to smoothly describe the transition from the cooling flow to the hydrostatic stellar atmosphere. Thanks to this approach, it has been found that the narrow component of He II lines is formed predominantly in the irradiated stationary atmosphere (hotspot), i.e. at velocities of the settling gas law via the full energy flux.

  15. Transition probabilities of Ce I obtained from Boltzmann analysis of visible and near-infrared emission spectra

    Science.gov (United States)

    Nitz, D. E.; Curry, J. J.; Buuck, M.; DeMann, A.; Mitchell, N.; Shull, W.

    2018-02-01

    We report radiative transition probabilities for 5029 emission lines of neutral cerium within the wavelength range 417-1110 nm. Transition probabilities for only 4% of these lines have been previously measured. These results are obtained from a Boltzmann analysis of two high resolution Fourier transform emission spectra used in previous studies of cerium, obtained from the digital archives of the National Solar Observatory at Kitt Peak. The set of transition probabilities used for the Boltzmann analysis are those published by Lawler et al (2010 J. Phys. B: At. Mol. Opt. Phys. 43 085701). Comparisons of branching ratios and transition probabilities for lines common to the two spectra provide important self-consistency checks and test for the presence of self-absorption effects. Estimated 1σ uncertainties for our transition probability results range from 10% to 18%.

  16. Standard Reference Line Combined with One-Point Calibration-Free Laser-Induced Breakdown Spectroscopy (CF-LIBS) to Quantitatively Analyze Stainless and Heat Resistant Steel.

    Science.gov (United States)

    Fu, Hongbo; Wang, Huadong; Jia, Junwei; Ni, Zhibo; Dong, Fengzhong

    2018-01-01

    Due to the influence of major elements' self-absorption, scarce observable spectral lines of trace elements, and relative efficiency correction of experimental system, accurate quantitative analysis with calibration-free laser-induced breakdown spectroscopy (CF-LIBS) is in fact not easy. In order to overcome these difficulties, standard reference line (SRL) combined with one-point calibration (OPC) is used to analyze six elements in three stainless-steel and five heat-resistant steel samples. The Stark broadening and Saha - Boltzmann plot of Fe are used to calculate the electron density and the plasma temperature, respectively. In the present work, we tested the original SRL method, the SRL with the OPC method, and intercept with the OPC method. The final calculation results show that the latter two methods can effectively improve the overall accuracy of quantitative analysis and the detection limits of trace elements.

  17. Scintillation properties of pure and Ca-doped ZnWO4 crystals

    International Nuclear Information System (INIS)

    Danevich, F.A.; Shkulkova, O.G.; Henry, S.; Kraus, H.; McGowan, R.; Mikhailik, V.B.; Telfer, J.

    2008-01-01

    Following the investigations of the structure and scintillation properties of Ca-doped zinc tungstate powder [phys. stat. sol. (a) 204, 730 (2007)] a single-crystal of ZnWO 4 -Ca (0.5 mol%) was grown and characterised. The relative light output, energy resolution and decay characteristics were measured for pure and Ca-doped ZnWO 4 scintillators. An increase in the light yield of ∝40% compared with the undoped crystal, and an energy resolution 9.6% ( 137 Cs) were obtained for Ca-doped ZnWO 4 . The observed improvement is attributed to the reduction of self-absorption (bleaching) of the crystal. The cause of bleaching as well as the possible contribution of scattering is discussed. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Neutron television camera detector

    International Nuclear Information System (INIS)

    Arndt, U.W.; Gilmore, D.J.

    1976-01-01

    A neutron area detector system is being developed at the Institut Laue-Langevin which is based on a system for x-rays. The system has a large counting rate capability; this is extremely important where the total background count exceeds the total counts in the signals of interest. Its spatial resolution is of the order of one mm, while the screen size is 400 mm. The main limitation of the system is its limited counting efficiency, and this is directly attributable to the optical self-absorption of the neutron phosphor. All coherent noise in the system, i.e., all noise synchronized with the TV scans, has to be kept lower than the first bit threshold. However, this requirement can be relaxed when dealing with diffraction patterns, such as those from single crystals, for which a local background is subtracted from the pattern

  19. Neutron activation analysis of high purity substances

    International Nuclear Information System (INIS)

    Gil'bert, Eh.N.

    1987-01-01

    Peculiarities of neutron-activation analysis (NAA) of high purity substances are considered. Simultaneous determination of a wide series of elements, high sensitivity (the lower bound of determined contents 10 -9 -10 -10 %), high selectivity and accuracy (Sr=0.10-0.15, and may be decreased up to 0.001), possibility of analysis of the samples from several micrograms to hundreds of grams, simplicity of calibration may be thought NAA advantages. Questions of accounting of NAA systematic errors associated with the neutron flux screening by the analysed matrix and with production of radionuclides of determined elements from accompanying elements according to concurrent nuclear reactions, as well as accounting of errors due to self-absorption of recorded radiation by compact samples, are considered

  20. Self-cavity lasing in optically pumped single crystals of p-sexiphenyl

    International Nuclear Information System (INIS)

    Yanagi, Hisao; Tamura, Kenji; Sasaki, Fumio

    2016-01-01

    Organic single-crystal self-cavities are prepared by solution growth of p-sexiphenyl (p-6P). Based on Fabry-Pérot feedback inside a quasi-lozenge-shaped platelet crystal, edge-emitting laser is obtained under optical pumping. The multimode lasing band appears at the 0-1 or 0-2 vibronic progressions depending on the excitation conditions which affect the self-absorption effect. Cavity-size dependence of amplified spontaneous emission (ASE) is investigated with laser-etched single crystals of p-6P. As the cavity length of square-shaped crystal is reduced from 100 to 10 μm, ASE threshold fluence is decreased probably due to size-dependent light confinement in the crystal cavity.

  1. Optimizing concentration of shifter additive for plastic scintillators of different size

    Science.gov (United States)

    Adadurov, A. F.; Zhmurin, P. N.; Lebedev, V. N.; Titskaya, V. D.

    2009-02-01

    This paper concerns the influence of wavelength shifting (secondary) luminescent additive (LA 2) on the light yield of polystyrene-based plastic scintillator (PS) taking self-absorption into account. Calculations of light yield dependence on concentration of 1.4-bis(2-(5-phenyloxazolyl)-benzene (POPOP) as LA 2 were made for various path lengths of photons in PS. It is shown that there is an optimal POPOP concentration ( Copt), which provides a maximum light yield for a given path length. This optimal concentration is determined by the competition of luminescence and self-reflection processes. Copt values were calculated for PS of different dimensions. For small PS, Copt≈0.02%, which agree with a common (standard) value of POPOP concentration. For higher PS dimensions, the optimal POPOP concentration is decreased (to Copt≈0.006% for 320×30×2 cm sample), reducing the light yield from PS by almost 35%.

  2. Interpretation of magnetic circular dichroism of X-ray emission spectra

    International Nuclear Information System (INIS)

    Takayama, Yasuhiro; Yoshida, Tetsuo; Nakamura, Satoshi; Sasaki, Naoya; Ishii, Hiroyoshi; Miyahara, Tsuneaki

    2006-01-01

    We have measured the dependence of the magnetic circular dichroism (MCD) of the X-ray emission spectra (XES) on the temperature and incident angle for a Gd thin film. The energy of the incident photon for the XES was 138.25eV, which corresponded to the resonant excitation to the 8 D 9/2 intermediate state. The dependence of the observed MCD on the temperature and incident angle was quite different from that of the magnetic moment estimated with a SQUID magnetometer. By considering the reflection, saturation effect, self-absorption effect and magnetic anisotropy of the thin film, the agreement of the two behaviors was considerably improved. This result shows that the revisions of the MCD of the XES are extremely important for the quantitative estimation of the magnetic moment from the MCD of the XES. (author)

  3. Determination of gold coating thickness measurement by using EDXRF

    International Nuclear Information System (INIS)

    Meor Yusoff Meor Sulaian; Masliana Muslimin; Fadlullah Jili Fursani

    2005-01-01

    The paper relates a study on the development of an analysis procedure for measuring the gold coating thickness using EDXRF technique. Gold coating thickness was measured by relating the counts under the Au L? peak its thickness value. In order to get a reasonably accurate result, a calibration graph was plotted using five gold-coated reference standards of different thickness. The calibration graph shows a straight line for thin coating measurement until 0.9 μm. Beyond this the relationship was not linear and this may be resulted from the self-absorption effect. Quantitative analysis was also performed on two different samples of gold coated jewelry and a phone connector. Result from the phone connector analysis seems to agree with the manufacturer gold coating value. From the analysis of gold-coated jewelry it had been able to differentiate the two articles as gold wash and gold electroplated. (Author)

  4. Angle and Polarization Dependent Fluorescence EXAFS Measurements on Al-doped Single Crystal V_2O3 Above and Below the Transition Temperature

    Science.gov (United States)

    Müller, O.; Pfalzer, P.; Schramme, M.; Urbach, J.-P.; Klemm, M.; Horn, S.; Frenkel, A. I.; Denboer, M. L.

    1998-03-01

    We present angle and polarisation dependent flourescence EXAFS measured on Al-doped single crystal V_2O3 below and above the structural phase transition from monoclinic to trigonal. Strong self-absorption distorted the spectra; this was corrected by using the procedure described by Tröger et al. (L. Tröger, D. Arvantis, K. Baberschke, H. Michaelis, U. Grimm, and E. Zschech, Phys. Rev. B,.46), 3238 (1992), generalized to the Lytle detector employed in our work. The spectra show pronounced dependence on the angle between the threefold symmetry axes and the polarization of the incident photons, making it possible to measure the local atomic distances in different directions. We compare our results with the measurements of Frenkel et al. (A. I. Frenkel, E. A. Stern, and F. A. Chudnovsky, Sol. State Comm.102), 637 (1997) on pure V_2O3 They found that locally the monoclinic distortion persists in the trigonal metallic phase.

  5. Relationship between self-focused attention, mindfulness and distress in individuals with auditory verbal hallucinations.

    Science.gov (United States)

    Úbeda-Gómez, J; León-Palacios, M G; Escudero-Pérez, S; Barros-Albarrán, M D; López-Jiménez, A M; Perona-Garcelán, S

    2015-01-01

    The purpose of this study was to investigate the relationships among self-focused attention, mindfulness and distress caused by the voices in psychiatric patients. Fifty-one individuals with a psychiatric diagnosis participated in this study. The Psychotic Symptom Rating Scale (PSYRATS) emotional factor was applied to measure the distress caused by the voices, the Self-Absorption Scale (SAS) was given for measuring the levels of self-focused attention, and the Mindful Attention Awareness Scale (MAAS) was used to measure mindfulness. The results showed that distress caused by the voices correlated positively with self-focused attention (private and public) and negatively with mindfulness. A negative correlation was also found between mindfulness and self-focused attention (private and public). Finally, multiple linear regression analysis showed that public self-focus was the only factor predicting distress caused by the voices. Intervention directed at diminishing public self-focused attention and increasing mindfulness could improve distress caused by the voices.

  6. Simulating systematic errors in X-ray absorption spectroscopy experiments: Sample and beam effects

    Energy Technology Data Exchange (ETDEWEB)

    Curis, Emmanuel [Laboratoire de Biomathematiques, Faculte de Pharmacie, Universite Rene, Descartes (Paris V)-4, Avenue de l' Observatoire, 75006 Paris (France)]. E-mail: emmanuel.curis@univ-paris5.fr; Osan, Janos [KFKI Atomic Energy Research Institute (AEKI)-P.O. Box 49, H-1525 Budapest (Hungary); Falkenberg, Gerald [Hamburger Synchrotronstrahlungslabor (HASYLAB), Deutsches Elektronen-Synchrotron (DESY)-Notkestrasse 85, 22607 Hamburg (Germany); Benazeth, Simone [Laboratoire de Biomathematiques, Faculte de Pharmacie, Universite Rene, Descartes (Paris V)-4, Avenue de l' Observatoire, 75006 Paris (France); Laboratoire d' Utilisation du Rayonnement Electromagnetique (LURE)-Ba-hat timent 209D, Campus d' Orsay, 91406 Orsay (France); Toeroek, Szabina [KFKI Atomic Energy Research Institute (AEKI)-P.O. Box 49, H-1525 Budapest (Hungary)

    2005-07-15

    The article presents an analytical model to simulate experimental imperfections in the realization of an X-ray absorption spectroscopy experiment, performed in transmission or fluorescence mode. Distinction is made between sources of systematic errors on a time-scale basis, to select the more appropriate model for their handling. For short time-scale, statistical models are the most suited. For large time-scale, the model is developed for sample and beam imperfections: mainly sample inhomogeneity, sample self-absorption, beam achromaticity. The ability of this model to reproduce the effects of these imperfections is exemplified, and the model is validated on real samples. Various potential application fields of the model are then presented.

  7. Simulating systematic errors in X-ray absorption spectroscopy experiments: Sample and beam effects

    International Nuclear Information System (INIS)

    Curis, Emmanuel; Osan, Janos; Falkenberg, Gerald; Benazeth, Simone; Toeroek, Szabina

    2005-01-01

    The article presents an analytical model to simulate experimental imperfections in the realization of an X-ray absorption spectroscopy experiment, performed in transmission or fluorescence mode. Distinction is made between sources of systematic errors on a time-scale basis, to select the more appropriate model for their handling. For short time-scale, statistical models are the most suited. For large time-scale, the model is developed for sample and beam imperfections: mainly sample inhomogeneity, sample self-absorption, beam achromaticity. The ability of this model to reproduce the effects of these imperfections is exemplified, and the model is validated on real samples. Various potential application fields of the model are then presented

  8. Epithermal neutron flux in the experimental channels of the RA reactor; Fluks epitermalnih neutrona u eksperimentalnim kanalima reaktora RA

    Energy Technology Data Exchange (ETDEWEB)

    Raisic, N; Dobrosavljevic, N [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    Epithermal neutron flux was determined by measuring the cadmium ratio from activation analysis of gold and indium foils. Irradiation was done in experimental channels VK-5, VK-2, VK-7, VK-0, VK-HS next to the core, and next to the fuels elements. Activation of bare foils and foils covered by 0.8 and 1.0 mm thick cadmium foils was done simultaneously. Activity was measured by GM counter. Corrections were done for resonant neutrons self-absorption since the foils used were too thick concerning most important resonances of gold and indium. Final results were presented as spectrum factor r for their direct use in determining the effective neutron cross sections.

  9. Quantification and characterization of Si in Pinus Insignis Dougl by TXRF

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, Henry; Bennun, Leonardo [Universidad de Concepcion, Laboratorio de Fisica Aplicada, Departamento de Fisica, Concepcion (Chile); Marco, Lue M. [Universidad Centro Lisandro Alvarado, Decanato de Agronomia, Depto. de Quimica, Barquisimeto (Venezuela, Bolivarian Republic of)

    2014-12-09

    A simple quantification of silicon is described, in woods such as Pinus Insigne Dougl obtained from the 8th region of Bio-Bio, 37 15'' South-73 19'' West, Chile. The samples were prepared through fractional calcination, and the ashes were directly analyzed by total reflection X-ray fluorescence (TXRF) technique. The analysis of 16 samples that were calcined is presented. The samples were weighed on plastic reflectors in a microbalance with sensitivity of 0.1 μg. Later, the samples were irradiated in a TXRF PICOFOX spectrometer, for 350 and 700 s. To each sample, cobalt was added as an internal standard. Concentrations of silicon over the 1 % in each sample and the self-absorption effect on the quantification were observed, in masses higher than 100 μg. (orig.)

  10. Analysis of Atomic Electronic Excitation in Nonequilibrium Air Plasmas

    International Nuclear Information System (INIS)

    He Xin; Jia Hong-Hui; Yin Hong-Wei; Zhang Hai-Liang; Chang Sheng-Li; Yang Jun-Cai; Dang Wei-Hua

    2014-01-01

    Electronic excitation of atoms is studied in nonequilibrium air plasmas with the electronic temperature between 8000 K and 20000 K. By using the modified Saha—Boltzmann equation, our simplified method takes into account significant radiative processes and strong self-absorption of the vacuum ultraviolet lines. Calculations are carried out at three trajectory points of the Fire II flight experiment. Good agreement with the detailed collisional-radiative model is obtained, and the performance of this method in applications to highly nonequilibrium conditions is better than Park's quasi-steady-state model and Spradian-9.0. A short discussion on the influence of optical thickness of the vacuum ultraviolet radiation is also given. It costs about 2.9 ms on the average to solve one cell of the shock layer on a low cost computer, which shows that the present method is fast and efficient. (physics of gases, plasmas, and electric discharges)

  11. Theory for optimal design of waveguiding light concentrators in photovoltaic microcell arrays.

    Science.gov (United States)

    Semichaevsky, Andrey V; Johnson, Harley T; Yoon, Jongseung; Nuzzo, Ralph G; Li, Lanfang; Rogers, John

    2011-06-10

    Efficiency of ultrathin flexible solar photovoltaic silicon microcell arrays can be significantly improved using nonimaging solar concentrators. A fluorophore is introduced to match the solar spectrum and the low-reflectivity wavelength range of Si, reduce the escape losses, and allow the nontracking operation. In this paper we optimize our solar concentrators using a luminescent/nonluminescent photon transport model. Key modeling results are compared quantitatively to experiments and are in good agreement with the latter. Our solar concentrator performance is not limited by the dye self-absorption. Bending deformations of the flexible solar collectors do not result in their indirect gain degradation compared to flat solar concentrators with the same projected area.

  12. Low-pressure approach to the formation and study of exciplex systems. Final report

    International Nuclear Information System (INIS)

    Sanzone, G.

    1981-06-01

    Under this contract, the following goals were set. (1) Development and construction of an experimental system for the study of the kinetics of excimers, and demonstrate the validity of the low-pressure approach to such studies. The apparatus was to consist of the following: (a) cluster-molecular-beam source of van der Waals dimers and higher oligomers; (b) modulated-beam mass spectrometer; (c) low-energy electron beam for the production of excimers; (d) vacuum-ultraviolet to Visible detection and photon-counting system to monitor excimer emission; (e) flash-excited tunable laser for studies of resonant self-absorptions. (2) Form Ar 2 in its van der Waals ground state. (3) Produce Ar 2 * by electron bombardment of Ar 2 . (4) Perform fluorescence and photon absorption studies of Ar 2 *. At the end of the contract period, goals 1 and 2 have been met; experiments 3 and 4 have been designed

  13. Differences of detection efficiency among several nasal swab samples simulated for nuclear emergency accident

    International Nuclear Information System (INIS)

    Fukutsu, Kumiko; Yamada, Yuji; Kurihara, Osamu; Akashi, Makoto; Momose, Takumaro; Miyabe, Kenjiro

    2008-01-01

    At nuclear emergency accident such as inhalation intake of alpha nuclide, an indispensable nasal swab method has not been used for the precise internal dose estimation. One of the reasons is uncertainty in its radiation measurement, so that precise measurement with alpha spectrometry was examined for filter samples simulating nasal swab. It was confirmed that the alpha spectrometry made possible the distinction between solution and particulate in addition to the nuclide identification. The alpha activity in swab sample was precisely evaluated only when the detection efficiency was determined considering the self-absorption with filter fibers. Another big problem of wiping efficiency in nasal swabbing is still remain, but this study certainly raised the usefulness of the nasal swab method for rapid response in emergency. (author)

  14. RADSHI: shielding calculation program for different geometries sources

    International Nuclear Information System (INIS)

    Gelen, A.; Alvarez, I.; Lopez, H.; Manso, M.

    1996-01-01

    A computer code written in pascal language for IBM/Pc is described. The program calculates the optimum thickness of slab shield for different geometries sources. The Point Kernel Method is employed, which enables the obtention of the ionizing radiation flux density. The calculation takes into account the possibility of self-absorption in the source. The air kerma rate for gamma radiation is determined, and with the concept of attenuation length through the equivalent attenuation length the shield is obtained. The scattering and the exponential attenuation inside the shield material is considered in the program. The shield materials can be: concrete, water, iron or lead. It also calculates the shield for point isotropic neutron source, using as shield materials paraffin, concrete or water. (authors). 13 refs

  15. Image reconstruction. Application to transverse axial tomography

    International Nuclear Information System (INIS)

    Aubry, Florent.

    1977-09-01

    A method of computerized tridimensional image reconstruction from their projection, especially in the computerized transverse axial tomography is suggested. First, the different techniques actually developped and presented in the literature are analyzed. Then, the equipment used is briefly described. The reconstruction algorithm developped is presented. This algorithm is based on the convolution method, well adapted to the real conditions of exploitation. It is an extension of SHEPP and LOGAN's algorithm. A correction of the self absorption and of the detector's response is proposed. Finally, the first results obtained which are satisfactory are given. The simplicity of the method which does not need a too long computation time makes possible the implementation of the algorithm on a mini-computer [fr

  16. Multielement analysis of archaic Chinese bronze and antique coins by fast neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Y.H. (Academia Sinica, Lanzhou, Gansu (China). Inst. of Modern Physics); Pepelnik, R.; Fanger, H.U. (GKSS-Forschungszentrum Geesthacht GmbH, Geesthacht-Tesperhude (Germany, F.R.). Inst. fuer Physik)

    1990-01-01

    Samples of archaic bronze have been investigated by fast neutron activation analysis using both the absolute and relative method. The components Cu, Zn, Sn and Pb have been determined quantitatively. For the detection of lead via the short-lived isomeric state {sup 207m}Pb, cyclic activation and measurement technique was used with pneumatic sample transfer between detector and central irradiation position of the neutron tube. For non-destructive analysis of antique Chinese coins the samples had to be irradiated outside the neutron generator KORONA. The activation reactions, the evaluation of the elemental concentrations and the accuracy of the results are discussed. The data were corrected for {gamma}-ray self-absorption in the samples and summing of coincident {gamma}-rays in the detector. According to reported typical compositions of Chinese bronze from different dynasties, the age of the samples has been derived from the results obtained. (orig.).

  17. Some aspects of the interaction of photons and electrons with rare gas atoms

    International Nuclear Information System (INIS)

    Westerveld, W.B.

    1979-01-01

    Processes for excitation in rare gas atoms are described, due to absorption of photons and bombardment with electrons. The differences and similarities between excitation by absorption of light (spectroscopy) and by electron impact (collision physics) are qualified. Oscillator strengths from the self-absorption of resonance radiation in rare gases are determined. The excitation of 2'P and 3'P states of helium by electrons has been studied by observing excitation cross sections and polarization fractions obtained from XUV radiation. A description is given of a recently completed apparatus to study inelastic electron-atom scattering processes by coincidence techniques. An introduction is given to the theory which relates the parameters describing an excited state of an atom to the angular distribution of the radiation emitted in the decay of the excited state. (Auth.)

  18. Gamma-ray spectrometry laboratory and in situ: developments and environmental applications

    International Nuclear Information System (INIS)

    Gasser, Estelle

    2014-01-01

    Gamma-ray spectrometry enables determining all γ-ray emitters in a sample with a single measurement. Self-absorption of γ-rays in samples is manifest by a loss or a gain of pulses that results in a poor estimation of the counting efficiency. To characterize a new counting geometry improvements of the existing set-up were made with MCNPX simulations. With the new geometry we could specify absorbed and annual effective doses as well as dose conversion factors for the natural radioisotopes of several building materials and soil samples. Simulations show the influence of detection limits of γ-radiation on dose conversion factors and the need for updating these factors. γ-ray measurements of soil in situ require different counting efficiencies simulated by MCNPX for a semi-infinite source. Two in-situ soil analyses were made, one around a nuclear power and the other for a private company. (author)

  19. Gamma ray absorption of cylindrical fissile material with dual shields

    International Nuclear Information System (INIS)

    Wu Chenyan; Cheng Yiying; Huang Yongyi; Lu Fuquan; Yang Fujia

    2005-01-01

    This work analyzed the gamma ray attenuation effect from the self-absorption and shield attenuation perspectively. An exact mathematical equation was given for the geometric factor of the cylindrical fissile material with dual shields. In addition, several approximation approaches suitable for real situation were discussed, especially in the radial and axial directions of the cylinders, since the G-factors have simple forms. Then the space distribution patterns of the G-factor were analyzed based on numerical result and effective ways to solved the geometric information of the cylindrical fissile material, the radii and the heights, were deduced. This method was checked and verified by numerical calculation. Because of the efficiency of the method, it is ideal for application in real situations, such as nuclear safeguards, which demands speed of detection and accuracy of geometric analysis. (authors)

  20. α spectrometry grid ionization chamber: improvement of the characteristics

    International Nuclear Information System (INIS)

    Le Du, R.; Miltenberger, B.

    1968-01-01

    The rise time of the signals obtained with a grid ionization chamber depends on the orientation in the chamber and on the mobility of the ionization components. Our grid chambers are fitted with an electronic system which analyses the signals due to the electronic ionization components which are collected on the plate and on the source holder. By obtaining coincidence between these two signals, it is possible to select paths of any given orientation. Using this principle we have built an electronic collimator which does not have the disadvantages of a mechanical collimator for alpha spectra studies, and which, further, considerably reduces the background of the chamber. Simultaneously with the study of the improvement of a spectra with our device, we have been able to dissociate the contributions of back-diffusion and of self-absorption phenomena to the activity of an alpha source; some results will be presented. (authors) [fr

  1. Analytical Energy Dispersive X-Ray Fluorescence Measurements with a Scanty Amounts of Plant and Soil Materials

    Science.gov (United States)

    Mittal, R.; Rao, P.; Kaur, P.

    2018-01-01

    Elemental evaluations in scanty powdered material have been made using energy dispersive X-ray fluorescence (EDXRF) measurements, for which formulations along with specific procedure for sample target preparation have been developed. Fractional amount evaluation involves an itinerary of steps; (i) collection of elemental characteristic X-ray counts in EDXRF spectra recorded with different weights of material, (ii) search for linearity between X-ray counts and material weights, (iii) calculation of elemental fractions from the linear fit, and (iv) again linear fitting of calculated fractions with sample weights and its extrapolation to zero weight. Thus, elemental fractions at zero weight are free from material self absorption effects for incident and emitted photons. The analytical procedure after its verification with known synthetic samples of macro-nutrients, potassium and calcium, was used for wheat plant/ soil samples obtained from a pot experiment.

  2. Computer simulation of backscattered alpha particles

    International Nuclear Information System (INIS)

    Sanchez, A. Martin; Bland, C.J.; Timon, A. Fernandez

    2000-01-01

    Alpha-particle spectrometry forms an important aspect of radionuclide metrology. Accurate measurements require corrections to be made for factors such as self-absorption within the source and backscattering from the backing material. The theory of the latter phenomenon has only received limited attention. Furthermore the experimental verification of these theoretical results requires adequate counting statistics for a variety of sources with different activities. These problems could be resolved by computer simulations of the various interactions which occur as alpha-particles move through different materials. The pioneering work of Ziegler and his coworkers over several years, has provided the sophisticated software (SRIM) which has enabled us to obtain the results presented here. These results are compared with theoretical and experimental values obtained previously

  3. The Mossbauer effect in the 40-sec first-excited nuclear level of 109Ag

    International Nuclear Information System (INIS)

    Razaie-Serej, S.; Hoy, G.R.

    1990-01-01

    Narrow spectral lines associated with recoilless nuclear gamma-ray transitions (the Mossbauer effect) are prerequisites for the development of gamma-ray lasers. A successful observation of the Mossbauer effect in the 40-sec., first-excited state of 109 Ag will reveal valuable information on the practical limits of such narrow lines. The authors have used the temperature dependence of the self-absorption of 88-keV gamma rays in a 109 Cd-doped silver single crystal to observe the Mossbauer effect. Their results in the horizontal geometry, in agreement with their previous experiments in the vertical geometry, indicate a 0.2% Mossbauer effect at 4.9 K

  4. Quantification and characterization of Si in Pinus Insignis Dougl by TXRF

    International Nuclear Information System (INIS)

    Navarro, Henry; Bennun, Leonardo; Marco, Lue M.

    2015-01-01

    A simple quantification of silicon is described, in woods such as Pinus Insigne Dougl obtained from the 8th region of Bio-Bio, 37 15'' South-73 19'' West, Chile. The samples were prepared through fractional calcination, and the ashes were directly analyzed by total reflection X-ray fluorescence (TXRF) technique. The analysis of 16 samples that were calcined is presented. The samples were weighed on plastic reflectors in a microbalance with sensitivity of 0.1 μg. Later, the samples were irradiated in a TXRF PICOFOX spectrometer, for 350 and 700 s. To each sample, cobalt was added as an internal standard. Concentrations of silicon over the 1 % in each sample and the self-absorption effect on the quantification were observed, in masses higher than 100 μg. (orig.)

  5. Significantly improving nuclear resonance fluorescence non-destructive assay by using the integral resonance transmission method and photofission

    International Nuclear Information System (INIS)

    Angell, Christopher T.; Hayakawa, Takehito; Shizuma, Toshiyuki; Hajima, Ryoichi

    2013-01-01

    Non-destructive assay (NDA) of 239 Pu in spent nuclear fuel or melted fuel using a γ-ray beam is possible using self absorption and the integral resonance transmission method. The method uses nuclear resonance absorption where resonances in 239 Pu remove photons from the beam, and the selective absorption is detected by measuring the decrease in scattering in a witness target placed in the beam after the fuel, consisting of the isotope of interest, namely 239 Pu. The method is isotope specific, and can use photofission or scattered γ-rays to assay the 239 Pu. It overcomes several problems related to NDA of melted fuel, including the radioactivity of the fuel, and the unknown composition and geometry. This talk will explain the general method, and how photofission can be used to assay specific isotopes, and present example calculations. (author)

  6. {sup 41}K(n, {gamma}){sup 42}K thermal and resonance integral cross section measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, F.A. Jr.; Maidana, N.L.; Vanin, V.R. [Sao Paulo Univ., SP (Brazil). Lab. do Acelerador Linear; Dias, M.S.; Koskinas, M.F. [IPEN-CNEN, Sao Paulo, SP (Brazil). Lab. de Metrolgia Nuclear; Lopez-Pino, N. [Instituto Superior de Tecnolgias y Ciencias Aplicadas (InSTEC), Habana (Cuba)

    2012-07-01

    We measured the {sup 41}K thermal neutron absorption and resonance integral cross sections after the irradiation of KNO{sub 3} samples near the core of the IEA-R1 IPEN pool-type research reactor. Bare and cadmium-covered targets were irradiated in pairs with Au-Al alloy flux-monitors. The residual activities were measured by gamma-ray spectroscopy with a HPGe detector, with special care to avoid the {sup 42}K decay {beta}{sup -} emission effects on the spectra. The gamma-ray self-absorption was corrected with the help of MCNP simulations. We applied the Westcott formalism in the average neutron flux determination and calculated the depression coefficients for thermal and epithermal neutrons due to the sample thickness with analytical approximations. We obtained 1.57(4) b and 1.02(4) b, for thermal and resonance integral cross sections, respectively, with correlation coefficient equal to 0.39.

  7. Opacity in compact extragalactic radio sources and the core shift effect

    International Nuclear Information System (INIS)

    Kovalev, Y Y; Lobanov, A P; Pushkarev, A B; Zensus, J A

    2008-01-01

    The apparent position of the 'core' in a parsec-scale radio jet (a compact, bright emitting region at the narrow end of the jet) depends on the observing frequency, owing to synchrotron self-absorption and external absorption. This dependency both provides a tool to probe physical conditions in the vicinity of the core and poses problems for astrometric studies using compact radio sources. We investigate the frequency-dependent shift of the positions of the cores (core shift) observed with very long baseline interferometry (VLBI) in parsec-scale jets. We present results for 29 selected active galactic nuclei (AGN). In these AGN, the magnitude of the measured core shift between 2.3 and 8.6 GHz reaches 1.4 mas, with a median value for the sample of 0.44 mas. We discuss related physics as well as astrometry applications and plans for further studies.

  8. Challenging hyperprofessionalisation vs. hyperpopularisation in the history of science

    DEFF Research Database (Denmark)

    Nielsen, Kristian Hvidtfelt

    , the history of science profession now suffers from a crisis of readership?. In contrast, ever since the publication of Dava Sobel?s surprising bestseller, Longitude, popular history of science has dramatically increased its readership. Some historians of science lament the Sobel Effect, whereas others take up......Recently, Steven Shapin have identified a pathological form of professionalism in the history of science. He calls the disease hyperprofessionalism. Its symptoms include self-referentiality, self-absorption, and a narrowing of intellectual focus. Partly as a result of hyperprofessionalism...... the challenge by writing books for a broader audience. In effect, historians of science seemed to be faced with the choice between hyperprofessionalisation and hyperpopularisation. This paper attempts a first deconstruction of the twin notions of hyperprofessionalisation vs. hyperpopularisation....

  9. Rainbow Emission from an Atomic Transition in Doped Quantum Dots.

    Science.gov (United States)

    Hazarika, Abhijit; Pandey, Anshu; Sarma, D D

    2014-07-03

    Although semiconductor quantum dots are promising materials for displays and lighting due to their tunable emissions, these materials also suffer from the serious disadvantage of self-absorption of emitted light. The reabsorption of emitted light is a serious loss mechanism in practical situations because most phosphors exhibit subunity quantum yields. Manganese-based phosphors that also exhibit high stability and quantum efficiency do not suffer from this problem but in turn lack emission tunability, seriously affecting their practical utility. Here, we present a class of manganese-doped quantum dot materials, where strain is used to tune the wavelength of the dopant emission, extending the otherwise limited emission tunability over the yellow-orange range for manganese ions to almost the entire visible spectrum covering all colors from blue to red. These new materials thus combine the advantages of both quantum dots and conventional doped phosphors, thereby opening new possibilities for a wide range of applications in the future.

  10. Characteristics of soft x-ray and extreme ultraviolet (XUV) emission from laser-produced highly charged rhodium ions

    Science.gov (United States)

    Barte, Ellie Floyd; Hara, Hiroyuki; Tamura, Toshiki; Gisuji, Takuya; Chen, When-Bo; Lokasani, Ragava; Hatano, Tadashi; Ejima, Takeo; Jiang, Weihua; Suzuki, Chihiro; Li, Bowen; Dunne, Padraig; O'Sullivan, Gerry; Sasaki, Akira; Higashiguchi, Takeshi; Limpouch, Jiří

    2018-05-01

    We have characterized the soft x-ray and extreme ultraviolet (XUV) emission of rhodium (Rh) plasmas produced using dual pulse irradiation by 150-ps or 6-ns pre-pulses, followed by a 150-ps main pulse. We have studied the emission enhancement dependence on the inter-pulse time separation and found it to be very significant for time separations less than 10 ns between the two laser pulses when using 6-ns pre-pulses. The behavior using a 150-ps pre-pulse was consistent with such plasmas displaying only weak self-absorption effects in the expanding plasma. The results demonstrate the advantage of using dual pulse irradiation to produce the brighter plasmas required for XUV applications.

  11. Ligand field and interference effects in L-edge X-ray Raman scattering of MnF{sub 2} and CoF{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez M, J.; Herrera P, G. M.; Olalde V, P. [Instituto de Ciencias Nucleares, UNAM, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Ederer, D. L.; Schuler, T. [Department of Physics, Tulane University, New Orleans, LA 70118 (United States)

    2008-02-15

    We present experimental results for x-ray absorption and resonant emission at the L-edge of the transition metal in MnF{sub 2} and CoF{sub 2}. The emission data are corrected for self-absorption. The data are compared with calculations in both the free-ion approximation and with the effect of the ligand field of D{sub 4h} symmetry included. The results of the calculations take into account interference terms in the Kramers-Heisenberg expression. We obtain very good agreement between experiment and theory for both x-ray absorption and resonant emission in the two compounds. The inclusion of the ligand field is important to achieve such agreement. However, the results of the calculation that does not take into account the interference terms are in better agreement with experiment, indicating that the model used probably overestimates the importance of interference effects. (Author)

  12. 40 K, 137 Cs and 232 Th activities in Brazilian milk samples measured by gamma ray spectrometry

    International Nuclear Information System (INIS)

    Melquiades, Fabio L.; Appoloni, Carlos R.

    2000-01-01

    This work deals with the measurement of radioactive activities in powdered milk, with high resolution gamma-ray spectrometry, using a HPGe detector coupled to a standard electronic nuclear chain and a multichannel card of 8192 channels. Preliminary measurements were accomplished to define the kind of the system shield, the geometry of the sample recipient, the size of the sampling and the self absorption correction. It was possible to measure the radionuclides 40 K, 137 Cs and 208 Tl, whose activities were calculated according to the International Atomic Energy Agency norms. The detector efficiency was measured employing calibrated samples, prepared with IAEA certificate standards mixed with powdered milk. Tukey's average comparison test was used to check the repeatability of the measurements and the absence of significant systematic deviation. (author)

  13. The extended Beer-Lambert theory for ray tracing modeling of LED chip-scaled packaging application with multiple luminescence materials

    Science.gov (United States)

    Yuan, Cadmus C. A.

    2015-12-01

    Optical ray tracing modeling applied Beer-Lambert method in the single luminescence material system to model the white light pattern from blue LED light source. This paper extends such algorithm to a mixed multiple luminescence material system by introducing the equivalent excitation and emission spectrum of individual luminescence materials. The quantum efficiency numbers of individual material and self-absorption of the multiple luminescence material system are considered as well. By this combination, researchers are able to model the luminescence characteristics of LED chip-scaled packaging (CSP), which provides simple process steps and the freedom of the luminescence material geometrical dimension. The method will be first validated by the experimental results. Afterward, a further parametric investigation has been then conducted.

  14. A semi-empirical approach to analyze the activities of cylindrical radioactive samples using gamma energies from 185 to 1764 keV.

    Science.gov (United States)

    Huy, Ngo Quang; Binh, Do Quang

    2014-12-01

    This work suggests a method for determining the activities of cylindrical radioactive samples. The self-attenuation factor was applied for providing the self-absorption correction of gamma rays in the sample material. The experimental measurement of a (238)U reference sample and the calculation using the MCNP5 code allow obtaining the semi-empirical formulae of detecting efficiencies for the gamma energies ranged from 185 to 1764keV. These formulae were used to determine the activities of the (238)U, (226)Ra, (232)Th, (137)Cs and (40)K nuclides in the IAEA RGU-1, IAEA-434, IAEA RGTh-1, IAEA-152 and IAEA RGK-1 radioactive standards. The coincidence summing corrections for gamma rays in the (238)U and (232)Th series were applied. The activities obtained in this work were in good agreement with the reference values. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Development and Validation of a Laser Induced Breakdown Spectrometry Method for Cancer Detection and Characterization

    International Nuclear Information System (INIS)

    Otieno, E.A.

    2015-01-01

    Laser Induced Breakdown Spectroscopy (LIBS) is a type of atomic emission spectroscopy which employs a highly energetic laser pulse to simultaneously prepare the sample and excite the species. The simplest calibration technique is based on the use of standard calibration curves. The phenomenon of self-absorption may be considered as a factor of linearity deviation in conventional calibration. Chemometrics has the ability to extract underlying phenomena from complex data with the help of multivariate techniques such as SIMCA, ICA, PCA, SVM and ANNs. The techniques are also capable of capturing information about correlated trends in a given dataset. It has been reported that in normal liver the zinc concentration is about 78ug/g, wet weight and the primary liver cancer itself is about 18ug/g

  16. An arc facility for investigating non-LTE thermodynamic and transport phenomena in low and high pressure plasmas

    International Nuclear Information System (INIS)

    Sedghinisab, A.; Eddy, T.L.; Murray, R.T.

    1986-01-01

    This paper discusses a high pressure arc facility modified for computerized control and data acquisition to simplify measurements of non-LTE plasmas. The non-LTE methods have shown that numerous spectral lines and continuum must be accurately, precisely and quickly measured.The instrumentation uses a 1-m monochrometer with programmed wavelength slews and scans; oplasma scans; and monitoring of chamber pressure, current, voltages, and location. Multiple flows of various gases can be provided simultaneously. Plasma self absorption is determined via a concave back mirror and shutter with final alignment via computer plots. The raw data is corrected for absorption, zeroed, centered and smoothed. The net line intensity is then determined and Abeled prior to feeding into LTE or non-LTE analysis methods. Sample results are presented at 0.1,1 and 10 atm

  17. Structure of PKS 1148-001

    International Nuclear Information System (INIS)

    Venugopal, V.R.; Ananthakrishnan, S.; Swarup, G.; Pynzar, A.V.; Udaltsov, V.A.

    1985-01-01

    Interplanetary scintillation (IPS) observations of PKS1148-001 at 326.5 and 102.5 MHz are described. The results from these are combined with published VLBI results at various frequencies to derive a three-component model for the source. The three components have sizes 0.0015, 0.01 and 0.1 arcsec and synchrotron self-absorption below frequencies about 1.5, 0.4 and 0.05 GHz respectively. This model is consistent with the total flux density spectrum. It is suggested that the results of the earlier two IPS surveys made at 327 and 408 MHz at Ooty and Arecibo need to be revised, since PKS 1148-001 is more compact than IPS calibrators used in those surveys. (author)

  18. Plutonium characterisation with prompt high energy gamma-rays from (n,gamma) reactions for nuclear warhead dismantlement verification

    Energy Technology Data Exchange (ETDEWEB)

    Postelt, Frederik; Gerald, Kirchner [Carl Friedrich von Weizsaecker-Centre for Science and Peace Research, Hamburg (Germany)

    2015-07-01

    Measurements of neutron induced gammas allow the characterisation of fissile material (i.e. plutonium and uranium), despite self- and additional shielding. Most prompt gamma-rays from radiative neutron capture reactions in fissile material have energies between 3 and 6.5 MeV. Such high energy photons have a high penetrability and therefore minimise shielding and self-absorption effects. They are also isotope specific and therefore well suited to determine the isotopic composition of fissile material. As they are non-destructive, their application in dismantlement verification is desirable. Disadvantages are low detector efficiencies at high gamma energies, as well as a high background of gammas which result from induced fission reactions in the fissile material, as well as delayed gammas from both, (n,f) and(n,gamma) reactions. In this talk, simulations of (n,gamma) measurements and their implications are presented. Their potential for characterising fissile material is assessed and open questions are addressed.

  19. Continuous monitoring for airborne alpha emitters in a dusty environment

    International Nuclear Information System (INIS)

    Seiler, F.A.; Newton, G.J.; Guilmette, R.A.

    1988-01-01

    Disposal of radioactive wastes in underground facilities requires continuous monitoring for airborne radioactive materials, both on the surface and underground. In addition to a natural background of nonradioactive and radioactive aerosols, there may be a sizeable dust contribution from ongoing work such as mining and vehicular traffic. In the monitoring of alpha-emitting radionuclides, these aerosols may lead to self-absorption in the source and a deterioration of the energy spectrum of the detected alpha particles. In this paper, the influence of a realistic background aerosol on the performance of an alpha monitoring system is evaluated theoretically. It is shown that depositing alpha emitters and background aerosol on a surface for counting leads rapidly to a considerable loss of counts, a deterioration of the alpha spectra, an eventual saturation of the count rates, and interference from the natural background of Rn daughters

  20. Design and operation of an automated beta-particle counting system for the measurement of 220Rn (and 222Rn) progeny

    International Nuclear Information System (INIS)

    Bigu, J.

    1992-01-01

    A fully automated system of the continuous (active) type has been designed for the unattended quantification of 222 Rn progeny and 220 Rn progeny in calibration and test facilities, as well as working and living environments. The system uses a β-particle detector and associated electronic circuitry, in conjunction with an in-house microprocessor-based processing interface card and a personal computer, operated by specially developed in-house software. The system represents a significant improvement over systems using α-particle detectors because of its enhanced flexibility of design and virtual elimination of plate-out effects in the sampling head, and of self-absorption phenomena in the sampling filter. The β-particle system was tested and calibrated in a Radon and Thoron Test Facility of the walk-in type under a variety of experimental conditions. (author)

  1. Parametric x-ray FEL operating with external Bragg reflectors

    International Nuclear Information System (INIS)

    Baryshevsky, V.G.; Batrakov, K.G.; Dubovskaya, I.Ya.

    1995-01-01

    In the crystal X-ray FELs using channeling and parametric quasi-Cherenkov mechanisms of spontaneous radiation were considered as versions of FEL allowing, in principle, to obtain coherent X-ray source. In this case a crystal is both radiator and resonator for X-rays emitted by a particle beam passing through crystal. However, it is well-known that a beam current density required for lasing is extremely high in X-ray spectral range for any radiation mechanisms and it is very important to find a way to lower its magnitude. The application of three-dimensional distributed feedback formed by dynamical diffraction of emitted photons permitted to reduce starting beam current density 10 2 -10 4 times up to 10 9 . One of ways to lower the starting current is the formation of multi-wave distributed feedback the another one is the application of external reflectors. The thing is that lasing regime was shown to be produced at frequencies in the vicinity of degeneration point for roots of dispersion equation describing radiation modes excited in an active medium (crystal plus particle beam). Unfortunately, in case of parametric quasi-Cherenkov FEL this region coincides with the region of strong self-absorption of radiation inside a crystal. That fact, obviously, increases the starting beam current. In this report we have shown that the application of external Bragg reflectors gives the possibility to lower radiation self-absorption inside a crystal by modifying radiation modes excited in the active medium under consideration. The corresponding dispersion equation and the expression for excited modes are derived. The generation equation determining starting conditions for lasing is obtained. Using these expressions we have shown that the application of external Bragg reflectors permits to reduce starting beam current density more than 10 times

  2. Simple analytical technique for liquid scintillation counting of environmental carbon-14 using gel suspension method

    International Nuclear Information System (INIS)

    Okai, Tomio; Wakabayashi, Genichiro; Nagao, Kenjiro; Matoba, Masaru; Ohura, Hirotaka; Momoshima, Noriyuki; Kawamura, Hidehisa

    2000-01-01

    A simple analytical technique for liquid scintillation counting of environmental 14 C was developed. Commercially available gelling agent, N-lauroyl-L -glutamic -α,γ-dibutylamide, was used for the gel-formation of the samples (gel suspension method) and for the subsequent liquid scintillation counting of 14 C in the form of CaCO 3 . Our procedure for sample preparation is much simpler than that of the conventional methods and requires no special equipment. Self absorption, stability and reproducibility of gel suspension samples were investigated in order to evaluate the characteristics of the gel suspension method for 14 C activity measurement. The self absorption factor is about 70% and slightly decrease as CaCO 3 weight increase. This is considered to be mainly due to the absorption of β-rays and scintillation light by the CaCO 3 sample itself. No change of the counting rate for the gel suspension sample was observed for more than 2 years after the sample preparation. Four samples were used for checking the reproducibility of the sample preparation method. The same values were obtained for the counting rate of 24 C activity within the counting error. No change of the counting rate was observed for the 're-gelated' sample. These results show that the gel suspension method is appropriate for the 14 C activity measurement by the liquid scintillation counting method and useful for a long-term preservation of the sample for repeated measurement. The above analytical technique was applied to actual environmental samples in Fukuoka prefecture, Japan. Results obtained were comparable with those by other researchers and appear to be reasonable. Therefore, the newly developed technique is useful for the routine monitoring of environmental 14 C. (author)

  3. Alpha particle and proton relative thermoluminescence efficiencies in LiF:Mg, Cu, P:is track structure theory up to the task?

    International Nuclear Information System (INIS)

    Horowitz, Y. S.; Siboni, D.; Oster, L.; Livingstone, J.; Guatelli, S.; Rosenfeld, A.; Emfietzoglou, D.; Bilski, P.; Obryk, B.

    2008-01-01

    Low-energy alpha particle and proton heavy charged particle (HCP) relative thermoluminescence (TL) efficiencies are calculated for the major dosimetric glow peak in LiF:Mg, Cu, P (MCP-N) in the framework of track structure theory (TST). The calculations employ previously published TRIPOS-E Monte Carlo track segment values of the radial dose in condensed phase LiF calculated at the Instituto National de Investigaciones Nucleares (Mexico) and experimentally measured normalised 60 Co gamma-induced TL dose-response functions, f(D), carried out at the Inst. of Nuclear Physics (Poland). The motivation for the calculations is to test the validity of TST in a TL system in which f(D) is not supra-linear (f(D) >1) and is not significantly dependent on photon energy contrary to the behaviour of the dose-response of composite peak 5 in the glow curve of LiF:Mg, Ti (TLD-100). The calculated HCP relative efficiencies in LiF:MCP-N are 23-87 % lower than the experimentally measured values, indicating a weakness in the major premise of TST which exclusively relates HCP effects to the radiation action of the secondary electrons liberated by the HCP slowing down. However, an analysis of the uncertainties involved in the TST calculations and experiments (i.e. experimental measurement of f(D) at high levels of dose, sample light self-absorption and accuracy in the estimation of D R, especially towards the end of the HCP track) indicate that these may be too large to enable a definite conclusion. More accurate estimation of sample light self-absorption, improved measurements of f(D) and full-track Monte Carlo calculations of D R incorporating improvements of the low-energy electron transport are indicated in order to reduce uncertainties and enable a final conclusion. (authors)

  4. Paired organs--Should they be treated jointly or separately in internal dosimetry?

    Energy Technology Data Exchange (ETDEWEB)

    Parach, Ali-Asghar; Rajabi, Hossein; Askari, Mohammad-Ali [Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran-Iran (Iran, Islamic Republic of)

    2011-10-15

    Purpose: Size, shape, and the position of paired organs are different in abdomen. However, the counterpart organs are conventionally treated jointly together in internal dosimetry. This study was performed to quantify the difference of specific absorbed fraction of organs in considering paired organs jointly like single organs or as two separate organs. Methods: Zubal phantom and GATE Monte Carlo package were used to calculate the SAF for the self-absorption and cross-irradiation of the lungs, kidneys, adrenal glands (paired organs), liver, spleen, stomach, and pancreas (single organs). The activity was assumed uniformly distributed in the organs, and simulation was performed for monoenergetic photons of 10, 50, 100, 500, 1000 keV and mono-energetic electrons of 350, 500, 690, 935, 1200 keV. Results: The results demonstrated that self-absorption of left and right counterpart organs may be different depending upon the differences in their masses. The cross-irradiations between left-to-right and right-to-left counterpart organs are always equal irrespective of difference in their masses. Cross-irradiation from the left and right counterpart organs to other organs are different (4-24 times in Zubal phantom) depending on the photon energy and organs. The irradiation from a single source organ to the left and right counterpart paired organs is always different irrespective of activity concentration. Conclusions: Left and right counterpart organs always receive different absorbed doses from target organs and deliver different absorbed doses to target organs. Therefore, in application of radiopharmaceuticals in which the dose to the organs plays a role, counterpart organs should be treated separately as two separate organs.

  5. Paired organs--Should they be treated jointly or separately in internal dosimetry?

    International Nuclear Information System (INIS)

    Parach, Ali-Asghar; Rajabi, Hossein; Askari, Mohammad-Ali

    2011-01-01

    Purpose: Size, shape, and the position of paired organs are different in abdomen. However, the counterpart organs are conventionally treated jointly together in internal dosimetry. This study was performed to quantify the difference of specific absorbed fraction of organs in considering paired organs jointly like single organs or as two separate organs. Methods: Zubal phantom and GATE Monte Carlo package were used to calculate the SAF for the self-absorption and cross-irradiation of the lungs, kidneys, adrenal glands (paired organs), liver, spleen, stomach, and pancreas (single organs). The activity was assumed uniformly distributed in the organs, and simulation was performed for monoenergetic photons of 10, 50, 100, 500, 1000 keV and mono-energetic electrons of 350, 500, 690, 935, 1200 keV. Results: The results demonstrated that self-absorption of left and right counterpart organs may be different depending upon the differences in their masses. The cross-irradiations between left-to-right and right-to-left counterpart organs are always equal irrespective of difference in their masses. Cross-irradiation from the left and right counterpart organs to other organs are different (4-24 times in Zubal phantom) depending on the photon energy and organs. The irradiation from a single source organ to the left and right counterpart paired organs is always different irrespective of activity concentration. Conclusions: Left and right counterpart organs always receive different absorbed doses from target organs and deliver different absorbed doses to target organs. Therefore, in application of radiopharmaceuticals in which the dose to the organs plays a role, counterpart organs should be treated separately as two separate organs.

  6. An Excel-Based System to Manage Radiation Safety for the Family of Patients Undergoing 131I Therapy.

    Science.gov (United States)

    Steward, Palmer G

    2017-06-01

    The purpose of this study was to develop spreadsheet workbooks that assist in the radiation safety counseling of 131 I therapy patients and their families, providing individualized guidelines that avoid imposing overly conservative restrictions on family members and others. Methods: The mathematic model included biphasic patient radionuclide retention. The extrathyroidal component was a cylindric volume with a diameter corresponding to the patient's size and included patient self-absorption, whereas the thyroidal component was a point source whose transmission was reduced by self-absorption. A separate model in which the thyroid, extrathyroid, and bladder compartments fed serially from one to the next was developed to depict the radionuclide levels within the patient and to estimate the activity entering the environment at each urination. Results: The system was organized into a set of 4 workbooks: the first to be used with ablation patients prepared using thyrogen, the second with ablation patients prepared by deprivation, the third with hyperthyroid patients, and the fourth with the unusual hyperthyroid patient who finds the restrictions to be oppressive and returns 5-10 d after administration for a measurement and reassessment. The workbooks evaluated the radiation field strength external to the patient and indicated restrictions based on selected dose limits. To assist physicians in suggesting contamination precautions, the workbooks also evaluated the radioactivity present within the patient and the estimated discharge into the environment as a function of time. Conclusion: The workbooks that were developed assist the radiation safety counselor in individualizing radiation protection procedures for the family of patients undergoing 131 I therapy. The workbook system avoids overly conservative assumptions while permitting selection of appropriate dose limits for each individual. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  7. HE I triplet line emission in class 1 Seyfert galaxies

    International Nuclear Information System (INIS)

    Feldman, F.R.

    1979-01-01

    The equation of statistical equilibrium were solved for an 11-level helium atom, including all important radiative and collisional transitions and allowing for self-absorption from any level. Gas physical conditions considered are 5 x 10 8 cm -3 less than or equal to N less than or equal to 5 x 10 10 cm -3 , 5000 K less than or equal to T less than or equal to 20,000 K and a range of optical depth in the lambda 10830 line (10 less than or equal to tau(lambda 10830) less than or equal to 500) as a free parameter. For a photoionized, optically thick cloud, tau(lambda 10830) is shown to be nearly proportional to a measure of the ratio of photoionizing flux to cloud density (U 1 ), provided that photoionization from excited He 0 levels can be neglected. Calculated triplet line intensities as a function of tau(lambda 10830) are presented in graphical form, illustrating the significance of collisional excitation from 2 3 S and 2 3 P as well as self-absorption in lines terminating on 2 3 P. The possible importance of photoionization from the n = 2 levels by continuum and resonance-line radiation was investigated. This process may significantly influence triplet line strengths for small photoionizing-source/cloud separations (high U 1 ), unless most scattered hydrogen Lα and C IV lambda 1549 photons are destroyed by dust grains (or by some other mechanism). New spectrophotometric observations of 3C 120, Mrk 618, NGC 7469, and Mrk 335 are compared to the theoretical results. It appears that class 1 Seyfert galaxies with strong helium lines may be characterized by N approx. = 5 x 10 9 cm -3 , T approx. = 15,000 K and tau(lambda 10830) approx. = 100, assuming no photoionization from n = 2

  8. Top down viewing of the inductively coupled plasma using a dual grating, direct reading spectrograph and an all mirror optical system

    International Nuclear Information System (INIS)

    Apel, C.T.; Duchane, D.V.; Palmer, B.A.

