WorldWideScience

Sample records for selenate-se treated clay

  1. Modeling selenate adsorption behavior on oxides, clay minerals, and soils using the triple layer model

    Science.gov (United States)

    Selenate adsorption behavior was investigated on amorphous aluminum oxide, amorphous iron oxide, goethite, clay minerals: kaolinites, montmorillonites, illite, and 18 soil samples from Hawaii, and the Southwestern and the Midwestern regions of the US as a function of solution pH. Selenate adsorpti...

  2. Characteristics of CuInSe2 thin films grown by the selenization method

    International Nuclear Information System (INIS)

    Kim, Sang Deok; Kim, Hyeong Joon; Adurodija, Frederick Ojo; Yoon, Kyeong Hoon; Song, Jin Soo

    1999-01-01

    CuInSe 2 thin films were formed from a selenization of co-sputtered Cu-In alloy layers which consisted of only two phases, CuIn 2 and Cu 11 In 9 . A linear dependence of the Cu-In alloy film composition on the Cu/In sputtering power was found. The metallic layers were selenized in vacuum or at 1 atm. A small number of Cu-Se and In-Se compounds was observed during the early stage of selenization, and single-phase CuInSe 2 was more easily formed in vacuum than at atmospheric pressure. Therefore, CuInSe 2 films selenized in vacuum showed larger grain sizes, smoother surfaces, and denser microstructures than those selenized at 1 atm

  3. Characteristics of CuInSe sub 2 thin films grown by the selenization method

    CERN Document Server

    Kim, S D; Adurodija, F O; Yoon, K H; Song, J S

    1999-01-01

    CuInSe sub 2 thin films were formed from a selenization of co-sputtered Cu-In alloy layers which consisted of only two phases, CuIn sub 2 and Cu sub 1 sub 1 In sub 9. A linear dependence of the Cu-In alloy film composition on the Cu/In sputtering power was found. The metallic layers were selenized in vacuum or at 1 atm. A small number of Cu-Se and In-Se compounds was observed during the early stage of selenization, and single-phase CuInSe sub 2 was more easily formed in vacuum than at atmospheric pressure. Therefore, CuInSe sub 2 films selenized in vacuum showed larger grain sizes, smoother surfaces, and denser microstructures than those selenized at 1 atm.

  4. Changes in SeMSC, glucosinolates and sulforaphane levels, and in proteome profile in broccoli (Brassica oleracea var. Italica) fertilized with sodium selenate.

    Science.gov (United States)

    Sepúlveda, Ignacio; Barrientos, Herna; Mahn, Andrea; Moenne, Alejandra

    2013-05-07

    The aim of this work was to analyze the effect of sodium selenate fortification on the content of selenomethyl selenocysteine (SeMSC), total glucosinolates and sulforaphane, as well as the changes in protein profile of the inflorescences of broccoli (Brassica oleracea var. Italica). Two experimental groups were considered: plants treated with 100 μmol/L sodium selenate (final concentration in the pot) and control plants treated with water. Fortification began 2 weeks after transplantation and was repeated once a week during 10 weeks. Broccoli florets were harvested when they reached appropriate size. SeMSC content in broccoli florets increased significantly with sodium selenate fortification; but total glucosinolates and sulforaphane content as well as myrosinase activity were not affected. The protein profile of broccoli florets changed due to fortification with sodium selenate. Some proteins involved in general stress-responses were up-regulated, whereas down-regulated proteins were identified as proteins involved in protection against pathogens. This is the first attempt to evaluate the physiological effect of fortification with sodium selenate on broccoli at protein level. The results of this work will contribute to better understanding the metabolic processes related with selenium uptake and accumulation in broccoli.

  5. Changes in SeMSC, Glucosinolates and Sulforaphane Levels, and in Proteome Profile in Broccoli (Brassica oleracea var. Italica Fertilized with Sodium Selenate

    Directory of Open Access Journals (Sweden)

    Alejandra Moenne

    2013-05-01

    Full Text Available The aim of this work was to analyze the effect of sodium selenate fortification on the content of selenomethyl selenocysteine (SeMSC, total glucosinolates and sulforaphane, as well as the changes in protein profile of the inflorescences of broccoli (Brassica oleracea var. Italica. Two experimental groups were considered: plants treated with 100 mmol/L sodium selenate (final concentration in the pot and control plants treated with water. Fortification began 2 weeks after transplantation and was repeated once a week during 10 weeks. Broccoli florets were harvested when they reached appropriate size. SeMSC content in broccoli florets increased significantly with sodium selenate fortification; but total glucosinolates and sulforaphane content as well as myrosinase activity were not affected. The protein profile of broccoli florets changed due to fortification with sodium selenate. Some proteins involved in general stress-responses were up-regulated, whereas down-regulated proteins were identified as proteins involved in protection against pathogens. This is the first attempt to evaluate the physiological effect of fortification with sodium selenate on broccoli at protein level. The results of this work will contribute to better understanding the metabolic processes related with selenium uptake and accumulation in broccoli.

  6. Selenization of mixed metal oxides for dense and ZnSe-free Cu{sub 2}ZnSnSe{sub 4} absorber films

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Yitao; Chen, Guilin; Pan, Bin; Li, JianMin; Jiang, Guoshun; Liu, Weifeng, E-mail: liuwf@ustc.edu.cn; Zhu, Changfei, E-mail: cfzhu@ustc.edu.cn

    2014-04-05

    Highlights: • ZnSe-free CZTSe films with large grains was prepared from mixed oxides nanopraticles. • Appearance of Zn{sub 2}SnO{sub 4} in mixed oxides precursors leads to the absence of ZnSe secondary phrase. • To obtain pure CZTSe phase, different treating temperature was used. -- Abstract: Cu{sub 2}ZnSnSe{sub 4} (CZTSe) films were prepared by direct selenization of Cu{sub 2}O, SnO{sub 2} and Zn{sub 2}SnO{sub 4} precursors. Oxides precursors were prepared by baking hydroxides precipitation. In order to obtain ZnSe-free CZTSe films, Zn{sub 2}SnO{sub 4} was used to replace separated ZnO and SnO{sub 2} as one of the precursors. Through X-ray diffraction (XRD), scanning electron microscopy (SEM), it was found that CZTSe films, with micron-sized dense grains, were obtained in our work. From Raman spectra, it was also found that the ZnSe secondary phase was absent after the selenization. An energy bandgap about 0.86 eV was obtained in our work, which confirmed the Stannite-CZTSe structure.

  7. Preparation of SnSe thin films by encapsulated selenization

    International Nuclear Information System (INIS)

    Sabar D. Hutagalung; Samsudi Sakrani; Yussof Wahab

    1994-01-01

    Tin selenide thin films were prepared by encapsulated selenization. A stacked layer of evaporated Sn and Se films were annealed in a carbon block at temperatures 100 - 500 degree Celsius for 3 hours. X-ray analysis and SEM (Scanning electron) micrograph results showed that SnSe was initially formed at 150 degree Celsius with crystal size 30.0 nm and reached optimum formation at 200 daximum of 57.4 % yield of 5-decene. Other factors such as reaction temperatures, types of solvent and wt% of rhenium loadings influence the activity of the catalytic system

  8. Controlled formation of MoSe{sub 2} by MoN{sub x} thin film as a diffusion barrier against Se during selenization annealing for CIGS solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Chan-Wook [School of Chemical Engineering, Yeungnam University, Gyeongsangbuk-do 712-749 (Korea, Republic of); Cheon, Taehoon [School of Materials Science and Engineering, Yeungnam University, Gyeongsangbuk-do 712-749 (Korea, Republic of); Center for Core Research Facilities, DaeguGyeongbuk Institute of Science & Technology, Daegu (Korea, Republic of); Kim, Hangil [School of Materials Science and Engineering, Yeungnam University, Gyeongsangbuk-do 712-749 (Korea, Republic of); Kwon, Min-Su [School of Chemical Engineering, Yeungnam University, Gyeongsangbuk-do 712-749 (Korea, Republic of); Kim, Soo-Hyun [School of Materials Science and Engineering, Yeungnam University, Gyeongsangbuk-do 712-749 (Korea, Republic of)

    2015-09-25

    Highlights: • Mo/MoN{sub x}/Mo multilayer was investigated as a back contact for CIGS solar cell. • The MoN{sub x} protected the underlying Mo layer during high temperature selenization. • The formation of MoSe{sub 2} layer was precisely controlled. • The diffusion barrier performance of MoN{sub x} against Se was evaluated using TEM analysis. - Abstract: This study investigated the interfacial reactions and electrical properties of a Mo single layer and Mo/MoN{sub x}/Mo multilayer during high temperature selenization annealing. The Mo single layer was converted easily to MoSe{sub 2}, which was 7 times thicker than the Mo layer consumed ∼900 nm, by selenization at 460 °C for 10 min and the sheet resistance increased 8 fold compared to that of the as-deposited Mo film. On the other hand, in the Mo/MoN{sub x}/Mo structure, transmission electron microscopy (TEM) showed that the MoSe{sub 2} transformation was localized only in the top Mo layer and the bottom Mo layer was completely unaffected, even after selenization at 560 °C. The sheet resistance of the multilayer was relatively unchanged by selenization. This suggests that the MoN{sub x} layer performed well as a diffusion barrier against Se and the thickness of MoSe{sub 2} can be controlled precisely by adjusting the top Mo layer thickness. Furthermore, TEM and energy dispersive spectroscopy analysis showed that the selenized multilayer consisted of MoSe{sub 2}/Mo/MoN{sub x}/Mo, in which the top Mo layer of 60 nm was not fully converted to MoSe{sub 2} and 20 nm was left unreacted. The residual Mo interlayer located at the interface of MoSe{sub 2} and MoN{sub x} is believed to be beneficial for the ohmic contact of the selenized multilayer.

  9. Synthesis and crystal structure of a new neodymium(III) selenate-selenite: Nd2(SeO4)(SeO3)2(H2O)2

    International Nuclear Information System (INIS)

    Feng Meiling; Mao Jianggao

    2005-01-01

    The title new neodymium(III) selenate-selenite was obtained by hydrothermal reactions of neodymium(III) oxide, H 2 SeO 4 and 1,10-phenanthroline at 140 o C. Its structure was established by single-crystal X-ray diffraction. The title compound crystallizes in the monoclinic space group C2/c with cell parameters of a = 12.258(2) A, b 7.1024(15) A, c = 13.391(3) A, β = 104.250(2) o . The structure of Nd 2 (SeO 4 )(SeO 3 ) 2 (H 2 O) 2 is isomorphous with that of Er 2 (SeO 4 )(SeO 3 ) 2 (H 2 O) 2 , which was refined in the monoclinic space group C2 with the disordered selenate group. It features an ordered 3D network with channels along b-axis. The selenate or selenite groups alone can form a 2D layer with the Nd(III) ions. IR spectrum, TGA and luminescent studies have also been performed

  10. Synthesis and crystal structure of hydrogen selenates K(HSeO4)(H2SeO4) and Cs(HSeO4)(H2SeO4)

    International Nuclear Information System (INIS)

    Troyanov, S.I.; Morozov, I.V.; Zakharov, M.A.; Kemnitz, E.

    1999-01-01

    Hydrogen selenates of the compositions K(HSeO 4 )(H 2 SeO 4 ) and Cs(HSeO 4 )(H 2 SeO 4 ) are synthesized by the reaction of alkali metal carbonates with an excess of the concentrated selenic acid. The X-ray diffraction study showed that both compounds are isostructural to the corresponding hydrogen sulfates. The difference in the systems of hydrogen bonding are caused by various combinations of the acceptor functions of the oxygen atoms in the HSeO 4 and H 2 SeO 4 groups

  11. Comparing the influence of selenite (Se4+) and selenate (Se6+) on the inhibition of the mercury (Hg) phytotoxicity to pak choi.

    Science.gov (United States)

    Tran, Thi Anh Thu; Dinh, Quang Toan; Cui, Zeiwei; Huang, Jie; Wang, Dan; Wei, Tianjiao; Liang, Dongli; Sun, Xin; Ning, Ping

    2018-01-01

    Selenite (Se (IV)) and selenate (Se (IV)) have recently been demonstrated to be equally effective in inhibiting mercury (Hg) phytotoxicity to plants. This assertion is still unclear. In this study, we aimed to explore the potential effects of Se species (Se 4+ and Se 6+ ) on the inhibition of the mercury (Hg) bioavailability to pak choi in dry land. Pot experiments with exposure to different dosages of mercuric chloride (HgCl 2 ) and selenite (Na 2 SeO 3 ) or selenate (Na 2 SeO 4 ) were treated. To compare the influence of Se (IV) and Se (VI) on the bioaccumulation and bioavailability of Hg, the levels of total Hg in different pak choi (Brassica chinensis L.) tissues (roots and shoots) and the distribution changes of Hg fractions in soil before planting and after harvest were determined as well as the Hg I R values in soils (relative binding intensity) were analyzed. Results showed that application Se (IV) reduced the concentrations of Hg in pak choi roots more than Se (VI). Hg concentrations were also decreased in pak choi shoots in Se (IV) treatments, while which notably increased in Se (VI) treatments. Thus, Se (IV) plays a more important role than Se (VI) in limiting the absorption and bioaccumulation of Hg in pak choi. Moreover, this inhibition may only significantly occur when Se (IV) is at an appropriate level (2.5mg/kg). In addition, the good correlations between the proportions of mobile Hg fractions (soluble and exchangeable fractions), I R values with the Hg concentrations in plants were observed. This affirmed the importance of the Hg fractions transformation and the I R indicator of Hg in the assessment of their bioavailability. Our findings regarding the importance of Se (IV) influence in reducing Hg bioaccumulation not only provided the correct appraisal about the effect of Se species on the inhibition of the Hg phytotoxicity to pak choi in dry land, but also be a good reference for selecting Se fertilizer forms (Se 4+ or Se 6+ ). Copyright © 2017

  12. Influence of Se concentrations and species in hydroponic cultures on Se uptake, translocation and assimilation in non-accumulator ryegrass.

    Science.gov (United States)

    Versini, Antoine; Di Tullo, Pamela; Aubry, Emmanuel; Bueno, Maïté; Thiry, Yves; Pannier, Florence; Castrec-Rouelle, Maryse

    2016-11-01

    The success of biofortification and phytoremediation practices, addressing Se deficiency and Se pollution issues, hinges crucially on the fate of selenium in the plant media in response to uptake, translocation and assimilation processes. We investigate the fate of selenium in root and shoot compartments after 3 and 6 weeks of experiment using a total of 128 plants grown in hydroponic solution supplied with 0.2, 2, 5, 20 and 100 mg L -1 of selenium in the form of selenite, selenate and a mixture of both species. Selenate-treated plants exhibited higher root-to-shoot Se translocation and total Se uptake than selenite-treated plants. Plants took advantage of the selenate mobility and presumably of the storage capacity of leaf vacuoles to circumvent selenium toxicity within the plant. Surprisingly, 28% of selenate was found in shoots of selenite-treated plants, questioning the ability of plants to oxidize selenite into selenate. Selenomethionine and methylated organo-selenium amounted to 30% and 8% respectively in shoots and 35% and 9% in roots of the identified Se, suggesting that selenium metabolization occurred concomitantly in root and shoot plant compartments and demonstrating that non-accumulator plants can synthesize notable quantities of precursor compound for volatilization. The present study demonstrated that non-accumulator plants can develop the same strategies as hyper-accumulator plants to limit selenium toxicity. When both selenate and selenite were supplied together, plants used selenate in a storage pathway and selenite in an assimilation pathway. Plants might thereby benefit from mixed supplies of selenite and selenate by saving enzymes and energy required for selenate reduction. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  13. Growth of Cu(In,Al)(Se,S)2 thin films by selenization and sulfurization for a wide bandgap absorber

    International Nuclear Information System (INIS)

    Fujiwara, C.; Kawasaki, Y.; Sato, T.; Sugiyama, M.; Chichibu, S.F.

    2010-01-01

    Full text : Chalcopyrite structure Cu(In 1 .xAlx)(S y Se 1 -y) 2 (CIASS) alloys are attracting attention as promising candidates for the light-absorbing medium of high conversion efficiency, low cost, and lightweight solar cells. In addition, according to the wide variation in the bandgap energy (1.0-3.5eV), multiple-junction or tandem solar cells able to be fabricated using CIASS films of different compositions, x and y. In fact, several research groups have recently fabricated Cu(In,Al)Se 2 -based solar cells, and a high μ of 16.9 percent has been demonstrated. The sulfurization following selenization of Cu(In,Ga)Se2 (CIGS) films is believed to be promising for bandgap engineering of absorber material. Furthermore, it has been reported that the controlled incorporation of sulfur into CIGS films reduces the carrier recombination in the space charge region due to the deep trap states. Therefore, the sulfurization following selenization is expected to be used as a method of growth of CIASS films. However, sulfurization condition following selenization for obtaining CIASS films has not been clarified. The crystal growth of CIASS must be studied for solar cell applications. In this study, the advantages of using sulfurization for the growth of CIASS will be presented. Cu-In-Al precursors were selenized using diethylselenide (DESe) at 515-570 degrees Celsium for 60- 90 min under atmospheric pressure. The flow rates of DESe and N 2 carrier gases were 35 imol/min and 2 L/min, respectively. The films were then sulfurized at 550 degrees Celsium using S vapor. These films were characterized by SEM, EDX, XRD, and PL measurements. Using the selenization and sulfurization technique, polycrystalline Cu(In,Al)Se 2 , CuIn(Se,S) 2 , CuInS 2 films with thickness of approximately 2.0 im were formed without additional annealing. The films adhered well to the Mo/SLG substrate, which was confirmed by the peeling test. Phase separations, i.e. distinct peaks corresponding to CuInSe 2

  14. Optical and structural properties of FeSe2 thin films obtained by selenization of sprayed amorphous iron oxide films

    International Nuclear Information System (INIS)

    Ouertani, B.; Ouerfelli, J.; Saadoun, M.; Zribi, M.; Rabha, M.Ben; Bessais, B.; Ezzaouia, H.

    2006-01-01

    We report in this work the optical and structural properties of iron diselenide films (FeSe 2 ) obtained by selenization under vacuum of amorphous iron oxide films predeposited by spray pyrolysis. The structure of the FeSe 2 films was investigated by scanning electron microscopy (SEM), microprobe analyses, atomic force microscopy (AFM) and X-ray diffraction (XRD). XRD and micro-probe analyses showed that FeSe 2 as well as FeSe 2-x phases begin to appear at a selenization temperature of 500 deg. C. As the selenization temperature rises, the iron diselenide films become more stoichiometric with a dominance of the FeSe 2 phase. At 550 deg. C, a single FeSe 2 phase having good crystallinity was obtained. At 600 deg. C, two phases were detected: the major one corresponds to Fe 3 O 4 , and the minor one to FeSe 2 . SEM surface views show that FeSe 2 films have granular structure with small spherical crystallites. However, layered and clustered FeSe 2 films were found, respectively, at 550 deg. C and 600 deg. C. Absorption measurements show that iron diselenide films have a direct and an indirect gaps of about 1.03 eV and 0.3 eV, which were suggested to be due to the stoichiometric FeSe 2 phase and to a Fe-rich non-stoichiometric phase, respectively

  15. Preparation and Characterization of Cu(In,GaSe2 Thin Films by Selenization of Cu0.8Ga0.2 and In2Se3 Precursor Films

    Directory of Open Access Journals (Sweden)

    Jiang Liu

    2012-01-01

    Full Text Available Se-containing precursor films with two different compositions were prepared by magnetron sputtering from and targets, and then were selenized using Se vapor. The effects of precursor composition and selenization temperature on the film properties were investigated. The results show that Se phase plays a critical role in film growth and electrical properties of CIGS films. The Cu-rich films exhibit different surface morphology and better crystallinity, as compared to the Cu-poor films. All the CIGS films exhibit p-type conductivity. The resistivity of the Cu-rich films is about three orders of magnitude lower than that of the Cu-poor films, which is attributed to the presence of p-type highly conductive Se phase.

  16. A Comprehensive Study of One-Step Selenization Process for Cu(In1-x Ga x )Se2 Thin Film Solar Cells.

    Science.gov (United States)

    Chen, Shih-Chen; Wang, Sheng-Wen; Kuo, Shou-Yi; Juang, Jenh-Yih; Lee, Po-Tsung; Luo, Chih Wei; Wu, Kaung-Hsiung; Kuo, Hao-Chung

    2017-12-01

    In this work, aiming at developing a rapid and environmental-friendly process for fabricating CuIn 1-x Ga x Se 2 (CIGS) solar cells, we demonstrated the one-step selenization process by using selenium vapor as the atmospheric gas instead of the commonly used H 2 Se gas. The photoluminescence (PL) characteristics indicate that there exists an optimal location with superior crystalline quality in the CIGS thin films obtained by one-step selenization. The energy dispersive spectroscopy (EDS) reveals that the Ga lateral distribution in the one-step selenized CIGS thin film is intimately correlated to the blue-shifted PL spectra. The surface morphologies examined by scanning electron microscope (SEM) further suggested that voids and binary phase commonly existing in CIGS films could be successfully eliminated by the present one-step selenization process. The agglomeration phenomenon attributable to the formation of MoSe 2 layer was also observed. Due to the significant microstructural improvement, the current-voltage (J-V) characteristics and external quantum efficiency (EQE) of the devices made of the present CIGS films have exhibited the remarkable carrier transportation characteristics and photon utilization at the optimal location, resulting in a high conversion efficiency of 11.28%. Correlations between the defect states and device performance of the one-step selenized CIGS thin film were convincingly delineated by femtosecond pump-probe spectroscopy.

  17. Formation of CuInSe{sub 2} films from metal sulfide and selenide precursor nanocrystals by gas-phase selenization, an in-situ XRD study

    Energy Technology Data Exchange (ETDEWEB)

    Capon, B., E-mail: boris.capon@ugent.be [Department of Solid State Sciences, Ghent University, Krijgslaan 281-S1, B-9000 Ghent (Belgium); Dierick, R. [Physics and Chemistry of Nanostructures, Ghent University, Krijgslaan 281-S3, B-9000 Ghent (Belgium); Hens, Z. [Physics and Chemistry of Nanostructures, Ghent University, Krijgslaan 281-S3, B-9000 Ghent (Belgium); Center for Nano and Biophotonics, Ghent University, Ghent (Belgium); Detavernier, C. [Department of Solid State Sciences, Ghent University, Krijgslaan 281-S1, B-9000 Ghent (Belgium)

    2016-08-01

    In this work phase pure CuInSe{sub 2} thin flms were obtained by selenization of ternary CuInSe{sub 2} and CuInS{sub 2} nanocrystals and mixtures of binary nanocrystals such as CuS, In{sub 2}S{sub 3}, Cu{sub 2}Se and In{sub 2}Se{sub 3}. The temperature of the selenium source was kept at 400 °C during selenization. Monitoring the process using in-situ x-ray diffraction, the effect of selenization on the phase formation and grain growth in the precursor film was investigated. Whereas CuInSe{sub 2} and CuInS{sub 2} nanocrystals exhibit little grain growth, we found that mixtures of binary nanocrystals can show significant sintering depending on the reaction conditions. For the mixture of CuS and In{sub 2}S{sub 3} nanocrystals, the crystallinity and the morphology of the obtained fims strongly depends on the Cu/In ratio, with a Cu excess strongly promoting grain growth. With mixtures of Cu{sub 2}Se and In{sub 2}Se{sub 3} nanocrystals the selenium partial pressure plays a crucial role. Selenium evaporation from the mixed compounds results in CuInSe{sub 2} films composed of relatively small crystallites. Higher selenium partial pressures however resulted in improved sintering. Incomplete propagation of the selenization reaction through the layer was observed though, only leading to a well sintered CuInSe{sub 2} top layer above a fine grained bottom layer. - Highlights: • Different types of colloidal nanocrystals were used as precursors to obtain CuInSe{sub 2} films by gas-phase selenization. • In-situ XRD was used to study the effect of selenization on the phase formation and grain growth in the precursor films. • For a mixture of binary metal sulfides the crystallinity and the morphology strongly depend on the Cu/In ratio. • Higher selenium partial pressures result in improved sintering for a mixture of binary metal selenides.

  18. Preparation of SnSe thin films by encapsulated selenization; Saput tipis SnSe disediakan dengan kaedah penselenidan tertudung-tebat

    Energy Technology Data Exchange (ETDEWEB)

    Sabar, D Hutagalung [Universitas Sumatera Utara, Medan (Indonesia). Dept. of Physics; Sakrani, Samsudi; Wahab, Yussof [Universiti Teknologi Malaysia, Skudai, Johor Bahru (Malaysia). Dept. of Physics

    1994-12-31

    Tin selenide thin films were prepared by encapsulated selenization. A stacked layer of evaporated Sn and Se films were annealed in a carbon block at temperatures 100 - 500 degree Celsius for 3 hours. X-ray analysis and SEM (Scanning electron) micrograph results showed that SnSe was initially formed at 150 degree Celsius with crystal size 30.0 nm and reached optimum formation at 200 daximum of 57.4 % yield of 5-decene. Other factors such as reaction temperatures, types of solvent and wt% of rhenium loadings influence the activity of the catalytic system.

  19. Preparation of Cu{sub 2}ZnSnSe{sub 4} solar cells by low-temperature co-evaporation and following selenization

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Chao, E-mail: chao.gao@kit.edu; Hetterich, Michael [Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe (Germany); Schnabel, Thomas; Abzieher, Tobias; Ahlswede, Erik [Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW), 70565 Stuttgart (Germany); Powalla, Michael [Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW), 70565 Stuttgart (Germany); Light Technology Institute (LTI), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe (Germany)

    2016-01-04

    Cu{sub 2}ZnSnSe{sub 4} (CZTSe) thin films are prepared by a two-step method which involves co-evaporation of Cu, Zn, Sn, and Se on molybdenum-coated soda-lime glass at low substrate temperature and a following selenization. Solar cells with efficiencies of up to 6.5% can be achieved. The influence of the selenium deposition rates during co-evaporation and the nitrogen pressure during selenization on the properties of the CZTSe films are investigated. It is found that these two parameters can significantly affect the morphology and crystallinity of the CZTSe films. The possible reasons for the experimental results are discussed.

  20. Effect of selenization conditions on the growth and properties of Cu2ZnSn(S,Se)4 thin films

    OpenAIRE

    Ranjbar, Samaneh; Rajesh Menon, M.R.; Fernandes, P.A.; da Cunha, A.F.

    2015-01-01

    The opto-electronic properties of copper zinc tin sulfide can be tuned to achieve better cell efficiencies by controlled incorporation of selenium. In this paper we report the growth of Cu2ZnSn(S,Se)4 (CZTSSe) using a hybrid process involving the sequential evaporation of Zn and sputtering of the sulfide precursors of Cu and Sn, followed by a selenization step. Two approaches for selenization were followed, one using a tubular furnace and the other using a rapid thermal processor. The effects...

  1. Studies on structural, optical, and photoelectric properties of CdS{sub 1-x}Se{sub x} films fabricated by selenization of chemical bath deposited CdS films

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Tianyu; Gu, Han; Ge, Zhenhua; Zhang, Lei; Wang, Zhicheng; Fang, Yong; Han, Zhida; Qian, Bin; Jiang, Xuefan [Department of Physics, Changshu Institute of Technology, Changshu (China); Wu, Wangping [School of Mechanical Engineering, Changzhou University, Changzhou (China)

    2017-02-15

    In this paper, high-photosensitive CdS{sub 1-x}Se{sub x} films are synthesized by a two-step technique, which includes the chemical bath deposition of CdS films and a following selenization process. The structural, optical, and photoelectric properties of the CdS{sub 1-x}Se{sub x} films were investigated. With the substitution of selenium for sulfur atoms, grain sizes of the as-prepared CdS{sub 1-x}Se{sub x} films are effectively enlarged and reach the scales of the films thickness when the selenization temperature exceeds 450 C. With increasing the selenization temperature from 350 to 550 C, the band gaps of CdS{sub 1-x}Se{sub x} films gradually decrease from 2.37 to 1.82 eV. Under the co-action of the grain-size enlargement and band-gap decrease, the CdS{sub 1-x}Se{sub x} films fabricated at 450 C show very pronounced photosensitivity. Noteworthy, the ratio of photo to dark conductivity of the CdS{sub 1-x}Se{sub x} film selenized at 450 C reaches 1.1 x 10{sup 5}, suggesting a promising application potential in the photoelectric devices. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Topologically and geometrically flexible structural units in seven new organically templated uranyl selenates and selenite-selenates

    Science.gov (United States)

    Gurzhiy, Vladislav V.; Kovrugin, Vadim M.; Tyumentseva, Olga S.; Mikhaylenko, Pavel A.; Krivovichev, Sergey V.; Tananaev, Ivan G.

    2015-09-01

    Single crystals of seven novel uranyl oxysalts of selenium with protonated methylamine molecules, [C2H8N]2[(UO2)(SeO4)2(H2O)] (I), [C2H8N]2[(UO2)2(SeO4)3(H2O)] (II), [C4H15N3][H3O]0.5[(UO2)2(SeO4)2.93(SeO3)0.07(H2O)](NO3)0.5 (III), [C2H8N]3[H5O2][(UO2)2(SeO4)3(H2O)2]2(H2O)5 (IV), [C2H8N]2[H3O][(UO2)3(SeO4)4(HSeO3)(H2O)](H2SeO3)0.2 (V), [C4H12N]3[H3O][(UO2)3(SeO4)5(H2O)] (VI), and [C2H8N]3(C2H7N)[(UO2)3(SeO4)4(HSeO3)(H2O)] (VII) have been prepared by isothermal evaporation from aqueous solutions. Their crystal structures have been solved by direct methods and their uranyl selenate and selenite-selenate units investigated using black-and-white graphs from the viewpoints of topology of interpolyhedral linkages and isomeric variations. The crystal structure of IV is based upon complex layers with unique topology, which has not been observed previously in uranyl selenates. Investigations of the statistics and local distribution of the U-Obr-Se bond angles demonstrates that shorter angles associate with undulations, whereas larger angles correspond to planar areas of the uranyl selenite layers.

  3. Assessment of the anticancer compounds Se-methylselenocysteine and glucosinolates in Se-biofortified broccoli (Brassica oleracea L. var. italica) sprouts and florets.

    Science.gov (United States)

    Ávila, Fabricio William; Faquin, Valdemar; Yang, Yong; Ramos, Silvio Junio; Guilherme, Luiz Roberto G; Thannhauser, Theodore W; Li, Li

    2013-07-03

    Broccoli (Brassica oleracea L. var. italica) is a rich source of chemopreventive compounds. Here, we evaluated and compared the effect of selenium (Se) treatment on the accumulation of anticancer compounds Se-methylselenocysteine (SeMSCys) and glucosinolates in broccoli sprouts and florets. Total Se and SeMSCys content in sprouts increased concomitantly with increasing Se doses. Selenate was superior to selenite in inducing total Se accumulation, but selenite is equally effective as selenate in promoting SeMSCys synthesis in sprouts. Increasing sulfur doses reduced total Se and SeMSCys content in sprouts treated with selenate, but not in those with selenite. Examination of five broccoli cultivars reveals that sprouts generally have better fractional ability than florets to convert inorganic Se into SeMSCys. Distinctive glucosinolate profiles between sprouts and florets were observed, and sprouts contained approximately 6-fold more glucoraphanin than florets. In contrast to florets, glucosinolate content was not affected by Se treatment in sprouts. Thus, Se-enriched broccoli sprouts are excellent for simultaneous accumulation of chemopreventive compounds SeMSCys and glucoraphanin.

  4. Double selenates of rare earths and ammonium

    International Nuclear Information System (INIS)

    Iskhakova, L.D.; Kozlova, N.P.; Makarevich, L.G.

    1991-01-01

    Double selenates of rare earths with ammonium were prepared in result of crystallization. It is shown that NH 4 Ln(SeO 4 ) · nH 2 O crystalline hydrates are presented by penta-and trihydrates. Existance of two modifications was revealed for NH 4 Ln(SeO 4 ) · 5H 2 O: monoclinic form of NH 4 La(SeO 4 ) 2 · 5H 2 O, isostructural RbCe(SeO 4 ) 2 · 5H 2 O, and earlier unknown rhombic form of salts with Ln = Pr, Nd. Trihydrates with Ln = Sm-Yb belong to structural type of RbNd(SeO 4 ) 2 · 3H 2 O. Anhydrous salts NH 4 Ln(SeO 4 ) 2 are isostructural with monoclinic KNd(SO 4 ) 2 modification. Lattice parameters of binary selenates are presented

  5. Investigation of stacked elemental layers for Cu(In,Ga)Se{sub 2} thin film preparation by rapid thermal selenization

    Energy Technology Data Exchange (ETDEWEB)

    Stroth, Christiane; Ohland, Joerg; Mikolajczak, Ulf; Madena, Thomas; Keller, Jan; Parisi, Juergen; Hammer, Maria; Riedel, Ingo [Energy and Semiconductor Research Laboratory, Department of Physics, University of Oldenburg, 26111 Oldenburg (Germany)

    2013-07-01

    Rapid thermal selenization of pure metallic (Cu-In-Ga) or selenium-containing (Cu-In-Ga-Se) precursors is a favorable method to fabricate Cu(In,Ga)Se{sub 2} absorber films for application in thin film solar cells. Because of its upscaling potential and the short process time it is a promising approach for the fabrication of CIGSe photovoltaic modules on industrial scale. As a preliminary work for prospective plasma-enhanced selenization of stacked elemental layers (SEL) the elements copper, indium and gallium were sequentially deposited on molybdenum coated soda-lime glass by thermal evaporation. The stacking order was varied and the precursors were annealed with different heating rates. Morphology, elemental depth distribution and phases of the layers were investigated before and after annealing using scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction. Furthermore the influence of different heating rates on phase transitions during annealing was studied by in-situ X-ray diffraction.

  6. Sorption mechanisms of selenium species (selenite and selenate) on copper-based minerals

    International Nuclear Information System (INIS)

    Devoy, J.

    2001-09-01

    The sorption of radionuclides on the surface of minerals represents a process capable to delay the migration of the elements from a spent fuel deep repository towards the biosphere. In the framework of a deep underground repository, an engineered clay barrier has a high trapping capacity for cationic radio-elements, in particular because of the negative charge of clay surfaces. However, anionic radioelements like selenium species, would be only weakly retained by chemical processes. In order to optimize the trapping capacity of a clay barrier with respect to anionic species, prospective studies are carried out in order to find and evaluate some minerals with specific chemical trapping functions. Among radionuclides, the case of selenium has to be considered because its isotope 79 Se is present in radioactive wastes and has a half life time of 6.5 10 4 years. It is also judicious to find a mineral capable of trapping simultaneously several anionic radio-elements. Copper oxides and sulfides (Cu 2 O, CuO, Cu 2 S, CuS, CuFeS 2 and Cu 5 FeS 4 ) are good adsorbents with respect to selenium species (selenite and selenate). These minerals, with their selenium retention properties, could be used also for the decontamination of soils and waters or to process industrial effluents. The sorption mechanisms have been studied in details for copper oxides (Cu 2 O and CuO) with respect to selenite and selenate. Chalcomenite precipitates in acid pH conditions when selenite is added to a Cu 2 O and CuO suspension. Selenate, in contact with cuprite (Cu 2 O) leads also to a selenium-based precipitate in acid pH environment. For higher pH values, selenite and selenate are adsorbed on copper oxides (Cu 2 O and CuO) and lead to internal and external sphere complexes, respectively. In the case of a selenite/cuprite mixture in basic pH environment and at the equilibrium, a chemical reaction occurs between the oxidation product of cuprite, Cu(OH) 2 and HSeO 3 . A preliminary study of

  7. The chemical consequences of thermal neutron capture in alkali selenates

    International Nuclear Information System (INIS)

    Duplatre, G.; Vargas, J.I.

    1977-01-01

    The initial retention of the SeO 4 2- ion after thermal neutron capture has been studied in various matrices by chemical analysis. A comparison between the thermal behaviour of the chemically analyzed Sesup(IV) and the disappearance of the E.P.R. species SeO 3 - and SeO 4 3- showed that the retention fraction would include all species with oxidation state higher or equal to VI. The retentions observed in the different matrices show the existence of four families with respective retentions of: 2.6%[K 2 SeO 4 diluted in (NH 4 ) 2 SO 4 ], 9.2% [anhydrous and hydrated Li and Ca selenates; K 2 SeO 4 diluted in NaIO 3 ; Se + implanted in K 2 SeO 4 ; Triglycine selenate], 21.5% [K 2 SeO 4 diluted in KNO 3 , K 2 SO 4 , Na 2 WO 4 and Na 2 WO 4 .2H 2 O] and 32.0% [Na,K and Cs selenates]. Whereas chemical considerations may be invoked for the (NH 4 ) 2 SO 4 matrix, a mechanical model is proposed for the three other groups. (author)

  8. Uptake and Distribution of Added Selenite and Selenate by Barley and Red Clover as Influenced by Sulphur

    DEFF Research Database (Denmark)

    Nielsen, Gunnar Gissel

    1973-01-01

    The uptake of added Se from selenite and selenate by barley and red clover was investigated in a pot experiment. Much more of selenate than of selenite was taken up but the Se concentrations in the plants declined more with time when selenate was the source. Increasing sulphate addition to the soil...

  9. Effect of selenization time on the structural and morphological properties of Cu(In,Ga)Se2 thin films absorber layers using two step growth process

    Science.gov (United States)

    Korir, Peter C.; Dejene, Francis B.

    2018-04-01

    In this work two step growth process was used to prepare Cu(In, Ga)Se2 thin film for solar cell applications. The first step involves deposition of Cu-In-Ga precursor films followed by the selenization process under vacuum using elemental selenium vapor to form Cu(In,Ga)Se2 film. The growth process was done at a fixed temperature of 515 °C for 45, 60 and 90 min to control film thickness and gallium incorporation into the absorber layer film. The X-ray diffraction (XRD) pattern confirms single-phase Cu(In,Ga)Se2 film for all the three samples and no secondary phases were observed. A shift in the diffraction peaks to higher 2θ (2 theta) values is observed for the thin films compared to that of pure CuInSe2. The surface morphology of the resulting film grown for 60 min was characterized by the presence of uniform large grain size particles, which are typical for device quality material. Photoluminescence spectra show the shifting of emission peaks to higher energies for longer duration of selenization attributed to the incorporation of more gallium into the CuInSe2 crystal structure. Electron probe microanalysis (EPMA) revealed a uniform distribution of the elements through the surface of the film. The elemental ratio of Cu/(In + Ga) and Se/Cu + In + Ga strongly depends on the selenization time. The Cu/In + Ga ratio for the 60 min film is 0.88 which is in the range of the values (0.75-0.98) for best solar cell device performances.

  10. A novel selenization technique for fabrication of superconducting FeSex thin film

    International Nuclear Information System (INIS)

    Chai Qinglin; Tu Hailing; Hua Zhiqiang; Wang Lei; Qu Fei

    2011-01-01

    A novel selenization technique was applied to prepare superconducting FeSe x films with pre-set FeS films. The combination of reactive sputtering deposition with elemental diffusion technique would extend to prepare films of other iron-based superconductors. The results of transport measurement got close or greater than that of previous reports. T c,onset and T c,0 got to 10.2 K and 4 K respectively. We believe that increase of the content of Fe 7 Se 8 could not only reduce T c but also slow down the decline of resistivity. A combinative method with reactive sputtering deposition and selenization technique was applied to prepare superconducting FeSe x films on LaAlO 3 substrates successfully. The influence of selenizing temperature on film components was studied. FeSe 0.96 and FeSe films had similar and good performances in transport measurement but little difference in magnetic property. The critical onset temperature got to 11.2 K and T c,0 got to 4 K approximately. X-ray diffraction, energy dispersive spectroscopy and scanning electron microscopy were used to analyze the ratio of constituents and morphology of several selenized films. FeSe x film had a porous structure on surface and no well preferred orientation, which were confirmed to have little influence on superconducting properties.

  11. Potentiometric titration of selenic and telluric acids with titanium(III) chloride in nonaqueous solvents

    International Nuclear Information System (INIS)

    Yoshimura, Chozo; Miyamoto, Kiyoshige

    1985-01-01

    Selenic and Telluric acids were titrated potentiometrically with titanium(III) chloride solution by using Pt-Cu · Hg bimetallic electrodes in nonaqueous solvents such as N, N-dimethyl-formamide (DMF), dimethyl sulfoxide (DMSO), isopropyl alcohol (IPA) and the mixtures of these solvents. It was found that selenic and telluric acids were titrated directly at room temperature in DMF solution without hydrochloric acid. The molar ratios of selenic and telluric acids to titanium(III) chloride was 1 : 6. However, the corresponding reactions to SeO 4 2- → SeO 3 2- or TeO 4 2- → TeO 3 2- were not confirmed in the titration curve in DMF. In the titration of selenic acid in mixed solvents of DMF and IPA in 1 : 1 or 1 : 2 ratio, two steps were observed. The first and the second steps were appeared on the titration curve at molar ratios of 1 : 2 and 1 : 6, respectively. It was interpreted that the first step corresponded to the intermediate reaction of SeO 4 2- → SeO 3 2- . Mixed solution of selenic and telluric acids were determined by the proposed method. Three steps were observed on the titration curve. It was interpreted that the first, second and third steps corresponded to the reaction of SeO 4 2- → SeO 3 2- , SeO 3 2- → Se(0), and TeO 4 2- → Te(0), respectively. Less than 5 % of water gave no influence on the titration. (author)

  12. Selenate as a novel ligand for keplerate chemistry. New {W72Mo60} keplerates with selenates inside the cavity.

    Science.gov (United States)

    Korenev, Vladimir S; Abramov, Pavel A; Vicent, Cristian; Zhdanov, Artem A; Tsygankova, Alphiya R; Sokolov, Maxim N; Fedin, Vladimir P

    2015-05-21

    The synthesis and characterization of three novel keplerate-type compounds containing the {W72Mo60} mixed-metal core are reported. Complexes (NH4)72[{W6O21(H2O)6}12{Mo2O4(SeO4)}30]·150H2O·6(NH4)2SeO4 (1a) and (NH4)25(NH2Me2)47[{W6O21(H2O)6}12{Mo2O4(SeO4)}30]·130H2O·3(NH4)2SeO4 (1b) were prepared by ligand substitution from the acetate anionic complex [{W6O21(H2O)5(CH3COO)0.5}12{Mo2O4(CH3COO)}30](48-) and selenate. The selenate anions in keplerate ions [{W6O21(H2O)6}12{Mo2O4(SeO4)}30](72-) are very labile and easily aquate with the formation of [{W6O21(H2O)6}12{Mo2O4}30(SeO4)20(H2O)20](52-), which was isolated as (NH4)20(NH2Me2)32[{W6O21(H2O)6}12{Mo2O4}30(SeO4)20(H2O)20]·150H2O (2) and structurally characterized. In the crystal structure of 2 selenate has several coordination modes, preferentially bonding to the {Mo2O4}(2+) units, and, additionally, to the {(W)W5} pentagonal blocks. The compounds have been characterized by elemental analysis, Raman, IR and (77)Se NMR spectroscopy, and by ESI mass spectrometry. Capillary electrophoresis was used for characterization of keplerates in solution for the first time.

  13. Rate of oxygen isotope exchange between selenate and water.

    Science.gov (United States)

    Kaneko, Masanori; Poulson, Simon R

    2012-04-17

    The rate of oxygen isotope exchange between selenate and water was investigated at conditions of 10 to 80 °C and pH -0.6 to 4.4. Oxygen isotope exchange proceeds as a first-order reaction, and the exchange rate is strongly affected by reaction temperature and pH, with increased rates of isotope exchange at higher temperature and lower pH. Selenate speciation (HSeO(4)(-) vs SeO(4)(2-)) also has a significant effect on the rate of isotope exchange. The half-life for isotope exchange at example natural conditions (25 °C and pH 7) is estimated to be significantly in excess of 10(6) years. The very slow rate of oxygen isotope exchange between selenate and water under most environmental conditions demonstrates that selenate-δ(18)O signatures produced by biogeochemical processes will be preserved and hence that it will be possible to use the value of selenate-δ(18)O to investigate the biogeochemical behavior of selenate, in an analogous fashion to the use of sulfate-δ(18)O to study the biogeochemical behavior of sulfate.

  14. Investigation into the dehydration of selenate doped Na2M(SO4)2·2H2O (M = Mn, Fe, Co and Ni): Stabilisation of the high Na content alluaudite phases Na3M1.5(SO4)3-1.5x(SeO4)1.5x (M = Mn, Co and Ni) through selenate incorporation

    Science.gov (United States)

    Driscoll, L. L.; Kendrick, E.; Knight, K. S.; Wright, A. J.; Slater, P. R.

    2018-02-01

    In this paper we report an investigation into the phases formed on dehydration of Na2M(SO4)2-x(SeO4)x·2H2O (0 ≤ x ≤ 1; M = Mn, Fe, Co and Ni). For the Fe series, all attempts to dehydrate the samples doped with selenate resulted in amorphous products, and it is suspected that a side redox reaction involving the Fe and selenate may be occurring leading to phase decomposition and hence the lack of a crystalline product on dehydration. For M = Mn, Co, Ni, the structure observed was shown to depend upon the transition metal cation and level of selenate doping. An alluaudite phase, Na3M1.5(SO4)3-1.5x(SeO4)1.5x, was observed for the selenate doped compositions, with this phase forming as a single phase for x ≥ 0.5 M = Co, and x = 1.0 M = Ni. For M = Mn, the alluaudite structure is obtained across the series, albeit with small impurities for lower selenate content samples. Although the alluaudite-type phases Na2+2y(Mn/Co)2-y(SO4)3 have recently been reported [1,2], doping with selenate appears to increase the maximum sodium content within the structure. Moreover, the selenate doped Ni based samples reported here are the first examples of a Ni sulfate/selenate containing system exhibiting the alluaudite structure.

  15. How the Starting Precursor Influences the Properties of Polycrystalline CuInGaSe2 Thin Films Prepared by Sputtering and Selenization

    Directory of Open Access Journals (Sweden)

    Greta Rosa

    2016-05-01

    Full Text Available Cu(In,GaSe2 (CIGS/CdS thin-film solar cells have reached, at laboratory scale, an efficiency higher than 22.3%, which is one of the highest efficiencies ever obtained for thin-film solar cells. The research focus has now shifted onto fabrication processes, which have to be easily scalable at an industrial level. For this reason, a process is highlighted here which uses only the sputtering technique for both the absorber preparation and the deposition of all the other materials that make up the cell. Particular emphasis is placed on the comparison between different precursors obtained with either In2Se3 and Ga2Se3 or InSe and GaSe as starting materials. In both cases, the precursor does not require any heat treatment, and it is immediately ready to be selenized. The selenization is performed in a pure-selenium atmosphere and only lasts a few minutes at a temperature of about 803 K. Energy conversion efficiencies in the range of 15%–16% are reproducibly obtained on soda-lime glass (SLG substrates. Similar results are achieved if commercial ceramic tiles are used as a substrate instead of glass. This result is especially useful for the so-called building integrated photovoltaic. Cu(In,GaSe2-based solar cells grown directly on ceramic tiles are ideal for the fabrication of ventilated façades in low impact buildings.

  16. [Pb2F2](SeO4): a heavier analogue of grandreefite, the first layered fluoride selenate

    Science.gov (United States)

    Charkin, Dmitri O.; Plokhikh, Igor V.; Zadoya, Anastasiya I.; Kazakov, Sergey M.; Zaloga, Alexander N.; Kozin, Michael S.; Depmeier, Wulf; Siidra, Oleg I.

    2018-01-01

    Co-precipitation of PbF2 and PbSeO4 in weakly acidic media results in the formation of [Pb2F2](SeO4), the selenate analogue of the naturally occurring mineral grandreefite, [Pb2F2](SO4). The new compound is monoclinic, C2/ c, a = 14.0784(2) Å, b = 4.6267(1) Å, c = 8.8628(1) Å, β = 108.98(1)°, V = 545.93(1) Å3. Its structure has been refined from powder data to R B = 1.55%. From thermal studies, it is established that the compound is stable in air up to about 300 °C, after which it gradually converts into a single phase with composition [Pb2O](SeO4), space group C2/ m, and lattice parameters a = 14.0332(1) Å, b = 5.7532(1) Å, c = 7.2113(1) Å, β = 115.07(1)°, V = 527.37(1) Å3. It is the selenate analogue of lanarkite, [Pb2O](SO4), and phoenicochroite, [Pb2O](CrO4), and its crystal structure was refined to R B = 1.21%. The formation of a single decomposition product upon heating in air suggests that this happens by a thermal hydrolysis mechanism, i.e., Pb2F2SeO4 + H2O (vapor) → Pb2OSeO4 + 2HF↑. This relatively low-temperature process involves complete rearrangement of the crystal structure—from a 2D architecture featuring slabs [Pb2F2]2+ formed by fluorine-centered tetrahedra into a structure characterized by 1D motifs based on [OPb2]2+ chains of oxocentered tetrahedra. The comparative crystal chemistry of the obtained anion-centered structural architectures is discussed.

  17. Deposition of CuIn(Se,S)2 thin films by sulfurization of selenized Cu/In alloys

    International Nuclear Information System (INIS)

    Sheppard, C.J.; Alberts, V.; Bekker, W.J.

    2004-01-01

    The relatively small band gap values (close to 1eV) of CuInSe 2 thin films limits the conversion efficiencies of completed CuInSe 2 /CdS/ZnO solar cell devices. In the case of traditional two-stage growth techniques, limited success has been achieved to increase the band gap by substituting indium with gallium. In this study, sputtered copper-indium alloys were exposed to a H 2 Se/Ar atmosphere under defined conditions in order to produce partially reacted CuInSe 2 structures. These films were subsequently exposed to a H 2 S/Ar atmosphere to produce monophasic CuIn(Se, S) 2 quaternary alloys. The homogeneous incorporation of S into CuInSe 2 led to a systematic shift in the lattice parameters and band gap of the ab- sorber films. From these studies optimum selenization/sulfurization conditions were determined for the deposition of homogeneous CuIn(Se,S) 2 thin films with an optimum band gap values between 1.15 and 1.2 eV. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Dehydration-driven evolution of topological complexity in ethylamonium uranyl selenates

    Energy Technology Data Exchange (ETDEWEB)

    Gurzhiy, Vladislav V., E-mail: vladgeo17@mail.ru [Department of Crystallography, St. Petersburg State University, University Emb. 7/9, 199034 St. Petersburg (Russian Federation); Krivovichev, Sergey V. [Department of Crystallography, St. Petersburg State University, University Emb. 7/9, 199034 St. Petersburg (Russian Federation); Tananaev, Ivan G. [Far Eastern Federal University, Suhanova st. 8, 690950 Vladivostok (Russian Federation)

    2017-03-15

    Single crystals of four novel uranyl selenate and selenite-selenate oxysalts with protonated ethylamine molecules, (C{sub 2}H{sub 8}N){sub 2}[(UO{sub 2})(SeO{sub 4}){sub 2}(H{sub 2}O)](H{sub 2}O) (I), (C{sub 2}H{sub 8}N){sub 3}[(UO{sub 2})(SeO{sub 4}){sub 2}(HSeO{sub 4})] (II), (C{sub 2}H{sub 8}N)[(UO{sub 2})(SeO{sub 4})(HSeO{sub 3})] (III), and (C{sub 2}H{sub 8}N)(H{sub 3}O)[(UO{sub 2})(SeO{sub 4}){sub 2}(H{sub 2}O)] (IV) have been prepared by isothermal evaporation from aqueous solutions. Uranyl-containing 1D and 2D units have been investigated using topological approach and information-based complexity measurements that demonstrate the evolution of structural units and the increase of topological complexity with the decrease of H{sub 2}O content. - Graphical abstract: Single crystals of four novel uranyl selenate and selenite-selenate oxysalts with protonated ethylamine molecules have been prepared by isothermal evaporation from aqueous solutions. Structural analysis and information-based topological complexity calculations points to the possible sequence of crystalline phases formation, showing both topological and structural branches of evolution. - Highlights: • Single crystals of four novel uranyl oxysalts were prepared by evaporation method. • The graph theory was used for investigation of topologies of structural units. • Dehydration processes drives the evolution of topological complexity of 1D and 2D structural units.

  19. Selenization of CIS and CIGS layers deposited by chemical spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Babu, B. J.; Egaas, B.; Velumani, S.

    2018-03-21

    Cu(In1-xGax)Se2 (CIGS) thin films with x=0 (CIS) and x=0.3 (CIGS) were prepared on Mo-coated glass substrate by using chemical spray pyrolysis at a substrate temperature of 350 degrees C, followed by selenization treatment at 550 degrees C in selenium environment under N2 gas flow. X-ray diffraction patterns of as-deposited CIGS layers on Mo showed polycrystalline chalcopyrite phase with an intense (112) plane. Splitting of (204)/(220) and (116)/(312) planes for the film with x=0.3 reveals deviation of tetragonal nature. Field emission scanning electron microscopy cross-sectional images of selenized films showed clear re-crystallization of grains. During the selenization process of the CIGS absorber, a thin interface layer of MoSe2 is formed. Line mapping of Mo/CIGS layer showed more gallium segregation at the interface of back contact resulting in band gap grading. Chemical composition and mapping of the as-deposited and selenized samples were determined by energy dispersive analysis of X-rays. This work leads to fabrication of low cost and large scale Mo/CIGS/CdS/ZnO/ZnO:Al device structure.

  20. Effect of Sodium Selenate on Hippocampal Proteome of 3×Tg-AD Mice-Exploring the Antioxidant Dogma of Selenium against Alzheimer's Disease.

    Science.gov (United States)

    Iqbal, Javed; Zhang, Kaoyuan; Jin, Na; Zhao, Yuxi; Liu, Qiong; Ni, Jiazuan; Shen, Liming

    2018-04-19

    Selenium (Se), an antioxidant trace element, is an important nutrient for maintaining brain functions and is reported to be involved in Alzheimer's disease (AD) pathologies. The present study has been designed to elucidate the protein changes in hippocampus of 3×Tg-AD mice after supplementing sodium selenate as an inorganic source of selenium. By using iTRAQ proteomics technology, 113 differentially expressed proteins (DEPs) are found in AD/WT mice with 37 upregulated and 76 downregulated proteins. Similarly, in selenate-treated 3×Tg-AD (ADSe/AD) mice, 115 DEPs are found with 98 upregulated and 17 downregulated proteins. The third group of mice (ADSe/WT) showed 75 DEPs with 46 upregulated and 29 downregulated proteins. Among these results, 42 proteins (40 downregulated and 2 upregulated) in the diseased group showed reverse expression when treated with selenate. These DEPs are analyzed with different bioinformatics tools and are found associated with various AD pathologies and pathways. Based on their functions, selenate-reversed proteins are classified as structural proteins, metabolic proteins, calcium regulating proteins, synaptic proteins, signaling proteins, stress related proteins, and transport proteins. Six altered AD associated proteins are successfully validated by Western blot analysis. This study shows that sodium selenate has a profound effect on the hippocampus of the triple transgenic AD mice. This might be established as an effective therapeutic agent after further investigation.

  1. Characterization of clays used in the red ceramics industry at Itabaianinha-SE (Brazil)

    International Nuclear Information System (INIS)

    Azevedo, T.F.; Andrade, C.E.C. de; Santos, C.R. dos; Barreto, L.S.

    2011-01-01

    The Local Cluster of red ceramic industry in the state of Sergipe comprises Itabaianinha-SE, Itabaiana and Baixo Sao Francisco municipalities (Propria and Santana do Sao Francisco). The city of Itabaianinha concentrates a large number of ceramics and potteries producing ceramic bricks and tiles. The study was conducted in a red ceramic industry of the region. The focus of this work was an incremental innovation in the process and product. It was analyzed three types of clays used for manufacturing of ceramic bricks (barro preto, diamante and jardim). The samples were prepared by pressing and heat treated between 600 ° C - 1100 C °. The samples characterization was by thermogravimetry, X-ray diffraction and physical tests (water absorption, linear retraction and three points flection). The clays are composed mainly of kaolinite, illite-muscovite and quartz. The results showed that the Barro Preto clay showed better results in retraction, absorption and mechanical strain. (author)

  2. Analysis of cement-treated clay behavior by micromechanical approach

    OpenAIRE

    Zhang , Dong-Mei; Yin , Zhenyu; Hicher , Pierre Yves; Huang , Hong-Wei

    2013-01-01

    International audience; Experimental results show the significant influence of cement content on the mechanical properties of cement-treated clays. Cementation is produced by mixing a certain amount of cement with the saturated clay. The purpose of this paper is to model the cementation effect on the mechanical behavior of cement-treated clay. A micromechanical stress-strain model is developed considering explicitly the cementation at inter-cluster contacts. The inter-cluster bonding and debo...

  3. Chemical and structural evolution in the Th-SeO3(2-)/SeO4(2-) system: from simple selenites to cluster-based selenate compounds.

    Science.gov (United States)

    Xiao, Bin; Langer, Eike; Dellen, Jakob; Schlenz, Hartmut; Bosbach, Dirk; Suleimanov, Evgeny V; Alekseev, Evgeny V

    2015-03-16

    While extensive success has been gained in the structural chemistry of the U-Se system, the synthesis and characterization of Th-based Se structures are widely unexplored. Here, four new Th-Se compounds, α-Th(SeO3)2, β-Th(SeO3)2, Th(Se2O5)2, and Th3O2(OH)2(SeO4)3, have been obtained from mild hydrothermal or low-temperature (180-220 °C) flux conditions and were subsequently structurally and spectroscopically characterized. The crystal structures of α-Th(SeO3)2 and β-Th(SeO3)2 are based on ThO8 and SeO3 polyhedra, respectively, featuring a three-dimensional (3D) network with selenite anions filling in the Th channels along the a axis. Th(Se2O5)2 is a 3D framework composed of isolated ThO8 polyhedra interconnected by [Se2O5](2-) dimers. Th3O2(OH)2(SeO4)3 is also a 3D framework constructed by octahedral hexathorium clusters [Th6(μ3-O)4(μ3-OH)4](12+), which are interlinked by selenate groups SeO4(2-). The positions of the vibrational modes associated with both Se(IV)O3(2-) and Se(VI)O4(2-) units, respectively, were determined for four compounds, and the Raman spectra of α- and β-Th(SeO3)2 are compared and discussed in detail.

  4. Se of polymers to control clay swelling

    Energy Technology Data Exchange (ETDEWEB)

    Slobod, R L; Beiswanger, J P.G.

    1968-01-01

    The injection of water to displace oil is one of the main methods used to increase oil recovery. High injection rates are generally desired, and in some cases the flood will not be economic unless high rates are maintained. The presence of clays which swell in the presence of water offers a complication to the problem of maintaining adequate injectivity. In the course of this study it was observed that certain polymers, when present in dilute concentrations in the water, had the ability to reduce the response of these clays to fresh water. Two polymers, one an anionic and the other nonionic, were found to be very effective in controlling the clays present in Berea cores. Successful control of clay swelling was obtained by use of solutions containing as little as 1.0 ppM of polymer, but at this low concentration appreciable volumes of treating solution were required. These results suggest that some minimum amount of polymer must be adsorbed to prevent clay swelling. In Berea sandstone this minimum amount appeared to be of the order of 0.03 mg per cc of pore space. A series of tests made using 10.0 ppM polymer showed that the polymer could be made through the porous system in which 0.066 per mg of polymer was adsorbed per cc of pore space.

  5. Thermal decomposition of double selenates of lanthanides (III), yttrium (III) and ammonium

    International Nuclear Information System (INIS)

    Crespi, M.S.

    1989-01-01

    Double selenates of lanthanides, yttrium and ammonium were prepared by treating mixtures of simple selenates with equimolar amounts and then dried in a vacuum desiccator containing anhydrous calcium chloride, protected from light. The compounds were studied using the conventional analytical methods such as infrared absorption spectra, X-ray diffraction, differential thermal analysis (DTA), and thermogravimetry (TG). (author)

  6. Simultaneous selenate reduction and denitrification by a consortium of enriched mine site bacteria.

    Science.gov (United States)

    Subedi, Gaurav; Taylor, Jon; Hatam, Ido; Baldwin, Susan A

    2017-09-01

    Increasing selenium concentrations in aquatic environments downstream of mine sites is of great concern due to selenium's bioaccumulation propensity and teratogenic toxicity. Removal of selenium from mine influenced water is complicated by the presence of nitrate, which is also elevated in mine influenced water due to the use of explosives in mining. In many biological treatment processes, nitrate as a thermodynamically more preferable electron acceptor inhibits selenate reduction. Here we report on an enrichment of a bacterial assemblage from a mine impacted natural marsh sediment that was capable of simultaneous selenate reduction and denitrification. Selenate reduction followed first order kinetics with respect to the concentration of total dissolved selenium. The kinetic rate constant was independent of initial nitrate concentration over the range 3-143 mg L -1 -NO 3 - -N. The initial concentration of selenate inhibited selenate reduction kinetics over the range 1-24 mg-Se L -1 . Dominant taxa that grew in selenate only medium were classified in the genera Pseudomonas, Lysinibacillus and Thauera. When nitrate was introduced in addition to selenate, previously rare taxa that became dominant were relatives of Exiguobacterium, Tissierella and Clostridium. Open reading frames (ORFs) associated with dissimilatory denitrification were identified for Pseudomonas, Thauera and Clostridium. In addition, ORFs were found that were homologous with known selenate reductase subunits (SerA and SerB). These findings suggest that native mine site bacteria can be used for removing selenate and nitrate from mine wastewater. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  7. Detection of over 100 selenium metabolites in selenized yeast by liquid chromatography electrospray time-of-flight mass spectrometry.

    Science.gov (United States)

    Gilbert-López, Bienvenida; Dernovics, Mihaly; Moreno-González, David; Molina-Díaz, Antonio; García-Reyes, Juan F

    2017-08-15

    The characterization of the selenometabolome of Selenized(Se)-yeast, that is the fraction of water soluble low-molecular weight Se-metabolites produced in Se-yeast is of paramount interest to expand the knowledge on the composition of this food supplement. In this work, we have applied liquid chromatography electrospray time-of-flight mass spectrometry (LC-TOFMS) to search for Se-species from the low molecular weight range fraction of the selenized yeast used for food supplements. Prior to LC-TOFMS, sample treatment consisted of ultrasound assisted water extraction followed by size exclusion fractionation assisted with off-line inductively coupled plasma mass spectrometry detection of isotope 82 Se. The fraction corresponding to low-molecular weight species was subjected to LC-TOFMS using electrospray ionization in the positive ion mode. The detection of the suspected selenized species has been based on the information obtained from accurate mass measurements of both the protonated molecules and fragments from in-source CID fragmentation; along with the characteristic isotope pattern exhibited by the presence of Se. The approach enables the detection of 103 selenized species, most of them not previously reported, in the range from ca. 300-650Da. Besides the detection of selenium species, related sulphur derivate metabolites were detected based on the accurate mass shift due to the substitution of sulphur and selenium. Copyright © 2017. Published by Elsevier B.V.

  8. Determination of selenite and selenate in human urine by ion chromatography and inductively coupled plasma mass spectrometry

    DEFF Research Database (Denmark)

    Gammelgaard, Bente; Jons, O.

    2000-01-01

    The selenium species selenite, selenate and selenomethionine were separated in aqueous solution by ion chromatography. The separation was performed on an IonPac AG11 in series with an AS11 anion exchange column by elution with 25 mM sodium hydroxide in 2% methanol. The Se-78 and Se-82 isotopes were...... monitored in the inductively coupled plasma mass spectrometry (ICP-MS) detector. When the chromatographic system was applied to analysis of urine samples diluted 1 + 1, the selenomethionine signal appeared in the front together with other unresolved selenium species, while the selenite and selenate signals...... and selenate, respectively, corresponding to absolute amounts of 8 and 16 pg, respectively. Calculations were based on peak height measurements of the Se-82 isotope. In 23 analysed urine samples, the concentration of selenite was in the range selenium...

  9. Abiotic pyrite reactivity versus nitrate, selenate and selenite using chemical and electrochemical methods

    International Nuclear Information System (INIS)

    Ignatiadis, I.; Betelu, S.; Gaucher, E.; Tournassat, C.; Chainet, F.

    2010-01-01

    Document available in extended abstract form only. This work is part of ReCosy European project (www.recosy.eu), whose main objectives are the sound understanding of redox phenomena controlling the long-term release/retention of radionuclides in nuclear waste disposal and providing tools to apply the results to performance assessment/safety case. Redox is one of the main factor affecting speciation and mobility of redox-sensitive radionuclides. Thus, it is of a great importance to investigate the redox reactivity of the host radioactive waste formations, particularly when exposed to redox perturbations. Callovo-Oxfordian formation (COx), a clay rock known as an anoxic and reducing system, was selected in France as the most suitable location to store nuclear waste. Iron (II) sulfide, mostly constituted of pyrite (FeS 2 ), iron (II) carbonate, iron(II) bearing clays and organic matter are considered to account almost entirely for the total reducing capacity of the rock. We report here the redox reactivity of pyrite upon exposure to nitrate (N(V)), selenate (Se(VI)) and selenite (Se(IV)) that possibly occur in the nuclear storage. Both, chemical and electrochemical kinetic approaches were simultaneously conducted such as to (i) determine the kinetics parameters of the reactions and (ii) understand the kinetic mechanisms. In order to reach similar conditions that are encountered in the storage system, all experiments were realised in NaCl 0.1 M, near neutral pH solutions, and an abiotic glove box (O 2 less than 10 -8 M). Chemical approach has consisted to set in contact pyrite in grains with solutions containing respectively nitrate, selenate and selenite. Reactants and products chemical analyses, conducted at different contact times, allowed us to assess the kinetics of oxidant reduction. Electrochemical approach has consisted in the continuous or semi-continuous analysis of large surface pyrite electrodes immersed in solutions with or without oxidant (nitrate

  10. From zinc selenate to zinc selenide nano structures synthesized by reduction process

    International Nuclear Information System (INIS)

    Hutagalung, S.D.; Eng, S.T.; Ahmad, Z.A.; Ishak Mat; Yussof Wahab

    2009-01-01

    One-dimensional nano structure materials are very attractive because of their electronic and optical properties depending on their size. It is well known that properties of material can be tuned by reducing size to nano scale because at the small sizes, that they behave differently with its bulk materials and the band gap will control by the size. The tunability of the band gap makes nano structured materials useful for many applications. As one of the wide band gaps semiconductor compounds, zinc selenide (ZnSe) nano structures (nanoparticles, nano wires, nano rods) have received much attention for the application in optoelectronic devices, such as blue laser diode, light emitting diodes, solar cells and IR optical windows. In this study, ZnSe nano structures have been synthesized by reduction process of zinc selenate using hydrazine hydrate (N 2 H 4 .2H 2 O). The reductive agent of hydrazine hydrate was added to the starting materials of zinc selenate were heat treated at 500 degree Celsius for 1 hour under argon flow to form one-dimensional nano structures. The SEM and TEM images show the formation of nano composite-like structure, which some small nano bar and nano pellets stick to the rod. The x-ray diffraction and elemental composition analysis confirm the formation of mixture zinc oxide and zinc selenide phases. (author)

  11. Inhibition of synthesis of heparan sulfate by selenate: Possible dependence on sulfation for chain polymerization

    International Nuclear Information System (INIS)

    Dietrich, C.P.; Nader, H.B.; Buonassisi, V.; Colburn, P.

    1988-01-01

    Selenate, a sulfation inhibitor, blocks the synthesis of heparan sulfate and chondroitin sulfate by cultured endothelial cells. In contrast, selenate does not affect the production of hyaluronic acid, a nonsulfated glycosaminoglycan. No differences in molecular weight, [ 3 H]glucosamine/[ 35 S]sulfuric acid ratios, or disaccharide composition were observed when the heparan sulfate synthesized by selenate-treated cells was compared with that of control cells. The absence of undersulfated chains in preparations from cultures exposed to selenate supports the concept that, in the intact cell, the polymerization of heparan sulfate might be dependent on the sulfation of the saccharide units added to the growing glycosaminoglycan chain

  12. Optimization of selenizing conditions for Seleno-Lentinan and its characteristics.

    Science.gov (United States)

    Ren, Guangming; Li, Koukou; Hu, Yang; Yu, Min; Qu, Juanjuan; Xu, Xiuhong

    2015-11-01

    Lentinan was successfully modified with nitric acid-sodium selenite method based on L9(3(4)) orthogonal experiments. The optimum selenizing conditions were obtained according to selenium conversion rate as follows: Lentinan of 1.0g, pH of 4.5, temperature of 70°C and sodium selenite of 1.50g. The antioxidant activity assays in vitro (DPPH, reducing power, superoxide radicals and hydroxyl radicals) proved that Lentinan had stronger antioxidant activity after selenizing. The elevations of serum alanine aminotransferase and aspartate aminotransferase, as well as the abnormal hepatic architecture, verified that oral administration of Seleno-Lentinan (SL2-1) markedly alleviated oxidative damage in the liver of mice induced by D-gal. In addition, SL2-1 significantly increased total antioxidant capacity, activities and protein expressions of catalase and glutathione peroxidase and lowered malondialdehyde levels in serum and liver. Fourier transform infrared spectroscopy analysis indicated that selenium of SL2-1 was mostly existed as the formations of OSeO, SeO and SeOC. Scanning electron microscope coupled with energy dispersive X-ray spectroscopy analysis revealed that the surface structure and elemental components of Lentinan significantly changed after selenizing. The results are instructive for the development of organic selenium-supplement resource. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Learning Lunar Science Through the Selene Videogame

    Science.gov (United States)

    Reese, D. D.; Wood, C. A.

    2010-03-01

    Selene is a videogame to promote and assess learning of lunar science concepts. As players build and modify a Moon, Selene measures learning as it occurs. Selene is a model for 21st century learning and embedded assessment.

  14. Resistance, accumulation and transformation of selenium by the cyanobacterium Synechocystis sp. PCC 6803 after exposure to inorganic SeVI or SeIV

    International Nuclear Information System (INIS)

    Gouget, B.; Avoscan, L.; Collins, R.; Carriere, M.; Sarret, G.

    2005-01-01

    Our purpose was to investigate the ability of Synechocystis sp. PCC 6803, a photosynthetic prokaryote isolated from fresh water, to resist, incorporate and reduce the oxidized forms of selenium including selenite and selenate, the major selenium species present in aquatic systems. Selenium speciation and the chemical intermediates during selenium transformation were determined by X-ray absorption near edge structure (XANES) spectroscopy. The possible internalisation pathways involving selenium and the metabolic fate of selenate and selenite were examined. Selenate metabolism seemed to proceed via the sulfate reduction pathway resulting in the formation of the R-Se-H, R-Se-R and R-Se-Se-R species. The transformation of selenate to toxic amino acids may explain the high sensitivity of Synechocystis to selenate. Several mechanisms of selenium reduction seem to complete during selenite assimilation. A specific mechanism may transform internalised selenite into selenide and, subsequently induce the biosynthesis of selenoproteins. A non-specific mechanism may interfere with thiols, such as glutathione in the cell cytoplasm, or with proteins in the periplasm of the bacteria, notably thioredoxins. Several hypotheses concerning the complex transformation of selenium in Synechocystis could therefore be proposed. (orig.)

  15. Determination of Proteinaceous Selenocysteine in Selenized Yeast

    Directory of Open Access Journals (Sweden)

    Katarzyna Bierla

    2018-02-01

    Full Text Available A method for the quantitation of proteinaceous selenocysteine (SeCys in Se-rich yeast was developed. The method is based on the reduction of the Se-Se and S-Se bridges with dithiotretiol, derivatization with iodoacetamide (carbamidomethylation, followed by HPLC-ICP MS. The chromatographic conditions were optimized for the total recovery of the proteinaceous selenocysteine, the minimum number of peaks in the chromatogram (reduction of derivatization products of other Se-species present and the baseline separation. A typical chromatogram of a proteolytic digest of selenized yeast protein consisted of up to five peaks (including SeMet, carbamidomethylated (CAM-SeCys, and Se(CAM2 identified by retention time matching with available standards and electrospray MS. Inorganic selenium non-specifically attached to proteins and selenomethionine could be quantified (in the form of Se(CAM2 along with SeCys. Selenocysteine, selenomethionine, inorganic selenium, and the water soluble-metabolite fraction accounted for the totality of selenium species in Se-rich yeast.

  16. Structure, vibrations and quantum chemical investigations of hydrogen bonded complex of bis(1-hydroxy-2-methylpropan-2-aminium)selenate

    Science.gov (United States)

    Thirunarayanan, S.; Arjunan, V.; Marchewka, M. K.; Mohan, S.

    2017-04-01

    The hydrogen bonded molecular complex bis(1-hydroxy-2-methylpropan-2-aminium)selenate (C8H24N2O6Se) has been prepared by the reaction of 2-amino-2-methyl propanol and selenic acid. The X-ray diffraction analysis revealed that the intermolecular proton transfer from selenic acid (SeO4H2) to 2-amino-2-methylpropanol results in the formation of bis(1-hydroxy-2-methylpropan-2-aminium)selenate (HMPAS) salt and the fragments are connected through H-bonding and ion pairing. The N-H⋯O and O-H⋯O interactions between 2-amino-2-methylpropanol and selenic acid determine the supramolecular arrangement in three-dimensional space. The salt crystallises in the space group P121/n1 of monoclinic system. The complete vibrational assignments of HMPAS have been performed by FTIR and FT-Raman spectroscopy. The experimental data are correlated with the structural properties namely the energy, thermodynamic parameters, atomic charges, hybridization concepts and vibrational frequencies determined by quantum chemical studies performed with B3LYP method using 6-311++G*, 6-31+G* and 6-31G** basis sets.

  17. Preparation and Characterization of Acid and Alkaline Treated Kaolin Clay

    Directory of Open Access Journals (Sweden)

    Sachin Kumar

    2013-06-01

    Full Text Available Kaolin was refluxed with HNO3, HCl, H3PO4, CH3COOH, and NaOH of 3M concentration at 110 °C for 4 hours followed by calcination at 550 °C for 2 hours. The physico-chemical characteristics of resulted leached kaolinite clay were studied by XRF, XRD, FTIR, TGA, DTA, SEM and N2 adsorption techniques. XRF and FTIR study indicate that acid treatment under reflux conditions lead to the removal of the octahedral Al3+ cations along with other impurities. XRD of acid treated clay shows that, the peak intensity was found to decrease. Extent of leaching of Al3+ ions is different for different acid/base treatment. The acid treatment increased the Si/Al ratio, surface area and pore volume of the clay. Thus, the treated kaolin clay can be used as promising adsorbent and catalyst supports. © 2013 BCREC UNDIP. All rights reservedReceived: 1st March 2013; Revised: 9th April 2013; Accepted: 19th April 2013[How to Cite: Kumar, S., Panda, A. K., Singh, R.K. (2013. Preparation and Characterization of Acids and Alkali Treated Kaolin Clay. Bulletin of Chemical Reaction Engineering & Catalysis, 8 (1: 61-69. (doi:10.9767/bcrec.8.1.4530.61-69][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.8.1.4530.61-69] |View in  |

  18. Selenate reduction to elemental selenium by anaerobic bacteria in sediments and culture: biogeochemical significance of a novel, sulfate-independent respiration

    Science.gov (United States)

    Oremland, Ronald S.; Hollibaugh, James T.; Maest, Ann S.; Presser, Theresa S.; Miller, Laurence G.; Culbertson, Charles W.

    1989-01-01

    Interstitial water profiles of SeO42−, SeO32−, SO42−, and Cl− in anoxic sediments indicated removal of the seleno-oxyanions by a near-surface process unrelated to sulfate reduction. In sediment slurry experiments, a complete reductive removal of SeO42− occurred under anaerobic conditions, was more rapid with H2 or acetate, and was inhibited by O2, NO3−, MnO2, or autoclaving but not by SO42− or FeOOH. Oxidation of acetate in sediments could be coupled to selenate but not to molybdate. Reduction of selenate to elemental selenium was determined to be the mechanism for loss from solution. Selenate reduction was inhibited by tungstate and chromate but not by molybdate. A small quantity of the elemental selenium precipitated into sediments from solution could be resolublized by oxidation with either nitrate or FeOOH, but not with MnO2. A bacterium isolated from estuarine sediments demonstrated selenate-dependent growth on acetate, forming elemental selenium and carbon dioxide as respiratory end products. These results indicate that dissimilatory selenate reduction to elemental selenium is the major sink for selenium oxyanions in anoxic sediments. In addition, they suggest application as a treatment process for removing selenium oxyanions from wastewaters and also offer an explanation for the presence of selenite in oxic waters.

  19. Selen og vitamin E til søer og pattegrise

    DEFF Research Database (Denmark)

    Nielsen, H. E.; Danielsen, V.; Simesen, M. G.

    1977-01-01

    Formålet med dette forsøg var at undersøge virkningen af foderets selen- og vitamin E indhold på søernes frugtbarhed og pattegrisenes levedygtighed og vækst. Endvidere at undersøge koncentrationen af selen (Se) og vitamin E i råmælk, somælk og blod i relation til foderet. Der forekom enkelte...... dødsfald blandt grisene, som kunne sættes i forbindelse med enten lavt Se-indhold eller lavt vitamin E indhold i foderet. Der blev desuden konstateret flere brunst- og drægtighedsproblemer hos søer, derfik foder med det lave indhold af vitamin E end hos søer i de andre grupper. En forøgelse af Se......-indholdet fra 30 til 60 µg pr. kg foder gav en fordobling af indholdet i råmælk og i somælk. En forøgelse af vitamin E indholdet i foderet fra ca. 20 mg til ca. 45 mg pr. kg foder gav 4 gange forøgelse i råmælk og somælk. Der blev konstateret tilsvarende virkninger af Se og vitamin E i foderet på indholdet i...

  20. Infrared absorption spectra of selenate compounds of indium (3)

    International Nuclear Information System (INIS)

    Kharitonov, Yu.Ya.; Kadoshnikova, N.V.; Tananaev, I.V.

