WorldWideScience

Sample records for selenium uptake dependent

  1. Extracellular thiol-assisted selenium uptake dependent on the x(c)(-) cystine transporter explains the cancer-specific cytotoxicity of selenite

    DEFF Research Database (Denmark)

    Olm, E.; Fernandes, A. P.; Hebert, C.

    2009-01-01

    The selenium salt selenite (SeO32-) is cytotoxic in low to moderate concentrations, with a remarkable specificity for cancer cells resistant to conventional chemotherapy. Our data show that selenium uptake and accumulation, rather than intracellular events, are crucial to the specific selenite...... cytotoxicity observed in resistant cancer cells. We show that selenium uptake depends on extracellular reduction, and that the extracellular environment is a key factor specific to selenite cytotoxicity. The extracellular reduction is mediated by cysteine, and the efficacy is determined by the uptake...

  2. Selenium Uptake and Volatilization by Marine Algae

    Science.gov (United States)

    Luxem, Katja E.; Vriens, Bas; Wagner, Bettina; Behra, Renata; Winkel, Lenny H. E.

    2015-04-01

    Selenium (Se) is an essential trace nutrient for humans. An estimated one half to one billion people worldwide suffer from Se deficiency, which is due to low concentrations and bioavailability of Se in soils where crops are grown. It has been hypothesized that more than half of the atmospheric Se deposition to soils is derived from the marine system, where microorganisms methylate and volatilize Se. Based on model results from the late 1980s, the atmospheric flux of these biogenic volatile Se compounds is around 9 Gt/year, with two thirds coming from the marine biosphere. Algae, fungi, and bacteria are known to methylate Se. Although algal Se uptake, metabolism, and methylation influence the speciation and bioavailability of Se in the oceans, these processes have not been quantified under environmentally relevant conditions and are likely to differ among organisms. Therefore, we are investigating the uptake and methylation of the two main inorganic Se species (selenate and selenite) by three globally relevant microalgae: Phaeocystis globosa, the coccolithophorid Emiliania huxleyi, and the diatom Thalassiosira oceanica. Selenium uptake and methylation were quantified in a batch experiment, where parallel gas-tight microcosms in a climate chamber were coupled to a gas-trapping system. For E. huxleyi, selenite uptake was strongly dependent on aqueous phosphate concentrations, which agrees with prior evidence that selenite uptake by phosphate transporters is a significant Se source for marine algae. Selenate uptake was much lower than selenite uptake. The most important volatile Se compounds produced were dimethyl selenide, dimethyl diselenide, and dimethyl selenyl sulfide. Production rates of volatile Se species were larger with increasing intracellular Se concentration and in the decline phase of the alga. Similar experiments are being carried out with P. globosa and T. oceanica. Our results indicate that marine algae are important for the global cycling of Se

  3. Selenium

    Science.gov (United States)

    Stillings, Lisa L.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    , waters draining from agricultural fields created wetlands with high concentrations of dissolved selenium in the water. The selenium was taken up by aquatic wildlife and caused massive numbers of embryonic deformities and deaths.Regulatory agencies have since worked to safeguard ecological and human health by creating environmental exposure guidelines based upon selenium concentrations in water and in fish tissue. Any attempt to regulate selenium concentrations requires a delicate balance because selenium occurs naturally and is also a vital nutrient for the health of wildlife, domestic stock, and humans. Selenium is commonly added as a vitamin to animal feed, and in some regions of the United States and the world, it is added as an amendment to soils for uptake by agricultural crops.The important role of selenium in economic products, energy supply, agriculture, and health will continue for well into the future. The challenge to society is to balance the benefits of selenium use with the environmental consequences of its extraction. Increased understanding of the elemental cycle of selenium in the earth may lead to new (or unconventional) sources of selenium, the discovery of new methods of extraction, and new technologies for minimizing the transfer of selenium from rock to biota, so to protect environmental and human health.

  4. Selenium uptake, translocation, assimilation and metabolic fate in plants.

    Science.gov (United States)

    Sors, T G; Ellis, D R; Salt, D E

    2005-12-01

    The chemical and physical resemblance between selenium (Se) and sulfur (S) establishes that both these elements share common metabolic pathways in plants. The presence of isologous Se and S compounds indicates that these elements compete in biochemical processes that affect uptake, translocation and assimilation throughout plant development. Yet, minor but crucial differences in reactivity and other metabolic interactions infer that some biochemical processes involving Se may be excluded from those relating to S. This review examines the current understanding of physiological and biochemical relationships between S and Se metabolism by highlighting their similarities and differences in relation to uptake, transport and assimilation pathways as observed in Se hyperaccumulator and non-accumulator plant species. The exploitation of genetic resources used in bioengineering strategies of plants is illuminating the function of sulfate transporters and key enzymes of the S assimilatory pathway in relation to Se accumulation and final metabolic fate. These strategies are providing the basic framework by which to resolve questions relating to the essentiality of Se in plants and the mechanisms utilized by Se hyperaccumulators to circumvent toxicity. In addition, such approaches may assist in the future application of genetically engineered Se accumulating plants for environmental renewal and human health objectives.

  5. Effect of foliar application of selenium on its uptake and speciation in carrot

    DEFF Research Database (Denmark)

    Kápolna, Emese; Hillestrøm, Peter René; Laursen, K.H.

    2009-01-01

    Carrot (Daucus carota) shoots were enriched by selenium using foliar application. Solutions of sodium selenite or sodium selenate at 10 and 100 mu g Se ml(-1), were sprayed on the carrot leaves and the selenium content and uptake rate of selenium were estimated by ICP-MS analysis. Anion and cation......(-1) (dry mass) in the carrot root whereas the selenium concentration in the controls was below the limit of detection at 0.045 mu g Se g(-1) (dry mass). Selenate-enriched carrot leaves accumulated as much as 80 mu g Se g(-1) (dry mass), while the selenite-enriched leaves contained approximately 50 mu...... g Se g(-1) (dry mass). The speciation analyses showed that inorganic selenium was present in both roots and leaves. The predominant metabolised organic forms of selenium in the roots were selenomethionine and gamma-glutamyl-selenomethyl-selenocysteine, regardless of which of the inorganic species...

  6. Uptake of selenium by the unicellular green alga Chlamydomonas reinhardtii - effects induced by chronic exposure

    International Nuclear Information System (INIS)

    Morlon, H.; Fortin, C.; Pradines, C.; Floriani, M.; Grasset, G.; Adam, C.; Garnier-Laplace, J.

    2004-01-01

    79 Se is a long-lived radionuclide present in radioactive waste storages. The stable isotope selenium is an essential micro-nutrient that can act against oxidative damage. It is however well known for its bio-magnification potential and chemical toxicity to aquatic life. One of its particularity is to form oxyanions in freshwater ecosystems, which leads to specific behaviours towards biological membranes. Our study deals with the interactions between selenite -Se(IV)- and Chlamydomonas reinhardtii, a unicellular green alga representative of the freshwater phytoplankton community. Cells were exposed to selenite marked with Se 75 in well-known simple inorganic media. Short-term experiments (about one hour of exposure) were performed to better understand selenite transport (uptake kinetics and levels) and identify main factors influencing absorption (nutrients concentrations, pH). Long-term experiments (4 days of exposure) were performed (1) to evaluate the bioaccumulation considering environmentally relevant time scales, (2) to localize the intracellular selenium using EDAX-TEM and (3) to assess the toxicity of selenium as measured by growth impairment, ultrastructural changes, starch accumulation, and loss of pigment. Short-term experiments revealed a time-dependent linear absorption with an estimated absorbed flux of about 0.25 nmol.m -2 .nM -1 .h -1 . The absorption was proportional to ambient levels, except at very low concentrations (ca. 0.5 nM), were it was proportionally higher, suggesting that a specific but rapidly saturated transport could be used at those low concentrations. Selenite uptake was not dependent on phosphate nor carbonate concentrations. It was nevertheless inhibited by sulphate and nitrate, indicating that selenite could share common transporters with those nutrients. The accumulation was found to be maximum for intermediate pH around 7. EDAX-TEM analysis after long-term experiments revealed the presence of selenium in electron-dense granules

  7. Selenium reduces cadmium uptake and mitigates cadmium toxicity in rice

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Li; Zhou, Weihui; Dai, Huaxin; Cao, Fangbin; Zhang, Guoping [Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058 (China); Wu, Feibo, E-mail: wufeibo@zju.edu.cn [Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058 (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Se alleviated Cd-toxicity, reduced Cd content and O{sub 2}{center_dot}{sup -}, H{sub 2}O{sub 2}, MDA in rice plants. Black-Right-Pointing-Pointer Se counteracted Cd-induced alterations of antioxidant enzymes. Black-Right-Pointing-Pointer Se suppressed Cd-induced increase in SOD, APX, but elevated depressed CAT activity. Black-Right-Pointing-Pointer Se markedly increased H{sup +}-ATPase, Ca{sup 2+}-ATPase activities in roots under Cd exposure. - Abstract: Hydroponic experiments were performed to investigate physiological mechanisms of selenium (Se) mitigation of Cd toxicity in rice. Exogenous Se markedly reduced Cd concentration in leaves, roots, and stems. Addition or pretreatment of 3 {mu}M Se in 50 {mu}M Cd solution significantly addressed Cd-induced growth inhibition, recovered root cell viability, and dramatically depressed O{sub 2}{center_dot}{sup -}, H{sub 2}O{sub 2}, and malondialdehyde (MDA) accumulation. Supplemental Se counteracted 50 {mu}M Cd-induced alterations of certain antioxidant enzymes, and uptake of nutrients, e.g. depressed Cd-induced increase in leaf and root superoxide dismutase (SOD) and leaf peroxidase (POD) activities, but elevated depressed catalase (CAT) activity; decreased Cd-induced high S and Cu concentrations in both leaves and roots. External Se counteracted the pattern of alterations in ATPase activities induced by Cd, e.g. significantly elevated the depressed root H{sup +}- and Ca{sup 2+}-ATPase activities, but decreased the ascent root Na{sup +}K{sup +}-ATP activity. Results indicate that alleviated Cd toxicity by Se application is related to reduced Cd uptake and ROS accumulation, balanced nutrients, and increased H{sup +}- and Ca{sup 2+}-ATPase activities in rice.

  8. Uptake and speciation of selenium in garlic cultivated in soil amended with symbiotic fungi (mycorrhiza) and selenate

    DEFF Research Database (Denmark)

    Larsen, Erik Huusfeldt; Lobinski, R.; Burger-Meyer, K.

    2006-01-01

    The scope of the work was to investigate the influence of selenate fertilisation and the addition of symbiotic fungi (mycorrhiza) to soil on selenium and selenium species concentrations in garlic. The selenium species were extracted from garlic cultivated in experimental plots by proteolytic...... in garlic. The selenium content in garlic, which was analysed by ICP-MS, showed that addition of mycorrhiza to the natural soil increased the selenium uptake by garlic tenfold to 15 mu g g(-1) (dry mass). Fertilisation with selenate and addition of mycorrhiza strongly increased the selenium content...... of soil by mycorrhiza and/or by selenate increased the content of selenium but not the distribution of detected selenium species in garlic. Finally, the use of two-dimensional HPLC (size exclusion followed by reversed-phase) allowed the structural characterisation of gamma...

  9. Density dependence of dielectronic recombination in selenium

    International Nuclear Information System (INIS)

    Hagelstein, P.L.; Rosen, M.D.; Jacobs, V.L.

    1986-01-01

    Dielectronic recombination has been found to be the dominant recombination process in the determination of the ionization balance of selenium near the Ne-like sequence under conditions relevant to the exploding-foil EUV laser plasmas. The dielectronic recombination process tends to populate excited levels, and these levels in turn are more susceptible to subsequent excitation and ionization than are the ground-state ions. If one defines an effective recombination rate which includes, in addition to the primary recombination, the subsequent excitation and ionization of the additional excited-state population due to the primary recombination, then this effective recombination rate can be density-sensitive at relatively low electron density. We present results for this effective dielectronic recombination rate at an electron density of 3 x 10/sup 20/ electrons/cm 3 for recombination from Ne-like to Na-like selenium and from F-like to Ne-like selenium. In the former case, the effective recombination rate coefficient is found to be 1.8 x 10/sup -11/ cm 3 /sec at 1.0 keV, which is to be compared with the zero-density value of 2.8 x 10/sup -11/ cm 3 /sec. In the latter case (F-like to Ne-like), the effective recombination rate coefficient is found to be 1.3 x 10/sup -11/ cm 3 /sec, which is substantially reduced from the zero-density result of 3.3 x 10/sup -11/ cm 3 /sec. We have examined the effects of dielectronic recombination on the laser gain of the dominant Ne-like 3p-3s transitions and have compared our results with those presented by Whitten et al. [Phys. Rev. A 33, 2171 (1986)

  10. Selenium

    Science.gov (United States)

    ... Health Information Supplement Fact Sheets Frequently Asked Questions Making Decisions What you Need To Know About Supplements Dietary ... understand how selenium in food and dietary supplements affects heart health. Cognitive decline Blood selenium levels decrease as people age, ...

  11. Uptake, depuration, and distribution of selenium in Daphnia and its effects on survival and ultrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, T.W. (Pan American Univ., Edinburg, TX); Freeman, S.R.; Dumont, J.N.

    1980-01-01

    Selenium is an important essential nutritional trace element which has been shown to provide protection against certain other metal poisoning. However, it is a suspected carcinogen and teratogen. The uptake, depuration, and toxicity of selenium in Daphnia pulex have been examined. The LC/sub 50/ at 48 and 96 h for juvenile animals is 0.6 mg/L and 0.1 mg/L, respectively, and for adults it is 1.3 mg/L and 0.5 mg/L, respectively. Uptake in adult unfed animals is rapid, reaching a maximum at about 12 h, but depuration is slow. In fed animals, uptake is slower, reaching a maximum at 96 h, but initial depuration is followed by a slower prolonged loss. Localization in cells is primarily in the cytoplasmic compartment although evidence is presented which suggests nucleolar localization. Ultrastructural damage is detected by 16 h after exposure and is initially confined to the mitochondria. Dense deposits accumulate in the mitochondrial matrices. The nature of these deposits is unknown; they may represent a calcium- or phosphate-selenium complex. With time, the mitochondria degenerate. It is clear that relatively low concentrations of selenium are toxic to these aquatic organisms and render them incapable of survival in the natural environment. Concentrations higher than those lethal to Daphnia can be expected, at least in local areas, from the burning or conversion of fossil fuels.

  12. [Effect of selenium on the uptake and translocation of manganese, iron, phosphorus and selenium in rice (Oryza sativa L.)].

    Science.gov (United States)

    Hu, Ying; Huang, Yi-Zong; Huang, Yan-Chao; Liu, Yun-Xia; Liang, Jian-Hong

    2013-10-01

    A pot experiment was conducted to clarify the effect of selenium on the uptake and translocation of manganese (Mn), iron (Fe) , phosphorus (P) and selenium (Se) in rice ( Oryza sativa L.). The results showed that addition of Se led to the significant increase of Se concentration in iron plaque on the root surface, root, shoot, husk and brown rice, and significant decrease of Mn concentration in shoot, husk and brown rice. At the Se concentrations of 0.5 and 1.0 mg.kg-1 in soil, Mn concentrations in rice shoot decreased by 32. 2% and 35.0% respectively, in husk 22.0% and 42.6% , in brown rice 27.5% and 28.5% , compared with the Se-free treatment. There was no significant effect of Se on the P and Fe concentrations in every parts of rice, except for Fe concentrations in husk. The translocation of P and Fe from iron plaque, root, shoot and husk to brown rice was not significantly affected by Se addition, but Mn translocation from iron plaque and root to brown rice was significantly inhibited by Se addition. Addition of 1.0 mg.kg-1. Se resulted in the decrease of translocation factor from iron plaque and root to brown rice by 38.9% and 37.9%, respectively, compared with the control treatment. The distribution ratios of Mn, Fe, P and Se in iron plaque, root, shoot, husk and brown rice were also affected by Se addition. The results indicated that Mn uptake, accumulation and translocation in rice could be decreased by the addition of Se in soil, therefore, Se addition could reduce the Mn harm to human health through food chain.

  13. Uptake and speciation of selenium in garlic cultivated in soil amended with symbiotic fungi (mycorrhiza) and selenate

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Erik H.; Hansen, Marianne; Rasmussen, Peter Have; Sloth, Jens J. [Danish Institute for Food and Veterinary Research, Department of Food Chemistry, Soeborg (Denmark); Lobinski, Ryszard; Ruzik, Rafal; Mazurowska, Lena [CNRS UMR 5034, Pau (France); Warsaw University of Technology, Department of Analytical Chemistry, Warsaw (Poland); Burger-Meyer, Karin; Scholten, Olga [Wageningen University and Research Centre, Plant Research International (PRI), P.O. Box 16, Wageningen (Netherlands); Kik, Chris [Wageningen University and Research Centre, Plant Research International (PRI), P.O. Box 16, Wageningen (Netherlands); Wageningen University and Research Centre, Centre for Genetic Resources, The Netherlands (CGN), P.O. Box 16, Wageningen (Netherlands)

    2006-07-15

    The scope of the work was to investigate the influence of selenate fertilisation and the addition of symbiotic fungi (mycorrhiza) to soil on selenium and selenium species concentrations in garlic. The selenium species were extracted from garlic cultivated in experimental plots by proteolytic enzymes, which ensured liberation of selenium species contained in peptides or proteins. Separate extractions using an aqueous solution of enzyme-deactivating hydroxylamine hydrochloride counteracted the possible degradation of labile selenium species by enzymes (such as alliinase) that occur naturally in garlic. The selenium content in garlic, which was analysed by ICP-MS, showed that addition of mycorrhiza to the natural soil increased the selenium uptake by garlic tenfold to 15 {mu}g g{sup -1} (dry mass). Fertilisation with selenate and addition of mycorrhiza strongly increased the selenium content in garlic to around one part per thousand. The parallel analysis of the sample extracts by cation exchange and reversed-phase HPLC with ICP-MS detection showed that {gamma}-glutamyl-Se-methyl-selenocysteine amounted to 2/3, whereas methylselenocysteine, selenomethionine and selenate each amounted to a few percent of the total chromatographed selenium in all garlic samples. Se-allyl-selenocysteine and Se-propyl-selenocysteine, which are selenium analogues of biologically active sulfur-containing amino acids known to occur in garlic, were searched for but not detected in any of the extracts. The amendment of soil by mycorrhiza and/or by selenate increased the content of selenium but not the distribution of detected selenium species in garlic. Finally, the use of two-dimensional HPLC (size exclusion followed by reversed-phase) allowed the structural characterisation of {gamma}-glutamyl-Se-methyl-selenocysteine and {gamma}-glutamyl-Se-methyl-selenomethionine in isolated chromatographic fractions by quadrupole time-of-flight mass spectrometry. (orig.)

  14. Effect of selenium application on arsenic uptake in rice (Oryza sativa L.).

    Science.gov (United States)

    Kaur, Sumandeep; Singh, Dhanwinder; Singh, Kuldip

    2017-09-01

    Alluvial aquifers of the agrarian state of Punjab of southwestern arid zone used for irrigation of rice crops are rich in arsenic concentration. In the present study, rice (Oryza sativa L.) crops were raised in pots in a greenhouse with a purpose to study whether selenium (Se) application was effective in ameliorating As uptake. The rice crop was irrigated with arsenic laced water (0, 2.5, 5.0, 10.0 μM As L -1 ) throughout the growing period, without and with selenium (0.05 and 0.10 mg kg -1 ) added through mustard biomass, grown ex situ in seleniferous soil. Arsenic uptake and dry matter yield in different parts of the rice crop were assayed after application of As alone and simultaneous supplementations (As + Se). An antagonistic interaction between Se and As was observed. Addition of As through irrigation water significantly reduced yield of rice grain, straw and root. However, subsequent addition of Se helped in mitigating the harmful effect of As and countered the yield reduction caused due to As toxicity. The effect of Se on dry matter yield was more pronounced at its higher dose (0.10 mg kg -1 ) as compared to its lower dose (0.05 mg kg -1 ). The presence of Se either alone or added along with As significantly reduced the As concentration and its uptake by different parts of rice and higher reduction in As concentration was observed with addition of the highest level of applied Se (0.10 mg kg -1 ). Our observations indicated that Se supplementation might be favourable to reduce As accumulation and toxicity in rice crops.

  15. Selenium species-dependent toxicity, bioavailability and metabolic transformations in Caenorhabditis elegans.

    Science.gov (United States)

    Rohn, Isabelle; Marschall, Talke Anu; Kroepfl, Nina; Jensen, Kenneth Bendix; Aschner, Michael; Tuck, Simon; Kuehnelt, Doris; Schwerdtle, Tanja; Bornhorst, Julia

    2018-05-17

    The essential micronutrient selenium (Se) is required for various systemic functions, but its beneficial range is narrow and overexposure may result in adverse health effects. Additionally, the chemical form of the ingested selenium contributes crucially to its health effects. While small Se species play a major role in Se metabolism, their toxicological effects, bioavailability and metabolic transformations following elevated uptake are poorly understood. Utilizing the tractable invertebrate Caenorhabditis elegans allowed for an alternative approach to study species-specific characteristics of organic and inorganic Se forms in vivo, revealing remarkable species-dependent differences in the toxicity and bioavailability of selenite, selenomethionine (SeMet) and Se-methylselenocysteine (MeSeCys). An inverse relationship was found between toxicity and bioavailability of the Se species, with the organic species displaying a higher bioavailability than the inorganic form, yet being less toxic. Quantitative Se speciation analysis with HPLC/mass spectrometry revealed a partial metabolism of SeMet and MeSeCys. In SeMet exposed worms, identified metabolites were Se-adenosylselenomethionine (AdoSeMet) and Se-adenosylselenohomocysteine (AdoSeHcy), while worms exposed to MeSeCys produced Se-methylselenoglutathione (MeSeGSH) and γ-glutamyl-MeSeCys (γ-Glu-MeSeCys). Moreover, the possible role of the sole selenoprotein in the nematode, thioredoxin reductase-1 (TrxR-1), was studied comparing wildtype and trxr-1 deletion mutants. Although a lower basal Se level was detected in trxr-1 mutants, Se toxicity and bioavailability following acute exposure was indistinguishable from wildtype worms. Altogether, the current study demonstrates the suitability of C. elegans as a model for Se species dependent toxicity and metabolism, while further research is needed to elucidate TrxR-1 function in the nematode.

  16. Effect of Sulfate on Selenium Uptake And Chemical Speciation in Convolvulus Arvensis L

    Energy Technology Data Exchange (ETDEWEB)

    Cruz-Jimenez, G.; Peralta-Video, J.R.; Rosa, G.de la; Meitzner, G.; Parson, J.G.; Gardea-Torresdey, J.L.

    2007-08-08

    Hydroponic experiments were performed to study several aspects of Se uptake by C. arvensis plants. Ten day old seedlings were exposed for eight days to different combinations of selenate (SeO{sub 4}{sup 2-}), sulfate (SO{sub 4}{sup 2-}), and selenite (SeO{sub 3}{sup 2-}). The results showed that in C. arvensis, SO{sub 4}{sup 2-} had a negative effect (P < 0.05) on SeO{sub 4}{sup 2-} uptake. However, a positive interaction produced a significant increase in SO{sub 4}{sup 2-} uptake when SeO{sub 4}{sup 2-} was at high concentration in the media. X-ray absorption spectroscopy studies showed that C. arvensis plants converted more than 70% of the supplied SeO{sub 3}{sup 2-} into organoselenium compounds. However, only approximately 50% of the supplied SeO{sub 4}{sup 2-} was converted into organoselenium species while the residual 50% remained in the inorganic form. Analysis using LC-XANES fittings confirmed that the S metabolic pathway was affected by the presence of Se. The main Se compounds that resembled those Se species identified in C. arvensis were Se-cystine, Se-cysteine, SeO{sub 3}{sup 2-}, and SeO{sub 4}{sup 2-}, whereas for S the main compounds were cysteine, cystine, oxidized glutathione, reduced glutathione, and SO{sub 4}{sup 2-}. The results of these studies indicated that C. arvensis could be considered as a possible option for the restoration of soil moderately contaminated with selenium even in the presence of sulfate.

  17. Elemental concentrations and tracer uptake behavior of manganese, zinc, and selenium in brain of normal mice during development

    International Nuclear Information System (INIS)

    Tarohda, Tohru; Yabushita, Yuko; Kanayama, Yousuke; Amano, Ryohei; Enomoto, Shuichi

    2001-01-01

    Concentrations and uptake behavior of manganese (Mn), zinc (Zn), and selenium (Se) in mouse brain were studied by a multitracer technique, neutron activation analysis and autoradiography. Comparative concentrations on Mn, Zn, and Se and tracer uptake behavior of 54 Mn, 65 Zn, and 75 Se were examined in brains of 1-, 4-, 8-, 21-, and 56-day-old mice, and evaluated in terms of brain concentration (parts per million, ppm) and brain uptake rate (the radioactivity percentage of injected dose per gram of brain, %dose/g), respectively. As a result, the brain concentrations of Mn increased with growth, although those of Se and Zn did not change. On the other hand, the uptakes of the three tracers by brains of 1-day-old mice were much higher than those of older ones. Using radioactive 54 Mn as a single tracer, autoradiography was examined to determine the Mn uptake regional distribution in brains of 1-, 8-, and 21-day-old mice, and a higher regional uptake of Mn by the cerebral cortex, hippocampus, thalamus and hypothalamus in brains of young mice was observed. (author)

  18. Dependence of FDG uptake on tumor microenvironment

    International Nuclear Information System (INIS)

    Pugachev, Andrei; Ruan, Shutian; Carlin, Sean; Larson, Steven M.; Campa, Jose; Ling, C. Clifton; Humm, John L.

    2005-01-01

    Purpose: To investigate the factors affecting the 18 F-fluorodeoxyglucose ( 18 F-FDG) uptake in tumors at a microscopic level, by correlating it with tumor hypoxia, cellular proliferation, and blood perfusion. Methods and Materials: Nude mice bearing Dunning prostate tumors (R3327-AT) were injected with 18 F-FDG and pimonidazole, bromodeoxyuridine, and, 1 min before sacrifice, with Hoechst 33342. Selected tumor sections were imaged by phosphor plate autoradiography, while adjacent sections were used to obtain the images of the spatial distribution of Hoechst 33342, pimonidazole, and bromodeoxyuridine. The images were co-registered and analyzed on a pixel-by-pixel basis. Results: Statistical analysis of the data obtained from these tumors demonstrated that 18 F-FDG uptake was positively correlated with pimonidazole staining intensity in each data set studied. Correlation of FDG uptake with bromodeoxyuridine staining intensity was always negative. In addition, FDG uptake was always negatively correlated with the staining intensity of Hoechst 33342. Conclusions: For the Dunning prostate tumors studied, FDG uptake was always positively correlated with hypoxia and negatively correlated with both cellular proliferation and blood flow. Therefore, for the tumor model studied, higher FDG uptake is indicative of tumor hypoxia, but neither blood flow nor cellular proliferation

  19. Soil sulfur amendments suppress Selenium uptake by alfalfa and western wheatgrass

    Science.gov (United States)

    C. L. Mackowiak; M. C. Amacher

    2008-01-01

    Selenium (Se) is a potential soil contaminant in many parts of the world where it can pose a health risk to livestock and wildlife. Phosphate ore mining in Southeast Idaho has resulted in numerous waste rock dumps revegetated with forages to stabilize the dumps and support grazing. Alfalfa (Medicago sativa L.), smooth brome (Bromus inermis...

  20. Uptake and specification of selenium in garlic cultivated in soil amended with symbiotic fungi (mycorrhiza) and selenate

    NARCIS (Netherlands)

    Larsen, E.H.; Lobinski, R.; Burger-Meijer, K.; Hansen, M.; Ruzik, R.; Mazurowska, L.; Rasmussen, P.H.; Sloth, J.J.; Scholten, O.E.; Kik, C.

    2006-01-01

    The scope of the work was to investigate the influence of selenate fertilisation and the addition of symbiotic fungi (mycorrhiza) to soil on selenium and selenium species concentrations in garlic. The selenium species were extracted from garlic cultivated in experimental plots by proteolytic

  1. Selenium biofortification

    Science.gov (United States)

    Plant foods are the major dietary sources of selenium (Se) in most countries around the world, followed by meats and seafood. For this reason, it is vital to increase Se uptake by plants and to produce crops with higher Se concentrations and bioavailability in their edible tissues. One of the most p...

  2. Underlying mechanisms and effects of hydrated lime and selenium application on cadmium uptake by rice (Oryza sativa L.) seedlings.

    Science.gov (United States)

    Huang, Gaoxiang; Ding, Changfeng; Guo, Fuyu; Li, Xiaogang; Zhang, Taolin; Wang, Xingxiang

    2017-08-01

    A pot experiment was conducted to investigate the effects of selenium (Se) and hydrated lime (Lime), applied alone or simultaneously (Se+Lime), on growth and cadmium (Cd) uptake and translocation in rice seedlings grown in an acid soil with three levels of Cd (slight, mild, and moderate contamination). In the soil with 0.41 mg kg -1 Cd (slight Cd contamination), Se addition alone significantly decreased Cd accumulation in the root and shoot by 35.3 and 40.1%, respectively, but this tendency weakened when Cd level in the soil increased. However, Se+Lime treatment effectively reduced Cd accumulation in rice seedlings in the soil with higher Cd levels. The results also showed that Se application alone strongly increased Cd concentration in the iron plaque under slight Cd contamination, which was suggested as the main reason underlying the inhibition of Cd accumulation in rice seedlings. Se+Lime treatment also increased the ability of the iron plaques to restrict Cd uptake by rice seedlings across all Cd levels and dramatically decreased the available Cd concentration in the soil. These results suggest that Se application alone would be useful in the soil with low levels of Cd, and the effect would be enhanced when Se application is combined with hydrated lime at higher Cd levels.

  3. Selenium Utilization Strategy by Microalgae

    Directory of Open Access Journals (Sweden)

    Hiroya Araie

    2009-11-01

    Full Text Available The diversity of selenoproteins raises the question of why so many life forms require selenium. Selenoproteins are found in bacteria, archaea, and many eukaryotes. In photosynthetic microorganisms, the essential requirement for selenium has been reported in 33 species belonging to six phyla, although its biochemical significance is still unclear. According to genome databases, 20 species are defined as selenoprotein-producing organisms, including five photosynthetic organisms. In a marine coccolithophorid, Emiliania huxleyi (Haptophyta, we recently found unique characteristics of selenium utilization and novel selenoproteins using 75Se-tracer experiments. In E. huxleyi, selenite, not selenate, is the main substrate used and its uptake is driven by an ATP-dependent highaffinity, active transport system. Selenite is immediately metabolized to low-molecular mass compounds and partly converted to at least six selenoproteins, named EhSEP1–6. The most (EhSEP2 and second-most abundant selenoproteins (EhSEP1 are disulfide isomerase (PDI homologous protein and thioredoxin reductase (TR 1, respectively. Involvement of selenium in PDI is unique in this organism, while TR1 is also found in other organisms. In this review, we summarize physiological, biochemical, and molecular aspects of selenium utilization by microalgae and discuss their strategy of selenium utilization.

  4. Bio-transformation of selenium in Se-enriched bacterial strains of Lactobacillus casei.

    Science.gov (United States)

    Kurek, Eliza; Ruszczyńska, Anna; Wojciechowski, Marcin; Łuciuk, Anna; Michalska-Kacymirow, Magdalena; Motyl, Ilona; Bulska, Ewa

    Selenium is an element of very great importance for the proper functioning of the human body, mainly due to its antioxidant properties. Selenium exhibits a preventive effect in the case of cardiovascular disease, the immune system, male infertility and inhibits the toxic action of other agents. Selenium is important for Hashimoto's disease. Intake of selenium in the diet slows the aging process. The biological and toxicological effects of selenium strongly depend on its chemical form. Some organisms for example: plant, yeast, are capable of metabolizing low bioavailable selenium compounds (inorganic selenium) into its high bioavailable forms (organic selenium). The aim of this study was to investigate the bio-transformation of selenium by Lactobacillus bacteria towards the characterisation of selenium metabolites. The speciation of selenium was evaluated by high performance liquid chromatography with inductively coupled plasma mass spectrometry detector. The extraction of selenium species from lyophilized bacteria was executed with water, the mixture of lipase and protease, as well as lisozyme and sodium dodecyl sulphate. All investigated bacteria strains cultivated in the presence of Na2SeO3 effectively uptake selenium. Surprisingly, none of the applied extraction media exhibited a strong power to release the majority of the uptaken selenium compounds. Thus a maximum of 10% of the selenium was extracted from bacteria exposed to the enzymes. However, it was found that Lactobacillus bacteria are able to metabolize inorganic ions of selenium (IV) into Se-methionine, Se-methyloselenocysteine and other unidentified forms. The study confirmed the ability of probiotic bacteria to biotransform inorganic selenium into its organic derivatives. Therefore, Se-enriched bacteria can be considered as an addition to the functional food. selenium speciation, extraction procedure, Lactobacillus casei bacteria, Lactic acid bacteria (LAB), HPLC ICP-MS, functional food.

  5. Field study of time-dependent selenium partitioning in soils using isotopically enriched stable selenite tracer

    International Nuclear Information System (INIS)

    Di Tullo, Pamela; Pannier, Florence; Thiry, Yves; Le Hécho, Isabelle; Bueno, Maïté

    2016-01-01

    A better understanding of selenium fate in soils at both short and long time scales is mandatory to consolidate risk assessment models relevant for managing both contamination and soil fertilization issues. The purpose of this study was thus to investigate Se retention processes and their kinetics by monitoring time-dependent distribution/speciation changes of both ambient and freshly added Se, in the form of stable enriched selenite-77, over a 2-years field experiment. This study clearly illustrates the complex reactivity of selenium in soil considering three methodologically defined fractions (i.e. soluble, exchangeable, organic). Time-dependent redistribution of Se-77 within solid-phases having different reactivity could be described as a combination of chemical and diffusion controlled processes leading to its stronger retention. Experimental data and their kinetic modeling evidenced that transfer towards less labile bearing phases are controlled by slow processes limiting the overall sorption of Se in soils. These results were used to estimate time needed for "7"7Se to reach the distribution of naturally present selenium which may extend up to several decades. Ambient Se speciation accounted for 60% to 100% of unidentified species as function of soil type whereas "7"7Se(IV) remained the more abundant species after 2-years field experiment. Modeling Se in the long-term without taking account these slow sorption kinetics would thus result in underestimation of Se retention. When using models based on K_d distribution coefficient, they should be at least reliant on ambient Se which is supposed to be at equilibrium.

  6. Field study of time-dependent selenium partitioning in soils using isotopically enriched stable selenite tracer

    Energy Technology Data Exchange (ETDEWEB)

    Di Tullo, Pamela, E-mail: pamela.ditullo@univ-pau.fr [Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE), Université de Pau et des Pays de l' Adour/CNRS, UMR 5254, IPREM, Hélioparc, 2 Avenue du Président Angot, 64053 Pau Cedex 9 (France); Andra, Research and Development Division, Parc de la Croix Blanche, 1-7 rue Jean Monnet, 92298 Châtenay-Malabry Cedex (France); Pannier, Florence, E-mail: florence.pannier@univ-pau.fr [Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE), Université de Pau et des Pays de l' Adour/CNRS, UMR 5254, IPREM, Hélioparc, 2 Avenue du Président Angot, 64053 Pau Cedex 9 (France); Thiry, Yves, E-mail: yves.thiry@andra.fr [Andra, Research and Development Division, Parc de la Croix Blanche, 1-7 rue Jean Monnet, 92298 Châtenay-Malabry Cedex (France); Le Hécho, Isabelle, E-mail: isabelle.lehecho@univ-pau.fr [Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE), Université de Pau et des Pays de l' Adour/CNRS, UMR 5254, IPREM, Hélioparc, 2 Avenue du Président Angot, 64053 Pau Cedex 9 (France); Bueno, Maïté, E-mail: maite.bueno@univ-pau.fr [Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE), Université de Pau et des Pays de l' Adour/CNRS, UMR 5254, IPREM, Hélioparc, 2 Avenue du Président Angot, 64053 Pau Cedex 9 (France)

    2016-08-15

    A better understanding of selenium fate in soils at both short and long time scales is mandatory to consolidate risk assessment models relevant for managing both contamination and soil fertilization issues. The purpose of this study was thus to investigate Se retention processes and their kinetics by monitoring time-dependent distribution/speciation changes of both ambient and freshly added Se, in the form of stable enriched selenite-77, over a 2-years field experiment. This study clearly illustrates the complex reactivity of selenium in soil considering three methodologically defined fractions (i.e. soluble, exchangeable, organic). Time-dependent redistribution of Se-77 within solid-phases having different reactivity could be described as a combination of chemical and diffusion controlled processes leading to its stronger retention. Experimental data and their kinetic modeling evidenced that transfer towards less labile bearing phases are controlled by slow processes limiting the overall sorption of Se in soils. These results were used to estimate time needed for {sup 77}Se to reach the distribution of naturally present selenium which may extend up to several decades. Ambient Se speciation accounted for 60% to 100% of unidentified species as function of soil type whereas {sup 77}Se(IV) remained the more abundant species after 2-years field experiment. Modeling Se in the long-term without taking account these slow sorption kinetics would thus result in underestimation of Se retention. When using models based on K{sub d} distribution coefficient, they should be at least reliant on ambient Se which is supposed to be at equilibrium.

  7. [Selenium treatment in thyreopathies].

    Science.gov (United States)

    Sotak, Štefan

    Selenium (latin Selenium) is a micronutrient embedded in several proteins. In adults, the thyroid is the organ with the highest amount of selenium per gram of tissue. Selenium levels in the body depend on the characteristics of the population and its diet and geographic area. In the thyroid, selenium is required for the antioxidant function and for the metabolism of thyroid hormones. The literature suggests that selenium supplementation of patients with Hashimotos thyroiditis is associated with a reduction in antithyroperoxidase antibody levels. Selenium supplementation also in mild Graves orbitopathy is associated with delayed progression of ocular disorders. As a consequence of this observation The European Group on Graves Orbitopathy recommend six months selenium preparates supportive therapy for patients with mild form of Graves orbitopathy.Key words: Graves-Basedows disease - Hashimotos thyroiditis - selenium - supplementation.

  8. Enhanced Iron and Selenium Uptake in Plants by Volatile Emissions of Bacillus amyloliquefaciens (BF06

    Directory of Open Access Journals (Sweden)

    Jianfei Wang

    2017-01-01

    Full Text Available Volatile organic compounds (VOCs released by plant growth-promoting rhizobacteria (PGPR are involved in promoting growth and triggering systemic resistance (ISR in plants. Importantly, the release of VOCs by some PGPR strains confers improved plant uptake of nutrient elements from the soil. However, the underlying mechanisms of VOCs-regulated nutrient acquisition remain elusive. In this study, VOCs were extracted and identified from Bacillus amyloliquefaciens (strain BF06 using gas chromatography–mass spectrometry (GC–MS. BF06 VOCs exposure significantly promoted the growth and photosynthesis of Arabidopsis plants. To explore how microbial VOCs stimulate growth in plants, gene expression profiles of Arabidopsis seedlings exposed to BF06 VOCs were examined using transcriptomic analyses. In screening differentially expressed genes (DEGs, most upregulated DEGs were found to be related to amino acid transport, iron (Fe uptake and homeostasis, and sulfate transport. Furthermore, BF06 VOCs significantly enhanced Fe absorption in plants under Fe-limited conditions. However, when nitric oxide (NO synthesis was inhibited, BF06 VOCs exposure could not substantially augment Fe acquisition in plants under alkaline stress, indicating that VOCs-mediated plant uptake of Fe was required for induction of root NO accumulation. In addition, BF06 VOCs exposure led to a marked increase in some genes encoding for sulfate transporters, and further increased Se accumulation in plants. Intriguingly, BF06 VOCs exposure failed to increase Se uptake in sultr1;2 mutants, which may indicate that high-level transcription of these sulfate transporters induced by BF06 VOCs was essential for enhancing Se absorption by plants. Taken together, our results demonstrated the potential of VOCs released by this strain BF06 to increase Fe and Se uptake in plants.

  9. Chemical form of selenium affects its uptake, transport, and glutathione peroxidase activity in the human intestinal Caco-2 cell model.

    Science.gov (United States)

    Zeng, Huawei; Jackson, Matthew I; Cheng, Wen-Hsing; Combs, Gerald F

    2011-11-01

    Determining the effect of selenium (Se) chemical form on uptake, transport, and glutathione peroxidase activity in human intestinal cells is critical to assess Se bioavailability at nutritional doses. In this study, we found that two sources of L-selenomethionine (SeMet) and Se-enriched yeast each increased intracellular Se content more effectively than selenite or methylselenocysteine (SeMSC) in the human intestinal Caco-2 cell model. Interestingly, SeMSC, SeMet, and digested Se-enriched yeast were transported at comparable efficacy from the apical to basolateral sides, each being about 3-fold that of selenite. In addition, these forms of Se, whether before or after traversing from apical side to basolateral side, did not change the potential to support glutathione peroxidase (GPx) activity. Although selenoprotein P has been postulated to be a key Se transport protein, its intracellular expression did not differ when selenite, SeMSC, SeMet, or digested Se-enriched yeast was added to serum-contained media. Taken together, our data show, for the first time, that the chemical form of Se at nutritional doses can affect the absorptive (apical to basolateral side) efficacy and retention of Se by intestinal cells; but that, these effects are not directly correlated to the potential to support GPx activity.

  10. The response of broccoli (Brassica oleracea convar. italica) varieties on foliar application of selenium: uptake, translocation, and speciation.

    Science.gov (United States)

    Šindelářová, Kristýna; Száková, Jiřina; Tremlová, Jana; Mestek, Oto; Praus, Lukáš; Kaňa, Antonín; Najmanová, Jana; Tlustoš, Pavel

    2015-01-01

    A model small-scale field experiment was set up to investigate selenium (Se) uptake by four different varieties of broccoli plants, as well as the effect of Se foliar application on the uptake of essential elements for plants calcium (Ca), copper (Cu), iron (Fe), potassium (K), magnesium (Mg), manganese (Mn), phosphorus (P), sulfur (S), and zinc (Zn). Foliar application of sodium selenate (Na2SeO4) was carried out at two rates (25 and 50 g Se/ha), and an untreated control variant was included. Analyses of individual parts of broccoli were performed, whereby it was found that Se in the plant accumulates mainly in the flower heads and slightly less in the leaves, stems, and roots, regardless of the Se rate and broccoli variety. In most cases, there was a statistically significant increase of Se content in all parts of the plant, while there was no confirmed systematic influence of the addition of Se on the changing intake of other monitored elements. Selenization of broccoli leads to an effective increase in the Se content at a rate of 25 g/ha, whereas the higher rate did not result in a substantial increase of Se content compared to the lower rate in all varieties. Therefore, the rate of 25 g/ha can be recommended as effective to produce broccoli with an increased Se content suitable for consumption. Moreover, Se application resulted in an adequate increase of the main organic compounds of Se, such as selenocystine (SeCys2), selenomethionine (SeMet), and Se-methylselenocysteine (Se-MeSeCys).

  11. Relationship between glutation peroxidase (GSH-PX) activity and the uptake of 75-Se by erytrocytes for practical assesment of selenium status in dairy cows

    International Nuclear Information System (INIS)

    Danius, J.

    1988-01-01

    An experiment to study the relationship between glutation peroxidase (GSH-Px) activity and the uptake of 75-Se by erytrocytes was conducted for practical assesment of selenium status in Holstein-Friesian (HF) dairy cows. The blood used in the experiment was stored in refrigerator for 7 and 10 days. Radioselenium with a specific activity at about 0.84 mCi/m was used. A high negative correlatin (r = -0.86 and r = -0.98) was found between red blood cell GSH-Px activity and red blood cell uptake of 75-Se. Results indicated that red blood cell uptake of 75-Se can be used for determination of Se status in dairy cattle, although some factors which might affect red blood cell uptake of 75-Se should be calculated first. (author). 21 refs, 2 figs

  12. Selenium bioavailability and uptake as affected by four different plants in a loamy clay soil with particular attention to mycorrhizae inoculated ryegrass

    International Nuclear Information System (INIS)

    Munier-Lamy, C.; Deneux-Mustin, S.; Mustin, C.; Merlet, D.; Berthelin, J.; Leyval, C.

    2007-01-01

    The aim of this study was to investigate the influence of plant species, especially of their rhizosphere soil, and of inoculation with an arbuscular mycorrhizal (AM) fungus on the bioavailability of selenium and its transfer in soil-plant systems. A pot experiment was performed with a loamy clay soil and four plant species: maize, lettuce, radish and ryegrass, the last one being inoculated or not with an arbuscular mycorrhizal fungus (Glomus mosseae). Plant biomass and Se concentration in shoots and roots were estimated at harvest. Se bioavailability in rhizosphere and unplanted soil was evaluated using sequential extractions. Plant biomass and selenium uptake varied with plant species. The quantity of rhizosphere soil also differed between plants and was not proportional to plant biomass. The highest plant biomass, Se concentration in plants, and soil to plant transfer factor were obtained with radish. The lowest Se transfer factors were obtained with ryegrass. For the latter, mycorrhizal inoculation did not significantly affect plant growth, but reduced selenium transfer from soil to plant by 30%. In unplanted soil after 65 days aging, more than 90% of added Se was water-extractable. On the contrary, Se concentration in water extracts of rhizosphere soil represented less than 1% and 20% of added Se for ryegrass and maize, respectively. No correlation was found between the water-extractable fraction and Se concentration in plants. The speciation of selenium in the water extracts indicated that selenate was reduced, may be under organic forms, in the rhizosphere soil

  13. Potential Moderating Effects of Selenium on Mercury Uptake and Selenium:Mercury Molar Ratios in Fish From Oak Ridge and Savannah River Site - 12086

    Energy Technology Data Exchange (ETDEWEB)

    Burger, Joanna; Gochfeld, Michael; Donio, Mark [Division of Life Sciences, Rutgers University, 604 Allison Road, Piscataway, New Jersey 08854-8082 (United States); Environmental and Occupational Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854 (United States); Jeitner, Christian; Pittfield, Taryn [Division of Life Sciences, Rutgers University, 604 Allison Road, Piscataway, New Jersey 08854-8082 (United States); Consortium for Risk Evaluation with Stakeholder Participation (CRESP), Rutgers University and Vanderbilt University, Nashville, Tennessee 37235 (United States)

    2012-07-01

    Mercury contamination is an important remediation issue at the U.S. Department of Energy's (DOE) Oak Ridge Reservation and to a lesser extent at other DOE sites because of the hazard it presents, potential consequences to humans and eco-receptors, and completed pathways, to offsite receptors. Recent work has emphasized that selenium might ameliorate the toxicity of mercury, and we examine the selenium:mercury (Se:Hg) molar ratios in fish from Oak Ridge, and compare them to Se:Hg molar ratios in fish from the Savannah River. Selenium/mercury molar ratios varied considerably among and within fish species. There was considerable variation in the molar ratios for individual fish (as opposed to mean ratios by species) for freshwater fish from both sites. The inter-individual variation in molar ratios indicates that such that the molar ratios of mean Se and Hg concentrations may not be representative. Even for fish species with relatively low mercury levels, some individual fish have molar ratios less than unity, the value sometime thought to be protective. Selenium levels varied narrowly regardless of fish size, consistent with homeostatic regulation of this essential trace element. The data indicate that considerable attention will need to be directed toward variations and variances, as well as the mechanisms of the interaction of selenium and mercury, before risk assessment and risk management policies can use this information to manage mercury pollution and risk. Even so, if there are high levels of selenium in the fish from Poplar Creek on Oak Ridge, then the potential exists for some amelioration of adverse health effects, on the fish themselves, predators that eat them, and people who consume them. This work will aid DOE because it will allow managers and scientists to understand another aspect that affects fate and transport of mercury, as well as the potential effects of methylmercury in fish for human and ecological receptors. The variability within fish

  14. Gypsum amendment to soil can reduce selenium uptake by alfalfa grown in the presence of coal fly ash

    International Nuclear Information System (INIS)

    Arthur, M.A.; Rubin, G.; Woodbury, P.B.; Weinstein, L.H.

    1993-01-01

    Experiments in the field and greenhouse were conducted in the presence of coal fly ash to determine whether gypsum can reduce Se concentration in alfalfa (Medicago sativa L.). In the field experiment, conducted at a coal fly ash landfill, 11.2 t ha -1 gypsum was applied to soil as a top dressing to test the effect of gypsum in reducing selenium (Se) concentration in aboveground plant tissue. There were four treatment combinations of gypsum over a two year period, 1990, and 1991: (0, 0), (0, 11.2) (11.2, 0) and (11.2, 11.2). In 1991, the Se concentration was lower in alfalfa grown with gypsum, regardless of whether the gypsum was applied in both years or in only one year, indicating that the effect of gypsum application in the first year persisted into the second year. Since there was no increase in aboveground biomass with added gypsum, differences in Se concentration reflect a competitive interaction between S and Se. In the greenhouse experiment, 12 soil treatments were tested: three levels of fly ash (0, 10 and 20%) in combination with each of four levels of gypsum (0, 2.5, 5 and 7.5%). The Se concentration in alfalfa grown in 10% fly ash declined linearly with increasing gypsum dose, resulting in a reduction in Se concentration of 0.04 ± 0.02 μg g -1 for each 1% gypsum added for the first harvest and 0.06 ± 0.03 μg g -1 for each 1% gypsum added in the second harvest. Based on these results, gypsum may prove useful as a management tool to reduce the uptake of Se by plants growing on coal fly ash landfills

  15. Selenium content of mushrooms.

    Science.gov (United States)

    Stijve, T

    1977-07-29

    The selenium contents of 83 species of wild mushrooms were determined by oxygen combustion of the sample, followed by conversion of selenite to bromopiazselenol and final estimation by electron capture gas-liquid chromatography. Selenium concentration were found to range from 0.012-20.0 mg/kg dry weight. Selenium content was species-dependent. High concentrations were found in Agaricaceae and in certain Boletaceae of the genus Tubiporus, whereas in Russulaceae, Amanitaceae and Cantharellaceae selenium-rich species were absent or rare. Ascomycetes and all mushrooms growing on wood had a very low selenium content. The highest selenium concentrations (up to 20 ppm) were found in Boletus (Tubiporus) edulis, a most popular edible mushroom. Analyses of various parts of carpophores of B. edulis, Suillus luteus and Amanita muscaria indicate that in all three species the stalk contains less selenium than the fleshy part of the cap. In Boletus and Suillus the highest selenium content was found in the tubes.

  16. [Selenium uptake and transport of rice under different Se-enriched natural soils].

    Science.gov (United States)

    Jiang, Chao-qiang; Shen, Jia; Zu, Chao-long

    2015-03-01

    In this study, a pot experiment was conducted with "Wandao 205" as test materials to investigate Se uptake and translocation in rice under different Se concentrations (0.5, 1.0, and 1.5 mg . kg-1). Results showed that there was no significant change in rice yield when Se concentration in soil was lower than 1.5 mg . kg-1. Significant linear correlations existed between Se concentration in soil and different rice plant tissues. Se concentration in rice plant followed the order of root > straw > grain. Se concentration in different rice grain fractions followed the order of bran > polished rice > hull. The root absorption index of Se was more than 1.86, suggest that the rice could absorpt Se from soil effectively. However, the transport and accumulation of Se in seeds from Se-enriched soil was relatively constant. The Se transport index in seeds was between 0.53 and 0.59. Soil Se concentration within the range of 0.5 to 1.0 mg . kg-1 could produce Se-enriched rice, which might be enough for human requirement of 60-80 µg . d-1 Se. However, polished rice at high-Se treatment (1.5 mg . kg-1) exceeded the maximum standard limit of Se (0.3 mg . kg-1) for cereals in China. These results suggested that we could produce Se-enriched rice under soil Se concentration in the range of 0.5 to 1.0 mg . kg-1 without spraying Se fertilizer, thus reducing the cost and avoiding soil and water pollution caused by exogenous Se.

  17. Effects of Selenium Supplementation on the Diabetic Condition Depend on the Baseline Selenium Status in KKAy Mice.

    Science.gov (United States)

    Febiyanto, Novian; Yamazaki, Chiho; Kameo, Satomi; Sari, Dian K; Puspitasari, Irma M; Sunjaya, Deni K; Herawati, Dewi M D; Nugraha, Gaga I; Fukuda, Toshio; Koyama, Hiroshi

    2018-01-01

    Oxidative stress in obesity leads to insulin resistance in type 2 diabetes. Some selenoproteins possess antioxidant properties, suggesting that selenium (Se) may protect against type 2 diabetes; however, evidence from epidemiological studies is contradictory. We hypothesized that Se status before supplementation (baseline) contributes to the supplementation outcome. This study aimed to clarify the influence of baseline Se status on the effect of Se supplementation on the diabetic condition. Six-week-old KKAy mice were fed a diet without supplemental Se or with 0.1 ppm Se in the form of L-selenomethionine (SeM) for 2 weeks to create low-Se and sufficient-Se baseline statuses, respectively. For the next 4 weeks, low-Se mice were given a SeM (0.5 ppm Se)-supplemented diet, and sufficient-Se mice were given either a SeM (0.5 ppm Se)- or sodium selenite (0.5 ppm Se)-supplemented diet; control groups continued on baseline diets. Serum Se concentrations, glutathione peroxidase (GPx) activities, adiponectin levels, glucose tolerance, and insulin sensitivity were analyzed. All mice became diabetic during the 2-week baseline induction period. At the end of the supplementation period, Se-receiving groups demonstrated significantly higher Se concentrations and GPx activities than their respective controls. Sufficient-Se mice receiving SeM had lower blood glucose levels and better insulin sensitivity than control and sodium selenite-receiving mice, whereas low-Se mice receiving SeM showed no such improvements compared with their controls. Our results suggest that Se supplementation in the form of SeM may help prevent type 2 diabetes aggravation in people taking the 55 μg/day Se recommended dietary allowance.

  18. Identification and characterization of a selenium-dependent glutathione peroxidase in Setaria cervi

    International Nuclear Information System (INIS)

    Singh, Anchal; Rathaur, Sushma

    2005-01-01

    Setaria cervi a bovine filarial parasite secretes selenium glutathione peroxidase during in vitro cultivation. A significant amount of enzyme activity was detected in the somatic extract of different developmental stages of the parasite. Among different stages, microfilariae showed a higher level of selenium glutathione peroxidase activity followed by males then females. However, when the activity was compared in excretory secretory products of these stages males showed higher activity than microfilariae and female worms. The enzyme was purified from female somatic extract using a combination of glutathione agarose and gel filtration chromatography, which migrated as a single band of molecular mass ∼20 kDa. Selenium content of purified enzyme was estimated by atomic absorption spectroscopy and found to be 3.5 ng selenium/μg of protein. Further, inhibition of enzyme activity by potassium cyanide suggested the presence of selenium at the active site of enzyme. This is the first report of identification of selenium glutathione peroxidase from any filarial parasite

  19. Stage-specific and age-dependent profiles of zinc, copper, manganese, and selenium in rat seminiferous tubules

    International Nuclear Information System (INIS)

    Homma-Takeda, S.; Nishimura, Y.; Watanabe, Y.; Imaseki, H.; Yukawa, M.

    2004-01-01

    Stage-specific and age-dependent profiles of zinc, copper, manganese, and selenium in testis were examined in Wistar rats by both inductively coupled argon plasma-mass spectrometry (ICP-MS) with a microdissection technique and in situ elemental imaging of micro-PIXE analysis. The young adult animals (10 weeks old) contained higher levels of zinc and manganese in the seminiferous tubules at stages VII-VIII than stages XI through VI and IX-X and the levels were higher than those of the immature and old animals. Copper and selenium levels at stages VII-VIII of the young adult animals were also higher than those of the immature and old animals. In stages VII and VIII, zinc was higher in the central area of the seminiferous epithelium, where spermatozoa were localized, demonstrating a cell-specific property. (author)

  20. Selenium Sulfide

    Science.gov (United States)

    Selenium sulfide, an anti-infective agent, relieves itching and flaking of the scalp and removes the dry, ... Selenium sulfide comes in a lotion and is usually applied as a shampoo. As a shampoo, selenium ...

  1. Functional-dependent and size-dependent uptake of nanoparticles in PC12

    International Nuclear Information System (INIS)

    Sakai, N; Matsui, Y; Nakayama, A; Yoneda, M; Tsuda, A

    2011-01-01

    It is suggested that the uptake of nanoparticles is changed by the particle size or the surface modification. In this study, we quantified the uptake of nanoparticles in PC12 cells exposed Quantum Dots with different surface modification or fluorescent polystyrene particles with different particle size. The PC12 cells were exposed three types of the Quantum Dots (carboxyl base-functionalized, amino base-functionalized or non-base-functionalized) or three types of the fluorescent particles (22 nm, 100 nm or 1000 nm) for 3 hours. The uptake of the nanoparticles was quantified with a spectrofluorophotometer. The carboxyl base-functionalized Quantum Dots were considerably taken up by the cells than the non-base-functionalized Quantum Dots. Conversely, the amino base-functionalized Quantum Dots were taken up by the cells less frequently than the non-base-functionalized Quantum Dots. The particle number of the 22 nm-nanoparticles taken up by the cells was about 53 times higher than the 100 nm-particles. However, the particle weight of the 100 nm-particles taken up by the cells was higher than that of the 22 nm-nanoparticles. The 1000 nm-particles were adhered to the cell membrane, but they were little taken up by the cells. We concluded that nanoparticles can be taken up nerve cells in functional-dependent and size-dependent manners.

  2. Methods of Selenium Supplementation: Bioavailability and Determination of Selenium Compounds.

    Science.gov (United States)

    Bodnar, Malgorzata; Szczyglowska, Marzena; Konieczka, Piotr; Namiesnik, Jacek

    2016-01-01

    Selenium, a "dual-surface" element, maintains a very thin line between a level of necessity and harmfulness. Because of this, a deficiency or excess of this element in an organism is dangerous and causes health-related problems, both physically and mentally. The main source of selenium is a balanced diet, with a proper selection of meat and plant products. Meanwhile, the proper assimilation of selenium into these products depends on their bioavailability, bioaccessibility, and/or bioactivity of a given selenium compound. From the time when it was discovered that selenium and its compounds have a significant influence on metabolic processes and in many countries throughout the world, a low quantity of selenium was found in different parts of the environment, pressure was put upon an effective and fast method of supplementing the environment with the help of selenium. This work describes supplementation methods applied with the use of selenium, as well as new ideas for increasing the level of this element in various organisms. Based on the fact that selenium appears in the environment at trace levels, the determination of total amount of selenium or selenium speciation in a given sample demands the selection of appropriate measurement methods. These methods are most often comprised of a sample preparation technique and/or a separation technique as well as a detection system. The work presents information on the subject of analytical methods used for determining selenium and its compounds as well as examples in literature of their application.

  3. The Impact of Phosphorus Supply on Selenium Uptake During Hydroponics Experiment of Winter Wheat (Triticum aestivum) in China.

    Science.gov (United States)

    Liu, Hongen; Shi, Zhiwei; Li, Jinfeng; Zhao, Peng; Qin, Shiyu; Nie, Zhaojun

    2018-01-01

    Selenium (Se) is a necessary trace element for humans and animals, and Se fertilization is an efficient way to increase Se concentration in the edible parts of crops, thus enhance the beneficiary effects of Se in human and animal health. Due to the similarity of physical and chemical properties between phosphate () and selenite (), phosphorus (P) supply often significantly impacts the absorption of Se in plants, but little is known about how P supply influences the subcellular distribution and chemical forms of Se. In this study, the effects of P supply on subcellular distribution and chemical forms of Se in winter wheat were investigated in a hydroponic trial with medium Se level (0.1 mg Se L -1 ). P was applied with three concentrations (0.31, 3.1, and 31 mg P L -1 ) in the experiment. The results showed that increasing P supply significantly decreased the concentration and accumulation of Se in the roots, stems, and leaves of winter wheat. An increase in P supply significantly inhibited Se accumulation in the root cell wall, but enhanced Se distribution in the organelles and soluble fraction of root cells. These findings suggest that increased P supply inhibited the root-to-shoot transport of Se. An increase in P supply enhanced Se accumulation in the cell wall of plant stems (both apical and axillary stem) and cell organelles of plants leaves, but inhibited Se distribution in the soluble fraction of stems and leaves. This suggests that P supply enhances Se transportation across the cell membrane in shoots of winter wheat. In addition, increased P supply also altered the chemical forms of Se in tissues of winter wheat. These findings will help in understanding of the regulation grain Se accumulation and provide a practical way to enhance Se intake for humans inform Se-enriched grains.

  4. Characterization of bicarbonate-dependent potassium uptake in cultured corneal endothelial cells

    International Nuclear Information System (INIS)

    Savion, N.; Farzame, N.; Berlin, H.B.

    1989-01-01

    Bovine corneal endothelial (BCE) cells in culture demonstrated 86Rb+ uptake which was mostly ouabain-sensitive with some (15 to 50%) ouabain-insensitive uptake that was dependent on the presence of bicarbonate in the incubation medium. Bovine smooth muscle (SM) cells demonstrated ouabain-sensitive 86Rb+ uptake but the ouabain-insensitive 86Rb+ uptake was not bicarbonate-dependent. Although omission of bicarbonate from the incubation buffer resulted in some reduction in the pH, this change was not responsible for the reduction in the ouabain-insensitive 86Rb+ uptake. Furthermore, the removal of bicarbonate decreased the 86Rb+ influx but not its efflux. This ouabain-insensitive and bicarbonate-dependent 86Rb+ influx in BCE cells proceeded at a linear rate for at least 60 min and increased as a function of bicarbonate concentration such that almost maximal uptake was observed at a concentration of about 10 to 15 mM. Saturation of the bicarbonate-dependent 86Rb+ pump in BCE cells occurred at a concentration of 2 mM Rb+ in the incubation buffer, similar to the previously observed value for the Na+, K+-ATPase. Competition experiments with both unlabeled Rb+ and K+ demonstrated that likewise in the Na+, K+-ATPase the 86Rb+ influx represented physiological influx of K+. Furthermore, the energy requirements of the bicarbonate-dependent 86Rb+ uptake were similar to those of the 86Rb+ uptake via the Na+, K+-ATPase. The results described in this work demonstrated a novel bicarbonate-dependent K+ pump in addition to the Na+, K+-ATPase pump.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Selenium in food and health

    National Research Council Canada - National Science Library

    Reilly, Conor

    2006-01-01

    ...) to be a carcinogen and banned as an additive in food. Selenium is considered by some to be a serious hazard to the environment and to animal health. Selenium-contaminated water has brought deformity and death to wildlife in nature reserves in western USA. There is even concern that because of selenium contamination of soil, crops supplied to the great cities of California could become unfit for human consumption. In large areas of China, endemic selenium toxicity is a hazard for locals who depend on cr...

  6. Dependence of mitochondrial coenzyme A uptake on the membrane electrical gradient

    International Nuclear Information System (INIS)

    Tahiliani, A.G.

    1989-01-01

    Coenzyme A (CoA) transport was studied in isolated rat heart mitochondria. Uptake of CoA was assayed by determining [3H]CoA associated with mitochondria under various conditions. Various oxidizable substrates including alpha-ketoglutarate, succinate, or malate stimulated CoA uptake. The membrane proton (delta pH) and electrical (delta psi) gradients, which dissipated with time in the absence of substrate, were maintained at their initial levels throughout the incubation in the presence of substrate. Addition of phosphate caused a concentration-dependent decrease of both delta pH and CoA uptake. Nigericin also dissipated the proton gradient and prevented CoA uptake. Valinomycin also prevented CoA uptake into mitochondria. Although the proton gradient was unaffected, the electrical gradient was completely abolished in the presence of valinomycin. Addition of 5 mM phosphate 10 min after the start of incubation prevented further uptake of CoA into mitochondria. A rapid dissipation of the proton gradient upon addition of phosphate was observed. Addition of nigericin or valinomycin 10 min after the start of incubation also resulted in no further uptake of CoA into with mitochondria; valinomycin caused an apparent efflux of CoA from mitochondria. Uptake was found to be sensitive to external pH displaying a pH optimum at pHext 8.0. Although nigericin significantly inhibited CoA uptake over the pHext range of 6.75-8, maximal transport was observed around pHext 8.0-8.25. Valinomycin, on the other hand, abolished transport over the entire pH range. The results suggest that mitochondrial CoA transport is determined by the membrane electrical gradient. The apparent dependence of CoA uptake on an intact membrane pH gradient is probably the result of modulation of CoA transport by matrix pH

  7. Threshold-dependent sample sizes for selenium assessment with stream fish tissue

    Science.gov (United States)

    Hitt, Nathaniel P.; Smith, David R.

    2015-01-01

    Natural resource managers are developing assessments of selenium (Se) contamination in freshwater ecosystems based on fish tissue concentrations. We evaluated the effects of sample size (i.e., number of fish per site) on the probability of correctly detecting mean whole-body Se values above a range of potential management thresholds. We modeled Se concentrations as gamma distributions with shape and scale parameters fitting an empirical mean-to-variance relationship in data from southwestern West Virginia, USA (63 collections, 382 individuals). We used parametric bootstrapping techniques to calculate statistical power as the probability of detecting true mean concentrations up to 3 mg Se/kg above management thresholds ranging from 4 to 8 mg Se/kg. Sample sizes required to achieve 80% power varied as a function of management thresholds and Type I error tolerance (α). Higher thresholds required more samples than lower thresholds because populations were more heterogeneous at higher mean Se levels. For instance, to assess a management threshold of 4 mg Se/kg, a sample of eight fish could detect an increase of approximately 1 mg Se/kg with 80% power (given α = 0.05), but this sample size would be unable to detect such an increase from a management threshold of 8 mg Se/kg with more than a coin-flip probability. Increasing α decreased sample size requirements to detect above-threshold mean Se concentrations with 80% power. For instance, at an α-level of 0.05, an 8-fish sample could detect an increase of approximately 2 units above a threshold of 8 mg Se/kg with 80% power, but when α was relaxed to 0.2, this sample size was more sensitive to increasing mean Se concentrations, allowing detection of an increase of approximately 1.2 units with equivalent power. Combining individuals into 2- and 4-fish composite samples for laboratory analysis did not decrease power because the reduced number of laboratory samples was compensated for by increased

  8. Inhibitors of glutamate dehydrogenase block sodium-dependent glutamate uptake in rat brain membranes

    Directory of Open Access Journals (Sweden)

    Brendan S Whitelaw

    2013-09-01

    Full Text Available We recently found evidence for anatomic and physical linkages between the astroglial Na+-dependent glutamate transporters (GLT-1/EAAT2 and GLAST/EAAT1 and mitochondria. In these same studies, we found that the glutamate dehydrogenase (GDH inhibitor, epigallocatechin-monogallate (EGCG, inhibits both glutamate oxidation and Na+-dependent glutamate uptake in astrocytes. In the present study, we extend this finding by exploring the effects of EGCG on Na+-dependent L-[3H]-glutamate (Glu uptake in crude membranes (P2 prepared from rat brain cortex. In this preparation, uptake is almost exclusively mediated by GLT-1. EGCG inhibited L-[3H]-Glu uptake in cortical membranes with an IC50 value of 230 µM. We also studied the effects of two additional inhibitors of GDH, hexachlorophene (HCP and bithionol (BTH. Both of these compounds also caused concentration-dependent inhibition of glutamate uptake in cortical membranes. Pre-incubating with HCP for up to 15 min had no greater effect than that observed with no pre-incubation, showing that the effects occur rapidly. HCP decreased the Vmax for glutamate uptake without changing the Km, consistent with a non-competitive mechanism of action. EGCG, HCP, and BTH also inhibited Na+-dependent transport of D-[3H]-aspartate (Asp, a non-metabolizable substrate, and [3H]-γ-aminobutyric acid (GABA. In contrast to the forebrain, glutamate uptake in crude cerebellar membranes (P2 is likely mediated by GLAST (EAAT1. Therefore, the effects of these compounds were examined in cerebellar membranes. In this region, none of these compounds had any effect on uptake of either L-[3H]-Glu or D-[3H]-Asp, but they all inhibited [3H]-GABA uptake. Together these studies suggest that GDH is preferentially required for glutamate uptake in forebrain as compared to cerebellum, and GDH may be required for GABA uptake as well. They also provide further evidence for a functional linkage between glutamate transport and mitochondria.

  9. Selenium essentials

    CERN Document Server

    Sams, Prashanth

    2015-01-01

    If you are a developer who wants to migrate from Selenium RC or any other automation tool to Selenium WebDriver, then this book is for you. Knowledge of automation tools is necessary to follow the examples in this book.

  10. Biofortification and phytoremediation of selenium in China

    Science.gov (United States)

    Biofortification is an agricultural process that increases the uptake and accumulation of specific nutrients, e.g. selenium (Se), in agricultural food products through plant breeding, genetic engineering, and manipulation of agronomic practices. The development and uses of biofortified agricultural ...

  11. The selenium isotopic variations in chondrites are mass-dependent; Implications for sulfide formation in the early solar system

    Science.gov (United States)

    Labidi, J.; König, S.; Kurzawa, T.; Yierpan, A.; Schoenberg, R.

    2018-01-01

    Element transfer from the solar nebular gas to solids occurred either through direct condensation or via heterogeneous reactions between gaseous molecules and previously condensed solid matter. The precursors of altered sulfides observed in chondrites are for example attributed to reactions between gaseous hydrogen sulfide and metallic iron grains. The transfer of selenium to solids likely occurred through a similar pathway, allowing the formation of iron selenides concomitantly with sulfides. The formation rate of sulfide however remains difficult to assess. Here we investigate whether the Se isotopic composition of meteorites contributes to constrain sulfide formation during condensation stages of our solar system. We present high precision Se concentration and δ 82 / 78 Se data for 23 chondrites as well as the first δ 74 / 78 Se , δ 76 / 78 Se and δ 77 / 78 Se data for a sub-set of seven chondrites. We combine our dataset with previously published sulfur isotopic data and discuss aspects of sulfide formation for various types of chondrites. Our Se concentration data are within uncertainty to literature values and are consistent with sulfides being the dominant selenium host in chondrites. Our overall average δ 82 / 78 Se value for chondrites is - 0.21 ± 0.43 ‰ (n = 23, 2 s.d.), or - 0.14 ± 0.21 ‰ after exclusion of three weathered chondrites (n = 20, 2 s.d.). These average values are within uncertainty indistinguishable from a previously published estimate. For the first time however, we resolve distinct δ 82 / 78 Se between ordinary (- 0.14 ± 0.07 ‰, n = 9, 2 s.d.), enstatite (- 0.27 ± 0.05 ‰, n = 3, 2 s.d.) and CI carbonaceous chondrites (- 0.01 ± 0.06 ‰, n = 2, 2 s.d.). We also resolve a Se isotopic variability among CM carbonaceous chondrites. In addition, we report on δ 74 / 78 Se , δ 76 / 78 Se and δ 77 / 78 Se values determined for 7 chondrites. Our data allow evaluating the mass dependency of the δ 82 / 78 Se variations. Mass

  12. The cyto- and genotoxicity of organotin compounds is dependent on the cellular uptake capability

    International Nuclear Information System (INIS)

    Dopp, E.; Hartmann, L.M.; Recklinghausen, U. von; Florea, A.M.; Rabieh, S.; Shokouhi, B.; Hirner, A.V.; Obe, G.; Rettenmeier, A.W.

    2007-01-01

    Organotin compounds have been widely used as stabilizers and anti-fouling agents with the result that they are ubiquitously distributed in the environment. Organotins accumulate in the food chain and potential effects on human health are disquieting. It is not known as yet whether cell surface adsorption or accumulation within the cell, or indeed both is a prerequisite for the toxicity of organotin compounds. In this study, the alkylated tin derivatives monomethyltin trichloride (MMT), dimethyltin dichloride (DMT), trimethyltin chloride (TMT) and tetramethyltin (TetraMT) were investigated for cyto- and genotoxic effects in CHO-9 cells in relation to the cellular uptake. To identify genotoxic effects, induction of micronuclei (MN), chromosome aberrations (CA) and sister chromatid exchanges (SCE) were analyzed and the nuclear division index (NDI) was calculated. The cellular uptake was assessed using ICP-MS analysis. The toxicity of the tin compounds was also evaluated after forced uptake by electroporation. Our results show that uptake of the organotin compounds was generally low but dose-dependent. Only weak genotoxic effects were observed after exposure of cells to DMT and TMT. MMT and TetraMT were negative in the test systems. After forced uptake by electroporation MMT, DMT and TMT induced significant DNA damage at non-cytotoxic concentrations. The results presented here indicate a considerable toxicological potential of some organotin species but demonstrate clearly that the toxicity is modulated by the cellular uptake capability

  13. Overexpression of Endogenous Anti-Oxidants with Selenium Supplementation Protects Trophoblast Cells from Reactive Oxygen Species-Induced Apoptosis in a Bcl-2-Dependent Manner.