    1980-01-01

    Using an all-mirror optical system, an inductively coupled plasma is viewed top down and the light is directed to a dual grating, direct reading spectrograph. Top down viewing of the plasma, with masking of the image of the argon plasma torus at the spectrograph entrance slit, significantly reduces background signal from the source and permits the use of the depth of field of the optical system to achieve compromise conditions for viewing the plasma. Light from the plasma source is introduced to the optical system by means of a mirror situated directly over the plasma. The system is exhausted in such a way that cool air flowing past the mirror forms a thermal barrier between the mirror and the plasma. Elements such as copper and lead have atomic and ionic lines which tend to exhibit self absorption when viewed top down through the cooler ground state atoms in the plume of the plasma. One of the approaches to this problem is to shear off the plume of the plasma with a jet of air directed across the tip of the plasma. A second approach is to make use of the dual grating, direct reading spectrograph and real-time computer system which easily permits the setting of alternate lines for each element so that self absorption and matrix effects are minimized. The design of the dual-grating, direct-reading spectrograph allows for the mounting of more than 200 13-mm-dia photomultiplier tubes along the focal curves. In an effort to demonstrate the use of fiber optics as a viable technique for the closer placement of exit slits, a red sensitive photomultiplier tube was coupled with a 30-cm fiber-optic ribbon to detect light from the Li 670.784 nm line on the focal curve. It was successful and had the added advantages of absorbing second-order ultraviolet light

  9. Alpha particle and proton relative thermoluminescence efficiencies in LiF:Mg,Cu,P:is track structure theory up to the task?

    Science.gov (United States)

    Horowitz, Y S; Siboni, D; Oster, L; Livingstone, J; Guatelli, S; Rosenfeld, A; Emfietzoglou, D; Bilski, P; Obryk, B

    2012-07-01

    Low-energy alpha particle and proton heavy charged particle (HCP) relative thermoluminescence (TL) efficiencies are calculated for the major dosimetric glow peak in LiF:Mg,Cu,P (MCP-N) in the framework of track structure theory (TST). The calculations employ previously published TRIPOS-E Monte Carlo track segment values of the radial dose in condensed phase LiF calculated at the Instituto National de Investigaciones Nucleares (Mexico) and experimentally measured normalised (60)Co gamma-induced TL dose-response functions, f(D), carried out at the Institute of Nuclear Physics (Poland). The motivation for the calculations is to test the validity of TST in a TL system in which f(D) is not supralinear (f(D) >1) and is not significantly dependent on photon energy contrary to the behaviour of the dose-response of composite peak 5 in the glow curve of LiF:Mg,Ti (TLD-100). The calculated HCP relative efficiencies in LiF:MCP-N are 23-87% lower than the experimentally measured values, indicating a weakness in the major premise of TST which exclusively relates HCP effects to the radiation action of the secondary electrons liberated by the HCP slowing down. However, an analysis of the uncertainties involved in the TST calculations and experiments (i.e. experimental measurement of f(D) at high levels of dose, sample light self-absorption and accuracy in the estimation of D(r), especially towards the end of the HCP track) indicate that these may be too large to enable a definite conclusion. More accurate estimation of sample light self-absorption, improved measurements of f(D) and full-track Monte Carlo calculations of D(r) incorporating improvements of the low-energy electron transport are indicated in order to reduce uncertainties and enable a final conclusion.

  10. Correlation between molecular structure and self healing in a series of anthraquinone derivatives doped in poly(methyl methacrylate)

    Science.gov (United States)

    Dhakal, Prabodh

    Using absorbance spectroscopy and fluorescence spectroscopy as a probe, we studied photodegradation and recovery of a series of anthraquinone derivatives doped in (poly)methyl methacrylate (PMMA) thin films. We observed that many anthraquinone derivatives recover their optical properties after they are photodamaged. The mechanism that is responsible for their recovery is not well understood. Previous research, which uses non-linear methods such as Amplified spontaneous emission (ASE), two photon absorption, and indirect linear methods such as transmittance imaging, have focussed on one of the derivatives of the anthraquinone class named dispersed orange 11 (DO11) dye doped in PMMA. Since no direct measurements have yet been reported on a variety of anthraquinone derivatives, we have extended our research on a series of anthraquinone derivatives using direct measurement techniques such as linear absorption spectroscopy, fluorescence spectroscopy and photochroism measurements as a function of dye concentration and sample temperature. The data obtained from temperature-dependent photodecay and recovery as well as concentration-dependent photodecay are found to be in qualitative agreement with the Correlated Chromophore Domain Model (CCrDM). We also applied the depth dependent absorption model to estimate the degree of self-absorption of the fluorescence signal emitted by the sample. This analysis allows us to determine the depth dependent damage profile and time dependence of the damage profile. Our results show that damage decreases as a function of depth into the sample and increases as a function of time of exposure of the pump beam. The degree of self-absorption is found to increase with sample thickness. We also did a numerical analysis to find the intensity dependent decay rate constant alpha and the recovery rate beta for fluorescence. We then used the data to test the CCrDM to find the average number of molecules in a domain, number density of molecules and

  11. Tilted dipole model for bias-dependent photoluminescence pattern

    Energy Technology Data Exchange (ETDEWEB)

    Fujieda, Ichiro, E-mail: fujieda@se.ritsumei.ac.jp; Suzuki, Daisuke; Masuda, Taishi [Department of Electrical and Electronic Engineering, Ritsumeikan University, Kusatsu 525-8577 (Japan)

    2014-12-14

    In a guest-host system containing elongated dyes and a nematic liquid crystal, both molecules are aligned to each other. An external bias tilts these molecules and the radiation pattern of the system is altered. A model is proposed to describe this bias-dependent photoluminescence patterns. It divides the liquid crystal/dye layer into sub-layers that contain electric dipoles with specific tilt angles. Each sub-layer emits linearly polarized light. Its radiation pattern is toroidal and is determined by the tilt angle. Its intensity is assumed to be proportional to the power of excitation light absorbed by the sub-layer. This is calculated by the Lambert-Beer's Law. The absorption coefficient is assumed to be proportional to the cross-section of the tilted dipole moment, in analogy to the ellipsoid of refractive index, to evaluate the cross-section for each polarized component of the excitation light. Contributions from all the sub-layers are added to give a final expression for the radiation pattern. Self-absorption is neglected. The model is simplified by reducing the number of sub-layers. Analytical expressions are derived for a simple case that consists of a single layer with tilted dipoles sandwiched by two layers with horizontally-aligned dipoles. All the parameters except for the tilt angle can be determined by measuring transmittance of the excitation light. The model roughly reproduces the bias-dependent photoluminescence patterns of a cell containing 0.5 wt. % coumarin 6. It breaks down at large emission angles. Measured spectral changes suggest that the discrepancy is due to self-absorption and re-emission.

  12. Measurement of Soot Volume Fraction and Temperature for Oxygen-Enriched Ethylene Combustion Based on Flame Image Processing

    Directory of Open Access Journals (Sweden)

    Weijie Yan

    2017-05-01

    Full Text Available A method for simultaneously visualizing the two-dimensional distributions of temperature and soot volume fraction in an ethylene flame was presented. A single-color charge-coupled device (CCD camera was used to capture the flame image in the visible spectrum considering the broad-response spectrum of the R and G bands of the camera. The directional emissive power of the R and G bands were calibrated and used for measurement. Slightly increased temperatures and reduced soot concentration were predicted in the central flame without self-absorption effects considered, an iterative algorithm was used for eliminating the effect of self-absorption. Nine different cases were presented in the experiment to demonstrate the effects of fuel mass flow rate and oxygen concentration on temperature and soot concentration in three different atmospheres. For ethylene combustion in pure-air atmosphere, as the fuel mass flow rate increased, the maximum temperature slightly decreased, and the maximum soot volume fraction slightly increased. For oxygen fractions of 30%, 40%, and 50% combustion in O2/N2 oxygen-enhanced atmospheres, the maximum flame temperatures were 2276, 2451, and 2678 K, whereas combustion in O2/CO2 atmospheres were 1916, 2322, and 2535 K. The maximum soot volume fractions were 4.5, 7.0, and 9.5 ppm in oxygen-enriched O2/N2 atmosphere and 13.6, 15.3, and 14.8 ppm in oxygen-enriched O2/CO2 atmosphere. Compared with the O2/CO2 atmosphere, combustion in the oxygen-enriched O2/N2 atmosphere produced higher flame temperature and larger soot volume fraction. Preliminary results indicated that this technique is reliable and can be used for combustion diagnosis.

  13. On calculation of detection efficiency of gamma spectrometers with germanium detection

    International Nuclear Information System (INIS)

    Sima, O.

    2001-01-01

    High resolution gamma spectrometer represents a powerful analysis technique of use in various fields from basic research to the study of environmental radioactivity, from medical investigations to geological surveys. Direct experimental calibration cannot cover the large range of measurement configurations of interest. Actually, it can be appropriately applied in an only limited number of cases, as for instance, in case of point-like sources or liquid phase volume sources. To assist the treatment of experimental calibration of germanium detectors, in the frame of Atomic and Nuclear Physics Chair of Department of Physics, a number of calculation methods were developed. These methods are generally based on Monte Carlo simulation but simplified and fast analytical methods were also worked out. Initially, these studies were dedicated to application in the field of environmental activity and radiation protection, but later on these were extended also to other fields as, for instance, the neutron activation or radionuclide metrology. First, the effects of matrices were calculated for the case of volume sources. Applying the matrix corrections allows obtaining the source calibration curves on the basis of experimental calibration data obtained with liquid sources, in the same geometry. An algorithm based on Monte Carlo calculation and using techniques of correlated selection was obtained. This algorithm can be implemented in the gamma analysis programs giving for the first time the possibility of correct evaluation of matrix effects even during the analysis of gamma spectra. We used a set of additive relations applicable in case of volume sources with negligible self-absorption and obtained a number of linear relations useful in calibrating the large volume sources in presence of self-absorption, based on small volume standard sources. Also, we proposed analytical relations useful in the case of measurements of large volume samples, in case of Marinelli geometry. To

  14. Investigation of spectral interference effects on determination of uranium concentration in phosphate ore by inductively coupled plasma optical emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bachari, Ayoob H.; Jalali, Fatemeh; Alahyarizadeh, Ghasem [Tehran Univ. (Iran, Islamic Republic of). Engineering Dept.

    2017-04-01

    self-absorption), 386.592 nm (by Ti in high concentration), and 389.036 nm (by Fe self-absorption) were considered.

  15. Validation of MCNP NPP Activation Simulations for Decommissioning Studies by Analysis of NPP Neutron Activation Foil Measurement Campaigns

    Directory of Open Access Journals (Sweden)

    Volmert Ben

    2016-01-01

    Full Text Available In this paper, an overview of the Swiss Nuclear Power Plant (NPP activation methodology is presented and the work towards its validation by in-situ NPP foil irradiation campaigns is outlined. Nuclear Research and consultancy Group (NRG in The Netherlands has been given the task of performing the corresponding neutron metrology. For this purpose, small Aluminium boxes containing a set of circular-shaped neutron activation foils have been prepared. After being irradiated for one complete reactor cycle, the sets have been successfully retrieved, followed by gamma-spectrometric measurements of the individual foils at NRG. Along with the individual activities of the foils, the reaction rates and thermal, intermediate and fast neutron fluence rates at the foil locations have been determined. These determinations include appropriate corrections for gamma self-absorption and neutron self-shielding as well as corresponding measurement uncertainties. The comparison of the NPP Monte Carlo calculations with the results of the foil measurements is done by using an individual generic MCNP model functioning as an interface and allowing the simulation of individual foil activation by predetermined neutron spectra. To summarize, the comparison between calculation and measurement serve as a sound validation of the Swiss NPP activation methodology by demonstrating a satisfying agreement between measurement and calculation. Finally, the validation offers a chance for further improvements of the existing NPP models by ensuing calibration and/or modelling optimizations for key components and structures.

  16. Detection of the Galactic Warm Neutral Medium in HI 21cm absorption

    Science.gov (United States)

    Patra, Narendra Nath; Kanekar, Nissim; Chengalur, Jayaram N.; Roy, Nirupam

    2018-05-01

    We report a deep Giant Metrewave Radio Telescope (GMRT) search for Galactic HI 21cm absorption towards the quasar B0438-436, yielding the detection of wide, weak HI 21cm absorption, with a velocity-integrated HI 21cm optical depth of 0.0188 ± 0.0036 km s-1. Comparing this with the HI column density measured in the Parkes Galactic All-Sky Survey gives a column density-weighted harmonic mean spin temperature of 3760 ± 365 K, one of the highest measured in the Galaxy. This is consistent with most of the HI along the sightline arising in the stable warm neutral medium (WNM). The low peak HI 21cm optical depth towards B0438-436 implies negligible self-absorption, allowing a multi-Gaussian joint decomposition of the HI 21cm absorption and emission spectra. This yields a gas kinetic temperature of T_k ≤ (4910 ± 1900) K, and a spin temperature of T_s = (1000 ± 345) K for the gas that gives rise to the HI 21cm absorption. Our data are consistent with the HI 21cm absorption arising from either the stable WNM, with T_s ≪ T_k, T_k ≈ 5000 K, and little penetration of the background Lyman-α radiation field into the neutral hydrogen, or from the unstable neutral medium, with T_s ≈ T_k ≈ 1000K.

  17. Strontium-90 and cesium-137 in freshwater; from Oct. 1978 to June 1979

    International Nuclear Information System (INIS)

    1979-01-01

    The samples of fresh water, 100 l each, were collected. The carriers of Sr and Cs were added immediately after the sampling, and the samples were vigorously stirred and filtered, then passed through cation exchange columns. Sr and Cs were eluted with hydrochloric acid from the cation exchange columns. Sr-90 and Cs-137 were separated from the sample solutions by the methods described, and their activities were counted with low background beta counters for 60 min. The net rate of sample counting was corrected for the counter efficiency, recovery, self-absorption and decay. As the environmental data, the results of Sr-90 and Cs-137 in fresh water obtained from October, 1978, to June, 1979, and the locations of sampling are given. In a table, the months and the locations of sampling, pH, and the amounts of Sr-90 and Cs-137 (pCi/l) are shown. The maximum values are 0.39 pCi/l of Sr-90 and 0.09 pCi/l of Cs-137 found in Miho County, Fukui Prefecture, in December, 1978. (Kako, I.)

  18. Ultrasonic measurements of chest wall thickness and realistic chest phantom for calibration of Pu lung counting facilities

    International Nuclear Information System (INIS)

    Shirotani, Takashi

    1990-01-01

    There are four important problems for the measurements of chest wall thickness using ultrasonic device: (1) selection of optimum position of transducer and the number of measured points on the chest covered with detector, (2) estimation of adipose-to-muscle ratio in the chest wall, especially for dispersed adipose like 'marbled beef', (3) determination of regression equations for the prediction of chest wall thickness, derived from groups of different body shape, i.e. corpulent and lean, and (4) estimation of effective chest wall thickness involved self-absorption layer of lung tissue, which changes with distribution of activity in the lungs. This quantity can not be measured with ultrasonic device. Realistic chest phantom was developed. The phantom contains removable model organs (lungs, liver, kidneys and heart), model trachea and artificial rib cage, and also includes chest plates that can be placed over the chest to simulate wide range adipose-to-muscle ratio in the chest wall. Various soft tissue substitutes were made of polyurethane with different concentrations of additive, and the rib cage were made of epoxy resin with calcium carbonate. The experimental data have shown that the phantom can be used as a standard phantom for the calibration. (author)

  19. THE ARECIBO METHANOL MASER GALACTIC PLANE SURVEY. III. DISTANCES AND LUMINOSITIES

    International Nuclear Information System (INIS)

    Pandian, J. D.; Menten, K. M.; Goldsmith, P. F.

    2009-01-01

    We derive kinematic distances to the 86 6.7 GHz methanol masers discovered in the Arecibo Methanol Maser Galactic Plane Survey. The systemic velocities of the sources were derived from 13 CO (J = 2-1), CS (J = 5-4), and NH 3 observations made with the ARO Submillimeter Telescope, the APEX telescope, and the Effelsberg 100 m telescope, respectively. Kinematic distance ambiguities were resolved using H I self-absorption with H I data from the VLA Galactic Plane Survey. We observe roughly three times as many sources at the far distance compared to the near distance. The vertical distribution of the sources has a scale height of ∼ 30 pc, and is much lower than that of the Galactic thin disk. We use the distances derived in this work to determine the luminosity function of 6.7 GHz maser emission. The luminosity function has a peak at approximately 10 -6 L sun . Assuming that this luminosity function applies, the methanol maser population in the Large Magellanic Cloud and M33 is at least 4 and 14 times smaller, respectively, than in our Galaxy.

  20. Demonstrations of diode-pumped and grating-tuned ZnSe:Cr2+ lasers

    International Nuclear Information System (INIS)

    Page, R.H.; Skidmore, J.A.; Schaffers, K.I.; Beach, R.J.; Payne, S.A.; Krupke, W.F.

    1996-09-01

    Within the last few years, divalent-transition-metal-doped II-VI material class has been proposed as source of new tunable mid-IR lasers. Cr 2+ is a prime laser candidate on account of its high luminescence quantum yield and the expectation that ESA would be absent. The first ZnSe:Cr 2+ laser demonstrations were conducted in an end-pumped geometry with a tightly focused (0.2 mm spot) MgF 2 -Co 2+ laser beam, for a peak pump intensity well over 100 kW/cm 2 , so laser threshold was easily reached. Grating tuning experiments were done by replacing the cavity high-reflector with a diffraction grating. The diode array was removed and pump beam from a MgF 2 :Co 2+ laser was focused onto the crystal using the same cylindrical lens. Output wavelengths were checked with a monochromator. The long-wavelength limit of operation was 2799 nm. Short-wavelength cutoff was 2134 nm; even though the emission cross section remains substantial, self-absorption inhibits laser operation

  1. Development of Educational Simulation on Spectrum of HPGe Detector and Implementation of Education Program

    International Nuclear Information System (INIS)

    Seo, K. W.; Joo, Y. C.; Ji, Y. J.; Lee, M. O.; Lee, S. Y.; Jun, Y. K.

    2005-12-01

    In this development, characteristics of Aptec, Genie2000(Canberra Co, USA), GammaVision(Ortec Co, USA) which are usually used in Korea radioactive measure laboratory, such as peak search, peak fitting, central area position and area calculation, spectrum correction and method for radioactive calculation are included. And radioactive source geometry, absorption of sample itself, methods for correcting coincidence summing effect is developed and the result effected on spectrum analysis teaching material. Developed simulation HPGe detector spectrum are spectrum for correction, spectrum for correcting radio source-detection duration geometry, sample spectrum which need self absorption correction of radio source, peak search spectrum for optimizing peak search offset setting and background spectrum. These spectrum are made similar to real spectrum by processing peak and background which were measured from mix standard volume radio source. Spectrum analysis teaching material is developed more focus on practical thing than theoretical thing, simulation spectrum must be used in spectrum analysis practise. Optimal method for spectrum analysis condition, spectrum correction, Geometry correction and background spectrum analysis are included in teaching material and also ANSI N42 recommended 'Spectrum analysis program test' procedure is included too. Aptec, Genie2000, Gamma Vision software manuals are included in appendix. In order to check the text of developed simulation on spectrum of HPGe detector, in 2004 and 2005, these was implemented in the other regular course as a course for superviser of the handling with RI. And the text and practical procedure were reviewed through the course and were revised

  2. Application of escape probability to line transfer in laser-produced plasmas

    International Nuclear Information System (INIS)

    Lee, Y.T.; London, R.A.; Zimmerman, G.B.; Haglestein, P.L.

    1989-01-01

    In this paper the authors apply the escape probability method to treat transfer of optically thick lines in laser-produced plasmas in plan-parallel geometry. They investigate the effect of self-absorption on the ionization balance and ion level populations. In addition, they calculate such effect on the laser gains in an exploding foil target heated by an optical laser. Due to the large ion streaming motion in laser-produced plasmas, absorption of an emitted photon occurs only over the length in which the Doppler shift is equal to the line width. They find that the escape probability calculated with the Doppler shift is larger compared to the escape probability for a static plasma. Therefore, the ion streaming motion contributes significantly to the line transfer process in laser-produced plasmas. As examples, they have applied escape probability to calculate transfer of optically thick lines in both ablating slab and exploding foil targets under irradiation of a high-power optical laser

  3. Assessing neutron generator output using neutron activation of silicon

    International Nuclear Information System (INIS)

    Kehayias, Pauli M.; Kehayias, Joseph J.

    2007-01-01

    D-T neutron generators are used for elemental composition analysis and medical applications. Often composition is determined by examining elemental ratios in which the knowledge of the neutron flux is unnecessary. However, the absolute value of the neutron flux is required when the generator is used for neutron activation analysis, to study radiation damage to materials, to monitor the operation of the generator, and to measure radiation exposure. We describe a method for absolute neutron output and flux measurements of low output D-T neutron generators using delayed activation of silicon. We irradiated a series of silicon oxide samples with 14.1 MeV neutrons and counted the resulting gamma rays of the 28 Al nucleus with an efficiency-calibrated detector. To minimize the photon self-absorption effects within the samples, we used a zero-thickness extrapolation technique by repeating the measurement with samples of different thicknesses. The neutron flux measured 26 cm away from the tritium target of a Thermo Electron A-325 D-T generator (Thermo Electron Corporation, Colorado Springs, CO) was 6.2 x 10 3 n/s/cm 2 ± 5%, which is consistent with the manufacturer's specifications

  4. Generation of coherent radiation in vacuum ultra-violet by tripling frequency in continuous supersonic nitrogen free jet: quantitative investigation of resonance phenomena

    International Nuclear Information System (INIS)

    Faucher, Olivier

    1991-01-01

    This research thesis reports experimental studies performed on the generation of a coherent radiation in vacuum ultraviolet (94 nm) by tripling the frequency of an ultraviolet laser focussed within a continuous supersonic free nitrogen jet. After a recall of some general issues related to non-linear optics, the evolution of the non-linear susceptibility and conditions of phase adaptation in supersonic jet have been determined. This allowed a quantitative study of the third harmonic generation for the three following types of conversion: without resonance, with resonance with two photons, and with resonance with three photons. In the first two cases, due to the absence of saturation phenomena, measuring the harmonic signal intensity allows a diagnosis of the non-linear medium internal state to the performed. As far as the third harmonic generation with resonance with three photons is concerned, the use of supersonic free jet properties leads to a perfect understanding of saturation effects by self-absorption which are at the origin of the unusual character of the obtained spectra [fr

  5. X-ray nanoprobes and diffraction-limited storage rings: opportunities and challenges of fluorescence tomography of biological specimens

    Energy Technology Data Exchange (ETDEWEB)

    Jonge, Martin D. de, E-mail: martin.dejonge@synchrotron.org.au [Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168 (Australia); Ryan, Christopher G. [CSIRO Earth Science and Research Engineering, Clayton, Victoria 3168 (Australia); Jacobsen, Chris J. [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Department of Physics, Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL 60208 (United States); Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL 60208 (United States)

    2014-08-27

    Nanoscale X-ray scanning microscopes, or X-ray nanoprobes, will benefit greatly from diffraction-limited storage rings. Here the requirements for nanoscale fluorescence tomography are explored to gain insight into the scientific opportunities and technical challenges that such sources offer. X-ray nanoprobes require coherent illumination to achieve optic-limited resolution, and so will benefit directly from diffraction-limited storage rings. Here, the example of high-resolution X-ray fluorescence tomography is focused on as one of the most voracious demanders of coherent photons, since the detected signal is only a small fraction of the incident flux. Alternative schemes are considered for beam delivery, sample scanning and detectors. One must consider as well the steps before and after the X-ray experiment: sample preparation and examination conditions, and analysis complexity due to minimum dose requirements and self-absorption. By understanding the requirements and opportunities for nanoscale fluorescence tomography, one gains insight into the R&D challenges in optics and instrumentation needed to fully exploit the source advances that diffraction-limited storage rings offer.

  6. El universo plástico y sensorial de La mano (Wong Kar Wai, 2004

    Directory of Open Access Journals (Sweden)

    Melendo, Ana

    2012-04-01

    Full Text Available En español: Con el presente artículo, queremos mostrar cómo Wong Kar Wai, heredero de un cine muy vinculado a la modernidad cinematográfica, plantea en el cortometraje La mano (2004 temas como la soledad, la actitud melancólica o la necesidad de ensimismamiento. Estos, junto al estudio de la geometría, los colores saturados y las calidades pictóricas, y bajo el prisma de un realismo metafísico, dan lugar a situaciones ópticas, sonoras y táctiles puras. Es así como en el film del cineasta chino se ponen de manifiesto, a través de la presencia del fragmento corporal y la metonimia, las texturas, coloreadas y sonoras, que configuran los espacios sensoriomotrices del submundo en el que acontece la historia. In english: In this article, we show how Wong Kar Wai, heir to a filmography closely linked to cinematographic modernity, explores themes such as loneliness, melancholy, or self-absorption in his short film The Hand (2004. These themes, together with his study of geometry, saturated colours and pictorial qualities through the prism of metaphysical realism, give rise to purely optical, sonorous and tactile situations. In this way, the Chinese film director reveals, through the presence of a body fragment and metonymy, the colourful and sonorous textures that form the sensory-motor spaces of the underworld in which the story is set.

  7. Strontium-90 and cesium-137 in service water from June to December, 1981

    International Nuclear Information System (INIS)

    1981-01-01

    Service water, 100 l each, was collected at an intake of a water treatment plant and at a tap after water was left running for five minutes. The carriers of strontium and cesium were added to water immediately after sampling, and the sample was vigorously stirred and filtered. Then it was passed through a cation exchange column at a rate of 80 ml/min. Strontium and cesium were eluted with hydrochloric acid from the cation exchange column, and separated. After the radiochemical separation, the mounted precipitates were counted for activity using low background beta counters normally for 60 min. Net sample counting rates were corrected for counter efficiency, recovery, self absorption and decay to obtain the content of strontium-90 and cesium-137 radioactivity per sample aliquot. From the results, concentrations of these nuclides in the original sample were calculated. The maximum values obtained were 0.29 pCi/l of Sr-90 in Kyoto in August, 1981, and 0.02 pCi/l of Cs-137 in Kyoto in August and in Inuyama in December, 1981, in case of source water. In case of tap water, they were 0.18 pCi/l of Sr-90 in Kobe in December, 1981, and 0.02 pCi/l of Cs-137 in Kyoto in August, 1981. (Kako, I.)

  8. Determination of plasma temperature and electron density in river sediment plasma using calibration-free laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Austria, Elmer S. Jr.; Lamorena-Lim, Rheo B.

    2015-01-01

    Calibration-free laser-induced breakdown spectroscopy (CF-LIBS) technique is an approach used to quantitatively measure elemental composition of samples without the use of standard reference materials (SRMs). Due to the unavailability of most SRMs for specific samples, the CF-LIBS approach is steadily becoming more prevalent. CF-LIBS also minimizes interferences from the sample matrix by accounting spectral line intensifies of different elements. The first part of the CF-LIBS algorithm is the calculation of plasma temperature and electron density of the sample while the second part deals with the self-absorption correction and quantitative elemental analysis. In this study, the precursor parameters for the algorithm - plasma temperature and electron density - were measured through the neutral atom and ion line emissions of Fe and Cu in the time window of 0.1 to 10 μs. Plasma from river sediment samples were produced by a 1064 nm nanosecond pulsed Nd:YAG laser at atmospheric pressure. The plasma temperature and electron density were calculated from the Boltzmann plot and Saha-Boltzmann equation methods, respectively. These precursor parameters can be used in calculating the time window wherein the plasma is optically thin at local thermodynamic equilibrium (LTE) and for quantitative multi-elemental analysis. (author)

  9. VARIATIONS OF THE 10 μm SILICATE FEATURES IN THE ACTIVELY ACCRETING T TAURI STARS: DG Tau AND XZ Tau

    International Nuclear Information System (INIS)

    Bary, Jeffrey S.; Leisenring, Jarron M.; Skrutskie, Michael F.

    2009-01-01

    Using the Infrared Spectrograph aboard the Spitzer Space Telescope, we observed multiple epochs of 11 actively accreting T Tauri stars in the nearby Taurus-Auriga star-forming region. In total, 88 low-resolution mid-infrared spectra were collected over 1.5 years in Cycles 2 and 3. The results of this multi-epoch survey show that the 10 μm silicate complex in the spectra of two sources-DG Tau and XZ Tau-undergoes significant variations with the silicate feature growing both weaker and stronger over month- and year-long timescales. Shorter timescale variations on day- to week-long timescales were not detected within the measured flux errors. The time resolution coverage of this data set is inadequate for determining if the variations are periodic. Pure emission compositional models of the silicate complex in each epoch of the DG Tau and XZ Tau spectra provide poor fits to the observed silicate features. These results agree with those of previous groups that attempted to fit only single-epoch observations of these sources. Simple two-temperature, two-slab models with similar compositions successfully reproduce the observed variations in the silicate features. These models hint at a self-absorption origin of the diminution of the silicate complex instead of a compositional change in the population of emitting dust grains. We discuss several scenarios for producing such variability including disk shadowing, vertical mixing, variations in disk heating, and disk wind events associated with accretion outbursts.

  10. Kinetic energy dependence of carrier diffusion in a GaAs epilayer studied by wavelength selective PL imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, S. [University of North Carolina at Charlotte, Charlotte, NC 28223 (United States); Providence High School, Charlotte, NC 28270 (United States); Su, L.Q.; Kon, J. [University of North Carolina at Charlotte, Charlotte, NC 28223 (United States); Gfroerer, T. [Davidson College, Davidson, NC 28035 (United States); Wanlass, M.W. [National Renewable Energy Laboratory, Golden, CO 80401 (United States); Zhang, Y., E-mail: yong.zhang@uncc.edu [University of North Carolina at Charlotte, Charlotte, NC 28223 (United States)

    2017-05-15

    Photoluminescence (PL) imaging has been shown to be an efficient technique for investigating carrier diffusion in semiconductors. In the past, the measurement was typically carried out by measuring at one wavelength (e.g., at the band gap) or simply the whole emission band. At room temperature in a semiconductor like GaAs, the band-to-band PL emission may occur in a spectral range over 200 meV, vastly exceeding the average thermal energy of about 26 meV. To investigate the potential dependence of the carrier diffusion on the carrier kinetic energy, we performed wavelength selective PL imaging on a GaAs double hetero-structure in a spectral range from about 70 meV above to 50 meV below the bandgap, extracting the carrier diffusion lengths at different PL wavelengths by fitting the imaging data to a theoretical model. The results clearly show that the locally generated carriers of different kinetic energies mostly diffuse together, maintaining the same thermal distribution throughout the diffusion process. Potential effects related to carrier density, self-absorption, lateral wave-guiding, and local heating are also discussed.

  11. Quantitative analysis of untreated bio-samples

    International Nuclear Information System (INIS)

    Sera, K.; Futatsugawa, S.; Matsuda, K.

    1999-01-01

    A standard-free method of quantitative analysis for untreated samples has been developed. For hair samples, measurements were performed by irradiating with a proton beam a few hairs as they are, and quantitative analysis was carried out by means of a standard-free method developed by ourselves. First, quantitative values of concentration of zinc were derived, then concentration of other elements was obtained by regarding zinc as an internal standard. As the result, values of concentration of sulphur for 40 samples agree well with the average value for a typical Japanese and also with each other within 20%, and validity of the present method could be confirmed. Accuracy was confirmed by comparing the results with those obtained by the usual internal standard method, too. For the purpose of a surface analysis of a bone sample, a very small incidence angle of the proton beam was used, so that both energy loss of the projectile and self-absorption of X-rays become negligible. As the result, consistent values of concentration for many elements were obtained by the standard-free method

  12. Strontium-90 and cesium-137 in soil (from July 1979 to Oct. 1980)

    International Nuclear Information System (INIS)

    1980-01-01

    The samples of soil were collected from the locations in spacious and flat areas without past disturbance on the surfaces. The samples were taken from two layers of different depth, 0 - 5 cm and 5 - 20 cm. In the course of air drying, lumps were crushed by hand, and plant roots, pebbles and small gravels were removed. The air-dried soils were sieved, and heated in the presence of Sr and Cs carriers together with sodium hydroxide. Then the samples were heated with hydrochloric acid, and Sr-90 and Cs-137 were separated from the sample solutions by the methods described. Their activities were counted with low background beta counters. The net rate of sample counting was corrected for the counter efficiency, recovery, self-absorption and decay. As the environmental data, the results of Sr-90 and Cs-137 in soil obtained from July, 1979, to October, 1980, and the locations of sampling are given. In a table, the months, locations and depth (cm) of sampling, air soil (%), Sr(%), and the amounts of Sr-90 and Cs-137 (pCi/kg, mCi/km 2 ) are shown. The maximum values are 120 mCi/km 2 of Sr-90 and 260 mCi/km 2 of Cs-137 found in Kawabe County, Akita Prefecture, in July, 1980. (Kako, I.)

  13. Absolute measurement of {beta} emitters with a 4 {pi} counter; Mesure absolue des emetteurs {beta} au compteur 4 {pi}

    Energy Technology Data Exchange (ETDEWEB)

    Le Gallic, Y. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1959-06-15

    The object of this work is to investigate the conditions under which the activity of {beta}-emitting radionuclides may be measured with a maximum of precision, and as a result to study the relevant corrections. The various problems relating to activity measurements with a 4 {pi} counter have been examined successively: - comparison of 4 {pi}, GM and proportional counters; - study of the preparation of sources; - corrections on the counting of sources; - self-absorption; - correction for absorption. The precision obtained on these measurements varies from 1.2 to 3 per cent, with the result that the 4 {pi} counter can be considered a very satisfactory calibration instrument. (author) [French] Le but de ce travail est de rechercher les conditions permettant d'obtenir avec le maximum de precision, la mesure de l'activite des radionuclides se desintegrant par emission et par consequent d'etudier les corrections qui s'y rapportent. Nous avons examine successivement les differents problemes se rapportant aux mesures d'activite au compteur 4 {pi}: - Comparaison des compteurs 4 {pi}, GM et proportionnel; - etude de la preparation des sources; - corrections sur la numeration des sources; - auto-absorption; - correction d'absorption. La precision obtenue dans ces mesures, variant de 1,2 a 3 pour cent, on peut donc considerer le compteur 4 {pi} comme un instrument d'etalonnage tres satisfaisant. (auteur)

  14. Examination of the Properties of a Spent Fuel based Electricity Generation System - Scintillator Performance Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Haneol; Yim, Man-Sung [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    Gammavoltaic was proposed by Karl Scharf in 1960. The low efficiency resulted in gammavoltaic being used as a radiation detector. In the 1990s the efficiency of gammavoltaic increased by the use of a scintillator. Gammavoltaic was further studied as a power source for spent fuel transportation and a nuclear battery in the 2000s Haneol Lee and Man-Sung Yim also suggested electricity generation system based on spent fuel stored inside the fuel pool of a nuclear power plant. This study proposed the systematic design of an electricity conversion system using CsI(Tl) scintillator and a-Si photovoltaic cell. As such, this study is selected to be a reference paper. The results of this paper indicate a self-absorption effect from the reference model. This effect is negligible while the irradiation degradation has to be considered. Two main ways to reduce radiation induced degradation are scintillator shielding and replacing scintillator material with a material having higher radiation resistance. The analysis of the scintillator used in the 'electricity generation system using gamma radiation from spent fuel' was performed to evaluate the ideal electricity generation in the reference research.

  15. Influence of driving frequency on oxygen atom density in O2 radio frequency capacitively coupled plasma

    International Nuclear Information System (INIS)

    Kitajima, Takeshi; Noro, Kouichi; Nakano, Toshiki; Makabe, Toshiaki

    2004-01-01

    The influence of the driving frequency on the absolute oxygen atom density in an O 2 radio frequency (RF) capacitively coupled plasma (CCP) was investigated using vacuum ultraviolet absorption spectroscopy with pulse modulation of the main plasma. A low-power operation of a compact inductively coupled plasma light source was enabled to avoid the significant measurement errors caused by self-absorption in the light source. The pulse modulation of the main plasma enabled accurate absorption measurement for high plasma density conditions by eliminating background signals due to light emission from the main plasma. As for the effects of the driving frequency, the effect of VHF (100 MHz) drive on oxygen atom production was small because of the modest increase in plasma density of electronegative O 2 in contrast to the significant increase in electron density previously observed for electropositive Ar. The recombination coefficient of oxygen atoms on the electrode surface was obtained from a decay rate in the afterglow by comparison with a diffusion model, and it showed agreement with previously reported values for several electrode materials

  16. Improved thomas formula for radon measurement

    International Nuclear Information System (INIS)

    Ji Changsong

    1991-06-01

    The FT 648 type portable absolute radon meter has been developed and the designing principle of this instrument is introduced. The absolute radon meter differs from relative radon meter. By using structure parameters, operating parameters and readout of this instrument, the radon content of measured gas is obtained directly without calibration in advance. Normally, the calibration is done by a standard radioactive gaseous source of which the radon concentration is known. The systematic error is removed by adding filter-efficiency Σ, α self-absorption correction β, energy spectrum correction S, geometric factor Ω of probe and gravity dropping correction factor G to the Thomas formula for radon measurement of two-filter method. The atmosphere radon content, which is given in hour-average, in Beijing area was measured by FT 648 type absolute radon meter. The measurement lasted continuously for several days and nights and a 'saddle shape' of radon content-time curve was observed. The day's average radon content was 8.5 Bq·m -3

  17. Application and Analysis of the Isoelectronic Line Ratio Temperature Diagnostic in a Planar Ablating-Plasma Experiment at the National Ignition Facility

    Science.gov (United States)

    Epstein, R.; Rosenberg, M. J.; Solodov, A. A.; Myatt, J. F.; Regan, S. P.; Seka, W.; Hohenberger, M.; Barrios, M. A.; Moody, J. D.

    2015-11-01

    The Mn/Co isoelectronic emission-line ratio from a microdot source in planar CH foil targets was measured to infer the electron temperature (Te) in the ablating plasma during two-plasmon-decay experiments at the National Ignition Facility (NIF). We examine the systematic uncertainty in the Te estimate based on the temperature and density sensitivities of the line ratio in conjunction with plausible density constraints, and its contribution to the total Te estimate uncertainty. The potential advantages of alternative microdot elements (e.g., Ti/Cr and Sc/V) are considered. The microdot mass was selected to provide ample line strength while minimizing the effect of self-absorption on the line emission, which is of particular concern, given the narrow linewidths of mid- Z emitters at subcritical electron densities. Atomic line-formation theory and detailed atomic-radiative simulations show that the straight forward interpretation of the isoelectronic ratio solely in terms of its temperature independence remains valid with lines of moderate optical thickness (up to ~ 10) at line center. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  18. Tissue dose in thorotrast patients

    International Nuclear Information System (INIS)

    Kaul, A.; Noffz, W.

    1978-01-01

    Absorbed doses to the liver, spleen, red marrow, lungs, kidneys, and to various parts of bone tissue were calculated for long-term burdens of intravascularly injected Thorotrast. The estimates were performed for typical injection levels of 10, 30, 50 and 100 ml, based upon best estimates of 232 Th tissue distribution, and steady state activity ratios between the subsequent daughters. Correcting for the α-particle self absorption within Thorotrast aggregates, the mean α-dose to a standard 70-kg man at 30 yr after the injection 0f 25 ml of Thorotrast is 750 rad to the liver, 2100 rad to the spleen, 270 rad to the red marrow, 60-620 rad in various parts of the lung, and 13 rad to the kidneys. Dose rates to various parts of bone tissue (bone surface, compact, and cancellous bone) were estimated by applying the ICRP model on alkaline earth metabolism to the continuous translocation of thorium daughters to bone and to the formation of thorium daughters by decay within bone tissue. The average dose to calcified bone from translocated 224 Ra with its daughters is 18 rad at 30 yr after the injection of 25 ml of Thorotrast. Considering the Spiess-Mays risk coefficient of 0.9-1.7% bone sarcoma/ 100 rad of average skeletal dose from 224 Ra and its daughters, the induction of 1.6-3.1 bone sarcomas per 1000 Thorotrast patients is predicted. (author)

  19. Quantitative portable gamma-spectroscopy sample analysis for non-standard sample geometries

    International Nuclear Information System (INIS)

    Ebara, S.B.

    1998-01-01

    Utilizing a portable spectroscopy system, a quantitative method for analysis of samples containing a mixture of fission and activation products in nonstandard geometries was developed. This method was not developed to replace other methods such as Monte Carlo or Discrete Ordinates but rather to offer an alternative rapid solution. The method can be used with various sample and shielding configurations where analysis on a laboratory based gamma-spectroscopy system is impractical. The portable gamma-spectroscopy method involves calibration of the detector and modeling of the sample and shielding to identify and quantify the radionuclides present in the sample. The method utilizes the intrinsic efficiency of the detector and the unattenuated gamma fluence rate at the detector surface per unit activity from the sample to calculate the nuclide activity and Minimum Detectable Activity (MDA). For a complex geometry, a computer code written for shielding applications (MICROSHIELD) is utilized to determine the unattenuated gamma fluence rate per unit activity at the detector surface. Lastly, the method is only applicable to nuclides which emit gamma-rays and cannot be used for pure beta or alpha emitters. In addition, if sample self absorption and shielding is significant, the attenuation will result in high MDA's for nuclides which solely emit low energy gamma-rays. The following presents the analysis technique and presents verification results using actual experimental data, rather than comparisons to other approximations such as Monte Carlo techniques, to demonstrate the accuracy of the method given a known geometry and source term. (author)

  20. Measurement of fission yields for 232-Th (n,f) at 14,7 MeV by direct gamma spectrometric method

    International Nuclear Information System (INIS)

    Chouak, K.; Berrada, M.; Embarech, K.

    1994-01-01

    Fission yields for the reaction 232-Th (n,f) were measured at 14,7 MeV using the activation technique with direct gamma spectrometric method. Neutrons were produced via the T(d,n) sup 4 He reaction. The neutron fluences were determined relative to the well-known sup 2 sup 7 Al(n,p) sup 2 sup 7 Mg or sup 2 sup 7 Al(n,alpha) sup 2 sup 4 Na cross section, according to the irradiation time. Yields of fission products were determined by measuring the induced gamma ray activities of the irradiated Th foils, using a calibrated Ge(Li) detector. All necessary corrections were taken into account: self absorption, coincidence losses and natural gamma rays. Fifty six cumulative yields were measured and only twenty one corresponding results were found in the literature (Crouch,1977). A satisfactory agreement is observed between our results and the published data with the exception of the masses:A=134 and A=140. 1 tab., 2 refs. (author)

  1. A Literature Study of Matrix Element Influenced to the Result of Analysis Using Absorption Atomic Spectroscopy Method (AAS)

    International Nuclear Information System (INIS)

    Tyas-Djuhariningrum

    2004-01-01

    The gold sample analysis can be deviated more than >10% to those thrue value caused by the matrix element. So that the matrix element character need to be study in order to reduce the deviation. In rock samples, the matrix elements can cause self quenching, self absorption and ionization process, so there is a result analysis error. In the rock geochemical process, the elements of the same group at the periodic system have the tendency to be together because of their same characteristic. In absorption Atomic Spectroscopy analysis, the elements associate can absorb primer energy with similar wave length so that it can cause deviation in the result interpretation. The aim of study is to predict matrix element influences from rock sample with application standard method for reducing deviation. In quantitative way, assessment of primer light intensity that will be absorbed is proportional to the concentration atom in the sample that relationship between photon intensity with concentration in part per million is linier (ppm). These methods for eliminating matrix elements influence consist of three methods : external standard method, internal standard method, and addition standard method. External standard method for all matrix element, internal standard method for elimination matrix element that have similar characteristics, addition standard methods for elimination matrix elements in Au, Pt samples. The third of standard posess here accuracy are about 95-97%. (author)

  2. Chemical methods for the use of niobium from pressure vessel cladding as a fast neutron dosimeter

    International Nuclear Information System (INIS)

    Karnani, Hari

    1986-08-01

    the steel samples from the cladding of a pressure vessel of an operating nuclear power reactor were obtained by scraping. The cladding material of the pressure vessel contained about 0.5 % niobium. It was desired to use the niobium as a dosimeter for estimating fast fluences at the pressure vessel. The weak radiation from the reaction product 93m Nb cannot be measured in the presence of other elements and interfering activities. A method was developed to separate niobium from other metals present; the concentration and yield of niobium were determined spectrophotometrically. The irradiated niobium was electrodeposited from aqueous solutions on copper discs. The amount of the deposited niobium was determined by a radiochemical method which makes use of its own radioactivity - measured with a liquid scintillation counter - and the known starting mass of niobium. It was possible to determine the deposited niobium masses (5 to 200 microgram) with a desired degree of accuracy. The absolute emission rate of X-rays could then be measured without any self-absorption or interference from other activities. The mass of niobium on each preparate and its X-ray emission rate, later on, were used as basic experimental data for the estimation of last neutron doses at the pressure vessel

  3. The abject gaze and the homosexual body: Flandrin's Figure d'Etude.

    Science.gov (United States)

    Camille, M

    1994-01-01

    This article charts the history of the reception, reproduction and appropriation of a single image that has recently become a kind of "gay icon"--the Figure d'Etude in the Louvre, painted by Hippolyte Flandrin in 1835. Initially no more than a neo-classical academic exercise, the formal emptiness of this picture meant that it could be re-invested and reinscribed with new meanings and new titles at every turn. Emblematic of the anxious visibility/invisibility of the newly discovered homosexual body during a period when the gaze still had to be kept a dark secret, Flandrin's image only "came out" in its later photographic reworkings by Frederick Holland Day and Baron von Gloeden. After being reproduced for a specifically homosexual audience early this century, the popular Romantic pose of the young man curled-up in profile became a standard one, reappearing recently in the photographs of Robert Mapplethorpe. The inactive, abject and inward-turned isolation of the figure with its narcissistic self-absorption makes it, in my view, a profoundly negative stereotype of the gay gaze and the homosexual body. Flandrin's figure nonetheless appears today on gay merchandise world-wide as a sign of our separate and secluded subject positions and our community's unwillingness to radically alter older imposed and inherited classical stereotypes.

  4. Prospects for accelerator neutron sources for large volume minerals analysis

    International Nuclear Information System (INIS)

    Clayton, C.G.; Spackman, R.

    1988-01-01

    The electron Linac can be regarded as a practical source of thermal neutrons for activation analysis of large volume mineral samples. With a suitable target and moderator, a neutron flux of about 10 10 n/cm/s over 2-3 kg of rock can be generated. The proton Linac gives the possibility of a high neutron yield (> 10 12 n/s) of fast neutrons at selected energies. For the electron Linac, targets of W-U and W-Be are discussed. The advantages and limitations of the system are demonstrated for the analysis of gold in rocks and ores and for platinum in chromitite. These elements were selected as they are most likely to justify an accelerator installation at the present time. Errors due to self shielding in gold particles for thermal neutrons are discussed. The proton Linac is considered for neutrons generated from a lithium target through the 7 Li(p, n) 7 Be reaction. The analysis of gold by fast neutron activation is considered. This approach avoids particle self-absorption and, by appropriate proton energy selection, avoids potentially dominating interfering reactions. The analysis of 235 U in the presence of 238 U and 232 Th is also considered. (author)

  5. Modeling of alpha mass-efficiency curve

    International Nuclear Information System (INIS)

    Semkow, T.M.; Jeter, H.W.; Parsa, B.; Parekh, P.P.; Haines, D.K.; Bari, A.

    2005-01-01

    We present a model for efficiency of a detector counting gross α radioactivity from both thin and thick samples, corresponding to low and high sample masses in the counting planchette. The model includes self-absorption of α particles in the sample, energy loss in the absorber, range straggling, as well as detector edge effects. The surface roughness of the sample is treated in terms of fractal geometry. The model reveals a linear dependence of the detector efficiency on the sample mass, for low masses, as well as a power-law dependence for high masses. It is, therefore, named the linear-power-law (LPL) model. In addition, we consider an empirical power-law (EPL) curve, and an exponential (EXP) curve. A comparison is made of the LPL, EPL, and EXP fits to the experimental α mass-efficiency data from gas-proportional detectors for selected radionuclides: 238 U, 230 Th, 239 Pu, 241 Am, and 244 Cm. Based on this comparison, we recommend working equations for fitting mass-efficiency data. Measurement of α radioactivity from a thick sample can determine the fractal dimension of its surface

  6. Strontium-90 and cesium-137 in rain and dry fallout; from Jan. 1979 to Jun. 1979

    International Nuclear Information System (INIS)

    1979-01-01

    The samples of rain and dry fallout were collected monthly on the sampling trays with approximately 5000 cm 2 area, which were filled with water to 1 cm depth at the beginning of every month. The samples were filtered after Sr and Cs carriers were added, and passed through cation exchange columns at 80 ml/min. Sr and Cs were eluted with hydrochloric acid from the cation exchange columns. The methods of separating Sr-90 and Cs-137 from the sample solutions are explained, and their activities were counted with low background beta counters for 60 min. The net rate of sample counting was corrected for the counter efficiency, recovery, self-absorption and decay. As the environmental data, the results of Sr-90 and Cs-137 in rain and dry fallout obtained from January to June, 1979, and the locations of sampling are given. In a table, the months and the locations of sampling, duration (days), precipitation (mm), and the amounts of Sr-90 and Cs-137 (mCi/km 2 ) are shown. The maximum values are 0.16 mCi/km 2 of Sr-90 and 0.22 mCi/km 2 of Cs-137 found in Fukui in February, 1979. (Kako, I.)

  7. Self-shielding and burn-out effects in the irradiation of strongly-neutron-absorbing material

    International Nuclear Information System (INIS)

    Sekine, T.; Baba, H.

    1978-01-01

    Self-shielding and burn-out effects are discussed in the evaluation of radioisotopes formed by neutron irradiation of a strongly-neutron-absorbing material. A method of the evaluation of such effects is developed both for thermal and epithermal neutrons. Gadolinium oxide uniformly mixed with graphite powder was irradiated by reactor-neutrons together with pieces of a Co-Al alloy wire (the content of Co being 0.475%) as the neutron flux monitor. The configuration of the samples and flux monitors in each of two irradiations is illustrated. The yields of activities produced in the irradiated samples were determined by the γ-spectrometry with a Ge(Li) detector of a relative detection efficiency of 8%. Activities at the end of irradiation were estimated by corrections due to pile-up, self-absorption, detection efficiency, branching ratio, and decay of the activity. Results of the calculation are discussed in comparison with the observed yields of 153 Gd, 160 Tb, and 161 Tb for the case of neutron irradiation of disc-shaped targets of gadolinium oxide. (T.G.)

  8. Absolute measurement of {beta} emitters with a 4 {pi} counter; Mesure absolue des emetteurs {beta} au compteur 4 {pi}

    Energy Technology Data Exchange (ETDEWEB)

    Le Gallic, Y [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1959-06-15

    The object of this work is to investigate the conditions under which the activity of {beta}-emitting radionuclides may be measured with a maximum of precision, and as a result to study the relevant corrections. The various problems relating to activity measurements with a 4 {pi} counter have been examined successively: - comparison of 4 {pi}, GM and proportional counters; - study of the preparation of sources; - corrections on the counting of sources; - self-absorption; - correction for absorption. The precision obtained on these measurements varies from 1.2 to 3 per cent, with the result that the 4 {pi} counter can be considered a very satisfactory calibration instrument. (author) [French] Le but de ce travail est de rechercher les conditions permettant d'obtenir avec le maximum de precision, la mesure de l'activite des radionuclides se desintegrant par emission et par consequent d'etudier les corrections qui s'y rapportent. Nous avons examine successivement les differents problemes se rapportant aux mesures d'activite au compteur 4 {pi}: - Comparaison des compteurs 4 {pi}, GM et proportionnel; - etude de la preparation des sources; - corrections sur la numeration des sources; - auto-absorption; - correction d'absorption. La precision obtenue dans ces mesures, variant de 1,2 a 3 pour cent, on peut donc considerer le compteur 4 {pi} comme un instrument d'etalonnage tres satisfaisant. (auteur)

  9. Optimizing concentration of shifter additive for plastic scintillators of different size

    Energy Technology Data Exchange (ETDEWEB)

    Adadurov, A.F. [Institute for Scintillating materials, NPC Institute for Single Crystals, NAN of Ukraine, Lenin Avenue 61, 61001 Kharkov (Ukraine)], E-mail: adadurov@isma.kharkov.ua; Zhmurin, P.N.; Lebedev, V.N.; Titskaya, V.D. [Institute for Scintillating materials, NPC Institute for Single Crystals, NAN of Ukraine, Lenin Avenue 61, 61001 Kharkov (Ukraine)

    2009-02-11

    This paper concerns the influence of wavelength shifting (secondary) luminescent additive (LA{sub 2}) on the light yield of polystyrene-based plastic scintillator (PS) taking self-absorption into account. Calculations of light yield dependence on concentration of 1.4-bis(2-(5-phenyloxazolyl)-benzene (POPOP) as LA{sub 2} were made for various path lengths of photons in PS. It is shown that there is an optimal POPOP concentration (C{sub opt}), which provides a maximum light yield for a given path length. This optimal concentration is determined by the competition of luminescence and self-reflection processes. C{sub opt} values were calculated for PS of different dimensions. For small PS, C{sub opt}{approx}0.02%, which agree with a common (standard) value of POPOP concentration. For higher PS dimensions, the optimal POPOP concentration is decreased (to C{sub opt}{approx}0.006% for 320x30x2 cm sample), reducing the light yield from PS by almost 35%.

  10. CO, CS, and HCN in a clustering of reflection nebulae in Monoceros

    International Nuclear Information System (INIS)

    Kutner, M.L.; Tucker, K.D.