    1979-01-01

    Obtained and discussed are infrared absorption spectra (400-4000 cm -1 ) of the following indium selenates: In 2 (SeO 4 ) 3 x5H 2 O, In 2 (SeO 4 ) 3 x9H 2 O, NaIn(SeO 4 ) 2 x6H 2 O, NaIn(SeO 4 ) 2 xH 2 O, MIn(SeO 4 ) 2 x4H 2 O (M=NH 4 , K, Rb), CsIn(SeO 4 ) 2 x2H 2 O, Na 3 In(SeO 4 ) 3 x7H 2 O, MIn(SeO 4 ) 2 (M=NH 4 , Na, K, Rb, Cs), M 2 InOH(SeO 4 ) 2 xyH 2 O (M=NH 4 , Na, K, Rb) and K 2 InOD(SeO 4 ) 2 xyD 2 O

  1. Uptake and speciation of selenium in garlic cultivated in soil amended with symbiotic fungi (mycorrhiza) and selenate

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Erik H.; Hansen, Marianne; Rasmussen, Peter Have; Sloth, Jens J. [Danish Institute for Food and Veterinary Research, Department of Food Chemistry, Soeborg (Denmark); Lobinski, Ryszard; Ruzik, Rafal; Mazurowska, Lena [CNRS UMR 5034, Pau (France); Warsaw University of Technology, Department of Analytical Chemistry, Warsaw (Poland); Burger-Meyer, Karin; Scholten, Olga [Wageningen University and Research Centre, Plant Research International (PRI), P.O. Box 16, Wageningen (Netherlands); Kik, Chris [Wageningen University and Research Centre, Plant Research International (PRI), P.O. Box 16, Wageningen (Netherlands); Wageningen University and Research Centre, Centre for Genetic Resources, The Netherlands (CGN), P.O. Box 16, Wageningen (Netherlands)

    2006-07-15

    The scope of the work was to investigate the influence of selenate fertilisation and the addition of symbiotic fungi (mycorrhiza) to soil on selenium and selenium species concentrations in garlic. The selenium species were extracted from garlic cultivated in experimental plots by proteolytic enzymes, which ensured liberation of selenium species contained in peptides or proteins. Separate extractions using an aqueous solution of enzyme-deactivating hydroxylamine hydrochloride counteracted the possible degradation of labile selenium species by enzymes (such as alliinase) that occur naturally in garlic. The selenium content in garlic, which was analysed by ICP-MS, showed that addition of mycorrhiza to the natural soil increased the selenium uptake by garlic tenfold to 15 {mu}g g{sup -1} (dry mass). Fertilisation with selenate and addition of mycorrhiza strongly increased the selenium content in garlic to around one part per thousand. The parallel analysis of the sample extracts by cation exchange and reversed-phase HPLC with ICP-MS detection showed that {gamma}-glutamyl-Se-methyl-selenocysteine amounted to 2/3, whereas methylselenocysteine, selenomethionine and selenate each amounted to a few percent of the total chromatographed selenium in all garlic samples. Se-allyl-selenocysteine and Se-propyl-selenocysteine, which are selenium analogues of biologically active sulfur-containing amino acids known to occur in garlic, were searched for but not detected in any of the extracts. The amendment of soil by mycorrhiza and/or by selenate increased the content of selenium but not the distribution of detected selenium species in garlic. Finally, the use of two-dimensional HPLC (size exclusion followed by reversed-phase) allowed the structural characterisation of {gamma}-glutamyl-Se-methyl-selenocysteine and {gamma}-glutamyl-Se-methyl-selenomethionine in isolated chromatographic fractions by quadrupole time-of-flight mass spectrometry. (orig.)

  2. High-Strengthening of Cement-Treated Clay by Mechanical Dehydration

    OpenAIRE

    Kasama, Kiyonobu; Zen, Kouki; Iwataki, Kiyoharu; 笠間, 清伸; 善, 功企; 岩瀧, 清治

    2007-01-01

    A technique called the cement-mixing and mechanical dehydration method (CMD) as one of recycling techniques for soft clay slurry is developed. In order to evaluate the effectiveness of the CMD for increasing the strength of soft clay, a series of unconfined compression tests and several durability tests were performed together with the literature review of unconfined compressive strength in cement-treated soils. Moreover, a series of constant strain rate consolidation tests were also performe...

  3. Synthesis and crystal structure of new uranyl selenite(IV)-selenate(VI) [C5H14N][(UO2)3(SeO4)4(HSeO3)(H2O)](H2SeO3)(HSeO4)

    International Nuclear Information System (INIS)

    Krivovichev, S.V.; Tananaev, I.G.; Myasoedov, B.F.; Kalenberg, V.

    2006-01-01

    Crystals of new uranyl selenite(IV)-selenate(VI) [C 5 H 14 N][(UO 2 ) 3 (SeO 4 ) 4 (HSeO 3 )(H 2 O)](H 2 SeO 3 )(HSeO 4 ) are obtained by the method of evaporation from aqueous solutions. Compound has triclinic lattice, space group P1-bar, a=11.7068(9), b=14.8165(12), c=16.9766(15), α=73.899(6), β=76.221(7), γ=89.361(6) Deg, V=2743.0(4) A 3 , Z=2. Laminated complexes (UO 2 ) 3 (SeO 4 ) 4 (HSeO 3 )(H 2 O)] 3- are the basis of the structure. [HSe(VI)O 4 ] - , [H 2 Se(IV)O 3 ] complexes and protonated methylbutylamine cations are disposed between layers [ru

  4. Selene: A Videogame for Learning about the Moon

    Science.gov (United States)

    Wood, C. A.; Reese, D. D.

    2008-06-01

    The Selene game-based, metaphor-enhanced (GaME) learning object prepares players with concrete knowledge of basic lunar geology processes. Selene is embedded within an online research environment studying learning and assessment within videogames.

  5. Sorption mechanisms of selenium species (selenite and selenate) on copper-based minerals; Mecanismes de sorption des especes du selenium (selenite et seleniate) sur des mineraux a base de cuivre

    Energy Technology Data Exchange (ETDEWEB)

    Devoy, J

    2001-09-01

    The sorption of radionuclides on the surface of minerals represents a process capable to delay the migration of the elements from a spent fuel deep repository towards the biosphere. In the framework of a deep underground repository, an engineered clay barrier has a high trapping capacity for cationic radio-elements, in particular because of the negative charge of clay surfaces. However, anionic radioelements like selenium species, would be only weakly retained by chemical processes. In order to optimize the trapping capacity of a clay barrier with respect to anionic species, prospective studies are carried out in order to find and evaluate some minerals with specific chemical trapping functions. Among radionuclides, the case of selenium has to be considered because its isotope {sup 79}Se is present in radioactive wastes and has a half life time of 6.5 10{sup 4} years. It is also judicious to find a mineral capable of trapping simultaneously several anionic radio-elements. Copper oxides and sulfides (Cu{sub 2}O, CuO, Cu{sub 2}S, CuS, CuFeS{sub 2} and Cu{sub 5}FeS{sub 4}) are good adsorbents with respect to selenium species (selenite and selenate). These minerals, with their selenium retention properties, could be used also for the decontamination of soils and waters or to process industrial effluents. The sorption mechanisms have been studied in details for copper oxides (Cu{sub 2}O and CuO) with respect to selenite and selenate. Chalcomenite precipitates in acid pH conditions when selenite is added to a Cu{sub 2}O and CuO suspension. Selenate, in contact with cuprite (Cu{sub 2}O) leads also to a selenium-based precipitate in acid pH environment. For higher pH values, selenite and selenate are adsorbed on copper oxides (Cu{sub 2}O and CuO) and lead to internal and external sphere complexes, respectively. In the case of a selenite/cuprite mixture in basic pH environment and at the equilibrium, a chemical reaction occurs between the oxidation product of cuprite, Cu

  6. Reagent for treating clay drilling muds

    Energy Technology Data Exchange (ETDEWEB)

    Tkachenko, P V; Leshchinskiy, P A; Shnaper, B I; Zinchuk, I F; Zlobin, V P

    1982-01-01

    A reagent is proposed for treating clay drilling muds. It contains lignite, caustic soda and modifying agent. It is distinguished by the fact that in order to reduce the cost of the reagent with simultaneous decrease in the viscosity and static shear stress of the drilling mud, it additionally contains iron sulfate, and the modifying agent contained is wastes of carbonic acid production with the following ratio of components (parts by weight): lignite 10.0-15.0, caustic soda 2.0-3.0, wastes of carbonic acid production 0.5-0.75; iron sulfate 1.0-2.0.

  7. Investigación de la biotransformación de Se en tejidos de Phaseolus vulgaris L. mediante espectroscopia de absorción de rayos X Investigación de la biotransformación de Se en tejidos de Phaseolus vulgaris L. mediante espectroscopia de absorción de rayos X

    Directory of Open Access Journals (Sweden)

    Jorge L. Gardea-Torresdey

    2012-02-01

    Full Text Available   In this investigation, selenate toxicity was evaluated in three varieties of Phaseoulus vulgaris L.: Negro, Peruano, and Flor de Mayo, where this last was identified as the most resistant to selenate. In the Flor de Mayo variety, Se in plant tissues was quantified and X-ray absorption spectroscopy (XAS analysis performed in order to determine the potential selenate biotransformation. Root and stem tissues accumulated up to 1 218 mg Se kg-1 and 101 mg Se kg-1, respectively. XAS results indicated that part of the selenate was biotransformed, as in plant tissues selenate as well as selanide forms were identified. According to these results, Flor de Mayo variety can be classified as a Se secondary accumulator. Also, selenate biotransformation was identified. To our knowledge, this is the first time selenate biotransformation using XAS in this plant species is reported.En este trabajo se evaluó la toxicidad del selenato en tres variedades de frijol (Phaseoulus vulgaris L.: Negro, Peruano y Flor de Mayo. La variedad Flor de Mayo se identificó como la más resistente por lo que en ella se cuantificó el selenio y se determinó la biotransformación del selenato mediante espectroscopia de absorción de rayos X (EAX. La raíz y tallo de esta variedad acumularon hasta 1 218 mg Se kg-1 y 101 mg Se kg-1, respectivamente. Los resultados de EAX indicaron que parte del selenato se biotransformó en los tejidos de la planta, en donde se identificaron las formas selenato y selenuro. De acuerdo a estos resultados, esta variedad de P. vulgaris puede ser clasificada como una acumuladora secundaria de selenio; por otro lado se comprobó la biotransformación del selenato usando EAX lo cual, hasta donde sabemos, no ha sido previamente reportada en la literatura.

  8. Speciation of Se and DOC in soil solution and their relation to Se bioavailability.

    Science.gov (United States)

    Weng, Liping; Vega, Flora Alonso; Supriatin, Supriatin; Bussink, Wim; Van Riemsdijk, Willem H

    2011-01-01

    A 0.01 M CaCl(2) extraction is often used to asses the bioavailability of plant nutrients in soils. However, almost no correlation was found between selenium (Se) in the soil extraction and Se content in grass. The recently developed anion Donnan membrane technique was used to analyze chemical speciation of Se in the 0.01 M CaCl(2) extractions of grassland soils and fractionation of DOC (dissolved organic carbon). The results show that most of Se (67-86%) in the extractions (15 samples) are colloidal-sized Se. Only 13-34% of extractable Se are selenate, selenite and small organic Se (<1 nm). Colloidal Se is, most likely, Se bound to or incorporated in colloidal-sized organic matter. The dominant form of small Se compounds (selenate, selenite/small organic compounds) depends on soil. A total of 47-85% of DOC is colloidal-sized and 15-53% are small organic molecules (<1 nm). In combination with soluble S (sulfur) and/or P (phosphor), concentration of small DOC can explain most of the variability of Se content in grass. The results indicate that mineralization of organic Se is the most important factor that controls Se availability in soils. Competition with sulfate and phosphate needs to be taken into account. Further research is needed to verify if concentration of small DOC is a good indicator of mineralization of soil organic matter.

  9. Novel in situ resistance measurement for the investigation of CIGS growth in a selenization process

    International Nuclear Information System (INIS)

    Liu Wei; He Qing; Li Fengyan; Li Changjian; Sun Yun; Tian Jianguo; Li Zubin

    2009-01-01

    During the selenization process of CIGS thin films, the relation between the element loss rate and the precursor depositions are analyzed. The growth of the CIGS thin films during the selenization process is investigated by the novel in situ resistance measurement, by which the formation of compound semiconductors can be observed directly and simultaneously. Their structures, phase evolutions and element losses are analyzed by XRD and XRF. Based on the experimental results, it can be concluded that the phase transforms have nothing to do with the deposition sequences of precursors, while the element loss rates are related to the deposition sequences in this process. In addition, element loss mechanisms of CIGS thin films prepared by the selenization process are analyzed by the phase evolutions and chemical combined path in the In, Ga–Se reaction processes. Moreover it is verified that the element losses are depressed by increasing the ramping-up rate finally. The results provide effective methods to fabricate high-quality CIGS thin films with low element losses

  10. Novel in situ resistance measurement for the investigation of CIGS growth in a selenization process

    Science.gov (United States)

    Liu, Wei; Tian, Jian-Guo; Li, Zu-Bin; He, Qing; Li, Feng-Yan; Li, Chang-Jian; Sun, Yun

    2009-03-01

    During the selenization process of CIGS thin films, the relation between the element loss rate and the precursor depositions are analyzed. The growth of the CIGS thin films during the selenization process is investigated by the novel in situ resistance measurement, by which the formation of compound semiconductors can be observed directly and simultaneously. Their structures, phase evolutions and element losses are analyzed by XRD and XRF. Based on the experimental results, it can be concluded that the phase transforms have nothing to do with the deposition sequences of precursors, while the element loss rates are related to the deposition sequences in this process. In addition, element loss mechanisms of CIGS thin films prepared by the selenization process are analyzed by the phase evolutions and chemical combined path in the In, Ga-Se reaction processes. Moreover it is verified that the element losses are depressed by increasing the ramping-up rate finally. The results provide effective methods to fabricate high-quality CIGS thin films with low element losses.

  11. Soil-Water Characteristic Curves of Red Clay treated by Ionic Soil Stabilizer

    Science.gov (United States)

    Cui, D.; Xiang, W.

    2009-12-01

    The relationship of red clay particle with water is an important factor to produce geological disaster and environmental damage. In order to reduce the role of adsorbed water of red clay in WuHan, Ionic Soil Stabilizer (ISS) was used to treat the red clay. Soil Moisture Equipment made in U.S.A was used to measure soil-water characteristic curve of red clay both in natural and stabilized conditions in the suction range of 0-500kPa. The SWCC results were used to interpret the red clay behavior due to stabilizer treatment. In addition, relationship were compared between the basic soil and stabilizer properties such as water content, dry density, liquid limit, plastic limit, moisture absorption rate and stabilizer dosages. The analysis showed that the particle density and specific surface area increase, the dehydration rate slows and the thickness of water film thins after treatment with Ionic Soil Stabilizer. After treatment with the ISS, the geological disasters caused by the adsorbed water of red clay can be effectively inhibited.

  12. Selenized milk casein in the diet of BALB/c nude mice reduces growth of intramammary MCF-7 tumors

    International Nuclear Information System (INIS)

    Warrington, Jenny M; Kim, Julie JM; Stahel, Priska; Cieslar, Scott RL; Moorehead, Roger A; Coomber, Brenda L; Corredig, Milena; Cant, John P

    2013-01-01

    Dietary selenium has the potential to reduce growth of mammary tumors. Increasing the Se content of cows’ milk proteins is a potentially effective means to increase Se intake in humans. We investigate the effects of selenized milk protein on human mammary tumor progression in immunodeficient BALB/c nude mice. Four isonitrogenous diets with selenium levels of 0.16, 0.51, 0.85 and 1.15 ppm were formulated by mixing low- and high-selenium milk casein isolates with a rodent premix. MCF-7 cells were inoculated into the mammary fat pad of female BALB/c nude mice implanted with slow-release 17 β-estradiol pellets. Mice with palpable tumors were randomly assigned to one of the four diets for 10 weeks, during which time weekly tumor caliper measurements were conducted. Individual growth curves were fit with the Gompertz equation. Apoptotic cells and Bcl-2, Bax, and Cyclin D1 protein levels in tumors were determined. There was a linear decrease in mean tumor volume at 70 days with increasing Se intake (P < 0.05), where final tumor volume decreased 35% between 0.16 and 1.15 ppm Se. There was a linear decrease in mean predicted tumor volume at 56, 63 and 70 days, and the number of tumors with a final volume above 500 mm 3 , with increasing Se intake (P < 0.05). This tumor volume effect was associated with a decrease in the proportion of tumors with a maximum growth rate above 0.03 day -1 . The predicted maximum volume of tumors (V max ) and the number of tumors with a large V max , were not affected by Se-casein. Final tumor mass, Bcl-2, Bax, and Cyclin D1 protein levels in tumors were not significantly affected by Se-casein. There was a significantly higher number of apoptotic cells in high-Se tumors as compared to low-Se tumors. Taken together, these results suggest that turnover of cells in the tumor, but not its nutrient supply, were affected by dairy Se. We have shown that 1.1 ppm dietary Se from selenized casein can effectively reduce tumor progression in an MCF-7

  13. Rapid fabrication of self-ordered porous alumina with 10-/sub-10-nm-scale nanostructures by selenic acid anodizing

    Science.gov (United States)

    Nishinaga, Osamu; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.

    2013-01-01

    Anodic porous alumina has been widely investigated and used as a nanostructure template in various nanoapplications. The porous structure consists of numerous hexagonal cells perpendicular to the aluminum substrate and each cell has several tens or hundreds of nanoscale pores at its center. Because the nanomorphology of anodic porous alumina is limited by the electrolyte during anodizing, the discovery of additional electrolytes would expand the applicability of porous alumina. In this study, we report a new self-ordered nanoporous alumina formed by selenic acid (H2SeO4) anodizing. By optimizing the anodizing conditions, anodic alumina possessing 10-nm-scale pores was rapidly assembled (within 1 h) during selenic acid anodizing without any special electrochemical equipment. Novel sub-10-nm-scale spacing can also be achieved by selenic acid anodizing and metal sputter deposition. Our new nanoporous alumina can be used as a nanotemplate for various nanostructures in 10-/sub-10-nm-scale manufacturing. PMID:24067318

  14. Orbit Determination of the SELENE Satellites Using Multi-Satellite Data Types and Evaluation of SELENE Gravity Field Models

    Science.gov (United States)

    Goossens, S.; Matsumoto, K.; Noda, H.; Araki, H.; Rowlands, D. D.; Lemoine, F. G.

    2011-01-01

    The SELENE mission, consisting of three separate satellites that use different terrestrial-based tracking systems, presents a unique opportunity to evaluate the contribution of these tracking systems to orbit determination precision. The tracking data consist of four-way Doppler between the main orbiter and one of the two sub-satellites while the former is over the far side, and of same-beam differential VLBI tracking between the two sub-satellites. Laser altimeter data are also used for orbit determination. The contribution to orbit precision of these different data types is investigated through orbit overlap analysis. It is shown that using four-way and VLBI data improves orbit consistency for all satellites involved by reducing peak values in orbit overlap differences that exist when only standard two-way Doppler and range data are used. Including laser altimeter data improves the orbit precision of the SELENE main satellite further, resulting in very smooth total orbit errors at an average level of 18m. The multi-satellite data have also resulted in improved lunar gravity field models, which are assessed through orbit overlap analysis using Lunar Prospector tracking data. Improvements over a pre-SELENE model are shown to be mostly in the along-track and cross-track directions. Orbit overlap differences are at a level between 13 and 21 m with the SELENE models, depending on whether l-day data overlaps or I-day predictions are used.

  15. 79Se: geochemical and crystallo-chemical retardation mechanisms

    International Nuclear Information System (INIS)

    Chen, F.; Ewing, R.C.

    1999-01-01

    79 Se is a long-lived (1.1 x 10 6 yrs) fission product which is chemically and radiologically toxic. Under Eh-pH conditions typical of oxidative alteration of spent nuclear fuel, selenite, SeO 3 2- or HSeO 3 - or selenate, SeO 4 2- , are the dominant aqueous species of selenium. Because of the high solubility of metal-selenites and metal-selenates and the low adsorption of selenite and selenate aqueous species by geological materials under alkaline conditions, selenium may be highly mobile. However, 79 Se released from altered fuel may become immobilized by incorporation into secondary uranyl phases as low concentration impurities, and this may significantly reduce the mobility of selenium. Analysis and comparison of the known structures of uranyl phases indicate that (SeO 3 ) may substitute for (SiO 3 OH) in structures of α-uranophane and boltwoodite that are expected to be the dominant alteration products of UO 2 in Si-rich groundwater. The substitutions (SeO 3 ) (SiO 3 OH) in sklodowskite, Mg[(UO 2 )(SiO 3 OH)] 2 (H 2 O) 6 and (SeO 3 ) (PO 4 ) in phurcalite, Ca 2 [(UO 2 ) 3 (PO 4 ) 2 O 2 ](H 2 O) 7 , may occur with the eliminated apical anion being substituted for by an H 2 O group, but experimental investigation is required. The close similarity between the sheets in the structures of rutherfordine, [(UO 2 )(CO 3 )] and [(UO 2 )(SeO 3 )] implies that the substitution (SeO 3 ) (CO 3 ) can occur in rutherfordine, and possibly other uranyl carbonates. However, the substitutions: (SeO 3 ) (SiO 4 ) in soddyite and (SeO 3 ) (PO 4 ) in phosphuranylite may disrupt their structural connectivity and are, therefore, unlikely. (orig.)

  16. Investigation of mineral composition of differently treated devonian, quaternary and triassic clays of Latvia

    International Nuclear Information System (INIS)

    Kosorukovs, A.; Viss, R.

    1999-01-01

    Clayey fractions (particle size less than 5 μm )of the Latvian Devonian (Kuprava and Liepa deposits), Quaternary (Laza and Ugale deposits) and Triassic (Akmene deposit, Republic of Lithuania) clays have been obtained. The clayey fractions were converted in the form in which all the cations were exchanged for magnesium ions. After the ion exchange the fractions were treated with dimethyl sulfoxide or glycerol in the course for two days, one sample being subjected to thermal treatment at 550±110 C for two hours. Diffractograms for the treated samples have been obtained using a DRON-2,0 diffractometer (Co-radiation). Analysis of the obtained diffractograms show that: 1) the main clayey minerals of the Devonian clays occur to be hydromicas (mainly hydromuscovite) containing admixtures of kaolinite and quartz; 2) the main clayey minerals of the Quarternary clays also occur to be hydromicas - mixtures of hydrobiotite and hydromuscovite containing admixtures of kaolinite and iron-containing chlorite; 3) smectite occurs to be the main mineral of the Triassic clay; it contains admixtures of hydromica and chlorite; 4) the Triassic and Quaternary clays contain fine- and coarse-grained carbonates, mainly calcite, in quantities of 10-16%; 5) iron and titanium are included in fine grained minerals. (author)

  17. Synthesis and crystal structure of Fe[(Te1.5Se0.5)O5]Cl, the first iron compound with selenate(IV) and tellurate(IV) groups

    Science.gov (United States)

    Akhrorov, Akhmad Yu; Kuznetsova, Elena S.; Aksenov, Sergey M.; Berdonosov, Peter S.; Kuznetsov, Alexey N.; Dolgikh, Valery A.

    2017-12-01

    During the search for selenium analogues of FeTe2O5Cl, the new iron (III) tellurate(IV) selenate(IV) chloride with the composition Fe[(Te1.5Se0.5)O5]Cl was synthesized by chemical vapor transport (CVT) reaction and characterized by TGA-, EDX-,SCXRD-analysis, as well as IR and Raman spectroscopy. It was found that Fe[(Te1.5Se0.5)O5]Cl crystallizes in the monoclinic space group P21/c with unitcell parameters a = 5.183(3) Å, b = 15.521(9) Å, c = 7.128(5) Å and β = 107.16(1)°. The crystal structure of Fe[(Te1.5Se0.5)O5]Cl represents a new structure type and contains electroneutral heteropolyhedral layers formed by dimers of the [FeO5Cl]8- octahedra, linked via common O-O edges, and mixed [Te3SeO10]4- tetramers. Adjacent layers are stacked along the b axis and linked by weak residual bonds. The new compound is stable up to 420 °C. DFT calculations predict Fe[(Te1.5Se0.5)O5]Cl to be a wide-gap semiconductor with the band gap of ca. 2.7 eV.

  18. Preparation of CulnSe2 thin films by paste coating

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Precursor pastes were obtained by milling Cu-In alloys and Se powders.CuInSe2 thin films were successfully prepared by precursor layers,which were coated using these pastes,and were annealed in a H2 atmosphere.The pastes were tested by laser particle diameter analyzer,simultaneous thermogravimetric and differential thermal analysis instruments (TG-DTA),and X-ray diffractometry (XRD).Selenized films were characterized by XRD,scanning electron microscopy (SEM),and energy dispersive spectroscopy (EDS).The results indicate that chalcopyrite CuInSe2 is formed at 180℃ and the crystallinity of this phase is improved as the temperature rises.All the CuInSe2 thin films,which were annealed at various temperatures,exhibit the preferred orientation along the (112) plane.The compression of precursor layers before selenization step is one oftbe most essential factors for the preparation of perfect CulnSe2 thin films.

  19. Cs2SeO4-UO2SeO4-H2O system at 25 deg C

    International Nuclear Information System (INIS)

    Serezhkina, L.B.; Serezhkin, V.N.

    1987-01-01

    Using the method of isothermal solubility at 25 deg C the interaction of cesium and uranyl selenates in aqueous solution is studied. Formation of congruently soluble Cs 2 UO 2 (SeO 4 ) 2 x2H 2 O and Cs 2 (UO 2 ) 2 x(SeO 4 ) 3 is ascertained, their crystallographic characteristics being determined

  20. Respiration of arsenate and selenate by hyperthermophilic archaea.

    Science.gov (United States)

    Huber, R; Sacher, M; Vollmann, A; Huber, H; Rose, D

    2000-10-01

    A novel, strictly anaerobic, hyperthermophilic, facultative organotrophic archaeon was isolated from a hot spring at Pisciarelli Solfatara, Naples, Italy. The rod-shaped cells grew chemolithoautotrophically with carbon dioxide as carbon source, hydrogen as electron donor and arsenate, thiosulfate or elemental sulfur as electron acceptor. H2S was formed from sulfur or thiosulfate, arsenite from arsenate. Organotrophically, the new isolate grew optimally in the presence of an inorganic electron acceptor like sulfur, selenate or arsenate. Cultures, grown on arsenate and thiosulfate or arsenate and L-cysteine, precipitated realgar (As2S2). During growth on selenate, elemental selenium was produced. The G+C content of the DNA was 58.3 mol%. Due to 16S rRNA gene sequence analysis combined with physiological and morphological criteria, the new isolate belongs to the Thermoproteales order. It represents a new species within the genus Pyrobaculum, the type species of which we name Pyrobaculum arsenaticum (type strain PZ6*, DSM 13514, ATCC 700994). Comparative studies with different Pyrobaculum-species showed, that Pyrobaculum aerophilum was also able to grow organotrophically under anaerobic culture conditions in the presence of arsenate, selenate and selenite. During growth on selenite, elemental selenium was formed as final product. In contrast to P. arsenaticum, P. aerophilum could use selenate or arsenate for lithoautotrophic growth with carbon dioxide and hydrogen.

  1. Selenium Accumulation Characteristics and Biofortification Potentiality in Turnip (Brassica rapa var. rapa Supplied with Selenite or Selenate

    Directory of Open Access Journals (Sweden)

    Xiong Li

    2018-01-01

    Full Text Available Selenium (Se is an essential trace element for humans. About 70% of the regions in China, including most of the Tibetan Plateau, are faced with Se deficiency problems. Turnip is mainly distributed around the Tibetan Plateau and is one of the few local crops. In the present study, we compared the absorption and translocation differences of Se (IV selenite and Se (VI selenate in turnip. The results showed that Se treatment, either by soil addition (0.2–2 mg Se kg−1 dry soil or by foliar spraying (50–200 mg L−1 Se, could significantly increase the Se concentrations in turnips, and 0.5 mg Se (IV or Se (VI kg−1 dry matter in soils could improve the biomasses of turnips. Moreover, turnip absorbed significantly more Se (VI than Se (IV at the same concentration and also transferred much more Se (VI from roots to leaves. Based on the Se concentrations, as well as the bioconcentration factors and translocation coefficients, we considered that turnip might be a potential Se indicator plant. Subsequently, we estimated the daily Se intake for adults based on the Se concentrations in turnip roots. The results indicated that Se (IV should be more suitable as an artificial Se fertilizer for turnips, although the levels found in most samples in this study could cause selenosis to humans. In addition, we also estimated the optimum and maximum Se concentrations for treating turnips based on the linear relations between Se concentrations in turnip roots and Se treatment concentrations. The results provided preliminary and useful information about Se biofortification in turnips.

  2. Selenium biofortification in radish enhances nutritional quality via accumulation of methyl-selenocysteine and promotion of transcripts and metabolites related to glucosinolates, phenolics and amino acids

    Directory of Open Access Journals (Sweden)

    Michela Schiavon

    2016-09-01

    Full Text Available Two selenium (Se fertilization methods were tested for their effects on levels of anticarcinogenic selenocompounds in radish (Raphanus sativus, as well as other nutraceuticals. First, radish was grown on soil and foliar selenate applied 7d before harvest at 0, 5, 10 and 20 mg Se per plant. Selenium levels were up to 1,200 mg Se/kg DW in leaves and 120 mg Se/kg DW in roots. The thiols cysteine and glutathione were present at 2-3 fold higher levels in roots of Se treated plants, and total glucosinolate levels were 35% higher, due to increases in glucoraphanin. The only seleno-aminoacid detected in Se treated plants was Se-methyl-SeCys (100 mg/kg FW in leaves, 33 mg/kg FW in roots. The levels of phenolic aminoacids increased with selenate treatment, as did root total nitrogen and protein content, while the level of several polyphenols decreased. Second, radish was grown in hydroponics and supplied with 0, 5, 10, 20, or 40 microM selenate for one week. Selenate treatment led to a 20-30% increase in biomass. Selenium concentration was 242 mg Se/kg DW in leaves and 85 mg Se/kg DW in roots. Cysteine levels decreased with Se in leaves but increased in roots; glutatione levels decreased in both. Total glucosinolate levels in leaves decreased with Se treatment due to repression of genes involved in glucosinolates metabolism. Se-methyl-SeCys concentration ranged from 7-15 mg/kg FW. Aminoacid concentration increased with Se treatment in leaves but decreased in roots. Roots of Se treated plants contained elevated transcript levels of sulfate transporters (Sultr and ATP sulfurylase, a key enzyme of S/Se assimilation. No effects on polyphenols were observed. In conclusion, Se biofortification of radish roots may be achieved via foliar spray or hydroponic supply. One to ten radishes could fulfill the daily human requirement (70 microg after a single foliar spray of 5 mg selenate per plant or one week of 5-10 microM selenate supply in hydroponics. The radishes

  3. Uptake of selenate on hydrated and degraded cement: batch and dynamic experiments

    International Nuclear Information System (INIS)

    Rojo, I.; Rovira, I.; Marti, V.; Pablo, J. de; Duro, L.; Gaona, X.; Colas, E.; Grive, M.

    2009-01-01

    The evaluation of selenate sorption and retardation in batch and dynamic experiments on hydrated and degraded cement has been studied. Desorption studies have also been carried in order to assess the reversibility of the sorption process. Sorption data onto degraded cement have been treated assuming the formation of surface complexes, whereas sorption kinetics has been fitted by using a pseudo-first order kinetic equation. Dynamic flow experiments have also been modelled. (authors)

  4. SBR Brazilian organophilic/clay nanocomposites

    International Nuclear Information System (INIS)

    Guimaraes, Thiago R.; Valenzuela-Diaz, Francisco R.; Morales, Ana Rita; Paiva, Lucilene B.

    2009-01-01

    The aim of this work is the obtaining of SBR composites using a Brazilian raw bentonite and the same bentonite treated with an organic salt. The clays were characterized by XRD. The clay addition in the composites was 10 pcr. The composites were characterized by XRD and had measured theirs tension strength (TS). The composite with Brazilian treated clay showed TS 233% higher than a composite with no clay, 133% higher than a composite with Cloisite 30B organophilic clay and 17% lower than a composite with Cloisite 20 A organophilic clay. XRD and TS data evidence that the composite with Brazilian treated clay is an intercalated nanocomposite. (author)

  5. Compaction and Plasticity Comparative Behaviour of Soft Clay Treated with Coarse and Fine Sizes of Ceramic Tiles

    Science.gov (United States)

    Al-Bared, Mohammed Ali Mohammed; Marto, Aminaton; Sati Hamonangan Harahap, Indra; Kasim, Fauziah

    2018-03-01

    Recycled blended ceramic tiles (RBT) is a waste material produced from ceramic tile factories and construction activities. RBT is found to be cost effective, sustainable, environmental-friendly and has the potential to be used as an additive in soft soil stabilization. Recent reports show that massive amounts of RBT are dumped into legal or illegal landfills every year consuming very large spaces and creating major environmental problems. On the other hand, dredged marine clay obtained from Nusajaya, Johor, Malaysia has weak physical and engineering characteristics to be considered as unsuitable soft soil that is usually excavated, dumped into landfills and replaced by stiff soil. Hence, this study investigates the suitability of possible uses of RBT to treat marine clay. Laboratory tests included Standard proctor tests and Atterberg limits tests. The plasticity of marine clay was evaluated by adding 10%, 20%, 30% and 40% of 0.3 mm RBT. In addition, the compaction behaviour of treated marine clay was compared by adding two different sizes (0.3 mm and 1.18 mm diameter) of RBT. For both coarse and fine sizes of RBT, 10%, 20%, 30% and 40% of the dry weight of the soft clay were added. The mixture of each combination was examined in order to evaluate the Maximum Dry Density (MDD) and the optimum moisture content (OMC) for the treated soft clay. MDD and OMC for soft untreated samples were 1.59 Mg/m3 and 22%, respectively. Treated samples with 10%, 20%, 30% and 40% of 0.30 mm size RBT resulted in a significant reduction of OMC ranged from 19 to 15% while MDD resulted in increment ranged from 1.69 to 1.77 Mg/m3. In addition, samples treated with 10%, 20%, 30% and 40% of 1.18 mm size RBT resulted in major reduction of OMC ranged from 15 to 13.5% while MDD increased effectively from 1.75 to 1.82 Mg/m3. For all mix designs of soft clay-RBT, MDD was gradually increasing and OMC was sharply reducing with further increments of both sizes of RBT.

  6. Compaction and Plasticity Comparative Behaviour of Soft Clay Treated with Coarse and Fine Sizes of Ceramic Tiles

    Directory of Open Access Journals (Sweden)

    Al-Bared Mohammed Ali Mohammed

    2018-01-01

    Full Text Available Recycled blended ceramic tiles (RBT is a waste material produced from ceramic tile factories and construction activities. RBT is found to be cost effective, sustainable, environmental-friendly and has the potential to be used as an additive in soft soil stabilization. Recent reports show that massive amounts of RBT are dumped into legal or illegal landfills every year consuming very large spaces and creating major environmental problems. On the other hand, dredged marine clay obtained from Nusajaya, Johor, Malaysia has weak physical and engineering characteristics to be considered as unsuitable soft soil that is usually excavated, dumped into landfills and replaced by stiff soil. Hence, this study investigates the suitability of possible uses of RBT to treat marine clay. Laboratory tests included Standard proctor tests and Atterberg limits tests. The plasticity of marine clay was evaluated by adding 10%, 20%, 30% and 40% of 0.3 mm RBT. In addition, the compaction behaviour of treated marine clay was compared by adding two different sizes (0.3 mm and 1.18 mm diameter of RBT. For both coarse and fine sizes of RBT, 10%, 20%, 30% and 40% of the dry weight of the soft clay were added. The mixture of each combination was examined in order to evaluate the Maximum Dry Density (MDD and the optimum moisture content (OMC for the treated soft clay. MDD and OMC for soft untreated samples were 1.59 Mg/m3 and 22%, respectively. Treated samples with 10%, 20%, 30% and 40% of 0.30 mm size RBT resulted in a significant reduction of OMC ranged from 19 to 15% while MDD resulted in increment ranged from 1.69 to 1.77 Mg/m3. In addition, samples treated with 10%, 20%, 30% and 40% of 1.18 mm size RBT resulted in major reduction of OMC ranged from 15 to 13.5% while MDD increased effectively from 1.75 to 1.82 Mg/m3. For all mix designs of soft clay-RBT, MDD was gradually increasing and OMC was sharply reducing with further increments of both sizes of RBT.

  7. The intensity of tyrosine nitration is associated with selenite and selenate toxicity in Brassica juncea L.

    Science.gov (United States)

    Molnár, Árpád; Feigl, Gábor; Trifán, Vanda; Ördög, Attila; Szőllősi, Réka; Erdei, László; Kolbert, Zsuzsanna

    2018-01-01

    Selenium phytotoxicity involves processes like reactive nitrogen species overproduction and nitrosative protein modifications. This study evaluates the toxicity of two selenium forms (selenite and selenate at 0µM, 20µM, 50µM and 100µM concentrations) and its correlation with protein tyrosine nitration in the organs of hydroponically grown Indian mustard (Brassica juncea L.). Selenate treatment resulted in large selenium accumulation in both Brassica organs, while selenite showed slight root-to-shoot translocation resulting in a much lower selenium accumulation in the shoot. Shoot and root growth inhibition and cell viability loss revealed that Brassica tolerates selenate better than selenite. Results also show that relative high amounts of selenium are able to accumulate in Brassica leaves without obvious visible symptoms such as chlorosis or necrosis. The more severe phytotoxicity of selenite was accompanied by more intense protein tyrosine nitration as well as alterations in nitration pattern suggesting a correlation between the degree of Se forms-induced toxicities and nitroproteome size, composition in Brassica organs. These results imply the possibility of considering protein tyrosine nitration as novel biomarker of selenium phytotoxicity, which could help the evaluation of asymptomatic selenium stress of plants. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Preparation, characterization and thermal behaviour study of double selenates of lanthanides, yttrium and beryllium

    International Nuclear Information System (INIS)

    Ribeiro, C.A.

    1988-01-01

    The lanthanides (III) and yttrium (III) double selenates were studied using common analytical methods, atomic absorption, X-ray diffraction infra-red absorption, thermogravimetry and differential thermal analysis. These compounds were prepared from the mixture of lanthanides (III) and yttrium (III) selenates aqueous solution and basic beryllium selenates aqueous solution, obeying equimolar relation (1:1) to the cation

  9. Thin film solar cells by selenization sulfurization using diethyl selenium as a selenium precursor

    Science.gov (United States)

    Dhere, Neelkanth G.; Kadam, Ankur A.

    2009-12-15

    A method of forming a CIGSS absorber layer includes the steps of providing a metal precursor, and selenizing the metal precursor using diethyl selenium to form a selenized metal precursor layer (CIGSS absorber layer). A high efficiency solar cell includes a CIGSS absorber layer formed by a process including selenizing a metal precursor using diethyl selenium to form the CIGSS absorber layer.

  10. Selenium Biofortification in Radish Enhances Nutritional Quality via Accumulation of Methyl-Selenocysteine and Promotion of Transcripts and Metabolites Related to Glucosinolates, Phenolics, and Amino Acids

    Science.gov (United States)

    Schiavon, Michela; Berto, Chiara; Malagoli, Mario; Trentin, Annarita; Sambo, Paolo; Dall'Acqua, Stefano; Pilon-Smits, Elizabeth A. H.

    2016-01-01

    Two selenium (Se) fertilization methods were tested for their effects on levels of anticarcinogenic selenocompounds in radish (Raphanus sativus), as well as other nutraceuticals. First, radish was grown on soil and foliar selenate applied 7 days before harvest at 0, 5, 10, and 20 mg Se per plant. Selenium levels were up to 1200 mg Se/kg DW in leaves and 120 mg Se/kg DW in roots. The thiols cysteine and glutathione were present at 2–3-fold higher levels in roots of Se treated plants, and total glucosinolate levels were 35% higher, due to increases in glucoraphanin. The only seleno-aminoacid detected in Se treated plants was Se-methyl-SeCys (100 mg/kg FW in leaves, 33 mg/kg FW in roots). The levels of phenolic aminoacids increased with selenate treatment, as did root total nitrogen and protein content, while the level of several polyphenols decreased. Second, radish was grown in hydroponics and supplied with 0, 5, 10, 20, or 40 μM selenate for 1 week. Selenate treatment led to a 20–30% increase in biomass. Selenium concentration was 242 mg Se/kg DW in leaves and 85 mg Se/kg DW in roots. Cysteine levels decreased with Se in leaves but increased in roots; glutatione levels decreased in both. Total glucosinolate levels in leaves decreased with Se treatment due to repression of genes involved in glucosinolates metabolism. Se-methyl-SeCys concentration ranged from 7–15 mg/kg FW. Aminoacid concentration increased with Se treatment in leaves but decreased in roots. Roots of Se treated plants contained elevated transcript levels of sulfate transporters (Sultr) and ATP sulfurylase, a key enzyme of S/Se assimilation. No effects on polyphenols were observed. In conclusion, Se biofortification of radish roots may be achieved via foliar spray or hydroponic supply. One to ten radishes could fulfill the daily human requirement (70 μg) after a single foliar spray of 5 mg selenate per plant or 1 week of 5–10 μM selenate supply in hydroponics. The radishes metabolized

  11. Shear strength and compressibility behaviour of lime-treated organic clay

    OpenAIRE

    Yunus, NZM; Wanatowski, D; Hassan, NA; Marto, A

    2016-01-01

    Apart from strength characteristics, a review of studies on the compressibility of lime-treated soils is equally important that influenced the stability of soil structures. Due to the fact that no study has been carried out, an investigation on the effects of humic acid on strength and compressibility behaviour of lime-stabilised organic clay is presented in this paper. Unconfined Compressive Strength (UCS) and oedometer tests were carried out at different curing periods of 7, 28 and 90 days....

  12. Entwicklung und Anwendung von Methoden zur Bestimmung von Selen-Spezies in human-biologischem Material

    OpenAIRE

    Jäger, Thomas

    2014-01-01

    Selen ist essentieller Bestandteil von mehr als 25 physiologisch wichtigen menschlichen Enzymen. Der tägliche Bedarf wird überwiegend in Form von organischen Selenverbindungen wie Selenmethionin oder Selenocystein aus der Nahrung aufgenommen. Weitere Expositionswege sind die Einnahme von Nahrungsergänzungsmitteln zur Selensupplementation sowie die inhalative oder dermale Aufnahme von in erster Linie anorganischen Selenverbindungen oder elementarem Selen an Arbeitsplätzen der Selen-verarbeiten...

  13. Solid solutions in the system Nd2(SeO4)3 - Sm2(SeO4)3 - H2O

    International Nuclear Information System (INIS)

    Serebrennikov, V.V.; Tsybukova, T.N.; Velikov, A.A.

    1984-01-01

    Using the method of isothermal solubility at 25 deg C the system Nd 2 (SeO 4 ) 3 -Sm 2 (SeO 4 ) 3 -H 2 O has been studied. Roentgenographic recording of solid ''residues'' is realized. For solid solutions energies of interchange and formation heats are calculated. Formation heats of solid solutions on the basis of samarium selenates are also found experimentally

  14. Speciation of uranium in surface-modified, hydrothermally treated, (UO2)2+-exchanged smectite clays

    International Nuclear Information System (INIS)

    Giaquinta, D.M.; Soderholm, L.; Yuchs, S.E.; Wasserman, S.R.

    1997-01-01

    A successful solution to the problem of disposal and permanent storage of water soluble radioactive species must address two issues: exclusion of the radionuclides from the environment and the prevention of leaching from the storage media into the environment. Immobilization of radionuclides in clay minerals has been studied. In addition to the use of clays as potential waste forms, information about the interactions of radionuclides with clays and how such interactions affect their speciations is crucial for successful modeling of actinide-migration. X-ray absorption spectroscopy (XAS) is used to determine the uranium speciation in exchanged and surface-modified clays. The XAS data from uranyl-loaded bentonite clay are compared with those obtained after the particle surfaces have been coated with alkylsilanes. These silane films, which render the surface of the clay hydrophobic, are added in order to minimize the ability of external water to exchange with the water in the clay interlayer, thereby decreasing the release rate of the exchanged-uranium species. Mild hydrothermal conditions are used in an effort to mimic potential geologic conditions that may occur during long-term radioactive waste storage. The XAS spectra indicate that the uranyl monomer species remain unchanged in most samples, except in those samples that were both coated with an alkylsilane and hydrothermally treated. When the clay was coated with an organic film, formed by the acidic deposition of octadecyltrimethoxysilane, hydrothermal treatment results in the formation of aggregated uranium species in which the uranium is reduced from U VI to U IV

  15. Influence of selenite and selenate supplementation on the chromium uptake and translocation in Allium cepa

    International Nuclear Information System (INIS)

    Karuna Shanker; Setia, Seema; Srivastava, Shalini; Dass, Sahab; Srivastava, Rohit; Satya Prakash; Srivastava, M.M.

    1997-01-01

    Pot experiments were conducted on onion plant to study the effects of selenite and selenate treatments (0.5-6.0) μg ml -1 on the uptake and translocation of root absorbed chromium irrigated with 2 and 5 μg ml -1 of chromium in sand and soil. Both the form of selenium (SeO 3 2- , and SeO 4 2- ) were found equally effective in reducing the chromium burden of the plant. No significant difference (p>0.05) in dry matter yields among various selenium treatments exist suggesting no salt injury occurred in the plants under prevailing conditions. (author). 10 refs., 1 tab

  16. SE-ENRICHMENT OF CARROT AND ONION VIA FOLIAR APPLICATION

    OpenAIRE

    Kapolna, Emese; Laursen, Kristian H.; Hillestrøm, Peter; Husted, Søren; Larsen, Erik H.

    2008-01-01

    The aim of this work was to study the selenium accumulation in carrot and onion plants using foliar application by sodium selenite and sodium selenate. Furthermore, we aimed at identifying the Se species biosynthesised by onion and carrot plants. The results were used to prepare for production of 77Se enriched plants for an ongoing human absorption study.

  17. Physico-chemical characterisation and sorption measurements of Cs, Sr, Ni, Eu, Th, Sn and Se on Opalinus clay from Mont Terri

    International Nuclear Information System (INIS)

    Lauber, Matthias; Baeyens, Bart; Bradbury, Michael H.

    2000-12-01

    Opalinus Clay is currently under investigation as a potential host rock for the disposal of high level and long-lived intermediate radioactive waste. A throughout physico-chemical characterisation was carried out on a bore core sample from the underground rock laboratory Mont Terri (Canton Jura). The results of these investigations indicate that the major characteristics (mineralogy, cation exchange capacity, cation occupancies, selectivity coefficients, chloride and sulphate inventories) were very similar to a different core sample, previously used for pore water modelling studies. It was concluded that the pore water compositions derived in the earlier studies were reliable and could be used in this work. The organic matter which dissolved from the Opalinus Clay rock was not humic or fulvic acids and the concentration remaining in the liquid phase in the sorption experiments was < 0.5 ppm C. The organic matter is therefore considered to have little or no influence on the sorption behaviour of the studied radionuclides. Redox potential measurements of the Opalinus Clay/synthetic pore water system inside the glove boxes indicated anoxic conditions. The main focus of the experimental work presented here is on the sorption behaviour of Cs (I), Sr (II), Ni (II), Eu (III), Th (IV), Sn (IV) and Se (IV) on Opalinus Clay equilibrated with synthetic pore waters at pH 6.3 and 8. Sorption isotherms were measured for Cs, Ni, Eu, Th and Se. Single point data were measured for Sr and Sn. For all radionuclides studied the sorption kinetics were measured first. The times required to complete the sorption on the Opalinus Clay varied between one day for Th and one month for Ni and Se. Within the concentration ranges under study the uptake of Cs, Ni, Eu and Se on Opalinus Clay was non-linear, whereas for Th a linear sorption behaviour was observed. For Ni, Eu and Th the sorption increased with increasing pH. For Cs a pH independent sorption behaviour was observed. The concentration

  18. Proton conducting system (ImH2)2SeO4·2H2O investigated with vibrational spectroscopy

    Science.gov (United States)

    Zięba, Sylwia; Mizera, Adam; Pogorzelec-Glaser, Katarzyna; Łapiński, Andrzej

    2017-06-01

    Imidazolium selenate dihydrate (ImH2)2SeO4·2H2O crystals have been investigated using Raman and IR spectroscopy. Experimental data were supported by the quantum-chemical calculations (DFT), Hirshfield surfaces and fingerprint plots analysis, and Bader theory calculations. The imidazolium selenate dihydrate crystal exhibits high proton conductivity of the order of 10- 1 S/m at T = 333 K. The spectra of this compound are dominated by bands related to the lattice modes, the internal vibrations of the protonated imidazole cation, selenate anion, water molecules, and hydrogen bonds network. For the imidazolium selenate dihydrate crystal, the formal classification of the fundamental modes has been carried out.

  19. Scaling Equation of State for Ferroelectric Triglycine Selenate at T ≈ Tc

    NARCIS (Netherlands)

    Iglesias, T.; Noheda, B.; Gallego, B.; Fernández del Castillo, J.R.; Lifante, G.; Gonzalo, J.A.

    1994-01-01

    Digital data of polarization vs. field on triglycine selenate at closely spaced temperature intervals (ΔT ≈ 0.015) in the vicinity of the quasi-tricritical point of triglycine selenate have been collected. These data fulfill very well the scaling equation of state ê± = ±p + (1/5)p5 (where ê- and ê+

  20. THE EFFECTS OF SODIUM SELENITE AND SELENIZED YEAST SUPPLEMENTATION INTO DIET FOR LAYING HENS ON SELECTED QUALITATIVE PARAMETERS OF TABLE EGGS

    Directory of Open Access Journals (Sweden)

    HENRIETA ARPÁŠOVÁ

    2009-10-01

    Full Text Available In this experiment the effects of supplementation of the diet for laying hens with sodium selenite (SS or selenized yeast (SY on whole egg and egg shell quality of layers were studied. The chickens of Shaver Starcross 288 strain were randomly divided at the day of hatching into 4 groups (n=12; in each. The birds were fed from Day 1 of life to 9 months of age with diets differing in amounts and/or forms of selenium. Control group received basal diet (BD containing selenium naturally occurring in feeds (0.1 mg Se/kg of dry matter (DM. First and second experimental group of chickens were fed with a same BD enriched with equivalent dose of Se 0.4 mg/kg DM in form of sodium selenite or selenized yeast, respectively. The feed for third experimental group of birds consisted of BD supplemented with selenized yeast to the final amount of selenium 1.0 mg/kg DM. The egg weight was significantly higher in the groups with SY supplementation only. On the contrary the egg shell ratio was significantly lower in the groups with SY supplementation in both amounts. The width of egg was significantly increased in the groups with selenium supplementation in both forms. The value of egg shell strength was significantly decreased in group with SY in the highest amount 0.9 mg/kg DM The average egg shell thickness was the highest in the experimental group with Se-yeast in amount 0.9 mg/kg DM, however different was not significant compared with control group. The results showed that the most of selected parameters of egg quality appeared to be significantly influenced by selenium supplementation into laying hen’s basal diet.

  1. Chiral speciation and determination of selenomethionine enantiomers in selenized yeast by ligand-exchange micellar electrokinetic capillary chromatography after solid phase extraction.

    Science.gov (United States)

    Duan, Jiankun; He, Man; Hu, Bin

    2012-12-14

    A new phenylalanine derivative (L-N-(2-hydroxy-propyl)-phenylalanine, L-HP-Phe) was synthesized and its chelate with Cu(II) (Cu(II)-(L-HP-Phe)(2)) was used as the chiral selector for the ligand-exchange (LE) chiral separation of D,L-selenomethionine (SeMet) in selenized yeast samples by micelle electrokinetic capillary chromatography (MEKC). In order to improve the sensitivity of MEKC-UV, two-step preconcentration strategy was employed, off-line solid phase extraction (SPE) and on-line large volume sample stacking (LVSS). D,L-SeMet was first retained on the Cu(II) loaded mesoporous TiO(2), then eluted by 0.1 mL of 5 mol L(-1) ammonia, and finally introduced for MEKC-UV analysis by LVSS injection after evaporation of NH(3). With the enrichment factors of 1400 and 1378, the LODs of 0.44 and 0.60 ng mL(-1) for L-SeMet and D-SeMet was obtained, respectively. The developed method was applied to the analysis of D,L-SeMet in a certified reference material of SELM-1 and a commercial nutrition yeast, and the results showed that most of SeMet in the SELM-1 selenized yeast was l isomer and the recovery for L and D isomers in the spiked commercial nutrition yeast was 96.3% and 103%, respectively. This method is featured with low running cost, high sensitivity and selectivity, and exhibits application potential in chiral analysis of seleno amino acids in real world samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. The study of complex equilibria of uranium(VI) with selenate

    International Nuclear Information System (INIS)

    Lubal, P.; Havel, J.

    1997-01-01

    Uranyl (M)-selenate (L) complex equilibria in solution were investigated by spectrophotometry in visible range and potentiometry by means of uranyl ion selective electrode. The formation ML and ML 2 species was proved and the corresponding stability constants calculated were: log β 1 = 1.57 6 ± 0.01 6 , log β 2 = 2.42 3 ± 0.01 3 (I 3.0 mol 1 -1 Na(ClO 4 , SeO 4 ) (spectrophotometry) at 298.2 K. Using potentiometry the values for infinite dilution (I → 0 mol 1 -1 ) were: log β 1 = 2.64 ± 0.01, log β 2 ≤ 3.4 at 298.2 K. Absorption spectra of the complexes were calculated and analysed by deconvolution technique. Derivative spectrophotometry for the chemical model determination has also been successfully applied. (author)

  3. Selen og vitamin E til svin

    DEFF Research Database (Denmark)

    Nielsen, H. E.; Danielsen, V.; Nielsen, Gunnar Gissel

    1975-01-01

    , kan der let opstå selenmangel. Vitamin E kan i nogen grad erstatte selen, men kun indenfor visse grænser. De senere års erfaringer har tydeligt vist, at der ofte opstår selenmangel, selvom der findes rigeligt E-vitamin i foderet. Resultaterne fra dette forsøg tyder på, at en nedsættelse af...

  4. Syntheses, characterizations and crystal structures of three new organically templated or organically bonded zinc selenates

    International Nuclear Information System (INIS)

    Feng Meiling; Mao Jianggao; Song Junling

    2004-01-01

    Three new organically templated or organically bonded zinc selenates, namely, {H 2 bipy}Zn(SeO 4 ) 2 (H 2 O) 2 1 (bipy=4,4'-bipyridine), {H 2 pip}{Zn(SeO 4 ) 2 (H 2 O) 4 }·2H 2 O 2 (pip=piprazine), and Zn(SeO 4 )(phen)(H 2 O) 2 3 (phen=1,10-phenanthroline) have been synthesized by hydrothermal reactions. The structure of compound 1 features a 1D chain composed of [Zn(SeO 4 ) 2 (H 2 O) 2 ] 2- anions. Compound 2 has a 2D layer structure built from {Zn(SeO 4 ) 2 (H 2 O) 4 } 2- anions that are cross-linked by doubly protonated piperazine cations via N-H···O hydrogen bonds. The structure of compound 3 contains a 1D chain of Zn(SeO 4 )(phen)(H 2 O) 2 , such chains are further interlinked by hydrogen bonds and π···π interactions to form a layer. The different roles the templates played have also been discussed

  5. Selenium bioavailability and uptake as affected by four different plants in a loamy clay soil with particular attention to mycorrhizae inoculated ryegrass

    International Nuclear Information System (INIS)

    Munier-Lamy, C.; Deneux-Mustin, S.; Mustin, C.; Merlet, D.; Berthelin, J.; Leyval, C.

    2007-01-01

    The aim of this study was to investigate the influence of plant species, especially of their rhizosphere soil, and of inoculation with an arbuscular mycorrhizal (AM) fungus on the bioavailability of selenium and its transfer in soil-plant systems. A pot experiment was performed with a loamy clay soil and four plant species: maize, lettuce, radish and ryegrass, the last one being inoculated or not with an arbuscular mycorrhizal fungus (Glomus mosseae). Plant biomass and Se concentration in shoots and roots were estimated at harvest. Se bioavailability in rhizosphere and unplanted soil was evaluated using sequential extractions. Plant biomass and selenium uptake varied with plant species. The quantity of rhizosphere soil also differed between plants and was not proportional to plant biomass. The highest plant biomass, Se concentration in plants, and soil to plant transfer factor were obtained with radish. The lowest Se transfer factors were obtained with ryegrass. For the latter, mycorrhizal inoculation did not significantly affect plant growth, but reduced selenium transfer from soil to plant by 30%. In unplanted soil after 65 days aging, more than 90% of added Se was water-extractable. On the contrary, Se concentration in water extracts of rhizosphere soil represented less than 1% and 20% of added Se for ryegrass and maize, respectively. No correlation was found between the water-extractable fraction and Se concentration in plants. The speciation of selenium in the water extracts indicated that selenate was reduced, may be under organic forms, in the rhizosphere soil

  6. Identification and characterization of bacteria in a selenium-contaminated hypersaline evaporation pond.

    Science.gov (United States)

    de Souza, M P; Amini, A; Dojka, M A; Pickering, I J; Dawson, S C; Pace, N R; Terry , N

    2001-09-01

    Solar evaporation ponds are commonly used to reduce the volume of seleniferous agricultural drainage water in the San Joaquin Valley, Calif. These hypersaline ponds pose an environmental health hazard because they are heavily contaminated with selenium (Se), mainly in the form of selenate. Se in the ponds may be removed by microbial Se volatilization, a bioremediation process whereby toxic, bioavailable selenate is converted to relatively nontoxic dimethylselenide gas. In order to identify microbes that may be used for Se bioremediation, a 16S ribosomal DNA phylogenetic analysis of an aerobic hypersaline pond in the San Joaquin Valley showed that a previously unaffiliated group of uncultured bacteria (belonging to the order Cytophagales) was dominant, followed by a group of cultured gamma-Proteobacteria which was closely related to Halomonas species. Se K-edge X-ray absorption spectroscopy of selenate-treated bacterial isolates showed that they accumulated a mixture of predominantly selenate and a selenomethionine-like species, consistent with the idea that selenate was assimilated via the S assimilation pathway. One of these bacterial isolates (Halomonas-like strain MPD-51) was the best candidate for the bioremediation of hypersaline evaporation ponds contaminated with high Se concentrations because it tolerated 2 M selenate and 32.5% NaCl, grew rapidly in media containing selenate, and accumulated and volatilized Se at high rates (1.65 microg of Se g of protein(-1) x h(-1)), compared to other cultured bacterial isolates.

  7. Synthesis, characterization and thermal decomposition of tetramethylammonium rare earth double selenates

    Science.gov (United States)

    Divekar, Sandesh K.; Achary, S. Nagabhusan; Ajgaonkar, Vishnu R.

    2018-06-01

    A series of double selenates, as (CH3)4NLn(SeO4)2rad 4H2O (Ln = Rare earth ion like La, Pr, Nd, Sm, Gd, Tb, Dy) was crystallized from mixed solution and characterized in detail for their structure, vibrational and optical properties as well as thermal stabilities. The crystal structure of the praseodymium compound was obtained by single crystal X-ray diffraction (XRD) and revealed a monoclinic (C2/c) lattice with chains formed by PrO8 and SeO4 units. The chains with compositions [Pr(SeO4)4(H2O)4]- are stacked in three dimensions and the (CH3)4N+ ions located in between them provide charge neutrality to the structure. The characterization of other compounds were carried out from powder XRD data and revealed that they all are isostructural to Pr-compound. All the functional groups were identified by Raman and IR spectroscopic studies. Solid state 77Se NMR revealed noticeable changes in selenium environment in these compounds. The optical absorption studies on the compounds show strong band edge absorptions in UV region. Thermal stabilities of the compounds, as investigated by simultaneous TG-DTA techniques indicate their sequential decompositions due to loss of H2O, (CH3)4N+ group, SeO2 and finally leaving their corresponding rare earth oxides.

  8. Behaviour of selenate in soils: experimental approach and modeling of hysteresis of sorption/desorption

    International Nuclear Information System (INIS)

    Loffredo, N.

    2010-01-01

    In the context of future storage of nuclear material in deep geological layers, the transfer of selenium-79 from groundwater to biosphere through irrigation is one of the scenarios considered by the ANDRA (National Agency for Radioactive Waste Management). So, the soil would act as an interface between the geosphere and biosphere. Actually the model adopted to evaluate the element mobility in soil is based on a simple representation of its distribution between the quantity adsorbed on the soil and the amount remaining in the solution (KD model). Such distribution is considered as instantaneous, reversible and linear with the concentration of contamination. This model has some inadequacies with respect to selenium because this latter can be present in different redox states that control its mobility and whose transformation kinetics among states are poorly known (Se(-II), Se(0), Se(IV) and Se(VI)). In order to improve predictions on the mobility of selenium in soil, selenate (Se(VI)) - which is the most mobile form - has been used to study its interactions with respect to two different soils (soil B and soil R). A kinetic model, alternative to the K d model, has been developed to describe the evolution of stocks of Se(VI) in solution. This model considers that a fraction of selenium is associated with soil in a reversibly way (potentially mobile) and a portion of it is stabilized in soil (pseudo-irreversibly fixed). This model integrates on one hand, in the soil, kinetics of biotic and abiotic stabilization and on the other hand, in solution, a reduction kinetic. With the goal of acquiring the parameters of the models, various experiments using dialysis bags have been effectuated, both in batch and with open-flow reactors. The parameter acquisition has allowed kinetic and K d models to be compared in different realistic scenarios of contamination (chronic or sequential) of a surface soil with 79 Se(VI). In addition, the sorption mechanisms of Se(VI) have been

  9. Hydrazine-Free Solution-Deposited CuIn(S,Se)2 Solar Cells by Spray Deposition of Metal Chalcogenides.

    Science.gov (United States)

    Arnou, Panagiota; van Hest, Maikel F A M; Cooper, Carl S; Malkov, Andrei V; Walls, John M; Bowers, Jake W

    2016-05-18

    Solution processing of semiconductors, such as CuInSe2 and its alloys (CIGS), can significantly reduce the manufacturing costs of thin film solar cells. Despite the recent success of solution deposition approaches for CIGS, toxic reagents such as hydrazine are usually involved, which introduce health and safety concerns. Here, we present a simple and safer methodology for the preparation of high-quality CuIn(S, Se)2 absorbers from metal sulfide solutions in a diamine/dithiol mixture. The solutions are sprayed in air, using a chromatography atomizer, followed by a postdeposition selenization step. Two different selenization methods are explored resulting in power conversion efficiencies of up to 8%.

  10. Phase formation and reaction kinetics during the processing of the chalkopyrite-solar-cell-material Cu(In,Ga)(Se,S){sub 2}; Phasenbildung und Reaktionskinetik bei der Herstellung des Chalkopyrit-Solarzellenmaterials Cu(In,Ga)(Se,S){sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Purwins, Michael

    2010-02-05

    The SEL/RTP-procedure (Stacked-Elemental-Layer/Rapid-Thermal-Process) is a method which is used to produce CuInSe{sub 2}-based absorbers/semiconductors for the application in thin film solar cells and modules, respectively. The SEL/RTP-procedure consists of two consecutive steps. During the first step a stack of several layers of the metals Cu, Ga and In as well as Se and/or S are deposited onto a substrate to form the so called precursor. By annealing the precursor, reaching temperatures of about 550 C, the stacked layers are converted into the compound semiconductor Cu(In{sub 1-x}Ga{sub x})(S{sub 1-y}Se{sub y}){sub 2} (CIGSSe). During the thermal process the central component of the later solar cell, the highly light absorbing, photoelectric active layer is formed. Thus, the second step is of great importance. This is not only because of the fact that the absorbers physical properties are established by the thermal process. Additionally the profitability of the whole manufacturing process is affected. To be able to optimize the SEL/RTP-procedure a deep and comprehensive understanding of the occurring phase formation processes and reaction kinetic mechanisms associated with them is necessary. This was the goal of the present thesis which therefore deals with the phase formation processes during the deposition of the precursor and its reaction kinetics during the following selenization and sulfurization process. Therefore the influence of different sputtering parameters on the formation of phases and the evolution of the precursor's morphology during its production by sputtering alternating stacked layers of Cu:Ga-alloys (i.e. Cu{sub 85}Ga{sub 15}, Cu{sub 75}Ga{sub 25} and CuGa{sub 2}) and/or the elements Cu and In was investigated. It was found that the deposition of Cu{sub 75/85}Ga{sub 25/15} onto In leads to the formation of CuIn{sub 2} and/or a metastable Cu(In,Ga)-alloy that is rich in copper. This deposition sequence is crucial for the precursor

  11. Influence of chemical treatment of clay to obtain polypropylene nanocomposites

    International Nuclear Information System (INIS)

    Rosa, Jeferson L.S.; Marques, Maria F.V.

    2009-01-01

    Commercial clay was chemically treated to prepare a Ziegler-Natta catalyst containing MgCl 2 and clay for the synthesis of polypropylene nanocomposites by in situ polymerization. The performance of this catalyst and materials obtained in propylene polymerization was compared with a reference catalyst (without clay) and with another, whose composition presents the same clay but without prior chemical treatment. Techniques like differential scanning calorimetry (DSC), X-ray diffractometry (XRD) and melt flow index (MFI) measurements were performed. There was a marked reduction in catalytic activity of clay catalysts in comparison with the reference one, and a slight reduction in melting temperature of the polymers produced from first ones. The melt flow index of polymers obtained with treated clay were notably higher than those synthesized with the untreated clay, so the treated clay caused treated the production of PP's with lower molar mass. The clays showed an increase of spacing and irregular stacking of the lamellas, especially if chemically treated. (author)

  12. Toxicity and oxidative stress of different forms of organic selenium (Se) and dietary protein in mallard (Anas platyrhynchos) ducklings

    Science.gov (United States)

    Hoffman, D.; Heinz, G.; Eisemann, J.; Pendleton, G.

    1994-01-01

    High concentrations of Se have been found in aquatic food chains associated with irrigation drainwater and toxicity to fish and wildlife. Earlier studies have compared toxicities of Se as selenite and as seleno-DL-methionine (DL) in mallards. This study compares DL, seleno-L-methionine (L), selenized yeast (Y) and selenized wheat (W). Day-old mallard ducklings received an untreated diet (controls) containing 75% wheat (22% protein) or the same diet containing 15 or 30 ppm Se in the above forms. After 2 weeks blood and liver samples were collected for biochemical assays and Se analysis. All forms of selenium caused significant increases in plasma and hepatic glutathione peroxidase activities. Se as L was the most toxic, resulting in high mortality (64%) and impaired growth (>50%) and the greatest increase in ratio of oxidized to reduced glutathione with 30 ppm in the diet. Se as Y accumulated the least in liver. In a subsequent experiment with 30% dietary protein Se as L was less toxic.

  13. SELENE - Self-Forming Extensible Lunar EVA Network, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall objective of this research effort (Phase I and Phase II) by Scientific Systems Company, Inc. and BBN Technologies is to develop the SELENE network --...

  14. Deletion of thioredoxin reductase and effects of selenite and selenate toxicity in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Christopher J Boehler

    Full Text Available Thioredoxin reductase-1 (TRXR-1 is the sole selenoprotein in C. elegans, and selenite is a substrate for thioredoxin reductase, so TRXR-1 may play a role in metabolism of selenium (Se to toxic forms. To study the role of TRXR in Se toxicity, we cultured C. elegans with deletions of trxr-1, trxr-2, and both in axenic media with increasing concentrations of inorganic Se. Wild-type C. elegans cultured for 12 days in Se-deficient axenic media grow and reproduce equivalent to Se-supplemented media. Supplementation with 0-2 mM Se as selenite results in inverse, sigmoidal response curves with an LC50 of 0.20 mM Se, due to impaired growth rather than reproduction. Deletion of trxr-1, trxr-2 or both does not modulate growth or Se toxicity in C. elegans grown axenically, and (75Se labeling showed that TRXR-1 arises from the trxr-1 gene and not from bacterial genes. Se response curves for selenide (LC50 0.23 mM Se were identical to selenite, but selenate was 1/4(th as toxic (LC50 0.95 mM Se as selenite and not modulated by TRXR deletion. These nutritional and genetic studies in axenic media show that Se and TRXR are not essential for C. elegans, and that TRXR alone is not essential for metabolism of inorganic Se to toxic species.

  15. Complexing in the system Rb2SeO4-UO2SeO4-H2O

    International Nuclear Information System (INIS)

    Kuchumova, N.V.; Shtokova, I.P.; Serezhkina, L.B.; Serezhkin, V.N.

    1989-01-01

    Method of isothermal solubility at 25 deg C is used to study interaction of rubidium and uranyl selenates in aqueous solution. Formation of congruently soluble Rb 2 UO 2 (SeO 4 ) 2 x2H 2 O and Rb 2 (UO 2 ) 2 x(SeO 4 ) 3 x6H 2 O is stated. For the last compound crystallographic characteristics (a=10.668; b=14.935(9); c=13.891(7) A; β=104.94(1); Z=4, sp.gr. P2 1 /c) are determined. Thermal decomposition of a compound results in formation of Rb 2 U 2 O 7

  16. Preliminary observations on the effects of selenate on the development of the embryonic skate, Raja eglanteria

    Science.gov (United States)

    Conrad, G. W.; Luer, C. A.; Paulsen, A. Q.; Funderburgh, J. L.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    Morphogenesis of the clearnose skate, Raja eglanteria, was not significantly inhibited as a result of 7 days of exposure to 1-2 mM selenate in the sea water during Days 59-69 of embryonic development (hatching would normally have occurred at 82 +/- 4 days of incubation). Although corneal transparency appeared normal in the eye, preliminary measurements of the thickness of Bowman's layer of the cornea suggested that it was significantly thinner in the corneas of embryos exposed to 1-2 mM selenate. Selenate is an ion reported to inhibit sulfation of glycosaminoglycans in connective tissue.

  17. Preparation and characterization of electron-beam treated HDPE composites reinforced with rice husk ash and Brazilian clay

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, A.V., E-mail: angelortiz@ipen.br [Nuclear and Energy Research Institute, IPEN-CNEN/SP Av. Prof. Lineu Prestes 2242, São Paulo, SP 05508-000 (Brazil); Teixeira, J.G.; Gomes, M.G.; Oliveira, R.R. [Nuclear and Energy Research Institute, IPEN-CNEN/SP Av. Prof. Lineu Prestes 2242, São Paulo, SP 05508-000 (Brazil); Díaz, F.R.V. [Metallurgical and Materials Engineering Department, Polytechnic School, University of São Paulo Av. Prof. Mello de Morais 2463, São Paulo, SP 05508-900 (Brazil); Moura, E.A.B. [Nuclear and Energy Research Institute, IPEN-CNEN/SP Av. Prof. Lineu Prestes 2242, São Paulo, SP 05508-000 (Brazil)

    2014-08-15

    Highlights: • We examine changes in HDPE properties when waste and clay are used as reinforcement. • The addition of only 3% of clay leads to important gains in HDPE properties. • The use of electron-beam contributes to greater improvements in material properties. • We observe 85% of cross-linking degree for the HDPE when treated with e-beam. - Abstract: This work evaluates the morphology, mechanical and thermo-mechanical properties of high density polyethylene (HDPE) composites. HDPE reinforced with rice husk ashes (80:20 wt%), HDPE reinforced with clay (97:3 wt%) and HDPE reinforced with both rice husk ashes and clay(77:20:3 wt%) were obtained. The Brazilian bentonite chocolate clay was used in this study. This Brazilian smectitic clay is commonly used to produce nanocomposites. The composites were produced by melting extrusion process and then irradiation was carried out in a 1.5 MeV electron-beam accelerator (room temperature, presence of air). Comparisons using the irradiated and non-irradiated neat polymer, and the irradiated and non-irradiated composites were made. The materials obtained were submitted to tensile, flexural and impact tests. Additionally HDT, SEM and XRD analyses were carried out along with the sol–gel analysis which aimed to assess the cross-linking degree of the irradiated materials. Results showed great improvement in most HDPE properties and a high cross-linking degree of 85% as a result of electron-beam irradiation of the material.

  18. The influence of temperature on selenate adsorption by goethite

    Energy Technology Data Exchange (ETDEWEB)

    Kersten, M.; Vlasova, N. [Mainz Univ. (Germany). Geosciences Inst.

    2013-08-01

    Acid-base batch titration data up to 75 C were used to constrain a temperature-dependent 1-pK basic Stern model of the surface protonation reactions of goethite. Experimental data for the temperature dependence of pH{sub PZC} (as determined using the two-term Van't Hoff extrapolation) yielded a negative value of -44.9 kJ/mol for the surface protonation enthalpy, and therefore a shift of the zero point of charge towards lower pH values with increasing temperature. Batch titrations at selenate concentrations of between 10 and 100 {mu}M showed an increased degree of adsorption in the acidic pH range, which appeared to be sensitive to the ionic strength of the solution. The selenate adsorption edges shifted towards more acidic pH values with increasing temperature. A 1-pK charge distribution multi-site surface complexation (CD-MUSIC) model was applied, assuming the formation of an outer-spheric surface complex together with an inner-spheric one, in agreement with published spectroscopic information. The temperature behaviour of the intrinsic equilibrium constants were well represented by a linear Van't Hoff log K vs. 1/T plot, from which negative enthalpy values could be derived for both adsorption reactions. The adsorption of the selenate was therefore exothermic and became weaker with increasing temperature. The bidentate inner-spheric complex was more sensitive to rises in temperature (-70 kJ/mol), compared to the outer-spheric complex (-36 kJ/mol). The latter ultimately became the dominating adsorption process at the highest temperature studied. (orig.)

  19. The influence of temperature on selenate adsorption by goethite

    International Nuclear Information System (INIS)

    Kersten, M.; Vlasova, N.

    2013-01-01

    Acid-base batch titration data up to 75 C were used to constrain a temperature-dependent 1-pK basic Stern model of the surface protonation reactions of goethite. Experimental data for the temperature dependence of pH PZC (as determined using the two-term Van't Hoff extrapolation) yielded a negative value of -44.9 kJ/mol for the surface protonation enthalpy, and therefore a shift of the zero point of charge towards lower pH values with increasing temperature. Batch titrations at selenate concentrations of between 10 and 100 μM showed an increased degree of adsorption in the acidic pH range, which appeared to be sensitive to the ionic strength of the solution. The selenate adsorption edges shifted towards more acidic pH values with increasing temperature. A 1-pK charge distribution multi-site surface complexation (CD-MUSIC) model was applied, assuming the formation of an outer-spheric surface complex together with an inner-spheric one, in agreement with published spectroscopic information. The temperature behaviour of the intrinsic equilibrium constants were well represented by a linear Van't Hoff log K vs. 1/T plot, from which negative enthalpy values could be derived for both adsorption reactions. The adsorption of the selenate was therefore exothermic and became weaker with increasing temperature. The bidentate inner-spheric complex was more sensitive to rises in temperature (-70 kJ/mol), compared to the outer-spheric complex (-36 kJ/mol). The latter ultimately became the dominating adsorption process at the highest temperature studied. (orig.)

  20. Strength, stiffness, and microstructure of Cu(In,Ga)Se2 thin films deposited via sputtering and co-evaporation

    International Nuclear Information System (INIS)

    Luo, Shi; Jang, Dongchan; Greer, Julia R.; Lee, Jiun-Haw; Liu, Chee-Wee; Shieh, Jia-Min; Shen, Chang-Hong; Wu, Tsung-Ta

    2014-01-01

    This work examines Cu(In,Ga)Se 2 thin films fabricated by (1) selenization of pre-sputtered Cu-In-Ga and (2) co-evaporation of each constituent. The efficiency disparity between films deposited via these two methods is linked to differences in morphology and microstructure. Atomic force microscopy and scanning electron microscopy show that selenized films have rougher surfaces and poor adhesion to molybdenum back contact. Transmission electron microscopy and electron energy loss spectroscopy revealed multiple voids near the Mo layer in selenized films and a depletion of Na and Se around the voids. Residual stresses in co-evaporated films were found to be ∼1.23 GPa using wafer curvature measurements. Uniaxial compression experiments on 500 nm-diameter nanopillars carved out from co-evaporated films revealed the elastic modulus of 70.4 ± 6.5 GPa. Hertzian contact model applied to nanoindentation data on selenized films revealed the indentation modulus of 68.9 ± 12.4 GPa, which is in agreement with previous reports. This equivalence of the elastic moduli suggests that microstructural differences manifest themselves after the yield point. Typical plastic behavior with two distinct failure modes is observed in the extracted stress-strain results, with the yield strength of 640.9 ± 13.7 MPa for pillars that failed by shearing and 1100.8 ± 77.8 MPa for pillars that failed by shattering.

  1. Adsorption-desorption reactions of selenium (VI) in tropical cultivated and uncultivated soils under Cerrado biome.

    Science.gov (United States)

    Lessa, J H L; Araujo, A M; Silva, G N T; Guilherme, L R G; Lopes, G

    2016-12-01

    Soil management may affect selenium (Se) adsorption capacity. This study investigated adsorption and desorption of Se (VI) in selected Brazilian soils from the Cerrado biome, an area of ever increasing importance for agriculture expansion in Brazil. Soil samples were collected from cultivated and uncultivated soils, comprising clayed and sandy soils. Following chemical and mineralogical characterization, soil samples were subjected to Se adsorption and desorption tests. Adsorption was evaluated after a 72-h reaction with increasing concentrations of Se (0-2000 μg L -1 ) added as Na 2 SeO 4 in a NaCl electrolyte solution (pH 5.5; ionic strength 15 mmol L -1 ). Desorption, as well as distribution coefficients (K d ) for selenate were also assessed. Soil management affected Se adsorption capacity, i.e., Se adsorbed amounts were higher for uncultivated soils, when compared to cultivated ones. Such results were also supported by data of K d and maximum adsorption capacity of Se. This fact was attributed mainly to the presence of greater amounts of competing anions, especially phosphate, in cultivated soils, due to fertilizer application. Phosphate may compete with selenate for adsorption sites, decreasing Se retention. For the same group of soils (cultivated and uncultivated), Se adsorption was greater in the clayed soils compared to sandy ones. Our results support the idea that adding Se (VI) to the soil is a good strategy to increase Se levels in food crops (agronomic biofortification), especially when crops are grown in soils that have been cultivated over the time due to their low Se adsorption capacity (high Se availability). Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Crude oil polycyclic aromatic hydrocarbons removal via clay-microbe-oil interactions: Effect of acid activated clay minerals.

    Science.gov (United States)

    Ugochukwu, Uzochukwu C; Fialips, Claire I

    2017-07-01

    Acid treatment of clay minerals is known to modify their properties such as increase their surface area and surface acidity, making them suitable as catalysts in many chemical processes. However, the role of these surface properties during biodegradation processes of polycyclic aromatic hydrocarbons (PAHs) is only known for mild acid (0.5 M Hydrochloric acid) treated clays. Four different clay minerals were used for this study: a montmorillonite, a saponite, a palygorskite and a kaolinite. They were treated with 3 M hydrochloric acid to produce acid activated clay minerals. The role of the acid activated montmorillonite, saponite, palygorskite and kaolinite in comparison with the unmodified clay minerals in the removal of PAHs during biodegradation was investigated in microcosm experiments. The microcosm experiments contained micro-organisms, oil, and clays in aqueous medium with a hydrocarbon degrading microorganism community predominantly composed of Alcanivorax spp. Obtained results indicated that acid activated clays and unmodified kaolinite did not enhance the biodegradation of the PAHs whereas unmodified montmorillonite, palygorskite and saponite enhanced their biodegradation. In addition, unmodified palygorskite adsorbed the PAHs significantly due to its unique channel structure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Fabrication of a Cu(InGaSe2 Thin Film Photovoltaic Absorber by Rapid Thermal Annealing of CuGa/In Precursors Coated with a Se Layer

    Directory of Open Access Journals (Sweden)

    Chun-Yao Hsu

    2013-01-01

    Full Text Available Cu(InGaSe2 (CIGS thin film absorbers are prepared using sputtering and selenization processes. The CuGa/In precursors are selenized during rapid thermal annealing (RTA, by the deposition of a Se layer on them. This work investigates the effect of the Cu content in precursors on the structural and electrical properties of the absorber. Using X-ray diffraction, field emission scanning electron microscopy, Raman spectroscopy, and Hall effect measurement, it is found that the CIGS thin films produced exhibit facetted grains and a single chalcopyrite phase with a preferred orientation along the (1 1 2 plane. A Cu-poor precursor with a Cu/( ratio of 0.75 demonstrates a higher resistance, due to an increase in the grain boundary scattering and a reduced carrier lifetime. A Cu-rich precursor with a Cu/( ratio of 1.15 exhibits an inappropriate second phase ( in the absorber. However, the precursor with a Cu/( ratio of 0.95 exhibits larger grains and lower resistance, which is suitable for its application to solar cells. The deposition of this precursor on Mo-coated soda lime glass substrate and further RTA causes the formation of a MoSe2 layer at the interface of the Mo and CIGS.

