WorldWideScience

Sample records for selective ionic liquid-based

  1. Targeting adequate thermal stability and fire safety in selecting ionic liquid-based electrolytes for energy storage.

    Science.gov (United States)

    Chancelier, L; Diallo, A O; Santini, C C; Marlair, G; Gutel, T; Mailley, S; Len, C

    2014-02-07

    The energy storage market relating to lithium based systems regularly grows in size and expands in terms of a portfolio of energy and power demanding applications. Thus safety focused research must more than ever accompany related technological breakthroughs regarding performance of cells, resulting in intensive research on the chemistry and materials science to design more reliable batteries. Formulating electrolyte solutions with nonvolatile and hardly flammable ionic liquids instead of actual carbonate mixtures could be safer. However, few definitions of thermal stability of electrolytes based on ionic liquids have been reported in the case of abuse conditions (fire, shortcut, overcharge or overdischarge). This work investigates thermal stability up to combustion of 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C1C4Im][NTf2]) and 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ([PYR14][NTf2]) ionic liquids, and their corresponding electrolytes containing lithium bis(trifluoromethanesulfonyl)imide LiNTf2. Their possible routes of degradation during thermal abuse testings were investigated by thermodynamic studies under several experimental conditions. Their behaviours under fire were also tested, including the analysis of emitted compounds.

  2. Ionic liquid based multifunctional double network gel

    Science.gov (United States)

    Ahmed, Kumkum; Higashihara, Tomoya; Arafune, Hiroyuki; Kamijo, Toshio; Morinaga, Takashi; Sato, Takaya; Furukawa, Hidemitsu

    2015-04-01

    Gels are a promising class of soft and wet materials with diverse application in tissue engineering and bio-medical purpose. In order to accelerate the development of gels, it is required to synthesize multi-functional gels of high mechanical strength, ultra low surface friction and suitable elastic modulus with a variety of methods and new materials. Among many types of gel ionic gel made from ionic liquids (ILs) could be used for diverse applications in electrochemical devices and in the field of tribology. IL, a promising materials for lubrication, is a salt with a melting point lower than 100 °C. As a lubricant, ILs are characterized by an extremely low vapor pressure, high thermal stability and high ion conductivity. In this work a novel approach of making double network DN ionic gel using IL has been made utilizing photo polymerization process. A hydrophobic monomer Methyl methacrylate (MMA) has been used as a first network and a hydrophobic IL monomer, N,N-diethyl-N-(2-mthacryloylethyl)-N-methylammonium bistrifluoromethylsulfonyl)imide (DEMM-TFSI) has been used as a second network using photo initiator benzophenon and crosslinker triethylene glycol dimethacrylate (TEGDMA). The resulting DN ionic gel shows transparency, flexibility, high thermal stability, good mechanical toughness and low friction coefficient value which can be a potential candidate as a gel slider in different mechanical devices and can open a new area in the field of gel tribology.

  3. Eco-friendly ionic liquid based ultrasonic assisted selective extraction coupled with a simple liquid chromatography for the reliable determination of acrylamide in food samples.

    Science.gov (United States)

    Albishri, Hassan M; El-Hady, Deia Abd

    2014-01-01

    Acrylamide in food has drawn worldwide attention since 2002 due to its neurotoxic and carcinogenic effects. These influences brought out the dual polar and non-polar characters of acrylamide as they enabled it to dissolve in aqueous blood medium or penetrate the non-polar plasma membrane. In the current work, a simple HPLC/UV system was used to reveal that the penetration of acrylamide in non-polar phase was stronger than its dissolution in polar phase. The presence of phosphate salts in the polar phase reduced the acrylamide interaction with the non-polar phase. Furthermore, an eco-friendly and costless coupling of the HPLC/UV with ionic liquid based ultrasonic assisted extraction (ILUAE) was developed to determine the acrylamide content in food samples. ILUAE was proposed for the efficient extraction of acrylamide from bread and potato chips samples. The extracts were obtained by soaking of potato chips and bread samples in 1.5 mol L(-1) 1-butyl-3-methylimmidazolium bromide (BMIMBr) for 30.0 and 60.0 min, respectively and subsequent chromatographic separation within 12.0 min using Luna C18 column and 100% water mobile phase with 0.5 mL min(-1) under 25 °C column temperature at 250 nm. The extraction and analysis of acrylamide could be achieved within 2h. The mean extraction efficiency of acrylamide showed adequate repeatability with relative standard deviation (RSD) of 4.5%. The limit of detection and limit of quantitation were 25.0 and 80.0 ng mL(-1), respectively. The accuracy of the proposed method was tested by recovery in seven food samples giving values ranged between 90.6% and 109.8%. Therefore, the methodology was successfully validated by official guidelines, indicating its reliability to be applied to analysis of real samples, proven to be useful for its intended purpose. Moreover, it served as a simple, eco-friendly and costless alternative method over hitherto reported ones. © 2013 Elsevier B.V. All rights reserved.

  4. Extraction and reliable determination of acrylamide from thermally processed foods using ionic liquid-based ultrasound-assisted selective microextraction combined with spectrophotometry.

    Science.gov (United States)

    Altunay, Nail; Elik, Adil; Gürkan, Ramazan

    2018-02-01

    Acrylamide (AAm) is a carcinogenic chemical that can form in thermally processed foods by the Maillard reaction of glucose with asparagine. AAm can easily be formed especially in frequently consumed chips and cereal-based foods depending on processing conditions. Considering these properties of AAm, a new, simple and green method is proposed for the extraction of AAm from thermally processed food samples. In this study, an ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate, [Bmim][BF 4 ]) as extractant was used in the presence of a cationic phenazine group dye, 3,7-diamino-5-phenylphenazinium chloride (PSH + , phenosafranine) at pH 7.5 for the extraction of AAm as an ion-pair complex from selected samples. Under optimum conditions, the analytical features obtained for the proposed method were as follows; linear working range, the limits of detection (LOD, 3S b /m) and quantification (LOQ, 10S b /m), preconcentration factor, sensitivity enhancement factor, sample volume and recovery% were 2.2-350 µg kg -1 , 0.7 µg kg -1 , 2.3 µg kg -1 , 120, 95, 60 mL and 94.1-102.7%, respectively. The validity of the method was tested by analysis of two certified reference materials (CRMs) and intra-day and inter-day precision studies. Finally, the method was successfully applied to the determination of AAm levels in thermally processed foods using the standard addition method.

  5. Ionic-Liquid Based Separation of Azeotropic Mixtures

    DEFF Research Database (Denmark)

    Kulajanpeng, Kusuma; Suriyapraphadilok, Uthaiporn; Gani, Rafiqul

    2014-01-01

    [C1MIM][DMP]. For the final evaluation, the best candidates for aqueous systems were used as entrainers, and then the vapor-liquid equilibrium (VLE) of the ternary systems containing ILs was predicted by the Non Random Two Liquids (NRTL) model to confirm the breaking of the azeotrope. Based......methodology for the screening of ionic liquids (ILs) as entrainers for ILs-based separation processes in binary aqueous azeotropic systems (e.g., water + ethanol and water + isopropanol) is presented. Ionic liquids as entrainers were first screened based on a combination of criteria...... step. The best candidates for aqueous systems were selected for final evaluation as follows: 1-ethyl-3-methylimidazolium ethylsulfate [C2MIM][EtSO4], 1-ethyl-3-methylimidazolium acetate [C2MIM][Ac], 1-ethyl-3-methylimidazolium dicyanamide [C2MIM][N(CN)2], and 1,3-dimethylimidazolium dimethyl phosphate...

  6. Highly efficient extraction and selective separation of uranium (VI) from transition metals using new class of undiluted ionic liquids based on H-phosphonate anions.

    Science.gov (United States)

    Zarrougui, Ramzi; Mdimagh, Raouf; Raouafi, Nourreddine

    2018-01-15

    In this paper, we report the development of an environmental friendly process to decontaminate uranium-containing ores and nuclear wastes by using non-fluorinated ionic liquids (ILs). The main advantages of this extraction process are the absence of any organic diluent and extra extraction agents added to the organic phase. Moreover, the process is cost-effective and maybe applied as a sustainable hydrometallurgical method to recover uranium. The distribution ratio (D U ) and the extraction efficiency (%E) of uranium(VI) (UO 2 2+ ) were found to be dependent on the acidity of the aqueous phase, the extraction time, the alkyl chain length in the ILs, the concentration of the aqueous feed and molar quantity of ILs. The D U value is higher than 600 and the %E is equal to 98.6% when [HNO 3 ]=7M. The extraction reactions follows a neutral partition or ionic exchange mechanism depending on nitric acid concentration. The nature of bonding in the extracted complexes was investigated by spectroscopic techniques. The potential use of Mor 1-8 -OP for the separation of UO 2 2+ from a mixture containing transition metal ions M n+ was also examined. The UO 2 2+ ions were separated and extracted efficiently. These ILs are promising candidates for the recovery and separation of uranium. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Ionic Liquid-Based Ultrasonic/Microwave-Assisted Extraction of ...

    African Journals Online (AJOL)

    Conclusion: Compared with traditional methods, IL-UMAE method uses Ionic liquid-solvent which greatly shortens the extraction time. IL-UMAE as a simple, effective and environmentally friendly approach shows a broad prospect for active ingredient extraction. Keywords: Dioscorea zingiberensis Steroidal saponins, Ionic ...

  8. Ionic Liquid-Based Optical and Electrochemical Carbon Dioxide Sensors

    Science.gov (United States)

    Behera, Kamalakanta; Pandey, Shubha; Kadyan, Anu; Pandey, Siddharth

    2015-01-01

    Due to their unusual physicochemical properties (e.g., high thermal stability, low volatility, high intrinsic conductivity, wide electrochemical windows and good solvating ability), ionic liquids have shown immense application potential in many research areas. Applications of ionic liquid in developing various sensors, especially for the sensing of biomolecules, such as nucleic acids, proteins and enzymes, gas sensing and sensing of various important ions, among other chemosensing platforms, are currently being explored by researchers worldwide. The use of ionic liquids for the detection of carbon dioxide (CO2) gas is currently a major topic of research due to the associated importance of this gas with daily human life. This review focuses on the application of ionic liquids in optical and electrochemical CO2 sensors. The design, mechanism, sensitivity and detection limit of each type of sensor are highlighted in this review. PMID:26690155

  9. Ionic Liquid-Based Optical and Electrochemical Carbon Dioxide Sensors

    Directory of Open Access Journals (Sweden)

    Kamalakanta Behera

    2015-12-01

    Full Text Available Due to their unusual physicochemical properties (e.g., high thermal stability, low volatility, high intrinsic conductivity, wide electrochemical windows and good solvating ability, ionic liquids have shown immense application potential in many research areas. Applications of ionic liquid in developing various sensors, especially for the sensing of biomolecules, such as nucleic acids, proteins and enzymes, gas sensing and sensing of various important ions, among other chemosensing platforms, are currently being explored by researchers worldwide. The use of ionic liquids for the detection of carbon dioxide (CO2 gas is currently a major topic of research due to the associated importance of this gas with daily human life. This review focuses on the application of ionic liquids in optical and electrochemical CO2 sensors. The design, mechanism, sensitivity and detection limit of each type of sensor are highlighted in this review.

  10. Solvent extraction of gold using ionic liquid based process

    Science.gov (United States)

    Makertihartha, I. G. B. N.; Zunita, Megawati; Rizki, Z.; Dharmawijaya, P. T.

    2017-01-01

    In decades, many research and mineral processing industries are using solvent extraction technology for metal ions separation. Solvent extraction technique has been used for the purification of precious metals such as Au and Pd, and base metals such as Cu, Zn and Cd. This process uses organic compounds as solvent. Organic solvents have some undesired properties i.e. toxic, volatile, excessive used, flammable, difficult to recycle, low reusability, low Au recovery, together with the problems related to the disposal of spent extractants and diluents, even the costs associated with these processes are relatively expensive. Therefore, a lot of research have boosted into the development of safe and environmentally friendly process for Au separation. Ionic liquids (ILs) are the potential alternative for gold extraction because they possess several desirable properties, such as a the ability to expanse temperature process up to 300°C, good solvent properties for a wide range of metal ions, high selectivity, low vapor pressures, stability up to 200°C, easy preparation, environmentally friendly (commonly called as "green solvent"), and relatively low cost. This review paper is focused in investigate of some ILs that have the potentials as solvent in extraction of Au from mineral/metal alloy at various conditions (pH, temperature, and pressure). Performances of ILs extraction of Au are studied in depth, i.e. structural relationship of ILs with capability to separate Au from metal ions aggregate. Optimal extraction conditon in order to gain high percent of Au in mineral processing is also investigated.

  11. Design of guanidinium ionic liquid based microwave-assisted extraction for the efficient extraction of Praeruptorin A from Radix peucedani.

    Science.gov (United States)

    Ding, Xueqin; Li, Li; Wang, Yuzhi; Chen, Jing; Huang, Yanhua; Xu, Kaijia

    2014-12-01

    A series of novel tetramethylguanidinium ionic liquids and hexaalkylguanidinium ionic liquids have been synthesized based on 1,1,3,3-tetramethylguanidine. The structures of the ionic liquids were confirmed by (1)H NMR spectroscopy and mass spectrometry. A green guanidinium ionic liquid based microwave-assisted extraction method has been developed with these guanidinium ionic liquids for the effective extraction of Praeruptorin A from Radix peucedani. After extraction, reversed-phase high-performance liquid chromatography with UV detection was employed for the analysis of Praeruptorin A. Several significant operating parameters were systematically optimized by single-factor and L9 (3(4)) orthogonal array experiments. The amount of Praeruptorin A extracted by [1,1,3,3-tetramethylguanidine]CH2CH(OH)COOH is the highest, reaching 11.05 ± 0.13 mg/g. Guanidinium ionic liquid based microwave-assisted extraction presents unique advantages in Praeruptorin A extraction compared with guanidinium ionic liquid based maceration extraction, guanidinium ionic liquid based heat reflux extraction and guanidinium ionic liquid based ultrasound-assisted extraction. The precision, stability, and repeatability of the process were investigated. The mechanisms of guanidinium ionic liquid based microwave-assisted extraction were researched by scanning electron microscopy and IR spectroscopy. All the results show that guanidinium ionic liquid based microwave-assisted extraction has a huge potential in the extraction of bioactive compounds from complex samples. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Ionic liquid-based green processes for energy production.

    Science.gov (United States)

    Zhang, Suojiang; Sun, Jian; Zhang, Xiaochun; Xin, Jiayu; Miao, Qingqing; Wang, Jianji

    2014-11-21

    To mitigate the growing pressure on resource depletion and environment degradation, the development of green processes for the production of renewable energy is highly required. As a class of novel and promising media, ionic liquids (ILs) have shown infusive potential applications in energy production. Aiming to offer a critical overview regarding the new challenges and opportunities of ILs for developing green processes of renewable energy, this article emphasises the role of ILs as catalysts, solvents, or electrolytes in three broadly interesting energy production processes from renewable resources, such as CO2 conversion to fuels and fuel additives, biomass pretreatment and conversion to biofuels, as well as solar energy and energy storage. It is expected that this article will stimulate a generation of new ideas and new technologies in IL-based renewable energy production.

  13. Ionic Liquid based polymer electrolytes for electrochemical sensors

    Directory of Open Access Journals (Sweden)

    Jakub Altšmíd

    2015-09-01

    Full Text Available Amperometric NO2 printed sensor with a new type of solid polymer electrolyte and a carbon working electrode has been developed. The electrolytes based on 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonylimide [EMIM][N(Tf2], 1-butyl-3-methylimidazolium trifluoromethanesulfonate [BMIM][CF3SO3] and 1-ethyl-3-methylimidazolium tetrafluoroborate [EMIM][BF4] ionic liquids were immobilized in poly(vinylidene fluoride matrix [PVDF]. The analyte, gaseous nitrogen dioxide, was detected by reduction at -500 mV vs. platinum pseudoreference electrode. The sensors showed a linear behavior in the whole tested range, i.e., 0 - 5 ppm and their sensitivities were in order of 0.3 x∙10-6 A/ppm. The sensor sensitivity was influenced by the electric conductivity of printing formulation; the higher the conductivity, the higher the sensor sensitivity. The rise/recovery times were in order of tens of seconds. The use of  screen printing technology and platinum pseudoreference electrode simplify the sensor fabrication and it does not have any negative effect on the sensor stability.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.7371

  14. Peculiar surface behavior of some ionic liquids based on active pharmaceutical ingredients.

    Science.gov (United States)

    Restolho, José; Mata, José Luis; Saramago, Benilde

    2011-02-21

    The ionic liquids based on biologically active cations and anions, commonly designated by ionic liquids based on active pharmaceutical ingredients (ILs-APIs), are interesting compounds for use in pharmaceutical applications. Lidocaine docusate, ranitidine docusate, and didecyldimethylammonium ibuprofen are examples of promising ILs-APIs that were recently synthesized. They were submitted to biological testing and calorimetric measurements, but nothing is known about their surface properties. In this work, we measured the surface tension and the contact angles on both hydrophilic and hydrophobic surfaces in a temperature range as wide as possible. Based on the wettability data, the polarity fractions were estimated using the Fowkes theory. The peculiar surface behavior observed was tentatively attributed to the presence of mesophases.

  15. Peculiar surface behavior of some ionic liquids based on active pharmaceutical ingredients

    Science.gov (United States)

    Restolho, José; Mata, José Luis; Saramago, Benilde

    2011-02-01

    The ionic liquids based on biologically active cations and anions, commonly designated by ionic liquids based on active pharmaceutical ingredients (ILs-APIs), are interesting compounds for use in pharmaceutical applications. Lidocaine docusate, ranitidine docusate, and didecyldimethylammonium ibuprofen are examples of promising ILs-APIs that were recently synthesized. They were submitted to biological testing and calorimetric measurements, but nothing is known about their surface properties. In this work, we measured the surface tension and the contact angles on both hydrophilic and hydrophobic surfaces in a temperature range as wide as possible. Based on the wettability data, the polarity fractions were estimated using the Fowkes theory. The peculiar surface behavior observed was tentatively attributed to the presence of mesophases.

  16. Application of ionic liquids based enzyme-assisted extraction of chlorogenic acid from Eucommia ulmoides leaves

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tingting; Sui, Xiaoyu, E-mail: suixiaoyu@outlook.com; Li, Li; Zhang, Jie; Liang, Xin; Li, Wenjing; Zhang, Honglian; Fu, Shuang

    2016-01-15

    A new approach for ionic liquid based enzyme-assisted extraction (ILEAE) of chlorogenic acid (CGA) from Eucommia ulmoides is presented in which enzyme pretreatment was used in ionic liquids aqueous media to enhance extraction yield. For this purpose, the solubility of CGA and the activity of cellulase were investigated in eight 1-alkyl-3-methylimidazolium ionic liquids. Cellulase in 0.5 M [C6mim]Br aqueous solution was found to provide better performance in extraction. The factors of ILEAE procedures including extraction time, extraction phase pH, extraction temperatures and enzyme concentrations were investigated. Moreover, the novel developed approach offered advantages in term of yield and efficiency compared with other conventional extraction techniques. Scanning electronic microscopy of plant samples indicated that cellulase treated cell wall in ionic liquid solution was subjected to extract, which led to more efficient extraction by reducing mass transfer barrier. The proposed ILEAE method would develope a continuous process for enzyme-assisted extraction including enzyme incubation and solvent extraction process. In this research, we propose a novel view for enzyme-assisted extraction of plant active component, besides concentrating on enzyme facilitated cell wall degradation, focusing on improvement of bad permeability of ionic liquids solutions. - Highlights: • An ionic liquid based enzyme-assisted extraction method of natural product was explored. • ILEAE utilizes enzymatic treatment to improve permeability of ionic liquids solution. • Enzyme incubation and solvent extraction process were ongoing simultaneously. • ILEAE process simplified operating process and suitable for more complete extraction.

  17. Fabrication of an ionic-liquid-based polymer monolithic column and its application in the fractionation of proteins from complex biosamples.

    Science.gov (United States)

    Zhang, Doudou; Zhang, Qian; Bai, Ligai; Han, Dandan; Liu, Haiyan; Yan, Hongyuan

    2018-01-24

    An ionic-liquid-based polymer monolithic column was synthesized by free radical polymerization within the confines of a stainless-steel column (50 mm × 4.6 mm id). In the processes, ionic liquid and stearyl methacrylate were used as dual monomers, ethylene glycol dimethacrylate as the cross-linking agent, and polyethylene glycol 200 and isopropanol as co-porogens. Effects of the prepolymerization solution components on the properties of the resulting monoliths were studied in detail. Scanning electron microscopy, nitrogen adsorption-desorption measurements, and mercury intrusion porosimetry were used to investigate the morphology and pore size distribution of the prepared monoliths, which showed that the homemade ionic-liquid-based monolith column possessed a relatively uniform macropore structure with a total macropore specific surface area of 44.72 m 2 /g. Compared to a non-ionic-liquid-based monolith prepared under the same conditions, the ionic-liquid-based monolith exhibited excellent selectivity and high performance for separating proteins from complex biosamples, such as egg white, snailase, bovine serum albumin digest solution, human plasma, etc., indicating promising applications in the fractionation and analysis of proteins from the complex biosamples in proteomics research. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. A remarkable enhancement in Am³⁺/Eu³⁺ selectivity by an ionic liquid based solvent containing bis-1,2,4-triazinyl pyridine derivatives: DFT validation of experimental results.