    Science.gov (United States)

    Khera, Alisha; Vanderlelie, Jessica J; Holland, Olivia; Perkins, Anthony V

    2017-06-01

    The human placenta provides life support for the developing foetus, and a healthy placenta is a prerequisite to a healthy start to life. Placental tissue is subject to oxidative stress which can lead to pathological conditions of pregnancy such as preeclampsia, preterm labour and intrauterine growth restriction. Up-regulation of endogenous anti-oxidants may alleviate placental oxidative stress and provide a therapy for these complications of pregnancy. In this study, selenium supplementation, as inorganic sodium selenite (NaSel) or organic selenomethionine (SeMet), was used to increase the protein production and cellular activity of the important redox active proteins glutathione peroxidase (GPx) and thioredoxin reductase (Thx-Red). Placental trophoblast cell lines, BeWo, JEG-3 and Swan-71, were cultured in various concentrations of NaSel or SeMet for 24 h and cell extracts prepared for western blots and enzyme assays. Rotenone and antimycin were used to stimulate mitochondrial reactive oxygen species (ROS) production and induce apoptosis. Trophoblast cells supplemented with 100 nM NaSel and 500 nM SeMet exhibited significantly enhanced expression and activity of both GPx and Thx-Red. Antimycin and rotenone were found to generate ROS when measured by 2',7'-dichlorofluorescein diacetate (DCFDA) assay, and selenium supplementation was shown to reduce ROS production in a dose-dependent manner. Rotenone, 100 μM treatment for 4 h, caused trophoblast cell apoptosis as evidenced by increased Annexin V binding and decreased expression of Bcl-2. In both assays of apoptosis, selenium supplementation was able to prevent apoptosis, preserve Bcl-2 expression and protect trophoblast cells from mitochondrial oxidative stress. This data suggests that selenoproteins such as GPx and Thx-Red have an important role in protecting trophoblast cells from mitochondrial oxidative stress and that selenium supplementation may be important in treating some placental pathologies.

  14. Biomarkers of selenium status

    Science.gov (United States)

    The essential trace element selenium (Se) has multiple biological activities, which depend on the level of Se intake. Relatively low Se intakes determine the expression of selenoenzymes in which it serves as an essential constituent. Higher intakes have been shown to have anti-tumorigenic potentia...

  15. Relationships between selenium and mercury in the fruiting bodies of some mushrooms growing in Poland

    Science.gov (United States)

    Falandysz, J.; Kubotal, R.; Kunito, T.; Bielawski, L.; Brzostowski, A.; Gucia, M.; Jedrusiak, A.; Lipka, K.; Tanabe, S.

    2003-05-01

    The relationships between concentrations of total selenium and mercury were investigated for the whole fruiting bodies, caps and/or stalks of King bolete (Boletus edulis), Brown birch scaber stalk (Leccinum scabrum), Parasol mushroom (Macrolepiota procera), Poison pax (Paxillus involutus) and Fly agaric (Amatiita niuscaria) collected from the various sites in Poland. The mushroom species examined varied largely due to the contents and proportions between the total selenium and mercury concentrations, what seems to indicate on species-dependent strategy of co-uptake and accumulation of these elements.

  16. Uptake kinetics and nanotoxicity of silica nanoparticles are cell type dependent.

    Science.gov (United States)

    Blechinger, Julia; Bauer, Alexander T; Torrano, Adriano A; Gorzelanny, Christian; Bräuchle, Christoph; Schneider, Stefan W

    2013-12-09

    In this study, it is shown that the cytotoxic response of cells as well as the uptake kinetics of nanoparticles (NPs) is cell type dependent. We use silica NPs with a diameter of 310 nm labeled with perylene dye and 304 nm unlabeled particles to evaluate cell type-dependent uptake and cytotoxicity on human vascular endothelial cells (HUVEC) and cancer cells derived from the cervix carcinoma (HeLa). Besides their size, the particles are characterized concerning homogeneity of the labeling and their zeta potential. The cellular uptake of the labeled NPs is quantified by imaging the cells via confocal microscopy in a time-dependent manner, with subsequent image analysis via a custom-made and freely available digital method, Particle_in_Cell-3D. We find that within the first 4 h of interaction, the uptake of silica NPs into the cytoplasm is up to 10 times more efficient in HUVEC than in HeLa cells. Interestingly, after 10 or 24 h of interaction, the number of intracellular particles for HeLa cells by far surpasses the one for HUVEC. Inhibitor studies show that these endothelial cells internalize 310 nm SiO₂ NPs via the clathrin-dependent pathway. Remarkably, the differences in the amount of taken up NPs are not directly reflected by the metabolic activity and membrane integrity of the individual cell types. Interaction with NPs leads to a concentration-dependent decrease in mitochondrial activity and an increase in membrane leakage for HUVEC, whereas HeLa cells show only a reduced mitochondrial activity and no membrane leakage. In addition, silica NPs lead to HUVEC cell death while HeLa cells survive. These findings indicate that HUVEC are more sensitive than HeLa cells upon silica NP exposure. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Selenium and phosphorus interaction in pea (pisum sativum L.)

    International Nuclear Information System (INIS)

    Singh, Mahendra; Bhandari, D.K.

    1975-01-01

    The interaction of selenium and phosphorus on the dry matter yield and concentration and uptake of phosphorus, sulfur and selenium was studied in pea (Pisum sativnum) var. T 163. The fertilizer was tagged with P 32 . It was observed that increased concentration of applied selenium in soil decreased the dry matter yield and increased the concentration and uptake of total P, soil P and selenium in pea plants. Increased concentration of P alone increased dry matter yield, concentration and uptake of total, soil and fertilizer P and selenium which was beyond safe limits, and decreased concentration and uptake of sulphur. Selenium and phosphorus showed strong synergetic relationship by increasing the concentration of each other in plants while both showed antagonistic effect on the concentration of sulphur. Phosphorus compensated the toxic effect of selenium and improved the growth and dry matter yield of pea plants. The highest selenium concentration of 22.4 ppm was observed in 100 ppm phosphorus with 5 ppm selenium treated pots while lowest (0.10 ppm) in control. (author)

  18. Selenium content of foods purchased or produced in Ohio.

    Science.gov (United States)

    Snook, J T; Kinsey, D; Palmquist, D L; DeLany, J P; Vivian, V M; Moxon, A L

    1987-06-01

    Approximately 450 samples of about 100 types of foods consumed by rural and urban Ohioans were analyzed for selenium. Meat, dairy products, eggs, and grain products produced in Ohio have considerably lower selenium content than corresponding products produced in high selenium areas, such as South Dakota. Retail Ohio foods with interregional distribution tended to be higher in selenium content than corresponding foods produced in Ohio. Best sources of selenium in Ohio foods commonly consumed were meat and pasta products. Poor sources of selenium were fruits, most vegetables, candies, sweeteners, and alcoholic and nonalcoholic beverages. Establishment of an accurate data base for selenium depends on knowledge of the interregional distribution of foods, the selenium content of foods at their production site, and the selenium content of foods with wide local distribution.

  19. Nanotoxicity of silver nanoparticles to red blood cells: size dependent adsorption, uptake, and hemolytic activity.

    Science.gov (United States)

    Chen, Li Qiang; Fang, Li; Ling, Jian; Ding, Cheng Zhi; Kang, Bin; Huang, Cheng Zhi

    2015-03-16

    Silver nanoparticles (AgNPs) are increasingly being used as antimicrobial agents and drug carriers in biomedical fields. However, toxicological information on their effects on red blood cells (RBCs) and the mechanisms involved remain sparse. In this article, we examined the size dependent nanotoxicity of AgNPs using three different characteristic sizes of 15 nm (AgNPs15), 50 nm (AgNPs50), and 100 nm (AgNPs100) against fish RBCs. Optical microscopy and transmission electron microscopy observations showed that AgNPs exhibited a size effect on their adsorption and uptake by RBCs. The middle sized AgNPs50, compared with the smaller or bigger ones, showed the highest level of adsorption and uptake by the RBCs, suggesting an optimal size of ∼50 nm for passive uptake by RBCs. The toxic effects determined based on the hemolysis, membrane injury, lipid peroxidation, and antioxidant enzyme production were fairly size and dose dependent. In particular, the smallest sized AgNPs15 displayed a greater ability to induce hemolysis and membrane damage than AgNPs50 and AgNPs100. Such cytotoxicity induced by AgNPs should be attributed to the direct interaction of the nanoparticle with the RBCs, resulting in the production of oxidative stress, membrane injury, and subsequently hemolysis. Overall, the results suggest that particle size is a critical factor influencing the interaction between AgNPs and the RBCs.

  20. In Situ Immobilization of Selenium in Sediment

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Robert C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stewart, Thomas Austin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    This project focused on the use of a sorbent, carbonated apatite, to immobilize selenium in the environment. It is know that apatite will sorb selenium and based on the mechanism of sorption it is theorized that carbonated apatite will be more effective that pure apatite. Immobilization of selenium in the environment is through the use of a sorbent in a permeable reactive barrier (PRB). A PRB can be constructed by trenching and backfill with the sorbent or in the case of apatite as the sorbent formed in situ using the apatite forming solution of Moore (2003, 2004). There is very little data on selenium sorption by carbonated apatite in the literature. Therefore, in this work, the basic sorptive properties of carbonated apatite were investigated. Carbonated apatite was synthesized by a precipitation method and characterized. Batch selenium kinetic and equilibrium experiments were performed. The results indicate the carbonated apatite contained 9.4% carbonate and uptake of selenium as selenite was rapid; 5 hours for complete uptake of selenium vs. more than 100 hours for pure hydroxyapatite reported in the literature. Additionally, the carbonated apatite exhibited significantly higher distribution coefficients in equilibrium experiments than pure apatite under similar experimental conditions. The next phase of this work will be to seek additional funds to continue the research with the goal of eventually demonstrating the technology in a field application.

  1. Does selenium supplementation affect thyroid function?

    DEFF Research Database (Denmark)

    Winther, Kristian Hillert; Bonnema, Steen Joop; Cold, Frederik

    2015-01-01

    OBJECTIVE: Selenium is present in the active site of proteins important for thyroid hormone synthesis and metabolism. The objective of this study is to investigate the effect of selenium supplementation in different doses on thyroid function, under conditions of suboptimal dietary selenium intake....... DESIGN: The Danish PREvention of Cancer by Intervention with SElenium pilot study (DK-PRECISE) is a randomized, double-blinded, placebo-controlled trial. A total of 491 males and females aged 60-74 years were randomized to 100 μg (n=124), 200 μg (n=122), or 300 μg (n=119) selenium-enriched yeast......=0.015), respectively, per 100 μg/day increase, with insignificant differences between 6 months and 5 years. No significant effects were found for FT3 and FT3:FT4 ratio. CONCLUSIONS: In euthyroid subjects, selenium supplementation minutely and dose-dependently affects thyroid function, when compared...

  2. Dependence of Brown Adipose Tissue Function on CD36-Mediated Coenzyme Q Uptake

    Directory of Open Access Journals (Sweden)

    Courtney M. Anderson

    2015-02-01

    Full Text Available Brown adipose tissue (BAT possesses the inherent ability to dissipate metabolic energy as heat through uncoupled mitochondrial respiration. An essential component of the mitochondrial electron transport chain is coenzyme Q (CoQ. While cells synthesize CoQ mostly endogenously, exogenous supplementation with CoQ has been successful as a therapy for patients with CoQ deficiency. However, which tissues depend on exogenous CoQ uptake as well as the mechanism by which CoQ is taken up by cells and the role of this process in BAT function are not well understood. Here, we report that the scavenger receptor CD36 drives the uptake of CoQ by BAT and is required for normal BAT function. BAT from mice lacking CD36 displays CoQ deficiency, impaired CoQ uptake, hypertrophy, altered lipid metabolism, mitochondrial dysfunction, and defective nonshivering thermogenesis. Together, these data reveal an important new role for the systemic transport of CoQ to BAT and its function in thermogenesis.

  3. In vitro kinetic studies on the mechanism of oxygen-dependent cellular uptake of copper radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Jason P; Bell, Stephen G; Wong, Luet-Lok; Dilworth, Jonathan R [Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA (United Kingdom); Giansiracusa, Jeffrey H [Department of Mathematics, Mathematical Institute, University of Oxford, 24-29 St Giles' , Oxford, OX1 3LB (United Kingdom)], E-mail: hollanj3@mskcc.org, E-mail: jasonpholland@gmail.com

    2009-04-07

    The development of hypoxia-selective radiopharmaceuticals for use as therapeutic and/or imaging agents is of vital importance for both early identification and treatment of cancer and in the design of new drugs. Radiotracers based on copper for use in positron emission tomography have received great attention due to the successful application of copper(II) bis(thiosemicarbazonato) complexes, such as [{sup 60/62/64}Cu(II)ATSM] and [{sup 60/62/64}Cu(II)PTSM], as markers for tumour hypoxia and blood perfusion, respectively. Recent work has led to the proposal of a revised mechanism of hypoxia-selective cellular uptake and retention of [Cu(II)ATSM]. The work presented here describes non-steady-state kinetic simulations in which the reported pO{sub 2}-dependent in vitro cellular uptake and retention of [{sup 64}Cu(II)ATSM] in EMT6 murine carcinoma cells has been modelled by using the revised mechanistic scheme. Non-steady-state (NSS) kinetic analysis reveals that the model is in very good agreement with the reported experimental data with a root-mean-squared error of less than 6% between the simulated and experimental cellular uptake profiles. Estimated rate constants are derived for the cellular uptake and washout (k{sub 1} = 9.8 {+-} 0.59 x 10{sup -4} s{sup -1} and k{sub 2} = 2.9 {+-} 0.17 x 10{sup -3} s{sup -1}), intracellular reduction (k{sub 3} = 5.2 {+-} 0.31 x 10{sup -2} s{sup -1}), reoxidation (k{sub 4} = 2.2 {+-} 0.13 mol{sup -1} dm{sup 3} s{sup -1}) and proton-mediated ligand dissociation (k{sub 5} = 9.0 {+-} 0.54 x 10{sup -5} s{sup -1}). Previous mechanisms focused on the reduction and reoxidation steps. However, the data suggest that the origins of hypoxia-selective retention may reside with the stability of the copper(I) anion with respect to protonation and ligand dissociation. In vitro kinetic studies using the nicotimamide adenine dinucleotide (NADH)-dependent ferredoxin reductase enzyme PuR isolated from the bacterium Rhodopseudomonas palustris have

  4. The dependence of the modulation transfer function on the blocking layer thickness in amorphous selenium x-ray detectors

    International Nuclear Information System (INIS)

    Hunter, David M.; Belev, Gueorgi; DeCrescenzo, Giovanni; Kasap, Safa O.; Mainprize, James G.; Rowlands, J. A.; Smith, Charles; Tuemer, Tuemay; Verpakhovski, Vladimir; Yin Shi; Yaffe, Martin J.

    2007-01-01

    Blocking layers are used to reduce leakage current in amorphous selenium detectors. The effect of the thickness of the blocking layer on the presampling modulation transfer function (MTF) and on dark current was experimentally determined in prototype single-line CCD-based amorphous selenium (a-Se) x-ray detectors. The sampling pitch of the detectors evaluated was 25 μm and the blocking layer thicknesses varied from 1 to 51 μm. The blocking layers resided on the signal collection electrodes which, in this configuration, were used to collect electrons. The combined thickness of the blocking layer and a-Se bulk in each detector was ∼200 μm. As expected, the dark current increased monotonically as the thickness of the blocking layer was decreased. It was found that if the blocking layer thickness was small compared to the sampling pitch, it caused a negligible reduction in MTF. However, the MTF was observed to decrease dramatically at spatial frequencies near the Nyquist frequency as the blocking layer thickness approached or exceeded the electrode sampling pitch. This observed reduction in MTF is shown to be consistent with predictions of an electrostatic model wherein the image charge from the a-Se is trapped at a characteristic depth within the blocking layer, generally near the interface between the blocking layer and the a-Se bulk

  5. Selenium supplementation for patients with Graves’ hyperthyroidism (the GRASS trial)

    DEFF Research Database (Denmark)

    Watt, Torquil; Cramon, Per; Bjorner, Jakob Bue

    2013-01-01

    Graves' hyperthyroidism is an autoimmune disease causing hyperfunction of the thyroid gland. The concentration of selenium is high in the thyroid gland and two important groups of enzymes within the thyroid are selenoproteins, that is, they depend on selenium. Selenium may have beneficial effects...

  6. Synaptic Membrane Synthesis in Rats Depends on Dietary Sufficiency of Vitamin C, Vitamin E, and Selenium: Relevance for Alzheimer's Disease.

    Science.gov (United States)

    Cansev, Mehmet; Turkyilmaz, Mesut; Sijben, John W C; Sevinc, Cansu; Broersen, Laus M; van Wijk, Nick

    2017-01-01

    Chronic consumption of a diet enriched with nutritional precursors of phospholipids, including uridine and the polyunsaturated fatty acids, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), was shown previously to enhance levels of brain phospholipids and synaptic proteins in rodents. Vitamin C, vitamin E, and selenium may directly affect the breakdown or synthesis of membrane phospholipids. The present study investigated the necessity of antioxidants for the effectiveness of supplementation with uridine plus DHA and EPA (as fish oil) in rats. Rats were randomized to four treatment groups and received, for 6 weeks, one of four experimental diets, i.e., a diet low in antioxidants, a diet high in antioxidants, a diet low in antioxidants supplemented with DHA+EPA+uridine, or a diet high in antioxidants supplemented with DHA+EPA+uridine. On completion of dietary treatment, rats were sacrificed, and brain levels of phospholipids, synaptic proteins, and two enzymes involved in phospholipid synthesis (choline-phosphate cytidylyltransferase, PCYT1A, and choline/ethanolamine phosphotransferase, CEPT1) were analyzed. Levels of phospholipids, the pre- and post-synaptic proteins Synapsin-1 and PSD95, and the enzymes PCYT1A and CEPT1 were significantly enhanced by combined supplementation of DHA+EPA+uridine and antioxidants and not enhanced by supplementation of DHA+EPA+uridine with insufficient antioxidant levels. Our data suggest that dietary vitamin C, vitamin E, and selenium are essential for the phospholipid precursors' effects on increasing levels of membrane phospholipids and synaptic proteins, the indirect indicators of synaptogenesis. Their concomitant supply may be relevant in Alzheimer's disease patients, because the disease is characterized by synapse loss and lower plasma and brain levels of phospholipid precursors and antioxidants.

  7. Selenistasis: Epistatic Effects of Selenium on Cardiovascular Phenotype

    Directory of Open Access Journals (Sweden)

    Joseph Loscalzo

    2013-01-01

    Full Text Available Although selenium metabolism is intricately linked to cardiovascular biology and function, and deficiency of selenium is associated with cardiac pathology, utilization of selenium in the prevention and treatment of cardiovascular disease remains an elusive goal. From a reductionist standpoint, the major function of selenium in vivo is antioxidant defense via its incorporation as selenocysteine into enzyme families such as glutathione peroxidases and thioredoxin reductases. In addition, selenium compounds are heterogeneous and have complex metabolic fates resulting in effects that are not entirely dependent on selenoprotein expression. This complex biology of selenium in vivo may underlie the fact that beneficial effects of selenium supplementation demonstrated in preclinical studies using models of oxidant stress-induced cardiovascular dysfunction, such as ischemia-reperfusion injury and myocardial infarction, have not been consistently observed in clinical trials. In fact, recent studies have yielded data that suggest that unselective supplementation of selenium may, indeed, be harmful. Interesting biologic actions of selenium are its simultaneous effects on redox balance and methylation status, a combination that may influence gene expression. These combined actions may explain some of the biphasic effects seen with low and high doses of selenium, the potentially harmful effects seen in normal individuals, and the beneficial effects noted in preclinical studies of disease. Given the complexity of selenium biology, systems biology approaches may be necessary to reach the goal of optimization of selenium status to promote health and prevent disease.

  8. Leaching of boron, arsenic and selenium from sedimentary rocks: II. pH dependence, speciation and mechanisms of release

    Energy Technology Data Exchange (ETDEWEB)

    Tabelin, Carlito Baltazar, E-mail: carlito@trans-er.eng.hokudai.ac.jp [Laboratory of Soil Environment Engineering, Faculty of Engineering, Hokkaido University, Sapporo (Japan); Hashimoto, Ayaka, E-mail: a.hashimoto@diaconsult.co.jp [DIA Consultants Co. Ltd., Sapporo (Japan); Igarashi, Toshifumi, E-mail: tosifumi@eng.hokudai.ac.jp [Laboratory of Groundwater and Mass Transport, Faculty of Engineering, Hokkaido University, Sapporo (Japan); Yoneda, Tetsuro, E-mail: yonet@eng.hokudai.ac.jp [Laboratory of Soil Environment Engineering, Faculty of Engineering, Hokkaido University, Sapporo (Japan)

    2014-03-01

    Sedimentary rocks excavated in Japan from road- and railway-tunnel projects contain relatively low concentrations of hazardous trace elements like boron (B), arsenic (As) and selenium (Se). However, these seemingly harmless waste rocks often produced leachates with concentrations of hazardous trace elements that exceeded the environmental standards. In this study, the leaching behaviors and release mechanisms of B, As and Se were evaluated using batch leaching experiments, sequential extraction and geochemical modeling calculations. The results showed that B was mostly partitioned with the residual/crystalline phase that is relatively stable under normal environmental conditions. In contrast, the majority of As and Se were associated with the exchangeable and organics/sulfides phases that are unstable under oxidizing conditions. Dissolution of water-soluble phases controlled the leaching of B, As and Se from these rocks in the short term, but pyrite oxidation, calcite dissolution and adsorption/desorption reactions became more important in the long term. The mobilities of these trace elements were also strongly influenced by the pH of the rock-water system. Although the leaching of Se only increased in the acidic region, those of B and As were enhanced under both acidic and alkaline conditions. Under strongly acidic conditions, the primarily release mechanism of B, As and Se was the dissolution of mineral phases that incorporated and/or adsorbed these elements. Lower concentrations of these trace elements in the circumneutral pH range could be attributed to their strong adsorption onto minerals like Al-/Fe-oxyhydroxides and clays, which are inherently present and/or precipitated in the rock-water system. The leaching of As and B increased under strongly alkaline conditions because of enhanced desorption and pyrite oxidation while that of Se remained minimal due to its adsorption onto Fe-oxyhydroxides and co-precipitation with calcite. - Highlights: • The bulk of

  9. Aquatic Life Criterion - Selenium

    Science.gov (United States)

    Documents pertaining to the 2016 Acute and Chronic Ambient Aquatic Life Water Quality Criteria for Selenium (Freshwater). These documents include what the safe levels of Selenium are in water for the majority of species.

  10. Siderophore-dependent iron uptake systems as gates for antibiotic Trojan horse strategies against Pseudomonas aeruginosa.

    Science.gov (United States)

    Mislin, Gaëtan L A; Schalk, Isabelle J

    2014-03-01

    Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen responsible for nosocomial infections. The prevalence of antibiotic-resistant P. aeruginosa strains is increasing, necessitating the urgent development of new strategies to improve the control of this pathogen. Its bacterial envelope constitutes of an outer and an inner membrane enclosing the periplasm. This structure plays a key role in the resistance of the pathogen, by decreasing the penetration and the biological impact of many antibiotics. However, this barrier may also be seen as the "Achilles heel" of the bacterium as some of its functions provide opportunities for breaching bacterial defenses. Siderophore-dependent iron uptake systems act as gates in the bacterial envelope and could be used in a "Trojan horse" strategy, in which the conjugation of an antibiotic to a siderophore could significantly increase the biological activity of the antibiotic, by enhancing its transport into the bacterium. In this review, we provide an overview of the various siderophore-antibiotic conjugates that have been developed for use against P. aeruginosa and show that an accurate knowledge of the structural and functional features of the proteins involved in this transmembrane transport is required for the design and synthesis of effective siderophore-antibiotic Trojan horse conjugates.

  11. Cell cycle dependence of boron uptake in various boron compounds used for neutron capture therapy

    International Nuclear Information System (INIS)

    Yoshida, F.; Matsumura, A.; Shibata, Y.; Yamamoto, T.; Nose, T.; Okumura, M.

    2000-01-01

    In neutron capture therapy, it is important that the tumor take boron in selectively. Furthermore, it is ideal when the uptake is equal in each tumor cell. Some indirect proof of differences in boron uptake among neoplastic cell cycles has been documented. However, no investigation has yet measured boron uptake directly. Using flow cytometry, in the present study cells were sorted by G0/G1 phase and G2/M phase, and the boron concentration of each fraction was measured with inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The results were that BSH (sodiumborocaptate) and BPA (p-boronophenylalanine) had higher rates of boron uptake in the G2/M group than in the G0/G1 group. However, in BPA the difference was more prominent, which revealed a 2.2-3.3 times higher uptake of boron in the G2/M group than in the G0/G1 group. (author)

  12. Selenium and Human Health

    Directory of Open Access Journals (Sweden)

    M Abedi

    2013-04-01

    Full Text Available Introduction: Selenium is an essential element for human health and it is toxic at high concentrations. Selenium is a constituent component of selenoproteins that have enzymatic and structural roles in human biochemistry. Selenium is a best antioxidant and catalyst for production of thyroid hormone. This element has the key role in the immune function; prevention of AIDS progression and the deactivity of toxins. Furthermore, selenium is essential for sperm motility and can reduce abortions. Selenium deficiency was also associated with adverse mood states. The findings regarding cardiovascular disease risk related to selenium deficiency is unclear, though other conditions such as vascular inflammation, oxidative stress and selenium deficiency can cause this disease too. Moreover, consuming of 60 mg of selenium per day may be associated with reduction of cancer risk. In this study, a review of studies has been performed on the biochemical function of selenium toxicity, and its effects on human health. Furthermore, certain identified cancers associated with selenium have been discussed to absorb more attention to the status of this element and also as a guide for further studies. Selenium plays the dual character (useful and harmful in human health, and then it is necessary to determine the concentration of this element in body fluids and tissues. An appropriate method for routine measurement of selenium in clinical laboratories is electro thermal atomic absorption spectrometry (ETAAS with very low detection limit and good precision.

  13. Antagonistic Growth Effects of Mercury and Selenium in Caenorhabditis elegans Are Chemical-Species-Dependent and Do Not Depend on Internal Hg/Se Ratios.

    Science.gov (United States)

    Wyatt, Lauren H; Diringer, Sarah E; Rogers, Laura A; Hsu-Kim, Heileen; Pan, William K; Meyer, Joel N

    2016-03-15

    The relationship between mercury (Hg) and selenium (Se) toxicity is complex, with coexposure reported to reduce, increase, and have no effect on toxicity. Different interactions may be related to chemical compound, but this has not been systematically examined. Our goal was to assess the interactive effects between the two elements on growth in the nematode Caenorhabditis elegans, focusing on inorganic and organic Hg (HgCl2 and MeHgCl) and Se (selenomethionine, sodium selenite, and sodium selenate) compounds. We utilized aqueous Hg/Se dosing molar ratios that were either above, below, or equal to 1 and measured the internal nematode total Hg and Se concentrations for the highest concentrations of each Se compound. Observed interactions were complicated, differed between Se and Hg compounds, and included greater-than-additive, additive, and less-than-additive growth impacts. Biologically significant interactions were only observed when the dosing Se solution concentration was 100-25,000 times greater than the dosing Hg concentration. Mitigation of growth impacts was not predictable on the basis of internal Hg/Se molar ratio; improved growth was observed at some internal Hg/Se molar ratios both above and below 1. These findings suggest that future assessments of the Hg and Se relationship should incorporate chemical compound into the evaluation.

  14. Inhibition of insulin-dependent glucose uptake by trivalent arsenicals: possible mechanism of arsenic-induced diabetes

    International Nuclear Information System (INIS)

    Walton, Felecia S.; Harmon, Anne W.; Paul, David S.; Drobna, Zuzana; Patel, Yashomati M.; Styblo, Miroslav

    2004-01-01

    Chronic exposures to inorganic arsenic (iAs) have been associated with increased incidence of noninsulin (type-2)-dependent diabetes mellitus. Although mechanisms by which iAs induces diabetes have not been identified, the clinical symptoms of the disease indicate that iAs or its metabolites interfere with insulin-stimulated signal transduction pathway or with critical steps in glucose metabolism. We have examined effects of iAs and methylated arsenicals that contain trivalent or pentavalent arsenic on glucose uptake by 3T3-L1 adipocytes. Treatment with inorganic and methylated pentavalent arsenicals (up to 1 mM) had little or no effect on either basal or insulin-stimulated glucose uptake. In contrast, trivalent arsenicals, arsenite (iAs III ), methylarsine oxide (MAs III O), and iododimethylarsine (DMAs III O) inhibited insulin-stimulated glucose uptake in a concentration-dependent manner. Subtoxic concentrations of iAs III (20 μM), MAs III O (1 μM), or DMAs III I (2 μM) decreased insulin-stimulated glucose uptake by 35-45%. Basal glucose uptake was significantly inhibited only by cytotoxic concentrations of iAs III or MAs III O. Examination of the components of the insulin-stimulated signal transduction pathway showed that all trivalent arsenicals suppressed expression and possibly phosphorylation of protein kinase B (PKB/Akt). The concentration of an insulin-responsive glucose transporter (GLUT4) was significantly lower in the membrane region of 3T3-L1 adipocytes treated with trivalent arsenicals as compared with untreated cells. These results suggest that trivalent arsenicals inhibit insulin-stimulated glucose uptake by interfering with the PKB/Akt-dependent mobilization of GLUT4 transporters in adipocytes. This mechanism may be, in part, responsible for the development of type-2 diabetes in individuals chronically exposed to iAs

  15. High-Resolution Imaging of Selenium in Kidneys: A Localized Selenium Pool Associated with Glutathione Peroxidase 3

    Science.gov (United States)

    Malinouski, Mikalai; Kehr, Sebastian; Finney, Lydia; Vogt, Stefan; Carlson, Bradley A.; Seravalli, Javier; Jin, Richard; Handy, Diane E.; Park, Thomas J.; Loscalzo, Joseph; Hatfield, Dolph L.

    2012-01-01

    Abstract Aim: Recent advances in quantitative methods and sensitive imaging techniques of trace elements provide opportunities to uncover and explain their biological roles. In particular, the distribution of selenium in tissues and cells under both physiological and pathological conditions remains unknown. In this work, we applied high-resolution synchrotron X-ray fluorescence microscopy (XFM) to map selenium distribution in mouse liver and kidney. Results: Liver showed a uniform selenium distribution that was dependent on selenocysteine tRNA[Ser]Sec and dietary selenium. In contrast, kidney selenium had both uniformly distributed and highly localized components, the latter visualized as thin circular structures surrounding proximal tubules. Other parts of the kidney, such as glomeruli and distal tubules, only manifested the uniformly distributed selenium pattern that co-localized with sulfur. We found that proximal tubule selenium localized to the basement membrane. It was preserved in Selenoprotein P knockout mice, but was completely eliminated in glutathione peroxidase 3 (GPx3) knockout mice, indicating that this selenium represented GPx3. We further imaged kidneys of another model organism, the naked mole rat, which showed a diminished uniformly distributed selenium pool, but preserved the circular proximal tubule signal. Innovation: We applied XFM to image selenium in mammalian tissues and identified a highly localized pool of this trace element at the basement membrane of kidneys that was associated with GPx3. Conclusion: XFM allowed us to define and explain the tissue topography of selenium in mammalian kidneys at submicron resolution. Antioxid. Redox Signal. 16, 185–192. PMID:21854231

  16. High-resolution imaging of selenium in kidneys: a localized selenium pool associated with glutathione peroxidase 3

    Energy Technology Data Exchange (ETDEWEB)

    Malinouski, M.; Kehr, S.; Finney, L.; Vogt, S.; Carlson, B.A.; Seravalli, J.; Jin, R.; Handy, D.E.; Park, T.J.; Loscalzo, J.; Hatfield, D.L.; Gladyshev, V.N. (Harvard-Med)

    2012-04-17

    Recent advances in quantitative methods and sensitive imaging techniques of trace elements provide opportunities to uncover and explain their biological roles. In particular, the distribution of selenium in tissues and cells under both physiological and pathological conditions remains unknown. In this work, we applied high-resolution synchrotron X-ray fluorescence microscopy (XFM) to map selenium distribution in mouse liver and kidney. Liver showed a uniform selenium distribution that was dependent on selenocysteine tRNA{sup [Ser]Sec} and dietary selenium. In contrast, kidney selenium had both uniformly distributed and highly localized components, the latter visualized as thin circular structures surrounding proximal tubules. Other parts of the kidney, such as glomeruli and distal tubules, only manifested the uniformly distributed selenium pattern that co-localized with sulfur. We found that proximal tubule selenium localized to the basement membrane. It was preserved in Selenoprotein P knockout mice, but was completely eliminated in glutathione peroxidase 3 (GPx3) knockout mice, indicating that this selenium represented GPx3. We further imaged kidneys of another model organism, the naked mole rat, which showed a diminished uniformly distributed selenium pool, but preserved the circular proximal tubule signal. We applied XFM to image selenium in mammalian tissues and identified a highly localized pool of this trace element at the basement membrane of kidneys that was associated with GPx3. XFM allowed us to define and explain the tissue topography of selenium in mammalian kidneys at submicron resolution.

  17. Selenium accumulation by plants

    Science.gov (United States)

    White, Philip J.

    2016-01-01

    Background Selenium (Se) is an essential mineral element for animals and humans, which they acquire largely from plants. The Se concentration in edible plants is determined by the Se phytoavailability in soils. Selenium is not an essential element for plants, but excessive Se can be toxic. Thus, soil Se phytoavailability determines the ecology of plants. Most plants cannot grow on seleniferous soils. Most plants that grow on seleniferous soils accumulate 100 mg Se kg–1 dry matter. These plants are considered to be Se accumulators. Some species can even accumulate Se concentrations of 1000–15 000 mg Se kg–1 dry matter and are called Se hyperaccumulators. Scope This article provides an overview of Se uptake, translocation and metabolism in plants and highlights the possible genetic basis of differences in these between and within plant species. The review focuses initially on adaptations allowing plants to tolerate large Se concentrations in their tissues and the evolutionary origin of species that hyperaccumulate Se. It then describes the variation in tissue Se concentrations between and within angiosperm species and identifies genes encoding enzymes limiting the rates of incorporation of Se into organic compounds and chromosomal loci that might enable the development of crops with greater Se concentrations in their edible portions. Finally, it discusses transgenic approaches enabling plants to tolerate greater Se concentrations in the rhizosphere and in their tissues. Conclusions The trait of Se hyperaccumulation has evolved several times in separate angiosperm clades. The ability to tolerate large tissue Se concentrations is primarily related to the ability to divert Se away from the accumulation of selenocysteine and selenomethionine, which might be incorporated into non-functional proteins, through the synthesis of less toxic Se metabilites. There is potential to breed or select crops with greater Se concentrations in their edible tissues, which

  18. Two weeks of metformin treatment induces AMPK dependent enhancement of insulin-stimulated glucose uptake in mouse soleus muscle

    DEFF Research Database (Denmark)

    Kristensen, Jonas Møller; Treebak, Jonas Thue; Schjerling, Peter

    2014-01-01

    signaling. Methods: Oral doses of metformin or saline treatment were given muscle-specific kinase α2 dead AMPK mice (KD) and wild type (WT) littermates either once or chronically for 2 weeks. Soleus and Extensor Digitorum Longus (EDL) muscles were used for measurements of glucose transport and Western blot......Background: Metformin-induced activation of AMPK has been associated with enhanced glucose uptake in skeletal muscle but so far no direct causality has been examined. We hypothesized that an effect of in vivo metformin treatment on glucose uptake in mouse skeletal muscles is dependent upon AMPK...... analyzes. Results: Chronic treatment with metformin enhanced insulin-stimulated glucose uptake in soleus muscles of WT (45%, P...

  19. Uptake of silver nanoparticles by monocytic THP-1 cells depends on particle size and presence of serum proteins

    Energy Technology Data Exchange (ETDEWEB)

    Kettler, Katja, E-mail: K.Kettler@science.ru.nl [Radboud University Nijmegen, Department of Environmental Science (Netherlands); Giannakou, Christina; Jong, Wim H. de [National Institute for Public Health and the Environment (RIVM) (Netherlands); Hendriks, A. Jan [Radboud University Nijmegen, Department of Environmental Science (Netherlands); Krystek, Petra [Philips Innovation Services (Netherlands)

    2016-09-15

    Human health risks by silver nanoparticle (AgNP) exposure are likely to increase due to the increasing number of NP-containing products and demonstrated adverse effects in various cell lines. Unfortunately, results from (toxicity) studies are often based on exposure dose and are often measured only at a fixed time point. NP uptake kinetics and the time-dependent internal cellular concentration are often not considered. Macrophages are the first line of defense against invading foreign agents including NPs. How macrophages deal with the particles is essential for potential toxicity of the NPs. However, there is a considerable lack of uptake studies of particles in the nanometer range and macrophage-like cells. Therefore, uptake rates were determined over 24 h for three different AgNPs sizes (20, 50 and 75 nm) in medium with and without fetal calf serum. Non-toxic concentrations of 10 ng Ag/mL for monocytic THP-1 cells, representing realistic exposure concentration for short-term exposures, were chosen. The uptake of Ag was higher in medium without fetal calf serum and showed increasing uptake for decreasing NP sizes, both on NP mass and on number basis. Internal cellular concentrations reached roughly 32/10 %, 25/18 % and 21/15 % of the nominal concentration in the absence of fetal calf serum/with fetal calf serum for 20-, 50- and 75-nm NPs, respectively. Our research shows that uptake kinetics in macrophages differ for various NP sizes. To increase the understanding of the mechanism of NP toxicity in cells, the process of uptake (timing) should be considered.

  20. Two weeks of metformin treatment induces AMPK-dependent enhancement of insulin-stimulated glucose uptake in mouse soleus muscle

    Science.gov (United States)

    Kristensen, Jonas Møller; Treebak, Jonas T.; Schjerling, Peter; Goodyear, Laurie

    2014-01-01

    Metformin-induced activation of the 5′-AMP-activated protein kinase (AMPK) has been associated with enhanced glucose uptake in skeletal muscle, but so far no direct causality has been examined. We hypothesized that an effect of in vivo metformin treatment on glucose uptake in mouse skeletal muscles is dependent on AMPK signaling. Oral doses of metformin or saline treatment were given to muscle-specific kinase dead (KD) AMPKα2 mice and wild-type (WT) littermates either once or chronically for 2 wk. Soleus and extensor digitorum longus muscles were used for measurements of glucose transport and Western blot analyses. Chronic treatment with metformin enhanced insulin-stimulated glucose uptake in soleus muscles of WT (∼45%, P metformin treatment. Insulin signaling at the level of Akt and TBC1D4 protein expression as well as Akt Thr308/Ser473 and TBC1D4 Thr642/Ser711 phosphorylation were not changed by metformin treatment. Also, protein expressions of Rab4, GLUT4, and hexokinase II were unaltered after treatment. The acute metformin treatment did not affect glucose uptake in muscle of either of the genotypes. In conclusion, we provide novel evidence for a role of AMPK in potentiating the effect of insulin on glucose uptake in soleus muscle in response to chronic metformin treatment. PMID:24644243

  1. Response of selenium changes in blood using cyclic activation analysis

    International Nuclear Information System (INIS)

    Spyrou, N.M.; Akanle, O.B.; Damyanova, A.A.

    1986-01-01

    A study was undertaken to investigate the response of selenium uptake and washout in whole blood and its components in healthy subjects, aged 20 to 30 yr, who were given selenium as a supplement to their usual diet, in the form of a yeast tablet (200 mg) containing 100 μg of the element together with vitamins A, C, and E (natural). Selenium has gained worldwide interest not only as an essential trace element but as a potent modifier of environmental hazards and as a naturally occurring toxicant. It is important therefore to investigate the character and the degree of the changes in healthy people on selenium supplementation. Cyclic activation analysis was used for the determination of selenium concentration through the detection of /sup 77m/Se (17.5 s), because of the increased sensitivity of the method and the large number of samples involved

  2. Effects of Interaction between Cadmium (Cd) and Selenium (Se) on Grain Yield and Cd and Se Accumulation in a Hybrid Rice (Oryza sativa) System.

    Science.gov (United States)

    Huang, Baifei; Xin, Junliang; Dai, Hongwen; Zhou, Wenjing

    2017-11-01

    A pot experiment was conducted to investigate the interactive effects of cadmium (Cd) and selenium (Se) on their accumulation in three rice cultivars, which remains unclear. The results showed that Se reduced Cd-induced growth inhibition, and increased and decreased Se and Cd concentrations in brown rice, respectively. Cadmium concentrations in all tissues of the hybrid were similar to those in its male parent yet significantly lower than those in its female parent. Selenium reduced Cd accumulation in rice when Cd concentration exceeded 2.0 mg kg -1 ; however Se accumulation depended on the levels of Cd exposure. Finally, Cd had minimal effect on Se translocation within the three cultivars. We concluded that Cd concentration in brown rice is a heritable trait, making crossbreeding a feasible method for cultivating high-yield, low-Cd rice cultivars. Selenium effectively decreased the toxicity and accumulation of Cd, and Cd affected Se uptake but not translocation.

  3. The effect of catch crop species on selenium availability for succeeding crops

    DEFF Research Database (Denmark)

    Stavridou, Eleftheria; Young, Scott D.; Thorup-Kristensen, Kristian

    2012-01-01

    2007–10 investigated the ability of catch crops (Italian ryegrass, fodder radish and hairy vetch) under different fertiliser regimes to reduce soil Se content in the autumn and to increase its availability in spring to the succeeding crop. Results and Conclusions The catch crops (Italian ryegrass...... and fodder radish) increased water-extractable Se content in the 0.25–0.75msoil layer in only one of the experiments. Selenium uptake by the catch crops varied between 65 and 3263 mg ha−1, depending on species, year and fertilisation treatment; this corresponded to 0.1–3.0% of the water-extractable soil Se......Background and Aims Selenium (Se) is an essential nutrient for humans and animals. In order to ensure an optimal concentration of Se in crops, Se fertilisers are applied. Catch crops may be an alternative way to increase Se concentrations in vegetables. Methods Three experiments in Denmark between...

  4. Modulation of liver mitochondrial NOS is implicated in thyroid-dependent regulation of O(2) uptake.

    Science.gov (United States)

    Carreras, M C; Peralta, J G; Converso, D P; Finocchietto, P V; Rebagliati, I; Zaninovich, A A; Poderoso, J J

    2001-12-01

    Changes in O(2) uptake at different thyroid status have been explained on the basis of the modulation of mitochondrial enzymes and membrane biophysical properties. Regarding the nitric oxide (NO) effects, we tested whether liver mitochondrial nitric oxide synthase (mtNOS) participates in the modulation of O(2) uptake in thyroid disorders. Wistar rats were inoculated with 400 microCi (131)I (hypothyroid group), 20 microg thyroxine (T(4))/100 g body wt administered daily for 2 wk (hyperthyroid group) or vehicle (control). Basal metabolic rate, mitochondrial function, and mtNOS activity were analyzed. Systemic and liver mitochondrial O(2) uptake and cytochrome oxidase activity were lower in hypothyroid rats with respect to controls; mitochondrial parameters were further decreased by L-arginine (-42 and -34%, P activity (260%) were selectively increased in hypothyroidism and reverted by hormone replacement without changes in other nitric oxide isoforms. Moreover, mtNOS activity correlated with serum 3,5,3'-triiodothyronine (T(3)) and O(2) uptake. Increased mtNOS activity was also observed in skeletal muscle mitochondria from hypothyroid rats. Therefore, we suggest that modulation of mtNOS is a substantial part of thyroid effects on mitochondrial O(2) uptake.

  5. Speciation of Selenium in Stream Insects Using X-Ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Andrahennadi, R.; Wayland, M.; Pickering, I.J.

    2009-05-28

    Selenium contamination in the environment is a widespread problem affecting insects and other wildlife. Insects occupy a critical middle link and aid in trophic transfer of selenium in many terrestrial and freshwater food chains, but the mechanisms of selenium uptake through the food chain are poorly understood. In particular, biotransformation of selenium by insects into different chemical forms will greatly influence how toxic or benign the selenium is to that organism or to its predators. We have used X-ray absorption spectroscopy (XAS) to identify the chemical form of selenium in insects inhabiting selenium contaminated streams near Hinton, Alberta (Canada). Selenium K near-edge spectra indicate a variability of selenium speciation among the insects that included mayflies (Ephemeroptera), stoneflies (Plecoptera), caddisflies (Trichoptera), and craneflies (Diptera). Higher percentages of inorganic selenium were observed in primary consumers, detritivores, and filter feeders than in predatory insects. Among the organic forms of selenium, organic selenides constituted a major fraction in most organisms. A species modeled as trimethylselenonium was observed during the pupal stage of caddisflies. These results provide insights into how the insects cope with their toxic cargo, including how the selenium is biotransformed into less toxic forms and how it can be eliminated from the insects. More broadly, this study demonstrates the strengths of XAS to probe the effects of heavy elements at trace levels in insects from the field.

  6. Speciation of selenium in stream insects using X-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ruwandi Andrahennadi; Mark Wayland; Ingrid J. Pickering [University of Saskatchewan, Saskatoon, SK (Canada). Department of Geological Sciences

    2007-11-15

    Selenium contamination in the environment is a widespread problem affecting insects and other wildlife. Insects occupy a critical middle link and aid in trophic transfer of selenium in many terrestrial and freshwater food chains, but the mechanisms of selenium uptake through the food chain are poorly understood. In particular, biotransformation of selenium by insects into different chemical forms will greatly influence how toxic or benign the selenium is to that organism or to its predators. We have used X-ray absorption spectroscopy (XAS) to identify the chemical form of selenium in insects inhabiting selenium contaminated streams near Hinton, Alberta (Canada). Selenium K near-edge spectra indicate a variability of selenium speciation among the insects that included mayflies (Ephemeroptera), stoneflies (Plecoptera), caddisflies (Trichoptera), and craneflies (Diptera). Higher percentages of inorganic selenium were observed in primary consumers, detritivores, and filter feeders than in predatory insects. Among the organic forms of selenium, organic selenides constituted a major fraction in most organisms. A species modeled as trimethylselenonium was observed during the pupal stage of caddisflies. These results provide insights into how the insects cope with their toxic cargo, including how the selenium is biotransformed into less toxic forms and how it can be eliminated from the insects. More broadly, this study demonstrates the strengths of XAS to probe the effects of heavy elements at trace levels in insects from the field.

  7. Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism.

    Science.gov (United States)

    Lundgaard, Iben; Li, Baoman; Xie, Lulu; Kang, Hongyi; Sanggaard, Simon; Haswell, John D R; Sun, Wei; Goldman, Siri; Blekot, Solomiya; Nielsen, Michael; Takano, Takahiro; Deane, Rashid; Nedergaard, Maiken

    2015-04-23

    Metabolically, the brain is a highly active organ that relies almost exclusively on glucose as its energy source. According to the astrocyte-to-neuron lactate shuttle hypothesis, glucose is taken up by astrocytes and converted to lactate, which is then oxidized by neurons. Here we show, using two-photon imaging of a near-infrared 2-deoxyglucose analogue (2DG-IR), that glucose is taken up preferentially by neurons in awake behaving mice. Anaesthesia suppressed neuronal 2DG-IR uptake and sensory stimulation was associated with a sharp increase in neuronal, but not astrocytic, 2DG-IR uptake. Moreover, hexokinase, which catalyses the first enzymatic steps in glycolysis, was highly enriched in neurons compared with astrocytes, in mouse as well as in human cortex. These observations suggest that brain activity and neuronal glucose metabolism are directly linked, and identify the neuron as the principal locus of glucose uptake as visualized by functional brain imaging.

  8. Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism

    Science.gov (United States)

    Lundgaard, Iben; Li, Baoman; Xie, Lulu; Kang, Hongyi; Sanggaard, Simon; Haswell, John Douglas R; Sun, Wei; Goldman, Siri; Blekot, Solomiya; Nielsen, Michael; Takano, Takahiro; Deane, Rashid; Nedergaard, Maiken

    2015-01-01

    Metabolically, the brain is a highly active organ that relies almost exclusively on glucose as its energy source. According to the astrocyte-to-neuron lactate shuttle hypothesis, glucose is taken up by astrocytes and converted to lactate, which is then oxidized by neurons. Here we show, using 2-photon imaging of a near-infrared 2-deoxyglucose analogue (2DG-IR), that glucose is taken up preferentially by neurons in awake behaving mice. Anesthesia suppressed neuronal 2DG-IR uptake and sensory stimulation was associated with a sharp increase in neuronal, but not astrocytic, 2DG-IR uptake. Moreover, hexokinase, which catalyze the first enzymatic steps in glycolysis, was highly enriched in neurons compared with astrocytes, in mouse as well as in human cortex. These observations suggest that brain activity and neuronal glucose metabolism are directly linked, and identifies the neuron as the principal locus of glucose uptake as visualized by functional brain imaging. PMID:25904018

  9. Thyroid hormones regulate selenoprotein expression and selenium status in mice.

    Directory of Open Access Journals (Sweden)

    Jens Mittag

    Full Text Available Impaired expression of selenium-containing proteins leads to perturbed thyroid hormone (TH levels, indicating the central importance of selenium for TH homeostasis. Moreover, critically ill patients with declining serum selenium develop a syndrome of low circulating TH and a central downregulation of the hypothalamus-pituitary-thyroid axis. This prompted us to test the reciprocal effect, i.e., if TH status would also regulate selenoprotein expression and selenium levels. To investigate the TH dependency of selenium metabolism, we analyzed mice expressing a mutant TH receptor α1 (TRα1+m that confers a receptor-mediated hypothyroidism. Serum selenium was reduced in these animals, which was a direct consequence of the mutant TRα1 and not related to their metabolic alterations. Accordingly, hyperthyroidism, genetically caused by the inactivation of TRβ or by oral TH treatment of adult mice, increased serum selenium levels in TRα1+m and controls, thus demonstrating a novel and specific role for TRα1 in selenium metabolism. Furthermore, TH affected the mRNA levels for several enzymes involved in selenoprotein biosynthesis as well as serum selenoprotein P concentrations and the expression of other antioxidative selenoproteins. Taken together, our results show that TH positively affects the serum selenium status and regulates the expression of several selenoproteins. This demonstrates that selenium and TH metabolism are interconnected through a feed-forward regulation, which can in part explain the rapid parallel downregulation of both systems in critical illness.

  10. Regulation of phenylacetic acid uptake is sigma54 dependent in Pseudomonas putida CA-3.

    LENUS (Irish Health Repository)

    O' Leary, Niall D

    2011-10-13

    Abstract Background Styrene is a toxic and potentially carcinogenic alkenylbenzene used extensively in the polymer processing industry. Significant quantities of contaminated liquid waste are generated annually as a consequence. However, styrene is not a true xenobiotic and microbial pathways for its aerobic assimilation, via an intermediate, phenylacetic acid, have been identified in a diverse range of environmental isolates. The potential for microbial bioremediation of styrene waste has received considerable research attention over the last number of years. As a result the structure, organisation and encoded function of the genes responsible for styrene and phenylacetic acid sensing, uptake and catabolism have been elucidated. However, a limited understanding persists in relation to host specific regulatory molecules which may impart additional control over these pathways. In this study the styrene degrader Pseudomonas putida CA-3 was subjected to random mini-Tn5 mutagenesis and mutants screened for altered styrene\\/phenylacetic acid utilisation profiles potentially linked to non-catabolon encoded regulatory influences. Results One mutant, D7, capable of growth on styrene, but not on phenylacetic acid, harboured a Tn5 insertion in the rpoN gene encoding σ54. Complementation of the D7 mutant with the wild type rpoN gene restored the ability of this strain to utilise phenylacetic acid as a sole carbon source. Subsequent RT-PCR analyses revealed that a phenylacetate permease, PaaL, was expressed in wild type P. putida CA-3 cells utilising styrene or phenylacetic acid, but could not be detected in the disrupted D7 mutant. Expression of plasmid borne paaL in mutant D7 was found to fully restore the phenylacetic acid utilisation capacity of the strain to wild type levels. Bioinformatic analysis of the paaL promoter from P. putida CA-3 revealed two σ54 consensus binding sites in a non-archetypal configuration, with the transcriptional start site being resolved by

  11. New challenge in the speciation of selenium. Measurement and production on nano selenium

    Energy Technology Data Exchange (ETDEWEB)

    Prokisch, J; Sztrik, A; Babka, B; Zommara, M; Daroczi, L [Debrecen University, Centre for Agricultural Sciences and Engineering, Debrecen (Hungary). Institute of Bio- and Environmental Energetics

    2009-07-01

    Complete text of publication follows. We have found that several species of probiotic bacteria also used in food industry for making yogurts is capable of producing spherical elemental selenium nanospheres having an average diameter in the range of 50-500 nm when 1-1000 mg/L selenium was added to the medium in the form of selenite ions. Elemental selenium produced thereby has a high degree of purity, is spherical, and its size and crystalline form depends on the bacterium species applied. We have found that some species of the probiotic yogurt bacteria (e.g. Bifidobacterium bifidum or Bifidobacterium longum) are capable of producing the grey crystalline form of elemental selenium which is so far unprecedented in the art for any bacteria capable of producing elemental selenium nanoparticles. Our finding, therefore, enables the first time the development of economical industrial bacterial fermentation based processes for the production of a high quality elemental selenium material comprising uniformly sized grey or red nanospheres having an average diameter in the range of 50-500 nm. The size and the crystalline form of the produced nanosized (50-500 nm) spherical particles is defined by the selected microorganism. This genetic pre-determination result in reproducible production of a material having individual characteristics which can be used in numerous fields of industry and research. The produced nano selenium could be a good raw material for a production of certified reference materials. The measurement of the produced elemental nanoselenium is a new challenge for the speciation analysis. A sample preparation and measurement method was developed and investigated for the analysis of different selenium forms by HPLC-AFS system. The atomic fluorescence (AFS) was a reliable and simple detection method for the elemental nano selenium. The elemental selenium can produce hydride in the system or can be converted to selenite with HCl/H{sub 2}O{sub 2} digestion.

  12. LXR regulates cholesterol uptake through Idol-dependent ubiquitination of the LDL receptor

    NARCIS (Netherlands)

    Zelcer, Noam; Hong, Cynthia; Boyadjian, Rima; Tontonoz, Peter

    2009-01-01

    Cellular cholesterol levels reflect a balance between uptake, efflux, and endogenous synthesis. Here we show that the sterol-responsive nuclear liver X receptor (LXR) helps maintain cholesterol homeostasis, not only through promotion of cholesterol efflux but also through suppression of low-density

  13. Serum albumin promotes ATP-binding cassette transporter-dependent sterol uptake in yeast

    DEFF Research Database (Denmark)

    Marek, Magdalena; Silvestro, Daniele; Fredslund, Maria D.

    2014-01-01

    Sterol uptake in fungi is a multistep process that involves interaction between external sterols and the cell wall, incorporation of sterol molecules into the plasma membrane, and subsequent integration into intracellular membranes for turnover. ATP-binding cassette (ABC) transporters have been...

  14. Selenium in edible mushrooms.

    Science.gov (United States)

    Falandysz, Jerzy

    2008-01-01

    Selenium is vital to human health. This article is a compendium of virtually all the published data on total selenium concentrations, its distribution in fruitbody, bioconcentration factors, and chemical forms in wild-grown, cultivated, and selenium-enriched mushrooms worldwide. Of the 190 species reviewed (belonging to 21 families and 56 genera), most are considered edible, and a few selected data relate to inedible mushrooms. Most of edible mushroom species examined until now are selenium-poor (cesarea, A. campestris, A. edulis, A. macrosporus, and A. silvaticus. A particularly rich source of selenium could be obtained from selenium-enriched mushrooms that are cultivated on a substrate fortified with selenium (as inorganic salt or selenized-yeast). The Se-enriched Champignon Mushroom could contain up to 30 or 110 microg Se/g dw, while the Varnished Polypore (Ganoderma lucidum) could contain up to 72 microg Se/g dw. An increasingly growing database on chemical forms of selenium of mushrooms indicates that the seleno-compounds identified in carpophore include selenocysteine, selenomethionine, Se-methylselenocysteine, selenite, and several unidentified seleno-compounds; their proportions vary widely. Some aspects of environmental selenium occurrence and human body pharmacokinetics and nutritional needs will also be briefly discussed in this review.

  15. Direct neuronal glucose uptake Heralds activity-dependent increases in cerebral metabolism

    DEFF Research Database (Denmark)

    Lundgaard, Iben; Li, Baoman; Xie, Lulu

    2015-01-01

    Metabolically, the brain is a highly active organ that relies almost exclusively on glucose as its energy source. According to the astrocyte-to-neuron lactate shuttle hypothesis, glucose is taken up by astrocytes and converted to lactate, which is then oxidized by neurons. Here we show, using two......-photon imaging of a near-infrared 2-deoxyglucose analogue (2DG-IR), that glucose is taken up preferentially by neurons in awake behaving mice. Anaesthesia suppressed neuronal 2DG-IR uptake and sensory stimulation was associated with a sharp increase in neuronal, but not astrocytic, 2DG-IR uptake. Moreover......, hexokinase, which catalyses the first enzymatic steps in glycolysis, was highly enriched in neurons compared with astrocytes, in mouse as well as in human cortex. These observations suggest that brain activity and neuronal glucose metabolism are directly linked, and identify the neuron as the principal locus...

  16. Dependence of intestinal amino acid uptake on dietary protein or amino acid levels

    International Nuclear Information System (INIS)

    Karasov, W.H.; Solberg, D.H.; Diamond, J.M.

    1987-01-01

    To understand how intestinal amino acid (AA) transport is regulated by dietary substrate levels, the authors measured uptake of seven radioactively-labelled AAs and glucose across the jejunal brush-border membrane of mice kept on one of three isocaloric rations differing in nitrogen content. In the high-protein ration, uptake increased by 77-81% for the nonessential, less toxic AAs, proline, and aspartate but only by 32-61% for the more toxic essential AAs tested. In the nitrogen-deficient ration, uptake decreased for the nonessential aspartate and proline but stayed constant or increased for essential AAs and for the nonessential alanine. These patterns imply independent regulation of the intestine's various AA transporters. With decreasing dietary AA (or protein), the imino acid and acidic AA private transporters are repressed, while activities of the basic AA transporter and the neutral AA public transporter decrease to an asymptote or else go through a minimum. These regulatory patterns can be understood as a compromise among conflicting constraints imposed by protein's multiple roles as a source of calories, nitrogen, and essential AAs and by the toxicity of essential AAs at high concentrations

  17. Tumour uptake of the radiolabelled somatostatin analogue [DOTA0,TYR3]octreotide is dependent on the peptide amount

    International Nuclear Information System (INIS)

    Jong, M. de; Breeman, W.A.P.; Bernard, B.F.; Gameren, A. van; Bruin, E. de; Bakker, W.H.; Van der Pluijm, M.E.; Krenning, E.P.; Visser, T.J.; Maecke, H.R.

    1999-01-01

    Radiolabelled tumour receptor-binding peptides can be used for in vivo scintigraphic imaging. Recently, the somatostatin analogue [Tyr 3 ]octreotide (d-Phe-c(Cys-Tyr-d-Trp-Lys-Thr-Cys)-Thr(ol)) was derivatized with the chelator DOTA (tetra-azacyclododecane-tetra-acetic acid), enabling stable radiolabelling with both the high-energy beta particle-emitter yttrium-90 and the Auger electron-emitter indium-111. The thus produced radiolabelled compounds are promising for peptide receptor radionuclide therapy. Our previous in vitro and in vivo (rat) experiments with these radiolabelled compounds showed favourable binding and biodistribution characteristics with high uptake and retention in the target organs. We also demonstrated receptor-specific, time- and temperature-dependent internalization of radiolabelled [DOTA 0 ,Tyr 3 ]octreotide in somatostatin receptor subtype 2 (sst 2 )-positive rat pancreatic tumour cell lines. In this study we have investigated the effects of differences in the amount of injected peptide on tissue distribution of 111 In-labelled [DOTA 0 ,Tyr 3 ]octreotide in normal, i.e. non-tumour-bearing, and CA20948 tumour-bearing rats. This was done in order to find the amount of peptide at which the highest uptake in target tissues is achieved, and thereby to increase the potential of radionuclide therapy while simultaneously ensuring the lowest possible radiotoxicity in normal organs. Uptake of radiolabelled [DOTA 0 ,Tyr 3 ]octreotide in sst 2 -positive organs showed different bell-shaped functions of the amount of injected peptide, being highest at 0.05 (adrenals), 0.05-0.1 (pituitary and stomach) and 0.25 (pancreas) μg. Uptake in the tumour was highest at 0.5 μg injected peptide. The highest uptake was found at peptide amounts that were lower than those reported for [ 111 In-DTPA 0 ]octreotide (d-Phe-c(Cys-Phe-d-Trp-Lys-Thr-Cys)-Thr(ol), DTPA = diethylene-triamine-penta-acetic acid), consistent with the higher receptor affinity of the first compound

  18. Speciation of selenium dietary supplements; formation of S-(methylseleno)cysteine and other selenium compounds

    International Nuclear Information System (INIS)

    Amoako, Prince O.; Uden, Peter C.; Tyson, Julian F.

    2009-01-01

    Speciation of selenium is of interest because it is both essential and toxic to humans, depending on the species and the amount ingested. Following indications that selenium supplementation could reduce the incidence of some cancers, selenium-enriched yeast and other materials have been commercialized as supplements. Most dramatically however, the SELECT trial that utilized L-selenomethionine as the active supplement was terminated in 2008 and there is much debate regarding both the planning and the results of efficacy studies. Further, since dietary supplements are not regulated as pharmaceuticals, there are concerns about the quality, storage conditions, stability and selenium content in selenium supplements. Enzymatic hydrolysis enabled selenium speciation profiles to be obtained by high performance liquid chromatography with inductively coupled plasma mass spectrometry (HPLC-ICP-MS) and following derivatization gas chromatography with atomic emission detection (GC-AED). Coated fiber solid phase microextraction (SPME) was used to extract volatile selenium species for determination by GC-AED and GC-MS. Similar speciation patterns were observed between yeast-based supplements subject to extended storage and those heated briefly at elevated temperatures. All the yeast-based supplements and one yeast-free supplement formed S-(methylseleno)cysteine on heating. Evidence was obtained in support of the hypotheses that S-(methylseleno)cysteine is formed from a reaction between dimethyldiselenide and cysteine or cystine.

  19. Thyroid hormone stimulated glucose uptake in human mononuclear blood cells from normal persons and from patients with non-insulin-dependent diabetes mellitus

    DEFF Research Database (Denmark)

    Kvetny, J; Matzen, L

    1989-01-01

    Thyroxine and T3 induced oxygen consumption and glucose uptake were studied in vitro in mononuclear blood cells isolated from patients with non-insulin-dependent diabetes mellitus (NIDDM) and from non-diabetic control persons. Cellular oxygen consumption and glucose uptake were promptly increased...

  20. Selenium accumulation by plants.

    Science.gov (United States)

    White, Philip J

    2016-02-01

    Selenium (Se) is an essential mineral element for animals and humans, which they acquire largely from plants. The Se concentration in edible plants is determined by the Se phytoavailability in soils. Selenium is not an essential element for plants, but excessive Se can be toxic. Thus, soil Se phytoavailability determines the ecology of plants. Most plants cannot grow on seleniferous soils. Most plants that grow on seleniferous soils accumulate plant species have evolved tolerance to Se, and commonly accumulate tissue Se concentrations >100 mg Se kg(-1) dry matter. These plants are considered to be Se accumulators. Some species can even accumulate Se concentrations of 1000-15 000 mg Se kg(-1 )dry matter and are called Se hyperaccumulators. This article provides an overview of Se uptake, translocation and metabolism in plants and highlights the possible genetic basis of differences in these between and within plant species. The review focuses initially on adaptations allowing plants to tolerate large Se concentrations in their tissues and the evolutionary origin of species that hyperaccumulate Se. It then describes the variation in tissue Se concentrations between and within angiosperm species and identifies genes encoding enzymes limiting the rates of incorporation of Se into organic compounds and chromosomal loci that might enable the development of crops with greater Se concentrations in their edible portions. Finally, it discusses transgenic approaches enabling plants to tolerate greater Se concentrations in the rhizosphere and in their tissues. The trait of Se hyperaccumulation has evolved several times in separate angiosperm clades. The ability to tolerate large tissue Se concentrations is primarily related to the ability to divert Se away from the accumulation of selenocysteine and selenomethionine, which might be incorporated into non-functional proteins, through the synthesis of less toxic Se metabilites. There is potential to breed or select crops

  1. Selenium in diet

    Science.gov (United States)

    ... how much of the mineral was in the soil where the plants grew. Brazil nuts are a very good source of selenium. Fish, shellfish , red meat, grains, eggs, chicken, liver, and garlic ... soil have higher levels of selenium. Brewer's yeast, wheat ...

  2. Chloroquine uptake, altered partitioning and the basis of drug resistance: evidence for chloride-dependent ionic regulation.

    Science.gov (United States)

    Martiney, J A; Ferrer, A S; Cerami, A; Dzekunov, S; Roepe, P

    1999-01-01

    The biochemical mechanism of chloroquine resistance in Plasmodium falciparum remains unknown. We postulated that chloroquine-resistant strains could alter ion fluxes that then indirectly control drug accumulation within the parasite by affecting pH and/or membrane potential ('altered partitioning mechanism'). Two principal intracellular pH-regulating systems in many cell types are the amiloride-sensitive Na+/H+ exchanger (NHE), and the sodium-independent, stilbene-sensitive Cl-/HCO3- antiporter (AE). We report that under physiological conditions (balanced CO2 and HCO3-) chloroquine uptake and susceptibility are not altered by amiloride analogues. We also do not detect a significant difference in NHE activity between chloroquine-sensitive and chloroquine-resistant strains via single cell photometry methods. AE activity is dependent on the intracellular and extracellular concentrations of Cl- and HCO3- ions. Chloroquine-resistant strains differentially respond to experimental modifications in chloride-dependent homeostasis, including growth, cytoplasmic pH and pH regulation. Chloroquine susceptibility is altered by stilbene DIDS only on chloroquine-resistant strains. Our results suggest that a Cl(-)-dependent system (perhaps AE) has a significant effect on the uptake of chloroquine by the infected erythrocyte, and that alterations of this biophysical parameter may be part of the mechanism of chloroquine resistance in P. falciparum.

  3. Selenium supplementation restores the antioxidative capacity and prevents cell damage in bone marrow stromal cells in vitro

    DEFF Research Database (Denmark)

    Ebert, Regina; Ulmer, Matthias; Zeck, Sabine

    2006-01-01

    signaling, cumulative cell damage, senescence, and tumor development. Selenium-dependent (glutathione peroxidases [GPxs] and thioredoxin reductases [TrxRs]) and selenium-independent (superoxide dismutases [SODs] and catalase [CAT]) enzyme systems regulate cellular ROS steady state levels. SODs process...

  4. Selenium for preventing cancer

    Directory of Open Access Journals (Sweden)

    Gabriele Dennert

    Full Text Available BACKGROUND: Selenium is a trace element essential to humans. Higher selenium exposure and selenium supplements have been suggested to protect against several types of cancers. OBJECTIVE: Two research questions were addressed in this review: What is the evidence for: 1. an aetiological relationship between selenium exposure and cancer risk in women and men?; 2. the efficacy of selenium supplementation for cancer prevention in women and men? SEARCH STRATEGY: We searched electronic databases and bibliographies of reviews and included publications. SELECTION CRITERIA: We included prospective observational studies to answer research question (a and randomised controlled trials (RCTs to answer research question (b. DATA COLLECTION AND ANALYSIS: We conducted random effects meta-analyses of epidemiological data when five or more studies were retrieved for a specific outcome. We made a narrative summary of data from RCTs. MAIN RESULTS: We included 49 prospective observational studies and six RCTs. In epidemiologic data, we found a reduced cancer incidence (summary odds ratio, OR, 0.69; 95% confidence interval, CI, 0.53 to 0.91 and mortality (OR 0.55, 95% CI 0.36 to 0.83 with higher selenium exposure. Cancer risk was more pronouncedly reduced in men (incidence: OR 0.66, 95% CI 0.42 to 1.05 than in women (incidence: OR 0.90, 95% CI 0.45 to 1.77. These findings have potential limitations due to study design, quality and heterogeneity of the data, which complicated the interpretation of the summary statistics. The RCTs found no protective efficacy of selenium yeast supplementation against non-melanoma skin cancer or L-selenomethionine supplementation against prostate cancer. Study results for the prevention of liver cancer with selenium supplements were inconsistent and studies had an unclear risk of bias. The results of the Nutritional Prevention of Cancer Trial (NPCT and SELECT raised concerns about possible harmful effects of selenium supplements. AUTHORS

  5. Characterization of membrane potential-dependent uptake of the novel PET tracer 18F-fluorobenzyl triphenylphosphonium cation

    International Nuclear Information System (INIS)

    Madar, Igal; Ravert, Hayden; Abro, Masroor; Pomper, Martin; Dannals, Robert; Frost, James J.; Nelkin, Barry

    2007-01-01

    Mitochondrial dysfunction has been attributed a critical role in the etiology and pathogenesis of numerous diseases, and is manifested by alterations of the organelle's membrane potential (Δψ m ). This suggests that Δψ m measurement can be highly useful for diagnostic purposes. In the current study, we characterized the capability of the novel PET agent 18 F-fluorobenzyl triphenylphosphonium ( 18 F-FBnTP) to assess Δψ m , compared with the well-established voltage sensor 3 H-tetraphenylphosphonium ( 3 H-TPP). 18 F-FBnTP and 3 H-TPP uptake under conditions known to alter Δψ m and plasma membrane potential (Δψ p ) was assayed in the H345 lung carcinoma cell line. 18 F-FBnTP biodistribution was assessed in CD1 mice using dynamic PET and ex vivo gamma well counting. 18 F-FBnTP and 3 H-TPP demonstrated similar uptake kinetics and plateau concentrations in H345 cells. Stepwise membrane depolarization resulted in a linear decrease in 18 F-FBnTP cellular uptake, with a slope (-0.58±0.06) and correlation coefficient (0.94±0.07) similar (p>0.17) to those measured for 3 H-TPP (-0.63±0.06 and 0.96±0.05, respectively). Selective collapse of Δψ m caused a substantial decrease in cellular uptake for 18 F-FBnTP (81.6±8.1%) and 3 H-TPP (85.4±6.7%), compared with control. Exposure to the proapoptotic staurosporine, known to collapse Δψ m , resulted in a decrease of 68.7±10.1% and 71.5±8.4% in 18 F-FBnTP and 3 H-TPP cellular uptake, respectively. 18 F-FBnTP accumulated mainly in kidney, heart and liver. 18 F-FBnTP is a mitochondria-targeting PET radiopharmaceutical responsive to alterations in membrane potential with voltage-dependent performance similar to that of 3 H-TPP. 18 F-FBnTP is a promising new voltage sensor for detection of physiological and pathological processes associated with mitochondrial dysfunction, such as apoptosis, using PET. (orig.)

  6. Chirality-dependent cellular uptake of chiral nanocarriers and intracellular delivery of different amounts of guest molecules

    Science.gov (United States)

    Kehr, Nermin Seda; Jose, Joachim

    2017-12-01

    We demonstrate the organic molecules loaded and chiral polymers coated periodic mesoporous organosilica (PMO) to generate chiral nanocarriers that we used to study chirality-dependent cellular uptake in serum and serum-free media and the subsequent delivery of different amounts of organic molecules into cells. Our results show that the amount of internalized PMO and thus the transported amount of organic molecules by nanocarrier PMO into cells was chirality dependent and controlled by hard/soft protein corona formation on the PMO surfaces. Therefore, this study demonstrate that chiral porous nanocarriers could potentially be used as advanced drug delivery systems which are able to use the specific chiral surface-protein interactions to influence/control the amount of (bio)active molecules delivered to cells in drug delivery and/or imaging applications.