  4. Selective Se-for-S substitution in Cs-bearing uranyl compounds

    Energy Technology Data Exchange (ETDEWEB)

    Gurzhiy, Vladislav V., E-mail: vladgeo17@mail.ru [Department of Crystallography, St. Petersburg State University, University Emb. 7/9, 199034 St. Petersburg, Russia Federation (Russian Federation); Tyumentseva, Olga S.; Krivovichev, Sergey V. [Department of Crystallography, St. Petersburg State University, University Emb. 7/9, 199034 St. Petersburg, Russia Federation (Russian Federation); Tananaev, Ivan G. [Far Eastern Federal University, Suhanova st. 8, Vladivostok 690950 (Russian Federation)

    2017-04-15

    Phase formation in the mixed sulfate-selenate aqueous system of uranyl nitrate and cesium nitrate has been investigated. Two types of crystalline compounds have been obtained and characterized using a number of experimental (single crystal XRD, FTIR, SEM) and theoretical (information-based complexity calculations, topological analysis) techniques. No miscibility gaps have been observed for Cs{sub 2}[(UO{sub 2}){sub 2}(TO{sub 4}){sub 3}] (T= S, Se), which crystallizes in tetragonal system, P-42{sub 1}m, a =9.616(1)–9.856(2), c =8.105(1)–8.159(1) Å, V =749.6(2)–792.5(3) Å{sup 3}. Nine phases with variable amount of S and Se have been structurally characterized. The structures of the Cs{sub 2}[(UO{sub 2}){sub 2}(TO{sub 4}){sub 3}] (T= S, Se) compounds are based upon the [(UO{sub 2}){sub 2}(TO{sub 4}){sub 3}]{sup 2-} layers of corner-sharing uranyl pentagonal bipyramids and TO{sub 4} tetrahedra. The layers contain two types of tetrahedral sites: T1 (3-connected, i.e. having three O atoms shared by adjacent uranyl polyhedra) and T2 (4-connected). The Se-for-S substitution in tetrahedral sites is highly selective with smaller S{sup 6+} cation showing a strong preference for the more tightly bonded T2 site. Crystallization in the pure Se system starts with the formation of Cs{sub 2}[(UO{sub 2})(SeO{sub 4}){sub 2}(H{sub 2}O)](H{sub 2}O) crystals, its subsequent dissolution and formation of Cs{sub 2}[(UO{sub 2}){sub 2}(SeO{sub 4}){sub 3}]. The information-based structural complexity calculations for these two phases support the rule that more topologically complex structures form at the latest stages of crystallization. - Graphical abstract: Nine phases representing the Cs{sub 2}[(UO{sub 2}){sub 2}(TO{sub 4}){sub 3}] (T= S, Se) solid solution series with variable amount of S and Se have been prepared by isothermal evaporation from aqueous solutions and characterized using a number of experimental and theoretical techniques. No immiscibility is observed between the

  5. Strength, stiffness, and microstructure of Cu(In,Ga)Se{sub 2} thin films deposited via sputtering and co-evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Shi; Jang, Dongchan; Greer, Julia R., E-mail: jrgreer@caltech.edu [Division of Applied Science and Engineering, California Institute of Technology, 1200 E California Blvd., Pasadena, California 91125 (United States); Lee, Jiun-Haw [Graduate Institute of Photonics and Optoelectronics and Department of Electrical Engineering, National Taiwan University, No. 1, Sec 4 Roosevelt, Taipei 10617, Taiwan (China); Liu, Chee-Wee [Department of Electrical Engineering, National Taiwan University, No 1, Sec 4 Roosevelt, Taipei 10617, Taiwan (China); Shieh, Jia-Min; Shen, Chang-Hong; Wu, Tsung-Ta [National Nano Device Laboratories, Hsinchu Science Park, No. 26, Prosperity Road I, Hsinchu 30078, Taiwan (China)

    2014-07-07

    This work examines Cu(In,Ga)Se{sub 2} thin films fabricated by (1) selenization of pre-sputtered Cu-In-Ga and (2) co-evaporation of each constituent. The efficiency disparity between films deposited via these two methods is linked to differences in morphology and microstructure. Atomic force microscopy and scanning electron microscopy show that selenized films have rougher surfaces and poor adhesion to molybdenum back contact. Transmission electron microscopy and electron energy loss spectroscopy revealed multiple voids near the Mo layer in selenized films and a depletion of Na and Se around the voids. Residual stresses in co-evaporated films were found to be ∼1.23 GPa using wafer curvature measurements. Uniaxial compression experiments on 500 nm-diameter nanopillars carved out from co-evaporated films revealed the elastic modulus of 70.4 ± 6.5 GPa. Hertzian contact model applied to nanoindentation data on selenized films revealed the indentation modulus of 68.9 ± 12.4 GPa, which is in agreement with previous reports. This equivalence of the elastic moduli suggests that microstructural differences manifest themselves after the yield point. Typical plastic behavior with two distinct failure modes is observed in the extracted stress-strain results, with the yield strength of 640.9 ± 13.7 MPa for pillars that failed by shearing and 1100.8 ± 77.8 MPa for pillars that failed by shattering.

  6. Global Lunar Gravity Field Determination Using Historical and Recent Tracking Data in Preparation for SELENE

    Science.gov (United States)

    Goossens, S.; Matsumoto, K.; Namiki, N.; Hanada, H.; Iwata, T.; Tsuruta, S.; Kawano, N.; Sasaki, S.

    2006-12-01

    In the near future, a number of satellite missions are planned to be launched to the Moon. These missions include initiatives by China, India, the USA, as well as the Japanese SELENE mission. These missions will gather a wealth of lunar data which will improve the knowledge of the Moon. One of the main topics to be addressed will be the lunar gravity field. Especially SELENE will contribute to improving the knowledge of the gravity field, by applying 4-way Doppler tracking between the main satellite and a relay satellite, and by applying a separate differential VLBI experiment. These will improve the determination of the global gravity field, especially over the far side and at the lower degrees (mostly for degrees lower than 30), as is shown by extensive simulations of the SELENE mission. This work focuses on the determination of the global lunar gravity field from all available tracking data to this date. In preparation for the SELENE mission, analysis using Lunar Prospector tracking data, as well as Clementine data and historical data from the Apollo and Lunar Orbiter projects is being conducted at NAOJ. Some SMART-1 tracking data are also included. The goal is to combine the good-quality data from the existing lunar missions up to this date with the tracking data from SELENE in order to derive a new lunar gravity field model. The focus therefore currently lies on processing the available data and extracting lunar gravity field information from them. It is shown that the historical tracking data contribute especially to the lower degrees of the global lunar gravity field model. Due to the large gap in tracking data coverage over the far side for the historical data, the higher degrees are almost fully determined by the a priori information in the form of a Kaula rule. The combination with SELENE data is thus expected to improve the estimate for the lower degrees even further, including coverage of the far side. Since historical tracking data are from orbits with

  7. Optimum Exploration for the Self-Ordering of Anodic Porous Alumina Formed via Selenic Acid Anodizing

    OpenAIRE

    Akiya, Shunta; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.

    2015-01-01

    Improvements of the regularity of the arrangement of anodic porous alumina formed by selenic acid anodizing were investigated under various operating conditions. The oxide burning voltage increased with the stirring rate of the selenic acid solution, and the high applied voltage without oxide burning was achieved by vigorously stirring the solution. The regularity of the porous alumina was improved as the anodizing time and surface flatness increased. Conversely, the purity of the 99.5–99.999...

  8. Studies on Se-Cr interactions in mungbean using radiotracers

    Energy Technology Data Exchange (ETDEWEB)

    Shanker, Karuna; Mishra, Seema; Srivastava, Shalini; Srivastava, Rohit; Dass, Sahab; Prakash, Satya; Srivastava, M M [Dayalbagh Educational Institute, Agra (India). Dept. of Chemistry

    1995-09-01

    The paper describes a preliminary report of hydroponic experiment on the effect of selenium (selenite and selenate) treatments on the absorption of trivalent and hexavalent chromium by mung bean (Phaseolus mungo) plant. The studies are mainly confined to animal system and little attention has been paid on Se-metal interactions, particularly with those of different oxidation states of selenium and chromium in plant system. (author). 8 refs., 1 tab.

  9. Studies on Se-Cr interactions in mungbean using radiotracers

    International Nuclear Information System (INIS)

    Shanker, Karuna; Mishra, Seema; Srivastava, Shalini; Srivastava, Rohit; Dass, Sahab; Prakash, Satya; Srivastava, M.M.

    1995-01-01

    The paper describes a preliminary report of hydroponic experiment on the effect of selenium (selenite and selenate) treatments on the absorption of trivalent and hexavalent chromium by mung bean (Phaseolus mungo) plant. The studies are mainly confined to animal system and little attention has been paid on Se-metal interactions, particularly with those of different oxidation states of selenium and chromium in plant system. (author). 8 refs., 1 tab

  10. Variation in electrical properties of gamma irradiated cadmium selenate nanowires

    Science.gov (United States)

    Chauhan, R. P.; Rana, Pallavi; Narula, Chetna; Panchal, Suresh; Choudhary, Ritika

    2016-07-01

    Preparation of low-dimensional materials attracts more and more interest in the last few years, mainly due to the wide field of potential commercial applications ranging from life sciences, medicine and biotechnology to communication and electronics. One-dimensional systems are the smallest dimension structures that can be used for efficient transport of electrons and thus expected to be critical to the function and integration of nanoscale devices. Nanowires with well controlled morphology and extremely high aspect ratio can be obtained by replicating a nanoporous polymer ion-track membrane with cylindrical pores of controlled dimensions. With this technique, materials can be deposited within the pores of the membrane by electrochemical reduction of the desired ion. In the present study, cadmium selenate nanowires were synthesized potentiostatically via template method. These synthesized nanowires were then exposed to gamma rays by using a 60Co source at the Inter University Accelerator Centre, New Delhi, India. Structural, morphological, electrical and elemental characterizations were made in order to analyze the effect of gamma irradiation on the synthesized nanowires. I-V measurements of cadmium selenate nanowires, before and after irradiation were made with the help of Keithley 2400 source meter and Ecopia probe station. A significant change in the electrical conductivity of cadmium selenate nanowires was found after gamma irradiation. The crystallography of the synthesized nanowires was also studied using a Rigaku X-ray diffractrometer equipped with Cu-Kα radiation. XRD patterns of irradiated samples showed no variation in the peak positions or phase change.

  11. Variation in electrical properties of gamma irradiated cadmium selenate nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, R.P., E-mail: chauhanrpc@gmail.com; Rana, Pallavi, E-mail: prana.phy@gmail.com; Narula, Chetna; Panchal, Suresh; Choudhary, Ritika

    2016-07-15

    Preparation of low-dimensional materials attracts more and more interest in the last few years, mainly due to the wide field of potential commercial applications ranging from life sciences, medicine and biotechnology to communication and electronics. One-dimensional systems are the smallest dimension structures that can be used for efficient transport of electrons and thus expected to be critical to the function and integration of nanoscale devices. Nanowires with well controlled morphology and extremely high aspect ratio can be obtained by replicating a nanoporous polymer ion-track membrane with cylindrical pores of controlled dimensions. With this technique, materials can be deposited within the pores of the membrane by electrochemical reduction of the desired ion. In the present study, cadmium selenate nanowires were synthesized potentiostatically via template method. These synthesized nanowires were then exposed to gamma rays by using a {sup 60}Co source at the Inter University Accelerator Centre, New Delhi, India. Structural, morphological, electrical and elemental characterizations were made in order to analyze the effect of gamma irradiation on the synthesized nanowires. I–V measurements of cadmium selenate nanowires, before and after irradiation were made with the help of Keithley 2400 source meter and Ecopia probe station. A significant change in the electrical conductivity of cadmium selenate nanowires was found after gamma irradiation. The crystallography of the synthesized nanowires was also studied using a Rigaku X-ray diffractrometer equipped with Cu-Kα radiation. XRD patterns of irradiated samples showed no variation in the peak positions or phase change.

  12. Background electrolytes and pH effects on selenate adsorption using iron-impregnated granular activated carbon and surface binding mechanisms.

    Science.gov (United States)

    Zhang, Ning; Gang, Daniel Dianchen; McDonald, Louis; Lin, Lian-Shin

    2018-03-01

    Iron-impregnated granular activated carbon (Fe-GAC) has been shown effective for selenite adsorptive removal from aqueous solutions, but similar effectiveness was not observed with selenate. This study examined the effects of background electrolytes and pH on selenate adsorption on to Fe-GAC, and surface bindings to elucidate the selenate adsorption mechanisms. The decrease magnitude of selenate adsorption capacity under three background electrolytes followed the order: LiCl > NaCl > KCl, as ionic strength increased from 0.01 to 0.1 M. Larger adsorption capacity differences among the three electrolytes were observed under the higher ionic strengths (0.05 and 0.1 M) than those under 0.01 M. Multiplet peak fittings of high resolution X-ray photoelectron spectra for O1s and Fe2p 3/2 indicated the presence of iron (III) on adsorbent surface. pH variations during the adsorbent preparation within 3-8 in NaCl solutions did not cause appreciable changes in the iron redox state and composition. Raman spectra showed the formation of both monodentate and bidentate inner sphere complexes under pHs adsorption under alkaline conditions. Mechanisms for monodentate and bidentate formations and a stable six-member ring structure were proposed. Two strategies were recommended for modifying Fe-GAC preparation procedure to enhance the selenate adsorption: (1) mixed-metal oxide coatings to increase the point of zero charge (pH zpc ); and (2) ferrous iron coating to initially reduce selenate followed by selenite adsorption. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Se interlayer in CIGS absorption layer for solar cell devices

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Kyu; Sim, Jae-Kwan [Semiconductor Materials Process Laboratory, School of Advanced Materials Engineering, Research Center for Advanced Materials Development, Chonbuk National University, Deokjin-Dong 664-14, Jeonju 561-756 (Korea, Republic of); Kissinger, N.J. Suthan [Department of General Studies, Physics Group, Jubail University College, Royal Commission for Jubail, Jubail 10074 (Saudi Arabia); Song, Il-Seok; Kim, Jin-Soo; Baek, Byung-Joon [Semiconductor Materials Process Laboratory, School of Advanced Materials Engineering, Research Center for Advanced Materials Development, Chonbuk National University, Deokjin-Dong 664-14, Jeonju 561-756 (Korea, Republic of); Lee, Cheul-Ro, E-mail: crlee7@jbnu.ac.kr [Semiconductor Materials Process Laboratory, School of Advanced Materials Engineering, Research Center for Advanced Materials Development, Chonbuk National University, Deokjin-Dong 664-14, Jeonju 561-756 (Korea, Republic of)

    2015-06-05

    Highlights: • Se interlayer is deposited between the CuGa and CuIn/In/Mo/STS stacked layer. • Both CIG precursor layers were selenized at 500 °C for 1 h. • SIMS depth profile shows that Ga distribution is uniform by Se interlayer. • The efficiency was improved for the CIGS solar cell by Se interlayer. - Abstract: A CIGS absorber layer with high gallium contents in the space-charge region can reduce the carrier recombination and improve the open circuit voltage V{sub oc}. Therefore, controlling Ga grading on top of CIGS thin film solar cells is the main objective of this experiment. To reduce Selenium (Se) vacancy, it is important that the diffusion of Ga elements into Se vacancy between Mo back contact and CIGS absorption layer would be controlled. In order to reduce Se vacancy and confirm Ga inter-diffusion, two CIGS solar cells were fabricated by converting CIG precursor with and without Se interlayer. The copper-indium metallic precursors were fabricated corresponding to the sequence CuIn/In/Mo/STS on stainless steel (STS) substrates by sequential direct current magnetron sputtering while Se layer was evaporated by rapid thermal annealing (RTA) system to obtain a Se/CuIn/In/Mo/STS stack. CuGa precursor layer was also fabricated on the Se/CuIn/In/Mo/STS stack. Finally, both CuGa/Se/CuIn/In/Mo/STS and CuGa/CuIn/In/Mo/STS stacks were selenized at 500 °C for 1 h. It was clearly observed from the secondary ion mass spectroscopy (SIMS) and X-ray diffraction (XRD) that there was a change between the fabricated CIGS absorption layers and the amount of Ga elements. Furthermore, the Ga elements gradually decreased from the top to the bottom layer of the CIGS absorption layer. We also discussed the effect of Se interlayer in the CIGS absorption layer and its influence on the solar cell’s performance.

  14. Se interlayer in CIGS absorption layer for solar cell devices

    International Nuclear Information System (INIS)

    Lee, Seung-Kyu; Sim, Jae-Kwan; Kissinger, N.J. Suthan; Song, Il-Seok; Kim, Jin-Soo; Baek, Byung-Joon; Lee, Cheul-Ro

    2015-01-01

    Highlights: • Se interlayer is deposited between the CuGa and CuIn/In/Mo/STS stacked layer. • Both CIG precursor layers were selenized at 500 °C for 1 h. • SIMS depth profile shows that Ga distribution is uniform by Se interlayer. • The efficiency was improved for the CIGS solar cell by Se interlayer. - Abstract: A CIGS absorber layer with high gallium contents in the space-charge region can reduce the carrier recombination and improve the open circuit voltage V oc . Therefore, controlling Ga grading on top of CIGS thin film solar cells is the main objective of this experiment. To reduce Selenium (Se) vacancy, it is important that the diffusion of Ga elements into Se vacancy between Mo back contact and CIGS absorption layer would be controlled. In order to reduce Se vacancy and confirm Ga inter-diffusion, two CIGS solar cells were fabricated by converting CIG precursor with and without Se interlayer. The copper-indium metallic precursors were fabricated corresponding to the sequence CuIn/In/Mo/STS on stainless steel (STS) substrates by sequential direct current magnetron sputtering while Se layer was evaporated by rapid thermal annealing (RTA) system to obtain a Se/CuIn/In/Mo/STS stack. CuGa precursor layer was also fabricated on the Se/CuIn/In/Mo/STS stack. Finally, both CuGa/Se/CuIn/In/Mo/STS and CuGa/CuIn/In/Mo/STS stacks were selenized at 500 °C for 1 h. It was clearly observed from the secondary ion mass spectroscopy (SIMS) and X-ray diffraction (XRD) that there was a change between the fabricated CIGS absorption layers and the amount of Ga elements. Furthermore, the Ga elements gradually decreased from the top to the bottom layer of the CIGS absorption layer. We also discussed the effect of Se interlayer in the CIGS absorption layer and its influence on the solar cell’s performance

  15. Instantaneous preparation of CuInSe2 films from elemental In, Cu, Se particles precursor films in a non-vacuum process

    International Nuclear Information System (INIS)

    Kaigawa, R.; Uesugi, T.; Yoshida, T.; Merdes, S.; Klenk, R.

    2009-01-01

    CuInSe 2 (CIS) films are successfully prepared by means of non-vacuum, instantaneous, direct synthesis from elemental In, Cu, Se particles precursor films without prior synthesis of CIS nanoparticle precursors and without selenization with H 2 Se or Se vapor. Our precursor films were prepared on metal substrates by spraying the solvent with added elemental In, Cu, and Se particles. Precursor films were instantaneously sintered using a spot welding machine. When the electric power was fixed to 0.6 kVA, elemental In, Cu, or Se peaks were not observed and only peaks of CIS are observed by X-ray diffraction (XRD) on the film sintered for 7/8 s. We can observe XRD peaks indicative of the chalcopyrite-type structure, such as (101), (103) and (211) diffraction peaks. We conclude that the synthesized CIS crystals have chalcopyrite-type structure with high crystallinity

  16. Inkjet?Printed Cu2ZnSn(S, Se)4 Solar Cells

    OpenAIRE

    Lin, Xianzhong; Kavalakkatt, Jaison; Lux?Steiner, Martha Ch.; Ennaoui, Ahmed

    2015-01-01

    Cu2ZnSn(S, Se)4?based solar cells with total area (0.5 cm2) power conversion efficiency of 6.4% are demonstrated from thin film absorbers processed by inkjet printing technology of Cu?Zn?Sn?S precursor ink followed by selenization. The device performance is limited by the low fill factor, which is due to the high series resistance.

  17. Inkjet-Printed Cu2ZnSn(S, Se)4 Solar Cells.

    Science.gov (United States)

    Lin, Xianzhong; Kavalakkatt, Jaison; Lux-Steiner, Martha Ch; Ennaoui, Ahmed

    2015-06-01

    Cu 2 ZnSn(S, Se) 4 -based solar cells with total area (0.5 cm 2 ) power conversion efficiency of 6.4% are demonstrated from thin film absorbers processed by inkjet printing technology of Cu-Zn-Sn-S precursor ink followed by selenization. The device performance is limited by the low fill factor, which is due to the high series resistance.

  18. Studies of rubidium selenate with secondary phase of RbOH under humidified reducing atmosphere

    International Nuclear Information System (INIS)

    Beyribey, Berceste; Hallinder, Jonathan; Poulsen, Finn Willy; Bonanos, Nikolaos; Mogensen, Mogens

    2012-01-01

    Highlights: ► Degradation of Rb 2 SeO 3 and Rb 2 SeO 4 to form RbOH provide protonic conductivity. ► The conductivity increases by increasing temperature. ► The highest conductivity value of 2.01·10 −4 S cm −1 is observed at 317 °C. ► The work may state conductivity rise in solid acid electrolytes upon decomposition. - Abstract: The high temperature properties of Rb 2 SeO 4 have been studied by calorimetry, impedance spectroscopy and X-ray powder diffraction. As synthesized, Rb 2 SeO 4 includes a second phase of Rb 2 SeO 3 , which can be eliminated upon heating the compound. As expected, no conductivity is observed in dry (pH 2 O 2 O = 0.1 bar) air at 176 °C, the conductivity increases sharply from 8.6·10 −8 to 1.7·10 −6 S cm −1 . Under humidified (pH 2 O = 0.1 bar) reducing atmosphere (9%H 2 in N 2 ), the conductivity increases to 2.0·10 −4 S cm −1 at 317 °C. Degradation of Rb 2 SeO 3 and Rb 2 SeO 4 to form RbOH, which is known as a proton conductor, are thought to be responsible for the observed conductivity in humidified atmospheres. Our observations may explain the conductivity rise in other solid acid electrolytes, including sulfate and selenate groups, around their decomposition temperatures, in humidified atmospheres.

  19. The geochemical behaviour of selenium in the Boom Clay system - a XANES and EXAFS study

    International Nuclear Information System (INIS)

    2S, KULeuven, B-3001Leuven (Belgium))" data-affiliation=" (Center for surface Chemistry and Catalysis - M2S, KULeuven, B-3001Leuven (Belgium))" >Breynaert, Eric; 2S, KULeuven, B-3001Leuven (Belgium))" data-affiliation=" (Center for surface Chemistry and Catalysis - M2S, KULeuven, B-3001Leuven (Belgium))" >Dom, Dirk; 2S, KULeuven, B-3001Leuven (Belgium))" data-affiliation=" (Center for surface Chemistry and Catalysis - M2S, KULeuven, B-3001Leuven (Belgium))" >Vancluysen, Jacqueline; 2S, KULeuven, B-3001Leuven (Belgium))" data-affiliation=" (Center for surface Chemistry and Catalysis - M2S, KULeuven, B-3001Leuven (Belgium))" >Kirschhock, Christine E.A.; 2S, KULeuven, B-3001Leuven (Belgium))" data-affiliation=" (Center for surface Chemistry and Catalysis - M2S, KULeuven, B-3001Leuven (Belgium))" >Maes, Andre; Scheinost, Andreas C.

    2010-01-01

    Document available in extended abstract form only. In Belgium, the Boom Clay formation is studied as a reference host formation for the geological disposal of high-level and long-lived radioactive waste for more than 30 years. This formation mainly consists of mixed clay minerals (illite, inter-stratified illite-smectite), pyrite and immobile and dissolved natural organic matter. Since it provides good sorption capacities, very low permeability, and chemically reducing conditions due to the presence of pyrite (FeS 2 ), the Boom clay formation itself is considered to be the main barrier preventing radionuclide migration from the geological repository. Within this concept for geological storage Se 79 has been identified as one of the critical elements contributing to the final dose to man. Although the sorption and migration behaviour of Se in the Boom Clay system has been thoroughly studied, the speciation of Se in the Boom Clay system has never been identified spectroscopically. In all previous studies, the interpretation of the behaviour of Se in Boom Clay conditions has always been based on circumstantial evidence such as solubility measurements or comparison with the spectroscopically identified speciation of Se in model systems. Based on the XANES analysis, selenite is transformed into Se 0 confirming the previously proposed reduction of selenite in the Boom Clay system. Combination of the mass-balance for Se with the results from linear combination analysis of the XANES spectra provided new evidence for the sorption-reduction mechanism proposed to explain the interaction between Se(IV) and the BC solid phase. In addition, evidence was found that that the fate of Se(IV) in the BC system is completely dominated by its interaction with pyrite present in the Boom Clay. The combined EXAFS analysis of Se in Se 0 reference phases (hexagonal, monoclinic, Se-loaded pyrite) allowed to elucidate further details on the short-range structure of the reaction products formed

  20. Uptake and speciation of selenium in garlic cultivated in soil amended with symbiotic fungi (mycorrhiza) and selenate

    DEFF Research Database (Denmark)

    Larsen, Erik Huusfeldt; Lobinski, R.; Burger-Meyer, K.

    2006-01-01

    The scope of the work was to investigate the influence of selenate fertilisation and the addition of symbiotic fungi (mycorrhiza) to soil on selenium and selenium species concentrations in garlic. The selenium species were extracted from garlic cultivated in experimental plots by proteolytic...... in garlic. The selenium content in garlic, which was analysed by ICP-MS, showed that addition of mycorrhiza to the natural soil increased the selenium uptake by garlic tenfold to 15 mu g g(-1) (dry mass). Fertilisation with selenate and addition of mycorrhiza strongly increased the selenium content...... of soil by mycorrhiza and/or by selenate increased the content of selenium but not the distribution of detected selenium species in garlic. Finally, the use of two-dimensional HPLC (size exclusion followed by reversed-phase) allowed the structural characterisation of gamma...

  1. α-Pinene conversion by modified-kaolinitic clay

    International Nuclear Information System (INIS)

    Volzone, C.; Masini, O.; Comelli, N.A.; Grzona, L.M.; Ponzi, E.N.; Ponzi, M.I.

    2005-01-01

    The isomerization of α-pinene using natural kaolinitic clay before and after different treatments was studied in this work. The kaolinite is a clay material constituted by phyllosilicate 1:1 layer (one sheet of tetrahedral silicon and one sheet of octahedral alumina). The clay was treated at different times using 6.0 N solution of sulfuric acid previous heating to 500 or 700 K. The materials were characterized by X-ray diffraction, by chemical analyses and acidity measurements. The catalytic reactions were carried out at 373 K in a reactor batch with condenser and stirrer. Samples were taken at regular intervals, and reactants and products were quantitatively analyzed with a gas chromatograph after separation of the individual compounds. Conversions of alpha pinene between 67 and 94%, and selectivities in camphene and in limonene of 65 and 23%, respectively, were obtained with the clay treated at different conditions. The structural and textural changes of the clay by the treatments influenced on catalytic reactions

  2. {alpha}-Pinene conversion by modified-kaolinitic clay

    Energy Technology Data Exchange (ETDEWEB)

    Volzone, C. [CETMIC-Centro de Tecnologia de Recursos Minerales y Ceramica-(CONICET-CIC), C.C. 49, Cno. Centenario y 506 (1897) M.B. Gonnet, Prov., Buenos Aires (Argentina)]. E-mail: volzcris@netverk.com.ar; Masini, O. [INTEQUI (CONICET-UNSL), Facultad de Ingenieria y Ciencias Economico Sociales, 25 de Mayo 384, V. Mercedes, Prov., San Luis (Argentina); Comelli, N.A. [INTEQUI (CONICET-UNSL), Facultad de Ingenieria y Ciencias Economico Sociales, 25 de Mayo 384, V. Mercedes, Prov., San Luis (Argentina); Grzona, L.M. [INTEQUI (CONICET-UNSL), Facultad de Ingenieria y Ciencias Economico Sociales, 25 de Mayo 384, V. Mercedes, Prov., San Luis (Argentina); Ponzi, E.N. [CINDECA (CONICET-UNLP) calle 47 No. 257 (1900) La Plata, Prov., Buenos Aires (Argentina); Ponzi, M.I. [INTEQUI (CONICET-UNSL), Facultad de Ingenieria y Ciencias Economico Sociales, 25 de Mayo 384, V. Mercedes, Prov., San Luis (Argentina)

    2005-10-15

    The isomerization of {alpha}-pinene using natural kaolinitic clay before and after different treatments was studied in this work. The kaolinite is a clay material constituted by phyllosilicate 1:1 layer (one sheet of tetrahedral silicon and one sheet of octahedral alumina). The clay was treated at different times using 6.0 N solution of sulfuric acid previous heating to 500 or 700 K. The materials were characterized by X-ray diffraction, by chemical analyses and acidity measurements. The catalytic reactions were carried out at 373 K in a reactor batch with condenser and stirrer. Samples were taken at regular intervals, and reactants and products were quantitatively analyzed with a gas chromatograph after separation of the individual compounds. Conversions of alpha pinene between 67 and 94%, and selectivities in camphene and in limonene of 65 and 23%, respectively, were obtained with the clay treated at different conditions. The structural and textural changes of the clay by the treatments influenced on catalytic reactions.

  3. Syntheses, structures, and properties of Ag4(Mo2O5)(SeO4)2(SeO3) and Ag2(MoO3)3SeO3

    International Nuclear Information System (INIS)

    Ling Jie; Albrecht-Schmitt, Thomas E.

    2007-01-01

    Ag 4 (Mo 2 O 5 )(SeO 4 ) 2 (SeO 3 ) has been synthesized by reacting AgNO 3 , MoO 3 , and selenic acid under mild hydrothermal conditions. The structure of this compound consists of cis-MoO 2 2+ molybdenyl units that are bridged to neighboring molybdenyl moieties by selenate anions and by a bridging oxo anion. These dimeric units are joined by selenite anions to yield zigzag one-dimensional chains that extended down the c-axis. Individual chains are polar with the C 2 distortion of the Mo(VI) octahedra aligning on one side of each chain. However, the overall structure is centrosymmetric because neighboring chains have opposite alignment of the C 2 distortion. Upon heating Ag 4 (Mo 2 O 5 )(SeO 4 ) 2 (SeO 3 ) looses SeO 2 in two distinct steps to yield Ag 2 MoO 4 . Crystallographic data: (193 K; MoKα, λ=0.71073 A): orthorhombic, space group Pbcm, a=5.6557(3), b=15.8904(7), c=15.7938(7) A, V=1419.41(12), Z=4, R(F)=2.72% for 121 parameters with 1829 reflections with I>2σ(I). Ag 2 (MoO 3 ) 3 SeO 3 was synthesized by reacting AgNO 3 with MoO 3 , SeO 2 , and HF under hydrothermal conditions. The structure of Ag 2 (MoO 3 ) 3 SeO 3 consists of three crystallographically unique Mo(VI) centers that are in 2+2+2 coordination environments with two long, two intermediate, and two short bonds. These MoO 6 units are connected to form a molybdenyl ribbon that extends along the c-axis. These ribbons are further connected together through tridentate selenite anions to form two-dimensional layers in the [bc] plane. Crystallographic data: (193 K; MoKα, λ=0.71073 A): monoclinic, space group P2 1 /n, a=7.7034(5), b=11.1485(8), c=12.7500(9) A, β=105.018(1) V=1002.7(2), Z=4, R(F)=3.45% for 164 parameters with 2454 reflections with I>2σ(I). Ag 2 (MoO 3 ) 3 SeO 3 decomposes to Ag 2 Mo 3 O 10 on heating above 550 deg. C. - Graphical abstract: A view of the one-dimensional [(Mo 2 O 5 )(SeO 4 ) 2 (SeO 3 )] 4- chains that extend down the c-axis in the structure of Ag 4 (Mo 2 O 5 )(SeO 4

  4. Mild acid and alkali treated clay minerals enhance bioremediation of polycyclic aromatic hydrocarbons in long-term contaminated soil: A 14C-tracer study.

    Science.gov (United States)

    Biswas, Bhabananda; Sarkar, Binoy; Rusmin, Ruhaida; Naidu, Ravi

    2017-04-01

    Bioremediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soils requires a higher microbial viability and an increased PAH bioavailability. The clay/modified clay-modulated bacterial degradation could deliver a more efficient removal of PAHs in soils depending on the bioavailability of the compounds. In this study, we modified clay minerals (smectite and palygorskite) with mild acid (HCl) and alkali (NaOH) treatments (0.5-3 M), which increased the surface area and pore volume of the products, and removed the impurities without collapsing the crystalline structure of clay minerals. In soil incubation studies, supplements with the clay products increased bacterial growth in the order: 0.5 M HCl ≥ unmodified ≥ 0.5 M NaOH ≥ 3 M NaOH ≥ 3 M HCl for smectite, and 0.5 M HCl ≥ 3 M NaOH ≥ 0.5 M NaOH ≥ 3 M HCl ≥ unmodified for palygorskite. A 14 C-tracing study showed that the mild acid/alkali-treated clay products increased the PAH biodegradation (5-8%) in the order of 0.5 M HCl ≥ unmodified > 3 M NaOH ≥ 0.5 M NaOH for smectite, and 0.5 M HCl > 0.5 M NaOH ≥ unmodified ≥ 3 M NaOH for palygorskite. The biodegradation was correlated (r = 0.81) with the bioavailable fraction of PAHs and microbial growth as affected particularly by the 0.5 M HCl and 0.5 M NaOH-treated clay minerals. These results could be pivotal in developing a clay-modulated bioremediation technology for cleaning up PAH-contaminated soils and sediments in the field. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Reduction of secondary phases in Cu{sub 2}SnSe{sub 3} absorbers for solar cell application

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zeguo, E-mail: tangzg@fc.ritsumei.ac.jp [Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Shiga (Japan); Nukui, Yuki; Kosaka, Kiichi; Ashida, Naoki; Uegaki, Hikaru; Minemoto, Takashi [College of Science and Engineering, Ritsumeikan University, Shiga (Japan)

    2014-09-01

    Highlights: • Cu{sub 2}SnSe{sub 3} thin films for absorber of solar cell are fabricated by selenization of Cu–Sn precursors. • Secondary phase of Cu{sub 2–x}Se can be suppressed via using Se and SnSe mixture powders as Se source. • Selective etching of secondary phase of Cu{sub 2–x}Se is realized by potassium cyanide solution. • Cu{sub 2–x}Se rather than SnSe makes major contribution to the high carrier concentration of CTSe films. - Abstract: The creation of secondary phases, such as Cu{sub 2−x}Se and SnSe, and their influence on electrical properties of Cu{sub 2}SnSe{sub 3} (CTSe) thin films fabricated by selenization of Cu–Sn metal precursors are investigated. The Cu{sub 2−x}Se content in CTSe films is estimated via deconvolution of grazing incidence X-ray diffraction (GIXRD) patterns, and the results suggest that the Cu{sub 2−x}Se content increases with the increasing Cu/Sn ratio in metal precursors. We also found that using Se and SnSe mixture powders as Se source is an effective approach to suppress the creation of Cu{sub 2−x}Se secondary phase. Meanwhile, selective etching of Cu{sub 2−x}Se is realized by potassium cyanide (KCN) solution. Hall measurement results reveal that the secondary phase of Cu{sub 2−x}Se rather than SnSe makes major contribution to the high carrier concentration (larger than 10{sup 18} cm{sup −3}) of CTSe films. The approach to further decrease the carrier concentration in CTSe films is discussed.

  6. On-line pre-reduction of Se(VI) by thiourea for selenium speciation by hydride generation

    International Nuclear Information System (INIS)

    Qiu Jianhua; Wang Qiuquan; Ma Yuning; Yang Limin; Huang Benli

    2006-01-01

    In this study, thiourea (TU) was novelly developed as a reduction reagent for on-line pre-reduction of selenium(VI) before conventional hydride generation (HG) by KBH 4 /NaOH-HCl. After TU on-line pre-reduction, the HG efficiency of Se(VI) has been greatly improved and because even higher than that of the same amount of Se(IV) obtained in the conventional HG system. The possible pre-reduction mechanism is discussed. The detection limit (DL) of selenate reaches 10 pg mL -1 when using on-line TU pre-reduction followed by HG atomic fluorescence detection. When TU pre-reduction followed by HG is used as an interface between ion-pair high performance liquid chromatography and atomic fluorescence spectrometry, selenocystine, selenomethionine, selenite and selenate can be measured simultaneously and quantitatively. The DLs of these are 0.06, 0.08, 0.05 and 0.04 ng mL -1 , respectively, and the relative standard deviations of 9 duplicate runs for all the 4 species are less than 5%. Furthermore, it was successfully applied to Se speciation analysis of cultured garlic samples, and validated by determination of total selenium and selenium species in certified reference material NIST 1946

  7. Coupled Effect of Ferrous Ion and Oxygen on the Electron Selectivity of Zerovalent Iron for Selenate Sequestration.

    Science.gov (United States)

    Qin, Hejie; Li, Jinxiang; Yang, Hongyi; Pan, Bingcai; Zhang, Weiming; Guan, Xiaohong

    2017-05-02

    Although the electron selectivity (ES) of zerovalent iron (ZVI) for target contaminant and its utilization ratio (UR) decide the removal capacity of ZVI, little effort has been made to improve them. Taking selenate [Se(VI)] as a target contaminant, this study investigated the coupled influence of aeration gas and Fe(II) on the ES and UR of ZVI. Oxygen was necessary for effective removal of Se(VI) by ZVI without Fe(II) addition. Due to the application of 1.0 mM Fe(II), the ES of ZVI was increased from 3.2-3.6% to 6.2-6.8% and the UR of ZVI was improved by 5.0-19.4% under aerobic conditions, which resulted in a 100-180% increase in the Se(VI) removal capacity by ZVI. Se(VI) reduction by Fe 0 was a heterogeneous redox reaction, and the enrichment of Se(VI) on ZVI surface was the first step of electron transfer from Fe 0 core to Se(VI). Oxygen promoted the generation of iron (hydr)oxides, which facilitated the enrichment of Se(VI) on the ZVI particle surface. Therefore, the high oxygen fraction (25-50%) in the purging gas resulted in only a slight decrease in the ES of ZVI. Fe(II) addition resulted in a pH drop and promoted the generation of lepidocrocite and magnetite, which benefited Se(VI) adsorption and the following electron transfer from underlying Fe 0 to surface-located Se(VI).

  8. Subsurface structures in the northern Mare Imbrium measured by Chang'E-3 and SELENE

    Science.gov (United States)

    Kumamoto, A.; Ishiyama, K.; Feng, J.

    2016-12-01

    Subsurface structures in the northern Mare Imbrium measured by Chang'E-3 and SELENE have been compared. In Chang'E-3 mission, subsurface radar sounding at (19.51W, 44.12N) was performed by Lunar Penetrating Radar (LPR) onboard the Yutu rover. The LPR was pulse radar operated at two frequencies: 60 MHz and 500 MHz. During its operation period from December 2013 to January 2014, the LPR observed subsurface echoes along the rover's track with total distance of 114 m. From the observation in 60 MHz, the subsurface echoes from buried regolith layers at depths of 35, 50, 140, 240, and 360 m were reported (Xiao et al., 2015). In SELENE mission, global subsurface radar sounding of the moon was performed by Lunar Radar Sounder (LRS) onboard the SELENE (Kaguya) spacecraft from the polar orbit with an altitude of 100 km. The LRS was chirp radar operated in a frequency range from 4-6 MHz. So the range resolution of LRS was 75 m in vacuum. During operation period from December 2007 to September 2008, subsurface echoes from all areas of the Moon was observed with a lateral resolution of 76 m. From the global observation, the subsurface echoes from the buried regolith layers in the neraside maria including Mare Imbrium at depths of several hundred meters were reported (Ono et al., 2009).In the present study, we focus on SELENE/LRS data obtained at (19.50W, 44.12N) which is the nearest to the Chang'E-3 landing site. While clear and large-scale subsurface reflectors, as found in Ono et al. (2009), are not found in it, we can identify some echo components from the depths of 140 ( 2000 ns), 240 ( 4000 ns), and 360 m ( 6000 ns). Further analyses utilizing high-resolution data from Chang'E-3/LPR and large-scale data from SELENE/LRS, we will be able to determine the thickness and large-scale structures of the buried regolith layers found by the both radars, and discuss their formation processes in volcanic history of Mare Imbrium.

  9. Selenium deficiency occurs in some patients with moderate-to-severe cirrhosis and can be corrected by administration of selenate but not selenomethionine: a randomized controlled trial123

    Science.gov (United States)

    Burk, Raymond F; Hill, Kristina E; Motley, Amy K; Byrne, Daniel W; Norsworthy, Brooke K

    2015-01-01

    Background: Selenomethionine, which is the principal dietary form of selenium, is metabolized by the liver to selenide, which is the form of the element required for the synthesis of selenoproteins. The liver synthesizes selenium-rich selenoprotein P (SEPP1) and secretes it into the plasma to supply extrahepatic tissues with selenium. Objectives: We conducted a randomized controlled trial to determine whether cirrhosis is associated with functional selenium deficiency (the lack of selenium for the process of selenoprotein synthesis even though selenium intake is not limited) and, if it is, whether the deficiency is associated with impairment of selenomethionine metabolism. Design: Patients with Child-Pugh (C-P) classes A, B, and C (mild, moderate, and severe, respectively) cirrhosis were supplemented with a placebo or supranutritional amounts of selenium as selenate (200 or 400 μg/d) or as selenomethionine (200 μg/d) for 4 wk. Plasma SEPP1 concentration and glutathione peroxidase (GPX) activity, the latter due largely to the selenoprotein GPX3 secreted by the kidneys, were measured before and after supplementation. Results: GPX activity was increased more by both doses of selenate than by the placebo in C-P class B patients. The activity was not increased more by selenomethionine supplementation than by the placebo in C-P class B patients. Plasma selenium was increased more by 400 μg Se as selenate than by the placebo in C-P class C patients. Within the groups who responded to selenate, there was a considerable variation in responses. Conclusion: These results indicate that severe cirrhosis causes mild functional selenium deficiency in some patients that is associated with impaired metabolism of selenomethionine. This trial was registered at clinicaltrials.gov as NCT00271245. PMID:26468123

  10. Evaluation of genotypic variation of broccoli (Brassica oleracea var. italic) in response to selenium treatment.

    Science.gov (United States)

    Ramos, Silvio J; Yuan, Youxi; Faquin, Valdemar; Guilherme, Luiz Roberto G; Li, Li

    2011-04-27

    Broccoli (Brassica oleracea var. italic) fortified with selenium (Se) has been promoted as a functional food. Here, we evaluated 38 broccoli accessions for their capacity to accumulate Se and for their responses to selenate treatment in terms of nutritional qualities and sulfur gene expresion. We found that the total Se content varied with over 2-fold difference among the leaf tissues of broccoli accessions when the plants were treated with 20 μM Na(2)SeO(4). Approximately half of total Se accumulated in leaves was Se-methylselenocysteine and selenomethionine. Transcriptional regulation of adenosine 5'-phosphosulfate sulfurylase and selenocysteine Se-methyltransferase gene expression might contribute to the different levels of Se accumulation in broccoli. Total glucosinolate contents were not affected by the concentration of selenate application for the majority of broccoli accessions. Essential micronutrients (i.e., Fe, Zn, Cu, and Mn) remained unchanged among half of the germplasm. Moreover, the total antioxidant capacity was greatly stimulated by selenate in over half of the accessions. The diverse genotypic variation in Se, glucosinolate, and antioxidant contents among accessions provides the opportunity to breed broccoli cultivars that simultaneously accumulate Se and other health benefit compounds.

  11. Estimation of hydraulic conductivity on clay content in soil determined from resistivity data

    Energy Technology Data Exchange (ETDEWEB)

    Shevnin, Vladimir; Delgado-Rodriguez, Omar; Mousatov, Aleksandr [Mexican Petroleum Institute, Mexico, D.F. (Mexico); Ryjov, Albert [Moscow State Geological Prospecting Academy, Geophysical Faculty, Moscow (Russian Federation)

    2006-07-15

    The influence of clay content in sandy and clayey soils on hydraulic conductivity (filtration coefficient) is considered. A review of published experimental data on the relationship of hydraulic conductivity with soil lithology and grain size, as dependent on clay content is presented. Theoretical calculations include clay content. Experimental and calculated data agree, and several approximation formulas for filtration coefficient vs clay content are presented. Clay content in soil is estimated from electric resistivity data obtained from 2D VES interpretation. A two-step method is proposed, the first step including clay content calculating from soil resistivity and groundwater salinity, and the second step including filtration coefficient estimating from clay content. Two applications are presented. [Spanish] El contenido de arcilla en suelos areno-arcillosos influye sobre la permeabilidad hidraulica (coeficiente de filtracion). Se presenta una revision de datos experimentales publicados que relacionan el coeficiente de filtracion con el tipo litologico del suelo y el tamano de las particulas. A partir de calculos teoricos, se modifican las conocidas formulas que relacionan el coeficiente de filtracion con el contenido de arcilla. Se estima el contenido de arcilla a partir de los datos interpretados por el metodo SEV, y se propone un procedimiento para la estimacion del coeficiente de filtracion: (a) calculo del contenido de arcilla a partir de la resistividad del suelo y de la salinidad del agua subterranea, (b) estimacion del coeficiente de filtracion a partir del contenido de arcilla. Se presentan algunos ejemplos de la aplicacion de esta metodologia.

  12. Treatment for cracked and permeable Houston clay

    International Nuclear Information System (INIS)

    Vipulanandan, C.; Leung, M.

    1991-01-01

    In this study, the treatability of a field clay (obtained from Houston, Texas) and a clay-sand mixture to reduce their hydraulic conductivity was evaluated. Remolded field clay and clay-sand mixture with and without methanol contamination were treated to reduce their hydraulic conductivity by permeating very dilute grout solutions. The concentration of sodium silicate in the grout solution was 8%, while the solid content in the cement grout was 0.3%. The hydraulic conductivity of permeable Houston clay (hydraulic conductivity >10 -5 cm/sec) could be reduced to less than 10 -7 cm/sec (U.S. EPA limit for soil barriers) by permeating with a selected combination of grout solutions

  13. Cu2ZnSnSe4 Thin Film Solar Cell with Depth Gradient Composition Prepared by Selenization of Sputtered Novel Precursors.

    Science.gov (United States)

    Lai, Fang-I; Yang, Jui-Fu; Chen, Wei-Chun; Kuo, Shou-Yi

    2017-11-22

    In this study, we proposed a new method for the synthesis of the target material used in a two stage process for preparation of a high quality CZTSe thin film. The target material consisting of a mixture of Cu x Se and Zn x Sn 1-x alloy was synthesized, providing a quality CZTSe precursor layer for highly efficient CZTSe thin film solar cells. The CZTSe thin film can be obtained by annealing the precursor layers through a 30 min selenization process under a selenium atmosphere at 550 °C. The CZTSe thin films prepared by using the new precursor thin film were investigated and characterized using X-ray diffraction, Raman scattering, and photoluminescence spectroscopy. It was found that diffusion of Sn occurred and formed the CTSe phase and Cu x Se phase in the resultant CZTSe thin film. By selective area electron diffraction transmission electron microscopy images, the crystallinity of the CZTSe thin film was verified to be single crystal. By secondary ion mass spectroscopy measurements, it was confirmed that a double-gradient band gap profile across the CZTSe absorber layer was successfully achieved. The CZTSe solar cell with the CZTSe absorber layer consisting of the precursor stack exhibited a high efficiency of 5.46%, high short circuit current (J SC ) of 37.47 mA/cm 2 , open circuit voltage (V OC ) of 0.31 V, and fill factor (F.F.) of 47%, at a device area of 0.28 cm 2 . No crossover of the light and dark current-voltage (I-V) curves of the CZTSe solar cell was observed, and also, no red kink was observed under red light illumination, indicating a low defect concentration in the CZTSe absorber layer. Shunt leakage current with a characteristic metal/CZTSe/metal leakage current model was observed by temperature-dependent I-V curves, which led to the discovery of metal incursion through the CdS buffer layer on the CZTSe absorber layer. This leakage current, also known as space charge-limited current, grew larger as the measurement temperature increased and

  14. Fixation of Selenium by Clay Minerals and Iron Oxides

    DEFF Research Database (Denmark)

    Hamdy, A. A.; Nielsen, Gunnar Gissel

    1977-01-01

    In studying Se fixation, soil components capable of retaining Se were investigated. The importance of Fe hydrous oxides in the fixation of Se was established. The clay minerals common to soils, such as kaolinite, montmorillonite and vermiculite, all exhibited Se fixation, but greater fixation occ...

  15. Study of the Cupriavidus metallidurans CH34 resistance of selenite and selenate oxy-anions: accumulation, localisation and transformation of selenium

    International Nuclear Information System (INIS)

    Avoscan, L.

    2007-06-01

    Selenium is an essential trace element for the living organisms but it is very toxic at high concentration. Selenite and selenate oxides, soluble forms, highly toxic and bio-assimilable, are the most prevalent forms in the environment. Some soil micro-organisms play a dominant role and contribute to the natural cycle of selenium. Our study model, Cupriavidus (formerly Ralstonia) metallidurans CH34, a telluric bacterium characteristic of metal-contaminated biotopes, is known to resist selenite by reducing it into elemental selenium, an insoluble and less toxic form of selenium. In order to better understand the mechanisms of selenium reduction in the bacteria, three methods of speciation were combined (XAS (XANES and EXAFS), HPLC-ICP-MS and SDS-PAGEPIXE). They were completed by the direct quantification of selenium accumulated in the bacteria. Speciation analyses highlighted the existence of two mechanisms of reduction of selenium oxides in C. metallidurans CH34. Assimilation transforms selenite and selenate into organic selenium, identified as seleno-methionine and leads to its non-specific incorporation into bacterial proteins (presence of selenious proteins). Detoxication precipitates selenite in nano-particles of elemental selenium. This way of detoxication is not set up after an exposure to selenate although it is nevertheless possible to detect elemental selenium but in very small amount compared to the exposure of selenite. Seleno-diglutathion is detected in bacteria stressed by an exposure to selenate in medium limited in sulphate. Bacteria exposed to selenite accumulate 25 times more selenium than when they are exposed to selenate. The study of mutants resistant to selenite, which do not express the membrane protein DedA, showed that the accumulation of selenium after exposure to selenite is decreased compared with the wild strain meaning probable link between the transport of selenite and the DedA protein. Finally, selenate would use the sulphate permease

  16. Contribution of SELENE-2 geodetic measurements to constrain the lunar internal structure

    Science.gov (United States)

    Matsumoto, K.; Kikuchi, F.; Yamada, R.; Iwata, T.; Kono, Y.; Tsuruta, S.; Hanada, H.; Goossens, S. J.; Ishihara, Y.; Kamata, S.; Sasaki, S.

    2012-12-01

    Internal structure and composition of the Moon provide important clue and constraints on theories for how the Moon formed and evolved. The Apollo seismic network has contributed to the internal structure modeling. Efforts have been made to detect the lunar core from the noisy Apollo data (e.g., [1], [2]), but there is scant information about the structure below the deepest moonquakes at about 1000 km depth. On the other hand, there have been geodetic studies to infer the deep structure of the Moon. For example, LLR (Lunar Laser Ranging) data analyses detected a displacement of the lunar pole of rotation, indicating that dissipation is acting on the rotation arising from a fluid core [3]. Bayesian inversion using geodetic data (such as mass, moments of inertia, tidal Love numbers k2 and h2, and quality factor Q) also suggests a fluid core and partial melt in the lower mantle region [4]. Further improvements in determining the second-degree gravity coefficients (which will lead to better estimates of moments of inertia) and the Love number k2 will help us to better constrain the lunar internal structure. Differential VLBI (Very Long Baseline Interferometry) technique, which was used in the Japanese lunar exploration mission SELENE (Sept. 2007 - June 2009), is expected to contribute to better determining the second-degree potential Love number k2 and low-degree gravity coefficients. SELENE will be followed by the future lunar mission SELENE-2 which will carry both a lander and an orbiter. We propose to put the SELENE-type radio sources on these spacecraft in order to accurately estimate k2 and the low-degree gravity coefficients. By using the same-beam VLBI tracking technique, these parameters will be retrieved through precision orbit determination of the orbiter with respect to the lander which serves as a reference. The VLBI mission with the radio sources is currently one of the mission candidates for SELENE-2. We have conducted a preliminary simulation study on the

  17. The Effects of Annealing Parameters on the Crystallization and Morphology of Cu(In,GaSe2 Absorber Layers Prepared by Annealing Stacked Metallic Precursors

    Directory of Open Access Journals (Sweden)

    Chia-Ho Huang

    2014-01-01

    Full Text Available CIGS films are prepared by single-stage annealing of the solid Se-coated In/Cu-Ga bilayer precursor. The annealing processes were performed using various Ar pressures, heating rates, and soaking times. A higher Ar pressure is needed to fabricate highly crystalline CIGS films, as no extra Se-vapor source is supplied. As the heating rate increases, the surface morphologies of the CIGS films become looser and some cracks are observed. However, the influence of soaking time is insignificant and the selenization process only requires a short time when the precursors are selenized at a higher temperature with a lower heating rate and a higher Ar pressure. In this study, a dense chalcopyrite CIGS film with a thickness of about 1.5-1.6 μm, with large grains (~1.2 μm and no cracking or peeling is obtained after selenizing at a temperature of 550°C, an Ar pressure of 300 Torr, a heating rate of 60°C/min, and a soaking time of 20 min. By adequate design of the stacked precursor and controlling the annealing parameters, single-stage annealing of the solid Se-coated In/Cu-Ga bilayer precursor is simplified for the fabrication of a fully crystallized chalcopyrite CIGS absorber layers with good crystallization and large grains.

  18. Separation of selenium compounds by CE-ICP-MS in dynamically coated capillaries applied to selenized yeast samples

    DEFF Research Database (Denmark)

    Bendahl, Lars; Gammelgaard, Bente

    2004-01-01

    The selenium species in nutritional supplement tablets, based on selenized yeast, were separated by capillary zone electrophoresis using capillaries coated dynamically with poly(vinyl sulfonate) and detected by ICP-MS. Sample pre-treatment consisted of cold-water extraction by sonication and subs......The selenium species in nutritional supplement tablets, based on selenized yeast, were separated by capillary zone electrophoresis using capillaries coated dynamically with poly(vinyl sulfonate) and detected by ICP-MS. Sample pre-treatment consisted of cold-water extraction by sonication...

  19. Aflatoxin Toxicity Reduction in Feed by Enhanced Binding to Surface-Modified Clay Additives

    Science.gov (United States)

    Jaynes, William F.; Zartman, Richard E.

    2011-01-01

    Animal feeding studies have demonstrated that clay additives, such as bentonites, can bind aflatoxins in ingested feed and reduce or eliminate the toxicity. Bentonite deposits are found throughout the world and mostly consist of expandable smectite minerals, such as montmorillonite. The surfaces of smectite minerals can be treated with organic compounds to create surface-modified clays that more readily bind some contaminants than the untreated clay. Montmorillonites treated with organic cations, such as hexadecyltrimethylammonium (HDTMA) and phenyltrimethylammonium (PTMA), more effectively remove organic contaminants, such as benzene and toluene, from water than untreated clay. Similarly, montmorillonite treated with PTMA (Kd = 24,100) retained more aflatoxin B1 (AfB1) from aqueous corn flour than untreated montmorillonite (Kd = 944). Feed additives that reduced aflatoxin toxicity in animal feeding studies adsorbed more AfB1 from aqueous corn flour than feed additives that were less effective. The organic cations HDTMA and PTMA are considered toxic and would not be suitable for clay additives used in feed or food, but other non-toxic or nutrient compounds can be used to prepare surface-modified clays. Montmorillonite (SWy) treated with choline (Kd = 13,800) and carnitine (Kd = 3960) adsorbed much more AfB1 from aqueous corn flour than the untreated clay (Kd = 944). A choline-treated clay prepared from a reduced-charge, high-charge montmorillonite (Kd = 20,100) adsorbed more AfB1 than the choline-treated high-charge montmorillonite (Kd = 1340) or the untreated montmorillonite (Kd = 293). Surface-modified clay additives prepared using low-charge smectites and nutrient or non-toxic organic compounds might be used to more effectively bind aflatoxins in contaminated feed or food and prevent toxicity. PMID:22069725

  20. Stabilization Of Marine Clay Using Biomass Silica-Rubber Chips Mixture

    Science.gov (United States)

    Marto, Aminaton; Ridzuan Jahidin, Mohammed; Aziz, Norazirah Abdul; Kasim, Fauziah; Zurairahetty Mohd. Yunus, Nor

    2016-11-01

    Marine clay is found widely along the coastal area and had caused expensive solutions in the construction of coastal highways. Hence, soil stabilization was suggested by some consultant to increase the strength of this soil in order to meet the highway construction requirement and also to achieve the specification for the development. Biomass Silica (BS), particularly the SH85 as a non-traditional stabilisation method, has been gaining more interest from the engineers recently. Rubber chips (RC), derived from waste rubber tyres, are considered ‘green’ element and had been used previously in some geotechnical engineering works. This paper presents the effect of using BS and RC as a mixture (BS-RC mixture), to increase the strength of marine clay for highway construction. Samples of marine clay, obtained from the West Coast Expressway project at Teluk Intan, Perak, were oven dried and grind to fine-grained sized. The marine clay was mixed with 9 % by weight proportion of BS- RC; that were 8%-l% and 7%-2%, respectively. For comparison purposes the result of BS-RC was compared to the result of stabilization by using 9% BS only. Laboratory tests were then carried out to determine the Atterberg limits and compaction characteristics of the untreated and treated marine clay. The Unconfined Compressive Strength (UCS) of the untreated and treated marine clays, compacted at the optimum moisture content was later obtained. The treated marine clay was tested at 0, 3 and 7 days curing periods. The results show that the Plasticity Index of BS-RC treated marine clay was lower than the untreated marine clay. From the UCS test results, it is shown that BS-RC mixtures had significantly improved the strength of marine clay. With the same percentage of 9% BS-RC, the increased of BS from 7% to 8% increased the UCS further to about six times more than untreated marine clay soils in 7 days curing period. The strength gained by using BS-RC at 8%-1% is slightly below the strength by

  1. Synthetic mullite fabrication from smectite clays

    International Nuclear Information System (INIS)

    Lima, L.N. de; Kiminami, R.H.G.A.

    1988-01-01

    The technological importance of mullite is mostly due to its refractory properties. Mullite in native form is very rare, and therefore it may be necessary to produced it by synthetic means. Brazil has a large reserve of smectite clays. In this work the process to produce synthetic mullite from these clays by treatment with aluminum sulphate was studied. X-ray analyses has shown the presence of mullite crystals in treated smectite clays of several colours, sinterized at 1100 0 C. By sintering at 1300 0 C, pure mullite was obtained in some colours. (author) [pt

  2. On-line pre-reduction of Se(VI) by thiourea for selenium speciation by hydride generation

    Energy Technology Data Exchange (ETDEWEB)

    Qiu Jianhua [Department of Chemistry and the MOE Key Laboratory of Analytical Sciences, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005 (China); Wang Qiuquan [Department of Chemistry and the MOE Key Laboratory of Analytical Sciences, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005 (China)]. E-mail: qqwang@xmu.edu.cn; Ma Yuning [Department of Chemistry and the MOE Key Laboratory of Analytical Sciences, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005 (China); Yang Limin [Department of Chemistry and the MOE Key Laboratory of Analytical Sciences, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005 (China); Huang Benli [Department of Chemistry and the MOE Key Laboratory of Analytical Sciences, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005 (China)

    2006-07-15

    In this study, thiourea (TU) was novelly developed as a reduction reagent for on-line pre-reduction of selenium(VI) before conventional hydride generation (HG) by KBH{sub 4}/NaOH-HCl. After TU on-line pre-reduction, the HG efficiency of Se(VI) has been greatly improved and because even higher than that of the same amount of Se(IV) obtained in the conventional HG system. The possible pre-reduction mechanism is discussed. The detection limit (DL) of selenate reaches 10 pg mL{sup -1} when using on-line TU pre-reduction followed by HG atomic fluorescence detection. When TU pre-reduction followed by HG is used as an interface between ion-pair high performance liquid chromatography and atomic fluorescence spectrometry, selenocystine, selenomethionine, selenite and selenate can be measured simultaneously and quantitatively. The DLs of these are 0.06, 0.08, 0.05 and 0.04 ng mL{sup -1}, respectively, and the relative standard deviations of 9 duplicate runs for all the 4 species are less than 5%. Furthermore, it was successfully applied to Se speciation analysis of cultured garlic samples, and validated by determination of total selenium and selenium species in certified reference material NIST 1946.

  3. Nd(BrO3)3-Yb(BrO3)3-H2O and Nd2(SeO4)3-Yb2(SeO4)3-H2O systems at 25 deg C

    International Nuclear Information System (INIS)

    Serebrennikov, V.V.; Batyreva, V.A.; Tsybukova, T.N.

    1981-01-01

    Using the methods of isothermal solubility the Nd(BrO 3 ) 3 - Yb(BrO 3 ) 3 -H 2 O and Nd 2 (SeO 4 ) 3 -Yb 2 (SeO 4 ) 3 -H 2 O systems are studied at 25 deg C. The compositions of the solid phases are determined by the method of ''residues''. The formation of two series of solid solutions in both systems is established. Besides, there is a crystallization region of Nd 2 (SeO 4 ) 3 in the system of selenates. The solubility diagrams of the systems are presented [ru

  4. Rheological characterization of nanocomposites Nylon 6/bentonite clay

    International Nuclear Information System (INIS)

    Silva, T.R.G.; Fernandes, P.C.; Oliveira, S.V.; Araujo, E.M.; Melo, T.J.A.

    2010-01-01

    Polymer nanocomposites are a class of materials that have been widely used in various applications. Among them, has been emphasizing the preparation of polymer films with barrier properties for applications in polymer membranes. In this work, nanocomposites of nylon 6/bentonite clay were obtained from a Homogenizer, in the ratios of 1, 3 and 5 wt% clay. The Brasgel PA bentonite clay was treated organically with Praepagen HY salt, to make it organophilic. By X-ray diffraction (XRD), it was showed that the efficiency of the incorporation of salt in the clay. The rheological curves showed that for the AST clay the torque did not change when compared with the pure nylon 6, while for the clay ACT, the torque increased gradually with the percentage of clay. (author)

  5. SeO2 adsorption on CaO surface: DFT study on the adsorption of a single SeO2 molecule

    Science.gov (United States)

    Fan, Yaming; Zhuo, Yuqun; Lou, Yu; Zhu, Zhenwu; Li, Liangliang

    2017-08-01

    Selenium is a hazardous element in coal. During coal combustion, most of the selenium will convert to SeO2 in the flue gas. Ca-based adsorbents, especially CaO, have been considered as a potential sorbent to adsorb SeO2 due to its low cost. In this paper, the adsorption mechanisms of single SeO2 on CaO surface were investigated by density functional theory (DFT) calculation. Both the physisorption and chemisorption structures were determined. It has been identified that the adsorption of SeO2 on CaO surface is primarily chemisorption, while physisorption takes effects at the initial stage of the process. Under O2 atmosphere, selenate is hard to form. Most of the adsorption products are selenite. Additionally, the electron density maps were obtained to reveal the surface active sites. The partial density of states (PDOS) was calculated for analyzing the electronic structural change of SeO2 and CaO surface during adsorption. The results provide fundamental information of the adsorption process, which could be meaningful for the development of new absorbents.

  6. Characterization of Heat-treated Clay Minerals in the Context of Nuclear Waste Disposal

    Science.gov (United States)

    Matteo, E. N.; Wang, Y.; Kruichak, J. N.; Mills, M. M.

    2015-12-01

    Clay minerals are likely candidates to aid in nuclear waste isolation due to their low permeability, favorable swelling properties, and high cation sorption capacities. Establishing the thermal limit for clay minerals in a nuclear waste repository is a potentially important component of repository design, as flexibility of the heat load within the repository can have a major impact on the selection of repository design. For example, the thermal limit plays a critical role in the time that waste packages would need to cool before being transferred to the repository. Understanding the chemical and physical changes, if any, that occur in clay minerals at various temperatures above the current thermal limit (of 100 °C) can enable decision-makers with information critical to evaluating the potential trade-offs of increasing the thermal limit within the repository. Most critical is gaining understanding of how varying thermal conditions in the repository will impact radionuclide sorption and transport in clay materials either as engineered barriers or as disposal media. A variety of repository-relevant clay minerals (illite, mixed layer illite/smectite, and montmorillonite), were heated for a range of temperatures between 100-1000 °C. These samples were characterized to determine surface area, mineralogical alteration, and cation exchange capacity (CEC). Our results show that for conditions up to 500 °C, no significant change occurs, so long as the clay mineral remains mineralogically intact. At temperatures above 500 °C, transformation of the layered silicates into silica phases leads to alteration that impacts important clay characteristics. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's Nation Nuclear Security Administration under contract DE-AC04-94AL85000. SAND Number: SAND2015-6524 A

  7. Syntheses, structures, and IR spectroscopic characterization of new uranyl sulfate/selenate 1D-chain, 2D-sheet and 3D-framework

    Energy Technology Data Exchange (ETDEWEB)

    Ling Jie; Sigmon, Ginger E.; Ward, Matthew; Roback, Nancy; Burns, Peter C. [Dept. of Civil Engineering and Geological Science, Univ. of Notre Dame, IN (United States)

    2010-07-01

    Three uranyl sulfates, (C{sub 6}H{sub 20}N{sub 4})[(UO{sub 2}){sub 2} . (SO{sub 4}){sub 4}(H{sub 2}O){sub 2}](H{sub 2}O){sub 6} (TETAUS), (C{sub 15}H{sub 14}N{sub 3})[(UO{sub 2}) . (SO{sub 4}){sub 2}](NO{sub 3})(H{sub 2}O){sub 2} (TPUS), and K{sub 2}[(UO{sub 2})(SO{sub 4}){sub 2}(H{sub 2}O)] . H{sub 2}O (KUS), and two uranyl selenates, K(H{sub 3}O)[(UO{sub 2}){sub 2} . (SeO{sub 4}){sub 3}(H{sub 2}O)](H{sub 2}O){sub 6} (KUSe) and (H{sub 3}O){sub 2}[(UO{sub 2}){sub 2}(SeO{sub 4}){sub 3} . (H{sub 2}O)] (USe), were synthesized by slow evaporation of aqueous solutions at room temperature. TETAUS crystallizes in space group P anti 1, a = 6.7186(5) A, b = 9.2625(7) A, c = 13.1078(9) A, {alpha} = 72.337(2) , {beta} = 89.198(2) , {gamma} = 70.037(1) , V = 726.89(9) A{sup 3}, Z = 1. TPUS is triclinic, P anti 1, a = 6.9732(7) A, b = 13.569(1) A, c = 13.641(1) A, {alpha} = 111.809(2) , {beta} = 102.386(2) , {gamma} = 93.833(2) , V = 1150.0(2) A{sup 3}, Z = 2. KUS is orthorhombic, Cmca, a = 12.171(2) A, b = 16.689(3) A, c = 10.997(2) A, V = 2233.8(6) A{sup 3}, Z = 8. These uranyl sulfates are built from infinite one-dimensional uranyl sulfate chains with different topologies. KUSe is monoclinic, P2{sub 1}/n, a = 14.715(1) A, b = 10.1557(7) A, c = 15.833(1) A, {beta} = 114.415(1) , V = 2154.5(3) A{sup 3}, Z = 4. Its structure is based on a two-dimensional uranyl selenate sheet. USe crystallizes in space group P2{sub 1}/c, a = 10.6124(2) A, b = 14.7717(3) A, c = 13.7139(3) A, {beta} = 96.989(1) , V = 2133.86(8) A{sup 3}, Z = 4, with a complex three-dimensional uranyl selenate framework containing channels extending in three directions. (orig.)

  8. AgSbSe2 and AgSb(S,Se)2 thin films for photovoltaic applications

    International Nuclear Information System (INIS)

    Garza, J.G.; Shaji, S.; Rodriguez, A.C.; Das Roy, T.K.; Krishnan, B.

    2011-01-01

    Silver antimony selenide (AgSbSe 2 ) thin films were prepared by heating sequentially deposited multilayers of antimony sulphide (Sb 2 S 3 ), silver selenide (Ag 2 Se), selenium (Se) and silver (Ag). Sb 2 S 3 thin film was prepared from a chemical bath containing SbCl 3 and Na 2 S 2 O 3 , Ag 2 Se from a solution containing AgNO 3 and Na 2 SeSO 3 and Se thin films from an acidified solution of Na 2 SeSO 3 , at room temperature on glass substrates. Ag thin film was deposited by thermal evaporation. The annealing temperature was 350 deg. C in vacuum (10 -3 Torr) for 1 h. X-ray diffraction analysis showed that the thin films formed were polycrystalline AgSbSe 2 or AgSb(S,Se) 2 depending on selenium content in the precursor films. Morphology and elemental analysis of these films were done using scanning electron microscopy and energy dispersive X-ray spectroscopy. Optical band gap was evaluated from the UV-visible absorption spectra of these films. Electrical characterizations were done using Hall effect and photocurrent measurements. A photovoltaic structure: glass/ITO/CdS/AgSbSe 2 /Al was formed, in which CdS was deposited by chemical bath deposition. J-V characteristics of this structure showed V oc = 435 mV and J sc = 0.08 mA/cm 2 under illumination using a tungsten halogen lamp. Preparation of a photovoltaic structure using AgSbSe 2 as an absorber material by a non-toxic selenization process is achieved.

  9. Structure of ferroelastic K3H(SeO4)2

    International Nuclear Information System (INIS)

    Ichikawa, M.; Sato, S.; Komukae, M.; Osaka, T.

    1992-01-01

    Tripotassium hydrogenbis(selenate), K 3 H(SeO 4 ) 2 , M r = 404.2, monoclinic, A2/a, a = 10.1291 (8), b = 5.9038 (5), c = 14.961 (1) A, β = 103.640 (8) 0 , V = 869.5 (1) A 3 , Z = 4, D x = 3.086 Mg m -3 , λ(Mo Kα) = 0.71073 A, μ = 9.86 mm -1 , F(000) = 760, T = 299 K, R(F) = 0.0294 for 1670 unique reflections. K 3 H(SeO 4 ) 2 is isomorphous with most M 3 H(XO 4 ) 2 -type crystals (M=K,Rb and Cs; Cs; X = S and Se); two SeO 4 groups are connected by a crystallographically symmetric hydrogen bond into a dimer. The bond distances and angles in the SeO 4 group are similar to those in Rb 3 H(SeO 4 ) 2 and Rb 3 D(SeO 4 ) 2 . The hydrogen-bond length, 2.524 (5) A, is the shortest among the members of the M 3 H(SeO 4 ) 2 family exhibiting the low-temperature phase transition. (orig.)

  10. EXAFS and FTIR studies of selenite and selenate sorption by alkoxide-free sol–gel generated Mg–Al–CO 3 layered double hydroxide with very labile interlayer anions

    KAUST Repository

    Chubar, Natalia

    2014-01-01

    © the Partner Organisations 2014. Current research on Layered Double Hydroxides (LDHs, also known as hydrotalcites, HTs) is predominantly focused on their intercalations, but the industrial application of LDHs for anion exchange adsorption has not yet been achieved. It was recently recognized that, to develop LDH applications, these materials should be produced using methods other than direct co-precipitation. Mg-Al-CO3LDH produced using an alkoxide-free sol-gel synthesis showed exceptional removal properties for aqueous selenium species. Se K-edge EXAFS/XANES and FTIR studies (supporting the data by XRD patterns) were performed to explain the unusual adsorptive performance of Mg-Al LDH by revealing the molecular-level mechanism of HSeO3 -, SeO4 2-and {HSeO3 -+ SeO4 2-} uptake at pH 5, 7 and 8.5. The role of inner-sphere complexation (exhibited by inorganic adsorbents with good performance) in adsorption of both selenium aqueous species was not confirmed. However, Mg-Al LDH fully met the other expectations regarding the involvement of the interlayer anions. The interlayer carbonate (due to its favorable speciation and generous HT hydration) gave a "second breath" to selenite sorption and was the only mechanism that controlled the removal of Se(vi). Because inner sphere complexation was the leading mechanism for selenite removal, ion exchange via surface OH-and interlayer CO3 2-species was the only mechanism for selenate removal; both of these species were easily bound to Mg-Al LDH (on its surface and gently parked into the interlayer forming a multilayer without violation of the structure of Mg-Al-CO3LDH). This work provides the first theoretical explanation of why it is more difficult to sorb selenate than selenite and which material should be used for this purpose. This journal is

  11. EXAFS and FTIR studies of selenite and selenate sorption by alkoxide-free sol–gel generated Mg–Al–CO 3 layered double hydroxide with very labile interlayer anions

    KAUST Repository

    Chubar, Natalia

    2014-08-08

    © the Partner Organisations 2014. Current research on Layered Double Hydroxides (LDHs, also known as hydrotalcites, HTs) is predominantly focused on their intercalations, but the industrial application of LDHs for anion exchange adsorption has not yet been achieved. It was recently recognized that, to develop LDH applications, these materials should be produced using methods other than direct co-precipitation. Mg-Al-CO3LDH produced using an alkoxide-free sol-gel synthesis showed exceptional removal properties for aqueous selenium species. Se K-edge EXAFS/XANES and FTIR studies (supporting the data by XRD patterns) were performed to explain the unusual adsorptive performance of Mg-Al LDH by revealing the molecular-level mechanism of HSeO3 -, SeO4 2-and {HSeO3 -+ SeO4 2-} uptake at pH 5, 7 and 8.5. The role of inner-sphere complexation (exhibited by inorganic adsorbents with good performance) in adsorption of both selenium aqueous species was not confirmed. However, Mg-Al LDH fully met the other expectations regarding the involvement of the interlayer anions. The interlayer carbonate (due to its favorable speciation and generous HT hydration) gave a "second breath" to selenite sorption and was the only mechanism that controlled the removal of Se(vi). Because inner sphere complexation was the leading mechanism for selenite removal, ion exchange via surface OH-and interlayer CO3 2-species was the only mechanism for selenate removal; both of these species were easily bound to Mg-Al LDH (on its surface and gently parked into the interlayer forming a multilayer without violation of the structure of Mg-Al-CO3LDH). This work provides the first theoretical explanation of why it is more difficult to sorb selenate than selenite and which material should be used for this purpose. This journal is

  12. Clay fraction mineralogy of a Cambisol in Brazil

    International Nuclear Information System (INIS)

    Anastacio, A. S.; Fabris, J. D.; Stucki, J. W.; Coelho, F. S.; Pinto, I. V.; Viana, J. H. M.

    2005-01-01

    Clay minerals having a 2:1 (tetrahedral:octahedral sheet) structure may be found in strongly weathering soils only if the local pedo-climatic environment prevents them from further weathering to other minerals such as iron oxides. The clay minerals impart important chemical properties to soils, in part by virtue of changes in the redox state of iron in their crystal structures. Knowing the chemical nature of soil clays is a first step in evaluating their potential reactivity with other soil constituents and processes, such as the chemical decomposition of organic substrates to be potentially used in environmental remediation. The purpose of this work was to characterize the iron oxides and iron-bearing clay minerals from a B horizon of a Cambisol developed on tuffite in the State of Minas Gerais, Brazil, using chemical analysis, powder X-ray diffraction, Moessbauer spectroscopy, and thermal analysis. The iron oxides of this NaOH-treated clay-fraction were found to contain mainly maghemite (γFe 2 O 3 ) and superparamagnetic goethite (αFeOOH). Kaolinite (Al 2 Si 2 O 5 (OH) 4 ), smectite, and minor portions of anatase (TiO 2 ) were identified in the CBD-treated sample.

  13. NH4In(SeO4)2x4H2O crystal structure interpretation

    International Nuclear Information System (INIS)

    Soldatov, E.A.; Kuz'min, Eh.A.; Ilyukhin, V.V.

    1979-01-01

    The rhomb method has been applied to interpret the structure of monoclinic ammonium indium selenate NH 4 In(SeO 4 ) 2 x4H 2 O the elementary cell of which contains Z=4 formula units (a=10.728, b=9.434, c=11.086 A, γ=101.58). The space group is P2 1 /b. The structure foundation is composed of [In(SeO 4 ) 2 x2H 2 O] 1- mixed layers parallel to (100). ''Free'' H 2 O molecules and NH 4 + cations are situated between the layers

  14. Detailed Visualization of Phase Evolution during Rapid Formation of Cu(InGa)Se2 Photovoltaic Absorber from Mo/CuGa/In/Se Precursors.

    Science.gov (United States)

    Koo, Jaseok; Kim, Sammi; Cheon, Taehoon; Kim, Soo-Hyun; Kim, Woo Kyoung

    2018-03-02

    Amongst several processes which have been developed for the production of reliable chalcopyrite Cu(InGa)Se 2 photovoltaic absorbers, the 2-step metallization-selenization process is widely accepted as being suitable for industrial-scale application. Here we visualize the detailed thermal behavior and reaction pathways of constituent elements during commercially attractive rapid thermal processing of glass/Mo/CuGa/In/Se precursors on the basis of the results of systematic characterization of samples obtained from a series of quenching experiments with set-temperatures between 25 and 550 °C. It was confirmed that the Se layer crystallized and then melted between 250 and 350 °C, completely disappearing at 500 °C. The formation of CuInSe 2 and Cu(InGa)Se 2 was initiated at around 450 °C and 550 °C, respectively. It is suggested that pre-heat treatment to control crystallization of Se layer should be designed at 250-350 °C and Cu(InGa)Se 2 formation from CuGa/In/Se precursors can be completed within a timeframe of 6 min.