    Science.gov (United States)

    Bhattacharyya, Arunasis; Ansari, Seraj A; Gadly, Trilochan; Ghosh, Sunil K; Mohapatra, Manoj; Mohapatra, P K

    2015-04-07

    Mutual separation of trivalent actinide (An(3+)) and lanthanide (Ln(3+)) using several soft (N) donor ligands (bis(5,6-dialkyl-1,2,4-triazinyl)pyridine (R-BTP)) is attempted for the first time in room temperature ionic liquid (RTIL) medium. The results indicate a spectacular enhancement in the selectivity as compared to that in molecular diluents with a separation factor (S.F.) of >3000 for Am(3+) over Eu(3+) using the methyl derivative (Me-BTP) in RTIL medium using [C(n)mim]·[NTf2] as the diluents (where n = 2, 3, 4, 6 or 8). Such a high S.F. value has never been reported before with any of the R-BTP derivatives in molecular diluents. An opposite trend in the distribution ratio values of both Am(3+) and Eu(3+) with the increasing size of the alkyl (R) group is observed in RTIL medium when compared with that in molecular diluents. The differences in the extraction behaviour of R-BTPs in RTILs vis-à-vis molecular diluents are explained on the basis of the difference in the nature of complexes extracted in these two distinctly different media as supported by the time resolved fluorescence (TRFS) study. An unusually high extractability and selectivity for Am(3+) over Eu(3+) with Me-BTP was attributed to the formation of a 1 : 4 complex for Am(3+), which was never reported earlier with any of the R-BTP derivatives in molecular diluents. DFT studies indicated higher metal 'd' and 'f' orbital participation (covalence) in the bonding with R-BTP in the case of Am(3+) complexes as compared to that in the case of Eu(3+) complexes, which resulted in the selectivity of these classes of ligands. The observed results may have a great significance in the radioactive waste management involving the partitioning and transmutation strategy.

  19. Ionic liquids based simultaneous ultrasonic and microwave assisted extraction of phenolic compounds from burdock leaves

    International Nuclear Information System (INIS)

    Lou Zaixiang; Wang Hongxin; Zhu Song; Chen Shangwei; Zhang Ming; Wang Zhouping

    2012-01-01

    The ionic liquids based simultaneous ultrasonic and microwave assisted extraction (IL-UMAE) technique was first proposed and applied to isolate compounds. The ionic liquids comprising a range of four anions, five 1-alkyl-3-methylimidazolium derivatives were designed and prepared. The results suggested that varying the anion and cation both had apparent effects on the extraction of phenolics. The results also showed that irradiation power, time and solid–liquid ratio significantly affected the yields. The yields of caffeic acid and quercetin obtained by IL-UMAE were higher than those by regular UMAE. Compared with conventional heat-reflux extraction (HRE), the proposed approach exhibited higher efficiency (8–17% enhanced) and shorter extraction time (from 5 h to 30 s). The results indicated ILUMAE to be a fast and efficient extraction technique. Moreover, the proposed method was validated by the reproducibility and recovery experiments. The ILUMAE method provided good recoveries (from 96.1% to 105.3%) with RSD lower than 5.2%, which indicated that the proposed method was credible. Based on the designable nature of ionic liquids, and the rapid and highly efficient performance of the proposed approach, ILUMAE provided a new alternative for preparation of various useful substances from solid samples.

  20. Determination of heat capacity of ionic liquid based nanofluids using group method of data handling technique

    Science.gov (United States)

    Sadi, Maryam

    2018-01-01

    In this study a group method of data handling model has been successfully developed to predict heat capacity of ionic liquid based nanofluids by considering reduced temperature, acentric factor and molecular weight of ionic liquids, and nanoparticle concentration as input parameters. In order to accomplish modeling, 528 experimental data points extracted from the literature have been divided into training and testing subsets. The training set has been used to predict model coefficients and the testing set has been applied for model validation. The ability and accuracy of developed model, has been evaluated by comparison of model predictions with experimental values using different statistical parameters such as coefficient of determination, mean square error and mean absolute percentage error. The mean absolute percentage error of developed model for training and testing sets are 1.38% and 1.66%, respectively, which indicate excellent agreement between model predictions and experimental data. Also, the results estimated by the developed GMDH model exhibit a higher accuracy when compared to the available theoretical correlations.

  1. Polymeric ionic liquid based on magnetic materials fabricated through layer-by-layer assembly as adsorbents for extraction of pesticides.

    Science.gov (United States)

    He, Lijun; Cui, Wenhang; Wang, Yali; Zhao, Wenjie; Xiang, Guoqiang; Jiang, Xiuming; Mao, Pu; He, Juan; Zhang, Shusheng

    2017-11-03

    In this study, layer-by-layer assembly of polyelectrolyte multilayer films on magnetic silica provided a convenient and controllable way to prepare polymeric ionic liquid-based magnetic adsorbents. The resulting particles were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, and magnetic measurements. The data showed that the magnetic particles had more homogeneous spherical shapes with higher saturation magnetization when compared to those obtained by free radical polymerization method. This facilitated the convenient collection of magnetic particles, with higher extraction repeatability. The extraction performance of the multilayer polymeric ionic liquid-based adsorbents was evaluated by magnetic solid-phase extraction of four pesticides including quinalphos, fenthion, phoxim, and chlorpropham. The data suggested that the extraction efficiency depended on the number of layers in the film. The parameters affecting the extraction efficiency were optimized, and good linearity ranging from 2 to 250μgL -1 was obtained with correlation coefficients of 0.9994-0.9998. Moreover, the proposed method presented low limit of detection (0.5μgL -1 , S/N=3) and limit of quantification (1.5μgL -1 , S/N=10), and good repeatability expressed by the relative standard deviation (2.0%-4.6%, n=5). The extraction recoveries of four pesticides were found to range from 58.9% to 85.8%. The reliability of the proposed method was demonstrated by analyzing environmental water samples, and the results revealed satisfactory spiked recovery, relative standard deviation, and selectivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Toxicity prediction of ionic liquids based on Daphnia magna by using density functional theory

    Science.gov (United States)

    Nu’aim, M. N.; Bustam, M. A.

    2018-04-01

    By using a model called density functional theory, the toxicity of ionic liquids can be predicted and forecast. It is a theory that allowing the researcher to have a substantial tool for computation of the quantum state of atoms, molecules and solids, and molecular dynamics which also known as computer simulation method. It can be done by using structural feature based quantum chemical reactivity descriptor. The identification of ionic liquids and its Log[EC50] data are from literature data that available in Ismail Hossain thesis entitled “Synthesis, Characterization and Quantitative Structure Toxicity Relationship of Imidazolium, Pyridinium and Ammonium Based Ionic Liquids”. Each cation and anion of the ionic liquids were optimized and calculated. The geometry optimization and calculation from the software, produce the value of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO). From the value of HOMO and LUMO, the value for other toxicity descriptors were obtained according to their formulas. The toxicity descriptor that involves are electrophilicity index, HOMO, LUMO, energy gap, chemical potential, hardness and electronegativity. The interrelation between the descriptors are being determined by using a multiple linear regression (MLR). From this MLR, all descriptors being analyzed and the descriptors that are significant were chosen. In order to develop the finest model equation for toxicity prediction of ionic liquids, the selected descriptors that are significant were used. The validation of model equation was performed with the Log[EC50] data from the literature and the final model equation was developed. A bigger range of ionic liquids which nearly 108 of ionic liquids can be predicted from this model equation.

  3. Phenyl and ionic liquid based bifunctional periodic mesoporous organosilica supported copper: An efficient nanocatalyst for clean production of polyhydroquinolines.

    Science.gov (United States)

    Elhamifar, Dawood; Ardeshirfard, Hakimeh

    2017-11-01

    A novel phenyl and ionic liquid based bifunctional periodic mesoporous organosilica supported copper (Cu@BPMO-Ph-IL) is prepared, characterized and its catalytic application is developed in the clean production of polyhydroquinolines. The Cu@BPMO-Ph-IL was prepared via chemical grafting of ionic liquid groups onto phenyl-based PMO followed by treatment with copper acetate. This nanocatalyst was characterized with transmission electron microscopy (TEM), scanning electron microscopy (SEM), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTs), thermal gravimetric analysis (TGA), powder X-ray diffraction (PXRD), nitrogen-sorption and energy dispersive X-ray (EDX) analyses. This was successfully applied in the one-pot Hantzsch condensation of aldehydes, ammonium acetate, alkylacetoacetates and dimedone to prepare a set of different derivatives of polyhydroquinolines in high yields and selectivity. The catalyst was effectively recovered and reused several times without important decrease in efficiency. The recovered catalyst was also characterized with TEM analysis to study its stability and durability under applied conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Ionic Liquid-Based Liquid-Liquid Microextraction for Benzodiazepine Analysis in Postmortem Blood Samples.

    Science.gov (United States)

    De Boeck, Marieke; Dehaen, Wim; Tytgat, Jan; Cuypers, Eva

    2018-03-24

    Sample preparation is rapidly improving to fulfill the need for faster and more environmentally friendly alternatives. In this respect, ionic liquid-based dispersive liquid-liquid microextraction (IL-DLLME) is an interesting technique. However, it has not yet been evaluated for the analysis of postmortem samples, which are frequently analyzed in forensic toxicology. This study investigates the applicability of IL-DLLME coupled to liquid chromatography-tandem mass spectrometry (LC-MS/MS), for the analysis of benzodiazepines in postmortem blood of 11 forensic cases. The method was compared with a validated solid-phase extraction (SPE) method. Bland-Altman analysis was performed on 24 benzodiazepine measurements. Both methods gave comparable results, except for flurazepam and temazepam (>55% difference). A feasible explanation is high postmortem matrix variability that was not considered during IL-DLLME validation experiments. Another issue could be the use of a single nondeuterated SPE internal standard. Overall, IL-DLLME has proven its usability for the analysis of postmortem blood. © 2018 American Academy of Forensic Sciences.

  5. Improved extraction of fluoroquinolones with recyclable ionic-liquid-based aqueous biphasic systems.

    Science.gov (United States)

    Almeida, Hugo F D; Freire, Mara G; Marrucho, Isabel M

    2016-05-07

    In the past few years, the improvement of advanced analytical tools allowed to confirm the presence of trace amounts of metabolized and unchanged active pharmaceutical ingredients (APIs) in wastewater treatment plants (WWTPs) as well as in freshwater surfaces. It is known that the continuous contact with APIs, even at very low concentrations (ng L -1 -μg L -1 ), leads to serious human health problems. In this context, this work shows the feasibility of using ionic-liquid-based aqueous biphasic systems (IL-based ABS) in the extraction of quinolones present in aqueous media. In particular, ABS composed of imidazolium- and phosphonium-based ILs and aluminium-based salts (already used in water treatment plants) were evaluated in one-step extractions of six fluoroquinolones (FQs), namely ciprofloxacin, enrofloxacin, moxifloxacin, norfloxacin, ofloxacin and sarafloxacin, and extraction efficiencies up to 98% were obtained. Despite the large interest devoted to IL-based ABS as extractive systems of outstanding performance, their recyclability/reusability has seldomly been studied. An efficient extraction/cleaning process of the IL-rich phase is here proposed by FQs induced precipitation. The recycling of the IL and its further reuse without losses in the ABS extractive performance for FQs were established, as confirmed by the four consecutive removal/extraction cycles evaluated. This novel recycling strategy supports IL-based ABS as sustainable and cost-efficient extraction platforms.

  6. Self-Supporting, Hydrophobic, Ionic Liquid-Based Reference Electrodes Prepared by Polymerization-Induced Microphase Separation.

    Science.gov (United States)

    Chopade, Sujay A; Anderson, Evan L; Schmidt, Peter W; Lodge, Timothy P; Hillmyer, Marc A; Bühlmann, Philippe

    2017-10-27

    Interfaces of ionic liquids and aqueous solutions exhibit stable electrical potentials over a wide range of aqueous electrolyte concentrations. This makes ionic liquids suitable as bridge materials that separate in electroanalytical measurements the reference electrode from samples with low and/or unknown ionic strengths. However, methods for the preparation of ionic liquid-based reference electrodes have not been explored widely. We have designed a convenient and reliable synthesis of ionic liquid-based reference electrodes by polymerization-induced microphase separation. This technique allows for a facile, single-pot synthesis of ready-to-use reference electrodes that incorporate ion conducting nanochannels filled with either 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide or 1-dodecyl-3-methylimidazolium bis(trifluoromethyl sulfonyl)imide as ionic liquid, supported by a mechanically robust cross-linked polystyrene phase. This synthesis procedure allows for the straightforward design of various reference electrode geometries. These reference electrodes exhibit a low resistance as well as good reference potential stability and reproducibility when immersed into aqueous solutions varying from deionized, purified water to 100 mM KCl, while requiring no correction for liquid junction potentials.

  7. Self-Supporting, Hydrophobic, Ionic Liquid-Based Reference Electrodes Prepared by Polymerization-Induced Microphase Separation

    Energy Technology Data Exchange (ETDEWEB)

    Chopade, Sujay A.; Anderson, Evan L.; Schmidt, Peter W.; Lodge, Timothy P.; Hillmyer, Marc A.; Bühlmann, Philippe (UMM)

    2017-09-25

    Interfaces of ionic liquids and aqueous solutions exhibit stable electrical potentials over a wide range of aqueous electrolyte concentrations. This makes ionic liquids suitable as bridge materials that separate in electroanalytical measurements the reference electrode from samples with low and/or unknown ionic strengths. However, methods for the preparation of ionic liquid-based reference electrodes have not been explored widely. We have designed a convenient and reliable synthesis of ionic liquid-based reference electrodes by polymerization-induced microphase separation. This technique allows for a facile, single-pot synthesis of ready-to-use reference electrodes that incorporate ion conducting nanochannels filled with either 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide or 1-dodecyl-3-methylimidazolium bis(trifluoromethyl sulfonyl)imide as ionic liquid, supported by a mechanically robust cross-linked polystyrene phase. This synthesis procedure allows for the straightforward design of various reference electrode geometries. These reference electrodes exhibit a low resistance as well as good reference potential stability and reproducibility when immersed into aqueous solutions varying from deionized, purified water to 100 mM KCl, while requiring no correction for liquid junction potentials.

  8. One-pot transformation of cellobiose to formic acid and levulinic acid over ionic-liquid-based polyoxometalate hybrids.

    Science.gov (United States)

    Li, Kaixin; Bai, Linlu; Amaniampong, Prince Nana; Jia, Xinli; Lee, Jong-Min; Yang, Yanhui

    2014-09-01

    Currently, levulinic acid (LA) and formic acid (FA) are considered as important carbohydrates for the production of value-added chemicals. Their direct production from biomass will open up a new opportunity for the transformation of biomass resource to valuable chemicals. In this study, one-pot transformation of cellobiose into LA and FA was demonstrated, using a series of multiple-functional ionic liquid-based polyoxometalate (IL-POM) hybrids as catalytic materials. These IL-POMs not only markedly promoted the production of valuable chemicals including LA, FA and monosaccharides with high selectivities, but also provided great convenience of the recovery and the reuse of the catalytic materials in an environmentally friendly manner. Cellobiose conversion of 100%, LA selectivity of 46.3%, and FA selectivity of 26.1% were obtained at 423 K and 3 MPa for 3 h in presence of oxygen. A detailed catalytic mechanism for the one-pot transformation of cellobiose was also presented. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Ultra-Trace Determination of Copper and Silver in Environmental Samples by Using Ionic Liquid-Based Single Drop Microextraction-Electrothermal Atomic Absorption Spectrometry

    Directory of Open Access Journals (Sweden)

    J. Abolhasani

    2013-11-01

    Full Text Available A sensitive, selective and effective ionic liquid-based single drop microextraction technique wasdeveloped by using ionic liquid, 1-hexyl-3-methylimidazolium hexafluorophosphate, C6MIMPF6, coupledwith electrothermal atomic absorption spectrometry (ETAAS for the determination of copper and silver inenvironmental samples. Dithizone was used as chelating agent. Several factors that influence themicroextraction efficiency and ETAAS signal, such as pH, dithizone concentration, extraction time, amounts ofionic liquid, stirring rate, pyrolysis and atomization temperature were investigated and the microextractionconditions were established. In the optimum experimental conditions, the detection limits (3 s of the methodwere 4 and 8 ng L-1 and corresponding relative standard deviations (0.1 μg L-1, n = 6 were 4.2% and 4.8% forAg and Cu, respectively. The developed method was validated by analysis of a certified reference material andapplied to the determination of silver and copper.

  10. Ionic liquid-based hydrothermal synthesis of Lu2O3 and Lu2O3:Eu3+ microcrysals

    Science.gov (United States)

    Li, Yinyan; Xu, Shiqing

    2016-09-01

    Uniform and well-defined Lu2O3 and Lu2O3:Eu3+ microarchitectures have been successfully synthesized via a green and facile ionic liquid-based hydrothermal method followed by a subsequent calcination process. Novel 3D micro-rodbundles and 1D microrods of Lu2O3 and Lu2O3:Eu3+ were controllably obtained through this method. X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy and photoluminescence spectra were used to characterize the micromaterials. The proposed formation mechanisms have been investigated on the basis of a series of SEM studies of the products obtained at different hydrothermal durations. The results indicated that hydrothermal temperature and the ionic liquid-tetrabutylammonium hydroxide were two key factors for the formation as well as the morphology control of the Lu2O3 and Lu2O3:Eu3+ microarchitectures.

  11. Determination of fluoroquinolone antibiotics via ionic-liquid-based, salt-induced, dual microextraction in swine feed.

    Science.gov (United States)

    Wang, Huili; Gao, Ming; Gao, Jiajia; Yu, Nana; Huang, Hong; Yu, Qing; Wang, Xuedong

    2016-09-01

    In conventional microextraction procedures, the disperser (organic solvent or ionic liquid) is left in the aqueous phase and discarded after finishing the microextraction process. Because the disperser is water-soluble, it results in low extraction recovery for polar compounds. In this investigation, an ionic-liquid-based microextraction (ILBME) was integrated with salting-out assisted liquid-liquid microextraction (SALLME) to build an ionic-liquid-based, salt-induced, dual microextraction (ILSDME) for isolation of five fluoroquinolone antibiotics (FQs) with high polarity (log P, -1.0 to 1.0). The proposed ILSDME method incorporates a dual microextraction by converting the disperser in the ILBME to the extractor in the SALLME. Optimization of key factors was conducted by integrating single-factor experiments and central composite design. The optimized experimental parameters were 80 μL [C8MIM][PF6] as extractor, 505 μL acetone as disperser, pH = 2.0, 4.1 min extraction time, and 4.2 g of Na2SO4. Under optimized conditions, high ERs (90.6-103.2 %) and low LODs (0.07-0.61 μg kg(-1)) were determined for five FQs in swine feed. Experimental precision based on RSDs was 1.4-5.2 % for intra-day and 2.4-6.9 % for inter-day analyses. The combination of ILBME with SALLME increased FQ recoveries by 15-20 % as compared with SALLME, demonstrating that the ILSDME method can enhance extraction efficiency for polar compounds compared to single-step microextraction. Therefore, the ILSDME method developed in this study has wide application for pretreatment of moderately to highly polar pollutants in complex matrices. Graphical Abstract A dual microextraction was developed by integrating ionic-liquid-based microextraction with salting-out assisted liquid-liquid microextraction for isolation of five fluoroquinolone antibiotics (FQs) with high polarity (log P = -1.0 to 1.0). The principle of dual microextraction is based on converting the remaining disperser from

  12. Systematic screening methodology and energy efficient design of ionic liquid-based separation processes

    DEFF Research Database (Denmark)

    Kulajanpeng, Kusuma; Suriyapraphadilok, Uthaiporn; Gani, Rafiqul

    2016-01-01

    A systematic methodology for the screening of ionic liquids (ILs) as entrainers and for the design of ILs-based separation processes in various homogeneous binary azeotropic mixtures has been developed. The methodology focuses on the homogeneous binary aqueous azeotropic systems (for example, water...... based on a combination of criteria such as stability, toxicity, and their environmental impacts. All best ILs were used as entrainers, and an extractive distillation column (EDC) and ionic liquid recovery column were designed and simulated with a process simulator to determine the overall energy...

  13. Factors affecting the stability and performance of ionic liquid-based planar transient photodetectors.

    Science.gov (United States)

    Dalgleish, Simon; Reissig, Louisa; Hu, Laigui; Matsushita, Michio M; Sudo, Yuki; Awaga, Kunio

    2015-05-12

    A novel planar architecture has been developed for the study of photodetectors utilizing the transient photocurrent response induced by a metal/insulator/semiconductor/metal (MISM) structured device, where the insulator is an ionic liquid (IL-MISM). Using vanadyl 2,3-naphthalocyanine, which absorbs in the communications-relevant near-infrared wavelength region (λ(max,film) ≈ 850 nm), in conjunction with C60 as a bulk heterojunction, the high capacitance of the formed electric double layers at the ionic liquid interfaces yields high charge separation efficiency within the semiconductor layer, and the minimal potential drop in the bulk ionic liquid allows the electrodes to be offset by distances of over 7 mm. Furthermore, the decrease in operational speed with increased electrode separation is beneficial for a clear modeling of the waveform of the photocurrent signal, free from the influence of measurement circuitry. Despite the use of a molecular semiconductor as the active layer in conjunction with a liquid insulating layer, devices with a stability of several days could be achieved, and the operational stability of such devices was shown to be dependent solely on the solubility of the active layer in the ionic liquid, even under atmospheric conditions. Furthermore, the greatly simplified device construction process, which does not rely on transparent electrode materials or direct electrode deposition, provides a highly reproducible platform for the study of the electronic processes within IL-MISM detectors that is largely free from architectural constraints.