  7. Selenium assimilation and loss by an insect predator and its relationship to Se subcellular partitioning in two prey types

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, Maitee [Institut national de la recherche scientifique - Eau, Terre et Environnement, Universite du Quebec, Quebec City, Quebec, G1K 9A9 (Canada); Hare, Landis [Institut national de la recherche scientifique - Eau, Terre et Environnement, Universite du Quebec, Quebec City, Quebec, G1K 9A9 (Canada)], E-mail: landis@ete.inrs.ca

    2009-03-15

    Subcellular selenium (Se) distributions in the oligochaete Tubifex tubifex and in the insect Chironomus riparius did not vary with Se exposure duration, which was consistent with the observations that the duration of prey Se exposure had little influence on either Se assimilation or loss by a predatory insect (the alderfly Sialis velata). However, these two prey types differed in how Se was distributed in their cells. Overall, the predator assimilated a mean of 66% of the Se present in its prey, which was similar to the mean percentage of Se in prey cells (62%) that was theoretically available for uptake (that is, Se in the protein and organelle fractions). Likewise, data for cadmium, nickel and thallium suggest that predictions of trace element transfer between prey and predator are facilitated by considering the subcellular partitioning of these contaminants in prey cells. - Selenium assimilation by a predatory aquatic insect depends on Se availability in the cells of its prey.

  8. Selenium assimilation and loss by an insect predator and its relationship to Se subcellular partitioning in two prey types

    International Nuclear Information System (INIS)

    Dubois, Maitee; Hare, Landis

    2009-01-01

    Subcellular selenium (Se) distributions in the oligochaete Tubifex tubifex and in the insect Chironomus riparius did not vary with Se exposure duration, which was consistent with the observations that the duration of prey Se exposure had little influence on either Se assimilation or loss by a predatory insect (the alderfly Sialis velata). However, these two prey types differed in how Se was distributed in their cells. Overall, the predator assimilated a mean of 66% of the Se present in its prey, which was similar to the mean percentage of Se in prey cells (62%) that was theoretically available for uptake (that is, Se in the protein and organelle fractions). Likewise, data for cadmium, nickel and thallium suggest that predictions of trace element transfer between prey and predator are facilitated by considering the subcellular partitioning of these contaminants in prey cells. - Selenium assimilation by a predatory aquatic insect depends on Se availability in the cells of its prey

  9. Why Nature Chose Selenium.

    Science.gov (United States)

    Reich, Hans J; Hondal, Robert J

    2016-04-15

    The authors were asked by the Editors of ACS Chemical Biology to write an article titled "Why Nature Chose Selenium" for the occasion of the upcoming bicentennial of the discovery of selenium by the Swedish chemist Jöns Jacob Berzelius in 1817 and styled after the famous work of Frank Westheimer on the biological chemistry of phosphate [Westheimer, F. H. (1987) Why Nature Chose Phosphates, Science 235, 1173-1178]. This work gives a history of the important discoveries of the biological processes that selenium participates in, and a point-by-point comparison of the chemistry of selenium with the atom it replaces in biology, sulfur. This analysis shows that redox chemistry is the largest chemical difference between the two chalcogens. This difference is very large for both one-electron and two-electron redox reactions. Much of this difference is due to the inability of selenium to form π bonds of all types. The outer valence electrons of selenium are also more loosely held than those of sulfur. As a result, selenium is a better nucleophile and will react with reactive oxygen species faster than sulfur, but the resulting lack of π-bond character in the Se-O bond means that the Se-oxide can be much more readily reduced in comparison to S-oxides. The combination of these properties means that replacement of sulfur with selenium in nature results in a selenium-containing biomolecule that resists permanent oxidation. Multiple examples of this gain of function behavior from the literature are discussed.

  10. Variation of the distribution coefficient (Kd) of selenium in soils under various microbial states

    International Nuclear Information System (INIS)

    Fevrier, L.; Martin-Garin, A.; Leclerc, E.

    2007-01-01

    This study aimed to (i) evaluate whether the K d value of selenium is dependent upon the soil microbial activity and (ii) define the limitation of the use of the K d concept to describe selenium behaviour in soils when assessing the long-term radiological waste disposal risk. K d coefficients, as well as information on selenite speciation in the soil-solution, were derived from short- and long-term batch experiments with a calcareous silty clay soil in various microbial states. Soil microbial activity induced (i) an increase of the K d value from 16 l kg -1 in sterile conditions to 130 l kg -1 when the soil was amended with glucose and nitrate, and (ii) changes in selenium speciation both in the solution (presence of seleno-species other than free Se(IV)) and in the solid phase (Se linked to microorganisms). Although the K d coefficient adequately reflects the initial fractionation between soil-solid and soil-solution, it does not allow for speciation and microbial processes, which could affect reversibility, mobility and the long-term accumulation and uptake into crops

  11. Dose-dependent effects of (anti)folate preinjection on 99mTc-radiofolate uptake in tumors and kidneys

    International Nuclear Information System (INIS)

    Mueller, Cristina; Schibli, Roger; Forrer, Flavio; Krenning, Eric P.; Jong, Marion de

    2007-01-01

    Introduction: The folate receptor (FR) is frequently overexpressed in tumors and can be targeted with folate-based (radio)pharmaceuticals. However, significant accumulation of radiofolates in FR-positive kidneys represents a drawback. We have shown that preadministration of the antifolate pemetrexed (PMX) significantly improved the tumor-to-kidney ratio of radiofolates in mice. The aim of this study was to investigate the dose dependence of these effects and whether the same results could be achieved with folic acid (FA) or 5-methyl-tetrahydrofolate (5-Me-THF). Methods: Biodistribution was assessed 4 h postinjection of the organometallic 99m Tc-picolylamine monoacetic acid folate in nude mice bearing FR-positive KB tumor xenografts. PMX (50-400 μg/mouse) was injected 1 h previous to radioactivity. The effects of FA and 5-Me-THF (0.5-50 μg/mouse) were investigated likewise. Tissues and organs were collected and counted for radioactivity and the values tabulated as percentage of injected dose per gram tissue (% ID/g). Results: PMX administration reduced renal retention ( 10% ID/g), while the tumor uptake (average 1.35%±0.40% ID/g vs. control: 1.79%±0.49% ID/g) was only slightly affected independent of the PMX dose. Replacement of PMX by FA or 5-Me-THF (50 μg/mouse) resulted in a significant renal blockade (<0.1% ID/g) but at the same time in an undesired reduction of tumor uptake (<0.2% ID/g). Conclusions: Selective reduction of radiofolate uptake in kidneys under retention of high tumor accumulation could be achieved in combination with PMX over a broad dose range but not with FA or 5-Me-THF

  12. Selenium accumulation and metabolism in algae.

    Science.gov (United States)

    Schiavon, Michela; Ertani, Andrea; Parrasia, Sofia; Vecchia, Francesca Dalla

    2017-08-01

    Selenium (Se) is an intriguing element because it is metabolically required by a variety of organisms, but it may induce toxicity at high doses. Algae primarily absorb selenium in the form of selenate or selenite using mechanisms similar to those reported in plants. However, while Se is needed by several species of microalgae, the essentiality of this element for plants has not been established yet. The study of Se uptake and accumulation strategies in micro- and macro-algae is of pivotal importance, as they represent potential vectors for Se movement in aquatic environments and Se at high levels may affect their growth causing a reduction in primary production. Some microalgae exhibit the capacity of efficiently converting Se to less harmful volatile compounds as a strategy to cope with Se toxicity. Therefore, they play a crucial role in Se-cycling through the ecosystem. On the other side, micro- or macro-algae enriched in Se may be used in Se biofortification programs aimed to improve Se content in human diet via supplementation of valuable food. Indeed, some organic forms of selenium (selenomethionine and methylselenocysteine) are known to act as anticarcinogenic compounds and exert a broad spectrum of beneficial effects in humans and other mammals. Here, we want to give an overview of the developments in the current understanding of Se uptake, accumulation and metabolism in algae, discussing potential ecotoxicological implications and nutritional aspects. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. SUPEROXIDE-DEPENDENT IRON UPTAKE: A NEW ROLE FOR ANION EXCHANGE PROTEIN 2

    Science.gov (United States)

    Lung cells import iron across the plasma membrane as ferrous (Fe2+) ion by incompletely understood mechanisms. We tested the hypothesis that human bronchial epithelial (HBE) cells import non-transferrin-bound iron (NTBI) using superoxide-dependent ferri-reductase activity involvi...

  14. Selenium in Graves' disease

    Directory of Open Access Journals (Sweden)

    Jadwiga Kryczyk

    2013-05-01

    Full Text Available The aim of this study was to present the current state of knowledge of the role of selenium in Graves’ disease. Recently, in the pathogenesis and course of this autoimmune disease, more attention has been paid to the relationship between oxidative stress and the antioxidant system, where selenium compounds play an important role. The thyroid is the organ with the highest selenium concentration in the human body. Selenium compounds, having antioxidant properties, protect thyrocytes against the destructive effects of reactive oxygen species (ROS, which are generated during the synthesis of thyroid hormones. Therefore, strengthening the body’s defense mechanisms, which protect against the formation and activity of ROS during medical treatment of Graves’ disease patients, may be an effective adjuvant in commonly used methods of therapy.

  15. Selenium and Its Supplementation in Cardiovascular Disease—What do We Know?

    Science.gov (United States)

    Benstoem, Carina; Goetzenich, Andreas; Kraemer, Sandra; Borosch, Sebastian; Manzanares, William; Hardy, Gil; Stoppe, Christian

    2015-01-01

    The trace element selenium is of high importance for many of the body’s regulatory and metabolic functions. Balanced selenium levels are essential, whereas dysregulation can cause harm. A rapidly increasing number of studies characterizes the wide range of selenium dependent functions in the human body and elucidates the complex and multiple physiological and pathophysiological interactions of selenium and selenoproteins. For the majority of selenium dependent enzymes, several biological functions have already been identified, like regulation of the inflammatory response, antioxidant properties and the proliferation/differentiation of immune cells. Although the potential role of selenium in the development and progression of cardiovascular disease has been investigated for decades, both observational and interventional studies of selenium supplementation remain inconclusive and are considered in this review. This review covers current knowledge of the role of selenium and selenoproteins in the human body and its functional role in the cardiovascular system. The relationships between selenium intake/status and various health outcomes, in particular cardiomyopathy, myocardial ischemia/infarction and reperfusion injury are reviewed. We describe, in depth, selenium as a biomarker in coronary heart disease and highlight the significance of selenium supplementation for patients undergoing cardiac surgery. PMID:25923656

  16. Selenium and Its Supplementation in Cardiovascular Disease—What do We Know?

    Directory of Open Access Journals (Sweden)

    Carina Benstoem

    2015-04-01

    Full Text Available The trace element selenium is of high importance for many of the body’s regulatory and metabolic functions. Balanced selenium levels are essential, whereas dysregulation can cause harm. A rapidly increasing number of studies characterizes the wide range of selenium dependent functions in the human body and elucidates the complex and multiple physiological and pathophysiological interactions of selenium and selenoproteins. For the majority of selenium dependent enzymes, several biological functions have already been identified, like regulation of the inflammatory response, antioxidant properties and the proliferation/differentiation of immune cells. Although the potential role of selenium in the development and progression of cardiovascular disease has been investigated for decades, both observational and interventional studies of selenium supplementation remain inconclusive and are considered in this review. This review covers current knowledge of the role of selenium and selenoproteins in the human body and its functional role in the cardiovascular system. The relationships between selenium intake/status and various health outcomes, in particular cardiomyopathy, myocardial ischemia/infarction and reperfusion injury are reviewed. We describe, in depth, selenium as a biomarker in coronary heart disease and highlight the significance of selenium supplementation for patients undergoing cardiac surgery.

  17. Age-dependent dose factors and dose limits of annual radioactivity uptake with unsealed radioactive substances by occupationally exposed persons

    International Nuclear Information System (INIS)

    Kaul, A.; Nosske, D; Elsasser, U; Roedler, H.D.; Henrichs, K.

    1986-01-01

    The dose factors have been calculated on the basis of the ICRP models for dosimetric and metabolistic assessment, and are laid open in accordance with Annex XI ( to sec. 45 sub-section (2)) of the amended version of the Radiation Protection Ordinance. The contribution in hand explains the scientific fundamentals and results of the calculations of dose factors relating to inhalation and ingestion of unsealed radioactive substances by adult reference man, and age-dependent factors calculated for children and adolescents. Further, annual limits of uptake by occupationally exposed persons, as calculated on the basis of primary dose limits pursunant to the draft amendment presented by the Federal Interior Minister, are compared with relevant data given by the ICRP and EC institutions. (orig./DG) [de

  18. Bile acids induce necrosis in pancreatic stellate cells dependent on calcium entry and sodium‐driven bile uptake

    Science.gov (United States)

    Jakubowska, Monika A.; Gerasimenko, Julia V.; Gerasimenko, Oleg V.; Petersen, Ole H.

    2016-01-01

    Key points Acute biliary pancreatitis is a sudden and severe condition initiated by bile reflux into the pancreas.Bile acids are known to induce Ca2+ signals and necrosis in isolated pancreatic acinar cells but the effects of bile acids on stellate cells are unexplored.Here we show that cholate and taurocholate elicit more dramatic Ca2+ signals and necrosis in stellate cells compared to the adjacent acinar cells in pancreatic lobules; whereas taurolithocholic acid 3‐sulfate primarily affects acinar cells.Ca2+ signals and necrosis are strongly dependent on extracellular Ca2+ as well as Na+; and Na+‐dependent transport plays an important role in the overall bile acid uptake in pancreatic stellate cells.Bile acid‐mediated pancreatic damage can be further escalated by bradykinin‐induced signals in stellate cells and thus killing of stellate cells by bile acids might have important implications in acute biliary pancreatitis. Abstract Acute biliary pancreatitis, caused by bile reflux into the pancreas, is a serious condition characterised by premature activation of digestive enzymes within acinar cells, followed by necrosis and inflammation. Bile acids are known to induce pathological Ca2+ signals and necrosis in acinar cells. However, bile acid‐elicited signalling events in stellate cells remain unexplored. This is the first study to demonstrate the pathophysiological effects of bile acids on stellate cells in two experimental models: ex vivo (mouse pancreatic lobules) and in vitro (human cells). Sodium cholate and taurocholate induced cytosolic Ca2+ elevations in stellate cells, larger than those elicited simultaneously in the neighbouring acinar cells. In contrast, taurolithocholic acid 3‐sulfate (TLC‐S), known to induce Ca2+ oscillations in acinar cells, had only minor effects on stellate cells in lobules. The dependence of the Ca2+ signals on extracellular Na+ and the presence of sodium–taurocholate cotransporting polypeptide (NTCP) indicate a Na+‐dependent

  19. Selenium and Lung Cancer: A Systematic Review and Meta Analysis

    Science.gov (United States)

    Fritz, Heidi; Kennedy, Deborah; Fergusson, Dean; Fernandes, Rochelle; Cooley, Kieran; Seely, Andrew; Sagar, Stephen; Wong, Raimond; Seely, Dugald

    2011-01-01

    Background Selenium is a natural health product widely used in the treatment and prevention of lung cancers, but large chemoprevention trials have yielded conflicting results. We conducted a systematic review of selenium for lung cancers, and assessed potential interactions with conventional therapies. Methods and Findings Two independent reviewers searched six databases from inception to March 2009 for evidence pertaining to the safety and efficacy of selenium for lung cancers. Pubmed and EMBASE were searched to October 2009 for evidence on interactions with chemo- or radiation-therapy. In the efficacy analysis there were nine reports of five RCTs and two biomarker-based studies, 29 reports of 26 observational studies, and 41 preclinical studies. Fifteen human studies, one case report, and 36 preclinical studies were included in the interactions analysis. Based on available evidence, there appears to be a different chemopreventive effect dependent on baseline selenium status, such that selenium supplementation may reduce risk of lung cancers in populations with lower baseline selenium status (serumselenium (≥121.6 ng/mL). Pooling data from two trials yielded no impact to odds of lung cancer, OR 0.93 (95% confidence interval 0.61–1.43); other cancers that were the primary endpoints of these trials, OR 1.51 (95%CI 0.70–3.24); and all-cause-death, OR 0.93 (95%CI 0.79–1.10). In the treatment of lung cancers, selenium may reduce cisplatin-induced nephrotoxicity and side effects associated with radiation therapy. Conclusions Selenium may be effective for lung cancer prevention among individuals with lower selenium status, but at present should not be used as a general strategy for lung cancer prevention. Although promising, more evidence on the ability of selenium to reduce cisplatin and radiation therapy toxicity is required to ensure that therapeutic efficacy is maintained before any broad clinical recommendations can be made in this context. PMID:22073154

  20. Towards a Mechanistic Understanding of Anaerobic Nitrate Dependent Iron Oxidation: Balancing Electron Uptake and Detoxification

    Directory of Open Access Journals (Sweden)

    Hans Karl Carlson

    2012-02-01

    Full Text Available The anaerobic oxidation of Fe(II by subsurface microorganisms is an important part of biogeochemical cycling in the environment, but the biochemical mechanisms used to couple iron oxidation to nitrate respiration are not well understood. Based on our own work and the evidence available in the literature, we propose a mechanistic model for anaerobic nitrate dependent iron oxidation. We suggest that anaerobic iron oxidizing microorganisms likely exist along a continuum including: 1 bacteria that inadvertently oxidize Fe(II by abiotic or biotic reactions with enzymes or chemical intermediates in their metabolic pathways (e.g. denitrification and suffer from toxicity or energetic penalty, 2 Fe(II tolerant bacteria that gain little or no growth benefit from iron oxidation but can manage the toxic reactions, and 3 bacteria that efficiently accept electrons from Fe(II to gain a growth advantage while preventing or mitigating the toxic reactions. Predictions of the proposed model are highlighted and experimental approaches are discussed.

  1. Biological selenium removal from wastewaters

    NARCIS (Netherlands)

    Lenz, M.

    2008-01-01

    In this thesis, microbial conversion of water-soluble, highly toxic forms of selenium (selenate, selenite) to less bioavailable elemental selenium was investigated. By the exploitation of different groups of microorganisms (selenium-respiring, nitrate-reducing and sulfate-reducing bacteria,

  2. Selenium in human mammary carcinogenesis

    DEFF Research Database (Denmark)

    Overvad, Kim; Grøn, P.; Langhoff, Otto

    1991-01-01

    /l and TNM stage II 76 +/- 13 micrograms selenium/l), indicating disease-mediated changes. The evaluation of selenium as a risk indicator in human breast cancer was therefore restricted to TNM stage I patients (n = 36). Multiple logistic regression analyses including variables associated with selenium levels...

  3. Microgravimetric Studies of Selenium Electrodeposition Onto Different Substrates

    Directory of Open Access Journals (Sweden)

    Kowalik R.

    2014-10-01

    Full Text Available The mechanism of selenium electrodeposition from sulfuric acid solution on different substrates was studied with the electrochemical techniques. The cyclic voltammetry was combined with the quartz crystal microbalance technique to analyze selenium deposition process. The electrochemical reduction of selenous acid on gold, silver and copper electrodes was investigated. It was found that reduction of selenous acid is a very complex process and it strongly depends from the applied substrate. The voltammetric measurements indicate the range of potentials in which the process of reduction of selenous acids on the applied substrate is possible. Additionally, the microgravimetric data confirm the deposition of selenium and they reveal the mechanism of the deposition process.

  4. Further studies on the nature of postsynaptic dopamine uptake and metabolism in rat striatum: sodium dependency and investigation of a possible role for carrier-mediated uptake into serotonin neurons

    Energy Technology Data Exchange (ETDEWEB)

    Schoepp, D.D.; Azzaro, A.J.

    1985-06-01

    The nature of postsynaptic sites involved in the uptake and metabolism of striatal 3,4-dihydroxyphenylethylamine (dopamine, DA) was investigated. The accumulation of (/sup 3/H)DA (10(-7) M) into slices of rat striatum was found to be greatly dependent on the presence of sodium ion in the incubation medium. However, the formation of the (/sup 3/H)dihydroxyphenylacetic acid (DOPAC) and (/sup 3/H)homovanillic acid (HVA) was only partially reduced in the absence of sodium. Inhibition of carrier-mediated DA neuronal uptake with nomifensine significantly decreased DA accumulation (18% of control) and (/sup 3/H)DOPAC formation (62% of control), but enhanced (/sup 3/H)HVA production (143% of control). Inhibition of the 5-hydroxytryptamine (5-HT, serotonin) neuronal uptake system with fluoxetine (10(-6) M) or selective 5-HT neuronal lesions with 5,7-dihydroxytryptamine (5,7-DHT) had no effect on (/sup 3/H)DOPAC or (/sup 3/H)HVA formed from (/sup 3/H)DA in the presence or absence of nomifensine. These results demonstrate that the uptake and subsequent metabolism of striatal DA to DOPAC and HVA is only partially dependent on carrier-mediated uptake mechanism(s) requiring sodium ion. These data support our previous findings suggesting a significant role for synaptic glial cell deamination and O-methylation of striatal DA. Further, experiments with fluoxetine or 5,7-DHT suggest that 5-HT neurons do not significantly contribute in the synaptic uptake and metabolism of striatal DA.

  5. Selenium for preventing cancer.

    Science.gov (United States)

    Vinceti, Marco; Filippini, Tommaso; Del Giovane, Cinzia; Dennert, Gabriele; Zwahlen, Marcel; Brinkman, Maree; Zeegers, Maurice Pa; Horneber, Markus; D'Amico, Roberto; Crespi, Catherine M

    2018-01-29

    This review is the third update of the Cochrane review "Selenium for preventing cancer". Selenium is a naturally occurring element with both nutritional and toxicological properties. Higher selenium exposure and selenium supplements have been suggested to protect against several types of cancer. To gather and present evidence needed to address two research questions:1. What is the aetiological relationship between selenium exposure and cancer risk in humans?2. Describe the efficacy of selenium supplementation for cancer prevention in humans. We updated electronic searches of the Cochrane Central Register of Controlled Trials (CENTRAL; 2017, Issue 2), MEDLINE (Ovid, 2013 to January 2017, week 4), and Embase (2013 to 2017, week 6), as well as searches of clinical trial registries. We included randomised controlled trials (RCTs) and longitudinal observational studies that enrolled adult participants. We performed random-effects (RE) meta-analyses when two or more RCTs were available for a specific outcome. We conducted RE meta-analyses when five or more observational studies were available for a specific outcome. We assessed risk of bias in RCTs and in observational studies using Cochrane's risk assessment tool and the Newcastle-Ottawa Scale, respectively. We considered in the primary analysis data pooled from RCTs with low risk of bias. We assessed the certainty of evidence by using the GRADE approach. We included 83 studies in this updated review: two additional RCTs (10 in total) and a few additional trial reports for previously included studies. RCTs involved 27,232 participants allocated to either selenium supplements or placebo. For analyses of RCTs with low risk of bias, the summary risk ratio (RR) for any cancer incidence was 1.01 (95% confidence interval (CI) 0.93 to 1.10; 3 studies, 19,475 participants; high-certainty evidence). The RR for estimated cancer mortality was 1.02 (95% CI 0.80 to 1.30; 1 study, 17,444 participants). For the most frequently

  6. The chemopreventive effect of the dietary compound kaempferol on the MCF-7 human breast cancer cell line is dependent on inhibition of glucose cellular uptake.

    Science.gov (United States)

    Azevedo, Cláudia; Correia-Branco, Ana; Araújo, João R; Guimarães, João T; Keating, Elisa; Martel, Fátima

    2015-01-01

    Our aim was to investigate the effect of several dietary polyphenols on glucose uptake by breast cancer cells. Uptake of (3)H-deoxy-D-glucose ((3)H-DG) by MCF-7 cells was time-dependent, saturable, and inhibited by cytochalasin B plus phloridzin. In the short-term (26 min), myricetin, chrysin, genistein, resveratrol, kaempferol, and xanthohumol (10-100 µM) inhibited (3)H-DG uptake. Kaempferol was found to be the most potent inhibitor of (3)H-DG uptake [IC50 of 4 µM (1.6-9.8)], behaving as a mixed-type inhibitor. In the long-term (24 h), kaempferol (30 µM) was also able to inhibit (3)H-DG uptake, associated with a 40% decrease in GLUT1 mRNA levels. Interestingly enough, kaempferol (100 µM) revealed antiproliferative (sulforhodamine B and (3)H-thymidine incorporation assays) and cytotoxic (extracellular lactate dehydrogenase activity determination) properties, which were mimicked by low extracellular (1 mM) glucose conditions and reversed by high extracellular (20 mM) glucose conditions. Finally, exposure of cells to kaempferol (30 µM) induced an increase in extracellular lactate levels over time (to 731 ± 32% of control after a 24 h exposure), due to inhibition of MCT1-mediated lactate cellular uptake. In conclusion, kaempferol potently inhibits glucose uptake by MCF-7 cells, apparently by decreasing GLUT1-mediated glucose uptake. The antiproliferative and cytotoxic effect of kaempferol in these cells appears to be dependent on this effect.

  7. Selenium for preventing cancer

    Science.gov (United States)

    Vinceti, Marco; Dennert, Gabriele; Crespi, Catherine M; Zwahlen, Marcel; Brinkman, Maree; Zeegers, Maurice PA; Horneber, Markus; D'Amico, Roberto; Del Giovane, Cinzia

    2015-01-01

    Background This review is an update of the first Cochrane publication on selenium for preventing cancer (Dennert 2011). Selenium is a metalloid with both nutritional and toxicological properties. Higher selenium exposure and selenium supplements have been suggested to protect against several types of cancers. Objectives Two research questions were addressed in this review: What is the evidence for: an aetiological relation between selenium exposure and cancer risk in humans? andthe efficacy of selenium supplementation for cancer prevention in humans? Search methods We conducted electronic searches of the Cochrane Central Register of Controlled Trials (CENTRAL, 2013, Issue 1), MEDLINE (Ovid, 1966 to February 2013 week 1), EMBASE (1980 to 2013 week 6), CancerLit (February 2004) and CCMed (February 2011). As MEDLINE now includes the journals indexed in CancerLit, no further searches were conducted in this database after 2004. Selection criteria We included prospective observational studies (cohort studies including sub-cohort controlled studies and nested case-control studies) and randomised controlled trials (RCTs) with healthy adult participants (18 years of age and older). Data collection and analysis For observational studies, we conducted random effects meta-analyses when five or more studies were retrieved for a specific outcome. For RCTs, we performed random effects meta-analyses when two or more studies were available. The risk of bias in observational studies was assessed using forms adapted from the Newcastle-Ottawa Quality Assessment Scale for cohort and case-control studies; the criteria specified in the Cochrane Handbook for Systematic Reviews of Interventions were used to evaluate the risk of bias in RCTs. Main results We included 55 prospective observational studies (including more than 1,100,000 participants) and eight RCTs (with a total of 44,743 participants). For the observational studies, we found lower cancer incidence (summary odds ratio (OR) 0

  8. JV Task 96 - Phase 2 - Investigating the Importance of the Mercury-Selenium Interaction

    Energy Technology Data Exchange (ETDEWEB)

    Nicholas Ralston; Laura Raymond

    2008-03-01

    In order to improve the understanding of the mercury issue, it is vital to study mercury's effects on selenium physiology. While mercury present in the environment or food sources may pose health risks, the protective effects of selenium have not been adequately considered in establishing regulatory policy. Numerous studies report that vulnerability to mercury toxicity is inversely proportional to selenium status or level. However, selenium status has not been considered in the development of the reference dosage levels for mercury exposure. Experimental animals fed low-selenium diets are far more vulnerable to mercury toxicity than animals fed normal selenium, and animals fed selenium-rich diets are even more resistant. Selenium-dependent enzymes in brain and endocrine tissues can be impaired by excessive mercury exposure, apparently because mercury has an extremely high binding affinity for selenium. When selenium becomes bound to mercury, it is unable to participate in the metabolic cycling of selenoprotein synthesis. Because of mercury-dependent impairments of selenoprotein synthesis, various antioxidant and regulatory functions in brain biochemistry are compromised. This report details a 2-year multiclient-funded research program designed to examine the interactions between mercury and selenium in animal models. The studies explored the effects of dietary intakes of toxic amounts of methylmercury and the protective effects of the normal dietary range of selenium in counteracting mercury toxicity. This study finds that the amounts of selenium present in ocean fish are sufficient to protect against far larger quantities of methylmercury than those present in typical seafoods. Toxic effects of methylmercury exposure were not directly proportional to mercury concentrations in blood, brain, or any other tissues. Instead, mercury toxicity was proportional to molar ratios of mercury relative to selenium. In order to accurately assess risk associated with

  9. Dose dependent transfer of 203lead to milk and tissue uptake in suckling offspring studied in rats and mice

    International Nuclear Information System (INIS)

    Palminger Hallen, I.; Oskarsson, A.

    1993-01-01

    The dose-dependent transfer of 203 Pb to milk and uptake in suckling rats and mice during a three-day nursing period was studied. On day 14 of lactation, the dams were administered a single intravenous dose of lead, labelled with 203 Pb, in four or five doses from 0.0005 to 2.0 mg Pb/kg b.wt. There was a linear relationship between Pb levels in plasma and milk of both species. The Pb milk: plasma ratios at 24 hr after administration were 119 and 89 in mice and rats, respectively. At 72 hr the Pb milk: plasma ratio had decreased to 72 in mice and 35 in rats. The tissue levels of lead in the suckling rats and mice were also linearly correlated with lead concentration in milk at 72 hr, showing that milk could be used as an indicator of lead exposure to the suckling offspring. It is concluded that lead is transported into rat and mouse milk to a very high extent and the excretion into milk is more efficient in mice than in rats. On the other hand, rat pups had higher lead levels in tissues than mice pups, which might be due to a higher bioavailability and/or a lower excretion of lead in rat pups. Thus, lead in breast milk could be used as a biological indicator of lead exposure in the mother as well as in the suckling offspring. (au) (38 refs.)

  10. Circulating Docosahexaenoic Acid Associates with Insulin-Dependent Skeletal Muscle and Whole Body Glucose Uptake in Older Women Born from Normal Weight Mothers

    Directory of Open Access Journals (Sweden)

    Robert M. Badeau

    2017-02-01

    Full Text Available Background: Obesity among pregnant women is common, and their offspring are predisposed to obesity, insulin resistance, and diabetes. The circulating metabolites that are related to insulin resistance and are associated with this decreased tissue-specific uptake are unknown. Here, we assessed metabolite profiles in elderly women who were either female offspring from obese mothers (OOM or offspring of lean mothers (OLM. Metabolic changes were tested for associations with metrics for insulin resistance. Methods: Thirty-seven elderly women were separated into elderly offspring from obese mothers (OOM; n = 17 and elderly offspring from lean/normal weight mothers (OLM; n = 20 groups. We measured plasma metabolites using proton nuclear magnetic resonance (1H-NMR and insulin-dependent tissue-specific glucose uptake in skeletal muscle was assessed. Associations were made between metabolites and glucose uptake. Results: Compared to the OLM group, we found that the docosahexaenoic acid percentage of the total long-chain n-3 fatty acids (DHA/FA was significantly lower in OOM (p = 0.015. DHA/FA associated significantly with skeletal muscle glucose uptake (GU (p = 0.031 and the metabolizable glucose value derived from hyperinsulinemic-euglycemic clamp technique (M-value in the OLM group only (p = 0.050. Conclusions: DHA/FA is associated with insulin-dependent skeletal muscle glucose uptake and this association is significantly weakened in the offspring of obese mothers.

  11. Exosome uptake depends on ERK1/2-heat shock protein 27 signaling and lipid Raft-mediated endocytosis negatively regulated by caveolin-1.

    Science.gov (United States)

    Svensson, Katrin J; Christianson, Helena C; Wittrup, Anders; Bourseau-Guilmain, Erika; Lindqvist, Eva; Svensson, Lena M; Mörgelin, Matthias; Belting, Mattias

    2013-06-14

    The role of exosomes in cancer can be inferred from the observation that they transfer tumor cell derived genetic material and signaling proteins, resulting in e.g. increased tumor angiogenesis and metastasis. However, the membrane transport mechanisms and the signaling events involved in the uptake of these virus-like particles remain ill-defined. We now report that internalization of exosomes derived from glioblastoma (GBM) cells involves nonclassical, lipid raft-dependent endocytosis. Importantly, we show that the lipid raft-associated protein caveolin-1 (CAV1), in analogy with its previously described role in virus uptake, negatively regulates the uptake of exosomes. We find that exosomes induce the phosphorylation of several downstream targets known to associate with lipid rafts as signaling and sorting platforms, such as extracellular signal-regulated kinase-1/2 (ERK1/2) and heat shock protein 27 (HSP27). Interestingly, exosome uptake appears dependent on unperturbed ERK1/2-HSP27 signaling, and ERK1/2 phosphorylation is under negative influence by CAV1 during internalization of exosomes. These findings significantly advance our general understanding of exosome-mediated uptake and offer potential strategies for how this pathway may be targeted through modulation of CAV1 expression and ERK1/2 signaling.

  12. Cellular uptake of exogenous calcineurin B is dependent on TLR4/MD2/CD14 complexes, and CnB is an endogenous ligand of TLR4.

    Science.gov (United States)

    Yang, Jinju; Qin, Nannan; Zhang, Hongwei; Yang, Rui; Xiang, Benqiong; Wei, Qun

    2016-04-19

    Our previous research showed that recombinant calcineurin B (rhCnB) stimulates cytokine secretion by immune cells, probably through TLR4. Exogenous CnB can be incorporated into many different tumour cells in vitro, but the mode of uptake and receptors required remain unknown. Here, we report that exogenous CnB is taken up by cells in a time- and concentration-dependent manner via clathrin-dependent receptor-mediated internalization. Our findings further confirm that uptake is mediated by the TLR4/MD2 complex together with the co-receptor CD14. The MST results revealed a high affinity between CnB and the TLR4 receptor complex. No binding was detected between CnB and LPS. CnB inhibited the uptake of LPS, and LPS also inhibited the uptake of CnB. These results indicate that the uptake of exogenous CnB did not occur through LPS and that CnB was not a chaperone of LPS. Thus, we conclude that TLR4 receptor complexes were required for the recognition and internalization of exogenous CnB. CnB could be a potential endogenous ligand of TLR4 and function as an agonist of TLR4. These properties of CnB support its potential for development as an anti-cancer drug.

  13. Investigation of high temperature reactions on solid substrates with Rutherford backscattering spectrometry: interaction of palladium with selenium on heated graphite surfaces

    International Nuclear Information System (INIS)

    Majidi, V.; Robertson, J.D.

    1991-01-01

    Selenium and palladium interactions on heated pyrolytically coated graphite substrates were investigated using Rutherford backscattering spectrometry. The studies were performed using selenium alone, palladium alone, and a combination of selenium and palladium deposited on the graphite substrates. The results indicate that palladium instantaneously stabilizes selenium at ambient temperatures and prevents the diffusion of selenium into the graphite. As the substrate is heated, temperature dependent diffusion of all analytes into the graphite is observed. Furthermore, it appears that the stabilization of selenium is due to the formation of a stoichiometric compound with palladium and oxygen. This compound decomposes at a temperature between 1070 and 1770 K. (author)

  14. Investigation of high temperature reactions on solid substrates with Rutherford backscattering spectrometry: interaction of palladium with selenium on heated graphite surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Majidi, V.; Robertson, J.D. (Kentucky Univ., Lexington, KY (United States). Dept. of Chemistry)

    1991-01-01

    Selenium and palladium interactions on heated pyrolytically coated graphite substrates were investigated using Rutherford backscattering spectrometry. The studies were performed using selenium alone, palladium alone, and a combination of selenium and palladium deposited on the graphite substrates. The results indicate that palladium instantaneously stabilizes selenium at ambient temperatures and prevents the diffusion of selenium into the graphite. As the substrate is heated, temperature dependent diffusion of all analytes into the graphite is observed. Furthermore, it appears that the stabilization of selenium is due to the formation of a stoichiometric compound with palladium and oxygen. This compound decomposes at a temperature between 1070 and 1770 K. (author).

  15. Contribution to interpretation of metal uptake dependence upon the growth phase of microorganisms. The case of uranium (VI) uptake by common yeasts, cultivated at different temperatures, with or without aeration

    International Nuclear Information System (INIS)

    Anagnostopoulos, V.A.; Symeopoulos, B.D.; Argyro Bekatorou

    2011-01-01

    The dependence of U(VI) uptake on the temperature of cell culture, the air flow during the cultivation process and the age of cells were studied. Saccharomyces cerevisiae, Kluyveromyces marxianus and Debaromyces hansenii were chosen as typical yeasts, which are widely used, in food industries. Our results revealed that the highest metal uptake was obtained from exponential phase cells, which had been cultivated at the optimum temperature of growth, while the air flow during the cultivation process, exhibited no significant effect on the metal uptake. A qualitative interpretation of bibliographic data, concerning the metal uptake on the age of cells is proposed, assuming that qualitative changes in the cell wall structure take place, as the cells pass from exponential to stationary phase, in addition to quantitative modifications, which have been reported in the literature. According to our interpretation, the relative abundances among quantitative and qualitative alterations of cell wall, determine which cells (exponential or stationary) exhibit the higher metal capacity. One type of the suggested qualitative modifications of surface constituent of cell wall, may have been caused by a shortening of a carboxylic acid carbon chain. This type of modification implies, as prerequisite, the decrease of pK a values of cell wall carboxyl groups, with the age of cells. An evidence, supporting our approach, may be the fact that the decrease of pK a values mentioned above, has been observed by other authors. (author)

  16. Selenium Treatment Technologies

    Science.gov (United States)

    Selenium (Se) is a metalloid that is a dietary requirement in small quantities, but toxic at higher quantities. It also is known to bioaccumulate. In oxic environments, it exists as selenate (+6) and selenite (+4), both of which are soluble. Selenite will sorb more strongly to...

  17. Concentrations of boron, molybdenum, and selenium in chinook salmon

    Science.gov (United States)

    Hamilton, Steven J.; Wiedmeyer, Raymond H.

    1990-01-01

    The concentrations of boron, molybdenum, and selenium in young chinook salmon Oncorhynchus tshawytscha were determined in three partial life cycle chronic toxicity studies. In each study, fish were exposed to a mixture of boron, molybdenum, selenate, and selenite in the proportions found in subsurface agricultural drainage water in the basin of the San Joaquin Valley, California. Tests were conducted in well water and in site-specific fresh and brackish waters. No boron or molybdenum was detected in fish exposed to concentrations as high as 6,046 μg boron/L and 193 μg molybdenum/L for 90 d in well water or fresh water; however, whole-body concentrations of selenium increased with increasing exposure concentrations in well water and fresh water, but not in brackish water. Concentrations of selenium in chinook salmon were strongly correlated with reduced survival and growth of fish in well water and with reduced survival in a 15-d seawater challenge test of fish from fresh water. Concentrations of selenium in fish seemed to reach a steady state after 60 d of exposure in well water or fresh water. Fish in brackish water had only background concentrations of selenium after 60 d of exposure, and no effects on survival and growth in brackish water or on survival in a 10-d seawater challenge test were exhibited. This lack of effect in brackish water was attributed to initiation of the study with advanced fry, which were apparently better able to metabolize the trace element mixture than were the younger fish used in studies with well water and fresh water. In all three experimental waters, concentration factors (whole-body concentration/waterborne concentration) for selenium decreased with increasing exposure concentrations, suggesting decreased uptake or increased excretion, or both, of selenium at the higher concentrations.

  18. Angiopoietin-like 4 mediates PPAR delta effect on lipoprotein lipase-dependent fatty acid uptake but not on beta-oxidation in myotubes.

    Directory of Open Access Journals (Sweden)

    Marius R Robciuc

    Full Text Available Peroxisome proliferator-activated receptor (PPAR delta is an important regulator of fatty acid (FA metabolism. Angiopoietin-like 4 (Angptl4, a multifunctional protein, is one of the major targets of PPAR delta in skeletal muscle cells. Here we investigated the regulation of Angptl4 and its role in mediating PPAR delta functions using human, rat and mouse myotubes. Expression of Angptl4 was upregulated during myotubes differentiation and by oleic acid, insulin and PPAR delta agonist GW501516. Treatment with GW501516 or Angptl4 overexpression inhibited both lipoprotein lipase (LPL activity and LPL-dependent uptake of FAs whereas uptake of BSA-bound FAs was not affected by either treatment. Activation of retinoic X receptor (RXR, PPAR delta functional partner, using bexarotene upregulated Angptl4 expression and inhibited LPL activity in a PPAR delta dependent fashion. Silencing of Angptl4 blocked the effect of GW501516 and bexarotene on LPL activity. Treatment with GW501516 but not Angptl4 overexpression significantly increased palmitate oxidation. Furthermore, Angptl4 overexpression did not affect the capacity of GW501516 to increase palmitate oxidation. Basal and insulin stimulated glucose uptake, glycogen synthesis and glucose oxidation were not significantly modulated by Angptl4 overexpression. Our findings suggest that FAs-PPARdelta/RXR-Angptl4 axis controls the LPL-dependent uptake of FAs in myotubes, whereas the effect of PPAR delta activation on beta-oxidation is independent of Angptl4.

  19. Features of selenium metabolism in humans living under the conditions of North European Russia.

    Science.gov (United States)

    Parshukova, Olga; Potolitsyna, Natalya; Shadrina, Vera; Chernykh, Aleksei; Bojko, Evgeny

    2014-08-01

    Selenium supplementation and its effects on Northerners have been little studied. The aim of our study was to assess the selenium levels of the inhabitants of North European Russia, the seasonal aspects of selenium supplementation, and the interrelationships between selenium levels and the levels of thyroid gland hormones. To study the particular features of selenium metabolism in Northerners over the course of 1 year, 19 healthy male Caucasian volunteers (18-21 years old) were recruited for the present study. The subjects were military guards in a Northern European region of Russia (Syktyvkar, Russia, 62°N latitude) who spent 6-10-h outdoors daily. The study was conducted over a 12-month period. Selenium levels, glutathione peroxidase (GP) activity, as well as total triiodothyronine (T3), total thyroxin (T4), free thyroxin, free triiodothyronine, and thyrotropin (TSH) levels, were determined in the blood serum. The study subjects showed low levels of plasma selenium throughout the year. We observed a noticeable decrease in plasma selenium levels during the period from May to August, with the lowest levels in July. Selenium levels in the military guards correlated with the levels of selenium-dependent GP enzyme activity throughout the year. Additionally, we demonstrated a significant correlation between selenium and pituitary-thyroid axis hormones (total T3, free T4, and TSH) in periods in which plasma selenium levels were lower than the established normal ranges. Over the course of 1 year, low levels of plasma selenium affect GP activity and thyroid hormone levels in humans living in North European Russia.

  20. Production of urinary selenium metabolites in the rat following 75SeO32- administration

    International Nuclear Information System (INIS)

    Kiker, K.W.; Burk, R.F.

    1974-01-01

    Urinary metabolites of 75 Se were studied in male Holtzmann rats fed a Torula yeast diet with either no selenium (basal) or 0.5 ppM selenium (selenium) added as sodium selenite. The animals were anesthetized, a ureter was cannulated, and 20 μCi of 75 SeO 3 2- were injected intraportally. Only a small fraction (1.3 percent) of the injected 75 Se was excreted in 6 h by animals fed the basal diet but 13.3 percent was excreted by animals fed the selenium diet. Paper chromatography showed that both groups excreted mostly inorganic 75 Se in the first 10 min. A decrease in 75 Se excretion followed, and then, 70 min after the collection was started, the selenium diet group had an increase in 75 Se excretion which persisted for the rest of the 6 h and consisted mainly of the organic metabolites trimethylselenonium ion and U-2. 75 Se excretion remained low in the basal diet group. Liver uptake and release of 75 Se in the 1 h following intraperitoneal 75 SeO 3 2- injection was much greater in the selenium diet rats than in the basal diet rats. These results suggest that the greater excretion of 75 Se by rats fed the selenium diet than that by rats fed the basal diet was due to increased production of organic urinary selenium metabolites by the liver. (U.S.)

  1. Trace metal uptake by garden herbs and vegetables.

    Science.gov (United States)

    Shariatpanahi, M; Anderson, A C; Mather, F

    1986-12-01

    In many regions of Iran, crops are irrigated with municipal and industrial wastewater that contain a variety of metals. The purpose of this study was to simulate the level of metals that may be presented to plants over a growing season in a controlled laboratory setting. Cadmium, lead, arsenic, chromium, mercury, nickel, copper, zinc, and selenium were applied to plants at the high rate of 200 g metal/ha/wk. The following plants were examined for metal accumulation and effects on yield: garden cress (Lipidium sativum), leek (Allium porrum L.), basil (Ocimum basilicum L.), mint (Mentha arvensis L.), onion (Allium capa L.), radish (Raphanus sativus L.), and tarragon (Artemisia draculus L.). All plants showed significant uptake of all metals when compared to control (p=0.05), and growth was significantly reduced (p=0.05). Cadmium and chromium levels of 85±7.4 and 47.6±8.9 μg/g); selenium levels were highest in tarragon (16.5±5.8 μg/g). Zinc levels were similar (p=0.05) in all species tested, as were mercury and lead. The remaining metals (nickel and copper) showed significant differences in uptake, depending on plant species.

  2. Redox-Active Selenium Compounds—From Toxicity and Cell Death to Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Sougat Misra

    2015-05-01

    Full Text Available Selenium is generally known as an antioxidant due to its presence in selenoproteins as selenocysteine, but it is also toxic. The toxic effects of selenium are, however, strictly concentration and chemical species dependent. One class of selenium compounds is a potent inhibitor of cell growth with remarkable tumor specificity. These redox active compounds are pro-oxidative and highly cytotoxic to tumor cells and are promising candidates to be used in chemotherapy against cancer. Herein we elaborate upon the major forms of dietary selenium compounds, their metabolic pathways, and their antioxidant and pro-oxidant potentials with emphasis on cytotoxic mechanisms. Relative cytotoxicity of inorganic selenite and organic selenocystine compounds to different cancer cells are presented as evidence to our perspective. Furthermore, new novel classes of selenium compounds specifically designed to target tumor cells are presented and the potential of selenium in modern oncology is extensively discussed.

  3. D-[U-11C]glucose uptake and metabolism in the brain of insulin-dependent diabetic subjects

    International Nuclear Information System (INIS)

    Gutniak, M.; Blomqvist, G.; Widen, L.; Stone-Elander, S.; Hamberger, B.; Grill, V.

    1990-01-01

    We used D-[U-11C]glucose to evaluate transport and metabolism of glucose in the brain in eight nondiabetic and six insulin-dependent diabetes mellitus (IDDM) subjects. IDDM subjects were treated by continuous subcutaneous insulin infusion. Blood glucose was regulated by a Biostator-controlled glucose infusion during a constant insulin infusion. D-[U-11C]-glucose was injected for positron emission tomography studies during normoglycemia as well as during moderate hypoglycemia [arterial plasma glucose 2.74 +/- 0.14 in nondiabetic and 2.80 +/- 0.26 mmol/l (means +/- SE) in IDDM subjects]. Levels of free insulin were constant and similar in both groups. The tracer data were analyzed using a three-compartment model with a fixed correction for 11CO2 egression. During normoglycemia the influx rate constant (k1) and blood-brain glucose flux did not differ between the two groups. During hypoglycemia k1 increased significantly and similarly in both groups (from 0.061 +/- 0.007 to 0.090 +/- 0.006 in nondiabetic and from 0.061 +/- 0.006 to 0.093 +/- 0.013 ml.g-1.min-1 in IDDM subjects). During normoglycemia the tracer-calculated metabolism of glucose was higher in the whole brain in the nondiabetic than in the diabetic subjects (22.0 +/- 1.9 vs. 15.6 +/- 1.1 mumol.100 g-1.min-1, P less than 0.01). During hypoglycemia tracer-calculated metabolism was decreased by 40% in nondiabetic subjects and by 28% in diabetic subjects. The results indicate that uptake of glucose is normal, but some aspect of glucose metabolism is abnormal in a group of well-controlled IDDM subjects

  4. Lactate promotes specific differentiation in bovine granulosa cells depending on lactate uptake thus mimicking an early post-LH stage

    Directory of Open Access Journals (Sweden)

    Anja Baufeld

    2018-02-01

    Full Text Available Abstract Background The LH-induced folliculo-luteal transformation is connected with alterations of the gene expression profile in cells of the granulosa layer. It has been described that hypoxic conditions occur during luteinization, thus favoring the formation of L-lactate within the follicle. Despite being a product of anaerobic respiration, L-lactate has been shown to act as a signaling molecule affecting gene expression in neuronal cells. During the present study, we tested the hypothesis that L-lactate may influence differentiation of follicular granulosa cells (GC. Methods In a bovine granulosa cell culture model effects of L- and D-lactate, of increased glucose concentrations and of the lactate transport inhibitor UK5099 were analyzed. Steroid hormone production was analyzed by RIA and the abundance of key transcripts was determined by quantitative real-time RT-PCR. Results L-lactate decreased the production of estradiol and significantly affected selected genes of the folliculo-luteal transition as well as genes of the lactate metabolism. CYP19A1, FSHR, LHCGR were down-regulated, whereas RGS2, VNN2, PTX3, LDHA and lactate transporters were up-regulated. These effects could be partly or completely reversed by pre-treatment of the cells with UK5099. The non-metabolized enantiomer D-lactate had even more pronounced effects on gene expression, whereas increased glucose concentrations did not affect transcript abundance. Conclusions In summary, our data suggest that L-lactate specifically alters physiological and molecular characteristics of GC. These effects critically depend on L-lactate uptake, but are not triggered by increased energy supply. Further, we could show that L-lactate has a positive feedback on the lactate metabolism. Therefore, we hypothesize that L-lactate acts as a signaling molecule in bovine and possibly other monovular species supporting differentiation during the folliculo-luteal transformation.

  5. Acute selenium poisoning in lambs

    Energy Technology Data Exchange (ETDEWEB)

    Gabbedy, B J; Dickson, J

    1969-10-01

    An outbreak of sodium selenite poisoning is reported in which 180 of 190 six-weeks-old lambs died. The estimated dose rate of the selenium was 6.4 mg/kg body weight. Liver concentrations of selenium at the time of poisoning averaged 64 ppM and 15 days later liver and kidney concentrations of selenium averaged 26 ppM and 7.4 ppM respectively.

  6. Selenium bioavailability from naturally produced high-selenium peas and oats in selenium-deficient rats.

    Science.gov (United States)

    Yan, Lin; Johnson, LuAnn K

    2011-06-08

    This study determined the bioavailability of selenium (Se) from yellow peas and oats harvested from the high-Se soil of South Dakota, United States. The Se concentrations were 13.5 ± 0.2 and 2.5 ± 0.1 mg/kg (dry weight) for peas and oats, respectively. Male weanling Sprague-Dawley rats were depleted of Se by feeding them a 30% Torula yeast-based diet (4.1 μg Se/kg) for 56 days, and then they were replenished with Se for an additional 50 days by feeding them the same diet supplemented with 20, 30, or 40 μg Se/kg from peas or oats, respectively. Selenium bioavailability was determined on the basis of the restoration of Se-dependent enzyme activities and tissue Se concentrations in Se-depleted rats, comparing those responses for yellow peas and oats to those for l-selenomethionine (SeMet; used as a reference) by using a slope-ratio method. Dietary supplementation with peas or oats resulted in linear or log-linear, dose-dependent increases in glutathione peroxidase activities in blood and liver and in thioredoxin reductase activity in liver. Supplementation with peas or oats resulted in linear or log-linear, dose-dependent increases in Se concentrations of plasma, liver, gastrocnemius muscle, and kidneys. The overall bioavailability was approximately 88% for Se from yellow peas and 92% from oats, compared to SeMet. It was concluded that Se from naturally produced high-Se yellow peas or oats is highly bioavailable in this model and that these high-Se foods may be a good dietary source of Se.

  7. Nutrigenetics, Nutrigenomics, and Selenium

    OpenAIRE

    Ferguson, Lynnette R.; Karunasinghe, Nishi

    2011-01-01

    Selenium (Se) is an important micronutrient that, as a component of selenoproteins, influences oxidative and inflammatory processes. Its’ levels vary considerably, with different ethnic and geographic population groups showing varied conditions, ranging from frank Se deficiencies to toxic effects. An optimum Se level is essential for the maintenance of homeostasis, and this optimum may vary according to life stage, general state of health, and genotype. Nutrigenetic studies of different Se le...

  8. Microbial selenium sulfide reduction for selenium recovery from wastewater

    NARCIS (Netherlands)

    Hageman, S.P.W.; Weijden, van der R.D.; Stams, A.J.M.; Cappellen, van P.; Buisman, C.J.N.

    2017-01-01

    Microbial reduction of selenium sulfide (SeS2) is a key step in a new treatment process to recover selenium from selenate and selenite streams. In this process, selenate is first reduced to selenite, and subsequently selenite is reduced by sulfide and precipitates from the solution as SeS2. The

  9. Binary mixtures of mercury/ selenium, and lead/selenium

    African Journals Online (AJOL)

    Physiologically-based biokinetic models have been developed for predicting simultaneously the Absorption, Distribution, Metabolism and Elimination (ADME) properties of lead (Pb) and selenium (Se), and mercury (Hg) and selenium in a number of target tissues of humans. This was done for three population groups, ...

  10. Tumor necrosis factor-alpha inhibits insulin's stimulating effect on glucose uptake and endothelium-dependent vasodilation in humans

    DEFF Research Database (Denmark)

    Rask-Madsen, Christian; Domínguez, Helena; Ihlemann, Nikolaj

    2003-01-01

    BACKGROUND: Inflammatory mechanisms could be involved in the pathogenesis of both insulin resistance and atherosclerosis. Therefore, we aimed at examining whether the proinflammatory cytokine tumor necrosis factor (TNF)-alpha inhibits insulin-stimulated glucose uptake and insulin....../or TNF-alpha were coinfused. During infusion of insulin alone for 20 minutes, forearm glucose uptake increased by 220+/-44%. This increase was completely inhibited during coinfusion of TNF-alpha (started 10 min before insulin) with a more pronounced inhibition of glucose extraction than of blood flow....... Furthermore, TNF-alpha inhibited the ACh forearm blood flow response (Palpha...

  11. Loss of Selenium-Binding Protein 1 Decreases Sensitivity to Clastogens and Intracellular Selenium Content in HeLa Cells.

    Science.gov (United States)

    Zhao, Changhui; Zeng, Huawei; Wu, Ryan T Y; Cheng, Wen-Hsing

    2016-01-01

    Selenium-binding protein 1 (SBP1) is not a selenoprotein but structurally binds selenium. Loss of SBP1 during carcinogenesis usually predicts poor prognosis. Because genome instability is a hallmark of cancer, we hypothesize that SBP1 sequesters cellular selenium and sensitizes cancer cells to DNA-damaging agents. To test this hypothesis, we knocked down SBP1 expression in HeLa cervical cancer cells by employing a short hairpin RNA (shRNA) approach. Reduced sensitivity to hydrogen peroxide, paraquat and camptothecin, reactive oxygen species content, and intracellular retention of selenium after selenomethionine treatment were observed in SBP1 shRNA HeLa cells. Results from Western analyses showed that treatment of HeLa cells with selenomethionine resulted in increased SBP1 protein expression in a dose-dependent manner. Knockdown of SBP1 rendered HeLa cells increased expression of glutathione peroxidase-1 but not glutathione peroxidase-4 protein levels and accelerated migration from a wound. Altogether, SBP1 retains supplemental selenium and sensitizes HeLa cancer cells to clastogens, suggesting a new cancer treatment strategy by sequestering selenium through SBP1.

  12. Lignosulfonate-stabilized selenium nanoparticles and their deposition on spherical silica.

    Science.gov (United States)

    Modrzejewska-Sikorska, Anna; Konował, Emilia; Klapiszewski, Łukasz; Nowaczyk, Grzegorz; Jurga, Stefan; Jesionowski, Teofil; Milczarek, Grzegorz

    2017-10-01

    We report a novel room-temperature synthesis of selenium nanoparticles, which for the first time uses lignosulfonate as a stabilizer. Various lignosulfonates obtained both from hardwood and softwood were tested. Selenium oxide was used as the precursor of zero-valent selenium. Three different reducers were tested - sodium borohydride, hydrazine and ascorbic acid - and the latter proved most effective in terms of the particle size and stability of the final colloid. The lignosulfonate-stabilized selenium nanoparticles had a negative zeta potential, dependent on pH, which for some lignosulfonates reached -50mV, indicating the excellent stability of the colloid. When spherical silica particles were introduced to the synthesis mixture, selenium nanoparticles were deposited on their surface. Additionally, star-like structures consisting of sharp selenium needles with silica cores were observed. After drying, the selenium-functionalized silica had a grey metallic hue. The method reported here is simple and cost-effective, and can be used for the preparation of large quantities of selenium colloids or the surface modification of other materials with selenium. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Time-dependent uptake and toxicity of nickel to Enchytraeus crypticus in the presence of humic acid and fulvic acid

    NARCIS (Netherlands)

    He, Erkai; Qiu, Hao; Qiu, Rongliang; Rentenaar, Charlotte; Devresse, Quentin; Van Gestel, Cornelis A.M.

    2017-01-01

    The present study aimed to investigate the influence of different fractions of dissolved organic carbon (DOC) on the uptake and toxicity of nickel (Ni) in the soil invertebrate Enchytraeus crypticus after different exposure times. The addition of DOC as humic acid or fulvic acid significantly

  14. Selenium accumulation in lettuce germplasm

    Science.gov (United States)

    Selenium (Se) is an essential micronutrient for animals and humans. Increasing Se content in food crops offers an effective approach to reduce the widespread selenium deficiency problem in many parts of the world. In this study, we evaluated thirty diverse accessions of lettuce (Lactuca sativa L.) f...

  15. Quantification of pharmaceutical peptides using selenium as an elemental detection label

    DEFF Research Database (Denmark)

    Møller, Laura Hyrup; Gabel-Jensen, Charlotte; Franzyk, Henrik

    2014-01-01

    analysis of cell samples by LC-ICP-MS showed mainly uptake of the intact peptides, while the amount of intact peptides in cell lysates was semi-quantitatively determined. The selenium-containing penetratin analogues were to some extent degraded in pure cell medium, while an extensive degradation......The aim of the present work was to demonstrate how selenium labelling of a synthetic cell-penetrating peptide may be employed in evaluation of stability and quantitative estimation of cellular uptake by inductively coupled plasma mass spectrometry (ICP-MS). Two analogues of the cell...

  16. Depolarization-dependent 45Ca uptake by synaptosomes of rat cerebral cortex is enhanced by L-triiodothyronine

    International Nuclear Information System (INIS)

    Mason, G.A.; Walker, C.H.; Prange, A.J. Jr.

    1990-01-01

    Depolarization-induced release of neurotransmitters and other secretions from nerve endings is triggered by the rapid entry of Ca++ through voltage-sensitive channels. Calcium entry is thought to occur in two distinct phases or processes: a fast-phase response to an action potential, which initiates release; and a slow phase associated with extended stimulation of the neuron. Thyroid hormones are sequestered by nerve terminals and can produce changes in behaviour and mood. They may therefore be involved in modulating central synaptic transmission. We studied the effects of L-triiodothyronine (T3), L-thyroxine (T4), reverse T3 (rT3) and D-T3 on depolarization-induced uptake of 45Ca by synaptosomes from euthyroid and hypothyroid rats. T3, but not T4, rT3, or D-T3 significantly enhanced depolarization-induced 45Ca uptake at physiologically relevant (1 to 10 nmol/L) concentrations. The stimulatory effect of 10 nmol/L T3 on depolarization-induced uptake after 2 seconds (21%) was greater than after 5 (10%) or 30 (8%) seconds, indicating that T3 enhanced primarily the fast-phase process. There was no effect of T3 or other hormones tested on nondepolarization-induced 45Ca uptake. Preincubation of synaptosomes with T3 prior to depolarization did not enhance the effect of T3; in fact, preincubations of 30 seconds or more resulted in diminished T3 effects. Preincubation of synaptosomes for 15 seconds with D-T3 or the addition of D-T3 and T3 together reduced the effect of T3. We found no difference in the effect of T3 on 45Ca uptake by synaptosomes from euthyroid and hypothyroid rats. These results suggest a novel mechanism of action of thyroid hormones in the brain

  17. Depolarization-dependent sup 45 Ca uptake by synaptosomes of rat cerebral cortex is enhanced by L-triiodothyronine

    Energy Technology Data Exchange (ETDEWEB)

    Mason, G.A.; Walker, C.H.; Prange, A.J. Jr. (Univ. of North Carolina, Chapel Hill (USA))

    1990-08-01

    Depolarization-induced release of neurotransmitters and other secretions from nerve endings is triggered by the rapid entry of Ca++ through voltage-sensitive channels. Calcium entry is thought to occur in two distinct phases or processes: a fast-phase response to an action potential, which initiates release; and a slow phase associated with extended stimulation of the neuron. Thyroid hormones are sequestered by nerve terminals and can produce changes in behaviour and mood. They may therefore be involved in modulating central synaptic transmission. We studied the effects of L-triiodothyronine (T3), L-thyroxine (T4), reverse T3 (rT3) and D-T3 on depolarization-induced uptake of 45Ca by synaptosomes from euthyroid and hypothyroid rats. T3, but not T4, rT3, or D-T3 significantly enhanced depolarization-induced 45Ca uptake at physiologically relevant (1 to 10 nmol/L) concentrations. The stimulatory effect of 10 nmol/L T3 on depolarization-induced uptake after 2 seconds (21%) was greater than after 5 (10%) or 30 (8%) seconds, indicating that T3 enhanced primarily the fast-phase process. There was no effect of T3 or other hormones tested on nondepolarization-induced 45Ca uptake. Preincubation of synaptosomes with T3 prior to depolarization did not enhance the effect of T3; in fact, preincubations of 30 seconds or more resulted in diminished T3 effects. Preincubation of synaptosomes for 15 seconds with D-T3 or the addition of D-T3 and T3 together reduced the effect of T3. We found no difference in the effect of T3 on 45Ca uptake by synaptosomes from euthyroid and hypothyroid rats. These results suggest a novel mechanism of action of thyroid hormones in the brain.

  18. Effect of selenium-enriched organic material amendment on selenium fraction transformation and bioavailability in soil.

    Science.gov (United States)

    Wang, Dan; Dinh, Quang Toan; Anh Thu, Tran Thi; Zhou, Fei; Yang, Wenxiao; Wang, Mengke; Song, Weiwei; Liang, Dongli

    2018-05-01

    To exploit the plant byproducts from selenium (Se) biofortification and reduce environmental risk of inorganic Se fertilizer, pot experiment was conducted in this study. The effects of Se-enriched wheat (Triticum aestivum L.) straw (WS + Se) and pak choi (Brassica chinensis L.) (P + Se) amendment on organo-selenium speciation transformation in soil and its bioavailability was evaluated by pak choi uptake. The Se contents of the cultivated pak choi in treatments amended with the same amount of Se-enriched wheat straw and pak choi were 1.7 and 9.7 times in the shoots and 2.3 and 6.3 times in the roots compared with control treatment. Soil respiration rate was significantly increased after all organic material amendment in soil (p organic materials and thus resulted in soluble Se (SOL-Se), exchangeable Se (EX-Se), and fulvic acid-bound Se (FA-Se) fraction increasing by 25.2-29.2%, 9-13.8%, and 4.92-8.28%, respectively. In addition, both Pearson correlation and cluster analysis showed that EX-Se and FA-Se were better indicators for soil Se availability in organic material amendment soils. The Marquardt-Levenberg Model well described the dynamic kinetics of FA-Se content after Se-enriched organic material amendment in soil mainly because of the mineralization of organic carbon and organo-selenium. The utilization of Se in P + Se treatment was significantly higher than those in WS + Se treatment because of the different mineralization rates and the amount of FA-Se in soil. Se-enriched organic materials amendment can not only increase the availability of selenium in soil but also avoid the waste of valuable Se source. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Responses of Portulaca oleracea Linn. to selenium exposure.

    Science.gov (United States)

    Prabha, D; Sivakumar, S; Subbhuraam, C V; Son, H K

    2015-05-01

    The present study was investigated to evaluate the uptake and accumulation of selenium (Se) by the stem cuttings of Portulaca oleracea L. grown in alfisol amended with various concentrations of Se. P. oleracea accumulated a maximum of 63.4 µg g(-1) dry weight in a short growth period of 42 days. The order of accumulation of Se among the plant parts was leaves (31.5 μg g(-1)) > stems (16.4 μg g(-1)) > roots (15.5 μg g(-1)). The accumulation potential was fourfold higher than the plant available concentration of 15.2 μg g(-1) of Se g(-1) of soil (diethylenetriaminepentaacetic acid extracted). Although the plant was able to accumulate Se in their tissues, increase in Se concentrations in soil caused a concentration-dependent decrease in the growth rate of plants (regeneration of leaves, number of leaves, number of roots, root length, stem length and biomass). © The Author(s) 2013.

  20. Selenoprotein P is the essential selenium transporter for bones.

    Science.gov (United States)

    Pietschmann, Nicole; Rijntjes, Eddy; Hoeg, Antonia; Stoedter, Mette; Schweizer, Ulrich; Seemann, Petra; Schomburg, Lutz

    2014-05-01

    Selenium (Se) plays an important role in bone physiology as best reflected by Kashin-Beck disease, an endemic Se-dependent osteoarthritis. Bone development is delayed in children with mutations in SECIS binding protein 2 (SBP2), a central factor for selenoprotein biosynthesis. Circulating selenoprotein P (SePP) is positively associated with bone turnover in humans, yet its function for bone homeostasis is not known. We have analysed murine models of altered Se metabolism. Most of the known selenoprotein genes and factors needed for selenoprotein biosynthesis are expressed in bones. Bone Se is not associated with the mineral but exclusively with the organic matrix. Genetic ablation of Sepp-expression causes a drastic decline in serum (25-fold) but only a mild reduction in bone (2.5-fold) Se concentrations. Cell-specific expression of a SePP transgene in hepatocytes efficiently restores bone Se levels in Sepp-knockout mice. Of the two known SePP receptors, Lrp8 was detected in bones while Lrp2 was absent. Interestingly, Lrp8 mRNA concentrations were strongly increased in bones of Sepp-knockout mice likely in order to counteract the developing Se deficiency. Our data highlight SePP as the essential Se transporter to bones, and suggest a novel feedback mechanism for preferential uptake of Se in Se-deprived bones, thereby contributing to our understanding of hepatic osteodystrophy and the consistent bone phenotype observed in subjects with inherited selenoprotein biosynthesis mutations.

  1. Morphology and thermodynamic characteristics of selenium-containing nanostructures based on polymethacrylic acid

    Science.gov (United States)

    Valueva, S. V.; Borovikova, L. N.; Vylegzhanina, M. E.; Sukhanova, T. E.

    2010-09-01

    The morphology and thermodynamic characteristics of nanostructures formed as a result of the reduction of the selenium ion in a selenite-ascorbate redox system in water solutions of polymethacrylic acid were studied by molecular optics and atomic-force microscopy. The dependence of the morphology of the selenium-containing nanostructures on the mass selenium-to-polymer ratio (ν) in solution was determined. It was established that a large number of macromolecules (up to 4300) is adsorbed on the selenium nanoparticles, leading to the formation of nanostructures with super-high molecular mass and an almost spherical form. It was shown that the density of the nanostructures, as calculated on the basis of the experimental data on the size and molecular mass of the nanocomposite, depends substantially on the selenium concentrations in the solution. The thermodynamic state of the solutions of nanostructures is described.

  2. EFFECTS OF IMMOBILIZATION IN Ba-ALGINATE ON NITRILE-DEPENDENT OXYGEN UPTAKE RATES OF CANDIDA GUILLIERMONDII

    Directory of Open Access Journals (Sweden)

    Dias João Carlos Teixeira

    2001-01-01

    Full Text Available Yeast cells immobilized by entrapment in Ba-alginate gel were investigated for growth pattern and respiratory activity. The oxygen uptake rates (OUR of cells entrapped in gels with 4% alginate were 5.2 and 23% lower than the OUR of 2% alginate and free cells, respectively. The mass-transfer resistance offered by the matrix and growth of the entrapped cells determine a gradient of nutrients throughout the gel which is responsible for both a lower specific growth rate of immobilized cells with respect to that of free ones, and a heterogeneous biomass distribution, with progressively increasing cellular density from the inside to the outside of the matrix. Gel-matrix polymer concentration affected the maximum oxygen uptake of immobilized growing yeast cells.

  3. pH dependence of the isoproterenol-induced /sup 45/Ca net uptake into the ventricular myocardium of rats

    Energy Technology Data Exchange (ETDEWEB)

    Haag, R

    1975-01-01

    Infarction-like or disseminated myocardial necroses can be produced in rats by high doses of isoprotenerol which stimulates the decomposition of energy-rich phosphates to a maximum. The paper shows that acidoses of different genesis (peroral administration of NH/sub 4/Cl, artificial respiration with CO/sub 2/) induced experimentally can inhibit the isoproterenol-induced /sup 45/Ca net uptake and the production of necroses. The findings suggest that Ca/sup + +/ ions play a key role in the production of myocardial necroses which has not been recognized until now - that increased Ca/sup + +/ uptake into damaged myocardial fibres is a result or, at the most, an accompanying symptom of necrosis production - should therefore be discarded.

  4. The yeast H+-ATPase Pma1 promotes Rag/Gtr-dependent TORC1 activation in response to H+-coupled nutrient uptake.

    Science.gov (United States)

    Saliba, Elie; Evangelinos, Minoas; Gournas, Christos; Corrillon, Florent; Georis, Isabelle; André, Bruno

    2018-03-23

    The yeast Target of Rapamycin Complex 1 (TORC1) plays a central role in controlling growth. How amino acids and other nutrients stimulate its activity via the Rag/Gtr GTPases remains poorly understood. We here report that the signal triggering Rag/Gtr-dependent TORC1 activation upon amino-acid uptake is the coupled H + influx catalyzed by amino-acid/H + symporters. H + -dependent uptake of other nutrients, ionophore-mediated H + diffusion, and inhibition of the vacuolar V-ATPase also activate TORC1. As the increase in cytosolic H + elicited by these processes stimulates the compensating H + -export activity of the plasma membrane H + -ATPase (Pma1), we have examined whether this major ATP-consuming enzyme might be involved in TORC1 control. We find that when the endogenous Pma1 is replaced with a plant H + -ATPase, H + influx or increase fails to activate TORC1. Our results show that H + influx coupled to nutrient uptake stimulates TORC1 activity and that Pma1 is a key actor in this mechanism. © 2018, Saliba et al.

  5. Airborne signals from Trichoderma fungi stimulate iron uptake responses in roots resulting in priming of jasmonic acid-dependent defences in shoots of Arabidopsis thaliana and Solanum lycopersicum.

    Science.gov (United States)

    Martínez-Medina, Ainhoa; Van Wees, Saskia C M; Pieterse, Corné M J

    2017-11-01

    Root colonization by Trichoderma fungi can trigger induced systemic resistance (ISR). In Arabidopsis, Trichoderma-ISR relies on the transcription factor MYB72, which plays a dual role in the onset of ISR and the activation of Fe uptake responses. Volatile compounds (VCs) from rhizobacteria are important elicitors of MYB72 in Arabidopsis roots. Here, we investigated the mode of action of VCs from Trichoderma fungi in the onset of ISR and Fe uptake responses. VCs from Trichoderma asperellum and Trichoderma harzianum were applied in an in vitro split-plate system with Arabidopsis or tomato seedlings. Locally, Trichoderma-VCs triggered MYB72 expression and molecular, physiological and morphological Fe uptake mechanisms in Arabidopsis roots. In leaves, Trichoderma-VCs primed jasmonic acid-dependent defences, leading to an enhanced resistance against Botrytis cinerea. By using Arabidopsis micrografts of VCs-exposed rootstocks and non-exposed scions, we demonstrated that perception of Trichoderma-VCs by the roots leads to a systemic signal that primes shoots for enhanced defences. Trichoderma-VCs also elicited Fe deficiency responses and shoot immunity in tomato, suggesting that this phenomenon is expressed in different plant species. Our results indicate that Trichoderma-VCs trigger locally a readjustment of Fe homeostasis in roots, which links to systemic elicitation of ISR by priming of jasmonic acid-dependent defences. © 2017 John Wiley & Sons Ltd.