  15. Extended networks, porous sheets, and chiral frameworks. Thorium materials containing mixed geometry anions: Structures and properties of Th(SeO3)(SeO4), Th(IO3)2(SeO4)(H2O)3.H2O, and Th(CrO4)(IO3)2

    International Nuclear Information System (INIS)

    Sullens, Tyler A.; Almond, Philip M.; Byrd, Jessica A.; Beitz, James V.; Bray, Travis H.; Albrecht-Schmitt, Thomas E.

    2006-01-01

    Three novel Th(IV) compounds containing heavy oxoanions, Th(SeO 3 )(SeO 4 ) (1), Th(IO 3 ) 2 (SeO 4 )(H 2 O) 3 .H 2 O (2), and Th(CrO 4 )(IO 3 ) 2 (3), have been synthesized under mild hydrothermal conditions. Each of these three distinct structures contain trigonal pyramidal and tetrahedral oxoanions. Compound 1 adopts a three-dimensional structure formed from ThO 9 tricapped trigonal prisms, trigonal pyramidal selenite, SeO 3 2- , anions containing Se(IV), and tetrahedral selenate, SeO 4 2- , anions containing Se(VI). The structure of 2 contains two-dimensional porous sheets and occluded water molecules. The Th centers are found as isolated ThO 9 tricapped trigonal prisms and are bound by four trigonal pyramidal iodate anions, two tetrahedral selenate anions, and three coordinating water molecules. In the structure of 3, the Th(IV) cations are found as ThO 9 tricapped trigonal prisms. Each Th center is bound by six IO 3 1- anions and three CrO 4 2- anions forming a chiral three-dimensional structure. Second-harmonic generation of 532nm light from 1064nm radiation by a polycrystalline sample of 3 was observed. Crystallographic data (193K, MoKα, λ=0.71073): 1; monoclinic, P2 1 /c; a=7.0351(5)A, b=9.5259(7)A, c=9.0266(7)A, β=103.128(1), Z=4, R(F)=2.47% for 91 parameters with 1462 reflections with I>2σ(I); 2, monoclinic, P2 1 /n, a=7.4889(9)A, b=8.002(1)A, c=20.165(3)A, β=100.142(2), Z=4, R(F)=4.71% for 158 parameters with 2934 reflections with I>2σ(I); 3, orthorhombic, P2 1 2 1 2 1 , a=7.3672(5)A, b=9.3617(6)A, c=11.9201(7)A, Z=4, R(F)=2.04% for 129 parameters with 2035 reflections with I>2σ(I)

  16. Combination cancer treatment through photothermally controlled release of selenous acid from gold nanocages.

    Science.gov (United States)

    Cheng, Haoyan; Huo, Da; Zhu, Chunlei; Shen, Song; Wang, Wenxia; Li, Haoxuan; Zhu, Zhihong; Xia, Younan

    2018-04-03

    Selenite, one of the inorganic forms of selenium, is emerging as an attractive chemotherapeutic agent owing to its selectivity in eradicating cancer cells. Here we demonstrate a new formulation of nanomedicine based on selenous acid, which is mixed with lauric acid (a phase-change material with a melting point around 43 °C) and then loaded into the cavities of Au nanocages. The Au nanocages can serve as a carrier during cell endocytosis and then as a photothermal agent to melt the lauric acid upon the irradiation with a near-infrared laser, triggering the swift release of selenous acid. The photothermal and chemo therapies can also work synergistically, leading to enhanced destruction of cancer cells relative to normal cells. Our systematic study suggests that the impaired mitochondrial function arising from the ROS generated through combination treatment is responsible for the cell death. This study offers an appealing candidate that holds great promise for synergistic cancer treatment. Published by Elsevier Ltd.

  17. A Study of Clay-Epoxy Nanocomposites Consisting of Unmodified Clay and Organo Clay

    Directory of Open Access Journals (Sweden)

    Graham Edward

    2006-04-01

    Full Text Available Clay-epoxy nanocomposites were synthesized from DGEBA resin and montmorillonite clay with an in-situ polymerization. One type of untreated clay and two types of organo clay were used to produce the nanocompsoites. The aims of this study were to examine the nanocomposite structure using different tools and to compare the results between the unmodified clay and modified clays as nanofillers. Although diffractogram in reflection mode did not show any apparent peak of both types of materials, the transmitted XRD (X-Ray Difraction graphs, DSC (Differential Scanning Calorimeter analysis and TEM (Transmission Electron Microscope images revealed that the modified clay-epoxy and unmodified clay-epoxy provides different results. Interestingly, the micrographs showed that some of the modified clay layers possessed non-exfoliated layers in the modified clay-epoxy nanocomposites. Clay aggregates and a hackle pattern were found from E-SEM images for both types of nanocomposite materials. It is shown that different tools should be used to determine the nanocomposite structure.

  18. Thermally modified bentonite clay for copper removal

    International Nuclear Information System (INIS)

    Bertagnolli, C.; Kleinübing, S.J.; Silva, M.G.C.

    2011-01-01

    Bentonite clay coming from Pernambuco was thermally modified in order to increase its affinity and capacity in the copper removal in porous bed. The application of this procedure is justified by the low cost of clay, their abundance and affinity for various metal ions. Thermally treatment modifies the clay adsorption properties enables its use in porous bed system, with the increase in surface area and mechanical strength. The material was characterized by x-ray diffraction, thermogravimetric analysis and N_2 physisorption. Then tests were carried out for adsorption of copper in various experimental conditions and evaluated the mass transfer zone, useful and total adsorbed removal amounts and total copper removal percentage. The results showed that the clay treated at higher temperature showed higher copper removal. (author)

  19. Clay fraction mineralogy of a Cambisol in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Anastacio, A. S.; Fabris, J. D., E-mail: jdfabris@ufmg.br [Federal University of Minas Gerais, Campus - Pampulha, Department of Chemistry (Brazil); Stucki, J. W. [Department of Natural Resources and Environmental Sciences (United States); Coelho, F. S.; Pinto, I. V. [Federal University of Minas Gerais, Campus - Pampulha, Department of Chemistry (Brazil); Viana, J. H. M. [Embrapa Milho e Sorgo (Brazil)

    2005-11-15

    Clay minerals having a 2:1 (tetrahedral:octahedral sheet) structure may be found in strongly weathering soils only if the local pedo-climatic environment prevents them from further weathering to other minerals such as iron oxides. The clay minerals impart important chemical properties to soils, in part by virtue of changes in the redox state of iron in their crystal structures. Knowing the chemical nature of soil clays is a first step in evaluating their potential reactivity with other soil constituents and processes, such as the chemical decomposition of organic substrates to be potentially used in environmental remediation. The purpose of this work was to characterize the iron oxides and iron-bearing clay minerals from a B horizon of a Cambisol developed on tuffite in the State of Minas Gerais, Brazil, using chemical analysis, powder X-ray diffraction, Moessbauer spectroscopy, and thermal analysis. The iron oxides of this NaOH-treated clay-fraction were found to contain mainly maghemite ({gamma}Fe{sub 2}O{sub 3}) and superparamagnetic goethite ({alpha}FeOOH). Kaolinite (Al{sub 2}Si{sub 2}O{sub 5}(OH){sub 4}), smectite, and minor portions of anatase (TiO{sub 2}) were identified in the CBD-treated sample.

  20. Characterization of edible clay (multani mitti) using INAA (abstract)

    International Nuclear Information System (INIS)

    Waheed, S.; Fiaz, Y.

    2011-01-01

    Multani Mitti is basically clay commonly used in cosmetics, medicines. It is also used for cleansing of body and hair and eating specially women (pregnant and lactating) and children. 16 Essential major, minor and trace elements (Ba, Co, Cr, Cs, Fe, K, Mg, Mn, Mo, Na, Rb, Se Sr, Ti, V and Zn) have been determined in Multani Mitti (MM) clay using instrumental neutron activation analysis (INAA) technique were studied in collected clay samples from Rakhi Gaj located 40 Km from D. G. Khan, Pakistan. These samples were analyzed by Instrumental Neutron Activation Analysis (INAA) to detect the elemental hazard assessment. Radioassay schemes for three sets of elements after neutron irradiation and cooling were evolved to avoid matrix effects. The composition of MM clay shows major elements in descending order as Fe > K > Mg > Na > Mn > Zn > V > Rb > Cr >Ba followed by minor elements as Sr >Co > Cs with trace levels of Se. Data have been compared with clays available in literature globally. Intakes of essential elements were calculated for pregnant, lactating women and children. Intakes were found comparable to WHO levels except Fe and Cr. Risk assessment was measured using mathematical model. The quality assurance of data was performed using Standard Reference Materials (SRMs) of a similar matrix (IAEA Lake sediment SL-1 and IAEA Soil S-7). (author)

  1. Performance of soft clay stabilized with sand columns treated by silica fume

    Directory of Open Access Journals (Sweden)

    Samueel Zeena

    2018-01-01

    Full Text Available In many road construction projects, if weak soil exists, then uncontrollable settlement and critical load carrying capacity are major difficult problems to the safety and serviceability of roads in these areas. Thus ground improvement is essential to achieve the required level of performance. The paper presents results of the tests of four categories. First category was performed on saturated soft bed of clay without any treatment, the second category shed light on the improvement achieved in loading carrying capacity and settlement as a result of reinforcing with conventional sand columns at area replacement ratio = 0.196. The third set investigates the bed reinforced by sand columns stabilized with dry silica fume at different percentages (3, 5 and 7% and the fourth set investigates the behavior of sand columns treated with slurry silica fume at two percentages (10 and 12%. All sand columns models were constructed at (R.D= 60%. Model tests were performed on bed of saturated soil prepared at undrained shear strength between 16-20 kPa for all models. For all cases, the model test was loaded gradually by stress increments up to failure. Stress deformation measurements are recorded and analyzed in terms of bearing improvement ratio and settlement reduction ratio. Optimum results were indicated from soil treated with sand columns stabilized with 7% dry silica fume at medium state reflecting the highest bearing improvement ratio (3.04 and the settlement reduction ratio (0.09 after 7 days curing. While soil treated with sand columns stabilized with 10% slurry silica fume provided higher bearing improvement ratio 3.13 with lower settlement reduction ratio of 0.57 after 7-days curing.

  2. Absorption characteristics of Kupravas deposit clays modified by phosphoric acid

    International Nuclear Information System (INIS)

    Ruplis, A.; Mezinskis, G.; Chaghuri, M.

    1998-01-01

    Literature data suggested that clays may be used as sorbents for waste water treatment. The surface and sorption properties of minerals changes due to the influence of acid rains. The process of recession of clay properties has been modeled in laboratory by treatment of clays with mineral acids at higher temperature that in natural conditions. The present paper is devoted to the study of influence of phosphoric acid on the sorption properties of Kupravas deposit clays. Natural clay samples and samples treated with phosphoric acid were characterized by means of x-ray diffraction an differential thermal analysis (DTA) methods These methods were used also to identify the sample of Lebanese clays. X-ray diffraction analysis data show that the samples of clays from the deposit of Kuprava contain illite and kaolinite while sample of Lebanese clay contains quartz, calcite, and montmorillonite. DTA results show characteristic features of Kuprava clays described in reference with DTA of Lebanese clay clearly demonstrate the presence of large quantity of calcite

  3. Synthesis of Won-WX2 (n=2.7, 2.9; X=S, Se) Heterostructures for Highly Efficient Green Quantum Dot Light-Emitting Diodes

    KAUST Repository

    Han, Shikui; Yang, Xuyong; Zhu, Yihan; Tan, Chaoliang; Zhang, Xiao; Chen, Junze; Huang, Ying; Chen, Bo; Luo, Zhimin; Ma, Qinglang; Sindoro, Melinda; Zhang, Hao; Qi, Xiaoying; Li, Hai; Huang, Xiao; Huang, Wei; Sun, Xiao Wei; Han, Yu; Zhang, Hua

    2017-01-01

    .7, 2.9; X=S, Se) heterostructures by sulfurization or selenization of WOn nanomaterials. The WOn -WX2 heterostructures are composed of WO2.9 nanoparticles (NPs) or WO2.7 nanowires (NWs) grown together with single- or few-layer WX2 nanosheets (NSs). As a

  4. Preparation, solubility, infrared spectra and radiolysis of tetramethylammonium hydrogenselenate monohydrate and lithium tetramethylammonium selenate tetrahydrate

    Czech Academy of Sciences Publication Activity Database

    Havlíček, D.; Turek, L.; Plocek, Jiří; Mička, Z.

    2006-01-01

    Roč. 71, č. 3 (2006), s. 411-422 ISSN 0010-0765 Institutional research plan: CEZ:AV0Z40320502 Keywords : tetramethylammonium salts * hydrogenselenates * selenates Subject RIV: CA - Inorganic Chemistry Impact factor: 0.881, year: 2006

  5. Argon plasma treated electrospun P(Hola-E-Cl) Clay nanofiber composite: Effect on its antibacterial activity against S. Aureus and E.Coli

    International Nuclear Information System (INIS)

    Monserate, Juvy J.; Sumera, Florentino C.; Ramos, Henry J.; Daseco, Joanna Abigael

    2015-01-01

    In this work, the effects of argon plasma surface modification have been studied on electrospun P(HOLA-e-CL) Clay Nanofiber Composites in order to investigate the imposed limitation and possibilities to improve surface characteristics on fibrous assemblies. These assemblies were characterized using Scanning Electron Microscopy to determine the surface morphology and diameter size of the fiber. Fourier Transform Infrared Spectroscopy (FTIR) was employed to find out the positions of peaks similar to the constituent components incorporated during the process of polymerization which implied that the IR spectra illustrated the evidence of an interaction between clay and the polymer matrix. XRD peaks on increasing d-spacing going to the left 2?<20 0 verifies the results of interaction between the polymer and the ALA-MMT nanoclay. Thus this also suggested that the polymer was intercalated into the ALA-MMT. The Argon Plasma electrospun nanofiber was subjected to its antibacterial property against S. aureaus (gram positive) and E. coli (gram negative) bacteria. DMRT statistically revealed significantly at 5% level of significance shows that all treatments at increasing clay loading inhibit the growth of S. Aureus and E. Coli. Thus, Argon Plasma treated electrospun P(HOLA-e-CL) Clay Nanofiber Composites can be an excellent scaffold material for wound dressing applications. (author)

  6. Two-dimensional gel electrophoresis of selenized yeast and autoradiography of 75Se-containing proteins

    International Nuclear Information System (INIS)

    Chery, C.C.; Dumont, E.; Cornelis, R.; Moens, L.

    2001-01-01

    Two-dimensional high-resolution gel electrophoresis (2DE) has been applied to the fractionation of 75 Se-containing proteins in yeast, grown in 75 Se-containing medium, and autoradiography was used for detection of the 75 Se-containing proteins. Gel filtration and ultrafiltration were used to check whether the selenium side-chains were stable in the presence of the chemicals used for lysis and 2DE. The mass distribution of the selenium-containing proteins was estimated by use of gel filtration and the results were compared with the distribution obtained by 2DE. A 2DE map of selenium-containing proteins in yeast is presented, and compared with a total protein map of yeast. (orig.)

  7. Selenium speciation profiles in biofortified sangiovese wine.

    Science.gov (United States)

    Fontanella, Maria Chiara; D'Amato, Roberto; Regni, Luca; Proietti, Primo; Beone, Gian Maria; Businelli, Daniela

    2017-09-01

    Biofortification is an agronomic-based strategy, utilized by farmers, to produce selenium (Se)-enriched food products that may help reduce dietary deficiencies of Se occurring throughout susceptible regions of the world. The foliar exposure route application ensures a high efficiency of Se assimilation by the plant since it does not depend on root-to-shoot translocation. In this study we treated grapevines of Sangiovese variety in the pre-flowering period with sodium selenate (100mg Se L -1 ). Se content was measured in leaves, fruit at harvest time and in wine respectively in treated and not treated samples with ICP-MS. At harvest, a higher amount of Se in the treated leaves compared to untreated ones was found, 16.0±3.1mgkg -1 dry weight (dw) against 0.17±0.006mgkg -1 dw in the untreated ones. The treated grapes had a content of Se of 0.800±0.08mgkg -1 dw, while that untreated one 0.065±0.025mgkg -1 dw. Immediately after the malolactic fermentation, the wine obtained from treated and untreated vines had a Se content of 0.620±0.09mg Se L -1 and 0.024±0.010mg Se L -1 respectively. In our case the percentage of inorganic Se is 26% of the total Se in the untreated wine, while in Se enriched wine this percentage increase to 47.5% of the total Se. The Se(VI) was the inorganic chemical form more present in enriched wine, probably due to foliar application with selenate. Distributions of Se species suggested being careful to the choice of the enrichment solutions to promote a balanced distribution of different chemical forms, perhaps favouring the accumulation of organic forms. Copyright © 2016 Elsevier GmbH. All rights reserved.

  8. CaSeO4-0.625H2O - Water Channel Occupation in a bassanite Related Structure

    Energy Technology Data Exchange (ETDEWEB)

    S Fritz; H Schmidt; I Paschke; O Magdysyuk; R Dinnebier; D Freyer; W Voigt

    2011-12-31

    Calcium selenate subhydrate, CaSeO{sub 4} {center_dot} 0.625H{sub 2}O, was prepared by hydrothermal conversion of CaSeO{sub 4} {center_dot} 2H{sub 2}O at 463 K. From the single crystals obtained in the shape of hexagonal needles, 50-300 {micro}m in length, the crystal structure could be solved in a trigonal unit cell with space group P3{sub 2}21. The cell was confirmed and refined by high-resolution synchrotron powder diffraction. The subhydrate was characterized by thermal analysis and Raman spectroscopy.

  9. Modification of a Brazilian smectite clay with different quaternary ammonium salts

    Directory of Open Access Journals (Sweden)

    Maria Flávia Delbem

    2010-01-01

    Full Text Available In this work, a smectite clay from the State of Paraiba, Brazil, was treated with six different types of ammonium salts, which is an usual method to enhance the affinity between the clay and polymer for the preparation of nanocomposites. The clays, before and after modification, were characterized by X ray diffraction. The conformation of the salts within the platelets of the clay depended on the number of long alkyl chains of the salt. The thermal stability of the clays was also studied. The ammonium salts thermal decomposition was explained in light of their position within the organoclays.

  10. Impact of annealing treatment before buffer layer deposition on Cu2ZnSn(S,Se)4 solar cells

    International Nuclear Information System (INIS)

    Hironiwa, Daisuke; Sakai, Noriyuki; Kato, Takuya; Sugimoto, Hiroki; Tang, Zeguo; Chantana, Jakapan; Minemoto, Takashi

    2015-01-01

    Cu 2 ZnSn(S,Se) 4 (CZTSSe) solar cells were fabricated with an annealing treatment before the deposition of buffer layers to improve their photovoltaic performance. The CZTSSe absorbers were produced by sulfurization and selenization of metallic precursors. The efficiency of the solar cells increased from 5.5% without the annealing treatment to 8.8% with the annealing treatment at a temperature of 200 °C before buffer layer fabrication. Photoluminescence (PL) measurements revealed that the density of defects in the CZTSSe absorber that acted as non-radiative recombination centers decreased with the annealing treatment. The PL peak intensity exhibited a linear relationship with the open circuit voltage and the fill factor. In addition, the carrier density and hole mobility of the CZTSSe absorbers, which were respectively investigated by capacitance-voltage and Hall effect measurements, increased with the annealing treatment, thus improving cell performance. - Highlights: • Cu 2 ZnSn(S,Se) 4 is fabricated by sulfurization and selenization. • The annealing treatment can effectively improve the cell performance. • The defect acting as recombination is decreased by annealing treatment. • Carrier density and hole mobility is increased by annealing treatment

  11. Fault architecture and growth in clay-limestone alternations: insights from field observations in the SE Basin, France

    International Nuclear Information System (INIS)

    Rocher, M.; Roche, V.; Homberg, C.

    2012-01-01

    Document available in extended abstract form only. The Callovo-Oxfordian (COX) clayey formation is currently studied by Andra in 'Meuse/Haute- Marne' (MHM), eastern Paris basin (France), for hosting a disposal of high level and intermediate, long-lived radioactive waste. As an independent organisation performing safety reviews for the Nuclear Safety Authority, IRSN conducts studies in support of the review of this disposal project. This nearly 130 m-thick clayey formation is surrounded by two 250 m-thick limestone formations. In such limestone/clay alternations, tectonic fracturing is often observed within limestones and propagates in some cases to clay layers. Such a propagation through the COX within or close to the disposal area could diminish its containment ability by creating preferential pathways of radioactive solute towards limestones. Nevertheless, minor to moderate fracturing is difficult to investigate in hectometre scale multilayer systems such as COX: seismic reflexion surveys only provide data on major faults, drilling data are too localised and clays have a 'bad-land' aspect at surface. The aim of this study is to provide a model of fracturing across clay-limestone alternations so as to strengthen the assessment of their possible development. We thus investigated fracturing within decametre-sized clay-limestone alternations, located in the South-Eastern Basin (France), to determine the evolution of fault architecture during its growth. After analysis of the possible scale effects using data from other analogous fields, an application to the COX in MHM is presented. We studied minor normal faults that reflect various stages of development, from simple fault planes restricted to limestones to complex fault zones propagated across several clay-limestone layers. The analysis of the fault characteristics, the construction of displacement profiles and the results obtained using numerical models enlighten fault growth processes, i.e. nucleation

  12. Effect of temperature on selenium removal from wastewater by UASB reactors.

    Science.gov (United States)

    Dessì, Paolo; Jain, Rohan; Singh, Satyendra; Seder-Colomina, Marina; van Hullebusch, Eric D; Rene, Eldon R; Ahammad, Shaikh Ziauddin; Carucci, Alessandra; Lens, Piet N L

    2016-05-01

    The effect of temperature on selenium (Se) removal by upflow anaerobic sludge blanket (UASB) reactors treating selenate and nitrate containing wastewater was investigated by comparing the performance of a thermophilic (55 °C) versus a mesophilic (30 °C) UASB reactor. When only selenate (50 μM) was fed to the UASB reactors (pH 7.3; hydraulic retention time 8 h) with excess electron donor (lactate at 1.38 mM corresponding to an organic loading rate of 0.5 g COD L(-1) d(-1)), the thermophilic UASB reactor achieved a higher total Se removal efficiency (94.4 ± 2.4%) than the mesophilic UASB reactor (82.0 ± 3.8%). When 5000 μM nitrate was further added to the influent, total Se removal was again better under thermophilic (70.1 ± 6.6%) when compared to mesophilic (43.6 ± 8.8%) conditions. The higher total effluent Se concentration in the mesophilic UASB reactor was due to the higher concentrations of biogenic elemental Se nanoparticles (BioSeNPs). The shape of the BioSeNPs observed in both UASB reactors was different: nanospheres and nanorods, respectively, in the mesophilic and thermophilic UASB reactors. Microbial community analysis showed the presence of selenate respirers as well as denitrifying microorganisms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Organic Synthesis using Clay Catalysts

    Indian Academy of Sciences (India)

    cept, though not new, has received enormous attention in recent times. The desire to make ... which they are divided into four main groups such as, illite, smectite .... acid or driving out NH3 by heating the NH4 + ion treated clay. It is clear from ...

  14. Texture control and growth mechanism of WSe{sub 2} film prepared by rapid selenization of W film

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongchao [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Chongyi Zhangyuan Tungsten Industry Corporation Limited, Ganzhou 341300 (China); Gao, Di; Li, Kun; Pang, Mengde; Xie, Senlin [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Liu, Rutie, E-mail: llrrtt@csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Zou, Jianpeng [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China)

    2017-02-01

    Highlights: • We present a highly efficient method for preparing WSe{sub 2} film by rapid selenization. • The W film phase composition has little effect on WSe{sub 2} film orientation. • W film density is a critical factor that influences the WSe{sub 2} orientation. • A growth model was proposed for two kinds of WSe{sub 2} film textures. - Abstract: The tungsten diselenide (WSe{sub 2}) films with different orientation present unique properties suitable for specific applications, such as WSe{sub 2} with a C-axis⊥substrate for optoelectronics and WSe{sub 2} with a C-axis // substrate for electrocatalysts. Orientation control of WSe{sub 2} is essential for realizing the practical applications. In this letter, a WSe{sub 2} film has been prepared via rapid selenization of a magnetron-sputtered tungsten (W) film. The influence of the magnetron-sputtered W film on WSe{sub 2} film growth was studied systematically. Scanning electron microscopy, X-ray diffractometry and high-resolution transmission electron microscopy were used to evaluate the morphology, microstructure and phase composition of the W and WSe{sub 2} films. The substrate temperature has a significant effect on the W film phase composition, but little effect on the WSe{sub 2} film orientation. The WSe{sub 2} orientation can be controlled by changing the W film microstructure. A dense W film that is deposited at low pressure is conducive to the formation of WSe{sub 2} with a C-axis⊥substrate, whereas a porous W film deposited at high pressure favors the formation of WSe{sub 2} with a C-axis // substrate. A growth model for the WSe{sub 2} film with different texture has been proposed based on the experimental results. The direction of selenium (Se) vapor diffusion differs at the top and side surfaces. This is a key factor for the preparation of anisotropic WSe{sub 2} films. Highly oriented WSe{sub 2} films with a C-axis⊥substrate grow from the dense W film deposited at low pressure because Se vapor

  15. Organosilane grafted acid-activated beidellite clay for the removal of non-ionic alachlor and anionic imazaquin

    International Nuclear Information System (INIS)

    Paul, Blain; Martens, Wayde N.; Frost, Ray L.

    2011-01-01

    Clay adsorbents were prepared via two-step method to remove nonionic alachlor and anionic imazaquin herbicides from water. Firstly, layered beidellite clay, a member of smectite family, was treated with acid in hydrothermal process; secondly, common silane coupling agents, 3-chloro-propyl trimethoxysilane or triethoxy silane, were grafted on the acid treated samples to prepare adsorbent materials. The organically modified clay samples were characterized by powder X-ray diffraction, N 2 gas adsorption, and FTIR spectroscopy. It was found that the selective modification of clay samples displayed higher adsorption capacity for herbicides compared with acid activated clay. And the amount of adsorption is increased with increasing the grafting amount of silane groups. Clay grafted with 3-chloro-propyl trimethoxysilane is an excellent adsorbent for both alachlor and imazaquin but triethoxy (octyl) silane grafted clay is more efficient only for alachlor removal.

  16. Evaporación de Cu(In,GaSe2 en lámina delgada para aplicaciones fotovoltaicas

    Directory of Open Access Journals (Sweden)

    Guillén, C.

    2004-04-01

    Full Text Available The aim of this work is to study the structural and optical properties of Cu(In,GaSe2 (CIGS thin films after thermal and chemical treatments. Cu(In,GaSe2 thin films have been obtained by means of the selenization in vacuum or Ar of the metallic precursors evaporated sequentially. The sequence of evaporation was In/Ga/Cu/In. Single-phase chalcopyrite and polycrystalline CIGS films with (112 preferred orientation were obtained. An improvement in the crystallite feature and optical properties is observed after Ar selenization. Band gap energies, Eg, between 0.98 and 1.10 were obtained for different atomic ratios, being dominated by the Ga content. Thin films high absorption coefficient was reduced in band tails, specially when Cu content increases after chemical treatment in KCN.El objetivo de este trabajo es estudiar las propiedades estructurales y ópticas del Cu(In,GaSe2 (CIGS en lámina delgada tras diferentes tratamientos térmicos y químicos. El Cu(In,GaSe2 se ha obtenido mediante la selenización en vacío o Ar de los precursores metálicos evaporados secuencialmente. La secuencia de evaporación seguida fue In/Ga/Cu/In. Se obtuvieron láminas policristalinas de CIGS con estructura calcopirita fuertemente orientada en la dirección (112. Se observó una mejora de la naturaleza cristalina y de las propiedades ópticas tras la selenización en Ar. Se obtuvieron energías de banda prohibida, Eg, entre 0.98 y 1.10 eV para las diferentes relaciones atómicas, estando dominadas por el contenido de Ga. Se consiguió reducir la alta absorción por colas de banda de las láminas delgadas, especialmente cuando aumentaba el contenido de Cu, tras un tratamiento químico en KCN.

  17. Mud peeling and horizontal crack formation in drying clays

    KAUST Repository

    Style, Robert W.

    2011-03-01

    Mud peeling is a common phenomenon whereby horizontal cracks propagate parallel to the surface of a drying clay. Differential stresses then cause the layer of clay above the crack to curl up to form a mud peel. By treating the clay as a poroelastic solid, we analyze the peeling phenomenon and show that it is caused by the gradient in tensile stress at the surface of the clay, analogously to the spalling of thermoelastic materials. For a constant water evaporation rate at the clay surface we derive equations for the depth of peeling and the time of peeling as functions of the evaporation rate. Our model predicts a simple relationship between the radius of curvature of a mud peel and the depth of peeling. The model predictions are in agreement with the available experimental data. Copyright 2011 by the American Geophysical Union.

  18. Microbial Precipitation of Cr(III)-Hydroxide and Se(0) Nanoparticles During Anoxic Bioreduction of Cr(VI)- and Se(VI)-Contaminated Water.

    Science.gov (United States)

    Kim, Yumi; Oh, Jong-Min; Roh, Yul

    2017-04-01

    This study examined the microbial precipitations of Cr(III)-hydroxide and Se(0) nanoparticles during anoxic bioreductions of Cr(VI) and Se(VI) using metal-reducing bacteria enriched from groundwater. Metal-reducing bacteria enriched from groundwater at the Korea Atomic Energy Research Institute (KAERI) Underground Research Tunnel (KURT), Daejeon, S. Korea were used. Metal reduction and precipitation experiments with the metal-reducing bacteria were conducted using Cr(VI)- and Se(VI)-contaminated water and glucose as a carbon source under an anaerobic environment at room temperature. XRD, SEM-EDX, and TEM-EDX analyses were used to characterize the mineralogy, crystal structure, chemistry, shape, and size distribution of the precipitates. The metal-reducing bacteria reduced Cr(VI) of potassium chromate (K₂CrO₄) to Cr(III) of chromium hydroxide [Cr(OH)3], and Se(VI) of sodium selenate (Na₂SeO₄) to selenium Se(0), with changes of color and turbidity. XRD, SEM-EDX, and TEM-EDX analyses revealed that the chromium hydroxide [Cr(OH)₃] was formed extracellularly with nanoparticles of 20–30 nm in size, and elemental selenium Se(0) nanoparticles had a sphere shape of 50–250 nm in size. These results show that metal-reducing bacteria in groundwater can aid or accelerate precipitation of heavy metals such as Cr(VI) and Se(VI) via bioreduction processes under anoxic environments. These results may also be useful for the recovery of Cr and Se nanoparticles in natural environments.

  19. Six-phase soil heating accelerates VOC extraction from clay soil

    International Nuclear Information System (INIS)

    Gauglitz, P.A.; Roberts, J.S.; Bergsman, T.M.; Caley, S.M.; Heath, W.O.; Miller, M.C.; Moss, R.W.; Schalla, R.; Jarosch, T.R.; Eddy-Dilek, C.A.

    1994-08-01

    Six-Phase Soil Heating (SPSH) was demonstrated as a viable technology for heating low permeability soils containing volatile organic contaminants. Testing was performed as part of the Volatile Organic Compounds in Non-Arid Soils Integrated Demonstration (VOC Non-Arid ID) at the Savannah River Site. The soil at the integrated demonstration site is contaminated with perchloroethylene (PCE) and trichloroethylene (TCE); the highest soil contamination occurs in clay-rich zones that are ineffectively treated by conventional soil vapor extraction due to the very low permeability of the clay. The SPSH demonstration sought to heat the clay zone and enhance the performance of conventional soil vapor extraction. Thermocouples at thirty locations quantified the areal and vertical heating within the treated zone. Soil samples were collected before and after heating to quantify the efficacy of heat-enhanced vapor extraction of PCE and TCE from the clay soil. Samples were taken (essentially every foot) from six wells prior to heating and adjacent to these wells after heating. Results show that contaminant removal from the clay zone was 99.7% (median) within the electrode array. Outside the array where the soil was heated, but to only 50 degrees C, the removal efficiency was 93%, showing that heating accelerated the removal of VOCs from the clay soil. The accelerated remediation resulted from effective heating of the contaminated clay zone by SPSH. The temperature of the clay zone increased to 100 degrees C after 8 days of heating and was maintained near 100 degrees C for 17 days. Electrical heating removed 19,000 gal of water from the soil as steam, with peak removal rate of 1,500 gpd of condensed steam

  20. Influence of clay and surfactant content in non-aqueous fluid rheology

    International Nuclear Information System (INIS)

    Guedes, I.C.; Gomes, N.L.; Menezes, R.R.; Campos, L.F.A.; Ferreira, H.S.

    2012-01-01

    The bentonite clay used as viscosity agent in the production of non-aqueous fluids cannot be used without organic treatment for their surfaces to become hydrophobic. These clays are called organophilic clays, and are generally obtained by adding, in an aqueous way, ionic or a nonionic surfactant. Recent studies of the variables involved in the dispersion of bentonite clays and in the process of organophilization, showed their lack of influence. This work aims to study the influence of clay content and surfactants on the rheology of nonaqueous fluids. To this end, the clays were treats and characterized, evidencing the incorporation of the surfactant, and then formulated non-aqueous fluids, following PETROBRAS standards, being possible to verify the influence of clay content and surfactant both from the point of view as the characterizing and rheological behavior. (author)

  1. Bioavailability of selenium from fish, yeast and selenate: A comparative study in humans using stable isotopes

    NARCIS (Netherlands)

    Fox, T.E.; Heuvel, E.G.H.M. van den; Atherton, C.A.; Dainty, J.R.; Lewis, D.J.; Langford, N.J.; Crews, H.M.; Luten, J.B.; Lorentzen, M.; Sieling, F.W.; Aken-Schneyder, P. van; Hoek, M.; Kotterman, M.J.J.; Dael, P. van; Firweather-Tail, S.J.

    2004-01-01

    Objective: To measure the bioavailability of selenium from cooked and raw fish in humans by estimating and comparing apparent absorption and retention of selenium in biosynthetically labelled fish with labelled selenate and biosynthetically labelled selenium in brewers yeast. Design: The

  2. Bioavailibility of selenium from fish, yeast and selenate: a comparative study in humans using stable isotopes

    NARCIS (Netherlands)

    Fox, T.E.; Heuvel, van den E.G.H.M.; Atherton, C.A.; Luten, J.B.; Hoek-van Nieuwenhuizen, van M.; Kotterman, M.J.J.

    2004-01-01

    Objective: To measure the bioavailability of selenium from cooked and raw fish in humans by estimating and comparing apparent absorption and retention of selenium in biosynthetically labelled fish with labelled selenate and biosynthetically labelled selenium in brewers yeast. Design: The

  3. The Effect of E-Selen Antioxidant on the Fatty Acids Content of the Homogenate of Unirradiated and Irradiated Pupae of Ceratitis Capitata

    International Nuclear Information System (INIS)

    Zaghloul, Y.S.; Abbassy, S.A.; Elakhdar, E.A.H.; Elakhdar, E.A.H.

    2011-01-01

    As antioxidant E-selen was added to the larval artificial diets of the Mediterranean fruit fly, Ceratitis capitata. The produced full grown pupae were exposed to gamma rays at dose rate of 90 Gy. The fatty acid contents of the normal and irradiated insects were analyzed to test to what extent, the uptake of the antioxidant will ameliorate the physiological damage induced to the medfly pupae, as a result of their exposure to irradiation. The results obtained by using Gas-liquid chromatography of fatty acid methyl esters, showed the palmitic and oleic acids to be the most predominant fatty acids in all pupal homogenates in both normal and irradiated pupae, either by the uptake of doses of the E-selen or without. The uptake of E-Selen with a dose of 0.3 mg led to a complete absence of the lauric and myristic acids in the homogenates of the unirradiated pupae of the medfly. This absence of lauric and myristic acids was accompanied by a decrease in the concentrations of the palmitic and linoleic acids reaching 25.17% and 32.98%, respectively as compared to pupae without the uptake of antioxidant. The concentrations of both the stearic and oleic acids showed an obvious increment reaching 199.22% and 58.94%, respectively, relative to those reared on the defined media and no added E.Selen. Exposure of the pupae to a dose of 90 Gy, resulted in an increment in the concentrations of the saturated lauric and myristic acid reaching 96.77% and 34.07%, respectively, relative to the untreated ones. While, at the same dose level, there were decrements in the concentrations of the palmitic, stearic, oleic and linoleic acids with percentages reaching 6.4, 9.22, 3.65 and 1.15%, respectively as compared to unirradiated controls. Irradiation of the pupae with sterilizing dose (90 Gy) after up taking the E-Selen in their larval diets, led to the increase of the concentrations of lauric, oleic and linoleic acids by ratios of 16.82, 8.84 and 29.26%, respectively as compared to their

  4. AgSbSe{sub 2} and AgSb(S,Se){sub 2} thin films for photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Garza, J.G. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon (Mexico); Shaji, S. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon (Mexico); Facultad de Ingenieria Mecanica y Electrica, CIIDIT - Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico); Rodriguez, A.C.; Das Roy, T.K. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon (Mexico); Krishnan, B., E-mail: kbindu_k@yahoo.com [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon (Mexico); Facultad de Ingenieria Mecanica y Electrica, CIIDIT - Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico)

    2011-10-01

    Silver antimony selenide (AgSbSe{sub 2}) thin films were prepared by heating sequentially deposited multilayers of antimony sulphide (Sb{sub 2}S{sub 3}), silver selenide (Ag{sub 2}Se), selenium (Se) and silver (Ag). Sb{sub 2}S{sub 3} thin film was prepared from a chemical bath containing SbCl{sub 3} and Na{sub 2}S{sub 2}O{sub 3}, Ag{sub 2}Se from a solution containing AgNO{sub 3} and Na{sub 2}SeSO{sub 3} and Se thin films from an acidified solution of Na{sub 2}SeSO{sub 3}, at room temperature on glass substrates. Ag thin film was deposited by thermal evaporation. The annealing temperature was 350 deg. C in vacuum (10{sup -3} Torr) for 1 h. X-ray diffraction analysis showed that the thin films formed were polycrystalline AgSbSe{sub 2} or AgSb(S,Se){sub 2} depending on selenium content in the precursor films. Morphology and elemental analysis of these films were done using scanning electron microscopy and energy dispersive X-ray spectroscopy. Optical band gap was evaluated from the UV-visible absorption spectra of these films. Electrical characterizations were done using Hall effect and photocurrent measurements. A photovoltaic structure: glass/ITO/CdS/AgSbSe{sub 2}/Al was formed, in which CdS was deposited by chemical bath deposition. J-V characteristics of this structure showed V{sub oc} = 435 mV and J{sub sc} = 0.08 mA/cm{sup 2} under illumination using a tungsten halogen lamp. Preparation of a photovoltaic structure using AgSbSe{sub 2} as an absorber material by a non-toxic selenization process is achieved.

  5. Geochemical effects of electro-osmosis in clays

    KAUST Repository

    Loch, J. P. Gustav

    2010-02-13

    Geochemical effects of electro-osmosis in bentonite clay are studied in the laboratory, where a 6 mm thick bentonite layer is subjected to direct current. Acidification and alkalization near anode and cathode are expected, possibly causing mineral deterioration, ion mobilization and precipitation of new solids. Afterwards the clay is analysed by XRF and anolyte and catholyte are analysed by ICP-MS. In addition, as a preliminary experiment treated bentonite is analysed by high resolution μ-XRF. Electro-osmotic flow is observed. Due to its carbonate content the bentonite is pH-buffering. Alkalization in the catholyte is substantial. Ca, Na and Sr are significantly removed from the clay and accumulate in the catholyte. Recovery in the catholyte accounts for a small fraction of the element-loss from the clay. The rest will have precipitated in undetected solid phases. μ-XRF indicates the loss of Ca-content throughout the bentonite layer. © The Author(s) 2010.

  6. Geotechnical and geochemical assessments of shales in Anambra basin, SE-Nigeria as compacted clay liner in landfill system

    International Nuclear Information System (INIS)

    Tijani, Moshood N.; Adesina, Rasheed B.; Wagner, Jean-Frank

    2012-01-01

    Document available in extended abstract form only. A major constraint to the development of properly engineered landfills is the high cost of synthetic liners and its scarcity in the local markets in developing country like Nigeria, which calls for alternative local materials for landfill liner. Consequently, crushed shale / clay shale deposits appear inexpensive and can be utilized to effectively retard the spread of leachate from landfills. Hence, this study focus on the assessment of geotechnical, geochemical and sorption characteristics of shale units from Anambra Basin, SE-Nigeria for suitability or otherwise as compacted clay liner (CCL) in landfills. Twelve samples consisting of three each from four different formations namely: Enugu, Nkporo, Imo and Ameki formations were collected and subjected to basic geotechnical tests such as grain size analysis, Atterberg's limits, compaction and coefficient of permeability following standard testing methods (BS 1377). In addition, mineralogical X-ray Diffraction (XRD) and geochemical ICP-MS / ICP-ES analyses were employed for geochemical characterization. CEC and batch sorption tests with respect to Pb, Ni, Cd, Cu and Zn as contaminant in leachates were also employed for sorption characterization. The results of the geotechnical tests conducted on the shale samples revealed that the crushed shale samples have liquid limit range of 55-79%, percentage fines of 80-93%, percentage clay of 23- 36% and activity of 0.8-2.1, all of which satisfy the basic requirements of clay liners according to the specifications of Daniel, 1993. Samples from Enugu, Nkporo and Imo shale have plasticity index range of 40- 54% which is above the recommended limit of 35% and thus likely to exhibit excessive shrinkage and settlement. However, the laboratory compaction shows maximum dry density of 16.8-18.4 kN/m 3 and 17.3- 19.1 kN/m 3 respectively for Standard Proctor and Modified AASHTO energy levels which suggests no significant change the

  7. Identifying the Impact of E-Selen on the Sterile Medfly Ceratitis capitata at the Genomic Level Using DNA Profile

    International Nuclear Information System (INIS)

    Zaghloul, Y.S.

    2014-01-01

    The antioxidant E-Selen is an exogenous antioxidant containing both selenium and vitamin E. It was added to the larval artificial diets of the Mediterranean fruit fly, Ceratitis capitata in various concentrations (0.1, 0.3, 0.5 and 1.5 mg) prior to irradiation in order to obtain fully competent males. The produced full grown pupae were exposed to gamma rays at a dose rate of 90 Gy. Biological assessment of two E-Selen concentrations 0.3 and 0.5 mg were found to ameliorate the fitness of the sterile insects as well as to increase significantly most of their amino acids content. The study of the PCR patterns of normal and irradiated C. capitata undertaken or not different doses of E-Selen prior to irradiation and contained in the larval diets induced some modifications to the DNA profiles. The appearance of some new bands and disappearance of others were frequently encountered during this investigation. The appearance of bands was attributed to a repair mechanism that occurs in the irradiated DNA. However, the similarity in the DNA patterns of the homogenate pupal of C. capitata was due to the irradiation-induced damage may be in genome regions other than the regions of study

  8. Clay membrane made of natural high plasticity clay

    DEFF Research Database (Denmark)

    Foged, Niels; Baumann, Jens

    1998-01-01

    Leachate containment in Denmark has through years been regulated by the DIF Recommendation for Sanitary Landfill Liners (DS/R 466). It states natural clay deposits may be used for membrane material provided the membrane and drainage system may contain at least 95% of all leachate created throughout...... ion transport as well as diffusion.Clay prospection for clays rich in smectite has revealed large deposits of Tertiary clay of very high plasticity in the area around Rødbyhavn on the Danish island Lolland. The natural clay contains 60 to 75% smectite, dominantly as a sodium-type. The clay material...... has been evaluated using standardised methods related to mineralogy, classification, compaction and permeability, and initial studies of diffusion properties have been carried out. Furthermore, at a test site the construction methods for establishing a 0.15 to 0.3m thick clay membrane have been tested...

  9. Clay membrane made of natural high plasticity clay:

    DEFF Research Database (Denmark)

    Foged, Niels; Baumann, Jens

    1999-01-01

    Leachate containment in Denmark has throughout the years been regulated by the DIF Recommendation for Sanitary Landfill Liners (DS/R4669. It states that natural clay deposits may be used as membrane material provided the membrane and drainage system contains at least 95% of all leachate created...... into account advective ion transport as well as diffusion. Clay prospecting for clays rich in smectite has revealed large deposits of Tertiary clay of very high plasticity in the area around Rødbyhavn on the Danish island of Lolland. The natural clay contains 60-75% smectite, dominantly as a sodium......-type. The clay material has been evaluated using the standardized methods related to mineralogy, classification, compaction and permeability, and initial studies of diffusion properties have been carried out. Furthermore, at a test site the construction methods for establishing a 0.15-0.3 m thick clay membrane...

  10. Thermal volume changes in clays and clay-stones

    International Nuclear Information System (INIS)

    Delage, P.; Sulem, J.; Mohajerani, M.; Tang, A.M.; Monfared, M.

    2012-01-01

    Document available in extended abstract form only. The disposal of high activity exothermic radioactive waste at great depth in clay host rocks will induce a temperature elevation that has been investigated in various underground research laboratories in Belgium, France and Switzerland through in-situ tests. Thermal effects are better known in clays (in particular Boom clay) than in clay-stone (e.g. Opalinus clay and Callovo-Oxfordian clay-stone). In terms of volume changes, Figure 1 confirms the findings of Hueckel and Baldi (1990) that volume changes depend on the over-consolidation ratio (OCR) of the clay. In drained conditions, normally consolidated clays exhibit plastic contraction when heated, whereas over-consolidated clay exhibit elastic dilation. The nature of thermal volume changes in heated clays obviously has a significant effect on thermally induced pore pressures, when drainage is not instantaneous like what occurs in-situ. Compared to clays, the thermal volume change behaviour of clay-stones is less well known than that of clays. clay-stone are a priori suspected to behave like over-consolidated clays. In this paper, a comparison of recent results obtained in the laboratory on the drained thermal volume changes of clay-stones is presented and discussed. It is difficult to run drained mechanical tests in clay-stones like the Opalinus clay and the Callovo-Oxfordian clay-stone because of their quite low permeability (10 -12 - 10 -13 m/s). This also holds true for thermal tests. Due to the significant difference in thermal expansion coefficient between minerals and water, it is necessary to adopt very slow heating rate (0.5 - 1 C/h) to avoid any thermal pressurization. To do so, a new hollow cylinder apparatus (100 mm external diameter, 60 mm internal diameter) with lateral drainages reducing the drainage length to half the sample thickness (10 mm) has been developed (Monfared et al. 2011). The results of a drained cyclic thermal test carried out on

  11. Observation of Possible Lava Tube Skylights by SELENE cameras

    Science.gov (United States)

    Haruyama, Junichi; Hiesinger, Harald; van der Bogert, Carolyn

    We have discovered three deep hole-structures on the Moon in the Terrain Camera and Multi-band Imager on the SELENE. These holes are large depth to diameter ratios: Marius Hills Hole (MHH) is 65 m in diameter and 88-90 m in depth, Mare Tranquillitatis Hole (MTH) is 120 x 110 m in diameter and 180 m in depth, and Mare Ingenii Hole (MIH) is 140 x 110 m in diameter and deeper than 90 m. No volcanic material from the holes nor dike-relating pit craters is seen around the holes. They are possible lava tube skylights. These holes and possibly connected tubes have a lot of scientific interests and high potentialities as lunar bases.

  12. SeO{sub 2} adsorption on CaO surface: DFT study on the adsorption of a single SeO{sub 2} molecule

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Yaming; Zhuo, Yuqun; Lou, Yu; Zhu, Zhenwu [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Li, Liangliang [Key Laboratory of Advanced Materials, Department of Material Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2017-08-15

    Highlights: • Adsorption mechanisms of SeO{sub 2} on CaO surface under O{sub 2} were firstly studied by DFT. • The adsorption energies, bond length and electron density maps were calculated. • The electronic structure changes upon adsorption were studied. - Abstract: Selenium is a hazardous element in coal. During coal combustion, most of the selenium will convert to SeO{sub 2} in the flue gas. Ca-based adsorbents, especially CaO, have been considered as a potential sorbent to adsorb SeO{sub 2} due to its low cost. In this paper, the adsorption mechanisms of single SeO{sub 2} on CaO surface were investigated by density functional theory (DFT) calculation. Both the physisorption and chemisorption structures were determined. It has been identified that the adsorption of SeO{sub 2} on CaO surface is primarily chemisorption, while physisorption takes effects at the initial stage of the process. Under O{sub 2} atmosphere, selenate is hard to form. Most of the adsorption products are selenite. Additionally, the electron density maps were obtained to reveal the surface active sites. The partial density of states (PDOS) was calculated for analyzing the electronic structural change of SeO{sub 2} and CaO surface during adsorption. The results provide fundamental information of the adsorption process, which could be meaningful for the development of new absorbents.

  13. Electrical and Thermo-Mechanical properties of Irradiated Clay Nanoparticle/SBR Composites

    International Nuclear Information System (INIS)

    Ata, M.M.E.M.

    2011-01-01

    Polymer-Composites incorporating metal, semiconductors, Carbon black, nano materials and Clay materials have been widely used and studied as multifunctional materials with inherent polymer properties. Polymer-clay nano composites show remarkable property improvement when compared to conventionally scaled composites. For designing new materials with desirable, predicted properties, a better understanding of structure-property relationships is necessary. In this work, we employ dielectric relaxation spectroscopy (DRS) to investigate molecular mobility in relation to morphology in styrene butadiene rubber-SBR (treated and untreated) nano composites. In addition to the investigation of dipolar processes, special attention is paid here to the investigation of conductivity effects and mechanical as well as thermo-mechanical properties. From the stress-strain characteristics, one found that, all the compositions showed a tensile strength higher than the virgin rubber. By increasing the filler loading, the tensile strength of the prepared composites increases. The elongation at break for treated and untreated clay filed composites increases with an increase in filer loading up to 10 p hr and then followed by a decrease up to 15 p hr. The cross linking density, υ increases with both treated and untreated clay contents and treated samples have higher increasing rate of υ values than untreated one. To elucidate the tensile behavior of the test samples. The Ht model is tested by using non-Gaussian chain statistics, which give a good fitting with the experimental data.

  14. Highly efficient CuIn{sub 1-x}Ga{sub x}Se{sub 2-y}S{sub y}/CdS thin-film solar cells by using diethylselenide as selenium precursor

    Energy Technology Data Exchange (ETDEWEB)

    Kadam, Ankur A.; Dhere, Neelkanth G. [Florida Solar Energy Center, University of Central Florida, Cocoa, FL 32922-5703 (United States)

    2010-05-15

    Conventional furnace selenization process was optimized to achieve effective selenization using diethylselenide (C{sub 2}H{sub 5}){sub 2}Se (DESe). An optimized quantity of Na was added to improve V{sub oc}, FF and morphology. Sputter-deposited CuGa and In metallic precursors were homogenized in an inert atmosphere prior to the introduction of DESe followed by rapidly heating to the maximum process temperature to avoid formation of detrimental binary phases. Selenization was carried out in the temperature range 475-515 C followed by sulfurization in dilute H{sub 2}S. Solar cells were completed by depositing CdS heterojunction partner layer, i:ZnO/ZnO:Al window-bilayer and metallic contact fingers. PV conversion efficiency of 13.7% with a V{sub oc} of 540 mV, J{sub sc} of 38.3 mA/cm{sup 2} and FF of 66.3% were obtained on 0.442 cm{sup 2} cell areas. The process can be easily scaled-up for economic large-scale manufacture. (author)

  15. Simultaneous speciation of arsenic (As(III), MMA, DMA, and As(V)) and selenium (Se(IV), Se(VI), and SeCN{sup -}) in petroleum refinery aqueous streams

    Energy Technology Data Exchange (ETDEWEB)

    Tonietto, Gisele B.; Godoy, Jose M.; Oliveira, Ana Cristina [Pontificia Universidade Catolica do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Souza, Marcia V. de [Petrobras/Cenpes, Research and Development Center, Rio de Janeiro (Brazil)

    2010-07-15

    High-performance liquid chromatography (HPLC) coupled to an ICP-MS with an octapole reaction system (ORS) has been used to carry out quantitative speciation of selenium (Se) and arsenic (As) in the stream waters of a refining process. The argon dimers interfering with the {sup 78}Se and {sup 80}Se isotopes were suppressed by pressurizing the octapole chamber with 3.1 mL min{sup -1} H{sub 2} and 0.5 mL min{sup -1} He. Four arsenic species arsenite - As(III), arsenate (As(V)), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) - and three inorganic Se species - selenite Se(IV), selenate Se(VI), and selenocyanate (SeCN{sup -}) - were separated in a single run by ion chromatography (IC) using gradient elution with 100 mmol L{sup -1} NH{sub 4}NO{sub 3}, pH 8.5, adjusted by addition of NH{sub 3}, as eluent. Repeatabilities of peak position and of peak area evaluation were better than 1% and about 3%, respectively. Detection limits (as 3{sigma} of the baseline noise) were 81, 56, and 75 ng L{sup -1} for Se(IV), Se(VI), and SeCN{sup -}, respectively, and 22, 19, 25, and 16 ng L{sup -1} for As(III), As(V), MMA, and DMA, respectively. Calibration curve R {sup 2} values ranged between 0.996 and 0.999 for the arsenic and selenium species. Column recovery for ion chromatography was calculated to be 97 {+-} 6% for combined arsenic species and 98 {+-} 3% for combined selenium species. Because certified reference materials for As and Se speciation studies are still not commercially available, in order to check accuracy and precision the method was applied to certified reference materials, BCR 714, BCR 1714, and BCR 715 and to two different refinery samples - inlet and outlet wastewater. The method was successfully used to study the quantitative speciation of selenium and arsenic in petroleum refinery wastewaters. (orig.)

  16. Durability of fired clay bricks containing granite powder

    Directory of Open Access Journals (Sweden)

    Xavier, G. C.

    2012-06-01

    Full Text Available Over the past few decades, hundreds of papers have been published on the benefits of including rock powder as a raw material in fired clay brick manufacture. Very little has been written, however, about the durability and long-term behaviour of the final product. As a rule, the ceramic bricks used in construction in developing countries are fired at low temperatures, which detracts from their mechanical performance. This is particularly visible in harsh environmental conditions, where weathering causes severe deterioration. The present paper describes the impact of weathering on clay bricks containing from 0 to 10% granite powder, an industrial by-product. The specimens were fired at 500, 700 or 900 ºC and subsequently exposed to natural environmental conditions or accelerated laboratory weathering. Their physical and mechanical properties were evaluated to determine the effect of the composition of raw materials on fired clay product durability.

    En las últimas décadas se han publicado cientos de artículos sobre las ventajas de incluir polvo de roca como materia prima en la fabricación de los ladrillos cerámicos. Sin embargo, la durabilidad y el comportamiento a largo plazo del producto final han sido objeto de pocas investigaciones. Por lo general, los ladrillos cerámicos empleados en la construcción en los países en vías de desarrollo se cuecen a temperaturas bajas, lo que impide el desarrollo de sus propiedades mecánicas. Esto queda especialmente patente cuando las condiciones ambientales son severas, en cuyo caso la meteorización puede provocar un deterioro importante. En este artículo se describe el efecto de la meteorización en ladrillos cerámicos que incorporaban entre un 0 y un 10% de polvo de granito, que es un derivado industrial. Las probetas se cocieron a 500, 700 o 900 °C y luego se sometieron a condiciones ambientales naturales o a un proceso de laboratorio de meteorización acelerada. Se evaluaron sus

  17. Methylene blue adsorption in clay mineral dealt with organic cation

    International Nuclear Information System (INIS)

    Silva, T.L.; Lemos, V.P.

    2011-01-01

    The interaction among organic cations, as the methylene blue (AM) and benzyltrimethylammonium (BTMA), and clay minerals of the group of the smectite they result in the formation of applied materials in the adsorption of organic pollutant presents in waters, soils and you cultivate. In this work they were prepared the adsorbents (organic-clays) smectite - AM and smectite-BTMA. The precursory sample of smectite was collected in Rio Branco-Acre. We were also used an smectite sample collected in Sena Madureira (SM)-Acre already characterized in previous work and a sample of standard smectite Swy-2-Na-Montmorillonite (SWy-2) of Wymong - USA. The organic agents selected for this study they were: Blue of Methylene, denominated AM and Benzyltrimethylammonium, denominated BTMA. They were appraised the capacities adsorptive of the treated samples with BTMA being used AM as adsorbate. The results of these evaluations detected that ran total adsorption of AM (concentrations varying from 1 to 10 ppm) for the treated samples with BTMA. The organic cation, BTMA, interacting with the surfaces of the natural clay was more efficient in the adsorption of AM than the clay without the previous treatment with this salt. (author)

  18. Engineering Characteristics of Chemically Treated Water-Repellent Kaolin

    Directory of Open Access Journals (Sweden)

    Youngmin Choi

    2016-12-01

    Full Text Available Water-repellent soils have a potential as alternative construction materials that will improve conventional geotechnical structures. In this study, the potential of chemically treated water-repellent kaolin clay as a landfill cover material is explored by examining its characteristics including hydraulic and mechanical properties. In order to provide water repellency to the kaolin clay, the surface of clay particle is modified with organosilanes in concentrations (CO ranging from 0.5% to 10% by weight. As the CO increases, the specific gravity of treated clay tends to decrease, whereas the total organic carbon content of the treated clay tends to increase. The soil-water contact angle increases with an increase in CO until CO = 2.5%, and then maintains an almost constant value (≈134.0°. Resistance to water infiltration is improved by organosilane treatment under low hydrostatic pressure. However, water infiltration resistance under high hydrostatic pressure is reduced or exacerbated to the level of untreated clay. The maximum compacted dry weight density decreases with increasing CO. As the CO increases, the small strain shear modulus increases, whereas the effect of organosilane treatment on the constrained modulus is minimal. The results indicate that water-repellent kaolin clay possesses excellent engineering characteristics for a landfill cover material.

  19. Engineering Characteristics of Chemically Treated Water-Repellent Kaolin

    Science.gov (United States)

    Choi, Youngmin; Choo, Hyunwook; Yun, Tae Sup; Lee, Changho; Lee, Woojin

    2016-01-01

    Water-repellent soils have a potential as alternative construction materials that will improve conventional geotechnical structures. In this study, the potential of chemically treated water-repellent kaolin clay as a landfill cover material is explored by examining its characteristics including hydraulic and mechanical properties. In order to provide water repellency to the kaolin clay, the surface of clay particle is modified with organosilanes in concentrations (CO) ranging from 0.5% to 10% by weight. As the CO increases, the specific gravity of treated clay tends to decrease, whereas the total organic carbon content of the treated clay tends to increase. The soil-water contact angle increases with an increase in CO until CO = 2.5%, and then maintains an almost constant value (≈134.0°). Resistance to water infiltration is improved by organosilane treatment under low hydrostatic pressure. However, water infiltration resistance under high hydrostatic pressure is reduced or exacerbated to the level of untreated clay. The maximum compacted dry weight density decreases with increasing CO. As the CO increases, the small strain shear modulus increases, whereas the effect of organosilane treatment on the constrained modulus is minimal. The results indicate that water-repellent kaolin clay possesses excellent engineering characteristics for a landfill cover material. PMID:28774098

  20. Clay Play

    Science.gov (United States)

    Rogers, Liz; Steffan, Dana

    2009-01-01

    This article describes how to use clay as a potential material for young children to explore. As teachers, the authors find that their dialogue about the potential of clay as a learning medium raises many questions: (1) What makes clay so enticing? (2) Why are teachers noticing different play and conversation around the clay table as compared to…

  1. Uptake and specification of selenium in garlic cultivated in soil amended with symbiotic fungi (mycorrhiza) and selenate

    NARCIS (Netherlands)

    Larsen, E.H.; Lobinski, R.; Burger-Meijer, K.; Hansen, M.; Ruzik, R.; Mazurowska, L.; Rasmussen, P.H.; Sloth, J.J.; Scholten, O.E.; Kik, C.

    2006-01-01

    The scope of the work was to investigate the influence of selenate fertilisation and the addition of symbiotic fungi (mycorrhiza) to soil on selenium and selenium species concentrations in garlic. The selenium species were extracted from garlic cultivated in experimental plots by proteolytic

  2. Nd2(SeO3)2(SeO4) . 2H2O - a mixed-valence compound containing selenium in the oxidation states +IV and +VI

    International Nuclear Information System (INIS)

    Berdonosov, P.S.; Dityat'yev, O.A.; Dolgikh, V.A.; Schmidt, P.; Ruck, Michael; Lightfoot, P.

    2004-01-01

    Pale pink crystals of Nd 2 (SeO 3 ) 2 (SeO 4 ) . 2H 2 O were synthesized under hydrothermal conditions from H 2 SeO 3 and Nd 2 O 3 at about 200 C. X-ray diffraction on powder and single-crystals revealed that the compound crystallizes with the monoclinic space group C 2/c (a = 12.276(1) A, b = 7.0783(5) A, c = 13.329(1) A, β = 104.276(7) ). The crystal structure of Nd 2 (SeO 3 ) 2 (SeO 4 ) . 2H 2 O is an ordered variant of the corresponding erbium compound. Eight oxygen atoms coordinate the Nd III atom in the shape of a bi-capped trigonal prism. The oxygen atoms are part of pyramidal (Se IV O 3 ) 2- groups, (Se VI O 4 ) 2- tetrahedra and water molecules. The [NdO 8 ] polyhedra share edges to form chains oriented along [010]. The selenate ions link these chains into layers parallel to (001). The layers are interconnected by the selenite ions into a three-dimensional framework. The dehydration of Nd 2 (SeO 3 ) 2 (SeO 4 ) . 2H 2 O starts at 260 C. The thermal decomposition into Nd 2 SeO 5 , SeO 2 and O 2 at 680 C is followed by further loss of SeO 2 leaving cubic Nd 2 O 3 . (Abstract Copyright [2004], Wiley Periodicals, Inc.) [de

  3. Ball clay

    Science.gov (United States)

    Virta, R.L.

    2001-01-01

    Part of the 2000 annual review of the industrial minerals sector. A general overview of the ball clay industry is provided. In 2000, sales of ball clay reached record levels, with sanitary ware and tile applications accounting for the largest sales. Ball clay production, consumption, prices, foreign trade, and industry news are summarized. The outlook for the ball clay industry is also outlined.

  4. Influence of clay mineralogy on clay based ceramic products

    International Nuclear Information System (INIS)

    Radzali Othman; Tuan Besar Tuan Sarif; Zainal Arifin Ahmad; Ahmad Fauzi Mohd Noor; Abu Bakar Aramjat

    1996-01-01

    Clay-based ceramic products can either be produced directly from a suitable clay source without the need further addition or such products can be produced from a ceramic body formulated by additions of other raw materials such as feldspar and silica sand. In either case, the mineralogical make-up of the clay component plays a dominating role in the fabrication and properties of the ceramic product. This study was sparked off by a peculiar result observed in one of five local ball clay samples that were used to reformulate a ceramic body. Initial characterisation tests conducted on the clays indicated that these clays can be classified as kaolinitic. However, one of these clays produced a ceramic body that is distinctively different in terms of whiteness, smoothness and density as compared to the other four clays. Careful re-examination of other characterisation data, such as particle size distribution and chemical analysis, failed to offer any plausible explanation. Consequently, the mineralogical analysis by x-ray diffraction was repeated by paying meticulous attention to specimen preparation. Diffraction data for the clay with anomalous behaviour indicated the presence of a ∼ 10A peak that diminished when the same specimen was re-tested after heating in an oven at 12O degree C whilst the other four clays only exhibit the characteristic kaolinite (Al sub 2 O sub 3. 2SiO sub 2. 2H sub 2 0) and muscovite peaks at ∼ 7A and ∼ 10A before and after heat treatment. This suggests the presence of the mineral halloysite (A1 sub 2 0 sub 3. 2SiO sub 2.4H sub 2 0) in that particular clay. This difference in mineralogy can be attributed to account for the variations in physical properties of the final product. Consequently, this paper reviews in general the precautionary measures that must be adhered to during any mineralogical investigation of clay minerals or clay-based materials. The common pitfalls during specimen preparation, machine settings and interpretation of

  5. Study of methods for electrical modification of a clay suspension

    Energy Technology Data Exchange (ETDEWEB)

    Karimov, R A; Kudaktina, T T; Parpiyev, T R

    1982-01-01

    As a result of the conducted experiments it was established that the viscosity and maximum static shear stress of the drilling muds prepared on electrically treated water increases 2-3-fold as compared to the muds prepared on standard water. This is explained by the fact that the unipolar treatment results in deep change in the water structure. Under the influence of the electrical current, there is activation, rise in the electrical conductivity, decrease in surface tension, considerable rise in the pH value, etc. The output of clay mud increases 1.5-fold in the clay suspension that is prepared on electrically treated water.

  6. Homogeneity vs. Heterogeneity of Porosity in Boom Clay

    International Nuclear Information System (INIS)

    Hemes, Susanne; Desbois, Guillaume; Urai, Janos L.; De Craen, Mieke; Honty, Miroslav

    2013-01-01

    Microstructural investigations on Boom Clay at nano- to micrometer scale, using BIB-SEM methods, result in porosity characterization for different mineral phases from direct observations on high resolution SE2-images of representative elementary areas (REAs). High quality, polished surfaces of cross-sections of ∼ 1 mm 2 size were produced on three different samples from the Mol-Dessel research site (Belgium). More than 33,000 pores were detected, manually segmented and analyzed with regard to their size, shape and orientation. Two main pore classes were defined: Small pores (< 500 nm (ED)) within the clay matrices of samples and =big' pores (> 500 nm (ED)) at the interfaces between clay and non-clay mineral (NCM) grains. Samples investigated show similar porosities regarding the first pore-class, but differences occur at the interfaces between clay matrix and NCM grains. These differences were interpreted to be due to differences in quantitative mineralogy (amount of non-clay mineral grains) and grain-size distributions between samples investigated. Visible porosities were measured as 15 to 17 % for samples investigated. Pore-size distributions of pores in clay are similar for all samples, showing log-normal distributions with peaks around 60 nm (ED) and more than 95 % of the pores being smaller than 500 nm (ED). Fitting pore-size distributions using power-laws with exponents between 1.56 and 1.7, assuming self-similarity of the pore space, thus pores smaller than the pore detection resolution following the same power-laws and using these power-laws for extrapolation of pore-size distributions below the limit of pore detection resolution, results in total estimated porosities between 20 and 30 %. These results are in good agreement with data known from Mercury Porosimetry investigations (35-40 % porosity) and water content porosity measurements (∼ 36 %) performed on Boom Clay. (authors)

  7. Structure and mechanical properties of polyamide 6/Brazilian clay nanocomposites

    Directory of Open Access Journals (Sweden)

    Amanda Melissa Damião Leite

    2009-06-01

    Full Text Available Recent interest in polymer/organoclays nanocomposites systems is motivated by the possibility of achieving enhanced properties and added functionality at lower clay loading as compared to conventional micron size fillers. By adding montmorillonite clay to polyamide 6 increases the Young modulus, yield strength and also improves barrier properties. In this work, nanocomposites of polyamide 6 with montmorillonite clay were obtained. The clay was chemically modified with three different quaternary ammonium salts such as: Dodigen, Genamin and Cetremide. In this case, a dispersion of Na-MMT was stirred and a salt equivalent to 1:1 of cation exchange capacity (CEC of Na-MMT was added to the dispersion. The montmorillonite clay (untreated and treated by ammonium salts and nanocomposites were characterized by X ray diffractions. Also the nanocomposites were characterized by transmission electron microscopy and mechanical properties. The results indicated that all the quaternary ammonium salts were intercalated between the layers of clay, leading to an expansion of the interlayer spacing. The obtained nanocomposites showed better mechanical properties when compared to polyamide 6. The clay acted as reinforcing filler, increasing the rigidity of nanocomposites and decreasing its ductility.

  8. Polymer supported synthesis of unsymmetrical n.c.a. selenium-73/75 ethers for the labelling of amino acids; Polymergestuetzte Synthese von unsymmetrischen n.c.a. [{sup 73,75}Se] Selenoethern zur Markierung von Aminosaeuren

    Energy Technology Data Exchange (ETDEWEB)

    Schmaljohann, J

    1995-09-01

    The synthesis of n.c.a. selenium-73/75 labelled methionine and of a selenoalkylation agent have been performed according to a reaction including a primary, polymer supported alkylation step. The selenium-75 was produced through the {sup 75}As(p, n)-process and separated as [{sup 75}Se]selenium dioxide by thermochromatography. The [{sup 75}Se]SeO{sub 2}-sublimate was dissolved in hydrochloric acid and reduced with sulfur dioxide to obtain elemental n.c.a. selenium-75, which was extracted into benzene. Reaction of the elemental n.c.a. selenium-75 with polymeric bound triphenylphosphine led to the formation of the corresponding [{sup 75}Se]triphenylphosphinselenide in a nearly quantitative yield. The asymmetrical [{sup 75}Se]selenoethers were synthesized in homogeneous phase through the reaction of the [{sup 75}Se]MeSe{sup -} with propylhalides in radiochemical yields up of to 55%. A selenium-75 labelled prosthetic group was synthesized in radiochemical yields of 48% by the reaction of 1-chloro-3-iodopropane with the [{sup 75}]selenation reagent [{sup 75}Se]MeSe{sup -}. For labelling amino functions via [{sup 75}Se]selenoalkylation the [{sup 75}Se]selenated propyl chloride has to be transfered into the iodide with sodium iodide, which was performed in radiochemical yields of 90%. After the reaction of [{sup 75}Se]-1-iodo-3-(methylseleno)propane with butylamine or with N{sup {alpha}}-, O-protected lysine in DMF at 80 C the [{sup 75}Se]methylselenopropylated products were obtained in radiochemical yields of 95% and 90%, respectively. (orig./SR)

  9. Electrokinetic enhancement of phenanthrene biodegradation in creosote-polluted clay soil

    International Nuclear Information System (INIS)

    Niqui-Arroyo, Jose-Luis; Bueno-Montes, Marisa; Posada-Baquero, Rosa; Ortega-Calvo, Jose-Julio

    2006-01-01

    Given the difficulties caused by low-permeable soils in bioremediation, a new electrokinetic technology is proposed, based on laboratory results with phenanthrene, to afford bioremediation of polycyclic aromatic hydrocarbons (PAH) in clay soils. Microbial activity in a clay soil historically polluted with creosote was promoted using a specially designed electrokinetic cell with a permanent anode-to-cathode flow and controlled pH. The rates of phenanthrene losses during treatment were tenfold higher in soil treated with an electric field than in the control cells without current or microbial activity. Results from experiments with Tenax-assisted desorption and mineralization of 14 C-labeled phenanthrene indicated that phenanthrene biodegradation was limited by mass-transfer of the chemical. We suggest that the enhancement effect of the applied electric field on phenanthrene biodegradation resulted from mobilization of the PAH and nutrients dissolved in the soil fluids. - Electrokinetic bioremediation is a potentially effective technology to treat PAH-polluted, clay-rich soils

  10. Effects of selenium accumulation on phytotoxicity, herbivory, and pollination ecology in radish (Raphanus sativus L.)

    International Nuclear Information System (INIS)

    Hladun, Kristen R.; Parker, David R.; Tran, Khoa D.; Trumble, John T.

    2013-01-01

    Selenium (Se) has contaminated areas in the western USA where pollination is critical to the functioning of both agricultural and natural ecosystems, yet we know little about how Se can impact pollinators. In a two-year semi-field study, the weedy plant Raphanus sativus (radish) was exposed to three selenate treatments and two pollination treatments to evaluate the effects on pollinator–plant interactions. Honey bee (Apis mellifera L.) pollinators were observed to readily forage on R. sativus for both pollen and nectar despite high floral Se concentrations. Se treatment increased both seed abortion (14%) and decreased plant biomass (8–9%). Herbivory by birds and aphids was reduced on Se-treated plants, indicating a potential reproductive advantage for the plant. Our study sheds light on how pollutants such as Se can impact the pollination ecology of a plant that accumulates even moderate amounts of Se. - Highlights: ► Radish were exposed to selenate and pollination treatments to examine pollination ecology. ► Honey bees foraged on radish for both pollen and nectar despite high floral Se concentrations. ► Se treatment increased seed abortion and decreased plant biomass. ► Herbivory by birds and aphids was reduced in Se-treated plants. ► Pollutants such as Se can impact the pollination of a plant that accumulates even moderate amounts. - Radish accumulated the pollutant selenium in floral tissues, but this did not deter the pollinator (Apis mellifera) from foraging.

  11. Nonlinear optical characteristics of monolayer MoSe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Le, Chinh Tam; Ullah, Farman; Senthilkumar, Velusamy; Kim, Yong Soo [Department of Physics and Energy Harvest Storage Research Center, University of Ulsan (Korea, Republic of); Clark, Daniel J.; Jang, Joon I. [Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, NY (United States); Sim, Yumin; Seong, Maeng-Je [Department of Physics, Chung-Ang University, Seoul (Korea, Republic of); Chung, Koo-Hyun [School of Mechanical Engineering, University of Ulsan (Korea, Republic of); Park, Hyoyeol [Electronics, Communication and Semiconductor Applications Department, Ulsan College (Korea, Republic of)

    2016-08-15

    In this study, we utilized picosecond pulses from an Nd:YAG laser to investigate the nonlinear optical characteristics of monolayer MoSe{sub 2}. Two-step growth involving the selenization of pulsed-laser-deposited MoO{sub 3} film was employed to yield the MoSe{sub 2} monolayer on a SiO{sub 2}/Si substrate. Raman scattering, photoluminescence (PL) spectroscopy, and atomic force microscopy verified the high optical quality of the monolayer. The second-order susceptibility χ{sup (2)} was calculated to be ∝50 pm V{sup -1} at the second harmonic wavelength λ{sub SHG} ∝810 nm, which is near the optical gap of the monolayer. Interestingly, our wavelength-dependent second harmonic scan can identify the bound excitonic states including negatively charged excitons much more efficiently, compared with the PL method at room temperature. Additionally, the MoSe{sub 2} monolayer exhibits a strong laser-induced damage threshold ∝16 GW cm{sup -2} under picosecond-pulse excitation{sub .} Our findings suggest that monolayer MoSe{sub 2} can be considered as a promising candidate for high-power, thin-film-based nonlinear optical devices and applications. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Production of Se-methylselenocysteine in transgenic plants expressing selenocysteine methyltransferase

    Directory of Open Access Journals (Sweden)

    Harris Hugh

    2004-01-01

    Full Text Available Abstract Background It has become increasingly evident that dietary Se plays a significant role in reducing the incidence of lung, colorectal and prostate cancer in humans. Different forms of Se vary in their chemopreventative efficacy, with Se-methylselenocysteine being one of the most potent. Interestingly, the Se accumulating plant Astragalus bisulcatus (Two-grooved poison vetch contains up to 0.6% of its shoot dry weight as Se-methylselenocysteine. The ability of this Se accumulator to biosynthesize Se-methylselenocysteine provides a critical metabolic shunt that prevents selenocysteine and selenomethionine from entering the protein biosynthetic machinery. Such a metabolic shunt has been proposed to be vital for Se tolerance in A. bisulcatus. Utilization of this mechanism in other plants may provide a possible avenue for the genetic engineering of Se tolerance in plants ideally suited for the phytoremediation of Se contaminated land. Here, we describe the overexpression of a selenocysteine methyltransferase from A. bisulcatus to engineer Se-methylselenocysteine metabolism in the Se non-accumulator Arabidopsis thaliana (Thale cress. Results By over producing the A. bisulcatus enzyme selenocysteine methyltransferase in A. thaliana, we have introduced a novel biosynthetic ability that allows the non-accumulator to accumulate Se-methylselenocysteine and γ-glutamylmethylselenocysteine in shoots. The biosynthesis of Se-methylselenocysteine in A. thaliana also confers significantly increased selenite tolerance and foliar Se accumulation. Conclusion These results demonstrate the feasibility of developing transgenic plant-based production of Se-methylselenocysteine, as well as bioengineering selenite resistance in plants. Selenite resistance is the first step in engineering plants that are resistant to selenate, the predominant form of Se in the environment.

  13. Comparison of Selenium Treatments of Crops in the Field

    DEFF Research Database (Denmark)

    Nielsen, Gunnar Gissel

    1986-01-01

    Field experiments with spring and winter barley and ryegrass were carried out to compare the effect of fertilizers enriched with selenate or selenite with foliar application on the selenium (Se) concentrations in the crops. Application of about 20 g Se/ha given as selenate or about 100 g as selen...... not occur. The choice of method thus depends on the farming practice in the individual cases....

  14. Preparation of CIGS thin films by HiPIMS or DC sputtering and various selenization processes

    Czech Academy of Sciences Publication Activity Database

    Olejníček, Jiří; Hubička, Zdeněk; Kšírová, Petra; Kment, Štěpán; Brunclíková, Michaela; Kohout, Michal; Čada, Martin; Darveau, S.A.; Exstrom, C.L.

    2013-01-01

    Roč. 16, č. 2 (2013), s. 314-319 ISSN 1203-8407 R&D Projects: GA MŠk LH12045 Institutional support: RVO:68378271 Keywords : CIGS * HIPIMS * selenization * nanocrystals * solar energy * sputtering * thin films Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.106, year: 2013 http://www.ingentaconnect.com/content/stn/jaots/2013/00000016/00000002/art00015

  15. Root-Zone Redox Dynamics - In Search for the Cause of Damage to Treated-Wastewater Irrigated Orchards in Clay Soils

    Science.gov (United States)

    Yalin, David; Shenker, Moshe; Schwartz, Amnon; Assouline, Shmuel; Tarchitzky, Jorge

    2016-04-01

    Treated wastewater (TW) has become a common source of water for agriculture. However recent findings raise concern regarding its use: a marked decrease (up to 40%) in yield appeared in orchards irrigated with TW compared with fresh water (FW) irrigated orchards. These detrimental effects appeared predominantly in orchards cultivated in clay soils. The association of the damage with clay soils rather than sandy soils led us to hypothesize that the damage is linked to soil aeration problems. We suspected that in clay soils, high sodium adsorption ratio (SAR) and high levels of organic material, both typical of TW, may jointly lead to an extreme decrease in soil oxygen levels, so as to shift soil reduction-oxidation (redox) state down to levels that are known to damage plants. Two-year continuous measurement of redox potential, pH, water tension, and oxygen were conducted in the root-zone (20-35 cm depth) of avocado trees planted in clay soil and irrigated with either TW or FW. Soil solution composition was sampled periodically in-situ and mineral composition was sampled in tree leaves and woody organs biannually. In dry periods the pe+pH values indicated oxic conditions (pe+pH>14), and the fluctuations in redox values were small in both TW and FW plots. Decreases in soil water tension following irrigation or rain were followed by drops in soil oxygen and pe+pH values. TW irrigated plots had significantly lower minimum pe+pH values compared with FW-irrigated plots, the most significant differences occurred during the irrigation season rather than the rain season. A linear correlation appeared between irrigation volume and reduction severity in TW-irrigated plots, but not in the FW plots, indicating a direct link to the irrigation regime in TW-irrigated plots. The minimum pe+pH values measured in the TW plots are indicative of suboxic conditions (9water tension and oxygen concentration levels. The consequences of our findings to plant health will be discussed, and

  16. Morphologic characterization for XRD and TEM of polyamide 6 and 66 nanocomposites with bentonite regional clay

    International Nuclear Information System (INIS)

    Leite, Amanda M.D.; Medeiros, Vanessa da N.; Maia, Larissa F.; Araujo, Edcleide M.; Lira, Helio L.