  14. Hydrophobic ionic liquids based on the 1-butyl-3-methylimidazolium cation for lithium/seawater batteries

    Science.gov (United States)

    Zhang, Yancheng; Urquidi-Macdonald, Mirna

    Two hydrophobic ionic liquids (room temperature molten salts) based on 1-butyl-3-methylimidazolium cation (BMI +), BMI +PF 6- and BMI +Tf 2N -, were used in developing a highly efficient lithium anode system for lithium/seawater batteries. The lithium anode system was composed of lithium metal/ionic liquid/Celgard membrane. Both BMI +PF 6-and BMI +Tf 2N - maintained high apparent anodic efficiency (up to 100%) under potentiostatic polarization (at +0.5 V versus open-circuit potential (OCP)) in a 3% NaCl solution. Eventually, traces of water contaminated the ionic liquid and a bilayer film (LiH and LiOH) on the lithium surface was formed, decreasing the rate of lithium anodic reaction and hence the discharge current density. BMI +Tf 2N - prevented traces of water from reaching the lithium metal surface longer than BMI +PF 6- (60 h versus 7 h). However, BMI +PF 6- was better than BMI +Tf 2N - in keeping a constant current density (˜0.2 mA cm -2) before the traces of water contaminated the lithium surface due to the non-reactivity of BMI +PF 6- with the lithium metal that kept the bare lithium surface. During the discharge process, BMI +PF 6- and BMI +Tf 2N - acted as ion transport media of Li +, Cl -, OH - and H 2O, but did not react with them because of the excellent chemical stability, high conductivity, and high hydrophobicity of these two ionic liquids. Both BMI +PF 6- and BMI +Tf 2N - gels were tentative approaches used to delay the traces of water coming in contact with the lithium surface.

  15. Instability of Ionic Liquid-Based Electrolytes in Li−O2 Batteries

    DEFF Research Database (Denmark)

    Das, Supti; Højberg, Jonathan; Knudsen, Kristian Bastholm

    2015-01-01

    of the rechargeability (OER/ORR), and thereby the Coulombic efficiency of discharge and charge. None of the IL-based electrolytes are found to behave as needed for a functional Li−O2 battery but perform better than commonly used organic solvents. Also the extent of rechargeability/reversibility has been found......Ionic liquids (ILs) have been proposed as promising solvents for Li−air battery electrolytes. Here, several ILs have been investigated using differential electrochemical mass spectrometry (DEMS) to investigate the electrochemical stability in a Li−O2 system, by means of quantitative determination...

  16. Treatment of Mineral Oil Refinery Wastewater in Microbial Fuel Cells Using Ionic Liquid Based Separators

    Directory of Open Access Journals (Sweden)

    Hasna Addi

    2018-03-01

    Full Text Available Microbial fuel cells (MFCs are an environmentally friendly technology that can recover electricity directly from several wastes at ambient temperatures. This work explores the use of mineral oil refinery wastewater as feedstock in single-chamber air-cathode MFC devices. A polymer inclusion membrane based on the ionic liquid methyltrioctylammonium chloride, [MTOA+][Cl−], at a concentration of 70% w/w, was used as separator, showing a good efficiency in power production and chemical oxygen demand (COD removal. The power and the chemical oxygen demand removal reached values of 45 mW/m3 and over 80%, respectively. The evolution of other parameters of the wastewater including nitrites, phosphates and sulphates were also studied. Kjeldahl nitrogen and sulphates were significantly reduced during MFC operation. The results show that mineral oil refinery wastewater can be used as feedstock in air breathing cathode-microbial fuel cells based on polymer ionic liquid inclusion membranes. This configuration could represent a good alternative for wastewater depuration while producing energy during the process.

  17. Scaling-up and ionic liquid-based extraction of pectinases from Aspergillus flavipes cultures.

    Science.gov (United States)

    Wolf-Márquez, Vicente E; Martínez-Trujillo, M Aurora; Aguilar Osorio, Guillermo; Patiño, Faustino; Álvarez, María S; Rodríguez, Ana; Sanromán, M Ángeles; Deive, Francisco J

    2017-02-01

    The viability of the scaling-up of pectinases production by Aspergillus flavipes at 5L-bioreactor scale has been demonstrated by keeping constant the power input, and a drastic increase in the endo- and exopectinolytic enzyme production was recorded (7- and 40-fold, respectively). The main process variables were modelled by means of logistic and Gompertz equations. In order to overcome the limitations of the conventional downstream strategies, a novel extraction strategy was proposed on the basis of the adequate salting-out potential of two biocompatible cholinium-based ionic liquids (N 1112OH Cl and N 1112OH H 2 PO 4 ) in aqueous solutions of Tergitol, reaching more than 90% of extraction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. A New Green Ionic Liquid-Based Corrosion Inhibitor for Steel in Acidic Environments

    Directory of Open Access Journals (Sweden)

    Ayman M. Atta

    2015-06-01

    Full Text Available This work examines the use of new hydrophobic ionic liquid derivatives, namely octadecylammonium tosylate (ODA-TS and oleylammonium tosylate (OA-TS for corrosion protection of steel in 1 M hydrochloric acid solution. Their chemical structures were determined from NMR analyses. The surface activity characteristics of the prepared ODA-TS and OA-TS were evaluated from conductance, surface tension and contact angle measurements. The data indicate the presence of a double bond in the chemical structure of OA-TS modified its surface activity parameters. Potentiodynamic polarization, electrochemical impedance spectroscopy (EIS measurements, scanning electron microscope (SEM, Energy dispersive X-rays (EDX analysis and contact angle measurements were utilized to investigate the corrosion protection performance of ODA-TS and OA-TS on steel in acidic solution. The OA-TS and ODA-TS compounds showed good protection performance in acidic chloride solution due to formation of an inhibitive film on the steel surface.

  19. Ionic liquid based dispersive liquid-liquid microextraction for the extraction of pesticides from bananas.

    Science.gov (United States)

    Ravelo-Pérez, Lidia M; Hernández-Borges, Javier; Asensio-Ramos, María; Rodríguez-Delgado, Miguel Angel

    2009-10-23

    This paper describes a dispersive liquid-liquid microextraction (DLLME) procedure using room temperature ionic liquids (RTILs) coupled to high-performance liquid chromatography with diode array detection capable of quantifying trace amounts of eight pesticides (i.e. thiophanate-methyl, carbofuran, carbaryl, tebuconazole, iprodione, oxyfluorfen, hexythiazox and fenazaquin) in bananas. Fruit samples were first homogenized and extracted (1g) with acetonitrile and after suitable evaporation and reconstitution of the extract in 10 mL of water, a DLLME procedure using 1-hexyl-3-methylimidazolium hexafluorophosphate ([C(6)MIM][PF(6)]) as extraction solvent was used. Experimental conditions affecting the DLLME procedure (sample pH, sodium chloride percentage, ionic liquid amount and volume of disperser solvent) were optimized by means of an experimental design. In order to determine the presence of a matrix effect, calibration curves for standards and fortified banana extracts (matrix matched calibration) were studied. Mean recovery values of the extraction of the pesticides from banana samples were in the range of 69-97% (except for thiophanate-methyl and carbofuran, which were 53-63%) with a relative standard deviation lower than 8.7% in all cases. Limits of detection achieved (0.320-4.66 microg/kg) were below the harmonized maximum residue limits established by the European Union (EU). The proposed method, was also applied to the analysis of this group of pesticides in nine banana samples taken from the local markets of the Canary Islands (Spain). To the best of our knowledge, this is the first application of RTILs as extraction solvents for DLLME of pesticides from samples different than water.

  20. Pesticide extraction from table grapes and plums using ionic liquid based dispersive liquid-liquid microextraction.

    Science.gov (United States)

    Ravelo-Pérez, Lidia M; Hernández-Borges, Javier; Herrera-Herrera, Antonio V; Rodríguez-Delgado, Miguel Angel

    2009-12-01

    Room temperature ionic liquids (RTILs) have been used as extraction solvents in dispersive liquid-liquid microextraction (DLLME) for the determination of eight multi-class pesticides (i.e. thiophanate-methyl, carbofuran, carbaryl, tebuconazole, iprodione, oxyfluorfen, hexythiazox, and fenazaquin) in table grapes and plums. The developed method involves the combination of DLLME and high-performance liquid chromatography with diode array detection. Samples were first homogenized and extracted with acetonitrile. After evaporation and reconstitution of the extract in water containing sodium chloride, a quick DLLME procedure that used the ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate ([C(6)MIM][PF(6)]) and methanol was developed. The RTIL dissolved in a very small volume of acetonitrile was directed injected in the chromatographic system. The comparison between the calibration curves obtained from standards and from spiked sample extracts (matrix-matched calibration) showed the existence of a strong matrix effect for most of the analyzed pesticides. A recovery study was also developed with five consecutive extractions of the two types of fruits spiked at three concentration levels. Mean recovery values were in the range of 72-100% for table grapes and 66-105% for plum samples (except for thiophanate-methyl and carbofuran, which were 64-75% and 58-66%, respectively). Limits of detection (LODs) were in the range 0.651-5.44 microg/kg for table grapes and 0.902-6.33 microg/kg for plums, representing LODs below the maximum residue limits (MRLs) established by the European Union in these fruits. The potential of the method was demonstrated by analyzing 12 commercial fruit samples (six of each type).

  1. Pyridinium ionic liquid-based liquid-solid extraction of inorganic and organic iodine from Laminaria.

    Science.gov (United States)

    Peng, Li-Qing; Yu, Wen-Yan; Xu, Jing-Jing; Cao, Jun

    2018-01-15

    A simple, green and effective extraction method, namely, pyridinium ionic liquid- (IL) based liquid-solid extraction (LSE), was first designed to extract the main inorganic and organic iodine compounds (I - , monoiodo-tyrosine (MIT) and diiodo-tyrosine (DIT)). The optimal extraction conditions were as follows: ultrasonic intensity 100W, IL ([EPy]Br) concentration 200mM, extraction time 30min, liquid/solid ratio 10mL/g, and pH value 6.5. The morphologies of Laminaria were studied by scanning electron microscopy and transmission electron microscopy. The recovery values of I - , MIT and DIT from Laminaria were in the range of 88% to 94%, and limits of detection were in the range of 59.40 to 283.6ng/g. The proposed method was applied to the extraction and determination of iodine compounds in three Laminaria. The results showed that IL-based LSE could be a promising method for rapid extraction of bioactive iodine from complex food matrices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Carbonaceous anodes for lithium-ion batteries in combination with protic ionic liquids-based electrolytes

    Science.gov (United States)

    Menne, Sebastian; Schroeder, Matthias; Vogl, Thomas; Balducci, Andrea

    2014-11-01

    Protic ionic liquids (PILs) have been recently proposed as a new class of electrolytes for lithium-ion batteries (LIBs). So far, PILs-based electrolytes have been used in combination with several battery materials, but never with carbonaceous anodes. Since graphite is the state-of-the-art anode in LIBs, the use of PILs-based electrolyte in combination with this material appears of particular importance. In this work we showed, for the first time, that PILs-based electrolytes can be successfully used also in combination with graphite. Even if the lithium intercalation and deintercalation process of these electrode materials occur outside the ESW of PILs, the addition of film-forming additive makes possible the formation of a stable SEI and, consequently, the use of PILs-based electrolytes. The results of this study indicate that the performance of graphite electrode in PILs-based electrolytes is comparable, and even slightly higher, than that observed in AIL-based electrolytes.

  3. Simultaneous extraction and concentration of water pollution tracers using ionic-liquid-based systems.

    Science.gov (United States)

    Dinis, Teresa B V; Passos, Helena; Lima, Diana L D; Sousa, Ana C A; Coutinho, João A P; Esteves, Valdemar I; Freire, Mara G

    2017-07-29

    Human activities are responsible for the release of innumerous substances into the aquatic environment. Some of these substances can be used as pollution tracers to identify contamination sources and to prioritize monitoring and remediation actions. Thus, their identification and quantification are of high priority. However, due to their presence in complex matrices and at significantly low concentrations, a pre-treatment/concentration step is always required. As an alternative to the currently used pre-treatment methods, mainly based on solid-phase extractions, aqueous biphasic systems (ABS) composed of ionic liquids (ILs) and K 3 C 6 H 5 O 7 are here proposed for the simultaneous extraction and concentration of mixtures of two important pollution tracers, caffeine (CAF) and carbamazepine (CBZ). An initial screening of the IL chemical structure was carried out, with extraction efficiencies of both tracers to the IL-rich phase ranging between 95 and 100%, obtained in a single-step. These systems were then optimized in order to simultaneously concentrate CAF and CBZ from water samples followed by HPLC-UV analysis, for which no interferences of the ABS phase-forming components and other interferents present in a wastewater effluent sample have been found. Based on the saturation solubility data of both pollution tracers in the IL-rich phase, the maximum estimated concentration factors of CAF and CBZ are 28595- and 8259-fold. IL-based ABS can be thus envisioned as effective pre-treatment techniques of environmentally-related aqueous samples for a more accurate monitoring of mixtures of pollution tracers. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Use of an ionic liquid-based surfactant as pseudostationary phase in the analysis of carbamates by micellar electrokinetic chromatography.

    Science.gov (United States)

    Tejada-Casado, Carmen; Moreno-González, David; García-Campaña, Ana M; del Olmo-Iruela, Monsalud

    2015-03-01

    The applicability of an ionic liquid-based cationic surfactant 1-dodecyl-3-methyl-imidazolium tetrafluoroborate (C12 MImBF4 ) as pseudostationary phase in MEKC has been evaluated for the analysis of 11 carbamate pesticides (promecarb, carbofuran, metolcarb, fenobucarb, aldicarb, propoxur, asulam, benomyl, carbendazim, ethiofencarb, isoprocarb) in juice samples. Under optimum conditions (separation buffer, 35 mM NaHCO3 and 20 mM C12 MImBF4 , pH 9.0; capillary temperature 25°C; voltage -22 kV) the analysis was carried out in less than 12 min, using hydrodynamic injection (50 mbar for 7.5 s) and detection at 200 nm. For the extraction of these CRBs from juice samples, a dispersive liquid-liquid microextraction (DLLME) procedure has been proposed, by optimization of variables affecting the efficiency of the extraction. Following this treatment, sample throughput was approximately 12 samples per hour, obtaining a preconcentration factor of 20. Matrix-matched calibration curves were established using tomato juice as representative matrix (from 5 to 250 μg/L for CBZ, BY, PX, CF, FEN, ETH, ISP, and 25-250 μg/L for ASL, ALD, PRC, MTL), obtaining quantification limits ranging from 1 to 18 μg/L and recoveries from 70 to 96%, with RSDs lower than 9%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. High-Permeance Room-Temperature Ionic-Liquid-Based Membranes for CO2/N-2 Separation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, JS; Mok, MM; Cowan, MG; McDanel, WM; Carlisle, TK; Gin, DL; Noble, RD

    2014-12-24

    We have developed and fabricated thin-film composite (TFC) membranes with an active layer consisting of a room-temperature ionic liquid/polymerized (room-temperature ionic liquid) [i.e., (RTIL)/poly(RTIL)] composite material. The resulting membrane has a CO2 permeance of 6100 +/- 400 GPU (where 1 GPU = 10(-6) cm(3)/(cm(2) s cmHg)) and an ideal CO2/N-2 selectivity of 22 +/- 2. This represents a new membrane with state-of-the-art CO2 permeance and good CO2/N-2 selectivity. To our knowledge, this is the first example of a TFC gas separation membrane composed of an RTIL-containing active layer.

  6. Selective gas absorption by ionic liquids

    DEFF Research Database (Denmark)

    Shunmugavel, Saravanamurugan; Kegnæs, Søren; Due-Hansen, Johannes

    2010-01-01

    processes for flue gas cleaning. The results show that CO 2, NO and SO2 can be reversible and selective absorbed using different ILs and that Supported Ionic Liquid-Phase (SILP) absorbers are promising materials for industrial flue gas cleaning. Absorption/desorption dynamics can be tuned by temperatures......Reversible absorption performance for the flue gas components CO 2, NO and SO2 has been tested for several different ionic liquids (ILs) at different temperatures and flue gas compositions. Furthermore, different porous, high surface area carriers have been applied as supports for the ionic liquids...... to obtain Supported Ionic Liquid-Phase (SILP) absorber materials. The use of solid SILP absorbers with selected ILs were found to significantly improve the absorption capacity and sorption dynamics at low flue gas concentration, thus making the applicability of ILs viable in technical, continuous flow...

  7. An ionic liquid-based nanofluid of titanium dioxide nanoparticles for effervescence-assisted dispersive liquid-liquid extraction for acaricide detection.

    Science.gov (United States)

    Wu, Xiaoling; Li, Xin; Yang, Miyi; Zeng, Haozhe; Zhang, Sanbing; Lu, Runhua; Gao, Haixiang; Xu, Donghui

    2017-05-12

    Phytophagous mites are usually considered a difficult problem for agricultural planting, and acaricides are applied to control diseases and pests. However, the overdose and misusage of acaricides causes pesticide residues. In this work, a simple and practical ionic liquid-based TiO 2 nanofluid, effervescence-assisted, dispersive liquid-liquid microextraction (EA-DLLME) method was developed to detect acaricides in honey and tea by high-performance liquid chromatography (HPLC-DAD). Oleophilic TiO 2 nanoparticles were synthesized by a facile solvothermal method to obtain greater stability of the nanofluid. The experimental parameters were optimized by a one-factor-at-a-time approach and included the effervescent tablet composition, ionic liquid selection, extractant composition, nanofluid volume, extraction temperature, extraction time and desorption conditions. Under the optimized conditions, the linear ranges of this proposed method were 0.5-500μgL -1 , with correlation coefficients in the range of 0.9985-1.0000. The extraction efficiencies for the target analytes varied from 70.70 to 84.58%. The detection and quantitation limits were in the ranges of 0.04-0.18μgL -1 and 0.13-0.60μgL -1 , respectively. The intra- and inter-day relative standard deviations (n=3) were found to range from 2.32 to 5.71%, which showed perfect repeatability. Overall, the EA-DLLME method was time-saving and environmentally friendly, with future potential for microextraction. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Simultaneous multicomponent spectrophotometric monitoring of methyl and propyl parabens using multivariate statistical methods after their preconcentration by robust ionic liquid-based dispersive liquid-liquid microextraction

    Science.gov (United States)

    Khani, Rouhollah; Ghasemi, Jahan B.; Shemirani, Farzaneh

    2014-03-01

    A powerful and efficient signal-preprocessing technique that combines local and multiscale properties of the wavelet prism with the global filtering capability of orthogonal signal correction (OSC) is applied for pretreatment of spectroscopic data of parabens as model compounds after their preconcentration by robust ionic liquid-based dispersive liquid-liquid microextraction method (IL-DLLME). In the proposed technique, a mixture of a water-immiscible ionic liquid (as extraction solvent) [Hmim][PF6] and disperser solvent is injected into an aqueous sample solution containing one of the IL's ions, NaPF6, as extraction solvent and common ion source. After preconcentration, the absorbance of the extracted compounds was measured in the wavelength range of 200-700 nm. The wavelet orthogonal signal correction with partial least squares (WOSC-PLS) method was then applied for simultaneous determination of each individual compound. Effective parameters, such as amount of IL, volume of the disperser solvent and amount of NaPF6, were inspected by central composite design to identify the most important parameters and their interactions. The effect of pH on the sensitivity and selectivity was studied according to the net analyte signal (NAS) for each component. Under optimum conditions, enrichment factors of the studied compounds were 75 for methyl paraben (MP) and 71 for propyl paraben (PP). Limits of detection for MP and PP were 4.2 and 4.8 ng mL-1, respectively. The root mean square errors of prediction for MP and PP were 0.1046 and 0.1275 μg mL-1, respectively. The practical applicability of the developed method was examined using hygienic, cosmetic, pharmaceutical and natural water samples.

  9. Sensitive determination of estrogens in environmental waters treated with polymeric ionic liquid-based stir cake sorptive extraction and liquid chromatographic analysis.

    Science.gov (United States)

    Chen, Lei; Mei, Meng; Huang, Xiaojia; Yuan, Dongxing

    2016-05-15

    A simple, sensitive and environmentally friendly method using polymeric ionic liquid-based stir cake sorptive extraction followed by high performance liquid chromatography with diode array detection (HPLC/DAD) has been developed for efficient quantification of six selected estrogens in environmental waters. To extract trace estrogens effectively, a poly (1-ally-3-vinylimidazolium chloride-co-ethylene dimethacrylate) monolithic cake was prepared and used as the sorbent of stir cake sorptive extraction (SCSE). The effects of preparation conditions of sorbent and extraction parameters of SCSE for estrogens were investigated and optimized. Under optimal conditions, the developed method showed satisfactory analytical performance for targeted analytes. Low limits of detection (S/N=3) and quantification limits (S/N=10) were achieved within the range of 0.024-0.057 µg/L and 0.08-0.19 µg/L, respectively. Good linearity of method was obtained for analytes with the correlation coefficients (R(2)) above 0.99. At the same time, satisfactory method repeatability and reproducibility was achieved in terms of intra- and inter-day precisions, respectively. Finally, the established SCSE-HPLC/DAD method was successfully applied for the determination of estrogens in different environmental water samples. Recoveries obtained for the determination of estrogens in spiked samples ranged from 71.2% to 108%, with RSDs below 10% in all cases. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Electrode potential and selective ionic adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Alexe-Ionescu, A.L. [University Politehnica of Bucharest, Faculty of Applied Sciences, Splaiul Independentei 313, 060042 Bucharest (Romania); Dipartimento di Fisica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Laboratory for Engineering of the Neuromuscular System, and Dipartimento di Elettronica, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Barbero, G. [Dipartimento di Fisica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)], E-mail: giovanni.barbero@polito.it; Merletti, R. [Laboratory for Engineering of the Neuromuscular System, and Dipartimento di Elettronica, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2009-04-27

    A simple description of the electrode potential based on the selective ionic adsorption is proposed. It is shown that if the adsorption-desorption coefficients entering in the Langmuir kinetic equation for the adsorption at the limiting surfaces are not identical, a difference of potential between the electrode and the bulk of the solution exists. In the case where the thickness of the sample is large with respect to the length of Debye, this difference of potential depends only on the adsorption-desorption coefficients and on the length of Debye of the ionic solution.