  6. In vitro uptake of 75Se-selenite by lens of young and adult rats

    International Nuclear Information System (INIS)

    Sladkova, J.; Ostadalova, I.; Babicky, A.; Obenberger, J.

    1988-01-01

    The uptake was observed of 75 Se-selenite by the lens in Wistar strain rats in adult animals, in 17-day old rats kept with their mothers and in prematurely weaned rats. Also measured was the excretion of 75 Se by the lens of young and adult rats following incubation in the medium with radioselenium. The metabolites were analysed which were discharged by the lens containing 75 Se. In Brattleboro rats the uptake of 75 Se-selenite was also measured by the lens in young and adult rats. The uptake of 75 Se-selenite by the lens in young Wistar rats was found to be 1.6 times higher than by the lens of adult rats and the time course of the radioselenium uptake was slightly different. In the lens of prematurely weaned rats no significant difference was found in the uptake of radioselenium after 4 hours as compared with rats of the same age kept with their mothers. In homozygous Brattleboro rats, a higher uptake of 75 Se-selenite was found as compared with both young and adult heterozygous rats. The time course and the quantity of 75 Se efflux from the lens of young and adult Wistar rats differed significantly after 0.5 hour of pre-incubation. From metabolites containing 75 Se excreted by the lens following preincubation, glutathione selenotrisulfide and a not yet accurately determined fraction with a large share of radioactivity were isolated. The stated results provide yet more proof that selenium cataract is a manifestation of the ontogenic dependence of selenium metabolism in the lens and in the entire organism. (author). 4 tabs., 30 refs

  7. Effect of selenium deficiency on 75Se and 45Ca metabolism in chicks

    International Nuclear Information System (INIS)

    Edwardly, J.S.

    1981-01-01

    Two hundred, 1 day old broiler chicks were used to study the effect of selenium deficiency on 75 Se and 45 Ca metabolism in chicks. The chicks were randomly divided into five groups. One group was fed a purified basal diet low in selenium ( 75 Se or 45 Ca. Levels of radioisotopes in blood and tissue, as well as total body excretion of radioactivity were determined. Whole body retention of 75 Se was significantly higher (p 45 Ca was significantly higher in selenium deficient chicks than in supplemented animals. Total Ca concentration in muscle was also higher in this group. Studies of red cell uptake of 75 Se demonstrated a clear difference between Se repleted and selenium deficient groups. (author)

  8. The fungistatic activity of organic selenium and its application to the production of cultivated mushrooms Agaricus bisporus and Pleurotus spp.

    Directory of Open Access Journals (Sweden)

    Savic Milena

    2012-01-01

    Full Text Available The activity of organic selenium against pathogenic molds and its use as a potential selenium source in the production of enriched mushrooms were examined. The effect of commercial selenized yeast on mycelia growth was examined using a method with mycelia disks and a well diffusion method. For mushroom enrichment, different concentrations of selenium were added to a growth substrate. The results presented in this paper suggest that the most suitable concentration of selenized yeast that inhibits the growth of the mycopathogenic molds is 70-100 mg/kg of selenium. With the addition of this concentration to the substrate, mushroom fruit bodies will uptake a high level of selenium, about 100 μg/g for Pleurotus spp., and 200 μg/g for Agaricus bisporus in dry weight of the mushroom. Thereby a double effect in the cultivation of mushrooms is achieved. [Projekat Ministarstva nauke Republike Srbije, br. III 46010 and br. III46001

  9. Selenium and the thyroid: A close-knit connection

    Directory of Open Access Journals (Sweden)

    Ashok K Bhuyan

    2012-01-01

    Full Text Available Introduction: In areas with severe selenium deficiency higher incidence of thyroiditis has been reported due to a decreased activity of selenium-dependent glutathione peroxidase enzyme within thyroid cells. Aims and Objective: To study the effect of selenium supplementation in patients with autoimmune thyroid disease. Materials and Methods: This is a blinded placebo-controlled prospective study done in 60 patients with autoimmune thyroid disease (as defined by an anti-thyroid peroxidase antibody (TPOAb level more than 150 IU/ml irrespective of the baseline thyroid status. Patients with overt hyperthyroidism who are on antithyroid drugs, patients on any other medication, which may alter the immunity status of the patients, and pregnant patients were excluded from the study. Patients were randomized into two age and TPOAb-matched groups; 30 patients received 200 μg of sodium selenite/day, orally, for 3 months, and 30 patients received placebo. All hypothyroid patients were given l-thyroxine replacement. Results: Of 30 patients in the selenium treated group, 6 patients were overtly hypothyroid, 15 were subclinical hypothyroid, 6 were euthyroid, and 3 were subclinical hyperthyroid. The mean TPOAb concentration decreased significantly by 49.5% (P < 0.013 in the selenium treated group versus 10.1% (P < 0.95 in the placebo-treated group. Conclusion: Selenium substitution has a significant impact on inflammatory activity in thyroid-specific autoimmune disease. It would be of interest to determine whether early treatment with selenium in patients with newly developed autoimmune thyroiditis may delay or even prevent the natural course of these diseases.

  10. Supplementation with Selenium and Coenzyme Q10 Reduces Cardiovascular Mortality in Elderly with Low Selenium Status. A Secondary Analysis of a Randomised Clinical Trial

    Science.gov (United States)

    Alexander, Jan; Aaseth, Jan

    2016-01-01

    Background Selenium is needed by all living cells in order to ensure the optimal function of several enzyme systems. However, the selenium content in the soil in Europe is generally low. Previous reports indicate that a dietary supplement of selenium could reduce cardiovascular disease but mainly in populations in low selenium areas. The objective of this secondary analysis of a previous randomised double-blind placebo-controlled trial from our group was to determine whether the effects on cardiovascular mortality of supplementation with a fixed dose of selenium and coenzyme Q10 combined during a four-year intervention were dependent on the basal level of selenium. Methods In 668 healthy elderly individuals from a municipality in Sweden, serum selenium concentration was measured. Of these, 219 individuals received daily supplementation with selenium (200 μg Se as selenized yeast) and coenzyme Q10 (200 mg) combined for four years. The remaining participants (n = 449) received either placebo (n = 222) or no treatment (n = 227). All cardiovascular mortality was registered. No participant was lost during a median follow-up of 5.2 years. Based on death certificates and autopsy results, all mortality was registered. Findings The mean serum selenium concentration among participants at baseline was low, 67.1 μg/L. Based on the distribution of selenium concentration at baseline, the supplemented group was divided into three groups; 85 μg/L (45 and 90 percentiles) and the remaining participants were distributed accordingly. Among the non-treated participants, lower cardiovascular mortality was found in the high selenium group as compared with the low selenium group (13.0% vs. 24.1%; P = 0.04). In the group with the lowest selenium basal concentration, those receiving placebo or no supplementation had a mortality of 24.1%, while mortality was 12.1% in the group receiving the active substance, which was an absolute risk reduction of 12%. In the middle selenium concentration

  11. Mechanisms of Selenium Enrichment and Measurement in Brassicaceous Vegetables, and Their Application to Human Health

    Directory of Open Access Journals (Sweden)

    Melanie Wiesner-Reinhold

    2017-08-01

    Full Text Available Selenium (Se is an essential micronutrient for human health. Se deficiency affects hundreds of millions of people worldwide, particularly in developing countries, and there is increasing awareness that suboptimal supply of Se can also negatively affect human health. Selenium enters the diet primarily through the ingestion of plant and animal products. Although, plants are not dependent on Se they take it up from the soil through the sulphur (S uptake and assimilation pathways. Therefore, geographic differences in the availability of soil Se and agricultural practices have a profound influence on the Se content of many foods, and there are increasing efforts to biofortify crop plants with Se. Plants from the Brassicales are of particular interest as they accumulate and synthesize Se into forms with additional health benefits, such as methylselenocysteine (MeSeCys. The Brassicaceae are also well-known to produce the glucosinolates; S-containing compounds with demonstrated human health value. Furthermore, the recent discovery of the selenoglucosinolates in the Brassicaceae raises questions regarding their potential bioefficacy. In this review we focus on Se uptake and metabolism in the Brassicaceae in the context of human health, particularly cancer prevention and immunity. We investigate the close relationship between Se and S metabolism in this plant family, with particular emphasis on the selenoglucosinolates, and consider the methodologies available for identifying and quantifying further novel Se-containing compounds in plants. Finally, we summarize the research of multiple groups investigating biofortification of the Brassicaceae and discuss which approaches might be most successful for supplying Se deficient populations in the future.

  12. Mechanism of Selenium Loss in Copper Slag

    Science.gov (United States)

    Desai, Bhavin; Tathavadkar, Vilas; Basu, Somnath

    2018-06-01

    During smelting of copper sulfide concentrate, selenium is distributed between silica-saturated iron-silicate slag and copper-iron sulfide matte. The recovery coefficients of selenium between slag and matte were determined as a function of the initial concentration of selenium at 1523 K (1250 °C) under an inert atmosphere in a vertical tubular furnace. The initial concentration of selenium was varied by the addition of metallic selenium as well as selenium dioxide to the mixture of slag and matte. Analysis of the results indicated high affinity of selenium for matte. The apparent loss of selenium with the slag was attributed to the presence of selenium-enriched matte particles entrapped in the slag, rather than dissolved SeO2. The mechanisms proposed by previous investigators were discussed and also compared with the results of the present investigation.

  13. Mechanism of Selenium Loss in Copper Slag

    Science.gov (United States)

    Desai, Bhavin; Tathavadkar, Vilas; Basu, Somnath

    2018-03-01

    During smelting of copper sulfide concentrate, selenium is distributed between silica-saturated iron-silicate slag and copper-iron sulfide matte. The recovery coefficients of selenium between slag and matte were determined as a function of the initial concentration of selenium at 1523 K (1250 °C) under an inert atmosphere in a vertical tubular furnace. The initial concentration of selenium was varied by the addition of metallic selenium as well as selenium dioxide to the mixture of slag and matte. Analysis of the results indicated high affinity of selenium for matte. The apparent loss of selenium with the slag was attributed to the presence of selenium-enriched matte particles entrapped in the slag, rather than dissolved SeO2. The mechanisms proposed by previous investigators were discussed and also compared with the results of the present investigation.

  14. Plasma and breast-milk selenium in HIV-infected Malawian mothers are positively associated with infant selenium status but are not associated with maternal supplementation: results of the Breastfeeding, Antiretrovirals, and Nutrition study.

    Science.gov (United States)

    Flax, Valerie L; Bentley, Margaret E; Combs, Gerald F; Chasela, Charles S; Kayira, Dumbani; Tegha, Gerald; Kamwendo, Debbie; Daza, Eric J; Fokar, Ali; Kourtis, Athena P; Jamieson, Denise J; van der Horst, Charles M; Adair, Linda S

    2014-04-01

    Selenium is found in soils and is essential for human antioxidant defense and immune function. In Malawi, low soil selenium and dietary intakes coupled with low plasma selenium concentrations in HIV infection could have negative consequences for the health of HIV-infected mothers and their exclusively breastfed infants. We tested the effects of lipid-based nutrient supplements (LNS) that contained 1.3 times the Recommended Dietary Allowance of sodium selenite and antiretroviral drugs (ARV) on maternal plasma and breast-milk selenium concentrations. HIV-infected Malawian mothers in the Breastfeeding, Antiretrovirals, and Nutrition study were randomly assigned at delivery to receive: LNS, ARV, LNS and ARV, or a control. In a subsample of 526 mothers and their uninfected infants, we measured plasma and breast-milk selenium concentrations at 2 or 6 (depending on the availability of infant samples) and 24 wk postpartum. Overall, mean (± SD) maternal (range: 81.2 ± 20.4 to 86.2 ± 19.9 μg/L) and infant (55.6 ± 16.3 to 61.0 ± 15.4 μg/L) plasma selenium concentrations increased, whereas breast-milk selenium concentrations declined (14.3 ± 11.5 to 9.8 ± 7.3 μg/L) from 2 or 6 to 24 wk postpartum (all P milk selenium from 2 or 6 to 24 wk postpartum (both P milk selenium, but maternal selenium concentrations were positively associated with infant plasma selenium at 2 or 6 and 24 wk postpartum (P milk selenium concentrations. Future research should examine effects of more readily incorporated forms of selenium (ie, selenomethionine) in HIV-infected breastfeeding women.

  15. Characterization of selenium doped silica glasses synthesized by sol-gel method

    International Nuclear Information System (INIS)

    Kobayashi, R.A.; Toffoli, S.M.

    2012-01-01

    Selenium is a rare element in nature. It is used in the food, pharmaceutical, and glass industries. In commercial glasses, selenium is the element responsible for most of the pink or light red color, but its effect is primarily dependent on the oxidation state of the element in the glassy matrix. Besides, selenium is highly volatile, and as high as 80 wt% may be lost in the furnace during the industrial glass elaboration. The sol– gel method yields synthesized materials of high purity and homogeneity, and uses low processing temperatures. Samples of silica glass were obtained by sol-gel method, incorporating precursors of selenium, with the main objective of reducing selenium losses during its heating. The results of optical absorption, XRD and thermal analysis (TGA, DSC) of the glasses are presented and discussed. (author)

  16. Saponarin activates AMPK in a calcium-dependent manner and suppresses gluconeogenesis and increases glucose uptake via phosphorylation of CRTC2 and HDAC5.

    Science.gov (United States)

    Seo, Woo-Duck; Lee, Ji Hae; Jia, Yaoyao; Wu, Chunyan; Lee, Sung-Joon

    2015-11-15

    This study investigated the molecular mechanism of saponarin, a flavone glucoside, in the regulation of insulin sensitivity. Saponarin suppressed the rate of gluconeogenesis and increased cellular glucose uptake in HepG2 and TE671 cells by regulating AMPK. Using an in vitro kinase assay, we showed that saponarin did not directly interact with the AMPK protein. Instead, saponarin increased intracellular calcium levels and induced AMPK phosphorylation, which was diminished by co-stimulation with STO-609, an inhibitor of CAMKKβ. Transcription of hepatic gluconeogenesis genes was upregulated by nuclear translocation of CRTC2 and HDAC5, coactivators of CREB and FoxO1 transcription factors, respectively. This nuclear translocation was inhibited by increased phosphorylation of CRTC2 and HDAC5 by saponarin-induced AMPK in HepG2 cells and suppression of CREB and FoxO1 transactivation activities in cells stimulated by saponarin. The results from a chromatin immunoprecipitation assay confirmed the reduced binding of CRTC2 on the PEPCK and G6Pase promoters. In TE671 cells, AMPK phosphorylated HDAC5, which suppressed nuclear penetration and upregulated GLUT4 transcription, leading to enhanced glucose uptake. Collectively, these results suggest that saponarin activates AMPK in a calcium-dependent manner, thus regulating gluconeogenesis and glucose uptake. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Insulin and leptin induce Glut4 plasma membrane translocation and glucose uptake in a human neuronal cell line by a phosphatidylinositol 3-kinase- dependent mechanism.

    Science.gov (United States)

    Benomar, Yacir; Naour, Nadia; Aubourg, Alain; Bailleux, Virginie; Gertler, Arieh; Djiane, Jean; Guerre-Millo, Michèle; Taouis, Mohammed

    2006-05-01

    The insulin-sensitive glucose transporter Glut4 is expressed in brain areas that regulate energy homeostasis and body adiposity. In contrast with peripheral tissues, however, the impact of insulin on Glut4 plasma membrane (PM) translocation in neurons is not known. In this study, we examined the role of two anorexic hormones (leptin and insulin) on Glut4 translocation in a human neuronal cell line that express endogenous insulin and leptin receptors. We show that insulin and leptin both induce Glut4 translocation to the PM of neuronal cells and activate glucose uptake. Wortmannin, a specific inhibitor of phosphatidylinositol 3-kinase, totally abolished insulin- and leptin-dependent Glut4 translocation and stimulation of glucose uptake. Thus, Glut4 translocation is a phosphatidylinositol 3-kinase-dependent mechanism in neuronal cells. Next, we investigated the impact of chronic insulin and leptin treatments on Glut4 expression and translocation. Chronic exposure of neuronal cells to insulin or leptin down-regulates Glut4 proteins and mRNA levels and abolishes the acute stimulation of glucose uptake in response to acute insulin or leptin. In addition, chronic treatment with either insulin or leptin impaired Glut4 translocation. A cross-desensitization between insulin and leptin was apparent, where exposure to insulin affects leptin-dependent Glut4 translocation and vice versa. This cross-desensitization could be attributed to the increase in suppressor of cytokine signaling-3 expression, which was demonstrated in response to each hormone. These results provide evidence to suggest that Glut4 translocation to neuronal PM is regulated by both insulin and leptin signaling pathways. These pathways might contribute to an in vivo glucoregulatory reflex involving a neuronal network and to the anorectic effect of insulin and leptin.

  18. AN ANALYTICAL METHOD FOR CHEMICAL SPECIATION OF SELENIUM IN SOIL

    Directory of Open Access Journals (Sweden)

    Constantin Luca

    2010-10-01

    Full Text Available Selenium is an essential microelement, sometimes redoubtable, through its beneficial role - risk depending on its concentration in the food chain, at low dose is an important nutrient in the life of humans and animals, contrary at high doses, it becomes toxic. Selenium may be find itself in the environment (soil, sediment, water in many forms (oxidized, reduced, organometallic which determine their mobility and toxicity. Determination of chemical speciation (identification of different chemical forms provides much more complete information for a better understanding of the behavior and the potential impact on the environment. In this work we present the results of methodological research on the extraction of sequential forms of selenium in the soil and the coupling of analytical methods capable of identifying very small amounts of selenium in soils An efficient scheme of sequential extractions forms of selenium (SES consisting in atomic absorption spectrometry coupled with hydride generation (HGAAS has been developed into five experimental steps, detailed in the paper. This operational scheme has been applied to the analysis of chemical speciation in the following areas: the Bărăgan Plain and Central Dobrogea of Romania.

  19. Acute selenium poisoning in cattle

    Energy Technology Data Exchange (ETDEWEB)

    Shortridge, E H; O' Hara, P J; Marshall, P M

    1971-01-01

    Three hundred and seventy-six (67%) of 557 calves of approximately 150-200 kg live-weight died following subcutaneous injection of a solution containing 100 mg selenium as sodium selenite. Eight per cent of the 254 heifer calves and 56% of the 303 steers died. The calves had endured the stress of being weaned twice and held in stockyards twice as well as encountering wet weather during the 4 days before receiving the selenium. The heifer calves were also vaccinated with Br. abortus strain 19 vaccine at the same time as receiving the selenium. The clinical signs and pathological findings of circulatory failure and myocardial damage were similar to those previously reported in acute selenium poisoning.

  20. Hydrodynamic aspects of selenium X-ray laser targets

    Energy Technology Data Exchange (ETDEWEB)

    Charatis, G; Busch, G E; Shepard, C L; Campbell, P M; Rosen, M D

    1986-10-01

    Recent experiments at KMS have been performed to investigate parameter variations of target component thickness, laser pulse duration and intensity, and one-sided vs two-sided irradiation in order to optimize the performance of the Livermore exploding foil selenium x-ray laser experiments. Preliminary experiments with selenium double foil targets were also conducted as a means of prolonging the duration and enlarging the spatial extent of the lasing conditions. Four-frame holographic interferometry was used in determining the time-dependence of density profiles obtained by Abel inversion of the interferometric fringe field and comparisons were made to LASNEX code calculations.

  1. Sulfur, selenium, tellurium and polonium

    International Nuclear Information System (INIS)

    Berry, F.J.

    1987-01-01

    This chapter on the coordination compounds of sulfur, selenium, tellurium and polonium starts with an introduction to the bonding, valence and geometry of the elements. Complexes of the group VIB elements are discussed with particular reference to the halo and pseudohalide complexes, oxo acid complexes, oxygen and nitrogen donor complexes and sulfur and selenium donor complexes. There is a section on the biological properties of the complexes discussed. (UK)

  2. Trace Element Analysis of Selenium

    International Nuclear Information System (INIS)

    Soliman, M.S.A.

    2010-01-01

    The present thesis divided into four chapters as follows:Chapter (1):This chapter contains an introduction on different oxidation states of organic and inorganic species for selenium in environmental and biological samples, the process for separation of selenium from these samples and the importance of selenium as a component for these samples. Also gives notes about the techniques which are used in the elemental analysis for selenium species and the detection limits for selenium in these techniques, selenium species in human body and the importance of these species in protecting the body from the different types of cancer and the sources of selenium in environmental samples (soil and water) and distribution levels of selenium in these samples.Chapter (2):This chapter is divided into two parts :The first part deals with the sample collection process for environmental samples (underground water, soil) and the wet digestion ( microwave digestion ) process of soil samples. It also contains the theory of work of the closed microwave digestion system.The second part contains detailed information concerning the theoretical considerations of the used analytical techniques. These techniques include Hydride generation - Atomic Absorption Spectrometer (HG-AAS), Inductively Coupled Plasma Mass Spectrometer (ICP-MS) and Neutron Activation Analysis (NAA).Chapter (3): This chapter includes the methods of sampling, sample preparation, and sample digesition. The measures of quality assurance are disscused in this chapter. It describes in details the closed microwave digestion technique and the analytical methods used in this study which are present in Central Laboratory for Elemental and Isotopic Analysis (CLEIA) and the Egypt Second Research Reactor (ETRR-2). The described techniques are Atomic Absorption Spectrometer (AAS 6 vario, Analytical Jena GmbH, Germany), JMS-PLASMAX2 Mass Spectrometer (ICP-MS) and the Egypt Second Research Reactor (NAA).

  3. Effects of selenium on the structure and function of recombinant human S-adenosyl-L-methionine dependent arsenic (+3 oxidation state) methyltransferase in E. coli.

    Science.gov (United States)

    Geng, Zhirong; Song, Xiaoli; Xing, Zhi; Geng, Jinlong; Zhang, Sichun; Zhang, Xinrong; Wang, Zhilin

    2009-05-01

    The effects of Se(IV) on the structure and function of recombinant human arsenic (+3 oxidation state) methyltransferase (AS3MT) purified from the cytoplasm of Escherichia coli were studied. The coding region of human AS3MT complementary DNA was amplified from total RNA extracted from HepG2 cell by reverse transcription PCR. Soluble and active human AS3MT was expressed in the E. coli with a Trx fusion tag under a lower induction temperature of 25 degrees C. Spectra (UV-vis, circular dichroism, and fluorescence) were first used to probe the interaction of Se(IV) and recombinant human AS3MT and the structure-function relationship of the enzyme. The recombinant human AS3MT had a secondary structure of 29.0% alpha-helix, 23.9% beta-pleated sheet, 17.9% beta-turn, and 29.2% random coil. When Se(IV) was added, the content of the alpha-helix did not change, but that of the beta-pleated sheet increased remarkably in the conformation of recombinant human AS3MT. Se(IV) inhibited the enzymatic methylation of inorganic As(III) in a concentration-dependent manner. The IC(50) value for Se(IV) was 2.38 muM. Double-reciprocal (1/V vs. 1/[inorganic As(III)]) plots showed Se(IV) to be a noncompetitive inhibitor of the methylation of inorganic As(III) by recombinant human AS3MT with a K (i) value of 2.61 muM. We hypothesized that Se(IV) interacts with the sulfhydryl group of cysteine(s) in the structural residues rather than the cysteines of the active site (Cys156 and Cys206). When Se(IV) was combined with cysteine(s) in the structural residues, the conformation of recombinant human AS3MT changed and the enzymatic activity decreased. Considering the quenching of tryptophan fluorescence, Cys72 and/or Cys226 are deduced to be primary targets for Se(IV).

  4. Selenium Content, Influential Factors Within the Plant and the Transformation of Different Selenium Specification

    Directory of Open Access Journals (Sweden)

    LIU Yuan-yuan

    2014-12-01

    Full Text Available The paper collected relevant literatures on selenium and explored the function to plant, selenium content, influential factors and selenium specification and transformation. We believed that there should be more deep researches on function of selenium to plant. Approaches of molecular, genetic engineering and isotope could be employed to breed selenium rich crops and possibilities in practice. More efforts should be spent on the technologies research for improving selenium level in crops under natural soil conditions to sustainably utilize the selenium resources.

  5. Iodine and selenium migration through argillaceous rocks

    International Nuclear Information System (INIS)

    Frasca, Benjamin

    2011-01-01

    Deep argillaceous formations are considered as potential host rock for high-level radioactive waste repository. Based on safety assessment calculations, active selenium ( 79 Se) and iodine ( 129 I) from high level radioactive waste might be ones of the major dose contributors due to their longevity and their anionic character. However, because of their high sensitivity to redox condition, a special attention to the oxidation state of these elements is required. A comparative study on the diffusion properties of selenium and iodine through argillaceous rocks was realized with the aim to determine the effects of both the redox conditions and the mineralogy on the migration of these two elements. For these purposes, we have studied two argillaceous rocks: Toarcian argillite from Tournemire (France) and Opalinus clay (OPA) from the Mont-Terri (Switzerland). The study of the iodide migration allowed to confirm the control on the iodide retention of both oxidized pyrite and natural organic matter. A kinetic control of the iodide sorption is also suspected. We focus the selenium study on the more oxidized species, Se(IV) and Se(VI). The Se(IV) migration is strongly dependant from oxido-reduction processes. Indeed, the Se(IV) diffusion experiments through Tournemire argillite and OPA indicated a significant reduction associated to Fe(II). The Se(VI) study evidenced a behavior dependant from the initial concentration: at the highest concentration, no significant retention was observed while the retention is significant at the lowest concentration. Furthermore, spectroscopic analyses tend to show a low Se(VI) reduction at the Fe contact. However, biotic origin cannot be excluded. (author)

  6. Biomarkers of Selenium Chemoprevention of Prostate Cancer

    National Research Council Canada - National Science Library

    Dong, Yan

    2003-01-01

    The purpose of the present study was to examine the mechanism of selenium growth inhibition in PC-3 human prostate cancer cells Selenium retarded cell cycle progression at multiple transition points...

  7. A Study of Selenium in Leprosy

    Directory of Open Access Journals (Sweden)

    Donna Partogi

    2018-03-01

    CONCLUSIONS: Selenium serum levels of patients with PB leprosy are higher than patients with MB leprosy, and high bacteriological index in patients with leprosy were correlated with low selenium serum levels.

  8. Bioaccumulation and toxicity of selenium compounds in the green alga Scenedesmus quadricauda

    Science.gov (United States)

    Umysová, Dáša; Vítová, Milada; Doušková, Irena; Bišová, Kateřina; Hlavová, Monika; Čížková, Mária; Machát, Jiří; Doucha, Jiří; Zachleder, Vilém

    2009-01-01

    Background Selenium is a trace element performing important biological functions in many organisms including humans. It usually affects organisms in a strictly dosage-dependent manner being essential at low and toxic at higher concentrations. The impact of selenium on mammalian and land plant cells has been quite extensively studied. Information about algal cells is rare despite of the fact that they could produce selenium enriched biomass for biotechnology purposes. Results We studied the impact of selenium compounds on the green chlorococcal alga Scenedesmus quadricauda. Both the dose and chemical forms of Se were critical factors in the cellular response. Se toxicity increased in cultures grown under sulfur deficient conditions. We selected three strains of Scenedesmus quadricauda specifically resistant to high concentrations of inorganic selenium added as selenite (Na2SeO3) – strain SeIV, selenate (Na2SeO4) – strain SeVI or both – strain SeIV+VI. The total amount of Se and selenomethionine in biomass increased with increasing concentration of Se in the culturing media. The selenomethionine made up 30–40% of the total Se in biomass. In both the wild type and Se-resistant strains, the activity of thioredoxin reductase, increased rapidly in the presence of the form of selenium for which the given algal strain was not resistant. Conclusion The selenium effect on the green alga Scenedesmus quadricauda was not only dose dependent, but the chemical form of the element was also crucial. With sulfur deficiency, the selenium toxicity increases, indicating interference of Se with sulfur metabolism. The amount of selenium and SeMet in algal biomass was dependent on both the type of compound and its dose. The activity of thioredoxin reductase was affected by selenium treatment in dose-dependent and toxic-dependent manner. The findings implied that the increase in TR activity in algal cells was a stress response to selenium cytotoxicity. Our study provides a new

  9. Bioaccumulation and toxicity of selenium compounds in the green alga Scenedesmus quadricauda

    Directory of Open Access Journals (Sweden)

    Doucha Jiří

    2009-05-01

    Full Text Available Abstract Background Selenium is a trace element performing important biological functions in many organisms including humans. It usually affects organisms in a strictly dosage-dependent manner being essential at low and toxic at higher concentrations. The impact of selenium on mammalian and land plant cells has been quite extensively studied. Information about algal cells is rare despite of the fact that they could produce selenium enriched biomass for biotechnology purposes. Results We studied the impact of selenium compounds on the green chlorococcal alga Scenedesmus quadricauda. Both the dose and chemical forms of Se were critical factors in the cellular response. Se toxicity increased in cultures grown under sulfur deficient conditions. We selected three strains of Scenedesmus quadricauda specifically resistant to high concentrations of inorganic selenium added as selenite (Na2SeO3 – strain SeIV, selenate (Na2SeO4 – strain SeVI or both – strain SeIV+VI. The total amount of Se and selenomethionine in biomass increased with increasing concentration of Se in the culturing media. The selenomethionine made up 30–40% of the total Se in biomass. In both the wild type and Se-resistant strains, the activity of thioredoxin reductase, increased rapidly in the presence of the form of selenium for which the given algal strain was not resistant. Conclusion The selenium effect on the green alga Scenedesmus quadricauda was not only dose dependent, but the chemical form of the element was also crucial. With sulfur deficiency, the selenium toxicity increases, indicating interference of Se with sulfur metabolism. The amount of selenium and SeMet in algal biomass was dependent on both the type of compound and its dose. The activity of thioredoxin reductase was affected by selenium treatment in dose-dependent and toxic-dependent manner. The findings implied that the increase in TR activity in algal cells was a stress response to selenium cytotoxicity

  10. Selecting Lentil Accessions for Global Selenium Biofortification

    Directory of Open Access Journals (Sweden)

    Dil Thavarajah

    2017-08-01

    Full Text Available The biofortification of lentil (Lens culinaris Medikus. has the potential to provide adequate daily selenium (Se to human diets. The objectives of this study were to (1 determine how low-dose Se fertilizer application at germination affects seedling biomass, antioxidant activity, and Se uptake of 26 cultivated lentil genotypes; and (2 quantify the seed Se concentration of 191 lentil wild accessions grown in Terbol, Lebanon. A germination study was conducted with two Se treatments [0 (control and 30 kg of Se/ha] with three replicates. A separate field study was conducted in Lebanon for wild accessions without Se fertilizer. Among cultivated lentil accessions, PI533690 and PI533693 showed >100% biomass increase vs. controls. Se addition significantly increased seedling Se uptake, with the greatest uptake (6.2 µg g−1 by PI320937 and the least uptake (1.1 µg g−1 by W627780. Seed Se concentrations of wild accessions ranged from 0 to 2.5 µg g−1; accessions originating from Syria (0–2.5 µg g−1 and Turkey (0–2.4 µg g−1 had the highest seed Se. Frequency distribution analysis revealed that seed Se for 63% of accessions was between 0.25 and 0.75 µg g−1, and thus a single 50 g serving of lentil has the potential to provide adequate dietary Se (20–60% of daily recommended daily allowance. As such, Se application during plant growth for certain lentil genotypes grown in low Se soils may be a sustainable Se biofortification solution to increase seed Se concentration. Incorporating a diverse panel of lentil wild germplasm into Se biofortification programs will increase genetic diversity for effective genetic mapping for increased lentil seed Se nutrition and plant productivity.

  11. Selecting Lentil Accessions for Global Selenium Biofortification.

    Science.gov (United States)

    Thavarajah, Dil; Abare, Alex; Mapa, Indika; Coyne, Clarice J; Thavarajah, Pushparajah; Kumar, Shiv

    2017-08-26

    The biofortification of lentil ( Lens culinaris Medikus.) has the potential to provide adequate daily selenium (Se) to human diets. The objectives of this study were to (1) determine how low-dose Se fertilizer application at germination affects seedling biomass, antioxidant activity, and Se uptake of 26 cultivated lentil genotypes; and (2) quantify the seed Se concentration of 191 lentil wild accessions grown in Terbol, Lebanon. A germination study was conducted with two Se treatments [0 (control) and 30 kg of Se/ha] with three replicates. A separate field study was conducted in Lebanon for wild accessions without Se fertilizer. Among cultivated lentil accessions, PI533690 and PI533693 showed >100% biomass increase vs. Se addition significantly increased seedling Se uptake, with the greatest uptake (6.2 µg g -1 ) by PI320937 and the least uptake (1.1 µg g -1 ) by W627780. Seed Se concentrations of wild accessions ranged from 0 to 2.5 µg g -1 ; accessions originating from Syria (0-2.5 µg g -1 ) and Turkey (0-2.4 µg g -1 ) had the highest seed Se. Frequency distribution analysis revealed that seed Se for 63% of accessions was between 0.25 and 0.75 µg g -1 , and thus a single 50 g serving of lentil has the potential to provide adequate dietary Se (20-60% of daily recommended daily allowance). As such, Se application during plant growth for certain lentil genotypes grown in low Se soils may be a sustainable Se biofortification solution to increase seed Se concentration. Incorporating a diverse panel of lentil wild germplasm into Se biofortification programs will increase genetic diversity for effective genetic mapping for increased lentil seed Se nutrition and plant productivity.

  12. Selenium homeostasis and induction of thioredoxin reductase during long term selenite supplementation in the rat

    DEFF Research Database (Denmark)

    Erkhembayar, Suvd; Mollbrink, Annelie; Eriksson, Malin

    2011-01-01

    -dependent increase in blood and liver selenium levels, with plateaus at 6 and 8weeks, respectively. These plateaus were reached at the same level of selenium regardless of dose, and no further accumulation was observed. A selenium-dependent increase in the activity of TrxR1 in parallel with the increase in liver...... selenium levels was also seen, and the induction of TrxR1 mRNA was seen only during the first three days of treatment, when the levels of selenium in the liver were increasing. Sodium selenite at 1 and 5μg/mL did not affect body weight or relative liver mass. We concluded that long-term treatment...... with selenite did not cause accumulation of selenium and that the activity of TrxR1 in the liver rose with the selenium levels. We therefore suggest that sodium selenite at doses up to 5μg/mL could be used for long-term tumour prevention....

  13. Diselenolane-mediated cellular uptake.

    Science.gov (United States)

    Chuard, Nicolas; Poblador-Bahamonde, Amalia I; Zong, Lili; Bartolami, Eline; Hildebrandt, Jana; Weigand, Wolfgang; Sakai, Naomi; Matile, Stefan

    2018-02-21

    The emerging power of thiol-mediated uptake with strained disulfides called for a move from sulfur to selenium. We report that according to results with fluorescent model substrates, cellular uptake with 1,2-diselenolanes exceeds uptake with 1,2-dithiolanes and epidithiodiketopiperazines with regard to efficiency as well as intracellular localization. The diselenide analog of lipoic acid performs best. This 1,2-diselenolane delivers fluorophores efficiently to the cytosol of HeLa Kyoto cells, without detectable endosomal capture as with 1,2-dithiolanes or dominant escape into the nucleus as with epidithiodiketopiperazines. Diselenolane-mediated cytosolic delivery is non-toxic (MTT assay), sensitive to temperature but insensitive to inhibitors of endocytosis (chlorpromazine, methyl-β-cyclodextrin, wortmannin, cytochalasin B) and conventional thiol-mediated uptake (Ellman's reagent), and to serum. Selenophilicity, the extreme CSeSeC dihedral angle of 0° and the high but different acidity of primary and secondary selenols might all contribute to uptake. Thiol-exchange affinity chromatography is introduced as operational mimic of thiol-mediated uptake that provides, in combination with rate enhancement of DTT oxidation, direct experimental evidence for existence and nature of the involved selenosulfides.

  14. Selenium plating of aluminium and nickel surfaces

    International Nuclear Information System (INIS)

    Qureshi, N.; Shams, N.; Kamal, A.; Ashraf, A.

    1993-01-01

    Selenium exhibits photovoltaic and photoconductive properties. This makes selenium useful in the production of photocells, exposure meters for photographic use, in solar cells, etc. In commerce, selenium coated surfaces are extensively used as photo receptive drums in the xerography machines for reproducing documents. Laboratory experiments were designed to obtain selenium plating on different materials. Of the various electrodes tested for cathodic deposition, anodized aluminum and nickel plated copper were found to give good results. (author)

  15. Instrumental neutron activation analysis of site-dependent uptake and distribution of trace elements in the saltmarsh plant Aster tripolium from marsh fields in the Schelde estuary, Netherlands

    International Nuclear Information System (INIS)

    Rossbach, M.

    1986-07-01

    As part of an environmental chemical investigation the uptake of heavy metals by a saltmarsh plant Aster tripolium from two differently polluted salt marsh sites of the North Sea between 20 to 30 trace elements were determined in soil and plant organs. A sensitive gamma ray counting system was installed and tested for instrumental activation analyses (INAA). Installations to improve sensitivity as well as conditions necessary for reliable trace element analysis with the aid of Anticompton spectrometers (ACS) are described. The accuracy and reproducibility of the method was determined by the analysis of reference- and control materials of the german environmental specimen bank. In order to characterise the state of pollution of the salt marsh soils pollution-factors for single elements as well as interelemental correlations were evaluated. In addition, uptake and translocation factors of the biological samples were calculated. The many highly significant correlations between elements within the plant organs indicated that uptake appears to be physiologicaly controlled and not dependent on soil concentration. In order to detect further consequences of differing pollution influences within these plants biochemical separation techniques were applied and trace element levels in selected extracts were determined. For the specification of heavy metals gelpermeation chromatography of ethanolic extracts proved to be the most promising method. Furthermore, propositions for the use of trace elements as a fingerprint for pollution status and characterisation of species for referenz- and specimenbank materials have been developed. Aster tripolium as a cadmium accumulating plant can probably be used as an indicator in the monitoring of cadmium polluted salt marsh areas. (orig.) [de

  16. 21 CFR 573.920 - Selenium.

    Science.gov (United States)

    2010-04-01

    ... section, or as selenium yeast, as provided in paragraph (h) of this section. (c) It is added to feed as... months.” (h) Selenium yeast is a dried, non-viable yeast (Saccharomyces cerevisiae) cultivated in a fed-batch fermentation which provides incremental amounts of cane molasses and selenium salts in a manner...

  17. Determination of the solubility limiting solid of the selenium in the presence of iron under anoxic conditions

    International Nuclear Information System (INIS)

    Iida, Y.; Yamaguchi, T.; Tanaka, T.; Kitamura, A.; Nakayama, S.

    2009-01-01

    Dissolution experiments of selenium were performed from both under saturation and over saturation directions to determine the solubility limiting solid of selenium under the conditions which thermodynamically prefer the formation of ferroselite (FeSe 2 ). X-ray diffractometry (XRD) showed that FeSe 2 was formed in the over-saturation experiments. However, the ion activity products for the reaction of 0.5 FeSe 2 + H + + e - 0.5 Fe 2+ + HSe - , aFe 2+0.5 aHSe - a H+ -1 a e- -1 , obtained from both under saturation and over saturation directions were 3 to 4 orders of magnitude higher than the equilibrium constants calculated from existing thermodynamic data. The dependencies of the selenium concentration on pH, Eh and the iron concentration were better interpreted as a dissolution reaction of selenium solid (Se(s)) than the iron-selenium compounds. The equilibrium constant of: Se(s) + H + + 2e - = HSe - was determined to be logK 0 -7.46±0.11. This value agrees with the value of logK 0 = -7.62±0.06 calculated from existing thermodynamic data of crystalline selenium within errors. Because crystalline selenium was not identified in the solid phases by XRD, the solubility limiting solid would be amorphous or minor amount of crystalline selenium, even if the iron-selenium compound was formed. (authors)

  18. Joint refinery selenium treatability study

    International Nuclear Information System (INIS)

    Meyer, C.L.; Folwarkow, S.

    1993-01-01

    The San Francisco Regional Water Quality Control Board recently established mass limits on discharges of selenium to the San Francisco Bay from several petroleum refineries. The refineries had been working independently to develop control strategies, including both source control and treatment options, for removal of selenium from their discharges. By January 1992, over fifty different combinations of treatment technologies, wastewater streams, and pretreatment steps had been investigated to determine their effectiveness and feasibility as selenium removal processes. No treatment process studied could achieve the required mass limits without serious negative environmental consequences, such as generation of large amounts of hazardous sludge. To better facilitate the development of a feasible selenium treatment process, the six Bay Area refineries shared results of their studies and identified several technologies that, with further work, could be developed further. This additional work is currently being carried out as part of a joint selenium treatability study sponsored by the Western States Petroleum Association. A review of the previous source control and treatment studies, along with a description of the current treatability studies will be discussed

  19. Vitamin C, Phenolic Compounds and Antioxidant Capacity of Broccoli Florets Grown under Different Nitrogen Treatments Combined with Selenium

    Directory of Open Access Journals (Sweden)

    Peñas Elena

    2018-06-01

    Full Text Available Broccoli consumption is rising worldwide and fertilization is a tool to increase its production. However, little is known about the effect of mineral supplementation to the soil on the bioactive compounds. Therefore, the aim of this investigation was to analyze the content of vitamin C, total phenolic compounds and the antioxidant capacity of broccoli florets cultivated under different nitrogen (N conditions in combination with selenium (IV and VI. Greenhouse experiments were conducted in broccoli grown in commercial soil treated with different N sources [(NH42SO4, NaNO3, NH4NO3 or CO(NH22 at 160 kg N/ha]. In addition, selenium (Se salts [Na2SeO3 (Se IV or Na2SeO4 (Se VI at 10 and 20 kg Se/ha] were applied. There were no evidences of the influence of N treatment on vitamin C content whilst Se (IV or VI uptake led to a significant reduction of this vitamin in broccoli florets, irrespective of the N source. In contrast, total phenolics content and antioxidant capacity underwent a significant increment under N application. However, their combination with Se salts modified total phenolic content and antioxidant capacities in broccoli florets depending on N source and Se doses. Among all the experimental trials, application of NH4NO3 combined with 10 g Se (IV/ha was the elective treatment strategy to produce broccoli florets with higher content of phenolic compounds and antioxidant capacity and, therefore, enhanced functionality.

  20. Selenium and tellurium nanomaterials

    Science.gov (United States)

    Piacenza, Elena; Presentato, Alessandro; Zonaro, Emanuele; Lampis, Silvia; Vallini, Giovanni; Turner, Raymond J.

    2018-04-01

    Over the last 40 years, the rapid and exponential growth of nanotechnology led to the development of various synthesis methodologies to generate nanomaterials different in size, shape and composition to be applied in various fields. In particular, nanostructures composed of Selenium (Se) or Tellurium (Te) have attracted increasing interest, due to their intermediate nature between metallic and non-metallic elements, being defined as metalloids. Indeed, this key shared feature of Se and Te allows us the use of their compounds in a variety of applications fields, such as for manufacturing photocells, photographic exposure meters, piezoelectric devices, and thermoelectric materials, to name a few. Considering also that the chemical-physical properties of elements result to be much more emphasized when they are assembled at the nanoscale range, huge efforts have been made to develop highly effective synthesis methods to generate Se- or Te-nanomaterials. In this context, the present book chapter will explore the most used chemical and/or physical methods exploited to generate different morphologies of metalloid-nanostructures, focusing also the attention on the major advantages, drawbacks as well as the safety related to these synthetic procedures.

  1. GLP-2-mediated up-regulation of intestinal blood flow and glucose uptake is nitric oxide-dependent in TPN-fed piglets 1

    DEFF Research Database (Denmark)

    Guan, Xinfu; Stoll, Barbara; Lu, Xiaofeng

    2003-01-01

    (n = 8) received consecutive intravenous infusions of saline, GLP-2, and GLP-2 plus N(G)-Nitro-L-arginine methyl ester (L-NAME, 50 micromol x kg(-1) x hour(-1)) for 4 hours each. RESULTS: GLP-2 acutely increased portal-drained visceral (PDV) blood flow rate (+25%) and intestinal blood volume (+51......%) in TPN-fed piglets. GLP-2 also increased intestinal constitutive nitric oxide synthase (NOS) activity and endothelial NOS protein abundance. GLP-2 acutely increased PDV glucose uptake (+90%) and net lactate production (+79%). Co-infusion of GLP-2 plus L-NAME did not increase either PDV blood flow rate......, and this response is nitric oxide-dependent. These findings suggest that GLP-2 may play an important physiological role in the regulation of intestinal blood flow and that nitric oxide is involved in GLP-2 receptor function....

  2. The relationship between selenium and gastric cancer

    International Nuclear Information System (INIS)

    Shi Kuixiong; Ma Guansheng; Zhang Tingyu; Cheng Wufeng; Mao Dajuan; Pan Bixia; Xu Xiuxian

    1993-01-01

    Both sodium selenite and selenium yeast were chosen to block the MNNG mutagenesis. The inhibition rates were 66.5% and 37.9% respectively. The selenium levels in hair, serum and gastric juice, and the contents of nitrosamine in gastric juice were also determined. The results showed that the selenium levels were SG > CAG and Dys > GC (p CAG, Dyas and GC (p < 0.05). 19 cases of CAG patients treated with selenium yeast and 16 cases of the control were observed. After 10 weeks, the selenium levels in serum for the treated group were significantly increased. The symptoms of CAG patients seemed to be alleviated

  3. Neuroactivity of detonation nanodiamonds: dose-dependent changes in transporter-mediated uptake and ambient level of excitatory/inhibitory neurotransmitters in brain nerve terminals.

    Science.gov (United States)

    Pozdnyakova, Natalia; Pastukhov, Artem; Dudarenko, Marina; Galkin, Maxim; Borysov, Arsenii; Borisova, Tatiana

    2016-03-31

    Nanodiamonds are one of the most perspective nano-sized particles with superb physical and chemical properties, which are mainly composed of carbon sp(3) structures in the core with sp(2) and disorder/defect carbons on the surface. The research team recently demonstrated neuromodulatory properties of carbon nanodots with other than nanodiamonds hybridization types, i.e., sp(2) hybridized graphene islands and diamond-like sp(3) hybridized elements. In this study, neuroactive properties of uncoated nanodiamonds produced by detonation synthesis were assessed basing on their effects on transporter-mediated uptake and the ambient level of excitatory and inhibitory neurotransmitters, glutamate and γ-aminobutyric acid (GABA), in isolated rat brain nerve terminals. It was shown that nanodiamonds in a dose-dependent manner attenuated the initial velocity of Na(+)-dependent transporter-mediated uptake and accumulation of L-[(14)C]glutamate and [(3)H]GABA by nerve terminals and increased the ambient level of these neurotransmitters. Also, nanodiamonds caused a weak reduction in acidification of synaptic vesicles and depolarization of the plasma membrane of nerve terminals. Therefore, despite different types of hybridization in nanodiamonds and carbon dots, they exhibit very similar effects on glutamate and GABA transport in nerve terminals and this common feature of both nanoparticles is presumably associated with their nanoscale size. Observed neuroactive properties of pure nanodiamonds can be used in neurotheranostics for simultaneous labeling/visualization of nerve terminals and modulation of key processes of glutamate- and GABAergic neurotransmission. In comparison with carbon dots, wider medical application involving hypo/hyperthermia, external magnetic fields, and radiolabel techniques can be perspective for nanodiamonds.

  4. Enrichment of meat products with selenium by its introduction to mixed feed compounds for birds

    Directory of Open Access Journals (Sweden)

    А. Sobolev

    2017-07-01

    Full Text Available Selenium is a biologically active microelement, contained in a number of hormones and enzymes. In a bird or animal organism selenium performs the following functions: strengthens the immune system, stimulates formation of antibodies, macrophages and interferons. Also, it is a powerful antioxidant agent. It stimulates processes of metabolism in the organism, protects the organism against toxic manifestations of cadmium, lead, thalium and silver; stimulates reproductive function, decreases acute development of inflammatory processes; stabilizes functioning of the nervous system; normalizes functioning of the endocrine system. Furthermore, it stimulates synthesis of hemoglobin, takes part in secretion of erythrocutes, neutralizes toxins, prevents and stops development of malignant tumors. It also has a positive effect on the cardiovascular system of an animal organism: prevents myocardosis and decreases the risk of development of cardiovascular diseases. Deficiency of selenium in the organism causes (depending upon the extent of deficiency either physiological changes within the regulatory norm, significant disorders of the metabolism, or specific diseases. Around 75 different diseases and symptoms of pain are related to selenium deficiency. In most countries, the level of selenium consumption remains low (20–40 µg/day. There are several ways of improving of the selenium consumption of a population: consumption of selenium as a medication or dietary supplement, producing selenium-enriched bread, growing greens and vegetables rich in selenium, producing selenium-enriched beverages, products of animal origin, which would be rich in selenium. In the scientific-agricultural sphere studies have been made on the influence of adding different doses (0.2–0.6 mg/kg of selenium in mixed feeds and peculiarities of its depositing and distribution in the muscle tissues of young growth of different species of poultry. It has been found that feeding broiler

  5. Major involvement of Na(+) -dependent multivitamin transporter (SLC5A6/SMVT) in uptake of biotin and pantothenic acid by human brain capillary endothelial cells.

    Science.gov (United States)

    Uchida, Yasuo; Ito, Katsuaki; Ohtsuki, Sumio; Kubo, Yoshiyuki; Suzuki, Takashi; Terasaki, Tetsuya

    2015-07-01

    The purpose of this study was to clarify the expression of Na(+) -dependent multivitamin transporter (SLC5A6/SMVT) and its contribution to the supply of biotin and pantothenic acid to the human brain via the blood-brain barrier. DNA microarray and immunohistochemical analyses confirmed that SLC5A6 is expressed in microvessels of human brain. The absolute expression levels of SLC5A6 protein in isolated human and monkey brain microvessels were 1.19 and 0.597 fmol/μg protein, respectively, as determined by a quantitative targeted absolute proteomics technique. Using an antibody-free method established by Kubo et al. (2015), we found that SLC5A6 was preferentially localized at the luminal membrane of brain capillary endothelium. Knock-down analysis using SLC5A6 siRNA showed that SLC5A6 accounts for 88.7% and 98.6% of total [(3) H]biotin and [(3) H]pantothenic acid uptakes, respectively, by human cerebral microvascular endothelial cell line hCMEC/D3. SLC5A6-mediated transport in hCMEC/D3 was markedly inhibited not only by biotin and pantothenic acid, but also by prostaglandin E2, lipoic acid, docosahexaenoic acid, indomethacin, ketoprofen, diclofenac, ibuprofen, phenylbutazone, and flurbiprofen. This study is the first to confirm expression of SLC5A6 in human brain microvessels and to provide evidence that SLC5A6 is a major contributor to luminal uptake of biotin and pantothenic acid at the human blood-brain barrier. In humans, it was unclear (not concluded) about what transport system at the blood-brain barrier (BBB) is responsible for the brain uptakes of two vitamins, biotin and pantothenic acid, which are necessary for brain proper function. This study clarified for the first time that the solute carrier 5A6/Na(+) -dependent multivitamin transporter SLC5A6/SMVT is responsible for the supplies of biotin and pantothenic acid into brain across the BBB in humans. DHA, docosahexaenoic acid; NSAID, non-steroidal anti-inflammatory drug; PGE2, prostaglandin E2. © 2015

  6. Seasonal ozone uptake by a warm-temperate mixed deciduous and evergreen broadleaf forest in western Japan estimated by the Penman–Monteith approach combined with a photosynthesis-dependent stomatal model

    International Nuclear Information System (INIS)

    Kitao, Mitsutoshi; Komatsu, Masabumi; Hoshika, Yasutomo; Yazaki, Kenichi; Yoshimura, Kenichi; Fujii, Saori; Miyama, Takafumi; Kominami, Yuji

    2014-01-01

    Canopy-level stomatal conductance over a warm-temperate mixed deciduous and evergreen broadleaf forest in Japan was estimated by the Penman–Monteith approach, as compensated by a semi-empirical photosynthesis-dependent stomatal model, where photosynthesis, relative humidity, and CO 2 concentration were assumed to regulate stomatal conductance. This approach, using eddy covariance data and routine meteorological observations at a flux tower site, permits the continuous estimation of canopy-level O 3 uptake, even when the Penman–Monteith approach is unavailable (i.e. in case of direct evaporation from soil or wet leaves). Distortion was observed between the AOT40 exposure index and O 3 uptake through stomata, as AOT40 peaked in April, but with O 3 uptake occurring in July. Thus, leaf pre-maturation in the predominant deciduous broadleaf tree species (Quercus serrata) might suppress O 3 uptake in springtime, even when the highest O 3 concentrations were observed. -- Highlights: • We estimate canopy-level O 3 uptake in a warm-temperate mixed forest in Japan. • The Penman–Monteith approach is compensated by a photosynthesis-dependent model. • Stomatal conductance can be estimated, even in a partly-opened or wet canopy. • The estimated O 3 dose peaks in summer though O 3 exposure peaks in spring. -- Estimation of seasonal O 3 uptake over a mixed-temperate forest compensated by a photosynthesis-dependent stomatal model

  7. Selenium-containing indolyl compounds

    DEFF Research Database (Denmark)

    Casaril, Angela M; Ignasiak, Marta T; Chuang, Christine Y

    2017-01-01

    materials, including extracellular matrix (ECM) proteins, within the artery wall. Here we investigated the potential of selenium-containing indoles to afford protection against these oxidants, by determining rate constants (k) for their reaction, and quantifying the extent of damage on isolated ECM proteins......Tyr on HCAEC-ECM were also reduced. These data demonstrate that the novel selenium-containing compounds show high reactivity with oxidants and may modulate oxidative and nitrosative damage at sites of inflammation, contributing to a reduction in tissue dysfunction and atherogenesis....

  8. Long-term selenium status in humans

    International Nuclear Information System (INIS)

    Baskett, C.K.; Spate, V.L.; Mason, M.M.; Nichols, T.A.; Williams, A.; Dubman, I.M.; Gudino, A.; Denison, J.; Morris, J.S.

    2001-01-01

    The association of sub-optimal selenium status with increased risk factors for some cancers has been reported in two recent epidemiological studies. In both studies the same threshold in selenium status was observed, below which, cancer incidence increased. To assess the use of nails as a biologic monitor to measure the long-term selenium status, an eight-year longitudinal study was undertaken with a group of 11 adult subjects, 5 women and 6 men. Selenium has been measured by instrumental neutron activation analysis. Differences between fingernails and toenails with be discussed. In addition, the results will be discussed in the context of the long-term stability of the nail monitor to measure selenium status during those periods when selenium determinants are static; and the changes that occur as a result of selenium supplementation. (author)

  9. Nutrigenetics, nutrigenomics, and selenium.

    Science.gov (United States)

    Ferguson, Lynnette R; Karunasinghe, Nishi

    2011-01-01

    Selenium (Se) is an important micronutrient that, as a component of selenoproteins, influences oxidative and inflammatory processes. Its' levels vary considerably, with different ethnic and geographic population groups showing varied conditions, ranging from frank Se deficiencies to toxic effects. An optimum Se level is essential for the maintenance of homeostasis, and this optimum may vary according to life stage, general state of health, and genotype. Nutrigenetic studies of different Se levels, in the presence of genetic variants in selenoproteins, suggest that an effective dietary Se intake for one individual may be very different from that for others. However, we are just starting to learn the significance of various genes in selenoprotein pathways, functional variants in these, and how to combine such data from genes into pathways, alongside dietary intake or serum levels of Se. Advances in systems biology, genetics, and genomics technologies, including genetic/genomic, epigenetic/epigenomic, transcriptomic, proteomic, and metabolomic information, start to make it feasible to assess a comprehensive spectrum of the biological activity of Se. Such nutrigenomic approaches may prove very sensitive biomarkers of optimal Se status at the individual or population level. The premature cessation of a major human Se intervention trial has led to considerable controversy as to the value of Se supplementation at the population level. New websites provide convenient links to current information on methodologies available for nutrigenetics and nutrigenomics. These new technologies will increasingly become an essential tool in optimizing the level of Se and other micronutrients for optimal health, in individuals and in population groups. However, definitive proof of such effects will require very large collaborative studies, international agreement on study design, and innovative approaches to data analysis.

  10. Nutrigenetics, nutrigenomics and selenium

    Directory of Open Access Journals (Sweden)

    Lynnette Robiin Ferguson

    2011-04-01

    Full Text Available Selenium (Se is an important micronutrient that, as a component of selenoproteins, influences oxidative and inflammatory processes. Its’ levels vary considerably, with different ethnic and geographic population groups showing varied conditions, ranging from frank Se deficiencies to toxic effects. An optimum Se level is essential for the maintenance of homeostasis, and this optimum may vary according to life stage, general state of health and genotype. Nutrigenetic studies of different Se levels, in the presence of genetic variants in selenoproteins, suggest that an effective dietary Se intake for one individual may be very different from that for others. However, we are just starting to learn the significance of various genes in selenoprotein pathways, functional variants in these, and how to combine such data from genes into pathways, alongside dietary intake or serum levels of Se. Advances in systems biology, genetics and genomics technologies, including genetic/genomic, epigenetic/epigenomic, transcriptomic, proteomic and metabolomic information, start to make it feasible to assess a comprehensive spectrum of the biological activity of Se. Such nutrigenomic approaches may prove very sensitive biomarkers of optimal Se status at the individual or population level. The premature cessation of a major human Se intervention trial has led to considerable controversy as to the value of Se supplementation at the population level. New websites provide convenient links to current information on methodologies available for nutrigenetics and nutrigenomics. These new technologies will increasingly become an essential tool in optimising the level of Se and other micronutrients for optimal health, in individuals and in population groups. However, definitive proof of such effects will require very large collaborative studies, international agreement on study design and innovative approaches to data analysis.

  11. Selenium for the Prevention of Cutaneous Melanoma

    Directory of Open Access Journals (Sweden)

    Douglas Grossman

    2013-03-01

    Full Text Available The role of selenium (Se supplementation in cancer prevention is controversial; effects often depend on the nutritional status of the subject and on the chemical form in which Se is provided. We used a combination of in vitro and in vivo models to study two unique therapeutic windows for intervention in the process of cutaneous melanomagenisis, and to examine the utility of two different chemical forms of Se for prevention and treatment of melanoma. We studied the effects of Se in vitro on UV-induced oxidative stress in melanocytes, and on apoptosis and cell cycle progression in melanoma cells. In vivo, we used the HGF transgenic mouse model of UV-induced melanoma to demonstrate that topical treatment with l-selenomethionine results in a significant delay in the time required for UV-induced melanoma development, but also increases the rate of growth of those tumors once they appear. In a second mouse model, we found that oral administration of high dose methylseleninic acid significantly decreases the size of human melanoma xenografts. Our findings suggest that modestly elevation of selenium levels in the skin might risk acceleration of growth of incipient tumors. Additionally, certain Se compounds administered at very high doses could have utility for the treatment of fully-malignant tumors or prevention of recurrence.

  12. Selenium for the Prevention of Cutaneous Melanoma

    Science.gov (United States)

    Cassidy, Pamela B.; Fain, Heidi D.; Cassidy, James P.; Tran, Sally M.; Moos, Philip J.; Boucher, Kenneth M.; Gerads, Russell; Florell, Scott R.; Grossman, Douglas; Leachman, Sancy A.

    2013-01-01

    The role of selenium (Se) supplementation in cancer prevention is controversial; effects often depend on the nutritional status of the subject and on the chemical form in which Se is provided. We used a combination of in vitro and in vivo models to study two unique therapeutic windows for intervention in the process of cutaneous melanomagenisis, and to examine the utility of two different chemical forms of Se for prevention and treatment of melanoma. We studied the effects of Se in vitro on UV-induced oxidative stress in melanocytes, and on apoptosis and cell cycle progression in melanoma cells. In vivo, we used the HGF transgenic mouse model of UV-induced melanoma to demonstrate that topical treatment with l-selenomethionine results in a significant delay in the time required for UV-induced melanoma development, but also increases the rate of growth of those tumors once they appear. In a second mouse model, we found that oral administration of high dose methylseleninic acid significantly decreases the size of human melanoma xenografts. Our findings suggest that modestly elevation of selenium levels in the skin might risk acceleration of growth of incipient tumors. Additionally, certain Se compounds administered at very high doses could have utility for the treatment of fully-malignant tumors or prevention of recurrence. PMID:23470450

  13. Biogenesis of Selenium Nanoparticles Using Green Chemistry.

    Science.gov (United States)

    Shoeibi, Sara; Mozdziak, Paul; Golkar-Narenji, Afsaneh

    2017-11-09

    Selenium binds some enzymes such as glutathione peroxidase and thioredoxin reductase, which may be activated in biological infections and oxidative stress. Chemical and physical methods for synthesizing nanoparticles, apart from being expensive, have their own particular risks. However, nanoparticle synthesis through green chemistry is a safe procedure that different biological sources such as bacteria, fungi, yeasts, algae and plants can be the catalyst bed for processing. Synthesis of selenium nanoparticles (SeNPs) by macro/microorganisms causes variation in morphology and shape of the particles is due to diversity of reduction enzymes in organisms. Reducing enzymes of microorganisms by changing the status of redox convert metal ions (Se 2- ) to SeNPs without charge (Se 0 ). Biological activity of SeNPs includes their protective role against DNA oxidation. Because of the biological and industrial properties, SeNPs have wide applications in the fields of medicine, microelectronic, agriculture and animal husbandry. SeNPs can show strong antimicrobial effects on the growth and proliferation of microorganisms in a dose-dependent manner. The objective of this review is to consider SeNPs applications to various organisms.

  14. Reduced selenium-binding protein 1 in breast cancer correlates with poor survival and resistance to the anti-proliferative effects of selenium.

    Directory of Open Access Journals (Sweden)

    Sheng Zhang

    Full Text Available Supplemental dietary selenium is associated with reduced incidence of many cancers. The antitumor function of selenium is thought to be mediated through selenium-binding protein 1 (SELENBP1. However, the significance of SELENBP1 expression in breast cancer is still largely unknown. A total of 95 normal and tumor tissues assay and 12 breast cancer cell lines were used in this study. We found that SELENBP1 expression in breast cancer tissues is reduced compared to normal control. Low SELENBP1 expression in ER(+ breast cancer patients was significantly associated with poor survival (p<0.01, and SELENBP1 levels progressively decreased with advancing clinical stages of breast cancer. 17-β estradiol (E2 treatment of high SELENBP1-expressing ER(+ cell lines led to a down-regulation of SELENBP1, a result that did not occur in ER(- cell lines. However, after ectopic expression of ER in an originally ER(- cell line, down-regulation of SELENBP1 upon E2 treatment was observed. In addition, selenium treatment resulted in reduced cell proliferation in endogenous SELENBP1 high cells; however, after knocking-down SELENBP1, we observed no significant reduction in cell proliferation. Similarly, selenium has no effect on inhibition of cell proliferation in low endogenous SELENBP1 cells, but the inhibitory effect is regained following ectopic SELENBP1 expression. Furthermore, E2 treatment of an ER silenced high endogenous SELENBP1 expressing cell line showed no abolishment of cell proliferation inhibition upon selenium treatment. These data indicate that SELENBP1 expression is regulated via estrogen and that the cell proliferation inhibition effect of selenium treatment is dependent on the high level of SELENBP1 expression. Therefore, the expression level of SELENBP1 could be an important marker for predicting survival and effectiveness of selenium supplementation in breast cancer. This is the first study to reveal the importance of monitoring SELENBP1 expression

  15. Selenium as an alternative peptide label - comparison to fluorophore-labelled penetratin

    DEFF Research Database (Denmark)

    Hyrup Møller, Laura; Bahnsen, Jesper Søborg; Nielsen, Hanne Mørck

    2015-01-01

    lysates, primarily the intact peptide (PenMSe, TAMRA-PenMSe or TAMRA-Pen) was observed. Selenium labelling caused minimal alteration of the physicochemical properties of the peptide and allowed for absolute quantitative determination of cellular uptake by inductively coupled plasma mass spectrometry......In the present study, the impact on peptide properties of labelling peptides with the fluorophore TAMRA or the selenium (Se) containing amino acid SeMet was evaluated. Three differently labelled variants of the cell-penetrating peptide (CPP) penetratin (Pen) were synthesized, PenMSe, TAMRA....... Selenium is thus proposed as a promising alternative label for quantification of peptides in general, altering the properties of the peptide to a minor extent as compared to commonly used peptide labels....

  16. Fracture Phenomena in Amorphous Selenium

    DEFF Research Database (Denmark)

    Lindegaard-Andersen, Asger; Dahle, Birgit

    1966-01-01

    Fracture surfaces of amorphous selenium broken in flexure at room temperature have been studied. The fracture velocity was found to vary in different regions of the fracture surface. Peculiar features were observed in a transition zone between fast and slower fracture. In this zone cleavage steps...

  17. Assessment of selenium bioavailability from naturally produced high-selenium soy foods in selenium-deficient rats.

    Science.gov (United States)

    Yan, Lin; Reeves, Philip G; Johnson, LuAnn K

    2010-10-01

    We assessed the bioavailability of selenium (Se) from a protein isolate and tofu (bean curd) prepared from naturally produced high-Se soybeans. The Se concentrations of the soybeans, the protein isolate and tofu were 5.2±0.2, 11.4±0.1 and 7.4±0.1mg/kg, respectively. Male weanling Sprague-Dawley rats were depleted of Se by feeding them a 30% Torula yeast-based diet (4.1μg Se/kg) for 56 days, and then they were replenished with Se for an additional 50 days by feeding them the same diet containing 14, 24 or 30 μg Se/kg from the protein isolate or 13, 23 or 31 μg Se/kg from tofu, respectively. l-Selenomethionine (SeMet) was used as a reference. Selenium bioavailability was determined on the basis of the restoration of Se-dependent enzyme activities and tissue Se concentrations in Se-depleted rats, comparing those responses for the protein isolate and tofu to those for SeMet by using a slope-ratio method. Dietary supplementation with the protein isolate or tofu resulted in linear or log-linear, dose-dependent increases in glutathione peroxidase activities in blood and liver and in thioredoxin reductase activity in liver. Furthermore, supplementation with the protein isolate or tofu resulted in linear or log-linear, dose-dependent increases in the Se concentrations of plasma, liver, muscle and kidneys. These results indicated an overall bioavailability of approximately 101% for Se from the protein isolate and 94% from tofu, relative to SeMet. We conclude that Se from naturally produced high-Se soybeans is highly bioavailable in this model and that high-Se soybeans may be a good dietary source of Se. Published by Elsevier GmbH.

  18. Ameliorative effects of selenium on arsenic-induced cytotoxicity in PC12 cells via modulating autophagy/apoptosis.

    Science.gov (United States)

    Rahman, Md Mostafizur; Uson-Lopez, Rachael A; Sikder, Md Tajuddin; Tan, Gongxun; Hosokawa, Toshiyuki; Saito, Takeshi; Kurasaki, Masaaki

    2018-04-01

    Arsenic is well known toxicant responsible for human diseases including cancers. On the other hand, selenium is an essential trace element with significant chemopreventive effects, anticancer potentials and antioxidant properties. Although previous studies have reported antagonism/synergism between arsenic and selenium in biological systems, the biomolecular mechanism/s is still inconclusive. Therefore, to elucidate the molecular phenomena in cellular level, we hypothesized that co-exposure of selenium with arsenic may have suppressive effects on arsenic-induced cytotoxicity. We found that selenium in co-exposure with arsenic increases cell viability, and suppresses oxidative stress induced by arsenic in PC12 cells. Consequently, DNA fragmentation due to arsenic exposure was also reduced by arsenic and selenium co-exposure. Furthermore, western blot analyses revealed that simultaneous exposure of both metals significantly inhibited autophagy which further suppressed apoptosis through positively regulation of key proteins; p-mTOR, p-Akt, p-Foxo1A, p62, and expression of ubiquitin, Bax, Bcl2, NFкB, and caspases 3 and 9, although those are negatively regulated by arsenic. In addition, reverse transcriptase PCR analysis confirmed the involvement of caspase cascade in cell death process induced by arsenic and subsequent inhibition by co-exposure of selenium with arsenic. The cellular accumulation study of arsenic in presence/absence of selenium via inductively coupled plasma mass spectrometry confirmed that selenium effectively retarded the uptake of arsenic in PC12 cells. Finally, these findings imply that selenium is capable to modulate arsenic-induced intrinsic apoptosis pathway via enhancement of mTOR/Akt autophagy signaling pathway through employing antioxidant potentials and through inhibiting the cellular accumulation of arsenic in PC12 cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Dramatic effect on Selenium concentration in blood serum due to the difference between the Hungarian and Indian dietary habits

    International Nuclear Information System (INIS)

    Szuecs, Z.; Lahiri, S.; Andrasi, D.; Kovacs, B.

    2012-01-01

    Complete text of publication follows. The importance of Selenium as trace element in animals, as well as in humans is well known. The deficiency of Selenium was observed in case of several heavy or fatal clinical events such as high infant mortality, premature, malformations and even prostate cancer. Hungary is in the top of their worldwide statistic with parallel of the low concentration of Selenium in soil as well as in food. The direct correlation can explain in Venezuela, where the prostate cancer is 'unknown disease'. The concentration of Selenium in India is higher than the worldwide level. Under the scientific bilateral cooperation 'Speciation dependent studies on physicochemical behavior of some elements in trace scale in natural and synthetic system' the Selenium was determined in human blood serum from the group of Hungarian and group of Indian patients. The samples were given in same time from each group. The main goal of the study was explain the effect of the traditional dietary habit for the level of Selenium. Therefore the samples were taken from the visiting scientist just arrived to the host institute as well as from the host scientists too. After 2 weeks stay the sampling was repeated, when the guest scientists eat the same food as the host scientists. The measurements were done in Thermo-2 ICP-MS from blood-serum separated by centrifuge. The results are summarized in Table 1. Dramatic effect was found for the level of Selenium in blood serum. As it was expected the Hungarian samples showed low concentration of Selenium in starting of the visit, as well as the high concentration was found in Indian sample, comparing to the Hungarian sample. After two weeks the Hungarian sample showed much higher concentration, however it was still less, than in Indian sample. Similar effect was found during the visit the Indian scientists in Hungary, however their Selenium concentration decreased not so spectacular due to the Selenium 'store' in body. The general

  20. Determination of selenium in food matrices by replicate sample neutron activation analysis

    International Nuclear Information System (INIS)

    Ventura, M.G.; Freitas, M.C.; Ventura, M.G.; Pacheco, A.M.G.

    2009-01-01

    The replicate sample instrumental neutron activation method was optimized and used for the determination of selenium in foodstuffs. The method was reliable, yielding accurate results. Lower detections limits were obtained after each successive irradiation. Different irradiation conditions were used depending on the type of sample. For samples with higher selenium contents (meat, fish, eggs), the measured selenium in the first replicate is in all cases larger than the detection limit, but a better accuracy was obtained with a larger number of replicates (2-3 replicates). For samples with extremely low selenium contents (vegetable samples), at least seven replicates were necessary to obtain a concentration value two times larger than the detection limit. (author)

  1. SELENIUM ACCUMULATION BY BASIL PLANTS (OCINUM BASILICUM L.

    Directory of Open Access Journals (Sweden)

    N. A. Golubkina

    2014-01-01

    Full Text Available Selenium accumulation level in basil plants is investigated. A direct correlation between selenium concentration and essential oil content is demonstrated for basil and other aroma plants. No correlation is found between selenium and flavonoids.

  2. Chemical Form of Selenium in Naturally Selenium-Rich Lentils (Lens Culinaris L.) From Saskatchewan

    Energy Technology Data Exchange (ETDEWEB)

    Thavarajah, D.; Vandenberg, A.; George, G.N.; Pickering, I.J.

    2009-06-04

    Lentils (Lens culinaris L.) are a source of many essential dietary components and trace elements for human health. In this study we show that lentils grown in the Canadian prairies are additionally enriched in selenium, an essential micronutrient needed for general well-being, including a healthy immune system and protection against cancer. Selenium K near-edge X-ray absorption spectroscopy (XAS) has been used to examine the selenium biochemistry of two lentil cultivars grown in various locations in Saskatchewan, Canada. We observe significant variations in total selenium concentration with geographic location and cultivar; however, almost all the selenium (86--95%) in these field-grown lentils is present as organic selenium modeled as selenomethionine with a small component (5--14%) as selenate. As the toxicities of certain forms of arsenic and selenium are antagonistic, selenium-rich lentils may have a pivotal role to play in alleviating the chronic arsenic poisoning in Bangladesh.