    2009-01-01

    Polyamide 6 and 66 nanocomposites with clay consisting of silicates layer from Paraiba were produced. The clay was modified being used the quaternary salt of ammonium Cetremide, this so there is a better interaction of the clay with polymeric matrix. The clay without treatment (MMT) and treated clay was evaluated by XRD that showed the insertion of the salt molecules into silicates layer. The nanocomposites were obtained from polyamide 6 and 66 were verified that these presented morphological structure composed of exfoliated/partially exfoliated, analyzed by XRD and TEM. (author)

  17. Influence of processing conditions in PEA/organophilic clay nanocomposites

    International Nuclear Information System (INIS)

    Araujo, E.M.; Kojuch, L.R.; Barbosa, R.; Nobrega, K.C.; Melo, T.J.A. de

    2008-01-01

    Polymer/clay nanocomposites have attracted great interest from the industry as well as from the researches due to the need to obtain materials with desired properties. Nanocomposites with silicates layer represent an alternative for the conventional composites because they use a small amount of nanofiller. In this work, polyethylene/polyethylene grafted anhydride maleic (PE-g-MA)/montmorillonite clay (MMT) nanocomposites were prepared by melt intercalation in a Torque Rheometer. It was used an untreated clay (MMT) and a treated clay with the quaternary ammonium salt (OMMT). The influence of the processing conditions was evaluated, that is: 60 and 120rpm, 7 and 14 min, 190 and 220°C. The obtained systems were characterized by X-ray diffraction (XRD) and rheological behavior. The results from XRD and rheological behavior indicated that the system composed of polyethylene/PE-g-MA/OMMT presented intercalated nanocomposite structure, with larger basal distance and high viscosity, in the conditions of 120rpm and 7min, independent of temperature. (author)

  18. Electron-gun Evaporation of Cu and In thin Films as Precursors for CuInSe, Formation

    International Nuclear Information System (INIS)

    Caballero, R.; Guillen, C.

    2001-01-01

    In the present invigorations CuInSe, is obtained in two stages: sequential evaporation of Cu and In using an electron gun evaporator on substrates up to 30 x 30 cm 2 , and a posterior selenization of the deposited films. The study is mainly focused on the first stage, in where the control of the different evaporation parameters of the metal precursors is essential. Electrical measurements are carried out, and also the topography and the thickness are determined with the object of studying the properties and homogeneity of the thin films. (Author) 19 refs

  19. Achievement report for fiscal 1991 on Sunshine Program-entrusted research and development. Research and development of high-efficiency solar cells (Research on forbidden band width optimization); 1991 nendo kokoritsu taiyo denchi no kenkyu kaihatsu seika hokokusho. Kinsei taifuku no saitekika no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-03-01

    Research is conducted on film formation technologies etc. for the chalcopyritic compound semiconductors represented by CuInSe{sub 2} which is the most excellent of the materials for thin-film solar cells. As for the development of a encapsulated selenization method, research is conducted on an In formation method, temperature program for heat treatment, and Cu-In alloy film selenization, and then a CuInSe{sub 2} film less to suffer phase separation is obtained. In the development of a vaporized selenization method, the reactor tube and the temperature program are improved, and this results in a CuInSe{sub 2} film excellent in homogeneity. As for the evaluation of CuInSe{sub 2} film, photoluminescence is measured using a solid-phase selenized film, vapor-phase selenized film, and 3-source vapor-deposited film, and the result shows that photoluminescence-assisted CuInSe{sub 2} film evaluation is quite promising. In the development of ZnO film formation technologies, the MOCVD (metalorganic chemical vapor deposition) technology is almost complete, and film formation on a 10cm-square substrate is now practical. (NEDO)

  20. Colorimetric determination of selenium in mineral premixes .

    Science.gov (United States)

    Hurlbut, J A; Burkepile, R G; Geisler, C A; Kijak, P J; Rummel, N G

    1997-01-01

    A method is described for determination of sodium selenite or sodium selenate in mineral-based premixes. It is based on the formation of intense-yellow piazselenol by Se(IV) and 3,3'-diaminobenzidine. Mineral premixes typically contain calcium carbonate as a base material and magnesium carbonate, silicon dioxide, and iron(III) oxide as minor components or additives. In this method, the premix is digested briefly in nitric acid, diluted with water, and filtered to remove any Iron(III) oxide. Ethylenediaminetetraacetic acid and HCl are added to the filtrate, which is heated to near boiling for 1 h to convert any selenate to selenite. After heating, the solution is buffered between pH 2 and 3 with NaOH and formic acid and treated with NH2OH and EDTA; any Se present forms a complex with 3,3'-diaminobenzidine at 60 degrees C. The solution is made basic with NH4OH, and the piazselenol is extracted into toluene. The absorbance of the complex in dried toluene is measured at 420 nm. The method was validated independently by 2 laboratories. Samples analyzed included calcium carbonate fortified with 100, 200, and 300 micrograms Se in the form of sodium selenite or sodium selenate, a calcium carbonate premix containing sodium selenite, a calcium carbonate premix containing sodium selenate, and a commercial premix; 5 replicates of each sample type were analyzed by each laboratory. Average recoveries ranged from 89 to 109% with coefficients of variation from 1.2 to 13.6%.

  1. Treatment of Liquid Oil Spill by Untreated and Treated Aswanly Clay ...

    African Journals Online (AJOL)

    The aim of this work is to use cheap, available and recyclable sorbents for oil spill clean – up. α -SiO2-Quartz, Na2Si2O5(OH)4, CaCO3, MgCO3, BaCO3, CaO, MgO, ... Characteristics of crude oil and Aswanly clay were investigated by FTIR, X – Ray Fluorescence, X – Ray Diffraction, pour point and centrifuge instruments.

  2. Clay Houses

    Science.gov (United States)

    Pedro, Cathy

    2011-01-01

    In this article, the author describes a project designed for fourth-graders that involves making clay relief sculptures of houses. Knowing the clay houses will become a family heirloom makes this lesson even more worth the time. It takes three classes to plan and form the clay, and another two to underglaze and glaze the final products.

  3. Bentonite clay purification for development of polymeric nan composites using a single screw extruder

    International Nuclear Information System (INIS)

    Carvalho, Ana C.M. de; Ito, Edson N.; Costa, Maria C.B.; Barbosa, Maria I.R.

    2011-01-01

    In this work, a bentonite clay rich in montmorillonite was purified and chemical treat to be used in the development of poly (methyl methacrylate) /clay nanocomposites via melting processes. After the clay treatment and purification, a masterbatch with 25% clay and 75% PMMA was produced by solution technique, using acetone as solvent. For produce samples with 2.5% clay, the masterbatch along with pure polymer were added and mixed in single screw extruder with a diameter of 16 mm and W/D 26. X-rays diffractometry (XRD) and X-rays fluorescence (XRF). Tests were performed to evaluate and characterizing the bentonite clay used in the development of this work and differential scanning calorimetry (DSC) tests were performed to evaluate changes in the thermal properties of the nanocomposites produced. (author)

  4. Selenium toxicity to honey bee (Apis mellifera L. pollinators: effects on behaviors and survival.

    Directory of Open Access Journals (Sweden)

    Kristen R Hladun

    Full Text Available We know very little about how soil-borne pollutants such as selenium (Se can impact pollinators, even though Se has contaminated soils and plants in areas where insect pollination can be critical to the functioning of both agricultural and natural ecosystems. Se can be biotransferred throughout the food web, but few studies have examined its effects on the insects that feed on Se-accumulating plants, particularly pollinators. In laboratory bioassays, we used proboscis extension reflex (PER and taste perception to determine if the presence of Se affected the gustatory response of honey bee (Apis mellifera L., Hymenoptera: Apidae foragers. Antennae and proboscises were stimulated with both organic (selenomethionine and inorganic (selenate forms of Se that commonly occur in Se-accumulating plants. Methionine was also tested. Each compound was dissolved in 1 M sucrose at 5 concentrations, with sucrose alone as a control. Antennal stimulation with selenomethionine and methionine reduced PER at higher concentrations. Selenate did not reduce gustatory behaviors. Two hours after being fed the treatments, bees were tested for sucrose response threshold. Bees fed selenate responded less to sucrose stimulation. Mortality was higher in bees chronically dosed with selenate compared with a single dose. Selenomethionine did not increase mortality except at the highest concentration. Methionine did not significantly impact survival. Our study has shown that bees fed selenate were less responsive to sucrose, which may lead to a reduction in incoming floral resources needed to support coworkers and larvae in the field. If honey bees forage on nectar containing Se (particularly selenate, reductions in population numbers may occur due to direct toxicity. Given that honey bees are willing to consume food resources containing Se and may not avoid Se compounds in the plant tissues on which they are foraging, they may suffer similar adverse effects as seen in other

  5. Influence of clay, surfactant and presence of dispersant in the non-aqueous fluids rheology

    International Nuclear Information System (INIS)

    Gomes, N.L.; Guedes, I.C.; Menezes, R.R.; Campos, L.F.A.; Ferreira, H.S.

    2012-01-01

    The bentonite clay used as a thickening agent in production of non-aqueous fluids and can not be used without a prior treatment to their organic surfaces become hydrophobic. These treated clays are called organoclays, and are usually obtained by adding, in aqueous solution, a quaternary ammonium salt. This work makes a detailed study of the variables involved in the dispersion of the bentonite clays in organophilization process, as well, the type of clay, type of surfactant and the presence of dispersant. It was observed this study that the process variables involved in the dispersion of the clays and organophilization, observed through characterization, have low influence on the peaks related to interplanar basal distance caused by the incorporation of the surfactant and bentonite clays been influential the type of clay and surfactant and the presence of sodium as dispersant agent, on the rheological properties. (author)

  6. The Effect of Ga2Se3 Doping Ratios on Structure, Composition, and Electrical Properties of CuIn0.5Ga0.5Se2 Absorber Formed by Thermal Sintering

    Directory of Open Access Journals (Sweden)

    Chung Ping Liu

    2013-01-01

    Full Text Available Chalcopyrite compounds of copper indium gallium diselenide (CIGS absorber were fabricated by using binary-particle (Cu2Se, In2Se3, and Ga2Se3 precursors with thermal sintering method. The binary-particle ink was firstly prepared by milling technology and then printed onto a soda lime glass substrate, which was baked at a low temperature to remove solvents and form a dry precursor. Following milling, the average particle size of agglomerated CIGS powder is smaller than 1.1 μm. Crystallographic, stoichiometric, and electrical properties of precursor CIGS films with various doping amounts of Ga2Se3 had been widely investigated by using thermal sintering in a nonvacuum environment without selenization. Analytical results reveal that the CIGS absorption layer prepared with a Ga2Se3 doping ratio of 3 has a chalcopyrite structure and favorable composition. The mole ratio of Cu : In : Ga : Se of this sample was 1.03 : 0.49 : 0.54 : 1.94, and related ratios of Ga/(In + Ga and Cu/(In + Ga were 0.52 and 0.99, respectively. The resistivity and carrier concentration were 3.77 ohm-cm and 1.15 E  +  18 cm-3.

  7. The systems containing clays and clay minerals from modified drug release: a review.

    Science.gov (United States)

    Rodrigues, Luís Alberto de Sousa; Figueiras, Ana; Veiga, Francisco; de Freitas, Rivelilson Mendes; Nunes, Lívio César Cunha; da Silva Filho, Edson Cavalcanti; da Silva Leite, Cleide Maria

    2013-03-01

    Clays are materials commonly used in the pharmaceutical industry, either as ingredients or as active ingredients. It was observed that when they are administered concurrently, they may interact with drugs reducing their absorption. Therefore, such interactions can be used to achieve technological and biopharmaceutical advantages, regarding the control of release. This review summarizes bibliographic (articles) and technological (patents) information on the use of systems containing clays and clay minerals in modified drug delivery. In this area, formulations such natural clay, commercial clay, synthetic clay, composites clay-polymers, nanocomposites clay-polymers, films and hidrogels composites clay-polymers are used to slow/extend or vectorize the release of drugs and consequently they increase their bioavailability. Finally, this review summarizes the fields of technology and biopharmaceutical applications, where clays are applied. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Sorption of radioiodine in organo-clays and -soils

    International Nuclear Information System (INIS)

    Bors, J.

    1990-01-01

    In the framework of investigations on the sorption of radioiodine to natural and artificially altered soil components, a number of clay minerals and natural soils were treated with quaternary alkylammonium ions to replace the exchangeable metal cations. With help of batch experiments the resulting organo-clays were tested with respect to their sorption capability of radioiodine quantified by the distribution ratio (R D -value). Treatment of bentonite, vermiculite and cretaceous clay as well as of samples from natural horizons of chernozem soil with hexadecylpyridinium (HDPY + ) and benzethonium (BE + ) exhibited sorptions rates and amounts, which are several orders of magnitude higher than those of the respective untreated samples. Moderate increases of the R D -values were found after cation exchange with hexadecyltrimethylammonium (HDTMA + ), while the applications of trimethylphenylammonium (TMPA + ) and tetramethylammonium (TMA + ) were ineffective. Considerable sorption of radioiodine was observed with the commercially available Bentone. (orig.)

  9. Effects of clay mineral type and organic matter on the uptake of radiocesium by pasture plants

    International Nuclear Information System (INIS)

    D'Souza, T.J.

    1980-10-01

    Studies were undertaken to examine the influence of interaction of clay minerals and organic matter on the uptake of radiocesium by two pasture plants, namely, ryegrass (Lolium italicum L) and red clover (Trifolium pratense L). The clay minerals used were bentonite (2.1 layer type) and kaolinite (1/1 layer type). Mixtures of clay and sand were prepared with 0.5, 10, 20 and 40 per cent clay and treated with organic matter (forest turf) at 0,5 and 10 per cent of the clay-sand mixtures. Results indicated that 134 Cs uptake by plants grown on the kaolinite-clay medium was greater than that on the bentonite-clay medium at a given organic matter level. Increasing the clay content of mixtures resulted in reduction in 134 Cs uptake by both plant species. The plant uptake of 134 Cs increased with additions of organic matter at a given clay content. (author)

  10. Faults architecture and growth in clay-limestone alternation. Examples in the S-E Basin alternations (France) and numerical modeling

    International Nuclear Information System (INIS)

    Roche, Vincent

    2011-01-01

    The following work has been carried out in the framework of the studies conducted by IRSN in support of its safety evaluation of the geological disposal programme of high and intermediate level, long-lived radioactive waste. Such a disposal is planned to be hosted by the Callovian-Oxfordian indurate clay formation between two limestone formations in eastern Paris basin, France. Hypothetical faults may cross-cut this layered section, decreasing the clay containment ability by creating preferential pathways for radioactive solute towards limestones. This study aims at characterising the fault architecture and the normal fault growth in clay/limestone layered sections. Structural analysis and displacement profiles have been carried out in normal faults crossing several decimetres to metre thick sedimentary alternations in the South-Eastern Basin (France) and petrophysical properties have been determined for each layer. The studied faults are simple fault planes or complex fault zones showing are significantly controlled by the layering. The analysis of the fault characteristics and the results obtained on numerical models enlighten several processes such as fault nucleation, fault restriction, and fault growth through layered section. Some studied faults nucleated in the limestone layers, without using pre-existing fractures such as joints, and according to our numerical analysis, a strong stiffness, a low strength contrast between the limestone and the clay layer, and/or s a greater thickness of the clay layer are conditions which favour nucleation of faults in limestone. The range of mechanical properties leading to the fault nucleation in one layer type or another was investigated using a 3D modelling approach. After its nucleation, the fault propagates within a homogeneous medium with a constant displacement gradient until its vertical propagation is stopped by a restrictor. The evidenced restrictors are limestone-clay interfaces or faults in clays, sub

  11. The absorption of Mn-54 onto some kinds of clay in aqueous solution

    International Nuclear Information System (INIS)

    Chu Minh Khoa; Le Van So

    2000-01-01

    The absorption of radioactive Mn-54 from aqueous solutions by natural treated clay of Dilinh region has been investigated. The effect of many factors such as time, pH, carrier concentration... were studied. It was found that the uptake is maximum in neutral or slightly alkaline solutions. The experimental results show that natural clay is suited for the moval of radioactive Mn-54. These types of clay may be considered superior to synthetic exchangers for the removal of Mn-54 if the availability and price of the former are taken into account. (author)

  12. Structural, optical and electrical properties of Cu{sub 2}FeSnX{sub 4} (X = S, Se) thin films prepared by chemical spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Khadka, Dhruba B.; Kim, JunHo, E-mail: jhk@inu.ac.kr

    2015-07-25

    Highlights: • CFTS(Se) thin films have been synthesized by low-cost spray-based deposition. • The fabricated films were found to be of stannite structure and p-type conductivity. • Band gaps of CFTS and CFTSe thin films are 1.37 and 1.11 eV, respectively. - Abstract: We report on fabrication of polycrystalline Cu{sub 2}FeSnX{sub 4} (X = S, Se) thin films by chemical spray pyrolysis subsequent with post-sulfurization and selenization. The post-annealing of as-sprayed Cu{sub 2}FeSnS{sub 4} (CFTS) films in sulfur and selenium ambient demonstrated drastically improved surface texture as well as crystallinity. The crystal lattice parameters calculated from X-ray diffraction patterns for post-annealed films were found to be consistent with stannite structure. The fabricated Cu{sub 2}FeSnS{sub 4} (CFTS) and Cu{sub 2}FeSnSe{sub 4} (CFTSe) films showed p-type conductivity with carrier concentration in the range of 10{sup 21} cm{sup −3} and mobility ∼1–5 cm{sup 2} V{sup −1} s{sup −1}. The band gap energies of post-sulfurized CFTS and post-selenized CFTSe films were estimated to be ∼1.37 eV and ∼1.11 eV with an error of ±0.02 eV by UV–Vis absorption, respectively, which are promising for photovoltaic application.

  13. Admixing dredged marine clay with cement-bentonite for reduction of compressibility

    Science.gov (United States)

    Rahilman, Nur Nazihah Nur; Chan, Chee-Ming

    2017-11-01

    Cement-based solidification/stabilization is a method that is widely used for the treatment of dredged marine clay. The key objective for solidification/stabilization is to improve the engineering properties of the originally soft, weak material. Dredged materials are normally low in shear strength and bearing capacity while high incompressibility. In order to improve the material's properties for possible reuse, a study on the one-dimensional compressibility of lightly solidified dredged marine clay admixed with bentonite was conducted. On the other hand, due to the viscous nature, particularly the swelling property, bentonite is a popular volumising agent for backfills. In the present study, standard oedometer test was carried out to examine the compressibility of the treated sample. Complementary strength measurements were also conducted with laboratory vane shear setup on both the untreated and treated dredged marine clay. The results showed that at the same binder content, the addition of bentonite contributed significantly to the reduction of compressibility and rise in undrained shear strength. These improved properties made the otherwise discarded dredged marine soils potentially reusable for reclamation works, for instance.

  14. Refinement of hydrogen positions in (NH4)2SeO4

    International Nuclear Information System (INIS)

    Loose, A.; Mel'nik, G.; Zink, N.; Wozniak, K.; Dominiak, P.; Smirnov, L.S.; Pawlukojc, A.; Shuvalov, L.A.

    2005-01-01

    The crystal structure of ammonium selenate has been studied by means of single crystal X-ray and neutron diffraction with the purpose of the refinement of hydrogen positions. The refined hydrogen positions obtained by single crystal neutron diffraction show that N-H bond lengths form a regular tetrahedron in an ammonium ion. The single crystal X-ray diffraction data show that N-H bond lengths are shorter than those obtained by neutron diffraction and are not equal between themselves. Thus, the comparison of the results of X-ray and neutron diffraction allows one to suggest that the shorter N-H bond lengths by X-ray diffraction reflect the distribution of the electron charge density of ammonium ions within the (NH 4 ) 2 SeO 4 crystal lattice

  15. Geochemical of clay formations : study of Spanish clay REFERENCE

    International Nuclear Information System (INIS)

    Turrero, M. J.; Pena, J.

    2003-01-01

    Clay rocks are investigated in different international research programs in order to assess its feasibility for the disposal of high level radioactive wastes. This is because different sepcific aspects: they have low hydraulic conductivity (10''-11-10''-15 m/s), a high sorption capacity, self-sealing capacity of facults and discontinuities and mechanical resistance. Several research programs on clay formations are aimed to study the chemistry of the groundwater and the water-rock reactions that control it: e. g. Boom Clay (Mol, Belgium), Oxford Clay /Harwell, United Kingdom), Toarcian Clay (Tournemire, France), Palfris formation (Wellenberg, Switzerland), Opalinus Clay (Bure, France). Based on these studies, considerable progress in the development of techniques for hydrologic, geochemical and hydrogeochemical characterization of mudstones has been accomplished (e. g. Beaufais et al. 1994, De Windt el al. 1998. Thury and Bossart 1999, Sacchi and Michelot 2000) with important advances in the knowledge of geochemical process in these materials (e. g. Reeder et al. 1993, Baeyens and Brandbury 1994, Beaucaire et al. 2000, Pearson et al., 2003).Furtermore, geochemical modeling is commonly used to simulate the evolution of water chemistry and to understand quantitatively the processes controlling the groundwater chemistry (e. g. Pearson et al. 1998, Tempel and Harrison 2000, Arcos et al., 2001). The work presented here is part of a research program funded by Enresa in the context of its R and D program. It is focused on the characterization of a clay formation (reference Argillaceous Formation, RAF) located within the Duero Basin (north-centralSpain). The characterisation of th ephysical properties,, fluid composition, mineralogy, water-rock reaction processes, geochemical modelling and sorption properties of the clays from the mentioned wells is the main purpose of this work. (Author)

  16. Preparation and characterization of CuInSe2 particles via the hydrothermal route for thin-film solar cells

    International Nuclear Information System (INIS)

    Wu, Chung-Hsien; Chen, Fu-Shan; Lin, Shin-Hom; Lu, Chung-Hsin

    2011-01-01

    Highlights: → A new hydrothermal process for preparing copper indium diselenide (CuInSe 2 ). → Well-crystallized CuInSe 2 particles are obtained at 180 deg. C for 1 h. → Densified CuInSe 2 thin films are prepared from ink printing. → Increasing temperatures result in an improvement of properties of CuInSe 2 films. - Abstract: CuInSe 2 powders with a chalcopyrite structure used in thin-film solar cells were successfully prepared via a hydrothermal method at low temperatures within short durations. Well-crystallized CuInSe 2 particles were formed via the hydrothermal reaction at 180 deg. C for 1 h. The concentrations of stabilizer, triethanolamine (TEA), significantly affected the purity, morphology and particle sizes of the prepared powders. Increasing the reaction duration and temperatures led to decrease the amount of second phase In(OH) 3 and resulted in the formation of pure CuInSe 2 . Densified CuInSe 2 thin films were prepared from ink printing with the addition of the flux. Increasing the selenization temperatures increased the grain size and improved the crystallinity of CuInSe 2 films.

  17. Sorption of radioiodine in organo-clays and -soils

    Energy Technology Data Exchange (ETDEWEB)

    Bors, J. (Niedersaechsisches Inst. fuer Radiooekologie, Hannover (Germany, F.R.))

    1990-01-01

    In the framework of investigations on the sorption of radioiodine to natural and artificially altered soil components, a number of clay minerals and natural soils were treated with quaternary alkylammonium ions to replace the exchangeable metal cations. With help of batch experiments the resulting organo-clays were tested with respect to their sorption capability of radioiodine quantified by the distribution ratio (R{sub D}-value). Treatment of bentonite, vermiculite and cretaceous clay as well as of samples from natural horizons of chernozem soil with hexadecylpyridinium (HDPY{sup +}) and benzethonium (BE{sup +}) exhibited sorptions rates and amounts, which are several orders of magnitude higher than those of the respective untreated samples. Moderate increases of the R{sub D}-values were found after cation exchange with hexadecyltrimethylammonium (HDTMA{sup +}), while the applications of trimethylphenylammonium (TMPA{sup +}) and tetramethylammonium (TMA{sup +}) were ineffective. Considerable sorption of radioiodine was observed with the commercially available Bentone. (orig.).

  18. Toxicological evaluation of clay minerals and derived nanocomposites: a review.

    Science.gov (United States)

    Maisanaba, Sara; Pichardo, Silvia; Puerto, María; Gutiérrez-Praena, Daniel; Cameán, Ana M; Jos, Angeles

    2015-04-01

    Clays and clay minerals are widely used in many facets of our society. This review addresses the main clays of each phyllosilicate groups, namely, kaolinite, montmorillonite (Mt) and sepiolite, placing special emphasis on Mt and kaolinite, which are the clays that are more frequently used in food packaging, one of the applications that are currently exhibiting higher development. The improvements in the composite materials obtained from clays and polymeric matrices are remarkable and well known, but the potential toxicological effects of unmodified or modified clay minerals and derived nanocomposites are currently being investigated with increased interest. In this sense, this work focused on a review of the published reports related to the analysis of the toxicological profile of commercial and novel modified clays and derived nanocomposites. An exhaustive review of the main in vitro and in vivo toxicological studies, antimicrobial activity assessments, and the human and environmental impacts of clays and derived nanocomposites was performed. From the analysis of the scientific literature different conclusions can be derived. Thus, in vitro studies suggest that clays in general induce cytotoxicity (with dependence on the clay, concentration, experimental system, etc.) with different underlying mechanisms such as necrosis/apoptosis, oxidative stress or genotoxicity. However, most of in vivo experiments performed in rodents showed no clear evidences of systemic toxicity even at doses of 5000mg/kg. Regarding to humans, pulmonary exposure is the most frequent, and although clays are usually mixed with other minerals, they have been reported to induce pneumoconiosis per se. Oral exposure is also common both intentionally and unintentionally. Although they do not show a high toxicity through this pathway, toxic effects could be induced due to the increased or reduced exposure to mineral elements. Finally, there are few studies about the effects of clay minerals on

  19. Selection of superior salt/boron tolerant Stanleya pinnata genotypes and quantification of their selenium phytoremediation abilities in drainage sediment.

    Science.gov (United States)

    The semi-metallic mineral Se, a naturally-occurring trace element, is primarily found as selenate originating from sedimentary and shale rock formations, e.g., in the western side of the San Joaquin Valley of central California (WSJV). Because selenate-Se is water soluble, bioavailable and biomagnif...

  20. Comparative study by TG and DSC Of membranes polyamide66/bentonite clay nanocomposite; Estudo comparativo por TG e DSC de membranas de nanocompositos poliamida66/argila bentonitica

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, K.M. de; Kojuch, L R; Araujo, E M; Lira, H.L., E-mail: keilamm@ig.com.b [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Unidade Academica de Engenharia de Materiais; Lima, F [Universidade Estadual da Paraiba (UEPB), Campina Grande, PB (Brazil). Dept. de Quimica

    2010-07-01

    In this study, it was obtained membranes of nanocomposites polyamide66 with 3 and 5% bentonite clay consists of silicates in layers from the interior of Paraiba. The clay was treated with a quaternary ammonium salt in order to make it organophilic. The membranes were prepared by phase inversion technique from the nanocomposites in solution. The clays were characterized by X-ray diffraction (XRD) and thermogravimetry (TG). Also the membranes were characterized by differential scanning calorimetry (DSC) and TG. The XRD and TG confirmed the presence of salt in the clay and thermal stability of the treated clay. For DSC, it was observed that there was no change in melting temperature of the membranes of nanocomposites compared to membrane pure polyamide66. By TG, it was found that the decomposition of the membranes of polyamide66 with treated clay were higher compared with the untreated clay. (author)

  1. The simulation of lunar gravity field recovery from D-VLBI of Chang’E-1 and SELENE lunar orbiters

    Science.gov (United States)

    Yan, Jianguo; Ping, Jingsong; Matsumoto, K.; Li, Fei

    2008-07-01

    The lunar gravity field is a foundation to study the lunar interior structure, and to recover the evolution history of the Moon. It is still an open and key topic for lunar science. For above mentioned reasons, it becomes one of the important scientific objectives of recent lunar missions, such as KAGUYA (SELENE) the Japanese lunar mission and Chang’E-1, the Chinese lunar mission. The Chang’E-1 and the SELENE were successfully launched in 2007. It is estimated that these two missions can fly around the Moon longer than 6 months simultaneously. In these two missions, the Chinese new VLBI (Very Long Baseline Interferometry) network will be applied for precise orbit determination (POD) by using a differential VLBI (D-VLBI) method during the mission period. The same-beam D-VLBI technique will contribute to recover the lunar gravity field together with other conventional observables, i.e. R&RR (Range and Range Rate) and multi-way Doppler. Taking VLBI tracking conditions into consideration and using the GEODYNII/SOVLE software of GSFC/NASA/USA [Rowlands, D.D., Marshall, J.A., Mccarthy, J., et al. GEODYN II System Description, vols. 1 5. Contractor Report, Hughes STX Corp. Greenbelt, MD, 1997; Ullman, R.E. SOLVE program: mathematical formulation and guide to user input, Hughes/STX Contractor Report, Contract NAS5-31760. NASA Goddard Space Flight Center, Greenbelt, Maryland, 1994], we simulated the lunar gravity field recovering ability with and without D-VLBI between the Chang’E-1 and SELENE main satellite. The cases of overlapped flying and tracking period of 30 days, 60 days and 90 days have been analyzed, respectively. The results show that D-VLBI tracking between two lunar satellites can improve the gravity field recovery remarkably. The results and methods introduced in this paper will benefit the actual missions.

  2. Efficiency of fatty acid accumulation into breast muscles of chickens ...

    African Journals Online (AJOL)

    The purpose of the investigation was to determine the effect of the addition of 12 ppm lycopene (Lyc), 2% fish oil (FO) or 0.25 ppm Se as selenate (SeVI) or selenized yeast (SeY) to an isoenergetic and isonitrogenous basal diet containing sunflower oil (SO) as the source of energy on the concentrations of fatty acids (FA), ...

  3. Modeling of Cation Binding in Hydrated 2:1 Clay Minerals - Final Report

    International Nuclear Information System (INIS)

    Smith, David E.

    2000-01-01

    Hydrated 2:1 clay minerals are high surface area, layered silicates that play a unique role in determining the fate of radionuclides in the environment. This project consisted of developing and implementing computer simulation methods for molecular characterization of the swelling and ion exchange properties of Hydrated 2:1 clay minerals, and the subsequent analysis and theoretical modeling with a view toward improving contaminant transport modeling as well as soil remediation and radionuclide containment strategies. Project results included the (a) development of simulation methods to treat clays under environmentally relevant conditions of variable water vapor pressure; (b) calculation of clay swelling thermodynamics as a function of interlayer ion size and charge (calculated quantities include immersion energies, free energies, and entropies of swelling); and (c) calculation of ion exchange free energies, including contributions from changing interlayer water contents and layer spacing

  4. Comprehensive review of geosynthetic clay liner and compacted clay liner

    Science.gov (United States)

    Shankar, M. Uma; Muthukumar, M.

    2017-11-01

    Human activity inevitably produces waste materials that must be managed. Some waste can be reused. However many wastes that cannot be used beneficially must be disposed of ensuring environmental safety. One of the common methods of disposal is landfilling. The most common problems of the landfill site are environmental degradation and groundwater contamination caused by leachate produced during the decomposition process of organic material and rainfall. Liner in a landfill is an important component which prevent leachate migration and prevent groundwater contamination. Earthen liners have been widely used to contain waste materials in landfill. Liners and covers for municipal and hazardous waste containment facilities are often constructed with the use of fine-grained, low plasticity soils. Because of low permeability geosynthetic clay liners and compacted clay liners are the main materials used in waste disposal landfills. This paper summaries the important geotechnical characteristics such as hydraulic conductivity, liquid limit and free swell index of geosynthetic clay liner and compacted clay liner based on research findings. This paper also compares geosynthetic clay liner and compacted clay liner based on certain criteria such as thickness, availability of materials, vulnerability to damage etc.

  5. Gamma-radiation and isotopic effect on the critical behavior in triglycine selenate crystals

    Science.gov (United States)

    Kassem, M. E.; Hamed, A. E.; Abulnasr, L.; Abboudy, S.

    1994-11-01

    Isotopic effects in pure and γ-irradiated triglycine selenate crystals were investigated using the specific heat ( Cp) technique. The obtained results showed an interesting dependence of the critical behavior of Cp on the deuterium content. With increasing content of deuterium, the character of the phase transition changed from a second order (γ-type) to a first order transition. After γ-irradiation, the behavior of Cp around the phase transition region was essentially affected. The transition temperature, Tc, decreased and Δ Cp depressed, and the transition became broad. It was noted that the effect of γ-irradiation is opposite to the isotopic effect.

  6. The effect of the addition of ground olive stones on the physical and mechanical properties of clay bricks

    Directory of Open Access Journals (Sweden)

    Arezki, S.

    2016-06-01

    Full Text Available This study deals with the effect of ground olive stones (GOS on the performance of fired clay bricks. Seven different clay-GOS mixes with 0, 1, 2, 3, 4, 5 and 10 wt % of GOS respectively were used for making fired brick samples. All samples were fired at 900 °C. The technological properties of the resultant material were then determined, including shrinkage, apparent density, pore size distribution, thermal conductivity, water absorption, and compressive and flexural strength. The addition of GOS to the mixture reduced the compressive strength of fired clay bricks. All clay brick pieces exhibited low firing shrinkage. It was apparent that as the percentage of GOS increased in the body, there was a noticeable increase in porosity. The water absorption coefficient decreased with increasing additions. The results indicated that thermal conductivity decreases with decrease in density and increase in porosity in fired clay bricks.En este trabajo se ha estudiado el efecto de la incorporación de huesos de aceituna triturados en las prestaciones de ladrillos de arcilla cocida. Se utilizaron siete proporciones de huesos de aceituna 0 %, 1 %, 2 %, 3 %, 4 %, 5 % y 10 % en peso. Todas las muestras se calcinaron a 900 °C y posteriormente se determinaron las propiedades resultantes, incluyendo la densidad aparente, retracción, distribución de tamaños de poro, conductividad térmica, absorción de agua y resistencias mecánicas. La adición de huesos de aceituna molidos a la mezcla redujo la resistencia a la compresión de los ladrillos de arcilla cocida. Además se observó que todas las piezas de ladrillo mostraron baja retracción tras exposición a altas temperaturas. Como era de esperar a medida que el porcentaje de huesos de aceituna molidos aumentó, la porosidad se incrementó de manera evidente. El coeficiente de absorción de agua disminuyó con el aumento del porcentaje de sustitución. Los resultados indicaron que la conductividad t

  7. Approaches for treating uncertainty in the long term performance assessment of a geological waste repository in clay

    International Nuclear Information System (INIS)

    Marivoet, J.; Volckaert, G.; Wemaere, I.; Mallants, D.

    1998-01-01

    In Belgium the current strategy for high-level waste disposal is the geological disposal in a plastic clay layer. The performance assessment approach consists of a systematic scenario selection based on the FEP (features, events and processes) methodology followed by consequence analyses for the selected scenarios. In these consequence analyses the different sources of uncertainty are systematically considered. For the normal evolution scenario, i.e. the scenario which includes all FEP's which are about certain to occur, a stochastic technique of the Monte Carlo type is applied for treating uncertainty. For the altered evolution scenarios a deterministic approach is generally used to evaluate the uncertainties on the long-term. In the case of altered evolution scenarios, comparisons of fluxes from the far field into the biosphere with those calculated for the normal evolution scenario are used, beside dose calculations, to evaluate the safety consequences. Some typical examples of the above approaches will be presented. (author)

  8. Uranium and selenium resistance in Cupriavidus metallidurans CH34

    International Nuclear Information System (INIS)

    Avoscan, L.; Untereiner, G.; Carriere, M.; Gouget, B.; Degrouard, J.

    2007-01-01

    Cupriavidus metallidurans CH34, a soil bacterium, is known to resist a variety of heavy metals and metalloids. Its capacity to resist, accumulate and transform selenium (Se as selenite or selenate) and uranium (U as uranyl-carbonate and uranyl-citrate) was investigated. C. metallidurans CH34 resists to high U concentrations (up to 10 mM) whatever its speciation. However, no major accumulation could be measured: U-carbonate and U-citrate are not bio-available for the bacteria. The anaerobic response of C. metallidurans CH34 to U will be looked for. C. metallidurans CH34 resists to high Se concentrations (up to 4 mM of selenite and 8 mM of selenate). Bacteria exposed to 2 mM of selenite accumulate 25 times more Se than when they are exposed to same concentration of selenate. Se resistance is characterized by the reduction of oxy-anions in the bacteria. Selenite is reduced to elemental Se by an intracellular process, but the metabolic fate of selenate is unknown. By combining three methods of speciation (X-ray absorption spectroscopy (XANES and EXAFS), HPLC-ICP-MS and SDS-PAGE coupled with particle induced X-ray emission (PIXE)), we both identified and specified the chemical intermediates formed by this bacterium upon exposure to these oxy-anions. Two mechanisms of reduction of Se oxides in C. metallidurans CH34 were highlighted. Assimilation transforms selenite and selenate into organic Se, identified as seleno-methionine and leads to its non-specific incorporation into bacterial proteins (presence of selenious proteins). Detoxication precipitates selenite in nano-particles of elemental Se. (authors)

  9. Study and development of nanocomposites PBT/bentonite clay treated by ionizing radiation: preparation and characterization

    International Nuclear Information System (INIS)

    Sartori, Mariana do Nascimento

    2014-01-01

    This work describes the preparation and characterization of composites based on poly (butylene terephthalate) - PBT and brazilian modified clay prepared by the melt intercalation. PBT nanocomposites with 3 and 5 % by weight of organically modified clay, by the addition of a quaternary ammonium salt, were prepared by extrusion using a twin-screw extruder machine. After the extrusion process, the materials were injected to obtain specimens tests samples for the characterization tests. Part of the specimens samples were irradiated using an electron beam accelerator with 1.5 MeV at room temperature in the presence of air. Samples of pure PBT and irradiated and non-irradiated nanocomposites were characterized by mechanical tests of tensile, flexural and impact, heat distortion temperature (HDT), X - ray diffraction (XRD), scanning electron microscopy (SEM), melt flow index (MFI) thermogravimetry (TG) and differential scanning calorimetry (DSC) and the correlation between the properties was discussed. The results showed that the addition of clay, in both percentages, promoted an increase greater than 50 % in tensile strength at break and a gain of around 35% in heat distortion temperature when compared to the pure polymer. The treatment with ionizing radiation of electron beam at the doses used in this study showed no significant changes in material properties. (author)

  10. Clay dispersibility and soil friability – testing the soil clay-to-carbon saturation concept

    OpenAIRE

    Schjønning, P.; de Jonge, L.W.; Munkholm, L.J.; Moldrup, P.; Christensen, B.T.; Olesen, J.E.

    2011-01-01

    Soil organic carbon (OC) influences clay dispersibility, which affects soil tilth conditions and the risk of vertical migration of clay colloids. No universal lower threshold of OC has been identified for satisfactory stabilization of soil structure. We tested the concept of clay saturation with OC as a predictor of clay dispersibility and soil friability. Soil was sampled three years in a field varying in clay content (~100 to ~220 g kg-1 soil) and grown with different crop rotations. Clay ...

  11. Microbial selenium sulfide reduction for selenium recovery from wastewater

    NARCIS (Netherlands)

    Hageman, S.P.W.; Weijden, van der R.D.; Stams, A.J.M.; Cappellen, van P.; Buisman, C.J.N.

    2017-01-01

    Microbial reduction of selenium sulfide (SeS2) is a key step in a new treatment process to recover selenium from selenate and selenite streams. In this process, selenate is first reduced to selenite, and subsequently selenite is reduced by sulfide and precipitates from the solution as SeS2. The

  12. Spraying of Crops with Selenium

    DEFF Research Database (Denmark)

    Sima, Per; Nielsen, Gunnar Gissel

    1985-01-01

    A frame experiment was carried out in 1983 to test the effect of foliar application of selenate and selenite and the effect of simultaneous addition of a micronutrient solution on the Se concentration of barley and potatoes. In general, selenate was the more effective; however, both forms of Se p...

  13. Release of cadmium from clays and plant uptake of cadium from soil as affected by potassium and calcium amendments

    International Nuclear Information System (INIS)

    Haghiri, F.

    1976-01-01

    The effects of percent K and/or Ca saturations on the release of Cd from Cd-treated H-clays (kaolinite and illite) and on the Cd availability to plants from Cd-treated Canfield silt loam soil were determined. The concentration of Cd in the dialyzates from both kaolinite and illite clays increased as the percent of Ca or K saturation of the clays in the suspension decreased. The release of Cd from both clays was greater in the presence of Ca than K. In a separate experiment, the concentration of Cd in soybean shoots (Glycine max L. Merr.) ''Corsoy'' decreased with increasing percent Ca or K saturation of the soil. The results indicated that Cd uptake by soybeam shoots could be impaired to a great extent by K application

  14. Community ecology of the metazoan parasites of Atlantic Moonfish, Selene setapinnis (Osteichthyes: Carangidae from the coastal zone of the state of Rio de Janeiro, Brazil

    Directory of Open Access Journals (Sweden)

    A. S. Cordeiro

    Full Text Available Eighty-nine specimens of Selene setapinnis (Mitchill, 1815 collected from the coastal zone of the State of Rio de Janeiro (21-23ºS, 41-45ºW and 23º05'S, 44º30'W, Brazil, from August 2001 to May 2002, were necropsied to study their metazoan parasites. Eighty-one (91% specimens of S. setapinnis were parasitized by one or more metazoan species. Twenty-one species of parasites were collected: 8 digeneans, 3 monogeneans, 2 cestodes, 5 nematodes, and 3 copepods. The endoparasites (digeneans, cestodes, and nematodes were 74.1% of total number of parasite specimens collected. The monogenean Pseudomazocraes selene (Hargis, 1957 was the most dominant species with the highest prevalence in the parasite community of S. setapinnis. The metazoan parasites of this host species showed the typical aggregated pattern of distribution. Only one parasite species (Acanthocolpoides pauloi Travassos, Freitas & Buhrnheim, 1955 showed positive correlation between the host total length and parasite abundance in S. setapinnis. Caligus robustus Bassett-Smith, 1898, P. selene, and Terranova sp. demonstrated positive correlation between the host total length and prevalence. Larvae of Terranova sp. showed influence of the host sex on its prevalence. A pair of ectoparasite species, P. selene-C. robustus, exhibited positive covariation between their abundances. Two pairs of endoparasite species, L. microstomum-P. merus and A. pauloi-P. merus showed significant covariation among their abundances; and the pair Terranova sp.-Raphidascaris sp. had positive co-ocorrence and covariation in the infracommunities of S. setapinnis. Like the parasite communities of the other carangid fishes from Rio de Janeiro, the parasite community of S. setapinnis is apparently only a slightly ordered species complex, characterized by dominance of endoparasite species.

  15. Use of clays as liners in solar ponds

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Gerardo [Facultad de Ingenieria, Universidad Anahuac Mexico Norte, Huixquilucan, Edo. de Mexico 52786 (Mexico); Almanza, Rafael [Instituto de Ingenieria, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, Mexico D.F. 04510 (Mexico)

    2009-06-15

    An alternative to synthetic materials for use in solar pond liners is to select clayey soils as hydraulic barriers. This option reduces the cost of construction and the risk of contamination of subsoil and groundwater by hot brines. This paper deals with the physical, chemical and hydraulic properties of different soils tested mainly as compacted clay liners. The underdeveloped nations have the option to use this type of liner, but before doing so several tests are recommended, including those for soil and water composition, permeability, plasticity and X-ray diffraction analysis. In this investigation the following samples are analyzed: native clayey soils with illite, montmorillonite and halloysite, treated and non-treated bentonites in powder and granulated form, a mixture of zeolite and sodium bentonite, and industrial minerals composed largely of halloysite, kaolinite and attapulgite selected clays. Neutral salt aqueous solutions (NaCl and KCl) at different concentrations and under temperature gradients were used for compatibility testing conducted on these specimens. Experiment setup and particular testing procedures are also discussed. (author)

  16. Synthesis and Characterization of an Earth-Abundant Cu2BaSn(S,Se)4 Chalcogenide for Photoelectrochemical Cell Application.

    Science.gov (United States)

    Shin, Donghyeop; Ngaboyamahina, Edgard; Zhou, Yihao; Glass, Jeffrey T; Mitzi, David B

    2016-11-17

    Cu 2 BaSnS 4-x Se x films consisting of earth-abundant metals have been examined for photocathode application. Films with different Se contents (i.e., Cu 2 BaSnS 4-x Se x with x ≤ 2.4) were synthesized using a cosputter system with post-deposition sulfurization/selenization annealing treatments. Each film adopts a trigonal P3 1 crystal structure, with progressively larger lattice constants and with band gaps shifting from 2.0 to 1.6 eV, as more Se substitutes for S in the parent compound Cu 2 BaSnS 4 . Given the suitable bandgap and earth-abundant elements, the Cu 2 BaSnS 4-x Se x films were studied as prospective photocathodes for water splitting. Greater than 6 mA/cm 2 was obtained under illumination at -0.4 V versus reversible hydrogen electrode for Pt/Cu 2 BaSnS 4-x Se x films with ∼60% Se content (i.e., x = 2.4), whereas a bare Cu 2 BaSnS 4-x Se x (x = 2.4) film yielded ∼3 mA/cm 2 at -0.4 V/RHE.

  17. Water-dispersible clay in soils treated with sewage sludge Argila dispersa em água em solos tratados com lodo de esgoto

    Directory of Open Access Journals (Sweden)

    João Tavares Filho

    2010-10-01

    Full Text Available A by-product of Wastewater Treatment Stations is sewage sludge. By treatment and processing, the sludge is made suitable for rational and environmentally safe use in agriculture. The aim of this study was to assess the influence of different doses of limed sewage sludge (50 % on clay dispersion in soil samples with different textures (clayey and medium. The study was conducted with soil samples collected from native forest, on a Red Latosol (Brazilian classification: Latossolo Vermelho distroférrico loamy soil in Londrina (PR and a Red-Yellow Latosol (BC: Latossolo Vermelho-Amarelo distrófico medium texture soil in Jaguapitã (PR. Pots were filled with 3 kg of air-dried fine earth and kept in greenhouse. The experiment was arranged in a randomized block design with six treatments: T1 control, and treatments with limed sewage sludge (50 % as follows: T2 (3 t ha-1, T3 (6 t ha-1, T4 (12 t ha-1, T5 (24 t ha-1 and T6 (48 t ha-1 and five replications. The incubation time was 180 days. At the end of this period, the pots were opened and two sub-samples per treatment collected to determine pH-H2O, pH KCl (1 mol L-1, organic matter content, water-dispersible clay, ΔpH (pH KCl - pH-H2O and estimated PZC (point of zero charge: PZC = 2 pH KCl - pH-H2O, as well as the mineralogy of the clay fraction, determined by X ray diffraction. The results showed no significant difference in the average values for water-dispersible clay between the control and the other treatments for the two soil samples studied and ΔpH was the variable that correlated best with water-dispersible clay in both soils.As Estações de Tratamento de Esgoto Sanitário (ETES geram um subproduto (lodo de esgoto que, quando tratado e processado, adquire características que permitem sua utilização agrícola de maneira racional e ambientalmente segura. Este trabalho objetivou avaliar a influência de diferentes doses de lodo de esgoto caleado (50 % na dispersão de argilas em amostras de

  18. Electron-gun Evaporation of Cu and In thin films as Precursors for CuInSe{sub 2} Formation; Evaporacion mediante Canon de Electrones de Laminas Delgadas de Cu e In como Precursores para la Obtencion de CuInSe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Caballero, R; Guillen, C

    2001-07-01

    In the present investigation CuInSe{sub 2} is obtained in two stages: sequential evaporation of Cu and In using an electron gun evaporator on substrates up to 30 x 30 cm''2, and a posterior selenization of the deposited films. The study is mainly focused on the first stage, in where the control of the different evaporation parameters of the metal precursors is essential. Electrical measurements are carried out, and also the topography and the thickness are determined with the object of studying the properties and homogeneity of the thin films. (Author) 19 refs.

  19. Electron-gun Evaporation of Cu and In thin films as Precursors for CuInSe{sub 2} Formation; Evaporacion mediante Canon de Electrones de Laminas Delgadas de Cu e In como Precursores para la Obtencion de CuInSe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Caballero, R.; Guillen, C.

    2001-07-01

    In the present investigation CuInSe{sub 2} is obtained in two stages: sequential evaporation of Cu and In using an electron gun evaporator on substrates up to 30 x 30 cm''2, and a posterior selenization of the deposited films. The study is mainly focused on the first stage, in where the control of the different evaporation parameters of the metal precursors is essential. Electrical measurements are carried out, and also the topography and the thickness are determined with the object of studying the properties and homogeneity of the thin films. (Author) 19 refs.

  20. Non-toxic novel route synthesis and characterization of nanocrystalline ZnS{sub x}Se{sub 1−x} thin films with tunable band gap characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Agawane, G.L., E-mail: agawaneganesh@gmail.com [Department of Materials Science and Engineering, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Shin, Seung Wook [Department of Materials Science and Engineering, KAIST, Daejeon 305-701 (Korea, Republic of); Vanalakar, S.A. [Department of Materials Science and Engineering, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Moholkar, A.V. [Electrochemical Mat. Lab., Department of Physics, Shivaji University, Kolhapur 416-004 (India); Gurav, K.V.; Suryawanshi, M.P. [Department of Materials Science and Engineering, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Lee, Jeong Yong [Department of Materials Science and Engineering, KAIST, Daejeon 305-701 (Korea, Republic of); Yun, Jae Ho, E-mail: yunjh92@kier.re.kr [Photovoltaic Research Group, KIER, Jang-Dong, Yuseong-Gu, Daejeon 305-343 (Korea, Republic of); Kim, Jin Hyeok, E-mail: jinhyeok@chonnam.ac.kr [Department of Materials Science and Engineering, Chonnam National University, Gwangju 500-757 (Korea, Republic of)

    2014-07-01

    Highlights: • A simple, inexpensive, and non-toxic CBD route is used to deposit ZnS thin films. • The ZnS{sub x}Se{sub 1−x} thin films formation takes place via annealing of ZnS thin films in Se atmosphere. • S/(S + Se) ratio found to be temperature dependent and easy tuning of band gap has been done by Se atom deposition. - Abstract: An environmentally benign chemical bath deposition (CBD) route was employed to deposit zinc sulfide (ZnS) thin films. The CBD-ZnS thin films were further selenized in a furnace at various temperatures viz. 200, 300, 400, and 500 °C and the S/(S + Se) ratio was found to be dependent on the annealing temperature. The effects of S/(S + Se) ratio on the structural, compositional and optical properties of the ZnS{sub x}Se{sub 1−x} (ZnSSe) thin films were investigated. EDS analysis showed that the S/(S + Se) ratio decreased from 0.8 to 0.6 when the film annealing temperature increased from 200 to 500 °C. The field emission scanning electron microscopy and atomic force microscopy studies showed that all the films were uniform, pin hole free, smooth, and adhered well to the glass substrate. The X-ray diffraction study on the ZnSSe thin films showed the formation of the cubic phase, except for the unannealed ZnSSe thin film, which showed an amorphous phase. The X-ray photoelectron spectroscopy revealed Zn-S, Zn-Se, and insignificant Zn-OH bonds formation from the Zn 2p{sub 3/2}, S 2p, Se 3d{sub 5/2}, and O 1s atomic states, respectively. The ultraviolet–visible spectroscopy study showed ∼80% transmittance in the visible region for all the ZnSSe thin films having various absorption edges. The tuning of the band gap energy of the ZnSSe thin films was carried out by selenizing CBD-ZnS thin films, and as the S/(S + Se) ratio decreased from 0.8 to 0.6, the band gap energy decreased from 3.20 to 3.12 eV.

  1. Clay-brick firing in a high-temperature solar furnace

    Energy Technology Data Exchange (ETDEWEB)

    Villeda-Munoz, G. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Instituto Politecnico Nacional, Unidad Queretaro, Queretaro (Mexico)]. E-mail: gvilledam@ipn.mx; Castaneda-Miranda, A. [Computation & amp; Mechatronic Studies Division, Universidad Politecnica de Queretaro, Queretaro (Mexico)]. E-mail: acastaneda@upq.edu.mx; Pless, R.C. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Instituto Politecnico Nacional, Unidad Queretaro, Queretaro (Mexico)]. E-mail: rpless@ipn.mx; Vega-Duran, J.T. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Instituto Politecnico Nacional, Unidad Queretaro, Queretaro (Mexico); Pineda-Pinon, J. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Instituto Politecnico Nacional, Unidad Queretaro, Queretaro (Mexico)]. E-mail: jpinedap@ipn.mx

    2011-10-15

    The firing process for clay-brick production in traditional kilns generates atmospheric pollution when industrial and domestic scrap is used as fuel. An alternative is presented here, using the solar energy for clay-brick firing. We are developing a system for clay-brick firing to reach temperatures between 900 degrees Celsius and 1050 degrees Celsius; these temperatures are sufficiently high to fire bricks or similar ceramic products. The present paper describes the design and characterization of the components of a solar furnace for clay-brick firing with inner chamber dimensions of 0.48 * 0.61 * 0.64 m. To convey the sunlight to the firing chamber, a heliostat with nine 1 * 1 m mirrors is used to send the rays of the sun to an off-axis parabolic concentrator that focuses the light on the entrance of the firing chamber. The heliostat has a solar-tracking system which makes primary and secondary adjustments to assure that the reflected solar radiation always arrives at the concentrator. The firing chamber contains a prismatic cavity that absorbs the solar radiation to generate the heat which is needed for baking the bricks inside the firing chamber. [Spanish] El proceso de coccion para la produccion de tabiques de arcilla en hornos tradicionales genera contaminacion atmosferica cuando los desechos industriales y domesticos se usan como combustibles. Aqui se presenta una alternativa, utilizando la energia solar para la coccion de tabiques de arcilla. Estamos desarrollando un sistema para la coccion de tabiques de arcilla para alcanzar temperaturas entre 900 grados centigradosy 1050 grados centigrados; estas temperaturas son suficientemente altas para cocer tabiques o productos ceramicos similares. El presente articulo describe el diseno y caracterizacion de los componentes de un horno solar para la coccion de tabiques de arcilla con una camara con dimensiones internas de 0.48 * 0.61 *× 0.64 m. Para dirigir los rayos solares a la camara de coccion, un heliostato

  2. Large scale structures in liquid crystal/clay colloids

    Science.gov (United States)

    van Duijneveldt, Jeroen S.; Klein, Susanne; Leach, Edward; Pizzey, Claire; Richardson, Robert M.

    2005-04-01

    Suspensions of three different clays in K15, a thermotropic liquid crystal, have been studied by optical microscopy and small angle x-ray scattering. The three clays were claytone AF, a surface treated natural montmorillonite, laponite RD, a synthetic hectorite, and mined sepiolite. The claytone and laponite were sterically stabilized whereas sepiolite formed a relatively stable suspension in K15 without any surface treatment. Micrographs of the different suspensions revealed that all three suspensions contained large scale structures. The nature of these aggregates was investigated using small angle x-ray scattering. For the clays with sheet-like particles, claytone and laponite, the flocs contain a mixture of stacked and single platelets. The basal spacing in the stacks was independent of particle concentration in the suspension and the phase of the solvent. The number of platelets in the stack and their percentage in the suspension varied with concentration and the aspect ratio of the platelets. The lath shaped sepiolite did not show any tendency to organize into ordered structures. Here the aggregates are networks of randomly oriented single rods.

  3. Large scale structures in liquid crystal/clay colloids

    International Nuclear Information System (INIS)

    Duijneveldt, Jeroen S van; Klein, Susanne; Leach, Edward; Pizzey, Claire; Richardson, Robert M

    2005-01-01

    Suspensions of three different clays in K15, a thermotropic liquid crystal, have been studied by optical microscopy and small angle x-ray scattering. The three clays were claytone AF, a surface treated natural montmorillonite, laponite RD, a synthetic hectorite, and mined sepiolite. The claytone and laponite were sterically stabilized whereas sepiolite formed a relatively stable suspension in K15 without any surface treatment. Micrographs of the different suspensions revealed that all three suspensions contained large scale structures. The nature of these aggregates was investigated using small angle x-ray scattering. For the clays with sheet-like particles, claytone and laponite, the flocs contain a mixture of stacked and single platelets. The basal spacing in the stacks was independent of particle concentration in the suspension and the phase of the solvent. The number of platelets in the stack and their percentage in the suspension varied with concentration and the aspect ratio of the platelets. The lath shaped sepiolite did not show any tendency to organize into ordered structures. Here the aggregates are networks of randomly oriented single rods

  4. Multiscale Micromechanical Modeling of Polymer/Clay Nanocomposites and the Effective Clay Particle

    Science.gov (United States)

    Sheng, Nuo; Boyce, Mary C.; Parks, David M.; Manovitch, Oleg; Rutledge, Gregory C.; Lee, Hojun; McKinley, Gareth H.

    2003-03-01

    Polymer/clay nanocomposites have been observed to exhibit enhanced mechanical properties at low weight fractions (Wp) of clay. Continuum-based composite modeling reveals that the enhanced properties are strongly dependent on particular features of the second-phase ¡°particles¡+/-; in particular, the particle volume fraction (fp), the particle aspect ratio (L/t), and the ratio of particle mechanical properties to those of the matrix. However, these important aspects of as-processed nanoclay composites have yet to be consistently and accurately defined. A multiscale modeling strategy was developed to account for the hierarchical morphology of the nanocomposite: at a lengthscale of thousands of microns, the structure is one of high aspect ratio particles within a matrix; at the lengthscale of microns, the clay particle structure is either (a) exfoliated clay sheets of nanometer level thickness or (b) stacks of parallel clay sheets separated from one another by interlayer galleries of nanometer level height. Here, quantitative structural parameters extracted from XRD patterns and TEM micrographs are used to determine geometric features of the as-processed clay ¡°particles¡+/-, including L/t and the ratio of fp to Wp. These geometric features, together with estimates of silicate lamina stiffness obtained from molecular dynamics simulations, provide a basis for modeling effective mechanical properties of the clay particle. The structure-based predictions of the macroscopic elastic modulus of the nanocomposite as a function of clay weight fraction are in excellent agreement with experimental data. The adopted methodology offers promise for study of related properties in polymer/clay nanocomposites.

  5. Clay intercalation and influence on crystallinity of EVA-based clay nanocomposites

    International Nuclear Information System (INIS)

    Chaudhary, D.S.; Prasad, R.; Gupta, R.K.; Bhattacharya, S.N.

    2005-01-01

    Various polymer clay nanocomposites (PCNs) were prepared from ethylene vinyl acetate copolymer (EVA) with 9, 18 and 28% vinyl acetate (VA) content filled with different wt.% (2.5, 5 and 7.5) of a Montmorillonite-based organo-modified clay (Cloisite[reg] C15A and C30B). The PCNs were prepared using melt blending techniques. Morphological information regarding intercalation and exfoliation were determined by using wide-angle X-ray scattering (WAXS) and transmission electron microscopy (TEM). WAXS and TEM confirmed that increasing the VA content was necessary to achieve greater clay-polymer interaction as seen from the comparatively higher intercalation of clay platelets with 28% VA. The effect of addition of clay on the development and the modification of crystalline morphology in EVA matrix was also studied using WAXS and temperature-modulated differential scanning calorimetry (MDSC). Results are presented showing that the addition of clay platelets does not increase the matrix crystallinity but the morphology was significantly modified such that there was an increase in the 'rigid' amorphous phase. Mechanical properties were also evaluated against the respective morphological information for each specimen and there are indications that the level of clay-polymer interaction plays a significant role in such morphological modification, and in such a way that affects the final PCN mechanical properties which has wide and significant applications in the packaging industries

  6. Optimization of organo clay production for applications in based oil drilling fluid; Otimizacao do processo de organofilizacao para aplicacoes em fluidos de perfuracao base oleo

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Heber S; Martins, Alice B; Costa, Danubia L. da; Ferreira, Heber C; Neves, Gelmires de A; Melo, Tomas J.A. de [Universidade Federal de Campina Grande (UFCG), PB (Brazil); Teixeira Neto, Erico [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil)

    2008-07-01

    The organophilic clays are widely used as an agent dispersed in the composition of oil based drilling fluids. The organophilic clays are gotten from bentonite clays treated, in watery way, with ionic surfactants, that are adsorbed in the surface of interlayer of the clays, re-covered them with a organic layer. A fundamental stage of production of the organophilic clays is the dispersion of bentonite clays, in way that variables like: speed of agitation, temperature and time of cure, influences directly in plastic and apparent viscosities of these dispersions, together with other variables of organophilization process, like, temperature and time of cure of organophilization, has direct influence in efficiency of the organophilization process. This work considers a study of these variable, using bentonite clays: Brasgel PA{sup R} and Cloisite Na{sup +R}, treated with the ionic surfactant Praepagem WB{sup R}. The organophilic clays gotten had been characterized by rays X diffraction, Foster's swelling, and the results were compared with the commercial organophilic clay VG-69{sup R}, industrially treated with ionic surfactant. Viscosities plastic and apparent of the dispersions had been measured in the midst of organic dispersant diesel oil used to obtain the oil based drilling fluids. Preliminary results of Foster's swelling and preparation of fluids show that the clays have affinity with the means liquid organic dispersants, and the fluids meet specifications of PETROBRAS (N-22581-1997 and N-2259 to 1997) for use in the of diesel oil based drilling fluids. (author)

  7. Clay Dispersibility and Soil Friability-Testing the Soil Clay-to-Carbon Saturation Concept

    DEFF Research Database (Denmark)

    Schjønning, Per; de Jonge, Lis Wollesen; Munkholm, Lars Juhl

    2012-01-01

    Soil organic carbon (OC) influences clay dispersibility, which affects soil tilth conditions and the risk of vertical migration of clay colloids. No universal lower threshold of OC has been identified for satisfactory stabilization of soil structure. We tested the concept of clay saturation with OC...... as a predictor of clay dispersibility and soil friability. Soil was sampled 3 yr in a field varying in clay content (∼100 to ∼220 g kg−1 soil) and grown with different crop rotations. Clay dispersibility was measured after end-over-end shaking of field-moist soil and 1- to 2-mm sized aggregates either air......-dried or rewetted to −100 hPa matric potential. Tensile strength of 1- to 2-, 2- to 4-, 4- to 8-, and 8- to 16-mm air-dried aggregates was calculated from their compressive strength, and soil friability estimated from the strength–volume relation. Crop rotation characteristics gave only minor effects on clay...

  8. Rover exploration on the lunar surface; a science proposal for SELENE-B mission

    Science.gov (United States)

    Sasaki, S.; Kubota, T.; Akiyama, H.; Hirata, N.; Kunii, Y.; Matsumoto, K.; Okada, T.; Otake, M.; Saiki, K.; Sugihara, T.

    LUNARSURFACE:ASCIENCES. Sasaki (1), T. Kubota (2) , H. Akiyama (1) , N. Hirata (3), Y. Kunii (4), K. Matsumoto (5), T. Okada (2), M. Otake (3), K. Saiki (6), T. Sugihara (3) (1) Department of Earth and Planetary Science, Univ. Tokyo, (2) Institute of Space and Astronautical Sciences, (3) National Space Development Agency of Japan, (4) Department of Electrical and Electronic Engineering, Chuo Univ., (5) National Aerospace Laboratory of Japan, (6) Research Institute of Materials and Resources, Akita Univ. sho@eps.s.u -tokyo.ac.jp/Fax:+81-3-5841-4569 A new lunar landing mission (SELENE-B) is now in consideration in Japan. Scientific investigation plans using a rover are proposed. To clarify the origin and evolution of the moon, the early crustal formation and later mare volcanic processes are still unveiled. We proposed two geological investigation plans: exploration of a crater central peak to discover subsurface materials and exploration of dome-cone structures on young mare region. We propose multi-band macro/micro camera using AOTF, X-ray spectrometer/diffractometer and gamma ray spectrometer. Since observation of rock fragments in brecciaed rocks is necessary, the rover should have cutting or scraping mechanism of rocks. In our current scenario, landing should be performed about 500m from the main target (foot of a crater central peak or a cone/dome). After the spectral survey by multi-band camera on the lander, the rover should be deployed for geological investigation. The rover should make a short (a few tens meter) round trip at first, then it should perform traverse observation toward the main target. Some technological investigations on SELENE-B project will be also presented.

  9. Novel applications of locally sourced montmorillonite (MMT) clay as ...

    African Journals Online (AJOL)

    This work explores the application of a locally sourced raw material, montmorillonite (MMT) clay, as a disintegrant in the formulation of an analgesic pharmaceutical product - paracetamol. The raw MMT was refined and treated with 0.IM NaCl to yield sodium montmorillonite (NaMMT) and the powder properties established in ...

  10. Atrazine biodegradation modulated by clays and clay/humic acid complexes

    International Nuclear Information System (INIS)

    Besse-Hoggan, Pascale; Alekseeva, Tatiana; Sancelme, Martine; Delort, Anne-Marie; Forano, Claude

    2009-01-01

    The fate of pesticides in the environment is strongly related to the soil sorption processes that control not only their transfer but also their bioavailability. Cationic (Ca-bentonite) and anionic (Layered Double Hydroxide) clays behave towards the ionisable pesticide atrazine (AT) sorption with opposite tendencies: a noticeable sorption capacity for the first whereas the highly hydrophilic LDH showed no interactions with AT. These clays were modified with different humic acid (HA) contents. HA sorbed on the clay surface and increased AT interactions. The sorption effect on AT biodegradation and on its metabolite formation was studied with Pseudomonas sp. ADP. The biodegradation rate was greatly modulated by the material's sorption capacity and was clearly limited by the desorption rate. More surprisingly, it increased dramatically with LDH. Adsorption of bacterial cells on clay particles facilitates the degradation of non-sorbed chemical, and should be considered for predicting pesticide fate in the environment. - The biodegradation rate of atrazine was greatly modulated by adsorption of the pesticide and also bacterial cells on clay particles.

  11. Influence of Polymer-Clay Interfacial Interactions on the Ignition Time of Polymer/Clay Nanocomposites.

    Science.gov (United States)

    Zope, Indraneel S; Dasari, Aravind; Yu, Zhong-Zhen

    2017-08-11

    Metal ions present on smectite clay (montmorillonite) platelets have preferential reactivity towards peroxy/alkoxy groups during polyamide 6 (PA6) thermal decomposition. This changes the decomposition pathway and negatively affects the ignition response of PA6. To restrict these interfacial interactions, high-temperature-resistant polymers such as polyetherimide (PEI) and polyimide (PI) were used to coat clay layers. PEI was deposited on clay by solution-precipitation, whereas PI was deposited through a solution-imidization-precipitation technique before melt blending with PA6. The absence of polymer-clay interfacial interactions has resulted in a similar time-to-ignition of PA6/PEI-clay (133 s) and PA6/PI-clay (139 s) composites as neat PA6 (140 s). On the contrary, PA6 with conventional ammonium-based surfactant modified clay has showed a huge drop in time-to-ignition (81 s), as expected. The experimental evidences provided herein reveal the role of the catalytic activity of clay during the early stages of polymer decomposition.

  12. Coupled transport and chemistry in clay stone studied by advective displacement: experiments and model

    International Nuclear Information System (INIS)

    Landesman, C.; Grambow, B.; Bailly, C.; Ribet, S.; Perrigaud, K.; Baty, V.; Giffaut, E.

    2010-01-01

    Document available in extended abstract form only. Full text of publication entered in this record. For assessing the mass transfer resistance of the Callovo-Oxfordian clay rock formation in case of implementing a nuclear waste repository, various strongly coupled processes need to be understood and quantified both in near and far field: multi-species diffusion/advection, mineral/pore water interaction, interaction with the waste matrix and engineered barrier material, radionuclide retention, colloid transport, pore water chemistry evolution etc. To study many of these processes in their interrelationship simultaneously, a series of high pressure stainless steel advection cell was designed and clay cores from different locations of different calcite and clay contents were machined to fit the inner diameter of the cells with a precision of 50 μm. After assembling, simulated oxygen free clay pore water with bromine tracer was pushed by a High Pressure pump through the reactor by a pressure of up 100 bars at temperatures between 20 and 90 deg. C and the out-flowing water was collected, protected from air and analyzed by ICP-MS, COT meter and ion chromatography in regular time intervals. The water flow rate was between 0.02 and 1.2 mL/ d, corresponding to a clay rock permeabilities between 10 -12 and 10 -14 m/s at 25 deg. C. Permeabilities increase with temperature as expected due to reduction of viscosity of water. The experiments last up to 2 years. The first drops of out flowing allow estimating the initial pore water composition. This is particular useful to assess mobile natural organic matter contents, Se concentrations and temperature effect on clay water composition. Results show that only very small organic molecules are mobile. Temperature had only little effect on water composition. After few months both tritiated (HTO) water and 36 Cl were added and from the evolution of the activities in the out flowing water dispersion coefficients and accessible

  13. The influence of different locations of sputter guns on the morphological and structural properties of Cu–In–Ga precursors and Cu(In,Ga)Se{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.; Zhu, J., E-mail: jiezhu@ustb.edu.cn; He, Y.X.

    2014-01-01

    The influence of two different locations of sputter guns on the morphological and structural properties of Cu–In–Ga precursors and Cu(In,Ga)Se{sub 2} (CIGS) thin films was investigated. All the precursors contained cauliflower-like nodules, whereas smaller subnodules were observed on the background. All the precursors revealed apparent three-layered structures, and voids were observed at the CIGS/SLG interface of Sets 1 and 2 films rather than Set 3 film. EDS results indicated that all CIGS thin films were Cu-deficient. Based on the grazing incidence X-ray diffraction (GIXRD) patterns, as-selenized films showed peaks corresponding to the chalcopyrite-type CIGS structure. Depth-resolved Raman spectra showed the formation of a dominant CIGS phase inside the films for all the as-selenized samples investigated, and of an ordered vacancy compound (OVC) phase like Cu(In,Ga){sub 3}Se{sub 5} or Cu(In,Ga){sub 2}Se{sub 3.5} at the surface and/or CIGS/SLG interface region of Sets 2 and 3 films. No evidence was obtained on the presence of an OVC phase in Set 1 CIGS film, which may be speculated that long-time annealing is contributed to suppress the growth of OVC phases. The results of the present work suggest that the metallic precursors deposited with the upright-location sputter gun might be more appropriate to prepare CIGS thin films than those sputtered with the titled-location gun.

  14. Gamma-radiation and isotopic effect on the critical behavior in triglycine selenate crystals

    International Nuclear Information System (INIS)

    Kassem, M.E.; Hamed, A.E.; Abulnasr, L.; Abboudy, S.

    1994-01-01

    Isotopic effects in pure and γ-irradiated triglycine selenate crystals were investigated using the specific heat (C p ) technique. The obtained results showed an interesting dependence of the critical behavior of C p on the deuterium content. With increasing content of deuterium, the character of the phase transition changed from a second order (λ-type) to a first order transition. After γ-irradiation, the behavior of C p around the phase transition region was essentially affected. The transition temperature, T c , decreased and ΔC p depressed, and the transition became broad. It was noted that the effect of γ-irradiation is opposite to the isotopic effect. (author)

  15. Phosphonium modified clay/polyimide nanocomposites

    International Nuclear Information System (INIS)

    Ceylan, Hatice; Çakmakçi, Emrah; Beyler-Çiǧil, Asli; Kahraman, Memet Vezir

    2014-01-01

    In this study, octyltriphenylphosphonium bromide [OTPP-Br] was prepared from the reaction of triphenylphosphine and 1 -bromooctane. The modification of clay was done by ion exchange reaction using OTPP-Br in water medium. Poly(amic acid) was prepared from the reaction of 3,3',4,4'-Benzophenonetetracarboxylic dianhydride (BTDA) and 4,4'-Oxydianiline (ODA). Polyimide(PI)/clay hybrids were prepared by blending of poly(amic acid) and organically modified clay as a type of layered clays. The morphology of the Polyimide/ phosphonium modified clay hybrids was characterized by scanning electron microscopy (SEM). Chemical structures of polyimide and Polyimide/ phosphonium modified clay hybrids were characterized by FTIR. SEM and FTIR results showed that the Polyimide/ phosphonium modified clay hybrids were successfully prepared. Thermal properties of the Polyimide/ phosphonium modified clay hybrids were characterized by thermogravimetric analysis (TGA)

  16. Obtention of chemically modified clays: organovermiculites

    International Nuclear Information System (INIS)

    Santana, Lisiane N.L.; Silva, Andrea L.; Barbosa, Estefane; Neves, Gelmires A.; Menezes, Romualdo Rodrigues

    2012-01-01

    The organovermiculite is obtained by incorporating the quaternary ammonium salt in the clay mineral vermiculite interlayer space. The objective of this work was to prepare organovermiculites for applications in organic contaminants adsorption. The variation of interlayer space was determined when the vermiculite was treated with an ionic salt (Praepagem WB) and a non-ionic salt (Amina Etoxilada TA50) in different concentrations. Before interacting with quaternary ammonium salt, the clay mineral was subjected to cationic change process with Na 2 CO 3 to substitute Mg 2+ by Na + . The results showed enlargement of interlayer space, reaching values up to 60.0 Å. The vermiculite pre-activated with Na 2 CO 3 during 5 days and modified with the Praepagem WB showed the best performance. Amina Etoxilada TA50 salt was not observed significant changes with increasing concentration. The affinity of organovermiculite for organic solvents was confirmed by Foster swelling test and the best results were observed with diesel and petrol as solvents. (author)

  17. An optional focusing SELENE extension to conventional neutron guides: A case study for the ESS instrument BIFROST

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, U.B., E-mail: uhansen@nbi.ku.dk [Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen (Denmark); Bertelsen, M. [Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen (Denmark); Stahn, J. [Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Lefmann, K. [Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen (Denmark)

    2017-04-21

    The high brilliance at the European Spallation Source (ESS) will allow for performing experiments with much smaller samples than at present neutron facilities and in much more complex sample environments. However the higher flux also results in higher background from unwanted neutrons not originating from scattering of the sample. We here present a new design idea for beam delivery, where a 165 m ballistic guide system with good transport properties is followed by a 4–8 m SELENE guide system similar to Montel optics used for X-ray optics. We have investigated the system by detailed Monte-Carlo simulations using McStas. We show that under certain conditions, this set-up works surprisingly well, with a brilliance transfer of 20–60% for neutrons of wavelength 4 Å and above. We demonstrate that the guide system is able to focus the beam almost perfectly onto samples sizes in the range of 0.1–2 mm. We furthermore show that our SELENE system is insensitive to gravity and to realistic values of guide waviness. We argue that this guide system can be useful as an optional guide insert when small samples are used in the vicinity of bulky sample environment, e.g. for high-field or high-pressure experiments.

  18. SODIUM TITANATE NANOBELT AS A MICROPARTICLE TO INDUCE CLAY FLOCCULATION WITH CPAM

    Directory of Open Access Journals (Sweden)

    Wenxia Liu

    2010-07-01

    Full Text Available Sodium titanate nanobelt was synthesized by treating titanium dioxide hydrothermally in concentrated sodium hydroxide solution. The product was characterized by SEM analysis and zeta potential measurement. It served as a microparticle to constitute a microparticle retention system with cationic polyacrylamide (CPAM, while the microparticle system was employed to induce the flocculation of kaolin clay. The flocculation behavior of kaolin clay in such a system was investigated by using a photometric dispersion analyzer connected with a dynamic drainage jar. It was found that the sodium titanate nanobelt carried negative charges and had a lower zeta potential at higher pH. It gave a large synergistic flocculation effect with CPAM at a very low dosage, and showed higher flocculation effect with CPAM under neutral and weak alkaline conditions. A suitably high shear level was helpful for the re-flocculation of clay by sodium titanate nanobelt. The clay flocculation induced by CPAM/titanate nanobelt system demonstrated high shear resistance and also generated dense flocs.

  19. Electrical and photovoltaic characteristics of CuInSe2 thin films processed by nontoxic Cu–In precursor solutions

    International Nuclear Information System (INIS)

    Choi, Ik Jin; Jang, Jin Woo; Lee, Seung Min; Yeon, Deuk Ho; Jo, Yeon Hwa; Lee, Myung Ho; Cho, Yong Soo; Yun, Jae Ho; Yoon, Kyung Hoon

    2013-01-01

    Nontoxic Cu–In solution-processed CuInSe 2 absorber thin films and resultant photovoltaic cells have been investigated. Acetate-based Cu–In precursors having different Cu/In ratios of 0.8–1.2 were deposited by spin-coating and then selenized in Se atmosphere up to 550 °C. Single tetragonal CuInSe 2 phase was dominantly obtained regardless of Cu/In ratios, with the segregation of Cu 2−x Se secondary phase only in the case of Cu-rich films as evidenced by Raman spectra. The films with the 1.1 ratio demonstrated a larger grain size of ∼1.06 µm with an increased carrier concentration of ∼1.7 × 10 18 cm −3 and a decreased band gap of ∼1.02 eV, compared to the values obtained for Cu-deficient absorber films. The resultant best cell efficiency was ∼3.1% for the absorber having the 1.1 ratio, suggesting a potential of this simple spin-coating method as an alternative to typical vacuum processes. (paper)

  20. A clay-shoveler's fracture with renal transplantation and osteoporosis: a case report

    Directory of Open Access Journals (Sweden)

    Unay Koray

    2008-06-01

    Full Text Available Abstract Introduction Clay-shoveler's fracture is a rare cervicodorsal spinous process fracture and there is little information regarding the prognosis of patients with this condition in conjunction with osteoporosis and corticosteroid use. Case presentation A 39-year-old man was admitted to our institution with a 6-month history of cervicodorsal pain prior to admission. The patient had previously undergone renal transplantation and was on corticosteroids, and had developed osteoporosis. We treated him with a cervical collar, non-steroidal anti-inflammatory agents and alendronate. The patient was advised against performing weight-bearing activities for 6 months. Conclusion Clay-shoveler's fracture with osteoporosis and corticosteroid use presented by fracture of the cervicodorsal aspect of the spinous processes may be successfully treated with a collar, alendronate and long-term rest.