  11. Selective Ionic Transport Pathways in Phosphorene.

    Science.gov (United States)

    Nie, Anmin; Cheng, Yingchun; Ning, Shoucong; Foroozan, Tara; Yasaei, Poya; Li, Wen; Song, Boao; Yuan, Yifei; Chen, Lin; Salehi-Khojin, Amin; Mashayek, Farzad; Shahbazian-Yassar, Reza

    2016-04-13

    Despite many theoretical predictions indicating exceptionally low energy barriers of ionic transport in phosphorene, the ionic transport pathways in this two-dimensional (2D) material has not been experimentally demonstrated. Here, using in situ aberration-corrected transmission electron microscopy (TEM) and density functional theory, we studied sodium ion transport in phosphorene. Our high-resolution TEM imaging complemented by electron energy loss spectroscopy demonstrates a precise description of anisotropic sodium ions migration along the [100] direction in phosphorene. This work also provides new insight into the effect of surface and the edge sites on the transport properties of phosphorene. According to our observation, the sodium ion transport is preferred in zigzag edge rather than the armchair edge. The use of this highly selective ionic transport property may endow phosphorene with new functionalities for novel chemical device applications.

  12. Np(IV) complex with task-specific ionic liquid based on CMPO: first cyclic voltammetric study

    NARCIS (Netherlands)

    Sengupta, A; Murali, M.S.; Mohapatra, P.K.; Iqbal, M.; Huskens, Jurriaan; Verboom, Willem

    2015-01-01

    A cyclic voltammetric study on Np(IV) complexes with task-specific ionic liquid with 3-dodecylimidazolium cation appended with diphenylcarbamoylmethylphosphine oxide and bis(trifluoromethyl-sulfonyl)-imide anion dissolved in the room temperature ionic liquid 1-butyl-3-methylimidazolium

  13. Preparation of Thermo-Responsive Poly(ionic liquids-Based Nanogels via One-Step Cross-Linking Copolymerization

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2015-09-01

    Full Text Available In this study, thermo-responsive polymeric nanogels were facilely prepared via one-step cross-linking copolymerization of ethylene glycol dimethacrylate/divinylbenzene and ionic liquid (IL-based monomers, 1,n-dialkyl-3,3′-bis-1-vinyl imidazolium bromides ([CnVIm]Br; n = 6, 8, 12 in selective solvents. The results revealed that stable and blue opalescent biimidazolium (BIm-based nanogel solutions could be obtained without any precipitation when the copolymerizations were conducted in methanol. Most importantly, these novel nanogels were thermo-response, and could reversibly transform to precipitation in methanol with temperature changes. Turbidity analysis and dynamic light scatting (DLS measurement illustrated that PIL-based nanogel solutions presented the phase transform with upper critical solution temperature (UCST in the range of 5–25 °C. The nanogels were characterized using Fourier transform infrared (FTIR, thermogravimetric analyses (TGA, and scanning electron microscopy (SEM. In addition, BIm-based nanogels could also be used as highly active catalysts in the cycloaddition reaction of CO2 and epoxides. As a result, our attributes build a robust platform suitable for the preparation of polymeric nanomaterials, as well as CO2 conversion.

  14. Development of an ionic-liquid-based dispersive liquid-liquid microextraction method for the determination of antichagasic drugs in human breast milk: Optimization by central composite design.

    Science.gov (United States)

    Padró, Juan M; Pellegrino Vidal, Rocío B; Echevarria, Romina N; Califano, Alicia N; Reta, Mario R

    2015-05-01

    Chagas disease constitutes a major public health problem in Latin America. Human breast milk is a biological sample of great importance for the analysis of therapeutic drugs, as unwanted exposure through breast milk could result in pharmacological effects in the nursing infant. Thus, the goal of breast milk drug analysis is to inquire to which extent a neonate may be exposed to a drug during lactation. In this work, we developed an analytical technique to quantify benznidazole and nifurtimox (the two antichagasic drugs currently available for medical treatment) in human breast milk, with a simple sample pretreatment followed by an ionic-liquid-based dispersive liquid-liquid microextraction combined with high-performance liquid chromatography and UV detection. For this technique, the ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate has been used as the "extraction solvent." A central composite design was used to find the optimum values for the significant variables affecting the extraction process: volume of ionic liquid, volume of dispersant solvent, ionic strength, and pH. At the optimum working conditions, the average recoveries were 77.5 and 89.7%, the limits of detection were 0.06 and 0.09 μg/mL and the interday reproducibilities were 6.25 and 5.77% for benznidazole and nifurtimox, respectively. The proposed methodology can be considered sensitive, simple, robust, accurate, and green. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Ionic Liquid-Based Ultrasonic-Assisted Extraction of Secoisolariciresinol Diglucoside from Flaxseed (Linum usitatissimum L. with Further Purification by an Aqueous Two-Phase System

    Directory of Open Access Journals (Sweden)

    Zhi-Jian Tan

    2015-09-01

    Full Text Available In this work, a two-step extraction methodology of ionic liquid-based ultrasonic-assisted extraction (IL-UAE and ionic liquid-based aqueous two-phase system (IL-ATPS was developed for the extraction and purification of secoisolariciresinol diglucoside (SDG from flaxseed. In the IL-UAE step, several kinds of ILs were investigated as the extractants, to identify the IL that affords the optimum extraction yield. The extraction conditions such as IL concentration, ultrasonic irradiation time, and liquid–solid ratio were optimized using response surface methodology (RSM. In the IL-ATPS step, ATPS formed by adding kosmotropic salts to the IL extract was used for further separation and purification of SDG. The most influential parameters (type and concentration of salt, temperature, and pH were investigated to obtain the optimum extraction efficiency. The maximum extraction efficiency was 93.35% under the optimal conditions of 45.86% (w/w IL and 8.27% (w/w Na2SO4 at 22 °C and pH 11.0. Thus, the combination of IL-UAE and IL-ATPS makes up a simple and effective methodology for the extraction and purification of SDG. This process is also expected to be highly useful for the extraction and purification of bioactive compounds from other important medicinal plants.

  16. Ionic liquids based on phosphonium cations as neat lubricants or lubricant additives for a steel/steel contact.

    Science.gov (United States)

    Otero, Inés; López, Enriqueta R; Reichelt, Manuela; Villanueva, María; Salgado, Josefa; Fernández, Josefa

    2014-08-13

    After doing several miscibility essays with eight ionic liquids (ILs) and four base oils, the ILs tri(butyl)ethylphosphonium diethylphosphate [P4,4,4,2][C2C2PO4] and trihexyl(tetradecyl)phosphonium tris(pentafluoroethyl)trifluorophosphate [P6,6,6,14][(C2F5)3PF3] were selected to be studied as lubricant additives. The neat IL [P4,4,4,2][C2C2PO4], the base oils, and several blends were characterized in terms of density, viscosity, and thermal stability. The tribological performance of the miscible base oil/IL blends (1 wt %) and the neat [P4,4,4,2][C2C2PO4] were evaluated for the lubrication of an AISI 420 steel-100Cr6 steel contact pair. The friction coefficients and wear volumes obtained are also compared with those corresponding to the pure base oils and their mixtures with conventional additive zinc dialkyldithiophosphate (ZDDP). As neat lubricants, [P4,4,4,2][C2C2PO4] showed the best antifriction ability, whereas in terms of wear, better results were obtained with [P6,6,6,14][(C2F5)3PF3]. However, higher improvements in both friction and wear were found for blends containing [P4,4,4,2][C2C2PO4]. XPS analyses of the worn surfaces lubricated with these mixtures indicated the presence of phosphorus in the tribofilm formed on the wear track. However, this compound was slightly detected on tribosamples lubricated with blends containing [P6,6,6,14][(C2F5)3PF3].

  17. Synthesis of Ionic Liquid Based Electrolytes, Assembly of Li-ion Batteries, and Measurements of Performance at High Temperature.

    Science.gov (United States)

    Lin, Xinrong; Chapman Varela, Jennifer; Grinstaff, Mark W

    2016-12-20

    The chemical instability of the traditional electrolyte remains a safety issue in widely used energy storage devices such as Li-ion batteries. Li-ion batteries for use in devices operating at elevated temperatures require thermally stable and non-flammable electrolytes. Ionic liquids (ILs), which are non-flammable, non-volatile, thermally stable molten salts, are an ideal replacement for flammable and low boiling point organic solvent electrolytes currently used today. We herein describe the procedures to: 1) synthesize mono- and di-phosphonium ionic liquids paired with chloride or bis(trifluoromethane)sulfonimide (TFSI) anions; 2) measure the thermal properties and stability of these ionic liquids by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA); 3) measure the electrochemical properties of the ionic liquids by cyclic voltammetry (CV); 4) prepare electrolytes containing lithium bis(trifluoromethane)sulfonamide; 5) measure the conductivity of the electrolytes as a function of temperature; 6) assemble a coin cell battery with two of the electrolytes along with a Li metal anode and LiCoO2 cathode; and 7) evaluate battery performance at 100 °C. We additionally describe the challenges in execution as well as the insights gained from performing these experiments.

  18. Ionic Liquid-Based Vacuum Microwave-Assisted Extraction Followed by Macroporous Resin Enrichment for the Separation of the Three Glycosides Salicin, Hyperin and Rutin from Populus Bark

    OpenAIRE

    Fengli Chen; Kailin Mo; Zhaizhi Liu; Fengjian Yang; Kexin Hou; Shuangyang Li; Yuangang Zu; Lei Yang

    2014-01-01

    An effective ionic liquid vacuum microwave-assisted method was developed for extraction of the thermo- and oxygen-sensitive glycosides salicin, hyperin and rutin from Populus bark due to the strong solvating effects of ionic liquids on plant cell walls. In this study, [C4mim]BF4 solution was selected as the extracting solution for extraction of the target analytes. After optimization by single factor experiments and response surface methodology, the optimum condition parameters were achieved,...

  19. Determination of Sunset Yellow and Tartrazine in Food Samples by Combining Ionic Liquid-Based Aqueous Two-Phase System with High Performance Liquid Chromatography

    Science.gov (United States)

    Sha, Ou; Zhu, Xiashi; Feng, Yanli; Ma, Weixing

    2014-01-01

    We proposed a simple and effective method, by coupling ionic liquid-based aqueous two-phase systems (IL-ATPSs) with high performance liquid chromatography (HPLC), for the analysis of determining tartrazine and sunset yellow in food samples. Under the optimized conditions, IL-ATPSs generated an extraction efficiency of 99% for both analytes, which could then be directly analyzed by HPLC without further treatment. Calibration plots were linear in the range of 0.01–50.0 μg/mL for both Ta and SY. The limits of detection were 5.2 ng/mL for Ta and 6.9 ng/mL for SY. This method proves successful for the separation/analysis of tartrazine and sunset yellow in soft drink sample, candy sample, and instant powder drink and leads to consistent results as obtained from the Chinese national standard method. PMID:25538857

  20. Determination of Sunset Yellow and Tartrazine in Food Samples by Combining Ionic Liquid-Based Aqueous Two-Phase System with High Performance Liquid Chromatography

    Directory of Open Access Journals (Sweden)

    Ou Sha

    2014-01-01

    Full Text Available We proposed a simple and effective method, by coupling ionic liquid-based aqueous two-phase systems (IL-ATPSs with high performance liquid chromatography (HPLC, for the analysis of determining tartrazine and sunset yellow in food samples. Under the optimized conditions, IL-ATPSs generated an extraction efficiency of 99% for both analytes, which could then be directly analyzed by HPLC without further treatment. Calibration plots were linear in the range of 0.01–50.0 μg/mL for both Ta and SY. The limits of detection were 5.2 ng/mL for Ta and 6.9 ng/mL for SY. This method proves successful for the separation/analysis of tartrazine and sunset yellow in soft drink sample, candy sample, and instant powder drink and leads to consistent results as obtained from the Chinese national standard method.

  1. Determination of sunset yellow and tartrazine in food samples by combining ionic liquid-based aqueous two-phase system with high performance liquid chromatography.

    Science.gov (United States)

    Sha, Ou; Zhu, Xiashi; Feng, Yanli; Ma, Weixing

    2014-01-01

    We proposed a simple and effective method, by coupling ionic liquid-based aqueous two-phase systems (IL-ATPSs) with high performance liquid chromatography (HPLC), for the analysis of determining tartrazine and sunset yellow in food samples. Under the optimized conditions, IL-ATPSs generated an extraction efficiency of 99% for both analytes, which could then be directly analyzed by HPLC without further treatment. Calibration plots were linear in the range of 0.01-50.0 μg/mL for both Ta and SY. The limits of detection were 5.2 ng/mL for Ta and 6.9 ng/mL for SY. This method proves successful for the separation/analysis of tartrazine and sunset yellow in soft drink sample, candy sample, and instant powder drink and leads to consistent results as obtained from the Chinese national standard method.

  2. Ultrasound-assisted ionic liquid-based homogeneous liquid-liquid microextraction high-performance liquid chromatography for determination of tanshinones in Salvia miltiorrhiza Bge. root.

    Science.gov (United States)

    Wang, Zhibing; Cao, Bocheng; Yu, Aimin; Zhang, Hanqi; Qiu, Fangping

    2015-02-01

    The ultrasound-assisted ionic liquid-based homogeneous liquid-liquid microextraction has been developed and applied to the extraction of four tanshinones, including dihydrotanshinone, tanshinone I, cryptotanshinone and tanshinone IIA in Salvia miltiorrhiza Bge. root. High performance liquid chromatography was applied to the separation and determination of the analytes. The ionic liquid was used as extraction solvent and target analytes were extracted with help of ultrasound. Then, ion-pairing agent was added into the sample solution, which resulted in the formation of water-insoluble ionic liquid in the solution. The phase separation was performed by centrifugation. The extraction, concentration and purification of target analytes were performed simultaneously. The experimental parameters, including type and volume of ionic liquid, sample amount, the size of sample particle, pH value of extraction medium, extraction temperature, extraction time, amount of ion-pairing agent and centrifuging time, were investigated and optimized. The calibration curves showed good linear relationship (r>0.9997). The limits of detection and quantification were in the range of 0.052-0.093 and 0.17-0.31 μg mL(-1), respectively. The recoveries were between 70.45% and 94.23% with relative standard deviations lower than 5.31%. The present method is free of volatile organic solvents, and represents lower expenditures of sample, extraction time and solvent, compared with UAE and HRE. There was no obvious difference in the extraction yields of active constitutions obtained by the three extraction methods. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Ionic liquid-based matrix solid-phase dispersion coupled with homogeneous liquid-liquid microextraction of synthetic dyes in condiments.

    Science.gov (United States)

    Wang, Zhibing; Zhang, Liyuan; Li, Na; Lei, Lei; Shao, Mingyuan; Yang, Xiao; Song, Ying; Yu, Aimin; Zhang, Hanqi; Qiu, Fangping

    2014-06-27

    The ionic liquid-based matrix solid-phase dispersion homogeneous liquid-liquid microextraction (IL-based MSPD-HLLME) was developed and applied to the extraction of four banned dyes, including chrysoidin, safranine O, auramine O and rhodamine B, in condiment samples. High performance liquid chromatography was applied to the separation and determination of the analytes. The solid sample was directly treated by MSPD using ionic liquid as dispersant and the eluate obtained in MSPD was treated by HLLME. Some experimental parameters, including type of dispersant, ratio of sample to dispersant, type and volume of ionic liquid, type and volume of elution solvent, pH value and ionic strength of the elution solvent, amount of ion-pairing agent (NH4PF6) and extraction time, were investigated and optimized. The linearities for determining the analytes were in the range of 60-2000μgkg(-1) for chrysoidin, 40-2000μgkg(-1) for safranine O and 20-1000μgkg(-1) for auramine O and rhodamine B, with the correlation coefficients ranging from 0.9964 to 0.9991. The limits of detection for the analytes were between 6.7 and 26.8μgkg(-1) and the limits of quantification were between 15.99 and 58.48μgkg(-1). When the present method was applied to the analysis of spiked condiment samples, the recoveries of the analytes ranged from 90.69 to 113.52% and relative standard deviations were lower than 8.2%. The present method combined the advantages of MSPD and HLLME, and could be applied for the determination of synthetic dyes in condiment samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Electrodeposition of compact zinc from the hydrophobic Brønsted acidic ionic liquid-based electrolytes and the study of zinc stability along with the acidity manipulation

    International Nuclear Information System (INIS)

    Chen, Yi-Han; Yeh, Hsin-Wen; Lo, Nai-Chang; Chiu, Chen-Wei; Sun, I-Wen; Chen, Po-Yu

    2017-01-01

    Highlights: • Compact Zn with no crack is deposited from protic ionic liquid-based electrolytes. • The ionic liquid is composed of the protonated betaine ion. • This ionic liquid is hydrophobic and zinc oxide is soluble in it. • The effects of co-solvents, propylene carbonate and water, are studied. • The Zn stripping/deposition efficiency can be manipulated via acidity adjustment. - Abstract: Compact crystalline zinc was electrodeposited on stainless-steel electrode (SS) via potentiostatic/galvanostatic electrolysis from the hydrophobic Brønsted acidic ionic liquid, protonated betaine bis((trifluoromethyl)sulfonyl)imide (IL [Hbet][TFSI]), −based electrolytes containing ZnCl 2 or ZnO under argon or ambient air atmosphere. Approximate 10 wt% of propylene carbonate and water, respectively, were used as the co-solvents for [Hbet][TFSI] to form the IL-based electrolytes. The efficiency of zinc deposition/stripping, which is significantly affected by the Brønsted acidity of the IL-based electrolytes, was studied at glassy carbon electrode (GC) to evaluate the stability of the zinc electrodeposits along with the electrolyte acidity. The stability is very poor for the zinc electrodeposits obtained from ZnCl 2 solution. However, it increases with increasing the quantity of ZnO or urea in the electrolytes; the former neutralize the dissociable protons in [Hbet] cations to form water, and the latter may form H-bonding with [Hbet] or be protonated to form the weakly acidic cations [HUrea]. Both suppress the reaction between the Zn electrodeposits and protons. The stability of the Zn electrodeposits, therefore, can be improved via the manipulation of the IL acidity.

  5. Ionic liquid-based microwave-assisted dispersive liquid-liquid microextraction and derivatization of sulfonamides in river water, honey, milk, and animal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Xu Xu; Su Rui; Zhao Xin; Liu Zhuang; Zhang Yupu; Li Dan; Li Xueyuan; Zhang Hanqi [College of Chemistry, Jilin University, Changchun 130012 (China); Wang Ziming, E-mail: analchem@jlu.edu.cn [College of Chemistry, Jilin University, Changchun 130012 (China)

    2011-11-30

    Graphical abstract: The extraction and derivatization efficiency of SAs is dependent on type and volume of extraction solvent, type and volume of disperser, microwave power and irradiation time, volume of derivatization reagent, pH of sample solution as well as ionic strength. Highlights: Black-Right-Pointing-Pointer A new, rapid and sensitive method for determining sulfonamides (SAs) was proposed. Black-Right-Pointing-Pointer Derivatization, extraction and preconcentration of SAs were performed in one step. Black-Right-Pointing-Pointer IL-based MADLLME and derivatization were first applied for the determination of SAs. Black-Right-Pointing-Pointer Trace SAs in river water, honey, milk, and pig plasma were determined. - Abstract: The ionic liquid-based microwave-assisted dispersive liquid-liquid microextraction (IL-based MADLLME) and derivatization was applied for the pretreatment of six sulfonamides (SAs) prior to the determination by high-performance liquid chromatography (HPLC). By adding methanol (disperser), fluorescamine solution (derivatization reagent) and ionic liquid (extraction solvent) into sample, extraction, derivatization, and preconcentration were continuously performed. Several experimental parameters, such as the type and volume of extraction solvent, the type and volume of disperser, amount of derivatization reagent, microwave power, microwave irradiation time, pH of sample solution, and ionic strength were investigated and optimized. When the microwave power was 240 W, the analytes could be derivatized and extracted simultaneously within 90 s. The proposed method was applied to the analysis of river water, honey, milk, and pig plasma samples, and the recoveries of analytes obtained were in the range of 95.0-110.8, 95.4-106.3, 95.0-108.3, and 95.7-107.7, respectively. The relative standard deviations varied between 1.5% and 7.3% (n = 5). The results showed that the proposed method was a rapid, convenient and feasible method for the determination

  6. On-line ionic liquid-based dynamic microwave-assisted extraction-high performance liquid chromatography for the determination of lipophilic constituents in root of Salvia miltiorrhiza Bunge.

    Science.gov (United States)

    Gao, Shiqian; Yu, Wei; Yang, Xiao; Liu, Zhonglin; Jia, Yilong; Zhang, Hanqi

    2012-10-01

    On-line continuous sampling, ionic liquid-based dynamic microwave-assisted extraction high performance liquid chromatography has been developed and applied to the extraction of lipophilic constituents from root of Salvia miltiorrhiza Bunge. Several operating parameters were optimized by single-factor and Box-Behnken design experiments. The type and concentration of ionic liquids, power of microwave irradiation, flow rate of sample suspension, amount, and particle size of sample were investigated. The limits of detection for tanshin-one I, cryptotanshinone, and tanshinone II(A) are 0.014, 0.009, and 0.009 mg/g, respectively. The RSDs of interday and intraday were lower than 2.02 and 2.16%, respectively. The recoveries for target analytes were in the range of 90.7-101.8%. The homogeneity of the suspension and stability of the analytes were investigated and the results were satisfactory. The proposed method was compared with the off-line ionic liquid-based dynamic microwave-assisted extraction, off-line ethanol-based dynamic microwave-assisted extraction, ionic liquid-based ultrasonic-assisted extraction, and ionic liquid-based maceration extraction. The results indicated that the proposed method is effective for the extraction of the active components in Chinese herbal medicine and has some advantages over the other methods. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Self-Assembled Polymeric Ionic Liquid-Functionalized Cellulose Nano-crystals: Constructing 3D Ion-conducting Channels Within Ionic Liquid-based Composite Polymer Electrolytes.