  3. Selenopeptides and elemental selenium in Thunbergia alata after exposure to selenite: quantification method for elemental selenium.

    Science.gov (United States)

    Aborode, Fatai Adigun; Raab, Andrea; Foster, Simon; Lombi, Enzo; Maher, William; Krupp, Eva M; Feldmann, Joerg

    2015-07-01

    Three month old Thunbergia alata were exposed for 13 days to 10 μM selenite to determine the biotransformation of selenite in their roots. Selenium in formic acid extracts (80 ± 3%) was present as selenopeptides with Se-S bonds and selenium-PC complexes (selenocysteinyl-2-3-dihydroxypropionyl-glutathione, seleno-phytochelatin2, seleno-di-glutathione). An analytical method using HPLC-ICPMS to detect and quantify elemental selenium in roots of T. alata plants using sodium sulfite to quantitatively transform elemental selenium to selenosulfate was also developed. Elemental selenium was determined as 18 ± 4% of the total selenium in the roots which was equivalent to the selenium not extracted using formic acid extraction. The results are in an agreement with the XAS measurements of the exposed roots which showed no occurrence of selenite or selenate but a mixture of selenocysteine and elemental selenium.

  4. Comparison of Selenium Treatments of Crops in the Field

    DEFF Research Database (Denmark)

    Nielsen, Gunnar Gissel

    1986-01-01

    Field experiments with spring and winter barley and ryegrass were carried out to compare the effect of fertilizers enriched with selenate or selenite with foliar application on the selenium (Se) concentrations in the crops. Application of about 20 g Se/ha given as selenate or about 100 g as selen...... not occur. The choice of method thus depends on the farming practice in the individual cases....

  5. Time, Concentration, and pH-Dependent Transport and Uptake of Anthocyanins in a Human Gastric Epithelial (NCI-N87 Cell Line

    Directory of Open Access Journals (Sweden)

    Allison A. Atnip

    2017-02-01

    Full Text Available Anthocyanins are the largest class of water soluble plant pigments and a common part of the human diet. They may have many potential health benefits, including antioxidant, anti-inflammatory, anti-cancer, and cardioprotective activities. However, anthocyanin metabolism is not well understood. Studies suggest that anthocyanins absorption may occur in the stomach, in which the acidic pH favors anthocyanin stability. A gastric epithelial cell line (NCI-N87 has been used to study the behavior of anthocyanins at a pH range of 3.0–7.4. This work examines the effects of time (0–3 h, concentration (50–1500 µM, and pH (3.0, 5.0, 7.4 on the transport and uptake of anthocyanins using NCI-N87 cells. Anthocyanins were transported from the apical to basolateral side of NCI-N87 cells in time and dose dependent manners. Over the treatment time of 3 h the rate of transport increased, especially with higher anthocyanin concentrations. The non-linear rate of transport may suggest an active mechanism for the transport of anthocyanins across the NCI-N87 monolayer. At apical pH 3.0, higher anthocyanin transport was observed compared to pH 5.0 and 7.4. Reduced transport of anthocyanins was found to occur at apical pH 5.0.

  6. Calcium-dependent protein kinase CPK31 interacts with arsenic transporter AtNIP1;1 and regulates arsenite uptake in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Ruijie Ji

    Full Text Available Although arsenite [As(III] is non-essential and toxic for plants, it is effectively absorbed through various transporters into the roots. Here we identified a calcium-dependent protein kinase (CPK31 response for As(III tolerance in Arabidopsis. We identified CPK31 as an interacting protein of a nodulin 26-like intrinsic protein (NIP1;1, an aquaporin involved in As(III uptake. Similarly to the nip1;1 mutants, the loss-of-function mutants of CPK31 improved the tolerance against As(III but not As(V, and accumulated less As(III in roots than that of the wild-type plants. The promoter-β-glucuronidase and quantitative Real-Time PCR analysis revealed that CPK31 displayed overlapping expression profiles with NIP1;1 in the roots, suggesting that they might function together in roots. Indeed, the cpk31 nip1;1 double mutants exhibited stronger As(III tolerance than cpk31 mutants, but similar to nip1;1 mutants, supporting the idea that CPK31 might serve as an upstream regulator of NIP1;1. Furthermore, transient CPK31 overexpression induced by dexamethasone caused the decrease in As(III tolerance of transgenic Arabidopsis lines. These findings reveal that CPK31 is a key factor in As(III response in plants.

  7. Review on Nano SeleniumProduced by Bacteria

    Directory of Open Access Journals (Sweden)

    LI Ji-xiang

    2014-12-01

    Full Text Available Selenium (Se is a kind of essential trace element for people and animal, while ionic state of selenium is toxic with high concentrations and will cause the selenium pollution. Nano-selenium is stable, nontoxic with higher biological activity. Application of bacteria reducing selenite or selenate to biological nano-selenium has great potential in selenium pollution control and nano-selenium production. This review summarizes the research progress of the red elemental nano-selenium reduced by bacteria including characteristics and application of nano-selenium, effects of carbon and nitrogen source, oxygen, temperature and pH in bacteria nano-selenium production, and molecular mechanisms of nano-selenium reduced by bacteria.

  8. Shape coexistence in selenium isotopes

    International Nuclear Information System (INIS)

    Liu Ying; Cao Zhongbin; Xu Furong

    2010-01-01

    Nuclear shape change and shape coexistence in the Selenium isotopes have been investigated by Total-Routhian-Surface (TRS) calculations. It is found that nuclear shapes vary significantly with increasing neutron number. The TRS calculations for the ground states of 66,72,92,94 Se isotopes show that both neutron-deficient and neutron-dripline Selenium isotopes have oblate and prolate shape coexistence. The cranking shell-model calculations for 72,94 Se give that prolate and oblate shape coexistence in low rotational frequency. However, oblate rotational bands disappear and prolate rotational bands become yrast bands with increasing rotational frequency, which is due to the intrusion of the g 9/2 orbitals. (authors)

  9. Impacts of phosphate mining on trophic level- and spatial variation of selenium and radium-226 on Florida waterbirds

    International Nuclear Information System (INIS)

    Myers, O.B.; O'Meara, T.E.

    1993-01-01

    More than 74,000 ha of the Florida landscape have been disturbed by phosphate mining operations. These operations redistribute radionuclides in the uranium-238 decay series and other potentially toxic trace elements contained in the ore matrix, making them more available for uptake by wetland birds. The authors inventoried levels of radium-226 and selenium in the tissue of wood ducks, mottled ducks, common moorhens, and double-crested cormorants collected from reference areas and from phosphate-mine wetlands. Bones of waterfowl contained from 3--4 times more radium-226 than in individuals collected at reference areas. Radium-226 in moorhen and cormorant bones were less strongly affected by mining. Waterfowl muscle tissue contained 1-2 orders of magnitude less radium-226 than in bone. Selenium concentrations were significantly higher in avian liver and kidney tissues collected from phosphate-mine wetlands compared to reference wetlands. Cormorants accumulated up to 80 ppm selenium in liver. As many as 20% of cormorants from phosphate-mine wetlands contained liver selenium concentrations at levels which have caused reproduction problems in other avian species. Waterfowl and moorhens tissues contained less selenium than cormorants, but phosphate-mine birds contained significantly more selenium than reference area birds

  10. Selenium enrichment on Cordyceps militaris link and analysis on its main active components.

    Science.gov (United States)

    Dong, Jing Z; Lei, C; Ai, Xun R; Wang, Y

    2012-03-01

    To investigate the effects of selenium on the main active components of Cordyceps militaris fruit bodies, selenium-enriched cultivation of C. militaris and the main active components of the fruit bodies were studied. Superoxide dismutase (SOD) activity and contents of cordycepin, cordycepic acid, and organic selenium of fruit bodies were sodium selenite concentration dependent; contents of adenosine and cordycep polysaccharides were significantly enhanced by adding sodium selenite in the substrates, but not proportional to sodium selenite concentrations. In the cultivation of wheat substrate added with 18.0 ppm sodium selenite, SOD activity and contents of cordycepin, cordycepic acid, adenosine, cordycep polysaccharides, and total amino acids were enhanced by 121/145%, 124/74%, 325/520%, 130/284%, 121/145%, and 157/554%, respectively, compared to NS (non-selenium-cultivated) fruit bodies and wild Cordyceps sinensis; organic selenium contents of fruit bodies reached 6.49 mg/100 g. So selenium-enriched cultivation may be a potential way to produce more valuable medicinal food as a substitute for wild C. sinensis.

  11. A case-control study of the relation between plasma selenium and asthma in European populations

    DEFF Research Database (Denmark)

    Burney, P; Potts, J; Makowska, J

    2008-01-01

    BACKGROUND: There is evidence that selenium levels are relatively low in Europe and may be falling. Low levels of selenium or low activity of some of the enzymes dependent on selenium have been associated with asthma. METHODS: The GA(2)LEN network has organized a multicentre case-control study...... in Europe to assess the relation of plasma selenium to asthma. The network compared 569 cases in 14 European centres with a diagnosis of asthma and reporting asthma symptoms in the last 12 months with 576 controls from the same centres with no diagnosis of asthma and no asthmatic symptoms in the last 12......-analysis of the results from the centres showed no overall association between asthma and plasma selenium [odds ratio (OR)/10 microg/l increase in plasma selenium: 1.04; 95% confidence interval (CI): 0.89-1.21] though there was a significantly protective effect in Lodz (OR: 0.48; 95% CI: 0.29-0.78) and a marginally...

  12. Chemical form of selenium differentially influences DNA repair pathways following exposure to lead nitrate.

    Science.gov (United States)

    McKelvey, Shauna M; Horgan, Karina A; Murphy, Richard A

    2015-01-01

    Lead, an environmental toxin is known to induce a broad range of physiological and biochemical dysfunctions in humans through a number of mechanisms including the deactivation of antioxidants thus leading to generation of reactive oxygen species (ROS) and subsequent DNA damage. Selenium on the other hand has been proven to play an important role in the protection of cells from free radical damage and oxidative stress, though its effects are thought to be form and dose dependent. As the liver is the primary organ required for metabolite detoxification, HepG2 cells were chosen to assess the protective effects of various selenium compounds following exposure to the genotoxic agent lead nitrate. Initially DNA damage was quantified using a comet assay, gene expression patterns associated with DNA damage and signalling were also examined using PCR arrays and the biological pathways which were most significantly affected by selenium were identified. Interestingly, the organic type selenium compounds (selenium yeast and selenomethionine) conferred protection against lead induced DNA damage in HepG2 cells; this is evident by reduction in the quantity of DNA present in the comet tail of cells cultured in their presence with lead. This trend also followed through the gene expression changes noted in DNA damage pathways analysed. These results were in contrast with those of inorganic sodium selenite which promoted lead induced DNA damage evident in both the comet assay results and the gene expression analysis. Over all this study provided valuable insights into the effects which various selenium compounds had on the DNA damage and signalling pathway indicating the potential for using organic forms of selenium such as selenium enriched yeast to protect against DNA damaging agents. Copyright © 2014 Elsevier GmbH. All rights reserved.

  13. Selenium determination by fluorimetric method

    International Nuclear Information System (INIS)

    Lavorenti, A.

    1981-01-01

    A fluorimetric method to determine selenium both in vegetable samples and blood serum is developed. The method consists of a radioisotope 75 Se initially in order to optimize the determination of analytical conditions. Three samples digestion processes and also some factors related to methodology is studied. The nitric-percloric digestion process for 40 samples and the analytical process is shown. (M.J.C.) [pt

  14. Rethinking mercury: the role of selenium in the pathophysiology of mercury toxicity.

    Science.gov (United States)

    Spiller, Henry A

    2018-05-01

    , including selenoprotein P, K, and T. Impairment of the thioredoxin and glutaredoxin systems allows for proliferation intracellular reactive oxygen species which leads to glutamate excitosis, calcium dyshomeostasis, mitochondrial injury/loss, lipid peroxidation, impairment of protein repair, and apoptosis. Methylmercury is a more potent inhibitor of the thioredoxin system, partially explaining its increased neurotoxicity. A second important mechanism is due to the high affinity of mercury for selenium and the subsequent depletion of selenium stores needed for insertion into de novo generation of replacement selenoproteins. This mercury-induced selenium deficiency state inhibits regeneration of the selenoproteins to restore the cellular redox environment. The effects of selenium on mercury and the role this plays in biological response to mercury: Early research suggested selenium may provide a protective role in mercury poisoning, and with limitations this is true. The roles selenium plays in this reduction of mercury toxicity partially depends on the form of mercury and may be multifaceted including: 1) facilitating demethylation of organic mercury to inorganic mercury; 2) redistribution of mercury to less sensitive target organs; 3) binding to inorganic mercury and forming an insoluble, stable and inert Hg:Se complex; 4) reduction of mercury absorption from the GI tract; 5) repletion of selenium stores (reverse selenium deficiency); and 6) restoration of target selenoprotein activity and restoring the intracellular redox environment. There is conflicting evidence as to whether selenium increases or hinders mercury elimination, but increased mercury elimination does not appear to be a major role of selenium. Selenium supplementation has been shown to restore selenoprotein function and reduce the toxicity of mercury, with several significant limitations including: the form of mercury (methylmercury toxicity is less responsive to amelioration) and mercury dose. The

  15. Selenium Enrichment of Horticultural Crops.

    Science.gov (United States)

    Puccinelli, Martina; Malorgio, Fernando; Pezzarossa, Beatrice

    2017-06-04

    The ability of some crops to accumulate selenium (Se) is crucial for human nutrition and health. Selenium has been identified as a cofactor of the enzyme glutathione peroxidase, which is a catalyzer in the reduction of peroxides that can damage cells and tissues, and can act as an antioxidant. Plants are the first link in the food chain, which ends with humans. Increasing the Se quantity in plant products, including leafy and fruity vegetables, and fruit crops, without exceeding the toxic threshold, is thus a good way to increase animal and human Se intake, with positive effects on long-term health. In many Se-enriched plants, most Se is in its major organic form. Given that this form is more available to humans and more efficient in increasing the selenium content than inorganic forms, the consumption of Se-enriched plants appears to be beneficial. An antioxidant effect of Se has been detected in Se-enriched vegetables and fruit crops due to an improved antioxidative status and to a reduced biosynthesis of ethylene, which is the hormone with a primary role in plant senescence and fruit ripening. This thus highlights the possible positive effect of Se in preserving a longer shelf-life and longer-lasting quality.

  16. Selenium Enrichment of Horticultural Crops

    Directory of Open Access Journals (Sweden)

    Martina Puccinelli

    2017-06-01

    Full Text Available The ability of some crops to accumulate selenium (Se is crucial for human nutrition and health. Selenium has been identified as a cofactor of the enzyme glutathione peroxidase, which is a catalyzer in the reduction of peroxides that can damage cells and tissues, and can act as an antioxidant. Plants are the first link in the food chain, which ends with humans. Increasing the Se quantity in plant products, including leafy and fruity vegetables, and fruit crops, without exceeding the toxic threshold, is thus a good way to increase animal and human Se intake, with positive effects on long-term health. In many Se-enriched plants, most Se is in its major organic form. Given that this form is more available to humans and more efficient in increasing the selenium content than inorganic forms, the consumption of Se-enriched plants appears to be beneficial. An antioxidant effect of Se has been detected in Se-enriched vegetables and fruit crops due to an improved antioxidative status and to a reduced biosynthesis of ethylene, which is the hormone with a primary role in plant senescence and fruit ripening. This thus highlights the possible positive effect of Se in preserving a longer shelf-life and longer-lasting quality.

  17. Understanding selenium biogeochemistry in engineered ecosystems

    NARCIS (Netherlands)

    Jain, Rohan; Hullebusch, Van Eric D.; Lenz, Markus; Farges, François

    2017-01-01

    Selenium is used extensively in many industries, and it is necessary for human nutrition. On the other hand, it is also toxic at slightly elevated concentrations. With the advent of industrialisation, selenium concentrations in the environment due to anthropogenic activities have increased.

  18. Selenium in human milk: An Australian study

    International Nuclear Information System (INIS)

    Cumming, F.J.; Fardy, J.J.; Woodward, D.R.

    1991-01-01

    The aims of this Australian study were to determine (total) selenium concentration in breast milk and in maternal blood, and to assess the relationship between the two. The authors also aimed to assess the infants' selenium intake. Twenty lactating women from Brisbane (Queensland) participated in the study, at 6-12 weeks post-partum. Small samples (approximately 10 ml) of breast-milk were manually expressed at the beginning and end of a mid-morning feed, from the first breast offered at that feed. Venous blood samples (10 ml) were also collected from the mothers. Milk and blood samples were analyzed by neutron activation analysis. Babies' milk intake over a 24-hour period was estimated using a modified test-weighing technique. Infant selenium intakes were calculated directly for each infant, using his/her mother's milk selenium level and his/her own 24-hour breast milk intake. The mean selenium concentration in maternal blood was 101 (±SD 19) ng/g and in maternal serum 81 (±15) ng/g. Breast milk selenium concentrations (11.9 ± 3.5 ng/g) were fairly low by international standards. There was no correlation between selenium concentrations in milk and blood (or serum). The infants' 24-hour breast-milk intakes were 856 ± 172 g, and their selenium intakes were 10.7 ± 4.1 μg per day

  19. Learning selenium testing tools with Python

    CERN Document Server

    Gundecha, Unmesh

    2014-01-01

    If you are a quality testing professional, or a software or web application developer looking to create automation test scripts for your web applications, with an interest in Python, then this is the perfect guide for you. Python developers who need to do Selenium testing need not learn Java, as they can directly use Selenium for testing with this book.

  20. N-isopropyl- sup 123 I-p-iodoamphetamine uptake mechanism in the lung - is it dependent on pH, lipophilicity or pK sub a

    Energy Technology Data Exchange (ETDEWEB)

    Akber, S.F. (Texas Medical School, Houston, TX (United States). Dept. of Radiology)

    1991-12-01

    The uptake and binding mechanism of biogenic amines in the lungs has been studied extensively with no conclusive results. The competition between N-isopropyl-{sup 123}I-p-iodo amphetamines ({sup 123}I-IMP) and propranolol and {sup 123}I-IMP and ketamine, in the lungs suggest that the pK{sub a} value of the biogenic amines has a significant role to play in the mechanism of uptake and retention of biogenic amines in the lungs. (orig.).

  1. N-isopropyl-123I-p-iodoamphetamine uptake mechanism in the lung - is it dependent on pH, lipophilicity or pKa?

    International Nuclear Information System (INIS)

    Akber, S.F.

    1991-01-01

    The uptake and binding mechanism of biogenic amines in the lungs has been studied extensively with no conclusive results. The competition between N-isopropyl- 123 I-p-iodo amphetamines ( 123 I-IMP) and propranolol and 123 I-IMP and ketamine, in the lungs suggest that the pK a value of the biogenic amines has a significant role to play in the mechanism of uptake and retention of biogenic amines in the lungs. (orig.) [de

  2. Effects of aldose reductase inhibitor and vitamin B12 on myocardial uptake of iodine-123 metaiodobenzylguanidine in patients with non-insulin-dependent diabetes mellitus

    International Nuclear Information System (INIS)

    Utsunomiya, Keita; Narabayashi, Isamu; Tamura, Koji; Nakatani, Yuko; Saika, Yoshinori; Onishi, Satoshi; Kariyone, Shigeo

    1998-01-01

    This study was undertaken to examine the effects of aldose reductase inhibitor (ARI) and vitamin B 12 (VB12) on myocardial uptake of iodine-123 metaiodobenzylguanidine (MIBG) in patients with diabetic autonomic disorder. Myocardial scintigraphy using 123 I-MIBG was performed on 20 healthy volunteers (controls) and 56 patients with non-insulin-dependent diabetes mellitus (NIDDM), in order to obtain the heart/mediastinum ratio in the initial (HMi) and the delayed images (HMd), and the washout rate (%WR). Thirty-four of the 56 NIDDM patients could be diagnosed as having diabetic autonomic disorder by evaluating their scintigraphic findings in comparison with the controls. Seventeen of these 34 patients received 150 mg/day of epalrestat (ARI group) in three divided doses before meals, and the other 17 received 1.5 mg/day of mecobalamin (VB12 group) in three divided doses after meals, for 3-5 months. According to the presence or absence of clinical symptoms of autonomic or peripheral somatic nerve disorder, the patients were subclassified into four groups. group 1=patients, with autonomic symptoms or somatosensory disorder in the ARI group; group 2=patients without autonomic symptoms or somatosensory disorder in the ARI group; group 3=patients with autonomic symptoms or somatosensory disorder in the VB12 group; and group 4=patients without autonomic symptoms or somatosensory disorder in the VB12 group. After completion of the treatment, myocardial scintigraphy was performed again. Comparing the results obtained before and after the treatment, it was seen that ARI improved only the HMi in group 1 (P=0.046), whereas VB12 significantly improved HMi in the group 3 (P=0.018) and HMi, HMd and %WR in group 4 (P=0.043, P=0.018 and P=0.043, respectively). We conclude that VB12 is more efficacious than ARI in the treatment of diabetic cardiovascular autonomic disorder. (orig.)

  3. Advanced prostate cancer risk in relation to toenail selenium levels

    NARCIS (Netherlands)

    Geybels, M.S.; Verhage, B.A.J.; Schooten, F.J. van; Goldbohm, A.; Brandt, P.A. van den

    2013-01-01

    BACKGROUND: Selenium may prevent advanced prostate cancer (PCa), but most studies on this topic were conducted in populations with moderate to high selenium status. We investigated the association of toenail selenium, reflecting long-term selenium exposure, and advanced PCa risk in a population from

  4. Arsenic and selenium in microbial metabolism

    Science.gov (United States)

    Stolz, John F.; Basu, Partha; Santini, Joanne M.; Oremland, Ronald S.

    2006-01-01

    Arsenic and selenium are readily metabolized by prokaryotes, participating in a full range of metabolic functions including assimilation, methylation, detoxification, and anaerobic respiration. Arsenic speciation and mobility is affected by microbes through oxidation/reduction reactions as part of resistance and respiratory processes. A robust arsenic cycle has been demonstrated in diverse environments. Respiratory arsenate reductases, arsenic methyltransferases, and new components in arsenic resistance have been recently described. The requirement for selenium stems primarily from its incorporation into selenocysteine and its function in selenoenzymes. Selenium oxyanions can serve as an electron acceptor in anaerobic respiration, forming distinct nanoparticles of elemental selenium that may be enriched in (76)Se. The biogenesis of selenoproteins has been elucidated, and selenium methyltransferases and a respiratory selenate reductase have also been described. This review highlights recent advances in ecology, biochemistry, and molecular biology and provides a prelude to the impact of genomics studies.

  5. Natural variation of selenium in Brazil nuts and soils from the Amazon region.

    Science.gov (United States)

    Silva Junior, E C; Wadt, L H O; Silva, K E; Lima, R M B; Batista, K D; Guedes, M C; Carvalho, G S; Carvalho, T S; Reis, A R; Lopes, G; Guilherme, L R G

    2017-12-01

    Brazil nut tree (Bertholletia excelsa) is native of the Amazon rainforest. Brazil nuts are consumed worldwide and are known as the richest food source of selenium (Se). Yet, the reasoning for such Se contents is not well stablished. We evaluated the variation in Se concentration of Brazil nuts from Brazilian Amazon basin, as well as soil properties, including total Se concentration, of the soils sampled directly underneath the trees crown, aiming to investigate which soil properties influence Se accumulation in the nuts. The median Se concentration in Brazil nuts varied from 2.07 mg kg - 1 (in Mato Grosso state) to 68.15 mg kg - 1 (in Amazonas state). Therefore, depending on its origin, a single Brazil nut could provide from 11% (in the Mato Grosso state) up to 288% (in the Amazonas state) of the daily Se requirement for an adult man (70 μg). The total Se concentration in the soil also varied considerably, ranging from Brazil nuts generally increased in soils with higher total Se content, but decreased under acidic conditions in the soil. This indicates that, besides total soil Se concentration, soil acidity plays a major role in Se uptake by Brazil nut trees, possibly due to the importance of this soil property to Se retention in the soil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Study of selenocompounds from selenium-enriched culture of edible sprouts.

    Science.gov (United States)

    Funes-Collado, Virginia; Morell-Garcia, Albert; Rubio, Roser; López-Sánchez, José Fermín

    2013-12-15

    Selenium is recognised as an essential micronutrient for humans and animals. One of the main sources of selenocompounds in the human diet is vegetables. Therefore, this study deals with the Se species present in different edible sprouts grown in Se-enriched media. We grew alfalfa, lentil and soy in a hydroponic system amended with soluble salts, containing the same proportion of Se, in the form of Se(VI) and Se(IV). Total Se in the sprouts was determined by acidic digestion in a microwave system and by ICP/MS. Se speciation was carried out by enzymatic extraction (Protease XIV) and measured by LC-ICP/MS. The study shows that the Se content of plants depends on the content in the growth culture, and that part of the inorganic Se was biotransformed mainly into SeMet. These results contribute to our understanding of the uptake of inorganic Se and its biotransformation by edible plants. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Blood selenium levels and contribution of food groups to selenium intake in adolescent girls in Iceland.

    Science.gov (United States)

    Gudmundsdottir, Edda Y; Gunnarsdottir, Ingibjorg; Thorlacius, Arngrimur; Reykdal, Olafur; Gunnlaugsdottir, Helga; Thorsdottir, Inga; Steingrimsdottir, Laufey

    2012-01-01

    Significant changes have been reported in dietary habits and food availability in Iceland that would be expected to compromise selenium intake and status, especially among young people. These include substantial decreases in the consumption of fish and milk, as well as the selenium content of imported wheat. The aim of this study was to assess selenium in the diet and whole blood of adolescent girls, as well as define the most important foods contributing to intake and blood concentrations of selenium. The subjects were 96 randomly selected girls, aged 16-20, who answered a validated food frequency questionnaire (FFQ) for dietary assessment. Selenium intake from each food group was calculated in µg/day. Blood samples were collected for measurement of whole blood selenium. Mean dietary selenium was 51±25 µg/day. Milk/dairy products, including cheese, contributed 36±14% of total dietary selenium; fish 18±12%; and bread/cereal products 13±6%. Mean whole blood selenium was 117±12 µg/l (range 90-208); nearly 90% of subjects were above the optimal level of 100 µg/l. Fish and bread/cereal products were the only foods significantly correlated with selenium in blood (r=0.32; P=0.002 and r=0.22; P=0.04, respectively) while no correlation was found with milk and dairy products in spite of their greater contribution to total selenium intake. In this population of Icelandic adolescent girls, selenium intake and status seem acceptable. Judging from associations between intake and blood levels, fish and cereals may be the most important contributors to blood selenium.

  8. Blood selenium levels and contribution of food groups to selenium intake in adolescent girls in Iceland

    Directory of Open Access Journals (Sweden)

    Ingibjorg Gunnarsdottir

    2012-08-01

    Full Text Available Background/objectives: Significant changes have been reported in dietary habits and food availability in Iceland that would be expected to compromise selenium intake and status, especially among young people. These include substantial decreases in the consumption of fish and milk, as well as the selenium content of imported wheat. The aim of this study was to assess selenium in the diet and whole blood of adolescent girls, as well as define the most important foods contributing to intake and blood concentrations of selenium. Design: The subjects were 96 randomly selected girls, aged 16–20, who answered a validated food frequency questionnaire (FFQ for dietary assessment. Selenium intake from each food group was calculated in µg/day. Blood samples were collected for measurement of whole blood selenium. Results: Mean dietary selenium was 51±25 µg/day. Milk/dairy products, including cheese, contributed 36±14% of total dietary selenium; fish 18±12%; and bread/cereal products 13±6%. Mean whole blood selenium was 117±12 µg/l (range 90–208; nearly 90% of subjects were above the optimal level of 100 µg/l. Fish and bread/cereal products were the only foods significantly correlated with selenium in blood (r=0.32; P = 0.002 and r=0.22; P = 0.04, respectively while no correlation was found with milk and dairy products in spite of their greater contribution to total selenium intake. Conclusion: In this population of Icelandic adolescent girls, selenium intake and status seem acceptable. Judging from associations between intake and blood levels, fish and cereals may be the most important contributors to blood selenium.

  9. Selenium deficiency aggravates T-2 toxin-induced injury of primary neonatal rat cardiomyocytes through ER stress.

    Science.gov (United States)

    Xu, Jing; Pan, Shengchi; Gan, Fang; Hao, Shu; Liu, Dandan; Xu, Haibin; Huang, Kehe

    2018-04-01

    Keshan disease is a potentially fatal cardiomyopathy in humans. Selenium deficiency, T-2 toxin, and myocarditis virus are thought to be the major factors contributing to Keshan disease. But the relationship among these three factors is poorly described. This study aims to explore whether selenium deficiency aggravates T-2 toxin-induced cardiomyocyte injury and its underlying mechanism. Cardiomyocytes were isolated from neonatal rat and cultured at the physiological (2.0 μM) or lower concentrations of selenium with different concentrations of T-2 toxin. Our results showed that selenium deficiencies aggravated T-2 toxin-induced cardiomyocyte injury in a concentration-dependent manner as demonstrated by MTT bioassay, LDH activity, reactive oxygen species levels and caspase 3 protein expressions. T-2 toxin treatment significantly increased mRNA expressions for stress proteins GRP78 and CHOP in cardiomyocytes compared with the control. Selenium deficiencies further promoted GRP78, CHOP and p-eIF2α expressions. Knockdown of CHOP by the specific small interfering RNA eliminated the effect of selenium deficiencies on T-2 toxin-induced injury. It could be concluded that selenium deficiency aggravates T-2 toxin-induced cardiomyocyte injury through initiating more aggressive endoplasmic reticulum stress. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Selenium inhibits the phytotoxicity of mercury in garlic (Allium sativum)

    International Nuclear Information System (INIS)

    Zhao, Jiating; Gao, Yuxi; Li, Yu-Feng; Hu, Yi; Peng, Xiaomin; Dong, Yuanxing; Li, Bai; Chen, Chunying; Chai, Zhifang

    2013-01-01

    To investigate the influence of selenium on mercury phytotoxicity, the levels of selenium and mercury were analyzed with inductively coupled plasma-mass spectrometry (ICP-MS) in garlic tissues upon exposure to different dosages of inorganic mercury (Hg 2+ ) and selenite (SeO 3 2− ) or selenate (SeO 4 2− ). The distributions of selenium and mercury were examined with micro-synchrotron radiation X-ray fluorescence (μ-SRXRF), and the mercury speciation was investigated with micro-X-ray absorption near edge structure (μ-XANES). The results show that Se at higher exposure levels (>1 mg/L of SeO 3 2− or SeO 4 2− ) would significantly inhibit the absorption and transportation of Hg when Hg 2+ levels are higher than 1 mg/L in culture media. SeO 3 2− and SeO 4 2− were found to be equally effective in reducing Hg accumulation in garlic. The inhibition of Hg uptake by Se correlates well with the influence of Se on Hg phytotoxicity as indicated by the growth inhibition factor. Elemental imaging using μ-SRXRF also shows that Se could inhibit the accumulation and translocation of Hg in garlic. μ-XANES analysis shows that Hg is mainly present in the forms of Hg–S bonding as Hg(GSH) 2 and Hg(Met) 2 . Se exposure elicited decrease of Hg–S bonding in the form of Hg(GSH) 2 , together with Se-mediated alteration of Hg absorption, transportation and accumulation, may account for attenuated Hg phytotoxicity by Se in garlic. -- Highlights: ► Hg phytotoxicity can be mitigated by Se supplement in garlic growth. ► Se can inhibit the accumulation and transportation of Hg in garlic tissues. ► Localization and speciation of Hg in garlic can be modified by Se

  11. Accumulation of selenium and assessment of the microelements contents in rape spring on meadow-black soil

    International Nuclear Information System (INIS)

    Ermokhin, Yu.I.; Sindireva, A.V.

    2008-01-01

    Quantitative correlation was installed as a result of work between arrival of the selenium on meadow-black soil and contents of this element in green mass of the rape spring. Correlation between the contents of Se and Cd, Ni, Zn in green mass at the rape spring was studied. In this article the assessment of the microelements contents depending on doses and methods of using selenium is offered

  12. Experimental grounds for developing selenium- and iodine-containing pharmaceuticals based on blue-green algae Spirulina platensis

    International Nuclear Information System (INIS)

    Frontas'eva, M.V.; Pavlov, S.S.; Mosulishvili, L.M.; Belokobyl'skij, A.I.; Kirkesali, E.I.

    2002-01-01

    The possibility of using blue-green algae Spirulina platensis as a matrix for production of the selenium- and iodine-containing pharmaceuticals was studied. The dependence of Se and I accumulation in Spirulina biomass during the cultivation in a nutrient medium loading of above elements was determined more precisely. The dynamics of Spirulina biomass growth was observed with nutrient medium loading of selenium. It is found that Spirulina platensis biomass quality may be used for pharmaceutical purposes

  13. Selenium-75-labelled foliate compounds

    International Nuclear Information System (INIS)

    1974-01-01

    A saturation method to analyze a foliate is presented; it uses competitive reaction of the compound to be measured and of a radioactive-labelled version of this compound with a reagent specific to this compound present in insufficient quantity to combine with the whole of the compound and its labelled version, separation of the bound compound from its non-bound homologue and measurement of the radioactivity concentration in the bound compound, the non-bound compound or both. The radioactive isotope used in the labelled foliate is selenium 75 [fr

  14. A Study on Pancreas Scanning with Selenium75-Selenomethionine

    International Nuclear Information System (INIS)

    Shin, Hyun Chan; Toh, Sang Hee; Ra, Woo Youn; Suh, Chul Sung

    1968-01-01

    Radiographic visualization of the pancreas is a difficult problem, but the direct visualization of the pancreas is possible by the injection of the amino-acid methionine tagged with selenium 75 (Se 75 ). In order to know the diagnostic value of pancreas scanning, scans were performed on 23 cases using selenium 75 -Selenomethionine. These cases were also given egg white, probanthine and morphine. 1) Good visualization of the pancreas scanning was observed on 19 cases, presumably with normal pancreas. 2) A case which showed diffusely decreased uptake on pancreas scanning was proven to have lesions in the bile duct and the gall bladder. 3) Of those two cases which showed localized cold area, one had pancreas cyst and the other one was not explored. 4) A case which showed no visualization of the pancreas was proven to have pancreatic carcinoma. 5) Two cases which showed widened duodenal loop by upper gastro-intestinal series revealed normal pancreas scanning, and no pancreatic disease was found in both cases.

  15. Relationship between serum selenium, sociodemographic variables, other trace elements and lipid profile in an adult Spanish population.

    Science.gov (United States)

    González-Estecha, Montserrat; Palazón-Bru, Irene; Bodas-Pinedo, Andrés; Trasobares, Elena; Palazón-Bru, Antonio; Fuentes, Manuel; Cuadrado-Cenzual, M Ángeles; Calvo-Manuel, Elpidio

    2017-09-01

    Several studies have shown an inverse relationship between selenium status and cardiovascular health, although epidemiologic evidence yielded by the randomized trials did not find a beneficial effect of selenium administration. The aim of this study was to analyze the association between serum selenium levels and lipid profile adjusted by age, sex and other associated factors among a general adult population in Spain. We recruited 372 hospital employee volunteers (60 men and 312 women) with a mean age of 47 (SD: 10.9), whom were given a standardized questionnaire. Serum selenium concentration was measured by electrothermal atomization atomic absorption spectrometry. Serum copper and zinc concentrations were measured using flame atomic absorption spectrometry. The mean of serum selenium was 79.5μg/L (SD: 11.7) with no sex-dependent differences. In the multivariate linear regression analysis, the associated factors with the mean levels of selenium were: age (β=0.223; CI 95%: 0.101-0.345), pselenium≥79.5μg/L were 1.98 (OR=1.98; CI 95% 1.17-3.35; p=0.011) and 2.04 times (OR=2.04; CI 95% 1.06-3.97; p=0.034) more likely to have cholesterol ≥200mg/dL and LDL-c ≥100mg/dL respectively than those with serum selenium selenium was positively associated with increased total and LDL cholesterol but not with HDL-c and triglycerides. More studies are needed in order to confirm the lower serum selenium findings in widows. Copyright © 2016 Elsevier GmbH. All rights reserved.

  16. Dietary selenium in the Glasgow area

    International Nuclear Information System (INIS)

    Cross, J.D.; Raie, R.M.; Smith, H.

    1978-01-01

    A typical diet for people in the Glasgow area is analysed and an estimate is made of the daily intake of selenium for the average person (234 μg). Meat, poultry and bread products contribute 65% of the total selenium consumed. There is a significant loss of selenium on cooking but the concentration in the diet is high compared with the estimated requirement. Selenium levels in prepared infant foods, artificial milk and natural milk are reported. Those infants on artificial milk feeds have a selenium intake equivalent to that of adults (3 μg/kg) while those on natural milk or prepared infant foods have an intake of 6 μg/kg. Adult and infant tissue selenium levels are established and are shown to be in equilibrium with the diet. There is no concentration in man as a result of his position at the top of the food chain. Sudden infant death cannot be related to selenium levels in human tissue or diet. (author)

  17. Selenium: its potential role in male infertility

    International Nuclear Information System (INIS)

    Oguntibeju, O.O.; Esterhuyse, J.S.; Truter, E.J.

    2009-01-01

    Currently, biomedical research is showing interest in the anti-oxidant activity of selenium. This could be due to compelling evidence that reported that oxidative damage to cells and cell membranes is one of the causative agents in the pathogenesis of many disease states including male infertility. Selenium is a trace element which may be found in soil, water and some foods and is considered to be an essential element which plays an active role in several metabolic pathways and is believed to perform several important roles in the human body. These roles include anti-oxidative activities at cellular level and participating in different enzyme systems. Selenium also serves as a vital component in the maintenance of muscle cell and red blood cell integrity, playing a role in the synthesis of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). It has also been reported that selenium is essential in the detoxification of toxic metals in the human system, foetal respiration and energy transfer reactions as well as in the production of sperm cells. It is thought that male infertility can be the result of a selenium deficiency as the absence of selenium in the testicular tissues induces degeneration which results in the active impairment of sperm motility as the first indication of impending infertility. This review paper investigates the role of selenium in male infertility. (author)

  18. In vitro antioxidant and antiproliferative activities of selenium-containing phycocyanin from selenium-enriched Spirulina platensis.

    Science.gov (United States)

    Chen, Tianfeng; Wong, Yum-Shing

    2008-06-25

    Both selenium and phycocyanin have been reported to show potent cancer chemopreventive activities. In this study, we investigated the in vitro antioxidant and antiproliferative activities of selenium-containing phycocyanin (Se-PC) purified from selenium-enriched Spirulina platensis. The antioxidant activity of Se-PC was evaluated by using four different free radical scavenging assays, namely, the 2,2'-azinobis-3-ethylbenzothiazolin-6-sulfonic acid (ABTS) assay, 1,1-diphenyl-2-picryhydrazyl (DPPH) assay, superoxide anion scavenging assay, and erythrocyte hemolysis assay. The results indicated that Se-PC exhibited stronger antioxidant activity than phycocyanin by scavenging ABTS, DPPH, superoxide anion, and 2,2'-azobis-(2-amidinopropane)dihydrochloride free radicals. Se-PC also showed dose-dependent protective effects on erythrocytes against H 2O 2-induced oxidative DNA damage as evaluated by the Comet assay. Moreover, Se-PC was identified as a potent antiproliferative agent against human melanoma A375 cells and human breast adenocarcinoma MCF-7 cells. Induction of apoptosis in both A375 and MCF-7 cells by Se-PC was evidenced by accumulation of sub-G1 cell populations, DNA fragmentation, and nuclear condensation. Further investigation on intracellular mechanisms indicated that depletion of mitochondrial membrane potential (DeltaPsi m) was involved in Se-PC-induced cell apoptosis. Our findings suggest that Se-PC is a promising organic Se species with potential applications in cancer chemoprevention.

  19. Distribution and mode of occurrence of selenium in US coals

    Science.gov (United States)

    Coleman, L.; Bragg, L.J.; Finkelman, R.B.

    1993-01-01

    Selenium excess and deficiency have been established as the cause of various health problems in man and animals. Combustion of fossil fuels, especially coal, may be a major source of the anthropogenic introduction of selenium in the environment. Coal is enriched in selenium relative to selenium's concentration in most other rocks and relative to selenium in the Earth's crust. Data from almost 9,000 coal samples have been used to determine the concentration and distribution of selenium in US coals. The geometric mean concentration of selenium in US coal is 1.7 ppm. The highest mean selenium value (geometric mean 4.7 ppm) is in the Texas Region. Atlantic Coast (Virginia and North Carolina) and Alaska coals have the lowest geometric means (0.2 and 0.42 ppm, respectively). All western coal regions have mean selenium concentrations of less than 2.0 ppm. In contrast, all coal basins east of the Rocky Mountains (except for several small basins in Rhode Island, Virginia, and North Carolina) have mean selenium values of 1.9 or greater. Generally, variations in selenium concentration do not correlate with variations in ash yield, pyritic sulphur, or organic sulphur concentrations. This may be the result of multiple sources of selenium; however, in some non-marine basins with restricted sources of selenium, selenium has positive correlations with other coal quality parameters. Selenium occurs in several forms in coal but appears to be chiefly associated with the organic fraction, probably substituting for organic sulphur. Other important forms of selenium in coal are selenium-bearing pyrite, selenium-bearing galena, and lead selenide (clausthalite). Water-soluble and ion-exchangeable selenium also have been reported. ?? 1993 Copyright Science and Technology Letters.

  20. Levels of plasma selenium and urinary total arsenic interact to affect the risk for prostate cancer.

    Science.gov (United States)

    Hsueh, Yu-Mei; Su, Chien-Tien; Shiue, Horng-Sheng; Chen, Wei-Jen; Pu, Yeong-Shiau; Lin, Ying-Chin; Tsai, Cheng-Shiuan; Huang, Chao-Yuan

    2017-09-01

    This study investigated whether plasma selenium levels modified the risk for prostate cancer (PC) related to arsenic exposure. We conducted a case-control study that included 318 PC patients and 318 age-matched, healthy control subjects. Urinary arsenic profiles were examined using HPLC-HG-AAS and plasma selenium levels were measured by ICP-MS. We found that plasma selenium levels displayed a significant dose-dependent inverse association with PC. The odds ratio (OR) and 95% confidence interval (CI) for PC was 0.07 (0.04-0.13) among participants with a plasma selenium level >28.06 μg/dL vs. ≤19.13 μg/dL. A multivariate analysis showed that participants with a urinary total arsenic concentration >29.28 μg/L had a significantly higher OR (1.75, 1.06-2.89) for PC than participants with ≤29.89 μg/L. The combined presence of a low plasma selenium level and a high urinary total arsenic concentration exponentially increased the OR for PC, and additively interacted with PSA at levels ≥20 ng/mL. This is the first epidemiological study to examine the combined effects of plasma selenium and urinary total arsenic levels on the OR for PC. Our data suggest a low plasma selenium level coupled with a high urinary total arsenic concentration creates a significant risk for aggressive PC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Effect of dietary supplementation with selenium-enriched yeast or sodium selenite on ruminal enzyme activities and blood chemistry in sheep

    Directory of Open Access Journals (Sweden)

    Zita Faixová

    2016-01-01

    Full Text Available The experiment was conducted to evaluate the effect of feeding a diet supplemented with different forms of selenium on the rumen fluid, blood and serum enzyme activity and osmotic fragility of red blood cells in sheep. The experiment was carried out on 18 sheep of the Valashka breed at the age of 18 months, divided into 3 groups. The first group was given basal diet (BD with a Se content of 0.17 mg/kg of dry matter (DM. The second group received BD supplemented with 0.4 mg Se/kg of (DM in the form of sodium selenite. The third group received BD supplemented with 0.4 mg Se/kg of (DM in the form of Se-yeast extract. Duration of the trial was 12 weeks. Selenium concentration in blood and total rumen fluid were elevated in both supplemented groups with the highest values in Se-yeast-treated sheep. Blood glutathione peroxidase (GPx activity was significantly increased, regardless of the source of selenium. Osmotic resistance of red blood cells was not affected by selenium supplementation. The results indicate that feeding a diet supplemented with selenium from Se-yeast or selenite improved selenium status in blood and total rumen fluid. Selenium from sodium selenite was as effective as selenium from Se-yeast in the availability of selenium for the blood GPx activity. The effect of selenium supplementation on the ruminal enzyme activity depends on the selenium form; GGT and GDH were significantly higher in the Se-yeast supplement group, AST and ALP were significantly higher in the selenite supplement group.

  2. Selenium supplementation for Hashimoto's thyroiditis.

    Science.gov (United States)

    van Zuuren, Esther J; Albusta, Amira Y; Fedorowicz, Zbys; Carter, Ben; Pijl, Hanno

    2013-06-06

    Hashimoto's thyroiditis is a common auto-immune disorder. The most common presenting symptoms may include anxiety, negative mood, depression, dry skin, cold intolerance, puffy eyes, muscle cramps and fatigue, deep voice, constipation, slow thinking and poor memory. Clinical manifestations of the disease are defined primarily by low levels of thyroid hormones; therefore it is treated by hormone replacement therapy, which usually consists of levothyroxine (LT4). Selenium might reduce antibody levels and result in a decreased dosage of LT4 and may provide other beneficial effects (e.g. on mood and health-related quality of life). To assess the effects of selenium supplementation on Hashimoto's thyroiditis. We searched the following databases up to 2 October 2012: CENTRAL in The Cochrane Library (2012, Issue 10), MEDLINE, EMBASE, and Web of Science; we also screened reference lists of included studies and searched several online trial registries for ongoing trials (5 November 2012). Randomised controlled clinical trials that assessed the effects of selenium supplementation for adults diagnosed with Hashimoto's thyroiditis. Study selection, data extraction, assessment of risk of bias, and analyses were carried out by two independent review authors. We assessed the quality of the evidence of included studies using GRADE. We were unable to conduct a meta-analysis because clinical heterogeneity between interventions that were investigated is substantial. Four studies at unclear to high risk of bias comprising 463 participants were included. The mean study duration was 7.5 months (range 3 to 18 months). One of our primary outcomes-'change from baseline in health related quality of life'-and two of our secondary outcomes-'change from baseline in LT4 replacement dosage at end of the study' and 'economic costs'-were not assessed in any of the studies. One study at high risk of bias showed statistically significant improvement in subjective well-being with sodium

  3. The in vitro NADPH-dependent inhibition by CCl4 of the ATP-dependent calcium uptake of hepatic microsomes from male rats. Studies on the mechanism of the inactivation of the hepatic microsomal calcium pump by the CCl3 radical

    International Nuclear Information System (INIS)

    Srivastava, S.P.; Chen, N.Q.; Holtzman, J.L.

    1990-01-01

    The hepatotoxicity of CCl4 is mediated through its initial reduction by cytochrome P-450 to the CCl3 radical. This radical then damages important metabolic systems such as the ATP-dependent microsomal Ca2+ pump. Previous studies from our laboratory on isolated microsomes have shown that NADPH in the absence of toxic agents inhibits this pump. We have now found in in vitro incubations that CCl4 (0.5-2.5 mM) enhanced the NADPH-dependent inhibition of Ca2+ uptake from 28% without CCl4 to a maximum of 68%. These concentrations are in the range found in the livers and blood of lethally intoxicated animals and are toxic to cultured hepatocytes. The inhibition of Ca2+ uptake was due both to a decrease in the Ca2(+)-dependent ATPase and to an enhanced release of Ca2+ from the microsomes. The NADPH-dependent CCl4 inhibition was greater under N2 and was totally prevented by CO. GSH (1-10 mM) added during the incubation with CCl4 prevented the inhibition. This protection was also seen when the incubations were performed under nitrogen. When samples were preincubated with CCl4, the CCl4 metabolism was stopped, and then the Ca2+ uptake was determined; GSH reversed the CCl4 inhibition of Ca2+ uptake. This reversal showed saturation kinetics for GSH with two Km values of 0.315 and 93 microM when both the preincubation and the Ca2+ uptake were performed under air, and 0.512 and 31 microM when both were performed under nitrogen. Cysteine did not prevent the NADPH-dependent CCl4 inhibition of Ca2+ uptake. CCl4 increased lipid peroxidation in air, but no lipid peroxidation was seen under nitrogen. Lipid peroxidation was only modestly reversed by GSH. GSH did not remove 14C bound to samples preincubated with the 14CCl4

  4. Technetium uptake by Sinapis Alba

    International Nuclear Information System (INIS)

    Mueller, H.; Ter Meer-Bekk, Ch.

    1986-01-01

    Transfer factors for pertechnetate uptake was determined for Sinapis Alba cultured hydroponically. For the freshly harvested, undried plants transfer factors were found between 13 and 40 depending on the growth period. (author)

  5. Recent trends in selenium regulation and management

    International Nuclear Information System (INIS)

    Sobolewski, A.

    2010-01-01

    Selenium is a contaminant encountered at uranium mines. When discharged into water, it can build up in the food chain and become toxic to egg-laying fish and shorebirds. This presentation reviews recent developments in its regulation, management and treatment. Selenium will soon be regulated on the basis of its concentration in fish or bird eggs, not its dissolved concentrations, which challenges managers trying to establish acceptable discharge limits. Information supporting this change will be discussed. Recent developments to manage and treat selenium will also be reviewed, emphasizing new chemical and biological treatment processes applicable at uranium mines and mill sites. (author)

  6. Nuclear transformations studies in selenium isotopes

    International Nuclear Information System (INIS)

    Lopez M, B.E.

    1976-01-01

    A compilation is made with regard to the chemical effects produced by nuclear transformations, such as the chemical effects of the beta decay and the chemical effects of the reaction (n,γ) in selenium radioisotopes. As a particular case the chemical effect of the isomeric transition of sup(81m)Se(VI) in potassium selenate crystals marked with radioactive selenium is studied experimentally and the method of adsorption in activated carbon is applied for the analytical separation of the traces of the nuclear isomer tetravalent sup(81b)Se(IV) of one fraction which contains the mixture of the selenium radioisotopes. (author)

  7. Airborne signals by Trichoderma fungi stimulate iron uptake responses in roots resulting in priming of jasmonic acid-dependent defences in shoots of Arabidopsis thaliana and Solanum lycopersicum

    NARCIS (Netherlands)

    Martínez-Medina, Ainhoa; Van Wees, Saskia C M; Pieterse, Corné M J

    2017-01-01

    Root colonization by Trichoderma fungi can trigger induced systemic resistance (ISR). In Arabidopsis, Trichoderma-ISR relies on the transcription factor MYB72, which plays a dual role in the onset of ISR and the activation of Fe uptake responses. Volatile compounds (VCs) from rhizobacteria are

  8. Membrane Potential-dependent Uptake of 18F-triphenylphosphonium - A New Voltage Sensor as an Imaging Agent for Detecting Burn-induced Apoptosis

    Science.gov (United States)

    Zhao, Gaofeng; Yu, Yong-Ming; Shoup, Timothy M.; Elmaleh, David R.; Bonab, Ali A.; Tompkins, Ronald G.; Fischman, Alan J.

    2014-01-01

    Background Mitochondrial dysfunction has been closely related to many pathological processes, such as cellular apoptosis. Alterations in organelle membrane potential are associated with mitochondrial dysfunction. A fluorine -18 labeled phosphonium compound: 18F-triphenylphosphonium (18F-TPP) was prepared to determine its potential use as a mitochondria-targeting radiopharmaceutical to evaluate cellular apoptosis. Methods Studies were conducted in both ex vivo cell lines and in vivo using a burned animal model. Uptake of 18F-TPP was assessed in PC-3 cells by gamma counting under the following conditions: graded levels of extra-cellular potassium concentrations, incubation with carbonyl cyanide m-chlorophenylhydrazone (CCCP) and staurosporine. Apoptosis was studied in a burn animal model using TUNEL staining and simultaneous assessment of 18F-TPP uptake by biodistribution. Results We found that stepwise membrane depolarization by potassium (K) resulted in a linear decrease in 18F-TPP uptake, with a slope of 0.62+/−0.08 and a correlation coefficient of 0.936+/−0.11. Gradually increased concentrations of CCCP lead to decreased uptakes of 18F-TPP. Staurosporine significantly decreased the uptake of 18F-TPP in PC-3 cells from 14.2+/−3.8% to 5.6+/−1.3% (P<0.001). Burn induced significant apoptosis (sham: 4.4 +/−1.8% vs. burn: 24.6+/− 6.7 %; p<0.005) and a reduced uptake of tracer in the spleens of burn injured animals as compared to sham burn controls (burn: 1.13+/−0.24% vs. sham: 3.28+/−0.67%; p<0.005). Biodistribution studies demonstrated that burn induced significant reduction in 18F-TPP uptake in spleen, heart, lung, and liver, which were associated with significantly increased apoptosis. Conclusions 18F-TPP is a promising new voltage sensor for detecting mitochondrial dysfunction and apoptosis in various tissues. PMID:24582214

  9. Dihydrotestosterone stimulates amino acid uptake and the expression of LAT2 in mouse skeletal muscle fibres through an ERK1/2-dependent mechanism

    Science.gov (United States)

    Hamdi, M M; Mutungi, G

    2011-01-01

    Abstract Dihydrotestosterone (DHT) has acute/non-genomic actions in adult mammalian skeletal muscles whose physiological functions are still poorly understood. Therefore, the primary aim of this study was to investigate the acute/non-genomic effects of DHT on amino acid uptake as well as the cellular signal transduction events underlying these actions in mouse fast- and slow-twitch skeletal muscle fibre bundles. 14C-Labelled amino acids were used to investigate the effects of DHT and testosterone (T) on amino acid uptake and pharmacological interventions were used to determine the cellular signal transduction events mediating these actions. While T had no effect on the uptake of isoleucine (Ile) and α-methylaminoisobutyric acid (MeAIB) in both fibre types, DHT increased their uptake in the fast-twitch fibre bundles. This effect was reversed by inhibitors of protein translation, the epidermal growth factor receptor (EGFR), system A, system L, mTOR and MEK. However, it was relatively insensitive to inhibitors of transcription, androgen receptors and PI3K/Akt. Additionally, DHT treatment increased the expression of LAT2 and the phosphorylation of the EGFR in the fast-twitch fibre bundles and that of ERK1/2, RSK1/2 and ATF2 in both fibre types. Also, it decreased the phosphorylation of eEF2 and increased the incorporation of Ile into proteins in both fibre types. Most of these effects were reversed by EGFR and MEK inhibitors. From these findings we suggest that another physiological function of the acute/non-genomic actions of DHT in isolated mammalian skeletal muscle fibres is to stimulate amino acid uptake. This effect is mediated through the EGFR and involves the activation of the MAPK pathway and an increase in LAT2 expression. PMID:21606113

  10. Selenium: environmental significance, pollution, and biological treatment technologies.

    Science.gov (United States)

    Tan, Lea Chua; Nancharaiah, Yarlagadda V; van Hullebusch, Eric D; Lens, Piet N L

    2016-01-01

    Selenium is an essential trace element needed for all living organisms. Despite its essentiality, selenium is a potential toxic element to natural ecosystems due to its bioaccumulation potential. Though selenium is found naturally in the earth's crust, especially in carbonate rocks and volcanic and sedimentary soils, about 40% of the selenium emissions to atmospheric and aquatic environments are caused by various industrial activities such as mining-related operations. In recent years, advances in water quality and pollution monitoring have shown that selenium is a contaminant of potential environmental concern. This has practical implications on industry to achieve the stringent selenium regulatory discharge limit of 5μgSeL(-1) for selenium containing wastewaters set by the United States Environmental Protection Agency. Over the last few decades, various technologies have been developed for the treatment of selenium-containing wastewaters. Biological selenium reduction has emerged as the leading technology for removing selenium from wastewaters since it offers a cheaper alternative compared to physico-chemical treatments and is suitable for treating dilute and variable selenium-laden wastewaters. Moreover, biological treatment has the advantage of forming elemental selenium nanospheres which exhibit unique optical and spectral properties for various industrial applications, i.e. medical, electrical, and manufacturing processes. However, despite the advances in biotechnology employing selenium reduction, there are still several challenges, particularly in achieving stringent discharge limits, the long-term stability of biogenic selenium and predicting the fate of bioreduced selenium in the environment. This review highlights the significance of selenium in the environment, health, and industry and biotechnological advances made in the treatment of selenium contaminated wastewaters. The challenges and future perspectives are overviewed considering recent

  11. Ecological aspects of selenium and tellurium in human and animal health

    Energy Technology Data Exchange (ETDEWEB)

    Frost, D V; Ingvoldstad, D

    1975-01-01

    Animal and human studies indicate that selenium inadequacy, in part, underlies various chronic diseases. Epidemiologic evidence suggests that cancer and heart disease are most common where ambient Se availability is low. Plant Se uptake and Se blood levels are inverse to human cancer mortality. As the active group in glutathione peroxidase, Se/sup -2/ inhibits aberrant oxidations which lead to chronic diseases. It binds heavy metals, and with tocopherol maintains tissue integrity. Sulfur dioxide fallout from the atmosphere, resulting from fossil fuel burning, may diminish the nutritional availability of selenium by diminishing plant uptake. Intensive ruminant grazing returns unavailable Se/sup 0/ to soils. Trimethyl selenium ion, as excreted by animals, also appears to be unavailable to plants. Modern fertilization practices and the effect of buildup of sulfates in the soil, due to acid rains, both appear to lessen the availability of Se to plants. SeO/sub 2/ added to the atmosphere from combustion and volcanic activity react with SO/sub 2/ to yield Se/sup 0/. This is presumed to fall out as particles from the air. How traces of Se are otherwise carried in air, explaining its enrichment in some areas, is unknown. The New Zealand experience with Se inadequacy in animals and man may be repeated in other parts of the world. Se inadequacy is far more of a human health problem than Se toxicity. There are no known adverse health effects from tellurium, other than tellurium breath. 164 references, 5 figures, 3 tables.

  12. Selenium-regulated hierarchy of human selenoproteome in cancerous and immortalized cells lines.

    Science.gov (United States)

    Touat-Hamici, Zahia; Bulteau, Anne-Laure; Bianga, Juliusz; Jean-Jacques, Hélène; Szpunar, Joanna; Lobinski, Ryszard; Chavatte, Laurent

    2018-04-13

    Selenoproteins (25 genes in human) co-translationally incorporate selenocysteine using a UGA codon, normally used as a stop signal. The human selenoproteome is primarily regulated by selenium bioavailability with a tissue-specific hierarchy. We investigated the hierarchy of selenoprotein expression in response to selenium concentration variation in four cell lines originating from kidney (HEK293, immortalized), prostate (LNCaP, cancer), skin (HaCaT, immortalized) and liver (HepG2, cancer), using complementary analytical methods. We performed (i) enzymatic activity, (ii) RT-qPCR, (iii) immuno-detection, (iv) selenium-specific mass spectrometric detection after non-radioactive 76 Se labeling of selenoproteins, and (v) luciferase-based reporter constructs in various cell extracts. We characterized cell-line specific alterations of the selenoproteome in response to selenium variation that, in most of the cases, resulted from a translational control of gene expression. We established that UGA-selenocysteine recoding efficiency, which depends on the nature of the SECIS element, dictates the response to selenium variation. We characterized that selenoprotein hierarchy is cell-line specific with conserved features. This analysis should be done prior to any experiments in a novel cell line. We reported a strategy based on complementary methods to evaluate selenoproteome regulation in human cells in culture. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Selenium supplementation induces mitochondrial biogenesis in trophoblasts

    Czech Academy of Sciences Publication Activity Database

    Khera, A.; Dong, L. F.; Holland, O.; Vanderlelie, J.; Pasdar, E.A.; Neužil, Jiří; Perkins, A.V.

    2015-01-01

    Roč. 36, č. 8 (2015), s. 363-369 ISSN 0143-4004 Institutional support: RVO:86652036 Keywords : Selenium * Reactive oxygen species * Mitochondrial biogenesis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.972, year: 2015

  14. Ameliorative effects of selenium and zinc

    African Journals Online (AJOL)

    Methidathion-induced hematological, biochemical and hepatohistological alterations in rat: Ameliorative effects of selenium and zinc. L Barkat, A Boumendjel, C Abdennour, MS Boulakoud, A El Feki, M Messarah ...

  15. Selenium supplementation for critically ill adults

    DEFF Research Database (Denmark)

    Allingstrup, Mikkel; Afshari, Arash

    2015-01-01

    BACKGROUND: Selenium is a trace mineral essential to health and has an important role in immunity, defence against tissue damage and thyroid function. Improving selenium status could help protect against overwhelming tissue damage and infection in critically ill adults. This Cochrane review...... was originally published in 2004 updated in 2007 and again 2015. OBJECTIVES: The primary objective was to examine the effect of nutrition supplemented with selenium or ebselen on mortality in critically ill patients.The secondary objective was to examine the relationship between selenium or ebselen...... supplementation and number of infections, duration of mechanical ventilation, length of intensive care unit stay and length of hospital stay. SEARCH METHODS: In this update, we searched the current issue of the Cochrane Central Register of Controlled Trials, the Cochrane Library (2014, Issue 5); MEDLINE (Ovid SP...

  16. Thioacetamide-induced cirrhosis in selenium-adequate mice displays rapid and persistent abnormity of hepatic selenoenzymes which are mute to selenium supplementation

    International Nuclear Information System (INIS)

    Zhang Jinsong; Wang Huali; Yu Hanqing

    2007-01-01

    Selenium reduction in cirrhosis is frequently reported. The known beneficial effect of selenium supplementation on cirrhosis is probably obtained from nutritionally selenium-deficient subjects. Whether selenium supplementation truly improves cirrhosis in general needs additional experimental investigation. Thioacetamide was used to induce cirrhosis in selenium-adequate and -deficient mice. Selenoenzyme activity and selenium content were measured and the influence of selenium supplementation was evaluated. In Se-adequate mice, thioacetamide-mediated rapid onset of hepatic oxidative stress resulted in an increase in thioredoxin reductase activity and a decrease in both glutathione peroxidase activity and selenium content. The inverse activity of selenoenzymes (i.e. TrxR activity goes up and GPx activity goes down) was persistent and mute to selenium supplementation during the progress of cirrhosis; accordingly, cirrhosis was not improved by selenium supplementation in any period. On the other hand, selenium supplementation to selenium-deficient mice always more efficiently increased hepatic glutathione peroxidase activity and selenium content compared with those treated with thioacetamide, indicating that thioacetamide impairs the liver bioavailability of selenium. Although thioacetamide profoundly affects hepatic selenium status in selenium-adequate mice, selenium supplementation does not modify the changes. Selenium supplementation to cirrhotic subjects with a background of nutritional selenium deficiency can improve selenium status but cannot restore hepatic glutathione peroxidase and selenium to normal levels

  17. Selenium nanoparticles: potential in cancer gene and drug delivery.

    Science.gov (United States)

    Maiyo, Fiona; Singh, Moganavelli

    2017-05-01

    In recent decades, colloidal selenium nanoparticles have emerged as exceptional selenium species with reported chemopreventative and therapeutic properties. This has sparked widespread interest in their use as a carrier of therapeutic agents with results displaying synergistic effects of selenium with its therapeutic cargo and improved anticancer activity. Functionalization remains a critical step in selenium nanoparticles' development for application in gene or drug delivery. In this review, we highlight recent developments in the synthesis and functionalization strategies of selenium nanoparticles used in cancer drug and gene delivery systems. We also provide an update of recent preclinical studies utilizing selenium nanoparticles in cancer therapeutics.

  18. Is selenium supplementation in autoimmune thyroid diseases justified?

    DEFF Research Database (Denmark)

    Winther, Kristian H.; Bonnema, Steen; Hegedüs, Laszlo

    2017-01-01

    PURPOSE OF REVIEW: This review provides an appraisal of recent evidence for or against selenium supplementation in patients with autoimmune thyroid diseases, and discusses possible effect mechanisms. RECENT FINDINGS: Epidemiological data suggest an increased prevalence of autoimmune thyroid...... diseases under conditions of low dietary selenium intake. Two systematic reviews have evaluated controlled trials among patients with autoimmune thyroiditis and report that selenium supplementation decreases circulating thyroid autoantibodies. The immunomodulatory effects of selenium might involve reducing...... proinflammatory cytokine release. However, clinically relevant effects of selenium supplementation, including improvement in quality of life, are more elusive. In Graves’ disease, some, but not all, trials indicate that adjuvant selenium supplementation enhances the restoration of biochemical euthyroidism...

  19. Discovery of novel selenium derivatives as Pin1 inhibitors by high-throughput screening

    International Nuclear Information System (INIS)

    Subedi, Amit; Shimizu, Takeshi; Ryo, Akihide; Sanada, Emiko; Watanabe, Nobumoto; Osada, Hiroyuki

    2016-01-01

    Peptidyl prolyl cis/trans isomerization by Pin1 regulates various oncogenic signals during cancer progression, and its inhibition through multiple approaches has established Pin1 as a therapeutic target. However, lack of simplified screening systems has limited the discovery of potent Pin1 inhibitors. We utilized phosphorylation-dependent binding of Pin1 to its specific substrate to develop a screening system for Pin1 inhibitors. Using this system, we screened a chemical library, and identified a novel selenium derivative as Pin1 inhibitor. Based on structure-activity guided chemical synthesis, we developed more potent Pin1 inhibitors that inhibited cancer cell proliferation. -- Highlights: •Novel screening for Pin1 inhibitors based on Pin1 binding is developed. •A novel selenium compound is discovered as Pin1 inhibitor. •Activity guided chemical synthesis of selenium derivatives resulted potent Pin1 inhibitors.

  20. Production of selenium-72 and arsenic-72

    Science.gov (United States)

    Phillips, D.R.

    1994-12-06

    Methods and apparatus are described for producing selenium-72, separating it from its daughter isotope arsenic-72, and generating multiple portions of a solution containing arsenic-72 from a reusable parent substance comprised of selenium-72. The invention provides apparatus which can be located at a site where arsenic-72 is used, for purposes such as PET imaging, to produce arsenic-72 as needed, since the half-life of arsenic-72 is very short. 2 figures.

  1. The role of selenium in predicting preeclampsia

    Directory of Open Access Journals (Sweden)

    Z Ghaemi

    2013-10-01

    Full Text Available Introduction: Preeclampsia is a common disorder that is a leading cause of perinatal and maternal morbidity and mortality; however its specific etiology has still remained obscure.The first step in preventing preeclampsia is early detection of women at risk. Since there is no valid and reliable screening test, appropriate diagnostic and screening tests are necessary, which are inexpensive, non-invasive and beneficial for pregnant women. Therefore, regarding the role of selenium as an antioxidant in the prevention preeclampsia, this study was designed which aimed to determine the prognostic value of plasma selenium levels in the diagnosis of preeclampsia in primigravida women Methods: In a nested case control design, a sample of 650 normal primigravida women of 24-28 weeks participated in the study. Subjects who involved the case group were followed up for 3 months and 38 were affected by preeclampsia. Blood samples were obtained from these 38patients as well as from 38 subjects as their matched controls. Moreover, the amount of selenium was measured by atomic absorption spectrometry. Results: The mean level of selenium in blood plasma of the cases was significantly lower than in their matched controls. The present study findings revealed that pregnant women with serum Se < 66.1 μg/L had a significantly increased risk of preeclampsia. Conclusion: Lower plasma selenium level in women destines to suffering from preeclampsia which confirms the destructive effect of selenium deficiency as an antioxidant in etiopathology of preeclampsia. Measurement of plasma selenium can improve the prediction of preeclampsia; thus, it seems that plasma selenium level test owns an acceptable sensitivity and specificity for predicting preeclampsia.

  2. Selenium and tellurium reagents in organic synthesis

    International Nuclear Information System (INIS)

    Comasseto, J.V.

    1984-01-01

    A review of the contribution of the University of Sao Paulo (SP, Brazil) to the organic synthesis of selenium and tellurium reagents is made. Major reactions amoung selenium compounds and insaturated substrates, phosphorus, ester enolates as well as the use of phase transference catalysed reactions to produce arylselenolate are described. For tellurium, interactions of its compounds with organic substrates and reactive intermediates (e.g. benzino diazomethane) are reported. (C.L.B.) [pt

  3. Estimation of selenium bioavailability from human, cow's, goat and sheep milk by an in vitro method

    NARCIS (Netherlands)

    Shen, L.; Dael, van P.; Luten, J.; Deelstra, H.

    1996-01-01

    The trace element selenium (Se) has been recognized to be essential for human health. The dependence of infants on milk as their principal food source, generally low in Se content, makes them more vulnerable to inadequate Se intake. The present study compared the Se availability as estimated by a

  4. Determinants of selenium in the toenail biomonitor

    International Nuclear Information System (INIS)

    Morris, J.S.; Spate, V.L.; Ngwenyama, R.A.

    2006-01-01

    The evaluation of human nails as a measure of selenium intake and to assess selenium status in critical tissues is now being used routinely to investigate hypotheses relating selenium status to chronic disease, especially cancer. In this study we report on our observations of the major determinants of toenail selenium concentrations. Toenail specimens (3575) were, under a protocol we provided, self-collected by adult females (1940, 54.3%) and males (1635, 45.7%) living in 111 of Missouri's 114 counties. The health-conscious participants ranged in age from 18 to 94 years with means of 53.7±14.1 and 56.4±14.2 years for females and males, respectively. Selenium supplement use was over represented, 39.1% and 42.7%, and smoking was under represented, 7.5% and 7.8%, for females and males, respectively. The major determinants of toenail selenium concentration were supplement use, sex and cigarette smoking. We found no overall correlations with age, body mass index or diet selection. (author)

  5. Dietary Selenium and Human Health

    Directory of Open Access Journals (Sweden)

    Lutz Schomburg

    2016-12-01

    Full Text Available Next year (2017, the micronutrient Selenium (Se is celebrating its birthday—i.e., 200 years after first being identified by the Swedish chemist Jöns Jakob Berzelius. Despite its impressive age, research into the functions of this essential trace element is very alive and reaching out for new horizons. This special issue presents some recent fascinating, exciting, and promising developments in Se research in the form of eight original contributions and seven review articles. Collectively, aspects of Se supply, biochemical, physiological, and chemotherapeutic effects, and geobiological interactions are covered by leading scientists in the areas of nutritional, basic, and clinical research. It is obvious from the contributions that the bicentennial anniversary will celebrate a micronutrient still in its infancy with respect to being understood in terms of its biomedical importance.

  6. Selenium Se and tellurium Te

    International Nuclear Information System (INIS)

    Busev, A.I.; Tiptsova, V.G.; Ivanov, V.M.

    1978-01-01

    The basic methods for determining selenium and tellurium in various objects are presented. The bichromatometric determination of Te in cadmium, zinc and mercury tellurides is based on oxidation of Te(4) to (6) in H 2 SO 4 with potassium bichromate. In steels, Te is determined photometrically with the aid of KI. The determination is hindered by Fe(3), Cu(2), Bi(3) and Se(4) ions, which must be separated. The extraction-photometric determination of Te in native sulfur is carried out with the aid of 5-mercapto-3-(naphthyl-2)-1,3,4-thiadiazolthione-2 (pH=4.8-5.0). The dyed complex is readily extracted with chloroform and benzene. The spectrophotometric determination of Te in selenium is performed with the aid of 3,5-diphenylpyrazoline-1-dithiocarbamate of sodium. Te is determined in commercial indium, arsenic and their semiconductor compounds photometrically with the aid of copper diethyldithiocarbamate. The method permits determining 5x10 -5 % Te in a weighed amount of 0.5 g. The chloride complex of Te(4) with diantipyriodolpropylmethane is quantitatively extracted with dichloroethane from hydrochloric acid solutions. Thus, any amounts of Te can be separated from Se and determined photometrically. The extraction-photometric determination of Te in commercial lead and bismuth is carried out with the aid of pyrazolone derivatives, in commercial copper with the aid of diantipyridolpropylmethane, and in ores (more than 0.01% Te) with the aid of bismuthol 2. Also described is the extraction-polarographic determination of Te in sulfide ores

  7. Thin film solar cells by selenization sulfurization using diethyl selenium as a selenium precursor

    Science.gov (United States)

    Dhere, Neelkanth G.; Kadam, Ankur A.

    2009-12-15

    A method of forming a CIGSS absorber layer includes the steps of providing a metal precursor, and selenizing the metal precursor using diethyl selenium to form a selenized metal precursor layer (CIGSS absorber layer). A high efficiency solar cell includes a CIGSS absorber layer formed by a process including selenizing a metal precursor using diethyl selenium to form the CIGSS absorber layer.