  1. Development of nanocomposites polyamide66/ bentonite clay membranes obtained by solution for water-oil separation

    International Nuclear Information System (INIS)

    Medeiros, Keila Machado de

    2010-01-01

    Microporous membranes were obtained from nanocomposites polyamide66 and regional bentonite clay, through the technique of immersion precipitation. The nanocomposites were obtained by solution with a pre-established reaction time. The clay was treated with quaternary ammonium salt (Cetremide®) in order to make it organophilic. Untreated and treated clay were characterized by X-ray fluorescence (XRF) spectroscopy, Fourier transform infrared (FTIR), X-ray diffraction (XRD) and thermogravimetry (TG), which confirmed the insertion of the Cetremide® salt in the layers of clay and their thermal stability. While the membranes were characterized by XRD, TG, differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and flow measurements. The results of XRD, TG and DSC confirmed the thermal stability and morphological structure with intercalated/partially exfoliated lamellae of clay in the polymer matrix. By SEM, it was revealed an asymmetric morphology consisting of a skin layer and a porous sublayer. The higher clay content in the membrane give the lower film thickness. This influencing directly the flow measurements of the membranes produced from the nanocomposites. In general, the initial flow with distilled water through the membranes decrease and stabilise after 60 min, this due to a compression or swelling occurred in the membranes. In tests of water-oil separation it was found that the relationship J/J0 tends to be greater when using emulsions with lower concentration. The water-oil separation tests at concentrations of 300 and 500 ppm for all membranes showed a significant reduction in oil concentration in the permeate, thus showing that these membranes have potential for this application. (author)

  2. Optimization of organo clay production for applications in based oil drilling fluid; Otimizacao do processo de organofilizacao para aplicacoes em fluidos de perfuracao base oleo

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Heber S.; Martins, Alice B.; Costa, Danubia L. da; Ferreira, Heber C.; Neves, Gelmires de A.; Melo, Tomas J.A. de [Universidade Federal de Campina Grande (UFCG), PB (Brazil); Teixeira Neto, Erico [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil)

    2008-07-01

    The organophilic clays are widely used as an agent dispersed in the composition of oil based drilling fluids. The organophilic clays are gotten from bentonite clays treated, in watery way, with ionic surfactants, that are adsorbed in the surface of interlayer of the clays, re-covered them with a organic layer. A fundamental stage of production of the organophilic clays is the dispersion of bentonite clays, in way that variables like: speed of agitation, temperature and time of cure, influences directly in plastic and apparent viscosities of these dispersions, together with other variables of organophilization process, like, temperature and time of cure of organophilization, has direct influence in efficiency of the organophilization process. This work considers a study of these variable, using bentonite clays: Brasgel PA{sup R} and Cloisite Na{sup +R}, treated with the ionic surfactant Praepagem WB{sup R}. The organophilic clays gotten had been characterized by rays X diffraction, Foster's swelling, and the results were compared with the commercial organophilic clay VG-69{sup R}, industrially treated with ionic surfactant. Viscosities plastic and apparent of the dispersions had been measured in the midst of organic dispersant diesel oil used to obtain the oil based drilling fluids. Preliminary results of Foster's swelling and preparation of fluids show that the clays have affinity with the means liquid organic dispersants, and the fluids meet specifications of PETROBRAS (N-22581-1997 and N-2259 to 1997) for use in the of diesel oil based drilling fluids. (author)

  3. Common clay and shale

    Science.gov (United States)

    Virta, R.L.

    2000-01-01

    Part of the 1999 Industrial Minerals Review. The clay and shale market in 1999 is reviewed. In the U.S., sales or use of clay and shale increased from 26.4 million st in 1998 to 27.3 million st in 1999, with an estimated 1999 value of production of $143 million. These materials were used to produce structural clay products, lightweight aggregates, cement, and ceramics and refractories. Production statistics for clays and shales and for their uses in 1999 are presented.

  4. Effects of modified Clay on the morphology and thermal stability of PMMA/clay nanocomposites

    International Nuclear Information System (INIS)

    Tsai, Tsung-Yen; Lin, Mei-Ju; Chuang, Yi-Chen; Chou, Po-Chiang

    2013-01-01

    The potential to improve the mechanical, thermal, and optical properties of poly(methyl methacrylate) (PMMA)/clay nanocomposites prepared with clay containing an organic modifier was investigated. Pristine sodium montmorillonite clay was modified using cocoamphodipropionate, which absorbs UVB in the 280–320 nm range, via ion exchange to enhance the compatibility between the clay platelets and the methyl methacrylate polymer matrix. PMMA/clay nanocomposites were synthesized via in situ free-radical polymerization. Three types of clay with various cation-exchange capacities (CEC) were used as inorganic layered materials in these organic–inorganic hybrid nanocomposites: CL42, CL120, and CL88 with CEC values of 116, 168, and 200 meq/100 g of clay, respectively. We characterized the effects of the organoclay dispersion on UV resistance, effectiveness as an O 2 gas barrier, thermal stability, and mechanical properties of PMMA/clay nanocomposites. Gas permeability analysis demonstrated the excellent gas barrier properties of the nanocomposites, consistent with the intercalated or exfoliated morphologies observed. The optical properties were assessed using UV–Visible spectroscopy, which revealed that these materials have good optical clarity, UV resistance, and scratch resistance. The effect of the dispersion capability of organoclay on the thermal properties of PMMA/clay nanocomposites was investigated by thermogravimetric analysis and differential scanning calorimetry; these analyses revealed excellent thermal stability of some of the modified clay nanocomposites. - Highlights: ► We control the dispersion morphology by protonation of K2 into the clay. ► The CL120 and CL88, with the higher CEC, are more random intercalated by K2. ► We report these materials have good optical clarity, and UV resistance

  5. Selective Clay Placement Within a Silicate-Clay Epoxy Blend Nanocomposite

    Science.gov (United States)

    Miller, Sandi G (Inventor)

    2013-01-01

    A clay-epoxy nanocomposite may be prepared by dispersing a layered clay in an alkoxy epoxy, such as a polypropylene oxide based epoxide before combining the mixture with an aromatic epoxy to improve the nanocomposite's thermal and mechanical properties.

  6. Clay nanoparticles for regenerative medicine and biomaterial design: A review of clay bioactivity.

    Science.gov (United States)

    Mousa, Mohamed; Evans, Nicholas D; Oreffo, Richard O C; Dawson, Jonathan I

    2018-03-01

    Clay nanoparticles, composites and hydrogels are emerging as a new class of biomaterial with exciting potential for tissue engineering and regenerative medicine applications. Clay particles have been extensively explored in polymeric nanocomposites for self-assembly and enhanced mechanical properties as well as for their potential as drug delivery modifiers. In recent years, a cluster of studies have explored cellular interactions with clay nanoparticles alone or in combination with polymeric matrices. These pioneering studies have suggested new and unforeseen utility for certain clays as bioactive additives able to enhance cellular functions including adhesion, proliferation and differentiation, most notably for osteogenesis. This review examines the recent literature describing the potential effects of clay-based nanomaterials on cell function and examines the potential role of key clay physicochemical properties in influencing such interactions and their exciting possibilities for regenerative medicine. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Growth of high-quality CuInSe sub 2 polycrystalline films by magnetron sputtering and vacuum selenization

    CERN Document Server

    Xie Da Tao; Wang Li; Zhu Feng; Quan Sheng Wen; Meng Tie Jun; Zhang Bao Cheng; Chen J

    2002-01-01

    High-quality CuInSe sub 2 thin films have been prepared using a two stages process. Cu and In were co-deposited onto glass substrates by magnetron sputtering method to produce a predominant Cu sub 1 sub 1 In sub 9 phase. The alloy films were selenised and annealed in vacuum at different temperature in the range of 200-500 degree C using elemental selenium in a closed graphite box. X-ray diffraction and scanning electron microscopy were used to characterize the films. It is found that the polycrystalline and single-phase CuInSe sub 2 films were uniform and densely packed with a grain size of about 3.0 mu m

  8. Ice nucleation efficiency of clay minerals in the immersion mode

    Directory of Open Access Journals (Sweden)

    V. Pinti

    2012-07-01

    Full Text Available Emulsion and bulk freezing experiments were performed to investigate immersion ice nucleation on clay minerals in pure water, using various kaolinites, montmorillonites, illites as well as natural dust from the Hoggar Mountains in the Saharan region. Differential scanning calorimeter measurements were performed on three different kaolinites (KGa-1b, KGa-2 and K-SA, two illites (Illite NX and Illite SE and four natural and acid-treated montmorillonites (SWy-2, STx-1b, KSF and K-10. The emulsion experiments provide information on the average freezing behaviour characterized by the average nucleation sites. These experiments revealed one to sometimes two distinct heterogeneous freezing peaks, which suggest the presence of a low number of qualitatively distinct average nucleation site classes. We refer to the peak at the lowest temperature as "standard peak" and to the one occurring in only some clay mineral types at higher temperatures as "special peak". Conversely, freezing in bulk samples is not initiated by the average nucleation sites, but by a very low number of "best sites". The kaolinites and montmorillonites showed quite narrow standard peaks with onset temperatures 238 K<Tonstd<242 K and best sites with averaged median freezing temperature Tmedbest=257 K, but only some featuring a special peak (i.e. KSF, K-10, K-SA and SWy-2 with freezing onsets in the range 240–248 K. The illites showed broad standard peaks with freezing onsets at 244 K Tonstd<246 K and best sites with averaged median freezing temperature Tmedbest=262 K. The large difference between freezing temperatures of standard and best sites shows that characterizing ice nucleation efficiencies of dust particles on the basis of freezing onset temperatures from bulk experiments, as has been done in some atmospheric studies, is not appropriate. Our investigations

  9. Selective Cytotoxic Activity of Se-Methyl-Seleno-L-Cysteine- and Se-Polysaccharide-Containing Extracts from Shiitake Medicinal Mushroom, Lentinus edodes (Agaricomycetes).

    Science.gov (United States)

    Klimaszewska, Marzenna; Górska, Sandra; Dawidowski, Maciej; Podsadni, Piotr; Szczepanska, Agnieszka; Orzechowska, Emilia; Kurpios-Piec, Dagmara; Grosicka-Maciag, Emilia; Rahden-Staroń, Iwonna; Turło, Jadwiga

    2017-01-01

    , both extracts have no effect or only slightly stimulate normal (HMEC-1) cell viability. The selective cytotoxic activity of L. edodes extracts in cancer (PC3 and HeLa) cells is due to the presence of both Se-methyl-seleno-L-cysteine and selenated polysaccharides, perhaps in combination with other active ingredients.

  10. Light clay straw bale solutions in the contemporary housing as an element of sustainable development. Selected issues

    Directory of Open Access Journals (Sweden)

    Drozd Wojciech

    2016-01-01

    Full Text Available The article presents issues related to the solutions with light clay and straw bale in the contemporary housing. Building using straw bale and light clay is simple, eco-friendly and accessible to all. It fits in with the idea of sustainable development, supporting local businesses and giving people the opportunity to integrate in the design and construction of the house. The article presents the thermal analysis for both walls made of straw bale and of light clay. The analysis showed a very good performance. All positive aspects allow treating straw and light clay as a viable alternative to the commonly used technologies for erecting buildings.

  11. Thixotropic Properties of Latvian Clays

    OpenAIRE

    Lakevičs, Vitālijs; Stepanova, Valentīna; Ruplis, Augusts

    2015-01-01

    This research studies Latvia originated Devon (Tūja, Skaņkalne), quaternary (Ceplīši), Jurassic, (Strēļi) and Triassic (Vadakste) deposit clays as well as Lithuania originated Triassic (Akmene) deposit clays. Thixotropic properties of clay were researched by measuring relative viscosity of clay in water suspensions. Relative viscosity is measured with a hopper method. It was detected that, when concentration of suspension is increased, clay suspension’s viscosity also increases. It happens un...

  12. Obtenção de membranas microporosas a partir de manocompósitos de poliamida 6/argila nacional. Parte 1: influência da presença da argila na morfologia das membranas Obtaining microporous membranes from nylon 6/national clay nanocomposites. Part 1: influence of clay on the membranes morphology

    Directory of Open Access Journals (Sweden)

    Amanda M. D. Leite

    2009-01-01

    Full Text Available Membranas poliméricas foram produzidas a partir de nanocompósitos de poliamida 6 e argila constituída de silicatos em camadas, utilizando a técnica de imersão-precipitação. A argila foi modificada organicamente com os sais quaternários de amônio, Dodigen e Cetremide. Foram obtidos nanocompósitos de poliamida 6 com argila sem tratamento (MMT e com argila tratada (OMMT. Os nanocompósitos obtidos foram avaliados por DRX e MET, apresentando estrutura com predominância de lamelas de argila esfoliadas na matriz polimérica. As membranas produzidas pelo método de inversão de fases foram caracterizadas por DRX e MEV. A difração de raios X das membranas confirmou os resultados para os nanocompósitos anteriormente preparados. A superfície da matriz observada por MEV apresentou poros irregulares. Já para as membranas com os nanocompósitos observou-se maior quantidade e melhor distribuição dos poros, indicando que a presença da argila alterou a morfologia da membrana. As fotomicrografias das seções transversais dessas membranas mostraram uma estrutura morfológica assimétrica, constituída de uma pele, onde os poros são muito pequenos ou inexistentes, e uma camada porosa com poros de tamanho e distribuição uniformes.Polymeric membranes were produced from nylon 6 nanocomposites and a clay using the immersion-precipitation technique. The clay was organically modified by using a quaternary ammonium salt, Dodigen. Nanocomposites were obtained from nylon 6 with untreated clay (MMT and treated clay (OMMT. The nanocomposites were studied by XRD and TEM. The morphological structure consisted of an exfoliated and partially exfoliated clay layers in the polymeric matrix. The membranes were produced by phase inversion method and characterized by XRD and SEM. The X-ray diffraction of the membranes confirmed the results for the nanocomposites. The SEM image of the membrane top surface showed irregular pores. As for the membranes with the

  13. Studies on incorporation of exfoliated bentonitic clays in polyurethane foams for increasing flame retardancy

    International Nuclear Information System (INIS)

    Quagliano, J; García, Irma Gavilán

    2012-01-01

    In this contribution we report the results of studying the incorporation of exfoliated bentonitic clays into polyurethane foams. A suspension in water of a sodium bentonite from Argentine Patagonia was interchanged with cetyl trimethyl ammonium bromide (CTAB) for 4 h at 80°C, rendering an exfoliated clay, which is nanometric in only one dimension. This nanoclay, when dispersed in the polyurethane, resulted in the same fire retardancy rating (UL-94) than when polyurethane was treated with a commercial nanoclay. Scanning electron microscopy (SEM) at low augmentations of polyurethane samples treated with the synthethized nanoclay (2,5% w/w) showed no differences respect to untreated polyurethane, except for the irregularity of void edges.

  14. Selenium Adsorption To Aluminum-Based Water Treatment Residuals

    Science.gov (United States)

    Aluminum-based water treatment residuals (WTR) can adsorb water-and soil-borne P, As(V), As(III), and perchlorate, and may be able to adsorb excess environmental selenium. WTR, clay minerals, and amorphous aluminum hydroxide were shaken for 24 hours in selenate or selenite solut...

  15. The Voltammetric Analysis of Selenium Electrodeposition from H2SeO3 Solution on Gold Electrode

    Directory of Open Access Journals (Sweden)

    Kowalik R.

    2015-04-01

    Full Text Available The different voltammetry techniques were applied to understand the process of selenium deposition from sulfate solution on gold polycrystalline electrode. By applying the cycling voltammetry with different scan limits as well as the chronoamper-ometry combined with the cathodic and anodic linear stripping voltammetry, the different stages of the deposition of selenium were revealed. It was found that the process of reduction of selenous acid on gold surface exhibits a multistage character. The cyclic voltammetry results showed four cathodic peaks which are related to the surface limited phenomena and which coincide with the bulk deposition process. The fifth cathodic peak is related to the reduction of bulk deposited Se0 to Se-2 ions. Furthermore, the connection of anodic peaks with cathodic ones confirmed the surface limited process of selenium deposition, bulk deposition and reduction to Se-2. Additionally, the cathodic linear stripping voltammetry confirms the process of H2SeO3 adsorption on gold surface. The experiments confirmed that classical voltammetry technique proved to be a very powerful tool for analyzing the electrochemical processes related with interfacial phenomena and electrodeposition.

  16. Clay minerals behaviour in thin sandy clay-rich lacustrine turbidites (Lake Hazar, Turkey)

    Science.gov (United States)

    El Ouahabi, Meriam; Hubert-Ferrari, Aurelia; Lamair, Laura; Hage, Sophie

    2017-04-01

    Turbidites have been extensively studied in many different areas using cores or outcrop, which represent only an integrated snapshot of a dynamic evolving flow. Laboratory experiments provide the missing relationships between the flow characteristics and their deposits. In particular, flume experiments emphasize that the presence of clay plays a key role in turbidity current dynamics. Clay fraction, in small amount, provides cohesive strength to sediment mixtures and can damp turbulence. However, the degree of flocculation is dependent on factors such as the amount and size of clay particles, the surface of clay particles, chemistry and pH conditions in which the clay particles are dispersed. The present study focuses on thin clayey sand turbidites found in Lake Hazar (Turkey) occurring in stacked thin beds. Depositional processes and sources have been previously studied and three types were deciphered, including laminar flows dominated by cohesion, transitional, and turbulence flow regimes (Hage et al., in revision). For the purpose of determine the clay behavior in the three flow regimes, clay mineralogical, geochemical measurements on the cores allow characterising the turbidites. SEM observations provide further information regarding the morphology of clay minerals and other clasts. The study is particularly relevant given the highly alkaline and saline water of the Hazar Lake. Clay minerals in Hazar Lake sediments include kaolinite (1:1-type), illite and chlorite (2:1-type). Hazar lake water is alkaline having pH around 9.3, in such alkaline environment, a cation-exchange reaction takes place. Furthermore, in saline water (16‰), salts can act as a shield and decrease the repulsive forces between clay particle surfaces. So, pH and salt content jointly impact the behaviour of clays differently. Since the Al-faces of clay structures have a negative charge in basic solutions. At high pH, all kaolinite surfaces become negative-charged, and then kaolinite

  17. Fe(0)-clays interactions at 90°C under anoxic conditions: a comparative study between clay fraction of Callovo-Oxfordian and other purified clays

    International Nuclear Information System (INIS)

    Rivard, C.; Pelletier, M.; Villieras, F.; Barres, O.; Galmiche, M.; Ghanbaja, J.; Kohler, A.; Michau, N.

    2010-01-01

    Document available in extended abstract form only. In the context of the geological disposal of high-level radioactive waste it is of prime importance to understand the interactions between the saturated clay formation and steel containers. This can be achieved through an in-depth analysis of iron-clay interactions. Previous studies on the subject investigated the influence of solid/liquid ratio, iron/clay ratio, temperature and reaction time. The aim of the present study is to explain Callovo-Oxfordian-Fe(0) interactions by determining the role of each mineral phases present in the Callovo-Oxfordian (clay minerals, quartz, carbonates and pyrite) on the mechanisms of interaction between metal iron and clay particles. In that context, it is especially important to understand in detail the influence of clay nature and to obtain some insight about the relationships between interaction mechanisms at the molecular scale and crystallographic properties (particle size, TO or TOT layers, amount of edge faces...). The influence of the combination of different clays and the addition of other minerals must also be studied. In a first step, the Callovo-Oxfordian argillite from the Andra's underground research laboratory was purified to extract the clay fraction (illite, illite-smectite, kaolinite and chlorite). Batch experiments were carried out in anoxic conditions at 90 deg. C in the presence of background electrolyte (NaCl 0.02 M.L -1 , CaCl 2 0.04 M.L -1 ) for durations of one, three or nine months in the presence of metallic iron powder. Experiments without iron were used as control. The iron/clay ratio was fixed at 1/3 with a solid/liquid ratio of 1/20. The above mentioned experiments were also carried out in parallel on other purified clays: two smectites (Georgia bentonite and SWy2 from the Clay Minerals Society), one illite (illite du Puy) and one kaolinite (KGa2, from the Clay Minerals society). At the end of the experiments, solid and liquid phases were

  18. Euroclay 95. Clays and clay materials sciences. Book of abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Elsen, A; Grobet, P; Keung, M; Leeman, H; Schoonheydt, R; Toufar, H [eds.

    1995-08-20

    The document contains the abstracts of the invited lecturers (18) and posters (247) presented at EUROCLAY `95. Clays and clay materials sciences. 13 items (4 from the invited lecturers and 12 from posters) have been considered within the INIS Subject Scope and indexed separately.

  19. Euroclay 95. Clays and clay materials sciences. Book of abstracts

    International Nuclear Information System (INIS)

    Elsen, A.; Grobet, P.; Keung, M.; Leeman, H.; Schoonheydt, R.; Toufar, H.

    1995-01-01

    The document contains the abstracts of the invited lecturers (18) and posters (247) presented at EUROCLAY '95. Clays and clay materials sciences. 13 items (4 from the invited lecturers and 12 from posters) have been considered within the INIS Subject Scope and indexed separately

  20. Overexpressing both ATP sulfurylase and selenocysteine methyltransferase enhances selenium phytoremediation traits in Indian mustard

    International Nuclear Information System (INIS)

    LeDuc, Danika L.; AbdelSamie, Manal; Montes-Bayon, Maria; Wu, Carol P.; Reisinger, Sarah J.; Terry, Norman

    2006-01-01

    A major goal of our selenium (Se) phytoremediation research is to use genetic engineering to develop fast-growing plants with an increased ability to tolerate, accumulate, and volatilize Se. To this end we incorporated a gene (encoding selenocysteine methyltransferase, SMT) from the Se hyperaccumulator, Astragalus bisulcatus, into Indian mustard (LeDuc, D.L., Tarun, A.S., Montes-Bayon, M., Meija, J., Malit, M.F., Wu, C.P., AbdelSamie, M., Chiang, C.-Y., Tagmount, A., deSouza, M., Neuhierl, B., Boeck, A., Caruso, J., Terry, N., 2004. Overexpression of selenocysteine methyltransferase in Arabidopsis and Indian mustard increases selenium tolerance and accumulation Plant Physiol. 135, 377-383.). The resulting transgenic plants successfully enhanced Se phytoremediation in that the plants tolerated and accumulated Se from selenite significantly better than wild type. However, the advantage conferred by the SMT enzyme was much less when Se was supplied as selenate. In order to enhance the phytoremediation of selenate, we developed double transgenic plants that overexpressed the gene encoding ATP sulfurylase (APS) in addition to SMT, i.e., APS x SMT. The results showed that there was a substantial improvement in Se accumulation from selenate (4 to 9 times increase) in transgenic plants overexpressing both APS and SMT. - Simultaneous overexpression of APS and SMT genes in Indian mustard greatly increases ability to accumulate selenate

  1. Achievement report for fiscal 1992 on Sunshine Program-entrusted research and development. Research and development of high-efficiency solar cells (Research on forbidden band width optimization); 1992 nendo kokoritsu taiyo denchi no kenkyu kaihatsu seika hokokusho. Kinsei taifuku no saitekika no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-03-01

    Research is carried out on technologies concerning CuInSe{sub 2} thin-film solar cell manufacturing, thin film formation, thin film characterization, CdS, (CdZn)S formation, CuInSe{sub 2} single junction, analysis of the a-Si/CuInSe{sub 2} tandem solar cell operating theory, etc. In relation with the encapsulated selenization method for film formation for CuInSe{sub 2} thin-film solar cells, film constitution, film thickness, selenization temperature, etc., are studied for optimization. In relation with the vaporized selenization method, vaporized selenization is tested in a vacuum chamber aiming at improved homogeneity and reproducibility. In research on CdS and (CdZn)S which are window layer materials for CuInSe{sub 2} thin-film solar cells, CdS thin films are formed in a solution growth method using CdSO{sub 4} and (NH{sub 2}){sub 2}CS. In relation with the solution growth of the (CdZn)S crystal film, control of the Zn content in the film is now practicable. In the study of a-Si/CuInSe{sub 2} tandem solar cells, an analytical program is formulated, and calculation is made concerning the impacts of CuInSe{sub 2} forbidden band width and a-Si i-layer thickness. (NEDO)

  2. Clay particles as binder for earth buildings materials: a fresh look into rheology of dense clay suspensions

    Science.gov (United States)

    Landrou, Gnanli; Brumaud, Coralie; Habert, Guillaume

    2017-06-01

    In the ceramic industry and in many sectors, clay minerals are widely used. In earthen construction technique, clay plays a crucial role in the processing. The purpose of this research is to understand and modify the clay properties in earth material to propose an innovative strategy to develop a castable earth-based material. To do so, we focused on the modification of clay properties at fresh state with inorganic additives. As the rheological behaviour of clays is controlled by their surface charge, the addition of phosphate anion allows discussing deep the rheology of concentrated clay suspensions. We highlighted the thixotropic and shear thickening behaviour of a dispersed kaolinite clay suspensions. Indeed, by adding sodium hexametaphosphate the workability of clay paste increases and the behaviour is stable during time after a certain shear is applied. Moreover, we stress that the aging and the shift in critical strain in clay system are due to the re-arrangement of clay suspension and a decrease of deformation during time. The understanding of both effect: thixotropy and aging are crucial for better processing of clay-based material and for self-compacting clay concrete. Yet, studies need to pursue to better understand the mechanism.

  3. Gamma-radiation and isotopic effect on the critical behavior in triglycine selenate crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kassem, M.E.; Hamed, A.E.; Abulnasr, L.; Abboudy, S. [Alexandria Univ. (Egypt). Dept. of Physics

    1994-11-01

    Isotopic effects in pure and {gamma}-irradiated triglycine selenate crystals were investigated using the specific heat (C{sub p}) technique. The obtained results showed an interesting dependence of the critical behavior of C{sub p} on the deuterium content. With increasing content of deuterium, the character of the phase transition changed from a second order ({lambda}-type) to a first order transition. After {gamma}-irradiation, the behavior of C{sub p} around the phase transition region was essentially affected. The transition temperature, T{sub c}, decreased and {Delta}C{sub p} depressed, and the transition became broad. It was noted that the effect of {gamma}-irradiation is opposite to the isotopic effect. (author).

  4. AgSb(S{sub x}Se{sub 1−x}){sub 2} thin films for solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    González, J.O. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, San Nicolás de los Garza, Nuevo León 66450, México (Mexico); Shaji, S.; Avellaneda, D. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, San Nicolás de los Garza, Nuevo León 66450, México (Mexico); Universidad Autónoma de Nuevo León-CIIDIT, Apodaca, Nuevo León, México (Mexico); Castillo, A.G.; Roy, T.K. Das [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, San Nicolás de los Garza, Nuevo León 66450, México (Mexico); and others

    2013-05-15

    Highlights: ► AgSb(S{sub x}Se{sub 1−x}){sub 2} thin films were formed by heating Na{sub 2}SeSO{sub 3} dipped Sb{sub 2}S{sub 3}/Ag layers. ► S/Se ratio was varied by changing the dipping time in Na{sub 2}SeSO{sub 3} solution. ► Characterized the films using XRD, XPS, SEM, Optical and electrical measurements. ► Band gap engineering of 1−1.1 eV for x = 0.51 and 0.52 respectively. ► PV Glass/FTO/CdS/AgSb(S{sub x}Se{sub 1−x}){sub 2}/C were prepared showing V{sub oc} = 410 mV, J{sub sc} = 5.7 mA/cm{sup 2}. - Abstract: Silver antimony sulfoselenide (AgSb(S{sub x}Se{sub 1−x}){sub 2}) thin films were prepared by heating glass/Sb{sub 2}S{sub 3}/Ag layers after selenization using sodium selenosulphate solution. First, Sb{sub 2}S{sub 3} thin films were deposited on glass substrates from a chemical bath containing SbCl{sub 3} and Na{sub 2}S{sub 2}O{sub 3}. Then Ag thin films were thermally evaporated onto glass/Sb{sub 2}S{sub 3}, followed by selenization by dipping in an acidic solution of Na{sub 2}SeSO{sub 3}. The duration of selenium dipping was varied as 30 min and 2 h. The heating condition was at 350 °C for 1 h in vacuum. Analysis of X-ray diffraction pattern of the thin films formed after heating showed the formation of AgSb(S{sub x}Se{sub 1−x}){sub 2}. Morphology and elemental analysis were done by scanning electron microscopy and energy dispersive X-ray detection. Depth profile of composition of the thin films was performed by X-ray Photoelectron Spectroscopy. The spectral study showed the presence of Ag, Sb, S, and Se, and the corresponding binding energy analysis confirmed the formation of AgSb(S{sub x}Se{sub 1−x}){sub 2}. Photovoltaic structures (PV) were prepared using AgSb(S{sub x}Se{sub 1−x}){sub 2} thin films as absorber and CdS thin films as window layers on FTO coated glass substrates. The PV structures were heated at 60–80 °C in air for 1 h to improve ohmic contact. Analysis of J–V characteristics of the PV structures showed V

  5. Study of the Cupriavidus metallidurans CH34 resistance of selenite and selenate oxy-anions: accumulation, localisation and transformation of selenium; Etude de la resistance de Cupriavidus metallidurans CH34 aux oxyanions selenite et seleniate: accumulation, localisation et transformation du selenium

    Energy Technology Data Exchange (ETDEWEB)

    Avoscan, L

    2007-06-15

    Selenium is an essential trace element for the living organisms but it is very toxic at high concentration. Selenite and selenate oxides, soluble forms, highly toxic and bio-assimilable, are the most prevalent forms in the environment. Some soil micro-organisms play a dominant role and contribute to the natural cycle of selenium. Our study model, Cupriavidus (formerly Ralstonia) metallidurans CH34, a telluric bacterium characteristic of metal-contaminated biotopes, is known to resist selenite by reducing it into elemental selenium, an insoluble and less toxic form of selenium. In order to better understand the mechanisms of selenium reduction in the bacteria, three methods of speciation were combined (XAS (XANES and EXAFS), HPLC-ICP-MS and SDS-PAGEPIXE). They were completed by the direct quantification of selenium accumulated in the bacteria. Speciation analyses highlighted the existence of two mechanisms of reduction of selenium oxides in C. metallidurans CH34. Assimilation transforms selenite and selenate into organic selenium, identified as seleno-methionine and leads to its non-specific incorporation into bacterial proteins (presence of selenious proteins). Detoxication precipitates selenite in nano-particles of elemental selenium. This way of detoxication is not set up after an exposure to selenate although it is nevertheless possible to detect elemental selenium but in very small amount compared to the exposure of selenite. Seleno-diglutathion is detected in bacteria stressed by an exposure to selenate in medium limited in sulphate. Bacteria exposed to selenite accumulate 25 times more selenium than when they are exposed to selenate. The study of mutants resistant to selenite, which do not express the membrane protein DedA, showed that the accumulation of selenium after exposure to selenite is decreased compared with the wild strain meaning probable link between the transport of selenite and the DedA protein. Finally, selenate would use the sulphate permease

  6. Investigation of gallium redistribution processes during Cu(In,Ga)Se{sub 2} absorber formation from electrodeposited/annealed oxide precursor films

    Energy Technology Data Exchange (ETDEWEB)

    Sidali, T., E-mail: tarik.sidali@edf.fr; Duchatelet, A.; Chassaing, E.; Lincot, D.

    2015-05-01

    A way to prepare metallic precursors for CuIn{sub 1−x},Ga{sub x}Se{sub 2} (CIGS) solar cells has been recently introduced leading to efficiencies above 12.4%. It consists in the electrodeposition of Cu-In-Ga mixed oxides in an acidic nitrate aqueous solution followed by thermal reduction and selenization. This paper investigates, in a first part, the nucleation and growth mechanisms taking place during the co-electrodeposition of Cu-In-Ga oxide/hydroxide film. Scanning Electron Microscope observations coupled to Energy Dispersive X-ray spectrometry point out that the deposition is initiated by the formation of metallic copper nuclei. These nuclei enable the growth of Cu-In-Ga oxide film. This observation confirms that freshly deposited copper catalyzes nitrate reduction leading to an increase in the surface pH enabling the precipitation of the Cu-In-Ga hydroxides. In a second part, precursor films were elaborated with increasing Ga(NO{sub 3}){sub 3} concentration. After reduction of the films in hydrogen and selenization heat treatments, X-ray diffraction analysis shows the incorporation of Ga into the CIGS phase with increasing Ga content in the optimal composition range for photovoltaic applications (x = 0.25-0.34). Gallium composition profiles are evidenced in the films with a tendency to higher concentration near the Mo surface. Increasing annealing temperature allows a better homogenization of Ga in the film. The consequences are correlated to optoelectronic measurements (Eg and cell efficiency) with bandgap measurement and cell efficiencies (10 to 12%). - Highlights: • Electrodeposition starts with copper nucleation. • Gallium content in the precursor is tuned by Ga(III) concentration. • Increasing selenization temperature promotes Ga homogenization in CIGS.

  7. Clay slurry and engineered soils as containment technologies for remediation of contaminated sites

    International Nuclear Information System (INIS)

    Williams, J.R.; Dudka, S.; Miller, W.P.; Johnson, D.O.

    1997-01-01

    Clay Slurry and Engineered Soils are containment technologies for remediation of waste disposal sites where leaching, groundwater plumes and surface runoff of contaminants are serious ecological hazards to adjacent environments. This technology is a patent-pending process which involves the use of conditioned clay materials mixed with sand and water to form a readily pourable suspension, a clay slurry, which is either placed into a trench barrier system or allowed to de-water to create Engineered Soils. The Engineered Soil forms a layer impervious to water and air, therefore by inhibiting both water and oxygen from penetrating through the soil the material. This material can be installed in layers and as a vertical barrier to create a surface barrier containment system. The clay percentage in the clay slurry and Engineered Soils varies depending on site characteristics and desired performance standards. For example Engineered Soils with 1-2% of clay (dry wt.) had a hydraulic conductivity (K) of 10 -8 to 10 -1 cm/sec. Tests of tailing materials from a kyanite and pyrite mine showed that the clay slurry was effective not only in reducing the permeability of the treated tailings, but also in decreasing their acidity due to the inherent alkalinity of the clay. The untreated tailings had pH values in the range of 2.4 - 3.1; whereas, the effluent from clay and tailings mixtures had pH values in a slightly alkaline range (7.7-7.9). Pug-mills and high volume slurry pumps can be readily adapted for use in constructing and placing caps and creating Engineered Soils. Moreover, material on site or from a local sand supply can be used to create clay slurries and engineered soils. Clay materials used in cap construction are likewise readily available commercially. As a result, the clay slurry system is very cost effective compared to other capping systems, including the commonly used High Density Polyethylene (HDPE) liner systems

  8. Clay particles as binder for earth buildings materials: a fresh look into rheology of dense clay suspensions

    Directory of Open Access Journals (Sweden)

    Landrou Gnanli

    2017-01-01

    Full Text Available In the ceramic industry and in many sectors, clay minerals are widely used. In earthen construction technique, clay plays a crucial role in the processing. The purpose of this research is to understand and modify the clay properties in earth material to propose an innovative strategy to develop a castable earth-based material. To do so, we focused on the modification of clay properties at fresh state with inorganic additives. As the rheological behaviour of clays is controlled by their surface charge, the addition of phosphate anion allows discussing deep the rheology of concentrated clay suspensions. We highlighted the thixotropic and shear thickening behaviour of a dispersed kaolinite clay suspensions. Indeed, by adding sodium hexametaphosphate the workability of clay paste increases and the behaviour is stable during time after a certain shear is applied. Moreover, we stress that the aging and the shift in critical strain in clay system are due to the re-arrangement of clay suspension and a decrease of deformation during time. The understanding of both effect: thixotropy and aging are crucial for better processing of clay-based material and for self-compacting clay concrete. Yet, studies need to pursue to better understand the mechanism.

  9. Synthesis of templated carbons starting from clay and clay-derived zeolites for hydrogen storage applications

    CSIR Research Space (South Africa)

    Musyoka, Nicholas M

    2014-10-01

    Full Text Available 57 58 59 60 For Peer Review 1 Synthesis of templated carbons starting from clay and clay-derived zeolites for hydrogen storage applications N. M. Musyoka1*, J. Ren1, H. W. Langmi1, D. E. C. Rogers1, B. C. North1, M. Mathe1 and D. Bessarabov2... clear (filtered) extract of cloisite clay, SNC for zeolite from unfiltered cloisite clay extract and SBC for zeolite from unfiltered South African bentonite clay extract. Furfuryl alcohol (Sigma Aldrich, C5H6O2, 98%) and Ethylene gas were used...

  10. Nanocrystalline Cu{sub 2}ZnSnSe{sub 4} thin films for solar cells application: Microdiffraction and structural characterization

    Energy Technology Data Exchange (ETDEWEB)

    Quiroz, Heiddy P., E-mail: hpquirozg@unal.edu.co; Dussan, A., E-mail: adussanc@unal.edu.co [Departmento de Física, Grupo de Materiales Nanoestructurados y sus Aplicaciones, Universidad Nacional de Colombia, Bogotá 11001 (Colombia)

    2016-08-07

    This work presents a study of the structural characterization of Cu{sub 2}ZnSnSe{sub 4} (CZTSe) thin films by X-ray diffraction (XRD) and microdiffraction measurements. Samples were deposited varying both mass (M{sub X}) and substrate temperature (T{sub S}) at which the Cu and ZnSe composites were evaporated. CZTSe samples were deposited by co-evaporation method in three stages. From XRD measurements, it was possible to establish, with increased Ts, the presence of binary phases associated with the quaternary composite during the material's growth process. A stannite-type structure in Cu{sub 2}ZnSnSe{sub 4} thin films and sizes of the crystallites varying between 30 and 40 nm were obtained. X-ray microdiffraction was used to investigate interface orientations and strain distributions when deposition parameters were varied. It was found that around the main peak, 2ϴ = 27.1°, the Cu{sub 1.8}Se and ZnSe binary phases predominate, which are formed during the subsequent material selenization stage. A Raman spectroscopy study revealed Raman shifts associated with the binary composites observed via XRD.

  11. Research of Deformation of Clay Soil Mixtures Mixtures

    OpenAIRE

    Romas Girkontas; Tadas Tamošiūnas; Andrius Savickas

    2014-01-01

    The aim of this article is to determine clay soils and clay soils mixtures deformations during drying. Experiments consisted from: a) clay and clay mixtures bridges (height ~ 0,30 m, span ~ 1,00 m); b) tiles of clay and clay, sand and straw (height, length, wide); c) cylinders of clay; clay and straw; clay, straw and sand (diameter; height). According to the findings recommendations for clay and clay mixtures drying technology application were presented. During the experiment clay bridge bear...

  12. INAA study of Hg, Se, As, and Br irradiation losses from l-cysteine treated and untreated reference materials

    International Nuclear Information System (INIS)

    Anderson, D.L.

    2013-01-01

    U. S. Food and Drug Administration in-house reference material (RM) Cocoa Powder and National Institute of Standards and Technology Standard RMs (SRMs) 1515 apple leaves, 1547 peach leaves, 1571 orchard leaves, 1566a oyster tissue, and 1568a rice flour were co-irradiated together with polyethylene blanks and analyzed for Hg and Se by anticoincidence instrumental neutron activation analysis. The three botanical SRM portions showed a combined Hg recovery of 70 % while the other portions showed a combined Hg recovery of 169 %, indicating that volatile Hg was lost from botanical SRMs and absorbed by the other irradiated portions. Total Hg recovery for all portions was 82 %. Se results showed no evidence of cross-contamination and all results agreed with certified and known values. National Research Council of Canada Certified RMs DOLT-3 dogfish liver, TORT-2 lobster hepatopancreas, and DORM-3 fish protein were separately analyzed either with no treatment or after treatment with l-cysteine solutions followed by drying over magnesium perchlorate. Each set of portions was co-irradiated with polyethylene and treated filter blanks. Analysis of all components of each treated portion irradiation package showed that essentially all Hg was retained within the package. Treated DOLT-3 portions (inorganic Hg content 53 %) showed a tenfold improvement with 99 % Hg retention. Hg retention for DORM-3 (7 % inorganic Hg) was 85 % (a twofold improvement) while retention for TORT-2 (44 % inorganic Hg), was 94 %, similar to that for untreated portions (96 %). Small irradiation losses (≤0.5 %) of volatile species of Se, As, and Br were observed. (author)

  13. Utilisation of Sepidrud dam basin sediments in fired clay bricks: laboratory scale experiment

    Directory of Open Access Journals (Sweden)

    Jamshidi-Chenari, R.

    2015-12-01

    Full Text Available The prevailing disposal methods for dam basin sediments are not free from the environmental pollution and the ecological imbalance. At present, a new way to treat the dredged sediments to manufacture bricks is being investigated, prioritizing waste recovery over its deposition in landfills. However, construction materials such as clay bricks must comply with the international and local standards. Considering the perpetual availability of the sediments, particle sizing and their chemical composition and the results of physical and qualification tests on Sepidrud Dam basin sediments it can be concluded that the utilization of basin sediments as a full or partial replacement in clay brick production will lead to the production of quality bricks that meet all the regulatory limits in the standards. This research is novel in view of both increasing the reservoir effective volume capacity and preventing the use of alternative land quarries which are mainly covered by green land.Los métodos actuales de eliminación de los sedimentos de las cuencas de las presas no están exentos de problemas de contaminación ambiental y ecológicos. En la actualidad, se está investigando la posibilidad de utilizar los sedimentos dragados para la fabricación de ladrillos, dando prioridad a su valoración como residuos frente a su depósito en vertederos. Sin embargo, los ladrillos, como otros materiales de construcción, deben de cumplir con las correspondientes normas nacionales e internacionales. Teniendo en cuenta la disponibilidad permanente de los sedimentos, el tamaño de sus partículas y su composición química y los resultados físicos de las pruebas de calificación de los sedimentos de la cuenca Sepidrud Dam, en este estudio se ha concluido su viabilidad como materiales de reemplazo total o parcial de las materias primas convencionales, para la producción de ladrillos. Estos ladrillos cumplen además con las normas vigentes. Este es un estudio novedoso

  14. Natural analogues and evidence of long-term isolation capacity of clays occurring in Italy

    International Nuclear Information System (INIS)

    Benvegnu, F.; Brondi, A.; Polizzano, C.

    1988-01-01

    This work concerns the results of the studies conducted at many sites in Italy aimed at collecting information on natural evidences of the isolation capacity of clay. Field observations allow to get the opportunity to know directly or infer the evolutive geological processes which are of concern for the waste disposal problems. As a major advantage such observations concern natural phenomena acting at the same, or at a greater, time-space scale involved in the geological disposal of wastes. The explored situations regard the secondary permeability of clay, detected by means of natural tracers (Hg, He, hydrothermal and geothermal fluids, ....) at the ground surface or directly studied in deep civilian tunnels. Another treated topic is the meaning of the oxido-reduction front as a control factor of the physico-chemical environment of clay as well as of the radionuclides migration. The mechanical and thermal effects which accompany the intrusion of a subvolcanic body within clay represent an extreme worst case for a comparison of the effects on clay due to heat developed by radionuclide decay. Finally the case of a fossil forest maintained almost inaltered by the clay cover for over 1,500,000 years is described. All the results of the geological researches point univocally to an almost total and long lasting isolation capacity of clay formations

  15. High-pressure single-crystal X-ray diffraction of Tl2SeO4

    International Nuclear Information System (INIS)

    Grzechnik, Andrzej; Breczewski, Tomasz; Friese, Karen

    2008-01-01

    The effect of pressure on the crystal structure of thallium selenate (Tl 2 SeO 4 ) (Pmcn, Z=4), containing the Tl + cations with electron lone pairs, has been studied with single-crystal X-ray diffraction in a diamond anvil cell up to 3.64 GPa at room temperature. No phase transition has been observed. The compressibility data are fitted by a Murnaghan equation of state with the zero-pressure bulk modulus B 0 =29(1) GPa and the unit-cell volume at ambient pressure V 0 =529.6(8) A 3 (B'=4.00). Tl 2 SeO 4 is the least compressible in the c direction, while the pressure-induced changes of the a and b lattice parameters are quite similar. These observations can be explained by different pressure effects on the nine- and 11-fold coordination polyhedra around the two non-equivalent Tl atoms. The SeO 4 2- tetrahedra are not rigid units and become more distorted. Their contribution to the compressibility is small. The effect of pressure on the isotypical oxide materials A 2 TO 4 with the β-K 2 SO 4 structure is discussed. It appears that the presence of electron lone pairs on the Tl + cation does not seem to influence the compressibility of Tl 2 SeO 4 . - Graphical abstract: Pressure dependence of normalized lattice parameters and unit-cell volumes in Tl 2 SeO 4 (Pmcn, Z=4). The solid line is the Murnaghan equation of state

  16. Use of organophilic clays in purification of oily wastewater; Uso de argilas organofilicas na purificacao de efluentes oleosos

    Energy Technology Data Exchange (ETDEWEB)

    Silva, A.A. [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Engenharia de Processos], email: adriana_anp@yahoo.com.br; Pereira, K.R de O.; Wiebeck, H.; Valenzuela-Diaz, F.R. [Universidade de Sao Paulo (EPUSP), SP (Brazil). Escola Politecnica. Dept. de Engenharia Metalurgica e de Materiais; Rodrigues, M. G.F. [Universidade Federal de Campina Grande (UFCG), PB (Brazil). CCT. Dept. de Engenharia Quimica

    2006-07-01

    Water mixed with oil is produced in great volume in industrial processes and in petroleum refineries. This mixture must be treated to return to environment or can be reused in the same process. The refine of this water is expensive and presents a difficult execution. The process of separation of oil in water used organophilic clays can be a new option. In this work, the process of preparation of organophilic clays using smectitic clay polycationic and a industrial sodium bentonite both from Paraiba State, Brazil is described. The samples were characterized by two techniques: X-ray Diffraction and Thermal Analysis. After preparation of the organophilic clays it was determined theirs swelling in organic solvents and oil adsorption capacity. The organophilic clays presented higher capacity of oil adsorption when compared to activated carbon. (author)

  17. Manifestation of Crystal Lattice Distortions in the IR Reflection Spectra of Abrasion-Treated ZnSe Ceramics

    Science.gov (United States)

    Sitnikova, V. E.; Dunaev, A. A.; Mamalimov, R. I.; Pakhomov, P. M.; Khizhnyak, S. D.; Chmel, A. E.

    2017-07-01

    The Fourier IR reflection spectra of ZnSe ceramics prepared by hot pressing (HP), physical vapor deposition (PVD), and PVD combined with hot isostatic pressing (HIP) are presented. The optical constants of polished and dry-ground specimens were used for comparison. The grinding treatment simulated the erosion of the outer surface of optical elements made of zinc selenide under the influence of solid dust particles and deposits. In the polished specimens residual stresses showed up in the IR reflection spectra of the ZnSePVD and ZnSeHIP ceramics, which had well-defined orientation of grains, but were not present in the spectra of the ZnSeHIP ceramics as a result of mutual compensation of the stresses in the randomly oriented grains of the material. The stresses, which appeared as a shift of the absorption bands calculated by the Kramers-Kronig method, increased significantly after abrasive treatment of the specimens. For all the treated ceramics the intensity of the absorption bands resulting from the anharmonicity of the vibrations in the distorted crystal lattice increased by several times. The last effect also depends on the production prehistory of the ceramics.

  18. High Concentration of Red Clay as an Alternative for Antibiotics in Aquaculture.

    Science.gov (United States)

    Jung, Jaejoon; Jee, Seung Cheol; Sung, Jung-Suk; Park, Woojun

    2016-01-01

    The use of antibiotics in aquaculture raises environmental and food safety concerns because chronic exposure of an aquatic ecosystem to antibiotics can result in the spread of antibiotic resistance, bioaccumulation of antibiotics in the organisms, and transfer of antibiotics to humans. In an attempt to overcome these problems, high-concentration red clay was applied as an alternative antibiotic against the following common fish pathogens: Aeromonas salmonicida, Vibrio alginolyticus, and Streptococcus equinus. The growth of A. salmonicida and V. alginolyticus was retarded by red clay, whereas that of S. equinus was promoted. Phase contrast and scanning electron microscopy analyses confirmed the attachment of red clay on cell surfaces, resulting in rapid gravitational removal and cell surface damage in both A. salmonicida and V. alginolyticus, but not in S. equinus. Different cell wall properties of grampositive species may explain the unharmed cell surface of S. equinus. Significant levels of oxidative stress were generated in only the former two species, whereas significant changes in membrane permeability were found only in S. equinus, probably because of its physiological adaptation. The bacterial communities in water samples from Oncorhynchus mykiss aquacultures supplemented with red clay showed similar structure and diversity as those from oxytetracycline-treated water. Taken together, the antibiotic effects of high concentrations of red clay in aquaculture can be attributed to gravitational removal, cell surface damage, and oxidative stress production, and suggest that red clay may be used as an alternative for antibiotics in aquaculture.

  19. Content of arsenic, selenium, mercury in the coal, food, clay and drinking water on the Zhaotong fluorosis area, eastern Yunnan Province

    Energy Technology Data Exchange (ETDEWEB)

    Luo Kun-li; Li Hui-jie; Chen Tong-bin (and others) [Chinese Academy of Sciences, Beijing (China). Institute of Geographic Sciences and Natural Resources Research

    2008-03-15

    About 160 samples of coal, corn, capsicum and drinking water were collected from the endemic fluorosis area of Zhenxiong and Weixin County, Zhaotong City of Yunnan Province, to determine the arsenic (As), selenium (Se) and mercury (Hg) content by AAF-800. The study found that the As content in the main coal seam from the Late Permian coal mines in Zhaotong City is 8.84 mg/kg and some civil coal can reach 89.09 mg/kg. The Se and Hg in the coal samples of Late Permian is lower, but Se and Hg are more concentrated in the pyritic coal balls and the pyritic gangue of the coal seam. The As content in corn and capsicum dried by coal-burning is more than 0.7 mg/kg, the natural standard amount of arsenic content permitted in food by China. The Se and Hg content in corn dried by coal-burning is lower than the natural standard of Se and Hg content in food in China but the Se and Hg content of capsicum dried by coal-burning exceeds the amount permitted by the natural standard for food in China. Clay, used as an additive for the coal-burning process and as a binder in making briquettes, contains a high content of As, generally more than 16 mg/kg. However, the Se and Hg content of clay itself are low. The As, Se and Hg content of drinking water are lower than the natural standard of As, Se and Hg content in the drinking water. So, there is high-As content coal and high-As content dried corn and capsicum in the endemic fluorosis area of Zhaotong City of Yunnan Province. The high As content of the dried corn and capsicum might have originated from the high arsenic content of burnt coal and clay. 30 refs., 4 tabs.

  20. HDPE/clay hybrids: the effect of clay modified with poly(diphenyl siloxanes) on thermal and rheological properties

    Energy Technology Data Exchange (ETDEWEB)

    Monasterio, Fernanda E.; Carrera, Maria C.; Erdmann, Eleonora; Destefanis, Hugo A., E-mail: ferelenakq@gmail.co [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Buenos Aires (Argentina). Inst. de Investigaciones para la Industria Quimica; Pita, Victor J.R.R.; Dias, Marcos L. [Universidade Federal do Rio de Janeiro (IMA/UFRJ), RJ (Brazil). Inst. de Macromoleculas Profa. Eloisa Mano

    2009-07-01

    Poly(diphenyl siloxanes) (PDPhS) were synthesized in presence of organophilic clay in order to modify its nano structure. Two silane monomers were used: dimethoxydiphenylsilane and dichlorodiphenylsilane. The following characterizations were performed for all clays: XRD, FTIR and TGA/DTG. These siloxane-modified clays were more hydrophobic and had enhanced thermal stability. Solvent extraction was carried out in the siloxane-modified clays and the PDPhS soluble fraction analyzed according the molecular weight via GPC. The presence of free and grafted oligomers on clay surface was identified. The modified clays were added to HDPE by melt processing to obtain HDPE/clay hybrids which exhibited marked differences in the rheological behavior when compared with neat HDPE. (author)

  1. HDPE/clay hybrids: the effect of clay modified with poly(diphenyl siloxanes) on thermal and rheological properties

    International Nuclear Information System (INIS)

    Monasterio, Fernanda E.; Carrera, Maria C.; Erdmann, Eleonora; Destefanis, Hugo A.; Pita, Victor J.R.R.; Dias, Marcos L.

    2009-01-01

    Poly(diphenyl siloxanes) (PDPhS) were synthesized in presence of organophilic clay in order to modify its nano structure. Two silane monomers were used: dimethoxydiphenylsilane and dichlorodiphenylsilane. The following characterizations were performed for all clays: XRD, FTIR and TGA/DTG. These siloxane-modified clays were more hydrophobic and had enhanced thermal stability. Solvent extraction was carried out in the siloxane-modified clays and the PDPhS soluble fraction analyzed according the molecular weight via GPC. The presence of free and grafted oligomers on clay surface was identified. The modified clays were added to HDPE by melt processing to obtain HDPE/clay hybrids which exhibited marked differences in the rheological behavior when compared with neat HDPE. (author)

  2. Crystallite size distribution of clay minerals from selected Serbian clay deposits

    Directory of Open Access Journals (Sweden)

    Simić Vladimir

    2006-01-01

    Full Text Available The BWA (Bertaut-Warren-Averbach technique for the measurement of the mean crystallite thickness and thickness distributions of phyllosilicates was applied to a set of kaolin and bentonite minerals. Six samples of kaolinitic clays, one sample of halloysite, and five bentonite samples from selected Serbian deposits were analyzed. These clays are of sedimentary volcano-sedimentary (diagenetic, and hydrothermal origin. Two different types of shape of thickness distribution were found - lognormal, typical for bentonite and halloysite, and polymodal, typical for kaolinite. The mean crystallite thickness (T BWA seams to be influenced by the genetic type of the clay sample.

  3. Aspects of clay/concrete interactions

    International Nuclear Information System (INIS)

    Oscarson, D.W.; Dixon, D.A.; Onofrei, M.

    1997-01-01

    In the Canadian concept for nuclear fuel waste management, both clay-based materials and concrete are proposed for use as barriers, seals or supporting structures. The main concern when clays and concrete are in proximity is the generation of a high-pH environment by concrete since clay minerals are relatively unstable at high pH. Here we examine the OH - -generating capacity of two high-performance concretes when in contact with several solutions. We also investigate various aspects of claylconcrete interactions. They are: (1) the alkalimetric titration of clay suspensions, (2) the effect of Ca(OH) 2 (portlandite) on the swelling and hydraulic properties of compacted bentonite, and (3) the influence of cement grout on a backfill clay retrieved from the 900-d Buffer/Container Experiment at the Underground Research Laboratory of AECL. The results indicate that although high-performance concretes establish significantly lower poresolution pH (9 to 10) than does ordinary portland cement, the pH is still somewhat higher than that of clay/groundwater systems of about pH 8. Hence, even if high-performance concrete is used in a disposal vault, the potential still exists for clay minerals to alter over long periods of time if in contact with this concrete. The data show, however, that clays have a substantial buffering capacity, and clay-based barriers can thus neutralize much of the OH - potentially released from concrete in a vault. Moreover, even after reacting for 120 d at 85 o C with up to 5 wt.% Ca(OH) 2 , compacted bentonite (dry density = 1.2 Mg/m 3 ) retains much of its swelling capacity and has a permeability low enough (hydraulic conductivity ≤ 10 -11 m/s) to ensure that molecular diffusion will be the main transport mechanism through compacted clay-based barriers. Furthermore, according to X-ray diffractometry, the clay mineral component of backfill was not altered by contact with a cement grout for 900 d in the Buffer/Container Experiment

  4. Physical Properties of Latvian Clays

    OpenAIRE

    Jurgelāne, I; Stepanova, V; Ločs, J; Mālers, J; Bērziņa-Cimdiņa, L

    2012-01-01

    Physical and chemical properties of clays mostly depends on its mineral and chemical composition, particle size and pH value. The mutual influence of these parameters is complex. Illite is the most abundant clay mineral in Latvia and usually used in building materials and pottery. The viscosity and plasticity of Latvian clays from several deposits were investigated and correlated with mineral composition, particle size and pH value. Fractionated and crude clay samples were used. The p...

  5. Experimental Study and modelling of the Sorption of Selenite and Europium Onto Smectite and Illite Clays

    Energy Technology Data Exchange (ETDEWEB)

    Missana, T.; Alonso, U.; Garcia-Gutierrez, M.

    2009-10-12

    This study provides a large set of experimental selenite sorption data for pure smectite and illite. Similar sorption behavior existed in both clays: linear within a large range of the Se concentrations investigated and independent of ionic strength. Selenite sorption was also analysed in the illite/smectite system with the clays mixed in two different proportions. The objective of the study was to provide the simplest model possible to fit the experimental data, a model also capable of describing selenite sorption in binary illite/smectite clay systems. Selenite sorption data were modeled using both a one-and a two-site non-electrostatic model that took into account the formation of two complexes at the edge sites of the clay. The complexation constants obtained by fitting sorption data of the individual minerals were incorporated into a model to predict the adsorption of selenium in the illite/ smectite mixtures; the models predictions were consistent with the experimental adsorption data. (Author) 42 refs.

  6. Experimental Study and modelling of the Sorption of Selenite and Europium Onto Smectite and Illite Clays

    International Nuclear Information System (INIS)

    Missana, T.; Alonso, U.; Garcia-Gutierrez, M.

    2009-01-01

    This study provides a large set of experimental selenite sorption data for pure smectite and illite. Similar sorption behavior existed in both clays: linear within a large range of the Se concentrations investigated and independent of ionic strength. Selenite sorption was also analysed in the illite/smectite system with the clays mixed in two different proportions. The objective of the study was to provide the simplest model possible to fit the experimental data, a model also capable of describing selenite sorption in binary illite/smectite clay systems. Selenite sorption data were modeled using both a one-and a two-site non-electrostatic model that took into account the formation of two complexes at the edge sites of the clay. The complexation constants obtained by fitting sorption data of the individual minerals were incorporated into a model to predict the adsorption of selenium in the illite/ smectite mixtures; the models predictions were consistent with the experimental adsorption data. (Author) 42 refs

  7. Clay Treatment To Improve Its Color Parameters To Use Them In Porcelain Stoneware Production

    International Nuclear Information System (INIS)

    Llop, M.; Notari, M.D.; Barrachina, E.; Nebot, I.; Nunez, I.; Carda, J.B.

    2010-01-01

    The porcelain stoneware tiles production needs high whiteness clays in order to be competitive in the ceramic sector. In the present work, Spanish clays used in the porcelain stoneware tiles production have been characterized in physic, chemist and mineralogical terms, in order to reduce its content of chromophore oxides (Fe2O3 and TiO2). These reduction processes are concerned with different physical and chemical treatments, as sieving at 150mm, magnetic separation using a 0.6T permanent magnet, or acid treatment with HCL and later neutralization with NH3. With these treatments, due to siderite elimination, chromophore oxides as Fe2O3 have been decreased from 2,36% to 1,66% in the chemically treated clay. (Author).

  8. Enchanted Clays: 44th Annual Meeting of the Clay Minerals Society (June 2007)

    Energy Technology Data Exchange (ETDEWEB)

    Randall T. Cygan

    2007-06-01

    “Enchanted Clays: 44th Annual Meeting of the Clay Minerals Society” was held in early June 2007 in beautiful and historic Santa Fe, New Mexico, USA. Santa Fe provided an idyllic location in the southwestern United States for the attendees to enjoy technical and social sessions while soaking up the diverse culture and wonderful climate of New Mexico—The Land of Enchantment. The meeting included a large and varied group of scientists, sharing knowledge and ideas, benefitting from technical interactions, and enjoying the wonderful historic and enchanted environs of Santa Fe. Including significant number of international scientists, the meeting was attended by approximately two hundred participants. The meeting included three days of technical sessions (oral and poster presentations), three days of field trips to clay and geological sites of northern New Mexico, and a full day workshop on the stabilization of carbon by clays. Details can be found at the meeting web site: www.sandia.gov/clay.

  9. Evaluation of the bleaching flux in clays containing hematite and different clay minerals

    International Nuclear Information System (INIS)

    Silva Junior, E.M.; Lusa, T.; Silva, T.M.; Medeiros, B.B.; Santos, G.R. dos; Morelli, M.R.

    2016-01-01

    Previous studies have shown that the addition of a synthetic flux in a clay mineral constituted by illite phase in the presence of iron oxide with the hematite, promotes color change of the firing products, making the reddish color firing into whiteness. This flow is constituted of a vitreous phase of the silicates family obtained by fusion/solidification of oxides and carbonates. Thus, the objective of this work was that of studying the interaction of the iron element in the final color mechanism of the different types of mineral crystal phase of the clays. In order to study the phenomenon, we obtained different compositions between the select clays and the synthetic flow, and characterization using X-ray diffraction (XRD) and visual analysis. The results showed that the action of the synthetic flow as a modifying agent for color depends on the mineral crystal phase of the clays. The color firing modification does not occur in the clays content high levels of kaolinite mineral phase. (author)

  10. Study of the Effect of Clay Particles on Low Salinity Water Injection in Sandstone Reservoirs

    Directory of Open Access Journals (Sweden)

    Sina Rezaei Gomari

    2017-03-01

    Full Text Available The need for optimal recovery of crude oil from sandstone and carbonate reservoirs around the world has never been greater for the petroleum industry. Water-flooding has been applied to the supplement primary depletion process or as a separate secondary recovery method. Low salinity water injection is a relatively new method that involves injecting low salinity brines at high pressure similar to conventional water-flooding techniques, in order to recover crude oil. The effectiveness of low salinity water injection in sandstone reservoirs depends on a number of parameters such as reservoir temperature, pressure, type of clay particle and salinity of injected brine. Clay particles present on reservoir rock surfaces adsorb polar components of oil and modify wettability of sandstone rocks to the oil-wet state, which is accountable for the reduced recovery rates by conventional water-flooding. The extent of wettability alteration caused by three low salinity brines on oil-wet sandstone samples containing varying clay content (15% or 30% and type of clay (kaolinite/montmorillonite were analyzed in the laboratory experiment. Contact angles of mica powder and clay mixture (kaolinite/montmorillonite modified with crude oil were measured before and after injection with three low salinity sodium chloride brines. The effect of temperature was also analyzed for each sample. The results of the experiment indicate that samples with kaolinite clay tend to produce higher contact angles than samples with montmorillonite clay when modified with crude oil. The highest degree or extent of wettability alteration from oil-wet to intermediate-wet state upon injection with low salinity brines was observed for samples injected with brine having salinity concentration of 2000 ppm. The increase in temperature tends to produce contact angles values lying in the higher end of the intermediate-wet range (75°–115° for samples treated at 50 °C, while their corresponding

  11. Comparative effect of Al, Se, and Mo toxicity on NO3(-) assimilation in sunflower (Helianthus annuus L.) plants.

    Science.gov (United States)

    Ruiz, Juan M; Rivero, Rosa M; Romero, Luis

    2007-04-01

    Here, we study the effect caused by three trace elements--Al, Se, and Mo--applied at the same concentration (100 microM) and in their oxyanionic forms--NaAl(OH)(4), Na(2)SeO(4), and Na(2)MoO(4)--on NO(3)(-) assimilation (NO(3)(-), nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), and glutamate synthase (GOGAT) activities, and concentrations of amino acids and proteins) in sunflower (Helianthus annuus L. var. Kasol) plants. The most harmful element for sunflower plants proved to be selenate, followed by aluminate. On the contrary, the application of molybdate had no negative effect on the growth of this plant, suggesting the possibility of using sunflower for the phytoremediation of this metal, mainly in agricultural zones used for grazing where the excess of this element can provoke problems of molybdenosis in ruminants (particularly in cattle). In addition, we found that the alteration of NO(3)(-) assimilation by SeO(4)(2-) and Al(OH)(4)(-) directly influences the growth and development of plants, foliar inhibition of NR activity by SeO(4)(2-) being more harmful than the decrease in foliar availability of NO(3)(-) provoked by Al(OH)(4)(-).

  12. Columns in Clay

    Science.gov (United States)

    Leenhouts, Robin

    2010-01-01

    This article describes a clay project for students studying Greece and Rome. It provides a wonderful way to learn slab construction techniques by making small clay column capitols. With this lesson, students learn architectural vocabulary and history, understand the importance of classical architectural forms and their influence on today's…

  13. Antagonistic Growth Effects of Mercury and Selenium in Caenorhabditis elegans Are Chemical-Species-Dependent and Do Not Depend on Internal Hg/Se Ratios.

    Science.gov (United States)

    Wyatt, Lauren H; Diringer, Sarah E; Rogers, Laura A; Hsu-Kim, Heileen; Pan, William K; Meyer, Joel N

    2016-03-15

    The relationship between mercury (Hg) and selenium (Se) toxicity is complex, with coexposure reported to reduce, increase, and have no effect on toxicity. Different interactions may be related to chemical compound, but this has not been systematically examined. Our goal was to assess the interactive effects between the two elements on growth in the nematode Caenorhabditis elegans, focusing on inorganic and organic Hg (HgCl2 and MeHgCl) and Se (selenomethionine, sodium selenite, and sodium selenate) compounds. We utilized aqueous Hg/Se dosing molar ratios that were either above, below, or equal to 1 and measured the internal nematode total Hg and Se concentrations for the highest concentrations of each Se compound. Observed interactions were complicated, differed between Se and Hg compounds, and included greater-than-additive, additive, and less-than-additive growth impacts. Biologically significant interactions were only observed when the dosing Se solution concentration was 100-25,000 times greater than the dosing Hg concentration. Mitigation of growth impacts was not predictable on the basis of internal Hg/Se molar ratio; improved growth was observed at some internal Hg/Se molar ratios both above and below 1. These findings suggest that future assessments of the Hg and Se relationship should incorporate chemical compound into the evaluation.

  14. Effects of Different Types of Clays and Maleic Anhydride Modified Polystyrene on Polystyrene/Clay Nanocomposites

    Directory of Open Access Journals (Sweden)

    M. Mehrabzadeh

    2013-01-01

    Full Text Available Polymer/clay nanocomposites are considered as a new subject of research in Iran and the world. Addition of a minimum amount of clay (2-5wt% can improve the mechanical properties, enhance barrier properties and reduce flammability dramatically. Polystyrene (PS exhibits high strength, high modulus and excellent dimensional stability, but it has poor ductility, elongation, and flexural modulus. By incorporating clay into polystyrene these properties can be improved. In this study preparation of polystyrene/clay nanocomposite, effects of different types of clays (Cloisite 10A andNanomer I.30TC and maleic anhydride modified polystyrene on mechanical properties of the prepared polystyrene/clay nanocomposites were evaluated. Samples were prepared by a twin screw extruder. Transmission electron microscopy (TEM and X-ray diffraction (XRD techniques were employed to evaluate the extent of intercalation and exfoliation of silicate layers in the nanocomposites. Mechanical tests show that by addition of clay and maleic anhydride modified polystyrene the flexural modulus (~30% and elongation-at-break (~40% of prepared nanocomposites have been improved. XRD and TEM results show that nanocomposite have an intercalated structure with ability to change to further exfoliation structure.

  15. Thixotropic Properties of Latvian Illite Containing Clays

    OpenAIRE

    Lakevičs, Vitālijs; Stepanova, Valentīna; Niedra, Santa; Dušenkova, Inga; Ruplis, Augusts

    2015-01-01

    Thixotropic properties of Latvian Devonian and Quaternary clays were studied. Dynamic viscosity of the water clay suspensions were measured with a rotating viscometer. Influence of concentration, pH and modifiers on the thixotropic clay properties was analyzed. It was found that Latvian clays have thixotropic properties. Stability of clay suspensions is described with the thixotropy hysteresis loop. Increasing the speed of the viscometer rotation, dynamic viscosity of the clay suspension decr...

  16. Clay exfoliation and polymer/clay aerogels by supercritical carbon dioxide

    Directory of Open Access Journals (Sweden)

    Simona eLongo

    2013-11-01

    Full Text Available Supercritical carbon dioxide (scCO2 treatments of a montmorillonite (MMT intercalated with ammonium cations bearing two long hydrocarbon tails (organo-modified MMT, OMMT led to OMMT exfoliation, with loss of the long-range order in the packing of the hydrocarbon tails and maintenance of the long-range order in the clay layers. The intercalated and the derived exfoliated OMMT have been deeply characterized, mainly by X-ray diffraction analyses. Monolithic composite aerogels, with large amounts of both intercalated and exfoliated OMMT and including the nanoporous-crystalline δ form of syndiotactic polystyrene (s-PS, have been prepared, by scCO2 extractions of s-PS-based gels. Also for high OMMT content, the gel and aerogel preparation procedures occur without re-aggregation of the exfoliated clay, which is instead observed for other kinds of polymer processing. Aerogels with the exfoliated OMMT have more even dispersion of the clay layers, higher elastic modulus and larger surface area than aerogels with the intercalated OMMT. Extremely light materials with relevant transport properties could be prepared. Moreover, s-PS-based aerogels with exfoliated OMMT could be helpful for the handling of exfoliated clay minerals.

  17. What makes a natural clay antibacterial?

    Science.gov (United States)

    Williams, Lynda B.; Metge, David W.; Eberl, Dennis D.; Harvey, Ronald W.; Turner, Amanda G.; Prapaipong, Panjai; Port-Peterson, Amisha T.

    2011-01-01

    Natural clays have been used in ancient and modern medicine, but the mechanism(s) that make certain clays lethal against bacterial pathogens has not been identified. We have compared the depositional environments, mineralogies, and chemistries of clays that exhibit antibacterial effects on a broad spectrum of human pathogens including antibiotic resistant strains. Natural antibacterial clays contain nanoscale (2+ solubility.

  18. Viscosity and Plasticity of Latvian Illite Clays

    OpenAIRE

    Jurgelāne, I; Vecstaudža, J; Stepanova, V; Mālers, J; Bērziņa-Cimdiņa, L

    2012-01-01

    Due to viscosity and plasticity, clays and clay minerals are used in civil engineering, pottery and also in cosmetics and medicine as thickening agents and emulsion and suspension stabilizers. The rheological properties of clay suspensions are complex. Mostly it is an interaction between mineral composition, clay particle size and pH value and also depends on clay minerals. Clay-water suspension is non-Newtonian fluid showing thixotropic and pseudoplastic properties. Results showed that plast...

  19. Electrokinetics of samples treated by electrocoagulation methods

    Energy Technology Data Exchange (ETDEWEB)

    Angle, C.W.; Donini, J.C.

    1992-01-01

    The purpose is to study the theory of electrocoagulation during water treatment. Mechanisms proposed in the literature are charge neutralization and dipole-dipole interaction. The electrokinetics of highly concentrated model clay and process clay suspensions, before and after electrocoagulation, are studied experimentally. The charge on treated and untreated dispersions and controls are measured using electrokinetic sonic amplitude and microelectrophoresis techniques. Scanning electron microscopy is used to determine release of aluminum ions onto latex and process clays. The qualitative experimental observations, electrokinetic data, and analysis of aluminum coated particles provide some information on the mechanisms of electrocoagulation, but further studies with dilute dispersions are needed to confirm the charge neutralization mechanism. 10 refs., 4 figs., 3 tabs.

  20. Effect of the duration of a wet KCN etching step and post deposition annealing on the efficiency of Cu2ZnSnSe4 solar cells

    OpenAIRE

    Sahayaraj, Sylvester; Brammertz, Guy; Vermang, Bart; Ranjbar, Samaneh; Meuris, Marc; Vleugels, Jef; Poortmans, Jef

    2016-01-01

    The influence of the duration of the KCN etching step on the efficiency of Cu2ZnSnSe4 (CZTSe) solar cells and Post deposition annealing (PDA) has been explored. CZTSe thin film absorbers prepared by selenization at 450 degrees C were etched by 5 wt% KCN/KOH from 30s up to 360 s before solar cell processing. KCN etching times above 120 s resulted in poor efficiencies. The fill factor (FF) and short circuit current density Jsc) of these devices were affected severely. After annealing the solar ...

  1. Clay Portrait Boxes

    Science.gov (United States)

    Wilbert, Nancy Corrigan

    2009-01-01

    In an attempt to incorporate sculptural elements into her ceramics program, the author decided to try direct plaster casting of the face to make a plaster mold for clay. In this article, the author shares an innovative ceramics lesson that teaches students in making plaster casts and casting the face in clay. This project gives students the…

  2. Clay matrix voltammetry

    International Nuclear Information System (INIS)

    Perdicakis, Michel

    2012-01-01

    Document available in extended abstract form only. In many countries, it is planned that the long life highly radioactive nuclear spent fuel will be stored in deep argillaceous rocks. The sites selected for this purpose are anoxic and satisfy several recommendations as mechanical stability, low permeability and low redox potential. Pyrite (FeS 2 ), iron(II) carbonate, iron(II) bearing clays and organic matter that are present in very small amounts (about 1% w:w) in soils play a major role in their reactivity and are considered today as responsible for the low redox potential values of these sites. In this communication, we describe an electrochemical technique derived from 'Salt matrix voltammetry' and allowing the almost in-situ voltammetric characterization of air-sensitive samples of soils after the only addition of the minimum humidity required for electrolytic conduction. Figure 1 shows the principle of the developed technique. It consists in the entrapment of the clay sample between a graphite working electrode and a silver counter/quasi-reference electrode. The sample was previously humidified by passing a water saturated inert gas through the electrochemical cell. The technique leads to well-defined voltammetric responses of the electro-active components of the clays. Figure 2 shows a typical voltammogram relative to a Callovo-Oxfordian argillite sample from Bure, the French place planned for the underground nuclear waste disposal. During the direct scan, one can clearly distinguish the anodic voltammetric signals for the oxidation of the iron (II) species associated with the clay and the oxidation of pyrite. The reverse scan displays a small cathodic signal for the reduction of iron (III) associated with the clay that demonstrates that the majority of the previously oxidized iron (II) species were transformed into iron (III) oxides reducible at lower potentials. When a second voltammetric cycle is performed, one can notice that the signal for iron (II

  3. Nano-structured Cu(In,Al)Se{sub 2} near-infrared photodetectors

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ruo-Ping [Institute of Microelectronics and Department of Electrical Engineering, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan (China); Perng, Dung-Ching, E-mail: dcperng@ee.ncku.edu.tw [Institute of Microelectronics and Department of Electrical Engineering, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan (China); Center for Micro/Nano Science and Technology, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan (China)

    2013-02-01

    We have demonstrated nano-structured Cu(In,Al)Se{sub 2} (CIAS) near-infrared (NIR) photodetectors (PDs). The CIAS NIR PDs were fabricated on ZnO nanowires (NWs)/ZnO/Mo/ITO (indium tin oxide) glass substrate. CIAS film acted as a sensing layer and sparse ZnSe NWs, which were converted from ZnO NWs after selenization process, were embedded in the CIAS film to improve the amplification performance of the NIR PDs. X-ray diffraction patterns show that the CIAS film is a single phased polycrystalline film. Scanning electron microscopy was used to examine the morphology of the CIAS film and the growth of NWs. Two detection schemes, plain Al–CIAS–Al metal–semiconductor–metal structure and vertical structure with CIAS/ZnSe NWs annular p–n junctions, were studied. The nano-structured NIR PDs demonstrate two orders of magnitude for the annular p–n junction and one order of magnitude for the MSM structure in photocurrent amplification. The responsivities of the PDs using both sensing structures have the same cut-off frequency near 790 nm. - Highlights: ► We demonstrate nano-structured Cu(In,Al)Se{sub 2} near-infrared photodetectors. ► Photodetectors were fabricated on ZnO nanowires/ZnO/Mo/ITO glass substrate. ► Two detection schemes studied: a plain MSM structure and a vertical structure. ► Photocurrent amplification for the vertical structure is two orders of magnitude. ► Photocurrent amplification for the MSM structure is one order of magnitude.

  4. Magnetic resonance imaging of clays: swelling, sedimentation, dissolution

    Science.gov (United States)

    Dvinskikh, Sergey; Furo, Istvan

    2010-05-01

    measure of clay distribution in extended samples during different physical processes such as swelling, dissolution, and sedimentation on the time scale from minutes to years [1-3]. To characterize the state of colloids that form after/during clay swelling the water self-diffusion coefficient was measured on a spatially resolved manner. Both natural clays and purified and ion-exchanged montmorillonite clays were investigated. The primary variables were clay composition and water ionic strength. These results have a significant impact for engineering barriers for storage of spent nuclear fuel where clay erosion by low salinity water must be addressed. Presented methods were developed under the motivation of using bentonite clays as a buffer medium to build in-ground barriers for the encapsulation of radioactive waste. Nevertheless, the same approaches can be found suitable in other applications in soil and environmental science to study other types of materials as they swell, dissolve, erode, or sediment. Acknowledgements: This work has been supported by the Swedish Nuclear Fuel and Waste Management Co (SKB) and the Swedish Research Council VR. [1] N. Nestle, T. Baumann, R. Niessner, Magnetic resonance imaging in environmental science. Environ. Sci. Techn. 36 154A (2002). [2] S. V. Dvinskikh, K. Szutkowski, I. Furó. MRI profiles over a very wide concentration ranges: application to swelling of a bentonite clay. J. Magn. Reson. 198 146 (2009). [3] S. V. Dvinskikh, I. Furó. Magnetic resonance imaging and nuclear magnetic resonance investigations of bentonite systems. Technical Report, TR-09-27, SKB (2009), www.skb.se.

  5. Catalytic Wastewater Treatment Using Pillared Clays

    Science.gov (United States)

    Perathoner, Siglinda; Centi, Gabriele

    After introduction on the use of solid catalysts in wastewater treatment technologies, particularly advanced oxidation processes (AOPs), this review discussed the use of pillared clay (PILC) materials in three applications: (i) wet air catalytic oxidation (WACO), (ii) wet hydrogen peroxide catalytic oxidation (WHPCO) on Cu-PILC and Fe-PILC, and (iii) behavior of Ti-PILC and Fe-PILC in the photocatalytic or photo-Fenton conversion of pollutants. Literature data are critically analyzed to evidence the main direction to further investigate, in particularly with reference to the possible practical application of these technologies to treat industrial, municipal, or agro-food production wastewater.

  6. Clay Animals and Their Habitats

    Science.gov (United States)

    Adamson, Kay

    2010-01-01

    Creating clay animals and their habitats with second-grade students has long been one of the author's favorite classroom activities. Students love working with clay and they also enjoy drawing animal homes. In this article, the author describes how the students created a diorama instead of drawing their clay animal's habitat. This gave students…

  7. In{sub 6}Se{sub 7} thin films by heating thermally evaporated indium and chemical bath deposited selenium multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Ornelas, R.E.; Avellaneda, D. [Universidad Autonoma de Nuevo Leon, Facultad de Ingenieria Mecanica y Electrica, San Nicolas de los Garza, Nuevo Leon-66450 (Mexico); Shaji, S. [Universidad Autonoma de Nuevo Leon, Facultad de Ingenieria Mecanica y Electrica, San Nicolas de los Garza, Nuevo Leon-66450 (Mexico); Universidad Autonoma de Nuevo Leon-CIIDIT, Apodaca, N.L (Mexico); Castillo, G.A.; Roy, T.K. Das [Universidad Autonoma de Nuevo Leon, Facultad de Ingenieria Mecanica y Electrica, San Nicolas de los Garza, Nuevo Leon-66450 (Mexico); Krishnan, B., E-mail: kbindu_k@yahoo.com [Universidad Autonoma de Nuevo Leon, Facultad de Ingenieria Mecanica y Electrica, San Nicolas de los Garza, Nuevo Leon-66450 (Mexico); Universidad Autonoma de Nuevo Leon-CIIDIT, Apodaca, N.L (Mexico)

    2012-05-15

    Indium selenide (In{sub 6}Se{sub 7}) thin films were prepared via selenization of thermally evaporated indium thin films by dipping in sodium selenosulphate solution followed by annealing in nitrogen atmosphere. First, indium was thermally evaporated on glass substrate. Then, the indium coated glass substrates were dipped in a solution containing 80 ml 0.125 M sodium selenosulphate and 1.5 ml dilute acetic acid (25%) for 5 min. Glass/In-Se layers were annealed at 200-400 Degree-Sign C in nitrogen atmosphere (0.1 Torr) for 30 min. X-ray diffraction studies showed the formation of monoclinic In{sub 6}Se{sub 7}. Morphology of the thin films formed at different conditions was analyzed using Scanning electron microscopy. The elemental analysis was done using Energy dispersive X-ray detection. Electrical conductivity under dark and illumination conditions was evaluated. Optical band gap was computed using transmittance and reflectance spectra. The band gap value was in the range 1.8-2.6 eV corresponding to a direct allowed transition. We studied the effect of indium layer thickness and selenium deposition time on the structure, electrical and optical properties of In{sub 6}Se{sub 7} thin films.