    1975-01-01

    Carbon monoxide line emission at lambda=2.6 mm has been observed over an area of approx.3 1/2degreetimes3 1/2degree in L1646, a diffuse dust cloud containing a grouping of reflection nebulae. The H 2 mass is estimated from the CO observations to be >3.2times10 4 M/sub sun/. Five CO emission peaks are observed, each apparently associated with at least one reflection nebula, with the strongest peak at α (1950) =6)05)20), delta (1950) =-6degree22'30''. Around this position, extended (10'times10') emission is observed from HCN and CS, suggesting a core with H 2 density approximately-less-than8times10 4 cm -3 . This core appears to be rotating with Ωgreater than or equal to7.4times10 -14 s -1 . There is also evidence for self-absorption in the CO line in this direction, suggestive of a collapsing cloud. (auth)

  11. X-ray fluorescence investigation of heavy-metal contamination on metal surfaces in the Pilot Plant Complex, Aberdeen Proving Ground, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Brubaker, K.L.; Draugelis, A.K.; Schneider, J.F.; Billmark, K.A.; Zimmerman, R.E.

    1995-07-01

    A field program using a portable x-ray fluorescence (XRF) instrument was carried out to obtain data on loadings of RCRA-regulated heavy metals in paint on metal surfaces within the Pilot Plant Complex at Aberdeen Proving Ground, Maryland. Measured loadings of heavy metals were sufficiently small that they do not present problems for either human exposure or the disposition of building demolition rubble. An attempt to develop an external calibration of the XRF instrument for cadmium, chromium, and lead was unsuccessful. Significant substrate effects were observed for cadmium and chromium; for accurate results for these elements, it appears necessary to calibrate by using a sample of the actual metal substrate on which the paint is located. No substrate effects were observed for lead, but the use of lead L-shell x-ray emission lines in the instrument mode utilized in this study appears to result in a significant underestimate of the lead loading due to self-absorption of these emissions.

  12. NaI(Tl) response functions

    International Nuclear Information System (INIS)

    Vega C, H. R.; Ortiz R, J. M.; Benites R, J. L.; De Leon M, H. A.

    2015-09-01

    The response functions of a NaI(Tl) detector have been estimated using Monte Carlo methods. Response functions were calculated for monoenergetic photon sources (0.05 to 3 MeV). Responses were calculated for point-like sources and for sources distributed in Portland cement cylinders. The responses were used to calculate the efficiency functions in term of photon energy. Commonly, sources used for calibration are point-like, and eventually sources to be measured have different features. In order to use the calibrated sources corrections due to solid angle, self-absorption and scattering, must be carried out. However, some of these corrections are not easy to perform. In this work, the calculated responses were used to estimate the detector efficiency of point-like sources, and sources distributed in Portland type cement. Samples of Portland paste were prepared and were exposed to photoneutrons produced by a 15 MV linac. Some of the elements in the cement were activated producing γ-emitting radionuclides that were measured with a NaI(Tl) gamma-ray spectrometer, that was calibrated with point-like sources. In order to determine the specific activity in the induced radioisotopes calculated efficiencies were used to make corrections due to the differences between the solid angle, photon absorption and photon scattering in the point-like calibration sources and the sources distributed in cement. During the interaction between photoneutrons and the cement samples three radioisotopes were induced: 56 Mn, 24 Na, and 28 Al. (Author)

  13. MALT90 Kinematic Distances to Dense Molecular Clumps

    Energy Technology Data Exchange (ETDEWEB)

    Whitaker, J. Scott [Physics Department, Boston University, 590 Commonwealth Avenue, Boston, MA 02215 (United States); Jackson, James M.; Sanhueza, Patricio; Stephens, Ian W. [Institute for Astrophysical Research, Boston University, Boston, MA 02215 (United States); Rathborne, J. M. [CSIRO Astronomy and Space Science, P.O. Box 76, Epping NSW 1710 (Australia); Foster, J. B. [Department of Astronomy, Yale University, P.O. Box 28101, New Haven, CT 06520-8101 (United States); Contreras, Y. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Longmore, S. N., E-mail: scott@bu.edu [Astrophysics Research Institute, Liverpool John Moores University, Egerton Wharf, Birkenhead CH41 1LD (United Kingdom)

    2017-10-01

    Using molecular-line data from the Millimetre Astronomy Legacy Team 90 GHz Survey (MALT90), we have estimated kinematic distances to 1905 molecular clumps identified in the ATLASGAL 870 μ m continuum survey over the longitude range 295° <  l  < 350°. The clump velocities were determined using a flux-weighted average of the velocities obtained from Gaussian fits to the HCO{sup +}, HNC, and N{sub 2}H{sup +} (1–0) transitions. The near/far kinematic distance ambiguity was addressed by searching for the presence or absence of absorption or self-absorption features in 21 cm atomic hydrogen spectra from the Southern Galactic Plane Survey. Our algorithm provides an estimation of the reliability of the ambiguity resolution. The Galactic distribution of the clumps indicates positions where the clumps are bunched together, and these locations probably trace the locations of spiral arms. Several clumps fall at the predicted location of the far side of the Scutum–Centaurus arm. Moreover, a number of clumps with positive radial velocities are unambiguously located on the far side of the Milky Way at galactocentric radii beyond the solar circle. The measurement of these kinematic distances, in combination with continuum or molecular-line data, now enables the determination of fundamental parameters such as mass, size, and luminosity for each clump.

  14. Realisation of a gamma emission tomograph by a servo-controlled camera and bed

    International Nuclear Information System (INIS)

    Guzman-Torres, D.R.

    1980-07-01

    We took part in the building of a transverse axial emission tomograph intended for nuclear medicine. The following three points were dealt with: mathematical, choice of processing algorithm; electronic, development of equipment; experimental, testing of the system built. On the mathematical side, following a survey of reconstruction methods, we studied the use of a reconstruction algorithm after filtering of the projections by convolution which gives a good spatial resolution. We also proposed a means to solve the computing time/quality of image problem, leading to a satisfactory result within a shorter total investigation time. In this way the computing time has been reduced by a factor three. In the electronics field we built an interface between the bed, the gamma camera and the computer already in the laboratory. The present instrument corresponds to version no. 2. The system control the bed and gamma camera which are operated from the computer. Experimentally we were able on checking the calculations with a phantom made up of small emitting sources, to prove by finding the exact spot our ability to locate active foci on the patient. While the results obtained are encouraging from the image restitution viewpoint, the study of problems related to self-absorption inside the organ and those of statistical noise have still to be continued [fr

  15. Workaholism in Brazil: measurement and individual differences.

    Science.gov (United States)

    Romeo, Marina; Yepes-Baldó, Montserrat; Berger, Rita; Netto Da Costa, Francisco Franco

    2014-01-01

    The aim of this research is the measurement and assessment of individual differences of workaholism in Brazil, an important issue which affects the competitiveness of companies. The WART 15-PBV was applied to a sample of 153 managers from companies located in Brazil, 82 (53.6%) women and 71 (46.4%) men. Ages ranged from 20 to 69 years with an average value of 41 (SD=9.06). We analyzed, on one hand, the factor structure of the questionnaire, its internal consistency and convergent (with the Dutch Work Addiction Scale - DUWAS) and criterion validity (with General Health Questionnaire – GHQ). On the other hand, we analyzed individual gender differences on workaholism. WART15-PBV has good psychometric properties, and evidence for convergent and criterion validity. Females and males differed on Impaired Communication / Self-Absorption dimension. This dimension has a direct effect only on men’s health perception, while Compulsive tendencies dimension has a direct effect for both genders. The findings suggest the WART15-PBV is a valid measure of workaholism that would contribute to the workers’ health and their professional and personal life, in order to encourage adequate conditions in the workplace taking into account workers’ individual differences.

  16. Is the GeV-TeV emission of PKS 0447-439 from the proton synchrotron radiation?

    Science.gov (United States)

    Gao, Quan-Gui; Lu, Fang-Wu; Ma, Ju; Ren, Ji-Yang; Li, Huai-Zhen

    2018-06-01

    We study the multi-wavelength emission features of PKS 0447-439 in the frame of the one-zone homogeneous lepto-hadronic model. In this model, we assumed that the steady power-laws with exponential cut-offs distributions of protons and electrons are injected into the source. The non-linear time-dependent kinematic equations, describing the evolution of protons, electrons and photons, are defined; these equations self-consistently involve synchrotron radiation of protons, photon-photon interaction, synchrotron radiation of electron/positron pairs, inverse Compton scattering and synchrotron self-absorption. The model is applied to reproduce the multi-wavelength spectrum of PKS 0447-439. Our results indicate that the spectral energy distribution (SED) of PKS 0447-439 can be reproduced well by the model. In particular, the GeV-TeV emission is produced by the synchrotron radiation of relativistic protons. The physically plausible solutions require the magnetic strength 10 G≲ B ≲ 100 G. We found that the observed spectrum of PKS 0447-439 can be reproduced well by the model whether z = 0.16 or z = 0.2, and the acceptable upper limit of redshift is z=0.343.

  17. Quantitative analysis of selected minor and trace elements through use of a computerized automatic x-ray spectrograph

    International Nuclear Information System (INIS)

    Fabbi, B.P.; Elsheimer, H.N.; Espos, L.F.

    1976-01-01

    Upgrading a manual X-ray spectrograph, interfacing with an 8K computer, and employment of interelement correction programs have resulted in a several-fold increase in productivity for routine quantitative analysis and an accompanying decrease in operator bias both in measurement procedures and in calculations. Factors such as dead time and self-absorption also are now computer corrected, resulting in improved accuracy. All conditions of analysis except for the X-ray tube voltage are controlled by the computer, which enhances precision of analysis. Elemental intensities are corrected for matrix effects, and from these the percent concentrations are calculated and printed via teletype. Interelement correction programs utilizing multiple linear regression are employed for the determination of the following minor and trace elements: K, S, Rb, Sr, Y, and Zr in silicate rocks, and Ba, As, Sb, and Zn in both silicate and carbonate rock samples. The last named elements use the same regression curves for both rock types. All these elements are determined in concentrations generally ranging from 0.0025 percent to 4.00 percent. The sensitivities obtainable range from 0.0001 percent for barium to 0.001 percent for antimony. The accuracy, as measured by the percent relative error for a variety of silicate and carbonate rocks, is on the order of 1-7 percent. The exception is yttrium

  18. Electrospun amplified fiber optics.

    Science.gov (United States)

    Morello, Giovanni; Camposeo, Andrea; Moffa, Maria; Pisignano, Dario

    2015-03-11

    All-optical signal processing is the focus of much research aiming to obtain effective alternatives to existing data transmission platforms. Amplification of light in fiber optics, such as in Erbium-doped fiber amplifiers, is especially important for efficient signal transmission. However, the complex fabrication methods involving high-temperature processes performed in a highly pure environment slow the fabrication process and make amplified components expensive with respect to an ideal, high-throughput, room temperature production. Here, we report on near-infrared polymer fiber amplifiers working over a band of ∼20 nm. The fibers are cheap, spun with a process entirely carried out at room temperature, and shown to have amplified spontaneous emission with good gain coefficients and low levels of optical losses (a few cm(-1)). The amplification process is favored by high fiber quality and low self-absorption. The found performance metrics appear to be suitable for short-distance operations, and the large variety of commercially available doping dyes might allow for effective multiwavelength operations by electrospun amplified fiber optics.

  19. Spectral Energy Distribution and Radio Halo of NGC 253 at Low Radio Frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Kapińska, A. D.; Staveley-Smith, L.; Meurer, G. R.; For, B.-Q. [International Centre for Radio Astronomy Research (ICRAR), University of Western Australia, 35 Stirling Hwy, WA 6009 (Australia); Crocker, R. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Bhandari, S.; Callingham, J. R.; Gaensler, B. M.; Hancock, P. J.; Lenc, E. [ARC Centre of Excellence for All-Sky Astrophysics (CAASTRO), Sydney NSW (Australia); Hurley-Walker, N.; Seymour, N. [International Centre for Radio Astronomy Research (ICRAR), Curtin University, Bentley, WA 6102 (Australia); Offringa, A. R. [Netherlands Institute for Radio Astronomy (ASTRON), P.O. Box 2, 7990 AA Dwingeloo (Netherlands); Hanish, D. J. [Spitzer Science Center, California Institute of Technology, MC 220-6, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Ekers, R. D.; Bell, M. E. [CSIRO Astronomy and Space Science (CASS), P.O. Box 76, Epping, NSW 1710 (Australia); Dwarakanath, K. S. [Raman Research Institute, Bangalore 560080 (India); Hindson, L. [Centre of Astrophysics Research, University of Hertfordshire, College Lane, Hatfield AL10 9AB (United Kingdom); Johnston-Hollitt, M. [School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140 (New Zealand); McKinley, B., E-mail: anna.kapinska@uwa.edu.au [School of Physics, The University of Melbourne, Parkville, VIC 3010 (Australia); and others

    2017-03-20

    We present new radio continuum observations of NGC 253 from the Murchison Widefield Array at frequencies between 76 and 227 MHz. We model the broadband radio spectral energy distribution for the total flux density of NGC 253 between 76 MHz and 11 GHz. The spectrum is best described as a sum of a central starburst and extended emission. The central component, corresponding to the inner 500 pc of the starburst region of the galaxy, is best modeled as an internally free–free absorbed synchrotron plasma, with a turnover frequency around 230 MHz. The extended emission component of the spectrum of NGC 253 is best described as a synchrotron emission flattening at low radio frequencies. We find that 34% of the extended emission (outside the central starburst region) at 1 GHz becomes partially absorbed at low radio frequencies. Most of this flattening occurs in the western region of the southeast halo, and may be indicative of synchrotron self-absorption of shock-reaccelerated electrons or an intrinsic low-energy cutoff of the electron distribution. Furthermore, we detect the large-scale synchrotron radio halo of NGC 253 in our radio images. At 154–231 MHz the halo displays the well known X-shaped/horn-like structure, and extends out to ∼8 kpc in the z -direction (from the major axis).

  20. Effect of Aluminum Doping on the Nanocrystalline ZnS:Al3+ Films Fabricated on Heavily-Doped p-type Si(100) Substrates by Chemical Bath Deposition Method

    Science.gov (United States)

    Zhu, He-Jie; Liang, Yan; Gao, Xiao-Yong; Guo, Rui-Fang; Ji, Qiang-Min

    2015-06-01

    Intrinsic ZnS and aluminum-doped nanocrystalline ZnS (ZnS:Al3+) films with zinc-blende structure were fabricated on heavily-doped p-type Si(100) substrates by chemical bath deposition method. Influence of aluminum doping on the microstructure, and photoluminescent and electrical properties of the films, were intensively investigated. The average crystallite size of the films varying in the range of about 9.0 ˜ 35.0 nm initially increases and then decreases with aluminum doping contents, indicating that the crystallization of the films are initially enhanced and then weakened. The incorporation of Al3+ was confirmed from energy dispersive spectrometry and the induced microstrain in the films. Strong and stable visible emission band resulting from the defect-related light emission were observed for the intrinsic ZnS and ZnS:Al3+ films at room temperature. The photoluminescence related to the aluminum can annihilate due to the self-absorption of ZnS:Al3+ when the Al3+ content surpasses certain value. The variation of the resistivity of the films that initially reduces and then increases is mainly caused by the partial substitute for Zn2+ by Al3+ as well as the enhanced crystallization, and by the enhanced crystal boundary scattering, respectively.

  1. The calibration of an end-window counter LCT 13A7 for the measurement of {beta}-activity; Etalonnage d'un compteur cloche LCT 13A7 pour les mesures d'activite {beta}

    Energy Technology Data Exchange (ETDEWEB)

    Barthoux, A; Imbert, L [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    The study shows the principal corrections to be applied in the case of plane circular sources made up of a mixture of radio-elements known or unknown. We define the region of activity in which this type of counter can usefully be employed. An experimental curve of the apparent exponential absorption coefficient for {beta} rays in matter is given, thus making it possible to correct for self-absorption and if necessary to define the apparent energy of the radiation. Finally, the study calculates the error to be expected with different counters of the same type. (author) [French] L'etude met en evidence les principales corrections a apporter dans le cas de sources planes circulaires constituees par un melange de radioelements connus ou inconnus. On definit le domaine d'activite dans lequel ce type de compteur peut etre raisonnablement utilise. Une courbe experimentale du coefficient d'absorption exponentielle apparente des {beta} dans la matiere est donnee, permettant d'effectuer des corrections d'autoabsorption et eventuellement de definir l'energie apparente du rayonnement. Enfin, l'etude determine l'erreur a envisager avec differents compteurs du meme type. (auteur)

  2. The role of FRET in solar concentrator efficiency and color tunability

    Energy Technology Data Exchange (ETDEWEB)

    Balaban, Benjamin, E-mail: bbalaban@ucsc.edu; Doshay, Sage; Osborn, Melissa; Rodriguez, Yvonne; Carter, Sue A., E-mail: sacarter@ucsc.edu

    2014-02-15

    We demonstrate concentration-dependent Förster-type energy transfer in a luminescent solar concentrator (LSC) material containing two high quantum yield laser dyes in a PMMA matrix. FRET heterotransfer is shown to be approximately 50% efficient in the regime of 2×10{sup −3}molal acceptor dye by weight in the host polymer. The two dyes used have been well studied for solar concentrator applications: BASF's Lumogen Red 305, and Exciton Chemical Company's DCM both demonstrate desirable stability, quantum yield, and complementary absorption spectra. We demonstrate how multiple-dye LSC devices employing FRET increase the absorption of air mass 1.5 solar irradiance without affecting the self-absorption properties of the film. Color tunability may be achieved through the addition of additional absorbers while minimizing the impact on waveguide efficiency. -- Highlights: • Förster Resonance Energy Transfer is demonstrated in a two-dye luminescent solar concentrator. • Donor-acceptor pair distance is related to the dye concentration in PMMA. • FRET's benefit to waveguide transport losses and color tunability is discussed.

  3. Novel in situ radiotracer methods for the direct and indirect study of chromate adsorption on alumina

    International Nuclear Information System (INIS)

    Gancs, L.; Nemeth, Z.; Horanyi, G.

    2002-01-01

    Radiotracer methods, particularly the radiotracer thin foil method, provide unique possibility of in situ monitoring of chromate adsorption on powdered adsorbents. Two different versions of the thin foil method can be distinguished. In the direct method, the species to be studied is labelled and the radiation measured gives direct information on the adsorption of this species. In the indirect method, a different labelled indicator species is added to the system and the adsorption of this species is followed and the adsorption of the species to be studied is determined based on analysis of the competitive adsorption processes. Both methods were used in the present study. In the in situ methods, the radiation measured consists of two main parts, one coming from the solution background, the other originating from the adsorption layer. In the case of the thin foil method using isotopes emitting soft β - radiation or low energy X-ray the solution background is governed and minimised by self-absorption of the radiation. In the direct study we applied an experimental methodology based on the energy selective measurement of the characteristic K α,β X-radiation emitted by the 51 Cr-labelled chromate species, whereas 35 S-labelled sulphate ions were used as the indicator species in the indirect study. (P.A.)

  4. The mm-wave compact component of AGN

    Science.gov (United States)

    Behar, Ehud; Vogel, Stuart; Baldi, Ranieri D.; Smith, Krista L.; Mushotzky, Richard F.

    2018-05-01

    mm-wave emission from Active Galactic Nuclei (AGN) may hold the key to understanding the physical origin of their radio cores. The correlation between radio/mm and X-ray luminosity may suggest a similar physical origin of the two sources. Since synchrotron self absorption decreases with frequency, mm-waves probe smaller length scales than cm-waves. We report on 100 GHz (3 mm) observations with CARMA of 26 AGNs selected from the hard X-ray Swift/BAT survey. 20/26 targets were detected at 100 GHz down to the 1 mJy (3σ) sensitivity, which corresponds to optically thick synchrotron source sizes of 10-4 - 10-3 pc. Most sources show a 100 GHz flux excess with respect to the spectral slope extrapolated from low frequencies. This mm spectral component likely originates from smaller scales than the few-GHz emission. The measured mm sources lie roughly around the Lmm (100 GHz) ˜10-4LX (2-10 keV) relation, similar to a few previously published X-ray selected sources, and hinting perhaps at a common coronal origin.

  5. Standardization and estimation of gross alpha and beta activities for potable water samples in presence of TDS using TDCR based LSA (Hidex 300SL)

    International Nuclear Information System (INIS)

    Gupta, Anil; Lenka, P.; Sahoo, S.K.; Patra, A.C.; Jha, S.K.; Tripathi, R.M.

    2018-01-01

    Quality of water is important in environmental studies because of its daily use for human consumption and an important route of intake for various elements and radionuclides. Therefore radiological quality of drinking water must be ensured. The screening parameter to evaluate the radiological safety of potable water is by estimating gross alpha and gross beta activities with a limit of 0.5 Bq/l and 1 Bq/l respectively. These have been traditionally being done by radiochemical co-precipitation of alpha and beta emitters followed by counting by ZnS(Ag) counter for alpha and gas flow proportional counter for beta. Gross alpha estimation in water samples with high TDS by ZnS(Ag) is difficult and often leads to underestimation of result due to self-absorption of alpha within the residue. This study was carried out to standardize a method to provide rapid results by simultaneously estimating both gross alpha and gross beta activity in the presence of TDS with adequate sensitivity, minimum sample processing

  6. High spatial resolution in laser-induced breakdown spectroscopy of expanding plasmas

    International Nuclear Information System (INIS)

    Siegel, J.; Epurescu, G.; Perea, A.; Gordillo-Vazquez, F.J.; Gonzalo, J.; Afonso, C.N.

    2005-01-01

    We report a technique that is able to achieve high spatial resolution in the measurement of the temporal and spectral emission characteristics of laser-induced expanding plasmas. The plasma is imaged directly onto the slit of an imaging spectrograph coupled to a time-gated intensified camera, with the plasma expansion direction being parallel to the slit extension. In this way, a single hybrid detection system is used to acquire the spatial, spectral and temporal characteristics of the laser induced plasma. The parallel acquisition approach of this technique ensures a much better spatial resolution in the expansion direction, reproducibility and data acquisition speed than commonly obtained by sequential measurements at different distances from the target. We have applied this technique to study the laser-induced plasma in LiNbO 3 and Bi 12 Ge 1 O 20 , revealing phenomena not seen in such detail with standard instruments. These include extreme line broadening up to a few nanometers accompanied by self-absorption near the target surface, as well as different ablation and expansion dynamics for the different species ejected. Overall, the high precision and wealth of quantitative information accessible with this technique open up new possibilities for the study of fundamental plasma expansion processes during pulsed laser ablation

  7. Exploring the Variability of the Flat-spectrum Radio Source 1633+382. II. Physical Properties

    Science.gov (United States)

    Algaba, Juan-Carlos; Lee, Sang-Sung; Rani, Bindu; Kim, Dae-Won; Kino, Motoki; Hodgson, Jeffrey; Zhao, Guang-Yao; Byun, Do-Young; Gurwell, Mark; Kang, Sin-Cheol; Kim, Jae-Young; Kim, Jeong-Sook; Kim, Soon-Wook; Park, Jong-Ho; Trippe, Sascha; Wajima, Kiyoaki

    2018-06-01

    The flat-spectrum radio quasar 1633+382 (4C 38.41) showed a significant increase of its radio flux density during the period 2012 March–2015 August, which correlates with γ-ray flaring activity. Multi-frequency simultaneous very long baseline interferometry (VLBI) observations were conducted as part of the interferometric monitoring of gamma-ray bright active galactic nuclei (iMOGABA) program and supplemented with additional radio monitoring observations with the OVRO 40 m telescope, the Boston University VLBI program, and the Submillimeter Array. The epochs of the maxima for the two largest γ-ray flares coincide with the ejection of two respective new VLBI components. Analysis of the spectral energy distribution indicates a higher turnover frequency after the flaring events. The evolution of the flare in the turnover frequency-turnover flux density plane probes the adiabatic losses in agreement with the shock-in-jet model. The derived synchrotron self-absorption magnetic fields, of the order of 0.1 mG, do not seem to change dramatically during the flares, and are much weaker, by a factor 104, than the estimated equipartition magnetic fields, indicating that the source of the flare may be associated with a particle-dominated emitting region.

  8. Calibrating the HISA temperature: Measuring the temperature of the Riegel-Crutcher cloud

    Science.gov (United States)

    Dénes, H.; McClure-Griffiths, N. M.; Dickey, J. M.; Dawson, J. R.; Murray, C. E.

    2018-06-01

    H I self absorption (HISA) clouds are clumps of cold neutral hydrogen (H I) visible in front of warm background gas, which makes them ideal places to study the properties of the cold atomic component of the interstellar medium (ISM). The Riegel-Crutcher (R-C) cloud is the most striking HISA feature in the Galaxy. It is one of the closest HISA clouds to us and is located in the direction of the Galactic Centre, which provides a bright background. High-resolution interferometric measurements have revealed the filamentary structure of this cloud, however it is difficult to accurately determine the temperature and the density of the gas without optical depth measurements. In this paper we present new H I absorption observations with the Australia Telescope Compact Array (ATCA) against 46 continuum sources behind the Riegel-Crutcher cloud to directly measure the optical depth of the cloud. We decompose the complex H I absorption spectra into Gaussian components using an automated machine learning algorithm. We find 300 Gaussian components, from which 67 are associated with the R-C cloud (0 temperature and find it to be between 20 and 80 K. Our measurements uncover a temperature gradient across the cloud with spin temperatures decreasing towards positive Galactic latitudes. We also find three new OH absorption lines associated with the cloud, which support the presence of molecular gas.

  9. Analysis methods and performance of an automated system for measuring both concentration and enrichment of uranium in solutions

    International Nuclear Information System (INIS)

    Kelley, T.A.; Parker, J.L.; Sampson, T.E.

    1993-01-01

    For the 1992 INNM meeting, the authors reported on the general characteristics of an automated system--then under development--for measuring both the concentration and enrichment of uranium in solutions. That paper emphasized the automated control capability, the measurement sequences, and safety features of the system. In this paper, the authors report in detail on the measurement methods, the analysis algorithms, and the performance of the delivered system. The uranium concentration is measured by a transmission-corrected X-ray fluorescence method. Cobalt-57 is the fluorescing source and a combined 153 Gd and 57 Co source is used for the transmission measurements. Corrections are made for both the absorption of the exciting 57 Co gamma rays and the excited uranium X-rays. The 235 U concentration is measured by a transmission-corrected method, which employs the 185.7-keV gamma ray of 235 U and a transmission source of 75 Se to make corrections for the self-absorption of the 235 U gamma rays in the solution samples. Both measurements employ high-resolution gamma-ray spectrometry and use the same 50ml sample contained in a custom-molded, flat-bottomed, polypropylene bottle. Both measurements are intended for uranium solutions with concentrations ≥0.1 g U/l, although at higher enrichments the passive measurement will be even more sensitive

  10. Energy balance of controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Hashmi, M.; Staudenmaier, G.

    2000-01-01

    It is shown that a discrepancy and incompatibility persist between basic physics and fusion-literature regarding the radiation losses from a thermonuclear plasma. Whereas the fusion-literature neglects the excitation or line radiation completely, according to basic physics it depends upon the prevailing conditions and cannot be neglected in general. Moreover, for a magnetized plasma, while the fusion-literature assumes a self-absorption or reabsorption of cyclotron or synchrotron radiation emitted by the electrons spiraling along the magnetic field, the basic physics does not allow any effective reabsorption of cyclotron or synchrotron radiation. As is demonstrated, fallacious assumptions and notions, which somehow or other crept into the fusion-literature, are responsible for this discrepancy. In the present work, the theory is corrected. On the grounds of basic physics, a complete energy balance of magnetized and non-magnetized plasmas is presented for pulsed, stationary and self-sustaining operations by taking into account the energy release by reactions of light nuclei as well as different kinds of diffusive (conduction) and radiative (bremsstrahlung, cyclotron or synchrotron radiation and excitation radiation) energy losses. Already the energy losses by radiation make the energy balance negative. Hence, a fusion reactor-an energy producing device-seems to be beyond the realms of realization. (orig.)

  11. Determination of Pb-210 and U-238 in environment samples by direct measurement using low energy γ spectrometry

    International Nuclear Information System (INIS)

    Godoy, J.M. de; Mendonca, A.H.; Sachett, I.A.

    1985-01-01

    The determination of Pb-210 and U-238 by γ spectrometry in environmental samples was carried out using the 47 KeV (4%) line for Pb-210 and the 63 KeV (3,9%) line from Th-234 to U-238. An intrinsic Ge detector with 0,8 KeV resolution for the 60 KeV line of Am-41 was employed. The eficiency was determined by using the radionuclide water solution. The samples were measured in a cylindric geometry with 7 cm diameter and 3 cm hight with a mass ranging from 25 to 180g, depending on the density. The self absorption correction factor for each sample was determined by using an external source of Pb-210 and Am-241. The results showed good agreement with the radiochemical analysis values. The diferences were lower than 20%; the detection limit changed from sample to sample staying on the pCi/g range for the 200 minutes couting time. (Author) [pt

  12. Uranium enrichment measurements without calibration using gamma rays above 100 keV

    International Nuclear Information System (INIS)

    Ruhter, Wayne D.; Lanier, Robert G.; Hayden, Catherine F.

    2001-01-01

    Full text: The verification of UF6 shipping cylinders is an important activity in routine safeguards inspections. Current measurement methods using either sodium-iodide or high-purity germanium detectors requires calibrations that are not always appropriate for field measurements, because of changes in geometry or container wall thickness. The introduction of the MGAU code demonstrated the usefulness of intrinsically calibrated measurements for inspections. MGAU uses the 100-keV region of the uranium gamma-ray spectrum. The thick walls of UF6 shipping cylinders preclude the routine use of MGAU for these measurements. We have developed a uranium enrichment measurement method for measurements using high- purity germanium detectors, which do not require calibration and uses uranium gamma rays above 100 keV. The method uses seven gamma rays from U-235 and U-238 to determine their relative detection efficiency intrinsically and with an additional gamma ray from U-234 the relative abundance of these three uranium isotopes. The method uses a function that describes the basic physical processes that predominately determine the relative detection efficiency curve, These are the detector efficiency, the absorption by the cylinder wall, and the self-absorption by the UF6 contents. We will describe this model and its performance on various uranium materials and detector types. (author)

  13. Experimental transition probabilities for several spectral lines arising from the 5d10 6s{8s, 7p, 5f, 5g} electronic configurations of Pb III

    International Nuclear Information System (INIS)

    Alonso-Medina, A.

    2010-01-01

    Transition probabilities for 30 spectral lines, arising from the 5d 10 6s{8s, 7p, 5f, 5g} electronic configurations of Pb III (20 measured for the first time), have been experimentally determined from measurements of emission line intensities in a plasma lead induced by ablation with a Nd:YAG laser. The line intensities were obtained with the target placed in molecular argon at 6 Torr, recorded at a 400 ns delay from the laser pulse, which provides appropriate measurement conditions, and analysed between 200 and 700 nm. They are measured when the plasma reaches local thermodynamic equilibrium (LTE). The plasma under study had an electron temperature (T) of 21,400 K and an electron number density (N e ) of 7x10 16 cm -3 . The influence of self-absorption has been estimated for every line, and plasma homogeneity has been checked. The values obtained were compared with previous experimental values and theoretical estimates where possible.

  14. M2-9 - a planetary nebula with an eruptive nucleus?

    International Nuclear Information System (INIS)

    Balick, B.

    1989-01-01

    M2-9 is a striking bipolar, or butterfly, planetary nebula (PN) whose nuclear spectrum is uncharacteristic of PN nuclei. Narrow lines ranging in ionization from O I, Fe II, forbidden Fe II, and Si II through forbidden O III are observed in the stellar spectrum. The H-alpha emission line has wings extending nearly 11,000 km/s at the base, and there is a deep self-absorption feature near the H-alpha line peak at the same velocity as nebular gas observed in one of the two bipolar lobes. The spectrum of M2-9's nucleus is more similar to the slow nova RR Tel, some symbiotic stars, and Seyfert (type 1.9) galactic nuclei than the central stars of most other PNs. Although its morphology, size, and nebular spectrum share many similarities with other PNs, M2-9 may not share a common evolutionary history with that class of objects. 31 references

  15. Status of timing with plastic scintillation detectors

    International Nuclear Information System (INIS)

    Moszynski, M.; Bengtson, B.

    1979-01-01

    Timing properties of scintillators and photomultipliers as well as theoretical and experimental studies of time resolution of scintillation counters are reviewed. Predictions of the theory of the scintillation pulse generation processes are compared with the data on the light pulse shape from small samples, in which the light pulse shape depends only on the composition of the scintillator. For larger samples the influence of the light collection process and the self-absorption process on the light pulse shape are discussed. The data on rise times, fwhm's, decay times and light yield of several commercial scintillators used in timing are collected. The next part of the paper deals with the properties of photomultipliers. The sources of time uncertainties in photomultipliers as a spread of the initial velocity of photoelectrons, emission of photoelectrons under different angles and from different points at the photocathode, the time spread and the gain dispersion introduced by electron photomultiplier are reviewed. The experimental data on the time jitter, single electron response and photoelectron yield of some fast photomultipliers are collected. As the time resolution of the timing systems with scintillation counters depends also on time pick-off units, a short presentation of the timing methods is given. The discussion of timing theories is followed by a review of experimental studies of the time resolution of scintillation counters. The paper is ended by an analysis of prospects on further progress of the subnanosecond timing with scintillation counters. (Auth.)

  16. Measuring the plutonium distribution in fuel elements by the gamma scanning method

    International Nuclear Information System (INIS)

    Gorobets, A.K.; Leshchenko, Yu.I.; Semenov, A.L.

    1982-01-01

    An on-line system designed for measuring Pu distribution in the length of fresh fuel elements with vibrocompacted UO 2 -PuO 2 fuel rods by the γ-scanning method is described. An algorithm for measurement result processing and the procedure of determination of calibration parameters necessary for the valid signal separat.ion by means of a two-channel analyzer and for evaluation of the self-absorption effect are considered. The device scanning unit consists of two NaI(Tl) detectors simultaneously detecting γ-radiation from the opposite sides of a measured fuel rod section. The cesium source with Esub(γ)=660 keV is used for fuel scanning. On the base of the analysis of the results obtained when studying the BOR-60 experimental fuel elements with fuel rods of 400 mm long by means of the described device clusion is made that fuel element scanning during 20 min (scanning step is 4 mm, measuring time at each step is 10 s) makes it possible to determine Pu distribution with the error less than +-4% at the confidence probability of 0.68

  17. Assessing neutron generator output using neutron activation of silicon

    Energy Technology Data Exchange (ETDEWEB)

    Kehayias, Pauli M. [Body Composition Laboratory, Jean Mayer United States Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111 (United States); Kehayias, Joseph J. [Body Composition Laboratory, Jean Mayer United States Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111 (United States)]. E-mail: joseph.kehayias@tufts.edu

    2007-08-15

    D-T neutron generators are used for elemental composition analysis and medical applications. Often composition is determined by examining elemental ratios in which the knowledge of the neutron flux is unnecessary. However, the absolute value of the neutron flux is required when the generator is used for neutron activation analysis, to study radiation damage to materials, to monitor the operation of the generator, and to measure radiation exposure. We describe a method for absolute neutron output and flux measurements of low output D-T neutron generators using delayed activation of silicon. We irradiated a series of silicon oxide samples with 14.1 MeV neutrons and counted the resulting gamma rays of the {sup 28}Al nucleus with an efficiency-calibrated detector. To minimize the photon self-absorption effects within the samples, we used a zero-thickness extrapolation technique by repeating the measurement with samples of different thicknesses. The neutron flux measured 26 cm away from the tritium target of a Thermo Electron A-325 D-T generator (Thermo Electron Corporation, Colorado Springs, CO) was 6.2 x 10{sup 3} n/s/cm{sup 2} {+-} 5%, which is consistent with the manufacturer's specifications.

  18. Fission products detection in irradiated TRIGA fuel by means of gamma spectroscopy and MCNP calculation.

    Science.gov (United States)

    Cagnazzo, M; Borio di Tigliole, A; Böck, H; Villa, M

    2018-05-01

    Aim of this work was the detection of fission products activity distribution along the axial dimension of irradiated fuel elements (FEs) at the TRIGA Mark II research reactor of the Technische Universität (TU) Wien. The activity distribution was measured by means of a customized fuel gamma scanning device, which includes a vertical lifting system to move the fuel rod along its vertical axis. For each investigated FE, a gamma spectrum measurement was performed along the vertical axis, with steps of 1 cm, in order to determine the axial distribution of the fission products. After the fuel elements underwent a relatively short cooling down period, different fission products were detected. The activity concentration was determined by calibrating the gamma detector with a standard calibration source of known activity and by MCNP6 simulations for the evaluation of self-absorption and geometric effects. Given the specific TRIGA fuel composition, a correction procedure is developed and used in this work for the measurement of the fission product Zr 95 . This measurement campaign is part of a more extended project aiming at the modelling of the TU Wien TRIGA reactor by means of different calculation codes (MCNP6, Serpent): the experimental results presented in this paper will be subsequently used for the benchmark of the models developed with the calculation codes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Optimization of the operational conditions of a multichannel analyzer gamma spectrometer

    International Nuclear Information System (INIS)

    Mosse, H.

    1974-01-01

    For the optimization of the operational conditions of a multichannel analyser gamma spectrometer, with two 3'' x 3'' NaI (Tl) crystals in opposition, several parameters were studied, which are responsable for the best counting efficiency, in each type of sample to be analysed. Thus, electronic conditions, shielding, sample holding, resolution, geometry (or the sample positioning between the detectors), were investigated. Self-absorption, sample density and the effects of the shape of the containers were also tested. For solid samples, (usually ashed), the best container was found to be a plastic cylinder, with the sample pressed inside. For liquid samples, plastic cylindric flasks were also found to be the best ones. Environmental samples were measured with internal standards for 137 Cs and 40 K. Results were compared with those obtained by physical (atomic adsorption for K) and radiochemical methods (Cs precipitation by amonium phosphomolibdate). Results show good agreement with the spectrometric analysis. For comparison with environmental samples, standards were prepared, in such a way that they could simulated their physical caracteristics. The minimum detectable activity was determined for 137 Cs. Results show values of 0.01 pCi/g for the 1 Kg samples, and 0.004 pCi/g for the 300g ones. By the measurement of 40 K, we found this value to be 0.02 mgK/g, in both cases. (author) [pt

  20. Neutron double differential distributions, dose rates and specific activities from accelerator components irradiated by 50-400 MeV protons

    International Nuclear Information System (INIS)

    Cerutti, F.; Charitonidis, N.; Silari, M.; Charitonidis, N.

    2010-01-01

    Systematic Monte Carlo simulations with the FLUKA code were performed to estimate the induced radioactivity in five materials commonly used in particle accelerator structures: boron nitride and carbon (dumps and collimators), copper (RF cavities, coils and vacuum chambers), iron and stainless steel (magnets and vacuum chambers). Using a simplified geometry set-up, the five materials were bombarded with protons in the energy range from 50 to 400 MeV. This energy range is typical of intermediate-energy proton accelerators used as injectors to higher-energy machines, as research accelerators for nuclear physics, and in hadron therapy. Ambient dose equivalent rates were calculated at distances up to one meter around the target, for seven cooling times up to six months. A complete inventory of the radionuclides present in the target was calculated for all combinations of target, beam energy and cooling time. The influence of the target size and of self-absorption was investigated. The energy and angular distributions of neutrons escaping from the target were also scored for all materials and beam energies. The influence on the neutron spectra of the presence of concrete walls (the accelerator tunnel) around the target was also estimated. The results of the present study provide a simple database to be used for a first, approximate estimate of the radiological risk to be expected when intervening on activated accelerator components. (authors)

  1. Simulation of Ni-63 based nuclear micro battery using Monte Carlo modeling

    International Nuclear Information System (INIS)

    Kim, Tae Ho; Kim, Ji Hyun

    2013-01-01

    The radioisotope batteries have an energy density of 100-10000 times greater than chemical batteries. Also, Li ion battery has the fundamental problems such as short life time and requires recharge system. In addition to these things, the existing batteries are hard to operate at internal human body, national defense arms or space environment. Since the development of semiconductor process and materials technology, the micro device is much more integrated. It is expected that, based on new semiconductor technology, the conversion device efficiency of betavoltaic battery will be highly increased. Furthermore, the radioactivity from the beta particle cannot penetrate a skin of human body, so it is safer than Li battery which has the probability to explosion. In the other words, the interest for radioisotope battery is increased because it can be applicable to an artificial internal organ power source without recharge and replacement, micro sensor applied to arctic and special environment, small size military equipment and space industry. However, there is not enough data for beta particle fluence from radioisotope source using nuclear battery. Beta particle fluence directly influences on battery efficiency and it is seriously affected by radioisotope source thickness because of self-absorption effect. Therefore, in this article, we present a basic design of Ni-63 nuclear battery and simulation data of beta particle fluence with various thickness of radioisotope source and design of battery

  2. A new method for studying the transport of gamma photons in various geological materials by combining the SSNTD technique with Monte Carlo simulations

    International Nuclear Information System (INIS)

    Misdaq, M.A.; Merzouki, A.; Bourzik, W.; Sfairi, T.

    2000-01-01

    The gamma dose rate due to the uranium and thorium series as well as the potassium 40 nuclei represents a large fraction of the total dose rate from the natural background. Natural gamma-activities of rock and soil samples collected from volcanic areas have been determined using gamma-ray spectrometry. The corresponding gamma dose rates in air have been measured by means of thermoluminescence (TL) dosimeters. Annual absorbed gamma dose rates have been evaluated in different soil samples belonging to an archaeological site by using experimental and calculational methods. Uranium and thorium contents in different geological samples have been determined by using CR-39 and LR-115 type II solid state nuclear track detectors (SSNTD) and calculating the probabilities for alpha particles emitted by the uranium and thorium series to reach and be registered on the SSNTD films. A new method has been developed based on calculating the self-absorption and transmission coefficients of the gamma photons emitted by the uranium and thorium families as well as the potassium 40 isotope for evaluating the gamma dose rate in the considered geological samples. Transport of gamma-photons across parallelepipedic blocks of the geological materials studied has been investigated. Gamma dose rates have been evaluated in the atmosphere of different geological deposits. (author)

  3. Energy transformation in molecular electronic systems

    International Nuclear Information System (INIS)

    Kasha, M.

    1985-01-01

    Our new optical pumping spectroscopy (steady state, and double-laser pulse) allows the production and study of the unstable rare tautomer in its ground and excited states, including picosecond dynamic studies. Molecules under study here included 7-azaindole (model for biological purines), 3-hydroxyflavone (model for plant flavones), lumichrome, and other heterocyclics. New detailed molecular mechanisms for proton transfer are derived, especially with catalytic assisting molecules. A new proton-transfer laser of extraordinary efficiency has become a side dividend, possibly worth of industrial development. The excited and highly reactive singlet molecular oxygen species 1 Δ/sub g/) has proven to be ubiquitous in chemical peroxide systems and in physically excited sensitizer-oxygen systems. Hyperbaric oxygen mechanisms in biology probably involve singlet oxygen. We have undertaken a spectroscopic study of tris - dibenzoylmethane chelates of Al, Gd, Eu, and Yb trivalent ions. These chelates offer a variety of electronic behaviors, from Z-effects on π-electron spin-orbital coupling (Al, Gd) to Weissman intramolecular energy transfer to 4f mestable levels (Eu, Gd). Elegant new spectroscopic resolution at 77K permits separation of tautomeric, parasitic self-absorption, dissociation, and cage effects to be resolved. 18 refs., 4 figs

  4. Laser-induced breakdown spectroscopy for the analysis of plasma facing components of tokamaks: parametric study and calibration-free measurements

    International Nuclear Information System (INIS)

    Mercadier, L.

    2011-09-01

    During the operation of a nuclear fusion device like the future reactor ITER, a fraction of tritium is trapped in the plasma facing components and has to be measured in order to fulfill nuclear safety requirements. Laser-induced breakdown spectroscopy (LIBS) is proposed to achieve this measurement. The laser plasma produced on carbon fibre composite tiles from the Tore Supra reactor is analyzed via a parametric study: it has to have a temperature over 10000 K and an electron density over 10 17 cm -3 to optimize the application. A calibration-free procedure that takes into account self-absorption is proposed to determine the relative concentration of hydrogen from the experimental spectra. The time- and space-resolved spectral emission of the plasma plume is investigated and reveals the presence of a temperature gradient from the core towards the periphery. This gradient is taken into account and the H/C concentration ratio is deduced. The accuracy of the results is evaluated and discussed. The study of the D/H isotopic ratio under low pressure argon reveals the presence of plume segregation that leads to an error of about 50%, error that can partially be reduced. Tungsten materials are investigated and difficulties related to spectroscopic databases are discussed. Finally, the feasibility of LIBS analysis with depth resolution is validated for multilayered metallic samples. (author)

  5. Quantitative portable gamma spectroscopy sample analysis for non-standard sample geometries

    International Nuclear Information System (INIS)

    Enghauser, M.W.; Ebara, S.B.

    1997-01-01

    Utilizing a portable spectroscopy system, a quantitative method for analysis of samples containing a mixture of fission and activation products in nonstandard geometries was developed. The method can be used with various sample and shielding configurations where analysis on a laboratory based gamma spectroscopy system is impractical. The portable gamma spectroscopy method involves calibration of the detector and modeling of the sample and shielding to identify and quantify the radionuclides present in the sample. The method utilizes the intrinsic efficiency of the detector and the unattenuated gamma fluence rate at the detector surface per unit activity from the sample to calculate the nuclide activity and Minimum Detectable Activity (MDA). For a complex geometry, a computer code written for shielding applications (MICROSHIELD) is utilized to determine the unattenuated gamma fluence rate per unit activity at the detector surface. Lastly, the method is only applicable to nuclides which emit gamma rays and cannot be used for pure beta emitters. In addition, if sample self absorption and shielding is significant, the attenuation will result in high MDA's for nuclides which solely emit low energy gamma rays. The following presents the analysis technique and presents verification results demonstrating the accuracy of the method

  6. Design and device construction for plane tables preparation for counter alpha/beta total; Diseno y construccion de dispositivo para preparacion de planchetas para contador alfa/beta total

    Energy Technology Data Exchange (ETDEWEB)

    Galicia C, F. J.; Monroy G, F., E-mail: fgalicia82@yahoo.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    This work presents the design and assembly of a device for plane tables preparation for quantification alpha/beta total of radioactive waste samples. The determination of the activity index alpha/beta total is used to detect a wide variety of matrices quickly and the concentration of alpha and/or beta emitters of the contained radionuclides in different samples. In particular, the determination of the activity index alpha and beta total of radioactive wastes involves the digestion of samples in aggressive means that will be evaporated to dryness for its quantification. With the purpose of controlling the emission of corrosive gases during the preparation of the plane tables for the quantification of the index alpha and beta total, was designed and built the device in the Radioactive Waste Laboratory that allows to prepare plane tables for proportional counters in a sure and efficient way. The device is constituted by heating equipment, evaporation cylinder and a gases cleaning system. The self-absorption curve got ready starting from the device. (Author)

  7. Nitrogen capillary plasma as a source of intense monochromatic radiation at 2.88 nm

    Energy Technology Data Exchange (ETDEWEB)

    Vrba, P., E-mail: vrbovmir@fbmi.cvut.cz [Institute of Plasma Physics, Academy of Sciences, Za Slovankou 3, Prague 8 (Czech Republic); Vrbova, M. [Faculty of Biomedical Engineering, CTU in Prague, Sitna 3105, Kladno 2 (Czech Republic); Zakharov, S.V. [EPPRA sas, Villebon/Yvette (France); Zakharov, V.S. [EPPRA sas, Villebon/Yvette (France); KIAM RAS, Moscow (Russian Federation); Jancarek, A.; Nevrkla, M. [Faculty of Nuclear Science and Physical Engineering, CTU in Prague, Brehova 7, Prague 1 (Czech Republic)

    2014-10-15

    Highlights: • Pinching capillary discharge is studied as a source of monochromatic SXR. • Modeling of the laboratory device was performed by RMHD Z* code. • Results of computer and laboratory experiments are presented. - Abstract: Capillary discharge plasma related to our laboratory device is modeled and the results are compared with experimental data. Time dependences of selected plasma quantities (e.g. plasma mass density, electron temperature and density and emission intensities) evaluated by 2D Radiation-Magneto-Hydro-Dynamic code Z* describe plasma evolution. The highest output pulse energy at 2.88 nm wavelength is achieved for nitrogen filling pressure ∼100 Pa. The estimated output energy of monochromatic radiation 5.5 mJ sr{sup −1} (∼10{sup 14} photons sr{sup −1}) corresponds properly to observe experimental value ∼3 × 10{sup 13} photons sr{sup −1}. Ray tracing inspection along the capillary axis proves an influence of radiation self-absorption for the investigated wavelength. The spectra, evaluated using the FLY code, agree to the measured ones.

  8. Modeling radiative transport in ICF plasmas on an IBM SP2 supercomputer

    International Nuclear Information System (INIS)

    Johansen, J.A.; MacFarlane, J.J.; Moses, G.A.

    1995-01-01

    At the University of Wisconsin-Madison the authors have integrated a collisional-radiative-equilibrium model into their CONRAD radiation-hydrodynamics code. This integrated package allows them to accurately simulate the transport processes involved in ICF plasmas; including the important effects of self-absorption of line-radiation. However, as they increase the amount of atomic structure utilized in their transport models, the computational demands increase nonlinearly. In an attempt to meet this increased computational demand, they have recently embarked on a mission to parallelize the CONRAD program. The parallel CONRAD development is being performed on an IBM SP2 supercomputer. The parallelism is based on a message passing paradigm, and is being implemented using PVM. At the present time they have determined that approximately 70% of the sequential program can be executed in parallel. Accordingly, they expect that the parallel version will yield a speedup on the order of three times that of the sequential version. This translates into only 10 hours of execution time for the parallel version, whereas the sequential version required 30 hours

  9. Conversion electron spectrometry of Pu isotopes with a silicon drift detector.

    Science.gov (United States)

    Pommé, S; Paepen, J; Peräjärvi, K; Turunen, J; Pöllänen, R

    2016-03-01

    An electron spectrometry set-up was built at IRMM consisting of a vacuum chamber with a moveable source holder and windowless Peltier-cooled silicon drift detector (SDD). The SDD is well suited for measuring low-energy x rays and electrons emitted from thin radioactive sources with low self-absorption. The attainable energy resolution is better than 0.5keV for electrons of 30keV. It has been used to measure the conversion electron spectra of three plutonium isotopes, i.e. (238)Pu, (239)Pu, (240)Pu, as well as (241)Am (being a decay product of (241)Pu). The obtained mixed x-ray and electron spectra are compared with spectra obtained with a close-geometry set-up using another SDD in STUK and spectra measured with a Si(Li) detector at IRMM. The potential of conversion electron spectrometry for isotopic analysis of mixed plutonium samples is investigated. With respect to the (240)Pu/(239)Pu isotopic ratio, the conversion electron peaks of both isotopes are more clearly separated than their largely overlapping peaks in alpha spectra. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. 14 MeV INAA nitrogen determination in coal conversion liquids

    International Nuclear Information System (INIS)

    Ehmann, W.D.; Khalil, S.R.

    1980-01-01

    Fast neutron activation analysis has been used for the direct determination of nitrogen in coal conversion liqui-ds. In our previous work on coals, solid standards such as N-1-napthylacetamide, NBS SRM 912 urea and NBS SRM 148 nicotinic acid were used for nitrogen determinations. In this work, a set of organic liquids was selected and evaluated for use as nitrogen standards in the analysis of coal-derived liquids. The use of the liquid standards minimizes problems associated with maintaining uniform irradation and counting geometries and self absorption differences related to varying matrix densities. The standard liquids were selected using criteria of high boiling point, well-defined stoichiometry, high-purity, non-hygroscopic nature and simple C-H-N elemental compositions. Excellent agreement between the 14 MeV INAA data and calculated stoichiometric values has been demonstrated for liquids with nitrogen contents from 1.89 to 39.95%. The liquid standards have been used to determine nitrogen in a set of typical coal conversion liquids and several international standards. (author)

  11. Mercury mass measurement in fluorescent lamps via neutron activation analysis

    International Nuclear Information System (INIS)

    Viererbl, L.; Vinš, M.; Lahodová, Z.; Fuksa, A.; Kučera, J.; Koleška, M.; Voljanskij, A.

    2015-01-01

    Mercury is an essential component of fluorescent lamps. Not all fluorescent lamps are recycled, resulting in contamination of the environment with toxic mercury, making measurement of the mercury mass used in fluorescent lamps important. Mercury mass measurement of lamps via instrumental neutron activation analysis (NAA) was tested under various conditions in the LVR-15 research reactor. Fluorescent lamps were irradiated in different positions in vertical irradiation channels and a horizontal channel in neutron fields with total fluence rates from 3×10 8 cm −2 s −1 to 10 14 cm −2 s −1 . The 202 Hg(n,γ) 203 Hg nuclear reaction was used for mercury mass evaluation. Activities of 203 Hg and others induced radionuclides were measured via gamma spectrometry with an HPGe detector at various times after irradiation. Standards containing an Hg 2 Cl 2 compound were used to determine mercury mass. Problems arise from the presence of elements with a large effective cross section in luminescent material (europium, antimony and gadolinium) and glass (boron). The paper describes optimization of the NAA procedure in the LVR-15 research reactor with particular attention to influence of neutron self-absorption in fluorescent lamps. - Highlights: • Mercury is an essential component of fluorescent lamps. • Fluorescent lamps were irradiated in neutron fields in research reactor. • 203 Hg induced radionuclide activity was measured using gamma spectrometry. • Mercury mass in fluorescent lamps can be measured by neutron activation analysis.

  12. The concentration of natural radionuclides in various types of building materials in Slovakia

    Energy Technology Data Exchange (ETDEWEB)

    Cabanekova, H [Inst. of Peventive and Clinical Medicine, Bratislava (Slovakia)

    1996-12-31

    The concentration of the natural radionuclides in various types of building materials was determined by the gamma spectrometry analysis using 130 cm{sup 3} high purity germanium detector and MCA LIVIUS 2000. Radium-226 and thorium-232 was assessed through their progeny photo peaks. The specific activity of both nuclides as weighted average of their photo peaks was determined. Potassium-40 was measured directly via its 1460 keV peak. The radium equivalent activity was calculate from specific activities of radium-226, thorium-232 and potassium-40. All samples were measured in 4{sup p}i{sup g}eometry. The building materials and products were milled and screened with 2-3 mm sieve. After drying the samples were stored in 450 cm{sup 3} sealed polyethylene container for 30 days ingrowing period. The results of analysis are corrected to the background distribution and to the self absorption in the volume of the samples. The efficiency calibration is realized using the reference sources distributed by IAEA in Vienna and by the Institute for Radionuclide Production in Prague The measured activity concentrations of the buildings materials are given. There are shown the minimum and maximum values for different investigated materials. (J.K.) 4 tabs., 5 refs.