  8. A review of recent developments in the speciation and location of arsenic and selenium in rice grain

    Energy Technology Data Exchange (ETDEWEB)

    Carey, Anne-Marie; Price, Adam H.; Meharg, Andrew A. [University of Aberdeen, Institute of Biological and Environmental Sciences, Aberdeen (United Kingdom); Lombi, Enzo; Donner, Erica [University of South Australia, Centre for Environmental Risk Assessment and Remediation, Mawson Lakes, South Australia (Australia); Jonge, Martin D. de [Australian Synchrotron, X-ray Fluorescence Microscopy, Clayton, Victoria (Australia); Punshon, Tracy; Jackson, Brian P.; Guerinot, Mary Lou [Dartmouth College, Department of Biological Sciences, Hanover, NH (United States)

    2012-04-15

    Rice is a staple food yet is a significant dietary source of inorganic arsenic, a class 1, nonthreshold carcinogen. Establishing the location and speciation of arsenic within the edible rice grain is essential for understanding the risk and for developing effective strategies to reduce grain arsenic concentrations. Conversely, selenium is an essential micronutrient and up to 1 billion people worldwide are selenium-deficient. Several studies have suggested that selenium supplementation can reduce the risk of some cancers, generating substantial interest in biofortifying rice. Knowledge of selenium location and speciation is important, because the anti-cancer effects of selenium depend on its speciation. Germanic acid is an arsenite/silicic acid analogue, and location of germanium may help elucidate the mechanisms of arsenite transport into grain. This review summarises recent discoveries in the location and speciation of arsenic, germanium, and selenium in rice grain using state-of-the-art mass spectrometry and synchrotron techniques, and illustrates both the importance of high-sensitivity and high-resolution techniques and the advantages of combining techniques in an integrated quantitative and spatial approach. (orig.)

  9. A review of recent developments in the speciation and location of arsenic and selenium in rice grain

    Science.gov (United States)

    Carey, Anne-Marie; Lombi, Enzo; Donner, Erica; de Jonge, Martin D.; Punshon, Tracy; Jackson, Brian P.; Guerinot, Mary Lou; Price, Adam H.; Meharg, Andrew A.

    2014-01-01

    Rice is a staple food yet is a significant dietary source of inorganic arsenic, a class 1, nonthreshold carcinogen. Establishing the location and speciation of arsenic within the edible rice grain is essential for understanding the risk and for developing effective strategies to reduce grain arsenic concentrations. Conversely, selenium is an essential micronutrient and up to 1 billion people worldwide are selenium-deficient. Several studies have suggested that selenium supplementation can reduce the risk of some cancers, generating substantial interest in biofortifying rice. Knowledge of selenium location and speciation is important, because the anti-cancer effects of selenium depend on its speciation. Germanic acid is an arsenite/silicic acid analogue, and location of germanium may help elucidate the mechanisms of arsenite transport into grain. This review summarises recent discoveries in the location and speciation of arsenic, germanium, and selenium in rice grain using state-of-the-art mass spectrometry and synchrotron techniques, and illustrates both the importance of high-sensitivity and high-resolution techniques and the advantages of combining techniques in an integrated quantitative and spatial approach. PMID:22159463

  10. Substoichiometric determination of selenium with potassium ethyl xanthate

    International Nuclear Information System (INIS)

    Chandrasekhar Reddy, P.; Polaiah, B.; Rangamannar, B.

    1989-01-01

    A substoichiometric radiochemical method was developed for the determination of selenium with potassium ethyl xanthate. The selenium ethyl xanthate complex formed was extracted into chloroform from borate buffer at pH 5. The effect of foreign ions on the extraction was studied. Microgram quantities of selenium could be conveniently determined with a fair degree of accuracy. The method was successfully applied for the determination of selenium content in food stuffs such as 'Jaggery' and 'Wheat powder'. (author) 4 refs.; 3 figs

  11. Bavachin from Psoralea corylifolia Improves Insulin-Dependent Glucose Uptake through Insulin Signaling and AMPK Activation in 3T3-L1 Adipocytes

    Directory of Open Access Journals (Sweden)

    Hyejin Lee

    2016-04-01

    Full Text Available The fruit of Psoralea corylifolia L. (Fabaceae (PC, known as “Bo-Gol-Zhee” in Korea has been used as traditional medicine. Ethanol and aqueous extracts of PC have an anti-hyperglycemic effect by increasing plasma insulin levels and decreasing blood glucose and total plasma cholesterol levels in type 2 diabetic rats. In this study, we purified six compounds from PC and investigated their anti-diabetic effect. Among the purified compounds, bavachin most potently accumulated lipids during adipocyte differentiation. Intracellular lipid accumulation was measured by Oil Red-O (ORO cell staining to investigate the effect of compounds on adipogenesis. Consistently, bavachin activated gene expression of adipogenic transcriptional factors, proliferator-activated receptorγ (PPARγ and CCAAT/enhancer binding protein-α (C/EBPα. Bavachin also increased adiponectin expression and secretion in adipocytes. Moreover, bavachin increased insulin-induced glucose uptake by differentiated adipocytes and myoblasts. In differentiated adipocytes, we found that bavachin enhanced glucose uptake via glucose transporter 4 (GLUT4 translocation by activating the Akt and 5′AMP-activated protein kinase (AMPK pathway in the presence or absence of insulin. These results suggest that bavachin from Psoralea corylifolia might have therapeutic potential for type 2 diabetes by activating insulin signaling pathways.

  12. Selenium, cadmium and diazinon insecticide in tissues of rats after peroral exposure

    Directory of Open Access Journals (Sweden)

    Róbert Toman

    2017-01-01

    Full Text Available The concentrations of selenium (Se, cadmium (Cd and diazinon (DZN in selected tissues of rats after an oral administration in various combinations were analyzed. Male rats were orally dosed with diazinon (40 mg.L-1, diazinon (40 mg.L-1 +selenium (5 mg.L-1, diazinon (40 mg.L-1 +cadmium (30 mg.L-1, and diazinon (40 mg.L-1 +selenium (5 mg.L-1 +cadmium (30 mg.L-1 in drinking water. After 90 days of per oral administration of compounds, the samples of liver, kidney, muscle tissue (m. quadriceps femoris, and adipose tissue were collected. The content of DZN was analyzed using Gas Chromatography - Mass Spectrometry (GC-MS, Cd was analyzed using an Electrothermal Atomic Absorption Spectrometry (ETAAS and Se using a Hydride Generation Atomic Absorption Spectrometry (HG-AAS methods. Cadmium significantly increased in liver and kidney after DZN +Cd and DZN +Se +Cd administration. Se significantly increased in liver of DZN +Se, DZN +Se +Cd and DZN +Cd exposed rats, in kidney of DZN +Se and DZN +Se +Cd and DZN +Cd, and in muscle of DZN +Se +Cd group. Highest DZN content was found in the adipose tissue in DZN, DZN +Cd and DZN +Se +Cd but not in combined exposure with Se. Anyway, the differences between the control and experimental groups were not significant. The results indicate that cadmium and selenium accumulate mainly in liver, kidney and selenium also in muscle after p.o. administration but diazinon concentrations increases were not signifcant. The co-administration of diazinon, Se and Cd affects the content of these compounds in the organism and the accumulation rate depends on the combination of administered compounds. Diazinon and cadmium could contribute to the selenium redistribution in the organism after the peroral intake.

  13. Selenium deficiency and the effects of supplementation on preterm infants

    Directory of Open Access Journals (Sweden)

    Renata Germano B. O. N. Freitas

    2014-03-01

    Full Text Available Objective: This study aimed to review the literature about blood concentrations of selenium associated with gestational age, feeding, supplementation and related clinical features in preterm infants. Data sources: Systematic review in the following databases: MEDLINE, PubMed, Google academics, SciELO. org, ScienceDirect (Elsevier and CINAHL-Plus with Full Text (EBSCO. Articles published up to January 2013 with the keywords "selenium deficiency", "selenium supplementation", "neonates", "infants", "newborn" and "preterm infants" were selected. Data synthesis: The studies reported that low blood selenium levels are associated with increased risk of respiratory diseases. Preterm infants, especially with low birth weight, presented lower selenium levels. Selenium deficiency has also been associated with the use of oral infant formula, enteral and parenteral nutrition (with or without selenium addition. The optimal dose and length of selenium supplementation is not well-established, since they are based only on age group and selenium ingestion by breastfed children. Furthermore, the clinical status of the infant affected by conditions that may increase oxidative stress, and consequently, selenium requirements is not taken into account. Conclusions: Prematurity and low birth weight can contribute to low blood selenium in premature infants. Selenium supplementation seems to minimize or prevent clinical complications caused by prematurity.

  14. EURRECA—Estimating Selenium Requirements for Deriving Dietary Reference Values

    NARCIS (Netherlands)

    Hurst, R.; Collings, R.; Harvey, L.J.; King, M.; Hooper, L.; Bouwman, J.; Gurinovic, M.; Fairweather-Tait, S.J.

    2013-01-01

    Current reference values for selenium, an essential micronutrient, are based on the intake of selenium that is required to achieve maximal glutathione peroxidase activity in plasma or erythrocytes. In order to assess the evidence of relevance to setting dietary reference values for selenium, the

  15. NAIL KERATIN AS MONITOR-TISSUE FOR SELENIUM EXPOSURE

    NARCIS (Netherlands)

    VANNOORD, PAH; MAAS, MJ; DEBRUIN, M

    1992-01-01

    Nail clippings might provide a way to monitor exposure to selenium in the recent past of an individual, since a clipping collected from a toe would reflect exposures months before actual clipping date. The relation between levels of exogenous selenium exposure and selenium levels in nail keratin was

  16. Bio-induced solid selenium for recovery from water

    NARCIS (Netherlands)

    Hageman, S.P.W.

    2015-01-01

    Selenium in the form of selenate or selenite in wastewater needs to be removed due to its potential toxicity in the environment. Also, selenium is a valuable element that is used in several industries and current selenium resources are likely to be exhausted in less than 50 years. Waste streams

  17. Toenail mercury and dyslipidemia: Interaction with selenium.

    Science.gov (United States)

    Park, Kyong; Seo, Eunmin

    2017-01-01

    Although compelling evidences from in vivo and in vitro studies exist, limited studies have examined the association between chronic mercury exposure and dyslipidemia. Particularly, data are sparse regarding the influence of selenium on this association of mercury with dyslipidemia in humans. The purpose of the current study was to examine the associations of toenail mercury with dyslipidemia and its components, and to examine whether selenium in toenails modifies these associations. We performed cross-sectional analyses using baseline data from a cohort in the Yeungnam area in South Korea, including 232 men and 269 women. Toenail mercury and selenium concentrations were quantified using neutron activation analysis, and fasting serum lipid measurements were obtained through the medical examination. Odds ratios of the prevalent hypercholesterolemia, hyper-LDL-cholesterolemia, hypo-HDL-cholesterolemia, hypertriglyceridemia, and dyslipidemia in correlation with mercury levels were calculated using multivariable logistic regression. The mean levels of toenail mercury were 0.47μg/g for men and 0.34μg/g for women. After adjustment for multiple confounding variables, participants in the highest tertile of toenail mercury levels had 4.08 (95% CI 1.09-15.32, p for trend=0.02) times higher risk of hyper-LDL-cholesterolemia, and 2.24 (95% CI 1.15-4.37, p for trend=0.004) times higher risk of dyslipidemia than those in the lowest tertile. Selenium is a significant effect-modifier for these associations; the highest tertile of toenail mercury were significantly associated with a higher risk of hypercholesterolemia (OR 5.25, 95% CI 1.04-26.38) and dyslipidemia (OR 2.98, 95% CI 1.16-7.66) compared to the lowest tertile at toenail selenium levels ≤0.685μg/g, while these associations became weak and non-significant, showing OR 0.98 and 95% CI 0.25-3.80 for hypercholesterolemia and OR 1.99 and 95% CI 0.73-5.45 for dyslipidemia at toenail selenium levels >0.685μg/g. We

  18. Selenium and Prostate Cancer Prevention: Insights from the Selenium and Vitamin E Cancer Prevention Trial (SELECT

    Directory of Open Access Journals (Sweden)

    Holly L. Nicastro

    2013-04-01

    Full Text Available The Selenium and Vitamin E Cancer Prevention Trial (SELECT was conducted to assess the efficacy of selenium and vitamin E alone, and in combination, on the incidence of prostate cancer. This randomized, double-blind, placebo-controlled, 2 × 2 factorial design clinical trial found that neither selenium nor vitamin E reduced the incidence of prostate cancer after seven years and that vitamin E was associated with a 17% increased risk of prostate cancer compared to placebo. The null result was surprising given the strong preclinical and clinical evidence suggesting chemopreventive activity of selenium. Potential explanations for the null findings include the agent formulation and dose, the characteristics of the cohort, and the study design. It is likely that only specific subpopulations may benefit from selenium supplementation; therefore, future studies should consider the baseline selenium status of the participants, age of the cohort, and genotype of specific selenoproteins, among other characteristics, in order to determine the activity of selenium in cancer prevention.

  19. Selenium and Prostate Cancer Prevention: Insights from the Selenium and Vitamin E Cancer Prevention Trial (SELECT)

    Science.gov (United States)

    Nicastro, Holly L.; Dunn, Barbara K.

    2013-01-01

    The Selenium and Vitamin E Cancer Prevention Trial (SELECT) was conducted to assess the efficacy of selenium and vitamin E alone, and in combination, on the incidence of prostate cancer. This randomized, double-blind, placebo-controlled, 2 × 2 factorial design clinical trial found that neither selenium nor vitamin E reduced the incidence of prostate cancer after seven years and that vitamin E was associated with a 17% increased risk of prostate cancer compared to placebo. The null result was surprising given the strong preclinical and clinical evidence suggesting chemopreventive activity of selenium. Potential explanations for the null findings include the agent formulation and dose, the characteristics of the cohort, and the study design. It is likely that only specific subpopulations may benefit from selenium supplementation; therefore, future studies should consider the baseline selenium status of the participants, age of the cohort, and genotype of specific selenoproteins, among other characteristics, in order to determine the activity of selenium in cancer prevention. PMID:23552052

  20. Impact of Selenium Addition to Animal Feeds on Human Selenium Status in Serbia

    Directory of Open Access Journals (Sweden)

    Zoran Pavlovic

    2018-02-01

    Full Text Available Research conducted during the 1980s demonstrated Se deficiency in humans. Increased inclusion of selenium in animal feeds started from the year 2000 onwards. The aim of this study was to estimate the effects of selenium inclusion in animal feeds on human selenium status and dietary habits of the Serbian population related to food of animal origin. Plasma selenium concentration in healthy adult volunteers, including residents of one of the regions with the lowest (Eastern Serbia, n = 60 and of one of the regions with the highest Se serum levels reported in the past (Belgrade, n = 82, was determined by hydride generation atomic absorption spectrometry. Multivariate analysis was employed to determine the correlation between Se plasma levels and dietary intake data derived from food frequency questionnaires and laboratory tests. The mean plasma Se level of the participants was 84.3 ± 15.9 μg/L (range: 47.3–132.1 μg/L, while 46% of participants had plasma Se levels lower than 80 μg/L. Frequency of meat, egg, and fish consumption was significantly correlated with plasma selenium level (r = 0.437, p = 0.000. Selenium addition to animal feed in the quantity of 0.14 mg/kg contributed to the improvement of human plasma selenium levels by approximately 30 μg/L.

  1. [Pharmaconutrition with parenteral selenium in sepsis].

    Science.gov (United States)

    Langlois, P L; de Oliveira Figliolino, L F; Hardy, G; Manzanares, W

    2014-04-01

    Critical illness is characterized by oxidative stress which leads to multiple organ failure, and sepsis-related organ dysfunction remains the most common cause of death in the intensive care unit. Over the last 2 decades, different antioxidant therapies have been developed to improve outcomes in septic patients. According to recent evidence, selenium therapy should be considered the cornerstone of the antioxidant strategies. Selenium given as selenious acid or sodium selenite should be considered as a drug or pharmaconutrient with prooxidant and cytotoxic effects when a loading dose in intravenous bolus form is administered, particularly in the early stage of severe sepsis/septic shock. To date, several phase ii trials have demonstrated that selenium therapy may be able to decrease mortality, improve organ dysfunction and reduce infections in critically ill septic patients. The effect of selenium therapy in sepsis syndrome must be confirmed by large, well designed phase iii clinical trials. The purpose of this review is to discuss current evidence on selenium pharmaconutrition in sepsis syndrome. Copyright © 2013 Elsevier España, S.L. and SEMICYUC. All rights reserved.

  2. Dopamine in human follicular fluid is associated with cellular uptake and metabolism-dependent generation of reactive oxygen species in granulosa cells: implications for physiology and pathology.

    Science.gov (United States)

    Saller, S; Kunz, L; Berg, D; Berg, U; Lara, H; Urra, J; Hecht, S; Pavlik, R; Thaler, C J; Mayerhofer, A

    2014-03-01

    Is the neurotransmitter dopamine (DA) in the human ovary involved in the generation of reactive oxygen species (ROS)? Human ovarian follicular fluid contains DA, which causes the generation of ROS in cultured human granulosa cells (GCs), and alterations of DA levels in follicular fluid and DA uptake/metabolism in GCs in patients with polycystic ovary syndrome (PCOS) are linked to increased levels of ROS. DA is an important neurotransmitter in the brain, and the metabolism of DA results in the generation of ROS. DA was detected in human ovarian homogenates, but whether it is present in follicular fluid and plays a role in the follicle is not known. We used human follicular fluid from patients undergoing in vitro fertilization (IVF), GCs from patients with or without PCOS and also employed mathematical modeling to investigate the presence of DA and its effects on ROS. DA in follicular fluid and GCs was determined by enzyme-linked immunosorbent assay. GC viability, apoptosis and generation of ROS were monitored in GCs upon addition of DA. Inhibitors of DA uptake and metabolism, an antioxidant and DA receptor agonists, were used to study cellular uptake and the mechanism of DA-induced ROS generation. Human GCs were examined for the presence and abundance of transcripts of the DA transporter (DAT; SLC6A3), the DA-metabolizing enzymes monoamine oxidases A/B (MAO-A/B) and catechol-O-methyltransferase and the vesicular monoamine transporter. A computational model was developed to describe and predict DA-induced ROS generation in human GCs. We found DA in follicular fluid of ovulatory follicles of the human ovary and in GCs. DAT and MAO-A/B, which are expressed by GCs, are prerequisites for a DA receptor-independent generation of ROS in GCs. Blockers of DAT and MAO-A/B, as well as an antioxidant, prevented the generation of ROS (P human follicular compartment, functions of DA could only be studied in IVF-derived GCs, which can be viewed as a cellular model for the

  3. Loss of selenium-binding protein 1 decreases sensitivity to clastogens and intracellular selenium content in HeLa cells

    Science.gov (United States)

    Selenium-binding protein 1 (SBP1) is not a selenoprotein but structurally binds selenium. Loss of SBP1 during carcinogenesis usually predicts poor prognosis. Because genome instability is a hallmark of cancer, we hypothesized that loss of SBP1 modulates cellular selenium content and the response of ...

  4. Selenium balance in the adult cat in relation to intake of dietary sodium selenite and organically bound selenium

    NARCIS (Netherlands)

    Todd, S.E.; Thomas, D.G.; Hendriks, W.H.

    2012-01-01

    The response of cats to dietary sodium selenite (Na2SeO3) and organically bound selenium was studied in two separate studies with four cats per treatment and three levels of selenium supplementation (targets 1.0, 1.5 and 2.0 µg/g DM) for each Se source. Whole blood and plasma selenium concentrations

  5. Regulation of C. elegans fat uptake and storage by acyl-CoA synthase-3 is dependent on NR5A family nuclear hormone receptor nhr-25

    DEFF Research Database (Denmark)

    Mullaney, Brendan C; Blind, Raymond D; Lemieux, George A

    2010-01-01

    Acyl-CoA synthases are important for lipid synthesis and breakdown, generation of signaling molecules, and lipid modification of proteins, highlighting the challenge of understanding metabolic pathways within intact organisms. From a C. elegans mutagenesis screen, we found that loss of ACS-3...... mutant phenotypes require the nuclear hormone receptor NHR-25, a key regulator of C. elegans molting. Our findings suggest that ACS-3-derived long-chain fatty acyl-CoAs, perhaps incorporated into complex ligands such as phosphoinositides, modulate NHR-25 function, which in turn regulates an endocrine...... program of lipid uptake and synthesis. These results reveal a link between acyl-CoA synthase function and an NR5A family nuclear receptor in C. elegans....

  6. Computational Flux Balance Analysis Predicts that Stimulation of Energy Metabolism in Astrocytes and their Metabolic Interactions with Neurons Depend on Uptake of K+ Rather than Glutamate.

    Science.gov (United States)

    DiNuzzo, Mauro; Giove, Federico; Maraviglia, Bruno; Mangia, Silvia

    2017-01-01

    Brain activity involves essential functional and metabolic interactions between neurons and astrocytes. The importance of astrocytic functions to neuronal signaling is supported by many experiments reporting high rates of energy consumption and oxidative metabolism in these glial cells. In the brain, almost all energy is consumed by the Na + /K + ATPase, which hydrolyzes 1 ATP to move 3 Na + outside and 2 K + inside the cells. Astrocytes are commonly thought to be primarily involved in transmitter glutamate cycling, a mechanism that however only accounts for few % of brain energy utilization. In order to examine the participation of astrocytic energy metabolism in brain ion homeostasis, here we attempted to devise a simple stoichiometric relation linking glutamatergic neurotransmission to Na + and K + ionic currents. To this end, we took into account ion pumps and voltage/ligand-gated channels using the stoichiometry derived from available energy budget for neocortical signaling and incorporated this stoichiometric relation into a computational metabolic model of neuron-astrocyte interactions. We aimed at reproducing the experimental observations about rates of metabolic pathways obtained by 13 C-NMR spectroscopy in rodent brain. When simulated data matched experiments as well as biophysical calculations, the stoichiometry for voltage/ligand-gated Na + and K + fluxes generated by neuronal activity was close to a 1:1 relationship, and specifically 63/58 Na + /K + ions per glutamate released. We found that astrocytes are stimulated by the extracellular K + exiting neurons in excess of the 3/2 Na + /K + ratio underlying Na + /K + ATPase-catalyzed reaction. Analysis of correlations between neuronal and astrocytic processes indicated that astrocytic K + uptake, but not astrocytic Na + -coupled glutamate uptake, is instrumental for the establishment of neuron-astrocytic metabolic partnership. Our results emphasize the importance of K + in stimulating the activation of

  7. Impact of Selenium Supplementation on Growth and Selenium Accumulation on Spinach (Spinacia oleracea L.) Plants

    OpenAIRE

    Azadeh SAFFARYAZDI; Mehrdad LAHOUTI; Ali GANJEALI; Hassan BAYAT

    2012-01-01

    Selenium (Se) has been proved to be an essential element for humans and animals. However, less is known about its effects on plants. A hydroponic experiment was carried out to investigate the effects of selenium on growth, selenium accumulation and some physiological characteristics of spinach (Spinacia oleracea L. cv. �Missouri�) plants. Plants were grown in Hoagland nutrient solution amended with sodium selenite at 0 (control), 1, 2, 4, 6 and 10 mg.L-1 for 28 days. Growth parameters like sh...

  8. Selenium inhibits the phytotoxicity of mercury in garlic (Allium sativum)

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jiating [CAS Key Laboratory of Nuclear Analytical Techniques, Key Lab for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Gao, Yuxi, E-mail: gaoyx@ihep.ac.cn [CAS Key Laboratory of Nuclear Analytical Techniques, Key Lab for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Li, Yu-Feng; Hu, Yi; Peng, Xiaomin [CAS Key Laboratory of Nuclear Analytical Techniques, Key Lab for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Dong, Yuanxing [Department of Physics, Xinzhou Teachers University, Xinzhou 034000 (China); Li, Bai; Chen, Chunying [CAS Key Laboratory of Nuclear Analytical Techniques, Key Lab for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Chai, Zhifang, E-mail: chaizf@ihep.ac.cn [CAS Key Laboratory of Nuclear Analytical Techniques, Key Lab for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2013-08-15

    To investigate the influence of selenium on mercury phytotoxicity, the levels of selenium and mercury were analyzed with inductively coupled plasma-mass spectrometry (ICP-MS) in garlic tissues upon exposure to different dosages of inorganic mercury (Hg{sup 2+}) and selenite (SeO{sub 3}{sup 2−}) or selenate (SeO{sub 4}{sup 2−}). The distributions of selenium and mercury were examined with micro-synchrotron radiation X-ray fluorescence (μ-SRXRF), and the mercury speciation was investigated with micro-X-ray absorption near edge structure (μ-XANES). The results show that Se at higher exposure levels (>1 mg/L of SeO{sub 3}{sup 2−} or SeO{sub 4}{sup 2−}) would significantly inhibit the absorption and transportation of Hg when Hg{sup 2+} levels are higher than 1 mg/L in culture media. SeO{sub 3}{sup 2−} and SeO{sub 4}{sup 2−} were found to be equally effective in reducing Hg accumulation in garlic. The inhibition of Hg uptake by Se correlates well with the influence of Se on Hg phytotoxicity as indicated by the growth inhibition factor. Elemental imaging using μ-SRXRF also shows that Se could inhibit the accumulation and translocation of Hg in garlic. μ-XANES analysis shows that Hg is mainly present in the forms of Hg–S bonding as Hg(GSH){sub 2} and Hg(Met){sub 2}. Se exposure elicited decrease of Hg–S bonding in the form of Hg(GSH){sub 2}, together with Se-mediated alteration of Hg absorption, transportation and accumulation, may account for attenuated Hg phytotoxicity by Se in garlic. -- Highlights: ► Hg phytotoxicity can be mitigated by Se supplement in garlic growth. ► Se can inhibit the accumulation and transportation of Hg in garlic tissues. ► Localization and speciation of Hg in garlic can be modified by Se.

  9. Investigation of electrical noise in selenium-immersed thermistor bolometers

    Science.gov (United States)

    Tarpley, J. L.; Sarmiento, P. D.

    1980-01-01

    The selenium immersed, thermistor bolometer, IR detector failed due to spurious and escalating electrical noise outburst as a function of time at elevated temperatures during routine ground based testing in a space simulated environment. Spectrographic analysis of failed bolometers revealed selenium pure zones in the insulating selenium arsenic (Se-As) glass film which surrounds the active sintered Mn, Ni, Co oxide flake. The selenium pure film was identified as a potentially serious failure mechanism. Significant changes were instituted in the manufacturing techniques along with more stringent process controls which eliminated the selenium pure film and successfully produced 22study bolometers.

  10. Comparison between selenium and tellurium clusters

    International Nuclear Information System (INIS)

    Benamar, A.; Rayane, D.; Tribollet, B.; Broyer, M.; Melinon, P.

    1991-01-01

    Selenium and tellurium clusters are produced by the inert gas condensation technique. The mass spectra of both species are completely different and reveal different properties. In selenium, a periodicity of 6-7 is observed and may be interpreted by the binding energy between small cyclic molecules. Moreover, it was very difficult to obtained large clusters probably because the binding energy between these molecules is very small. In tellurium, these periodic structures do not exist and large clusters are easily obtained in nucleation conditions where only small selenium clusters are present. These results are discussed and a simple nucleation model is used to illustrate this different behavior. Finally these clusters properties are correlated to the bulk structure of both materials. (orig.)

  11. HORMONAL REGULATION OF SELENIUM ACCUMULATION BY PLANTS

    Directory of Open Access Journals (Sweden)

    N. A. Golubkina

    2015-01-01

    Full Text Available Hormonal regulation is considered to be a unique mechanism controlling growth and development of living organism. The review discusses the correlations between pant hormonal status of non-accumulators and hyper-accumulators of Se with the accumulation levels of this microelement. The phenomenon of stimulation and redistribution of selenium as a result of phytohormone treatment, the peculiarities of phytohormones effect among different species and cultivars, and influence of plant sexualization on selenium accumulation are described in article. Data of hormonal regulation of selenium level for spinach, garlic, perennial onion, Brassica chinenesis and Valeriana officialis are presented in the review.

  12. Influence of selenite and selenate supplementation on the chromium uptake and translocation in Allium cepa

    International Nuclear Information System (INIS)

    Karuna Shanker; Setia, Seema; Srivastava, Shalini; Dass, Sahab; Srivastava, Rohit; Satya Prakash; Srivastava, M.M.

    1997-01-01

    Pot experiments were conducted on onion plant to study the effects of selenite and selenate treatments (0.5-6.0) μg ml -1 on the uptake and translocation of root absorbed chromium irrigated with 2 and 5 μg ml -1 of chromium in sand and soil. Both the form of selenium (SeO 3 2- , and SeO 4 2- ) were found equally effective in reducing the chromium burden of the plant. No significant difference (p>0.05) in dry matter yields among various selenium treatments exist suggesting no salt injury occurred in the plants under prevailing conditions. (author). 10 refs., 1 tab

  13. Role of selenium toxicity and oxidative stress in aquatic birds

    Science.gov (United States)

    Hoffman, D.J.

    2002-01-01

    Adverse effects of selenium (Se) in wild aquatic birds have been documented as a consequence of pollution of the aquatic environment by subsurface agricultural drainwater and other sources. These effects include mortality, impaired reproduction with teratogenesis, reduced growth, histopathological lesions and alterations in hepatic glutathione metabolism. A review is provided, relating adverse biological effects of Se in aquatic birds to altered glutathione metabolism and oxidative stress. Laboratory studies, mainly with an organic form of Se, selenomethionine, have revealed oxidative stress in different stages of the mallard (Anas platyrhynchos) life cycle. As dietary and tissue concentrations of Se increase, increases in plasma and hepatic GSH peroxidase activities occur, followed by dose-dependent increases in the ratio of hepatic oxidized to reduced glutathione (GSSG:GSH) and ultimately hepatic lipid peroxidation measured as an increase in thiobarbituric acid reactive substances (TBARS). One or more of these oxidative effects were associated with teratogenesis (4.6 ppm wet weight Se in eggs), reduced growth in ducklings (15 ppm Se in liver), diminished immune function (5 ppm Se in liver) and histopathological lesions (29 ppm Se in liver) in adults. Manifestations of Serelated effects on glutathione metabolism were also apparent in field studies in seven species of aquatic birds. Reduced growth and possibly immune function but increased liver:body weight and hepatic GSSG:GSH ratios were apparent in American avocet (Recurvirostra americana) hatchlings from eggs containing 9 ppm Se. In blacknecked stilts (Himantopus mexicanus), which contained somewhat lower Se concentrations, a decrease in hepatic GSH was apparent with few other effects. In adult American coots (Fulica americana), signs of Se toxicosis included emaciation, abnormal feather loss and histopathological lesions. Mean liver concentrations of 28 ppm Se (ww) in the coots were associated with elevated

  14. [The role of selenium in endocrine system diseases].

    Science.gov (United States)

    Balázs, Csaba; Rácz, Károly

    2013-10-13

    Oxygen derived free radicals, generated by a number of cellular reactions, include superoxide anion, hydrogen peroxide and hydroxyl radicals. They exert their cytotoxic effects mainly via peroxidation of the cell membrane resulting in the loss of membrane integrity. The essential trace element, selenium exerts complex effects on the endocrine systems, partly due to its antioxidant capacity. Well-characterized selenoproteins include iodothyronine deiodinases, glutathione peroxidases and thioredoxin reductases involved in thyroid hormone metabolism and protection from oxidative damage. The value of selenium supplementation in autoimmune thyroid disorders has been investigated and most studies confirmed the beneficial effect of selenium supplementation in Hashimoto's and Graves's diseases. Recently, selenium proved to be effective in mild inflammatory orbitopathy. There are a number of reports about the effect of selenium in diabetes mellitus, but the data are controversial as both insulin-like and diabetes-inducing effects of selenium have been described. Selenium was successfully used in both female and male infertility of autoimmune origin.

  15. Selenium speciation profiles in biofortified sangiovese wine.

    Science.gov (United States)

    Fontanella, Maria Chiara; D'Amato, Roberto; Regni, Luca; Proietti, Primo; Beone, Gian Maria; Businelli, Daniela

    2017-09-01

    Biofortification is an agronomic-based strategy, utilized by farmers, to produce selenium (Se)-enriched food products that may help reduce dietary deficiencies of Se occurring throughout susceptible regions of the world. The foliar exposure route application ensures a high efficiency of Se assimilation by the plant since it does not depend on root-to-shoot translocation. In this study we treated grapevines of Sangiovese variety in the pre-flowering period with sodium selenate (100mg Se L -1 ). Se content was measured in leaves, fruit at harvest time and in wine respectively in treated and not treated samples with ICP-MS. At harvest, a higher amount of Se in the treated leaves compared to untreated ones was found, 16.0±3.1mgkg -1 dry weight (dw) against 0.17±0.006mgkg -1 dw in the untreated ones. The treated grapes had a content of Se of 0.800±0.08mgkg -1 dw, while that untreated one 0.065±0.025mgkg -1 dw. Immediately after the malolactic fermentation, the wine obtained from treated and untreated vines had a Se content of 0.620±0.09mg Se L -1 and 0.024±0.010mg Se L -1 respectively. In our case the percentage of inorganic Se is 26% of the total Se in the untreated wine, while in Se enriched wine this percentage increase to 47.5% of the total Se. The Se(VI) was the inorganic chemical form more present in enriched wine, probably due to foliar application with selenate. Distributions of Se species suggested being careful to the choice of the enrichment solutions to promote a balanced distribution of different chemical forms, perhaps favouring the accumulation of organic forms. Copyright © 2016 Elsevier GmbH. All rights reserved.

  16. Determination of selenium via the fluorescence quenching effect of selenium on hemoglobin-catalyzed peroxidative reaction.

    Science.gov (United States)

    Chen, Ya-Hong; Zhang, Ya-Nan; Tian, Feng-Shou

    2015-05-01

    A new method for the determination of selenium based on its fluorescence quenching on the hemoglobin-catalyzed reaction of H2 O2 and l-tyrosine has been established. The effect of pH, foreign ions and the optimization of variables on the determination of selenium was examined. The calibration curve was found to be linear between the fluorescence quenching (F0 /F) and the concentration of selenium within the range of 0.16-4.00 µg/mL. The detection limit was 1.96 ng/mL and the relative standard deviation was 3.14%. This method can be used for the determination of selenium in Se-enriched garlic bulbs with satisfactory results. Copyright © 2014 John Wiley & Sons, Ltd.

  17. Selenium content in tissues and meat quality in rabbits fed selenium yeast

    Czech Academy of Sciences Publication Activity Database

    Dokoupilová, A.; Marounek, Milan; Skřivanová, V.; Březina, P.

    2007-01-01

    Roč. 52, č. 6 (2007), s. 165-169 ISSN 1212-1819 Institutional research plan: CEZ:AV0Z50450515 Keywords : rabbits * selenium * meat Subject RIV: GH - Livestock Nutrition Impact factor: 0.633, year: 2007

  18. In vivo and in vitro testing for selenium and selenium compounds bioavailability assessment in foodstuff.

    Science.gov (United States)

    Moreda-Piñeiro, Jorge; Moreda-Piñeiro, Antonio; Bermejo-Barrera, Pilar

    2017-03-04

    The assessment of selenium and selenium species bioavailability in foodstuff is of special concern on the context of human nutrition. In vivo (human and animal), and in vitro tests are important approaches for estimating the bioavailability of toxic and essential compounds to humans. An overview on in vivo and in vitro bioavailability assays for releasing selenium and selenium species in foodstuffs is summarized. Se and Se species content in a foodstuff critically influence Se bioavailability and bioactivity to humans and animals. Se bioavailability is affected by foodstuff-matrix major composition and minor components. Foodstuffs processing and/or treatments could enhancement or decrease Se bioavailability. Experimental conditions such as the selection of healthy status of examined people (in in vivo humans approaches), the selection of animal model (in vivo animals approaches), or the selection of GI conditions (in in vitro tests) could determines the results. Thus, international standardized protocol for in vivo and in vitro approaches assessment is mandatory.

  19. An experimental study of the time dependence of uptake from soil of 137Cs, 106Ru, 144Ce and 99Tc into green vegetables, wheat and potatoes

    International Nuclear Information System (INIS)

    Grogan, H.A.; Bell, J.N.B.; Minski, M.J.; Nair, S.

    1984-03-01

    In this study the experimental data were analysed using the CEGB's dynamic foodchain model, and were used to validate the relevant part of the model structure, to produce model-specific input data and to identify possible future improvements to the model structure. The root uptake of the specified radionuclides was studied and the concentration levels measured. The data were analysed using a simplified version of the general model. The compartment system incorporated within the model was shown to be capable of reproducing the data for 137 Cs, 106 Ru and 144 Ce to an extent sufficient to justify its use in ingestion radiological dose assessments, but to be less successful in fitting the 99 Tc data. The analysis resulted in the production of a well validated set of model-specific input data relevant to UK conditions and agricultural practice differing significantly from values obtained from global literature surveys. Possible future improvements to the model structure were also identified, aimed at providing improved estimates of crop contamination levels for timescales in excess of those considered in this study. (U.K.)

  20. Biomass Yield and N Uptake in Tall Fescue and Reed Canary Grass Depending on N and PK Fertilization on Two Marginal Sites in Denmark

    DEFF Research Database (Denmark)

    Ugilt Larsen, Søren; Jørgensen, Uffe; Lærke, Poul Erik

    2016-01-01

    areas with limited suitability for cereal production. Plots with TF and RCG were sown in April 2011, and fertilization trials were established in spring 2012 with three factors: (a) grass species, (b) PK fertilization (either no P and K or 24 and 250 kg ha−1 y−1 of P and K, respectively), and (c) N...... fertilization (0, 150, 300, or 450 kg ha−1 y−1 N). Three cuts were taken annually from 2012 to 2014. Both species responded strongly to N fertilization. In TF, 450 kg ha−1 y−1 N combined with PK fertilization gave DM yields of 19.3, 12.1, and 14.2 t ha−1 y−1 in the 3 years, respectively, and corresponding...... yields for RCG were 17.3, 14.4, and 14.3 t ha−1 y−1. Without PK fertilization yields were significantly lower: 15.2, 7.5, and 7.3 t ha−1 y−1 in TF and 16.3, 8.7, and 4.8 ha−1 y−1 in RCG. When fertilized with PK, N uptake in harvested biomass balanced with N fertilization at rates of 244, 187, and 172 kg...

  1. Selenium Sequestration in a Cationic Layered Rare Earth Hydroxide: A Combined Batch Experiments and EXAFS Investigation.

    Science.gov (United States)

    Zhu, Lin; Zhang, Linjuan; Li, Jie; Zhang, Duo; Chen, Lanhua; Sheng, Daopeng; Yang, Shitong; Xiao, Chengliang; Wang, Jianqiang; Chai, Zhifang; Albrecht-Schmitt, Thomas E; Wang, Shuao

    2017-08-01

    Selenium is of great concern owing to its acutely toxic characteristic at elevated dosage and the long-term radiotoxicity of 79 Se. The contents of selenium in industrial wastewater, agricultural runoff, and drinking water have to be constrained to a value of 50 μg/L as the maximum concentration limit. We reported here the selenium uptake using a structurally well-defined cationic layered rare earth hydroxide, Y 2 (OH) 5 Cl·1.5H 2 O. The sorption kinetics, isotherms, selectivity, and desorption of selenite and selenate on Y 2 (OH) 5 Cl·1.5H 2 O at pH 7 and 8.5 were systematically investigated using a batch method. The maximum sorption capacities of selenite and selenate are 207 and 124 mg/g, respectively, both representing the new records among those of inorganic sorbents. In the low concentration region, Y 2 (OH) 5 Cl·1.5H 2 O is able to almost completely remove selenium from aqueous solution even in the presence of competitive anions such as NO 3 - , Cl - , CO 3 2- , SO 4 2- , and HPO 4 2- . The resulting concentration of selenium is below 10 μg/L, well meeting the strictest criterion for the drinking water. The selenate on loaded samples could be desorbed by rinsing with concentrated noncomplexing NaCl solutions whereas complexing ligands have to be employed to elute selenite for the material regeneration. After desorption, Y 2 (OH) 5 Cl·1.5H 2 O could be reused to remove selenate and selenite. In addition, the sorption mechanism was unraveled by the combination of EDS, FT-IR, Raman, PXRD, and EXAFS techniques. Specifically, the selenate ions were exchanged with chloride ions in the interlayer space, forming outer-sphere complexes. In comparison, besides anion exchange mechanism, the selenite ions were directly bound to the Y 3+ center in the positively charged layer of [Y 2 (OH) 5 (H 2 O)] + through strong bidentate binuclear inner-sphere complexation, consistent with the observation of the higher uptake of selenite over selenate. The results presented in

  2. Photodynamic effect and mechanism study of selenium-enriched phycocyanin from Spirulina platensis against liver tumours.

    Science.gov (United States)

    Liu, Zijian; Fu, Xiang; Huang, Wei; Li, Chunxia; Wang, Xinyan; Huang, Bei

    2018-03-01

    Selenium-containing phycocyanin (Se-PC) has been proved to have many biological effects, including anti-inflammatory and antioxidant. In this study, we investigated the photodynamic therapy (PDT) effects of Se-PC against liver tumour in vitro and in vivo experiment. Our results demonstrated that the half lethal dose of Se-PC PDT on HepG2 cells was 100μg/ml PC containing 20% selenium. Se-PC location migration from lysosomes to mitochondria was time dependent. In in vivo experiments, the tumour inhibition rate was 75.4% in the Se-PC PDT group, compared to 52.6% in PC PDT group. Histological observations revealed that the tumour cells outside the tissue showed cellular necrosis, and those inside the tissue exhibited apoptotic nuclei and digested vacuoles in the cytoplasm after Se-PC PDT treatment. Antioxidant enzyme analysis indicated that GSH-Px activity was linked to the selenium content of Se-PC, and SOD activity was affected by PC PDT. Therefore, Se-PC PDT could induce cell death through free radical production of PDT in tumours and enhance the activity of antioxidant enzymes with selenium in vivo. The mechanism of Se-PC PDT against liver tumour involves hematocyte damage and mitochondria-mediated apoptosis accompanied with autophagy inhibition during early stage of tumour development, which displayed new prospect and offered relatively safe way for cancer therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Novel complex MAD phasing and RNase H structural insights using selenium oligonucleotides

    Energy Technology Data Exchange (ETDEWEB)

    Abdur, Rob; Gerlits, Oksana O.; Gan, Jianhua; Jiang, Jiansheng; Salon, Jozef; Kovalevsky, Andrey Y.; Chumanevich, Alexander A.; Weber, Irene T.; Huang, Zhen, E-mail: huang@gsu.edu [Georgia State University, Atlanta, GA 30303 (United States)

    2014-02-01

    Selenium-derivatized oligonucleotides may facilitate phase determination and high-resolution structure determination for protein–nucleic acid crystallography. The Se atom-specific mutagenesis (SAM) strategy may also enhance the study of nuclease catalysis. The crystal structures of protein–nucleic acid complexes are commonly determined using selenium-derivatized proteins via MAD or SAD phasing. Here, the first protein–nucleic acid complex structure determined using selenium-derivatized nucleic acids is reported. The RNase H–RNA/DNA complex is used as an example to demonstrate the proof of principle. The high-resolution crystal structure indicates that this selenium replacement results in a local subtle unwinding of the RNA/DNA substrate duplex, thereby shifting the RNA scissile phosphate closer to the transition state of the enzyme-catalyzed reaction. It was also observed that the scissile phosphate forms a hydrogen bond to the water nucleophile and helps to position the water molecule in the structure. Consistently, it was discovered that the substitution of a single O atom by a Se atom in a guide DNA sequence can largely accelerate RNase H catalysis. These structural and catalytic studies shed new light on the guide-dependent RNA cleavage.

  4. Oxygen-Dependent Transcriptional Regulator Hap1p Limits Glucose Uptake by Repressing the Expression of the Major Glucose Transporter Gene RAG1 in Kluyveromyces lactis▿

    Science.gov (United States)

    Bao, Wei-Guo; Guiard, Bernard; Fang, Zi-An; Donnini, Claudia; Gervais, Michel; Passos, Flavia M. Lopes; Ferrero, Iliana; Fukuhara, Hiroshi; Bolotin-Fukuhara, Monique

    2008-01-01

    The HAP1 (CYP1) gene product of Saccharomyces cerevisiae is known to regulate the transcription of many genes in response to oxygen availability. This response varies according to yeast species, probably reflecting the specific nature of their oxidative metabolism. It is suspected that a difference in the interaction of Hap1p with its target genes may explain some of the species-related variation in oxygen responses. As opposed to the fermentative S. cerevisiae, Kluyveromyces lactis is an aerobic yeast species which shows different oxygen responses. We examined the role of the HAP1-equivalent gene (KlHAP1) in K. lactis. KlHap1p showed a number of sequence features and some gene targets (such as KlCYC1) in common with its S. cerevisiae counterpart, and KlHAP1 was capable of complementing the hap1 mutation. However, the KlHAP1 disruptant showed temperature-sensitive growth on glucose, especially at low glucose concentrations. At normal temperature, 28°C, the mutant grew well, the colony size being even greater than that of the wild type. The most striking observation was that KlHap1p repressed the expression of the major glucose transporter gene RAG1 and reduced the glucose uptake rate. This suggested an involvement of KlHap1p in the regulation of glycolytic flux through the glucose transport system. The ΔKlhap1 mutant showed an increased ability to produce ethanol during aerobic growth, indicating a possible transformation of its physiological property to Crabtree positivity or partial Crabtree positivity. Dual roles of KlHap1p in activating respiration and repressing fermentation may be seen as a basis of the Crabtree-negative physiology of K. lactis. PMID:18806211

  5. Benefits of raising crops and animals naturally enriched with selenium in areas with selenium deficiency

    International Nuclear Information System (INIS)

    Dzhudich, I.S.

    2008-01-01

    Selenium (Se) is implicated in the protection of body tissues against oxidative stress, maintenance of defences against infection, and modulation of growth and development. The natural environment has a profound influence on its contents in the food chain and the development and distribution of Se responsive diseases. To overcome the Se deficiency problem and assure safe and adequate Se intakes, different methods were developed. Its efficiency depends on Se compounds absorption, its nutritional availability, long-term retention, convertibility of tissue Se stores into biologically active forms and the history of Se nutrition, influencing the proportion of absorbed retained, or excreted Se from diet. Since the dominant metabolically active Se forms are found in proteins as seleno analogues of sulphur amino acids, rather than selenotrisulphides and other acid labile Se compounds, we developed our own procedure for foliar enrichment of crops with Se, enabling the production of crops and animals with adequate Se content in low Se areas. By foliar application of Se salts, we optimize Se contents of many parameters important for plants quality, thus contributing to the better status of many essential, in diet often deficient nutrients. The utilization of these crops in animal nutrition, contributes to the nutritive value of animal products not only due to adequate Se content, but also higher values of other quality parameters. Consumption of such produced crops and animal products by humans in areas with low dietary Se intake has shown to have significant overall health benefits

  6. Status of selenium in cancer prevention

    Science.gov (United States)

    An abundance of data indicate that selenium (Se) can be antitumorigenic. Those data, mostly from controlled studies using animal tumor models and some from clinical studies in free-living people, indicate that treatment with Se in the absence of nutritional Se-deficiency, can reduce cancer risk. T...

  7. Chapter 6: Selenium Toxicity to Aquatic Organisms

    Science.gov (United States)

    This chapter addresses the characteristics and nature of organic selenium (Se) toxicity to aquatic organisms, based on the most current state of scientific knowledge. As such, the information contained in this chapter relates to the 'toxicity assessment' phase of aquatic ecologi...

  8. Normal mode calculations of trigonal selenium

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; McMurry, H. L.

    1980-01-01

    The phonon dispersion relations for trigonal selenium have been calculated on the basis of a short range potential field model. Electrostatic long range forces have not been included. The force field is defined in terms of symmetrized coordinates which reflect partly the symmetry of the space group...

  9. Overview and prospects of selenium phytoremediation approaches

    Science.gov (United States)

    Evidence is lacking on whether selenium (Se) is essential for vegetation growth, but plants can absorb, assimilate, and accumulate Se in leaves and roots. The capability of plants to take up substantial amount of Se is now being utilized to remove excess Se from contaminated soils. This process has ...

  10. Selenium speciation in anaerobic granular sludge

    NARCIS (Netherlands)

    Lenz, M.; Gmerek, A.; Lens, P.N.L.

    2006-01-01

    Chromatographic (IC-CD, GC-FID) and spectroscopic (XRD) techniques that allow the specific determination of several selenium species present or formed during bioremediation processes of selenate contaminated drinking, ground, or wastewaters have been established. The developed techniques are shown

  11. Radio protective effects of selenium on rats

    International Nuclear Information System (INIS)

    Bakir, A.; Alya, G

    2005-11-01

    Potential radio-protective effects of different selenium supplement concentrations of 4, 8, 15 and 30 ppm were evaluated in rats. Four groups of rats were administered different concentrations of selenium in drinking water for 30 days before irradiation starting from the ablactation which considered as day 0. The results showed that the sodium selenite of 4 ppm and 8 ppm enhance the 30-day survival of irradiated rats at 7 Gy ( sup 6 sup 0 Co source, whole body irradiation dose rate of 1 Gy x min sup - sup 1) compared to the control group. The mean cumulated probability of survival of rats was 69%+-6 (mean+-S.E.) and 77%+-6 in 4 and 8 ppm groups, respectively, versus 42%+-9 for control group (P<0.001). It was also indicated that sodium selenite with concentrations of 15 and 30 ppm had no significant reduction in mortality. The mean cumulated probability of survival of rats was 50%+-12 (P=0.39) and 49%+-14 (P=0.04), respectively. The toxic effects of selenium were observed at 15 ppm and 30 ppm, survivals after 30 days of selenium intake were 76% and 46%, respectively. It was concluded that 4 and 8 ppm sodium selenite have a radio-protective effect. 15 and 30 ppm sodium selenite had no radio-protective effects in rats, this may be due to a synergism of toxicity and radiation effects. (author)

  12. Recovery of stream communities from experimental selenium exposure

    Energy Technology Data Exchange (ETDEWEB)

    Swift, M.C.; Kuklinskal, B.; Ferkull, K. [Univ. of Minnesota, Monticello, MN (United States); Allen, K.N.; Hermanutz, R.O.; Roush, T.H.; Hedtke, S.F. [Environmental Protection Agency, Duluth, MN (United States). Environmental Research Lab.

    1994-12-31

    The effects of selenium on stream communities and their recovery from those effects were studied at MERS from 1987--1991. Selenium was dosed into two replicate streams each at concentrations of 30, 10, 2.5 and 0 (control) {mu}g L{sup {minus}1} for 18, 30, and 12 months, respectively. Recovery was monitored for three (30) or two (1 0, 2.5) years following cessation of selenium dosing. Selenium rapidly accumulated in the sediment, plants, macroinvertebrates and fish during dosing. Selenium concentrations in sediment, macroinvertebrates, and plants were as high as 2X--4X, 2X--4X, and 1X--1OX the dosed concentration in the 30, 10, and 2.5 treatments, respectively. Selenium decreased relatively rapidly following cessation of dosing. By two years after dosing ceased, selenium concentrations in plants and macroinvertebrates were little different from the controls; selenium in sediment from the 30 and 10 streams was still higher than in the control streams two years after dosing ceased. The macroinvertebrate community changed little during the dosing and recovery period. Commonly used indices of community structure showed no effect of selenium dosing. The isopod Asellus and oligochaetes in the family Tubificidae decreased rapidly following the onset of selenium dosing; their recovery following cessation of dosing was slow.

  13. Low plasma selenium concentrations in critically ill children: the interaction effect between inflammation and selenium deficiency

    Science.gov (United States)

    2014-01-01

    Introduction Low plasma selenium concentrations are frequent in critically ill patients. However, whether this is due to systemic inflammation, a deficient nutritional state or both is still not clear. We aimed to determine the factors associated with low plasma selenium in critically ill children while considering the inflammatory response and nutritional status. Method A prospective study was conducted in 173 children (median age 34 months) with systemic inflammatory response who had plasma selenium concentrations assessed 48 hours after admission and on the 5th day of ICU stay. The normal reference range was 0.58 μmol/L to 1.6 μmol/L. The outcome variable was ‘low plasma selenium’, which was defined as plasma selenium values below the distribution median during this period. The main explanatory variables were age, malnutrition, sepsis, C-reactive protein (CRP), and clinical severity scores. The data were analyzed using a Binomial Generalized Estimating Equations model, which includes the correlation between admission and 5th day responses. Results Malnutrition and CRP were associated with low plasma selenium. The interaction effect between these two variables was significant. When CRP values were less than or equal to 40 mg/L, malnutrition was associated with low plasma selenium levels (odds ratio (OR) = 3.25, 95% confidence interval (CI) 1.39 to 7.63, P = 0.007; OR = 2.98, 95% CI 1.26 to 7.06, P = 0.013; OR = 2.49, 95% CI 1.01 to 6.17, P = 0.049, for CRP = 10, 20 and 40 mg/L, respectively). This effect decreased as CRP concentrations increased and there was loose significance when CRP values were >40 mg/L. Similarly, the effect of CRP on low plasma selenium was significant for well-nourished patients (OR = 1.13; 95% CI 1.06 to 1.22, P selenium. This interaction should be considered when interpreting plasma concentrations as an index of selenium status in patients with systemic inflammation as well as in the decision

  14. Bioavailability of selenium from fish, yeast and selenate: A comparative study in humans using stable isotopes

    NARCIS (Netherlands)

    Fox, T.E.; Heuvel, E.G.H.M. van den; Atherton, C.A.; Dainty, J.R.; Lewis, D.J.; Langford, N.J.; Crews, H.M.; Luten, J.B.; Lorentzen, M.; Sieling, F.W.; Aken-Schneyder, P. van; Hoek, M.; Kotterman, M.J.J.; Dael, P. van; Firweather-Tail, S.J.

    2004-01-01

    Objective: To measure the bioavailability of selenium from cooked and raw fish in humans by estimating and comparing apparent absorption and retention of selenium in biosynthetically labelled fish with labelled selenate and biosynthetically labelled selenium in brewers yeast. Design: The

  15. Bioavailibility of selenium from fish, yeast and selenate: a comparative study in humans using stable isotopes

    NARCIS (Netherlands)

    Fox, T.E.; Heuvel, van den E.G.H.M.; Atherton, C.A.; Luten, J.B.; Hoek-van Nieuwenhuizen, van M.; Kotterman, M.J.J.

    2004-01-01

    Objective: To measure the bioavailability of selenium from cooked and raw fish in humans by estimating and comparing apparent absorption and retention of selenium in biosynthetically labelled fish with labelled selenate and biosynthetically labelled selenium in brewers yeast. Design: The

  16. Enrichment of the African catfish Clarias gariepinus (Burchell) with functional selenium originating from garlic: effect of enrichment period and depuration on total selenium level and sensory properties

    NARCIS (Netherlands)

    Schram, E.; Schelvis-Smit, A.A.M.; Heul, van der J.W.; Luten, J.B.

    2010-01-01

    We wanted to optimize the procedure for the selenium enrichment of farmed African catfish, using garlic as dietary selenium source. In the first experiment we established the relation between the length of the selenium enrichment period and the resulting total selenium level in the fillet of the

  17. Biosynthesis of selenium nanoparticles by Pantoea agglomerans and their antioxidant activity

    International Nuclear Information System (INIS)

    Torres, S. K.; Campos, V. L.; León, C. G.; Rodríguez-Llamazares, S. M.; Rojas, S. M.; González, M.; Smith, C.; Mondaca, M. A.

    2012-01-01

    The bio-reduction of selenite (Se (IV)) generates nanoparticles with sizes ranging between 30 and 300 nm. Biologic properties of Se nanoparticles, e.g., antioxidant activity, are dependent on the nanoparticle size; smaller particles have greater activity. In this study, the bio-reduction of selenite by Pantoea agglomerans strain UC-32 under aerobic conditions and room temperature to produce bioactive Se nanoparticles smaller than 100 nm was demonstrated. Isolation and purification of the nanoparticles was performed by alkaline lysis. These purified nanoparticles were stabilized with l-cysteine (4 mM). The visualization and characterization of nanoparticles were performed by transmission electron microscopy, energy dispersive X-ray spectroscopy, and scanning electron microscopy. The antioxidant activity of nanoparticles was determined by production of reactive oxygen species using human umbilical vein endothelial cells. Transmission electron microscopy images showed the accumulation of spherical selenium nanoparticles as intracellular and extracellular deposits. The size of Se nanoparticles varied with incubation time. Amorphous Se nanoparticles with size in the order of 100 nm were obtained before 24 h of incubation; but, at 24 h of incubation, the size of the majority of the nanoparticles was in the desirable order of 100 nm and they were not aggregated. Energy dispersive spectroscopy spectra indicated that nanoparticles were composed entirely of selenium. Antioxidant activity of stabilized selenium nanoparticles demonstrated high antioxidant activity when compared to selenite and selenium nanoparticles without stabilization. Stabilized biologically synthetized selenium (0) nanoparticles with size less than 100 nm have a potential application as a food additive with antioxidant properties relevant to human health.

  18. Biosynthesis of selenium nanoparticles by Pantoea agglomerans and their antioxidant activity

    Energy Technology Data Exchange (ETDEWEB)

    Torres, S. K.; Campos, V. L., E-mail: vcampos@udec.cl; Leon, C. G. [Universidad de Concepcion, Laboratorio de Microbiologia Ambiental, Departamento de Microbiologia (Chile); Rodriguez-Llamazares, S. M. [Centro de Investigacion de Polimeros Avanzados (CIPA) (Chile); Rojas, S. M.; Gonzalez, M. [Universidad de Concepcion, Laboratorio de Fisiologia Vascular, Departamento de Fisiologia (Chile); Smith, C. [Universidad de Concepcion, Departamento de Microbiologia (Chile); Mondaca, M. A. [Universidad de Concepcion, Laboratorio de Microbiologia Ambiental, Departamento de Microbiologia (Chile)

    2012-11-15

    The bio-reduction of selenite (Se (IV)) generates nanoparticles with sizes ranging between 30 and 300 nm. Biologic properties of Se nanoparticles, e.g., antioxidant activity, are dependent on the nanoparticle size; smaller particles have greater activity. In this study, the bio-reduction of selenite by Pantoea agglomerans strain UC-32 under aerobic conditions and room temperature to produce bioactive Se nanoparticles smaller than 100 nm was demonstrated. Isolation and purification of the nanoparticles was performed by alkaline lysis. These purified nanoparticles were stabilized with l-cysteine (4 mM). The visualization and characterization of nanoparticles were performed by transmission electron microscopy, energy dispersive X-ray spectroscopy, and scanning electron microscopy. The antioxidant activity of nanoparticles was determined by production of reactive oxygen species using human umbilical vein endothelial cells. Transmission electron microscopy images showed the accumulation of spherical selenium nanoparticles as intracellular and extracellular deposits. The size of Se nanoparticles varied with incubation time. Amorphous Se nanoparticles with size in the order of 100 nm were obtained before 24 h of incubation; but, at 24 h of incubation, the size of the majority of the nanoparticles was in the desirable order of 100 nm and they were not aggregated. Energy dispersive spectroscopy spectra indicated that nanoparticles were composed entirely of selenium. Antioxidant activity of stabilized selenium nanoparticles demonstrated high antioxidant activity when compared to selenite and selenium nanoparticles without stabilization. Stabilized biologically synthetized selenium (0) nanoparticles with size less than 100 nm have a potential application as a food additive with antioxidant properties relevant to human health.

  19. Null activity of selenium and vitamin e as cancer chemopreventive agents in the rat prostate.

    Science.gov (United States)

    McCormick, David L; Rao, K V N; Johnson, William D; Bosland, Maarten C; Lubet, Ronald A; Steele, Vernon E

    2010-03-01

    To evaluate the potential efficacy of selenium and vitamin E as inhibitors of prostate carcinogenesis, four chemoprevention studies using a common protocol were done in a rat model of androgen-dependent prostate cancer. After stimulation of prostate epithelial cell proliferation by a sequential regimen of cyproterone acetate followed by testosterone propionate, male Wistar-Unilever rats received a single i.v. injection of N-methyl-N-nitrosourea (MNU) followed by chronic androgen stimulation via subcutaneous implantation of testosterone pellets. At 1 week post-MNU, groups of carcinogen-treated rats (39-44/group) were fed either a basal diet or a basal diet supplemented with l-selenomethionine (3 or 1.5 mg/kg diet; study 1), dl-alpha-tocopherol (vitamin E, 4,000 or 2,000 mg/kg diet; study 2), l-selenomethionine + vitamin E (3 + 2,000 mg/kg diet or 3 + 500 mg/kg diet; study 3), or selenized yeast (target selenium levels of 9 or 3 mg/kg diet; study 4). Each chemoprevention study was terminated at 13 months post-MNU, and prostate cancer incidence was determined by histopathologic evaluation. No statistically significant reductions in prostate cancer incidence were identified in any group receiving dietary supplementation with selenium and/or vitamin E. These data do not support the hypotheses that selenium and vitamin E are potent cancer chemopreventive agents in the prostate, and when considered with the recent clinical data reported in the Selenium and Vitamin E Cancer Prevention Trial (SELECT), show the predictive nature of this animal model for human prostate cancer chemoprevention.

  20. Effects of 14-day oral low dose selenium nanoparticles and selenite in rat—as determined by metabolite pattern determination

    Directory of Open Access Journals (Sweden)

    Niels Hadrup

    2016-10-01

    Full Text Available Selenium (Se is an essential element with a small difference between physiological and toxic doses. To provide more effective and safe Se dosing regimens, as compared to dosing with ionic selenium, nanoparticle formulations have been developed. However, due to the nano-formulation, unexpected toxic effects may occur. We used metabolite pattern determination in urine to investigate biological and/or toxic effects in rats administered nanoparticles and for comparison included ionic selenium at an equimolar dose in the form of sodium selenite. Low doses of 10 and 100 fold the recommended human high level were employed to study the effects at borderline toxicity. Evaluations of all significantly changed putative metabolites, showed that Se nanoparticles and sodium selenite induced similar dose dependent changes of the metabolite pattern. Putative identified metabolites included increased decenedioic acid and hydroxydecanedioic acid for both Se formulations whereas dipeptides were only increased for selenite. These effects could reflect altered fatty acid and protein metabolism, respectively.

  1. Biogeochemical studies of selenium in the Indian Ocean

    International Nuclear Information System (INIS)

    Hattori, H.; Nakaguchi, Y.; Hiraki, K.; Kimura, M.; Koike, Y.

    1999-01-01

    Selenium that is a one of trace essential elements exists mainly in the chemical form of Se(IV), Se(VI) and organic selenium in ocean. Moreover, the monitoring of the selenium species has become a matter of interest as a mean of estimating their influence in biological processes in ocean. In recent works, some investigators reported that Se(IV) shows nutrient-type especially like silica's behavior, Se(VI) shows an approximately constant value, and the biological activities control the distribution of organic selenium. However, these reports were not included the whole world's oceans. It is necessary to research several oceans for the explication of fate on selenium. We investigated at the most interesting area - the Eastern Indian Ocean where should play a key role in global ocean's cycle for acquiring the new knowledge of selenium species at first

  2. Search for relevant indications for selenium supplementation in thyroid diseases.

    Science.gov (United States)

    Wojciechowska-Durczynska, Katarzyna; Lewinski, Andrzej

    2017-08-01

    Selenium plays a significant role in the thyroid function and its deficiency is considered by some authors to be a cause of thyroid disorders. The potential therapeutic influence of selenium supplementation in thyroid disease was investigated in several studies and some results were encouraging, however results were inconsistent and did not allow conclusion to be drawn. For that reason, we have performed a review study on relevance of selenium supplementation in thyroid disease. Till now, there is no strong evidence that selenium supplementation leads to clinical improvement in the course of autoimmune thyroiditis, nodular goitre or thyroid cancer. On the other hand, there is some evidence that selenium is effective in the treatment of orbitopathy; thus, the European Group on Graves' Orbitopathy (EUGOGO) recommends selenium administration in mild active orbitopathy.

  3. Effect of long-term selenium supplementation on mortality

    DEFF Research Database (Denmark)

    Rayman, Margaret P.; Winther, Kristian Hillert; Pastor-Barriuso, Roberto

    2018-01-01

    Background: Selenium, an essential trace element, is incorporated into selenoproteins with a wide range of health effects. Selenoproteins may reach repletion at a plasma selenium concentration of ∼ 125 μg/L, at which point the concentration of selenoprotein P reaches a plateau; whether sustained...... concentrations higher than this are beneficial, or indeed detrimental, is unknown. Objective: In a population of relatively low selenium status, we aimed to determine the effect on mortality of long-term selenium supplementation at different dose levels. Design: The Denmark PRECISE study was a single...... for extension of the study and mortality assessment. Participants were randomly assigned to treatment with 100, 200, or 300 μg selenium/d as selenium-enriched-yeast or placebo-yeast for 5 years from randomization in 1998-1999 and were followed up for mortality for a further 10 years (through March 31, 2015...

  4. Production of selenium-enriched milk and dairy products

    Directory of Open Access Journals (Sweden)

    Csapó J.

    2015-01-01

    Full Text Available Until the middle of the last century, selenium was considered to be toxic, but recently it turned out to be a micronutrient with important physiological effects, whose lack impedes the functioning of several enzymes, while in the case of a prolonged deficiency, disease processes can also occur in the body. Hungary belongs to the selenium-deficient regions in Europe; therefore, our aim was to contribute to the improvement of selenium supply of the population through increasing the selenium content of milk and dairy products. A daily supplementation of 1-6 mg organic selenium to the feed of dairy cows increases the selenium content of milk from the value of 18 μg/kg to 94 μg/kg in 8 weeks, decreasing again to the initial value in 6 weeks after stopping the supplementation.

  5. Erythrocytic glutathione peroxidase: Its relationship to plasma selenium in man

    International Nuclear Information System (INIS)

    Perona, G.; Cellerino, R.; Guidi, G.C.; Moschini, G.; Stievano, B.M.; Tregnaghi, C.

    1977-01-01

    Erythrocytic glutathione-peroxidase (GSH-Px) activity and plasma selenium concentrations were measured in 14 patients: 7 with iron deficiency and 7 with raised serum iron levels. The decreased enzymatic activity in iron deficiency was confirmed. Plasma selenium was significantly lower in patients with lower serum iron; furthermore there is a significant correlation between serum iron and plasma selenium concentrations. Another correlation even more significant was found between plasma selenium and enzyme activity in all the cases we studied. These data suggests that the importance of iron for GSH-Px activity may be merely due to its relationship with selenium and that plasma selenium concentration may be of critical importance for enzyme activity. (author)

  6. Age-dependent leaf physiology and consequences for crown-scale carbon uptake during the dry season in an Amazon evergreen forest.

    Science.gov (United States)

    Albert, Loren P; Wu, Jin; Prohaska, Neill; de Camargo, Plinio Barbosa; Huxman, Travis E; Tribuzy, Edgard S; Ivanov, Valeriy Y; Oliveira, Rafael S; Garcia, Sabrina; Smith, Marielle N; Oliveira Junior, Raimundo Cosme; Restrepo-Coupe, Natalia; da Silva, Rodrigo; Stark, Scott C; Martins, Giordane A; Penha, Deliane V; Saleska, Scott R

    2018-03-04

    Satellite and tower-based metrics of forest-scale photosynthesis generally increase with dry season progression across central Amazônia, but the underlying mechanisms lack consensus. We conducted demographic surveys of leaf age composition, and measured the age dependence of leaf physiology in broadleaf canopy trees of abundant species at a central eastern Amazon site. Using a novel leaf-to-branch scaling approach, we used these data to independently test the much-debated hypothesis - arising from satellite and tower-based observations - that leaf phenology could explain the forest-scale pattern of dry season photosynthesis. Stomatal conductance and biochemical parameters of photosynthesis were higher for recently mature leaves than for old leaves. Most branches had multiple leaf age categories simultaneously present, and the number of recently mature leaves increased as the dry season progressed because old leaves were exchanged for new leaves. These findings provide the first direct field evidence that branch-scale photosynthetic capacity increases during the dry season, with a magnitude consistent with increases in ecosystem-scale photosynthetic capacity derived from flux towers. Interactions between leaf age-dependent physiology and shifting leaf age-demographic composition are sufficient to explain the dry season photosynthetic capacity pattern at this site, and should be considered in vegetation models of tropical evergreen forests. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  7. Selenium's importance in regulatory issues regarding mercury

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, Laura J.; Ralston, Nicholas V.C. [University of North Dakota Energy and Environmental Research Center, 15 North 23rd Street, Stop 9018, Grand Forks, ND 58202-9018 (United States)

    2009-11-15

    Current seafood safety and health risk assessment criteria use mercury concentrations as their sole basis. This unfortunate limitation omits consideration of selenium, an essential trace element that appears to be the primary molecular target of mercury toxicity. Although selenium has been recognized for decades as a means of counteracting mercury toxicity, its effects have often been overlooked or misunderstood. Experimental animal studies have demonstrated that increasing concentrations of selenium throughout the normal dietary range increasingly counteracts methylmercury toxicity. Dietary concentrations of selenium that are slightly less than the average amount present in ocean fish have been shown to completely prevent the onset of toxic symptoms of mercury toxicity, while animals fed lesser amounts of selenium rapidly sickened and died. Dietary selenium from a variety of sources including ocean fish such as tuna, swordfish, menhaden, and rockfish has been shown to counteract mercury toxicity. Since ocean fish are among the richest sources of dietary selenium, it is important to include selenium concentration measurements in future mercury risk assessments and seafood safety criteria. Mercury:selenium molar ratios in blood provide far more consistent and physiologically meaningful risk assessments. Comprehensive seafood safety criteria such as the Selenium Health Benefit Value enable clear differentiation between seafoods that are safe and those that are hazardous for human consumption. Use of parameters that integrate mercury-selenium relationships also make it easy to understand the differences between the findings of maternal mercury exposure studies that have been performed in New Zealand, the Faroes, the Seychelles, and the United Kingdom. Development of criteria for evaluating mercury-selenium interactions will enhance environmental protection and improve public safety. (author)

  8. Selenium Poisoning of Wildlife and Western Agriculture: Cause and Effect

    Energy Technology Data Exchange (ETDEWEB)

    Korte, N.E.

    2000-02-01

    This project examined the hypothesis that selenium contamination is not the principal cause of the decline of endemic fish species in the Upper Colorado Basin. Activities employed to test this hypothesis included a reconnaissance of locations altered by recent road construction, a re-interpretation of available literature regarding selenium toxicity, and the interpretation of unpublished data obtained from the Upper Colorado Basin Fish Recovery Program. The project demonstrates that most of the evidence implicating selenium is circumstantial.

  9. cGMP-dependent protein kinase Iα associates with the antidepressant-sensitive serotonin transporter and dictates rapid modulation of serotonin uptake

    Directory of Open Access Journals (Sweden)

    Steiner Jennifer A

    2009-08-01

    Full Text Available Abstract Background The Na+/Cl--dependent serotonin (5-hydroxytryptamine, 5-HT transporter (SERT is a critical element in neuronal 5-HT signaling, being responsible for the efficient elimination of 5-HT after release. SERTs are not only targets for exogenous addictive and therapeutic agents but also can be modulated by endogenous, receptor-linked signaling pathways. We have shown that neuronal A3 adenosine receptor activation leads to enhanced presynaptic 5-HT transport in vitro and an increased rate of SERT-mediated 5-HT clearance in vivo. SERT stimulation by A3 adenosine receptors derives from an elevation of cGMP and subsequent activation of both cGMP-dependent protein kinase (PKG and p38 mitogen-activated protein kinase. PKG activators such as 8-Br-cGMP are known to lead to transporter phosphorylation, though how this modification supports SERT regulation is unclear. Results In this report, we explore the kinase isoform specificity underlying the rapid stimulation of SERT activity by PKG activators. Using immortalized, rat serotonergic raphe neurons (RN46A previously shown to support 8-Br-cGMP stimulation of SERT surface trafficking, we document expression of PKGI, and to a lower extent, PKGII. Quantitative analysis of staining profiles using permeabilized or nonpermeabilized conditions reveals that SERT colocalizes with PKGI in both intracellular and cell surface domains of RN46A cell bodies, and exhibits a more restricted, intracellular pattern of colocalization in neuritic processes. In the same cells, SERT demonstrates a lack of colocalization with PKGII in either intracellular or surface membranes. In keeping with the ability of the membrane permeant kinase inhibitor DT-2 to block 8-Br-cGMP stimulation of SERT, we found that DT-2 treatment eliminated cGMP-dependent kinase activity in PKGI-immunoreactive extracts resolved by liquid chromatography. Similarly, treatment of SERT-transfected HeLa cells with small interfering RNAs targeting

  10. Influence of Se concentrations and species in hydroponic cultures on Se uptake, translocation and assimilation in non-accumulator ryegrass.