  8. Surface modification of montmorillonite on surface Acid-base characteristics of clay and thermal stability of epoxy/clay nanocomposites.

    Science.gov (United States)

    Park, Soo-Jin; Seo, Dong-Il; Lee, Jae-Rock

    2002-07-01

    In this work, the effect of surface treatments on smectitic clay was investigated in surface energetics and thermal behaviors of epoxy/clay nanocomposites. The pH values, X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR) were used to analyze the effect of cation exchange on clay surface and the exfoliation phenomenon of clay interlayer. The surface energetics of clay and thermal properties of epoxy/clay nanocomposites were investigated in contact angles and thermogravimetric analysis (TGA), respectively. From the experimental results, the surface modification of clay by dodecylammonium chloride led to the increases in both distance between silicate layers of about 8 A and surface acid values, as well as in the electron acceptor component (gamma(+)(s)) of surface free energy, resulting in improved interfacial adhesion between basic (or electron donor) epoxy resins and acidic (electron acceptor) clay interlayers. Also, the thermal stability of nanocomposites was highly superior to pure epoxy resin due to the presence of the well-dispersed clay nanolayer, which has a barrier property in a composite system.

  9. 21 CFR 186.1256 - Clay (kaolin).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Clay (kaolin). 186.1256 Section 186.1256 Food and... Substances Affirmed as GRAS § 186.1256 Clay (kaolin). (a) Clay (kaolin) Al2O3.2SiO2.nH2O, Cas Reg. No. 1332-58-7) consists of hydrated aluminum silicate. The commercial products of clay (kaolin) contain...

  10. Quantifying the effect of squirt flow dispersion from compliant clay porosity in clay bearing sandstones

    DEFF Research Database (Denmark)

    Sørensen, Morten Kanne; Fabricius, Ida Lykke

    2013-01-01

    Compliant porosity in the form of cracks is known to cause significant attenuation and velocity dispersion through pore pressure gradients and consequent relaxation, dubbed squirt flow. Squirt flow from cracks vanish at high confining stress due to crack closing. Studies on clay bearing sandstones......-squirt flow on the bulk modulus of a clay bearing sandstone. The predicted magnitude of the clay-squirt effect on the bulk modulus is compared with experimental data. The clay-squirt effect is found to possibly account for a significant portion of the deviances from Gassmann fluid substitution in claybearing...... sandstones....

  11. Characterization of electron-beam-modified surface coated clay fillers and their influence on physical properties of rubbers

    Science.gov (United States)

    Ray, Sudip; Bhowmick, Anil K.; Sarma, K. S. S.; Majali, A. B.; Tikku, V. K.

    2002-12-01

    A novel process of surface modification of clay filler has been developed by coating this with an acrylate monomer, trimethylol propane triacrylate (TMPTA) or a silane coupling agent, triethoxy vinyl silane (TEVS) followed by electron beam irradiation. Characterization of these surface modified fillers has been carried out by Fourier-transform infrared analysis (FTIR), electron spectroscopy for chemical analysis (ESCA), wettability by dynamic wicking method measuring the rise of a liquid through a filler-packed capillary tube and water flotation test, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), thermogravimetric analysis (TGA), and X-ray diffraction (XRD). Presence of the acrylate and the silane coupling agent on the modified fillers has been confirmed from FTIR, ESCA, and EDX studies, which has also been supported by TGA studies. The contact angle measurement by dynamic wicking method suggests improvement in hydrophobicity of the treated fillers, which is supported by water flotation test especially in the case of silanized clay. However, XRD studies demonstrate that the entire modification process does not affect the bulk properties of the fillers. Finally, both unmodified and modified clay fillers have been incorporated in styrene butadiene rubber (SBR) and nitrile rubber (NBR). Rheometric and mechanical properties reveal that there is a definite improvement using these modified fillers specially in the case of silanized clay compared to the control sample, probably due to successful enhancement in interaction between the treated clay and the base polymer.

  12. Characterization of electron-beam-modified surface coated clay fillers and their influence on physical properties of rubbers

    International Nuclear Information System (INIS)

    Ray, Sudip; Bhowmick, Anil K.; Sarma, K.S.S.; Majali, A.B.; Tikku, V.K.

    2002-01-01

    A novel process of surface modification of clay filler has been developed by coating this with an acrylate monomer, trimethylol propane triacrylate (TMPTA) or a silane coupling agent, triethoxy vinyl silane (TEVS) followed by electron beam irradiation. Characterization of these surface modified fillers has been carried out by Fourier-transform infrared analysis (FTIR), electron spectroscopy for chemical analysis (ESCA), wettability by dynamic wicking method measuring the rise of a liquid through a filler-packed capillary tube and water flotation test, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), thermogravimetric analysis (TGA), and X-ray diffraction (XRD). Presence of the acrylate and the silane coupling agent on the modified fillers has been confirmed from FTIR, ESCA, and EDX studies, which has also been supported by TGA studies. The contact angle measurement by dynamic wicking method suggests improvement in hydrophobicity of the treated fillers, which is supported by water flotation test especially in the case of silanized clay. However, XRD studies demonstrate that the entire modification process does not affect the bulk properties of the fillers. Finally, both unmodified and modified clay fillers have been incorporated in styrene butadiene rubber (SBR) and nitrile rubber (NBR). Rheometric and mechanical properties reveal that there is a definite improvement using these modified fillers specially in the case of silanized clay compared to the control sample, probably due to successful enhancement in interaction between the treated clay and the base polymer

  13. Thermodynamic model for the solubility of BaSeO4(cr) in the aqueous Ba2+-SeO42--Na+-H+-OH--H2O system. Extending to high selenate concentrations

    International Nuclear Information System (INIS)

    Rai, Dhanpat; Felmy, Andrew R.; Kitamura, Akira; Yoshikawa, Hideki; Doi, Reisuke; Yoshida, Yasushi; Moore, Dean A.

    2014-01-01

    The aqueous solubility of BaSeO 4 (cr) was studied at 23 ± 2 C as a function of Na 2 SeO 4 concentrations (0.0001 to 4.1 mol kg -1 ) and equilibration periods (3 to 596 d). The equilibrium, approached from both the under- and over-saturation directions, in this system was reached rather rapidly (≤ 3d). The SIT and Pitzer's ion-interaction models were used to interpret these data and the predictions based on both of these models agreed closely with the experimental data. Thermodynamic analyses of the data show that BaSeO 4 (cr) is the solubility-controlling phase for Na 2 SeO 4 concentrations -1 . The log 10 K 0 value for the BaSeO 4 (cr) solubility product (BaSeO 4 (cr) ↔ Ba 2+ + SeO 4 2- ) calculated by the SIT and Pitzer models were very similar (-7.32 ± 0.07 with Pitzer and -7.25 ± 0.11 with SIT). Although the BaSeO 4 (cr) solubility product and Ba concentrations as a function of Na 2 SeO 4 concentrations predicted by both the SIT and Pitzer models are similar, the models required different sets of fitting parameters. For examples, (1) interpretations using the SIT model required the inclusion of Ba(SeO 4 ) 2 2- species with log 10 K 0 = 3.44 ± 0.12 for the reaction (Ba 2+ + 2SeO 4 2- ↔ Ba(SeO 4 ) 2 2- ), whereas these species are not needed for Pitzer model, and (2) at Na 2 SeO 4 concentrations > 0.59 mol kg -1 it was also possible to calculate the value for log 10 K 0 for the solubility product of a proposed double salt (Na 2 Ba(SeO 4 ) 2 (s) ↔ 2Na + + Ba 2+ + 2SeO 4 2- ) which for the SIT model is -(8.70 ± 0.29) whereas for the Pitzer model it is -(9.19 ± 0.19). The ion-interaction/ion-association parameters hitherto unavailable for both the SIT and Pitzer models required to fit these extensive data extending to as high ionic strengths as 12.3 mol kg -1 were determined. The model developed in this study is consistent with all of the reliable literature data, which was also used to extend the model to barium concentrations as high as 0.22 mol kg

  14. Mineral acquisition from clay by budongo forest chimpanzees

    NARCIS (Netherlands)

    Reynolds, Vernon; Lloyd, Andrew W.; English, Christopher J.; Lyons, Peter; Dodd, Howard; Hobaiter, Catherine; Newton-Fisher, Nicholas; Mullins, Caroline; Lamon, Noemie; Schel, Anne Marijke; Fallon, Brittany

    2015-01-01

    Chimpanzees of the Sonso community, Budongo Forest, Uganda were observed eating clay and drinking clay-water from waterholes. We show that clay, clay-rich water, and clay obtained with leaf sponges, provide a range of minerals in different concentrations. The presence of aluminium in the clay

  15. Evaluation of kaolinite clays of Moa for the production of cement based clinker-calcined clay-limestone (LC3

    Directory of Open Access Journals (Sweden)

    Roger S. Almenares-Reyes

    2016-12-01

    Full Text Available Clay materials from two outcrops of the Moa region were analyzed to determine their potential use as supplementary cementitious material in the production of ternary cements based on limestone-calcined clay. The clays were characterized by atomic absorption spectroscopy (EAA, X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR and thermogravimetric analysis (ATG. These methods revealed high aluminum in clays, moderate kaolinite content, a disordered structure and the presence of impurities. The solubility of aluminum and silicon in alkali and the compressive strength of LC3 systems is proportional to their content in clay, being higher for the one with higher kaolinite content and greater structural disorder (outcrop D1, although the clay of both outcrops may constitute supplementary cementitious materials in the production of ternary cements based clinker-calcined clay-limestone. The suitable thermal activation range for both clays is between 650 ° C and 850 ° C.

  16. Influence of herbicide structure, clay acidity, and humic acid coating on acetanilide herbicide adsorption on homoionic clays.

    Science.gov (United States)

    Liu, Weiping; Gan, Jianying; Yates, Scott R

    2002-07-03

    Adsorption of chloroacetanilide herbicides on homoionic montmorillonite was studied by coupling batch equilibration and FT-IR analysis. Adsorption decreased in the order metolachlor > acetochlor > alachlor > propachlor on Ca(2+)- or Mg(2+)-saturated clays and in the order metolachlor > alachlor > acetachlor > propachlor on Al(3+)- or Fe(3+)-saturated clays. FT-IR spectra showed that the carbonyl group of the herbicide molecule was involved in bonding. For the same herbicide, adsorption of alachlor, acetachlor, and metolachlor on clay followed the order Ca(2+) approximately Mg(2+) < Al(3+) < or = Fe(3+), which coincided with the increasing acidity of homoionic clays. Adsorption of propachlor, however, showed an opposite dependence, suggesting a different governing interaction. In clay and humic acid mixtures, herbicide adsorption was less than that expected from independent additive adsorption by the individual constituents, and the deviation was dependent on the clay-to-humic acid ratio, with the greatest deviation consistently occurring at a 60:40 clay-to-humic acid ratio.

  17. Experimental study and modelling of selenite sorption onto illite and smectite clays.

    Science.gov (United States)

    Missana, T; Alonso, U; García-Gutiérrez, M

    2009-06-15

    This study provides a large set of experimental selenite sorption data for pure smectite and illite. Similar sorption behavior existed in both clays: linear within a large range of the Se concentrations investigated (from 1x10(-10) to 1x10(-3) M); and independent of ionic strength. Selenite sorption was also analysed in the illite/smectite system with the clays mixed in two different proportions, as follows: (a) 30% illite-70% smectite and (b) 43% illite-57% smectite. The objective of the study was to provide the simplest model possible to fit the experimental data, a model also capable of describing selenite sorption in binary illite/smectite clay systems. Selenite sorption data, separately obtained in the single mineral systems, were modeled using both a one- and a two-site non-electrostatic model that took into account the formation of two complexes at the edge sites of the clay. Although the use of a two-site model slightly improved the fit of data at a pH below 4, the simpler one-site model reproduced satisfactorily all the sorption data from pH 3 to 8. The complexation constants obtained by fitting sorption data of the individual minerals were incorporated into a model to predict the adsorption of selenium in the illite/smectite mixtures; the model's predictions were consistent with the experimental adsorption data.

  18. Clay shale as host rock. A geomechanical contribution about Opalinus clay

    International Nuclear Information System (INIS)

    Lempp, Christof; Menezes, Flora; Sachwitz, Simon

    2016-01-01

    The Opalinuston is a prominent rock representing the type of organic clay shales or clay stones within the sequence of Triassic and Jurassic marine sediments in Southern Germany. The rock forms a homogenous unit some ten meters thick. The degree of consolidation of this type of pelitic rock depends mainly on the former load conditions, but is also dependent on the long-term weathering and even on the present exposition. The geomechanical parameters such as shear strength, tensional strength and permeability vary with the state of consolidation and become important when the use is discussed of such rocks for radioactive waste disposal. A tunneling project at the northern escarpment of the Swabian Alb (Southwest Germany) within the Opalinus clay offered the rare opportunity to obtain fresh unweathered rock samples in greater amounts compared to fresh drilling cores from which geomechanical investigations are usually undertaken. Consequently, the results of geomechanical laboratory testings are presented in order to compare here the results of multistep triaxial compression tests, of hydraulic fracturing laboratory tests and of some other tests for rock characterization with the corresponding results of Opalinus clay sites in Switzerland that were investigated by the Swiss Nagra Company for host rock characterization. After a discussion of the relevant state of fresh Opalinus clay, especially of suction pressure conditions and saturation state, the results of triaxial shear tests are presented. Increasing shear deformation at increasing pressure and unchanged water saturation do not result in a significant strength reduction of the Opalinus clay. The rock shows increasing cohesion and stiffness, if multiple loading has repeatedly reached the failure point. Thus there is no increased permeability with continued shearing. Only at the beginning of the shearing process is a temporarily increased permeability to be expected due to dilatation processes. An increased

  19. Removal of remazol yellow with modified clays with iron

    International Nuclear Information System (INIS)

    Diaz-Gomez T, A. P.

    2012-01-01

    Clays have the ability to absorb water and to retain in its structure both hydrophilic and hydrophobic substances, therefore, it is possible to use them in the sorption of dyes from waste water, in order to avoid affecting water bodies or storm drains when they are discharged. In this paper the montmorillonite KSF and a sodium bentonite from the Morelos State, Mexico were studied for the sorption of an azo dye used in textiles knows as remazol yellow. These clays were modified with iron, the dye sorption behaviors and their regeneration processes for their reuse were determined. It was difficult to separate the sodium bentonite after being in contact with aqueous solutions; therefore it was nor a candidate dor the removal of remazol yellow from aqueous solutions. The montmorillonite KSF was characterized before and after the iron modification, and after its regeneration by scanning electron microscopy (elemental analysis), infrared spectrometry, X-ray diffraction, and the specific areas of the materials were determined by Bet analysis. The adsorption equilibrium time and the adsorption rate for remazol yellow were determined from the fitting of the experimental results to mathematical models for the unmodified and iron modified montmorillonite KSF. The adsorption capacity was determined from the adsorption isotherms and mathematical models. The influence of the ph in the sorption processes was determined as well, and it was found that, ph values between 2 and 12 do not have any influence on the adsorption processes for iron modified montmorillonite KSF. The montmorillonite KSF and the iron modified montmorillonite KSF are adequate adsorbents for the removal of remazol yellow from aqueous solutions. Although, the sorption capacity for the unmodified montmorillonite KSF is higher (about 10%) than the capacity for the iron modified montmorillonite KSF and the stability of the last one increased. The saturated clays with remazol yellow were treated with Fenton reactive

  20. Mineralogy and geotechnical characteristics of some pottery clay

    Directory of Open Access Journals (Sweden)

    Mujib Olamide ADEAGBO

    2016-12-01

    Full Text Available The physical properties of soils, which are tremendously influenced by the active clay minerals in soil, are of great importance in geotechnical engineering. This paper investigates the clay-sized particles of the Igbara-Odo pottery clay, and compares results obtained with available data on the bulk sample, to determine their correlation and underline the dependence of the geotechnical properties of the bulk clay material on the clay-sized particles. The bulk clay sample consists of 52% sand-size particles, 21% silt and 27% clay. Analysis of the clay-sized particles and the bulk materials shows: specific gravity of 2.07 and 2.66, liquid limit of 91.0% and 33.0%, plastic limit of 27.5% and 14.3%, plasticity index of 63.5% and 18.7% and a linear shrinkage of 7.9% and 5.4%, for both clay-sized particles and bulk clay respectively. The activity value of the clay material (0.64 suggests the presence of Kaolinite and Ilite; and these were confirmed with X-Ray diffraction on the bulk sample and clay-sized particles. X-Ray diffraction patterns shows distinctive peaks which highlight the dominance of Kaolinite (with 8 peaks in the pottery clay sample for both clay-sized particles and bulk material; while traces of other clay minerals like Illite and Halloysite and rock minerals like Mica, Feldspar and Chrysotile were also found. These results suggest that the clay possesses high viability in the manufacturing of ceramics, refractory bricks, paper, fertilizer and paint. The clay material can be used as a subgrade in road construction, since it possesses low swelling characteristics.

  1. Xenon-129 NMR study of the microporous structure of clays and pillared clays

    International Nuclear Information System (INIS)

    Tsiao, C.; Carrado, K.A.

    1990-01-01

    129 Xe NMR studies have been carried out using xenon gas adsorbed in clays and pillared clays. Data from the measurements provide information on the pore structure of clays before and after pillaring. The results indicate that the effective pore diameter of montmorillonite increases, for example, from 5.4 Angstrom to 8.0 Angstrom after pillaring cheto-montmorillonite with aluminum polyoxohydroxy Keggin cations. The data are consistent with X-ray powder diffraction results, which show a corresponding increase in the interlamellar gallery height from 5.6 Angstrom to 8.4 Angstrom

  2. Synthesis of rare-earth selenate and selenite materials under 'sol-gel' hydrothermal conditions: crystal structures and characterizations of La(HSeO3)(SeO4) and KNd(SeO4)2

    International Nuclear Information System (INIS)

    Liu Wei; Chen Haohong; Yang Xinxin; Li Mangrong; Zhao Jingtai

    2004-01-01

    Two rare-earth compounds containing selenium atoms, La(HSeO 3 )(SeO 4 ) with a new open framework structure and KNd(SeO 4 ) 2 with a layered structure, have been synthesized under ''sol-gel'' hydrothermal conditions for the first time. Single-crystals of La(HSeO 3 )(SeO 4 ) crystallize in the monoclinic system (P2 1 , a=8.5905(17)A, b=7.2459(14)A, c=9.5691(19)A, β=104.91(3) o , Z=2, RAll=0.032). The structure contains puckered polyhedral layers made of LaO x (x=9,10) and SeO 4 groups, which are connected via SeO 3 -uints to the 3D structure. The crytal structure of KNd(SeO 4 ) 2 (monoclinc, P2 1 /c, a=8.7182(17)A, b=7.3225(15)A, c=11.045(2)A, β=91.38(3) o , Z=4, RAll=0.051) contains honeycomb-like six-ring NdO 9 polyhedra forming layers which are further decorated with SeO 4 tetrahedra. The K + ions occupy the interspaces of these layers and provide the charge balance

  3. Synthesis of Zeolite A from Kaolin (Shwe Taung Clay)

    International Nuclear Information System (INIS)

    Mie Mie Han Htun; Mu Mu Htay

    2010-12-01

    The synthesis of Zeolite A from locally available kaolin clay (Shwe Taung) in Myanmar has been attempted. The kaolinite was converted to metakaoli, by treating with NaOH at 820C for 1hr, and hydrothermal treatment.It was found that the solution of fused clay powder can be crystallized at 100C under ambient pressure to synthesize Zeolite A. The process variables for synthesis have been optimized in order to produce Zeolite A at a lower price. The mole ratio of SiO2/Al2O3 for kaolin was fixed at 2.54. The effects of various factors (aging time and agitation time) on the structure of the sample were extensively investigated. The Shwe Taung clay was characterized by X-ray Diffraction (XRD), X-ray fluorescence (XRF) and Scanning Electron Microscopy (SEM). The samples were characterized by XRD. The results show that the pure form Zeolite A can be prepared with a molar composition of (2.54 SiO3: Al2O3: 5.8Na2O: 256 H2O) by agitation at room temperature for 30min. The mixture was aged for 24 hour at the same temperature and crystallized at 100C for 48 hour.

  4. Properties of fired clay brick incorporating with sewage sludge waste

    Science.gov (United States)

    Kadir, Aeslina Abdul; Salim, Nurul Salhana Abdul; Sarani, Noor Amira; Rahmat, Nur Aqma Izurin; Abdullah, Mohd Mustafa Al Bakri

    2017-09-01

    The production of sludge in wastewater treatment plant is about to increase every year and most of the sludge was directly disposed to landfill. In addition, the constraint to treat sludge is very high in cost and time- consuming could be disadvantages to the responsible parties. Therefore, this research was conducted to utilize sludge produced from the wastewater treatment plant into fired clay brick as one of the alternatives of disposal method. In this study, the research attempt to incorporate sewage sludge waste (SSW) into fired clay brick. The sewage sludge brick (SSB) mixtures were incorporated with 0%, 1%, 5%, 10%, and 20% of SSW. The manufactured bricks were fired at 1050°C with heating rate of 1°C/min. Physical and mechanical properties test were conducted such as shrinkage, density, water absorption and compressive strength. As the conclusion, brick with utilization 5% of SSW is acceptable to produce good quality of brick. This study shows by using SSW in fired clay brick could be an alternative method to dispose of the SSW and also could act as a replacement material for brick manufacturing with appropriate mix and design.

  5. Broadband and polarization reflectors in the lookdown, Selene vomer.

    Science.gov (United States)

    Zhao, Shulei; Brady, Parrish Clawson; Gao, Meng; Etheredge, Robert Ian; Kattawar, George W; Cummings, Molly E

    2015-03-06

    Predator evasion in the open ocean is difficult because there are no objects to hide behind. The silvery surface of fish plays an important role in open water camouflage. Various models have been proposed to account for the broadband reflectance by the fish skin that involve one-dimensional variations in the arrangement of guanine crystal reflectors, yet the three-dimensional organization of these guanine platelets have not been well characterized. Here, we report the three-dimensional organization and the optical properties of integumentary guanine platelets in a silvery marine fish, the lookdown (Selene vomer). Our structural analysis and computational modelling show that stacks of guanine platelets with random yaw angles in the fish skin produce broadband reflectance via colour mixing. Optical axes of the guanine platelets and the collagen layer are aligned closely and provide bulk birefringence properties that influence the polarization reflectance by the skin. These data demonstrate how the lookdown preserves or alters polarization states at different incident polarization angles. These optical properties resulted from the organization of these guanine platelets and the collagen layer may have implications for open ocean camouflage in varying light fields. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  6. Metabolism in rats of selenium from intrinsically and extrinsically labeled isolated soy protein

    International Nuclear Information System (INIS)

    Mason, A.C.; Weaver, C.M.

    1986-01-01

    Absorption, retention and tissue accumulation by rats of 75 Se from intrinsically labeled isolated soy protein were compared with utilization of 75 Se from the extrinsic sources of [ 75 Se]selenite, [ 75 Se]selenate or [ 75 Se]selenomethionine. Extrinsic sources of selenium were given by gavage or mixed with isolated soy protein. There were no differences in absorption and retention of 75 Se from intrinsically labeled soy diet compared to the three extrinsically labeled soy diets. Of the three extrinsic sources tested, 75 Se from selenate was better absorbed than from selenite or selenomethionine when incorporated into a soy diet. Absorption of 75 Se was significantly lower when given to animals in gavage solution than when mixed with soy diets. After a 14-d test period, retention of 75 Se was the same for all four soy diet groups. In gavaged groups, 75 Se from selenomethionine was retained to a greater extent than 75 Se from selenite. The liver, testes and kidney accumulated more 75 Se from the test meal than did the blood and lungs. In the testes more 75 Se from selenite and selenate was accumulated than from selenomethionine-labeled diets. Selenium absorption from the soy isolate source was very high (86-96%), indicating that, although soy does not normally contain high levels of selenium, the selenium present is well absorbed from this plant source

  7. Comparison of Selenium Toxicity in Sunflower and Maize Seedlings Grown in Hydroponic Cultures.

    Science.gov (United States)

    Garousi, Farzaneh; Veres, Szilvia; Kovács, Béla

    2016-11-01

    Several studies have demonstrated that selenium (Se) at low concentrations is beneficial, whereas high Se concentrations can induce toxicity. Controlling Se uptake, metabolism, translocation and accumulation in plants is important to decrease potential health risks and helping to select proper biofortification methods to improve the nutritional content of plant-based foods. The uptake and distribution of Se, changes in Se content, and effects of various concentrations of Se in two forms (sodium selenite and sodium selenate) on sunflower and maize plants were measured in nutrient solution experiments. Results revealed the Se content in shoots and roots of both sunflower and maize plants significantly increased as the Se level increased. In this study, the highest exposure concentrations (30 and 90 mg/L, respectively) caused toxicity in both sunflower and maize. While both Se forms damaged and inhibited plant growth, each behaved differently, as toxicity due to selenite was observed more than in the selenate treatments. Sunflower demonstrated a high Se accumulation capacity, with higher translocation of selenate from roots to shoots compared with selenite. Since in seleniferous soils, a high change in plants' capability exists to uptake Se from these soils and also most of the cultivated crop plants have a bit tolerance to high Se levels, distinction of plants with different Se tolerance is important. This study has tried to discuss about it.

  8. The effects of selenate and sulphate supply on the accumulation and volatilization of Se by cabbage, kohlrabi and alfalfa plants grown hydroponically

    Directory of Open Access Journals (Sweden)

    R. HAJIBOLAND

    2008-12-01

    Full Text Available The effect of Selenium (Se supplementation at five levels of 0 (control, 5, 10, 15, 20 ìM in plants supplied with one of four concentrations of sulphur (S including 0.05, 0.25, 0.5 and 1.0 mM was investigated in two varieties of Brassica oleracea (cabbage and kohlrabi and alfalfa (Medicago sativa L. in a hydroponic experiment. In severely S deficient plants (0.05 mM, Se acted as a toxic element, alfalfa was the most susceptible plant that died at this treatment. However, in plants supplied with near adequate (0.5 mM or adequate (1.0 mM S, Se acted as a growth promoting element. The most pronounced stimulation of growth was observed in cabbage and the lowest in alfalfa. Increasing S concentration in the medium, reduced Se uptake and transport. In contrast, S uptake and transport increased in response to Se addition. Se volatilization was higher in alfalfa than cabbage and kohlrabi when expressed on unit shoot dry weight or leaf area basis, but not when expressed per plant. Results suggested that Se supplementation of plants supplied with adequate S, not only had beneficial effects on plants growth but also can have application in enrichment of livestock fodder and human food.;

  9. Mineralogical characterization of Greda clays and monitoring of their phase transformations on thermal treatment

    International Nuclear Information System (INIS)

    Chavez Panduro, E.; Bravo Cabrejos, J.

    2010-01-01

    The mineralogical characterization of two clay samples from the Central Andean Region of Peru, denominated White Greda and Red Greda, is reported. These clays contain the clay minerals mica and illite respectively. Both clays were treated thermally in an oxidising atmosphere under controlled conditions up to 1,100 deg. C with the purpose of obtaining information about structural changes that may be useful for pottery manufacture. X-ray fluorescence was used for the elemental characterization of the samples and X-ray diffractometry was used to determine the collapse and formation of the mineral phases present in the samples caused by thermal treatment. At temperatures above 1,000 deg. C it is observed the formation of spinel in the case of White Greda and of hematite, corundum and cristobalite in the case of Red Greda. Room temperature transmission Moessbauer spectroscopy allowed the monitoring of the variation of the hyperfine parameters with the thermal treatment temperature; In the case of the evolution of the quadruple splitting of the paramagnetic Fe 3+ sites with temperature, in both clays, the analyses reproduced results such as the 'camel back' curve shape, found by other workers (Wagner and Wagner, Hyperfine Interact 154:35-82, 2004; Wagner and Kyek, Hyperfine Interact 154:5-33, 2004).

  10. Mineralogical characterization of Greda clays and monitoring of their phase transformations on thermal treatment

    Science.gov (United States)

    Panduro, E. Chavez; Cabrejos, J. Bravo

    2010-01-01

    The mineralogical characterization of two clay samples from the Central Andean Region of Peru, denominated White Greda and Red Greda, is reported. These clays contain the clay minerals mica and illite respectively. Both clays were treated thermally in an oxidising atmosphere under controlled conditions up to 1,100°C with the purpose of obtaining information about structural changes that may be useful for pottery manufacture. X-ray fluorescence was used for the elemental characterization of the samples and X-ray diffractometry was used to determine the collapse and formation of the mineral phases present in the samples caused by thermal treatment. At temperatures above 1,000°C it is observed the formation of spinel in the case of White Greda and of hematite, corundum and cristobalite in the case of Red Greda. Room temperature transmission Mössbauer spectroscopy allowed the monitoring of the variation of the hyperfine parameters with the thermal treatment temperature; In the case of the evolution of the quadruple splitting of the paramagnetic Fe3 + sites with temperature, in both clays, the analyses reproduced results such as the “camel back” curve shape, found by other workers (Wagner and Wagner, Hyperfine Interact 154:35-82, 2004; Wagner and Kyek, Hyperfine Interact 154:5-33, 2004).

  11. Mineralogical characterization of Greda clays and monitoring of their phase transformations on thermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Chavez Panduro, E., E-mail: 04130127@unmsm.edu.pe; Bravo Cabrejos, J., E-mail: jbravoc@unmsm.edu.pe [Universidad Nacional Mayor de San Marcos, Facultad de Ciencias Fisicas (Peru)

    2010-01-15

    The mineralogical characterization of two clay samples from the Central Andean Region of Peru, denominated White Greda and Red Greda, is reported. These clays contain the clay minerals mica and illite respectively. Both clays were treated thermally in an oxidising atmosphere under controlled conditions up to 1,100 deg. C with the purpose of obtaining information about structural changes that may be useful for pottery manufacture. X-ray fluorescence was used for the elemental characterization of the samples and X-ray diffractometry was used to determine the collapse and formation of the mineral phases present in the samples caused by thermal treatment. At temperatures above 1,000 deg. C it is observed the formation of spinel in the case of White Greda and of hematite, corundum and cristobalite in the case of Red Greda. Room temperature transmission Moessbauer spectroscopy allowed the monitoring of the variation of the hyperfine parameters with the thermal treatment temperature; In the case of the evolution of the quadruple splitting of the paramagnetic Fe{sup 3+} sites with temperature, in both clays, the analyses reproduced results such as the 'camel back' curve shape, found by other workers (Wagner and Wagner, Hyperfine Interact 154:35-82, 2004; Wagner and Kyek, Hyperfine Interact 154:5-33, 2004).

  12. Wave liquefaction in soils with clay content

    DEFF Research Database (Denmark)

    Kirca, Özgür; Sumer, B. Mutlu; Fredsøe, Jørgen

    2012-01-01

    The paper presents the results of an experimental study of the influence of clay content (in silt-clay and sand-clay mixtures) on liquefaction beneath progressive waves. The experiments showed that the influence of clay content is very significant. Susceptibility of silt to liquefaction is increa...

  13. Characterization of clay minerals

    International Nuclear Information System (INIS)

    Diaz N, C.; Olguin, M.T.; Solache R, M.; Alarcon H, T.; Aguilar E, A.

    2002-01-01

    The natural clays are the more abundant minerals on the crust. They are used for making diverse industrial products. Due to the adsorption and ion exchange properties of these, a great interest for developing research directed toward the use of natural clays for the waste water treatment has been aroused. As part of such researches it is very important to carry out previously the characterization of the interest materials. In this work the results of the mineral and elemental chemical composition are presented as well as the morphological characteristics of clay minerals from different regions of the Mexican Republic. (Author)

  14. Clays and Clay Minerals and their environmental application in Food Technology

    Science.gov (United States)

    del Hoyo Martínez, Carmen; Cuéllar Antequera, Jorge; Sánchez Escribano, Vicente; Solange Lozano García, Marina; Cutillas Díez, Raul

    2013-04-01

    The clay materials have led to numerous applications in the field of public health (del Hoyo, 2007; Volzone, 2007) having been demonstrated its effectiveness as adsorbents of all contaminants. Some biodegradable materials are used for for adsorption of chemical contaminants: lignins (Valderrabano et al., 2008) and also clays and clay minerals, whose colloidal properties, ease of generating structural changes, abundance in nature, and low cost make them very suitable for this kind of applications. Among the strategies used at present to preserve the quality of the water and this way to diminish the environmental risk that supposes the chemical pollution, stands out the use of adsorbents of under cost, already they are natural or modified, to immobilize these compounds and to avoid the pollution of the water with the consequent reduction of environmental and economic costs Thanks to the development of the science and the technology of the nourishment in the last 50 years, there have revealed itself several new substances that can fulfill beneficial functions in the food, and these substances, named food additives, are today within reach of all. The food additives recover a very important role in the complex nourishing supply. The additives fulfill several useful functions in the food, which often we give for sat. Nevertheless the widespread use of food additives in the food production also influences the public health. The food industries, which are very important for the economy, spill residues proved from its activity that they have to be controlled to evaluate the environmental impact and to offer the necessary information about the quantitative evaluation of the chemical risk of the use of food additives for the public health. We have studied the adsorption of several contaminants by natural or modified clays, searching their interaction mechanisms and the possible recycling of these materials for environmental purposes and prevention of the health. References

  15. Removal of selenium species from waters using various surface-modified natural particles and waste materials

    Energy Technology Data Exchange (ETDEWEB)

    Yigit, Nevzat O.; Tozum, Seda [Department of Environmental Engineering, Suleyman Demirel University, Isparta (Turkey)

    2012-07-15

    Waste red mud and natural pumice/volcanic slag particles were surface modified and their selenium adsorption from waters was investigated. Acid activation/heat treatment of original red mud (ORM) particles significantly increased their micropore and external surface area and cumulative volume of pores. Iron oxide coating of pumice/slags and acid activation of ORM decreased their pH{sub pzc} values and increased surface acidity. Selenite/selenate adsorption on iron oxide surfaces and acid activated red mud (AARM) was very fast with approximately first-order adsorption kinetics. Iron oxide coating of pumice/slag and acid activation of ORM particles significantly enhanced their selenite and selenate uptakes. Maximum Se adsorption capacities as high as 6.3 (mg Se/g adsorbent) were obtained by AARM. The extent of selenate uptakes by the surface modified particles was generally lower than those of selenite. Due to competition among Se species and other background water matrix for iron oxide adsorption sites, reduced selenite/selenate uptakes were found in natural water compared to single solute tests. Higher Se uptakes by iron oxide surfaces were found at pH 7.5 compared to pH 8.9, due to increased electrostatic repulsion among iron oxides and Se species at higher pH. The most effective adsorbents among the tested 17 different particles for Se uptake were AARM and iron oxide coated pumice. Se concentrations less than drinking water standards (5-10 {mu}g/L) can be achieved by these particles. These low-cost, natural, or recyclable waste particles appear to be promising adsorbents for Se removal after their surface modification. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Mineral Acquisition from Clay by Budongo Forest Chimpanzees.

    Directory of Open Access Journals (Sweden)

    Vernon Reynolds

    Full Text Available Chimpanzees of the Sonso community, Budongo Forest, Uganda were observed eating clay and drinking clay-water from waterholes. We show that clay, clay-rich water, and clay obtained with leaf sponges, provide a range of minerals in different concentrations. The presence of aluminium in the clay consumed indicates that it takes the form of kaolinite. We discuss the contribution of clay geophagy to the mineral intake of the Sonso chimpanzees and show that clay eaten using leaf sponges is particularly rich in minerals. We show that termite mound soil, also regularly consumed, is rich in minerals. We discuss the frequency of clay and termite soil geophagy in the context of the disappearance from Budongo Forest of a formerly rich source of minerals, the decaying pith of Raphia farinifera palms.

  17. Mineral Acquisition from Clay by Budongo Forest Chimpanzees.

    Science.gov (United States)

    Reynolds, Vernon; Lloyd, Andrew W; English, Christopher J; Lyons, Peter; Dodd, Howard; Hobaiter, Catherine; Newton-Fisher, Nicholas; Mullins, Caroline; Lamon, Noemie; Schel, Anne Marijke; Fallon, Brittany

    2015-01-01

    Chimpanzees of the Sonso community, Budongo Forest, Uganda were observed eating clay and drinking clay-water from waterholes. We show that clay, clay-rich water, and clay obtained with leaf sponges, provide a range of minerals in different concentrations. The presence of aluminium in the clay consumed indicates that it takes the form of kaolinite. We discuss the contribution of clay geophagy to the mineral intake of the Sonso chimpanzees and show that clay eaten using leaf sponges is particularly rich in minerals. We show that termite mound soil, also regularly consumed, is rich in minerals. We discuss the frequency of clay and termite soil geophagy in the context of the disappearance from Budongo Forest of a formerly rich source of minerals, the decaying pith of Raphia farinifera palms.

  18. Influence of carbonate micro-fabrics on the failure strength of Callovo-Oxfordian clay stones and Opalinus Clay

    International Nuclear Information System (INIS)

    Klinkenberg, M.; Dohrmann, R.; Kaufhold, S.; Siegesmund, S.

    2010-01-01

    Document available in extended abstract form only. The potential use of clay stones as host rock for radioactive waste disposal is currently investigated. For this application, hydraulic conductivity, swelling properties, water uptake, rheological and mechanical properties are of great importance. The Opalinus Clay (Mont-Terri, Switzerland) and the Callovo- Oxfordian clay stone (France) are the most frequently studied clay stones. One goal is to develop a numerical model being able to predict the mechanical behaviour of clay stones under repository-like conditions. Experimental investigations reveal that Opalinus Clay and Callovo-Oxfordian clay stone behave different with respect to the dependence of mechanical strength on the carbonate content. The failure strength of Opalinus Clay decreases with increasing carbonate content, whereas it increases with increasing carbonate content when Callovo-Oxfordian clay stone is considered. To supply proper data and enable reliable model assumptions, the use of suitable experimental techniques for the description of the microstructure is indispensable. After mechanical testing, samples were taken perpendicular to the bedding and polished sections were prepared. The micro-fabrics were investigated using scanning electron microscopy (SEM) and image analysis. Backscattered electron (BSE) images were used for the image analysis because carbonates can be extracted by grey level analysis. The image analysis of the extracted particles provides the following parameters: area, longest and shortest axis of an ellipse (surrounding the particle), perimeter, the angle to horizontal (longest axis), and the aspect ratio (longest axis/shortest axis). Callovo-Oxfordian clay stone shows a homogenous distribution of fine-grained carbonates and dovetail connection of calcium carbonate with the clayey matrix. In contrast Opalinus Clay shows large elongated carbonate grains (high aspect ratios) of shell fragments. Cracks are mostly related to these

  19. Ultrafast pump-probe reflectance spectroscopy: Why sodium makes Cu(In,Ga)Se2 solar cells better

    KAUST Repository

    Eid, Jessica; Usman, Anwar; Gereige, Issam; Duren, Jeroen Van; Lyssenko, Vadim; Leo, Karl; Mohammed, Omar F.

    2015-01-01

    Although Cu(In,Ga)Se2 (CIGS) solar cells have the highest efficiency of any thin-film solar cell, especially when sodium is incorporated, the fundamental device properties of ultrafast carrier transport and recombination in such cells remain not fully understood. Here, we explore the dynamics of charge carriers in CIGS absorber layers with varying concentrations of Na by femtosecond (fs) broadband pump-probe reflectance spectroscopy with 120 fs time resolution. By analyzing the time-resolved transient spectra in a different time domain, we show that a small amount of Na integrated by NaF deposition on top of sputtered Cu(In,Ga) prior to selenization forms CIGS, which induces slower recombination of the excited carriers. Here, we provide direct evidence for the elongation of carrier lifetimes by incorporating Na into CIGS.

  20. Ultrafast pump-probe reflectance spectroscopy: Why sodium makes Cu(In,Ga)Se2 solar cells better

    KAUST Repository

    Eid, Jessica

    2015-04-14

    Although Cu(In,Ga)Se2 (CIGS) solar cells have the highest efficiency of any thin-film solar cell, especially when sodium is incorporated, the fundamental device properties of ultrafast carrier transport and recombination in such cells remain not fully understood. Here, we explore the dynamics of charge carriers in CIGS absorber layers with varying concentrations of Na by femtosecond (fs) broadband pump-probe reflectance spectroscopy with 120 fs time resolution. By analyzing the time-resolved transient spectra in a different time domain, we show that a small amount of Na integrated by NaF deposition on top of sputtered Cu(In,Ga) prior to selenization forms CIGS, which induces slower recombination of the excited carriers. Here, we provide direct evidence for the elongation of carrier lifetimes by incorporating Na into CIGS.

  1. Preparation of nanocomposites polyurethane water bone with clay montmorillonite sodica and organophilic clay

    International Nuclear Information System (INIS)

    Garcia, Claudia P.; Delpech, Marcia C.; Coutinho, Fernanda M.B.; Mello, Ivana L.

    2009-01-01

    Nanocomposites based on water bone polyurethane (NWPU's) were synthesized based on poli(propylene glycol), dimethylolpropionic acid (DMPA), isophorone diisocyanate (IPDI) and hydrazine (HYD), as chain extender. Two kinds of clays were employed: hydrophilic and organophilic. The nanocomposites were characterized by infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electronic microscopy (SEM) and the mechanical properties were evaluated. The FTIR results showed the presence of specific groups of clay and the XRD suggested that occurred their intercalation/exfoliation through polyurethane matrix. The mechanical resistance of the systems showed significant increase when compared to water dispersions synthesized without clay. (author)

  2. Simultaneous sorption of As, B, Cr, Mo and Se from coal fly ash leachates by Al(sup3+)-pillared bentonite clay: implication for the construction of activated geo-synthetic clay liner

    CSIR Research Space (South Africa)

    Masindi, Vhahangwele

    2017-03-01

    Full Text Available successfully removed oxyanion species from generated coal FA leachates. This study shows that Al(sup3+)-modified bentonite clay is an effective adsorbent for oxyanion species in coal FA leachates and could be applied as a reactive barrier in coal FA retention...

  3. From clay bricks to deep underground storage

    International Nuclear Information System (INIS)

    2012-05-01

    This booklet issued by the Swiss National Cooperative for the Disposal of Radioactive Waste NAGRA takes a look at the use of clay strata for the storage of radioactive wastes in deep-lying repositories. First of all, a geological foray is made concerning the history of the use of clay and its multifarious uses. The characteristics of clay and its composition are examined and its formation in the geological past is explained. In particular Opalinus clay is looked at and the structures to be found are discussed. The clay's various properties and industrial uses are examined and its sealing properties are examined. Also, Bentonite clay is mentioned and work done by Nagra and co-researchers is noted

  4. Influence of Macro-Topography on Damage Tolerance and Fracture Toughness of 0.1 wt % Multi-Layer Graphene/Clay-Epoxy Nanocomposites

    Directory of Open Access Journals (Sweden)

    Rasheed Atif

    2016-07-01

    Full Text Available Influence of topographical features on mechanical properties of 0.1 wt % Multi-Layer Graphene (MLG/clay-epoxy nanocomposites has been studied. Three different compositions were made: (1 0.1 wt % MLG-EP; (2 0.1 wt % clay-EP and (3 0.05 wt % MLG-0.05 wt % clay-EP. The objective of making hybrid nanocomposites was to determine whether synergistic effects are prominent at low weight fraction of 0.1 wt % causing an improvement in mechanical properties. The topographical features studied include waviness (Wa, roughness average (Ra, root mean square value (Rq and maximum roughness height (Rmax or Rz. The Rz of as-cast 0.1 wt % MLG-EP, clay-EP and 0.05 wt % MLG-0.05 wt % clay-EP nanocomposites were 43.52, 48.43 and 41.8 µm respectively. A decrease in Rz values was observed by treating the samples with velvet cloth and abrasive paper 1200P while increased by treating with abrasive papers 320P and 60P. A weight loss of up to 16% was observed in samples after the treatment with the abrasive papers. It was observed that MLG is more effective in improving the mechanical properties of epoxy than nanoclay. In addition, no significant improvement in mechanical properties was observed in hybrid nanocomposites indicating that 0.1 wt % is not sufficient to generate conspicuous synergistic effects.

  5. Microstructure and Thermal Properties of Polypropylene/Clay Nanocomposites with TiCl4/MgCl2/Clay Compound Catalyst

    Directory of Open Access Journals (Sweden)

    Limei Wang

    2015-01-01

    Full Text Available Polypropylene (PP/clay nanocomposites were synthesized by in situ intercalative polymerization with TiCl4/MgCl2/clay compound catalyst. Microstructure and thermal properties of PP/clay nanocomposites were studied in detail. Fourier transform infrared (FTIR spectra indicated that PP/clay nanocomposites were successfully prepared. Both wide-angle X-ray diffraction (XRD and transmission electron microscopy (TEM examination proved that clay layers are homogeneously distributed in PP matrix. XRD patterns also showed that the α phase was the dominate crystal phase of PP in the nanocomposites. Thermogravimetric analysis (TGA examinations confirmed that thermal stability of PP/clay nanocomposites was markedly superior to pure PP. Differential scanning calorimetry (DSC scans showed that the melt temperature and the crystallinity of nanocomposites were slightly lower than those of pure PP due to crystals imperfections.

  6. Semi-industrial production of organo clays to use in base oil drilling fluid; Producao em escala piloto de argilas organofilicas visando uso em fluidos de perfuracao base oleo

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Heber S.; Martins, Alice B.; Costa, Danubia L. da; Ferreira, Heber C.; Neves, Gelmires de A.; Melo, Tomas J.A. de [Universidade Federal de Campina Grande (UFCG), PB (Brazil); Teixeira Neto, Erico [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil)

    2008-07-01

    The drilling fluids are essential to the operations of exploration of oil. The organoclays are widely used in the composition of the oil based drilling fluids and raw materials are of high value added. These clays can be obtained, traditionally, from bentonitic clay treated, in water, with ionic surfactants, however, non-ionic surfactants can be adsorbed on the surface of interlamelar bentonitic clay, naturally hydrophilic, making them organophilic. A pilot plant for production of organoclays was mounted in the Recycling Laboratory / UFCG. The bentonitic clay imported Cloisite Na{sup +R} was treated with a non-ionic surfactant in levels of 40, 50 and 60% in scale and bench-scale pilot. The commercial organoclay VG-69{sup R} was used as a standard for comparison of results. The clay obtained were characterized by X-ray diffraction, and Foster's swelling. The oil based fluids were prepared in accordance with the standards of PETROBRAS (N-22581 1997 and N-2259, 1997). Tests show that the characterization of organoclays have obtained intercalation of non-ionic surfactant with great expansion of layers of clay, with interlayer distances more significant than the clay trade, both on clay obtained in the laboratory scale as in clays obtained by pilot scale, with results very similar for both methods. It appears that it is possible the pilot-scale production of organoclays with equivalent quality produced in the laboratory scale and quality compatible with the clay used commercially. (author)

  7. Iodide Sorption to Clays and the Relationship to Surface Charge and Clay Texture - 12356

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Andrew; Kruichiak, Jessica; Tellez, Hernesto; Wang, Yifeng [Sandia National Laboratories, Albuquerque, NM 87185 (United States)

    2012-07-01

    Iodine is assumed to behave conservatively in clay barriers around nuclear waste repositories and in natural sediments. Batch experiments tend to show little to no sorption, while in column experiments iodine is often retarded relative to tritiated water. Current surface complexation theory cannot account for negatively charged ion sorption to a negatively charged clay particle. Surface protonation and iodide sorption to clay minerals were examined using surface titrations and batch sorption experiments with a suite of clay minerals. Surface titrations were completed spanning a range of both pH values and ionic strengths. For reference, similar titrations were performed on pure forms of an Al-O powder. The titration curves were deconvoluted to attain the pKa distribution for each material at each ionic strength. The pKa distribution for the Al-O shows two distinct peaks at 4.8 and 7.5, which are invariant with ionic strength. The pKa distribution of clays was highly variable between the different minerals and as a function of ionic strength. Iodide sorption experiments were completed at high solid:solution ratios to exacerbate sorption properties. Palygorskite and kaolinite had the highest amount of iodide sorption and montmorillonite had the least. (authors)

  8. Feasibility of using overburden clays for sealing purposes and laboratory testing of the clays

    Energy Technology Data Exchange (ETDEWEB)

    Mann, J. (Vyzkumny Ustav pro Hnede Uhli, Most (Czechoslovakia))

    1992-03-01

    Studies properties of overburden clay from North Bohemian surface coal mines for use as sealants of industrial and household waste that will be dumped at Czechoslovak surface mine sites. Basic requirements of sealing layers are optimum compressibility and impermeability by suitable compacting. Laboratory soil mechanical tests of different clay samples were carried out using the Proctor standard tests (PCS) and the Norwegian Geonor A/S - m 45 instrument. Laboratory tests were used to select the best available clay types with optimum density and moisture content. Experimental results of laboratory tests are provided.

  9. Ion Exchange Resin and Clay Vitrification by Plasma Discharges

    International Nuclear Information System (INIS)

    Diaz A, Laura V.; Pacheco S, Joel O.; Pacheco P, Marquidia; Monroy G, Fabiola; Emeterio H, Miguel; Ramos F, Fidel

    2006-01-01

    The lack of treatment of a low and intermediate level radioactive waste (LILRW) lead us to propose a vitrification process based on a plasma discharge; this technique incorporates LILRW into a matrix glass composed of ceramic clays material. The Mexican Institute of Nuclear Research (ININ), uses an ion exchange resin IRN 150 (styrene-divinilbence copolymer) in the TRIGA MARK III nuclear reactor. The principal objective of this resin is to absorb particles containing heavy metals and low-level radioactive particles. Once the IRN 150 resin filter capacity has been exceeded, it should be replaced and treated as LILRW. In this work, a transferred plasma system was realized to vitrify this resin taking advantage of its high power density, enthalpy and chemical reactivity as well as its rapid quenching and high operation temperatures. In order to characterize the morphological structure of these clay samples, Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD) and Thermogravimetric analysis (TGA) techniques were applied before and after the plasma treatment

  10. Sorption of radionuclides by tertiary clays

    International Nuclear Information System (INIS)

    Wagner, J.F.; Czurda, K.A.

    1990-01-01

    The sorption capacity of different clay types for some metals (Co, Cs, Sr and Zn), occurring as common radionuclides in radioactive waste deposits, had been analysed by a static (batch technique) and a dynamic method (percolation tests, in which the driving force is a hydraulic gradient). Sorption capacity generally increased with an increasing pH of solution. A decrease of sorption capacity had been observed in the order Zn > Cs ≥ Co > Sr for the batch and Cs > Zn > Sr > Co for the percolation tests. Clay marls showed a distinctly higher sorption respectively retention capacity as pure clays. Sorption capacity depends on solution parameters like type and concentration of radionuclide, pH, salt concentration, etc., and on rock parameters like mineral content (e.g. swelling clay minerals and carbonates), organic material, rock pH, micro fabric, etc. A third parameter of great influence is the contact time between clay and solution. The adsorption isotherms reflect two different adsorption mechanisms: a very rapid adsorption (a few minutes) on the external surfaces of clay minerals and a slow adsorption process (weeks and longer), due to the diffusion of metal ions into the interlayer space of clay minerals. 12 refs., 9 figs., 1 tab

  11. Organophilization and characterization of commercial bentonite clays

    International Nuclear Information System (INIS)

    Cunha, B.B. da; Lima, J.C.C.; Alves, A.M.; Araujo, E.M.; Melo, T.J.A. de

    2012-01-01

    Bentonite clay is a plastic changes resulting from volcanic ash, consisting mostly of montmorillonite. The state of Paraiba is a major source of bentonite clay from Brazil, where the main oil fields are located in Boa Vista and represents the largest national production of raw and beneficiated bentonite. Aimed at the commercial value of this type of clay and its high applicability in the polls, this article aims to make a comparison between two kinds of clay, a national (Brasgel) and other imported (Cloisite) from organophilization of two commercial bentonite, ionic surfactant with Praepagem WB, and characterize them by XRD, FTIR and TG / DTG. We observe that despite getting inferior properties, the clay presents national values very similar to those presented by imported clay. (author)

  12. New Sunshine Project FY 1996 report on the results of development of photovoltaic power generation system commercialization technologies. Research on commercialization of the technologies for production of thin-film photovoltaic cells (Development of fabrication technologies of high-quality CuInSe{sub 2}-based thin-film solar cells); 1996 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Usumaku taiyo denchi seizo gijutsu no jitsuyoka kenkyu (kohinshitsuka gijutsu (CuInSe{sub 2} taiyo denchi seizo no gijutsu kaihatsu))

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Described herein are the FY 1996 results of development of fabrication technologies for high-quality CuInSe{sub 2}-based photovoltaic cells. The Cu-Ga alloy/In-stacked precursor film is prepared for production of the high-quality thin-film absorber applicable to large-area module fabrication, and selenized by the vapor-phase selenization in a H{sub 2}Se gas atmosphere to produce the thin light-absorbing film in which In and Ga are present at graded concentrations. Increasing Ga alloy content in the CIGS-based thin-film photovoltaic cell fails to widen the forbidden band and improve V{sub oc}, and further optimization works are needed. The method is developed for production of thin-film buffer layer of sulfur-containing Zn compound which can give the cell characteristics equivalent to those of CdS generally used for CIS-based thin-film photovoltaic cell. It is clarified that the photovoltaic cell characteristics can be improved by use of a transparent electroconductive ZnO film of stacked structure, produced by a combination of RF sputtering and DC sputtering. For the patterning technologies necessary for forming series connection on a mini-module, the laser scribing method is applicable to the metal base-electrode, and the mechanical scribing method to the light absorber and window layer. (NEDO)

  13. Thermal Behaviour of clay formations

    International Nuclear Information System (INIS)

    Tassoni, E.

    1985-01-01

    The programme carried out by ENEA to model the thermal-hydraulic-mechanical behaviour of the clay formations and to measure, in situ and in laboratory, the thermal properties of these rocks, is presented. An in situ heating experiment has been carried out in an open clay quarry in the area of Monterotondo, near Rome. The main goal of the experiment was to know the temperature field and the thermal effects caused by the high level radioactive waste disposed of in a clayey geological formation. The conclusions are as follows: - the thermal conduction codes are sufficiently accurate to forecast the temperature increases caused in the clay by the dissipation of the heat generated by high level radioactive waste; - the thermal conductivity deduced by means of the ''curve fitting'' method ranges from 0.015 to 0.017 W.cm -1 . 0 C -1 - the temperature variation associated with the transport of clay interstitial water caused by temperature gradient is negligible. A laboratory automated method has been designed to measure the thermal conductivity and diffusivity in clay samples. A review of experimental data concerning thermomechanical effects in rocks as well as results of thermal experiments performed at ISMES on clays are presented. Negative thermal dilation has been found both in the elastic and plastic range under constant stress. Thermoplastic deformation appears ten times greater than the thermoelastic one. A mathematical model is proposed in order to simulate the above and other effects that encompass thermal-elastic-plastic-pore water pressure response of clays at high temperature and effective pressure with undrained and transient drainage conditions. Implementation of the two versions into a finite element computer code is described

  14. Silt-clay aggregates on Mars

    International Nuclear Information System (INIS)

    Greeley, R.

    1979-01-01

    Viking observations suggest abundant silt and clay particles on Mars. It is proposed that some of these particles agglomerate to form sand size aggregates that are redeposited as sandlike features such as drifts and dunes. Although the binding for the aggregates could include salt cementation or other mechanisms, electrostatic bonding is considered to be a primary force holding the aggregates together. Various laboratory experiments conducted since the 19th century, and as reported here for simulated Martian conditions, show that both the magnitude and sign of electrical charges on windblown particles are functions of particle velocity, shape and composition, atmospheric pressure, atmospheric composition, and other factors. Electrical charges have been measured for saltating particles in the wind tunnel and in the field, on the surfaces of sand dunes, and within dust clouds on earth. Similar, and perhaps even greater, charges are proposed to occur on Mars, which could form aggregates of silt and clay size particles. Electrification is proposed to occur within Martian dust clouds, generating silt-clay aggregates which would settle to the surface where they may be deposited in the form of sandlike structures. By analog, silt-clay dunes are known in many parts of the earth where silt-clay aggregated were transported by saltation and deposited as 'sand.' In these structures the binding forces were later destroyed, and the particles reassumed the physical properties of silt and clay, but the sandlike bedding structure within the 'dunes' was preserved. The bedding observed in drifts at the Viking landing site is suggested to result from a similar process involving silt-clay aggregates on Mars

  15. Rational Construction of Hollow Core-Branch CoSe2 Nanoarrays for High-Performance Asymmetric Supercapacitor and Efficient Oxygen Evolution.

    Science.gov (United States)

    Chen, Tian; Li, Songzhan; Wen, Jian; Gui, Pengbin; Guo, Yaxiong; Guan, Cao; Liu, Jinping; Fang, Guojia

    2018-02-01

    Metal selenides have great potential for electrochemical energy storage, but are relatively scarce investigated. Herein, a novel hollow core-branch CoSe 2 nanoarray on carbon cloth is designed by a facile selenization reaction of predesigned CoO nanocones. And the electrochemical reaction mechanism of CoSe 2 in supercapacitor is studied in detail for the first time. Compared with CoO, the hollow core-branch CoSe 2 has both larger specific surface area and higher electrical conductivity. When tested as a supercapacitor positive electrode, the CoSe 2 delivers a high specific capacitance of 759.5 F g -1 at 1 mA cm -2 , which is much larger than that of CoO nanocones (319.5 F g -1 ). In addition, the CoSe 2 electrode exhibits excellent cycling stability in that a capacitance retention of 94.5% can be maintained after 5000 charge-discharge cycles at 5 mA cm -2 . An asymmetric supercapacitor using the CoSe 2 as cathode and an N-doped carbon nanowall as anode is further assembled, which show a high energy density of 32.2 Wh kg -1 at a power density of 1914.7 W kg -1 , and maintains 24.9 Wh kg -1 when power density increased to 7354.8 W kg -1 . Moreover, the CoSe 2 electrode also exhibits better oxygen evolution reaction activity than that of CoO. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Effects on the accumulation of calcium, magnesium, iron, manganese, copper and zinc of adding the two inorganic forms of selenium to solution cultures of Zea mays.

    Science.gov (United States)

    Longchamp, M; Angeli, N; Castrec-Rouelle, M

    2016-01-01

    The addition of selenate or selenite to common fertilizers for crop production could be an effective way of producing selenium-rich food and feed. However, this would be feasible only if the increase in plant selenium (Se) content did not negatively influence the uptake of other essential elements. We therefore need to understand the interactions between Se and other major and trace elements during uptake by the plant. This study aimed to evaluate the influence of inorganic forms of Se on the accumulation of selected macronutrients (Ca and Mg) and micronutrients (Fe, Zn, Mn and Cu). Those essential elements are involved in the oxidative balance of cells. Zea mays seedlings were grown hydroponically in growth chambers in nutrient solutions to which we added 10, 50 or 1000 μg.L(-1) of selenate and/or selenite. Cation accumulation was significantly affected by the addition of 50 μg.L(-1) or 1000 μg.L(-1) Se, but not by the presence of 10 μg.L(-1) of Se in the nutrient solution. The highest concentration (1000 μg.L(-1)) of Se in the nutrient solution affected the accumulation of essential cations in Zea mays: selenate tended to increase the accumulation of Mg, Zn and Mn, whereas a selenate/selenite mixture tended to decrease the accumulation of Ca, Mg, Zn and Mn. Only Fe accumulation was unaffected by Se whatever its form or concentration. Selenium may also affect the distribution of cations on Zea mays. For example, levels of Mg and Zn translocation to the shoots were lower in the presence of selenite. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  17. What Makes a Natural Clay Antibacterial?

    Science.gov (United States)

    Williams, Lynda B.; Metge, David W.; Eberl, Dennis D.; Harvey, Ronald W.; Turner, Amanda G.; Prapaipong, Panjai; Poret-Peterson, Amisha T.

    2011-01-01

    Natural clays have been used in ancient and modern medicine, but the mechanism(s) that make certain clays lethal against bacterial pathogens has not been identified. We have compared the depositional environments, mineralogies, and chemistries of clays that exhibit antibacterial effects on a broad spectrum of human pathogens including antibiotic resistant strains. Natural antibacterial clays contain nanoscale (clay minerals in the bactericidal process is to buffer the aqueous pH and oxidation state to conditions that promote Fe2+ solubility. Chemical analyses of E. coli killed by aqueous leachates of an antibacterial clay show that intracellular concentrations of Fe and P are elevated relative to controls. Phosphorus uptake by the cells supports a regulatory role of polyphosphate or phospholipids in controlling Fe2+. Fenton reaction products can degrade critical cell components, but we deduce that extracellular processes do not cause cell death. Rather, Fe2+ overwhelms outer membrane regulatory proteins and is oxidized when it enters the cell, precipitating Fe3+ and producing lethal hydroxyl radicals. PMID:21413758

  18. Iodide uptake by negatively charged clay interlayers?

    International Nuclear Information System (INIS)

    Miller, Andrew; Kruichak, Jessica; Mills, Melissa; Wang, Yifeng

    2015-01-01

    Understanding iodide interactions with clay minerals is critical to quantifying risk associated with nuclear waste disposal. Current thought assumes that iodide does not interact directly with clay minerals due to electrical repulsion between the iodide and the negatively charged clay layers. However, a growing body of work indicates a weak interaction between iodide and clays. The goal of this contribution is to report a conceptual model for iodide interaction with clays by considering clay mineral structures and emergent behaviors of chemical species in confined spaces. To approach the problem, a suite of clay minerals was used with varying degrees of isomorphic substitution, chemical composition, and mineral structure. Iodide uptake experiments were completed with each of these minerals in a range of swamping electrolyte identities (NaCl, NaBr, KCl) and concentrations. Iodide uptake behaviors form distinct trends with cation exchange capacity and mineral structure. These trends change substantially with electrolyte composition and concentration, but do not appear to be affected by solution pH. The experimental results suggest that iodide may directly interact with clays by forming ion-pairs (e.g., NaI (aq) ) which may concentrate within the interlayer space as well as the thin areas surrounding the clay particle where water behavior is more structured relative to bulk water. Ion pairing and iodide concentration in these zones is probably driven by the reduced dielectric constant of water in confined space and by the relatively high polarizability of the iodide species. - Highlights: • Iodide sorption experiments were completed with a diverse array of clay minerals. • Iodide uptake trended with CEC and swamping electrolyte identity and concentration. • Results can be explained by considering the formation of ion pairs in clay interlayers

  19. Stools - pale or clay-colored

    Science.gov (United States)

    ... gov/ency/article/003129.htm Stools - pale or clay-colored To use the sharing features on this page, please enable JavaScript. Stools that are pale, clay, or putty-colored may be due to problems ...

  20. Mars, clays and the origins of life

    Science.gov (United States)

    Hartman, Hyman

    1989-01-01

    To detect life in the Martian soil, tests were designed to look for respiration and photosynthesis. Both tests (labeled release, LR, and pyrolytic release, PR) for life in the Martian soils were positive. However, when the measurement for organic molecules in the soil of Mars was made, none were found. The interpretation given is that the inorganic constituents of the soil of Mars were responsible for these observations. The inorganic analysis of the soil was best fitted by a mixture of minerals: 60 to 80 percent clay, iron oxide, quartz, and soluble salts such as halite (NaCl). The minerals most successful in simulating the PR and LR experiments are iron-rich clays. There is a theory that considers clays as the first organisms capable of replication, mutation, and catalysis, and hence of evolving. Clays are formed when liquid water causes the weathering of rocks. The distribution of ions such as aluminum, magnesium, and iron play the role of bases in the DNA. The information was stored in the distribution of ions in the octahedral and tetrahedral molecules, but that they could, like RNA and DNA, replicate. When the clays replicated, each sheet of clay would be a template for a new sheet. The ion substitutions in one clay sheet would give rise to a complementary or similar pattern on the clay synthesized on its surface. It was theorized that it was on the surface of replicating iron-rich clays that carbon dioxide would be fixed in the light into organic acids such as formic or oxalic acid. If Mars had liquid water during a warm period in its past, clay formation would have been abundant. These clays would have replicated and evolved until the liquid water was removed due to cooling of Mars. It is entirely possible that the Viking mission detected life on Mars, but it was clay life that awaits the return of water to continue its evolution into life based on organic molecules.

  1. Preparation of organophilic clays and polypropylene nano composites

    International Nuclear Information System (INIS)

    Lima, Martha Fogliato S.; Nascimento, Vinicius G. do; Lenz, Denise M.; Schenato, Flavia

    2011-01-01

    Polypropylene/montmorillonite nano composites were prepared by the melt intercalation technique. The clay was organically modified with different quaternary ammonium salts to obtain the organo clay. The modified clays with the quaternary ammonium salts were introduced in a polypropylene matrix with 3 wt. % of clay. The interlayer distance (d001) of the clay particles were obtained by X- ray diffraction and the thermal stability of the systems were investigated by thermogravimetry. The organo clay presence in the polymer matrix increased the degradation temperature in relation to the pure polymer. (author)

  2. Selenization of Cu2ZnSnS4 Enhanced the Performance of Dye-Sensitized Solar Cells: Improved Zinc-Site Catalytic Activity for I3.

    Science.gov (United States)

    Wang, Xiuwen; Xie, Ying; Bateer, Buhe; Pan, Kai; Jiao, Yanqing; Xiong, Ni; Wang, Song; Fu, Honggang

    2017-11-01

    Cu 2 ZnSnS 4 (CZTS) and Cu 2 ZnSn(S,Se) 4 (CZTSSe) as promising photovoltaic materials have drawn much attention because they are environmentally benign and earth-abundant elements. In this work, the monodispersed, low-cost Cu 2 ZnSnS 4 nanocrystals with small size have been controllably synthesized via a wet chemical routine. And CZTSSe could be easily prepared after selenization of CZTS. When they are employed as counter electrodes (CEs) for dye-sensitized solar cells (DSSCs), the power conversion efficiency (PCE) has been improved from 3.54% to 7.13% as CZTS is converted to CZTSSe, which is also compared to that of Pt (7.62%). The exact reason for the enhanced catalytic activity of I 3 - is discussed with the work function and density functional theory (DFT) when CZTSSe converted from CZTS. The results of a Kelvin probe suggest that the work function of CZTSSe (5.61 eV) is closer to that of Pt (5.65 eV) and higher than that of CZTS, which matched the redox shuttle potential better. According to the theory calculation, all the atomic and bond populations changed significantly when Se replaced partly the S on the CZTS system, especially in the Zn site. During the catalytic process as CEs, the adsorption energy obviously increased compared to those at other sites when I 3 - adsorbed on the Zn site in CZTSSe. So, Zn plays an important role for the reduction of I 3 - after CZTS is converted to CZTSSe. Based on above analysis, the reason for enhanced performance of DSSCs when CZTS converted to CZTSSe is mainly due to the enhancement of Zn-site activity. This work is beneficial for understanding the catalytic reaction mechanism of CZTS(Se) as CEs of DSSCs.

  3. Movimiento del agua en Argiudoles de la Pampa Ondulada con diferente mineralogía de arcillas Water movement in some Argiudolls of the rolling Pampa differing in their clay mineralogy

    Directory of Open Access Journals (Sweden)

    Mario Guillermo Castiglioni

    2007-12-01

    Full Text Available Los suelos zonales de la Pampa Ondulada son Argiudoles Típicos y Vérticos los cuales se diferencian en la composición mineralógica de su fracción arcilla. El objetivo del presente trabajo fue analizar las vinculaciones entre la tasa de movimiento del agua edáfica con algunos atributos relacionados con la composición mineralógica de la fracción arcilla, en distintos suelos representativos de la región mencionada. Se tomaron muestras de los horizontes A, BA/BE, Bt y BC de dos Argiudoles Típicos y de un Argiudol Vértico, realizando sobre las mismas determinaciones relacionadas con la cantidad y tipo de las arcillas presentes. A su vez mediante diferentes técnicas se evaluaron el sistema poroso del suelo y el movimiento de agua edáfica. En los horizontes Bt, aquellos parámetros que integran el tipo y el contenido de arcillas, como el COLE y la CIC, mostraron estar mejor vinculados con el movimiento de agua edáfica que cuando se consideró únicamente el porcentaje de arcilla. La distinta porosidad estructural generada dentro de los agregados de los horizontes Bt, originó diferencias en su difusividad y conductividad hidráulica no saturada, a contenidos de humedad por encima del 50% de saturación. En aquellos horizontes con mayor actividad biológica y menor contenido de arcilla, el movimiento de agua se realizó en forma independiente de las características de las arcillas presentes.Typic and Vertic Argiudolls, which differ in the composition of their clay fraction, are the zonal soils in the Rolling Pampa of Argentina. The aim of this work has been to analize the relationship between water movement and diverse soil properties in some representative soils of the Rolling Pampa, differing in their clay mineralogy. The A, BA/ BE, Bt and BC horizons of two Typic and one Vertic Argiudolls were sampled and a number of properties related with clay content and clay type were measured. Soil porosity and soil water movement were also

  4. Hydrogen isotope ratios of clay minerals constituting clay veins found in granitic rocks in Hiroshima Prefecture

    International Nuclear Information System (INIS)

    Kitagawa, Ryuji; Kakitani, Satoru; Kuroda, Yoshimatsu; Matsuo, Sadao; Suzuoki, Tetsuro.

    1980-01-01

    The deuterium content of the constitutional and interlayer water extracted from the clay minerals (illite, montmorillonite, interstratified illite-montmorillonite mineral, kaolinite, halloysite) constituting the clay veins found in the granitic rocks in Hiroshima Prefecture was measured. The clay minerals were heated at 270 deg C to extract the interlayer water, then heated to 1,400 or 1,500 deg C to extract the constitutional water. The deuterium content of the local surface water collected from sampling points was measured. In the clay veins formed along perpendicular joints, the constituent clay minerals change from lower to upper part: illite → montmorillonite → kaolinite → halloysite. The deuterium content values of the constitutional water for illite and montmorillonite were estimated to be -67 to -69% and -86 to -89%, respectively. The deuterium content values of the constitutional water for halloysite range from -68 to -80% and for kaolinite from -63 to -67%. (J.P.N.)

  5. Structure of caesium selenate

    International Nuclear Information System (INIS)

    Zuniga, F.J.; Breczewski, T.; Arnaiz, A.

    1991-01-01

    Cs 2 SeO 4 , M 4 =408.77, orthorhombic, Pnam, a=8.3777 (8), b=11.276 (2), c=6.434 (2) A, V=607.8 (2) A 3 , Z=4, D x =4.46 Mg m -3 , MoKα, λ=0.71069 A, μ=185.06 cm -1 , F(000)=704, T=293 K, R=0.048, 3348 observed reflections. Average values of the Se-O and Cs-O distances are 1.637 (4) and 3.387 (3) A, respectively [range 3.038 (5)-3.872 (6) A with 9 and 11 coordination of caesium by oxygen]. (orig.)

  6. Self-organized antireflection CuIn(S,Se)_2 nano-protrusions on flexible substrates by ion erosion based on CuInS_2 nanocrystal precursor inks

    International Nuclear Information System (INIS)

    Yen, Yu-Ting; Wang, Yi-Chung; Chen, Chia-Wei; Tsai, Hung-Wei; Chen, Yu-Ze; Hu, Fan; Chueh, Yu-Lun

    2015-01-01

    Highlights: • CuIn(S,Se)_2 nano-protrusions were demonstrated on 36-cm"2 flexible substrates. • Nano-protrusions were created by ion erosion on selenized CuInS_2 nanocrystal precursor inks. • Tilt orientations and remarkable anti-reflectance characteristics of nano-protrusions can be precisely controlled. - Abstract: In this work, an approach to achieve surface nano-protrusions on a chalcopyrite CuIn(S,Se)_2 thin film was demonstrated. Home-made CuInS_2 nanocrystals with average diameter of 20 nm were prepared and characterized. By applying ion erosion process on the CuIn(S,Se)_2 film, large-area self-aligned nano-protrusions can be formed. Interestingly, the process can be applied on flexible substrate where the CuIn(S,Se)_2 film remains intact with no visible cracking after several bending tests. In addition, reflectance spectra reveal the extraordinary anti-reflectance characteristics of nano-protrusions on the CuIn(S,Se)_2 film with the incident light from 350 to 2000 nm. A 36-cm"2 CuIn(S,Se)_2 film with nano-protrusions on flexible molybdenum foil substrate has been demonstrated, which demonstrated the feasibility of developing low cost with a high optical absorption CuIn(S,Se)_2 flexible thin film.

  7. Biofortification (Se: Does it increase the content of phenolic compounds in virgin olive oil (VOO?

    Directory of Open Access Journals (Sweden)

    Roberto D'Amato

    Full Text Available Extra-Virgin Olive Oil (EVOO is a fundamental component of the Mediterranean diet and it may contain several anti-oxidant substances, such as phenols. Previous research has shown that this food may be enriched in phenols by spraying a sodium-selenate solution (100 mg L-1 Se onto the crop canopy before flowering. The aim of this research was to evaluate the effect of this Se-fertilization before flowering (cv. Leccino on the phenolic profile of EVOOs, and test to what extent such effects depend on the weather pattern, as observed in two contrasting experimental seasons (2013 and 2014. Results showed that Se-fertilisation enriched EVOOs both in selenium (up to 120 μg kg-1 and in phenols (up to 401 mg kg-1. This latter enrichment was related to an increase in PAL (L-Phenylalanine Ammonia-Lyase activities and it was largely independent on the climatic pattern. Considering the phenolic profile, oleacein, ligustroside, aglycone and oleocanthal were the most affected compounds and were increased by 57, 50 and 32%, respectively. All these compounds, especially oleacein, have been shown to exert a relevant anti-oxidant activity, contributing both to the shelf-life of EVOOs and to positive effects on human health. It is suggested that Se-fertilisation of olive trees before flowering may be an interesting practice, particularly with poor cultivars and cold and rainy weather patterns, which would normally lead to the production of EVOOs with unfavourable phenolic profile.

  8. Biofortification (Se): Does it increase the content of phenolic compounds in virgin olive oil (VOO)?

    Science.gov (United States)

    D’Amato, Roberto; Proietti, Primo; Onofri, Andrea; Regni, Luca; Esposto, Sonia; Servili, Maurizio; Businelli, Daniela; Selvaggini, Roberto

    2017-01-01

    Extra-Virgin Olive Oil (EVOO) is a fundamental component of the Mediterranean diet and it may contain several anti-oxidant substances, such as phenols. Previous research has shown that this food may be enriched in phenols by spraying a sodium-selenate solution (100 mg L-1 Se) onto the crop canopy before flowering. The aim of this research was to evaluate the effect of this Se-fertilization before flowering (cv. Leccino) on the phenolic profile of EVOOs, and test to what extent such effects depend on the weather pattern, as observed in two contrasting experimental seasons (2013 and 2014). Results showed that Se-fertilisation enriched EVOOs both in selenium (up to 120 μg kg-1) and in phenols (up to 401 mg kg-1). This latter enrichment was related to an increase in PAL (L-Phenylalanine Ammonia-Lyase) activities and it was largely independent on the climatic pattern. Considering the phenolic profile, oleacein, ligustroside, aglycone and oleocanthal were the most affected compounds and were increased by 57, 50 and 32%, respectively. All these compounds, especially oleacein, have been shown to exert a relevant anti-oxidant activity, contributing both to the shelf-life of EVOOs and to positive effects on human health. It is suggested that Se-fertilisation of olive trees before flowering may be an interesting practice, particularly with poor cultivars and cold and rainy weather patterns, which would normally lead to the production of EVOOs with unfavourable phenolic profile. PMID:28448631

  9. Calcium montmorillonite clay for the reduction of aflatoxin residues in milk and dairy products

    Science.gov (United States)

    In this study, dairy cows were treated with calcium montmorillonite clay (NovaSil Plus (NSP); BASF Corp., Ludwigshaven, Germany) in a replicated 5x5 Latin square design. The primary objectives were to determine if milk composition was altered following ingestion of NSP, and to investigate the abili...

  10. Pedological ~cterization, Clay Mine:at~ and .~cation of,

    African Journals Online (AJOL)

    namely, very deep, well drained, dark reddish brown to dark brown, sandy clay loams and sandy clays on the steep convex slopes; very deep, well drained, dark brown to dark red, sandy clay loams and; sandy clays on the linear slopes; and very ...

  11. Preparation and characterization of bentonite organo clay

    International Nuclear Information System (INIS)

    Bertagnolli, C.; Almeida Neto, A.F.; Silva, M.G.C.

    2009-01-01

    Bentonite clays organically modified have great potential use for environmental remediation, especially in the separation of organic compounds from the water. The aim of this work was the preparation of organophilic clays from 'Verde-Lodo' bentonite clay with the quaternary ammonium salts cetyl-pyridinium chloride and benzalkonium chloride. The materials obtained were characterized by XRD, thermogravimetric analyses, Helium picnometry, SEM and energy dispersive X-ray techniques. The results show consistently successful synthesis of the organoclay through the increase in the basal spacing, as well as salt elimination picks and presence of carbon and chlorine in the modified clays; they are inexistent elements in the natural clay. (author)

  12. Characterization of clay used for red ceramic fabrication

    International Nuclear Information System (INIS)

    Pereira, P.S.; Morais, A.S.C.; Caldas, T.C.C.; Monteiro, S.N.; Vieira, C.M.F.

    2011-01-01

    The objective of this work is to characterize a clay used in the red ceramics fabrication, from Campos dos Goytacazes north of the State of Rio de Janeiro. The clay was submitted for physical, chemical and mineralogical tests. The results showed that the clay has a high content of clay minerals with kaolinitic predominance, high loss on ignition and low flux oxides. It is recommended that this clay is mixed with non-plastic materials. (author)

  13. Application of clay minerals from Cayo Guan, Cuba, as sorbents of heavy metals and ceramic raw materials

    International Nuclear Information System (INIS)

    Fonseca, D.; Barba, F.; Callejas, P.; Recio, P.