    Science.gov (United States)

    Shi, Qing Xuan; Xia, Qing; Xiang, Xiao; Ye, Yun Sheng; Peng, Hai Yan; Xue, Zhi Gang; Xie, Xiao Lin; Mai, Yiu-Wing

    2017-09-04

    Composite polymeric and ionic liquid (IL) electrolytes are some of the most promising electrolyte systems for safer battery technology. Although much effort has been directed towards enhancing the transport properties of polymer electrolytes (PEs) through nanoscopic modification by incorporating nano-fillers, it is still difficult to construct ideal ion conducting networks. Here, a novel class of three-dimensional self-assembled polymeric ionic liquid (PIL)-functionalized cellulose nano-crystals (CNC) confining ILs in surface-grafted PIL polymer chains, able to form colloidal crystal polymer electrolytes (CCPE), is reported. The high-strength CNC nano-fibers, decorated with PIL polymer chains, can spontaneously form three-dimensional interpenetrating nano-network scaffolds capable of supporting electrolytes with continuously connected ion conducting networks with IL being concentrated in conducting domains. These new CCPE have exceptional ionic conductivities, low activation energies (close to bulk IL electrolyte with dissolved Li salt), high Li + transport numbers, low interface resistances and improved interface compatibilities. Furthermore, the CCPE displays good electrochemical properties and a good battery performance. This approach offers a route to leak-free, non-flammable and high ionic conductivity solid-state PE in energy conversion devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Preparation of CLA ascorbyl ester with improved volumetric productivity by an ionic liquid-based reaction system

    DEFF Research Database (Denmark)

    Chen, B.L.; Guo, Zheng; Let, M.B.

    2008-01-01

    A new approach to the enzymatic production Of conjugated linoleic acid (CLA) ascorbyl ester with a remarkably high volumetric productivity (120-200 g L-1) has been developed, in which strong solvation by tOMA-TFA (methyltrioctylammonium trifluoroacetate) enables a high concentration of ascorbic...... acid to be applied, and in which t-butanol enhances conversion by changing the equilibrium constant of the activity coefficients. This work has experimentally demonstrated the practicability of achieving efficient reactions of polar compounds at high concentrations in ionic liquids without significant...

  9. Ionic liquid-based dispersive liquid-liquid microextraction combined with high performance liquid chromatography-UV detection for simultaneous preconcentration and determination of Ni, Co, Cu and Zn in water samples

    Directory of Open Access Journals (Sweden)

    Asghari Alireza

    2014-01-01

    Full Text Available Ionic liquid-based dispersive liquid-liquid microextraction (IL-DLLME coupled with high performance liquid chromatography (HPLC-UV detection was developed for simultaneous extraction and determination of nickel, cobalt, copper and zinc ions. In the proposed approach, salophen (N,N'-bis(salisyliden-1,2-phenylenediamine was used as a chelating agent; the ionic liquid, 1-hexeyl-3-methylimidazolium hexafluorophosphate, and acetone were selected as extracting and dispersive solvents, respectively. After extraction, phase separation was performed by centrifugation and the sedimented phase (ionic liquid was solubilized in acetonitrile and directly injected into the HPLC for subsequent analysis. Baseline separation of metal ion complexes was achieved on a RP-C18 column using a gradient elution of the mixtures of methanol-acetonitrile-water as the mobile phase at a flow rate of 1.0 mL min-1. The influence of variables such as sample pH, concentration of the chelating agent, amount of ionic liquid (extraction solvent, disperser solvent volume, extraction time, salt effect and centrifugation speed were studied and optimized. Under the optimum conditions, the enrichment factor of 222 was obtained. The detection limits for Ni, Co, Cu and Zn were 0.8, 1.6, 1.9 and 2.8 μg L−1, respectively. The relative standard deviations (RSDs were in the range of 3.6-5.0 % for all of the investigated metal ions. The proposed procedure was successfully applied to the determination of the studied metal ions in water samples.

  10. Ionic liquid-based air-assisted liquid-liquid microextraction followed by high performance liquid chromatography for the determination of five fungicides in juice samples.

    Science.gov (United States)

    You, Xiangwei; Chen, Xiaochu; Liu, Fengmao; Hou, Fan; Li, Yiqiang

    2018-01-15

    A novel and simple ionic liquid-based air-assisted liquid-liquid microextraction technique combined with high performance liquid chromatography was developed to analyze five fungicides in juice samples. In this method, ionic liquid was used instead of a volatile organic solvent as the extraction solvent. The emulsion was formed by pulling in and pushing out the mixture of aqueous sample solution and extraction solvent repeatedly using a 10mL glass syringe. No organic dispersive solvent was required. Under the optimized conditions, the limits of detection (LODs) were 0.4-1.8μgL -1 at a signal-to-noise ratio of 3. The limits of quantification (LOQs) set as the lowest spiking levels with acceptable recovery in juices were 10μgL -1 , except for fludioxonil whose LOQ was 20μgL -1 . The proposed method was applied to determine the target fungicides in juice samples, and acceptable recoveries ranging from 74.9% to 115.4% were achieved. Copyright © 2017. Published by Elsevier Ltd.

  11. Optimization of Ionic Liquid Based Simultaneous Ultrasonic- and Microwave-Assisted Extraction of Rutin and Quercetin from Leaves of Velvetleaf (Abutilon theophrasti) by Response Surface Methodology

    Science.gov (United States)

    Zhao, Chunjian; Lu, Zhicheng; He, Xin; Li, Zhao; Shi, Kunming; Yang, Lei; Fu, Yujie; Zu, Yuangang

    2014-01-01

    An ionic liquids based simultaneous ultrasonic and microwave assisted extraction (ILs-UMAE) method has been proposed for the extraction of rutin (RU), quercetin (QU), from velvetleaf leaves. The influential parameters of the ILs-UMAE were optimized by the single factor and the central composite design (CCD) experiments. A 2.00 M 1-butyl-3-methylimidazolium bromide ([C4mim]Br) was used as the experimental ionic liquid, extraction temperature 60°C, extraction time 12 min, liquid-solid ratio 32 mL/g, microwave power of 534 W, and a fixed ultrasonic power of 50 W. Compared to conventional heating reflux extraction (HRE), the RU and QU extraction yields obtained by ILs-UMAE were, respectively, 5.49 mg/g and 0.27 mg/g, which increased, respectively, 2.01-fold and 2.34-fold with the recoveries that were in the range of 97.62–102.36% for RU and 97.33–102.21% for QU with RSDs lower than 3.2% under the optimized UMAE conditions. In addition, the shorter extraction time was used in ILs-UMAE, compared with HRE. Therefore, ILs-UMAE was a rapid and an efficient method for the extraction of RU and QU from the leaves of velvetleaf. PMID:25243207

  12. Performance analysis of absorption heat transformer cycles using ionic liquids based on imidazolium cation as absorbents with 2,2,2-trifluoroethanol as refrigerant

    International Nuclear Information System (INIS)

    Ayou, Dereje S.; Currás, Moisés R.; Salavera, Daniel; García, Josefa; Bruno, Joan C.; Coronas, Alberto

    2014-01-01

    Highlights: • TFE + [emim][BF 4 ] (or [bmim][BF 4 ]) absorption heat transformer cycles are studied. • Influence of various operating conditions on cycle’s performance is investigated. • Performance comparisons with H 2 O + LiBr and TFE + TEGDME cycles are done. • Enthalpy data for TFE + [emim][BF 4 ] (or [bmim][BF 4 ]) liquid mixtures are calculated. • TFE + [emim][BF 4 ] (or [bmim][BF 4 ]) cycles have higher gross temperature lift (GTL). - Abstract: A detailed thermodynamic performance analysis of a single-stage absorption heat transformer and double absorption heat transformer cycles using new working pairs composed of ionic liquids (1-ethyl-3-methylimidazolium tetrafluoroborate ([emim][BF 4 ]) and 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF 4 ])) as absorbent and 2,2,2-trifluoroethanol (TFE) as refrigerant has been studied. Several performance indicators were used to evaluate and compare the performance of the cycles using the TFE + [emim][BF 4 ] and TFE + [bmim][BF 4 ] working pairs with the conventional H 2 O + LiBr and organic TFE + TEGDME working pairs. The obtained results show that the ionic liquid based working pairs are suitable candidates to replace the conventional H 2 O + LiBr working pairs in order to avoid the disadvantages associated with it mainly crystallization and corrosion and also they perform better (higher gross temperature lift) than TFE + TEGDME working pair at several operating conditions considered in this work

  13. Characterization of a novel intrinsic luminescent room-temperature ionic liquid based on [P6,6,6,14 ][ANS].

    Science.gov (United States)

    Delgado, Joana M; Raymundo, Anabela; Vilarigues, Márcia; Branco, Luís C; Laia, César A T

    2015-01-07

    Intrinsically luminescent room-temperature ionic liquids (RTILs) can be prepared by combining a luminescent anion (more common) or cation with appropriate counter ions, rendering new luminescent soft materials. These RTILs are still new, and many of their photochemical properties are not well known. A novel intrinsic luminescent RTIL based on the 8-anilinonaphthalene-1-sulfonate ([ANS]) anion combined with the trihexyltetradecylphosphonium ([P6,6,6,14 ]) cation was prepared and characterized by spectroscopic techniques. Detailed photophysical studies highlight the influence of the ionic liquid environment on the ANS fluorescence, which together with rheological and (1) H NMR experiments illustrate the effects of both the viscosity and electrostatic interactions between the ions. This material is liquid at room temperature and possesses a glass transition temperature (Tg ) of 230.4 K. The fluorescence is not highly sensitive to factors such as temperature, but owing to its high viscosity, dynamic Stokes shift measurements reveal very slow components for the IL relaxation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Preparation of a polymeric ionic liquid-based adsorbent for stir cake sorptive extraction of preservatives in orange juices and tea drinks

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lei; Huang, Xiaojia, E-mail: hxj@xmu.edu.cn

    2016-04-15

    In this study, a new polymeric ionic liquid-based adsorbent was prepared and used as the extraction medium of stir cake sorptive extraction (SCSE) of three organic acid preservatives, namely, p-hydroxybenzoic acid, sorbic acid and cinnamic acid. The adsorbent was synthesized by the copolymerization of 1-ally-3-vinylimidazolium chloride (AV) and divinylbenzene (DVB) in the presence of a porogen solvent containing 1-propanol and 1,4-butanediol. The effect of the content of monomer and the porogen solvent in the polymerization mixture on the extraction performance was investigated thoroughly. The adsorbent was characterized by infrared spectroscopy, elemental analysis, scanning electron microscopy and mercury intrusion porosimetry. To obtain the optimal extraction conditions of SCSE/AVDVB for target analytes, key parameters including desorption solvent, adsorption and desorption time, ionic strength and pH value in sample matrix were studied in detail. The results showed that under the optimized conditions, the SCSE/AVDVB could extract the preservatives effectively through multiply interactions. At the same time, a simple and sensitive method by combining SCSE/AVDVB and high-performance liquid chromatography with diode array detection was developed for the simultaneous analysis of the target preservatives in orange juices and tea drinks. Low limits of detection (S/N = 3) and quantification limits (S/N = 10) of the proposed method for the target analytes were achieved within the range of 0.012–0.23 μg/L and 0.039–0.42 μg/L, respectively. The precision of the proposed method was evaluated in terms of intra- and inter-assay variability calculated as relative standard deviation (RSD), and it was found that the values were all below 10%. Finally, the proposed method was used to detect preservatives in different orange juice and tea drink samples successfully. The recoveries were in the range of 71.9–116%, and the RSDs were below 10% in the all cases

  15. Effect of lithium salts addition on the ionic liquid based extraction of essential oil from Farfarae Flos.

    Science.gov (United States)

    Li, Zhen-Yu; Zhang, Sha-Sha; Jie-Xing; Qin, Xue-Mei

    2015-01-01

    In this study, an ionic liquids (ILs) based extraction approach has been successfully applied to the extraction of essential oil from Farfarae Flos, and the effect of lithium chloride was also investigated. The results indicated that the oil yields can be increased by the ILs, and the extraction time can be reduced significantly (from 4h to 2h), compared with the conventional water distillation. The addition of lithium chloride showed different effect according to the structures of ILs, and the oil yields may be related with the structure of cation, while the chemical compositions of essential oil may be related with the anion. The reduction of extraction time and remarkable higher efficiency (5.41-62.17% improved) by combination of lithium salt and proper ILs supports the suitability of the proposed approach. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Influence of polyoxyethylene phytosterol addition in ionic liquid-based electrolyte on photovoltaic performance of dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Takahashi, Masashi; Sato, Kei; Sakurai, Sho; Kobayashi, Koichi

    2016-01-01

    Highlights: • The ionic liquid solution of less solvophilic BPS exhibits a better surface active property and a weaker dye-desorption effect. • Photovoltaic performances of the N719- and NKX2677-sensitized DSSCs can be improved by the BPS addition to the IL-based electrolyte. • BPS added to the electrolyte plays a key role in reducing charge-transfer resistance and increasing electron lifetime in the TiO 2 electrode. - Abstract: In this work, we studied influence of polyoxyethylene phytosterol (BPS) addition in ionic liquid (IL)-based electrolyte on photovoltaic performance of dye-sensitized solar cells (DSSCs) using 1-methyl-3-propylimidazolium iodide as an IL. Surface tension, photocurrent density-voltage characteristics and electrochemical impedance spectra were measured to clarify the role of BPS in the DSSCs using three different dyes. The results showed that the IL solution of less solvophilic BPS-EO5 exhibited a better surface active property and a weaker dye-desorption effect than BPS-EO30 and BPS-PO7/EO30. Short-circuit current densities of the N719- and NKX2677-sensitized cells were found to be noticeably increased by the addition of either BPS-EO5 or BPS-EO30 to the IL-based electrolyte in the concentration range of 0.001–0.01 mol dm −3 . Enhanced photovoltaic conversion efficiencies were obtained for these DSSCs, which most likely resulted from the effects of BPS on reducing charge-transfer resistance at the TiO 2 /dye/electrolyte interface and on increasing electron lifetime within the TiO 2 photoanode.

  17. Probing the microscopic structural organization of neat ionic liquids (ILs) and ionic liquid-based gels through resonance energy transfer (RET) studies.

    Science.gov (United States)

    Majhi, Debashis; Sarkar, Moloy

    2017-08-30

    With the aim to understand the role of the ionic constituents of ionic liquids (ILs) in their structural organization, resonance energy transfer (RET) studies between ionic liquids (donor) and rhodamine 6G (acceptor) have been investigated. RET studies have been exploited for the present investigation due to the fact that the said process is extremely sensitive to the distance, and a change in the donor-acceptor distance due to a change in the structural organization can be probed. Basically, steady state and time-resolved fluorescence measurements have been carried out in two different sets of ILs, where in one set (1-ethyl-3-methyl imidazolium alkyl sulfate) the alkyl side chain length on the anionic moiety is systematically varied and in the other set variation is done on the cation (aromatic and nonaromatic). The data related to the RET events have been analyzed in light of Förster theory. A clear rise time in the fluorescence intensity decay profile of the acceptor has unequivocally established the RET process between the donor and acceptor. Interestingly, the rise times and energy transfer efficiencies are also observed to vary with a variation in the alkyl chain length as well as the nature of the cations. More interestingly, the donor-acceptor distance (R DA ) is observed to increase from 35.0 Å to 47.5 Å upon increasing the anion chain length from ethyl to octyl. However, R DA is found to decrease (40.5 Å to 34.9 Å) upon going from 1-methyl-3-butylimidazolium to 1-butyl-1-methylpyrrolidinium cations. The variation of the relevant RET parameters for the two sets of ILs has been rationalized by considering the change in the structural organization of the respective set of ILs. Additionally, observation of the RET process also in an IL-based gel system indicates the potential use of this fluorescent gel material for future applications.

  18. Synthesis and characterisation of ionic liquids based on 1-butyl-3-methylimidazolium chloride and MCl(4), M = Hf and Zr.

    Science.gov (United States)

    Campbell, Paul S; Santini, Catherine C; Bouchu, Denis; Fenet, Bernard; Rycerz, Leszek; Chauvin, Yves; Gaune-Escard, Marcelle; Bessada, Catherine; Rollet, Anne-Laure

    2010-02-07

    Dialkylimidazolium chlorometallate molten salts resulting from the combination of zirconium or hafnium tetrachloride and 1-butyl-3-methylimidazolium chloride, [C(1)C(4)Im][Cl], have been prepared with a molar fraction of MCl(4), R = n(MCl4)/n(MCl4) + n([C1C4IM][Cl]) equal to 0, 0.1, 0.2, 0.33, 0.5, 0.67. The structure and composition were studied by Differential Scanning Calorimetry (DSC), (35)Cl (263 to 333 K), (1)H and (13)C solid state and solution NMR spectroscopy, and electrospray ionisation (ESI) mass spectrometry. The primary anions of the MCl(4)-based ILs were [MCl(5)], [MCl(6)] and [M(2)Cl(9)], whose relative abundances varied with R. For R = 0.33, pure solid [C(1)C(4)Im](2)[MCl(6)], for both M = Zr and Hf are formed (m.p. = 366 and 385 K, respectively). For R = 0.67 pure ionic liquids [C(1)C(4)Im][M(2)Cl(9)] for both M = Zr and Hf are formed (T(g) = 224 and 220 K, respectively). The thermal dissociation has been attempted of [C(1)C(4)Im](2)[HfCl(6)], and [C(1)C(4)Im](2)[ZrCl(6)] monitored by (35)Cl and (91)Zr solid NMR (high temperature up to 551 K).

  19. Sensitive determination of cadmium in water samples by room temperature ionic liquid-based preconcentration and electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Martinis, Estefania M. [Laboratory of Environmental Research and Services of Mendoza (LISAMEN), (CCT - CONICET - Mendoza), Av. Ruiz Leal S/N Parque General San Martin, C.C. 131, M 5502 IRA Mendoza (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); Olsina, Roberto A. [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); Departamento de Quimica Analitica, Facultad de Quimica, Bioquimica y Farmacia, Universidad Nacional de San Luis (Argentina); Altamirano, Jorgelina C. [Laboratory of Environmental Research and Services of Mendoza (LISAMEN), (CCT - CONICET - Mendoza), Av. Ruiz Leal S/N Parque General San Martin, C.C. 131, M 5502 IRA Mendoza (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); Instituto de Ciencias Basicas, Universidad Nacional de Cuyo, Mendoza (Argentina); Wuilloud, Rodolfo G. [Laboratory of Environmental Research and Services of Mendoza (LISAMEN), (CCT - CONICET - Mendoza), Av. Ruiz Leal S/N Parque General San Martin, C.C. 131, M 5502 IRA Mendoza (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); Instituto de Ciencias Basicas, Universidad Nacional de Cuyo, Mendoza (Argentina)], E-mail: rwuilloud@mendoza-conicet.gov.ar

    2008-10-17

    A sensitive preconcentration methodology for Cd determination at trace levels in water samples was developed in this work. 1-Butyl-3-methylimidazolium hexafluorophosphate ([C{sub 4}MIM][PF{sub 6}]) room temperature ionic liquid (RTIL) was successfully used for Cd preconcentration, as cadmium-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol complex [Cd-5-Br-PADAP]. Subsequently, Cd was back-extracted from the RTIL phase with 500 {mu}L of 0.5 mol L{sup -1} nitric acid and determined by electrothermal atomic absorption spectrometry (ETAAS). A preconcentration factor of 40 was achieved with 20 mL of sample. The limit of detection (LOD) obtained under optimum conditions was 3 ng L{sup -1} and the relative standard deviation (R.S.D.) for 10 replicates at 1 {mu}g L{sup -1} Cd{sup 2+} concentration level was 3.5%, calculated at peak heights. The calibration graph was linear from concentration levels near the detection limits up to at least 5 {mu}g L{sup -1}. A correlation coefficient of 0.9997 was achieved. Validation of the methodology was performed by standard addition method and analysis of certified reference material (CRM). The method was successfully applied to the determination of Cd in river and tap water samples.

  20. Ultrasonic-energy enhance the ionic liquid-based dual microextraction to preconcentrate the lead in ground and stored rain water samples as compared to conventional shaking method.

    Science.gov (United States)

    Nizamani, Sooraj; Kazi, Tasneem G; Afridi, Hassan I

    2018-01-01

    An efficient preconcentration technique based on ultrasonic-assisted ionic liquid-based dual microextraction (UA-ILDµE) method has been developed to preconcentrate the lead (Pb +2 ) in ground and stored rain water. In the current proposed method, Pb +2 was complexed with a chelating agent (dithizone), whereas an ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate) was used for extraction purpose. The ultrasonic irradiation and electrical shaking system were applied to enhance the dispersion and extraction of Pb +2 complex in aqueous samples. For second phase, dual microextraction (DµE phase), the enriched Pb +2 complex in ionic liquid, extracted back into the acidic aqueous solution and finally determined by flame atomic absorption spectrometry. Some major analytical parameters that influenced the extraction efficiency of developed method, such as pH, concentration of ligand, volume of ionic liquid and samples, time of shaking in thermostatic electrical shaker and ultrasonic bath, effect of back extracting HNO 3 volume, matrix effect, centrifugation time and rate were optimized. At the sample volume of 25mL, the calculated preconcentration factor was 62.2. The limit of detection of proposed procedure for Pb +2 ions was found to be 0.54μgL -1 . The validation of developed method was performed by the analysis of certified sample of water SRM 1643e and standard addition method in a real water sample. The extraction recovery of Pb +2 was enhanced≥2% with shaking time of 80s in ultrasonic bath as compared to used thermostatic electrical shaker, where for optimum recovery up to 10min was required. The developed procedure was successfully used for the enrichment of Pb +2 in ground and stored rain water (surface water) samples of an endemic region of Pakistan. The resulted data indicated that the ground water samples were highly contaminated with Pb +2 , while some of the surface water samples were also have higher values of Pb +2 than permissible limit of

  1. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    Science.gov (United States)

    Salminen, Eero; Virtanen, Pasi; Mikkola, Jyri-Pekka

    2014-01-01

    The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat) benzalkonium [ADBA] (alkyldimethylbenzylammonium) was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs). Typically, a SILCA contains metal nanoparticles, enzymes, or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC). The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70% molar yield toward citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide. PMID:24790972

  2. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    Directory of Open Access Journals (Sweden)

    Eero eSalminen

    2014-02-01

    Full Text Available The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat benzalkonium [ADBA] (alkyldimethylbenzylammonium was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs. Typically, a SILCA contains metal nanoparticles, enzymes or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC. The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70 % molar yield towards citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide.