  13. Using algae and submerged calcifying water flora for treating neutral to alkaline uranium-contaminated water; Verwendung von Algen und submersen kalzifizierenden Wasserpflanzen zur Aufbereitung neutraler bis basischer uranhaltiger Waesser

    Energy Technology Data Exchange (ETDEWEB)

    Dienemann, C.; Dienemann, H.; Stolz, L.; Dudel, E.G. [TU Dresden (DE). Inst. fuer Allgemeine Oekologie und Umweltschutz, Tharandt (Germany)

    2005-07-01

    Elimination of uranium from neutral to alkaline water is a complex technical process involving decarbonation, usually with HCl, followed by uranium removal by adding alkaline substances. In passive water treatment systems, uranium species - which often consist of a combination of oxidation and reduction stages - are not sufficiently considered. Algae and submerged water plants provide a natural alternative. They remove carbon dioxides or hydrogen carbonate, depending on the species, thus reducting the concentrations of the carbonate species. As the uranium species in alkaline water are coupled on the one hand to the carbonate species and on the other hand on the earth alkali metals, algae and submerged calcifying water plants are an excellent preliminary stage as a supplement to conventional passive water treatment systems. For a quantification of this effect, laboratory experiments were made with Cladophara spec. and with uranium concentrations of 100, 250 and 1000 {mu}g U.L{sup -1} at pH 8.3. The pH was adjusted with NaOH resp. Na2CO3 resulting in different uranium species. After 20 minutes, there was a difference in self-absorption between the different species (higher uranium concentration for NaOH than for Na2CO3), which was no longer observeable after 24 h. On the basis of data on the biomass development of macrophytic algae (Cladophora and Microspora) in a flowing river section near Neuensalz/Vogtland district, the final dimensions of a purification stage of this type are assessed. (orig.)

  14. Using algae and submerged calcifying water flora for treating neutral to alkaline uranium-contaminated water

    International Nuclear Information System (INIS)

    Dienemann, C.; Dienemann, H.; Stolz, L.; Dudel, E.G.

    2005-01-01

    Elimination of uranium from neutral to alkaline water is a complex technical process involving decarbonation, usually with HCl, followed by uranium removal by adding alkaline substances. In passive water treatment systems, uranium species - which often consist of a combination of oxidation and reduction stages - are not sufficiently considered. Algae and submerged water plants provide a natural alternative. They remove carbon dioxides or hydrogen carbonate, depending on the species, thus reducting the concentrations of the carbonate species. As the uranium species in alkaline water are coupled on the one hand to the carbonate species and on the other hand on the earth alkali metals, algae and submerged calcifying water plants are an excellent preliminary stage as a supplement to conventional passive water treatment systems. For a quantification of this effect, laboratory experiments were made with Cladophara spec. and with uranium concentrations of 100, 250 and 1000 μg U.L -1 at pH 8.3. The pH was adjusted with NaOH resp. Na2CO3 resulting in different uranium species. After 20 minutes, there was a difference in self-absorption between the different species (higher uranium concentration for NaOH than for Na2CO3), which was no longer observeable after 24 h. On the basis of data on the biomass development of macrophytic algae (Cladophora and Microspora) in a flowing river section near Neuensalz/Vogtland district, the final dimensions of a purification stage of this type are assessed. (orig.)

  15. Fast critical assembly safeguards: NDA methods for highly enriched uranium. Summary report, October 1978-September 1979

    International Nuclear Information System (INIS)

    Bellinger, F.O.; Winslow, G.H.

    1980-12-01

    Nondestructive assay (NDA) methods, principally passive gamma measurements and active neutron interrogation, have been studied for their safeguards effectiveness and programmatic impact as tools for making inventories of highly enriched uranium fast critical assembly fuel plates. It was concluded that no NDA method is the sole answer to the safeguards problem, that each of those emphasized here has its place in an integrated safeguards system, and that each has minimum facility impact. It was found that the 185-keV area, as determined with a NaI detector, was independent of highly-enriched uranium (HEU) plate irradiation history, though the random neutron driver methods used here did not permit accurate assay of irradiated plates. Containment procedures most effective for accurate assaying were considered, and a particular geometry is recommended for active interrogation by a random driver. A model, pertinent to that geometry, which relates the effects of multiplication and self-absorption, is described. Probabilities of failing to detect that plates are missing are examined

  16. Comparison of PIXE and XRF analysis of airborne particulate matter samples collected on Teflon and quartz fibre filters

    Science.gov (United States)

    Chiari, M.; Yubero, E.; Calzolai, G.; Lucarelli, F.; Crespo, J.; Galindo, N.; Nicolás, J. F.; Giannoni, M.; Nava, S.

    2018-02-01

    Within the framework of research projects focusing on the sampling and analysis of airborne particulate matter, Particle Induced X-ray Emission (PIXE) and Energy Dispersive X-ray Fluorescence (ED-XRF) techniques are routinely used in many laboratories throughout the world to determine the elemental concentration of the particulate matter samples. In this work an inter-laboratory comparison of the results obtained from analysing several samples (collected on both Teflon and quartz fibre filters) using both techniques is presented. The samples were analysed by PIXE (in Florence, at the 3 MV Tandetron accelerator of INFN-LABEC laboratory) and by XRF (in Elche, using the ARL Quant'X EDXRF spectrometer with specific conditions optimized for specific groups of elements). The results from the two sets of measurements are in good agreement for all the analysed samples, thus validating the use of the ARL Quant'X EDXRF spectrometer and the selected measurement protocol for the analysis of aerosol samples. Moreover, thanks to the comparison of PIXE and XRF results on Teflon and quartz fibre filters, possible self-absorption effects due to the penetration of the aerosol particles inside the quartz fibre-filters were quantified.

  17. Photo-physical characterization of fluorophore Ru(bpy32+ for optical biosensing applications

    Directory of Open Access Journals (Sweden)

    E.L. Sciuto

    2015-12-01

    Full Text Available We studied absorption, emission and lifetime of the coordination compound tris(2,2′-bipyridylruthenium(II fluorophore (Ru(bpy32+ both dissolved in water solutions and dried. Lifetime measurements were carried out using a new detector, the Silicon Photomultiplier (SiPM, which is more sensitive and physically much smaller than conventional optical detectors, such as imager and scanner. Through these analyses and a morphological characterization with transmission electron microscopy, revealed its usability for sensor applications, in particular, as dye in optical DNA-chip technology, a viable alternative to the conventional CY5 fluorophore. The use of Ru(bpy32+ would solve some of the typical disadvantages related to Cy5’s application, such as self-absorption of fluorescence and photobleaching. In addition, the Ru(bpy32+ longer lifetime may play a key role in the definition of new optical DNA-chip. Keywords: Tris(2,2′-bipyridylruthenium(II, Fluorophore, Spectroscopy, Lifetime measurements, SiPM, TEM

  18. Response style, interpersonal difficulties and social functioning in major depressive disorder.

    Science.gov (United States)

    Lam, Dominic; Schuck, Nikki; Smith, Neil; Farmer, Anne; Checkley, Stuart

    2003-08-01

    It is postulated that depressed patients who engaged in self-focused rumination on their depressive symptoms may experience more hopelessness, more interpersonal distress and poorer social functioning while patients who distract themselves may experience less severe hopelessness and better social functioning. One-hundred and nine outpatients suffering from DSM-IV (APA, 1994) major depressive disorders filled in questionnaires that mapped into their response style to depression, hopelessness and interpersonal style. They were also interviewed for their levels of social functioning. Rumination was associated with higher levels of depression and distraction was associated with lower levels of depression. Furthermore when levels of depression and gender were controlled for, rumination contributed to higher levels of hopelessness and distraction contributed to lower levels of hopelessness. Both rumination and levels of depression contributed significantly to higher levels of interpersonal distress when gender was controlled for. Ruminators were rated to have significantly more severe problems in intimate relationships while distractors were rated to have significantly higher social functioning. Our study suggests the importance of teaching patients techniques to distract themselves. This could prevent patients from getting into a vicious cycle of self-absorption and increased levels of hopelessness, finding it hard to interact with people in their social network and neglecting their intimate relationships.

  19. Field experience with a mobile tomographic nondestructive assay system

    International Nuclear Information System (INIS)

    Prettyman, T.H.; Betts, S.E.; Taggart, D.P.; Estep, R.J.; Nicholas, N.J.; Lucas, M.C.; Harlan, R.A.

    1995-01-01

    A mobile tomographic gamma-ray scanner (TGS) developed by Los Alamos National Laboratory was recently demonstrated at the Rocky Flats Environmental Technology Site and is currently in use at Los Alamos waste storage areas. The scanner was developed to assay radionuclides in low-level, transuranic, and mixed waste in containers ranging in size from 2 ft 3 boxes to 83-gallon overpacks. The tomographic imaging capability provides a complete correction for source distribution and matrix attenuation effects, enabling accurate assays of Pu-239 and other gamma-ray emitting isotopes. In addition, the system can reliably detect self-absorbing material such as plutonium metal shot, and can correct for bias caused by self-absorption. The system can be quickly configured to execute far-field scans, segmented gamma-ray scans, and a host of intermediate scanning protocols, enabling higher throughput (up to 20 drums per 8-hour shift). In this paper, we will report on the results of field trials of the mobile system at Rocky Flats and Los Alamos. Assay accuracy is confirmed for cases in which TGS assays can be compared with assays (e.g. with calorimetry) of individual packages within the drums. The mobile tomographic technology is expected to considerably reduce characterization costs at DOE production and environmental technology sites

  20. The relationship of reflection and rumination with emotional intelligence and self-esteem

    Directory of Open Access Journals (Sweden)

    Martina Starc

    2007-07-01

    Full Text Available The question of the benefits of self-consciousness in terms of psychological health and well-being is still open for discussion. Older studies uncovered positive as well as negative correlates of self-consciousness that gave rise to the "self-absorption paradox". Newer concepts of rumination and reflection based on the motives for self-consciousness offer new ways of solving this paradox. The study explored the relationship of reflection and rumination with emotional intelligence and self-esteem. High-school students (N = 165, i.e. 65 men and 100 women took part in the study. The average age of the participants was 17.5 years. The results show significant positive correlations between self-esteem, emotional intelligence, and reflection. The correlations between rumination, self-esteem, and emotional intelligence are significant and negative. The research thus showed that the way of thinking about oneself and the motives behind self-consciousness are important for self-esteem and emotional intelligence. Merely thinking about oneself is therefore not necessarily emotionally intelligent. In future research, however, it would probably be better to use tests instead of self-descriptive questionnaires of emotional intelligence.

  1. Measurement method of activation cross-sections of reactions producing short-lived nuclei with 14 MeV neutrons

    CERN Document Server

    Kawade, K; Kasugai, Y; Shibata, M; Iida, T; Takahashi, A; Fukahori, T

    2003-01-01

    We describe a method for obtaining reliable activation cross-sections in the neutron energy range between 13.4 and 14.9 MeV for the reactions producing short-lived nuclei with half-lives between 0.5 and 30 min. We noted neutron irradiation fields and measured induced activities, including (1) the contribution of scattered low-energy neutrons, (2) the fluctuation of the neutron fluence rate during the irradiation, (3) the true coincidence sum effect, (4) the random coincidence sum effect, (5) the deviation in the measuring position due to finite sample thickness, (6) the self-absorption of the gamma-ray in the sample material and (7) the interference reactions producing the same radionuclides or the ones emitting the gamma-ray with the same energy of interest. The cross-sections can be obtained within a total error of 3.6%, when good counting statistics are achieved, including an error of 3.0% for the standard cross-section of sup 2 sup 7 Al (n, alpha) sup 2 sup 4 Na. We propose here simple methods for measuri...

  2. Probing the Large Faraday Rotation Measure Environment of Compact Active Galactic Nuclei

    Directory of Open Access Journals (Sweden)

    Alice Pasetto

    2018-03-01

    Full Text Available Knowing how the ambient medium in the vicinity of active galactic nuclei (AGNs is shaped is crucial to understanding generally the evolution of such cosmic giants as well as AGN jet formation and launching. Thanks to the new broadband capability now available at the Jansky Very Large Array (JVLA, we can study changes in polarization properties, fractional polarization, and polarization angles, together with the total intensity spectra of a sample of 14 AGNs, within a frequency range from 1 to 12 GHz. Depolarization modeling has been performed by means of so-called “qu-fitting” to the polarized data, and a synchrotron self absorption model has been used for fitting to the total intensity data. We found complex behavior both in the polarization spectra and in the total intensity spectra, and several Faraday components with a large rotation measure (RM and several synchrotron components were needed to represent these spectra. Here, results for three targets are shown. This new method of analyzing broadband polarization data through qu-fitting successfully maps the complex surroundings of unresolved objects.

  3. Evaluation of absorbed doses at the interface solid surfaces - tritiated water solutions

    International Nuclear Information System (INIS)

    Postolache, Cristian; Matei, Lidia

    2003-01-01

    Studies concerning the isotopic exchange H/D/T in the system elemental hydrogen -- water and in the presence of platinum metals on hydrophobic supports as catalysts were carried out at ICSI (Institute of Cryogenics and Isotope Separations) - Rm. Valcea, Romania. Due to the very low energy of β-radiation emitted by tritium, the direct measurements of dose absorbed by the isotopic exchange catalyst using classical methods is practically impossible. For this purpose an evaluation model was developed. The volume of tritiated water which can irradiate the catalyst was represented by a hemisphere with the radius equal to the maximal rate of β-radiation emitted by tritium. The catalyst surface is represented by a circle with a 0.2 μm radius and the same centre as the circle of the hemisphere secant plane. Flow rate of absorbed dose is calculated with the relation: d (1/100)(Φ·E m /m), where d = dose flow rate, in rad/s, Φ total radiation flux interacting with the catalyst surface, expressed in erg and m = catalyst weight, in grams. Total flux of available radiation, Φ, was determined as a function of three parameters: a) total flow of tritium β-radiation emitted in the hemisphere of tritiated water, dependent on the volume and radioactive concentration; b) emission coefficient in the direction of the catalyst surface; c) attenuation coefficient (due to self-absorption) of the tritium β-radiation in the tritiated water body. (authors)

  4. FILAMENTARY ACCRETION FLOWS IN THE EMBEDDED SERPENS SOUTH PROTOCLUSTER

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, Helen; Myers, Philip C.; Bourke, Tyler L. [Radio and Geoastronomy Division, Harvard Smithsonian Center for Astrophysics, MS-42, Cambridge, MA, 02138 (United States); Gutermuth, Robert A.; Wilson, Grant W. [Department of Astronomy, University of Massachusetts Amherst, Amherst, MA 01003 (United States); Hedden, Abigail, E-mail: kirkh@mcmaster.ca [Army Research Labs, Adelphi, MD 20783 (United States)

    2013-04-01

    One puzzle in understanding how stars form in clusters is the source of mass-is all of the mass in place before the first stars are born, or is there an extended period when the cluster accretes material which can continuously fuel the star formation process? We use a multi-line spectral survey of the southern filament associated with the Serpens South embedded cluster-forming region in order to determine if mass is accreting from the filament onto the cluster, and whether the accretion rate is significant. Our analysis suggests that material is flowing along the filament's long axis at a rate of {approx}30 M{sub Sun} Myr{sup -1} (inferred from the N{sub 2}H{sup +} velocity gradient along the filament), and radially contracting onto the filament at {approx}130 M{sub Sun} Myr{sup -1} (inferred from HNC self-absorption). These accretion rates are sufficient to supply mass to the central cluster at a similar rate to the current star formation rate in the cluster. Filamentary accretion flows may therefore be very important in the ongoing evolution of this cluster.

  5. FILAMENTARY ACCRETION FLOWS IN THE EMBEDDED SERPENS SOUTH PROTOCLUSTER

    International Nuclear Information System (INIS)

    Kirk, Helen; Myers, Philip C.; Bourke, Tyler L.; Gutermuth, Robert A.; Wilson, Grant W.; Hedden, Abigail

    2013-01-01

    One puzzle in understanding how stars form in clusters is the source of mass—is all of the mass in place before the first stars are born, or is there an extended period when the cluster accretes material which can continuously fuel the star formation process? We use a multi-line spectral survey of the southern filament associated with the Serpens South embedded cluster-forming region in order to determine if mass is accreting from the filament onto the cluster, and whether the accretion rate is significant. Our analysis suggests that material is flowing along the filament's long axis at a rate of ∼30 M ☉ Myr –1 (inferred from the N 2 H + velocity gradient along the filament), and radially contracting onto the filament at ∼130 M ☉ Myr –1 (inferred from HNC self-absorption). These accretion rates are sufficient to supply mass to the central cluster at a similar rate to the current star formation rate in the cluster. Filamentary accretion flows may therefore be very important in the ongoing evolution of this cluster.

  6. Inelastic scattering in condensed matter with high intensity Mossbauer radiation: Progress report, March 1, 1985-October 31, 1987

    International Nuclear Information System (INIS)

    Yelon, W.B.; Schupp, G.

    1987-10-01

    A facility for high intensity Moessbauer scattering has been commissioned at the University of Missouri Research Reactor (MURR) as well as a facility at Purdue University using special isotopes produced at MURR. A number of scattering studies have been successfully carried out, including a study of the thermal diffuse scattering in Si, which led to an analysis of the resolution function for gamma-ray scattering. Also studied was the anharmonic motion in Na and the satellite reflection Debye-Waller factor in TaS 2 which indicates phason rather than phonon behavior. High precision, fundamental Moessbauer effect studies have also been carried out using scattering to filter unwanted radiation. These have led to a new Fourier transform method for describing Moessbauer effect (ME) lineshape. This method allows complete correction for source resonance self-absorption (SRSA) and the accurate representation of interference effects that add an asymmetric component to the ME lines. This analysis is important to both the funadmental ME studies and to scattering studies for which a deconvolution is essential for extracting the correct elastic fractions and lineshape parameters. These advances, coupled to our improvements in MIcrofoil Conversion Electron (MICE) spectroscopy, lay the foundation for the proposed research outlined in this request for a three-year renewal of DOE support

  7. Safety analysis report for the TRUPACT-II shipping package (condensed version). Volume 2, Rev. 14

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-10-01

    This appendix determines the effective G values for payload shipping categories of contact handled transuranic (CH-TRU) waste materials, based on the radiolytic G values for waste materials that are discussed in detail in Appendix 3.6.8 of the Safety Analysis Report for the TRUPACT-II Shipping Package. The effective G values take into account self-absorption of alpha decay energy inside particulate contamination and the fraction of energy absorbed by nongas-generating materials. As described in Appendix 3.6.8, an effective G value, G{sub eff}, is defined by: G{sub eff} - {Sigma}{sub M} (F{sub M} x G{sub M}) F{sub M}-fraction of energy absorbed by material maximum G value for a material where the sum is over all materials present inside a waste container. The G value itself is determined primarily by the chemical properties of the material and its temperature. The value of F is determined primarily by the size of the particles containing the radionuclides, the distribution of radioactivity on the various materials present inside the waste container, and the stopping distance of alpha particles in air, in the waste materials, or in the waste packaging materials.

  8. Determination by gamma-ray spectrometry of the plutonium and americium content of the Pu/Am separation scraps. Application to molten salts; Determination par spectrometrie gamma de la teneur en plutonium et en americium de produits issus de separation Pu/Am. Application aux bains de sels

    Energy Technology Data Exchange (ETDEWEB)

    Godot, A. [CEA Valduc, Dept. de Traitement des Materiaux Nucleaires, 21 - Is-sur-Tille (France); Perot, B. [CEA Cadarache, Dept. de Technologie Nucleaire, Service de Modelisation des Transferts et Mesures Nucleaires, 13 - Saint-Paul-lez-Durance (France)

    2005-07-01

    Within the framework of plutonium recycling operations in CEA Valduc (France), americium is extracted from molten plutonium metal into a molten salt during an electrolysis process. The scraps (spent salt, cathode, and crucible) contain extracted americium and a part of plutonium. Nuclear material management requires a very accurate determination of the plutonium content. Gamma-ray spectroscopy is performed on Molten Salt Extraction (MSE) scraps located inside the glove box, in order to assess the plutonium and americium contents. The measurement accuracy is influenced by the device geometry, nuclear instrumentation, screens located between the sample and the detector, counting statistics and matrix attenuation, self-absorption within the spent salt being very important. The purpose of this study is to validate the 'infinite energy extrapolation' method employed to correct for self-attenuation, and to detect any potential bias. We present a numerical study performed with the MCNP computer code to identify the most influential parameters and some suggestions to improve the measurement accuracy. A final uncertainty of approximately 40% is achieved on the plutonium mass. (authors)

  9. Atomic emission and atomic fluorescence spectroscopy in the direct current plasma

    International Nuclear Information System (INIS)

    Hendrick, M.S.

    1985-01-01

    The Direct Current Plasma (DCP) was investigated as a source for Atomic Emission (AE) and Atomic Fluorescence Spectrometry (AFS). The DCP was optimized for AE analyses using simplex optimization and Box-Behnken partial factorial experimental design, varying argon flows, and plasma position. Results were compared with a univariate search carried out in the region of the simplex optimum. Canonical analysis demonstrated that no true optimum exists for sensitivity, precision, or drift. A stationary ridge, where combinations of conditions gave comparable instrumental responses, was found. The DCP as an excitation source for AFS in a flame was used for diagnostic studies of the DCP. Moving the aerosol introduction tube behind the DCP with respect to the flame improved the characteristics of the DCP as a narrow line source, although self-absorption was observed at high concentrations of metal salt solutions in the DCP. Detection limits for Cd, Co, Cr, Cu, Fe, Mg, Mn, Zn, and Ni were in the low ng/mL region. Theoretical expressions for scatter correction with a two-line technique were derived, although no correction was necessary to achieve accurate results for standard reference materials

  10. Gigahertz-peaked spectra pulsars in Pulsar Wind Nebulae

    Science.gov (United States)

    Basu, R.; RoŻko, K.; Kijak, J.; Lewandowski, W.

    2018-04-01

    We have carried out a detailed study of the spectral nature of six pulsars surrounded by pulsar wind nebulae (PWNe). The pulsar flux density was estimated using the interferometric imaging technique of the Giant Metrewave Radio Telescope at three frequencies 325, 610, and 1280 MHz. The spectra showed a turnover around gigahertz frequency in four out of six pulsars. It has been suggested that the gigahertz-peaked spectrum (GPS) in pulsars arises due to thermal absorption of the pulsar emission in surrounding medium like PWNe, H II regions, supernova remnants, etc. The relatively high incidence of GPS behaviour in pulsars surrounded by PWNe imparts further credence to this view. The pulsar J1747-2958 associated with the well-known Mouse nebula was also observed in our sample and exhibited GPS behaviour. The pulsar was detected as a point source in the high-resolution images. However, the pulsed emission was not seen in the phased-array mode. It is possible that the pulsed emission was affected by extreme scattering causing considerable smearing of the emission at low radio frequencies. The GPS spectra were modelled using the thermal free-free absorption and the estimated absorber properties were largely consistent with PWNe. The spatial resolution of the images made it unlikely that the point source associated with J1747-2958 was the compact head of the PWNe, but the synchrotron self-absorption seen in such sources was a better fit to the estimated spectral shape.

  11. Radio Flares from Gamma-ray Bursts

    Science.gov (United States)

    Kopač, D.; Mundell, C. G.; Kobayashi, S.; Virgili, F. J.; Harrison, R.; Japelj, J.; Guidorzi, C.; Melandri, A.; Gomboc, A.

    2015-06-01

    We present predictions of centimeter and millimeter radio emission from reverse shocks (RSs) in the early afterglows of gamma-ray bursts (GRBs) with the goal of determining their detectability with current and future radio facilities. Using a range of GRB properties, such as peak optical brightness and time, isotropic equivalent gamma-ray energy, and redshift, we simulate radio light curves in a framework generalized for any circumburst medium structure and including a parameterization of the shell thickness regime that is more realistic than the simple assumption of thick- or thin-shell approximations. Building on earlier work by Mundell et al. and Melandri et al. in which the typical frequency of the RS was suggested to lie at radio rather than optical wavelengths at early times, we show that the brightest and most distinct RS radio signatures are detectable up to 0.1-1 day after the burst, emphasizing the need for rapid radio follow-up. Detection is easier for bursts with later optical peaks, high isotropic energies, lower circumburst medium densities, and at observing frequencies that are less prone to synchrotron self-absorption effects—typically above a few GHz. Given recent detections of polarized prompt gamma-ray and optical RS emission, we suggest that detection of polarized radio/millimeter emission will unambiguously confirm the presence of low-frequency RSs at early time.

  12. GRB 090313 AND THE ORIGIN OF OPTICAL PEAKS IN GAMMA-RAY BURST LIGHT CURVES: IMPLICATIONS FOR LORENTZ FACTORS AND RADIO FLARES

    International Nuclear Information System (INIS)

    Melandri, A.; Kobayashi, S.; Mundell, C. G.; Guidorzi, C.; Bersier, D.; Steele, I. A.; Smith, R. J.; De Ugarte Postigo, A.; Pooley, G.; Yoshida, M.; Castro-Tirado, A. J.; Gorosabel, J.; Kubanek, P.; Sota, A.; JelInek, M.; Gomboc, A.; Bremer, M.; Winters, J. M.; De Gregorio-Monsalvo, I.; GarcIa-Appadoo, D.

    2010-01-01

    We use a sample of 19 gamma-ray bursts (GRBs) that exhibit single-peaked optical light curves to test the standard fireball model by investigating the relationship between the time of the onset of the afterglow and the temporal rising index. Our sample includes GRBs and X-ray flashes for which we derive a wide range of initial Lorentz factors (40 e and show that values derived from the early time light-curve properties are consistent with published typical values derived from other afterglow studies. We produce expected radio light curves by predicting the temporal evolution of the expected radio emission from forward and reverse shock components, including synchrotron self-absorption effects at early time. Although a number of GRBs in this sample do not have published radio measurements, we demonstrate the effectiveness of this method in the case of Swift GRB 090313, for which millimetric and centimetric observations were available, and conclude that future detections of reverse-shock radio flares with new radio facilities such as the EVLA and ALMA will test the low-frequency model and provide constraints on magnetic models.

  13. RADIO FLARES FROM GAMMA-RAY BURSTS

    International Nuclear Information System (INIS)

    Kopač, D.; Mundell, C. G.; Kobayashi, S.; Virgili, F. J.; Harrison, R.; Japelj, J.; Gomboc, A.; Guidorzi, C.; Melandri, A.

    2015-01-01

    We present predictions of centimeter and millimeter radio emission from reverse shocks (RSs) in the early afterglows of gamma-ray bursts (GRBs) with the goal of determining their detectability with current and future radio facilities. Using a range of GRB properties, such as peak optical brightness and time, isotropic equivalent gamma-ray energy, and redshift, we simulate radio light curves in a framework generalized for any circumburst medium structure and including a parameterization of the shell thickness regime that is more realistic than the simple assumption of thick- or thin-shell approximations. Building on earlier work by Mundell et al. and Melandri et al. in which the typical frequency of the RS was suggested to lie at radio rather than optical wavelengths at early times, we show that the brightest and most distinct RS radio signatures are detectable up to 0.1–1 day after the burst, emphasizing the need for rapid radio follow-up. Detection is easier for bursts with later optical peaks, high isotropic energies, lower circumburst medium densities, and at observing frequencies that are less prone to synchrotron self-absorption effects—typically above a few GHz. Given recent detections of polarized prompt gamma-ray and optical RS emission, we suggest that detection of polarized radio/millimeter emission will unambiguously confirm the presence of low-frequency RSs at early time

  14. Monte Carlo simulation of activity measurements by means of 4πβ-γ coincidence system

    International Nuclear Information System (INIS)

    Takeda, Mauro N.; Dias, Mauro S.; Koskinas, Marina F.

    2004-01-01

    The methodology for simulating all detection processes in a 4πβ-γ coincidence system by means of the Monte Carlo technique is described. The goal is to predict the behavior of the observed activity as a function of the 4πβ detector efficiency. In this approach, the information contained in the decay scheme is used for determining the contribution of all radiations emitted by the selected radionuclide, to the measured spectra by each detector. This simulation yields the shape of the coincidence spectrum, allowing the choice of suitable gamma-ray windows for which the activity can be obtained with maximum accuracy. The simulation can predict a detailed description of the extrapolation curve, mainly in the region where the 4πβ detector efficiency approaches 100%, which is experimentally unreachable due to self absorption of low energy electrons in the radioactive source substrate. The theoretical work is being developed with MCNP Monte Carlo code, applied to a gas-flow proportional counter of 4π geometry, coupled to a pair of NaI(Tl) crystals. The calculated efficiencies are compared to experimental results. The extrapolation curve can be obtained by means of another Monte Carlo algorithm, being developed in the present work, to take into account fundamental characteristics of a complex decay scheme, including different types of radiation and transitions. The present paper shows preliminary calculated values obtained by the simulation and compared to predicted analytical values for a simple decay scheme. (author)

  15. Limits on the space density of gamma-ray burst sources

    International Nuclear Information System (INIS)

    Epstein, R.I.

    1985-01-01

    Gamma-ray burst spectra which extend to several MeV without significant steepening indicate that there is negligible degradation due to two-photon pair production. The inferred low rate of photon-photon reactions is used to give upper limits to the distances to the sources and to the intensity of the radiation from the sources. These limits are calculated under the assumptions that the bursters are neutron stars which emit uncollimated gamma rays. The principal results are that the space density of the gamma-ray burst sources exceeds approx.10 -6 pc -3 if the entire surface of the neutron star radiates and exceeds approx.10 -3 pc -3 if only a small cap or thin strip in the stellar surface radiates. In the former case the density of gamma-ray bursters is approx.1% of the inferred density of extinct pulsars, and in the latter case the mean mass density of burster sources is a few percent of the density of unidentified dark matter in the solar neighborhood. In both cases the X-ray intensity of the sources is far below the Rayleigh-Jeans limit, and the total flux is at most comparable to the Eddington limit. This implies that low-energy self-absorption near 10 keV is entirely negligible and that radiation-driven explosions are just barely possible

  16. Argon plasma jet continuum emission investigation by using different spectroscopic methods

    International Nuclear Information System (INIS)

    Dgheim, J

    2007-01-01

    Radiation and temperature fields of the continuum field are determined by using different spectroscopic methods based on the spectral emission of an argon plasma jet. An interferential filter of bandwidth 2.714 nm centred at a wavelength of 633 nm is used to observe only the continuum emission and to eliminate the self-absorption phenomenon. An optical multichannel analyser (OMA) of an MOS detector is used to measure argon plasma jet volumetric emissivity under atmospheric pressure and high temperatures. An emission spectroscopic method is used to measure the Stark broadening of the hydrogen line H β and to determine the electron density. The local thermodynamic equilibrium is established and its limit is stated. The local electron temperature is determined by two methods (the continuum emission relation and the LTE relations), and the total Biberman factor is measured. The results given by the OMA are compared with those given by the imagery method. At a given wavelength, the Biberman factor, which depends on the electron temperature and the electron density, may serve as an indicator to show where the LTE prevails along the argon plasma jet core length

  17. Hot particle dose calculations using the computer code VARSKIN Mod 2

    International Nuclear Information System (INIS)

    Durham, J.S.

    1991-01-01

    The only calculational model recognised by the Nuclear Regulatory Commission (NRC) for hot particle dosimetry is VARSKIN Mod 1. Because the code was designed to calculate skin dose from distributed skin contamination and not hot particles, it is assumed that the particle has no thickness and, therefore, that no self-absorption occurs within the source material. For low energy beta particles such as those emitted from 60 Co, a significant amount of self-shielding occurs in hot particles and VARSKIN Mod 1 overestimates the skin dose. In addition, the presence of protective clothing, which will reduce the calculated skin dose for both high and low energy beta emitters, is not modelled in VARSKIN Mod 1. Finally, there is no provision in VARSKIN Mod 1 to calculate the gamma contribution to skin dose from radionuclides that emit both beta and gamma radiation. The computer code VARSKIN Mod 1 has been modified to model three-dimensional sources, insertion of layers of protective clothing between the source and skin, and gamma dose from appropriate radionuclides. The new code, VARSKIN Mod 2, is described and the sensitivity of the calculated dose to source geometry, diameter, thickness, density, and protective clothing thickness are discussed. Finally, doses calculated using VARSKIN Mod 2 are compared to doses measured from hot particles found in nuclear power plants. (author)

  18. Safety analysis report for the TRUPACT-II shipping package (condensed version). Volume 2, Rev. 14

    International Nuclear Information System (INIS)

    1994-10-01

    This appendix determines the effective G values for payload shipping categories of contact handled transuranic (CH-TRU) waste materials, based on the radiolytic G values for waste materials that are discussed in detail in Appendix 3.6.8 of the Safety Analysis Report for the TRUPACT-II Shipping Package. The effective G values take into account self-absorption of alpha decay energy inside particulate contamination and the fraction of energy absorbed by nongas-generating materials. As described in Appendix 3.6.8, an effective G value, G eff , is defined by: G eff - Σ M (F M x G M ) F M -fraction of energy absorbed by material maximum G value for a material where the sum is over all materials present inside a waste container. The G value itself is determined primarily by the chemical properties of the material and its temperature. The value of F is determined primarily by the size of the particles containing the radionuclides, the distribution of radioactivity on the various materials present inside the waste container, and the stopping distance of alpha particles in air, in the waste materials, or in the waste packaging materials

  19. Picosecond excitation transport in disordered systems

    International Nuclear Information System (INIS)

    Hart, D.E.

    1987-11-01

    Time-resolved fluorescence decay profiles are used to study excitation transport in 2- and 3-dimensional disordered systems. Time-correlated single photon counting detection is used to collect the fluorescence depolarization data. The high signal-to-noise ratios afforded by this technique makes it possible to critically examine current theories of excitation transport. Care has been taken to eliminate or account for the experimental artifacts common to this type of study. Solutions of 3,3'-diethyloxadicarbocyanine iodide (DODCI) in glycerol serve as a radomly distributed array of energy donors in 3-dimensions. A very thin sample cell (/approximately/ 2 μm) is used to minimize the effects of fluorescence self-absorption on the decay kinetics. Evidence of a dynamic shift of the fluorescence spectrum of DODCI in glycerol due to solvent reorganization is presented. The effects of excitation trapping on the decay profiles is minimized in the data analysis procedure. The 3-body theory of Gochanour, Andersen, and Fayer (GAF) and the far less complex 2-particle analytic theory of Huber, Hamilton, and Barnett yield indistinguishable fits to the data over the wide dynamic range of concentrations and decay times studied

  20. High pressure discharges in cavities formed by microfabrication techniques

    International Nuclear Information System (INIS)

    Khan, B.A.; Cammack, D.A.; Pinker, R.D.; Racz, J.

    1997-01-01

    High pressure discharges are the basis of small high intensity light sources. In this work, we demonstrate the formation of high pressure discharges, in cavities formed by applying micromachining and integrated circuit techniques to quartz substrates. Cavities containing varying amounts of mercury and argon were fabricated to obtain high pressure discharges. A high pressure mercury discharge was formed in the electrodeless cavities by exciting them with a microwave source, operating at 2.45 GHz and in the electroded cavities by applying a dc voltage. The contraction of the discharge into a high pressure arc was observed. A broad emission spectrum due to self-absorption and collisions between excited atoms and normal atoms, typical of high pressure mercury discharges, was measured. The light output and efficacy increased with increasing pressure. The measured voltage was used to estimate the pressure within the electroded cavities, which is as high as 127 atm for one of the two cavities discussed in this work. Efficacies over 40 lumens per watt were obtained for the electrodeless cavities and over 50 scr(l)m/W for the electroded cavities. copyright 1997 American Institute of Physics

  1. Design and device construction for plane tables preparation for counter alpha/beta total

    International Nuclear Information System (INIS)

    Galicia C, F. J.; Monroy G, F.

    2014-10-01

    This work presents the design and assembly of a device for plane tables preparation for quantification alpha/beta total of radioactive waste samples. The determination of the activity index alpha/beta total is used to detect a wide variety of matrices quickly and the concentration of alpha and/or beta emitters of the contained radionuclides in different samples. In particular, the determination of the activity index alpha and beta total of radioactive wastes involves the digestion of samples in aggressive means that will be evaporated to dryness for its quantification. With the purpose of controlling the emission of corrosive gases during the preparation of the plane tables for the quantification of the index alpha and beta total, was designed and built the device in the Radioactive Waste Laboratory that allows to prepare plane tables for proportional counters in a sure and efficient way. The device is constituted by heating equipment, evaporation cylinder and a gases cleaning system. The self-absorption curve got ready starting from the device. (Author)

  2. Examination of the Properties of a Spent Fuel based Electricity Generation System - Scintillator Performance Analysis

    International Nuclear Information System (INIS)

    Lee, Haneol; Yim, Man-Sung

    2016-01-01

    Gammavoltaic was proposed by Karl Scharf in 1960. The low efficiency resulted in gammavoltaic being used as a radiation detector. In the 1990s the efficiency of gammavoltaic increased by the use of a scintillator. Gammavoltaic was further studied as a power source for spent fuel transportation and a nuclear battery in the 2000s Haneol Lee and Man-Sung Yim also suggested electricity generation system based on spent fuel stored inside the fuel pool of a nuclear power plant. This study proposed the systematic design of an electricity conversion system using CsI(Tl) scintillator and a-Si photovoltaic cell. As such, this study is selected to be a reference paper. The results of this paper indicate a self-absorption effect from the reference model. This effect is negligible while the irradiation degradation has to be considered. Two main ways to reduce radiation induced degradation are scintillator shielding and replacing scintillator material with a material having higher radiation resistance. The analysis of the scintillator used in the 'electricity generation system using gamma radiation from spent fuel' was performed to evaluate the ideal electricity generation in the reference research

  3. Neutron flux characterization using Lr-115 NTD and binary glass metal as converter

    International Nuclear Information System (INIS)

    Alvarado, R.; Palacios, D.; Sajo B, L.; Greaves, E.; Barros, H.; Nemeth, P.; Goncalves, I. F.

    2010-01-01

    The installed neutron irradiation cell at the Simon Bolivar University Laboratory is employed frequently for applications where the neutron field should be monitored. The ratio of epithermal and thermal neutron flux were determined by the cadmium difference method in three different irradiation locations of a graphite thermalized 252 Cf source. Monte Carlo simulation provided the expected thermal neutron field inside the irradiation cell and the nuclear trace detectors sensitivity. The passive device is a Kodak-Pathe Lr-115 externally coated with a thin (0,1 mm) binary glass metal strip Fe 75 B 25 where the 10 B(n,α) 7 Li reaction converts free neutrons into alpha particles that are registered as etched tracks. The results allow to determine the neutron flux in an easy, reproducible and effective way, with the advantage of a low self-absorption effect due to the converter material. Improved etching process of the Lr-115 nuclear track detectors and the software parameters for track analysis are included. (Author)

  4. Application of the nuclide identification system SHAMAN in monitoring the Comprehensive Test Ban Treaty

    International Nuclear Information System (INIS)

    Aarnio, P.A.; Ala-Heikkilae, J.J.; Hakulinen, T.T.; Nikkinen, M.T.

    1998-01-01

    SHAMAN is an expert for qualitative and quantitative radionuclide identification in gamma spectrometry. SHAMAN requires as input the calibrations, peak search, and fitting results from reliable spectral analysis software, such as SAMPO. SHAMAN uses a comprehensive reference library with 2600 radionuclides and 80 000 gamma-lines, as well as a rule base consisting of sixty inference rules. Identification results are presented both via an interactive graphical interface and in the form of configurable text reports. An organization has been established for monitoring the recent Comprehensive Test Ban Treaty. For radionuclide monitoring, 80 stations will be set up around the world. Air-filter gamma-spectra will be collected from these stations on a daily basis and they will need to be reliably analyzed with minimum turnaround time. SHAMAN is currently being evaluated within the prototype monitoring system as an automated radionuclide identifier, in parallel with existing radionuclide identification software. In air-filter monitoring, very low concentrations of radionuclides are measured from bulky sources in close geometry and with long counting time. In this case true coincidence summing and self-absorption become important factors. SHAMAN is able to take into account these complicated phenomena, and the results it produces have been found to be very reliable and accurate. (author)

  5. X-ray fluorescence and the study of microcirculation

    International Nuclear Information System (INIS)

    Muthuvelu, P.; Hugtenburg, R.P.; Bradley, D.A.; Winlove, C.P.

    2004-01-01

    The feasibility of using K-shell X-ray fluorescence (XRF) technique for study of subchondral bone microcirculation in ex vivo samples is examined. Studies have been carried out at the Daresbury Laboratory Synchrotron Radiation Source (SRS) ultra-dilute extended X-ray absorption fine structure beamline. Initial investigations were made on fine-bore capillaries with diameters of either 500 or 200 μm, attenuated by up to 2 mm of Perspex and containing dilute iodine-based contrast media. This allowed comparison to be made with the capabilities of angiographic imaging systems, also allowing definition of suitable XRF set-up parameters for subsequent microcirculation studies. Measurements were obtained in 30 s run times, for concentrations of iodine (K ab 33.164 keV) down to 2 /(ml saline). Intensities were linear up to 3.7 mg/ml, self-absorption becoming significant for concentrations beyond this. To determine detection limits, preliminary studies of subchondral bone microcirculation were made on bone sections which were known to be poorly infused with silver-coated (K ab 25.517 keV) 30 μm diameter microspheres. For a 2 mm slice of bone, the presence of small numbers of silver-coated microspheres were detected in the first 2 mm layer from the surface, at a level equivalent to ∼1 ppm of silver solution

  6. Mercury mass measurement in fluorescent lamps via neutron activation analysis

    Science.gov (United States)

    Viererbl, L.; Vinš, M.; Lahodová, Z.; Fuksa, A.; Kučera, J.; Koleška, M.; Voljanskij, A.

    2015-11-01

    Mercury is an essential component of fluorescent lamps. Not all fluorescent lamps are recycled, resulting in contamination of the environment with toxic mercury, making measurement of the mercury mass used in fluorescent lamps important. Mercury mass measurement of lamps via instrumental neutron activation analysis (NAA) was tested under various conditions in the LVR-15 research reactor. Fluorescent lamps were irradiated in different positions in vertical irradiation channels and a horizontal channel in neutron fields with total fluence rates from 3×108 cm-2 s-1 to 1014 cm-2 s-1. The 202Hg(n,γ)203Hg nuclear reaction was used for mercury mass evaluation. Activities of 203Hg and others induced radionuclides were measured via gamma spectrometry with an HPGe detector at various times after irradiation. Standards containing an Hg2Cl2 compound were used to determine mercury mass. Problems arise from the presence of elements with a large effective cross section in luminescent material (europium, antimony and gadolinium) and glass (boron). The paper describes optimization of the NAA procedure in the LVR-15 research reactor with particular attention to influence of neutron self-absorption in fluorescent lamps.

  7. Colloidal CsPbBr3 Perovskite Nanocrystals: Luminescence beyond Traditional Quantum Dots.

    Science.gov (United States)

    Swarnkar, Abhishek; Chulliyil, Ramya; Ravi, Vikash Kumar; Irfanullah, Mir; Chowdhury, Arindam; Nag, Angshuman

    2015-12-14

    Traditional CdSe-based colloidal quantum dots (cQDs) have interesting photoluminescence (PL) properties. Herein we highlight the advantages in both ensemble and single-nanocrystal PL of colloidal CsPbBr3 nanocrystals (NCs) over the traditional cQDs. An ensemble of colloidal CsPbBr3 NCs (11 nm) exhibits ca. 90 % PL quantum yield with narrow (FWHM=86 meV) spectral width. Interestingly, the spectral width of a single-NC and an ensemble are almost identical, ruling out the problem of size-distribution in PL broadening. Eliminating this problem leads to a negligible influence of self-absorption and Förster resonance energy transfer, along with batch-to-batch reproducibility of NCs exhibiting PL peaks within ±1 nm. Also, PL peak positions do not alter with measurement temperature in the range of 25 to 100 °C. Importantly, CsPbBr3 NCs exhibit suppressed PL blinking with ca. 90 % of the individual NCs remain mostly emissive (on-time >85 %), without much influence of excitation power. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Rotating positron tomographs revisited

    International Nuclear Information System (INIS)

    Townsend, D.; Defrise, M.; Geissbuhler, A.

    1994-01-01

    We have compared the performance of a PET scanner comprising two rotating arrays of detectors with that of the more conventional stationary-ring design. The same total number of detectors was used in each, and neither scanner had septa. For brain imaging, we find that the noise-equivalent count rate is greater for the rotating arrays by a factor of two. Rotating arrays have a sensitivity profile that peaks in the centre of the field of view, both axially and transaxially. In the transaxial plane, this effect offsets to a certain extent the decrease in the number of photons detected towards the centre of the brain due to self-absorption. We have also compared the performance of a rotating scanner to that of a full-ring scanner with the same number of rings. We find that a full-ring scanner with an axial extent of 16.2 cm (24 rings) is a factor of 3.5 more sensitive than a rotating scanner with 40% of the detectors and the same axial extent. (Author)

  9. Study on influences of experimental factors on energy and absolute activity measurements of alpha-emitters

    International Nuclear Information System (INIS)

    Terini, R.A.

    1991-01-01

    This work presents firstly a review of the fundamental results and conclusions obtained through alpha-spectrometry and alpha-counting, and the influence of energy straggling, energy loss, self-absorption and backscattering, on the determination of the energy and the absolute activity of alpha samples. Is is shown that the techniques of source fabrication and the methods of measurements play a capital influence on the obtained results. Moreover, measurements made by us, with a silicon surface barrier detector, show that the peak-asymmetry and peak-shift of an alpha-spectrum increases with the angle of emission, and that the magnitude of this effect depends on the thickness and homogeneity of the sample, as well as on the geometry of the measuring system. Through an analysis of the angular distribution of the emitted particles, the degree of isotropy of some thin Am sup(241) sources was measured and the influence of source backing and the geometry was analysed. We can conclude that, in general, there is a larger precision in measurements made under very small solid angles around the normal to the sample, and we enphasize the necessary cares required on the production of the source and on the set up of the measuring system. (author)

  10. The History and Evolution of Young and Distant Radio Sources

    Science.gov (United States)

    Collier, Jordan

    convex spectrum is generally thought to be caused by Synchrotron Self Absorption (SSA), an internal process in which the same population of electrons is responsible for the synchrotron emission and self-absorption. However, recent studies have shown that the convex spectrum may be caused by Free-Free Absorption (FFA), an external process in which an inhomogeneous screen absorbs the synchrotron emission. The majority of GPS and CSS samples consist of Jy-level and therefore, high-luminosity sources. VLBI images show that GPS and CSS sources typically have double-lobed, edge-brightened morphologies on mas scales, appearing as scaled down versions of Fanaroff-Riley Class II (FR II) galaxies. Recently, two low-luminosity GPS sources were found to have jet-brightened morphologies, which appeared as scaled down versions of Fanaroff-Riley Class I (FR I) galaxies. From this, it was proposed that there exists a morphology-luminosity break analogous to the FR I/II break and that low-luminosity GPS and CSS sources are the compact counterparts of FR I galaxies. However, this hypothesis remains unconfirmed, since very few samples of low-luminosity GPS and CSS sources exist. We conclude that, despite being historically favoured, single inhomogeneous SSA is not the dominant form of absorption amongst a large fraction of GPS and CSS sources. We find that FFA provides a good model for the majority of the spectra with observable turnovers, suggesting an inhomogeneous and clumpy ambient medium. Furthermore, we conclude that the majority of our GPS and CSS sources are young and evolving and may undergo recurrent activity over small time scales. We conclude that a very small fraction of GPS and CSS sources consists of frustrated, dying or restarted radio galaxies. (Abstract shortened by ProQuest.).

  11. New WIMS library generation from ENDF/B6 and effect of resonance group structure on cell parameters

    International Nuclear Information System (INIS)

    Pazirandeh, Ali; Tabesh, Alireza

    2002-01-01

    Due to inaccessibility to NJOY, steps were taken to create WIMS library, which can be extracted from ENDF/B6 without using NJOY. In addition to using preprocessing codes few programs were written to calculate integral resonance, slowing down power per unit lethargy, potential scattering, and differential scattering cross section, scattering matrices. For neutrons with energy above 4 eV, isotropic elastic scattering was assumed. For neutrons below 4 eV the free gas model was used, except for light elements, which tabulated values of S(α,β) in ENDF/B6 used. The Goldstein-Cohen factors are taken from WIMKAL88.Lib. The integral resonance with self absorption per unit lethargy was obtained from GROUPIE output. The P 1 scattering matrices are calculated only for four elements, namely H, D, C and O at 300 K. In order to examine the created libraries, k eff , δ 28 , ρ 28 , ρ 25 and CR are calculated using new WIMS library, WIMKAL88.Lib and NEA329.Lib. The results showed general agreement. The controversial issue of WIMS library group structure, particularly in resonance region has raised the question of whether the number of resonance group i.e., 13 is optimized. We generated different WIMS libraries consisting of 5, 8, 13, 18 and 23 resonance groups. The main aim was to examine the effect to resonance group structure on calculated core parameters, mainly, k eff , δ 28 , ρ 28 , ρ 25 and CR. These parameters are also calculated and compared with those obtained using WIMKAL88, and NEA329 libraries. (author)

  12. WE-AB-204-11: Development of a Nuclear Medicine Dosimetry Module for the GPU-Based Monte Carlo Code ARCHER

    Energy Technology Data Exchange (ETDEWEB)

    Liu, T; Lin, H; Xu, X [Rensselaer Polytechnic Institute, Troy, NY (United States); Stabin, M [Vanderbilt Univ Medical Ctr, Nashville, TN (United States)

    2015-06-15

    Purpose: To develop a nuclear medicine dosimetry module for the GPU-based Monte Carlo code ARCHER. Methods: We have developed a nuclear medicine dosimetry module for the fast Monte Carlo code ARCHER. The coupled electron-photon Monte Carlo transport kernel included in ARCHER is built upon the Dose Planning Method code (DPM). The developed module manages the radioactive decay simulation by consecutively tracking several types of radiation on a per disintegration basis using the statistical sampling method. Optimization techniques such as persistent threads and prefetching are studied and implemented. The developed module is verified against the VIDA code, which is based on Geant4 toolkit and has previously been verified against OLINDA/EXM. A voxelized geometry is used in the preliminary test: a sphere made of ICRP soft tissue is surrounded by a box filled with water. Uniform activity distribution of I-131 is assumed in the sphere. Results: The self-absorption dose factors (mGy/MBqs) of the sphere with varying diameters are calculated by ARCHER and VIDA respectively. ARCHER’s result is in agreement with VIDA’s that are obtained from a previous publication. VIDA takes hours of CPU time to finish the computation, while it takes ARCHER 4.31 seconds for the 12.4-cm uniform activity sphere case. For a fairer CPU-GPU comparison, more effort will be made to eliminate the algorithmic differences. Conclusion: The coupled electron-photon Monte Carlo code ARCHER has been extended to radioactive decay simulation for nuclear medicine dosimetry. The developed code exhibits good performance in our preliminary test. The GPU-based Monte Carlo code is developed with grant support from the National Institute of Biomedical Imaging and Bioengineering through an R01 grant (R01EB015478)

  13. SPECT: Theoretical aspecte and evolution of emission computed axial tomography

    International Nuclear Information System (INIS)

    Brunol, J.; Nuta, V.

    1981-01-01

    We have detailed certain of the elements of 3-D image reconstruction from axial projections. Two of the aspects specific to nuclear medicine have been analysed namely self-absorption and statistics. In our view, the development of ECAT in the months to come must hence proceed in two essential directions: - application to dynamic cardiac imagery (multigated). Results of this type have been obtained over 8 months in the Radioisotope Service of Cochin Hospital in Paris. It must be stressed here that the number of images to be processed then becomes considerable (multiplication by the gate factor yielding more than 100 images), the more the statistics are reduced due to the fact of the temporal separation. The obtaining of good image quality requires sophisticated quadri-dimensional processing. It follows that the computing times, with all the mini-computers available in nuclear medicine, then become much too great to envisage really application in hospital routine (several hours of computing). This is the reason why we connected an array processor with the IMAC system. This very powerful system (several tens of times the power of a mini-computer) will reduce the time of such computing to less than 10 minutes. New elements can be introduced into the reconstruction algorithm (static case opposite the foregoing one). These important elements of improvement are to the detriment of space and hence of computing time. Here again, the use of an array processor appears indispensable. It is to recall that the ECAT is today a currently used method, the theoretical analyses that it has necessitated have opened the way to new effective methods of tomography by 'Slanted Hole'. (orig.) [de

  14. Evaluation of the protein concentration in enzymes via the determination of sulphur by TXRF

    International Nuclear Information System (INIS)

    Mertens, M.; Rittmeyer, C.; Kolbesen, B.O.

    2000-01-01

    Total reflection x-ray fluorescence spectrometry (TXRF) offers many advantages for the identification of trace elements in biological samples like enzymes, tissues or plants. Without any preliminary treatment elements may be determined with high accuracy especially transition metals like Fe, Ni, Cu, Mo and the alkaline earth metal Ca. A further aspect of the investigation of enzymes is the simple and simultaneous determination of light elements. Especially sulphur is of interest. The element sulphur exists mainly in the two amino, acids methionine and cysteine as well as in iron-sulphur clusters and may be used for an easy and simultaneous calculation of the protein concentration. Hence the quantitative determination of sulphur by TXRF allows a cross-check regarding of the conventional quantitative determination of protein concentration by, for example, the Lowry method. On the basis of three enzymes of different origins and molecular weights the presentation will show the influence of the bio-organic matrix and different buffer media on element determination by TXRF. As is already known the influence of the matrix on the detection of light elements is stronger than on transition metals. It can be discussed whether layer thickness and layer effects of the drying residues (characterization by SEM and thickness profilometer (ALPHA-step)) and / or self absorption effects as well as the excitation are of significance. The results indicate that with enzymes of low molecular weight a reliable determination of sulphur is possible whereas those with higher molecular weights gave poorer results on account of the matrix effects described. (author)

  15. Simultaneous determination of local cerebral glucose utilization and blood flow by carbon-14 double-label autoradiography: method of procedure and validation studies in the rat

    International Nuclear Information System (INIS)

    Ginsberg, M.D.; Smith, D.W.; Wachtel, M.S.; Gonzalez-Carvajal, M.; Busto, R.