    Science.gov (United States)

    Versini, Antoine; Di Tullo, Pamela; Aubry, Emmanuel; Bueno, Maïté; Thiry, Yves; Pannier, Florence; Castrec-Rouelle, Maryse

    2016-11-01

    The success of biofortification and phytoremediation practices, addressing Se deficiency and Se pollution issues, hinges crucially on the fate of selenium in the plant media in response to uptake, translocation and assimilation processes. We investigate the fate of selenium in root and shoot compartments after 3 and 6 weeks of experiment using a total of 128 plants grown in hydroponic solution supplied with 0.2, 2, 5, 20 and 100 mg L -1 of selenium in the form of selenite, selenate and a mixture of both species. Selenate-treated plants exhibited higher root-to-shoot Se translocation and total Se uptake than selenite-treated plants. Plants took advantage of the selenate mobility and presumably of the storage capacity of leaf vacuoles to circumvent selenium toxicity within the plant. Surprisingly, 28% of selenate was found in shoots of selenite-treated plants, questioning the ability of plants to oxidize selenite into selenate. Selenomethionine and methylated organo-selenium amounted to 30% and 8% respectively in shoots and 35% and 9% in roots of the identified Se, suggesting that selenium metabolization occurred concomitantly in root and shoot plant compartments and demonstrating that non-accumulator plants can synthesize notable quantities of precursor compound for volatilization. The present study demonstrated that non-accumulator plants can develop the same strategies as hyper-accumulator plants to limit selenium toxicity. When both selenate and selenite were supplied together, plants used selenate in a storage pathway and selenite in an assimilation pathway. Plants might thereby benefit from mixed supplies of selenite and selenate by saving enzymes and energy required for selenate reduction. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. Effect of selenium supplementation on pigeon reproductive performance, selenium concentration and antioxidant status.

    Science.gov (United States)

    Wang, Y; Yang, H M; Cao, W; Li, Y B

    2017-09-01

    The effects of dietary supplementation of sodium selenite (SS) on the reproductive performance and the concentration of selenium, glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and malondialdehyde (MDA) were determined, and expression of glutathione peroxidase 4 (GPx4) and bone morphogenic protein 15 (BMP15) was evaluated. Paired pigeons (n = 864) were fed: T1 received no SS, while T2, T3, and T4 received 0.5, 1.0, and 1.5 mg of SS/kg of dry matter (DM), respectively. Treatments were performed in triplicate with 72 pairs in each replicate. The results showed that selenium supplementation significantly affected pigeon reproductive performance. Birds fed 1.0 mg of SS/kg displayed higher egg production (P > 0.05), higher birth rate, and lower dead sperm rate than the control group (P Selenium and biochemical analyses revealed a higher selenium concentration in the 1.5 mg of SS/kg group than in the control group (P  0.05); however, in plasma, MDA was lower in the control group (P  0.05), while in ovary, BMP15 was down-regulated in the 1.5 mg of SS/kg group (P selenium concentration, and 0.5 mg of SS/kg up-regulated GSH-Px activity. © 2017 Poultry Science Association Inc.

  12. Monitoring of selenium in macrophytes - the case of Slovenia.

    Science.gov (United States)

    Mechora, Špela; Germ, Mateja; Stibilj, Vekoslava

    2014-09-01

    This paper examines macrophytes from various locations in Slovenian streams for selenium (Se) content in an attempt to discover if Se contamination is present and if Se uptake varies between sampling sites. For this purpose, macrophytes and water from ten locations in the Notranjska and Central regions (Slovenia) with different land use in the catchment were sampled. To assess the environmental conditions of the streams the Riparian, Channel, and Environment (RCE) inventory was applied, which revealed that investigated stretches of streams fall into RCE classes III, IV and V. The concentration of Se in water at all locations was less than 1μgSeL(-1). The Se content in macrophytes differed between sampling sites, with the highest content of Se in samples from Žerovniščica stream and the lowest in samples from Lipsenjščica stream. The content of Se was the highest in moss samples (3038ngSeg(-1) DM) and in the amphibious species Veronica anagallis-aquatica (1507ngSeg(-1) DM). Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Ecological Importance of Insects in Selenium Biogenic Cycling

    Directory of Open Access Journals (Sweden)

    Nadezhda Golubkina

    2014-01-01

    Full Text Available Selenium is an essential trace element for animal and human beings. Despite the importance of insects in most ecosystems and their significant contribution to the biological cycling of trace elements due to high abundance, population productivity, and diverse ecosystem functions, surprisingly little information is available on selenium bioaccumulation by these arthropods. This review considers selenium essentiality and toxicity to insects as well as insects’ contribution to selenium trophic transfer through the food chains. Data on Se accumulation by insects of the Dniester River Valley with no anthropogenic Se loading reveal typically low Se content in necrophagous insects compared to predators and herbivores and seasonal variations in Se accumulation.

  14. Is selenium supplementation in autoimmune thyroid diseases justified?

    Science.gov (United States)

    Winther, Kristian H; Bonnema, Steen J; Hegedüs, Laszlo

    2017-10-01

    This review provides an appraisal of recent evidence for or against selenium supplementation in patients with autoimmune thyroid diseases, and discusses possible effect mechanisms. Epidemiological data suggest an increased prevalence of autoimmune thyroid diseases under conditions of low dietary selenium intake. Two systematic reviews have evaluated controlled trials among patients with autoimmune thyroiditis and report that selenium supplementation decreases circulating thyroid autoantibodies. The immunomodulatory effects of selenium might involve reducing proinflammatory cytokine release. However, clinically relevant effects of selenium supplementation, including improvement in quality of life, are more elusive. In Graves' disease, some, but not all, trials indicate that adjuvant selenium supplementation enhances the restoration of biochemical euthyroidism, and might benefit patients with mild Graves' orbitopathy. The use of selenium supplementation as adjuvant therapy to standard thyroid medication may be widespread, but a growing body of evidence yields equivocal results. The available evidence from trials does not support routine selenium supplementation in the standard treatment of patients with autoimmune thyroiditis or Graves' disease. However, correction of moderate to severe selenium deficiency may offer benefits in preventing, as well as treating, these disorders. Molecular mechanisms have been proposed, but further studies are needed.

  15. Absorption and retention of selenium from shrimps in man

    DEFF Research Database (Denmark)

    Bugel, S. H.; Sandstrom, B.; Larsen, Erik Huusfeldt

    2001-01-01

    This study was undertaken to evaluate the bioavailability of selenium in shrimps, a possible good source of selenium, by measurements of the absorption and retention of selenium and the effects on plasma selenium concentration and glutathione peroxidase activity. Twelve healthy young subjects (9F...... of the study, after 2, 4, and 6 weeks. The selenium intake increased from 39.4 +/- 15.3 mug/d to 127 +/- 5.5 mug/d with the addition of shrimps. The apparent absorption of selenium from shrimps was 83 +/- 4%, Faecal and urinary selenium excretion was 32.5 +/- 17.0 mug/d and 21.2 +/- 9.0 mug/d, re spectively...... and the total retention of selenium was 3.1 +/- 1.1 mg. Plasma selenium concentrations were 95.2 +/- 9.7 mug/L and 101.5 +/- 9.7 mug/L before and after six weeks of shrimp intake, respectively (p...

  16. Does mercury vapor exposure increase urinary selenium excretion

    Energy Technology Data Exchange (ETDEWEB)

    Hongo, T; Suzuki, T; Himeno, S; Watanabe, C; Satoh, H; Shimada, Y

    1985-01-01

    It has been reported that an increase of urinary selenium excretion may occur as a result of mercury vapor exposure. However, experimental data regarding the interaction between mercury vapor and selenium have yielded ambiguous results about the retention and elimination of selenium due to mercury vapor exposure and the decrease of selenium excretion due to mercury in the form of mercuric mercury (Hg/sup 2 +/). In this study, the authors measured urinary mercury and selenium in workers with or without exposure to mercury vapor to determine whether or not urinary selenium excretion was increased as a result of mercury vapor exposure. Urine samples were collected from 141 workers, 71 men and 70 women, whose extent of exposure to mercury vapor varied according to their job sites. Workers were divided into five groups according to their urinary mercury levels. The mercury level in group I was less than 2.8 nmol/mmol creatinine which means that this group was mostly free from mercury exposure. The average age was almost identical among the groups. For both sexes, group V (with the highest urinary mercury level) had the lowest urinary selenium level, but one-way variance analysis (ANOVA) did not reveal any significant variations of urinary selenium with urinary mercury levels; however, a weak but significant negative correlation between mercury and selenium was found in men.

  17. Radioiodine uptake by plants from soils

    International Nuclear Information System (INIS)

    Sabova, T.

    1976-01-01

    The uptake and accumulation of radioiodine by wheat, maize and peas from various types of soil have been studied. The uptake depends on the type of soil, on its content of organic matter and on the amount of fertilizer. Radioiodine is mainly accumulated in the roots. Accumulation in above-ground plant parts decreases in the following order: wheat, maize, peas. Uptake was highest from humus and clay soils and lowest from black and meadow soils. Application of chloride fertilizer or carrier iodine lead to an increase of radioiodine uptake in the whole plant. (author)

  18. High-Resolution Imaging of Selenium in Kidneys: A Localized Selenium Pool Associated with Glutathione Peroxidase 3

    OpenAIRE

    Malinouski, Mikalai; Kehr, Sebastian; Finney, Lydia; Vogt, Stefan; Carlson, Bradley A.; Seravalli, Javier; Jin, Richard; Handy, Diane E.; Park, Thomas J.; Loscalzo, Joseph; Hatfield, Dolph L.; Gladyshev, Vadim N.

    2012-01-01

    Aim: Recent advances in quantitative methods and sensitive imaging techniques of trace elements provide opportunities to uncover and explain their biological roles. In particular, the distribution of selenium in tissues and cells under both physiological and pathological conditions remains unknown. In this work, we applied high-resolution synchrotron X-ray fluorescence microscopy (XFM) to map selenium distribution in mouse liver and kidney. Results: Liver showed a uniform selenium distributio...

  19. The dose-dependent influence of zinc and cadmium contamination of soil on their uptake and glucosinolate content in white cabbage (Brassica oleracea var. capitata f. alba).

    Science.gov (United States)

    Kusznierewicz, Barbara; Bączek-Kwinta, Renata; Bartoszek, Agnieszka; Piekarska, Anna; Huk, Anna; Manikowska, Anna; Antonkiewicz, Jacek; Namieśnik, Jacek; Konieczka, Piotr

    2012-11-01

    The relationship between the ability to accumulate heavy metals (represented by Cd and Zn) and to synthesize bioactive compounds (represented by glucosinolates [GLS]) was investigated in two cabbage cultivars. Plants were grown in the greenhouse of a phytotron under controlled conditions in soils spiked with two different Zn or Cd concentrations. The measurements of Cd and Zn contents in soil and cabbage (leaf) samples were performed by atomic absorption spectroscopy, whereas GLS levels in cabbage were determined by high-performance liquid chromatography. The ranges of metal contents in soil were 80 to 450 mg/kg dry weight for Zn and 0.3 to 30 mg/kg dry weight for Cd, whereas the levels of accumulated Zn and Cd in cabbage amounted to 15 to 130 and 0.02 to 3 mg/kg dry weight, respectively. After initial symptoms of toxicity, during a later stage of growth, the plants exhibited very good tolerance to both metals. Enhanced biosynthesis of GLS was observed in a dose-dependent manner following exposure to the heavy metals. The GLS content in Zn-exposed cabbage rose from 3.2 to 12 µmol/g dry weight, and the corresponding values for Cd-treated plants were 3.5 to 10 µmol/g dry weight. Thus, the increased soil contamination by metals caused greater accumulation in cabbage, as well as stimulation of GLS biosynthesis. The results obtained point to the high phytoremediation and biofumigation potential of white cabbage. Copyright © 2012 SETAC.

  20. Preparation of selenium coatings onto beryllium foils

    International Nuclear Information System (INIS)

    Erikson, E.D.; Tassano, P.L.; Reiss, R.H.; Griggs, G.E.

    1984-09-01

    A technique for preparing selenium films onto 50.8 microns thick beryllium foils is described. The selenium was deposited in vacuum from a resistance heated evaporation source. Profilometry measurements of the coatings indicate deposit thicknesses of 5.5, 12.9, 37.5, 49.8 and 74.5 microns. The control of deposition rate and of coating thickness was facilitated using a commercially available closed-loop programmable thin film controller. The x-ray transmission of the coated substrates was measured using a tritiated zirconium source. The transmissivities of the film/substrate combination are presented for the range of energies from 4 to 20 keV. 15 references, 3 figures

  1. Cell uptake survey of pegylated nanographene oxide.

    Science.gov (United States)

    Vila, M; Portolés, M T; Marques, P A A P; Feito, M J; Matesanz, M C; Ramírez-Santillán, C; Gonçalves, G; Cruz, S M A; Nieto, A; Vallet-Regi, M

    2012-11-23

    Graphene and more specifically, nanographene oxide (GO) has been proposed as a highly efficient antitumoral therapy agent. Nevertheless, its cell uptake kinetics, its influence in different types of cells and the possibility of controlling cellular internalization timing, is still a field that remains unexplored. Herein, different cell types have been cultured in vitro for several incubation periods in the presence of 0.075 mg ml(-1) pegylated GO solutions. GO uptake kinetics revealed differences in the agent's uptake amount and speed as a function of the type of cell involved. Osteoblast-like cells GO uptake is higher and faster without resulting in greater cell membrane damage. Moreover, the dependence on the commonly used PEG nature (number of branches) also influences the viability and cell uptake speed. These facts play an important role in the future definition of timing parameters and selective cell uptake control in order to achieve an effective therapy.

  2. Cell uptake survey of pegylated nanographene oxide

    International Nuclear Information System (INIS)

    Vila, M; Nieto, A; Vallet-Regi, M; Portolés, M T; Feito, M J; Matesanz, M C; Ramírez-Santillán, C; Marques, P A A P; Gonçalves, G; Cruz, S M A

    2012-01-01

    Graphene and more specifically, nanographene oxide (GO) has been proposed as a highly efficient antitumoral therapy agent. Nevertheless, its cell uptake kinetics, its influence in different types of cells and the possibility of controlling cellular internalization timing, is still a field that remains unexplored. Herein, different cell types have been cultured in vitro for several incubation periods in the presence of 0.075 mg ml −1 pegylated GO solutions. GO uptake kinetics revealed differences in the agent’s uptake amount and speed as a function of the type of cell involved. Osteoblast-like cells GO uptake is higher and faster without resulting in greater cell membrane damage. Moreover, the dependence on the commonly used PEG nature (number of branches) also influences the viability and cell uptake speed. These facts play an important role in the future definition of timing parameters and selective cell uptake control in order to achieve an effective therapy. (paper)

  3. The Cultivation and SeleniumEnrichment of SeleniumEnriched Earthworm

    Directory of Open Access Journals (Sweden)

    SUN Xiao-fei

    2014-12-01

    Full Text Available As a bio-carrier, Eisenia fetida was fed with cow dung that added with sodium selenite in order to transfer inorganic selenium(Se into organic selenium. Targeting on survival rate and selenium content, the effects of five Se concentrations(0, 20, 40, 60, 80, 100 mg·kg-1 and four cultivation periods(15, 30, 45, 60 don earthworm growth and Se contents were investigated. The cultivation method with high survival rate, high Se content of earthworm and short breeding time would be screened out. The experimental results showed that the earthworm survival rate decreased and the Se content in earthworm increased with the increase of Se application and the extension of breeding time. The most optimummethod was screened out when the Se concentration was 80 mg·kg-1 and the cultivation period was 45 days, Se content in earthworm was up to 33.25 mg·kg-1.

  4. The effect of selenium on the biliary excretion and organ distribution of mercury in the rat after exposure to methyl mercuric chloride

    International Nuclear Information System (INIS)

    Alexander, J.; Norseth, T.

    1979-01-01

    The influence of selenium compounds on the biliary excretion and the organ distribution of mercury after injection of methyl mercuric chloride(4μmol/kg) have been tested. Selenite, seleno-di-N-acetylglycine and seleno-methionine strongly inhibited the biliary excretion of mercury. Selenite even in a molar dose of 1/40 of the methyl mercury dose inhibited the biliary excretion of mercury. The loss toxic seleno-di-N-acetylglycine was needed in larger molar doses and did not act as rapidly as selenite. Biliary excreted methyl mercury is known to be partly reabsorbed in the gut. Subsequently a part of it is deposited in the kidneys since drainage of the bile lowered the kidney content of mercury. Rats given selenium compounds in combination with bile drainage showed further reduction of the kidney mercury content than bile duct drainage alone. Thus the demonstrated lowering effect of selenium compounds on the kidney mercury content cannot be completely explained by an inhibition of biliary excretion of mercury. The mercury concentration in the brain was increased by the selenium compounds; the effect being dependent of the selenium dose reaching a maximum at an equimolar selenite - to methyl mercury dose ratio. The mechanisms by which selenium influences the methyl mercury kinetics are discussed. (author)

  5. Selenate reduction to elemental selenium by anaerobic bacteria in sediments and culture: biogeochemical significance of a novel, sulfate-independent respiration

    Science.gov (United States)

    Oremland, Ronald S.; Hollibaugh, James T.; Maest, Ann S.; Presser, Theresa S.; Miller, Laurence G.; Culbertson, Charles W.

    1989-01-01

    Interstitial water profiles of SeO42−, SeO32−, SO42−, and Cl− in anoxic sediments indicated removal of the seleno-oxyanions by a near-surface process unrelated to sulfate reduction. In sediment slurry experiments, a complete reductive removal of SeO42− occurred under anaerobic conditions, was more rapid with H2 or acetate, and was inhibited by O2, NO3−, MnO2, or autoclaving but not by SO42− or FeOOH. Oxidation of acetate in sediments could be coupled to selenate but not to molybdate. Reduction of selenate to elemental selenium was determined to be the mechanism for loss from solution. Selenate reduction was inhibited by tungstate and chromate but not by molybdate. A small quantity of the elemental selenium precipitated into sediments from solution could be resolublized by oxidation with either nitrate or FeOOH, but not with MnO2. A bacterium isolated from estuarine sediments demonstrated selenate-dependent growth on acetate, forming elemental selenium and carbon dioxide as respiratory end products. These results indicate that dissimilatory selenate reduction to elemental selenium is the major sink for selenium oxyanions in anoxic sediments. In addition, they suggest application as a treatment process for removing selenium oxyanions from wastewaters and also offer an explanation for the presence of selenite in oxic waters.

  6. Selenium content of Argentinean infant formulae and baby foods by pseudo-cyclic instrumental neutron activation analysis coupled to Compton suppression

    International Nuclear Information System (INIS)

    Hevia, S.; Chatt, A.

    2013-01-01

    The selenium levels of Argentinean infant formulae and baby food were measured using the 162-keV gamma-ray of 77m Se (t ½ = 17.4 s) by a pseudo-cyclic instrumental neutron activation analysis (PC-INAA) method in conjunction with Compton suppression spectrometry (CSS). For comparison purposes, 5 selected infant formulae were also analyzed for selenium by a radiochemical neutron activation analysis (RNAA) method. The selenium levels for three samples agreed between ±2.8 and 6.5 % while the other two differed by 12 and 17 % which could perhaps be attributed to sample inhomogeneity. The selenium content of cow milk-based infant formulae varied from 42-146 μg kg -1 compared to 52-63 μg kg -1 for soy-based milk formulae. In the case of baby foods, the selenium levels varied from 34 to 74 μg kg -1 . The detection limits for selenium by PC-INAA-CSS for all the samples analyzed in this work were between 8.5 and 65 μg kg -1 depending on the major elements present in the samples, while it was 20 μg kg -1 for the RNAA method. The expanded uncertainty (κ = 2) of the PC-INAA-CSS method was 7.0 % at the end of cycle 4 for a sample containing 73.7 μg kg -1 selenium compared to the RNAA value of 24.2 % for a sample of 67.0 μg kg -1 selenium content. (author)

  7. Time-dependent uptake, distribution and biotransformation of chromium(VI) in individual and bulk human lung cells : application of synchrotron radiation techniques

    International Nuclear Information System (INIS)

    Harris, H. H.; Levina, A.; Dillon, C. T.; Mulyani, I.; Lai, B.; Cai, Z.; Lay, P.

    2005-03-01

    Chromium(VI) is a human carcinogen, primarily affecting the respiratory tract probably via active transport into cells, followed by the reduction to Cr(III) with the formation of DNA-damaging intermediates. Distribution of Cr and endogenous elements within A549 human lung adenocarcinoma epithelial cells, following treatment with Cr(VI) (100 (micro)M, 20 min or 4 h) were studied by synchrotron-radiation-induced X-ray emission (SRIXE) of single freeze-dried cells. After the 20-min treatment, Cr was confined to a small area of the cytoplasm and strongly co-localized with S, Cl, K, and Ca. After the 4-h treatment, Cr was distributed throughout the cell, with higher concentrations in the nucleus and the cytoplasmic membrane. This time-dependence corresponded to ∼100% or 0% clonogenic survival of the cells following the 20-min or 4-h treatments, respectively, and could potentially be explained by a new cellular protective mechanism. Such processes may also be important in reducing the potential hazards of Cr(III) dietary supplements, for which there is emerging evidence that they exert their anti-diabetic effects via biological oxidation to Cr(VI). The predominance of Cr(III) was confirmed by micro-XANES spectroscopy of intracellular Cr hotspots. X-ray absorption spectroscopy (XANES and EXAFS, using freeze-dried cells after the 0-4-h treatments) was used to gain insight into the chemical structures of Cr(III) complexes formed during the intracellular reduction of Cr(VI). The polynuclear nature of such complexes (probably with a combination of carboxylato and hydroxo bridging groups and O-donor atoms of small peptides or proteins) was established by XAFS data analyses

  8. Polarographic determination of selenium in indium

    International Nuclear Information System (INIS)

    Kaplan, B.Ya.; Mikheeva, V.A.; Priz, N.B.

    1978-01-01

    The procedure of determining nx10 -6 % Se in indium after concentrating in an elemental form on arsenic and sulphur has been developed. The selenium content is determined by inversion a.c. polarography on a sulphuric-acid background in the presence of Cu(2), potassium bichromate, and sodium pyrophosphate. 5.7x10 -6 % Se in metal indium has been determined by this procedure, the mean standard deviation being Sr=0.26

  9. Improvement of Selenium Status of Pasture Crops

    DEFF Research Database (Denmark)

    Nielsen, Gunnar Gissel

    1984-01-01

    Selenium was applied to pasture crops in a field experiment (1) by foliar application of 10 g Se/ha as selenite in the spring, (2) or by 5 g Se/ha in the spring plus 5 g in early August, (3) as selenite-enriched calcium ammonium nitrate (CAN) at 4 g Se/ha after each cut, and (4) as 4 g Se after...

  10. Impact of Selenium Supplementation on Growth and Selenium Accumulation on Spinach (Spinacia oleracea L. Plants

    Directory of Open Access Journals (Sweden)

    Azadeh SAFFARYAZDI

    2012-11-01

    Full Text Available Selenium (Se has been proved to be an essential element for humans and animals. However, less is known about its effects on plants. A hydroponic experiment was carried out to investigate the effects of selenium on growth, selenium accumulation and some physiological characteristics of spinach (Spinacia oleracea L. cv. Missouri plants. Plants were grown in Hoagland nutrient solution amended with sodium selenite at 0 (control, 1, 2, 4, 6 and 10 mg.L-1 for 28 days. Growth parameters like shoot and root fresh weight, shoot and root dry weight, total dry weight, shoot and root length increased by 17, 15, 38, 19, 18 and 34 percent in response to the lowest concentration of Se (1 mg L-1, respectively over control. However, application of higher Se concentrations reduced these parameters as compared to control. Selenium up to 1 mg L-1 enhanced the levels of chlorophyll a and chlorophyll b by 87 and 165 percent, respectively, while higher levels of Se exert toxic effects. Total phenolic compounds in leaves increased directly by increasing the level of Se and plants treated with 10 mg. L-1 Se had the highest values. Selenium, sodium and calcium content increased, while potassium content decreased, by increasing selenium treatments. The highest amounts of Se in shoots (3.89 mg g-1 DW and roots (4.27 mg g-1 DW were obtained for the highest concentration of Se (10 mg L-1. The present results suggested the beneficial effects of Se on spinach growth and also its contribute ion to improving the nutritional value of spinach for livestock and human nutrition.

  11. Impact of Selenium Supplementation on Growth and Selenium Accumulation on Spinach (Spinacia oleracea L. Plants

    Directory of Open Access Journals (Sweden)

    Azadeh SAFFARYAZDI

    2012-11-01

    Full Text Available Selenium (Se has been proved to be an essential element for humans and animals. However, less is known about its effects on plants. A hydroponic experiment was carried out to investigate the effects of selenium on growth, selenium accumulation and some physiological characteristics of spinach (Spinacia oleracea L. cv. �Missouri� plants. Plants were grown in Hoagland nutrient solution amended with sodium selenite at 0 (control, 1, 2, 4, 6 and 10 mg.L-1 for 28 days. Growth parameters like shoot and root fresh weight, shoot and root dry weight, total dry weight, shoot and root length increased by 17, 15, 38, 19, 18 and 34 percent in response to the lowest concentration of Se (1 mg L-1, respectively over control. However, application of higher Se concentrations reduced these parameters as compared to control. Selenium up to 1 mg L-1 enhanced the levels of chlorophyll a and chlorophyll b by 87 and 165 percent, respectively, while higher levels of Se exert toxic effects. Total phenolic compounds in leaves increased directly by increasing the level of Se and plants treated with 10 mg. L-1 Se had the highest values. Selenium, sodium and calcium content increased, while potassium content decreased, by increasing selenium treatments. The highest amounts of Se in shoots (3.89 mg g-1 DW and roots (4.27 mg g-1 DW were obtained for the highest concentration of Se (10 mg L-1. The present results suggested the beneficial effects of Se on spinach growth and also its contribute ion to improving the nutritional value of spinach for livestock and human nutrition.

  12. Sulfur and selenium isotope separation by distillation

    International Nuclear Information System (INIS)

    Mills, T. R.; McInteer, B. B.; Montoya, J. G.

    1988-01-01

    Sulfur and selenium isotopes are used for labeled compounds and as precursors for radioisotope production; however, both limited availability and high costs are problems. A new method is needed for large-scale separation of these isotopes. Experimental distillation columns were used to measure isotopic separations for sulfur and selenium compounds. The maximum total isotope separation of 32 S vs. 34 S were 1.127 for H 2 S, 1.048 for COS, 0.838 for SF 4 , and 1.058 for CH 3 SH. Relative volatilities of 32 S vs. 34 S are 1.0006 for COS and 0.9976 for SF 4 . There is a reverse isotope effect for carbon in COS. No isotopic separation was observed for dimethyl selenide. The lower mass selenium isotopes in H 2 Se are more volatile. Distillation is a promising method for separating sulfur isotopes on a production scale. Existing distillation technology produced separated isotopes with an effect similar to that found for sulfur in SF 4 . 8 refs., 2 tabs

  13. Sulfur and selenium isotope separation by distillation

    International Nuclear Information System (INIS)

    Mills, T.R.; McInteer, B.B.; Montoya, J.G.

    1989-01-01

    Sulfur and selenium isotopes are used for labeled compounds and as precursors for radioisotope production; however, both limited availability and high costs are problems. A new method is needed for large-scale separation of theses isotopes. Experimental distillation columns were used to measure isotopic separations for sulfur and selenium compounds. The maximum total isotope separations of 32 S vs. 34 S were 1.127 for H 2 S, 1.048 for COS, 0.838 for SF 4 , and 1.058 for CH 3 SH. Relative volatilities of 32 S and 34 S are 1.0006 for COS and 0.9976 for SF 4 . There is a reverse isotope effect for carbon in COS. No isotopic separation was observed for dimethyl selenide. The lower mass selenium isotopes in H 2 Se are more volatile. Distillation is a promising method for separating sulfur isotopes on a production scale. Existing distillation technology produces separated isotopes with an effect similar to that found for sulfur in SF 4 . (author). 8 refs.; 2 tabs

  14. Epigallocatechin-3-gallate enhances key enzymatic activities of hepatic thioredoxin and glutathione systems in selenium-optimal mice but activates hepatic Nrf2 responses in selenium-deficient mice

    Directory of Open Access Journals (Sweden)

    Ruixia Dong

    2016-12-01

    Full Text Available Selenium participates in the antioxidant defense mainly through a class of selenoproteins, including thioredoxin reductase. Epigallocatechin-3-gallate (EGCG is the most abundant and biologically active catechin in green tea. Depending upon the dose and biological systems, EGCG may function either as an antioxidant or as an inducer of antioxidant defense via its pro-oxidant action or other unidentified mechanisms. By manipulating the selenium status, the present study investigated the interactions of EGCG with antioxidant defense systems including the thioredoxin system comprising of thioredoxin and thioredoxin reductase, the glutathione system comprising of glutathione and glutathione reductase coupled with glutaredoxin, and the Nrf2 system. In selenium-optimal mice, EGCG increased hepatic activities of thioredoxin reductase, glutathione reductase and glutaredoxin. These effects of EGCG appeared to be not due to overt pro-oxidant action because melatonin, a powerful antioxidant, did not influence the increase. However, in selenium-deficient mice, with low basal levels of thioredoxin reductase 1, the same dose of EGCG did not elevate the above-mentioned enzymes; intriguingly EGCG in turn activated hepatic Nrf2 response, leading to increased heme oxygenase 1 and NAD(PH:quinone oxidoreductase 1 protein levels and thioredoxin activity. Overall, the present work reveals that EGCG is a robust inducer of the Nrf2 system only in selenium-deficient conditions. Under normal physiological conditions, in selenium-optimal mice, thioredoxin and glutathione systems serve as the first line defense systems against the stress induced by high doses of EGCG, sparing the activation of the Nrf2 system.

  15. A perillyl alcohol-conjugated analog of 3-bromopyruvate without cellular uptake dependency on monocarboxylate transporter 1 and with activity in 3-BP-resistant tumor cells.

    Science.gov (United States)

    Chen, Thomas C; Yu, Jiali; Nouri Nigjeh, Eslam; Wang, Weijun; Myint, Phyo Thazin; Zandi, Ebrahim; Hofman, Florence M; Schönthal, Axel H

    2017-08-01

    The anticancer agent 3-bromopyruvate (3-BP) is viewed as a glycolytic inhibitor that preferentially kills glycolytic cancer cells through energy depletion. However, its cytotoxic activity is dependent on cellular drug import through transmembrane monocarboxylate transporter 1 (MCT-1), which restricts its anticancer potential to MCT-1-positive tumor cells. We created and characterized an MCT-1-independent analog of 3-BP, called NEO218. NEO218 was synthesized by covalently conjugating 3-BP to perillyl alcohol (POH), a natural monoterpene. The responses of various tumor cell lines to treatment with either compound were characterized in the presence or absence of supplemental pyruvate or antioxidants N-acetyl-cysteine (NAC) and glutathione (GSH). Drug effects on glyceraldehyde 3-phosphate dehydrogenase (GAPDH) enzyme activity were investigated by mass spectrometric analysis. The development of 3-BP resistance was investigated in MCT-1-positive HCT116 colon carcinoma cells in vitro. Our results show that NEO218: (i) pyruvylated GAPDH on all 4 of its cysteine residues and shut down enzymatic activity; (ii) severely lowered cellular ATP content below life-sustaining levels, and (iii) triggered rapid necrosis. Intriguingly, supplemental antioxidants effectively prevented cytotoxic activity of NEO218 as well as 3-BP, but supplemental pyruvate powerfully protected cells only from 3-BP, not from NEO218. Unlike 3-BP, NEO218 exerted its potent cytotoxic activity irrespective of cellular MCT-1 status. Treatment of HCT116 cells with 3-BP resulted in prompt development of resistance, based on the emergence of MCT-1-negative cells. This was not the case with NEO218, and highly 3-BP-resistant cells remained exquisitely sensitive to NEO218. Thus, our study identifies a mechanism by which tumor cells develop rapid resistance to 3-BP, and presents NEO218 as a superior agent not subject to this cellular defense. Furthermore, our results offer alternative interpretations of previously

  16. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... for a thyroid scan is 30 minutes or less. Thyroid Uptake You will be given radioactive iodine ( ... for each thyroid uptake is five minutes or less. top of page What will I experience during ...

  17. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... uptake measurements are obtained at different times. For example, you may have uptake measurements at four to ... medicine procedures can be time consuming. It can take several hours to days for the radiotracer to ...

  18. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... Scan and Uptake Thyroid scan and uptake uses small amounts of radioactive materials called radiotracers, a special ... is a branch of medical imaging that uses small amounts of radioactive material to diagnose and determine ...

  19. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... radioactive iodine uptake test (RAIU) is also known as a thyroid uptake. It is a measurement of ... potential to identify disease in its earliest stages as well as a patient’s immediate response to therapeutic ...

  20. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... known as a thyroid uptake. It is a measurement of thyroid function, but does not involve imaging. ... eating can affect the accuracy of the uptake measurement. Jewelry and other metallic accessories should be left ...

  1. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... Uptake? A thyroid scan is a type of nuclear medicine imaging. The radioactive iodine uptake test (RAIU) ... of thyroid function, but does not involve imaging. Nuclear medicine is a branch of medical imaging that ...

  2. Selenium speciation influences bioaccumulation in Limnodynastes peronii tadpoles

    Energy Technology Data Exchange (ETDEWEB)

    Lanctôt, C.M., E-mail: c.lanctot@griffith.edu.au [Central Queensland University, School of Medical and Applied Sciences, Gladstone, QLD 4680 (Australia); Australian Rivers Institute, School of Environment, Griffith University, Southport, QLD 4215 (Australia); Melvin, S.D., E-mail: s.melvin@griffith.edu.au [Australian Rivers Institute, School of Environment, Griffith University, Southport, QLD 4215 (Australia); Cresswell, T., E-mail: tom.cresswell@ansto.gov.au [Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia)

    2017-06-15

    Highlights: • Differences in SeIV and SeVI bioaccumulation and biodistribution were assessed. • Limnodynastes peronii tadpoles accumulated more selenite than selenate. • Selenium depuration kinetics was similar for both forms. • Tadpoles accumulated Se predominantly in the digestive and excretory organs. - Abstract: Despite being essential for animal health and fitness, Se has a relatively narrow range between deficiency and toxicity, and excess Se can cause a variety of adverse effects in aquatic organisms. Amphibians are particularly vulnerable to contaminants during larval aquatic life stage, because they can accumulate toxic ions through various routes including skin, gills, lungs and digestive tract. Few attempts have been made to understand the tissue-specific accumulation of trace elements, including the impacts of chemical speciation in developing amphibian larvae. We used radiolabelled {sup 75}Se to explore the biokinetics and tissue distributions of the two dominant forms occurring in surface waters, selenite (SeIV) and selenate (SeVI). Tadpoles of the native Australian frog Limnodynastes peronii were exposed to Se in both forms, and live-animal gamma spectroscopy was used to track accumulation and retention over time. Tissue biodistributions were also quantified at the end of the uptake and depuration phases. Results showed the bioconcentration of SeIV to be 3 times greater compared to SeVI, but rates of elimination were similar for both forms. This suggests a change of Se speciation within the organism prior to excretion. Depuration kinetics were best described by a one-phase exponential decay model, and tadpoles retained approximately 19% of the accumulated Se after 12 days of depuration in clean water. Selenium bioaccumulation was greatest in digestive and excretory organs, as well as the eye, which may directly relate to previously reported Se-induced impairments. Results demonstrate how the use of radiotracing techniques can significantly

  3. Selenium inhibits UV-light-induced skin carcinogenesis in hairless mice

    International Nuclear Information System (INIS)

    Overvad, Kim; Thorling, E.B.; Bjerring, Peter; Ebbesen, Peter

    1985-01-01

    Female hairless inbred hr/hr mice were exposed to UV-B irradiation from Philips TL 40W/13 fluorescent tubes. Fractionated irradiation, given as single daily doses 5 days a week, was gradually increased from 0.04 to 0.4 J/cm 2 over 2 weeks. Irradiation at 0.4 J/cm 2 was continued for 20 weeks. Selenium supplementation given as sodium selenite in the drinking water at 2, 4 and 8 mg/l began 3 weeks before UV-irradiation and continued thereafter. Development of skin tumors was followed by weekly examinations. Statistical analyses revealed significant dose-dependent selenium-mediated protection against UV-light-induced skin cancer. Leukemia developed in 5 of 150 UV-irradiated mice as opposed to none in a group of 60 unirradiated mice. (author)

  4. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... for a thyroid scan is 30 minutes or less. Thyroid Uptake You will be given radioactive iodine (I-123 or I-131) in liquid or capsule form to swallow. The thyroid uptake will begin several hours to 24 hours later. Often, two separate uptake ...

  5. 21 CFR 522.2100 - Selenium, vitamin E injection.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Selenium, vitamin E injection. 522.2100 Section... § 522.2100 Selenium, vitamin E injection. (a)(1) Specifications. The drug is an emulsion containing in... of vitamin E (68 I.U.) (as d-alpha tocopheryl acetate). (2) Sponsor. See No. 000061 in § 510.600(c...

  6. Low blood selenium: A probable factor in essential hypertension ...

    African Journals Online (AJOL)

    Blood selenium (BSe) and plasma glutathione peroxidase (plGSH-Px) activity were measured as biochemical markers of selenium status of 103 hypertensive patients (44 males and 59 females) and 88 apparently healthy subjects (40 males and 48 females). The hypertensive patients were classified into three groups based ...

  7. Enrichment of African catfish with functional selenium originating from garlic

    NARCIS (Netherlands)

    Schram, E.; Pedrero, Z.; Camara, C.; Heul, van der J.W.; Luten, J.B.

    2008-01-01

    We wanted to create functional seafood with high concentrations of organic selenium (seleno-methyl-selenocysteine and ¿-glutamyl-seleno-methyl-selenocysteine) with anti-carcinogenic properties for human consumers. Garlic containing high concentrations of these organic selenium compounds was used as

  8. Relationship between soil contents and plasma levels of selenium ...

    African Journals Online (AJOL)

    The soil contents of trace elements selenium, chromium and manganese were measured to determine their impact on the plasma levels of 160 healthy adult Nigerians in five different experimental locations in Cross River and Akwa Ibom States, South - South Nigeria. The mean (±SD) soil selenium, chromium and ...

  9. Aquatic selenium pollution is a global environmental safety issue

    Science.gov (United States)

    A. Dennis Lemly

    2004-01-01

    Selenium pollution is a worldwide phenomenon and is associated with a broad spectrum of human activities, ranging from the most basic agricultural practices to the most high-tech industrial processes. Consequently, selenium contamination of aquatic habitats can take place in urban, suburban, and rural settings alike--from mountains to plains, from deserts to...

  10. Selenium enrichment pattern in flowering Chinese cabbage, cabbage and asparagus

    NARCIS (Netherlands)

    Mo, H.Z.; Yang Zhu, Yang; Zhang, M.

    2006-01-01

    CONCLUSIONS - Within a certain range, selenium accumulation in three studied vegetables was lineally correlated with spraying concentration. However, a too high concentration caused the reduction of vegetable output and damage in quality. - Twice spraying with lower concentration of selenium was a

  11. Molecular neutron activation analysis of selenium metabolites in urine

    International Nuclear Information System (INIS)

    Blotcky, A.J.; Hansen, G.T.; Ebrahim, A.; Rack, E.P.

    1988-01-01

    Because of the biological importance of selenium in living biological systems, various analytical procedures have been developed for analysis of microquantities of elemental selenium, in urine, serum, and tissue. For urine selenium, these include atomic absorption spectrometry, solution absorption spectrometry, solution fluorescence spectrometry, volumetry, and neutron activation analysis. Of equal or greater importance is the determination of selenium metabolites present in urine for the purpose of describing the biological pathways for the metabolism of selenium in living organisms. While it is known from previous studies that trimethylselenonium ion (TMSe) is a major metabolite in urine, probably the result of reduction and methylation reaction, there are no definitive results in the literature indicating the nature or quantity of other selenium metabolic products in urine. Early techniques to measure TMSe levels in urine involved the use of the radiotracer 75 Se. Because of the long biological half-life of selenium and issues of radiation exposure, its use in humans has been limited. In this paper, the authors report the experimental procedure for the determination of total selenoamino acid concentration in urine and present total selenium values, and, where applicable, TMSe, SeO 2- 3 , and total selenoamino acid concentrations in the urine of normal and diseased subjects

  12. Preliminary study of daily selenium level intake in algeria

    International Nuclear Information System (INIS)

    Benamar, M.A.; Tchantchane, A.; Tobbeche, S.

    1992-10-01

    The amount of selenium in onions and potatoes was measured by Pixe (particle Induced X-ray Emission) in the Nuclear Center at Bordeaux-Gradignan (CNBG). The goal of this work is to investigate the level of selenium concentration that may be consumed by different class of people

  13. Genome-wide association study of serum selenium concentrations

    DEFF Research Database (Denmark)

    Gong, Jian; Hsu, Li; Harrison, Tabitha

    2013-01-01

    Selenium is an essential trace element and circulating selenium concentrations have been associated with a wide range of diseases. Candidate gene studies suggest that circulating selenium concentrations may be impacted by genetic variation; however, no study has comprehensively investigated...... this hypothesis. Therefore, we conducted a two-stage genome-wide association study to identify genetic variants associated with serum selenium concentrations in 1203 European descents from two cohorts: the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening and the Women’s Health Initiative (WHI). We...... tested association between 2,474,333 single nucleotide polymorphisms (SNPs) and serum selenium concentrations using linear regression models. In the first stage (PLCO) 41 SNPs clustered in 15 regions had p

  14. Reproduction in eastern screech-owls fed selenium

    Science.gov (United States)

    Wiemeyer, Stanley N.; Hoffman, D.J.

    1996-01-01

    Raptors are occasionally exposed to excessive selenium from contaminated prey, but the effects of this exposure on reproduction are unknown. Therefore, we fed captive eastern screech-owls (Otus asio) diets containing 0, 4.4, or 13.2 ppm (wet wt) added selenium in the form of seleno-DL-methionine. Adult mass at sacrifice and reproductive success of birds receiving 13.2 ppm selenium were depressed (P biochemistries indicative of oxidative stress were affected (P < 0.05) in 5-day-old nestlings from parents fed 4.4 ppm selenium and included a 19% increase in glutathione peroxidase activity, a 43% increase in the ratio of oxidized glutathione (GSSG) to reduced glutathione (GSH), and a 17% increase in lipid peroxidation. Based on reproductive effects relative to dietary exposure, sensitivity of eastern screech-owls to selenium was similar to that of black-crowned night-herons (Nycticorax nycticorax) but less than that of mallards (Anas platyrhynchos).

  15. Recent Microextraction Techniques for Determination and Chemical Speciation of Selenium

    Directory of Open Access Journals (Sweden)

    Ibrahim Ahmed S. A.

    2017-05-01

    Full Text Available Research designed to improve extraction has led to the development of microextraction techniques (ME, which involve simple, low cost, and effective preconcentrationof analytes in various matrices. This review is concerned with the principles and theoretical background of ME, as well as the development of applications for selenium analysis during the period from 2008 to 2016. Among all ME, dispersive liquid-liquid microextraction was found to be most favorable for selenium. On the other hand, atomic absorption spectrometry was the most frequently used instrumentation. Selenium ME have rarely been coupled to spectrophotometry and X-ray spectrophotometry methods, and there is no published application of ME with electrochemical techniques. We strongly support the idea of using a double preconcentration process, which consists of microextraction prior to preconcentration, followed by selenium determination using cathodic stripping voltammetry (ME-CSV. More attention should focus on the development of accurate, precise, and green methods for selenium analysis.

  16. Menadione inhibits MIBG uptake in two neuroendocrine cell lines

    NARCIS (Netherlands)

    Cornelissen, J.; Tytgat, G. A.; van den Brug, M.; van Kuilenburg, A. B.; Voûte, P. A.; van Gennip, A. H.

    1997-01-01

    In this paper we report on our studies of the effect of menadione on the uptake of MIBG in the neuroendocrine cell lines PC12 and SK-N-SH. Menadione inhibits the uptake of MIBG in both cell lines in a dose-dependent manner. Inhibition of MIBG uptake is most pronounced in the PC12 cell line.

  17. Selenium fertilization on lentil (Lens culinaris Medikus) grain yield, seed selenium concentration, and antioxidant activity

    Science.gov (United States)

    Selenium (Se) is an essential element for mammals but has not been considered as an essential element for higher plants. Lentil (Lens culinaris Medik.) is a cool season food legume rich in protein and a range of micronutrients including minerals (iron and zinc), folates, and carotenoids. The objecti...

  18. Selenium content in wheat and estimation of the selenium daily intake in different regions of Algeria

    International Nuclear Information System (INIS)

    Beladel, B.; Nedjimi, B.; Mansouri, A.; Tahtat, D.; Belamri, M.; Tchanchane, A.; Khelfaoui, F.; Benamar, M.E.A.

    2013-01-01

    In this work, we have measured the selenium content in wheat produced locally in eight different regions of Algeria from east to west, and we have established the annual consumption of selenium for five socio-professional categories. Instrumental neutron activation analysis is used. The selenium levels in wheat samples varied from 21 (Tiaret) to 153 μg/kg (Khroub), with a mean value about 52 μg/kg. The mean of selenium daily consumption from ingestion of wheat per person in the eight regions varied from 32 to 52 μg/day which is close to the minimal FAO recommendation. - Highlights: ► Cereals and cereal products represent a staple food in Algeria. ► The objective of this study is to determine the Se intake in wheat produced locally. ► The concentration of Se in the wheat reflects the level of the Se in regional soils. ► The mean of Se daily consumption is close to the minimal WHO/FAO recommendation.

  19. Total selenium and selenium species in irrigation drain inflows to the Salton Sea, California, October 2008 and January 2009

    Science.gov (United States)

    May, Thomas W.; Walther, Michael J.; Saiki, Michael K.; Brumbaugh, William G.

    2009-01-01

    This report presents the results for two sampling periods (October 2008 and January 2009) during a 4-year monitoring program to characterize selenium concentrations in selected irrigation drains flowing into the Salton Sea, California. Total selenium, selenium species (dissolved selenite, selenate, organoselenium), and total suspended solids were determined in water samples. Total selenium also was determined in water column particulates and in sediment, detritus, and biota that included algae, plankton, midge larvae (family, Chironomidae), and two fish species (western mosquitofish, Gambusia affinis, and sailfin molly, Poecilia latipinna). In addition, sediments were analyzed for percent total organic carbon and particle size. Mean total selenium concentrations in water for both sampling periods ranged from 1.00 to 33.6 micrograms per liter, predominately as selenate, which is typical of waters where selenium is leached out of selenium-containing marine shales and associated soils under alkaline and oxidizing conditions. Total selenium concentrations (micrograms per gram dry weight) ranged as follows: algae, 1.52 to 8.26; plankton, 0.79 to 3.66; midges, 2.68 to 50.6; fish, 3.09 to 30.4; detritus, 1.78 to 58.0; and sediment, 0.42 to 10.0.

  20. Total selenium and selenium species in irrigation drain inflows to the Salton Sea, California, April and July 2008

    Science.gov (United States)

    May, Thomas W.; Walther, Michael J.; Saiki, Michael K.; Brumbaugh, William G.

    2009-01-01

    This report presents the results for two sampling periods (April 2008 and July 2008) during a 4-year monitoring program to characterize selenium concentrations in selected irrigation drains flowing into the Salton Sea, California. Total selenium, selenium species (dissolved selenite, selenate, organoselenium), and total suspended solids were determined in water samples and total selenium was determined in water column particulates and in sediment, detritus, and biota that included algae, plankton, midge larvae (family, Chironomidae), and two fish species - western mosquitofish (Gambusia affinis) and sailfin molly (Poecilia latipinna). In addition, sediments were analyzed for percent total organic carbon and particle size. Mean total selenium concentrations in water for both sampling periods ranged from 1.93 to 44.2 micrograms per liter, predominately as selenate, which is typical of waters where selenium is leached out of selenium-containing marine shales and associated soils under alkaline and oxidizing conditions. Total selenium concentrations (micrograms per gram dry weight) ranged as follows: algae, 0.75 to 3.39; plankton, 0.88 to 4.03; midges, 2.52 to 44.3; fish, 3.37 to 18.9; detritus, 1.11 to 13.6; sediment, 0.11 to 8.93.

  1. Total selenium and selenium species in irrigation drain inflows to the Salton Sea, California, October 2007 and January 2008

    Science.gov (United States)

    May, Thomas W.; Walther, Michael J.; Saiki, Michael K.; Brumbaugh, William G.

    2008-01-01

    This report presents the results for two sampling periods (October 2007 and January 2008) during a 4-year monitoring program to characterize selenium concentrations in selected irrigation drains flowing into the Salton Sea, California. Total selenium, selenium species (selenite, selenate, organoselenium), and total suspended solids were determined in water samples, and total selenium was determined in sediment, detritus, and biota that included algae, plankton, midge larvae (family, Chironomidae), and two fish species?western mosquitofish (Gambusia affinis) and sailfin molly (Poecilia latipinna). In addition, sediments were analyzed for percent total organic carbon and particle size. Mean total selenium concentrations in water for both sampling periods ranged from 0.97 to 64.5 micrograms per liter, predominately as selenate, which is typical of waters where selenium is leached out of selenium-containing marine shales and associated soils under alkaline and oxidizing conditions. Total selenium concentrations (micrograms per gram dry weight) ranged as follows: algae, 0.95 to 5.99; plankton, 0.15 to 19.3; midges, 1.39 to 15.4; fish, 3.71 to 25.1; detritus, 0.85 to 21.7; sediment, 0.32 to 7.28.

  2. SELENIUM SUBSTITUTION – EFFECT ON THYROID FUNCTION

    Directory of Open Access Journals (Sweden)

    Milica Pešić

    2015-03-01

    Full Text Available The understanding of the essential role of selenium (Se in thyroid hormone synthesis, metabolism and action, as well as normal thyroid function, increased during the past decades. The thyroid gland is among the human tissues with the highest Se content per mas unit, similar to other endocrine organs and brain. Biological actions of Se are mediated, in most cases, through the expression of at least 30 selenoproteins coded by 25 selenoprotein genes in the human. Via the selenoproteins, selenium can influence the cell function through antioxidant activites, modifying redox status and thyroid hormone synthesis and metabolism. Selenoproteins iodothyronine deiodinases are present in most tissues and have a role to increase the production of bioactive tri-iodothyronine. Futhermore, Se has been shown to be important in the regulation of immune function. Se deficiency is accompained by the loss of immune competence. The links between Se deficiency, altered immune function and inflamation have prompted studies in humans to examine if Se suplementation can modify auto-antibodies production in patients with chronic autoimmune thyroiditis. Until now, several randomised prospective clinical trials have been performed in patients with established chronic autoimmune thyrioditis. The clinical endpoint of each study was the decrease in TPO antibodies concentration after 3-12 months of treatment. Ussualy, the dosage of daily Se supplementation was 200µg. Selenium suplemetation had no significant effect on the concentration of TSH or thyroid hormone concentrations. These studies indicate that Se treatment result in reduced inflammatory activity, but it does not cure chronc autoimmune process.

  3. Biogenic selenium nanoparticles induce ROS-mediated necroptosis in PC-3 cancer cells through TNF activation.

    Science.gov (United States)

    Sonkusre, Praveen; Cameotra, Swaranjit Singh

    2017-06-07

    Selenium is well documented to inhibit cancer at higher doses; however, the mechanism behind this inhibition varies widely depending on the cell type and selenium species. Previously, we have demonstrated that Bacillus licheniformis JS2 derived biogenic selenium nanoparticles (SeNPs) induce non-apoptotic cell death in prostate adenocarcinoma cell line, PC-3, at a minimal concentration of 2 µg Se/ml, without causing toxicity to the primary cells. However, the mechanism behind its anticancer activity was elusive. Our results have shown that these SeNPs at a concentration of 2 µg Se/ml were able to induce reactive oxygen species (ROS) mediated necroptosis in PC-3 cells by gaining cellular internalization. Real-time qPCR analysis showed increased expression of necroptosis associated tumor necrotic factor (TNF) and interferon regulatory factor 1 (IRF1). An increased expression of RIP1 protein was also observed at the translational level upon SeNP treatment. Moreover, the cell viability was significantly increased in the presence of necroptosis inhibitor, Necrostatin-1. Data suggest that our biogenic SeNPs induce cell death in PC-3 cells by the ROS-mediated activation of necroptosis, independent to RIP3 and MLKL, regulated by a RIP1 kinase.

  4. Facile Synthesis and Optical Properties of Small Selenium Nanocrystals and Nanorods

    Science.gov (United States)

    Jiang, Fengrui; Cai, Weiquan; Tan, Guolong

    2017-06-01

    Selenium is an important element for human's health, small size is very helpful for Se nanoparticles to be absorbed by human's body. Here, we present a facile approach to fabrication of small selenium nanoparticles (Nano-Se) as well as nanorods by dissolving sodium selenite (Na2SeO3) in glycerin and using glucose as the reduction agent. The as-prepared selenium nanoparticles have been characterized by X-ray diffraction (XRD), UV-Vis absorption spectroscopy and high resolution transmission electron microscope (HRTEM). The morphology of small Se nanoparticles and nanorods have been demonstrated in the TEM images. A small amount of 3-mercaptoproprionic acid (MPA) and glycerin play a key role on controlling the particle size and stabilize the dispersion of Nano-Se in the glycerin solution. In this way, we obtained very small and uniform Se nanoparticles; whose size ranges from 2 to 6 nm. This dimension is much smaller than the best value (>20 nm) ever reported in the literatures. Strong quantum confinement effect has been observed upon the size-dependent optical spectrum of these Se nanoparticles.

  5. Chemoprevention Trial of Selenium and Prostate Cancer

    Science.gov (United States)

    1999-10-01

    use in slowing the growth of prostate cancer. This study will not use selenium as a treatment option for the possible cure of prostate cancer...slice or 1 piece o Q rj Chocolate candy and candy bars o o o o o Q o o c 1 small bar or 1 ounce ._> . ■Q Hard candy, jam, jelly, honey , or...your stream? Have you noticed any stress incontinence? (leakage of urine when sneezing, coughing or laughing) _1 -NOT AT ALL _ 2-LESS THAN 1 IN 5

  6. Preliminary Study on the Standard of Selenium Content in Agricultural Products

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhi-yuan; YOU Yong; GUO Qing-quan; WANG Yong-hong; DENG Shi-lin

    2012-01-01

    With the improvement of living standards, people pay more attention to the agricultural products with health protection function, and the selenium-rich agricultural products attract more and more consumers. The main biological role of selenium is to resist oxidation and inflammatory response, mainly focusing on resisting aging, preventing cardiovascular disease, protecting eyesight, counteracting or destroying the toxic properties, preventing cancer and thyroid disease. In most areas of China, there is a widespread shortage of selenium, thus producing selenium-rich agricultural products to provide natural selenium-rich health food to the areas in need of selenium, has gradually become a new hot spot of China’s health food industry, but high content of selenium in food is detrimental to human body, even leads to selenium intoxication, and artificially adding inorganic selenium is difficult to guarantee that the selenium content of agricultural products is not exceeded. According to human body’s daily demand for selenium in dietetics and the content of selenium in agricultural products in the Chinese food composition table, we put forward the recommendations on the standard of selenium in agricultural products, in order to provide the basis for China to formulate the health standard of selenium content in selenium-rich agricultural products.

  7. Investigations of the Connection between Vitamin E Deficiency and the Selenium Content in Animal Organs

    Energy Technology Data Exchange (ETDEWEB)

    Duftschmid, K. E. [Reaktor-Zentrum Seibersdorf (Austria); Leibetseder, J. [Tierarztliche Hochschule, Vienna (Austria)

    1967-10-15

    -E deficient animals contained significantly more Se than those from the control group, agreeing well with the known therapeutic success of Se applications in muscular dystrophy. Also, the gonads, which are known to be strongly dependent on vitamin E, showed a high Se content which for the ovary was a function of the vitamin E uptake. Further details of the Se vitamin E mechanism are described in the paper. It was shown that the large number of analyses necessary for obtaining statistically well-founded results can be carried out in a reasonable time by the use of very short-lived radioisotopes, as described in the paper. (author)

  8. A Study on Pancreas Scanning with Selenium{sup 75}-Selenomethionine

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hyun Chan; Toh, Sang Hee; Ra, Woo Youn; Suh, Chul Sung [Presbyterian Hospital, Deagu (Korea, Republic of)

    1968-03-15

    Radiographic visualization of the pancreas is a difficult problem, but the direct visualization of the pancreas is possible by the injection of the amino-acid methionine tagged with selenium{sup 75} (Se{sup 75}). In order to know the diagnostic value of pancreas scanning, scans were performed on 23 cases using selenium{sup 75}-Selenomethionine. These cases were also given egg white, probanthine and morphine. 1) Good visualization of the pancreas scanning was observed on 19 cases, presumably with normal pancreas. 2) A case which showed diffusely decreased uptake on pancreas scanning was proven to have lesions in the bile duct and the gall bladder. 3) Of those two cases which showed localized cold area, one had pancreas cyst and the other one was not explored. 4) A case which showed no visualization of the pancreas was proven to have pancreatic carcinoma. 5) Two cases which showed widened duodenal loop by upper gastro-intestinal series revealed normal pancreas scanning, and no pancreatic disease was found in both cases.

  9. The application of Fe–Mn hydrous oxides based adsorbent for removing selenium species from water

    KAUST Repository

    Szlachta, Małgorzata

    2013-02-01

    In this study, the adsorptive removal of selenium(IV) and selenium(VI) from water by a newly developed ion exchange adsorbent, based on Fe(III) and Mn(III) hydrous oxides, was examined. This study was conducted to determine the influence of various operating parameters, such as initial anion concentration, contact time, adsorbent dose, pH, solution temperature, and the presence of competitive anions, on the treatment performance. The high Se(IV) adsorptive capacity of the adsorbent (up to 41.02. mg/g at pH 4) was due to its high affinity for selenite, as reflected in the fast rate of uptake (batch studies) and an efficient long-term removal (column experiments). Although adsorption of anions traditionally decreases as pH increases, the mixed adsorbent was capable of purifying large volumes of Se(IV)-containing water (at pH 7) to reach concentrations lower than 10 μg/L, which meets the European Commission standards. The presence of sulphate and carbonate did not influence Se(IV) adsorption. However, high phosphate and silicate concentrations may have decreased the removal efficiency of Se(IV). Data from the batch and column adsorption experiments were fitted with a number of approved models, which revealed the adsorption mechanism and allowed for a comparison of the results. © 2012 Elsevier B.V.

  10. Serum selenium level and risk of lung cancer mortality

    DEFF Research Database (Denmark)

    Suadicani, P; Hein, H O; Gyntelberg, F

    2011-01-01

    Serum selenium has been implicated as a risk factor for lung cancer, but the issue remains unsettled. We tested in a cohort of 3,333 males aged 53 to 74 years the hypothesis that a low serum selenium would be associated with an increased risk of lung cancer mortality.During 16 years, 167 subjects(5.......1%) died from lung cancer; 48 males (5.0%) among males with low serum selenium, 0.4-1.0 μmol·l(-1), n=965, 57 males (5.1%) among males with medium serum selenium, 1.1-1.2 μmol·l(-1), n=1,141, and 62 males (5.1%) among males with high serum selenium, 1.3-3.0 μmol·l(-1), n=1,227. After adjustment for age...... (chronic bronchitis and peak flow), referencing the lowest level of serum selenium HRs were 1.17(0.79-1.75), and 1.43(0.96-2.14), respectively. Among heavy smokers a high serum selenium was associated with a significantly increased risk of lung cancer mortality after taking into account all potential...

  11. COMPARISON OF DETERMINING METHODS REGARDING SELENIUM CONTENT IN WHEAT PLANT

    Directory of Open Access Journals (Sweden)

    Mihaela Monica Stanciu-Burileanu

    2010-01-01

    Full Text Available As a metallic chemical element, selenium has received special attention from biologists because of its dual role as a trace element essential and toxic. The important part of enzymes that protect cells against the effects of free radicals that are produced during normal metabolism of oxygen. Also, selenium is essential for normal immune system and thyroid gland, The concentration of selenium in the soil, which varies by region, determines the default concentration of selenium in plants growing in the soil.The purpose of this paper is to present methods of comparison, dry oxidation at 450ºC and wet digestion – digestion with acids in high concentrations at microwave system digestion, for determining selenium content from wheat samples collected from the south-eastern part of Romania, namely Bărăgan Plain and Central-South Dobrogea. Selenium separation and dosage from obtained extracts carry out through a selective hydride generation atomic absorption spectrophotometry. With the software SURFER, a tendency map of selenium distribution was drawn.

  12. Genome-Wide Association Study of Serum Selenium Concentrations

    Directory of Open Access Journals (Sweden)

    Ulrike Peters

    2013-05-01

    Full Text Available Selenium is an essential trace element and circulating selenium concentrations have been associated with a wide range of diseases. Candidate gene studies suggest that circulating selenium concentrations may be impacted by genetic variation; however, no study has comprehensively investigated this hypothesis. Therefore, we conducted a two-stage genome-wide association study to identify genetic variants associated with serum selenium concentrations in 1203 European descents from two cohorts: the Prostate, Lung, Colorectal, and Ovarian (PLCO Cancer Screening and the Women’s Health Initiative (WHI. We tested association between 2,474,333 single nucleotide polymorphisms (SNPs and serum selenium concentrations using linear regression models. In the first stage (PLCO 41 SNPs clustered in 15 regions had p < 1 × 10−5. None of these 41 SNPs reached the significant threshold (p = 0.05/15 regions = 0.003 in the second stage (WHI. Three SNPs had p < 0.05 in the second stage (rs1395479 and rs1506807 in 4q34.3/AGA-NEIL3; and rs891684 in 17q24.3/SLC39A11 and had p between 2.62 × 10−7 and 4.04 × 10−7 in the combined analysis (PLCO + WHI. Additional studies are needed to replicate these findings. Identification of genetic variation that impacts selenium concentrations may contribute to a better understanding of which genes regulate circulating selenium concentrations.

  13. Effects of selenium supplementation on four agricultural crops.

    Science.gov (United States)

    Carvalho, Kathleen M; Gallardo-Williams, Maria T; Benson, Robert F; Martin, Dean F

    2003-01-29

    Agricultural crops can be used either to remediate selenium-contaminated soils or to increase the daily selenium intake of consumers after soil supplementation using inorganic or organic selenium sources. In this study, four agricultural crops were examined for potential selenium enhancement. Soils containing tomato, strawberry, radish, and lettuce plants were supplemented with either an inorganic or an organic form of selenium. Two different soils, i.e., low Se and high Se containing, were also used. Statistically significant differences in appearance, fruit production, and fresh weights of the fruit produced were studied. Next, the amount of selenium retained in the edible fruits, nonedible plant, and soil for each was analyzed by acid digestion followed by hydride generation atomic absorption analysis. Finally, inhibition effects on the seeds of the agricultural plants were studied. The results show that supplementation with an inorganic form of selenium led to higher retention in the plants, with a maximum of 97.5% retained in the edible portion of lettuce plants.

  14. Selenium Nanoparticles for Stress-Resilient Fish and Livestock

    Science.gov (United States)

    Sarkar, Biplab; Bhattacharjee, Surajit; Daware, Akshay; Tribedi, Prosun; Krishnani, K. K.; Minhas, P. S.

    2015-09-01

    The fisheries and livestock sectors capture the highest share of protein-rich animal food and demonstrate accelerated growth as an agriculture subsidiary. Environmental pollution, climate change, as well as pathogenic invasions exert increasing stress impacts that lead the productivity momentum at a crossroads. Oxidative stress is the most common form of stress phenomenon responsible for the retardation of productivity in fisheries and livestock. Essential micronutrients play a determinant role in combating oxidative stress. Selenium, one of the essential micronutrients, appears as a potent antioxidant with reduced toxicity in its nanoscale form. In the present review, different methods of synthesis and characterization of nanoscale selenium have been discussed. The functional characterization of nano-selenium in terms of its effect on growth patterns, feed digestibility, and reproductive system has been discussed to elucidate the mechanism of action. Moreover, its anti-carcinogenic and antioxidant potentiality, antimicrobial and immunomodulatory efficacy, and fatty acid reduction in liver have been deciphered as the new phenomena of nano-selenium application. Biologically synthesized nano-selenium raises hope for pharmacologically enriched, naturally stable nanoscale selenium with high ecological viability. Hence, nano-selenium can be administered with commercial feeds for improvising stress resilience and productivity of fish and livestock.

  15. Thyroid uptake test

    International Nuclear Information System (INIS)

    Ganatra, R.D.

    1992-01-01

    The uptake of radioiodine by the thyroid gland is altered by the iodine content of diet or drugs. American diet has a high iodine content because each slice of the white bread contains nearly 150μg of iodine due to the bleaching process employed in the production of the bread. This carrier content of iodine reduces the uptake so much, that the normal American uptakes are usually three to four times lower than the uptakes in the developing countries. The other drawback of the thyroid uptake test is that it is affected by the iodine containing drugs. Anti-diarrhoea medications are quire common in the developing countries and many of them contain iodine moiety. Without a reliable drug history, a low thyroid uptake value may lead to a misleading conclusion

  16. Selenium and tellurium as carbon substitutes

    International Nuclear Information System (INIS)

    Knapp, F.F. Jr.

    1980-01-01

    This review has summarized structure-activity studies with 75 Se- and /sup 123m/Te-labeled radiopharmaceuticals in which the selenium or tellurium heteroatom has been inserted between carbon-carbon bonds. The agents that have been investigated in most detail include steroids for adrenal imaging and long-chain fatty acids, and a variety of other unique agents have also been studied. Because of the great versatility of the organic chemistry of selenium and tellurium, there is continuing interest in the preparation of radiopharmaceuticals labeled with 75 Se, 73 Se, and /sup 123m/Te. There are two important factors which will determine the extent of future interest in such agents. These include the necessity of a decrease in the cost of highly enriched 122 Te to make the reactor production of /sup 123m/Te cost effective. In addition, the potential preparation of large amounts of 73 Se should stimulate the development of 73 Se-labeled radiopharmaceuticals

  17. Biofortification and phytoremediation of selenium in China

    Directory of Open Access Journals (Sweden)

    Zhilin eWu

    2015-03-01

    Full Text Available Selenium (Se is an essential trace element for humans and animals but at high concentrations, Se becomes toxic to organisms due to Se replacing sulfur in proteins. Selenium biofortification is an agricultural process that increases the accumulation of Se in crops, through plant breeding, genetic engineering, or use of Se fertilizers. While Se phytoremediation is a green biotechnology to clean up Se-contaminated environments, primarily through phytoextraction and phytovolatilization. By integrating Se phytoremediation and biofortification technologies, Se-enriched plant materials harvested from Se phytoremediation can be used as Se-enriched green manures or other supplementary sources of Se for producing Se-biofortified agricultural products. Earlier studies primarily aimed at enhancing efficacy of phytoremediation and biofortification of Se based on natural variation in progenitor or identification of unique plant species. In this review, we discuss promising approaches to improve biofortification and phytoremediation of Se using knowledge acquired from model crops. We also explored the feasibility of applying biotechnologies such as inoculation of microbial strains for improving the efficiency of biofortification and phytoremediation of Se. The key research and practical challenges that remain in improving biofortification and phytoremediation of Se have been highlighted, and the future development and uses of Se-biofortified agricultural products in China has also been discussed.

  18. Selenium Level and Dyslipidemia in Rural Elderly Chinese

    Science.gov (United States)

    Su, Liqin; Gao, Sujuan; Unverzagt, Frederick W.; Cheng, Yibin; Hake, Ann M.; Xin, Pengju; Chen, Chen; Liu, Jingyi; Ma, Feng; Bian, Jianchao; Li, Ping; Jin, Yinlong

    2015-01-01

    Objective Higher selenium level has been hypothesized to have the potential to reduce the risk of cardiovascular diseases including dyslipidemia. However, results from previous studies are inconsistent. This study aims to determine the association between selenium level and dyslipidemia in elderly Chinese with relatively low selenium status. Methods A cross-sectional study of 1859 participants aged 65 or older from four rural counties in China was conducted. Serum total cholesterol (TC), triglycerides (TG), high density lipoprotein-cholesterol (HDLC) and low-density lipoprotein-cholesterol (LDLC), nail selenium concentration and APOE genotype were measured in all subjects. The four types of dyslipidemia were defined as >5.17mmol/L for High-TC, >1.69 mmol/L for High-TG, >3.36 mmol/L for High-LDLC, and selenium levels and the risk of dyslipidemia. Results Mean nail selenium concentration was 0.465μg/gin this sample. Rates for High-TC, High-LDLC, High-TG, Low-HDLC were 18.13%, 13.23%, 12.21% and 32.76% respectively. Results from logistic models indicated that higher selenium levels were significantly associated with higher risk of High-TC, High-LDLC and lower risk of Low-HDLC adjusting for covariates (p selenium quartile group, participants in selenium quartile groups 2, 3 and 4 had significantly higher rates of High-TC, High-LDLC, High-TG, and lower rate of Low-HDLC adjusting for covariates. No significant association was observed between selenium level and the risk of High-TG. APOEε4 carriers had higher rates of High-TC and High-LDLC. There was no interaction between selenium level and APOE with the rates of dyslipidemia. Conclusions Our results suggest long-term selenium exposure level may be associated with the risk of dyslipidemia in elderly population. Future studies are needed to examine the underlying mechanism of the association. PMID:26380972

  19. An Introduction to Testing Web Applications with twill and Selenium

    CERN Document Server

    Brown, Titus; Huggins, Jason

    2007-01-01

    This Short Cut is an introduction tobuilding automated web tests using twotools, twill and Selenium. twill is a simpleweb scripting language that can be usedto automate web tests, while Selenium isa web testing framework that runs in anybrowser and can be used to test complexweb sites that make extensive use ofJavaScript. The best way to use this Short Cut is torun through the examples. We expectthat within an hour you can start writingyour own functional tests in either twillor Selenium, and within a day you willunderstand most, if not all, of the possibilitiesand the limitations of these t

  20. Toenail selenium level among healthy residents of two Polish Districts

    International Nuclear Information System (INIS)

    Zukowska, J.; Biziuk, M.; Bode, P.

    2009-01-01

    The goal of this study was to evaluate the selenium mass fraction in toenail clippings taken from random inhabitants living in various areas of the Pomeranian (Northern Poland) and Lubuskie (Western Poland) Districts. Toenail clippings were analyzed by instrumental neutron activation analysis (INAA) giving means of 0.57±0.10 and 0.60±0.16 mg x kg -1 for the two areas, respectively, but the difference was statistically not significant. In additional, it was found that gender, age, body mass index (BMI), smoking, and selenium supplementation are factors with apparent effects to the selenium levels in toenail clippings. (author)

  1. Selenium Level and Dyslipidemia in Rural Elderly Chinese.

    Directory of Open Access Journals (Sweden)

    Liqin Su

    Full Text Available Higher selenium level has been hypothesized to have the potential to reduce the risk of cardiovascular diseases including dyslipidemia. However, results from previous studies are inconsistent. This study aims to determine the association between selenium level and dyslipidemia in elderly Chinese with relatively low selenium status.A cross-sectional study of 1859 participants aged 65 or older from four rural counties in China was conducted. Serum total cholesterol (TC, triglycerides (TG, high density lipoprotein-cholesterol (HDLC and low-density lipoprotein-cholesterol (LDLC, nail selenium concentration and APOE genotype were measured in all subjects. The four types of dyslipidemia were defined as >5.17 mmol/L for High-TC, >1.69 mmol/L for High-TG, >3.36 mmol/L for High-LDLC, and <1.04 mmol/L for Low-HDLC according to Chinese Guidelines on Prevention and Treatment of Dyslipidemia in Adults. Logistic models adjusting for age, gender, APOE genotype, body mass index, alcohol consumption, smoking, physical activity, medication use for cardiovascular diseases were used to examine the relationship between selenium levels and the risk of dyslipidemia.Mean nail selenium concentration was 0.465 μg/gin this sample. Rates for High-TC, High-LDLC, High-TG, Low-HDLC were 18.13%, 13.23%, 12.21% and 32.76% respectively. Results from logistic models indicated that higher selenium levels were significantly associated with higher risk of High-TC, High-LDLC and lower risk of Low-HDLC adjusting for covariates (p < 0.0001. Compared with the lowest selenium quartile group, participants in selenium quartile groups 2, 3 and 4 had significantly higher rates of High-TC, High-LDLC, High-TG, and lower rate of Low-HDLC adjusting for covariates. No significant association was observed between selenium level and the risk of High-TG. APOEε4 carriers had higher rates of High-TC and High-LDLC. There was no interaction between selenium level and APOE with the rates of

  2. Total selenium and selenium species in irrigation drain inflows to the Salton Sea, California, April and July 2007

    Science.gov (United States)

    May, Thomas W.; Walther, Michael J.; Saiki, Michael K.; Brumbaugh, William G.