  3. Ionic liquid-based electromembrane extraction and its comparison with traditional organic solvent based electromembrane extraction for the determination of strychnine and brucine in human urine.

    Science.gov (United States)

    Sun, Jian-Nan; Chen, Juan; Shi, Yan-Ping

    2014-07-25

    An ionic liquid-based electromembrane extraction (IL-EME) method was presented, and its performance was compared with 2-ethylnitrobenzene (ENB) based EME for the determination of strychnine and brucine in human urine. For the two methods, the fundamental extraction parameters such as supported liquid membrane, voltage, extraction time, pH values of sample solution and acceptor solution, temperature and salting-out effect were separately optimized. IL-EME provided 96- and 122-fold enrichment factors for strychnine and brucine, respectively, which were better than those obtained in EME (83- and 86-fold, respectively). The calibration curves were linear over the ranges of 20-720 μg L(-1) for strychnine and 20-640 μg L(-1) for brucine with the correlation coefficients higher than 0.9950. The repeatability of EME and IL-EME were evaluated by five parallel experiments giving the relative standard deviations of 5.12-6.98%. As the results indicated, compared with ENB based EME, the proposed IL-EME is more reliable and could provide better extraction performance for the determination of strychnine and brucine in human urine. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Double salt ionic liquids based on 1-ethyl-3-methylimidazolium acetate and hydroxyl-functionalized ammonium acetates: strong effects of weak interactions.

    Science.gov (United States)

    Pereira, Jorge F B; Barber, Patrick S; Kelley, Steven P; Berton, Paula; Rogers, Robin D

    2017-10-11

    The properties of double salt ionic liquids based on solutions of cholinium acetate ([Ch][OAc]), ethanolammonium acetate ([NH 3 (CH 2 ) 2 OH][OAc]), hydroxylammonium acetate ([NH 3 OH][OAc]), ethylammonium acetate ([NH 3 CH 2 CH 3 ][OAc]), and tetramethylammonium acetate ([N(CH 3 ) 4 ][OAc]) in 1-ethyl-3-methylimidazolium acetate ([C 2 mim][OAc]) were investigated by NMR spectroscopy and X-ray crystallography. Through mixture preparation, the solubility of [N(CH 3 ) 4 ][OAc] is the lowest, and [Ch][OAc] shows a 3-fold lower solubility than the other hydroxylated ammonium acetate-based salts in [C 2 mim][OAc] at room temperature. NMR and X-ray crystallographic studies of the pure salts suggest that the molecular-level mechanisms governing such miscibility differences are related to the weaker interactions between the -NH 3 groups and [OAc] - , even though three of these salts possess the same strong 1 : 1 hydrogen bonds between the cation -OH group and the [OAc] - ion. The formation of polyionic clusters between the anion and those cations with unsatisfied hydrogen bond donors seems to be a new tool by which the solubility of these salts in [C 2 mim][OAc] can be controlled.

  5. Selective Oxidative Carbonylation of Aniline to Diphenylurea with Ionic Liquids

    DEFF Research Database (Denmark)

    Zahrtmann, Nanette; Claver, Carmen; Godard, Cyril

    2018-01-01

    A catalytic system for the selective oxidative carbonylation of aniline to diphenylurea based on Pd complexes in combination with imidazolium ionic liquids is presented. Both oxidants, Pd complexes and ionic liquids affect the activity of the reaction while the choice of oxidant determines...

  6. Rapid ionic liquid-based ultrasound assisted dual magnetic microextraction to preconcentrate and separate cadmium-4-(2-thiazolylazo)-resorcinol complex from environmental and biological samples.

    Science.gov (United States)

    Khan, Sumaira; Kazi, Tasneem Gul; Soylak, Mustafa

    2014-04-05

    A rapid and innovative microextraction technique named as, ionic liquid-based ultrasound-assisted dual magnetic microextraction (IL-UA-DMME) was developed for the preconcentration and extraction of trace cadmium from environmental and biological samples, prior to analyzed by flame atomic absorption spectrometry (FAAS). The proposed method has many obvious advantages, including evading the use of organic solvents and achieved high extraction yields by the combination of dispersive liquid-liquid microextraction (DLLME) and magnetic mediated-solid phase extraction (MM-SPE). In this approach ionic liquid (IL) 1-butyl-3-methylimidazolium hexafluorophosphate [C4mim][PF6] play an important role to extract the cadmium-4-(2-thiazolylazo)-resorcinol (Cd-TAR) complex from acid digested sample solutions and ultrasonic irradiation was applied to assist emulsification. After then, dispersed small amount of Fe3O4 magnetic nanoparticles (MNPs) in sample solutions to salvaged the IL and complete phase separation was attained. Some analytical parameters that influencing the efficiency of proposed (IL-UA-DMME) method, such as pH, volume of IL, ligand concentration, ultra-sonication time, amount of Fe3O4 MNPs, sample volume and matrix effect were optimized. Limit of detection (LOD) and enrichment factor (EF) of the method under optimal experimental conditions were found to be 0.40μgL(-1) and 100, respectively. The relative standard deviation (RSD) of 50μgL(-1) Cd was 4.29%. The validity and accuracy of proposed method, was assessed to analyzed certified reference materials of fortified lake water TMDA-54.4, SPS-WW2 waste water, spinach leaves 1570a and also checked by standard addition method. The obtained values showed good agreement with the certified values and sufficiently high recovery were found in the range of 98.1-101% for Cd. The proposed method was facile, rapid and successfully applied for the determination of Cd in environmental and different biological samples

  7. Fully automated ionic liquid-based headspace single drop microextraction coupled to GC-MS/MS to determine musk fragrances in environmental water samples.

    Science.gov (United States)

    Vallecillos, Laura; Pocurull, Eva; Borrull, Francesc

    2012-09-15

    A fully automated ionic liquid-based headspace single drop microextraction (IL-HS-SDME) procedure has been developed for the first time to preconcentrate trace amounts of ten musk fragrances extensively used in personal care products (six polycyclic musks, three nitro musks and one polycyclic musk degradation product) from wastewater samples prior to analysis by gas chromatography and ion trap tandem mass spectrometry (GC-IT-MS/MS). Due to the low volatility of the ILs, a large internal diameter liner (3.4 mm i.d.) was used to improve the ILs evaporation. Furthermore, a piece of glass wool was introduced into the liner to avoid the entrance of the ILs in the GC column and a guard column was used to prevent analytical column damages. The main factors influencing the IL-HS-SDME were optimized. For all species, the highest enrichments factors were achieved using 1 μL of 1-octyl-3-methylimidazolium hexafluorophosphate ([OMIM][PF(6)]) ionic liquid exposed in the headspace of 10 mL water samples containing 300 g L(-1) of NaCl and stirred at 750 rpm and 60 °C for 45 min. All compounds were determined by direct injection GC-IT-MS/MS with a chromatographic time of 19 min. Method detection limits were found in the low ng mL(-1) range between 0.010 ng mL(-1) and 0.030 ng mL(-1) depending on the target analytes. Also, under optimized conditions, the method gave good levels of intra-day and inter-day repeatabilities in wastewater samples with relative standard deviations varying between 3% and 6% and 5% and 11%, respectively (n=3, 1 ng mL(-1)). The applicability of the method was tested with different wastewater samples from influent and effluent urban wastewater treatment plants (WWTPs) and one potable treatment plant (PTP). The analysis of influent urban wastewater revealed the presence of galaxolide and tonalide at concentrations of between 2.10 ng mL(-1) and 0.29 ng mL(-1) and 0.32 ng mL(-1) and MQL (Method Quantification Limit), respectively; while the remaining

  8. Ionic liquid-based vacuum microwave-assisted extraction followed by macroporous resin enrichment for the separation of the three glycosides salicin, hyperin and rutin from Populus bark.

    Science.gov (United States)

    Chen, Fengli; Mo, Kailin; Liu, Zhaizhi; Yang, Fengjian; Hou, Kexin; Li, Shuangyang; Zu, Yuangang; Yang, Lei

    2014-07-07

    An effective ionic liquid vacuum microwave-assisted method was developed for extraction of the thermo- and oxygen-sensitive glycosides salicin, hyperin and rutin from Populus bark due to the strong solvating effects of ionic liquids on plant cell walls. In this study, [C4mim]BF4 solution was selected as the extracting solution for extraction of the target analytes. After optimization by single factor experiments and response surface methodology, the optimum condition parameters were achieved, which included 1.0 M [C4mim]BF4, 2 h soaking time, -0.08 MPa vacuum, 20 min microwave irradiation time, 400 W microwave irradiation power and 25 mL/g liquid/solid ratio. Under the optimum conditions, higher extraction yields of salicin (35.53 mg/g), hyperin (1.32 mg/g) and rutin (2.40 mg/g) were obtained. Compared with other extraction methods, the developed method provided higher yields of the three target components after a relatively shorter extraction time (20 min). No obvious degradation of the target analytes was observed under the optimum conditions in performed stability studies and the proposed method had a high reproducibility. Meanwhile, after adsorption and desorption on macroporous D101 resin, the target analytes can be effectively separated from the [C4mim]BF4 ionic liquid extraction solution and the yields of salicin, hyperin and rutin were 89%, 82% and 84%, respectively. The recovered [C4mim]BF4 ionic liquid presented a good extraction effect on the three analytes after recycling five times.

  9. Ionic Liquid-Based Vacuum Microwave-Assisted Extraction Followed by Macroporous Resin Enrichment for the Separation of the Three Glycosides Salicin, Hyperin and Rutin from Populus Bark

    Directory of Open Access Journals (Sweden)

    Fengli Chen

    2014-07-01

    Full Text Available An effective ionic liquid vacuum microwave-assisted method was developed for extraction of the thermo- and oxygen-sensitive glycosides salicin, hyperin and rutin from Populus bark due to the strong solvating effects of ionic liquids on plant cell walls. In this study, [C4mim]BF4 solution was selected as the extracting solution for extraction of the target analytes. After optimization by single factor experiments and response surface methodology, the optimum condition parameters were achieved, which included 1.0 M [C4mim]BF4, 2 h soaking time, −0.08 MPa vacuum, 20 min microwave irradiation time, 400 W microwave irradiation power and 25 mL/g liquid/solid ratio. Under the optimum conditions, higher extraction yields of salicin (35.53 mg/g, hyperin (1.32 mg/g and rutin (2.40 mg/g were obtained. Compared with other extraction methods, the developed method provided higher yields of the three target components after a relatively shorter extraction time (20 min. No obvious degradation of the target analytes was observed under the optimum conditions in performed stability studies and the proposed method had a high reproducibility. Meanwhile, after adsorption and desorption on macroporous D101 resin, the target analytes can be effectively separated from the [C4mim]BF4 ionic liquid extraction solution and the yields of salicin, hyperin and rutin were 89%, 82% and 84%, respectively. The recovered [C4mim]BF4 ionic liquid presented a good extraction effect on the three analytes after recycling five times.

  10. Nanoporous membranes with electrochemically switchable, chemically stabilized ionic selectivity

    Science.gov (United States)

    Small, Leo J.; Wheeler, David R.; Spoerke, Erik D.

    2015-10-01

    Nanopore size, shape, and surface charge all play important roles in regulating ionic transport through nanoporous membranes. The ability to control these parameters in situ provides a means to create ion transport systems tunable in real time. Here, we present a new strategy to address this challenge, utilizing three unique electrochemically switchable chemistries to manipulate the terminal functional group and control the resulting surface charge throughout ensembles of gold plated nanopores in ion-tracked polycarbonate membranes 3 cm2 in area. We demonstrate the diazonium mediated surface functionalization with (1) nitrophenyl chemistry, (2) quinone chemistry, and (3) previously unreported trimethyl lock chemistry. Unlike other works, these chemistries are chemically stabilized, eliminating the need for a continuously applied gate voltage to maintain a given state and retain ionic selectivity. The effect of surface functionalization and nanopore geometry on selective ion transport through these functionalized membranes is characterized in aqueous solutions of sodium chloride at pH = 5.7. The nitrophenyl surface allows for ionic selectivity to be irreversibly switched in situ from cation-selective to anion-selective upon reduction to an aminophenyl surface. The quinone-terminated surface enables reversible changes between no ionic selectivity and a slight cationic selectivity. Alternatively, the trimethyl lock allows ionic selectivity to be reversibly switched by up to a factor of 8, approaching ideal selectivity, as a carboxylic acid group is electrochemically revealed or hidden. By varying the pore shape from cylindrical to conical, it is demonstrated that a controllable directionality can be imparted to the ionic selectivity. Combining control of nanopore geometry with stable, switchable chemistries facilitates superior control of molecular transport across the membrane, enabling tunable ion transport systems.Nanopore size, shape, and surface charge all play

  11. Room temperature ionic liquid-based microextraction for vanadium species separation and determination in water samples by electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Berton, Paula; Martinis, Estefania M. [Laboratory of Environmental Research and Services of Mendoza (LISAMEN), (CCT-CONICET-Mendoza), Av. Ruiz Leal S/N Parque General San Martin, CC. 131, M 5502 IRA Mendoza (Argentina); Martinez, Luis D. [INQUISAL-CONICET, Departamento de Quimica Analitica, Facultad de Quimica, Bioquimica y Farmacia, Universidad Nacional de San Luis (Argentina); Wuilloud, Rodolfo G., E-mail: rwuilloud@mendoza-conicet.gov.ar [Laboratory of Environmental Research and Services of Mendoza (LISAMEN), (CCT-CONICET-Mendoza), Av. Ruiz Leal S/N Parque General San Martin, CC. 131, M 5502 IRA Mendoza (Argentina); Instituto de Ciencias Basicas, Universidad Nacional de Cuyo, Mendoza (Argentina)

    2009-04-27

    A simple microextraction technique based on room temperature ionic liquids (RTILs) for trace V(IV) and V(V) species separation and preconcentration in water samples was developed in this work. Vanadium species microextraction was achieved with a minimal amount of the RTIL 1-butyl-3-methylimidazolium hexafluorophosphate ([C{sub 4}mim][PF{sub 6}]) as vanadium-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (V-5-Br-PADAP) complex. The speciation analysis was performed based on a modern technique defined as temperature-controlled ionic liquid dispersive liquid phase microextraction (TILDLME). The level of V(IV) species was calculated by difference of total V and V(V) levels. Selectivity among V species was obtained with the use of 1,2-cyclohexanediaminetetraacetic acid (CDTA) as masking agent. Determination of V was developed by direct injection of the RTIL phase into the electrothermal atomic absorption spectrometer (ETAAS). A preconcentration factor of 40 was achieved with only 2 mL of sample. The limit of detection (LOD) obtained under optimum conditions was 4.9 ng L{sup -1} and the relative standard deviation for 10 replicate determinations at the 0.5 {mu}g L{sup -1} V level was 4.3%, calculated at peak heights. A correlation coefficient of 0.9961 was achieved. The method was successfully applied for the speciation analysis of V in tap and river water samples.

  12. Surface-active ionic liquids in micellar catalysis: impact of anion selection on reaction rates in nucleophilic substitutions.

    Science.gov (United States)

    Cognigni, Alice; Gaertner, Peter; Zirbs, Ronald; Peterlik, Herwig; Prochazka, Katharina; Schröder, Christian; Bica, Katharina

    2016-05-21

    A series of surface-active ionic liquids based on the 1-dodecyl-3-methylimidazolium cation and different anions such as halides and alkylsulfates was synthesized. The aggregation behavior of these ionic liquids in water was characterized by surface tension, conductivity measurements and UV-Vis spectroscopy in order to determine the critical micelle concentration (CMC) and to provide aggregation parameters. The determination of surface activity and aggregation properties of amphiphilic ionic liquids was accompanied by SAXS studies on selected surface-active ionic liquids. The application of these surface-active ionic liquids with different anions was tested in nucleophilic substitution reactions for the degradation of organophosphorus compounds. Kinetic studies via UV-Vis spectrophotometry showed a strong acceleration of the reaction in the micellar system compared to pure water. In addition, an influence of the anion was observed, resulting in a correlation between the anion binding to the micelle and the reaction rate constants, indicating that the careful choice of the surface-active ionic liquid can considerably affect the outcome of reactions.

  13. Cu(II complexes of an ionic liquid-based Schiff base [1-{2-(2-hydroxy benzylidene amino ethyl}-3-methyl­imidazolium]Pf6: Synthesis, characterization and biological activities

    Directory of Open Access Journals (Sweden)

    Saha Sanjoy

    2015-01-01

    Full Text Available Two Cu(II complexes of an ionic liquid based Schiff base 1-{2-(2-hydroxybenzylideneamino ethyl}-3-methylimidazolium hexaflurophosphate, were prepared and characterized by different analytical and spectroscopic methods such as elemental analysis, magnetic susceptibility, UV-Vis, IR, NMR and mass spectroscopy. The Schiff base ligand was found to act as a potential bidentate chelating ligand with N, O donor sites and formed 1:2 metal chelates with Cu(II salts. The synthesized Cu(II complexes were tested for biological activity.

  14. Physically Gelled Room-Temperature Ionic Liquid-Based Composite Membranes for CO2/N-2 Separation: Effect of Composition and Thickness on Membrane Properties and Performance

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, PT; Voss, BA; Wiesenauer, EF; Gin, DL; Nobe, RD

    2013-07-03

    An aspartame-based, low molecular-weight organic gelator (LMOG) was used to form melt-infused and composite membranes with two different imidazolium-based room-temperature ionic liquids (RTILs) for CO2 separation from N-2. Previous work demonstrated that LMOGs can gel RTILs at low, loading levels, and this aspartame-based LMOG was selected because it has been reported to gel a large number of RTILs. The imidazolium-based RTILs were used because of their inherent good properties for CO2/light gas separations. Analysis of the resulting bulk RTIL/LMOG physical gels showed that these materials have high sol-gel transition temperatures (ca. 135 degrees C) suitable for flue gas applications. Gas permeabilities and burst pressure measurements of thick, melt infused membranes revealed a trade-off between high CO2 permeabilities and good mechanical stability as a function of the LMOG loading. Defect-free, composite membranes of the gelled RTILs were successfully fabricated by choosing an appropriate porous membrane support (hydrophobic PTFE) using a suitable coating technique (roller coating). The thicknesses of the applied composite gel layers ranged from 10.3 to 20.7 mu m, which represents an order of magnitude decrease in active layer thickness, compared to the original melt-infused gel RTIL membranes.

  15. A green ionic liquid-based vortex-forced MSPD method for the simultaneous determination of 5-HMF and iridoid glycosides from Fructus Corni by ultra-high performance liquid chromatography.

    Science.gov (United States)

    Du, Kunze; Li, Jin; Bai, Yun; An, Mingrui; Gao, Xiu-Mei; Chang, Yan-Xu

    2018-04-01

    A simple and green ionic liquid-based vortex-forced matrix solid phase dispersion (IL-VFMSPD) method was presented to simultaneously extract 5-hydroxymethyl furfurol (5-HMF) and iridoid glycosides in Fructus Corni by ultra-high performance liquid chromatography. Ionic liquid was used as a green elution reagent in vortex-forced MSPD process. A few parameters such as the type of ionic liquid, the type of sorbent, ratio of sample to sorbent, the concentration and volume of ionic liquid, grinding time and vortex time, were investigated in detail and an orthogonal design experiment was introduced to confirm the best conditions in this procedure. With the final optimized method, the recoveries of the target compounds in Fructus Corni were in the range of 95.2-103% (RSD<5.0%) and the method displayed a good linearity within the range of 0.8-200 μg mL -1 for morroniside, sweroside, loganin, cornuside and 1.2-300 μg mL -1 for 5-HMF. The limits of detection ranged from 0.02 to 0.08 μg mL -1 for all compounds. The results showed that the newly established method was efficiently applied to extract and determine iridoid glycosides and 5-HMF for quality control of Fructus Corni. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Ionic-liquid-based ultrasound-assisted extraction of isoflavones from Belamcanda chinensis and subsequent screening and isolation of potential α-glucosidase inhibitors by ultrafiltration and semipreparative high-performance liquid chromatography.

    Science.gov (United States)

    Li, Senlin; Li, Sainan; Huang, Yu; Liu, Chunming; Chen, Lina; Zhang, Yuchi

    2017-06-01

    The separation of a compound of interest from its structurally similar homologues to produce high-purity natural products is a challenging problem. This work proposes a novel method for the separation of iristectorigenin A from its structurally similar homologues by ionic-liquid-based ultrasound-assisted extraction and the subsequent screening and isolation of potential α-glucosidase inhibitors via ultrafiltration and semipreparative high-performance liquid chromatography. Ionic-liquid-based ultrasound-assisted extraction was successfully applied to the extraction of tectorigenin, iristectorigenin A, irigenin, and irisflorentin from Belamcanda chinensis. The optimum conditions for the efficient extraction of isoflavones were determined as 1.0 M 1-ethyl-3-methylimidazolium tetrafluoroborate with extraction time of 30 min and a solvent to solid ratio of 30 mL/g. Ultrafiltration with liquid chromatography and mass spectrometry was applied to screen and identify α-glucosidase inhibitors from B. chinensis, followed by the application of semipreparative high-performance liquid chromatography to separate and isolate the active constituents. Four major compounds including tectorigenin, iristectorigenin A, irigenin, and irisflorentin were screened and identified as α-glucosidase inhibitors, and then the four active compounds abovementioned were subsequently isolated by semipreparative high-performance liquid chromatography (99.89, 88.97, 99.79, and 99.97% purity, respectively). The results demonstrate that ionic liquid extraction can be successfully applied to the extraction of isoflavones from B. chinensis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Guanidinium ionic liquid-based surfactants as low cytotoxic extractants: Analytical performance in an in-situ dispersive liquid-liquid microextraction method for determining personal care products.