    1986-01-01

    Validation studies were undertaken to establish a computer-assisted double-label autoradiographic strategy employing [ 14 C]2-deoxyglucose ([ 14 C]2DG) and [ 14 C]iodoantipyrine ([ 14 C]IAP) to measure local CMRglu (LCMRglu) and CBF (LCBF). An organic solvent was used to extract the majority of IAP between first and second film exposures. In contrast to previously published data, all solvents tested produced partial losses of 2DG from tissue, and all allowed 2-6% of IAP to persist even after 5-day washes. Technical-grade chloroform permitted equal retention of unmetabolized and metabolized 2DG. A linear model was established, which was insensitive to the changes in tissue self-absorption that were shown to occur with chloroform extraction. Propagated error in computing tissue [ 14 C]2DG and [ 14 C]IAP was reduced by maximizing IAP extraction (by longer solvent wash times) and by administering 2.5 times as much IAP as 2DG. Fractional 2DG retention was measured in single-label 2DG sections placed on the films, and fractional IAP retention was evaluated by an optimization procedure. With this strategy, double-label values for LCMRglu and LCBF in anesthetized rats agreed with values obtained in matched single-label series to within 5%. The coefficients of variation for the double- and single-label LCMRglu data were virtually identical, whereas the coefficient of variation for double-label LCBF was 1.8 times that of single-label LCBF. The double-label strategy permitted pixel-by-pixel measurement and video display of the LCMRglu/LCBF ratio; the mean value among structures was 0.472 mumol/ml. With proper attention to methodological detail, this double-label strategy shows great promise for routine laboratory application

  16. Analysis of low Z elements in various environmental samples with total reflection X-ray fluorescence (TXRF) spectrometry

    International Nuclear Information System (INIS)

    Hoefler, H.; Streli, C.; Wobrauschek, P.; Ovari, M.; Zaray, Gy.

    2006-01-01

    Recently there is a growing interest in low Z elements such as carbon, oxygen up to sulphur and phosphorus in biological specimen. Total reflection X-ray fluorescence (TXRF) spectrometry is a suitable technique demanding only very small amounts of sample. On the other side, the detection of low Z elements is a critical point of this analytical technique. Besides other effects, self absorption may occur in the samples, because of the low energy of the fluorescence radiation. The calibration curves might be not linear any longer. To investigate this issue water samples and samples from human cerebrospinal fluid were used to examine absorption effects. The linearity of calibration curves in dependence of sample mass was investigated to verify the validity of the thin film approximation. The special requirements to the experimental setup for low Z energy dispersive fluorescence analysis were met by using the Atominstitute's TXRF vacuum chamber. This spectrometer is equipped with a Cr-anode X-ray tube, a multilayer monochromator and a SiLi detector with 30 mm 2 active area and with an ultrathin entrance window. Other object on this study are biofilms, living on all subaqueous surfaces, consisting of bacteria, algae and fungi embedded in their extracellular polymeric substances (EPS). Many trace elements from the water are bound in the biofilm. Thus, the biofilm is a useful indicator for polluting elements. For biomonitoring purposes not only the polluting elements but also the formation and growth rate of the biofilm are important. Biofilms were directly grown on TXRF reflectors. Their major elements and C-masses correlated to the cultivation time were investigated. These measured masses were related to the area seen by the detector, which was experimentally determined. Homogeneity of the biofilms was checked by measuring various sample positions on the reflectors

  17. Analysis of low Z elements in various environmental samples with total reflection X-ray fluorescence (TXRF) spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hoefler, H. [Atominstitut of the Austrian Universities, TU-Wien, A-1020 Vienna (Austria); Streli, C. [Atominstitut of the Austrian Universities, TU-Wien, A-1020 Vienna (Austria)]. E-mail: streli@ati.ac.at; Wobrauschek, P. [Atominstitut of the Austrian Universities, TU-Wien, A-1020 Vienna (Austria); Ovari, M. [Eoetvoes University, Institute of Chemistry, H-1117, Budapest, Pazmany P. stny 1/a. (Hungary); Zaray, Gy. [Eoetvoes University, Institute of Chemistry, H-1117, Budapest, Pazmany P. stny 1/a. (Hungary)

    2006-11-15

    Recently there is a growing interest in low Z elements such as carbon, oxygen up to sulphur and phosphorus in biological specimen. Total reflection X-ray fluorescence (TXRF) spectrometry is a suitable technique demanding only very small amounts of sample. On the other side, the detection of low Z elements is a critical point of this analytical technique. Besides other effects, self absorption may occur in the samples, because of the low energy of the fluorescence radiation. The calibration curves might be not linear any longer. To investigate this issue water samples and samples from human cerebrospinal fluid were used to examine absorption effects. The linearity of calibration curves in dependence of sample mass was investigated to verify the validity of the thin film approximation. The special requirements to the experimental setup for low Z energy dispersive fluorescence analysis were met by using the Atominstitute's TXRF vacuum chamber. This spectrometer is equipped with a Cr-anode X-ray tube, a multilayer monochromator and a SiLi detector with 30 mm{sup 2} active area and with an ultrathin entrance window. Other object on this study are biofilms, living on all subaqueous surfaces, consisting of bacteria, algae and fungi embedded in their extracellular polymeric substances (EPS). Many trace elements from the water are bound in the biofilm. Thus, the biofilm is a useful indicator for polluting elements. For biomonitoring purposes not only the polluting elements but also the formation and growth rate of the biofilm are important. Biofilms were directly grown on TXRF reflectors. Their major elements and C-masses correlated to the cultivation time were investigated. These measured masses were related to the area seen by the detector, which was experimentally determined. Homogeneity of the biofilms was checked by measuring various sample positions on the reflectors.

  18. EXPANDED VERY LARGE ARRAY OBSERVATIONS OF THE RADIO EVOLUTION OF SN 2011dh

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, M. I.; Chomiuk, L.; Brunthaler, A.; Rupen, M. [National Radio Astronomy Observatory, Socorro, NM 87801 (United States); Soderberg, A. M.; Zauderer, B. A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Bietenholz, M. F. [Department of Physics and Astronomy, York University, Toronto, M3J 1P3, Ontario (Canada); Chevalier, R. A. [Astronomy Department, University of Virginia, Charlottesville, VA 22904 (United States); Fransson, C. [Department of Astronomy, The Oskar Klein Centre, Stockholm University, 106 91 Stockholm (Sweden)

    2012-05-10

    We report on Expanded Very Large Array observations of the Type IIb supernova 2011dh, performed over the first 100 days of its evolution and spanning 1-40 GHz in frequency. The radio emission is well described by the self-similar propagation of a spherical shockwave, generated as the supernova ejecta interact with the local circumstellar environment. Modeling this emission with a standard synchrotron self-absorption (SSA) model gives an average expansion velocity of v Almost-Equal-To 0.1c, supporting the classification of the progenitor as a compact star (R{sub *} Almost-Equal-To 10{sup 11} cm). We find that the circumstellar density is consistent with a {rho}{proportional_to}r{sup -2} profile. We determine that the progenitor shed mass at a constant rate of Almost-Equal-To 3 Multiplication-Sign 10{sup -5} M{sub Sun} yr{sup -1}, assuming a wind velocity of 1000 km s{sup -1} (values appropriate for a Wolf-Rayet star), or Almost-Equal-To 7 Multiplication-Sign 10{sup -7} M{sub Sun} yr{sup -1} assuming 20 km s{sup -1} (appropriate for a yellow supergiant [YSG] star). Both values of the mass-loss rate assume a converted fraction of kinetic to magnetic energy density of {epsilon}{sub B} = 0.1. Although optical imaging shows the presence of a YSG, the rapid optical evolution and fast expansion argue that the progenitor is a more compact star-perhaps a companion to the YSG. Furthermore, the excellent agreement of the radio properties of SN 2011dh with the SSA model implies that any YSG companion is likely in a wide, non-interacting orbit.

  19. The measurement of 129I for the cement and the paraffin solidified low and intermediate level wastes (LILWs), spent resin or evaporated bottom from the pressurized water reactor (PWR) nuclear power plants.

    Science.gov (United States)

    Park, S D; Kim, J S; Han, S H; Ha, Y K; Song, K S; Jee, K Y

    2009-09-01

    In this paper a relatively simple and low cost analysis procedure to apply to a routine analysis of (129)I in low and intermediate level radioactive wastes (LILWs), cement and paraffin solidified evaporated bottom and spent resin, which are produced from nuclear power plants (NPPs), pressurized water reactors (PWR), is presented. The (129)I is separated from other nuclides in LILWs using an anion exchange adsorption and solvent extraction by controlling the oxidation and reduction state and is then precipitated as silver iodide for counting the beta activity with a low background gas proportional counter (GPC). The counting efficiency of GPC was varied from 4% to 8% and it was reversely proportional to the weight of AgI by a self absorption of the beta activity. Compared to a higher pH, the chemical recovery of iodide as AgI was lowered at pH 4. It was found that the chemical recovery of iodide for the cement powder showed a lower trend by increasing the cement powder weight, but it was not affected for the paraffin sample. In this experiment, the overall chemical recovery yield of the cement and paraffin solidified LILW samples and the average weight of them were 67+/-3% and 5.43+/-0.53 g, 70+/-7% and 10.40+/-1.60 g, respectively. And the minimum detectable activity (MDA) of (129)I for the cement and paraffin solidified LILW samples was calculated as 0.070 and 0.036 Bq/g, respectively. Among the analyzed cement solidified LILW samples, (129)I activity concentration of four samples was slightly higher than the MDA and their ranges were 0.076-0.114 Bq/g. Also of the analyzed paraffin solidified LILW samples, five samples contained a little higher (129)I activity concentration than the MDA and their ranges were 0.036-0.107 Bq/g.

  20. Feasibility study on the use of liquid crystal/dye cells for digital signage

    Science.gov (United States)

    Itaya, Shunsuke; Azumi, Nada Dianah B. M.; Ohta, Masamichi; Ozawa, Shintaro; Fujieda, Ichiro

    2016-03-01

    Elongated dye molecules orient themselves with surrounding liquid crystal molecules. We propose to incorporate such a guest-host cell in a screen of a projection display. This configuration might be applied for digital signage to be installed on building walls. Dual-mode operation is realized by the bias applied to the cell. In display-mode, the dye molecules are oriented in parallel to the substrate of the cell. When excited by ultra-violet light, photoluminescence (PL) is generated. Because it is mostly perpendicular to the long axis of the molecule, it exits the cell efficiently. In powerharvesting mode, they are oriented vertically. The PL generated by ambient light is directed to edge surfaces where solar cells are mounted. In experiment, we fabricated a cell with commonly-available materials (coumarin 6 and a nematic liquid crystal). Anti-parallel alignment condition was adopted. We recorded PL spectra from the cell for the two excitation conditions. First, the center of the cell was irradiated by a 1.69mW blue laser beam. Second, the whole cell was uniformly exposed to the light from a fluorescent lamp at illuminance of 800lx. From the measured spectra for these cases, the contrast of luminance is calculated to be 3.2 ×105 . This factor is improved to 5 7.5×105 by attaching a polarizer sheet on the cell surface. The optical power reaching its edge surfaces is measured and it roughly agrees with the prediction by a simple model neglecting self-absorption. Development of phosphor materials with a large Stokes shift is desired to boost performance of the proposed system.

  1. Study of Efficiency Calibrations of HPGe Detectors for Radioactivity Measurements of Environmental Samples

    International Nuclear Information System (INIS)

    Harb, S.; Salahel Din, K.; Abbady, A.

    2009-01-01

    In this paper, we describe a method of calibrating of efficiency of a HPGe gamma-ray spectrometry of bulk environmental samples (Tea, crops, water, and soil) is a significant part of the environmental radioactivity measurements. Here we will discuss the full energy peak efficiency (FEPE) of three HPGe detectors it as a consequence, it is essential that the efficiency is determined for each set-up employed. Besides to take full advantage at gamma-ray spectrometry, a set of efficiency at several energies which covers the wide the range in energy, the large the number of radionuclides whose concentration can be determined to measure the main natural gamma-ray emitters, the efficiency should be known at least from 46.54 keV ( 210 Pb) to 1836 keV ( 88 Y). Radioactive sources were prepared from two different standards, a first mixed standard QC Y 40 containing 210 Pb, 241 Am, 109 Cd, and Co 57 , and the second QC Y 48 containing 241 Am, 109 Cd, 57 Co, 139 Ce, 113 Sn, 85 Sr, 137 Cs, 88 Y, and 60 Co is necessary in order to calculate the activity of the different radionuclides contained in a sample. In this work, we will study the efficiency calibration as a function of different parameters as:- Energy of gamma ray from 46.54 keV ( 210 Pb) to 1836 keV ( 88 Y), three different detectors A, B, and C, geometry of containers (point source, marinelli beaker, and cylindrical bottle 1 L), height of standard soil samples in bottle 250 ml, and density of standard environmental samples. These standard environmental sample must be measured before added standard solution because we will use the same environmental samples in order to consider the self absorption especially and composition in the case of volume samples.

  2. New ways for the quantification by the laser-induced plasma spectroscopy

    International Nuclear Information System (INIS)

    Mueller, Maike

    2010-01-01

    Laser Induced Breakdown Spectroscopy (LIBS) is capable of a fast and multielement analysis of various samples types and matrices which makes the method particularly attractive for industrial process analysis. However, for LIBS to become well accepted as an analytical method some issues in calibration and understanding of the underlying transient plasma processes have to be solved. The objective of this work was to identify influential instrumental parameters and plasma conditions in order to improve the overall quantitative performance of LIBS. As the spectral sensitivity and signal-to-noise ratio of the detector represents a decisive element for the application of LIBS in an industrial environment, two detectors, an ICCD and CCD camera, were compared. In combination with a high-resolution echelle spectrograph, the superior or at least equivalent efficiency of the non-intensified CCD was experimentally demonstrated and supported by corresponding plasma simulations. Further investigations of the plasma expansion under different atmospheric conditions revealed that the geometry of observing the expanding plasma influences the sensitivity and reproducibility of the measurements considerably. The diagnostics of self-absorbed spectral lines and their use for calibration purposes were studied with a mirror-based duplication method and a statistical line shape analysis employing linear correlation. The linear correlation approach displayed good performance for identifying the on-set of self absorption in comparison to the duplication method. As matrixmatched reference materials are essential to validate laser ablation methods, two novel preparations of individual calibration standards based on a copper-and polyacrylamide matrix were tested for their applicability to LIBS. (orig.)

  3. Relativistic Turbulence with Strong Synchrotron and Synchrotron-Self-Compton Cooling

    Science.gov (United States)

    Uzdensky, D. A.

    2018-03-01

    Many relativistic plasma environments in high-energy astrophysics, including pulsar wind nebulae, hot accretion flows onto black holes, relativistic jets in active galactic nuclei and gamma-ray bursts, and giant radio lobes, are naturally turbulent. The plasma in these environments is often so hot that synchrotron and inverse-Compton (IC) radiative cooling becomes important. In this paper we investigate the general thermodynamic and radiative properties (and hence the observational appearance) of an optically thin relativistically hot plasma stirred by driven magnetohydrodynamic (MHD) turbulence and cooled by radiation. We find that if the system reaches a statistical equilibrium where turbulent heating is balanced by radiative cooling, the effective electron temperature tends to attain a universal value θ = kT_e/m_e c^2 ˜ 1/√{τ_T}, where τT = neσTL ≪ 1 is the system's Thomson optical depth, essentially independent of the strength of turbulent driving and hence of the magnetic field. This is because both MHD turbulent dissipation and synchrotron cooling are proportional to the magnetic energy density. We also find that synchrotron self-Compton (SSC) cooling and perhaps a few higher-order IC components are automatically comparable to synchrotron in this regime. The overall broadband radiation spectrum then consists of several distinct components (synchrotron, SSC, etc.), well separated in photon energy (by a factor ˜ τ_T^{-1}) and roughly equal in power. The number of IC peaks is checked by Klein-Nishina effects and depends logarithmically on τT and the magnetic field. We also examine the limitations due to synchrotron self-absorption, explore applications to Crab PWN and blazar jets, and discuss links to radiative magnetic reconnection.

  4. Radio continuum interferometry of dark clouds: A search for newly formed HII regions

    International Nuclear Information System (INIS)

    Gilmore, W.S.

    1978-01-01

    A search for compact HII regions embedded in dark clouds has been carried out in an effort to study local massive star formation. Approximately 20% of the total area of opaque dark cloud material in the sky with Av greater than or equal to 6 mag was surveyed with the NRAO three-element interferometer at 2695 MHz, and at least 5% more was surveyed with the NRAO 300-foot telescope at 4750 MHz. The regions surveyed include the dark cloud complexes in Perseus, Taurus, Orion, and Ophiuchus, as well as several smaller cloud complexes and individual clouds. No hidden compact HII regions embedded inside dark clouds were detected with certainty in the radio continuum. However, eleven HII regions with associated visible emission and eighteen other possible HII regions were detected. Five infrared sources thought to have the luminosities of early B stars were not detected in the radio continuum. These five sources showed high correlation with the presence of CO self-absorption, CO emission over a wide range of velocities, and type I OH masers, but an absence of coincident visible nebulosity and detectable radio continuum emission. Therefore, it is suggested that they represent an earlier evolutionary stage than those HII region detected in the radio continuum. This first evolutionary state marks the presence of ''pre-emergent'' (with respect to the molecular cloud) cocoon stars. HII regions in the second evolutionary state are marked by the presence of detectable radio continuum emission, i.e., they are stronger than 10 mJy at 2695 MHz. They have associated visible nebulosity, are relatively large, and appear to be located at the edges of molecular clouds. These are designated as ''emergent edge'' HII regions. The fact that many young HII regions are edge HII regions implies that massive stars are born near the edges of clouds, a phenomenon previously suggested by several other investigators

  5. ORIGINS OF SCATTER IN THE RELATIONSHIP BETWEEN HCN 1-0 AND DENSE GAS MASS IN THE GALACTIC CENTER

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Elisabeth A. C. [San Jose State University, 1 Washington Square, San Jose, CA 95192 (United States); Battersby, Cara, E-mail: elisabeth.mills@sjsu.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2017-01-20

    We investigate the correlation of HCN 1-0 with gas mass in the central 300 pc of the Galaxy. We find that on the ∼10 pc size scale of individual cloud cores, HCN 1-0 is well correlated with dense gas mass when plotted as a log–log relationship. There is ∼0.75 dex of scatter in this relationship from clouds like Sgr B2, which has an integrated HCN 1-0 intensity of a cloud less than half its mass, and others that have HCN 1-0 enhanced by a factor of 2–3 relative to clouds of comparable mass. We identify the two primary sources of scatter to be self-absorption and variations in HCN abundance. We also find that the extended HCN 1-0 emission is more intense per unit mass than in individual cloud cores. In fact the majority (80%) of HCN 1-0 emission comes from extended gas with column densities below 7 × 10{sup 22} cm{sup −2}, accounting for 68% of the total mass. We find variations in the brightness of HCN 1-0 would only yield a ∼10% error in the dense gas mass inferred from this line in the Galactic center. However, the observed order of magnitude HCN abundance variations, and the systematic nature of these variations, warn of potential biases in the use of HCN as dense gas mass tracer in more extreme environments such as an active galactic nucleus and shock-dominated regions. We also investigate other 3 mm tracers, finding that HNCO is better correlated with mass than HCN, and might be a better tracer of cloud mass in this environment.

  6. Investigations on the soft X-ray integrated iatensity measurement technique for studying the electron structure of solids

    International Nuclear Information System (INIS)

    Ustad, T.

    1976-12-01

    The present work represents a study of the method connected with the use of the electron microprobe as a tool for the investigation of a possible charge transfer in alloys of 3d- transition metals. First, a theoretical background concerning the intensity distribution in the valence band spectra, the formation of energy bands and theories for the behaviour of the d- bands is briefly treated. The choice of experimental conditions, especially the excitation voltage, is of great importance and is explained in detail. Further recording of valence band emission spectra and the registration of the integrated intensities for the alloys in question is discussed. Accurate point by point registrations of all the band profiles have been carried out, together with necessary separations of overlapping bands. The registerted band-spectra are subject to a series of corrections where the self-absorption and background effects are of decisive importance. The necessity of recording the integrated band intensities, instead of peak values, involves matrix corrections over a whole range of wavelengths. The results from the Wenger method measurements seem to be in favour of the minimum polarity model in the case of cobalt. On the other hand, the nickel measurements seem to indicate an increase in the number of d- electrons per Ni atom with increasing Co content. However, the nickel results ought to be verified by other measurements, or by corresponding results in the cobalt side. This is not the case, and since the cobalt measurements are most reliable, the nickel results may possibly imply that some reminiscences of the systematic errors are involved. (Auth.)

  7. The Structure and Emission Model of the Relativistic Jet in the Quasar 3C 279 Inferred From Radio To High-Energy Gamma-Ray Observations in 2008-2010

    Science.gov (United States)

    2012-01-01

    We present time-resolved broad-band observations of the quasar 3C 279 obtained from multiwavelength campaigns conducted during the first two years of the Fermi Gamma-ray Space Telescope mission. While investigating the previously reported gamma-ray/optical flare accompanied by a change in optical polarization, we found that the optical emission appears delayed with respect to the gamma-ray emission by about 10 days. X-ray observations reveal a pair of 'isolated' flares separated. by approx. 90 days, with only weak gamma-ray/optical counterparts. The spectral structure measured by Spitzer reveals a synchrotron component peaking in the mid-infrared band with a sharp break at the far-infrared band during the gamma-ray flare, while the peak appears in the mm/sub-mm band in the low state. Selected spectral energy distributions are fitted with leptonic models including Comptonization of external radiation produced in a dusty torus or the broad-line region. Adopting the interpretation of the polarization swing involving propagation of the emitting region along a curved trajectory, we can explain the evolution of the broad-band spectra during the gamma-ray flaring event by a shift of its location from approx. 1 pc to approx. 4 pc from the central black hole. On the other hand, if the gamma-ray flare is generated instead at sub-pc distance from the central black hole, the far-infrared break can be explained by synchrotron self-absorption. We also model the low spectral state, dominated by the mm/sub-mm peaking synchrotron component, and suggest that the corresponding inverse-Compton component explains the steady X-ray emission.

  8. The extreme blazar AO 0235+164 as seen by extensive ground and space radio observations

    Science.gov (United States)

    Kutkin, A. M.; Pashchenko, I. N.; Lisakov, M. M.; Voytsik, P. A.; Sokolovsky, K. V.; Kovalev, Y. Y.; Lobanov, A. P.; Ipatov, A. V.; Aller, M. F.; Aller, H. D.; Lahteenmaki, A.; Tornikoski, M.; Gurvits, L. I.

    2018-04-01

    Clues to the physical conditions in radio cores of blazars come from measurements of brightness temperatures as well as effects produced by intrinsic opacity. We study the properties of the ultra-compact blazar AO 0235+164 with RadioAstron ground-space radio interferometer, multifrequency VLBA, EVN, and single-dish radio observations. We employ visibility modelling and image stacking for deriving structure and kinematics of the source, and use Gaussian process regression to find the relative multiband time delays of the flares. The multifrequency core size and time lags support prevailing synchrotron self-absorption. The intrinsic brightness temperature of the core derived from ground-based very long baseline interferometry (VLBI) is close to the equipartition regime value. In the same time, there is evidence for ultra-compact features of the size of less than 10 μas in the source, which might be responsible for the extreme apparent brightness temperatures of up to 1014 K as measured by RadioAstron. In 2007-2016 the VLBI components in the source at 43 GHz are found predominantly in two directions, suggesting a bend of the outflow from southern to northern direction. The apparent opening angle of the jet seen in the stacked image at 43 GHz is two times wider than that at 15 GHz, indicating a collimation of the flow within the central 1.5 mas. We estimate the Lorentz factor Γ = 14, the Doppler factor δ = 21, and the viewing angle θ = 1.7° of the apparent jet base, derive the gradients of magnetic field strength and electron density in the outflow, and the distance between jet apex and the core at each frequency.

  9. Standardization of 3H, 14C and 63Ni radiation sources by calorimetric method

    International Nuclear Information System (INIS)

    Khol'nova, E.A.; Kul'kova, L.P.

    1979-01-01

    The calorimetric method of determination of activity of radionuclides 3 H, 14 C and 63 Ni with low mean energies of β-particles has, as compare to other methods which had been used for determination of activity of these nuclides, a number of advantages, because a nuclide to be measured can be introduced into the calorimeter in any physical and chemical state. It is not necessary to distroy integrity ane leek-proofness of a source wnich can be of arbitrary type. There is no correction for absorption and self-absorption of β-particles and measuring instruments are relatively simple. As a limitation of this method is it's low sensitivity which can be owercomed by means of application of modern high sensitivity calorimeters. Such calorimeters have been developed in the Mendeleev All-Union research Institute. The calorimetric installation consists of 3 independent β-calorimeters of differential-double type, working in the regime of heat equilibrium and beeng intended for different by sise and shape sources. Then, there are thermostatting device of special desighn and electric measuring device. Number of thermocouples in each calorimeter is from 75 to 120 and sensitivity of calorimeters is from 2.45x10 -7 to 4.5x10 -7 Bt/mm depending on the type of calorimeter. Calorimeters are intended for measuring activities from 10 9 to 10 12 Bk. Error of measurement of activities equals 0.8-1.5% (with confidence level of 0.99%). The main portion of error consists of error in the medium energy β-spectra. The calorimeter error itself is much more lower. Soueces, which have been measured in the calorimeter than can be used for preparation of solutions and sources of lower activity [ru

  10. Incorporation of support vector machines in the LIBS toolbox for sensitive and robust classification amidst unexpected sample and system variability.

    Science.gov (United States)

    Dingari, Narahara Chari; Barman, Ishan; Myakalwar, Ashwin Kumar; Tewari, Surya P; Kumar Gundawar, Manoj

    2012-03-20

    Despite the intrinsic elemental analysis capability and lack of sample preparation requirements, laser-induced breakdown spectroscopy (LIBS) has not been extensively used for real-world applications, e.g., quality assurance and process monitoring. Specifically, variability in sample, system, and experimental parameters in LIBS studies present a substantive hurdle for robust classification, even when standard multivariate chemometric techniques are used for analysis. Considering pharmaceutical sample investigation as an example, we propose the use of support vector machines (SVM) as a nonlinear classification method over conventional linear techniques such as soft independent modeling of class analogy (SIMCA) and partial least-squares discriminant analysis (PLS-DA) for discrimination based on LIBS measurements. Using over-the-counter pharmaceutical samples, we demonstrate that the application of SVM enables statistically significant improvements in prospective classification accuracy (sensitivity), because of its ability to address variability in LIBS sample ablation and plasma self-absorption behavior. Furthermore, our results reveal that SVM provides nearly 10% improvement in correct allocation rate and a concomitant reduction in misclassification rates of 75% (cf. PLS-DA) and 80% (cf. SIMCA)-when measurements from samples not included in the training set are incorporated in the test data-highlighting its robustness. While further studies on a wider matrix of sample types performed using different LIBS systems is needed to fully characterize the capability of SVM to provide superior predictions, we anticipate that the improved sensitivity and robustness observed here will facilitate application of the proposed LIBS-SVM toolbox for screening drugs and detecting counterfeit samples, as well as in related areas of forensic and biological sample analysis.

  11. The carbon inventory in a quiescent, filamentary molecular cloud in G328

    International Nuclear Information System (INIS)

    Burton, Michael G.; Ashley, Michael C. B.; Braiding, Catherine; Storey, John W. V.; Kulesa, Craig; Hollenbach, David J.; Wolfire, Mark; Glück, Christian; Rowell, Gavin

    2014-01-01

    We present spectral line images of [C I] 809 GHz, CO J = 1-0 115 GHz and H I 1.4 GHz line emission, and calculate the corresponding C, CO and H column densities, for a sinuous, quiescent giant molecular cloud about 5 kpc distant along the l = 328° sightline (hereafter G328) in our Galaxy. The [C I] data comes from the High Elevation Antarctic Terahertz telescope, a new facility on the summit of the Antarctic plateau where the precipitable water vapor falls to the lowest values found on the surface of the Earth. The CO and H I data sets come from the Mopra and Parkes/ATCA telescopes, respectively. We identify a filamentary molecular cloud, ∼75 × 5 pc long with mass ∼4 × 10 4 M ☉ and a narrow velocity emission range of just 4 km s –1 . The morphology and kinematics of this filament are similar in CO, [C I], and H I, though in the latter appears as self-absorption. We calculate line fluxes and column densities for the three emitting species, which are broadly consistent with a photodissociation region model for a GMC exposed to the average interstellar radiation field. The [C/CO] abundance ratio averaged through the filament is found to be approximately unity. The G328 filament is constrained to be cold (T Dust < 20 K) by the lack of far-IR emission, to show no clear signs of star formation, and to only be mildly turbulent from the narrow line width. We suggest that it may represent a GMC shortly after formation, or perhaps still in the process of formation.

  12. The carbon inventory in a quiescent, filamentary molecular cloud in G328

    Energy Technology Data Exchange (ETDEWEB)

    Burton, Michael G.; Ashley, Michael C. B.; Braiding, Catherine; Storey, John W. V. [School of Physics, University of New South Wales, Sydney, NSW 2052 (Australia); Kulesa, Craig [Steward Observatory, The University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Hollenbach, David J. [Carl Sagan Center, SETI Institute, 189 Bernado Avenue, Mountain View, CA 94043-5203 (United States); Wolfire, Mark [Astronomy Department, University of Maryland, College Park, MD 20742 (United States); Glück, Christian [KOSMA, I. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, D-50937 Köln (Germany); Rowell, Gavin, E-mail: m.burton@unsw.edu.au [School of Chemistry and Physics, University of Adelaide, Adelaide, SA 5005 (Australia)

    2014-02-20

    We present spectral line images of [C I] 809 GHz, CO J = 1-0 115 GHz and H I 1.4 GHz line emission, and calculate the corresponding C, CO and H column densities, for a sinuous, quiescent giant molecular cloud about 5 kpc distant along the l = 328° sightline (hereafter G328) in our Galaxy. The [C I] data comes from the High Elevation Antarctic Terahertz telescope, a new facility on the summit of the Antarctic plateau where the precipitable water vapor falls to the lowest values found on the surface of the Earth. The CO and H I data sets come from the Mopra and Parkes/ATCA telescopes, respectively. We identify a filamentary molecular cloud, ∼75 × 5 pc long with mass ∼4 × 10{sup 4} M {sub ☉} and a narrow velocity emission range of just 4 km s{sup –1}. The morphology and kinematics of this filament are similar in CO, [C I], and H I, though in the latter appears as self-absorption. We calculate line fluxes and column densities for the three emitting species, which are broadly consistent with a photodissociation region model for a GMC exposed to the average interstellar radiation field. The [C/CO] abundance ratio averaged through the filament is found to be approximately unity. The G328 filament is constrained to be cold (T {sub Dust} < 20 K) by the lack of far-IR emission, to show no clear signs of star formation, and to only be mildly turbulent from the narrow line width. We suggest that it may represent a GMC shortly after formation, or perhaps still in the process of formation.

  13. Characterization of the Infrared/X-ray sub-second variability for the black-hole transient GX 339-4

    Science.gov (United States)

    Vincentelli, F. M.; Casella, P.; Maccarone, T. J.; Uttley, P.; Gandhi, P.; Belloni, T.; De Marco, B.; Russell, D. M.; Stella, L.; O'Brien, K.

    2018-03-01

    We present a detailed analysis of the X-ray/IR fast variability of the Black-Hole Transient GX 339-4 during its low/hard state in August 2008. Thanks to simultaneous high time-resolution observations made with the VLT and RXTE, we performed the first characterisation of the sub-second variability in the near-infrared band - and of its correlation with the X-rays - for a low-mass X-ray binary, using both time- and frequency-domain techniques. We found a power-law correlation between the X-ray and infrared fluxes when measured on timescales of 16 seconds, with a marginally variable slope, steeper than the one found on timescales of days at similar flux levels. We suggest the variable slope - if confirmed - could be due to the infrared flux being a non-constant combination of both optically thin and optically thick synchrotron emission from the jet, as a result of a variable self-absorption break. From cross spectral analysis we found an approximately constant infrared time lag of ≈0.1s, and a very high coherence of ˜90 per cent on timescales of tens of seconds, slowly decreasing toward higher frequencies. Finally, we report on the first detection of a linear rms-flux relation in the emission from a low-mass X-ray binary jet, on timescales where little correlation is found between the X-rays and the jet emission itself. This suggests that either the inflow variations and jet IR emission are coupled by a non-linear or time-variable transform, or that the IR rms-flux relation is not transferred from the inflow to the jet, but is an intrinsic property of emission processes in the jet.

  14. Self-consciousness concept and assessment in self-report measures

    Science.gov (United States)

    DaSilveira, Amanda; DeSouza, Mariane L.; Gomes, William B.

    2015-01-01

    This study examines how self-consciousness is defined and assessed using self-report questionnaires (Self-Consciousness Scale (SCS), Self-Reflection and Insight Scale, Self-Absorption Scale, Rumination-Reflection Questionnaire, and Philadelphia Mindfulness Scale). Authors of self-report measures suggest that self-consciousness can be distinguished by its private/public aspects, its adaptive/maladaptive applied characteristics, and present/past experiences. We examined these claims in a study using 602 young adults to whom the aforementioned scales were administered. Data were analyzed as follows: (1) correlation analysis to find simple associations between the measures; (2) factorial analysis using Oblimin rotation of total scores provided from the scales; and (3) factorial analysis considering the 102 items of the scales all together. It aimed to clarify relational patterns found in the correlations between SCSs, and to identify possible latent constructs behind these scales. Results support the adaptive/maladaptive aspects of self-consciousness, as well as distinguish to some extent public aspects from private ones. However, some scales that claimed to be theoretically derived from the concept of Private Self-Consciousness correlated with some of its public self-aspects. Overall, our findings suggest that while self-reflection measures tend to tap into past experiences and judged concepts that were already processed by the participants’ inner speech and thoughts, the Awareness measure derived from Mindfulness Scale seems to be related to a construct associated with present experiences in which one is aware of without any further judgment or logical/rational symbolization. This sub-scale seems to emphasize the role that present experiences have in self-consciousness, and it is argued that such a concept refers to what has been studied by phenomenology and psychology over more than 100 years: the concept of pre-reflective self-conscious. PMID:26191030

  15. XES studies of density of states of high temperature superconductors

    Science.gov (United States)

    Jasiolek, Gabriel

    1991-01-01

    X-ray emission spectroscopic studies concerning the superconducting crystals, thin films, and ceramics of the Y-Ba-Cu-O, Tm-Ba-Cu-O, Bi-Sr-Ca-Cu-O, Bi-Pb-Sr-Ca-Cu-O, and Tl-Ba-Ca-Cu-O types are presented. The contributions of the 13d(9)L, 13d(10)L, 13d(10)LL, and 13d(10)L(2) configurations, where L denotes a ligand hole at the oxygen orbitals in the spectroscopic pattern of these superconductors are discussed. An attempt to connect the x-ray 'as registered' Cu L(alpha) emission spectra with the density of states close to the Fermi level, considering an influence of the CuL3 absorption edge, is presented. The corrected intensity distributions below the Fermi level are found to correspond to the theoretical density of states. Furthermore, an approach to the average valence of copper basing on the account of the self-absorption and fluorescence effects and on the configurations listed above is shown. The average valence of copper in the materials investigated is estimated to lie in the range of +2.10 to 2.32 when the formal trivalent copper is considered as that characterized by the 13d(9)L configuration. The density of states at the Fermi level was estimated to be 2.4 states/eV-cell for a Bi-Sr-Ca-Cu-O crystal and 3.6 states/eV-cell for a Tl-Ba-Ca-CU-O ceramic.

  16. Power increases the socially toxic component of narcissism among individuals with high baseline testosterone.

    Science.gov (United States)

    Mead, Nicole L; Baumeister, Roy F; Stuppy, Anika; Vohs, Kathleen D

    2018-04-01

    The corrosive effects of power have been noted for centuries, but the self-related changes responsible for those effects have remained somewhat elusive. Narcissists tend to rise to-and abuse-positions of power, so we considered the possibility that positions of power may corrupt because they inflate narcissism. Two pathways were considered: Powerholders abuse their power because having power over others makes them feel superior (grandiosity pathway) or deserving of special treatment (entitlement pathway). Supporting the entitlement pathway, assigning participants to a position of power (vs. equal control) over a group task increased scores on the Exploitative/Entitlement component of narcissism among those with high baseline testosterone. What is more, heightened Exploitative/Entitlement scores among high-testosterone participants endowed with power (vs. equal control) statistically explained amplified self-reported willingness to misuse their power (e.g., taking fringe benefits as extra compensation). The grandiosity pathway was not well supported. The Superiority/Arrogance, Self-Absorption/Self-Admiration, and Leadership/Authority facets of narcissism did not change as a function of the power manipulation and testosterone levels. Taken together, these results suggest that people with high (but not low) testosterone may be inclined to misuse their power because having power over others makes them feel entitled to special treatment. This work identifies testosterone as a characteristic that contributes to the development of the socially toxic component of narcissism (Exploitative/Entitlement). It points to the possibility that structural positions of power and individual differences in narcissism may be mutually reinforcing, suggesting a vicious cycle with personal, relational, and societal implications. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  17. Studies on the quantitative autoradiography. III. Quantitative comparison of a novel tissue-mold measurement technique "paste-mold method," to the semiquantitative whole body autoradiography (WBA), using the same animals.

    Science.gov (United States)

    Motoji, N; Hamai, Y; Niikura, Y; Shigematsu, A

    1995-01-01

    A novel preparation technique, so called "Paste Mold," was devised for organ and tissue distribution studies. This is the most powerful by joining with autoradioluminography (ARLG), which was established and validated recently in the working group of Forum '93 of Japanese Society for study of xenobiotics. A small piece (10-50 mg) of each organ or tissue was available for measuring its radioactive concentration and it was sampled from the remains of frozen carcass used for macroautoradiography (MARG). The solubilization of the frozen pieces was performed with mixing a suitable volume of gelatine and strong alkaline solution prior to mild heating kept at 40 degrees C for a few hours. After that, the tissue paste was molded in template pattern to form the small plates. The molded plates were contacted with Imaging plate (IP) for recording their radioactive concentration. The recorded IP was processed by BAS2000. The molded plate was formed in thickness of 200 microns, so called infinit thickness against soft beta rays, and therefore the resulting relative intensities, represented by (PSL-BG)/S values, indicated practically responsible ratio of the radioactive concentration in organs and tissues, without any calibulation for beta-self absorption coefficiency. On the other hand, the left half body of the frozen carcass was used for making whole body autoradiography (WBA) before the Paste-Mold preparation. Comparison was performed for difference in (PSL-BG)/S values of organs and tissues between frozen and dried sections. A good concordance in relative intensities, (PSL-BG)/S by the Paste-Mold preparation was given with those by the frozen sections rather than dried sections.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Chemical vapor deposition (CVD) of uranium for alpha spectrometry

    International Nuclear Information System (INIS)

    Ramirez V, M. L.; Rios M, C.; Ramirez O, J.; Davila R, J. I.; Mireles G, F.

    2015-09-01

    The uranium determination through radiometric techniques as alpha spectrometry requires for its proper analysis, preparation methods of the source to analyze and procedures for the deposit of this on a surface or substrate. Given the characteristics of alpha particles (small penetration distance and great loss of energy during their journey or its interaction with the matter), is important to ensure that the prepared sources are thin, to avoid problems of self-absorption. The routine methods used for this are the cathodic electro deposition and the direct evaporation, among others. In this paper the use of technique of chemical vapor deposition (CVD) for the preparation of uranium sources is investigated; because by this, is possible to obtain thin films (much thinner than those resulting from electro deposition or evaporation) on a substrate and comprises reacting a precursor with a gas, which in turn serves as a carrier of the reaction products to achieve deposition. Preliminary results of the chemical vapor deposition of uranium are presented, synthesizing and using as precursor molecule the uranyl acetylacetonate, using oxygen as carrier gas for the deposition reaction on a glass substrate. The uranium films obtained were found suitable for alpha spectrometry. The variables taken into account were the precursor sublimation temperatures and deposition temperature, the reaction time and the type and flow of carrier gas. Of the investigated conditions, two depositions with encouraging results that can serve as reference for further work to improve the technique presented here were selected. Alpha spectra obtained for these depositions and the characterization of the representative samples by scanning electron microscopy and X-ray diffraction are also presented. (Author)

  19. Is HESS J1912+101 Associated with an Old Supernova Remnant?

    Energy Technology Data Exchange (ETDEWEB)

    Su, Yang; Zhou, Xin; Yang, Ji; Chen, Xuepeng; Gong, Yan; Zhang, Shaobo [Purple Mountain Observatory and Key Laboratory of Radio Astronomy, Chinese Academy of Sciences, Nanjing 210008 (China); Chen, Yang, E-mail: yangsu@pmo.ac.cn [Department of Astronomy, Nanjing University, Nanjing 210023 (China)

    2017-08-10

    HESS J1912+101 is a shell-like TeV source that has no clear counterpart in multiwavelength. Using CO and H i data, we reveal that V {sub LSR} ∼ +60 km s{sup −1} molecular clouds (MCs), together with shocked molecular gas and high-velocity neutral atomic shells, are concentrated toward HESS J1912+101. The prominent wing profiles up to V {sub LSR} ∼ +80 km s{sup −1} seen in {sup 12}CO ( J = 1–0 and J = 3–2) data, as well as the high-velocity expanding H i shells up to V {sub LSR} ∼ +100 km s{sup −1}, exhibit striking redshifted-broadening relative to the quiescent gas. These features provide compelling evidences for large-scale perturbation in the region. We argue that the shocked MCs and the high-velocity H i shells may originate from an old supernova remnant (SNR). The distance to the SNR is estimated to be ∼4.1 kpc based on the H i self-absorption method, which leads to a physical radius of 29.0 pc for the ∼(0.7–2.0) × 10{sup 5} years old remnant with an expansion velocity of ≳40 km s{sup −1}. The +60 km s{sup −1} MCs and the disturbed gas are indeed found to coincide with the bright TeV emission, supporting the physical association between them. Naturally, the shell-like TeV emission comes from the decay of neutral pions produced by interactions between the accelerated hadrons from the SNR and the surrounding high-density molecular gas.

  20. An determination of man-made γ-emitting radionuclides in coal fly ash and standard solution

    International Nuclear Information System (INIS)

    Xu Cuihua; Zhou Qiang

    2004-01-01

    We participated an international comparison on the determination of man-made γ-emitting radionuclides in coal fly ash and in standard solution organized by the Analytical Quality Control Service of the IAEA in 2002. The sample was dispensed in 100.0 ± 0.1 g aliquots in plastic container and was spiked with known amounts of certified standard γ-emitting radionuclides 54 Mn, 57 Co, 60 Co, 65 Zn, 88 Y, 134 Cs, 137 Cs and 241 Am. The determination of the anthropogenic )γ-emitting radionuclides in the test samples was carried out with an ORTEC gamma-ray spectrometry system coupled with a HPGe detector with resolution of 1.75 keV and relative efficiency of 55% for 137 Cs, located in a 10 cm thick lead container. The energy and efficiency calibration were with home-made volume calibration sources containing some of the radionuclides to be analyzed. The analysis procedure is described elsewhere. Table 1 lists the results of the determination and the comparisons with IAEA reference data and evaluation. Overall our results are agreeable in ±8.6% with the IAEA reference data, except for 60 Co. The differences for 60 Co was -10.8%. It may be caused by the 60 Co calibration source made with residual of quiet old standard solution. The difference for 241 Am is due to self-absorption in the fly ash sample. This bias was small for the solution sample. For standard solution sample, the results are agreeable within ±3.7% for all radionuclides except for 60 Co, being 12%. (authors)

  1. Interstellar protons in the TeV γ-ray SNR HESS J1731-347: Possible evidence for the coexistence of hadronic and leptonic γ-rays

    International Nuclear Information System (INIS)

    Fukuda, T.; Yoshiike, S.; Sano, H.; Torii, K.; Yamamoto, H.; Fukui, Y.; Acero, F.

    2014-01-01

    HESS J1731-347 (G353.6-0.7) is one of the TeV γ-ray supernova remnants (SNRs) that shows the shell-like morphology. We have made a new analysis of the interstellar protons toward the SNR by using both the 12 CO(J = 1-0) and H I data sets. The results indicate that the TeV γ-ray shell shows significant spatial correlation with the interstellar protons at a velocity range from –90 km s –1 to –75 km s –1 . The total mass of the interstellar medium (ISM) protons is estimated to be 6.4 × 10 4 M ☉ , 25% of which is atomic gas, and the distance corresponding to the velocity range is ∼5.2 kpc, a factor of 2 larger than the previous figure, 3 kpc. We have identified the cold H I gas observed as self-absorption which shows significant correspondence with the northeastern γ-ray peak. While the good correspondence between the ISM protons and TeV γ-rays in the north of the SNR lends support to the hadronic scenario for the TeV γ-rays, the southern part of the shell shows a break in the correspondence; in particular, the southwestern rim of the SNR shell shows a significant decrease of the interstellar protons by a factor of two. We argue that this discrepancy can be explained due to leptonic γ-rays because this region coincides well with the bright shell that emits non-thermal radio continuum emission and non-thermal X-rays, suggesting that the γ-rays of HESS J1713-347 consist of both the hadronic and leptonic components. The leptonic contribution corresponds to ∼20% of the total γ-rays.

  2. Validation of {sup 226}Ra, {sup 228}Ra and {sup 210}Pb measurements in soil and sediment samples through high resolution gamma ray spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Danila Carrijo da Silva; Silva, Nivaldo Carlos da; Bonifacio, Rodrigo Leandro; Guerrero, Eder Tadeu Zenun [Comissao Nacional de Energia Nuclear (LAPOC/CNEN-MG), Pocos de Caldas, MG (Brazil). Laboratorio de Pocos de Caldas

    2013-07-01

    Radionuclides found in ore extraction waste materials are a great source of concern regarding public health and environmental safety. One technique to determine the concentration of substances is high resolution gamma ray spectrometry using HPGe. Validating a measurement technique is essential to warrant high levels of quality to any scientific work. The Laboratory of Pocos de Caldas of the Brazilian Commission for Nuclear Energy partakes into a Quality Management System project, seeking Accreditation under ISO/IEC 17025 through the validation of techniques of chemical and radiometric analysis of environmental samples from water, soil and sediment. The focus of the Radon Laboratory at LAPOC is validation of Ra-226, Ra-228 and Pb-210 concentration determinations in soil and sediment through a gamma spectrometer system. The stages of this validation process included sample reception and preparation, detector calibration and sample analyses. Dried samples were sealed in metallic containers and analyzed after radioactive equilibrium between Ra-226 and daughters Pb-214 and Bi-214. Gamma spectrometry was performed using CANBERRA HPGe detector and gamma spectrum software Genie 2000. The photo peaks used for Ra-226 determination were 609 keV and 1020 keV of Bi-214 and 351 keV of Pb-214. For the Ra-228 determination a photopeak of 911 keV was used from its short half-life daughter Ac-228 (T1/2 = 6.12 h). For Pb-210, the photopeak of 46.5 keV was used, which, due to the low energy, self-absorption correction was needed. Parameters such as precision, bias/accuracy, linearity, detection limit and uncertainty were evaluated for that purpose. The results have pointed to satisfying results. (author)

  3. Absolute activity determination of I-125 in the thyroid

    International Nuclear Information System (INIS)

    Peled, O; German, U.; Laichter, Y.

    1999-06-01

    In special cases were a radionuclide emits two photons in cascade, a sum-peak is created in the detector at energy which is the sum of the two single energies. In those cases, it is possible to use the Sum-Peak method in which the system calibration is simplified and parameters such as source geometry, source position relative to the detector and self-absorption can have no significant influence. The purpose of the present work was to check the range of the different parameters where the Sum-Peak method can be applied with good accuracy. The application of the method to determine the activity of I-125 in human thyroid is also presented. The measurements were performed with a Phoswich detector, which is part of a Whole Body Counter (WBC) system and with a standard 1mm. thick NaI(Tl) detector. For the following parameters range it is expected that the error of the activity determination, when using the Sum-Peak method, is up to 15% : activity up to 2000nCi, distance between the detector and the thyroid gland up to 7 cm, thyroid gland dimension up to 20cc . Using improved software that fits Gaussian functions to the spectrum can improve the range of the geometrical constraints and can reduce the error in the activity determination, when using the Sum-Peak method. However, when the coincidence rate is very low, the application of this method is limited because of the poor counting statistics in the coincidence peak. In those cases, the Personal Calibration factor can be used. Comparing the results obtained by using the Sum-Peak method on people to the results received when using the direct method (based on phantom calibration), we obtained a significant over estimation of the thyroid activity when using the direct method by a factor of 4 to 9, because this method can not compensate for the geometry differences between different persons and the calibration phantom

  4. Fast fluence measurement for JOYO irradiation field using niobium dosimeter

    International Nuclear Information System (INIS)

    Ito, Chikara

    2004-03-01

    Neutron fluence and spectrum are key parameters in various irradiation tests and material surveillance tests so they need to be evaluated accurately. The reactor dosimetry test has been conducted by the multiple foil activation method, and a niobium dosimeter has been developed for measurement of fast neutron fluence in the experimental fast reactor JOYO. The inelastic scattering reaction of 93 Nb has a low threshold energy, about 30 keV, and the energy distribution of reaction cross section is similar to the displacement cross section for iron. Therefore, a niobium dosimeter is suitable for evaluation of the fast neutron fluence and the displacement per atom for iron. Moreover, a niobium dosimeter is suited to measure neutron fluence in long-term irradiation test because 93 Nb, which is produced by the reaction, has a long half-life (16.4 years). This study established a high precision measurement technique using the niobium reaction rate. The effect of self-absorption was decreased by the solution and evaporation to dryness of niobium dosimeter. The dosimeter weight was precisely measured using the inductively coupled plasma mass spectrometer. This technique was applied to JOYO dosimetry. The fast neutron fluences (E > 0.1 MeV) found by measuring the reaction rate in the niobium dosimeter were compared with the values evaluated using the multiple foil activation method. The ratio of measured fast neutron fluences by means of niobium dosimeter and multiple foil activation method range from 0.97 to 1.03 and agree within the experimental uncertainty. The measurement errors of fast neutron fluence by niobium dosimeter range from 4.5% (fuel region) to 10.1% (in-vessel storage rack). As a result of this study, the high precision measurement of fast neutron fluence by niobium dosimeters was confirmed. The accuracy of fast reactor dosimetry will be improved by application of niobium dosimeters to the irradiation tests in the JOYO MK-III core. (author)

  5. Simultaneous radio and x-ray activity in SS 433

    International Nuclear Information System (INIS)

    Seaquist, E.R.; Gilmore, W.S.; Johnston, K.J.; Grindlay, J.E.

    1982-01-01

    Simultaneous observations at radio and X-ray wavelengths of flarelike events in SS 433 were made during 1979 October 5-9 and 19-22. The radio spectra show evidence for low-frequency absorption, which may be due to either synchrotron self-absorption or free-free absorption by a stellar wind. In the latter case, a model is developed indicating that clouds of relativistic gas are generated at least 10 14 cm from the stellar object and are swept outward through the stellar wind by highly collimated beams. A mass loss of approx.10 -5 M/sub sun/ yr -1 and an outflow speed of approx.1000 km s -1 are consistent with the data. The beam velocities (0.26c) are found to be consistent with the previous optical and radio data. The X-ray emission is evidently nonthermal and closely related to the radio flares, particularly during the event on October 5-9. The behavior during the second event on October 19-22 is considerably more complex. The source of the X-ray radiation is either synchrotron or inverse Compton emission. No clear cut decision is permitted by the data, although the latter mechanism seems to be an inevitable consequence of the known presence of both ultrarelativistic electrons and a high optical stellar luminosity. The inverse Compton mechansim is considered in more detail in the context of the model used to explain the radio behavior. The complexity of the October 19-22 data seems to defy' any simple model

  6. A new procedure to determine Radium 226 in foodstuff especially at high natural radioactive area of Ramsar

    International Nuclear Information System (INIS)

    Hosseini, T.

    1993-01-01

    Micro-co precipitate of barium-radium sulfate with the thickness of 3.98 μ/Cm Ba 2 is prepared to be counted by electrochemically etched polycarbonate detectors. By the use of the standard micro-co precipitating, sample-detector distance was determined and the calibration curve of track density vs. 226 R a radioactivity was drawn. The food samples were ashed and 226 R a was co-precipitated with Barium carrier. After radioactivity equilibrium between 226 R a and its daughter products, the polycarbonate detectors were exposed for a certain period of time from filters having micro-co precipitates of Ba(Ra)SO-4. The track density is proportional to the 226 R a radioactivity as calibrated. About 80 samples of vegetables, tea leaves, oranges, milk, and eggs from high level natural radiation areas of Ramsar were collected and co precipitated. The results were compared with those obtained from emanation method for the named samples showing up to 52% consistency in the measurements, Also comparison was made between the average 226 R a in samples of high natural radiation areas of Ramsar with the background levels. The results indicated that the amount of 226 R a in oranges, vegetables and eggs are 1.9, 3.3 and 6 times higher than that of background respectively. The advantages of this method are as follows: measuring time in the other methods for one sample is high; but, in this method many samples can be measured simultaneously for long time. As the low thickness of precipitate the self-absorption of alpha particle in micro-co precipitate reduces very much in comparison with the old method. The particles in micro-co precipitates are uniform to cause the increase of track density. In new method as the long time of exposure the background counts are reduced, and finally it is simple and inexpensive

  7. The measurement of 129I for the cement and the paraffin solidified low and intermediate level wastes (LILWs), spent resin or evaporated bottom from the pressurized water reactor (PWR) nuclear power plants

    International Nuclear Information System (INIS)

    Park, S.D.; Kim, J.S.; Han, S.H.; Ha, Y.K.; Song, K.S.; Jee, K.Y.

    2009-01-01

    In this paper a relatively simple and low cost analysis procedure to apply to a routine analysis of 129 I in low and intermediate level radioactive wastes (LILWs), cement and paraffin solidified evaporated bottom and spent resin, which are produced from nuclear power plants (NPPs), pressurized water reactors (PWR), is presented. The 129 I is separated from other nuclides in LILWs using an anion exchange adsorption and solvent extraction by controlling the oxidation and reduction state and is then precipitated as silver iodide for counting the beta activity with a low background gas proportional counter (GPC). The counting efficiency of GPC was varied from 4% to 8% and it was reversely proportional to the weight of AgI by a self absorption of the beta activity. Compared to a higher pH, the chemical recovery of iodide as AgI was lowered at pH 4. It was found that the chemical recovery of iodide for the cement powder showed a lower trend by increasing the cement powder weight, but it was not affected for the paraffin sample. In this experiment, the overall chemical recovery yield of the cement and paraffin solidified LILW samples and the average weight of them were 67±3% and 5.43±0.53 g, 70±7% and 10.40±1.60 g, respectively. And the minimum detectable activity (MDA) of 129 I for the cement and paraffin solidified LILW samples was calculated as 0.070 and 0.036 Bq/g, respectively. Among the analyzed cement solidified LILW samples, 129 I activity concentration of four samples was slightly higher than the MDA and their ranges were 0.076-0.114 Bq/g. Also of the analyzed paraffin solidified LILW samples, five samples contained a little higher 129 I activity concentration than the MDA and their ranges were 0.036-0.107 Bq/g.