    2007-01-01

    This report presents the results for two sampling periods during a 4-year monitoring survey to provide a characterization of selenium concentrations in selected irrigation drains flowing into the Salton Sea, California. Total selenium, selenium species, and total suspended solids were determined in water samples, and total selenium was determined in sediment, detritus, and biota that included algae, plankton, midge larvae (family, Chironomidae), and two fish species-western mosquitofish (Gambusia affinis), and sailfin molly (Poecilia latipinna). In addition, sediments were analyzed for percent total organic carbon and particle size. Total selenium concentrations in water for both sampling periods ranged from 1.43 to 47.1 micrograms per liter, predominately as selenate, which is typical of waters leached out of selenium-contaminated marine shales under alkaline and oxidizing conditions. Total selenium concentrations ranged from 0.88 to 20.2 micrograms per gram in biota, and from 0.15 to 28.9 micrograms per gram in detritus and sediment.

  3. Alleviation of cadmium toxicity in cucumber (Cucumis sativus) seedlings by the application of selenium

    International Nuclear Information System (INIS)

    Sun, H.; Wang, X.; Wang, Y.; Wei, T.; Wang, G.

    2016-01-01

    In the present study, the role of selenium in cadmium toxicity was investigated in cucumber seedlings by hydroponic experiments. The application of Se for cucumber exposed to Cd significantly reduced Cd accumulation in all tissues, elevated Cd-depressed chlorophyll content, and improved photosynthetic performance. External Se significantly reduced ·OH, H2O2 and malondialdehyde content. Exogenous Se balanced Cd-depressed elements (e.g., Se enhanced Cd-induced decreases in root Zn, leaf/stem/root Mn concentrations) and carbohydrate contents. External Se also significantly decreased the Cd-induced increases in Na+K+-, Ca2+Mg2+- and total ATPase activities, which recovered almost to control level. Results indicate that application of Se can alleviate Cd toxicity in cucumber seedlings by reducing Cd uptake and reactive oxygen species (ROS) accumulation, moreover protecting photosynthetic machinery from damaging, balancing elements and carbohydrate contents, and improving ATPase activities in cucumber.

  4. Alleviation of cadmium toxicity in cucumber (Cucumis sativus) seedlings by the application of selenium

    Energy Technology Data Exchange (ETDEWEB)

    Sun, H.; Wang, X.; Wang, Y.; Wei, T.; Wang, G.

    2016-07-01

    In the present study, the role of selenium in cadmium toxicity was investigated in cucumber seedlings by hydroponic experiments. The application of Se for cucumber exposed to Cd significantly reduced Cd accumulation in all tissues, elevated Cd-depressed chlorophyll content, and improved photosynthetic performance. External Se significantly reduced ·OH, H2O2 and malondialdehyde content. Exogenous Se balanced Cd-depressed elements (e.g., Se enhanced Cd-induced decreases in root Zn, leaf/stem/root Mn concentrations) and carbohydrate contents. External Se also significantly decreased the Cd-induced increases in Na+K+-, Ca2+Mg2+- and total ATPase activities, which recovered almost to control level. Results indicate that application of Se can alleviate Cd toxicity in cucumber seedlings by reducing Cd uptake and reactive oxygen species (ROS) accumulation, moreover protecting photosynthetic machinery from damaging, balancing elements and carbohydrate contents, and improving ATPase activities in cucumber.

  5. Mechanisms of selenium hyperaccumulation in plants: A survey of molecular, biochemical and ecological cues.

    Science.gov (United States)

    Lima, Leonardo Warzea; Pilon-Smits, Elizabeth A H; Schiavon, Michela

    2018-04-04

    Selenium (Se) is a micronutrient required for many life forms, but toxic at higher concentration. Plants do not have a Se requirement, but can benefit from Se via enhanced antioxidant activity. Some plant species can accumulate Se to concentrations above 0.1% of dry weight and seem to possess mechanisms that distinguish Se from its analog sulfur (S). Research on these so-called Se hyperaccumulators aims to identify key genes for this remarkable trait and to understand ecological implications. This review gives a broad overview of the current knowledge about Se uptake and metabolism in plants, with a special emphasis on hypothesized mechanisms of Se hyperaccumulation. The role of Se in plant defense responses and the associated ecological implications are discussed. Hyperaccumulators have enhanced expression of S transport and assimilation genes, and may possess transporters with higher specificity for selenate over sulfate. Genes involved in antioxidant reactions and biotic stress resistance are also upregulated. Key regulators in these processes appear to be the growth regulators jasmonic acid, salicylic acid and ethylene. Hyperaccumulation may have evolved owing to associated ecological benefits, particularly protection against pathogens and herbivores, and as a form of elemental allelopathy. Understanding plant Se uptake and metabolism in hyperaccumulators has broad relevance for the environment, agriculture and human and animal nutrition and may help generate crops with selenate-specific uptake and high capacity to convert selenate to less toxic, anticarcinogenic, organic Se compounds. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Comparison of Selenium Toxicity in Sunflower and Maize Seedlings Grown in Hydroponic Cultures.

    Science.gov (United States)

    Garousi, Farzaneh; Veres, Szilvia; Kovács, Béla

    2016-11-01

    Several studies have demonstrated that selenium (Se) at low concentrations is beneficial, whereas high Se concentrations can induce toxicity. Controlling Se uptake, metabolism, translocation and accumulation in plants is important to decrease potential health risks and helping to select proper biofortification methods to improve the nutritional content of plant-based foods. The uptake and distribution of Se, changes in Se content, and effects of various concentrations of Se in two forms (sodium selenite and sodium selenate) on sunflower and maize plants were measured in nutrient solution experiments. Results revealed the Se content in shoots and roots of both sunflower and maize plants significantly increased as the Se level increased. In this study, the highest exposure concentrations (30 and 90 mg/L, respectively) caused toxicity in both sunflower and maize. While both Se forms damaged and inhibited plant growth, each behaved differently, as toxicity due to selenite was observed more than in the selenate treatments. Sunflower demonstrated a high Se accumulation capacity, with higher translocation of selenate from roots to shoots compared with selenite. Since in seleniferous soils, a high change in plants' capability exists to uptake Se from these soils and also most of the cultivated crop plants have a bit tolerance to high Se levels, distinction of plants with different Se tolerance is important. This study has tried to discuss about it.

  7. FDG uptake in the stomach

    International Nuclear Information System (INIS)

    Yun, M. J.; Cho, H. J.; Cho, E. H.; Kim, T. S.; Kang, W. J.; Lee, J. D.

    2007-01-01

    This study was performed to evaluate histopathologic features of advanced gastric cancer (AGC) to predict FDG uptake on PET. 153 patients(102 men; mean age, 55 y) were diagnosed with AGC by surgery were included in this study. PET images were evaluated by visual and semi-quantitative analysis of FDG uptake in primary tumors. Primary tumors size were measured and divided according to Borrmann classification. Tumor histology was classified under WHO classification, depth of invasion and Iymphovascular invasion. The tumors were also grouped by high cellular(cellularity = 50%) and low cellular group (<50%). Microscopic growth type was based on Lauren classification. Stromal fibrosis degree and inflammatory cell infiltration amount was graded as low(none∼mild), or high(moderate∼severe). Lymph node metastases was assessed in all patients. Statistical analyses were performed to evaluate differences in SUV as to histopathologic factors. Of the 153 patients, 21 patients(14%) had primary tumor invisible on initial whole body images. After water ingestion, the tumors became visible in 15 of the 21 patients due to disappearance of physiologic stomach uptake. Polypoid or ulcerofungating tumors, high cellularity, intestinal growth pattern, and larger tumors significantly predicted increased tumor SUVs. Well or moderately differentiated adenocarcinoma tended to show high cellularity and intestinal growth pattern. Poorly differentiated adenocarcinoma had diverse spectrum of histopathology. Signet ring cell carcinomas were mostly ulceroinfiltrative or diffusely infiltrative in macroscopic type and diffuse in microscopic tumor growth. Mucinous adenocarcinomas were mostly low in cellularity. FDG uptake patterns are useful in representing histopathologic characteristics of the entire tumor in gastric cancers. The degree of FDG uptake depends on tumor size, macroscopic type, cellularity, and microscopic growth pattern and it shows no association with well known important prognostic

  8. Comparative effect of selenium and selenium tolerant microbes on brachiaria reptans l. growth

    International Nuclear Information System (INIS)

    Yasin, M.; Faisal, M.

    2014-01-01

    Brachiaria reptans L. is an annual grass. It is good fodder grass which is distributed in tropical Asia, Kenya, Pakistan and India and introduced throughout the tropics. In present study we determine the growth correlation among B. reptans, selenium (Se) and two Se tolerant bacteria (Bacillus licheniformis-YAP7 and Bacillus cereus-YAP6). Plants treated with Se showed a significant decrease in shoot length (33%) and fresh biomass (41%) compared to control. When plants were co-cultivated in the presence of bacteria or Se and bacteria both the shoot length increased (16-34%) significantly compared to control. B. reptans plants treated with Se have shown a significant decrease in peroxidase contents (59%) compared to control. However, bacterial inoculation of Se treated plants resulted in significant increase in peroxidase contents (113-171%). Selenium treatment caused increase in leaf soluble protein contents compared to control. In conclusion, bacteria can enhance B. reptans growth under Se stress. (author)

  9. Removal of selenium species from waters using various surface-modified natural particles and waste materials

    Energy Technology Data Exchange (ETDEWEB)

    Yigit, Nevzat O.; Tozum, Seda [Department of Environmental Engineering, Suleyman Demirel University, Isparta (Turkey)

    2012-07-15

    Waste red mud and natural pumice/volcanic slag particles were surface modified and their selenium adsorption from waters was investigated. Acid activation/heat treatment of original red mud (ORM) particles significantly increased their micropore and external surface area and cumulative volume of pores. Iron oxide coating of pumice/slags and acid activation of ORM decreased their pH{sub pzc} values and increased surface acidity. Selenite/selenate adsorption on iron oxide surfaces and acid activated red mud (AARM) was very fast with approximately first-order adsorption kinetics. Iron oxide coating of pumice/slag and acid activation of ORM particles significantly enhanced their selenite and selenate uptakes. Maximum Se adsorption capacities as high as 6.3 (mg Se/g adsorbent) were obtained by AARM. The extent of selenate uptakes by the surface modified particles was generally lower than those of selenite. Due to competition among Se species and other background water matrix for iron oxide adsorption sites, reduced selenite/selenate uptakes were found in natural water compared to single solute tests. Higher Se uptakes by iron oxide surfaces were found at pH 7.5 compared to pH 8.9, due to increased electrostatic repulsion among iron oxides and Se species at higher pH. The most effective adsorbents among the tested 17 different particles for Se uptake were AARM and iron oxide coated pumice. Se concentrations less than drinking water standards (5-10 {mu}g/L) can be achieved by these particles. These low-cost, natural, or recyclable waste particles appear to be promising adsorbents for Se removal after their surface modification. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. No-carrier-added labeling of the neuroprotective Ebselen with selenium-73 and selenium-75.

    Science.gov (United States)

    Helfer, Andreas; Ermert, Johannes; Humpert, Sven; Coenen, Heinz H

    2015-03-01

    Selenium-73 is a positron emitting non-standard radionuclide, which is suitable for positron emission tomography. A copper-catalyzed reaction allowed no-carrier-added labeling of the anti-inflammatory seleno-organic compound Ebselen with (73) Se and (75) Se under addition of sulfur carrier in a one-step reaction. The new authentically labeled radioselenium molecule is thus available for preclinical evaluation and positron emission tomography studies. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician ... of nuclear medicine imaging. The radioactive iodine uptake test (RAIU) is also known as a thyroid uptake. ...

  12. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z Thyroid Scan and Uptake Thyroid scan and uptake uses ...

  13. Cadmium uptake by plants

    Energy Technology Data Exchange (ETDEWEB)

    Haghiri, F.

    1973-01-01

    Absorption of /sup 115m/Cd by soybean (Gylcine max l.) plants via foliar and root systems and translocation into the seed was determined. The uptake of /sup 115m/Cd by soybeans via the root system was more efficient than that of the foliar placement. Growth and Cd concentrations of soybean and wheat (Triticum aestivum l.) tops were influenced by soil-applied Cd. In both crops, the Cd concentration of plant tops increased while yield decreased with increasing levels of applied Cd. Cadmium toxicitiy began to occur in both crops at the lowest level of soil applied Cd (2.5 ppM). With soybean plants, Cd toxicity symptoms resembled fe chlorosis. For wheat plants there were no visual symptoms other than the studied growth. The relative concentration of Cd found in several vegetable crops varied depending on the plant species. The relative Cd concentration in descending order for various vegetables was lettuce (Lactuca sativa l.) > radish top (Raphanus sativus l.) > celery stalk (Apium graveolens l.) > celery leaves greater than or equal to green pepper (Capsicum frutescens l.) > radish roots.

  14. Genotoxic and antigenotoxic properties of selenium compounds in the in vitro micronucleus assay with human whole blood lymphocytes and tk6 lymphoblastoid cells

    Directory of Open Access Journals (Sweden)

    Eduard Cemeli

    2006-01-01

    Full Text Available Selenium is known to possess both genotoxic and antigenotoxic properties. In the present study, we have evaluated the genotoxicity and antigenotoxicity of three selenium compounds (sodium selenate, sodium selenite and selenous acid by measuring in vitro micronucleus induction. Assays were conducted in whole blood lymphocytes and in the TK6 lymphoblastoid cell line, with and without co-treatment with potassium dichromate, a known genotoxic compound. In general, the compounds were more active in TK6 cells than they were in blood lymphocytes. Only 1 μM selenous acid increased the frequency of binucleated cells containing micronuclei (BNMN in blood lymphocytes, while all three selenium compounds increased BNMN in TK6 cells. In addition, combinations of selenous acid and potassium dichromate resulted in lower frequencies of BNMN than potassium dichromate alone in blood lymphocytes, while combinations of sodium selenate and potassium dichromate produced lower frequencies of BNMN than potassium dichromate alone in TK6 cells. The concentrations of selenium compounds that were used, in combination with the medium components and the biological physiology of the whole blood lymphocytes and TK6 cells, could have affected the redox potential of the compounds, switching the chemicals from a pro-oxidant to antioxidant status and vice-versa. The lower activities of the compounds in blood lymphocytes may be due to the protective effects of blood components. The results indicate that the genotoxic and antigenotoxic properties of selenium compounds are highly dependent upon the conditions under which they are evaluated.

  15. Response of Agronomic Traits of Wheat and Barley to Sources and Different Rates of Selenium in Rainfed Condition

    Directory of Open Access Journals (Sweden)

    N. A Sajedi

    2017-10-01

    Full Text Available Introduction Environmental stresses affect growth, metabolism and crops yield. Drought is an important stress and it decreases crop productivity. Drought stress symptoms vary, depending on intensity and duration of drought and growth stage of the plant. The first response of plant to drought stress is producing the active oxygen species (ROS in cell that these cause injury to membranes and proteins. Selenium (Se application could have beneficial effect on growth and stress tolerance of plants by increasing their activity of antioxidants and reduce the reactive oxygen species over production. Selenium is essential for growth and activities of human and animals. Absorption and accumulation of selenium in plant depend on chemical compound and concentration of selenium in soil. Recent studies have demonstrated that Se increases resistance and antioxidant capacity of plants to various stress. It is reported that selenium application in barley plant no changes the amounts of malondialdehyde and hydrogen peroxide under water deficit stress. The current paper studies the response of agronomic traits of wheat and barley to sources and different rates of selenium in rain fed condition. Materials and Methods In order to investigate response of agronomic traits of wheat and barley to sources and different rates of selenium in rainfed condition, an experiment was carried out as factorial based on randomized complete block design with three replications at the Research Station of Islamic Azad University, Arak Branch, during 2014-2015. Experimental factors were included selenium sources at two levels, Sodium selenate and Selenite, Selenium rates at three levels of zero, 18 and 36 g ha-1 and two crop plants of wheat and barley. The wheat rain fed seed Azar 2 cultivar and Barley cultivar Abidar were hand planted at 15 cm spacing in 6 m rows, with one meter borders between the plots. Foliar application of Se was performed at rate of 18 and 36 g ha-1 at appearance

  16. Evaluation of the inorganic selenium biotransformation in selenium-enriched yogurt by HPLC-ICP-MS.

    Science.gov (United States)

    Alzate, Adriana; Cañas, Benito; Pérez-Munguía, Sandra; Hernández-Mendoza, Hector; Pérez-Conde, Concepción; Gutiérrez, Ana Maria; Cámara, Carmen

    2007-11-28

    Selenium is an essential element in the human diet. Interestingly, there has been an increased consumption of dietary supplements containing this element in the form of either inorganic or organic compounds. The effect of using selenium as a dietary supplement in yogurt has been evaluated. For this purpose, different concentrations of inorganic Se (ranging from 0.2 to 5000 microg g(-1)) have been added to milk before the fermentation process. Biotransformation of inorganic Se into organic species has been carefully evaluated by ion-exchange, reversed-phase, or size-exclusion chromatography, coupled to inductively coupled plasma mass spectrometry (ICP-MS). Yogurt fermentation in the presence of up to 2 microg g(-1) of Se(IV) produces a complete incorporation of this element into proteins as has been demonstrated applying a dialysis procedure. Analysis by SEC-ICP-MS showed that most of them have a molecular mass in the range of 30-70 kDa. Species determination after enzymatic hydrolysis has allowed the identification of Se-cystine using two different chromatographic systems. The biotransformation process that takes place during yogurt fermentation is very attractive because yogurt can act as a source of selenium supplementation.

  17. Effects of Selenium Yeast on Blood Glucose and Antioxidant ...

    African Journals Online (AJOL)

    olayemitoyin

    Biomarkers in Cholesterol Fed Diet Induced Type 2 Diabetes. Mellitus in Wistar Rats. ... Keywords: Cholesterol diet; Diabetes Mellitus; Selenium yeast; SOD; CAT; GPx. ©Physiological ..... relationship with different diseases. Science Tot.

  18. Mixed Surfactant Template Method for Preparation of Nanometer Selenium

    Directory of Open Access Journals (Sweden)

    Zhi-Lin Li

    2009-01-01

    Full Text Available Selenium nanoparticles have been synthesized in an aqueous solution by using sodium dodecyl sulfate and polyvinyl alcohol as a soft template. The factors on synthesis, such as reaction time, concentration of reactants and ultrasonic irradiation were studied. The uniform stable selenium nanospheres were obstained in the conditions of 1.0 (mass fraction sodium dodecyl sulfate, 1.0 (mass fraction polyvinyl alcohol, n(Vc:n(H2SeO3=7:1 and 7 minutes after the initiation of the reaction at room temperature. The average particle size of selenium is about 30 nm. The product was characterized by UV and TEM. Finally the applications of the red element nanometer selenium in anti-older cosmetics are presented.

  19. Catalytic oxidant scavenging by selenium-containing compounds

    DEFF Research Database (Denmark)

    Carroll, Luke; Pattison, David I; Fu, Shanlin

    2017-01-01

    Myeloperoxidase produces strong oxidants during the immune response to destroy invading pathogens. However, these oxidants can also cause tissue damage, which contributes to the development of numerous inflammatory diseases. Selenium containing compounds, including selenomethionine (SeMet) and 1,...

  20. Arsenic, chromium, copper, iron, manganese, lead, selenium and ...

    African Journals Online (AJOL)

    Arsenic, chromium, copper, iron, manganese, lead, selenium and zinc in the tissues of the largemouth yellowfish, Labeobarbus kimberleyensis (Gilchrist and Thompson, 1913), from the Vaal Dam, South Africa, and associated consumption risks.

  1. Serum Selenium levels in Essential hypertension among adults at ...

    African Journals Online (AJOL)

    communicable diseases. In the current medical literature it is not clear on the serum selenium levels among essential hypertensive patients in Zambia despite evidence in literature of its role in development of hypertension. The present study ...

  2. Copper and selenium supplementation of ewes grazing on pastures ...

    African Journals Online (AJOL)

    ,09 pg Se/g DM, het bloedseleniumkonsentrasiesvaono ie verhoog, maar het min invloed op die lewer- en nierseleniumkonsentrasievsa n lammers kort na geboorte gehad. Keywords: Blood selenium, copper supplementiation, fertility, plasma ...

  3. Distribution and retention of inhaled selenium compounds in the rat

    International Nuclear Information System (INIS)

    Burkstaller, M.A.; Cuddihy, R.G.

    1978-01-01

    Selenium containing compounds released into the atmosphere during coal combustion are principally of the elemental form or the dioxide. These compounds differ greatly in their chemical properties. Fischer-344 rats were exposed via inhalation to both the dioxide and the red elemental form of selenium. Subsequently, measurements were made of internal absorption, organ distribution and retention, and modes of excretion. A radiotracer, 75 Se, was incorporated into the aerosol to facilitate these measurements. Retention of both aerosols in the total body showed long term components with half lives of 43 and 15 days accounting for 25 to 35% of the initially deposited selenium. Excretion occurred principally by way of urine. For both aerosols, selenium absorbed into the systemic circulation was mainly found in the liver, kidney, blood, gastrointestinal tract and bone

  4. Selenium- or tellurium- containing bile acids and derivatives thereof

    International Nuclear Information System (INIS)

    Monks, R.; Riley, A.L.M.

    1981-01-01

    This invention relates to the preparation of selenium and tellurium derivatives, particularly γ-emitting radioactive derivatives of bile acids and bile salts. Such compounds are valuable in the examination of body function, especially small bowel function. (author)

  5. The Determination of Selenium in Blood. RCN Report

    International Nuclear Information System (INIS)

    Japenga, J.; Das, H.A.; Hoede, D.; Zonderhuis, J.

    1971-12-01

    A procedure for the determination of selenium by neutron activation analysis in blood is given. The radionuclide used is 75 Se (T½ = 120 d). Chemical separation is performed by precipitation of the element. (author)

  6. Selenium concentration of maize grain in South Africa and possible ...

    African Journals Online (AJOL)

    Casey W

    reviewed paper: Proc. ... maize grain is a staple food for humans and a major ingredient in the diets of intensively fed livestock. Therefore, Se in ..... Dietary reference intakes for vitamin C, vitamin E, selenium and carotenoids. National Research.

  7. Effect of selenium on malignant tumor cells of brain.

    Science.gov (United States)

    Zhu, Z; Kimura, M; Itokawa, Y; Nakatsu, S; Oda, Y; Kikuchi, H

    1995-07-01

    Some reports have demonstrated that selenium can inhibit tumorigenesis in some tissues of animal. However, little is known about the inhibitory effect on malignant tumor cells of brain. The purpose of our study was to determine the biological effect of selenium on growth of rat glioma and human glioblastoma cell lines. Cell lines C6 and A172 were obtained from Japanese Cancer Research Resources Bank, Tokyo, Japan (JCRB). Cells were cultured in Dulbecco's Modified Eagle's Medium (DMEM) supplemented with 10% fetal calf serum at 37 degrees C in a humidified atmosphere of air and 5% CO2. Antiproliferative effects of selenium were evaluated using growth rate assay quantifying cell number by MTT assay. An antiproliferative effect of selenium was found in two cell lines, which was more effective on human A172 glioblastoma and less effective on rat C6 glioma.

  8. 6. THE ROLE OF SELENIUM IN HUMAN IMMUNITY

    African Journals Online (AJOL)

    Esem

    lymphocyte (CD3+) immune response was enhanced in persons that ... Selenium and Disease Conditions ... In China, Keshan and Kashin-Beck diseases are human. 21,22,23 ... and cytotoxic cell activities that act against the HIV virus.

  9. Selenium derivatives of thyroxine and tri-iodothyronine

    International Nuclear Information System (INIS)

    Cree, G.M.

    1980-01-01

    Novel selenium derivatives of thyroxine and tri-iodothyronine are described. They preferably contain at least one 75 Se atom. The compounds are useful in dual isotope assays of thyroid function. (U.K.)

  10. Selective inhibition of endogenous antioxidants with Auranofin causes mitochondrial oxidative stress which can be countered by selenium supplementation.

    Science.gov (United States)

    Radenkovic, Filip; Holland, Olivia; Vanderlelie, Jessica J; Perkins, Anthony V

    2017-12-15

    Auranofin is a thiol-reactive gold (I)-containing compound with potential asa chemotherapeutic. Auranofin has the capacity to selectively inhibit endogenous antioxidant enzymes thioredoxin reductase (TrxR) and glutathione peroxidase (GPx), resulting in oxidative stress and the initiation of a pro-apoptotic cascade. The effect of Auranofin exposure on TrxR and GPx, and the potential for cellular protection through selenium supplementation was examined in the non-cancerous human cell line Swan-71. Auranofin exposure resulted in a concentration dependent differential inhibition of selenoprotein antioxidants. Significant inhibition of TrxR was observed at 20nM Auranofin with inhibition of GPx from 10µM. Significant increases in reactive oxygen species (ROS) were associated with antioxidant inhibition at Auranofin concentrations of 100nM (TrxR inhibition) and 10µM (TrxR and GPx inhibition), respectively. Evaluation of mitochondrial respiration demonstrated significant reductions in routine and maximal respiration at both 100nM and 10μM Auranofin. Auranofin treatment at concentrations of 10μM and higher concentrations resulted in a ∼68% decrease in cellular viability and was associated with elevations in pro-apoptotic markers cytochrome c flux control factor (FCFc) at concentration of 100nM and mitochondrial Bax at 10μM. The supplementation of selenium (100nM) prior to treatment had a generalized protective affect through the restoration of antioxidant activity with a significant increase in TrxR and GPx activity, a significant reduction in ROS and associated improvement in mitochondrial respiration and cellular viability (10µM ∼48% increase). Selenium supplementation reduced the FCFc at low doses of Auranofin (selenium exposure. Therefore, Auranofin dose and the selenium status of patients are important considerations in the therapeutic use of Auranofin as an agent of chemosensitization. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  11. Developments in Synthetic Application of Selenium(IV Oxide and Organoselenium Compounds as Oxygen Donors and Oxygen-Transfer Agents

    Directory of Open Access Journals (Sweden)

    Jacek Młochowski

    2015-06-01

    Full Text Available A variety of selenium compounds were proven to be useful reagents and catalysts for organic synthesis over the past several decades. The most interesting aspect, which emerged in recent years, concerns application of hydroperoxide/selenium(IV oxide and hydroperoxide/organoselenium catalyst systems, as “green reagents” for the oxidation of different organic functional groups. The topic of oxidations catalyzed by organoselenium derivatives has rapidly expanded in the last fifteen years This paper is devoted to the synthetic applications of the oxidation reactions mediated by selenium compounds such as selenium(IV oxide, areneseleninic acids, their anhydrides, selenides, diselenides, benzisoselenazol-3(2H-ones and other less often used other organoselenium compounds. All these compounds have been successfully applied for various oxidations useful in practical organic syntheses such as epoxidation, 1,2-dihydroxylation, and α-oxyfunctionalization of alkenes, as well as for ring contraction of cycloalkanones, conversion of halomethyl, hydroxymethyl or active methylene groups into formyl groups, oxidation of carbonyl compounds into carboxylic acids and/or lactones, sulfides into sulfoxides, and secondary amines into nitrones and regeneration of parent carbonyl compounds from their azomethine derivatives. Other reactions such as dehydrogenation and aromatization, active carbon-carbon bond cleavage, oxidative amidation, bromolactonization and oxidation of bromide for subsequent reactions with alkenes are also successfully mediated by selenium (IV oxide or organoselenium compounds. The oxidation mechanisms of ionic or free radical character depending on the substrate and oxidant are discussed. Coverage of the literature up to early 2015 is provided. Links have been made to reviews that summarize earlier literature and to the methods of preparation of organoselenium reagents and catalysts.

  12. Mercury and selenium levels, and selenium:mercury molar ratios of brain, muscle and other tissues in bluefish (Pomatomus saltatrix) from New Jersey, USA

    Science.gov (United States)

    Burger, Joanna; Jeitner, Christian; Donio, Mark; Pittfield, Taryn; Gochfeld, Michael

    2015-01-01

    A number of contaminants affect fish health, including mercury and selenium, and the selenium: mercury molar ratio. Recently the protective effects of selenium on methylmercury toxicity have been publicized, particularly for consumption of saltwater fish. Yet the relative ameliorating effects of selenium on toxicity within fish have not been examined, nor has the molar ratio in different tissues, (i.e. brain). We examined mercury and selenium levels in brain, kidney, liver, red and white muscle, and skin and scales in bluefish (Pomatomus saltatrix) from New Jersey to determine whether there were toxic levels of either metal, and we computed the selenium: mercury molar ratios by tissues. Total mercury averaged 0.32 ± 0.02 ppm wet weight in edible muscle and 0.09 ± 0.01 ppm in brain. Selenium concentration averaged 0.37 ± 0.03 in muscle and 0.36 ± 0.03 ppm in brain. There were significant differences in levels of mercury, selenium, and selenium: mercury molar ratios, among tissues. Mercury and selenium levels were correlated in kidney and skin/scales. Mercury levels were highest in kidney, intermediate in muscle and liver, and lowest in brain and skin/scales; selenium levels were also highest in kidney, intermediate in liver, and were an order of magnitude lower in the white muscle and brain. Mercury levels in muscle, kidney and skin/scales were positively correlated with fish size (length). Selenium levels in muscle, kidney and liver were positively correlated with fish length, but in brain; selenium levels were negatively correlated with fish length. The selenium: mercury molar ratio was negatively correlated with fish length for white muscle, liver, kidney, and brain, particularly for fish over 50 cm in length, suggesting that older fish experience less protective advantages of selenium against mercury toxicity than smaller fish, and that consumers of bluefish similarly receive less advantage from eating larger fish. PMID:23202378

  13. Uptake of rare earth elements by dryopteris erythrosora (autumn fern)

    International Nuclear Information System (INIS)

    Ozaki, Takuo; Enomoto, Shuichi

    2001-01-01

    Mechanisms of uptake of rare earth elements (REEs) were investigated, particularly those by REE accumulator species (autumn fern). Rare earth elements are practically insoluble under natural conditions, suggesting some unknown mechanisms in REE accumulator species. In the present investigation, two notable phenomena were observed. (1) Concerning the ionic-radius dependence of REE uptake by leaves, nonaccumulator species showed an extremely high uptake for Y compared with the adjacent-ionic-radius REEs in the multitracer, while accumulator species showed no anomaly. (2) REE uptake by autumn fern was influenced by the addition of chelating chemical reagents in the uptake solution, while no effect was observed for nonaccumulator species. (author)

  14. 21 CFR 520.2100 - Selenium, vitamin E capsules.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Selenium, vitamin E capsules. 520.2100 Section 520... to 1 milligram of selenium) and 56.2 milligrams of vitamin E (68 I.U.) (as d-alpha tocopheryl acid... of vitamin E (17 I.U.) (as d-alpha tocopheryl acid succinate.) (b) Sponsor. See No. 000061 in § 510...

  15. Selenium toxicity: cause and effects in aquatic birds

    Science.gov (United States)

    Spallholz, J.E.; Hoffman, D.J.

    2002-01-01

    There are several manners in which selenium may express its toxicity: (1) an important mechanism appears to involve the formation of CH3Se- which either enters a redox cycle and generates superoxide and oxidative stress, or forms free radicals that bind to and inhibit important enzymes and proteins. (2) Excess selenium as selenocysteine results in inhibition of selenium methylation metabolism. As a consequence, concentrations of hydrogen selenide, an intermediate metabolite, accumulate in animals and are hepatotoxic, possibly causing other selenium-related adverse effects. (3) It is also possible that the presence of excess selenium analogs of sulfur-containing enzymes and structural proteins play a role in avian teratogenesis. l-selenomethionine is the most likely major dietary form of selenium encountered by aquatic birds, with lesser amounts of l-selenocysteine ingested from aquatic animal foods. The literature is suggestive that l-selenomethionine is not any more toxic to adult birds than other animals. l-Selenomethionine accumulates in tissue protein of adult birds and in the protein of egg white as would be expected to occur in animals. There is no suggestion from the literature that the levels of l-selenomethionine that would be expected to accumulate in eggs in the absence of environmental concentration of selenium pose harm to the developing embryo. For several species of aquatic birds, levels of Se as selenomethionine in the egg above 3 ppm on a wet weight basis result in reduced hatchability and deformed embryos. The toxicity of l-selenomethionine injected directly into eggs is greater than that found from the entry of l-selenomethionine into the egg from the normal adult diet. This suggests that there is unusual if not abnormal metabolism of l-selenomethionine in the embryo not seen when l-selenomethionine is present in egg white protein where it likely serves as a source of selenium for glutathione peroxidase synthesis in the developing aquatic chick.

  16. Selenium transformation in coal mine spoils: Its environmental impact assessment

    Energy Technology Data Exchange (ETDEWEB)

    Harness, J.; Atalay, A.; Koll, K.J.; Zhang, H.; Maggon, D.

    1991-12-31

    The objective of this program was to conduct an environmental impact assessment study for selenium from coal mine spoils. The use of in-situ lysimetry to predict selenium speciation, transformation, and mobility under natural conditions was evaluated. The scope of the study was to construct and test field-scale lysimeter and laboratory mini-column to assess mobility and speciation of selenium in coal mine overburden and soil systems; to conduct soil and groundwater sampling throughout the state of Oklahoma for an overall environmental impact assessment of selenium; and to conduct an in-depth literature review on the solubility, speciation, mobility, and toxicity of selenium from various sources. Groundwater and surface soil samples were also collected from each county in Oklahoma. Data collected from the lysimeter study indicated that selenium in the overburden of the abandoned mine site was mainly found in the selenite form. The amount of selenite found was too low and immobile to be of concern to the environment. The spoil had equilibrated long enough (over 50 years) that most of the soluble forms of selenium have already been lost. Examination of the overburden indicated the presence of pyrite crystals that precipitated over time. The laboratory mini-column study indicated that selenite is quite immobile and remained on the overburden material even after leaching with dilute acid. Data from groundwater samples indicated that based on the current permissible level for selenium in groundwater (0.01 mg Se/L), Oklahoma groundwater is widely contaminated with the element. However, according to the new regulation (0.05 mg Se/L), which is to be promulgated in 1992, only 9 of the 77 counties in the state exceed the limit.

  17. Metabolism of manganese, iron, copper, and selenium in calves

    International Nuclear Information System (INIS)

    Ho, S.Y.

    1981-01-01

    Sixteen male Holstein calves were used to study manganese and iron metabolism. The calves were fed one of the following diets for 18 days: control, control + iron, control + manganese, and control + iron and manganese. All calves were dosed orally with manganese-54. Tissue concentrations of manganese, iron and manganese-54 were determined. Small intestinal iron was lower in calves fed the high manganese diet than in controls. Tissue manganese-54 was lower in calves fed a high manganese diet. Fecal manganese content increased in calves fed both high manganese and high manganese-high iron diets. Serum total iron was not affected by the dietary treatments. To study the effects of high dietary levels of copper and selenium on the intracellular distributions of these two elements in liver and kidney cytosol, calves were fed one of four diets for 15 days. These were 0 and 100 ppM supplemental copper and 0 and 1 ppM added selenium. The control diet containing 0.1 ppM of selenium and 15 ppM of copper. All calves were orally dosed 48 hrs prior to sacrifice with selenium-75. A high copper diet increased copper concentrations in all intracellular liver fractions and most kidney fractions. Only the effects in the liver were significant. Less copper was found in the mitochondria fractions in liver and kidney of calves fed a high selenium diet. Three major copper-binding protein peaks were separated from the soluble fractions of calf liver and kidney. Peak 1 appeared to be the major copper-binding protein in liver and kidney cytosol of copper-loaded animals. Added selenium alone or in combination with copper accentuated the copper accumulation in this peak. Most of selenium-75 was recovered in the same peak as the copper. The results of this experiment indicated that the large molecular proteins in liver and kidney cytosol of calves play an important role in copper and selenium-75 metabolism

  18. Comparison of an ultrasonic nebulizer with a cross-flow nebulizer for selenium speciation by ion-chromatography and inductively coupled plasma mass spectrometry

    DEFF Research Database (Denmark)

    Gammelgaard, Bente; Jons, O.

    2000-01-01

    , the increase in sensitivity with the USN was between 2.5 and 8.7 times. It was observed that yttrium could not be used as internal standard in the USN as the sensitivity of this element was dependent on pH as well as the presence of different selenium species, while rhodium was unaffected by these parameters...

  19. Selenium intake and metabolic syndrome: A systematic review.

    Science.gov (United States)

    Retondario, Anabelle; Fernandes, Ricardo; Rockenbach, Gabriele; Alves, Mariane de Almeida; Bricarello, Liliana Paula; Trindade, Erasmo Benicio Santos de Moraes; Vasconcelos, Francisco de Assis Guedes de

    2018-03-02

    Metabolic syndrome is a multi-causal disease. Its treatment includes lifestyle changes with a focus on weight loss. This systematic review assessed the association between Selenium intake and metabolic syndrome. Data were collected mainly from four databases: PubMed, CENTRAL (Cochrane), Scopus and Web of Knowledge. Keywords related to metabolic syndrome, selenium, as well as metabolic syndrome features were searched. This review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Statement. A systematic review protocol was registered at PROSPERO (n. 42016046321). Two reviewers independently screened 2957 abstracts. Six studies were included to perform data extraction with standardized spreadsheets. The risk of bias was assessed by using specific tools according to the design of the relevant studies. An assessment was carried out based on the appropriateness of the study reports accordingly to STROBE and the CONSORT-based checklist for each study design. Three studies found no association between Selenium intake and metabolic syndrome; two of them found an inverse association; and one study found a direct association between Selenium intake and metabolic syndrome. One study also showed an inverse association between Selenium intake and the prevalence of high waist circumference, high diastolic blood pressure, and hyperglycaemia in women. Overall, based on the argumentation and results of this study, it is possible to conclude that Selenium intake and metabolic syndrome are not clearly associated in adults and elderly. Copyright © 2018 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  20. Biological effects of selenium and relationships with carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Diplock, A.T.

    1984-01-01

    Selenium is an element that is both essential, at low levels of dietary intake, and toxic, at high levels, to man and a wide range of animals. The purpose of the communication is to review the evidence for the involvement of hyper- and hypo-selenosis in the etiology of cancer. High levels of selenium intake have been blamed for an increase in cancer, dental caries and an array of other conditions. Critical evaluation of the evidence, however, leads to the conclusion that such claims have little substance. On the other hand, low levels of selenium intake may be associated with an increased incidence of certain forms of cancer and there appears to be an inverse relationship between blood selenium levels and cancer death rate in the US. Keshan Disease, in the People's Republic of China has only been shown to occur in populations severely depleted of selenium. In well nourished populations there is no evidence to indicate that selenium supplements have any prophylactic or therapeutic benefit against human diseases such as cancer, cardiovascular disease or cystic fibrosis. 33 references.

  1. Nuclear-based methods for the study of selenium

    International Nuclear Information System (INIS)

    Spyrou, N.M.; Akanle, O.A.; Dhani, A.

    1988-01-01

    The essentiality of selenium to the human being and in particular its deficiency state, associated with prolonged inadequate dietary intake, have received considerable attention. In addition, the possible relationship between selenium and cancer and the claim that selenium may possess cancer-prevention properties have focused research effort. It has been observed in a number of studies on laboratory animals that selenium supplementation protects the animals against carcinogen-induced neoplastic growth in various organ sites, reduces the incidence of spontaneous mammary tumors, and suppresses the growth of transplanted tumor cells. In these research programs on the relationship between trace element levels and senile dementia and depression and the elemental changes in blood associated with selenium supplementation in a normal group of volunteers, it became obvious that in addition to establishing normal levels of elements in the population of interest, there was a more fundamental requirement for methods to be developed that would allow the study of the distribution of selenium in the body and its binding sites. The authors propose emission tomography and perturbed angular correlation as techniques worth exploring

  2. Selenium in the Blackfoot, Salt, and Bear River Watersheds

    Science.gov (United States)

    Hamilton, S.J.; Buhl, K.J.

    2005-01-01

    Nine stream sites in the Blackfoot River, Salt River, and Bear River watersheds in southeast Idaho, USA were sampled in May 2001 for water, surficial sediment, aquatic plants, aquatic invertebrates, and fish. Selenium was measured in these aquatic ecosystem components, and a hazard assessment was performed on the data. Water quality characteristics such as pH, hardness, and specific conductance were relatively uniform among the nine sites. Of the aquatic components assessed, water was the least contaminated with selenium because measured concentrations were below the national water quality criterion of 5 μ g/L at eight of the nine sites. In contrast, selenium was elevated in sediment, aquatic plants, aquatic invertebrates, and fish from several sites, suggesting deposition in sediments and food web cycling through plants and invertebrates. Selenium was elevated to concentrations of concern in fish at eight sites (> 4 μ g/g in whole body). A hazard assessment of selenium in the aquatic environment suggested a moderate hazard at upper Angus Creek (UAC) and Smoky Creek (SC), and high hazard at Little Blackfoot River (LiB), Blackfoot River gaging station (BGS), State Land Creek (SLC), upper (UGC) and lower Georgetown Creek (LGC), Deer Creek (DC), and Crow Creek (CC). The results of this study indicate that selenium concentrations from the phosphate mining area of southeast Idaho were sufficiently elevated in several ecosystem components to cause adverse effects to aquatic resources in southeastern Idaho.

  3. The Thermodynamics of Selenium Minerals in Near-Surface Environments

    Directory of Open Access Journals (Sweden)

    Vladimir Krivovichev

    2017-10-01

    Full Text Available Selenium compounds are relatively rare as minerals; there are presently only 118 known mineral species. This work is intended to codify and systematize the data of mineral systems and the thermodynamics of selenium minerals, which are unstable (selenides or formed in near-surface environments (selenites, where the behavior of selenium is controlled by variations of the redox potential and the acidity of solutions at low temperatures and pressures. These parameters determine the migration of selenium and its precipitation as various solid phases. All selenium minerals are divided into four groups—native selenium, oxide, selenides, and oxysalts—anhydrous selenites (I and hydrous selenites and selenates (II. Within each of the groups, minerals are codified according to the minimum number of independent elements necessary to define the composition of the mineral system. Eh–pH diagrams were calculated and plotted using the Geochemist’s Workbench (GMB 9.0 software package. The Eh–pH diagrams of the Me–Se–H2O systems (where Me = Co, Ni, Fe, Cu, Pb, Zn, Cd, Hg, Ag, Bi, As, Sb, Al and Ca were plotted for the average contents of these elements in acidic waters in the oxidation zones of sulfide deposits. The possibility of the formation of Zn, Cd, Ag and Hg selenites under natural oxidation conditions in near surface environments is discussed.

  4. Selenium accumulation in the cockle Anadara trapezia

    International Nuclear Information System (INIS)

    Jolley, Dianne F.; Maher, William A.; Kyd, Jennelle

    2004-01-01

    An extensive study on Se accumulation in a population of Anadara trapezia from a marine lake is reported. The effects of organism mass, gender, reproductive cycle, and season on Se accumulation and tissue distribution were investigated. Analyses showed that gender and reproductive cycle had no significant effect on Se accumulation. A. trapezia showed a strong positive correlation between Se burden and tissue mass. Constant Se concentrations were observed within individual populations but varied spatially with sediment Se concentrations. Se concentrations in tissues decreased from gills > gonad/intestine > mantle > muscle > foot, which remained constant over 12 months, however, significantly lower concentrations were observed in the summer compared to winter. A. trapezia is a good biomonitor for Se, as gender and size do not effect concentration, however, season of collection must be reported if changes in Se bioavailability are to be identified in short term studies, or during intersite comparisons. - Capsule: The marine bivalve Anadara trapezia is a good bioindicator for marine selenium contamination

  5. Selenium content in milk and diary samples

    International Nuclear Information System (INIS)

    Kira, Carmen S.; Maihara, Vera A.

    2005-01-01

    Food is the primary source of Se for human beings. As such determining Se levels in foodstuffs become very important. However, information concerning Se levels in different sources of nutrition in different country, particularly in Brazil, is limited. Instrumental Neutron Activation Analysis (INAA) has been used to effectively determine micronutrient levels in foodstuffs, such as milk and dairy samples. The advantage of using the INAA technique is that the samples do not require previous dissolution before analysis. In this study, INAA was applied to determine Se concentration in milk and dairy products. The samples were acquired in the markets of Sao Paulo city. After a 8-hour irradiation in the research reactor IEA-R1, selenium was analyzed by gamma-ray spectrometry. Methodology validation was done analyzing NIST reference materials (Whole Milk Powder and Non Fat Milk Powder). Se concentrations in the sample analyzed were below 0.300 μg g -1 . (author)

  6. Selenium implantation in epitaxial gallium arsenide layers

    International Nuclear Information System (INIS)

    Inada, T.; Tokunaga, K.; Taka, S.; Yuge, Y.; Kohzu, H.

    1981-01-01

    Selenium implantation at room temperature in S-doped epitaxial GaAs layers as a means of the formation of n + layers has been investigated. Doping profiles for Se-implanted layers have been examined by a C-V technique and/or a differential Hall effect method. It has been shown that n + layers with a maximum carrier concentration of approx. equal to1.5 x 10 18 cm -3 can be formed by implantation followed by a 15 min annealing at 950 0 C. Contact resistance of ohmic electrodes is reduced by use of the Se-implanted n + layers, resulting in the improvement on GaAs FET performance. Measured minimum noise figure of the Se-implanted GaAs FETs is 0.74 dB at 4 GHz. (orig.)

  7. Agrobacterium-assisted selenium nanoparticles: molecular aspect of antifungal activity

    Science.gov (United States)

    Kumar, Anil; Bera, Smritilekha; Singh, Man; Mondal, Dhananjoy

    2018-03-01

    Selenium nanoparticles (SeNPs) were synthesized through the bioreduction of sodium selenite (Na2SeO3) using gram-negative agrobacterium (AGBT) species. Subsequently, their physicochemical properties (pH, viscosity and surface tension) and medicinal activities as anti-dermatophyte against soil keratinophilic fungi at the molecular level were assessed. UV-visible and FTIR spectroscopic data of the biologically synthesized SeNPs were then recorded for confirming the presence of native biological materials adhered to nanoparticles, which are inherently required to enhance the stability and solubility through inhibition of the nanoparticle’s natural aggregation and agglomeration. The λ max value between 290-300 nm in the absorption spectra of the biogenic materials in different concentrations of the Na2SeO3 corroborated the presence of SeNPs in the solution. The interaction of SeNPs in solution state was further studied through the determination of pH, viscosity and surface tension values of agrobacterium-derived SeNPs in different solvents. The pH value of SeNPs dispersed in water is reported as above 7.0 and the average viscosity, and surface tensions of the SeNPs are appeared as near to the water. The particle size distribution was further determined by DLS and the highest % of particle size of the synthesized SeNPs is found in between 200-300 nm. The anti-dermatophyte activity and molecular interaction with fungi DNA molecules were assessed providing the highest anti-dermatophyte activity at 0.1 M concentration and it is observed that the quantities and qualities of fungi DNA were affected by SeNPs. Considering all the outcomes of the studies together, our findings suggest that agrobacterium-mediated synthesis of SeNPs is dependent on bacterial metabolisms but not on the concentration of Na2SeO3 and are promising selenium-derived species with potential application in the prevention of fungal infection through denaturation of fungi DNA.

  8. Effect of selenium supplementation on thyroid antibodies

    International Nuclear Information System (INIS)

    Kvicala, J.; Hrda, P.; Zamrazil, V.; Nemecek, J.; Hill, M.; Jiranek, V.

    2009-01-01

    Selenium is an essential component of selenoproteins, enzymes with extensive regulatory and protective effect in organism. Immunological effects of Se are documented and are distinct even above concentrations necessary for maximal activity of selenoenzymes. Therefore, we investigated effect of supplementation by 100 μg of yeast-bound Se on concentrations of thyroid autoantibodies TPOAb and TgAb in the group of 253 seniors living in the Asylum Houses of South Bohemia. Increase of serum selenium from 59 to 150 μg Se/L serum in supplemented group and from 59 to 72 μg Se/L serum in group with placebo were detected by Instrumental Neutron Activation Analysis (INAA) and proved increased Se intake during the trial. Autoantibodies were analyzed by ELISA at the beginning of the trial and after 1 year. Statistical evaluation of results in whole groups (regardless of increased autoantibodies) by ANOVA manifested significant decrease of TPOAb and TgAb in non-supplemented group while supplementation did not effect serum autoantibodies concentrations. Evaluation of groups of seniors created from those with increased autoantibodies, ANOVA demonstrated decrease of TPOAb in both groups but Se supplementation did not affect the decrease. In opposite, TgAb increased significantly and Se supplementation led to higher increase of TgAb. Recent results of possibility to decrease serum concentration of TPOAb proved this effect only for high TPOAb concentrations and for higher Se supplements. From this point of view, it is necessary to conduct subsequent trials with the patients with autoimmune thyreoiditis with different levels of autoantibodies and detect also serum Se levels. (author)

  9. Determinants of selenium status in healthy adults

    Directory of Open Access Journals (Sweden)

    Hoeg Antonia

    2011-07-01

    Full Text Available Abstract Background Selenium (Se status in non-deficient subjects is typically assessed by the Se contents of plasma/serum. That pool comprises two functional, specific selenoprotein components and at least one non-functional, non-specific components which respond differently to changes in Se intake. A more informative means of characterizing Se status in non-deficient individuals is needed. Methods Multiple biomarkers of Se status (plasma Se, serum selenoprotein P [SEPP1], plasma glutathione peroxidase activity [GPX3], buccal cell Se, urinary Se were evaluated in relation to selenoprotein genotypes (GPX1, GPX3, SEPP1, SEP15, dietary Se intake, and parameters of single-carbon metabolism in a cohort of healthy, non-Se-deficient men (n = 106 and women (n = 155. Conclusions Plasma Se concentration was 142.0 ± 23.5 ng/ml, with GPX3 and serum-derived SEPP1 calculated to comprise 20% and 34%, respectively, of that total. The balance, comprised of non-specific components, accounted for virtually all of the interindividual variation in total plasma Se. Buccal cell Se was associated with age and plasma homocysteine (hCys, but not plasma Se. SEPP1 showed a quadratic relationship with body mass index, peaking at BMI 25-30. Urinary Se was greater in women than men, and was associated with metabolic body weight (kg0.75, plasma folate, vitamin B12 and hCys (negatively. One GPX1 genotype (679T/T was associated with significantly lower plasma Se levels than other allelic variants. Selenium intake, estimated from food frequency questionnaires, did not predict Se status as indicated by any biomarker. These results show that genotype, methyl-group status and BMI contribute to variation in Se biomarkers in Se-adequate individuals.

  10. Copper and selenium supplementation in the diet of Brangus steers on the nutritional characteristics of meat

    Directory of Open Access Journals (Sweden)

    Arlindo Saran Netto

    2013-01-01

    Full Text Available Twenty-eight Brangus cattle were used to determine the effect of copper and selenium supplementation on the carcass characteristics, fatty acid composition of the longissimus dorsi muscle and on the copper and selenium concentrations in the liver. The treatments were: no supplementation of copper or selenium; 2 mg Se/kg DM as sodium selenite; 40 mg Cu/kg DM as copper sulfate; and 2 mg Se/kg DM as sodium selenite and 40 mg Cu/kg DM as copper sulfate. The fat thickness, rib eye area and fatty acid composition of the longissimus dorsi muscle were not affected by treatments. There was no effect on carcass yield and cooling loss with the supplementation of copper, selenium or selenium × copper in the levels studied. For the ether extract concentration in the longissimus dorsi muscle, no differences were found according to the treatments with selenium, copper or selenium × copper. The treatments with selenium and selenium × copper showed higher selenium concentrations in the liver than the control and copper treatments. For the copper concentration in the liver, the copper and selenium × copper treatments showed higher values than the control and selenium treatments. Despite the little effect on the meat composition, the results of this experiment demonstrate no interaction between selenium and copper in the levels studied.

  11. Selenium Homeostasis and Clustering of Cardiovascular Risk Factors: A Systematic Review.

    Science.gov (United States)

    Gharipour, Mojgan; Sadeghi, Masoumeh; Behmanesh, Mehrdad; Salehi, Mansour; Nezafati, Pouya; Gharpour, Amin

    2017-10-23

      Selenium is a trace element required for a range of cellular functions. It is widely used for the biosynthesis of the unique amino acid selenocysteine [Sec], which is a structural element of selenoproteins. This systematic review focused on the possible relation between selenium and metabolic risk factors. The literature was searched via PubMed, Scopus, ISI Web of Science, and Google Scholar. Searches were not restricted by time or language. Relevant studies were selected in three phases. After an initial quality assessment, two reviewers extracted all the relevant data, whereas the third reviewer checked their extracted data. All evidence came from experimental and laboratory studies. Selenoprotein P is the best indicator for selenium nutritional levels. In addition, high levels of selenium may increase the risk of metabolic syndrome while the lack of sufficient selenium may also promote metabolic syndrome. selenium supplementation in subjects with sufficient serum selenium levels has a contrary effect on blood pressure, LDL, and total cholesterol. According to the bioavailability of different types of selenium supplementation such as selenomethionine, selenite and selenium-yeast, it seems that the best nutritional type of selenium is selenium-yeast. Regarding obtained results of longitudinal studies and randomized controlled trials, selenium supplementation should not be recommended for primary or secondary cardio-metabolic risk prevention in populations with adequate selenium status.

  12. Laser-Induced Gas-Phase Pyrolysis of Dimethyl Selenium: Chemical Deposition of Selenium and Poly(selenoformaldehyde)

    Czech Academy of Sciences Publication Activity Database

    Pokorná, Dana; Urbanová, Markéta; Bastl, Zdeněk; Šubrt, Jan; Pola, Josef

    2004-01-01

    Roč. 71, č. 2 (2004), s. 635-644 ISSN 0165-2370 R&D Projects: GA AV ČR IAA4072107; GA MŠk OC 523.60 Institutional research plan: CEZ:AV0Z4072921; CEZ:AV0Z4032918; CEZ:AV0Z4040901 Keywords : dimethyl selenium * laser pyrolysis * selenium films Subject RIV: CC - Organic Chemistry Impact factor: 1.352, year: 2004

  13. Use of sodium hydroxide treated selenium deficient barley to induce vitamin E and selenium deficiency in yearling cattle.

    Science.gov (United States)

    Rice, D A; McMurray, C H

    1986-02-15

    Selenium deficient barley grown in Northern Ireland was treated with sodium hydroxide to deplete it of vitamin E. Housed cattle fed a complete diet based on this treated barley developed nutritional degenerative myopathy, showing that spontaneous myopathy in yearling cattle can be the result of vitamin E and selenium deficiency alone. The diet used is as effective and cheaper than others presently in use for inducing degenerative myopathy.

  14. Determination of human and Sprague-Dawley rat trimethylseleonium ion and total selenium urine concentrations from endogenous body selenium pool by neutron activation analysis

    International Nuclear Information System (INIS)

    Blotcky, A.J.; Claassen, J.P.; Rack, E.P.

    1992-01-01

    This study determined trimethylselenonium ion [TMSe,(CH 3 ) 3 Se + ] and total organic selenium cationic species urinary excretion values for healthy human subjects and Sprague-Dawley rats fed regular diets. The only source of TMSe was from the endogenous selenium body pool. Total selenium concentration in urine was determined by instrumental neutron activation analysis. TMSe and total selenium cationic species concentrations and percent of total selenium urine excretion were determined by chemical neutron activation analysis and coupled anion-cation exchange chromatography and anion-exchange chromatography, respectively. Within experimental error, mean values for TMSe and cationic species as percent selenium were comparable for both human subjects and Sprague-Dawley rats. This study suggested that TMSe excreated in urine by healthy human subjects and Sprague-Dawley rats fed a normal diet is not a minor but a general metabolite of selenium ingested in a normal diet. (author) 27 refs.; 1 fig.; 2 tabs

  15. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... information about your thyroid’s size, shape, position and function that is often unattainable using other imaging procedures. ... thyroid uptake. It is a measurement of thyroid function, but does not involve imaging. Nuclear medicine is ...

  16. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... which are encased in metal and plastic and most often shaped like a box, attached to a ... will I experience during and after the procedure? Most thyroid scan and thyroid uptake procedures are painless. ...

  17. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... eat for several hours before your exam because eating can affect the accuracy of the uptake measurement. ... often unattainable using other imaging procedures. For many diseases, nuclear medicine scans yield the most useful information ...

  18. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... A thyroid scan is a type of nuclear medicine imaging. The radioactive iodine uptake test (RAIU) is ... thyroid function, but does not involve imaging. Nuclear medicine is a branch of medical imaging that uses ...

  19. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... Because nuclear medicine procedures are able to pinpoint molecular activity within the body, they offer the potential ... or imaging device that produces pictures and provides molecular information. The thyroid scan and thyroid uptake provide ...

  20. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... Actual scanning time for each thyroid uptake is five minutes or less. top of page What will ... diagnostic procedures have been used for more than five decades, and there are no known long-term ...

  1. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... top of page Additional Information and Resources RTAnswers.org Radiation Therapy for Head and Neck Cancer top ... Scan and Uptake Sponsored by Please note RadiologyInfo.org is not a medical facility. Please contact your ...

  2. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... When radiotracer is taken by mouth, in either liquid or capsule form, it is typically swallowed up ... radioactive iodine (I-123 or I-131) in liquid or capsule form to swallow. The thyroid uptake ...

  3. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... RAIU) is also known as a thyroid uptake. It is a measurement of thyroid function, but does ... they offer the potential to identify disease in its earliest stages as well as a patient’s immediate ...

  4. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... for several hours before your exam because eating can affect the accuracy of the uptake measurement. Jewelry ... small hand-held device resembling a microphone that can detect and measure the amount of the radiotracer ...

  5. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... of page What will I experience during and after the procedure? Most thyroid scan and thyroid uptake ... you otherwise, you may resume your normal activities after your nuclear medicine scan. If any special instructions ...

  6. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... scan and thyroid uptake provide information about the structure and function of the thyroid. The thyroid is ... computer, create pictures offering details on both the structure and function of organs and tissues in your ...

  7. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... eat for several hours before your exam because eating can affect the accuracy of the uptake measurement. ... its radioactivity over time. It may also pass out of your body through your urine or stool ...

  8. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... procedures within the last two months that used iodine-based contrast material. Your doctor will instruct you ... a type of nuclear medicine imaging. The radioactive iodine uptake test (RAIU) is also known as a ...

  9. Evaluation of ameliorative potential of supranutritional selenium on enrofloxacin-induced testicular toxicity.

    Science.gov (United States)

    Rungsung, Soya; Khan, Adil Mehraj; Sood, Naresh Kumar; Rampal, Satyavan; Singh Saini, Simrat Pal

    2016-05-25

    The study was designed to assess the ameliorative potential of selenium (Se) on enrofloxacin-induced testicular toxicity in rats. There was a significant decrease in body weight and non-significant decrease in mean testicular weight of enrofloxacin treated rats. In enrofloxacin treated rats, total sperm count and viability decreased where as sperm abnormalities increased. Testicular histopathology revealed dose dependent dysregulation of spermatogenesis and presence of necrotic debris in seminiferous tubules which was marginally improved with Se. Enrofloxacin also produced a dose dependent decrease in testosterone level. The activity of testicular antioxidant enzymes decreased where as lipid peroxidation increased in a dose-dependent manner. Se supplementation partially restored oxidative stress and sperm damage and did not affect the plasma concentrations of enrofloxacin or ciprofloxacain. The results indicate that enrofloxacin produces a dose-dependent testicular toxicity in rats that is moderately ameliorated with supranutritional Se. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Citrate and succinate uptake by potato mitochondria

    International Nuclear Information System (INIS)

    Jung, D.W.; Laties, G.G.

    1979-01-01

    Potato mitochondria, in the absence of respiration, have a very low capacity for uptake by exchange with endogenous anions, taking up only 2.4 nanomoles citrate and 2.0 nanomoles succinate per milligram protein. Maximum citrate uptake of over 17 nanomoles per milligram protein occurs in the presence of inorganic phosphate, a dicarboxylic acid, and an external energy source (NADH), conditions where net anion accumulation proceeds, mediated by the interlinking of the inorganic phosphate, dicarboxylate, and tricarboxylate carriers. Maximum succinate uptake in the absence of respiratory inhibitors requires only added inorganic phosphate. Compounds which inhibit respiration (antimycin), the exchange carriers (mersalyl and benzylmalonate), or the establishment of the membrane proton motive force (uncouplers) reduce substrate accumulation. A potent inhibitor of the citrate carrier in animal mitochondria, 1,2,3-benzenetricarboxylic acid, does not inhibit citrate uptake in potato mitochondria. Citrate uptake is reduced by concurrent ADP phosphorylation and this reduction is sensitive to oligomycin. The initiation of state 3 after a 3-minute substrate state results in a reduction of the steady-state of citrate uptake by approximately 50%. Accumulation of succinate initially is inhibited by increasing sucrose concentration in the reaction medium from 50 to 400 millimolar. Limited substrate uptake is one of the factors responsible for the often observed depressed initial state 3 respiration rates in many mitochondrial preparations. Since nonlimiting levels of substrate in the matrix cannot be attained by energy-independent exchange, a dependence on respiration for adequate uptake results. Substrate limitation therefore occurs in the matrix for the period of time needed for energy-dependent accumulation of nonlimiting levels

  11. SELENIUM TREATMENT/REMOVAL ALTERNATIVES DEMONSTRATION PROJECT - MINE WASTE TECHNOLOGY PROGRAM ACTIVITY III, PROJECT 20

    Science.gov (United States)

    This document is the final report for EPA's Mine WAste Technology Program (MWTP) Activity III, Project 20--Selenium Treatment/Removal Alternatives Demonstration project. Selenium contamination originates from many sources including mining operations, mineral processing, abandoned...

  12. Uptake of dietary selenium by laboratory and field feeding Podisus maculiventris (Heteroptera: Pentatomidae)

    Science.gov (United States)

    Podisus maculiventris (Say) is a generalist pentatomid predator commercially available for augmentative biological control of pest insects in a variety of crop and orchard systems. P. maculiventris is exposed to a wide variety of micronutrients based upon the soil type, plant, and insect prey items...

  13. Treating chronic arsenic toxicity with high selenium lentil diets

    Energy Technology Data Exchange (ETDEWEB)

    Sah, Shweta [Department of Ecosystem and Public Health, Faculty of Medicine, University of Calgary, Calgary, AB T2N 4Z6 (Canada); Vandenberg, Albert [Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8 (Canada); Smits, Judit, E-mail: judit.smits@ucalgary.ca [Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4Z6 (Canada)

    2013-10-01

    Arsenic (As) toxicity causes serious health problems in humans, especially in the Indo-Gangetic plains and mountainous areas of China. Selenium (Se), an essential micronutrient is a potential mitigator of As toxicity due to its antioxidant and antagonistic properties. Selenium is seriously deficient in soils world-wide but is present at high, yet non-toxic levels in the great plains of North America. We evaluate the potential of dietary Se in counteracting chronic As toxicity in rats through serum biochemistry, blood glutathione levels, immunotoxicity (antibody response), liver peroxidative stress, thyroid response and As levels in tissues and excreta. To achieve this, we compare diets based on high-Se Saskatchewan (SK) lentils versus low-Se lentils from United States. Rats drank control (0 ppm As) or As (40 ppm As) water while consuming SK lentils (0.3 ppm Se) or northwestern USA lentils (< 0.01 ppm Se) diets for 14 weeks. Rats on high Se diets had higher glutathione levels regardless of As exposure, recovered antibody responses in As-exposed group, higher fecal and urinary As excretion and lower renal As residues. Selenium deficiency caused greater hepatic peroxidative damage in the As exposed animals. Thyroid hormones, triiodothyronine (T3) and thyroxine (T4), were not different. After 14 weeks of As exposure, health indicators in rats improved in response to the high Se lentil diets. Our results indicate that high Se lentils have a potential to mitigate As toxicity in laboratory mammals, which we hope will translate into benefits for As exposed humans. - Highlights: • We reduce chronic arsenic toxicity in rats with a whole food solution. • High selenium lentils decrease liver damage and increase blood glutathione levels. • High selenium lentil diets increase urinary and fecal arsenic excretion. • High selenium lentil diets decrease arsenic levels in kidney, the storage organ. • High selenium lentil diets reverse arsenic suppression of the B cell

  14. Treating chronic arsenic toxicity with high selenium lentil diets

    International Nuclear Information System (INIS)

    Sah, Shweta; Vandenberg, Albert; Smits, Judit

    2013-01-01

    Arsenic (As) toxicity causes serious health problems in humans, especially in the Indo-Gangetic plains and mountainous areas of China. Selenium (Se), an essential micronutrient is a potential mitigator of As toxicity due to its antioxidant and antagonistic properties. Selenium is seriously deficient in soils world-wide but is present at high, yet non-toxic levels in the great plains of North America. We evaluate the potential of dietary Se in counteracting chronic As toxicity in rats through serum biochemistry, blood glutathione levels, immunotoxicity (antibody response), liver peroxidative stress, thyroid response and As levels in tissues and excreta. To achieve this, we compare diets based on high-Se Saskatchewan (SK) lentils versus low-Se lentils from United States. Rats drank control (0 ppm As) or As (40 ppm As) water while consuming SK lentils (0.3 ppm Se) or northwestern USA lentils (< 0.01 ppm Se) diets for 14 weeks. Rats on high Se diets had higher glutathione levels regardless of As exposure, recovered antibody responses in As-exposed group, higher fecal and urinary As excretion and lower renal As residues. Selenium deficiency caused greater hepatic peroxidative damage in the As exposed animals. Thyroid hormones, triiodothyronine (T3) and thyroxine (T4), were not different. After 14 weeks of As exposure, health indicators in rats improved in response to the high Se lentil diets. Our results indicate that high Se lentils have a potential to mitigate As toxicity in laboratory mammals, which we hope will translate into benefits for As exposed humans. - Highlights: • We reduce chronic arsenic toxicity in rats with a whole food solution. • High selenium lentils decrease liver damage and increase blood glutathione levels. • High selenium lentil diets increase urinary and fecal arsenic excretion. • High selenium lentil diets decrease arsenic levels in kidney, the storage organ. • High selenium lentil diets reverse arsenic suppression of the B cell

  15. Selenium and mercury molar ratios in saltwater fish from New Jersey: Individual and species variability complicate use in human health fish consumption advisories☆

    Science.gov (United States)

    Burger, Joanna; Gochfeld, Michael

    2014-01-01

    Balancing risk versus benefits to humans and other organisms from consuming fish is a national concern in the USA, as well as in many other parts of the world. Protecting public health is both a federal and state responsibility, and states respond by issuing fish consumption advisories, particularly for mercury. Recently it has been emphasized that the protective role of selenium against mercury toxicity depends on their molar ratios, which should be evaluated as an indication of selenium’s protective capacity, and incorporated in risk assessments for fish consumption. However, there is no single “protective” ratio agreed upon. In this paper we examine the selenium:mercury (Se:Hg) molar ratios in a wide range of saltwater fish caught and eaten by recreational fishers along the New Jersey coast. We were particularly interested in interspecific and intraspecific variability, and whether the molar ratios were consistent within a species, allowing for its use in managing risk. The selenium–mercury molar ratio showed significant variation among and within fish species. The molar ratio decreased with the size of the fish species, decreased with the mercury levels, and within a fish species, the selenium:mercury ratio decreased with fish size. As an essential element, selenium undergoes some homeostatic regulation, but it is also highly toxic. Within species, mercury level tends to increase with size, accounting for the negative relationship between size and ratio. This variability may make it difficult to use the selenium:mercury molar ratio in risk assessment, risk management, and risk communication at this time, and more information is needed on how mercury and selenium actually interact and on the relationship between the molar ratios and health outcomes. PMID:22405995

  16. Neutron activation analysis applied to the determination of selenium in bovine plasma

    International Nuclear Information System (INIS)

    Hevia, Sonia E.; Resnizky, Sara M.; Gil, Susana B.; Pawlak, Eva

    1999-01-01

    The procedure used to determine selenium in bovine plasma by neutron irradiation of the samples, followed by a radiochemical separation, is described. This procedure allows the direct determination of the value of the selenium plasmatic level, instead of the indirect conventional method that determines the blood glutathion peroxidase enzyme, as an indicator of the selenium content in the blood. (author)

  17. Selenium containing clays minerals as additive for the discoloration of glass

    NARCIS (Netherlands)

    Timmer, K.; Limpt, J.A.C. van; Fischer, H.R.

    2010-01-01

    While selenium is applied as decolorizing agent for flint container glass or tableware glass, the retention of selenium in glass however is very low. Generally more than 75% of the total selenium input sublimes from the glass melt and leaves the clay minerals due to the high volatility of

  18. Marginal selenium deficiency down-regulates inflammation-related genes in splenic leukocytes of the mouse

    NARCIS (Netherlands)

    Kipp, A.P.; Banning, A.; Schothorst, van E.M.; Meplan, C.; Coort, S.L.; Evelo, C.; Keijer, J.; Hesketh, J.; Brigelius, R.

    2012-01-01

    Moderate selenium deficiency may lead to an impaired capacity to cope with health challenges. Functional effects of suboptimal selenium intake are not fully known, and biomarkers for an insufficient selenium supply are inadequate. We therefore fed mice diets of moderately deficient or adequate

  19. Measuring the serotonin uptake site using [3H]paroxetine--a new serotonin uptake inhibitor

    International Nuclear Information System (INIS)

    Gleiter, C.H.; Nutt, D.J.

    1988-01-01

    Serotonin is an important neurotransmitter that may be involved in ethanol preference and dependence. It is possible to label the serotonin uptake site in brain using the tricyclic antidepressant imipramine, but this also binds to other sites. We have used the new high-affinity uptake blocker paroxetine to define binding to this site and report it to have advantages over imipramine as a ligand

  20. Nanosized Selenium: A Novel Platform Technology to Prevent Bacterial Infections

    Science.gov (United States)

    Wang, Qi

    As an important category of bacterial infections, healthcare-associated infections (HAIs) are considered an increasing threat to the safety and health of patients worldwide. HAIs lead to extended hospital stays, contribute to increased medical costs, and are a significant cause of morbidity and mortality. In the United States, infections encountered in the hospital or a health care facility affect more than 1.7 million patients, cost 35.7 billion to 45 billion, and contribute to 88,000 deaths in hospitals annually. The most conventional and widely accepted method to fight against bacterial infections is using antibiotics. However, because of the widespread and sometimes inappropriate use of antibiotics, many strains of bacteria have rapidly developed antibiotic resistance. Those new, stronger bacteria pose serious, worldwide threats to public health and welfare. In 2014, the World Health Organization (WHO) reported antibiotic resistance as a global serious threat that is no longer a prediction for the future but is now reality. It has the potential to affect anyone, of any age, in any country. The most effective strategy to prevent antibiotic resistance is minimizing the use of antibiotics. In recent years, nanomaterials have been investigated as one of the potential substitutes of antibiotics. As a result of their vastly increased ratio of surface area to volume, nanomaterials will likely exert a stronger interaction with bacteria which may affect bacterial growth and propagation. A major concern of most existing antibacterial nanomaterials, like silver nanoparticles, is their potential toxicity. But selenium is a non-metallic material and a required nutrition for the human body, which is recommended by the FDA at a 53 to 60 μg daily intake. Nanosized selenium is considered to be healthier and less toxic compared with many metal-based nanomaterials due to the generation of reactive oxygen species from metals, especially heavy metals. Therefore, the objectives of