    Science.gov (United States)

    Pacheco-Fernández, Idaira; Pino, Verónica; Ayala, Juan H; Afonso, Ana M

    2017-05-01

    The IL-based surfactant octylguanidinium chloride (C 8 Gu-Cl) was designed and synthetized with the purpose of obtaining a less harmful surfactant: containing guanidinium as core cation and a relatively short alkyl chain. Its interfacial and aggregation behavior was evaluated through conductivity and fluorescence measurements, presenting a critical micelle concentration value of 42.5 and 44.6mmolL -1 , respectively. Cytotoxicity studies were carried out with C 8 Gu-Cl and other IL-based and conventional surfactants, specifically the analogue 1-octyl-3-methylimidazolium chloride (C 8 MIm-Cl), and other imidazolium- (C 16 MIm-Br) and pyridinium- (C 16 Py-Cl) based surfactants, together with the conventional cationic CTAB and the conventional anionic SDS. From these studies, C 8 Gu-Cl was the only one to achieve the classification of low cytotoxicity. An in situ dispersive liquid-liquid microextraction (DLLME) method based on transforming the water-soluble C 8 Gu-Cl IL-based surfactant into a water-insoluble IL microdroplet via a simple metathesis reaction was then selected as the extraction/preconcentration method for a group of 6 personal care products (PCPs) present in cosmetic samples. The method was carried out in combination with high-performance liquid chromatography (HPLC) and diode array detection (DAD). The method was properly optimized, requiring the use of only 30μL of C 8 Gu-Cl for 10mL of aqueous sample with a NaCl content of 8% (w/v) to adjust the ionic strength and pH value of 5. The metathesis reaction required the addition of the anion exchange reagent (bis[(trifluoromethyl)sulfonyl]imide - 1:1 molar ratio), followed by vortex and centrifugation, and dilution of the final microdroplet up to 60μL with acetonitrile before the injection in the HPLC-DAD system. The optimum in situ DLLME-HPLC-DAD method takes ∼10min for the extraction step and ∼22min for the chromatographic separation, with analytical features of low detection limits: down to 0.4

  18. Design and synthesis of new family of ionic liquids based on 2-iminium-1,3-dithiolanes: A combined theoretical and experimental effort

    Science.gov (United States)

    Ziyaei Halimehjani, Azim; Shakourian-Fard, Mehdi; Farvardin, Marziye Vahdati; Raeesi, Mozhgan; Hashemi, Mohammed Mahmoodi; Behzadi, Hadi

    2014-01-01

    An efficient method for synthesis of 2-iminium-1,3-dithiolane as a new family of ionic liquids with reaction of dithiocarbamates with methyl triflouromethanesulfonate was described. Theoretical study on the synthesized ionic liquids was also performed by quantum chemistry calculation. Geometry optimization on the ion pairs was carried out with the B3LYP/6-311++G(d,p) level of theory. The interaction energies were calculated, and corrected by the basis set superposition error (BSSE) calculated by the counterpoise method. The results of natural bond orbital (NBO) and quantum theory of atoms in molecules (QTAIM) analyses indicate that the interactions occur via hydrogen bonding between oxygen atom lone pairs (lp(O)) of triflouromethanesulfonate anion and antibonding orbitals of σ*C-H of 2-iminium-1,3-dithiolane cations. Also, the results of QTAIM analysis show that the hydrogen bonds are closed shell (electrostatic) in the nature. Finally, the 1H and 13C calculated chemical shifts at the B3LYP/6-311++G** level were in agreement with experimental chemical shifts for synthesized ionic liquids.

  19. Influence of reaction conditions on formation of ionic liquid-based nanostructured Bi2O3 as an efficient visible-light-driven photocatalyst

    Science.gov (United States)

    Bagheri, Mozhgan; Heydari, Mojgan; Vaezi, Mohammad Reza

    2018-01-01

    In this study, nanostructured bismuth oxide was synthesized based on the chemical reaction of bismuth nitrate and NaOH in the ionic liquid 1-butyl-3-methylimidazolium chloride ([C4mim]Cl) under ultrasonic irradiation. The effect of sodium hydroxide with a different molar ratio of NaOH to bismuth in the range of 3-10 was investigated. The results of fourier-transform infrared spectroscopy (FT-IR) and X-ray powder diffraction (XRD) showed that NaOH has a critical role in the formation of pure α-Bi2O3. So, at high concentrations of NaOH (NaOH:Bi ≥ 7.5), the chloride anion from the ionic liquid cannot be entered into the crystalline structure of bismuth oxide, which resulted in the formation of pure bismuth oxide, while at lower concentrations of NaOH (NaOH:Bi ≤ 5), Bi3O4Cl was formed with a layered structure. The XRD results revealed that the synthesized α-Bi2O3 has a monoclinic structure and scanning electron microscopy (SEM) images showed that the sample consists of needle like particles with an average thickness of 50 nm. The ionic liquid has an important role in the prevention of an agglomeration of particles in the Bi2O3 sample. The photocatalytic activity of the synthesized Bi2O3 was investigated to study the degradation of malachite green dye as a model pollutant under visible light. The effects of various parameters such as the pH, concentration of the dye, and the catalyst on the degradation of malachite green were also investigated.

  20. Trace determination of volatile polycyclic aromatic hydrocarbons in natural waters by magnetic ionic liquid-based stir bar dispersive liquid microextraction.

    Science.gov (United States)

    Benedé, Juan L; Anderson, Jared L; Chisvert, Alberto

    2018-01-01

    In this work, a novel hybrid approach called stir bar dispersive liquid microextraction (SBDLME) that combines the advantages of stir bar sorptive extraction (SBSE) and dispersive liquid-liquid microextraction (DLLME) has been employed for the accurate and sensitive determination of ten polycyclic aromatic hydrocarbons (PAHs) in natural water samples. The extraction is carried out using a neodymium stir bar magnetically coated with a magnetic ionic liquid (MIL) as extraction device, in such a way that the MIL is dispersed into the solution at high stirring rates. Once the stirring is ceased, the MIL is magnetically retrieved onto the stir bar, and subsequently subjected to thermal desorption (TD) coupled to a gas chromatography-mass spectrometry (GC-MS) system. The main parameters involved in TD, as well as in the extraction step affecting the extraction efficiency (i.e., MIL amount, extraction time and ionic strength) were evaluated. Under the optimized conditions, the method was successfully validated showing good linearity, limits of detection and quantification in the low ng L -1 level, good intra- and inter-day repeatability (RSD < 13%) and good enrichment factors (18 - 717). This sensitive analytical method was applied to the determination of trace amounts of PAHs in three natural water samples (river, tap and rainwater) with satisfactory relative recovery values (84-115%), highlighting that the matrices under consideration do not affect the extraction process. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Separators for Li-Ion and Li-Metal Battery Including Ionic Liquid Based Electrolytes Based on the TFSI− and FSI− Anions

    Directory of Open Access Journals (Sweden)

    Marija Kirchhöfer

    2014-08-01

    Full Text Available The characterization of separators for Li-ion or Li-metal batteries incorporating hydrophobic ionic liquid electrolytes is reported herein. Ionic liquids made of N-butyl-N-methylpyrrolidinium (PYR14+ or N-methoxyethyl-N-methylpyrrolidinium (PYR12O1+, paired with bis(trifluoromethanesulfonylimide (TFSI− or bis(fluorosulfonylimide (FSI− anions, were tested in combination with separators having different chemistries and morphologies in terms of wetting behavior, Gurley and McMullin number, as well as Li/(Separator + Electrolyte interfacial properties. It is shown that non-functionalized microporous polyolefin separators are poorly wetted by FSI−-based electrolytes (contrary to TFSI−-based electrolytes, while the ceramic coated separator Separion® allows good wetting with all electrolytes. Furthermore, by comparing the lithium solid electrolyte interphase (SEI resistance evolution at open circuit and during cycling, depending on separator morphologies and chemistries, it is possible to propose a scale for SEI forming properties in the order: PYR12O1FSI > PYR14FSI > PYR14TFSI > PYR12O1TFSI. Finally, the impact the separator morphology is evidenced by the SEI resistance evolution and by comparing Li electrodes cycled using separators with two different morphologies.

  2. An Approach to Solid-State Electrical Double Layer Capacitors Fabricated with Graphene Oxide-Doped, Ionic Liquid-Based Solid Copolymer Electrolytes

    Directory of Open Access Journals (Sweden)

    N. F. A. Fattah

    2016-06-01

    Full Text Available Solid polymer electrolyte (SPE composed of semi-crystalline poly (vinylidene fluoride-hexafluoropropylene [P(VdF-HFP] copolymer, 1-ethyl-3-methylimidazolium bis (trifluoromethyl sulphonyl imide [EMI-BTI] and graphene oxide (GO was prepared and its performance evaluated. The effects of GO nano-filler were investigated in terms of enhancement in ionic conductivity along with the electrochemical properties of its electrical double layer capacitors (EDLC. The GO-doped SPE shows improvement in ionic conductivity compared to the P(VdF-HFP-[EMI-BTI] SPE system due to the existence of the abundant oxygen-containing functional group in GO that assists in the improvement of the ion mobility in the polymer matrix. The complexation of the materials in the SPE is confirmed in X-ray diffraction (XRD and thermogravimetric analysis (TGA studies. The electrochemical performance of EDLC fabricated with GO-doped SPE is examined using cyclic voltammetry and charge–discharge techniques. The maximum specific capacitance obtained is 29.6 F∙g−1, which is observed at a scan rate of 3 mV/s in 6 wt % GO-doped, SPE-based EDLC. It also has excellent cyclic retention as it is able keep the performance of the EDLC at 94% even after 3000 cycles. These results suggest GO doped SPE plays a significant role in energy storage application.

  3. Comparison of micellar extraction combined with ionic liquid based vortex-assisted liquid-liquid microextraction and modified quick, easy, cheap, effective, rugged, and safe method for the determination of difenoconazole in cowpea.

    Science.gov (United States)

    Chen, Xiaochu; Bian, Yanli; Liu, Fengmao; Teng, Peipei; Sun, Pan

    2017-10-06

    Two simple sample pretreatment for the determination of difenoconazole in cowpea was developed including micellar extraction combined with ionic liquid based vortex-assisted liquid-liquid microextraction (ME-IL-VALLME) prior to high performance liquid chromatography (HPLC), and modified quick, easy, cheap, effective, rugged, and safe method (QuEChERS) coupled with HPLC-MS/MS. In ME-IL-VALLME method, the target analyte was extracted by surfactant Tween 20 micellar solution, then the supernatant was diluted with 3mL water to decrease the solubility of micellar solution. Subsequently, the vortex-assisted liquid-liquid microextraction (VALLME) procedure was performed in the diluted extraction solution by using the ionic liquid of 1-hexyl-3-methylimidazolium hexafluorophosphate ([HMIM]PF 6 ) as the extraction solvent and Tween 20 as an emulsifier to enhance the dispersion of the water-immiscible ionic liquid into the aqueous phase. Parameters that affect the extraction have been investigated in both methods Under the optimum conditions, the limits of quantitation were 0.10 and 0.05mgkg -1 , respectively. And good linearity was achieved with the correlation coefficient higher than 0.9941. The relative recoveries ranged from 78.6 to 94.8% and 92.0 to 118.0% with the relative standard deviations (RSD) of 7.9-9.6% and 1.2-3.2%, respectively. Both methods were quick, simple and inexpensive. However, the ME-IL-VALLME method provides higher enrichment factor compared with conventional QuEChERS method. The ME-IL-VALLME method has a strong potential for the determination of difenoconazole in complex vegetable matrices with HPLC. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. A lipophilic ionic liquid based on formamidinium cations and TFSI: the electric response and the effect of CO2on the conductivity mechanism.

    Science.gov (United States)

    Bertasi, Federico; Giffin, Guinevere A; Vezzù, Keti; Pace, Giuseppe; Abu-Lebdeh, Yaser; Armand, Michel; Di Noto, Vito

    2017-10-04

    This work describes the preparation of the new lipophilic ionic liquid tetraoctyl-formamidinium bis(trifluoromethanesulfonyl) imide (TOFATFSI), which is miscible with lower alkanes. In particular, this work focuses on the electric behaviour of TOFATFSI in the particularly challenging highly apolar environment of supercritical CO 2 . The conductivity and relaxation phenomena are revealed through the analysis of the broadband electric spectra with a particular emphasis on the effect of temperature and CO 2 uptake on the IL conductivity. It is found that temperature boosts the conductivity via an increase in the charge carrier mobility. Also, CO 2 absorption affects both the conductivity and the permittivity of the material due to the presence of CO 2 -IL interactions that modulate the nanostructure and the size of the TOFATFSI aggregates, which increases both the mobility and the density of the charge carriers.

  5. Separation of curcuminoids using ionic liquid based aqueous two-phase system coupled with in situ dispersive liquid-liquid microextraction.

    Science.gov (United States)

    Shu, Yang; Gao, Mingcen; Wang, Xueying; Song, Rusheng; Lu, Jun; Chen, Xuwei

    2016-01-01

    An aqueous two-phase extraction system (ATPS) combined with an in situ dispersive liquid-liquid microextraction (DLLME) method using imidazolium ionic liquids (ILs) for the separation of curcuminoids is developed. The influence of structure of IL, the type of metathesis reagents, and the back extraction agents on the extraction efficiency is investigated. 2.0mg of curcuminoids are extracted by an IL ATPS composed of 0.4g 1,3-diethylimidazolium iodine (EeimI), 0.6g potassium hydrogen phosphate, 1.0g water. Then the bis[(trifluoromethyl)sulfonyl]imide lithium (LiNTf2) aqueous solution is added to the EeimI-rich phase of the ATPS. The water-immiscible ionic liquids, 1,3-diethylimidazole bis[(trifluoromethyl)sulfonyl]imide (EeimNTf2), forms by the metathesis reaction. The in situ DLLME is triggered simultaneously and further purifies the curcuminoids. 92% of EeimI transforms into EeimNTf2 and thus the Eeim(+) cation is used for twice in this method. Finally, 0.1mol/L NaOH aqueous solution is used as the back extraction reagent. The curcuminoids precipitate is achieved with 93% of recovery when the aqueous solution is adjusted to pH 3.0. This ATPS-DLLME method is successfully applied to the separation of curcuminoids from Curcuma Longa (0.96±0.02% of extraction yield, a purity of >51% with respect to the total dry mass of the product). Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Temperature controlled ionic liquid-based dispersive micro-extraction using two ligands, for determination of aluminium in scalp hair samples of Alzheimer's patients: A multivariate study

    Science.gov (United States)

    Arain, Mariam S.; Arain, Salma A.; Kazi, Tasneem G.; Afridi, Hassan I.; Ali, Jamshaid; Naeemulllah; Arain, Sadaf S.; Brahman, Kapil Dev; Mughal, Moina Akhtar

    2015-02-01

    A green and sensitive temperature controlled dispersive liquid-liquid microextraction (TIL-DLLME) methodology based on the application of ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate, [C4mim][PF6], as an extractant solvent was proposed for the preconcentration of trace levels of aluminium (Al3+) in scalp hair samples of Alzheimer's (AD) patients, prior to analyzing by flame atomic absorption spectrometry (FAAS). The Al3+ was complexed with 8-hydrooxyquinoline (oxine) (L1) and 3,5,7,2‧-4‧ pentahydroxy flavone (morin) (L2) separately and then extracted by IL at temperature (50 ± 2.0 °C). Some effective factors that influence the TIL-DLLME efficiency such as pH, ligands concentrations, volume of IL, ionic strength, and incubation time were investigated and optimized by multivariate analysis. In the optimum experimental conditions, the limit of detection (3 s) and enhancement factor were 0.56 μg L-1, 0.64 μg L-1 and 85, 73 for both ligands, respectively. The relative standard deviation (RSD) for six replicate determinations of 100 μg L-1 Al3+ complexed with oxine and morin were found to be 3.88% and 4.74%, respectively. The developed method was validated by the analysis of certified reference material of human hair (NCSZC81002).and applied satisfactorily to the determination of Al3+ in acid digested scalp hair samples of AD patients and healthy controls. The resulted data shows significant higher level in scalp hair samples of AD male patients with related to referents of same age and socioeconomic status.

  7. Iron species determination by task-specific ionic liquid-based in situ solvent formation dispersive liquid-liquid microextraction combined with flame atomic absorption spectrometry.

    Science.gov (United States)

    Sadeghi, Susan; Ashoori, Vahid

    2017-10-01

    The task-specific ionic liquid (TSIL) of 1-ethyl-3-methylimidazolium bromide functionalized with 8-hydroxyquinoline was used as a chelating agent and extracting solvent for dispersive liquid-liquid microextraction and subsequent determination of Fe(III) by flame atomic absorption spectrometry. The in situ solvent formation of TSIL using KPF 6 provided the desired water-immiscible ionic liquid. The total Fe concentration could be determined after pre-oxidation of Fe(II) to Fe(III). Various factors affecting the proposed extraction procedure were optimized. The proposed analytical conditions were: sample pH 5, TSIL amount 0.3% (w/v), KPF 6 amount 0.15% (w/v), anti-sticking 0.1% (w/v) and salt concentration 5% (w/v). Under optimal conditions, the linear dynamic ranges for Fe(III) and total Fe were 20-80 and 20-110 ng mL -1 , respectively, with a detection limit of 6.9 ng mL -1 for Fe(III) and relative standard deviation of 2.2%. The proposed method was successfully applied to the determination of trace Fe(III) in water (underground, tap, refined water and artificial sea water) and beverage (apple, tomato, and tea) samples. The developed method offers advantages such as simplicity, ease of operation, and extraction of Fe(III) from aqueous solutions without the use of organic solvent. It was successfully applied for iron speciation in different real samples. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  8. Using Ionic Liquids in Selective Hydrocarbon Conversion Processes

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yongchun; Periana, Roy; Chen, Weiqun; van Duin, Adri; Nielsen, Robert; Shuler, Patrick; Ma, Qisheng; Blanco, Mario; Li, Zaiwei; Oxgaard, Jonas; Cheng, Jihong; Cheung, Sam; Pudar, Sanja

    2009-09-28

    This is the Final Report of the five-year project Using Ionic Liquids in Selective Hydrocarbon Conversion Processes (DE-FC36-04GO14276, July 1, 2004- June 30, 2009), in which we present our major accomplishments with detailed descriptions of our experimental and theoretical efforts. Upon the successful conduction of this project, we have followed our proposed breakdown work structure completing most of the technical tasks. Finally, we have developed and demonstrated several optimized homogenously catalytic methane conversion systems involving applications of novel ionic liquids, which present much more superior performance than the Catalytica system (the best-to-date system) in terms of three times higher reaction rates and longer catalysts lifetime and much stronger resistance to water deactivation. We have developed in-depth mechanistic understandings on the complicated chemistry involved in homogenously catalytic methane oxidation as well as developed the unique yet effective experimental protocols (reactors, analytical tools and screening methodologies) for achieving a highly efficient yet economically feasible and environmentally friendly catalytic methane conversion system. The most important findings have been published, patented as well as reported to DOE in this Final Report and our 20 Quarterly Reports.

  9. The Influence of Anion Shape on the Electrical Double Layer Microstructure and Capacitance of Ionic Liquids-Based Supercapacitors by Molecular Simulations

    Directory of Open Access Journals (Sweden)

    Ming Chen

    2017-02-01

    Full Text Available Room-temperature ionic liquids (RTILs are an emerging class of electrolytes for supercapacitors. In this work, we investigate the effects of different supercapacitor models and anion shape on the electrical double layers (EDLs of two different RTILs: 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonylimide ([Emim][Tf2N] and 1-ethyl-3-methylimidazolium 2-(cyanopyrrolide ([Emim][CNPyr] by molecular dynamics (MD simulation. The EDL microstructure is represented by number densities of cations and anions, and the potential drop near neutral and charged electrodes reveal that the supercapacitor model with a single electrode has the same EDL structure as the model with two opposite electrodes. Nevertheless, the employment of the one-electrode model without tuning the bulk density of RTILs is more time-saving in contrast to the two-electrode one. With the one-electrode model, our simulation demonstrated that the shapes of anions significantly imposed effects on the microstructure of EDLs. The EDL differential capacitance vs. potential (C-V curves of [Emim][CNPyr] electrolyte exhibit higher differential capacitance at positive potentials. The modeling study provides microscopic insight into the EDLs structure of RTILs with different anion shapes.