    2012-01-01

    It has been studied by Analysis Heating Microscope Optical the behaviour of some kaolinitic clays from a reservoir of Cayo Guan rich in iron oxides and low silica content proving to be a refractory materials whose softening appears after 1500 degree centigrade. It has obtained the workability diagram of the different clay minerals calculating the plasticity by the method of Casagrande spoon; only one of the samples is in the area suitable for extrusion. Vitrification diagrams report that the capacity of water absorption is 2 +, Cr 3 +. The results of the immobilization of these elements have been compared with those obtained with thermally activated vermiculite at 800 degree centigrade, showing that the treated samples show sorption of both cadmium and chromium below the vermiculite, but the non-treated ones are suitable to remove chromium; this is because these clays do not contain in its composition exchangeable ions (Ca 2 +, Mg 2 +, Na + , K + ), and even if they are chemically activated only the presence of Fe ions is which produces form bindings (Cr x .Fe 1 -x) (OH) 3 which favor Cr sorption. (Author) 26 refs.

  14. Encapsulation of Clay Platelets inside Latex Particles

    NARCIS (Netherlands)

    Voorn, D.J.; Ming, W.; Herk, van A.M.; Fernando, R.H.; Sung, Li-Piin

    2009-01-01

    We present our recent attempts in encapsulating clay platelets inside latex particles by emulsion polymerization. Face modification of clay platelets by cationic exchange has been shown to be insufficient for clay encapsulation, leading to armored latex particles. Successful encapsulation of

  15. Geotechnical Characterization of Mined Clay from Appalachian Ohio: Challenges and Implications for the Clay Mining Industry

    Science.gov (United States)

    Moran, Anthony R.; Hettiarachchi, Hiroshan

    2011-01-01

    Clayey soil found in coal mines in Appalachian Ohio is often sold to landfills for constructing Recompacted Soil Liners (RSL) in landfills. Since clayey soils possess low hydraulic conductivity, the suitability of mined clay for RSL in Ohio is first assessed by determining its clay content. When soil samples are tested in a laboratory, the same engineering properties are typically expected for the soils originated from the same source, provided that the testing techniques applied are standard, but mined clay from Appalachian Ohio has shown drastic differences in particle size distribution depending on the sampling and/or laboratory processing methods. Sometimes more than a 10 percent decrease in the clay content is observed in the samples collected at the stockpiles, compared to those collected through reverse circulation drilling. This discrepancy poses a challenge to geotechnical engineers who work on the prequalification process of RSL material as it can result in misleading estimates of the hydraulic conductivity of the samples. This paper describes a laboratory investigation conducted on mined clay from Appalachian Ohio to determine how and why the standard sampling and/or processing methods can affect the grain-size distributions. The variation in the clay content was determined to be due to heavy concentrations of shale fragments in the clayey soils. It was also concluded that, in order to obtain reliable grain size distributions from the samples collected at a stockpile of mined clay, the material needs to be processed using a soil grinder. Otherwise, the samples should be collected through drilling. PMID:21845150

  16. Geotechnical characterization of mined clay from Appalachian Ohio: challenges and implications for the clay mining industry.

    Science.gov (United States)

    Moran, Anthony R; Hettiarachchi, Hiroshan

    2011-07-01

    Clayey soil found in coal mines in Appalachian Ohio is often sold to landfills for constructing Recompacted Soil Liners (RSL) in landfills. Since clayey soils possess low hydraulic conductivity, the suitability of mined clay for RSL in Ohio is first assessed by determining its clay content. When soil samples are tested in a laboratory, the same engineering properties are typically expected for the soils originated from the same source, provided that the testing techniques applied are standard, but mined clay from Appalachian Ohio has shown drastic differences in particle size distribution depending on the sampling and/or laboratory processing methods. Sometimes more than a 10 percent decrease in the clay content is observed in the samples collected at the stockpiles, compared to those collected through reverse circulation drilling. This discrepancy poses a challenge to geotechnical engineers who work on the prequalification process of RSL material as it can result in misleading estimates of the hydraulic conductivity of the samples. This paper describes a laboratory investigation conducted on mined clay from Appalachian Ohio to determine how and why the standard sampling and/or processing methods can affect the grain-size distributions. The variation in the clay content was determined to be due to heavy concentrations of shale fragments in the clayey soils. It was also concluded that, in order to obtain reliable grain size distributions from the samples collected at a stockpile of mined clay, the material needs to be processed using a soil grinder. Otherwise, the samples should be collected through drilling.

  17. Geotechnical Characterization of Mined Clay from Appalachian Ohio: Challenges and Implications for the Clay Mining Industry

    Directory of Open Access Journals (Sweden)

    Anthony R. Moran

    2011-06-01

    Full Text Available Clayey soil found in coal mines in Appalachian Ohio is often sold to landfills for constructing Recompacted Soil Liners (RSL in landfills. Since clayey soils possess low hydraulic conductivity, the suitability of mined clay for RSL in Ohio is first assessed by determining its clay content. When soil samples are tested in a laboratory, the same engineering properties are typically expected for the soils originated from the same source, provided that the testing techniques applied are standard, but mined clay from Appalachian Ohio has shown drastic differences in particle size distribution depending on the sampling and/or laboratory processing methods. Sometimes more than a 10 percent decrease in the clay content is observed in the samples collected at the stockpiles, compared to those collected through reverse circulation drilling. This discrepancy poses a challenge to geotechnical engineers who work on the prequalification process of RSL material as it can result in misleading estimates of the hydraulic conductivity of the samples. This paper describes a laboratory investigation conducted on mined clay from Appalachian Ohio to determine how and why the standard sampling and/or processing methods can affect the grain-size distributions. The variation in the clay content was determined to be due to heavy concentrations of shale fragments in the clayey soils. It was also concluded that, in order to obtain reliable grain size distributions from the samples collected at a stockpile of mined clay, the material needs to be processed using a soil grinder. Otherwise, the samples should be collected through drilling.

  18. Properties of II-VI Semiconductors: Bulk Crystals, Epitaxial Films, Quantum Well Structures, and Dilute Magnetic Systems. Materials Research Society Symposium Proceedings. Volume 161

    Science.gov (United States)

    1990-11-21

    These might be due to the formation of oxides of Se/Te; Cd/Zn and selenates and tellurates of Cd/Zn. But the oxides of Se/Te and selenates and... tellurates of Zn/Cd have low melting/dissociation temperatures and hence can not account for the increase in mass. Oxides of Zn and Cd are stable even at high...applying a voltage. This involves a large movement of Ag ions to or from the silver sulphide layer and is therefore determined by the maximum current

  19. Sorption of Pu onto some kinds of clay

    International Nuclear Information System (INIS)

    Jia Haihong; Si Gaohua; Liu Wei; Yu Jing

    2010-01-01

    There are rich clay mines holding in one area, so it's necessary to know about these clays' sorption capacity to Pu, for building radioactive waste repository in the area. Distribution coefficients of Pu onto different clays were acquired in static method, with the result about 104. The size of clay is different, but the result of Kds is near. In addition, it's estimated how far Pu moves in the most rapid speed in the clay based on these Kids', disregarding the influence of Pu-colloid. In a word, as a kind of backfilling material clays in the area can effectively prevent Pu from moving to environment, and when designing the backfilling layer, it's not necessary to catch clays through NO.200 sieve, if only considering the influence of Kd. (authors)

  20. Polymer-clay nanocomposites obtained by solution polymerization ...

    Indian Academy of Sciences (India)

    Clay minerals can be found all over the world.1 Clay minerals have ... salts or covalent bonding with silanes at the OH edges of the clay. ..... Marras S I, Tsimpliaraki A, Zuburtikudis I and ... Mansoori Y, Roojaei K, Zamanloo M R and Imanzadeh.

  1. 1D Compressibility of DMS Treated With Cement-GGBS Blend

    Directory of Open Access Journals (Sweden)

    Kaliannan Suaathi

    2017-01-01

    Full Text Available Great quantities of dredged marine soils (DMS have been produced from the maintenance of channels, anchorages and for harbour development. DMS have the potential to pose ecological and human health risks and it is also considered as a geowaste. Malaysia is moving towards the sustainability approach and one of the key factors to achieve it is to reduce waste. Thus, this geowaste should be generated as a new resource to substitute soil for civil works such as for land reclamation and backfilling. This shows the improved settlement of consolidation in treated DMS. DMS is referred to as a cohesive soil which includes clayey silt, sandy clay, silty clay and organic clay. This type of soil has low strength and high compressibility. The objectives were achieved through literature review analysis and also laboratory test which was one dimensional oedometer test. On the other hand, treated DMS with more ground granulated blast furnace slag (GGBS gives a lower settlement compared to specimen with higher percentage of cement in a treated soil. Thus this shows that cement content can be reduced in soil solidification when GGBS is added. The optimum binder ratio found was 3:7 where 3 is cement and 7 is GGBS.

  2. Hydro-mechanical properties of the red salt clay (T4) - Natural analogue of a clay barrier

    International Nuclear Information System (INIS)

    Minkley, W.; Popp, T.; Salzer, K.; Gruner, M.; Boettge, V.

    2010-01-01

    Document available in extended abstract form only. Long-term storage of high-level radioactive waste in deep geologic formations is worldwide the only accepted solution to warranty long term safety. Besides clay and crystalline rocks, salt is one of the potential host-rock candidates, mainly favored in Germany. As salts rocks are highly soluble their barrier integrity against water inflow from the cap rock is questionable. Argillaceous cap rocks or intercalated clay layers may act as protective shield in the hanging wall above a repository, thus providing a multi-barrier system. The aims of our study are twofold: 1) to characterize the mineralogical, hydraulic and rock-mechanical properties of the so-called Red Salt Clay (T4) as natural analogue of a clay barriers represented by different states of induration corresponding to various depth of burial diagenesis; 2) to demonstrate the favoured barrier properties of an argillaceous layer in the top of a salt formation undergoing dynamic processes such as rock bursts. The so-called Red Salt Clay (T4) is deposited as clay rich clastic sediment at the base of the Aller-series forming a persistent lateral layer above the lower Zechstein-series. The thickness of the clay-formation becomes smaller with decreasing distance from the border of the basin, i.e. from ∼15 m at Rossleben, over 7 m at Bernburg to 3.5 m at Zielitz, all in Saxony-Anhalt, D). The mineralogical composition of the Red Salt Clay varies, e.g. average composition for the Teutschenthal area: clay minerals 54% (Chlorite: 8%; Illite/Muscovite: 46%); quartz: 22%; anhydrite: 15%; accessory gypsum; Halite: 6%, Hematite: ∼ 2%). The geochemical and mineralogical composition of the Red Salt Clay represents a final state of natural salt-clay-systems, thus standing as a natural analogue for bentonite-based sealing systems in contact with high-saline solutions (e.g. saturated NaCl-solution, solutions with various Mg 2+ -, K + -, SO 4 2- - concentrations). The

  3. Utilization of Nkpuma-Akpatakpa clay in ceramics: characterization ...

    African Journals Online (AJOL)

    Nkpuma – Akpatakpa clay was analysed for its ceramics suitability. Chemical, mechanical and spectral characterization of the clay was carried out to obtain more information from this clay found in commercial quantity at Ebonyi State Nigeria. The XRD analysis showed that the principal minerals in the clay are quartz, ...

  4. Preparation and properties of recycled HDPE/clay hybrids

    Science.gov (United States)

    Yong Lei; Qinglin Wu; Craig M. Clemons

    2007-01-01

    Hybrids based on recycled high density polyethylene (RHDPE) and organic clay were made by melt compounding. The influence of blending method, compatibilizers, and clay content on clay intercalation and exfoliation, RHDPE crystallization behavior, and the mechanical properties of RHDPE/clay hybrids were investigated. Both maleated polyethylene (MAPE) and titanate could...

  5. Iodide uptake by negatively charged clay interlayers?

    Science.gov (United States)

    Miller, Andrew; Kruichak, Jessica; Mills, Melissa; Wang, Yifeng

    2015-09-01

    Understanding iodide interactions with clay minerals is critical to quantifying risk associated with nuclear waste disposal. Current thought assumes that iodide does not interact directly with clay minerals due to electrical repulsion between the iodide and the negatively charged clay layers. However, a growing body of work indicates a weak interaction between iodide and clays. The goal of this contribution is to report a conceptual model for iodide interaction with clays by considering clay mineral structures and emergent behaviors of chemical species in confined spaces. To approach the problem, a suite of clay minerals was used with varying degrees of isomorphic substitution, chemical composition, and mineral structure. Iodide uptake experiments were completed with each of these minerals in a range of swamping electrolyte identities (NaCl, NaBr, KCl) and concentrations. Iodide uptake behaviors form distinct trends with cation exchange capacity and mineral structure. These trends change substantially with electrolyte composition and concentration, but do not appear to be affected by solution pH. The experimental results suggest that iodide may directly interact with clays by forming ion-pairs (e.g., NaI(aq)) which may concentrate within the interlayer space as well as the thin areas surrounding the clay particle where water behavior is more structured relative to bulk water. Ion pairing and iodide concentration in these zones is probably driven by the reduced dielectric constant of water in confined space and by the relatively high polarizability of the iodide species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. generalized constitutive model for stabilized quick clay

    African Journals Online (AJOL)

    QUICK CLAY. PANCRAS MUGISHAGWE BUJULU AND GUSTAV GRIMSTAD. ABSTRACT. An experimentally-based two yield surface constitutive model for cemented quick clay has been ... Clay Model, the Koiter Rule and two Mapping Rules. .... models, where a mobilization formulation is used, this is independent of q.

  7. Processes of cation migration in clay-rocks: Final Scientific Report of the CatClay European Project

    International Nuclear Information System (INIS)

    Altmann, S.; Aertsens, M.; Appelo, T.; Bruggeman, C.; Gaboreau, S.; Glaus, M.; Jacquier, P.; Kupcik, T.; Maes, N.; Montoya, V.; Rabung, T.; Robinet, J.-C.; Savoye, S.; Schaefer, T.; Tournassat, C.; Van Laer, L.; Van Loon, L.

    2015-07-01

    In the framework of the feasibility studies on the radioactive waste disposal in deep argillaceous formations, it is now well established that the transport properties of solutes in clay rocks, i.e. parameter values for Fick's law, are mainly governed by the negatively charged clay mineral surface. While a good understanding of the diffusive behaviour of non-reactive anionic and neutral species is now achieved, much effort has to be placed on improving understanding of coupled sorption/diffusion phenomena for sorbing cations. Indeed, several cations known to form highly stable surface complexes with sites on mineral surfaces migrate more deeply into clay rock than expected. Therefore, the overall objective of the EC CatClay project is to address this issue, using a 'bottom-up' approach, in which simpler, analogous systems (here a compacted clay, 'pure' illite) are experimentally studied and modelled, and then the transferability of these results to more complex materials, i.e. the clay rocks under consideration in France, Switzerland and Belgium for hosting radioactive waste disposal facilities, is verified. The cations of interest were chosen for covering a representative range of cations families: from a moderately sorbing cation, the strontium, to three strongly sorbing cations, Co(II), Zn(II) and Eu(III). For the 4 years of this project, much effort was devoted to developing and applying specific experimental methods needed for acquiring the high precision, reliable data needed to test the alternative hypotheses represented by different conceptual-numerical models. The enhanced diffusion of the sorbing cations of interest was confirmed both in the simpler analogous illite system for Sr 2+ , Co(II) and Zn(II), but also in the natural clay rocks, except for Eu(III). First modelling approach including diffusion in the diffuse double layer (DDL) promisingly succeeded in reproducing the experimental data under the various conditions both in

  8. Mechanisms of selenium hyperaccumulation in plants: A survey of molecular, biochemical and ecological cues.

    Science.gov (United States)

    Lima, Leonardo Warzea; Pilon-Smits, Elizabeth A H; Schiavon, Michela

    2018-04-04

    Selenium (Se) is a micronutrient required for many life forms, but toxic at higher concentration. Plants do not have a Se requirement, but can benefit from Se via enhanced antioxidant activity. Some plant species can accumulate Se to concentrations above 0.1% of dry weight and seem to possess mechanisms that distinguish Se from its analog sulfur (S). Research on these so-called Se hyperaccumulators aims to identify key genes for this remarkable trait and to understand ecological implications. This review gives a broad overview of the current knowledge about Se uptake and metabolism in plants, with a special emphasis on hypothesized mechanisms of Se hyperaccumulation. The role of Se in plant defense responses and the associated ecological implications are discussed. Hyperaccumulators have enhanced expression of S transport and assimilation genes, and may possess transporters with higher specificity for selenate over sulfate. Genes involved in antioxidant reactions and biotic stress resistance are also upregulated. Key regulators in these processes appear to be the growth regulators jasmonic acid, salicylic acid and ethylene. Hyperaccumulation may have evolved owing to associated ecological benefits, particularly protection against pathogens and herbivores, and as a form of elemental allelopathy. Understanding plant Se uptake and metabolism in hyperaccumulators has broad relevance for the environment, agriculture and human and animal nutrition and may help generate crops with selenate-specific uptake and high capacity to convert selenate to less toxic, anticarcinogenic, organic Se compounds. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Clay-Enriched Silk Biomaterials for Bone Formation

    Science.gov (United States)

    Mieszawska, Aneta J.; Llamas, Jabier Gallego; Vaiana, Christopher A.; Kadakia, Madhavi P.; Naik, Rajesh R.; Kaplan, David L.

    2011-01-01

    The formation of silk protein/clay composite biomaterials for bone tissue formation is described. Silk fibroin serves as an organic scaffolding material offering mechanical stability suitable for bone specific uses. Clay montmorillonite (Cloisite ® Na+) and sodium silicate are sources of osteoinductive silica-rich inorganic species, analogous to bioactive bioglass-like bone repair biomaterial systems. Different clay particle-silk composite biomaterial films were compared to silk films doped with sodium silicate as controls for support of human bone marrow derived mesenchymal stem cells (hMSCs) in osteogenic culture. The cells adhered and proliferated on the silk/clay composites over two weeks. Quantitative real-time RT-PCR analysis revealed increased transcript levels for alkaline phosphatase (ALP), bone sialoprotein (BSP), and collagen type 1 (Col I) osteogenic markers in the cells cultured on the silk/clay films in comparison to the controls. Early evidence for bone formation based on collagen deposition at the cell-biomaterial interface was also found, with more collagen observed for the silk films with higher contents of clay particles. The data suggest that the silk/clay composite systems may be useful for further study toward bone regenerative needs. PMID:21549864

  10. Influence of non-clay minerals on the interaction between metallic iron and Callovo-Oxfordian clay fraction

    International Nuclear Information System (INIS)

    Rivard, C.; Pelletier, M.; Villieras, F.; Michau, N.

    2012-01-01

    Document available in extended abstract form only. In the context of the geological disposal of high-level radioactive waste, it is of prime importance to understand the interaction mechanisms between the geological matrix, Callovo-Oxfordian clay rock (COx) and metallic iron, from the package overpack. In order to evidence the individual role of each clay component entering in the mineralogy of the COx, interactions between metallic iron and pure clays (smectites, illite and kaolinite) were first conducted. To investigate the role of the other minerals, the reactivity of COx, COx clay fraction (COxCF) and mixtures between COxCF and quartz, calcite or pyrite, was studied. Clays and additional minerals were put in contact with powder metallic iron with a weight ratio iron:clay fixed at 1:3 and a clay:solution ratio of 1:20. Proportions of non-clay minerals were deduced from the average COx composition: 50% clays, 24.5% quartz, 24.5% calcite and 1% pyrite. Batch experiments were carried out in anoxic conditions at 90 deg. C in the presence of background electrolyte (NaCl 0.02 M.L -1 , CaCl 2 0.04 M.L -1 ) in Parr reactors for durations of one, three or nine months. After reaction, solid and liquid phases were separated by centrifugation and characterized by classical techniques combining chemical analyses (liquid analyses, transmission electron microscopy combined with Energy Dispersive of X-rays spectroscopy TEM-EDS), mineralogical (X-ray diffraction), spectroscopic ( 57 Fe Moessbauer) and morphometric techniques (TEM, scanning electron microscopy and N 2 adsorption). For COx, COxCF and all the pure clay phases, major evolutions were observed during the first month, which shows that the oxidation of metallic iron is rapid in our experimental conditions. Release of iron cations in solution, pH increase (8-10) and Eh decrease (reductive conditions) are responsible for the partial dissolution of initial clay phases. Released iron is involved in the crystallization of Fe

  11. Strength Properties of Aalborg Clay

    DEFF Research Database (Denmark)

    Iversen, Kirsten Malte; Nielsen, Benjaminn Nordahl; Augustesen, Anders Hust

    glacial time are characterised by the absence of this mussel. These deposits are named Aalborg Clay and Aalborg Sand. In the city of Aalborg, a fill layer superposes Aalborg Clay. This layer is at some places found to be 6m thick. This fill layer does not provide sufficient bearing capacity, which has...... resulted in many damaged buildings in Aalborg. To provide sufficient bearing capacity it is therefore necessary either to remove the fill or to construct the building on piles. Both methods imply that the strength of Aalborg Clay is important for the construction. This paper evaluates the strength...

  12. Mechanical interaction between swelling compacted clay and fractured rock, and the leaching of clay colloids

    NARCIS (Netherlands)

    Grindrod, P.; Peletier, M.A.; Takase, H.

    1999-01-01

    We consider the interaction between a saturated clay buffer layer and a fractured crystalline rock engineered disturbed zone. Once saturated, the clay extrudes into the available rock fractures, behaving as a compressible non-Newtonian fluid. We discuss the modelling implications of published

  13. Effect of by-product steel slag on the engineering properties of clay soils

    Directory of Open Access Journals (Sweden)

    Faisal I. Shalabi

    2017-10-01

    Full Text Available Clay soils, mainly if they contain swelling minerals such as smectite or illite, may cause severe damage to structures, especially when these soils are subjected to wetting and drying conditions. High expansion and reduction in shear strength and foundation bearing capacity will take place due to the increase in water content of these soils. The engineering properties of these kinds of soils can be improved by using additives and chemical stabilizers. In this work, by-product steel slag was used to improve the engineering properties of clay soils. Lab and field experimental programs were developed to investigate the effect of adding different percentages of steel slag on plasticity, swelling, compressibility, shear strength, compaction, and California bearing ratio (CBR of the treated materials. The results of tests on the clay soil showed that as steel slag content increased, the soil dry density, plasticity, swelling potential, and cohesion intercept decreased and the angle of internal friction increased. For the CBR, the results of the tests showed an increase in the CBR value with the increase in slag content.

  14. Methylene blue adsorption in clay mineral dealt with organic cation; Sorcao de azul de metileno em argila esmectitica tratada com cation organico

    Energy Technology Data Exchange (ETDEWEB)

    Silva, T.L. [Universidade Federal do Para (UFPA), Maraba, PA (Brazil). Faculdade de Engenharia de Materiais; Lemos, V.P., E-mail: tls1981@hotmail.com [Universidade Federal do Para (UFPA), Belem, PA (Brazil). Centro de Geociencias

    2011-07-01

    The interaction among organic cations, as the methylene blue (AM) and benzyltrimethylammonium (BTMA), and clay minerals of the group of the smectite they result in the formation of applied materials in the adsorption of organic pollutant presents in waters, soils and you cultivate. In this work they were prepared the adsorbents (organic-clays) smectite - AM and smectite-BTMA. The precursory sample of smectite was collected in Rio Branco-Acre. We were also used an smectite sample collected in Sena Madureira (SM)-Acre already characterized in previous work and a sample of standard smectite Swy-2-Na-Montmorillonite (SWy-2) of Wymong - USA. The organic agents selected for this study they were: Blue of Methylene, denominated AM and Benzyltrimethylammonium, denominated BTMA. They were appraised the capacities adsorptive of the treated samples with BTMA being used AM as adsorbate. The results of these evaluations detected that ran total adsorption of AM (concentrations varying from 1 to 10 ppm) for the treated samples with BTMA. The organic cation, BTMA, interacting with the surfaces of the natural clay was more efficient in the adsorption of AM than the clay without the previous treatment with this salt. (author)

  15. 1st International Conference on Calcined Clays for Sustainable Concrete

    CERN Document Server

    Favier, Aurélie

    2015-01-01

    This volume focuses on research and practical issues linked to Calcined Clays for Sustainable Concrete. The main subjects are geology of clays, hydration and performance of blended systems with calcined clays, alkali activated binders, economic and environmental impacts of the use of calcined clays in cement based materials. Topics addressed in this book include the influence of processing on reactivity of calcined clays, influence of clay mineralogy on reactivity, geology of clay deposits, Portland-calcined clay systems, hydration, durability, performance, Portland-calcined clay-limestone systems, hydration, durability, performance, calcined clay-alkali systems, life cycle analysis, economics and environmental impact of use of calcined clays in cement and concrete, and field applications. This book compiles the different contributions of the 1st International Conference on Calcined Clays for Sustainable Concrete, which took place in Lausanne, Switzerland, June, 23-25, 2015.The papers present the latest  res...

  16. Anionic clay as the drug delivery vehicle: tumor targeting function of layered double hydroxide-methotrexate nanohybrid in C33A orthotopic cervical cancer model.

    Science.gov (United States)

    Choi, Goeun; Piao, Huiyan; Alothman, Zeid A; Vinu, Ajayan; Yun, Chae-Ok; Choy, Jin-Ho

    2016-01-01

    Methotrexate (MTX), an anticancer agent, was successfully intercalated into the anionic clay, layered double hydroxides to form a new nanohybrid drug. The coprecipitation and subsequent hydrothermal method were used to prepare chemically, structurally, and morphologically well-defined two-dimensional drug-clay nanohybrid. The resulting two-dimensional drug-clay nanohybrid showed excellent colloidal stability not only in deionized water but also in an electrolyte solution of Dulbecco's Modified Eagle's Medium with 10% fetal bovine serum, in which the average particle size in colloid and the polydispersity index were determined to be around 100 and 0.250 nm, respectively. The targeting property of the nanohybrid drug was confirmed by evaluating the tumor-to-blood and tumor-to-liver ratios of the MTX with anionic clay carrier, and these ratios were compared to those of free MTX in the C33A orthotopic cervical cancer model. The biodistribution studies indicated that the mice treated with the former showed 3.5-fold higher tumor-to-liver ratio and fivefold higher tumor-to-blood ratio of MTX than those treated with the latter at 30 minutes postinjection.

  17. Interphase vs confinement in starch-clay bionanocomposites.

    Science.gov (United States)

    Coativy, Gildas; Chevigny, Chloé; Rolland-Sabaté, Agnès; Leroy, Eric; Lourdin, Denis

    2015-03-06

    Starch-clay bionanocomposites containing 1-10% of natural montmorillonite were elaborated by melt processing in the presence of water. A complex macromolecular dynamics behavior was observed: depending on the clay content, an increase of the glass transition temperature and/or the presence of two overlapped α relaxation peaks were detected. Thanks to a model allowing the prediction of the average interparticle distance, and its comparison with the average size of starch macromolecules, it was possible to associate these phenomena to different populations of macromolecules. In particular, it seems that for high clay content (10%), the slowdown of segmental relaxation due to confinement of the starch macromolecules between the clay tactoïds is the predominant phenomenon. While for lower clay contents (3-5%), a significant modification of chain relaxation seems to occur, due to the formation of an interphase by the starch macromolecules in the vicinity of clay nanoparticles coexisting with the bulk polymer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Soil clay content underlies prion infection odds

    Science.gov (United States)

    David, Walter W.; Walsh, D.P.; Farnsworth, Matthew L.; Winkelman, D.L.; Miller, M.W.

    2011-01-01

    Environmental factors-especially soil properties-have been suggested as potentially important in the transmission of infectious prion diseases. Because binding to montmorillonite (an aluminosilicate clay mineral) or clay-enriched soils had been shown to enhance experimental prion transmissibility, we hypothesized that prion transmission among mule deer might also be enhanced in ranges with relatively high soil clay content. In this study, we report apparent influences of soil clay content on the odds of prion infection in free-ranging deer. Analysis of data from prion-infected deer herds in northern Colorado, USA, revealed that a 1% increase in the clay-sized particle content in soils within the approximate home range of an individual deer increased its odds of infection by up to 8.9%. Our findings suggest that soil clay content and related environmental properties deserve greater attention in assessing risks of prion disease outbreaks and prospects for their control in both natural and production settings. ?? 2011 Macmillan Publishers Limited. All rights reserved.

  19. Effects of feeding bentonite clay upon ochratoxin A-induced immunosuppression in broiler chicks.

    Science.gov (United States)

    Khatoon, Aisha; Khan, Muhammad Zargham; Abidin, Zain Ul; Bhatti, Sheraz Ahmed

    2018-03-01

    A presence of mycotoxins in feed is one of the most alarming issues in the poultry feed industry. Ochratoxins, produced by several Aspergillus and Penicillium species, are important mycotoxin regarding the health status of poultry birds. Ochratoxins are further classified into to several subtypes (A, B, C, etc) depending on their chemical structures, but ochratoxin A (OTA) is considered the most important and toxic. Bentonite clay, belonging to phyllosilicates and formed from weathering of volcanic ashes, has adsorbent ability for several mycotoxins. The present study was designed to study the effects of bentonite clay upon OTA-induced immunosuppression in broiler chicks. For this, 480 day-old broiler chicks were procured from a local hatchery and then different combinations of OTA (0.15, 0.3, or 1.0 mg/kg) and bentonite clay (5, 10, and 20 g/kg) were incorporated into their feed. At 13, 30, and 42 days of age, parameters such as antibody responses to sheep red blood cells, in situ lymphoproliferative responses to mitogen (PHA-P), and in situ phagocytic activity (i.e., via carbon clearance) were determined respectively. The results indicated there was a significant reduction of total antibody and immunoglobulin titres, lymphoproliferative responses, and phagocytic potential in OTA-treated birds, suggesting clear immunosuppression by OTA in birds in a dose-dependent manner. These results were also significantly lower in all combination groups (OTA with bentonite clay), suggesting few to no effects of feeding bentonite clay upon OTA- induced alterations in different immune parameters.

  20. Radiation synthesis and characterization of thermo-sensitive PNIPA/clay hydrogels

    International Nuclear Information System (INIS)

    Song Hongyan; He Suqin; Liu Wentao; Zhu Chengshen; Yang Mingcheng

    2007-01-01

    In this work, the thermo-sensitive hydrogels of PNIPA/Clay were synthesized by 60 Co-γ rays irradiation. The effects of organically modified clay and Na + clay, clay content, and dispersing condition on swelling behavior of PNIPA/clay hydrogels were investigated. The results showed that the equilibrium swelling ratio (SR) of the PNIPA/clay hydrogels is better than PNIPA, and the SR of PNIPA/organically modified clay hydrogels is the highest. With clay content increases, the SR of hydrogels became better. The deswelling behavior of hydrogel was improved, the deswelling ratio of the hydrogel with organically modified clay is highest, and ratio of losing water is 83%, while PNIPA is about 50%. The compressive properties of hydrogel composites were also examined. The results showed that the compressive properties of the PNIPA/clay hydrogels were improved distinctly than that of the conventional hydrogels without clay. And with increasing of clay content, the compressive properties of hydrogel composites improve rapidly. When the content of clay is 15%, the maximum compression force of the PNIPA/clay hydrogel is 5.28N, which is 14 times of PNIPA hydrogel and compression strength is 2.5 times. (authors)

  1. Surface Analytical Study of CuInSe2 Treated in Cd-Containing Partial Electrolyte Solution

    International Nuclear Information System (INIS)

    Niles, D.W.

    1998-01-01

    Junction formation in CuInSe2 (CIS) has been studied by exposing thin films and single-crystal samples to solutions containing NH4OH and CdSO4. The treated samples were analyzed by secondary ion mass spectrometry to determine the amount and distribution of Cd deposited on the surface of the films. Cadmium is found to react with the surface for all the solution exposure times and temperatures studied. The reaction rapidly approaches the endpoint and remains relatively unchanged for subsequent solution exposure. Cadmium in-diffusion, as measured by secondary ion mass spectrometry, is obscured by topography effects in the thin-film samples and by ion-beam mixing and topography in the single-crystal sample

  2. The Physical Behavior of Stabilised Soft Clay by Electrokinetic Stabilisation Technology

    Science.gov (United States)

    Azhar, A. T. S.; Nordin, N. S.; Azmi, M. A. M.; Embong, Z.; Sunar, N.; Hazreek, Z. A. M.; Aziman, M.

    2018-04-01

    Electrokinetic Stabilisation (EKS) technology is the combination processes of electroosmosis and chemical grouting. This technique is most effective in silty and clayey soils where the hydraulic conductivity is very low. Stabilising agents will assist the EKS treatment by inducing it into soil under direct current. The movement of stabilising agents into soil is governed by the principle of electrokinetics. The aim of this study is to evaluate the physical behavior of soft soil using the EKS technology as an effective method to strengthen soft clay soils with calcium chloride (CaCl2) as the stabilising agent. Stainless steel plates were used as the electrodes, while 1.0 mol/l of CaCl2 was used as the electrolyte that fed at the anode compartment. Soft marine clay at Universiti Tun Hussein Onn Malaysia was used as the soil sample. The EKS treatment was developed at Research Centre for Soft Soil (RECESS), UTHM with a constant voltage gradient (50 V/m) in 21 days. The result shows that the shear strength of treated soil was increased across the soil sample. The treated soil near the cathode showed the highest value of shear strength (24.5 – 33 kPa) compared with the anode and in the middle of the soil sample.

  3. The importance of mobile fission products for long-term safety in the case of disposal of vitrified high-level waste and spent fuel in a clay formation

    International Nuclear Information System (INIS)

    Marivoet, J.; Weetjens, E.

    2009-01-01

    In Belgium, the possibility to dispose of high-level radioactive waste in clay formations is studied since 1976. In the PAGIS report, which was the first performance assessment of the disposal of vitrified high-level waste in a clay formation and which was published in 1988, the most important contributors to the total dose via a water well pathway were 237 Np, 135 Cs and 99 Tc. Since 1988, several elements that strongly influence the calculated doses have evolved:?the inventory of long-lived mobile fission and activation products in vitrified high-level waste has been improved; the half-life of 79 Se has been re-estimated; substantial progress has been made in the determination of migration parameters of the main fission and activation products and actinides. In recent performance assessments, the actinides and 135 Cs do not significantly contribute to the total dose, as they remain confined in the host clay formation during several millions of years due to sorption on clay minerals. Consequently, the total dose resulting from the disposal of vitrified high-level waste or spent fuel is essentially due to releases of mobile fission and activation products. On the basis of recent waste inventory data and parameter values, the most important contributors to the total dose via a water well are: in the case of disposal of spent fuel: 79 Se, 129 I, 126 Sn, 36 Cl, and 99 Tc; in the case of disposal of vitrified HLW: 79 Se, 126 Sn, 36 Cl, 129 I, and 99 Tc. Important remaining uncertainties are the transfer factors of volatile fission and activation products into the vitrified waste during reprocessing and migration parameters of Se. (author)

  4. Developments in modelling of thermohydro-geomechanical behaviour of Boom clay and clay-based buffer materials (Volume 1)

    International Nuclear Information System (INIS)

    Baldi, G.; Hueckel, T.; Peano, A.; Pellegrini, R.

    1991-01-01

    The results of two years of research on thermomechanics of clays performed within CEC contract Fl1W/0150 are described herein. Previous studies (research contracts with CEC/WAS/380.83.7 l) performed by ISMES have evidenced the need for an improved modelling of the volumetric response of natural clays. In a coupled approach, this leads to an improved prediction of pore-pressure development and dissipation. This is crucial for assessing conditions of a possible local thermal failure as verified in laboratory tests done at ISMES. The first part of the study lays the foundations of a comprehensive theoretical treatment of the interaction between water and soil skeleton. It consists in: (a) developing a framework for inclusion of water/soil particle thermally induced interaction into a thermodynamically consistent mixture theory approach (Section 2); (b) studying possible modelling approaches of considering the effective thermal expansion coefficient of pore water dependency on pore water status (Section 2); (c) testing artificial clays to assess pore water thermal expansion dependence on temperature in the presence of different amounts of active clay minerals and also Boom clay (Section 3); (d) performing a laboratory test campaign on Boom clay with special attention to the response in the overconsolidated domain (Section 4). 89 figs., 18 tabs., 102 refs

  5. Developments in modelling of thermohydro-geomechanical behaviour of Boom clay and clay-based buffer materials (volume 2)

    International Nuclear Information System (INIS)

    Baldi, G.; Hueckel, T.; Peano, A.; Pellegrini, R.

    1991-01-01

    This study is composed of two parts: The first part (Volume 1) lays the foundations of a comprehensive theoretical treatment of the interaction between water and soil skeleton during thermal dilatation. The second part (volume 2) is devoted to the development and the application of advance constitutive modelling of mechanical behaviour of clays taking into account the extensive tests of Boom clay reported in the first volume. The development concentrated on the improvement of prediction of the volumetric response of clay skeleton: (a) improving the dilatancy prediction at low to high overconsolidation ratios (Section 2). An elasto-plastic constitutive model has been developed to account for this effect (Section 3.2.); (b) modelling of swelling effects (Section 2.5). A preliminary interpretative model for swelling prediction has been developed (Section 2.5). The application part consisted in interpreting the experimental results obtained for Boom clay to calibrate a set of constants (Section 3) for performing numerical analyses (Section 4) for the thermomechanical model already calibrated for Boom clay (Appendix). Interpretation of the tests required an assessment of influence of the strong anisotropy effects revealed by Boom clay on the basis of an interpretative model characterized by a kinematic hardening plasticity and coupled elasticity (section 3)

  6. Investigations of salt mortar containing saliferous clay

    International Nuclear Information System (INIS)

    Walter, F.

    1992-01-01

    Saliferous clay mortar might be considered for combining individual salt bricks into a dense and tight long-term seal. A specific laboratory program was started to test mortars consisting of halite powder and grey saliferous clay of the Stassfurt from the Bleicherode salt mine. Clay fractions between 0 and 45% were used. The interest focused upon obtaining good workabilities of the mixtures as well as upon the permeability and compression strength of the dried mortar samples. Test results: 1) Without loss of quality the mortar can be mixed using fresh water. Apprx. 18 to 20 weight-% of the solids must be added as mixing water. 2) The porosity and the permeability of the mortar samples increases distinctly when equally coarse-grained salt power is used for mixing. 3) The mean grain size and the grain size distribution of the saliferous clay and the salt powder should be very similar to form a useful mortar. 4) The permeability of the mortar samples decreases with increasing clay fraction from 2 10 -12 m 2 to 2 10 -14 m 2 . The investigated samples, however, were large and dried at 100degC. 5) The uniaxial compressive strength of the clay mortar equals, at an average, only 4 MPa and decreases clearly with increasing clay fraction. Moist mortar samples did not show any measurable compressive strength. 6) Moistened saliferous clay mortar may show little temporary swelling. (orig./HP)

  7. Evaluation of a clay-based acidic bedding conditioner for dairy cattle bedding.

    Science.gov (United States)

    Proietto, R L; Hinckley, L S; Fox, L K; Andrew, S M

    2013-02-01

    This study investigated the effects of a clay-based acidic bedding conditioner on sawdust bedding pH, dry matter (DM), environmental pathogen counts, and environmental bacterial counts on teat ends of lactating dairy cows. Sixteen lactating Holstein cows were paired based on parity, days in milk, milk yield, and milk somatic cell count, and were negative for the presence of an intramammary pathogen. Within each pair, cows were randomly assigned to 1 of 2 treatments with 3-wk periods in a crossover design. Treatment groups consisted of 9 freestalls per group bedded with either untreated sawdust or sawdust with a clay-based acidic bedding conditioner, added at 3- to 4-d intervals over each 21-d period. Bedding and teat ends were aseptically sampled on d 0, 1, 2, 7, 14, and 21 for determination of environmental bacterial counts. At the same time points, bedding was sampled for DM and pH determination. The bacteria identified in the bedding material were total gram-negative bacteria, Streptococcus spp., and coliform bacteria. The bacteria identified on the teat ends were Streptococcus spp., coliform bacteria, and Klebsiella spp. Teat end score, milk somatic cell count, and intramammary pathogen presence were measured weekly. Bedding and teat cleanliness, environmental high and low temperatures, and dew point data were collected daily. The bedding conditioner reduced the pH, but not the DM, of the sawdust bedding compared with untreated sawdust. Overall environmental bacterial counts in bedding were lower for treated sawdust. Total bacterial counts in bedding and on teat ends increased with time over both periods. Compared with untreated sawdust, the treated bedding had lower counts of total gram-negative bacteria and streptococci, but not coliform counts. Teat end bacterial counts were lower for cows bedded on treated sawdust for streptococci, coliforms, and Klebsiella spp. compared with cows bedded on untreated sawdust. The clay-based acidic bedding conditioner

  8. Organic waste treatment with organically modified clays

    International Nuclear Information System (INIS)

    Evans, J.C.; Pancoski, S.E.; Alther, G.

    1989-01-01

    The use of organically modified clays in hazardous waste management applications offers a significant new and untapped potential. These clays may be used in the stabilization of organic wastes and organically contaminated soils, for waste water treatment, for oil spill control, for liner systems beneath fuel oil storage tanks, and as a component within liner systems of hazardous waste storage treatment and disposal facilities. Organically modified clays (organophilic clays) may be employed in each of these systems to adsorb organic waste constituents, enhancing the performance of the applications

  9. Compressibility characteristics of Sabak Bernam Marine Clay

    Science.gov (United States)

    Lat, D. C.; Ali, N.; Jais, I. B. M.; Baharom, B.; Yunus, N. Z. M.; Salleh, S. M.; Azmi, N. A. C.

    2018-04-01

    This study is carried out to determine the geotechnical properties and compressibility characteristics of marine clay collected at Sabak Bernam. The compressibility characteristics of this soil are determined from 1-D consolidation test and verified by existing correlations by other researchers. No literature has been found on the compressibility characteristics of Sabak Bernam Marine Clay. It is important to carry out this study since this type of marine clay covers large coastal area of west coast Malaysia. This type of marine clay was found on the main road connecting Klang to Perak and the road keeps experiencing undulation and uneven settlement which jeopardise the safety of the road users. The soil is indicated in the Generalised Soil Map of Peninsular Malaysia as a CLAY with alluvial soil on recent marine and riverine alluvium. Based on the British Standard Soil Classification and Plasticity Chart, the soil is classified as a CLAY with very high plasticity (CV). Results from laboratory test on physical properties and compressibility parameters show that Sabak Bernam Marine Clay (SBMC) is highly compressible, has low permeability and poor drainage characteristics. The compressibility parameters obtained for SBMC is in a good agreement with other researchers in the same field.

  10. Fracture behavior of polypropylene/clay nanocomposites.

    Science.gov (United States)

    Chen, Ling; Wang, Ke; Kotaki, Masaya; Hu, Charmaine; He, Chaobin

    2006-12-01

    Polypropylene (PP)/clay nanocomposites have been prepared via a reactive compounding approach with an epoxy based masterbatch. Compared with PP and common PP/organoclay nanocomposites, the PP/clay nanocomposites based on epoxy/clay masterbatch have higher impact strength. The phenomenon can be attributed to the epoxy phase dispersed uniformly in the PP matrix, which may act as impact energy absorber and helps to form a large damage zone, thus a higher impact strength value is achieved.

  11. Preparation and properties of biodegradable starch–clay nanocomposites

    KAUST Repository

    Chung, Yi-Lin; Ansari, Seema; Estevez, Luis; Hayrapetyan, Suren; Giannelis, Emmanuel P.; Lai, Hsi-Mei

    2010-01-01

    Well-dispersed starch-clay nanocomposites were prepared by adding a dilute clay dispersion to a solution of starch followed by coprecipitation in ethanol. The clay didn't significantly influence the type of crystalline structure of starch molecules although the amount of crystallinity appears to be somewhat lower in the nanocomposites. The nanocomposites show improved modulus and strength without a decrease in elongation at break. The increase in modulus and strength is 65% and 30%, respectively for the nanocomposite containing 5 wt.% clay compared to the unfilled starch materials. Further increases in clay result in deterioration in properties most likely due to poorer clay dispersion and lower polymer crystallinity. As the amount of water increases, the modulus of both pure starch and starch nanocomposites decreases, although the change is less pronounced in the nanocomposites suggesting that the addition of clay to form nanocomposites can improve the stability of starch-based products during transportation and storage. © 2009 Elsevier Ltd. All rights reserved.

  12. Preparation and properties of biodegradable starch–clay nanocomposites

    KAUST Repository

    Chung, Yi-Lin

    2010-01-01

    Well-dispersed starch-clay nanocomposites were prepared by adding a dilute clay dispersion to a solution of starch followed by coprecipitation in ethanol. The clay didn\\'t significantly influence the type of crystalline structure of starch molecules although the amount of crystallinity appears to be somewhat lower in the nanocomposites. The nanocomposites show improved modulus and strength without a decrease in elongation at break. The increase in modulus and strength is 65% and 30%, respectively for the nanocomposite containing 5 wt.% clay compared to the unfilled starch materials. Further increases in clay result in deterioration in properties most likely due to poorer clay dispersion and lower polymer crystallinity. As the amount of water increases, the modulus of both pure starch and starch nanocomposites decreases, although the change is less pronounced in the nanocomposites suggesting that the addition of clay to form nanocomposites can improve the stability of starch-based products during transportation and storage. © 2009 Elsevier Ltd. All rights reserved.

  13. Proceedings of the NEA Clay Club Workshop on Clay characterisation from nanoscopic to microscopic resolution

    International Nuclear Information System (INIS)

    2013-01-01

    A wide spectrum of argillaceous media are being considered in Nuclear Energy Agency (NEA) member countries as potential host rocks for the final, safe disposal of radioactive waste, and/or as major constituent of repository systems in which wastes will be emplaced. In this context, the NEA established the Working Group on the 'Characterisation, the Understanding and the Performance of Argillaceous Rocks as Repository Host Formations' in 1990, informally known as the 'Clay Club'. The Clay Club examines various argillaceous rocks that are being considered for the underground disposal of radioactive waste, ranging from soft clays to indurated shales. Very generally speaking, these clay rocks are composed of fine-grained minerals showing pore sizes from < 2 nm (micropores) up to > 50 nm (macro-pores). The water flow, solute transport and mechanical properties are largely determined by this microstructure, the spatial arrangement of the minerals and the chemical pore water composition. Examples include anion accessible ('geochemical') porosity and macroscopic membrane effects (chemical osmosis, hyper-filtration), geomechanical properties and the characteristics of two-phase flow properties (relevant for gas transport). At the current level of knowledge, there is a strong need to improve the nanoscale description of the phenomena observed at a more macroscopic scale. However, based on the scale of individual clay-minerals and pore sizes, for most of the imaging techniques this resolution is a clear challenge. The workshop, hosted by the Institute for Nuclear Waste Disposal (INE), Karlsruhe Institute of Technology (KIT) in the Akademiehotel Karlsruhe (Germany) from 6 to 8 September 2011, was intended to give, inter alia, a discussion platform on: - The current state-of-the-art of different spectro-microscopic methods - New developments addressing the above mentioned knowledge gaps in clays. - The perception of the interplay between geometry

  14. Correlative Cryo-Tem Cryo-Stxm and Cryo-Shxm Investigation of Selenium Bioreduction in a Contaminated Aquifer

    Science.gov (United States)

    Fakra, S.; Luef, B.; Tyliszczak, T.; Castelle, C. J.; Mullin, S. W.; Hug, L. A.; Williams, K. H.; Marcus, M.; Banfield, J. F.

    2015-12-01

    Accurate mapping of the composition and ultrastructure of minerals and cells is key to understanding biogeochemical process in contaminated environments. Here we developed two apparatus that allow correlation of cryogenic transmission electron microscopy (TEM), synchrotron hard X-ray microprobe (SHXM) and scanning transmission X-ray microscopy (STXM) datasets. These cryogenic methods enabled precise determination of the distribution, valence state and structure of selenium in intact biofilms sampled during a biostimulation experiment in a contaminated aquifer near Rifle, CO, USA. Results were replicated in the laboratory via anaerobic selenate-reducing enrichment cultures. 16S rRNA analyses of field-derived biofilm indicated the dominance of Betaproteobacteria from the Comamonadaceae family, and uncultivated members of the Simplicispira genus. The major product in field and culture-derived biofilms consists of ~25-300 nm red amorphous Se0 aggregates of colloidal nanoparticles. Correlative analyses of the cultures provided direct evidence for microbial dissimilatory reduction of Se(VI) to Se(IV) to Se0. X-ray diffraction and Se K-edge extended X-ray absorption fine structure spectroscopy revealed red amorphous Se0 with a first shell Se-Se interatomic distance of 2.339 ± 0.003 Å. STXM showed that these aggregates are strongly associated with a protein-rich biofilm matrix containing acidic polysaccharides. From Rifle groundwater, we isolated a strain that shares 98.9% 16S rRNA gene sequence identity with Dechloromonas aromatica RCB and grows anaerobically by oxidizing acetate and reducing selenate. We refer to this isolate as Dechloromonas selenatis strain RGW99. 3D cryo-electron tomography showed that Se0 particles do not form inside the cytoplasm but rather originate in the cell membrane. The end product of selenate reduction by D. selenatis is 240 ± 66 nm diameter red amorphous Se0 colloidal aggregates. This product was found to be stable for months. Overall

  15. Stabilisation of Clay Soil with Lime and Melon Husk Ash for use in Farm Structures

    Directory of Open Access Journals (Sweden)

    I. S. Mohammed

    2014-08-01

    Full Text Available The rising cost of traditional stabilising agents and the need for economical utilisation of industrial and agricultural waste for beneficial engineering purposes has encouraged an investigation into the stabilization of clay soil with lime and melon husk ash. The chemical composition of the melon husk ash that was used in stabilising clay soil was determined. The clay soil was divided into two parts, one part was used to determine the index properties while the other part was treated at British Standard Light (BSL compaction energy with 0 %, 2 %, 4 %, 6 % and 8 % melon husk ash by dry weight of the soil and each was admixed with 2 %, 4 %, 6 % and 8 % lime. The stabilised clay soil was cured for 7, 14 and 28 days before the unconfined compressive strength were determined while the coefficients of permeability of the stabilised clay soil were also determined at 28 days of curing. The data obtained from the experiment was subjected to analysis of variance to examine the significance at 5% level. Results showed that the natural clay soil belong to A-7-6 or CH (clay of high plasticity in the American Association of State Highway Transportation Official (AASHTO and Unified Soil Classification System (1986. The chemical composition of the ash had aluminum oxide, iron oxide and silicon dioxide values of 18.5%, 2.82% and 51.24% respectively. The unconfined compressive strength and coefficient of permeability of the natural clay soil was determined to be 285 kN/m2 and 1.45 x 10-5 cm/s, respectively. Increase in melon husk ash and lime percent increases the unconfined compressive strength (UCS of the stabilised clay soil significantly (p < 0.05 and decrease the coefficient of permeability when compared with the natural clay soil. The peak values of unconfined compressive strength for 7, 14 and 28 days of curing are 1200 kN/m2, 1598 kN/m2 and 1695 kN/m2 respectively at 6% MHA and 8% lime content while the lowest value for coefficient of permeability was 0

  16. Single clay sheets inside electrospun polymer nanofibers

    Science.gov (United States)

    Sun, Zhaohui

    2005-03-01

    Nanofibers were prepared from polymer solution with clay sheets by electrospinning. Plasma etching, as a well controlled process, was used to supply electrically excited gas molecules from a glow discharge. To reveal the structure and arrangement of clay layers in the polymer matrix, plasma etching was used to remove the polymer by controlled gasification to expose the clay sheets due to the difference in reactivity. The shape, flexibility, and orientation of clay sheets were studied by transmission and scanning electron microscopy. Additional quantitative information on size distribution and degree of exfoliation of clay sheets were obtained by analyzing electron micrograph of sample after plasma etching. Samples in various forms including fiber, film and bulk, were thinned by plasma etching. Morphology and dispersion of inorganic fillers were studied by electron microscopy.

  17. Role of clay constituents in stone decay processes

    Directory of Open Access Journals (Sweden)

    Veniale, F.

    2001-12-01

    Full Text Available Stone alterability/durability is depending upon a number of intrinsic and extrinsic factors among which "clay minerals" constituents, either diffused throughout the stone framework or as coating-filling of void spaces, can play an important role. Swelling-shrinking and aggregation-disaggregation phenomena occurring by interaction of argillaceous particles with water and other fluids can cause destructuration of the stone resulting in a variety of pathologies. Also salt crystallization which is depending on fluid transfer, moisture evaporation and ion concentration in the circulating solutions, can be influenced by clay mineral reactivity. Furthermore, saline solutions can drastically change the clay minerals behaviour, resulting in enhanced "osmotic" swelling and variations in clay aggregation geometry; these phenomena resulting in significant stone damage. Case histories concerning several lithotypes used for monumental buildings and artistic manufacts are reported for showing the role of different clay mineral types in determining trend and intensity of decay processes.

    Varios factores, tanto intrínsecos como extrínsecos, pueden condicionar la alterabilidad/durabilidad de materiales pétreos. Entre ellos, la presencia de minerales arcillosos, bien como constituyentes difusos o recubriendo-rellenando huecos, puede jugar un papel importante. El resultado de la interacción de las partículas arcillosas y el agua (u otros fluidos da lugar a patologías que son consecuencia de una serie de daños internos producidos por las continuas variaciones plásticas, asociadas a parámetros físicos y cristaloquímicos de este tipo de minerales. Entre los que podemos citar la desestructuración de la piedra (bien por agregación-desagregación de las partículas arcillosas o por procesos de hinchamiento-contracción que está asociado, por ejemplo, con la cristalización de sales, producida por la transferencia de fluidos a su través, o a

  18. Comparing uranyl sorption complexes on soil and reference clays

    International Nuclear Information System (INIS)

    Chisholm-Brause, C.J.; Berg, J.M.; Conradson, S.D.; Morris, D.E.; McKinley, J.P.; Zachara, J.M.

    1993-01-01

    Clay minerals and other components in natural soils may play a key role in limiting the mobility of uranium in the environment through the formation of sorption complexes. Reference clays are frequently used as models to study sorption processes because they have well-known chemical and physical properties, but they may differ chemically and morphologically from clays derived from natural soils. Therefore, inferences based on reference clay data have been questioned. The authors have used luminescence and x-ray absorption spectroscopies to characterize the sorption complexes of aqueous uranyl (UO 2 2+ ) species on two soil smectites from the Kenoma and Ringold formations, and compared these results to those obtained on reference smectite clays. The pH dependence of uptake suggests that the ratio of sorption on amphoteric edge sites is greater for the soil smectites than for reference clays such as Wyoming montmorillonite (SWy-1). The luminescence spectra for uranyl sorbed to the soil clays are very similar to those for uranyl sorbed principally to the edge sites of SWy-1. This observation supports the solution data suggesting that adsorption to amphoteric sites is a more important mechanism for soil clays. However, the spectral data indicate that the sorption complexes on natural and reference clays are quite similar. Furthermore, as with the reference clays, the authors have found that the chemistry of the solution plays a greater role in defining the sorption complex than does the clay matrix. Thus, if differences in surface properties are adequately taken into account, the reference clays may serve as useful analogs for soil clays in investigations of metal-ion sorption

  19. Characterization of two clays - attapulgite and sepiolite - before and after acid activation; Caracterizacao de duas argilas - atapulgita e sepiolita - antes e apos ativacao acida com HCl

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, R.N.; Soares, G.A., E-mail: renataoliveira@poli.ufrj.b [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Centro de Tecnologia; Barreto, L.S. [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil)

    2009-07-01

    Among the special clays, two of them are distinguished by their large surface area: attapulgite and sepiolite. Although, being natural clays, when they are removed from the formation sites, their structural channels may be filled of impurities. The process done to clean these channels is called acid activation. The present work aim to treated samples from both clays by using 3M and 5M HCl solution under ultrasonic waves for 1 hour. The characterization of the clays before and after activation was carried out by SEM/EDS, XRD and surface area measure by method BET. The acid treatments employed were too aggressive, in special that with 5M HCl solution, which results in partial lixiviation of these clays. (author)

  20. Clay Cuffman: A Cool, Calm, Relaxed Guy

    Science.gov (United States)

    Booth, Gina

    2010-01-01

    This article describes Clay Cuffman, a simple clay-sculpture project that requires two or three sessions, and works for students from the upper-elementary level through high school. It takes about 1.5 pounds of clay per student--about the size of a small grapefruit. The Cuffman project is a great way for upper-elementary through high-school…

  1. Hygrothermal behavior for a clay brick wall

    Science.gov (United States)

    Allam, R.; Issaadi, N.; Belarbi, R.; El-Meligy, M.; Altahrany, A.

    2018-06-01

    In Egypt, the clay brick is the common building materials which are used. By studying clay brick walls behavior for the heat and moisture transfer, the efficient use of the clay brick can be reached. So, this research studies the hygrothermal transfer in this material by measuring the hygrothermal properties and performing experimental tests for a constructed clay brick wall. We present the model for the hygrothermal transfer in the clay brick which takes the temperature and the vapor pressure as driving potentials. In addition, this research compares the presented model with previous models. By constructing the clay brick wall between two climates chambers with different boundary conditions, we can validate the numerical model and analyze the hygrothermal transfer in the wall. The temperature and relative humidity profiles within the material are measured experimentally and determined numerically. The numerical and experimental results have a good convergence with 3.5% difference. The surface boundary conditions, the ground effect, the infiltration from the closed chambers and the material heterogeneity affects the results. Thermal transfer of the clay brick walls reaches the steady state very rapidly than the moisture transfer. That means the effect of using only the external brick wall in the building in hot climate without increase the thermal resistance for the wall, will add more energy losses in the clay brick walls buildings. Also, the behavior of the wall at the heat and mass transfer calls the three-dimensional analysis for the whole building to reach the real behavior.

  2. Hygrothermal behavior for a clay brick wall

    Science.gov (United States)

    Allam, R.; Issaadi, N.; Belarbi, R.; El-Meligy, M.; Altahrany, A.

    2018-01-01

    In Egypt, the clay brick is the common building materials which are used. By studying clay brick walls behavior for the heat and moisture transfer, the efficient use of the clay brick can be reached. So, this research studies the hygrothermal transfer in this material by measuring the hygrothermal properties and performing experimental tests for a constructed clay brick wall. We present the model for the hygrothermal transfer in the clay brick which takes the temperature and the vapor pressure as driving potentials. In addition, this research compares the presented model with previous models. By constructing the clay brick wall between two climates chambers with different boundary conditions, we can validate the numerical model and analyze the hygrothermal transfer in the wall. The temperature and relative humidity profiles within the material are measured experimentally and determined numerically. The numerical and experimental results have a good convergence with 3.5% difference. The surface boundary conditions, the ground effect, the infiltration from the closed chambers and the material heterogeneity affects the results. Thermal transfer of the clay brick walls reaches the steady state very rapidly than the moisture transfer. That means the effect of using only the external brick wall in the building in hot climate without increase the thermal resistance for the wall, will add more energy losses in the clay brick walls buildings. Also, the behavior of the wall at the heat and mass transfer calls the three-dimensional analysis for the whole building to reach the real behavior.

  3. Band gap engineering of tandem structured CIGS compound absorption layer fabricated by sputtering and selenization

    International Nuclear Information System (INIS)

    Kang, San; Sharma, Rahul; Sim, Jae-Kwan; Lee, Cheul-Ro

    2013-01-01

    Highlights: ► Systematic band gap engineering to fabricate tandem Cu(In,Ga)Se 2 absorption layers. ► XRD shows prominent (1 1 2) reflection shift for attributed CIS, CIGS, and CGS phases. ► Optical transmittance and reflectance spectrum are improved towards infrared region. ► The Cu/In + Ga and Ga/In + Ga effect is matched with highest efficient solar cell. ► Tandem CIS/CIGS/CGS layer, the band gap is increased from 1.15 to 2.06 eV. -- Abstract: Band gap engineering was executed to fabricate a multi-junction stacked i.e. tandem Cu(In,Ga)Se 2 (CIGS) absorption layer. The CIGS absorption layers consist of multi-junction stacked CIS/CIGS/CGS thin films from bottom to top with increasing band gap. Tandem CIGS layers were fabricated by using three precursor of CuIn, In/CuGa/In, and CuGa onto the Mo coated soda-lime glass (SLG) by the sequential sputtering of CuIn, CuGa, and In targets. The CIG precursors were converted into CIGS absorption thin film by selenization process. From the X-ray diffraction (XRD) pattern of CIS/CIGS/CGS tandem layer, with the prominent peak shift for (1 1 2) reflections was attributed to the individual CIS, CIGS, and CGS phases at 26.76°, 27.15°, and 27.65° diffraction angles, respectively. The morphologies and atomic (at%) composition uniformity onto the surface and along the depth were extensively analyzed with field effect scanning electron microscope (FESEM) attached energy dispersive spectroscopy (EDS) and secondary ion mass spectroscopy (SIMS). The optical properties such as transmittance, reflectance and absorbance were found to improve in the infrared region for all the tandem CIGS layers. Near the fundamental absorption edge, the absorption coefficient was approached to 10 5 cm −1 for CIS/CIGS/CGS tandem layer. The straight-line behavior indicates that the films have a direct band gap. The band gap was found to increase from 1.15 to 1.74 eV with the Ga-grading along the depth of individual CIS, CIGS, and CGS thin films

  4. Some Tests on Heather Field Moraine Clay

    DEFF Research Database (Denmark)

    Jørgensen, Mogens B.; Jacobsen, Moust

    This report deals with oedometer tests on three samples of moraine clay from the Heather Field in the English part of the North Sea. The tests have been carried out in the very unelastic apparatus used in Denmark and with special test procedures differing from the ones used elsewhere. In Denmark...... Moraine Clay covers a large part of the surface, and it has therefore been investigated extensively in the field and in the laboratories during the last 25 years. It is to day - from a geotechnical point of view - the best known clay in Denmark. It could therefore be of some interest to compare...... the English North Sea moraine clays with the corresponding Danish Moraine Clays. The Danish test procedures are explained in details and some comments are given in the hope that they may not be banalities all of them....

  5. Geosynthetic clay liners shrinkage under simulated daily thermal cycles.

    Science.gov (United States)

    Sarabadani, Hamid; Rayhani, Mohammad T

    2014-06-01

    Geosynthetic clay liners are used as part of composite liner systems in municipal solid waste landfills and other applications to restrict the escape of contaminants into the surrounding environment. This is attainable provided that the geosynthetic clay liner panels continuously cover the subsoil. Previous case histories, however, have shown that some geosynthetic clay liner panels are prone to significant shrinkage and separation when an overlying geomembrane is exposed to solar radiation. Experimental models were initiated to evaluate the potential shrinkage of different geosynthetic clay liner products placed over sand and clay subsoils, subjected to simulated daily thermal cycles (60°C for 8 hours and 22°C for 16 hours) modelling field conditions in which the liner is exposed to solar radiation. The variation of geosynthetic clay liner shrinkage was evaluated at specified times by a photogrammetry technique. The manufacturing techniques, the initial moisture content, and the aspect ratio (ratio of length to width) of the geosynthetic clay liner were found to considerably affect the shrinkage of geosynthetic clay liners. The particle size distribution of the subsoil and the associated suction at the geosynthetic clay liner-subsoil interface was also found to have significant effects on the shrinkage of the geosynthetic clay liner. © The Author(s) 2014.

  6. Diffusion, sorption and stability of radionuclide-organic complexes in clays and clay-organic complexes

    International Nuclear Information System (INIS)

    Staunton, S.; Rees, L.V.C.

    1991-01-01

    The dependence on various parameters of the diffusion coefficient of neptunium (V) in clay systems has been studied. The effect of the clay mineralogy, the charge compensating cation in the clay, the ionic strength of a background perchlorate solution and the presence of three organic ligands have been investigated. The diffusion coefficients were compared to those predicted if diffusion occurred only in the liquid phase and adsorption was reversible; agreement was fairly good. An approximation to the diffusion coefficient can thus be obtained from readily measured experimental parameters. There is no evidence of surface phase diffusion. The most significant factor in determining the diffusion coefficient is the magnitude of the distribution ratio, itself highly dependent on the nature of the clay. Neither EDTA nor citrate modified the diffusion coefficient. Although the presence of 1 or 100 mg dm -3 of Aldrich humic acid had little effect on the distribution ratio of neptunium, it caused a lowering of the measured diffusion coefficient. This is interpreted in terms of the limiting liquid phase diffusion coefficient and the true liquid phase impedance factor of neptunium-humic acid complexes. 21 figs; 3 tabs; 20 refs

  7. Recent advances in clay mineral-containing nanocomposite hydrogels.

    Science.gov (United States)

    Zhao, Li Zhi; Zhou, Chun Hui; Wang, Jing; Tong, Dong Shen; Yu, Wei Hua; Wang, Hao

    2015-12-28

    Clay mineral-containing nanocomposite hydrogels have been proven to have exceptional composition, properties, and applications, and consequently have attracted a significant amount of research effort over the past few years. The objective of this paper is to summarize and evaluate scientific advances in clay mineral-containing nanocomposite hydrogels in terms of their specific preparation, formation mechanisms, properties, and applications, and to identify the prevailing challenges and future directions in the field. The state-of-the-art of existing technologies and insights into the exfoliation of layered clay minerals, in particular montmorillonite and LAPONITE®, are discussed first. The formation and structural characteristics of polymer/clay nanocomposite hydrogels made from in situ free radical polymerization, supramolecular assembly, and freezing-thawing cycles are then examined. Studies indicate that additional hydrogen bonding, electrostatic interactions, coordination bonds, hydrophobic interaction, and even covalent bonds could occur between the clay mineral nanoplatelets and polymer chains, thereby leading to the formation of unique three-dimensional networks. Accordingly, the hydrogels exhibit exceptional optical and mechanical properties, swelling-deswelling behavior, and stimuli-responsiveness, reflecting the remarkable effects of clay minerals. With the pivotal roles of clay minerals in clay mineral-containing nanocomposite hydrogels, the nanocomposite hydrogels possess great potential as superabsorbents, drug vehicles, tissue scaffolds, wound dressing, and biosensors. Future studies should lay emphasis on the formation mechanisms with in-depth insights into interfacial interactions, the tactical functionalization of clay minerals and polymers for desired properties, and expanding of their applications.

  8. Geotechnical properties of Karwar marine clay

    Digital Repository Service at National Institute of Oceanography (India)

    Bhat, S.T.; Nayak, B.U.; Naik, R.L.

    Karwar marine clay possesses high plasticity characteristics with natural water content higher than the liquid limit. Liquidity index was as high as 1.7. Predominant clay mineral was kaolinite. Undrained shear strength showed an increasing trend...

  9. Enrichment and activation of smectite-poor clay

    Energy Technology Data Exchange (ETDEWEB)

    Sarcevica, Inese; Kostjukovs, Juris; Actint, Andris, E-mail: inese.sarcevicha@gmail.com [Department of Chemistry, University of Latvia, Kr. Valdemara street 48, Riga (Latvia)

    2011-06-23

    A new method of smectite clay enrichment has been developed. The method is based on dispersing clay in a phosphate solution and sequential coagulation. The product of enrichment is characterized with X-ray powder diffraction, wavelength dispersive X-ray fluorescence spectrometry, differential thermal analysis and thermogravimetry. Sorption of methylene blue and hexadecylpyridinium bromide on raw and purified clays was studied.

  10. Pure and impure clays and their firing products

    International Nuclear Information System (INIS)

    Murad, E.; Wagner, U.

    1989-01-01

    Moessbauer spectroscopy is highly suited for the study of clays whose industrial uses depend on the iron content. Reactions that take place during clay firing can be readily monitored by Moessbauer spectroscopy. Following dehydroxylation of clay minerals, the quadrupole splitting of octahedrally coordinated iron (III) increases abruptly, but reverts to lower values upon the formation of new, better ordered phases at higher temperatures. It is also shown that iron oxides may account for a considerably higher proportion of the total iron content of many clays than is commonly recognized, and their existence must be taken into consideration for a correct interpretation of the Moessbauer spectra of clays. (orig.)

  11. Hydration Phase Diagram of Clay Particles from Molecular Simulations.

    Science.gov (United States)

    Honorio, Tulio; Brochard, Laurent; Vandamme, Matthieu

    2017-11-07

    Adsorption plays a fundamental role in the behavior of clays. Because of the confinement between solid clay layers on the nanoscale, adsorbed water is structured in layers, which can occupy a specific volume. The transition between these states is intimately related to key features of clay thermo-hydro-mechanical behavior. In this article, we consider the hydration states of clays as phases and the transition between these states as phase changes. The thermodynamic formulation supporting this idea is presented. Then, the results from grand canonical Monte Carlo simulations of sodium montmorillonite are used to derive hydration phase diagrams. The stability analysis presented here explains the coexistence of different hydration states at clay particle scale and improves our understanding of the irreversibilities of clay thermo-hydro-mechanical behavior. Our results provide insights into the mechanics of the elementary constituents of clays, which is crucial for a better understanding of the macroscopic behavior of clay-rich rocks and soils.

  12. 1.7. Acid decomposition of kaolin clays of Ziddi Deposit. 1.7.1. The hydrochloric acid decomposition of kaolin clays and siallites

    International Nuclear Information System (INIS)

    Mirsaidov, U.M.; Mirzoev, D.Kh.; Boboev, Kh.E.

    2016-01-01

    Present article of book is devoted to hydrochloric acid decomposition of kaolin clays and siallites. The chemical composition of kaolin clays and siallites was determined. The influence of temperature, process duration, acid concentration on hydrochloric acid decomposition of kaolin clays and siallites was studied. The optimal conditions of hydrochloric acid decomposition of kaolin clays and siallites were determined.

  13. Feasibility of classification of clay minerals by using PAS

    International Nuclear Information System (INIS)

    Honda, Y; Yoshida, Y; Akiyama, Y; Nishijima, S

    2015-01-01

    After the nuclear power plant disaster, the evaluation of radioactive Cs kept in soil, especially in clay minerals and the elucidation of its movement are urgent subjects to promote decontamination. It is known that the extractable level of Cs depends on the sort of clay minerals. We tried to find the characteristics of clay minerals belonging to phillosilicate group using positron annihilation spectroscopy (PAS) and the relationship between the results of PAS and the amounts of substantially extracted Cs from the clay minerals. The results showed that each clay mineral was found to be distinguishable from other clay minerals by PAS and the extraction rate of Cs was different among those clay minerals, however the direct correlation between the results of PAS and the extraction rates of Cs was not found. (paper)

  14. Bentonite clay purification for development of polymeric nan composites using a single screw extruder; Purificacao de argila bentonita para desenvolvimento de nanocomposito polimerico utilizando uma extrusora rosca simples

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    In this work, a bentonite clay rich in montmorillonite was purified and chemical treat to be used in the development of poly (methyl methacrylate) /clay nanocomposites via melting processes. After the clay treatment and purification, a masterbatch with 25% clay and 75% PMMA was produced by solution technique, using acetone as solvent. For produce samples with 2.5% clay, the masterbatch along with pure polymer were added and mixed in single screw extruder with a diameter of 16 mm and W/D 26. X-rays diffractometry (XRD) and X-rays fluorescence (XRF). Tests were performed to evaluate and characterizing the bentonite clay used in the development of this work and differential scanning calorimetry (DSC) tests were performed to evaluate changes in the thermal properties of the nanocomposites produced. (author)

  15. Clay-Alcohol-Water Dispersions: Anomalous Viscosity Changes Due to Network Formation of Clay Nanosheets Induced by Alcohol Clustering.

    Science.gov (United States)

    Kimura, Yuji; Haraguchi, Kazutoshi

    2017-05-16

    Clay-alcohol-water ternary dispersions were compared with alcohol-water binary mixtures in terms of viscosity and optical absorbance. Aqueous clay dispersions to which lower alcohols (ethanol, 1-propanol, 2-propanol, and tert-butanol) were added exhibited significant viscosity anomalies (maxima) when the alcohol content was 30-55 wt %, as well as optical absorbance anomalies (maxima). The maximum viscosity (η max ) depended strongly on the clay content and varied between 300 and 8000 mPa·s, making it remarkably high compared with the viscosity anomalies (2 mPa·s) observed in alcohol-water binary mixtures. The alcohol content at η max decreased as the hydrophobicity of the alcohol increased. The ternary dispersions with viscosity anomalies exhibited thixotropic behaviors. The effects of other hydrophilic solvents (glycols) and other kinds of clays were also clarified. Based on these findings and the average particle size changes, the viscosity anomalies in the ternary dispersions were explained by alcohol-clustering-induced network formation of the clay nanosheets. It was estimated that 0.9, 1.7, and 2.5 H 2 O molecules per alcohol molecule were required to stabilize the ethanol, 2-propanol, and tert-butanol, respectively, in the clay-alcohol-water dispersions.

  16. Chemo-hydro-mechanical behaviour of unsaturated clays

    International Nuclear Information System (INIS)

    Mokni, N.; Olivella, S.; Alonso, E.E.; Romero, E.

    2010-01-01

    Document available in extended abstract form only. Understanding of the chemical effects on clays is essential for many problems ranging from pollution studies and waste-containment. Several studies examined the effect of changes in pore fluid composition on the mechanical and hydraulic properties. Volume changes (contraction/ expansion) have been measured on clay specimens upon exposure to salt solutions or permeation with organic liquids. Moreover, it was shown that permeation of clay with brine induces an increase of the shear strength. In addition, several models have been proposed to describe the chemo-mechanical behaviour of saturated clays under saturated conditions. A new chemo-hydro-mechanical model for unsaturated clays is under development. The chemo-mechanical effects are described within an elasto-plastic framework using the concept that chemical effects act on the plastic properties by increasing or decreasing the pre-consolidation stress. The model is based on the distinction within the material of a microstructural and a macro-structural levels. Chemical loading has a significant effect on the microstructure. The negative pressure associated with the capillary water plays its role in the interconnected macro pores. By adopting simple assumptions concerning the coupling between the two levels it is intended to reproduce the features of the behaviour of unsaturated clays when there is a change in pore fluid composition (increase or decrease of concentration). A yield surface which defines the set of yield pre-consolidation stress values, for each associated capillary suction and concentration of pore fluid should be defined. In addition, the behaviour of clays under unsaturated condition and the behaviour at full saturation under chemical loading represent two limiting cases of the framework. Studies on the compatibility of Boom Clay with large amounts of nitrate- bearing bituminized radioactive waste have recently raised a particular interest on the

  17. Gravel-Sand-Clay Mixture Model for Predictions of Permeability and Velocity of Unconsolidated Sediments

    Science.gov (United States)

    Konishi, C.

    2014-12-01

    Gravel-sand-clay mixture model is proposed particularly for unconsolidated sediments to predict permeability and velocity from volume fractions of the three components (i.e. gravel, sand, and clay). A well-known sand-clay mixture model or bimodal mixture model treats clay contents as volume fraction of the small particle and the rest of the volume is considered as that of the large particle. This simple approach has been commonly accepted and has validated by many studies before. However, a collection of laboratory measurements of permeability and grain size distribution for unconsolidated samples show an impact of presence of another large particle; i.e. only a few percent of gravel particles increases the permeability of the sample significantly. This observation cannot be explained by the bimodal mixture model and it suggests the necessity of considering the gravel-sand-clay mixture model. In the proposed model, I consider the three volume fractions of each component instead of using only the clay contents. Sand becomes either larger or smaller particles in the three component mixture model, whereas it is always the large particle in the bimodal mixture model. The total porosity of the two cases, one is the case that the sand is smaller particle and the other is the case that the sand is larger particle, can be modeled independently from sand volume fraction by the same fashion in the bimodal model. However, the two cases can co-exist in one sample; thus, the total porosity of the mixed sample is calculated by weighted average of the two cases by the volume fractions of gravel and clay. The effective porosity is distinguished from the total porosity assuming that the porosity associated with clay is zero effective porosity. In addition, effective grain size can be computed from the volume fractions and representative grain sizes for each component. Using the effective porosity and the effective grain size, the permeability is predicted by Kozeny-Carman equation

  18. Using the direct method in organophilization of clay chocolate 'A' with organic surfactant

    International Nuclear Information System (INIS)

    Patricio, A.C.L.; Sousa, A.B.; Silva, M.M. da; Rodrigues, M.G.F.; Laborde, H.M.

    2012-01-01

    During the development of this work, we studied the preparation of organoclays through direct method, starting from the natural clay Chocolate 'A' using the quaternary ammonium salt, chloride, alkyl dimethyl benzyl ammonium (Dodigen). The samples were characterized by X-Ray Diffraction (XRD), Infrared Spectroscopy in the Region (IV), Gravimetric and Differential Thermal Analysis (DTA / TGA) and swelling of Foster using solvents, gasoline, kerosene and diesel. Was observed by the results XRD, IR and DTA / TG effective intercalation of quaternary ammonium salts of the inter lamellar spaces of the clay, and by Foster swelling test samples treated with the quaternary ammonium salt Dodigen showed affinity for all the solvents tested. (author)

  19. Sorption kinetics and chemical forms of Cd(II) sorbed by thiol-functionalized 2:1 clay minerals

    International Nuclear Information System (INIS)

    Malferrari, D.; Brigatti, M.F.; Laurora, A.; Pini, S.; Medici, L.

    2007-01-01

    The interaction between Cd(II) in aqueous solution and two 2:1 expandable clay minerals (i.e., montmorillonite and vermiculite), showing different layer charge, was addressed via batch sorption experiments on powdered clay minerals both untreated and amino acid (cysteine) treated. Reaction products were characterized via X-ray powder diffraction (XRDP), chemical analysis (elemental analysis and atomic absorption spectrophotometry), thermal analysis combined with evolved gasses mass spectrometry (TGA-MSEGA) and synchrotron-based X-ray absorption spectroscopy via extended X-ray absorption fine structure (EXAFS) characterization. Sorption isotherms for Cd(II) in presence of different substrates, shows that Cd(II) uptake depends both on Cd(II) starting concentration and the nature of the substrate. Thermal decomposition of Cd-cysteine treated clay minerals evidences the evolution of H 2 O, H 2 S, NO 2 , SO 2 , and N 2 O 3 . These results are well consistent with XRDP data collected both at room and at increasing temperature and further stress the influence of the substrate, in particular cysteine, on the interlayer. EXAFS studies suggest that Cd(II) coordinates with oxygen atoms, to give monomer complexes or CdO molecules, either on the mineral surface and/or in the interlayer. For Cd-cysteine complexes EXAFS data agree with the existence of Cd-S clusters, thus suggesting a predominant role of the thiol group in the bonding of Cd with the amino acid

  20. Multifaceted role of clay minerals in pharmaceuticals

    OpenAIRE

    Khurana, Inderpreet Singh; Kaur, Satvinder; Kaur, Harpreet; Khurana, Rajneet Kaur

    2015-01-01

    The desirable physical and physiochemical properties of clay minerals have led them to play a substantial role in pharmaceutical formulations. Clay minerals like kaolin, smectite and palygorskite-sepiolite are among the world's most valuable industrial minerals and of considerable importance. The elemental features of clay minerals which caused them to be used in pharmaceutical formulations are high specific area, sorption capacity, favorable rheological properties, chemical inertness, swelli...