  8. Inelastic scattering in condensed matter with high intensity Moessbauer radiation

    International Nuclear Information System (INIS)

    Yelon, W.B.; Schupp, G.

    1990-10-01

    We give a progress report for the work which has been carried out in the last three years with DOE support. A facility for high-intensity Moessbauer scattering is now fully operational at the University of Missouri Research Reactor (MURR) as well as facility at Purdue, using special isotopes produced at MURR. High precision, fundamental Moessbauer effect studies have been carried out using scattering to filter the unwanted radiation. These have led to a new Fourier transform method for describing Moessbauer effect (ME) lineshape and a direct method of fitting ME data to the convolution integral. These methods allow complete correction for source resonance self absorption (SRSA) and the accurate representation of interference effects that add an asymmetric component to the ME lines. We have begun applying these techniques to attenuated ME sources whose central peak has been attenuated by stationary resonant absorbers, to more precisely determine interference parameters and line-shape behavior in the resonance asymptotic region. This analysis is important to both the fundamental ME studies and to scattering studies for which a deconvolution is essential for extracting the correct recoilless fractions and interference parameters. A number of scattering studies have been successfully carried out including a study of the thermal diffuse scattering in Si, which led to an analysis of the resolution function for gamma-ray scattering. Also studied was the anharmonic motion in Na and the satellite reflection Debye-Waller factor in TaS 2 , which indicate phason rather than phonon behavior. We have begun quasielastic diffusion studies in viscous liquids and current results are summarized. These advances, coupled to our improvements in MIcrofoil Conversion Electron spectroscopy lay the foundation for the proposed research outlined in this request for a three-year renewal of DOE support

  9. Gamma scattering in condensed matter with high intensity Moessbauer radiation

    International Nuclear Information System (INIS)

    1990-01-01

    We give a progress report for the work which has been carried out in the last three years with DOE support. A facility for high-intensity Moessbauer scattering is now fully operational at the University of Missouri Research Reactor (MURR) as well as a facility at Purdue, using special isotopes produced at MURR. High precision, fundamental Moessbauer effect studies have been carried out using scattering to filter the unwanted radiation. These have led to a new Fourier transform method for describing Moessbauer effect (ME) lineshape and a direct method of fitting ME data to the convolution integral. These methods allow complete correction for source resonance self absorption (SRSA) and the accurate representation of interference effects that add an asymmetric component to the ME lines. We have begun applying these techniques to attenuated ME sources whose central peak has been attenuated by stationary resonant absorbers, to more precisely determine interference parameters and line-shape behavior in the resonance asymptotic region. This analysis is important to both the fundamental ME studies and to scattering studies for which a deconvolution is essential for extracting the correct recoilless fractions and interference parameters. A number of scattering studies have been successfully carried out including a study of the thermal diffuse scattering in Si, which led to an analysis of the resolution function for gamma-ray scattering. Also studied was the anharmonic motion in Na and the satellite reflection Debye-Waller factor in TaS 2 , which indicate phason rather than phonon behavior. We have begun quasielastic diffusion studies in viscous liquids and current results are summarized. These advances, coupled to our improvements in MIcrofoil Conversion Electron spectroscopy lay the foundation for the proposed research outlined in this request for a three-year renewal of DOE support

  10. Inelastic scattering in condensed matter with high intensity moessbauer radiation

    International Nuclear Information System (INIS)

    Yelon, W.B.; Schupp, G.

    1991-05-01

    We give a progress report for the work which has been carried out in the last three years with DOE support. A facility for high-intensity Moessbauer scattering is not fully operational at the University of Missouri Research Reactor (MURR) as well as a facility at Purdue, using special isotopes produced at MURR. High precision, fundamental Moessbauer effect studies have been carried out using Bragg scattering filters to suppress unwanted radiation. These have led to a Fourier transform method for describing Moessbauer effect (ME) lineshape and a direct method of fitting ME data to the convolution integral. These methods allow complete correction for source resonance self absorption and the accurate representation of interference effects that add an asymmetric component to the ME lines. We have begun applying these techniques to attenuated ME sources whose central peak has been attenuated by stationary resonant absorbers, to make a novel independent determination of interference parameters and line-shape behavior in the resonance asymptotic region. This analysis is important to both fundamental ME studies and to scattering studies for which a deconvolution is essential for extracting the correct recoilless fractions and interference parameters. A number of scattering studies have been successfully carried out including a study of the thermal diffuse scattering in Si, which led to an analysis of the resolution function for gamma-ray scattering. Also studied was the anharmonic motion in Na metal and the charge density wave satellite reflection Debye-Waller factor in TaS 2 , which indicate phason rather than phonon behavior. Using a specially constructed sample cell which enables us to vary temperatures from -10 C to 110 C, we have begun quasielastic diffusion studies in viscous liquids and current results are summarized. Included are the temperature and Q dependence of the scattering in pentadecane and diffusion in glycerol

  11. White light emitting device based on single-phase CdS quantum dots

    Science.gov (United States)

    Li, Feng; Nie, Chao; You, Lai; Jin, Xiao; Zhang, Qin; Qin, Yuancheng; Zhao, Feng; Song, Yinglin; Chen, Zhongping; Li, Qinghua

    2018-05-01

    White light emitting diodes (WLEDs) based on quantum dots (QDs) are emerging as robust candidates for white light sources, however they are suffering from the problem of energy loss resulting from the re-absorption and self-absorption among the employed QDs of different peak wavelengths. It still remains a challenging task to construct WLEDs based on single-phase QD emitters. Here, CdS QDs with short synthesis times are introduced to the fabrication of WLEDs. With a short synthesis time, on one hand, CdS QDs with a small diameter with blue emission can be obtained. On the other hand, surface reconstruction barely has time to occur, and the surface is likely defect-ridden, which enables the existence of a broad emission covering the range of green, yellow and red regions. This is essential for the white light emission of CdS QDs, and is very important for WLED applications. The temporal evolution of the PL spectra for CdS QDs was obtained to investigate the influence of growth time on the luminescent properties. The CdS QDs with a growth time of 0.5 min exhibited a colour rendering index (CRI) of 79.5 and a correlated colour temperature (CCT) of 6238 K. With increasing reaction time, the colour coordinates of the CdS QDs will move away from the white light region in the CIE 1931 chromaticity diagram. By integrating the as prepared white light emission CdS QDs with a violet GaN chip, WLEDs were fabricated. The fabricated WLEDs exhibited a CRI of 87.9 and a CCT of 4619 K, which satisfy the demand of general illumination. The luminous flux and the luminous efficiency of the fabricated WLEDs, being less advanced than current commercial white light sources, can be further improved, meaning there is a need for much more in-depth studies on white light emission CdS QDs.

  12. Quantitative probe of the transition metal redox in battery electrodes through soft x-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Li, Qinghao; Chen, Jun; Chen, Yanxue; Yan, Shishen; Qiao, Ruimin; Zhuo, Zengqing; Hussain, Zahid; Yang, Wanli; Wray, L Andrew; Pan, Feng

    2016-01-01

    Most battery positive electrodes operate with a 3 d transition-metal (TM) reaction centre. A direct and quantitative probe of the TM states upon electrochemical cycling is valuable for understanding the detailed cycling mechanism and charge diffusion in the electrodes, which is related with many practical parameters of a battery. This review includes a comprehensive summary of our recent demonstrations of five different types of quantitative analysis of the TM states in battery electrodes based on soft x-ray absorption spectroscopy and multiplet calculations. In LiFePO 4 , a system of a well-known two-phase transformation type, the TM redox could be strictly determined through a simple linear combination of the two end-members. In Mn-based compounds, the Mn states could also be quantitatively evaluated, but a set of reference spectra with all the three possible Mn valences needs to be deliberately selected and considered in the fitting. Although the fluorescence signals suffer the self-absorption distortion, the multiplet calculations could consider the distortion effect, which allows a quantitative determination of the overall Ni oxidation state in the bulk. With the aid of multiplet calculations, one could also achieve a quasi-quantitative analysis of the Co redox evolution in LiCoO 2 based on the energy position of the spectroscopic peak. The benefit of multiplet calculations is more important for studying electrode materials with TMs of mixed spin states, as exemplified by the quantitative analysis of the mixed spin Na 2−x Fe 2 (CN) 6 system. At the end, we showcase that such quantitative analysis could provide valuable information for optimizing the electrochemical performance of Na 0.44 MnO 2 electrodes for Na-ion batteries. The methodology summarized in this review could be extended to other energy application systems with TM redox centre for detailed analysis, for example, fuel cell and catalytic materials. (topical review)

  13. Quantitative probe of the transition metal redox in battery electrodes through soft x-ray absorption spectroscopy

    Science.gov (United States)

    Li, Qinghao; Qiao, Ruimin; Wray, L. Andrew; Chen, Jun; Zhuo, Zengqing; Chen, Yanxue; Yan, Shishen; Pan, Feng; Hussain, Zahid; Yang, Wanli

    2016-10-01

    Most battery positive electrodes operate with a 3d transition-metal (TM) reaction centre. A direct and quantitative probe of the TM states upon electrochemical cycling is valuable for understanding the detailed cycling mechanism and charge diffusion in the electrodes, which is related with many practical parameters of a battery. This review includes a comprehensive summary of our recent demonstrations of five different types of quantitative analysis of the TM states in battery electrodes based on soft x-ray absorption spectroscopy and multiplet calculations. In LiFePO4, a system of a well-known two-phase transformation type, the TM redox could be strictly determined through a simple linear combination of the two end-members. In Mn-based compounds, the Mn states could also be quantitatively evaluated, but a set of reference spectra with all the three possible Mn valences needs to be deliberately selected and considered in the fitting. Although the fluorescence signals suffer the self-absorption distortion, the multiplet calculations could consider the distortion effect, which allows a quantitative determination of the overall Ni oxidation state in the bulk. With the aid of multiplet calculations, one could also achieve a quasi-quantitative analysis of the Co redox evolution in LiCoO2 based on the energy position of the spectroscopic peak. The benefit of multiplet calculations is more important for studying electrode materials with TMs of mixed spin states, as exemplified by the quantitative analysis of the mixed spin Na2-x Fe2(CN)6 system. At the end, we showcase that such quantitative analysis could provide valuable information for optimizing the electrochemical performance of Na0.44MnO2 electrodes for Na-ion batteries. The methodology summarized in this review could be extended to other energy application systems with TM redox centre for detailed analysis, for example, fuel cell and catalytic materials.

  14. High-resolution observations of low-luminosity gigahertz-peaked spectrum and compact steep-spectrum sources

    Science.gov (United States)

    Collier, J. D.; Tingay, S. J.; Callingham, J. R.; Norris, R. P.; Filipović, M. D.; Galvin, T. J.; Huynh, M. T.; Intema, H. T.; Marvil, J.; O'Brien, A. N.; Roper, Q.; Sirothia, S.; Tothill, N. F. H.; Bell, M. E.; For, B.-Q.; Gaensler, B. M.; Hancock, P. J.; Hindson, L.; Hurley-Walker, N.; Johnston-Hollitt, M.; Kapińska, A. D.; Lenc, E.; Morgan, J.; Procopio, P.; Staveley-Smith, L.; Wayth, R. B.; Wu, C.; Zheng, Q.; Heywood, I.; Popping, A.

    2018-06-01

    We present very long baseline interferometry observations of a faint and low-luminosity (L1.4 GHz GPS) and compact steep-spectrum (CSS) sample. We select eight sources from deep radio observations that have radio spectra characteristic of a GPS or CSS source and an angular size of θ ≲ 2 arcsec, and detect six of them with the Australian Long Baseline Array. We determine their linear sizes, and model their radio spectra using synchrotron self-absorption (SSA) and free-free absorption (FFA) models. We derive statistical model ages, based on a fitted scaling relation, and spectral ages, based on the radio spectrum, which are generally consistent with the hypothesis that GPS and CSS sources are young and evolving. We resolve the morphology of one CSS source with a radio luminosity of 10^{25} W Hz^{-1}, and find what appear to be two hotspots spanning 1.7 kpc. We find that our sources follow the turnover-linear size relation, and that both homogeneous SSA and an inhomogeneous FFA model can account for the spectra with observable turnovers. All but one of the FFA models do not require a spectral break to account for the radio spectrum, while all but one of the alternative SSA and power-law models do require a spectral break to account for the radio spectrum. We conclude that our low-luminosity sample is similar to brighter samples in terms of their spectral shape, turnover frequencies, linear sizes, and ages, but cannot test for a difference in morphology.

  15. Extragalactic Peaked-spectrum Radio Sources at Low Frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Callingham, J. R.; Gaensler, B. M.; Sadler, E. M.; Lenc, E. [Sydney Institute for Astronomy (SIfA), School of Physics, The University of Sydney, NSW 2006 (Australia); Ekers, R. D.; Bell, M. E. [CSIRO Astronomy and Space Science (CASS), Marsfield, NSW 2122 (Australia); Line, J. L. B.; Hancock, P. J.; Kapińska, A. D.; McKinley, B.; Procopio, P. [ARC Centre of Excellence for All-Sky Astrophysics (CAASTRO) (Australia); Hurley-Walker, N.; Tingay, S. J.; Franzen, T. M. O.; Morgan, J. [International Centre for Radio Astronomy Research (ICRAR), Curtin University, Bentley, WA 6102 (Australia); Dwarakanath, K. S. [Raman Research Institute (RRI), Bangalore 560080 (India); For, B.-Q. [International Centre for Radio Astronomy Research (ICRAR), The University of Western Australia, Crawley, WA 6009 (Australia); Hindson, L.; Johnston-Hollitt, M. [School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6140 (New Zealand); Offringa, A. R., E-mail: joseph.callingham@sydney.edu.au [Netherlands Institute for Radio Astronomy (ASTRON), Dwingeloo (Netherlands); and others

    2017-02-20

    We present a sample of 1483 sources that display spectral peaks between 72 MHz and 1.4 GHz, selected from the GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey. The GLEAM survey is the widest fractional bandwidth all-sky survey to date, ideal for identifying peaked-spectrum sources at low radio frequencies. Our peaked-spectrum sources are the low-frequency analogs of gigahertz-peaked spectrum (GPS) and compact-steep spectrum (CSS) sources, which have been hypothesized to be the precursors to massive radio galaxies. Our sample more than doubles the number of known peaked-spectrum candidates, and 95% of our sample have a newly characterized spectral peak. We highlight that some GPS sources peaking above 5 GHz have had multiple epochs of nuclear activity, and we demonstrate the possibility of identifying high-redshift ( z > 2) galaxies via steep optically thin spectral indices and low observed peak frequencies. The distribution of the optically thick spectral indices of our sample is consistent with past GPS/CSS samples but with a large dispersion, suggesting that the spectral peak is a product of an inhomogeneous environment that is individualistic. We find no dependence of observed peak frequency with redshift, consistent with the peaked-spectrum sample comprising both local CSS sources and high-redshift GPS sources. The 5 GHz luminosity distribution lacks the brightest GPS and CSS sources of previous samples, implying that a convolution of source evolution and redshift influences the type of peaked-spectrum sources identified below 1 GHz. Finally, we discuss sources with optically thick spectral indices that exceed the synchrotron self-absorption limit.

  16. Improving gross count gamma-ray logging in uranium mining with the NGRS probe

    Directory of Open Access Journals (Sweden)

    Carasco C.

    2018-01-01

    Full Text Available AREVA Mines and the Nuclear Measurement Laboratory of CEA Cadarache are collaborating to improve the sensitivity and precision of uranium concentration measurement by means of gamma ray logging. The determination of uranium concentration in boreholes is performed with the Natural Gamma Ray Sonde (NGRS based on a NaI(Tl scintillation detector. The total gamma count rate is converted into uranium concentration using a calibration coefficient measured in concrete blocks with known uranium concentration in the AREVA Mines calibration facility located in Bessines, France. Until now, to take into account gamma attenuation in a variety of boreholes diameters, tubing materials, diameters and thicknesses, filling fluid densities and compositions, a semi-empirical formula was used to correct the calibration coefficient measured in Bessines facility. In this work, we propose to use Monte Carlo simulations to improve gamma attenuation corrections. To this purpose, the NGRS probe and the calibration measurements in the standard concrete blocks have been modeled with MCNP computer code. The calibration coefficient determined by simulation, 5.3 s-1.ppmU-1 ± 10%, is in good agreement with the one measured in Bessines, 5.2 s-1.ppmU-1. Based on the validated MCNP model, several parametric studies have been performed. For instance, the rock density and chemical composition proved to have a limited impact on the calibration coefficient. However, gamma self-absorption in uranium leads to a nonlinear relationship between count rate and uranium concentration beyond approximately 1% of uranium weight fraction, the underestimation of the uranium content reaching more than a factor 2.5 for a 50 % uranium weight fraction. Next steps will concern parametric studies with different tubing materials, diameters and thicknesses, as well as different borehole filling fluids representative of real measurement conditions.

  17. PMP, a novel solute for liquid and plastic scintillation counting

    International Nuclear Information System (INIS)

    Gusten, Hans

    1983-01-01

    The excellent fluorescence properties of PMP ( 11-phenyl-3-mesityl-2-pyrazoline) such as long wavelength emission of over 400 nm, and high fluorescence quantum yield with a short decay time together with a solubility of more than one Mol/L in toluene make this compound a promising solute for scintillation counting. The Stokes' shift of PMP of over 10,000 cm -1 is twice as large as that of the commonly used PPO. Due to this unusually large Stokes' shift PMP can be used as a primary solute without requiring a secondary solute as wavelength shifter. A comparison of the scintillation properties of PMP and PPO in toluene reveals that the counting efficiency for 14 C is better for PMP while the 3 H efficiency is equally good. Due to the large Stokes' shift, PMP is about 50 percent less sensitive to color quenching than PPO. Compared to the solute combinations PPO/secondary solutes, the scintillation counting efficiency of PMP for 14 C in toluene or xylene is the same, while the absolute 3 H efficiency of PPO/secondary solutes in cocktails with emulsifiers is about 10 percent higher. The PMP scintillation efficiency for 14 C as well as 3 H in chemical quenching by urine is more or less the same as for PPO/dimethyl-POPOP. PMP is more sensitive to quenching by halogenated solvents. In the dioxane-based scintillation, this sensitivity to chemical quenching by CHCl 3 vanishes and the counting efficiencies for 14 C and 3 H are as good as for PPO/dimethyl-POPOP or PPO/bis-MSB. Due to the large Stokes' shift, the self-absorption of the scintillation light by PMP is lower than in conventional scintillators. This offers good possibilities in very large-volume applications of liquid as well as plastic scintillators

  18. Evaluation of Cs-134 and Cs-137 in sugar by non-destructive analysis

    Energy Technology Data Exchange (ETDEWEB)

    Correira, Filipe Lopes de Barros; Santos Júnior, José Araújo dos; Amaral, Romilton dos Santos; Santos, Josineide Marques do Nascimento; Medeiros, Nilson Vicente da Silva; Santos Junior, Otávio Pereira dos, E-mail: filipelbck@gmail.com, E-mail: jaraujo@ufpe.br, E-mail: romilton@ufpe.br, E-mail: josineide.santos@ufpe.br, E-mail: nilson.medeiros@ufpe.br, E-mail: otavio.santos@vitoria.ifpe.edu.br [Universidade Federal de Pernambuco (RAE/UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear. Grupo de Radioecologia; Vieira, José Wilson, E-mail: jose.wilson59@uol.com.br [Instituto Federal de Pernambuco (IFPE), Recife (Brazil); Valois, Rhaiana Caminha, E-mail: rhaianavalois@hotmail.com [Colégio Militar do Recife, PE (Brazil)

    2017-07-01

    The spread of anthropogenic radioisotopes in the environment comes from nuclear tests and accidents that occurred in the past, which justifies constant monitoring, to guarantee the safety and control of the activities that involve these applications. Brazil, when exporting some food products, depending on the country of origin, a radiometric report is required, especially for sugar that has high world consumption and the possibility of contamination of the population, when radioisotope is present. Therefore, the investigation of the levels of Cs-134 and Cs-137 in sugar matrices is necessary to predict radioecological emergency situations. The National Nuclear Energy Commission, the agency that oversees nuclear applications in Brazil, With Resolution No. 102 of December 22, 2010 approved regulatory positions, including levels of action for food control, recommended to restrict the marketing of food products in Brazil. General, whose specific activity is higher than the limit of 1.0 kBq / kg for the said isotopes of cesium independently. Aiming for improvements in the analyzes that are already performed in the Laboratory of Radioecology and Environmental Control of the Department of Nuclear Energy of the Federal University of Pernambuco to assurance the quality of sugar marketed in Brazil, a standard procedure for the analysis of these radionuclides in this matrix was determined. High resolution gamma spectrometry with non-destructive analysis was used to perform the tests. Priority was given to parameters that directly influence the qualitative and quantitative analysis of these radioactive elements, such as calibration in energy and efficiency, resolution, influence of self-absorption, counting statistics directly associated with the time of analysis, influence of background radiation and geometry analysis. (author)

  19. THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: BIASES IN z  > 1.46 REDSHIFTS DUE TO QUASAR DIVERSITY

    Energy Technology Data Exchange (ETDEWEB)

    Denney, K. D.; Peterson, B. M. [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Horne, Keith [SUPA Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS (United Kingdom); Brandt, W. N.; Grier, C. J.; Trump, J. R. [Department of Astronomy and Astrophysics, 525 Davey Lab, The Pennsylvania State University, University Park, PA 16802 (United States); Ho, Luis C. [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Ge, J., E-mail: denney@astronomy.ohio-state.edu [Astronomy Department University of Florida 211 Bryant Space Science Center P.O. Box 112055 Gainesville, FL 32611-2055 (United States)

    2016-12-10

    We use the coadded spectra of 32 epochs of Sloan Digital Sky Survey (SDSS) Reverberation Mapping Project observations of 482 quasars with z  > 1.46 to highlight systematic biases in the SDSS- and Baryon Oscillation Spectroscopic Survey (BOSS)-pipeline redshifts due to the natural diversity of quasar properties. We investigate the characteristics of this bias by comparing the BOSS-pipeline redshifts to an estimate from the centroid of He ii λ 1640. He ii has a low equivalent width but is often well-defined in high-S/N spectra, does not suffer from self-absorption, and has a narrow component which, when present (the case for about half of our sources), produces a redshift estimate that, on average, is consistent with that determined from [O ii] to within the He ii and [O ii] centroid measurement uncertainties. The large redshift differences of ∼1000 km s{sup −1}, on average, between the BOSS-pipeline and He ii-centroid redshifts, suggest there are significant biases in a portion of BOSS quasar redshift measurements. Adopting the He ii-based redshifts shows that C iv does not exhibit a ubiquitous blueshift for all quasars, given the precision probed by our measurements. Instead, we find a distribution of C iv-centroid blueshifts across our sample, with a dynamic range that (i) is wider than that previously reported for this line, and (ii) spans C iv centroids from those consistent with the systemic redshift to those with significant blueshifts of thousands of kilometers per second. These results have significant implications for measurement and use of high-redshift quasar properties and redshifts, and studies based thereon.

  20. Determination and environmental estimation of NORMs in marine sediment environment of offshore platforms; Determinacao e avaliacao ambiental de NORMs em sedimento marinho entorno de plataformas offshore

    Energy Technology Data Exchange (ETDEWEB)

    Vegueria, Sergio F. Jerez, E-mail: sfjerez@vm.uff.br [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Departamento de Quimica Analitica; Godoy, Jose M., E-mail: rccampos@puc-rio.br, E-mail: jmgodoy@puc-rio.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    The natural radioactive materials (NORM known as) are found in the earth's crust, and during the process of production of oil and gas are concentrated in the produced water and the fouling (scale) pipes used for extraction. The production of oil and gas from produced water comes, comprising: forming water (water naturally present in the well ); injection water , usually sea water previously injected into the well to maintaining the pressure while the oil is removed; and water condensed in some cases of gas production. A high radioactivity of {sup 226}Ra (natural grade of {sup 238}U) and {sup 228}Ra (from the natural series of {sup 232}Th) is detected in produced water due to the high solubility of radio in formation water as uranium and thorium, which are insoluble in this medium, remain the rock matrix. The study was conducted in the area of offshore oil production in the state of Rio de January and included the determination of uranium, {sup 226}Ra, {sup 210}Pb and {sup 228}Ra in marine sediment near the points of discharge of produced water from oil platforms. After the pre-treatment and digestion of samples, the determination of the natural uranium was performed on a mass spectrometer with inductively coupled plasma (ICP -MS). The activities of {sup 226}Ra and {sup 228}Ra were determined by high resolution gamma spectrometry through {sup 214}Bi and {sup 228}Ac , respectively. And in the case of {sup 210}Pb, a correction was made for self-absorption employing an external source of this radionuclide. The results showed that there is no impact in sediments in the vicinity of the studied platforms.

  1. High efficiency 4H-SiC betavoltaic power sources using tritium radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Christopher; Portnoff, Samuel [Widetronix Corp., Ithaca, New York 14850 (United States); Spencer, M. G. [Department of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14850 (United States)

    2016-01-04

    Realization of an 18.6% efficient 4H-silicon carbide (4H-SiC) large area betavoltaic power source using the radioisotope tritium is reported. A 200 nm 4H-SiC P{sup +}N junction is used to collect high-energy electrons. The electron source is a titanium tritide (TiH{sup 3}{sub x}) foil, or an integrated titanium tritide region formed by the diffusion of tritium into titanium. The specific activity of the source is directly measured. Dark current measured under short circuit conditions was less than 6.1 pA/cm{sup 2}. Samples measured with an external tritium foil produced an open circuit voltage of 2.09 V, short circuit current of 75.47 nA/cm{sup 2}, fill factor of 0.86, and power efficiency of 18.6%. Samples measured with an integrated source produced power efficiencies of 12%. Simulations were done to determine the beta spectrum (modified by self absorption) exiting the source and the electron hole pair generation function in the 4H-SiC. The electron-hole pair generation function in 4H-SiC was modeled as a Gaussian distribution, and a closed form solution of the continuity equation was used to analyze the cell performance. The effective surface recombination velocity in our samples was found to be 10{sup 5}–10{sup 6 }cm/s. Our analysis demonstrated that the surface recombination dominates the performance of a tritium betavoltaic device but that using a thin P{sup +}N junction structure can mitigate some of the negative effects.

  2. A convenient method for X-ray analysis in TEM that measures mass thickness and composition

    Science.gov (United States)

    Statham, P.; Sagar, J.; Holland, J.; Pinard, P.; Lozano-Perez, S.

    2018-01-01

    We consider a new approach for quantitative analysis in transmission electron microscopy (TEM) that offers the same convenience as single-standard quantitative analysis in scanning electron microscopy (SEM). Instead of a bulk standard, a thin film with known mass thickness is used as a reference. The procedure involves recording an X-ray spectrum from the reference film for each session of acquisitions on real specimens. There is no need to measure the beam current; the current only needs to be stable for the duration of the session. A new reference standard with a large (1 mm x 1 mm) area of uniform thickness of 100 nm silicon nitride is used to reveal regions of X-ray detector occlusion that would give misleading results for any X-ray method that measures thickness. Unlike previous methods, the new X-ray method does not require an accurate beam current monitor but delivers equivalent accuracy in mass thickness measurement. Quantitative compositional results are also automatically corrected for specimen self-absorption. The new method is tested using a wedge specimen of Inconel 600 that is used to calibrate the high angle angular dark field (HAADF) signal to provide a thickness reference and results are compared with electron energy-loss spectrometry (EELS) measurements. For the new X-ray method, element composition results are consistent with the expected composition for the alloy and the mass thickness measurement is shown to provide an accurate alternative to EELS for thickness determination in TEM without the uncertainty associated with mean free path estimates.

  3. Laser induced breakdown spectroscopy library for the Martian environment

    International Nuclear Information System (INIS)

    Cousin, A.; Forni, O.; Maurice, S.; Gasnault, O.

    2011-01-01

    The NASA Mars Science Laboratory rover will carry the first Laser Induced Breakdown Spectroscopy experiment in space: ChemCam. We have developed a laboratory model which mimics ChemCam's main characteristics. We used a set of target samples relevant to Mars geochemistry, and we recorded individual spectra. We propose a data reduction scheme for Laser Induced Breakdown Spectroscopy data incorporating de-noising, continuum removal, and peak fitting. Known effects of the Martian atmosphere are confirmed with our experiment: better Signal-to-Noise Ratio on Mars compared to Earth, narrower peak width, and essentially no self-absorption. The wavelength shift of emission lines from air to Mars pressure is discussed. The National Institute of Standards and Technology vacuum database is used for wavelength calibration and to identify the elemental lines. Our Martian database contains 1336 lines for 32 elements: H, Li, Be, B, C, N, O, F, Na, Mg, Al, Si, P, S, Cl, K, Ar, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Rb, Sr, Cs, Ba, and Pb. It is a subset of the National Institute of Standards and Technology database to be used for Martian geochemistry. Finally, synthetic spectra can be built from the Martian database. Correlation calculations help to distinguish between elements in case of uncertainty. This work is used to create tools and support data for the interpretation of ChemCam results. - Highlights: ► Chemcam: first Laser Induced Breakdown Spectroscopy technique on Mars. ► Creation of a LIBS specific database to ChemCam on Mars. ► Data reduction scheme is proposed. ► Best signal under Martian conditions. ► LIBS emission lines database: subset of NIST database for Martian geochemistry.

  4. Improving gross count gamma-ray logging in uranium mining with the NGRS probe

    Science.gov (United States)

    Carasco, C.; Pérot, B.; Ma, J.-L.; Toubon, H.; Dubille-Auchère, A.

    2018-01-01

    AREVA Mines and the Nuclear Measurement Laboratory of CEA Cadarache are collaborating to improve the sensitivity and precision of uranium concentration measurement by means of gamma ray logging. The determination of uranium concentration in boreholes is performed with the Natural Gamma Ray Sonde (NGRS) based on a NaI(Tl) scintillation detector. The total gamma count rate is converted into uranium concentration using a calibration coefficient measured in concrete blocks with known uranium concentration in the AREVA Mines calibration facility located in Bessines, France. Until now, to take into account gamma attenuation in a variety of boreholes diameters, tubing materials, diameters and thicknesses, filling fluid densities and compositions, a semi-empirical formula was used to correct the calibration coefficient measured in Bessines facility. In this work, we propose to use Monte Carlo simulations to improve gamma attenuation corrections. To this purpose, the NGRS probe and the calibration measurements in the standard concrete blocks have been modeled with MCNP computer code. The calibration coefficient determined by simulation, 5.3 s-1.ppmU-1 ± 10%, is in good agreement with the one measured in Bessines, 5.2 s-1.ppmU-1. Based on the validated MCNP model, several parametric studies have been performed. For instance, the rock density and chemical composition proved to have a limited impact on the calibration coefficient. However, gamma self-absorption in uranium leads to a nonlinear relationship between count rate and uranium concentration beyond approximately 1% of uranium weight fraction, the underestimation of the uranium content reaching more than a factor 2.5 for a 50 % uranium weight fraction. Next steps will concern parametric studies with different tubing materials, diameters and thicknesses, as well as different borehole filling fluids representative of real measurement conditions.

  5. Differences in depressive symptoms between Korean and American outpatients with major depressive disorder.

    Science.gov (United States)

    Jeon, Hong Jin; Walker, Rosemary S; Inamori, Aya; Hong, Jin Pyo; Cho, Maeng Je; Baer, Lee; Clain, Alisabet; Fava, Maurizio; Mischoulon, David

    2014-05-01

    Previous epidemiologic studies have revealed that East-Asian populations experience fewer depressive symptoms than American populations do. However, it is unclear whether this difference applies to clinical patients with major depressive disorder (MDD). This present study included 1592 Korean and 3744 American outpatients who were 18 years of age or older and met the Diagnostic and Statistical Manual of Mental Disorders, 4th ed. criteria for single or recurrent episodes of nonpsychotic MDD, and evaluated their symptoms of depression using the Hamilton Depression Rating Scale and the Quality of Life Enjoyment and Satisfaction Questionnaire Short Form. Korean patients scored significantly lower for guilt and depressed mood items, and higher for hypochondriasis and suicidality items than American patients did, after adjusting for total Hamilton Depression Rating Scale scores. Conversely, no significant differences were found in quality and function of daily life between groups. Multivariate logistic regression analyses revealed that Korean patients experienced less frequent depressed mood and guilt, including verbal and nonverbal expression of depressed mood [adjusted odds ratio (AOR) = 0.14, 95% confidence interval (CI) 0.08-0.23] and feelings of punishment (AOR = 0.036, 95% CI 0.025-0.054) when compared with Americans after adjusting for age and sex. Conversely, Korean patients experienced more frequent suicidality and hypochondriasis, including suicidal ideas or gestures (AOR = 2.10, 95% CI 1.60-2.76) and self-absorption of hypochondriasis (AOR = 1.94, 95% CI 1.70-2.20). In conclusion, decreased expression of depressed mood and guilt may cause underdiagnosis of MDD in Korean patients. Early diagnosis of and intervention for depression and suicide may be delayed because of this specific cross-cultural difference in depression symptoms.

  6. Toward 3-D E-field visualization in laser-produced plasma by polarization-spectroscopic imaging

    International Nuclear Information System (INIS)

    Kim, Yong W.

    2004-01-01

    A 3-D volume radiator such as laser-produced plasma (LPP) plumes is observed in the form of a 2-D projection of its radiative structure. The traditional approach to 3-D structure reconstruction relies on multiple projections but is not suitable as a general method for unsteady radiating objects. We have developed a general method for 3-D structure reconstruction for LPP plumes in stages of increasing complexity. We have chosen neutral gas-confined LPP plumes from an aluminum target immersed in high-density argon because the plasma experiences Rayleigh-Taylor instability. We make use of two time-resolved, mutually orthogonal side views of a LPP plume and a front-view snapshot. No symmetry assumptions are needed. Two scaling relations are invoked that connects the plasma temperature and pressure to local specific intensity at selected wavelength(s). Two mutually-orthogonal lateral luminosity views of the plume at each known distance from the target surface are compared with those computed from the trial specific intensity profiles and the scaling relations. The luminosity error signals are minimized to find the structure. The front-view snapshot is used to select the initial trial profile and as a weighting function for allocation of the error signal into corrections for specific intensities from the plasma cells along the line of sight. Full Saha equilibrium for multiple stages of ionization is treated, together with the self-absorption, in the computation of the luminosity. We show the necessary optics for determination of local electric fields through polarization-resolved imaging. (author)

  7. New ways for the quantification by the laser-induced plasma spectroscopy; Neue Wege zur Quantifizierung mit der laserinduzierten Plasmaspektroskopie (LIBS)

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Maike

    2010-04-27

    Laser Induced Breakdown Spectroscopy (LIBS) is capable of a fast and multielement analysis of various samples types and matrices which makes the method particularly attractive for industrial process analysis. However, for LIBS to become well accepted as an analytical method some issues in calibration and understanding of the underlying transient plasma processes have to be solved. The objective of this work was to identify influential instrumental parameters and plasma conditions in order to improve the overall quantitative performance of LIBS. As the spectral sensitivity and signal-to-noise ratio of the detector represents a decisive element for the application of LIBS in an industrial environment, two detectors, an ICCD and CCD camera, were compared. In combination with a high-resolution echelle spectrograph, the superior or at least equivalent efficiency of the non-intensified CCD was experimentally demonstrated and supported by corresponding plasma simulations. Further investigations of the plasma expansion under different atmospheric conditions revealed that the geometry of observing the expanding plasma influences the sensitivity and reproducibility of the measurements considerably. The diagnostics of self-absorbed spectral lines and their use for calibration purposes were studied with a mirror-based duplication method and a statistical line shape analysis employing linear correlation. The linear correlation approach displayed good performance for identifying the on-set of self absorption in comparison to the duplication method. As matrixmatched reference materials are essential to validate laser ablation methods, two novel preparations of individual calibration standards based on a copper-and polyacrylamide matrix were tested for their applicability to LIBS. (orig.)

  8. DISCOVERY, PROGENITOR AND EARLY EVOLUTION OF A STRIPPED ENVELOPE SUPERNOVA iPTF13bvn

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Yi; Horesh, Assaf; Kulkarni, S. R. [Astronomy Department, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125 (United States); Kasliwal, Mansi M. [The Observatories, Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Arcavi, Iair; Gal-Yam, Avishay; Gorbikov, Evgeny; Ofek, Eran O.; Yaron, Ofer [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 76100 (Israel); Hancock, Paul [Sydney Institute for Astronomy (SIfA), School of Physics, The University of Sydney, NSW 2006 (Australia); Valenti, Stefano; Graham, Melissa; Howell, D. Andrew [Las Cumbres Observatory Global Telescope Network, Goleta, CA 93117 (United States); Cenko, S. Bradley [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Sand, David [Department of Physics, Texas Tech University, Lubbock, TX 79409 (United States); Silverman, Jeffrey M.; Wheeler, J. Craig; Marion, G. H. [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Walker, Emma S. [Department of Physics, Yale University, New Haven, CT 06511-8499 (United States); Mazzali, Paolo, E-mail: ycao@astro.caltech.edu [INAF-Padova Astronomical Observatory, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); and others

    2013-09-20

    The intermediate Palomar Transient Factory reports our discovery of a young supernova, iPTF13bvn, in the nearby galaxy, NGC 5806 (22.5 Mpc). Our spectral sequence in the optical and infrared suggests a Type Ib classification. We identify a blue progenitor candidate in deep pre-explosion imaging within a 2σ error circle of 80 mas (8.7 pc). The candidate has an M{sub B} luminosity of –5.52 ± 0.39 mag and a B – I color of 0.25 ± 0.25 mag. If confirmed by future observations, this would be the first direct detection for a progenitor of a Type Ib. Fitting a power law to the early light curve, we find an extrapolated explosion date around 0.6 days before our first detection. We see no evidence of shock cooling. The pre-explosion detection limits constrain the radius of the progenitor to be smaller than a few solar radii. iPTF13bvn is also detected in centimeter and millimeter wavelengths. Fitting a synchrotron self-absorption model to our radio data, we find a mass-loading parameter of 1.3×10{sup 12} g cm{sup –1}. Assuming a wind velocity of 10{sup 3} km s{sup –1}, we derive a progenitor mass-loss rate of 3 × 10{sup –5} M {sub ☉} yr{sup –1}. Our observations, taken as a whole, are consistent with a Wolf-Rayet progenitor of the supernova iPTF13bvn.

  9. Determination of the mass attenuation coefficients for X-ray fluorescence measurements correction by the Rayleigh to Compton scattering ratio

    Energy Technology Data Exchange (ETDEWEB)

    Conti, C.C., E-mail: ccconti@ird.gov.br [Institute for Radioprotection and Dosimetry – IRD/CNEN, Rio de Janeiro (Brazil); Physics Institute, State University of Rio de Janeiro – UERJ, Rio de Janeiro (Brazil); Anjos, M.J. [Physics Institute, State University of Rio de Janeiro – UERJ, Rio de Janeiro (Brazil); Salgado, C.M. [Nuclear Engineering Institute – IEN/CNEN, Rio de Janeiro (Brazil)

    2014-09-15

    Highlights: •This work describes a procedure for sample self-absorption correction. •The use of Monte Carlo simulation to calculate the mass attenuation coefficients curve was effective. •No need for transmission measurement, saving time, financial resources and effort. •This article provides de curves for the 90° scattering angle. •Calculation on-line at (www.macx.net.br). -- Abstract: X-ray fluorescence technique plays an important role in nondestructive analysis nowadays. The development of equipment, including portable ones, enables a wide assortment of possibilities for analysis of stable elements, even in trace concentrations. Nevertheless, despite of the advantages, one important drawback is radiation self-attenuation in the sample being measured, which needs to be considered in the calculation for the proper determination of elemental concentration. The mass attenuation coefficient can be determined by transmission measurement, but, in this case, the sample must be in slab shape geometry and demands two different setups and measurements. The Rayleigh to Compton scattering ratio, determined from the X-ray fluorescence spectrum, provides a link to the mass attenuation coefficient by means of a polynomial type equation. This work presents a way to construct a Rayleigh to Compton scattering ratio versus mass attenuation coefficient curve by using the MCNP5 Monte Carlo computer code. The comparison between the calculated and literature values of the mass attenuation coefficient for some known samples showed to be within 15%. This calculation procedure is available on-line at (www.macx.net.br)

  10. Determination and environmental estimation of NORMs in marine sediment environment of offshore platforms

    International Nuclear Information System (INIS)

    Vegueria, Sergio F. Jerez

    2013-01-01

    The natural radioactive materials (NORM known as) are found in the earth's crust, and during the process of production of oil and gas are concentrated in the produced water and the fouling (scale) pipes used for extraction. The production of oil and gas from produced water comes, comprising: forming water (water naturally present in the well ); injection water , usually sea water previously injected into the well to maintaining the pressure while the oil is removed; and water condensed in some cases of gas production. A high radioactivity of 226 Ra (natural grade of 238 U) and 228 Ra (from the natural series of 232 Th) is detected in produced water due to the high solubility of radio in formation water as uranium and thorium, which are insoluble in this medium, remain the rock matrix. The study was conducted in the area of offshore oil production in the state of Rio de January and included the determination of uranium, 226 Ra, 210 Pb and 228 Ra in marine sediment near the points of discharge of produced water from oil platforms. After the pre-treatment and digestion of samples, the determination of the natural uranium was performed on a mass spectrometer with inductively coupled plasma (ICP -MS). The activities of 226 Ra and 228 Ra were determined by high resolution gamma spectrometry through 214 Bi and 228 Ac , respectively. And in the case of 210 Pb, a correction was made for self-absorption employing an external source of this radionuclide. The results showed that there is no impact in sediments in the vicinity of the studied platforms

  11. Chemical vapor deposition (CVD) of uranium for alpha spectrometry; Deposicion quimica de vapor (CVD) de uranio para espectrometria alfa

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez V, M. L.; Rios M, C.; Ramirez O, J.; Davila R, J. I.; Mireles G, F., E-mail: luisalawliet@gmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2015-09-15

    The uranium determination through radiometric techniques as alpha spectrometry requires for its proper analysis, preparation methods of the source to analyze and procedures for the deposit of this on a surface or substrate. Given the characteristics of alpha particles (small penetration distance and great loss of energy during their journey or its interaction with the matter), is important to ensure that the prepared sources are thin, to avoid problems of self-absorption. The routine methods used for this are the cathodic electro deposition and the direct evaporation, among others. In this paper the use of technique of chemical vapor deposition (CVD) for the preparation of uranium sources is investigated; because by this, is possible to obtain thin films (much thinner than those resulting from electro deposition or evaporation) on a substrate and comprises reacting a precursor with a gas, which in turn serves as a carrier of the reaction products to achieve deposition. Preliminary results of the chemical vapor deposition of uranium are presented, synthesizing and using as precursor molecule the uranyl acetylacetonate, using oxygen as carrier gas for the deposition reaction on a glass substrate. The uranium films obtained were found suitable for alpha spectrometry. The variables taken into account were the precursor sublimation temperatures and deposition temperature, the reaction time and the type and flow of carrier gas. Of the investigated conditions, two depositions with encouraging results that can serve as reference for further work to improve the technique presented here were selected. Alpha spectra obtained for these depositions and the characterization of the representative samples by scanning electron microscopy and X-ray diffraction are also presented. (Author)

  12. NaI(Tl) response functions

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H. R.; Ortiz R, J. M. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico); Benites R, J. L. [Centro Estatal de Cancerologia de Nayarit, Calz. de la Cruz 118 Sur, Tepic, Nayarit (Mexico); De Leon M, H. A., E-mail: fermineutron@yahoo.com.mx [Instituto Tecnologico de Aguascalientes, Av. Adolfo Lopez Mateos 1801 Ote., 20155 Aguascalientes, Ags. (Mexico)

    2015-09-15

    The response functions of a NaI(Tl) detector have been estimated using Monte Carlo methods. Response functions were calculated for monoenergetic photon sources (0.05 to 3 MeV). Responses were calculated for point-like sources and for sources distributed in Portland cement cylinders. The responses were used to calculate the efficiency functions in term of photon energy. Commonly, sources used for calibration are point-like, and eventually sources to be measured have different features. In order to use the calibrated sources corrections due to solid angle, self-absorption and scattering, must be carried out. However, some of these corrections are not easy to perform. In this work, the calculated responses were used to estimate the detector efficiency of point-like sources, and sources distributed in Portland type cement. Samples of Portland paste were prepared and were exposed to photoneutrons produced by a 15 MV linac. Some of the elements in the cement were activated producing γ-emitting radionuclides that were measured with a NaI(Tl) gamma-ray spectrometer, that was calibrated with point-like sources. In order to determine the specific activity in the induced radioisotopes calculated efficiencies were used to make corrections due to the differences between the solid angle, photon absorption and photon scattering in the point-like calibration sources and the sources distributed in cement. During the interaction between photoneutrons and the cement samples three radioisotopes were induced: {sup 56}Mn, {sup 24}Na, and {sup 28}Al. (Author)

  13. Synthetic CO, H2 and H I surveys of the second galactic quadrant, and the properties of molecular gas

    Science.gov (United States)

    Duarte-Cabral, A.; Acreman, D. M.; Dobbs, C. L.; Mottram, J. C.; Gibson, S. J.; Brunt, C. M.; Douglas, K. A.

    2015-03-01

    We present CO, H2, H I and HISA (H I self-absorption) distributions from a set of simulations of grand design spirals including stellar feedback, self-gravity, heating and cooling. We replicate the emission of the second galactic quadrant by placing the observer inside the modelled galaxies and post-process the simulations using a radiative transfer code, so as to create synthetic observations. We compare the synthetic data cubes to observations of the second quadrant of the Milky Way to test the ability of the current models to reproduce the basic chemistry of the Galactic interstellar medium (ISM), as well as to test how sensitive such galaxy models are to different recipes of chemistry and/or feedback. We find that models which include feedback and self-gravity can reproduce the production of CO with respect to H2 as observed in our Galaxy, as well as the distribution of the material perpendicular to the Galactic plane. While changes in the chemistry/feedback recipes do not have a huge impact on the statistical properties of the chemistry in the simulated galaxies, we find that the inclusion of both feedback and self-gravity are crucial ingredients, as our test without feedback failed to reproduce all of the observables. Finally, even though the transition from H2 to CO seems to be robust, we find that all models seem to underproduce molecular gas, and have a lower molecular to atomic gas fraction than is observed. Nevertheless, our fiducial model with feedback and self-gravity has shown to be robust in reproducing the statistical properties of the basic molecular gas components of the ISM in our Galaxy.

  14. Radiation transport and the kinematics of molecular clouds

    International Nuclear Information System (INIS)

    Kwan, J.

    1978-01-01

    We compare line profiles calculated under either the systematic mottion interpretation or the turbulent motion interpretation of the molecular line widths, with the stipulation that both the density and temperature distributions be decreasing functions of radius. In systematic motion of the form V (r) proportional/sup -alpha/, α>0, optically thin lines observed toward the center are flat-topped or double-peaked, and optically thick lines are asymmetric. In a constant collapes or outflow velocity, optically thin lines observed toward the center are double-peaked, and optically thick lines arfe flat-topped. In systematic motion of the form V (r) proportionalr/sup α/,α>0, both optically thin and optically thick lines are centrally peaked. The distinguishing feature in this case is that the width (FWHM) of the CS 3→ 2 line is considerably smaller that that of the 13 CO 1 → 0 line. In turbulent motion, the CO 1 → 0, 2 → 1, and 3 → 2 lines are marked by progressively more pronounced self-absorptions.The observations at M17 SW and the Kleinmann-Low (KL) nebula are studied. At M17 SW, they are best accounted for by a model in which turbulence dominates the central part of the molecular region but collapse prevails at the outer part. At KL, the present observations can be equally well explained by one of two models. The first model postulates that KL is at the front face of the molecular cloud and that the temperature is highest at the surface. Turbulence gives rise to the line broadening. The second model postulates that KL is deep within the molecular cloud. Systematic motion about KL accounts for the CO and 13 CO line widths, but high-density fragments at KL are required to provide excitations in other molecular lines with considerably larger spontaneous emission rates

  15. Radiological dose assessment of naturally occurring radioactive materials in concrete building materials

    International Nuclear Information System (INIS)

    Amran AB Majid; Aznan Fazli Ismail; Muhamad Samudi Yasir; Redzuwan Yahaya; Ismail Bahari

    2013-01-01

    Previous studies have shown that the natural radioactivity contained in building materials have significantly influenced the dose rates in dwelling. Exposure to natural radiation in building has been of concerned since almost 80 % of our daily live are spend indoor. Thus, the aim of the study is to assess the radiological risk associated by natural radioactivity in soil based building materials to dwellers. A total of 13 Portland cement, 46 sand and 43 gravel samples obtained from manufacturers or bought directly from local hardware stores in Peninsular of Malaysia were analysed for their radioactivity concentrations. The activity concentrations of 226 Ra, 232 Th and 40 K in the studied building materials samples were found to be in the range of 3.7-359.3, 2.0-370.8 and 10.3-1,949.5 Bq kg -1 respectively. The annual radiation dose rates (μSv year -1 ) received by dwellers were evaluated for 1 to 50 years of exposure using Resrad-Build Computer Code based on the activity concentration of 226 Ra, 232 Th and 40 K found in the studied building material samples. The rooms modelling were based on the changing parameters of concrete wall thickness and the room dimensions. The annual radiation dose rates to dwellers were found to increase annually over a period of 50 years. The concrete thicknesses were found to have significantly influenced the dose rates in building. The self-absorption occurred when the concrete thickness was thicker than 0.4 m. Results of this study shows that the dose rates received by the dwellers of the building are proportional to the size of the room. In general the study concludes that concrete building materials; Portland cements, sands, and gravels in Peninsular of Malaysia does not pose radiological hazard to the building dwellers. (author)

  16. Quantitative analysis of fluoride-induced hypermineralization of developing enamel in neonatal hamster tooth germs

    Science.gov (United States)

    Tros, G. H. J.; Lyaruu, D. M.; Vis, R. D.

    1993-10-01

    A procedure was developed for analysing the effect of fluoride on mineralization in the enamel of neonatal hamster molars during amelogenesis by means of the quantitative determination of the mineral content. In this procedure the distribution of calcium and mineral concentration was determined in sections containing developing tooth enamel mineral embedded in an organic epoxy resin matrix by means of the micro-PIXE technique. This allowed the determination of the calcium content along preselected tracks with a spatial resolution of 2 μm using a microprobe PIXE setup with a 3 MeV proton beam of 10 to 50 pA with a spot size of 2 μm in the track direction. In this procedure the X-ray yield is used as a measure for the calcium content. The thickness of each sample section is determined independently by measuring the energy loss of α-particles from a calibration source upon passing through the sample. The sample is considered as consisting of two bulk materials, allowing the correction for X-ray self-absorption and the calculation of the calcium concentration. The procedure was applied for measuring the distribution of mineral concentration in 2 μm thick sections taken from tooth germs of hamsters administered with NaF. The measurements indicated that a single intraperitoneal administration of 20 mg NaF/kg body weight to 4-to-5-day-old hamsters leads within 24 h to hypermineralization of certain focal enamel surface areas containing cystic lesions under transitional and early secretory ameloblasts. The mineral concentration there is substantially increased due to the fluoride treatment (35%, instead of 5 to 10% as in the controls), indicating that the normal mineralization process has been seriously disturbed. Furthermore it is found that using this technique the mineral concentration peaks at about 70% at the dentine-enamel junction, which is comparable to that reported for human dentine using other techniques.

  17. Physical properties of CO-dark molecular gas with C+ and OH observations

    Science.gov (United States)

    Tang, Ningyu; Li, Di; Heiles, Carl E.; ISM Group in National Astronomical Observatories, CAS

    2017-01-01

    The lifecycle of interstellar medium (ISM) is critical for understanding galaxy evolution. The transition between atomic neutral medium and dense molecular gas, however, cannot be traced adequately by either HI or CO emission. Results from dust observations of Planck all-sky mission and gamma-ray observations of Energetic Gamma Ray Experiment Telescope (EGRET) have revealed the existence of “CO dark molecular gas” (DMG) - molecular gas without CO emission. The physical conditions of DMG including density, temperature, and molecular composition are basis of understanding the ISM evolution. We analyzed physical properties of DMG with HI-self absorption and C+ fine line emission at 158 um toward the lines of sight of Galactic Observations of Terahertz C+ (GOTC+). DMG clouds have a median excitation temperature of 56 K and median volume density of 230 cm2, showing intermediate physical properties between atomic and molecular gas. Sixteen DMG clouds with high visual extinction (AV>=2.7 mag) were found. CO abundance compared to H2 in these clouds is two orders magnitude smaller than the cannonical value in the Milky Way and cannot be explained by the chemical evolutionary model. They may be formed through the agglomeration of pre-existing molecular gas in the Milky Way. We have finished a follow up survey of OH 18 cm lines toward 51 sightlines of GOTC+ including sightlines with DMG clouds through Arecibo telescope. DMG may result in the absence of correlation between CO and OH column density. A possible correlation was found between C+ and OH column density in tracing DMG.

  18. Connection of off-diagonal radiative-decay coupling to electromagnetically induced transparency and amplification without inversion in a three-level atomic system

    International Nuclear Information System (INIS)

    Cardimona, D.A.; Huang Danhong

    2002-01-01

    The equivalence between the off-diagonal radiative-decay coupling (ODRDC) effect in the bare-atom picture of a three-level atomic system [see Cardimona et al., J. Phys. B 15, 55 (1982)] and the electromagnetically induced transparency (EIT) effect in the dressed-atom picture [see Imamoglu et al., Opt. Lett. 14, 1344 (1989)] is uncovered and a full comparison of their physical origins is given. The mechanism for both ODRDC and Harris' EIT is found to be a consequence of the quantum interference between a direct absorption path and an indirect absorption path mediated by either a self absorption of spontaneous photons or a Fano-type coupling. A connection is then pointed out between the effects of probe-field gain (PFG) based on an ODRDC process [see Huang et al., Phys. Rev. A 64, 013822 (2001)] and amplification without inversion (AWI) [see Fearn et al., Opt. Commun. 87, 323 (1992)] in the bare-atom picture of a three-level atomic system. The PFG effect is found as a result of transferring electrons between the two upper levels due to the phase-sensitive coherence provided by a laser-induced ODRDC process, while the AWI effect to one of the two probe fields is attributed to its coupling to a strong laser field generating an off-resonant gain through an induced nonlinearity in the other probe field. Both the advantages and disadvantages as well as the limitations of the ODRDC, EIT, PFG, and AWI effects are discussed and compared

  19. Validation of 226Ra, 228Ra and 210Pb measurements in soil and sediment samples through high resolution gamma ray spectrometry

    International Nuclear Information System (INIS)

    Dias, Danila Carrijo da Silva; Silva, Nivaldo Carlos da; Bonifacio, Rodrigo Leandro; Guerrero, Eder Tadeu Zenun

    2013-01-01

    Radionuclides found in ore extraction waste materials are a great source of concern regarding public health and environmental safety. One technique to determine the concentration of substances is high resolution gamma ray spectrometry using HPGe. Validating a measurement technique is essential to warrant high levels of quality to any scientific work. The Laboratory of Pocos de Caldas of the Brazilian Commission for Nuclear Energy partakes into a Quality Management System project, seeking Accreditation under ISO/IEC 17025 through the validation of techniques of chemical and radiometric analysis of environmental samples from water, soil and sediment. The focus of the Radon Laboratory at LAPOC is validation of Ra-226, Ra-228 and Pb-210 concentration determinations in soil and sediment through a gamma spectrometer system. The stages of this validation process included sample reception and preparation, detector calibration and sample analyses. Dried samples were sealed in metallic containers and analyzed after radioactive equilibrium between Ra-226 and daughters Pb-214 and Bi-214. Gamma spectrometry was performed using CANBERRA HPGe detector and gamma spectrum software Genie 2000. The photo peaks used for Ra-226 determination were 609 keV and 1020 keV of Bi-214 and 351 keV of Pb-214. For the Ra-228 determination a photopeak of 911 keV was used from its short half-life daughter Ac-228 (T1/2 = 6.12 h). For Pb-210, the photopeak of 46.5 keV was used, which, due to the low energy, self-absorption correction was needed. Parameters such as precision, bias/accuracy, linearity, detection limit and uncertainty were evaluated for that purpose. The results have pointed to satisfying results. (author)

  20. Modelling the KIC8462852 light curves: compatibility of the dips and secular dimming with an exocomet interpretation

    Science.gov (United States)

    Wyatt, M. C.; van Lieshout, R.; Kennedy, G. M.; Boyajian, T. S.

    2018-02-01

    This paper shows how the dips and secular dimming in the KIC8462852 light curve can originate in circumstellar material distributed around a single elliptical orbit (e.g. exocomets). The expected thermal emission and wavelength dependent dimming is derived for different orbital parameters and geometries, including dust that is optically thick to stellar radiation, and for a size distribution of dust with realistic optical properties. We first consider dust distributed evenly around the orbit, then show how to derive its uneven distribution from the optical light curve and to predict light curves at different wavelengths. The fractional luminosity of an even distribution is approximately the level of dimming times stellar radius divided by distance from the star at transit. Non-detection of dust thermal emission for KIC8462852 thus provides a lower limit on the transit distance to complement the 0.6 au upper limit imposed by 0.4 d dips. Unless the dust distribution is optically thick, the putative 16 per cent century-long secular dimming must have disappeared before the WISE 12 μm measurement in 2010, and subsequent 4.5 μm observations require transits at >0.05 au. However, self-absorption of thermal emission removes these constraints for opaque dust distributions. The passage of dust clumps through pericentre is predicted to cause infrared brightening lasting tens of days and dimming during transit, such that total flux received decreases at wavelengths dimming levels than seen for KIC8462852 are more common in the Galactic population and may be detected in future transit surveys.

  1. THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: BIASES IN z  > 1.46 REDSHIFTS DUE TO QUASAR DIVERSITY

    International Nuclear Information System (INIS)

    Denney, K. D.; Peterson, B. M.; Horne, Keith; Brandt, W. N.; Grier, C. J.; Trump, J. R.; Ho, Luis C.; Ge, J.

    2016-01-01

    We use the coadded spectra of 32 epochs of Sloan Digital Sky Survey (SDSS) Reverberation Mapping Project observations of 482 quasars with z  > 1.46 to highlight systematic biases in the SDSS- and Baryon Oscillation Spectroscopic Survey (BOSS)-pipeline redshifts due to the natural diversity of quasar properties. We investigate the characteristics of this bias by comparing the BOSS-pipeline redshifts to an estimate from the centroid of He ii λ 1640. He ii has a low equivalent width but is often well-defined in high-S/N spectra, does not suffer from self-absorption, and has a narrow component which, when present (the case for about half of our sources), produces a redshift estimate that, on average, is consistent with that determined from [O ii] to within the He ii and [O ii] centroid measurement uncertainties. The large redshift differences of ∼1000 km s −1 , on average, between the BOSS-pipeline and He ii-centroid redshifts, suggest there are significant biases in a portion of BOSS quasar redshift measurements. Adopting the He ii-based redshifts shows that C iv does not exhibit a ubiquitous blueshift for all quasars, given the precision probed by our measurements. Instead, we find a distribution of C iv-centroid blueshifts across our sample, with a dynamic range that (i) is wider than that previously reported for this line, and (ii) spans C iv centroids from those consistent with the systemic redshift to those with significant blueshifts of thousands of kilometers per second. These results have significant implications for measurement and use of high-redshift quasar properties and redshifts, and studies based thereon.

  2. X-RAY AND RADIO EMISSION FROM TYPE IIn SUPERNOVA SN 2010jl

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Poonam [National Centre for Radio Astrophysics, Tata Institute of Fundamental Research, Pune University Campus, Pune 411 007 (India); Chevalier, Roger A. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Chugai, Nikolai [Institute of Astronomy of Russian Academy of Sciences, Pyatnitskaya St. 48, 109017 Moscow (Russian Federation); Fransson, Claes [Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden); Soderberg, Alicia M., E-mail: poonam@ncra.tifr.res.in [Smithsonian Astrophysical Observatory, 60 Garden St., MS-20, Cambridge, MA 02138 (United States)

    2015-09-01

    We present all X-ray and radio observations of the Type IIn supernova SN 2010jl. The X-ray observations cover a period up to day 1500 with Chandra, XMM-Newton, NuSTAR, and Swift-X-ray Telescope (XRT). The Chandra observations after 2012 June, the XMM-Newton observation in 2013 November, and most of the Swift-XRT observations until 2014 December are presented for the first time. All the spectra can be fitted by an absorbed hot thermal model except for Chandra spectra on 2011 October and 2012 June when an additional component is needed. Although the origin of this component is uncertain, it is spatially coincident with the supernova and occurs when there are changes to the supernova spectrum in the energy range close to that of the extra component, indicating that the emission is related to the supernova. The X-ray light curve shows an initial plateau followed by a steep drop starting at day ∼300. We attribute the drop to a decrease in the circumstellar density. The column density to the X-ray emission drops rapidly with time, showing that the absorption is in the vicinity of the supernova. We also present Very Large Array radio observations of SN 2010jl. Radio emission was detected from SN 2010jl from day 570 onwards. The radio light curves and spectra suggest that the radio luminosity was close to its maximum at the first detection. The velocity of the shocked ejecta derived assuming synchrotron self-absorption is much less than that estimated from the optical and X-ray observations, suggesting that free–free absorption dominates.

  3. Evaluation of Cs-134 and Cs-137 in sugar by non-destructive analysis

    International Nuclear Information System (INIS)

    Correira, Filipe Lopes de Barros; Santos Júnior, José Araújo dos; Amaral, Romilton dos Santos; Santos, Josineide Marques do Nascimento; Medeiros, Nilson Vicente da Silva; Santos Junior, Otávio Pereira dos; Valois, Rhaiana Caminha

    2017-01-01

    The spread of anthropogenic radioisotopes in the environment comes from nuclear tests and accidents that occurred in the past, which justifies constant monitoring, to guarantee the safety and control of the activities that involve these applications. Brazil, when exporting some food products, depending on the country of origin, a radiometric report is required, especially for sugar that has high world consumption and the possibility of contamination of the population, when radioisotope is present. Therefore, the investigation of the levels of Cs-134 and Cs-137 in sugar matrices is necessary to predict radioecological emergency situations. The National Nuclear Energy Commission, the agency that oversees nuclear applications in Brazil, With Resolution No. 102 of December 22, 2010 approved regulatory positions, including levels of action for food control, recommended to restrict the marketing of food products in Brazil. General, whose specific activity is higher than the limit of 1.0 kBq / kg for the said isotopes of cesium independently. Aiming for improvements in the analyzes that are already performed in the Laboratory of Radioecology and Environmental Control of the Department of Nuclear Energy of the Federal University of Pernambuco to assurance the quality of sugar marketed in Brazil, a standard procedure for the analysis of these radionuclides in this matrix was determined. High resolution gamma spectrometry with non-destructive analysis was used to perform the tests. Priority was given to parameters that directly influence the qualitative and quantitative analysis of these radioactive elements, such as calibration in energy and efficiency, resolution, influence of self-absorption, counting statistics directly associated with the time of analysis, influence of background radiation and geometry analysis. (author)

  4. The Non-Destructive Determination of Burn-Up by Means of the Prl44 2.18 M Gamma Activity

    International Nuclear Information System (INIS)

    Forsyth, R.S.; Blackadder, W.H.

    1965-05-01

    In recent years, gamma scanning has been used at several establishments for the determination of the burn-up profile along irradiated fuel elements, the 0.75 MeV gamma from Zr-95/Nb-95 being most often employed as the monitored radiation. Difficulties in establishing the geometry and the self-absorption of the gamma activity in the fuel have tended to prevent the application of the method to quantitative burn-up determination, which has usually been carried out by dissolution of selected portions of the fuel followed by conventional fission product separation or by uranium depletion methods. The present paper describes experiments carried out to calibrate a gamma scanner for quantitative measurements by counting the 2.18 MeV gamma activity due to Pr-144, the short-lived daughter of Ce-144 (t 1/2 = 285 days) from selected pellets in several UO 2 fuel specimens. Accurate burn-up values were then determined by dissolution and application of the isotopic dilution method, using stable molybdenum fission products. The elements, which were rotated about their longitudinal axes to minimize asymmetry effects, were viewed by a sodium iodide crystal and a multichannel analyser through a suitable collimator. Correction for attenuation of the gamma activity (much less than for 0.75 MeV) in the fuel elements which were of different diameters (12.6 to 15.04 mm) was made by applying relative attenuation factors and the effective geometry factor of the instrument was determined. In order to check the corrections applied, the counter factor was also calculated, for the 0.75 MeV activity from Zr-95/Nb-95 and in certain cases for the 0.66 MeV activity from Cs-137. The results obtained, demonstrate that at least over the range of diameters and cooling times used the method is suitable for quantitative determinations. Preliminary experiments to explore the possibility of using the high energy gammas (2.35, 2.65 MeV) from Rh-106 as a method for estimating the fraction of fission events

  5. The absorbed dose to blood from blood-borne activity

    International Nuclear Information System (INIS)

    Hänscheid, H; Fernández, M; Lassmann, M

    2015-01-01

    The radiation absorbed dose to blood and organs from activity in the blood is relevant for nuclear medicine dosimetry and for research in biodosimetry. The present study provides coefficients for the average absorbed dose rates to the blood from blood-borne activity for radionuclides frequently used in targeted radiotherapy and in PET diagnostics. The results were deduced from published data for vessel radius-dependent dose rate coefficients and reasonable assumptions on the blood-volume distribution as a function of the vessel radius. Different parts of the circulatory system were analyzed separately. Vessel size information for heart chambers, aorta, vena cava, pulmonary artery, and capillaries was taken from published results of morphometric measurements. The remaining blood not contained in the mentioned vessels was assumed to reside in fractal-like vascular trees, the smallest branches of which are the arterioles or venules. The applied vessel size distribution is consistent with recommendations of the ICRP on the blood-volume distribution in the human. The resulting average absorbed dose rates to the blood per nuclear disintegration per milliliter (ml) of blood are (in 10 −11  Gy·s −1 ·Bq −1 ·ml) Y-90: 5.58, I-131: 2.49, Lu-177: 1.72, Sm-153: 2.97, Tc-99m: 0.366, C-11: 4.56, F-18: 3.61, Ga-68: 5.94, I-124: 2.55. Photon radiation contributes 1.1–1.2·10 −11  Gy·s −1 ·Bq −1 ·ml to the total dose rate for positron emitters but significantly less for the other nuclides. Blood self-absorption of the energy emitted by ß-particles in the whole blood ranges from 37% for Y-90 to 80% for Tc-99m. The correspondent values in vascular trees, which are important for the absorbed dose to organs, range from 30% for Y-90 to 82% for Tc-99m. (paper)

  6. Fs–ns double-pulse Laser Induced Breakdown Spectroscopy of copper-based-alloys: Generation and elemental analysis of nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Guarnaccio, A.; Parisi, G.P.; Mollica, D. [CNR-ISM, U.O.S. Tito Scalo, Zona Industriale, 85050 Tito Scalo, PZ (Italy); De Bonis, A. [CNR-ISM, U.O.S. Tito Scalo, Zona Industriale, 85050 Tito Scalo, PZ (Italy); Dipartimento di Scienze, Università degli Studi della Basilicata, Via dell' Ateneo Lucano 10, 85100 Potenza (Italy); Teghil, R. [Dipartimento di Scienze, Università degli Studi della Basilicata, Via dell' Ateneo Lucano 10, 85100 Potenza (Italy); Santagata, A. [CNR-ISM, U.O.S. Tito Scalo, Zona Industriale, 85050 Tito Scalo, PZ (Italy)

    2014-11-01

    Evolution of nanoparticles ejected during ultra-short (250 fs) laser ablation of certified copper alloys and relative calibration plots of a fs–ns double-pulse Laser Induced Breakdown Spectroscopy orthogonal configuration is presented. All work was performed in air at atmospheric pressure using certified copper-based-alloy samples irradiated by a fs laser beam and followed by a delayed perpendicular ns laser pulse. In order to evaluate possible compositional changes of the fs induced nanoparticles, it was necessary to consider, for all samples used, comparable features of the detected species. With this purpose the induced nanoparticles black-body-like emission evolution and their relative temperature decay have been studied. These data were exploited for defining the distance between the target surface and the successive ns laser beam to be used. The consequent calibration plots of minor constituents (i.e. Sn, Pb and Zn) of the certified copper-based-alloy samples have been reported by taking into account self-absorption effects. The resulting linear regression coefficients suggest that the method used, for monitoring and ruling the fs laser induced nanoparticles, could provide a valuable approach for establishing the occurrence of potential compositional changes of the detected species. All experimental data reveal that the fs laser induced nanoparticles can be used for providing a coherent composition of the starting target. In the meantime, the fs–ns double-pulse Laser Induced Breakdown Spectroscopy orthogonal configuration here used can be considered as an efficient technique for compositional determination of the nanoparticles ejected during ultra-short laser ablation processes. - Highlights: • Laser induced NP continuum black-body-like emission was used for T determination. • Invariable composition of generated NPs was assumed in the range of 20 μs. • Fs-ns DP-LIBS was employed for the compositional characterization of NPs. • NPs obtained by fs

  7. Discovering a misaligned CO outflow related to the red MSX source G034.5964-01.0292

    Science.gov (United States)

    Paron, S.; Ortega, M. E.; Petriella, A.; Rubio, M.

    2014-07-01

    Aims: The red MSX source G034.5964-01.0292 (MSXG34), catalogued as a massive young stellar object, was observed in molecular lines with the aim of discovering and studying molecular outflows. Methods: We mapped a region of 3'× 3' centred at MSXG34 using the Atacama Submillimeter Telescope Experiment in the 12CO J = 3-2 and HCO+J = 4-3 lines with an angular and spectral resolution of 22'' and 0.11 km s-1. Additionally, public 13CO J = 1-0 and near-IR UKIDSS data obtained from the Galactic Ring Survey and the WFCAM Sciencie Archive were analysed. Results: We found that the 12CO spectra towards the YSO present a self-absorption dip, as is common in star-forming regions, and spectral wings that indicate outflow activity. The HCO+ was detected only towards the MSXG34 position at vLSR ~ 14.2 km s-1, in coincidence with the 12CO absorption dip and approximately with the velocity of previous ammonia observations. HCO+ and NH3 are known to be enhanced in molecular outflows. When we analysed the spectral wings of the 12CO line, we discovered misaligned red- and blue-shifted molecular outflows associated with MSXG34. The near-IR emission shows a cone-like nebulosity composed of two arc-like features related to the YSO, which might be due to a cavity cleared in the circumstellar material by a precessing jet. This can explain the misalignment in the molecular outflows. From the analysis of the 13CO J = 1-0 data we suggest that the YSO is very likely related to a molecular clump ranging between 10 and 14 km s-1. This suggests that MSXG34, with an associated central velocity of about 14 km s-1, may be located in the background of this clump. Thus, the blue-shifted outflow is probably deflected by the interaction with dense gas along the line of sight. From a spectral energy distribution analysis of MSXG34 we found that its central object probably is an intermediate-mass protostar.

  8. Phosphors for near UV-Emitting LED's for Efficacious Generation of White Light

    Energy Technology Data Exchange (ETDEWEB)

    McKittrick, Joanna [Univ. of California, San Diego, CA (United States)

    2013-09-30

    1) We studied phosphors for near-UV (nUV) LED application as an alternative to blue LEDs currently being used in SSL systems. We have shown that nUV light sources could be very efficient at high current and will have significantly less binning at both the chip and phosphor levels. We identified phosphor blends that could yield 4100K lamps with a CRI of approximately 80 and LPWnUV,opt equal to 179 for the best performing phosphor blend. Considering the fact that the lamps were not optimized for light coupling, the results are quite impressive. The main bottleneck is an optimum blue phosphor with a peak near 440 nm with a full width half maximum of about 25 nm and a quantum efficiency of >95%. Unfortunately, that may be a very difficult task when we want to excite a phosphor at ~400 nm with a very small margin for Stokes shift. Another way is to have all the phosphors in the blend having the excitation peak at 400 nm or slightly shorter wavelength. This could lead to a white light source with no body color and optimum efficacy due to no self-absorption effects by phosphors in the blend. This is even harder than finding an ideal blue phosphor, but not necessarily impossible. 2) With the phosphor blends identified, light sources using nUV LEDs at high current could be designed with comparable efficacy to those using blue LEDs. It will allow us to design light sources with multiple wattages using the same chips and phosphor blends simply by varying the input current. In the case of blue LEDs, this is not currently possible because varying the current will lower the efficacy at high current and alter the color point. With improvement of phosphor blends, control over CRI could improve. Less binning at the chip level and also at the phosphor blend level could reduce the cost of SSL light sources. 3) This study provided a deeper understanding of phosphor characteristics needed for LEDs in general and nUV LEDs in particular. Two students received Ph.D. degrees and three

  9. Constraints on the progenitor system and the environs of SN 2014J from deep radio observations

    Energy Technology Data Exchange (ETDEWEB)

    Pérez-Torres, M. A.; Alberdi, A. [Instituto de Astrofísica de Andalucía, Glorieta de las Astronomía, s/n, E-18008 Granada (Spain); Lundqvist, P.; Björnsson, C. I.; Fransson, C. [Department of Astronomy, AlbaNova University Center, Stockholm University, SE-10691 Stockholm (Sweden); Beswick, R. J.; Muxlow, T. W. B.; Argo, M. K. [Jodrell Bank Centre for Astrophysics, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Paragi, Z. [Joint Institute for VLBI in Europe, Postbus 2, 7990 AA Dwingeloo (Netherlands); Ryder, S. [Australian Astronomical Observatory, P.O. Box 915, North Ryde, NSW 1670 (Australia); Marcaide, J. M.; Ros, E.; Guirado, J. C. [Departamento de Astronomía i Astrofísica, Universidad de Valencia, E-46100 Burjassot, Valencia (Spain); Martí-Vidal, I. [Onsala Space Observatory, Chalmers University of Technology, SE-43992 Onsala (Sweden)

    2014-09-01

    We report deep EVN and eMERLIN observations of the Type Ia SN 2014J in the nearby galaxy M82. Our observations represent, together with JVLA observations of SNe 2011fe and 2014J, the most sensitive radio studies of Type Ia SNe ever. By combining data and a proper modeling of the radio emission, we constrain the mass-loss rate from the progenitor system of SN 2014J to M-dot ≲7.0×10{sup −10} M{sub ⊙} yr{sup −1} (for a wind speed of 100 km s{sup –1}). If the medium around the supernova is uniform, then n {sub ISM} ≲ 1.3 cm{sup –3}, which is the most stringent limit for the (uniform) density around a Type Ia SN. Our deep upper limits favor a double-degenerate (DD) scenario—involving two WD stars—for the progenitor system of SN 2014J, as such systems have less circumstellar gas than our upper limits. By contrast, most single-degenerate (SD) scenarios, i.e., the wide family of progenitor systems where a red giant, main-sequence, or sub-giant star donates mass to an exploding WD, are ruled out by our observations. (While completing our work, we noticed that a paper by Margutti et al. was submitted to The Astrophysical Journal. From a non-detection of X-ray emission from SN 2014J, the authors obtain limits of M-dot ≲1.2×10{sup −9} M {sub ☉} yr{sup –1} (for a wind speed of 100 km s{sup –1}) and n {sub ISM} ≲ 3.5 cm{sup –3}, for the ρ∝r {sup –2} wind and constant density cases, respectively. As these limits are less constraining than ours, the findings by Margutti et al. do not alter our conclusions. The X-ray results are, however, important to rule out free-free and synchrotron self-absorption as a reason for the radio non-detections.) Our estimates on the limits on the gas density surrounding SN2011fe, using the flux density limits from Chomiuk et al., agree well with their results. Although we discuss the possibilities of an SD scenario passing observational tests, as well as uncertainties in the modeling of the radio emission, the

  10. Development, improvement and calibration of neutronic reaction rate measurements: elaboration of a base of standard techniques; Developpement, amelioration et calibration des mesures de taux de reaction neutroniques: elaboration d`une base de techniques standards

    Energy Technology Data Exchange (ETDEWEB)

    Hudelot, J.P

    1998-06-19

    In order to improve and to validate the neutronic calculation schemes, perfecting integral measurements of neutronic parameters is necessary. This thesis focuses on the conception, the improvement and the development of neutronic reaction rates measurements, and aims at building a base of standard techniques. Two subjects are discussed. The first one deals with direct measurements by fission chambers. A short presentation of the different usual techniques is given. Then, those last ones are applied through the example of doubling time measurements on the EOLE facility during the MISTRAL 1 experimental programme. Two calibration devices of fission chambers are developed: a thermal column located in the central part of the MINERVE facility, and a calibration cell using a pulsed high flux neutron generator and based on the discrimination of the energy of the neutrons with a time-of-flight method. This second device will soon allow to measure the mass of fission chambers with a precision of about 1 %. Finally, the necessity of those calibrations will be shown through spectral indices measurements in core MISTRAL 1 (UO{sub 2}) and MISTRAL 2 (MOX) of the EOLE facility. In each case, the associated calculation schemes, performed using the Monte Carlo MCNP code with the ENDF-BV library, will be validated. Concerning the second one, the goal is to develop a method for measuring the modified conversion ratio of {sup 238}U (defined as the ratio of {sup 238}U capture rate to total fission rate) by gamma-ray spectrometry of fuel rods. Within the framework of the MISTRAL 1 and MISTRAL 2 programmes, the measurement device, the experimental results and the spectrometer calibration are described. Furthermore, the MCNP calculations of neutron self-shielding and gamma self-absorption are validated. It is finally shown that measurement uncertainties are better than 1 %. The extension of this technique to future modified conversion ratio measurements for {sup 242}Pu (on MOX rods) and

  11. Evaluation of the uncertainty of environmental measurements of radioactivity

    International Nuclear Information System (INIS)

    Heydorn, K.

    2003-01-01

    Full text: The almost universal acceptance of the concept of uncertainty has led to its introduction into the ISO 17025 standard for general requirements to testing and calibration laboratories. This means that not only scientists, but also legislators, politicians, the general population - and perhaps even the press - expect to see all future results associated with an expression of their uncertainty. Results obtained by measurement of radioactivity have routinely been associated with an expression of their uncertainty, based on the so-called counting statistics. This is calculated together with the actual result on the assumption that the number of counts observed has a Poisson distribution with equal mean and variance. Most of the nuclear scientific community has therefore assumed that it already complied with the latest ISO 17025 requirements. Counting statistics, however, express only the variability observed among repeated measurements of the same sample under the same counting conditions, which is equivalent to the term repeatability used in quantitative analysis. Many other sources of uncertainty need to be taken into account before a statement of the uncertainty of the actual result can be made. As the first link in the traceability chain calibration is always an important uncertainty component in any kind of measurement. For radioactivity measurements in particular we find that counting geometry assumes the greatest importance, because it is often not possible to measure a standard and a control sample under exactly the same conditions. In the case of large samples we have additional uncertainty components associated with sample heterogeneity and its influence on self-absorption and counting efficiency. In low-level environmental measurements we have an additional risk of sample contamination, but the most important contribution to uncertainty is usually the representativity of the sample being analysed. For uniform materials this can be expressed by the

  12. Radio Column Chromatographic Assay of H3-Labelled Substances

    International Nuclear Information System (INIS)

    Scharpenseel, H.W.; Menke, K.H.

    1962-01-01

    Combined radio-chromatographic investigations of H 3 -labelled substances are an integral part of the majority of biochemical experiments with H 3 -labelled compounds. H 3 -radio paper chromatography yields, in a scanner with a windowless flow counter, a counting efficiency of 0,5 -1,5%, depending largely on the thickness of the paper and the self-absorption of the labelled compound. The radio gas chromatography of tritiated compounds presents no major problem. Successful use is being made of a combination of a gas chromatograph with a flow ionization chamber and vibrating reed electrometer, a system originated by K. E. Wilzbach and P. Riessz, and improved by H. Dutton, L. Mason and L. Blair. Through the use of ''Teflon'' and silicone-rubber for the insulating parts of the flow ion chamber, it can be operated at close to 300 o C. Radio column chromatography with tritium holds little promise, when the column effluent is spread out as a shallow layer and slowly passes under a windowless flow counter or a scintillation counter, as was successfully tried with C 14 . Liquid scintillation spectrometry is likely to be the chosen method. Essentially, there are two different approaches feasible. These have been compared: 1. The column effluent is passed through a coil of plastic scintillator tubing, which is wound around a ''Plexiglas'' cylinder and placed in a bath of silicone oil in a light pipe with TiO 2 -reflector. Similarly, the HP-containing effluent can be directed through a test vial, filled - very much as in Steinberg's method - with plastic scintillator beads. These two approaches, that operate highly satisfactorily in the case of C 14 , offer low counting efficiencies of less than 1% for H 3 due to the unfavourable surface to volume ratio. 2. The column effluent is combined 1:30 with a mixture of 3:2 toluene/ethanol by the action of a magnet-vibrator before being assayed while passing through a K 40 -free glass - coiled between the analyser- and monitor

  13. INDIA: Photon multiplicity detector

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Full text: The team of Indian scientists from Calcutta's Variable Energy Cyclotron Centre, Bhubaneswar Institute of Physics, Panjab (Chandigarh), Rajasthan (Jaipur) and Jammu in collaboration with GSI Darmstadt have contributed a large and highly granular preshower photon multiplicity detector (PMD) for the WA98 experiment at the CERN SPS proton synchrotron. This experiment studies high energy collisions of lead ions and will measure both charged particle and photon multiplicity in a large overlap region. The motivation for measuring photon multiplicity in ultra-relativistic heavy ion collisions stems from theoretical predictions of changes in the relative production of photons and charged particles in the phase transition of hadronic matter to quarkgluon plasma and its subsequent hadronization. The photon multiplicity detector consists of a matrix of scintillator pads placed in light-tight boxes and mounted behind the lead converter plates. The light from the scintillator pads is transported to the readout system using wavelength shifting (WLS) fibres. Developing on the team's earlier experience with a smaller version for the WA93 experiment (September 1991, page 16), several modifications were incorporated to improve light collection and transport. Use of improved WLS fibres, short WLS pieces to minimize self-absorption, and thermal splicing with long clear fibres were some of the important changes incorporated. Tests showed signficantly improved light collection. The scintillator pads were fabricated at all the five collaborating centres in India and the complicated assembly in the detector box modules carried out at the Variable Energy Cyclotron Centre, Calcutta. More than 400 lead converter plates were machined in Calcutta to rigorous tolerances of 0.2 mm. The assembled detector box modules and lead plates were shipped to CERN in spring 1994 for tests and installation. The WA98 PMD consists of over 50,000 scintillator pads of sizes varying from 15 to

  14. INDIA: Photon multiplicity detector

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1995-01-15

    Full text: The team of Indian scientists from Calcutta's Variable Energy Cyclotron Centre, Bhubaneswar Institute of Physics, Panjab (Chandigarh), Rajasthan (Jaipur) and Jammu in collaboration with GSI Darmstadt have contributed a large and highly granular preshower photon multiplicity detector (PMD) for the WA98 experiment at the CERN SPS proton synchrotron. This experiment studies high energy collisions of lead ions and will measure both charged particle and photon multiplicity in a large overlap region. The motivation for measuring photon multiplicity in ultra-relativistic heavy ion collisions stems from theoretical predictions of changes in the relative production of photons and charged particles in the phase transition of hadronic matter to quarkgluon plasma and its subsequent hadronization. The photon multiplicity detector consists of a matrix of scintillator pads placed in light-tight boxes and mounted behind the lead converter plates. The light from the scintillator pads is transported to the readout system using wavelength shifting (WLS) fibres. Developing on the team's earlier experience with a smaller version for the WA93 experiment (September 1991, page 16), several modifications were incorporated to improve light collection and transport. Use of improved WLS fibres, short WLS pieces to minimize self-absorption, and thermal splicing with long clear fibres were some of the important changes incorporated. Tests showed signficantly improved light collection. The scintillator pads were fabricated at all the five collaborating centres in India and the complicated assembly in the detector box modules carried out at the Variable Energy Cyclotron Centre, Calcutta. More than 400 lead converter plates were machined in Calcutta to rigorous tolerances of 0.2 mm. The assembled detector box modules and lead plates were shipped to CERN in spring 1994 for tests and installation. The WA98 PMD consists of over 50,000 scintillator pads of sizes varying from 15 to 25 mm

  15. Investigation of the electronic structure of high-temperature superconductors and related transition metal oxides with near-edge x-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Gerhold, S.

    2001-01-01

    The unoccupied electronic structure and its orbital character has been studied with polarization-dependent near-edge x-ray absorption spectroscopy (NEXAFS) for selected high-temperature superconductors (HTSC) and related transition metal oxides. Although YBa 2 Cu 3 O 7-δ (Y-123) is arguably the best-investigated HTSC a conclusive NEXAFS study on how partial substitution of Cu by other transition metals affects the electronic structure has sorely been missing. The study presented here on a series of well characterized YBa 2 Cu 3-x Fe x O y single crystals shows that the cause for T c suppression is not at all magnetic pair breaking but charge carrier depletion, primarily in the chains; effects from disorder cannot be excluded. Annealing at high oxygen pressure increases along with oxygen content both the hole concentration and T c . Fe 3d-O 2p-derived states contribute prominently to the spectra for all polarizations a few eV above E F . Iron prefers a trivalent state in Y-123; upon reduction a spin transition can be observed. As YBa 2 Cu 3-x Fe x O y single crystals cannot be detwinned it is very difficult to distinguish between contributions from planes and chains to the spectra. In this situation thin films grown with a reduced degree of twinning ('twin-poor') allow more detailed investigations. An extended self-absorption correction was developed for fluorescence yield NEXAFS on epitactical HTSC thin films. Its application to twin-poor Y-123 thin films demonstrates that (apart from the effect of residual twins) the spectral information is equivalent to that of detwinned single crystals for a range of optimum film thicknesses, and this in turn allows to augment the NEXAFS study of YBa 2 Cu 3-x Fe x O y with spectra for corresponding twin-poor thin films. The system Ca 2-x (Sr,La) x RuO 4 is structurally related to the HTSCs; the development of its unoccupied electronic structure with x was investigated in this work, with emphasis on the metal

  16. Verification of a simple method to achieve alpha/beta separation in LSC for the case of urine samples

    International Nuclear Information System (INIS)

    Oestergren, Inger; Norrlid, Lilian; Wallberg, Lena

    2008-01-01

    Full text: As a part of the national Swedish network of laboratories in emergency response and preparedness, the radio-analytical laboratory of the Swedish Radiation Protection Authority (SSI) should provide with fast and reliable measurements. To this purpose, Liquid Scintillation Counting (LSC) offers the advantages of reduced time for sample preparation, zero sample self-absorption, simultaneously measurement of alpha and beta emitters and high efficiency. The LSC detection system at SSI is a Quantulus 1220, which is a system permitting pulses produced by alpha and beta radiation to be discriminated when adjusting the software parameter Pulse Shape Analysis (PSA). Previously, different authors have found that the dependency of the optimum PSA on scintillation/vial combination is negligible in front of the strong influence of the sample quenching. Also the optimum PSA parameter is found according to each sample quench level, so as the composition of a standard and a real sample should be as close as possible. When handling samples of variable quenching levels, like for example urine, two possibilities have been suggested: 1) To determine the degree of quench in a short count of the samples and then use individual optimum PSA for each sample counting protocol; or 2) To have alpha and beta standards equivalent in quenching to the least quenched sample, determine PSA and quench the standards progressively. Then the percent of total interference is obtained as a function of the quench parameter for a single PSA setting, which permits the samples to be counted with the same protocol and a correction for interference can be applied afterwards. The case of urine is interesting since it is 95 % water but it may contain traces of amino acids and varying amounts of electrolytes, depending upon dietary intake. In this paper we applied number 2. The standards have been quenched to simulate human urine quench levels. The aim is to obtain the look-up table for the percent of

  17. High-resolution TNG spectra of T Tauri stars. Near-IR GIANO observations of the young variables XZ Tauri and DR Tauri

    Science.gov (United States)

    Antoniucci, S.; Nisini, B.; Biazzo, K.; Giannini, T.; Lorenzetti, D.; Sanna, N.; Harutyunyan, A.; Origlia, L.; Oliva, E.

    2017-10-01

    Aims: We aim to characterise the star-disk interaction region in T Tauri stars that show photometric and spectroscopic variability. Methods: We used the GIANO instrument at the Telescopio Nazionale Galileo to obtain near-infrared high-resolution spectra (R 50 000) of XZ Tau and DR Tau, which are two actively accreting T Tauri stars classified as EXors. Equivalent widths and profiles of the observed features are used to derive information on the properties of the inner disk, the accretion columns, and the winds. Results: Both sources display composite H I line profiles, where contributions from both accreting gas and high-velocity winds can be recognised. These lines are progressively more symmetric and narrower with increasing upper energy which may be interpreted in terms of two components with different decrements or imputed to self-absorption effects. XZ Tau is observed in a relatively high state of activity with respect to literature observations. The variation of the He I 1.08 μm line blue-shifted absorption, in particular, suggests that the inner wind has undergone a dramatic change in its velocity structure, connected with a recent accretion event. DR Tau has a more stable wind as its He I 1.08 μm absorption does not show variations with time in spite of strong variability of the emission component. The IR veiling in the two sources can be interpreted as due to blackbody emission at temperatures of 1600 K and 2300 K for XZ Tau and DR Tau, respectively, with emitting areas 30 times larger than the central star. While for XZ Tau these conditions are consistent with emission from the inner rim of the dusty disk, the fairly high temperature inferred for DR Tau might suggest that its veiling originates from a thick gaseous disk located within the dust sublimation radius. Strong and broad metallic lines, mainly from C I and Fe I, are detected in XZ Tau, similar to those observed in other EXor sources during burst phases. At variance, DR Tau shows weaker and

  18. METHANOL IN THE STARLESS CORE, TAURUS MOLECULAR CLOUD-1

    Energy Technology Data Exchange (ETDEWEB)

    Soma, Tatsuya; Sakai, Nami; Watanabe, Yoshimasa; Yamamoto, Satoshi, E-mail: soma@taurus.phys.s.u-tokyo.ac.jp [Department of Physics, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2015-04-01

    To explore the formation mechanisms of gas phase CH{sub 3}OH in cold starless cores, we have conducted high spectral resolution observations toward the cyanopolyyne peak of Taurus Molecular Cloud-1 (TMC-1 CP) with the IRAM 30 m telescope, the Green Bank Telescope, and the Nobeyama 45 m telescope. The spectral lines of CH{sub 3}OH toward TMC-1 CP are found to have a double-peaked profile separated by 0.5 km s{sup −1}. Since the double-peaked profile is observed for {sup 13}CH{sub 3}OH, it is not due to optical depth and/or self-absorption effects. The spectral line profile of CH{sub 3}OH is much different from those of C{sup 34}S, C{sub 3}S, and HC{sub 7}N observed toward this source. The H{sub 2} densities of the emitting region of CH{sub 3}OH for the blueshifted and redshifted components are derived to be (1.7 ± 0.5) × 10{sup 4} cm{sup −3} and (4.3 ± 1.2) × 10{sup 4} cm{sup −3}, respectively. These densities are similar to or slightly lower than those found for the other molecules. These results suggest a chemical differentiation between CH{sub 3}OH and the other molecules, which has indeed been confirmed by mapping observations of the CH{sub 3}OH and C{sup 34}S lines. These results are consistent with the general idea that CH{sub 3}OH is formed on dust grains and is liberated into the gas phase by non-thermal desorption. The grain-surface origin of CH{sub 3}OH is further confirmed by the CH{sub 3}OH/{sup 13}CH{sub 3}OH ratio. Weak shocks caused by accreting diffuse gas to the TMC-1 filament, photoevaporation caused by cosmic-ray induced UV radiation, and the desorption of excess reaction energy in the formation of CH{sub 3}OH on dust grains are discussed for the desorption mechanisms.

  19. Highly accurate determination of relative gamma-ray detection efficiency for Ge detector and its application

    International Nuclear Information System (INIS)

    Miyahara, H.; Mori, C.; Fleming, R.F.; Dewaraja, Y.K.

    1997-01-01

    When quantitative measurements of γ-rays using High-Purity Ge (HPGe) detectors are made for a variety of applications, accurate knowledge of oy-ray detection efficiency is required. The emission rates of γ-rays from sources can be determined quickly in the case that the absolute peak efficiency is calibrated. On the other hand, the relative peak efficiencies can be used for determination of intensity ratios for plural samples and for comparison to the standard source. Thus, both absolute and relative detection efficiencies are important in use of γ-ray detector. The objective of this work is to determine the relative gamma-ray peak detection efficiency for an HPGe detector with the uncertainty approaching 0.1% . We used some nuclides which emit at least two gamma-rays with energies from 700 to 2400 keV for which the relative emission probabilities are known with uncertainties much smaller than 0.1%. The relative peak detection efficiencies were calculated from the measurements of the nuclides, 46 Sc, 48 Sc, 60 Co and 94 Nb, emitting two γ- rays with the emission probabilities of almost unity. It is important that various corrections for the emission probabilities, the cascade summing effect, and the self-absorption are small. A third order polynomial function on both logarithmic scales of energy and efficiency was fitted to the data, and the peak efficiency predicted at certain energy from covariance matrix showed the uncertainty less than 0.5% except for near 700 keV. As an application, the emission probabilities of the 1037.5 and 1212.9 keV γ-rays for 48 Sc were determined using the function of the highly precise relative peak efficiency. Those were 0.9777+0,.00079 and 0.02345+0.00017 for the 1037.5 and 1212.9 keV γ-rays, respectively. The sum of these probabilities is close to unity within the uncertainty which means that the certainties of the results are high and the accuracy has been improved considerably

  20. Disintegration-Rate Determination by 4 {pi} Counting; Determination du taux de desintegrations par comptage 4 {pi}; Opredelenie skorosti raspada pri pomotsi 4 {pi} schetchikov; Determinacion de la velocidad de desintegracion por recuento 4 {pi}

    Energy Technology Data Exchange (ETDEWEB)

    Pate, Brian D [Chemistry Department, Washington University, St. Louis, MO (United States)

    1960-06-15

    The history of the development of the 4 {pi} counting method is reviewed. The unique properties of the 4 {pi} counter system are described and the criteria are specified which place disintegration rate measurements, made with the system, on an absolute basis. The types of radioactive decay process to which the method is applicable are outlined, together with the various errors to which a given measurement is liable. Departure of response probability from unity, absorption of radiation in the source-mounting system, and source self-absorption are discussed in detail. (author) [French] L'auteur fait l'historique des progres de la methode de comptage 4 {pi}. Il decrit les proprietes remarquables du dispositif de comptage 4 {pi} et precise les conditions dans lesquelles les mesures du taux de desintegration se font avec ce dispositif sur une base absolue. Il donne un apercu des types de processus de desintegration radioactive, ainsi que de diverses erreurs auxquelles est sujette une mesure donnee. Il examine en detail le cas ou la probabilite de reponse s'ecarte de l'unite, l'absorption des rayonnements dans le support de la source et l'autoabsorption de la source. (author) [Spanish] En la memoria el autor expone el desarrollo del metodo de recuento 4 {pi}. Describe las caracteristicas particulares de este metodo y explica las razones por las que las mediciones de la velocidad de desintegracion efectuadas segun ese procedimiento tienen un caracter absoluto. Se indican, asimismo, los tipos de procesos de desintegracion radiactiva a los que se puede aplicar el metodo, asi como los diferentes defectos de que puede adolecer una medicion determinada. Tambien se estudia detenidamente el caso en que la probabilidad de respuesta no es igual a la unidad, la absorcion de radiaciones en el soporte de la fuente y la autoabsorcion de la misma. (author) [Russian] Daetsya obzor istorii razvitiya metoda scheta s pomoshch'yu 4 {pi} schetchikov. Privoditsya opisanie unikal'nykh svojstv

  1. The Non-Destructive Determination of Burn-Up by Means of the Pr{sup l44} 2.18 M Gamma Activity

    Energy Technology Data Exchange (ETDEWEB)

    Forsyth, R S; Blackadder, W H

    1965-05-15

    In recent years, gamma scanning has been used at several establishments for the determination of the burn-up profile along irradiated fuel elements, the 0.75 MeV gamma from Zr-95/Nb-95 being most often employed as the monitored radiation. Difficulties in establishing the geometry and the self-absorption of the gamma activity in the fuel have tended to prevent the application of the method to quantitative burn-up determination, which has usually been carried out by dissolution of selected portions of the fuel followed by conventional fission product separation or by uranium depletion methods. The present paper describes experiments carried out to calibrate a gamma scanner for quantitative measurements by counting the 2.18 MeV gamma activity due to Pr-144, the short-lived daughter of Ce-144 (t{sub 1/2} = 285 days) from selected pellets in several UO{sub 2} fuel specimens. Accurate burn-up values were then determined by dissolution and application of the isotopic dilution method, using stable molybdenum fission products. The elements, which were rotated about their longitudinal axes to minimize asymmetry effects, were viewed by a sodium iodide crystal and a multichannel analyser through a suitable collimator. Correction for attenuation of the gamma activity (much less than for 0.75 MeV) in the fuel elements which were of different diameters (12.6 to 15.04 mm) was made by applying relative attenuation factors and the effective geometry factor of the instrument was determined. In order to check the corrections applied, the counter factor was also calculated, for the 0.75 MeV activity from Zr-95/Nb-95 and in certain cases for the 0.66 MeV activity from Cs-137. The results obtained, demonstrate that at least over the range of diameters and cooling times used the method is suitable for quantitative determinations. Preliminary experiments to explore the possibility of using the high energy gammas (2.35, 2.65 MeV) from Rh-106 as a method for estimating the fraction of

  2. Quantitative 3D elemental analysis inside plant roots by means of synchrotron confocal micro X-ray fluorescence

    Science.gov (United States)

    Terzano, R.; Vekemans, B.; Tomasi, N.; Spagnuolo, M.; Schoonjans, T.; Vincze, L.; Pinton, R.; Cesco, S.; Ruggiero, P.

    2009-04-01

    The knowledge of the distribution and concentration of elements within plants is a fundamental step to better understand how these plants uptake specific elements from the medium of growth and how they manage acquisition and compartmentalisation of nutrients as well as toxic metals. For some elements, either nutrients or toxicants, it can be of relevance to know their concentration level within microscopic volumes in plant organs, where they are stored or accumulated. Usually, this type of microscopic analysis requires complex cutting procedures and extensive sample manipulations. In this research, the technique of synchrotron micro X-ray fluorescence in the confocal mode was applied to image the distribution of elements in selected key-planes of tomato roots without the need of any sample preparation, except washing and freeze-drying. Using this method, a first polycapillary lens focussed the X-ray beam with an energy of 12.4 keV down to a 20 µm beam that is penetrating the sample, and a second polycapillary half-lens, that was positioned at the detection side at 90 degrees to the first polycapillary, could then restrict further the view on this irradiated volume to a defined microscopic volume (typically 20x20x20 µm3) from which the induced fluorescent radiation is finally collected by the energy dispersive detector. In this way, it was possible to investigate the concentration levels of some elements such as K, Ca, Mn, Fe, Cu and Zn within the roots of tomato plants. The quantification was performed by means of a dedicated XRF Fundamental Parameter (FP) method in order to calculate the concentrations of trace elements within the analysed plants. Utilizing fundamental atomic parameters, the applied FP method is taking into account the influence of sample self-absorption and especially the specific detection processes by the polycapillary lens. Quantification was assessed and validated by using different standards: NIST SRM 1573a (trace elements in tomato leaves

  3. Development, improvement and calibration of neutronic reaction rates measurements: elaboration of a standard techniques basis

    International Nuclear Information System (INIS)

    Hudelot, J.P.

    1998-06-01

    In order to improve and to validate the neutronics calculation schemes, perfecting integral measurements of neutronics parameters is necessary. This thesis focuses on the conception, the improvement and the development of neutronics reaction rates measurements, and aims at building a base of standard techniques. Two subjects are discussed. The first one deals with direct measurements by fission chambers. A short presentation of the different usual techniques is given. Then, those last ones are applied through the example of doubling time measurements on the EOLE facility during the MISTRAL 1 experimental programme. Two calibration devices of fission chambers are developed: a thermal column located in the central part of the MINERVE facility, and a calibration cell using a pulsed high flux neutron generator and based on the discrimination of the energy of the neutrons with a time-of-flight method. This second device will soon allow to measure the mass of fission chambers with a precision of about 1 %. Finally, the necessity of those calibrations will be shown through spectral indices measurements in core MISTRAL 1 (UO 2 ) and MISTRAL 2 (MOX) of the EOLE facility. In each case, the associated calculation schemes, performed using the Monte Carlo MCNP code with the ENDF-BV library, will be validated. Concerning the second one, the goal is to develop a method for measuring the modified conversion ratio of 238 U (defined as the ratio of 238 U capture rate to total fission rate) by gamma-ray spectrometry of fuel rods. Within the framework of the MISTRAL 1 and MISTRAL 2 programmes, the measurement device, the experimental results and the spectrometer calibration are described. Furthermore, the MCNP calculations of neutron self-shielding and gamma self-absorption are validated. It is finally shown that measurement uncertainties are better than 1 %. The extension of this technique to future modified conversion ratio measurements for 242 Pu (on MOX rods) and 232 Th (on

  4. Development, improvement and calibration of neutronic reaction rate measurements: elaboration of a base of standard techniques

    International Nuclear Information System (INIS)

    Hudelot, J.P.

    1998-01-01

    In order to improve and to validate the neutronic calculation schemes, perfecting integral measurements of neutronic parameters is necessary. This thesis focuses on the conception, the improvement and the development of neutronic reaction rates measurements, and aims at building a base of standard techniques. Two subjects are discussed. The first one deals with direct measurements by fission chambers. A short presentation of the different usual techniques is given. Then, those last ones are applied through the example of doubling time measurements on the EOLE facility during the MISTRAL 1 experimental programme. Two calibration devices of fission chambers are developed: a thermal column located in the central part of the MINERVE facility, and a calibration cell using a pulsed high flux neutron generator and based on the discrimination of the energy of the neutrons with a time-of-flight method. This second device will soon allow to measure the mass of fission chambers with a precision of about 1 %. Finally, the necessity of those calibrations will be shown through spectral indices measurements in core MISTRAL 1 (UO 2 ) and MISTRAL 2 (MOX) of the EOLE facility. In each case, the associated calculation schemes, performed using the Monte Carlo MCNP code with the ENDF-BV library, will be validated. Concerning the second one, the goal is to develop a method for measuring the modified conversion ratio of 238 U (defined as the ratio of 238 U capture rate to total fission rate) by gamma-ray spectrometry of fuel rods. Within the framework of the MISTRAL 1 and MISTRAL 2 programmes, the measurement device, the experimental results and the spectrometer calibration are described. Furthermore, the MCNP calculations of neutron self-shielding and gamma self-absorption are validated. It is finally shown that measurement uncertainties are better than 1 %. The extension of this technique to future modified conversion ratio measurements for 242 Pu (on MOX rods) and 232 Th (on Thorium

  5. Análisis de la figura humana en niños y niñas desplazados en Colombia (analysis of the human figure in displaced children in Colombia

    Directory of Open Access Journals (Sweden)

    José Alonso Andrade Salazar

    2015-01-01

    Full Text Available Resumen: Esta es una investigación exploratoria cuyo objetivo es analizar las características psicológicas proyectadas en el dibujo de la figura humana en 45 niños y niñas en situación de desplazados en Colombia. El estudio se ha realizó en el departamento del Quindío, a partir de la aplicación del Test del Dibujo de la Figura Humana de Karen Machover a niños y niñas en situación de desplazamiento forzado. Muchos niños y niñas presentan problemas de ajuste a los nuevos entornos de socialización como efecto de las secuelas del conflicto armado evidentes en áreas conflictivas proyectadas en el dibujo tales como cabeza, expresiones faciales, extremidades, tronco y escases de movimiento. El conflicto persiste de formas simbólicas en los niños y niñas, lo cual dificulta sus habilidades sociales, la relación intrafamiliar y el aprendizaje, mostrando en muchos casos reacciones defensivas tales como, elevados niveles de ansiedad, depresión, ensimismamiento, al igual que impulsividad, agresión y aptitudes desafiantes Abstract: This is an exploratory research that aims to analyze the psychological characteristics in analyzing the human figure in 45 displaced children in Colombia. The study was conducted in the State of Quindío, based on the application of the Karen Machover - Human Figure Drawing Test to children in a situation of forced displacement. Many children experience problems adjusting to new environments of socialization as a result of the aftermath of the armed conflict, which are made evident in conflict areas projected in the drawing, such as head, facial expressions, limbs, trunk and scarcity of movement. The conflict persists of symbolic forms in children, which hinders their social skills, family relationship and learning, showing in many cases defensive reactions such as high levels of anxiety, depression and self-absorption, as well as impulsivity, aggression, and challenging abilities

  6. The ALFALFA H I mass function: a dichotomy in the low-mass slope and a locally suppressed `knee' mass

    Science.gov (United States)

    Jones, Michael G.; Haynes, Martha P.; Giovanelli, Riccardo; Moorman, Crystal

    2018-06-01

    We present the most precise measurement of the z = 0 H I mass function (HIMF) to date based on the final catalogue of the ALFALFA (Arecibo Legacy Fast ALFA) blind H I survey of the nearby Universe. The Schechter function fit has a `knee' mass log (M_{*} h2_{70}/M_{⊙}) = 9.94 ± 0.01 ± 0.05, a low-mass slope parameter α = -1.25 ± 0.02 ± 0.1, and a normalization φ _{*} = (4.5 ± 0.2 ± 0.8) × 10^{-3} h3_{70} Mpc^{-3 dex^{-1}}, with both random and systematic uncertainties as quoted. Together these give an estimate of the H I content of the z = 0 Universe as Ω _{H I} = (3.9 ± 0.1 ± 0.6) × 10^{-4} h^{-1}_{70} (corrected for H I self-absorption). Our analysis of the uncertainties indicates that the `knee' mass is a cosmologically fair measurement of the z = 0 value, with its largest uncertainty originating from the absolute flux calibration, but that the low-mass slope is only representative of the local Universe. We also explore large-scale trends in α and M* across the ALFALFA volume. Unlike with the 40 per cent sample, there is now sufficient coverage in both of the survey fields to make an independent determination of the HIMF in each. We find a large discrepancy in the low-mass slope (Δα = 0.14 ± 0.03) between the two regions, and argue that this is likely caused by the presence of a deep void in one field and the Virgo cluster in the other. Furthermore, we find that the value of the `knee' mass within the Local Volume appears to be suppressed by 0.18 ± 0.04 dex compared to the global ALFALFA value, which explains the lower value measured by the shallower H I Parkes All Sky Survey (HIPASS). We discuss possible explanations and interpretations of these results and how they can be expanded on with future surveys.

  7. Dosimetry of beta sources utilized in nuclear medicine and biomedicine

    International Nuclear Information System (INIS)

    Bergoc, R.M.; Rivera, E.; Cricco, G.; Martin, G.; Cocca, C.; Caro, R.A.

    1998-01-01

    Full text: The use of high energy pure beta sources (i.e., 32 P= 1.71 MeV/des) is common in medicine (intratumoral therapy or treatment of non-malignant illness as restenosis) and in biochemistry (molecular biology). The external dosimetry of these sources offers some important points that must be considered: 1) beta particles emitted by the source are not monoenergetic; 2) the range (R 0 ) vary with the source energy and the Z of the absorber; 3) below an energy of 1 MeV, the specific ionization in the absorbent medium (air, water, lucite) increases as the beta energy (E β ) decreases; 4) the range of beta particles, R β , is independent from Z of the material, provided Z is low and the material has no hydrogen; in this case, the expression: R β δ 1 = R β δ 2 is valid; 5) the calculation of the external beta dosimetry must consider that since the used sources are not punctual there is self-absorption which should be taken into account. However, in the range of the fractions of activities for the above mentioned practices a theoretical model for punctual sources can be used; in this case, it is valid to use the expression: Dose Rate: = A (S/δ)E β e -S/δ δx /4 π d 2 , where: (S/δ) is the absorbent Mass Stopping Power and represents the loss of energy by unit mass thickness; it depends from E β and it is independent from Z; (δx) is the mass thickness of the absorber. By this way, e -S/δ δx is the attenuation of the beta particles flow. From the application of this formula it can be deduced that, for sources of 1 mCi of 32 P activities, as those employed in biochemistry, a small thickness of lucite is enough shield. When the source has higher activities, as those used in radiotherapy, the operator should take into account the regulations for a strict dosimetric control. These formulae allow a simplified calculation of the 32 P dosimetry of sources used in nuclear medicine and biomedical practices. (author) [es

  8. Direct determination of Ti content in sunscreens with laser-induced breakdown spectroscopy: Line selection method for high TiO{sub 2} nanoparticle concentration

    Energy Technology Data Exchange (ETDEWEB)

    Menneveux, Jérôme; Wang, Fang; Lu, Shan; Bai, Xueshi; Motto-Ros, Vincent [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex (France); Gilon, Nicole [Institut des Sciences Analytiques, UMR5280 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex (France); Chen, Yanping [Department of Physics and Astrophysics, Shanghai Jiao Tong University, Shanghai 200240 (China); Yu, Jin, E-mail: jin.yu@univ-lyon1.fr [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex (France); Department of Physics and Astrophysics, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-07-01

    Sunscreen represents a large variety of creams which, in the analytical point of view, exhibit a similar matrix. Such matrix corresponds to a semi-solid emulsion of mixture of oil and water. The formulation of a cream can include metal and nonmetal elements in different contents in order to realize specific pharmaceutical or cosmetic functions designed for the product. The complex matrix of these materials makes their analysis challenging for classical elemental analytical techniques with specific and complicated sample pretreatment procedures needed for reliable quantification. In this work we demonstrate and assess direct determination, without any pretreatment, of elemental content, especially for metallic element such as titanium, in a sunscreen using laser-induced breakdown spectroscopy (LIBS). The used configuration corresponds to that of indirect ablation of a thin film of cream applied on the surface of a pure aluminum target. We especially focused, in this work, on the case of high concentration of TiO{sub 2} nanoparticle in cream. Such choice was justified first by the fact that such concentration level is usually found in commercial sunscreens. On the other hand, titanium presents a large number of lines, neutral as well as singly ionized, in the spectral range from the near UV to the near IR. It provides therefore an ideal case to study line selection method to manage the effect of self-absorption, which becomes unavoidable at high concentration level, and to optimize measurement precision. Through such study, we try to deduce a quantifiable and generalizable line selection method for high performance LIBS measurements. More specifically, calibration curves were first established using 6 laboratory-prepared samples. The quadratic term of the curves was then studied as a function of the intensity of the used lines and their type (neutral or ion, resonant or non-resonant). The prediction performance of the lines was assessed with 2 validation samples with

  9. Measurement of the Shape of the Optical-IR Spectrum of Prompt Emission from Gamma-Ray Bursts

    Science.gov (United States)

    Grossan, Bruce; Kistaubayev, M.; Smoot, G.; Scherr, L.

    2017-06-01

    While the afterglow phase of gamma-ray bursts (GRBs) has been extensively measured, detections of prompt emission (i.e. during bright X-gamma emission) are more limited. Some prompt optical measurements are regularly made, but these are typically in a single wide band, with limited time resolution, and no measurement of spectral shape. Some models predict a synchrotron self-absorption spectral break somewhere in the IR-optical region. Measurement of the absorption frequency would give extensive information on each burst, including the electron Lorentz factor, the radius of emission, and more (Shen & Zhang 2008). Thus far the best prompt observations have been explained invoking a variety of models, but often with a non-unique interpretation. To understand this apparently heterogeneous behavior, and to reduce the number of possible models, it is critical to add data on the optical - IR spectral shape.Long GRB prompt X-gamma emission typically lasts ~40-80 s. The Swift BAT instrument rapidly measures GRB positions to within a few arc minutes and communicates them via the internet within a few seconds. We have measured the time for a fast-moving D=700 mm telescope to point and settle to be less than 9 s anywhere on the observable sky. Therefore, the majority of prompt optical-IR emission can be measured responding to BAT positions with this telescope. In this presentation, we describe our observing and science programs, and give our design for the Burst Simultaneous Three-channel Instrument (BSTI), which uses dichroics to send eparate bands to 3 cameras. Two EMCCD cameras, give high-time resolution in B and V; a third camera with a HgCdTe sensor covers H band, allowing us to study extinguished bursts. For a total exposure time of 10 s, we find a 5 sigma sensitivity of 21.3 and 20.3 mag in B and R for 1" seeing and Kitt Peak sky brightness, much fainter than typical previous prompt detections. We estimate 5 sigma H-band sensitivity for an IR optimized telescope to be

  10. The FTS atomic spectrum tool (FAST) for rapid analysis of line spectra

    Science.gov (United States)

    Ruffoni, M. P.

    2013-07-01

    The FTS Atomic Spectrum Tool (FAST) is an interactive graphical program designed to simplify the analysis of atomic emission line spectra obtained from Fourier transform spectrometers. Calculated, predicted and/or known experimental line parameters are loaded alongside experimentally observed spectral line profiles for easy comparison between new experimental data and existing results. Many such line profiles, which could span numerous spectra, may be viewed simultaneously to help the user detect problems from line blending or self-absorption. Once the user has determined that their experimental line profile fits are good, a key feature of FAST is the ability to calculate atomic branching fractions, transition probabilities, and oscillator strengths-and their uncertainties-which is not provided by existing analysis packages. Program SummaryProgram title: FAST: The FTS Atomic Spectrum Tool Catalogue identifier: AEOW_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEOW_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 3 No. of lines in distributed program, including test data, etc.: 293058 No. of bytes in distributed program, including test data, etc.: 13809509 Distribution format: tar.gz Programming language: C++. Computer: Intel x86-based systems. Operating system: Linux/Unix/Windows. RAM: 8 MB minimum. About 50-200 MB for a typical analysis. Classification: 2.2, 2.3, 21.2. Nature of problem: Visualisation of atomic line spectra including the comparison of theoretical line parameters with experimental atomic line profiles. Accurate intensity calibration of experimental spectra, and the determination of observed relative line intensities that are needed for calculating atomic branching fractions and oscillator strengths. Solution method: FAST is centred around a graphical interface, where a user may view sets of experimental line profiles and compare

  11. Single crystal and optical ceramic multicomponent garnet scintillators: A comparative study

    International Nuclear Information System (INIS)

    Wu, Yuntao; Luo, Zhaohua; Jiang, Haochuan; Meng, Fang; Koschan, Merry; Melcher, Charles L.

    2015-01-01

    Multicomponent garnet materials can be made in optical ceramic as well as single crystal form due to their cubic crystal structure. In this work, high-quality Gd 3 Ga 3 Al 2 O 12 :0.2 at% Ce (GGAG:Ce) single crystal and (Gd,Lu) 3 Ga 3 Al 2 O 12 :1 at% Ce (GLuGAG:Ce) optical ceramics were fabricated by the Czochralski method and a combination of hot isostatic pressing (HIPing) and annealing treatment, respectively. Under optical and X-ray excitation, the GLuGAG:Ce optical ceramic exhibits a broad Ce 3+ transition emission centered at 550 nm, while the emission peak of the GGAG:Ce single crystal is centered at 540 nm. A self-absorption effect in GLuGAG:Ce optical ceramic results in this red-shift of the Ce 3+ emission peak compared to that in the GGAG:Ce single crystal. The light yield under 662 keV γ-ray excitation was 45,000±2500 photons/MeV and 48,200±2410 photons/MeV for the GGAG:Ce single crystal and GLuGAG:Ce optical ceramic, respectively. An energy resolution of 7.1% for 662 keV γ-rays was achieved in the GLuGAG:Ce optical ceramic with a Hamamatsu R6231 PMT, which is superior to the value of 7.6% for a GGAG:Ce single crystal. Scintillation decay time measurements under 137 Cs irradiation show two exponential decay components of 58 ns (47%) and 504 ns (53%) for the GGAG:Ce single crystal, and 84 ns (76%) and 148 ns (24%) for the GLuGAG:Ce optical ceramic. The afterglow level after X-ray cutoff in the GLuGAG:Ce optical ceramic is at least one order of magnitude lower than in the GGAG:Ce single crystal. - Highlights: • GGAG:Ce single crystal and GLuGAG:Ce optical ceramics were fabricated. • The light yield of both ceramic and crystal G(Lu)GAG:Ce reached the level of 45,000 photons/MeV. • GLuGAG:Ce optical ceramic showed a better energy resolution of 7.1% for 662 keV. • GLuGAG:Ce ceramics exhibited lower afterglow level than that of GGAG:Ce single crystals. • The possible optimization strategies for multicomponent aluminate garnets are discussed

  12. Determination of effective resonance energies for the (n,γ) reactions of 152Sm and 165Ho by using dual monitors

    International Nuclear Information System (INIS)

    Budak, M.G.; Karadag, M.; Yuecel, H.

    2010-01-01

    The effective resonance energies E - bar r for the (n,γ) reactions of 152 Sm and 165 Ho isotopes were determined by using dual monitors ( 55 Mn- 98 Mo) due to their favourable resonance properties. The samples were irradiated in an isotropic neutron field obtained from 241 Am-Be neutron sources. The induced activities were measured with a high efficient, p-type Ge detector. The necessary correction factors for thermal neutron self-shielding (G th ), resonance neutron self-shielding (G epi ), self absorption (F s ) and true coincidence summing (F coi ) effects for the measured γ-rays were taken into account. Thus, the experimental E - bar r -values for above (n,γ) reactions are found to be 8.65 ± 1.80 eV for 152 Sm and 12.90 ± 2.69 eV for 165 Ho isotopes, respectively. The E - bar r -values for both 152 Sm and 165 Ho isotopes were also theoretically calculated from the newest resonance data in the literature. Theoretically calculated E - bar r -values are estimated to be 8.34 eV and 8.53 eV for 152 Sm by two different approaches, which are generally, much smaller than that the present experimental value by 1.4-3.6% for 152 Sm. In case of 165 Ho isotope, the theoretically calculated E - bar r -value of 8.63 eV from the first approach deviates substantially from the measured value by about 33%, whereas the theoretical E - bar r -value of 12.95 eV from the second approach agrees very well with our experimentally determined E - bar r -value. The results show that the present experimental E - bar r -values for 152 Sm and 165 Ho isotopes agree with the calculated ones from the second approach within limits of the estimated uncertainty if the recently evaluated resonance data are used. However, it is worth noting that the results for E - bar r -value calculated from the first approach are not satisfactorily accurate because of neglecting the neutron widths in that approach. Therefore, this study implies that it be regarded to the experimentally determined E - bar r

  13. Prompt-gamma neutron activation analysis for the non-destructive characterization of radioactive wastes; Prompt-Gamma-Neutronen-Aktivierungs-Analyse zur zerstoerungsfreien Charakterisierung radioaktiver Abfaelle

    Energy Technology Data Exchange (ETDEWEB)

    Kettler, John Paul Hermann

    2010-07-01

    In Germany, stringent official regulations govern the handling and final storage of radioactive waste. For this reason, the Federal Government has opted for final storage of radioactive waste with negligible heat generation in deep geological formations. At present the Konrad mine in Salzgitter will be rebuilt as a final disposal, the start of operation is scheduled for 2014. Radioactive waste with negligible heat generation originates from the operation and decommissioning of nuclear power plants, the medical sector or from research establishments. The requirements of the planning approval decision to build up the disposal Konrad, published on the 22{sup nd} of May 2002, obligate the waste producer to consider the limits for chemotoxic substances and to document the waste content. Before the radioactive waste can be stored in the final disposal, it is necessary to characterize the waste composition, relating to the concentration of water polluting substances. In particular for the wastes produced in the year before 1990, the so-called old wastes, there is a lack of documentation. The chemotoxicity of old wastes can mostly only characterized by time consuming and destructive methods. Furthermore these methods produce high costs, which depend on the arrangements to avoid contamination, to comply with the radiation protection and for the conditioning of the wastes. A prototype system, based on the Prompt-Gamma-Neutron-Activation-Analysis (PGNAA) with 14 MeV neutrons, has been developed in this work. This system allows the characterization of large samples, like 25 and 50 l drums. The signature of the element composition is in this processed by gamma-ray spectroscopy. This work was focused, in addition to the feasibility of the system, to the neutron and photon transport in large samples. Therefore the neutron and photon self-absorption in dependence of the sample composition were the main part of interest. Computer simulations (MCNP) and experiments were performed to

  14. Physical properties of CO-dark molecular gas traced by C+

    Science.gov (United States)

    Tang, Ningyu; Li, Di; Heiles, Carl; Wang, Shen; Pan, Zhichen; Wang, Jun-Jie

    2016-09-01

    Context. Neither Hi nor CO emission can reveal a significant quantity of so-called dark gas in the interstellar medium (ISM). It is considered that CO-dark molecular gas (DMG), the molecular gas with no or weak CO emission, dominates dark gas. Determination of physical properties of DMG is critical for understanding ISM evolution. Previous studies of DMG in the Galactic plane are based on assumptions of excitation temperature and volume density. Independent measurements of temperature and volume density are necessary. Aims: We intend to characterize physical properties of DMG in the Galactic plane based on C+ data from the Herschel open time key program, namely Galactic Observations of Terahertz C+ (GOT C+) and Hi narrow self-absorption (HINSA) data from international Hi 21 cm Galactic plane surveys. Methods: We identified DMG clouds with HINSA features by comparing Hi, C+, and CO spectra. We derived the Hi excitation temperature and Hi column density through spectral analysis of HINSA features. The Hi volume density was determined by utilizing the on-the-sky dimension of the cold foreground Hi cloud under the assumption of axial symmetry. The column and volume density of H2 were derived through excitation analysis of C+ emission. The derived parameters were then compared with a chemical evolutionary model. Results: We identified 36 DMG clouds with HINSA features. Based on uncertainty analysis, optical depth of HiτHi of 1 is a reasonable value for most clouds. With the assumption of τHi = 1, these clouds were characterized by excitation temperatures in a range of 20 K to 92 K with a median value of 55 K and volume densities in the range of 6.2 × 101 cm-3 to 1.2 × 103 cm-3 with a median value of 2.3 × 102 cm-3. The fraction of DMG column density in the cloud (fDMG) decreases with increasing excitation temperature following an empirical relation fDMG =-2.1 × 10-3Tex,(τHi = 1) + 1.0. The relation between fDMG and total hydrogen column density NH is given by f

  15. IN-SITU TRITIUM BETA DETECTOR

    International Nuclear Information System (INIS)

    Berthold, J.W.; Jeffers, L.A.

    1998-01-01

    design for construction and test. Significant improvements must be made in fluor-doped fiber performance in order to use the method for in situ monitoring to verify compliance with current EPA drinking water standards. Additional Phase 1 fiber development work should be performed to increase the fluor dopant concentration above 2% until the self-absorption limit is observed. Continued fiber optimization work is expected to improve the sensitivity limits, and will enable application of the detector to verify compliance with the US EPA drinking water standard of 20,000 pico Curies per liter. However, if the need for monitoring higher levels of tritium in water at concentrations greater than 200,000 pico Curies per liter is justified, then prototype development and testing could proceed either as a Phase 2 stand-alone effort or in parallel with continued Phase 1 development work

  16. Temporal evolution of the spectral lines emission and temperatures in laser induced plasmas through characteristic parameters

    International Nuclear Information System (INIS)

    Bredice, F.; Pacheco Martinez, P.; Sánchez-Aké, C.; Villagrán-Muniz, M.

    2015-01-01

    In this work, we propose an extended Boltzmann plot method to determine the usefulness of spectral lines for plasma parameter calculations. Based on the assumption that transient plasmas are under ideal conditions during an specific interval of time Δt, (i.e. thin, homogeneous and in local thermodynamic equilibrium (LTE)), the associated Boltzmann plots describe a surface in the space defined by the coordinates X = Energy, Y = Time and Z = ln (λ jl I j /g j A jl ), where I j is the integrated intensity of the spectral line, g j is the statistical weight of the level j, λ jl is the wavelength of the considered line and A jl is its transition rate. In order to express the Boltzmann plot surface in terms of a reduced set of constants B i , and δ i , we developed as a power series of time, the logarithm of I n (t)/I n (t 0 ), where I n (t) is the integrated intensity of any spectral line at time t, and I n (t 0 ) at initial time. Moreover, the temporal evolution of the intensity of any spectral line and consequently the temperature of the plasma can be also expressed with these constants. The comparison of the temporal evolution of the line intensity calculated using these constants with their experimental values, can be used as a criterion for selecting useful lines in plasma analysis. Furthermore, this method can also be applied to determine self-absorption or enhancement of the spectral lines, to evaluate a possible departure of LTE, and to check or estimate the upper level energy value of any spectral line. An advantage of this method is that the value of these constants does not depend on the spectral response of the detection system, the uncertainty of the transition rates belonging to the analyzed spectral lines or any other time-independent parameters. In order to prove our method, we determined the constants B i and δ i and therefore the Boltzmann plot surface from the temporal evolution of carbon lines obtained from a plasma generated by a Nd:YAG laser

  17. Measurement of radioactive lines in powdered milk samples in Londrina (Parana State, Brazil) region; Medida de tracos radioativos em amostras de leite em po da regiao de Londrina - PR

    Energy Technology Data Exchange (ETDEWEB)

    Melquiades, Fabio Luiz

    2000-07-01

    This work deals with the measurement of radioactive lines in powdered milk, with high resolution gamma spectrometry, using a HPGe detector with relative efficiency of 10%, coupled to the electronic nuclear chain and a multichannel card of 8192 channels. Some tests were realized before beginning the measurements. The first of them was to define the shield to be used, making several measured with different shields according to the available materials, opting finally for a shield composed of bricks of lead (10 cm thickness), plates of iron (4nm thickness) and of aluminum (2 mm thickness). Four different geometries for the samples recipients were tested, and the Marinelli beaker of 2,1 liters totally filled was the one which supplied the best peak/background ratio. A statistical inference was also realized to determine the sampling that represents each one of the lots of milk to be measured, resulting in a number of 6 samples, for a confidence level of 95%. Two different kinds of powdered milk produced at Londrina were analyzed, Integral Powdered Milk Cativa and Integral Powdered Milk Polly. The samples were properly put in the Marinelli beaker of 2,1 L, sealed and kept for 40 days to reach the secular equilibrium. The counting time for each measurement was two days. It was possible to identify the radionuclides {sup 40} K, {sup 137} Cs and {sup 232} Th (from {sup 208} Tl), whose activities were calculated according to the International Atomic Energy Agency norms (IAEA, 1989). The detector efficiency was measured using calibrated samples, prepared with the certified reference materials IAEA-326 and IAEA-375. Corrections for self-absorption were accomplished, based on measures of samples with different densities. The results obtained for the powdered milk Cativa were: 464{+-} 12 Bq/kg for {sup 40} K, 3,46 {sup {+-}} 1,05 and 0,46 {+-} 1,05 and 0,46 {+-} 0,16 Bq/kg for the minimum detectable activities of {sup 137} Cs and {sup 232} Th, respectively. For the milk Polly

  18. Temporal evolution of the spectral lines emission and temperatures in laser induced plasmas through characteristic parameters

    Energy Technology Data Exchange (ETDEWEB)

    Bredice, F., E-mail: faustob@ciop.unlp.edu.ar [Centro de Investigaciones Ópticas, P.O. Box 3 C. P.1897 Gonnet, La Plata (Argentina); Pacheco Martinez, P. [Grupo de Espectroscopía Óptica de Emisión y Láser, Universidad del Atlántico, Barranquilla (Colombia); Sánchez-Aké, C.; Villagrán-Muniz, M. [Laboratorio de Fotofísica, Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Apartado Postal 70-186, México D.F. 04510 (Mexico)

    2015-05-01

    In this work, we propose an extended Boltzmann plot method to determine the usefulness of spectral lines for plasma parameter calculations. Based on the assumption that transient plasmas are under ideal conditions during an specific interval of time Δt, (i.e. thin, homogeneous and in local thermodynamic equilibrium (LTE)), the associated Boltzmann plots describe a surface in the space defined by the coordinates X = Energy, Y = Time and Z = ln (λ{sub jl}I{sub j}/g{sub j}A{sub jl}), where I{sub j} is the integrated intensity of the spectral line, g{sub j} is the statistical weight of the level j, λ{sub jl} is the wavelength of the considered line and A{sub jl} is its transition rate. In order to express the Boltzmann plot surface in terms of a reduced set of constants B{sub i}, and δ{sub i}, we developed as a power series of time, the logarithm of I{sub n}(t)/I{sub n}(t{sub 0}), where I{sub n}(t) is the integrated intensity of any spectral line at time t, and I{sub n}(t{sub 0}) at initial time. Moreover, the temporal evolution of the intensity of any spectral line and consequently the temperature of the plasma can be also expressed with these constants. The comparison of the temporal evolution of the line intensity calculated using these constants with their experimental values, can be used as a criterion for selecting useful lines in plasma analysis. Furthermore, this method can also be applied to determine self-absorption or enhancement of the spectral lines, to evaluate a possible departure of LTE, and to check or estimate the upper level energy value of any spectral line. An advantage of this method is that the value of these constants does not depend on the spectral response of the detection system, the uncertainty of the transition rates belonging to the analyzed spectral lines or any other time-independent parameters. In order to prove our method, we determined the constants B{sub i} and δ{sub i} and therefore the Boltzmann plot surface from the temporal

  19. Assessment of natural radioactivity of sands in beaches from Great Vitoria, ES, Brazil

    International Nuclear Information System (INIS)

    Aquino, Reginaldo Ribeiro de

    2010-01-01

    In this work the concentrations of natural radionuclides 226 Ra, 232 Th and 40 K were determined in superficial sand samples for 16 locations throughout the coast of the Great Victory, metropolitan region of the state of Espirito Santo, Southeast of Brazil. The assessed beaches were Manguinhos and Jacaraipe in Serra county, Camburi, Praia do Canto and Curva da Jurema in Vitoria county, Praia da Costa and Itapua in Vila Velha county, Setibao, Setibinha, Praia do Morro, Praia das Castanheiras and Areia Preta in Guarapari county and sand of the Paulo Cesar Vinha Reserve also located in Guarapari county. Three sand samples of each beach were sealed in 100 mL high density polyethylene flasks. After approximately 4 weeks in order to reach secular equilibrium in the 238 U and 2 '3 2 Th series, the samples were measured by high resolution gamma spectrometry and the spectra analyzed with the WinnerGamma software. The self absorption correction was performed for all samples. The 226 Ra concentration was determined from the weighted average concentrations of 214 Pb and 21 '4Bi, the 232 Th concentration was determined from the weighted average concentrations of 228 Ac, 2 '1 2 Pb and 212 Bi and the concentration of 40 K is determined by its single gamma transition of 1460 keV. The radium equivalent concentration and the external hazard index where obtained from the concentrations of 226 Ra, 232 Th and 4 '0K. 226 Ra concentrations show values varying from 3 +- 1 Bq.kg-1 to 738 +- 38 Bq.kg -1 , with the highest values for the central locality of the Camburi beach. 232 Th concentrations show values varying from 7 +- 3 Bq.kg -1 to 7422 +- 526 Bq.kg -1 , with the highest values for Areia Preta beach. 40 K concentrations show values varying from 14 +- 6 Bq.kg -1 to 638 +- 232 Bq.kg -1 , with the highest values for Areia Preta beach. Calculation of the radium equivalent and the external hazard index showed two distinct groups. In the first one, for the majority of the beaches, the

  20. Production of Molybdenum-99 using Neutron Capture Methods

    Energy Technology Data Exchange (ETDEWEB)

    Toth, James J; Greenwood, Lawrence R; Soderquist, Chuck Z; Wittman, Richard S; Pierson, Bruce D; Burns, Kimberly A; Lavender, Curt A; Painter, Chad L; Love, Edward F; Wall, Donald E

    2011-01-01

    the system has exactly the same chemical and radiochemical characteristics as the Tc-99m currently produced by standard generator systems. Analysis results indicate: • The production of Mo99 is a function of the neutron flux in the thermal and epithermal region, the target volume, and the target geometry. Calculations show that neutron self-absorption is not very important such that large (2 cm OD or more) cylinders of molybdenum can be irradiated without significant losses. • Efficient use of target volume design is function of simultaneously optimizing the amount of molybdenum that can be inserted into each irradiation capsule and the amount of interconnected porosity within the specimen body to enhance the rate of post-irradiation dissolution. • Neutron capture of natural molybdenum may effectively achieve up to 1 Ci/g Mo99 in a 144 hour irradiation period, when using the fuel annulus plus a beryllium reflector configuration.

  1. Characterization of neutron flux spectra in the irradiation sites of a 37 GBq {sup 241}Am-Be isotopic source

    Energy Technology Data Exchange (ETDEWEB)

    Yücel, Haluk [Ankara University, Institute of Nuclear Sciences, 06100 Tandogan, Ankara (Turkey); Budak, Mustafa Guray, E-mail: mbudak@gazi.edu.tr [Gazi University, Gazi Education Faculty, 06500 Teknikokullar, Ankara (Turkey); Karadag, Mustafa [Gazi University, Gazi Education Faculty, 06500 Teknikokullar, Ankara (Turkey); Yüksel, Alptuğ Özer [Ankara University, Institute of Nuclear Sciences, 06100 Tandogan, Ankara (Turkey)

    2014-11-01

    Highlights: • An irradiation unit was installed using a 37 GBq {sup 241}Am-Be neutron source. • The source neutrons moderated by using both water and paraffin. • Irradiation unit was shielded by boron oxide and lead against neutrons and gammas. • There are two sites for irradiations, one of them has a pneumatic transfer system. • Cadmium ratio method was used for irradiation site characterization. - Abstract: For the applicability of instrumental neutron activation analysis (NAA) technique, an irradiation unit with a 37 GBq {sup 241}Am-Be neutron source was installed at Institute of Nuclear Sciences of Ankara University. Design and configuration properties of the irradiation unit are described. It has two different sample irradiation positions, one is called site #1 having a pneumatic sample transfer system and the other is site #2 having a location for manual use. In order to characterize neutron flux spectra in the irradiation sites, the measurement results were obtained for thermal (φ{sub th}) and epithermal neutron fluxes (φ{sub epi}), thermal to epithermal flux ratio (f) and epithermal spectrum shaping factors (α) by employing cadmium ratios of gold (Au) and molybdenum (Mo) monitors. The activities produced in these foils were measured by using a p-type, 44.8% relative efficiency HPGe well detector. For the measured γ-rays, self-absorption and true coincidence summing effects were taken into account. Additionally, thermal neutron self-shielding and resonance neutron self-shielding effects were taken into account in the measured results. For characterization of site #1, the required parameters were found to be φ{sub th} = (2.11 ± 0.05) × 10{sup 3} n cm{sup −2} s{sup −1}, φ{sub epi} = (3.32 ± 0.17) × 10{sup 1} n cm{sup −2} s{sup −1}, f = 63.6 ± 1.5, α = 0.045 ± 0.009, respectively. Similarly, those parameters were measured in site #2 as φ{sub th} = (1.49 ± 0.04) × 10{sup 3} n cm{sup −2} s{sup −1}, φ{sub epi} = (2.93 ± 0

  2. X-RAY AND GAMMA-RAY FLASHES FROM TYPE Ia SUPERNOVAE?

    International Nuclear Information System (INIS)

    Hoeflich, Peter; Schaefer, Bradley E.

    2009-01-01

    We investigate two potential mechanisms that will produce X-ray and γ-ray flashes from Type Ia supernovae (SN-Ia). The first mechanism is the breakout of the thermonuclear burning front as it reaches the surface of the white dwarf (WD). The second mechanism is the interaction of the rapidly expanding envelope with material within an accretion disk in the progenitor system. Our study is based on the delayed detonation scenario because this can account for the majority of light curves, spectra, and statistical properties of 'Branch-normal' SN-Ia. Based on detailed radiation-hydro calculations which include nuclear networks, we find that both mechanisms produce brief flashes of high-energy radiation with peak luminosities of 10 48 -10 50 erg s -1 . The breakout from the WD surface produces flashes with a rapid exponential decay by 3-4 orders of magnitude on timescales of a few tenths of a second and with most of the radiation in the X-ray and soft γ-ray range. The shocks produced in gases in and around the binary will produce flashes with a characteristic duration of a few seconds with most of the radiation coming out as X-rays and γ-rays. In both mechanisms, we expect a fast rise and slow decline and, after the peak, an evolution from hard to softer radiation due to adiabatic expansion. In many cases, flashes from both mechanisms will be superposed. The X- and γ-ray visibility of an SN-Ia will depend strongly on self-absorption within the progenitor system, specifically on the properties of the accretion disk and its orientation toward the observer. Such X-ray and γ-ray flashes could be detected as triggered events by gamma-ray burst (GRB) detectors on satellites, with events in current GRB catalogs. We have searched through the GRB catalogs (for the BATSE, HETE, and Swift experiments) for GRBs that occur at the extrapolated time of explosion and in the correct direction for known Type Ia supernovae with radial velocity of less than 3000 km s -1 . For the Burst

  3. Assessment of natural radioactivity of sands in beaches from Great Vitoria, ES, Brazil; Avaliacao da radioatividade natural em areias das praias da Grande Vitoria, ES

    Energy Technology Data Exchange (ETDEWEB)

    Aquino, Reginaldo Ribeiro de

    2010-07-01

    In this work the concentrations of natural radionuclides {sup 226}Ra, {sup 232}Th and {sup 40}K were determined in superficial sand samples for 16 locations throughout the coast of the Great Victory, metropolitan region of the state of Espirito Santo, Southeast of Brazil. The assessed beaches were Manguinhos and Jacaraipe in Serra county, Camburi, Praia do Canto and Curva da Jurema in Vitoria county, Praia da Costa and Itapua in Vila Velha county, Setibao, Setibinha, Praia do Morro, Praia das Castanheiras and Areia Preta in Guarapari county and sand of the Paulo Cesar Vinha Reserve also located in Guarapari county. Three sand samples of each beach were sealed in 100 mL high density polyethylene flasks. After approximately 4 weeks in order to reach secular equilibrium in the {sup 238}U and {sup 2}'3{sup 2}Th series, the samples were measured by high resolution gamma spectrometry and the spectra analyzed with the WinnerGamma software. The self absorption correction was performed for all samples. The {sup 226}Ra concentration was determined from the weighted average concentrations of {sup 214}Pb and {sup 21}'4Bi, the {sup 232}Th concentration was determined from the weighted average concentrations of {sup 228}Ac, {sup 2}'1{sup 2}Pb and {sup 212}Bi and the concentration of {sup 40}K is determined by its single gamma transition of 1460 keV. The radium equivalent concentration and the external hazard index where obtained from the concentrations of {sup 226}Ra, {sup 232}Th and {sup 4}'0K. {sup 226}Ra concentrations show values varying from 3 +- 1 Bq.kg-1 to 738 +- 38 Bq.kg{sup -1}, with the highest values for the central locality of the Camburi beach. {sup 232}Th concentrations show values varying from 7 +- 3 Bq.kg{sup -1} to 7422 +- 526 Bq.kg{sup -1}, with the highest values for Areia Preta beach. {sup 40}K concentrations show values varying from 14 +- 6 Bq.kg{sup -1} to 638 +- 232 Bq.kg{sup -1}, with the highest values for Areia Preta beach

  4. High-Z Nanoparticle/Polymer Nanocomposites for Gamma-Ray Scintillation Detectors

    Science.gov (United States)

    Liu, Chao

    An affordable and reliable solution for spectroscopic gamma-ray detection has long been sought after due to the needs from research, defense, and medical applications. Scintillators resolve gamma energy by proportionally converting a single high-energy photon into a number of photomultiplier-tube-detectable low-energy photons, which is considered a more affordable solution for general purposes compared to the delicate semiconductor detectors. An ideal scintillator should simultaneously exhibit the following characteristics: 1) high atomic number (Z) for high gamma stopping power and photoelectron production; 2) high light yield since the energy resolution is inversely proportional to the square root of light yield; 3) short emission decay lifetime; and 4) low cost and scalable production. However, commercial scintillators made from either inorganic single crystals or plastics fail to satisfy all requirements due to their intrinsic material properties and fabrication limitations. The concept of adding high-Z constituents into plastic scintillators to harness high Z, low cost, and fast emission in the resulting nanocomposite scintillators is not new in and of itself. Attempts have been made by adding organometallics, quantum dots, and scintillation nanocrystals into the plastic matrix. High-Z organometallics have long been used to improve the Z of plastic scintillators; however, their strong spin-orbit coupling effect entails careful triplet energy matching using expensive triplet emitters to avoid severe quenching of the light yield. On the other hand, reported quantum dot- and nanocrystal-polymer nanocomposites suffer from moderate Z and high optical loss due to aggregation and self-absorption at loadings higher than 10 wt%, limiting their potential for practical application. This dissertation strives to improve the performance of nanoparticle-based nanocomposite scintillators. One focus is to synthesize transparent nanocomposites with higher loadings of high

  5. IN-SITU TRITIUM BETA DETECTOR

    Energy Technology Data Exchange (ETDEWEB)

    J.W. Berthold; L.A. Jeffers

    1998-04-15

    design for construction and test. Significant improvements must be made in fluor-doped fiber performance in order to use the method for in situ monitoring to verify compliance with current EPA drinking water standards. Additional Phase 1 fiber development work should be performed to increase the fluor dopant concentration above 2% until the self-absorption limit is observed. Continued fiber optimization work is expected to improve the sensitivity limits, and will enable application of the detector to verify compliance with the US EPA drinking water standard of 20,000 pico Curies per liter. However, if the need for monitoring higher levels of tritium in water at concentrations greater than 200,000 pico Curies per liter is justified, then prototype development and testing could proceed either as a Phase 2 stand-alone effort or in parallel with continued Phase 1 development work.

  6. Determination of dose factors for external gamma radiation in dwellings

    International Nuclear Information System (INIS)

    Maduar, M.F.; Hiromoto, G.

    2000-01-01

    A significant contribution to the global population exposure to ionizing radiation arises from natural sources, especially from radionuclides present in terrestrial crust. Human activities can eventually increase that exposure to significant levels, from the point of view of radiological protection. The presence of natural radionuclides in building materials may lead to an increment of both external and internal radiation exposure of the population. External exposure in dwellings arises from gamma-emitter radionuclides existing in the walls, floor and ceiling of their rooms. Mathematical models can be used to predict external dose rates inside the room, known the radionuclide concentration activities in dwelling constituents. This paper presents a methodology for theoretical evaluation of external gamma doses due to radionuclides present in the walls of an hypothetical standard room. The room is modeled as three pairs of rectangular sheets with finite thickness. Assessment of doses was performed through the application of photon transport model, taking in account self-absorption and radiation buildup. As the external dose due to a particular radionuclide is proportional to its activity concentration, results are presented as dose factors, defined as a ratio of absorbed dose (nGy.h -1 ) to the activity concentration (Bq.kg -1 ), for each radionuclide. The radionuclides were assumed to be uniformly distributed in the building materials. Calculations were performed for concrete walls and results are presented for 40 K, 226 Ra, and 232 Th, taking in account, for dose calculations, all gamma emitters from 226 Ra and 232 Th decay chains. Sensitivity of the model was estimated by varying four of its input parameters within a reasonable range of applicability, while leaving all other parameters at fixed selected values. The parameters studied and respective ranges of variation were: for thickness, 5 to 60 cm; for density, 0.5 to 4 g.cm -3 ; for the room length, 1.5 to 10 m

  7. Local structure analysis of materials for increased energy efficiency

    Science.gov (United States)

    Medling, Scott

    In this dissertation, a wide range of materials which exhibit interesting properties with potential for energy efficiency applications are investigated. The bulk of the research was conducted using the Extended X-ray Absorption Fine Structure (EXAFS) technique. EXAFS is a powerful tool for elucidating the local structure of novel materials, and it's advantages are presented in Chapter 2. In Chapter 3, I present details on two new techniques which are used in studies later in this dissertation, but are also promising for other, unrelated studies and, therefore, warrant being discussed generally. I explain the presence of and present a method for subtracting the X-ray Raman background in the fluorescence window when collecting fluorescence EXAFS data of a dilute dopant Z in a Z+1 host. I introduce X-ray magnetic circular dichroism (XMCD) and discuss the process to reduce XMCD data, including the self-absorption corrections for low energy K-edges. In Chapter 4, I present a series of investigations on ZnS:Cu electroluminescent phosphors. Optical microscopy indicates that the emission centers do not degrade uniformly or monotonically, but rather, most of the emission centers blink on and off during degradation. The effect of this on various proposed degradation mechanisms is discussed. EXAFS data of ZnS:Cu phosphors ground to enable thinner, lower-voltage devices indicate that grinding preferentially causes damage to the CuS nanoprecipitates, quenching electroluminescence (EL) and concluding that smaller particles must be built up from nanoparticles instead. EXAFS data of nanoparticles show that adding a ZnS shell outside a ZnS:Cu core provides significant additional encapsulation of the Cu, increasing photoluminescence and indicating that this may increase EL if devices can be fabricated. Data from extremely dilute (0.02% Cu) ZnS:Cu nanoparticles is presented in order to specifically study the non-precipitate and suggests that the Cu dopant substitutes for Zn and is

  8. Measurement of radioactive lines in powdered milk samples in Londrina (Parana State, Brazil) region; Medida de tracos radioativos em amostras de leite em po da regiao de Londrina - PR

    Energy Technology Data Exchange (ETDEWEB)

    Melquiades, Fabio Luiz

    2000-07-01

    This work deals with the measurement of radioactive lines in powdered milk, with high resolution gamma spectrometry, using a HPGe detector with relative efficiency of 10%, coupled to the electronic nuclear chain and a multichannel card of 8192 channels. Some tests were realized before beginning the measurements. The first of them was to define the shield to be used, making several measured with different shields according to the available materials, opting finally for a shield composed of bricks of lead (10 cm thickness), plates of iron (4nm thickness) and of aluminum (2 mm thickness). Four different geometries for the samples recipients were tested, and the Marinelli beaker of 2,1 liters totally filled was the one which supplied the best peak/background ratio. A statistical inference was also realized to determine the sampling that represents each one of the lots of milk to be measured, resulting in a number of 6 samples, for a confidence level of 95%. Two different kinds of powdered milk produced at Londrina were analyzed, Integral Powdered Milk Cativa and Integral Powdered Milk Polly. The samples were properly put in the Marinelli beaker of 2,1 L, sealed and kept for 40 days to reach the secular equilibrium. The counting time for each measurement was two days. It was possible to identify the radionuclides {sup 40} K, {sup 137} Cs and {sup 232} Th (from {sup 208} Tl), whose activities were calculated according to the International Atomic Energy Agency norms (IAEA, 1989). The detector efficiency was measured using calibrated samples, prepared with the certified reference materials IAEA-326 and IAEA-375. Corrections for self-absorption were accomplished, based on measures of samples with different densities. The results obtained for the powdered milk Cativa were: 464{+-} 12 Bq/kg for {sup 40} K, 3,46 {sup {+-}} 1,05 and 0,46 {+-} 1,05 and 0,46 {+-} 0,16 Bq/kg for the minimum detectable activities of {sup 137} Cs and {sup 232} Th, respectively. For the milk Polly

  9. Measurement of radioactive lines in powdered milk samples in Londrina (Parana State, Brazil) region

    International Nuclear Information System (INIS)

    Melquiades, Fabio Luiz

    2000-01-01

    This work deals with the measurement of radioactive lines in powdered milk, with high resolution gamma spectrometry, using a HPGe detector with relative efficiency of 10%, coupled to the electronic nuclear chain and a multichannel card of 8192 channels. Some tests were realized before beginning the measurements. The first of them was to define the shield to be used, making several measured with different shields according to the available materials, opting finally for a shield composed of bricks of lead (10 cm thickness), plates of iron (4nm thickness) and of aluminum (2 mm thickness). Four different geometries for the samples recipients were tested, and the Marinelli beaker of 2,1 liters totally filled was the one which supplied the best peak/background ratio. A statistical inference was also realized to determine the sampling that represents each one of the lots of milk to be measured, resulting in a number of 6 samples, for a confidence level of 95%. Two different kinds of powdered milk produced at Londrina were analyzed, Integral Powdered Milk Cativa and Integral Powdered Milk Polly. The samples were properly put in the Marinelli beaker of 2,1 L, sealed and kept for 40 days to reach the secular equilibrium. The counting time for each measurement was two days. It was possible to identify the radionuclides 40 K, 137 Cs and 232 Th (from 208 Tl), whose activities were calculated according to the International Atomic Energy Agency norms (IAEA, 1989). The detector efficiency was measured using calibrated samples, prepared with the certified reference materials IAEA-326 and IAEA-375. Corrections for self-absorption were accomplished, based on measures of samples with different densities. The results obtained for the powdered milk Cativa were: 464± 12 Bq/kg for 40 K, 3,46 ± 1,05 and 0,46 ± 1,05 and 0,46 ± 0,16 Bq/kg for the minimum detectable activities of 137 Cs and 232 Th, respectively. For the milk Polly, the results were: 452±10 Bq/kg for 40 K, 3,19 ± 0

  10. LLE Review Quarterly Report July-September 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-12-01

    {sub 2}-filled targets) using current-mode detectors (i.e., many detection events per unit time interval). They show that current-mode detectors can be configured to survey a much larger dynamic range than single-event neutron counters. (4) V. A. Smalyuk, T. R. Boehly, L. S. Iwan, T. J. Kessler, J. P. Knauer, F. J. Marshall, D. D. Meyerhofer, C. Stoeckl, B. Yaakobi, and D. K. Bradley detail a method of measuring the positional dependence of x-ray self-absorption with filtered x-ray framing cameras. They show how compressed shell nonuniformities can be measured by carefully modeling the imaging system. This volume concludes with the LLE's Summer High School Research Program, the FY00 Laser Facility Report, and the National Laser Users' Facility News.

  11. Annual mean effective dose of Slovak population due to natural radioactivity of building materials

    International Nuclear Information System (INIS)

    Cabanekova, H.

    2006-01-01

    Natural radiation is the main source of exposure to humans. The basic raw materials, generally used in the construction industry, contain natural radionuclides which reflects their natural origin and the geological conditions at the site of production. In the last time, most building materials are manufactured from secondary raw materials with higher concentration of natural radionuclides. The estimation of the 226 Ra content as well as the 232 Th and 40 K concentration in building materials and products is essential for the evaluation of the external x-ray contribution to the exposure. The building materials with high value of 226 Ra coupled with pronounced porosity of the final products make them potential indoor Rn sources. It means that external exposure and part of inhalation dose from radon and its progeny inside of building is caused to the radiation from the primordial radionuclides pres ent in building materials and products and can increase the indoor natural radiation exposure. For keeping the population exposure as low as reasonably achievable is in the Slovak legislation the radioactive content of primordial radionuclides in building materials and products regulated and the maximum of specific activity is 370 Bq.kg-1 of radium equivalent activity and 120 Bq.kg-1 of 226 Ra. The Health ministry and Slovak metrological institute nominated the department of Radiation Hygiene of Slovak medical university to investigate regularly the content of natural radionuclides and also the radon emanation in samples of raw and secondary building materials and products used in Slovak building industry. In the framework of the screening of building materials and products there were analyzed over 3 000 samples. The natural radionuclides are assessed through their progeny photo peaks. The specific activity of nuclides is determined as weighted average of their photo peaks. The obtained results are corrected to the background distribution and to the self absorption in the

  12. Standardization of Radionuclides in the Electrotechnical Laboratory, Tokyo; Etalonnage des radionuclides au Laboratoire d'electrotechniqu e de Tokyo; Standartizatsiya radioizotopov v ehlektrotekhnichesko j laboratorii v Tokio; Normalizacion de radionuclidos en el Laboratorio de Electrotecnica de Tokio

    Energy Technology Data Exchange (ETDEWEB)

    Naito, Masashi; Inouye, Yajiro; Yura, Osamu [Electrotechnical Laboratory, Tokyo (Japan)

    1960-06-15

    Since 1953, the Electrotechnical Laboratory has undertaken absolute measurements of the activities of some radionuclides by means of the 4 {pi}{beta}l counting method and the coincidence method. The details of the counting methods used in our laboratory will be described. 1. 4 {pi}{beta} Counting Method - a bell type of 4 {pi}{beta} gas proportional counting apparatus was designed, and its counting characteristics were investigated, especially the dependence upon the counting gases. In measuring the activity, about 50 mg of the sample was taken on a thin film and then dried in the silica gel desiccator. One drop of a wetting solution was added on the dried sample so as to reduce the self-absorption, and the sample was dried again. The thin film was prepared through the procedure that synthetic resin (Kanevinyl-Rl 108 in cyclohexanon) spread over the water surface was taken up on the metal ring and then covered with very thin gold by means of the vacuum evaporating method. Sr{sup 80}-Y{sup 90}, Co{sup 60} and Cs{sup 137} were measured by the above procedure. The accuracies of the measurements were of the order of {+-} 2%. 2. 2 {pi} {alpha} Counting Method - The samples, RaD + E + F, U{sup 238} and Po{sup 210} were measured by means of the same apparatus as in the 4 {pi}{beta} counting method. The accuracies of the measurements were {+-}2, {+-}1 and {+-} 1% respectively. 3. Coincidence Counting Method - In the coincidence method, both {beta}-{gamma} and {gamma}-{gamma} counting methods were employed. A scintillation counter [Nal (Tl), 1'' {Phi} X 1''] was used as {gamma}-ray detector, and a GM counter as {beta}-ray detector. Recently, in order to examine the inherent difference between the 4 {pi} {beta} counting and the coincidence counting methods, instead of the GM counter, we devised a special type of the 4 {pi} {beta} proportional counter, which can also be used as 4 {pi} {beta} proportional counting apparatus independently, apart from the coincidence circuits

  13. Limitations of Ir{sup 192} as a Radiographic Source for the Control of Reactor Pressure-Vessels; Limitations de {sup 192}Ir en Tant que Source pour l'Examen Radiographique des Caissons Etanches de Reacteurs; Nedostatki Iridiya-192 v kachestveradiograficheskogo istochnika dlya kontrolya za korpusami reaktorov vysokogodavleniya; Limitaciones del {sup 192}Ir como Fuente Radiografica en el Control de Recipientes de Presion para Reactores

    Energy Technology Data Exchange (ETDEWEB)

    Horvat, D. [Nuclear Institute ' ' J. Stefan' ' Ljubljana, Yugoslavia (Slovenia)

    1965-09-15

    Published data and the results of our own investigations have shown that the advantage of Ir{sup 192} with regard to the quality of radiographs is obvious when comparing it with Co{sup 60} even with thicknesses over 80 mm of irradiated steel. The application of Ir{sup 192} in practice is limited by the alternative: either a very long exposure time or a source of very high activity. Where the exposure (Ci. min) for 1 m of radiographed weld is plotted against the specific activity of the source, diagrams show that, for practically attainable specific activities kilo-curie sources must be used for greater thicknesses. For such sources, self-absorption may become an important factor. An analysis of the influence of self-absorption causing a reduction of the source effectiveness and the filtration effect in the source is made by determining an equivalent increase of thickness of irradiated steel and by calculating the effective linear absorption coefficient as a function of the source dimensions and the thickness of the irradiated steel. Even in cases of relatively large source dimensions the filtration effect does not diminish the effective linear absorption coefficient to such an extent that the advantage in quality against Co{sup 60} would be lost. Possibilities of improvement due to a new shape of radiographic sources are discussed. In the case of narrow primary beams these new sources give smaller effective dimensions and allow shorter source-to-film distances. A further advantage of Ir{sup 192} is obvious from the diagrams of the weight of the exposure equipment for Ir{sup 192} and Coso taking in account equivalent activities of both sources regarding the same exposure time. The economic disadvantages, because of the short half-life,of Ir{sup 192} are discussed and a rough economical comparison between Co{sup 60} and Ir{sup 192} at different extensiveness and densities of the radiographic control is given. (author) [French] Les donnees publiees et les resultats

  14. Radiological assessment of depleted uranium impact locations in Iraq

    International Nuclear Information System (INIS)

    Smith, D.; Brown, R.

    2006-01-01

    using the calibration factor for the counter and assuming that 10% of the loose contamination was removed by the smear. The mean value for all surface smears (80 off excluding blanks) was 0.015 Bq cm -2 (minimum value 0.005 Bq cm -2 , maximum value 0.23 Bq cm -2 ). Although it was recognised that alpha counting might give rise to an underestimate of activity due to self absorption, it was considered preferable because of the large variation in background obtained when using the beta counter around the limits of detection of the system. Another factor was that the measurements were being made on a comparative rather than an absolute basis. The sample activity as determined by ICP-MS (inductively coupled plasma mass spectroscopy) was subsequently correlated with the net alpha counts. The correlation coefficient of 0.95 provided further support for the use of alpha counting when making comparative measurements. One method of assessing the significance of these surface contamination results is by comparing the calculated level with action levels for triggering the control measures required under statutory controls or good practice. Reference is often made to the Radionuclide and Radiation Protection Handbook [3] which contain recommendations for derived surface contamination limits (D.S.C.L.) for a range of radionuclides for fixed and removable contamination in typical laboratory environments. The limits are based on estimates of the maximum annual occupational dose limit arising to a person spending 2000 hours per year (h a-1) working in an environment with surface contamination levels at the D.S.C.L. which is 0.1 Bq cm -2 for 238 U. The levels of removable surface contamination found in this study were almost all less than 0.1 Bq cm -2 . Indeed in many cases the levels were several orders of magnitude below this. One exception was a sample of material from inside a D.U. penetrator exit hole (0.23 Bq cm -2 over an area of 100 cm 2 ) although very much lower levels of D

  15. Radiological assessment of depleted uranium impact locations in Iraq

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.; Brown, R. [Dstl Environmental Sciences Dept., Crescent Road, Alverstoke, Gosport, Hants PO12 2DL (United Kingdom)

    2006-07-01

    , expressed in terms of Bq cm{sup -2}, by using the calibration factor for the counter and assuming that 10% of the loose contamination was removed by the smear. The mean value for all surface smears (80 off excluding blanks) was 0.015 Bq cm{sup -2} (minimum value 0.005 Bq cm{sup -2}, maximum value 0.23 Bq cm{sup -2}). Although it was recognised that alpha counting might give rise to an underestimate of activity due to self absorption, it was considered preferable because of the large variation in background obtained when using the beta counter around the limits of detection of the system. Another factor was that the measurements were being made on a comparative rather than an absolute basis. The sample activity as determined by ICP-MS (inductively coupled plasma mass spectroscopy) was subsequently correlated with the net alpha counts. The correlation coefficient of 0.95 provided further support for the use of alpha counting when making comparative measurements. One method of assessing the significance of these surface contamination results is by comparing the calculated level with action levels for triggering the control measures required under statutory controls or good practice. Reference is often made to the Radionuclide and Radiation Protection Handbook [3] which contain recommendations for derived surface contamination limits (D.S.C.L.) for a range of radionuclides for fixed and removable contamination in typical laboratory environments. The limits are based on estimates of the maximum annual occupational dose limit arising to a person spending 2000 hours per year (h a-1) working in an environment with surface contamination levels at the D.S.C.L. which is 0.1 Bq cm{sup -2} for {sup 238}U. The levels of removable surface contamination found in this study were almost all less than 0.1 Bq cm{sup -2}. Indeed in many cases the levels were several orders of magnitude below this. One exception was a sample of material from inside a D.U. penetrator exit hole (0.23 Bq cm{sup -2

  16. Materials characterization of radioactive waste forms using a multi-element detection method based on the instrumental neutron activation analysis. MEDINA; Stoffliche Charakterisierung radioaktiver Abfallprodukte durch ein Multi-Element-Analyseverfahren basierend auf der instrumentellen Neutronen-Aktivierungs-Analyse. MEDINA

    Energy Technology Data Exchange (ETDEWEB)

    Havenith, Andreas Wilhelm

    2015-07-01

    activation with thermal and epithermal neutrons and includes the neutron and photon self-absorption in the drum filled with waste. The quantification algorithm takes into account whether an element is distributed homogeneously or spatially concentrated in a waste matrix. The required inputs for the element quantification are the recorded angle-dependent gamma spectra and the integral thermal neutron flux in the drum body. At the end of the thesis, the detection limits for standard irradiation and measurement conditions of selected elements are determined. In conclusion the suitability of MEDINA for the chemical characterisation relating to the declaration of harmful substances is presented. The test facility has the sensitivity to identify and quantify most toxic elements which have to be declared in the disposal procedure. If the documentation degree of radioactive waste is not adequate, MEDINA is a nondestructive measurement method to identify and quantify water pollutants inside waste forms packed in 200-l-drums.

  17. Assessment of natural radioactivity in commercial marble and granite of Espirito Santo state

    International Nuclear Information System (INIS)

    Aquino, Reginaldo Ribeiro de

    2015-01-01

    In this work, the concentrations of natural radionuclides 226 Ra, 232 Th and 40 K in granite and marble samples were determined, considering the main extraction mining of Espirito Santo state, southeastern Brazil. For all study sites, three samples were sealed in 100 ml high density polyethylene bottles. Each sample rested for 4 weeks to reach the secular equilibrium of 238 U and 232 Th series before measured by high resolution gamma spectrometry, and the acquired spectra were analyzed with the software WinnerGamma. The self-absorption correction was considered for all samples, using an expression and method specially developed for this purpose. The concentration of 226 Ra was determined by the weighted arithmetic mean of the concentrations of 214 Pb and 214 Bi, the concentration of 232 Th by the weighted arithmetic mean of the concentrations of 228 Ac, 212 Pb and 212 Bi and the concentration of 40 K by its single 1460 keV transition. The radium equivalent and gamma index were calculated from the activity concentrations of 226 Ra, 232 Th, and 40 K. The emanated radon was measured using an exhalation chamber and the passive detector technique, with a solid state nuclear tracks detectors (SSNTD) being exposed in NRPB/SSI-H dosimeters. During exposure, a commercial detector CR-39® and a national plastic called Durolon® were used, the last was characterized for this purpose using a technique called double exposure and sensitivity intrinsic factor. The characterized plastic was efficient for the application and the calibration factor corresponded to 1.60 ± 0.10 tracks.cm².(kBq.m -3 day) -1 in relation to the CR-39 factor, equivalent to 2.8 ± 0.2 tracks.cm².(kBq.m -3 .day) -1 . The detector showed a higher efficiency at a higher dose. The activities determined by passive detection varyed from 100 ± 10 Bq.m -3 up to 2400 ± 300 Bq.m -3 , highlighting the biggest exhalation rates for granite Ibere Mombasa. Considering the marbles, activity values varyed from 80

  18. Materials characterization of radioactive waste forms using a multi-element detection method based on the instrumental neutron activation analysis. MEDINA

    International Nuclear Information System (INIS)

    Havenith, Andreas Wilhelm

    2015-01-01

    activation with thermal and epithermal neutrons and includes the neutron and photon self-absorption in the drum filled with waste. The quantification algorithm takes into account whether an element is distributed homogeneously or spatially concentrated in a waste matrix. The required inputs for the element quantification are the recorded angle-dependent gamma spectra and the integral thermal neutron flux in the drum body. At the end of the thesis, the detection limits for standard irradiation and measurement conditions of selected elements are determined. In conclusion the suitability of MEDINA for the chemical characterisation relating to the declaration of harmful substances is presented. The test facility has the sensitivity to identify and quantify most toxic elements which have to be declared in the disposal procedure. If the documentation degree of radioactive waste is not adequate, MEDINA is a nondestructive measurement method to identify and quantify water pollutants inside waste forms packed in 200-l-drums.

  19. Beta-Excited Sources of Electromagnetic Radiation; Sources de rayonnements electromagnetiques excites par des particules beta; Vozbuzhdennye beta-ch