  10. Trace mercury determination in drinking and natural water samples by room temperature ionic liquid based-preconcentration and flow injection-cold vapor atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Martinis, Estefania M.; Berton, Paula [Laboratory of Environmental Research and Services of Mendoza (LISAMEN), (CCT - CONICET - Mendoza), Av. Ruiz Leal S/N Parque General San Martin, CC. 131, M 5502 IRA Mendoza (Argentina); Olsina, Roberto A. [INQUISAL-CONICET, Departamento de Quimica Analitica, Facultad de Quimica, Bioquimica y Farmacia, Universidad Nacional de San Luis, San Luis (Argentina); Altamirano, Jorgelina C. [Laboratory of Environmental Research and Services of Mendoza (LISAMEN), (CCT - CONICET - Mendoza), Av. Ruiz Leal S/N Parque General San Martin, CC. 131, M 5502 IRA Mendoza (Argentina); Instituto de Ciencias Basicas, Universidad Nacional de Cuyo, Mendoza (Argentina); Wuilloud, Rodolfo G., E-mail: rwuilloud@lab.cricyt.edu.ar [Laboratory of Environmental Research and Services of Mendoza (LISAMEN), (CCT - CONICET - Mendoza), Av. Ruiz Leal S/N Parque General San Martin, CC. 131, M 5502 IRA Mendoza (Argentina); Instituto de Ciencias Basicas, Universidad Nacional de Cuyo, Mendoza (Argentina)

    2009-08-15

    A liquid-liquid extraction procedure (L-L) based on room temperature ionic liquid (RTIL) was developed for the preconcentration and determination of mercury in different water samples. The analyte was quantitatively extracted with 1-butyl-3-methylimidazolium hexafluorophosphate ([C{sub 4}mim][PF{sub 6}]) under the form of Hg-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (Hg-5-Br-PADAP) complex. A volume of 500 {mu}l of 9.0 mol L{sup -1} hydrochloric acid was used to back-extract the analyte from the RTIL phase into an aqueous media prior to its analysis by flow injection-cold vapor atomic absorption spectrometry (FI-CV-AAS). A preconcentration factor of 36 was achieved upon preconcentration of 20 mL of sample. The limit of detection (LOD) obtained under the optimal conditions was 2.3 ng L{sup -1} and the relative standard deviation (RSD) for 10 replicates at 1 {mu}g L{sup -1} Hg{sup 2+} was 2.8%, calculated with peaks height. The method was successfully applied to the determination of mercury in river, sea, mineral and tap water samples and a certified reference material (CRM).

  11. Ultrasound-assisted ionic liquid-based micellar extraction combined with microcrystalline cellulose as sorbent in dispersive microextraction for the determination of phenolic compounds in propolis.

    Science.gov (United States)

    Cao, Jun; Peng, Li-Qing; Du, Li-Jing; Zhang, Qi-Dong; Xu, Jing-Jing

    2017-04-22

    An ionic liquid-(IL) based micellar extraction combined with microcrystalline cellulose- (MCC) assisted dispersive micro solid-phase extraction method was developed to extract phenolic compounds from propolis. A total of 20 target compounds were identified by ultra-high- performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. The main extraction parameters were optimized and included the ultrasonic power, ultrasonic time, sample pH, type of IL, the concentration of [C12mim]Br, extraction time, concentration of MCC, type of sorbent and type of elution solvents. Under the optimum conditions, the proposed method exhibited good linearities (r 2  ≥ 0.999) for all plant phenolic compounds with the lower limits of detection in the range of 0.21-0.41 ng/mL. The recoveries ranged from 82.74% to 97.88% for pinocembrin, chrysin and galangin. Compared with conventional solvent extraction, the present method was simpler and more efficient and required less organic solvent and a shorter extraction time. Finally, the methodology was successfully used for the extraction and enrichment of phenolic compounds in propolis. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Multi-elemental ionic liquid-based solvent bar micro-extraction of priority and emerging trace metallic pollutants (Cd, Ag, Pd) in natural waters.

    Science.gov (United States)

    Herce-Sesa, Belén; López-López, José A; Moreno, Carlos

    2018-02-12

    Transition metals Cd, Pd and Ag are toxic even at very low concentration. Cd is considered a priority substance; while, Pd and Ag are emerging pollutants. Membrane technologies have been applied for their extraction; however, they require important amounts of reagents, time and energy. Additionally, effective reagents for metal extraction in saline natural waters are limited. In this case, hollow fiber liquid phase micro-extraction with a configuration of solvent bar (SBME) using the ionic liquid Cyphos® 101 as extractant is proposed. Optimized conditions for SBME of Cd, Ag and Pd were 50% Cyphos® 101 in the organic solution, extraction time 30 min and 800 rpm stirring rate. Leaching was in all cases lower than 0.1%. Metallic concentrations were measured by flame atomic absorption spectroscopy. The method was applied to the extraction of Ag, Cd and Pd in natural water samples. Except for waste water, Pd extraction was higher than 90% in all cases. Cd (≈100%) and Ag (93-95%) offered their best results for saline samples. Concluding, the proposed system is a low cost and green methodology that allows a simple and fast extraction of trace pollutants such as Ag, Cd and Pd in different natural waters, including highly saline samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Trace mercury determination in drinking and natural water samples by room temperature ionic liquid based-preconcentration and flow injection-cold vapor atomic absorption spectrometry.

    Science.gov (United States)

    Martinis, Estefanía M; Bertón, Paula; Olsina, Roberto A; Altamirano, Jorgelina C; Wuilloud, Rodolfo G

    2009-08-15

    A liquid-liquid extraction procedure (L-L) based on room temperature ionic liquid (RTIL) was developed for the preconcentration and determination of mercury in different water samples. The analyte was quantitatively extracted with 1-butyl-3-methylimidazolium hexafluorophosphate ([C(4)mim][PF(6)]) under the form of Hg-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (Hg-5-Br-PADAP) complex. A volume of 500 microl of 9.0 mol L(-1) hydrochloric acid was used to back-extract the analyte from the RTIL phase into an aqueous media prior to its analysis by flow injection-cold vapor atomic absorption spectrometry (FI-CV-AAS). A preconcentration factor of 36 was achieved upon preconcentration of 20 mL of sample. The limit of detection (LOD) obtained under the optimal conditions was 2.3ngL(-1) and the relative standard deviation (RSD) for 10 replicates at 1 microg L(-1) Hg(2+) was 2.8%, calculated with peaks height. The method was successfully applied to the determination of mercury in river, sea, mineral and tap water samples and a certified reference material (CRM).

  14. Trace mercury determination in drinking and natural water samples by room temperature ionic liquid based-preconcentration and flow injection-cold vapor atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Martinis, Estefania M.; Berton, Paula; Olsina, Roberto A.; Altamirano, Jorgelina C.; Wuilloud, Rodolfo G.

    2009-01-01

    A liquid-liquid extraction procedure (L-L) based on room temperature ionic liquid (RTIL) was developed for the preconcentration and determination of mercury in different water samples. The analyte was quantitatively extracted with 1-butyl-3-methylimidazolium hexafluorophosphate ([C 4 mim][PF 6 ]) under the form of Hg-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (Hg-5-Br-PADAP) complex. A volume of 500 μl of 9.0 mol L -1 hydrochloric acid was used to back-extract the analyte from the RTIL phase into an aqueous media prior to its analysis by flow injection-cold vapor atomic absorption spectrometry (FI-CV-AAS). A preconcentration factor of 36 was achieved upon preconcentration of 20 mL of sample. The limit of detection (LOD) obtained under the optimal conditions was 2.3 ng L -1 and the relative standard deviation (RSD) for 10 replicates at 1 μg L -1 Hg 2+ was 2.8%, calculated with peaks height. The method was successfully applied to the determination of mercury in river, sea, mineral and tap water samples and a certified reference material (CRM).

  15. Ionic liquid-based observation technique for nonconductive materials in the scanning electron microscope: Application to the characterization of a rare earth ore.

    Science.gov (United States)

    Brodusch, Nicolas; Waters, Kristian; Demers, Hendrix; Gauvin, Raynald

    2014-03-01

    A new approach for preparing geological materials is proposed to reduce charging during their characterization in a scanning electron microscope. This technique was applied to a sample of the Nechalacho rare earth deposit, which contains a significant amount of the minerals fergusonite and zircon. Instead of covering the specimen surface with a conductive coating, the sample was immersed in a dilute solution of ionic liquid and then air dried prior to SEM analysis. Imaging at a wide range of accelerating voltages was then possible without evidence of charging when using the in-chamber secondary and backscattered electrons detectors, even at 1 kV. High resolution x-ray and electron backscatter diffraction mapping were successfully obtained at 20 and 5 kV with negligible image drifting and permitted the characterization of the microstructure of the zircon/fergusonite-Y aggregates encased in the matrix minerals. Because of the absence of a conductive layer at the surface of the specimen, the Kikuchi band contrast was improved and the backscatter electron signal increased at both 5 and 20 kV as confirmed by Monte Carlo modeling. These major developments led to an improvement of the spatial resolution and efficiency of the above characterization techniques applied to the rare earth ore and it is expected that they can be applied to other types of ores and minerals. Copyright © 2014 Wiley Periodicals, Inc.

  16. Correlating coating characteristics with the performance of drug-coated balloons--a comparative in vitro investigation of own established hydrogel- and ionic liquid-based coating matrices.

    Directory of Open Access Journals (Sweden)

    Sebastian Kaule

    Full Text Available Drug-coated balloons (DCB, which have emerged as a therapeutic alternative to drug-eluting stents in percutaneous cardiovascular intervention, are well described with regard to clinical efficacy and safety within a number of clinical studies. In vitro studies elucidating the correlation between coating additive and DCB performance are however rare but considered important for the understanding of DCB requirements and the improvement of established DCB. In this regard, we examined three different DCB-systems, which were developed in former studies based on the ionic liquid cetylpyridinium salicylate, the body-own hydrogel hyaluronic acid and the pharmaceutically well-established hydrogel polyvinylpyrrolidone, considering coating morphology, coating thickness, drug-loss, drug-transfer to the vessel wall, residual drug-concentration on the balloon surface and entire drug-load during simulated use in an in vitro vessel model. Moreover, we investigated particle release of the different DCB during simulated use and determined the influence of the three coatings on the mechanical behavior of the balloon catheter. We could show that coating characteristics can be indeed correlated with the performance of DCB. For instance, paclitaxel incorporation in the matrix can reduce the drug wash-off and benefit a high drug transfer. Additionally, a thin coating with a smooth surface and high but delayed solubility can reduce drug wash-off and decrease particle burden. As a result, we suggest that it is very important to characterize DCB in terms of mentioned properties in vitro in addition to their clinical efficacy in order to better understand their function and provide more data for the clinicians to improve the tool of DCB in coronary angioplasty.

  17. Hydrogen Bonding, (1)H NMR, and Molecular Electron Density Topographical Characteristics of Ionic Liquids Based on Amino Acid Cations and Their Ester Derivatives.

    Science.gov (United States)

    Rao, Soniya S; Bejoy, Namitha Brijit; Gejji, Shridhar P

    2015-08-13

    Amino acid ionic liquids (AAILs) have attracted significant attention in the recent literature owing to their ubiquitous applications in diversifying areas of modern chemistry, materials science, and biosciences. The present work focuses on unraveling the molecular interactions underlying AAILs. Electronic structures of ion pairs consisting of amino acid cations ([AA(+)], AA = Gly, Ala, Val, Leu, Ile, Pro, Ser, Thr) and their ester substituted derivatives [AAE(+)] interacting with nitrate anion [NO3(-)] have been obtained from the dispersion corrected M06-2x density functional theory. The formation of ion pair is accompanied by the transfer of proton from quaternary nitrogen to anion facilitated via hydrogen bonding. The [Ile], [Pro], [Ser], and [Thr] and their esters reveal relatively strong inter- as well as intramolecular hydrogen-bonding interactions. Consequently, the hierarchy in binding energies of [AA][NO3] ion pairs and their ester analogues turns out to be [Gly] > [Ala] > [Ser] ∼ [Val] ∼ [Ile] > [Leu] ∼ [Thr] > [Pro]. The work underlines how the interplay of intra- as well as intermolecular hydrogen-bonding interactions in [AA]- and [AAE]-based ILs manifest in their infrared and (1)H NMR spectra. Substitution of -OCH3 functional group in [AA][NO3] ILs lowers the melting point attributed to weaker hydrogen-bonding interactions, making them suitable for room temperature applications. As opposed to gas phase structures, the presence of solvent (DMSO) does not bring about any proton transfer in the ion pairs or their ester analogues. Calculated (1)H NMR chemical shifts of the solvated structures agree well with those from experiment. Correlations of decomposition temperatures in [AA]- and [AAE]-based ILs with binding energies and electron densities at the bond critical point(s) in molecular electron density topography, have been established.

  18. Scaling-Up Ionic Liquid-Based Technologies: How Much Do We Care About Their Toxicity? Prima Facie Information on 1-Ethyl-3-Methylimidazolium Acetate.

    Science.gov (United States)

    Ostadjoo, Shaghayegh; Berton, Paula; Shamshina, Julia L; Rogers, Robin D

    2018-02-01

    The potential of the ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]) to dissolve a variety of biopolymers such as cellulose and chitin, makes it an attractive candidate for scaled-up industrial utilization. In fact, the first steps towards its use at industrial scale have been taken. This increases the urgency to fill the knowledge gaps in its toxicity and environmental impact in order to predict and control its environmental fate. In this mini-review, we discuss the available literature surrounding this key IL. The literature (through the analysis of toxicity of the anion and the cation separately) suggests that [C2mim][OAc] is a relatively safe choice for industrial applications. However, because the IL should be considered as a compound, with unique properties arising from the interactions between the ions, comprehensive toxicity information for this particular IL is still required. To decide, prima facie, if this IL is toxic or not, evaluation of its influence on human health and ecotoxicity is needed prior to its large scale utilization. We chose in this mini-review to focus on toxicity surrounding this IL and evaluate what is known and what is not. Here with all the information in hand, we hope that the urgent need for [C2mim][OAc] toxicological assessment before it can be used in numerous technologies is highlighted. In the near future, we expect that the assessment of toxicity and environmental fate and impact can be integrated directly into any research into the industrial utilization of this IL and any others contemplated for industrial application. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. The AHA Moment: Assessment of the Redox Stability of Ionic Liquids Based on Aromatic Heterocyclic Anions (AHAs) for Nuclear Separations and Electric Energy Storage.

    Science.gov (United States)

    Shkrob, Ilya A; Marin, Timothy W

    2015-11-19

    Because of their extended conjugated bond network, aromatic compounds generally have higher redox stability than less saturated compounds. We conjectured that ionic liquids (ILs) consisting of aromatic heterocyclic anions (AHAs) may exhibit improved radiation and electrochemical stability. Such properties are important in applications of these ILs as diluents in radionuclide separations and electrolytes in the electric energy storage devices. In this study, we systematically examine the redox chemistry of the AHAs. Three classes of these anions have been studied: (i) simple 5-atom ring AHAs, such as the pyrazolide and triazolides, (ii) AHAs containing an adjacent benzene ring, and (iii) AHAs containing electron-withdrawing groups that were introduced to reduce their basicity and interaction with metal ions. It is shown that fragmentation in the reduced and oxidized states of these AHAs does not generally occur, and the two main products, respectively, are the H atom adduct and the imidyl radical. The latter species occurs either as an N σ-radical or as an N π-radical, depending on the length of the N-N bond, and the state that is stabilized in the solid matrix is frequently different from that having the lowest energy in the gas phase. In some instances, the formation of the sandwich π-stack dimer radical anions has been observed. For trifluoromethylated anions, H adduct formation did not occur; instead, there was facile loss of fluoride from their fluorinated groups. The latter can be problematic in nuclear separations, but beneficial in batteries. Overall, our study suggests that AHA-based ILs are viable candidates for use as radiation-exposed diluents and electrolytes.

  20. Ionic liquid based dispersive liquid-liquid microextraction coupled with micro-solid phase extraction of antidepressant drugs from environmental water samples.

    Science.gov (United States)

    Ge, Dandan; Lee, Hian Kee

    2013-11-22

    Ionic liquid-dispersive liquid-liquid microextraction combined with micro-solid phase extraction (IL-DLLME-μ-SPE), and high-performance liquid chromatography (HPLC) was developed for the determination of tricyclic antidepressants (TCAs) in water samples. Two hundred microliters of an organic solvent (as disperser solvent) and 20 μl of 1-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate were injected into a 5.0 ml sample for sonication-assisted DLLME. After this, a μ-SPE device, containing a novel material zeolite imidazolate framework 4 (ZIF-4), was added into the sample solution and 1 min of vortex-assisted extraction was performed. After 5 min of sonication-assisted desorption, 10 μl of desorption solvent was injected into a HPLC system for analysis. A characteristic property of DLLME-VA-μ-SPE is that any organic solvent and solid sorbent immiscible with water can be used. Special apparatus, or conical-bottom test tubes, and tedious procedures conventionally associated with DLLME such as centrifugation, or refrigeration of solvent are not necessary in the present approach. A novel material, ZIF-4 was employed as μ-SPE sorbent. Under the optimized conditions, the calibration curves were linear in the range of 1-1000 μg/L. The relative standard deviations and the limits of detection were in the range of 1.5% and 7.8% and 0.3 and 1 μg/L, respectively. The relative recoveries of canal water samples, spiked with drugs, were in the range of 94.3% and 114.7%. The results showed that IL-DLLME-μ-SPE was suitable for the determination of TCAs in water samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Correlating Coating Characteristics with the Performance of Drug-Coated Balloons – A Comparative In Vitro Investigation of Own Established Hydrogel- and Ionic Liquid-Based Coating Matrices

    Science.gov (United States)

    Kaule, Sebastian; Minrath, Ingo; Stein, Florian; Kragl, Udo; Schmidt, Wolfram; Schmitz, Klaus-Peter; Sternberg, Katrin; Petersen, Svea

    2015-01-01

    Drug-coated balloons (DCB), which have emerged as a therapeutic alternative to drug-eluting stents in percutaneous cardiovascular intervention, are well described with regard to clinical efficacy and safety within a number of clinical studies. In vitro studies elucidating the correlation between coating additive and DCB performance are however rare but considered important for the understanding of DCB requirements and the improvement of established DCB. In this regard, we examined three different DCB-systems, which were developed in former studies based on the ionic liquid cetylpyridinium salicylate, the body-own hydrogel hyaluronic acid and the pharmaceutically well-established hydrogel polyvinylpyrrolidone, considering coating morphology, coating thickness, drug-loss, drug-transfer to the vessel wall, residual drug-concentration on the balloon surface and entire drug-load during simulated use in an in vitro vessel model. Moreover, we investigated particle release of the different DCB during simulated use and determined the influence of the three coatings on the mechanical behavior of the balloon catheter. We could show that coating characteristics can be indeed correlated with the performance of DCB. For instance, paclitaxel incorporation in the matrix can reduce the drug wash-off and benefit a high drug transfer. Additionally, a thin coating with a smooth surface and high but delayed solubility can reduce drug wash-off and decrease particle burden. As a result, we suggest that it is very important to characterize DCB in terms of mentioned properties in vitro in addition to their clinical efficacy in order to better understand their function and provide more data for the clinicians to improve the tool of DCB in coronary angioplasty. PMID:25734818

  2. Ionic liquid-based zinc oxide nanofluid for vortex assisted liquid liquid microextraction of inorganic mercury in environmental waters prior to cold vapor atomic fluorescence spectroscopic detection.

    Science.gov (United States)

    Amde, Meseret; Liu, Jing-Fu; Tan, Zhi-Qiang; Bekana, Deribachew

    2016-01-01

    Zinc oxide nanofluid (ZnO-NF) based vortex assisted liquid liquid microextraction (ZnO-NF VA-LLME) was developed and employed in extraction of inorganic mercury (Hg(2+)) in environmental water samples, followed by cold vapor atomic fluorescence spectrometry (CV-AFS). Unlike other dispersive liquid liquid microextraction techniques, ZnO-NF VA-LLME is free of volatile organic solvents and dispersive solvent consumption. Analytical signals were obtained without back-extraction from the ZnO-NF phase prior to CV-AFS determination. Some essential parameters of the ZnO-NF VA-LLME and cold vapor generation such as composition and volume of the nanofluid, vortexing time, pH of the sample solution, amount of the chelating agent, ionic strength and matrix interferences have been studied. Under optimal conditions, efficient extraction of 1ng/mL of Hg(2+) in 10mL of sample solution was achieved using 50μL of ZnO-NF. The enrichment factor before dilution, detection limits and limits of quantification of the method were about 190, 0.019 and 0.064ng/mL, respectively. The intra and inter days relative standard deviations (n=8) were found to be 4.6% and 7.8%, respectively, at 1ng/mL spiking level. The accuracy of the current method was also evaluated by the analysis of certified reference materials, and the measured Hg(2+) concentration of GBW08603 (9.6ng/mL) and GBW(E)080392 (8.9ng/mL) agreed well with their certified value (10ng/mL). The method was applied to the analysis of Hg(2+) in effluent, influent, lake and river water samples, with recoveries in the range of 79.8-92.8% and 83.6-106.1% at 1ng/mL and 5ng/mL spiking levels, respectively. Overall, ZnO-NF VA-LLME is fast, simple, cost-effective and environmentally friendly and it can be employed for efficient enrichment of the analyte from various water samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Extraction and preconcentration of trace Al and Cr from vegetable samples by vortex-assisted ionic liquid-based dispersive liquid-liquid microextraction prior to atomic absorption spectrometric determination.

    Science.gov (United States)

    Altunay, Nail; Yıldırım, Emre; Gürkan, Ramazan

    2018-04-15

    In the study, a simple, and efficient microextraction approach, which is termed as vortex-assisted ionic liquid-based dispersive liquid-liquid microextraction (VA-IL-DLLME), was developed for flame atomic absorption spectrometric analysis of aluminum (Al) and chromium (Cr) in vegetables. The method is based on the formation of anionic chelate complexes of Al(III) and Cr(VI) with o-hydroxy azo dye, at pH 6.5, and then extraction of the hydrophobic ternary complexes formed in presence of cetyltrimethylammonium bromide (CTAB) into a 125 μL volume of 1-butyl-3-methylimidazolium bis(trifluorosulfonyl)imide [C 4 mim][Tf 2 N]) as extraction solvent. Under optimum conditions, the detection limits were 0.02 µg L -1 in linear working range of 0.07-100 µg L -1 for Al(III), and 0.05 µg L -1 in linear working range of 0.2-80 µg L -1 for Cr(VI). After the validation by analysis of a certified reference material (CRM), the method was successfully applied to the determination of Al and Cr in vegetables using standard addition method. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Ionic liquid based vortex assisted liquid-liquid microextraction combined with liquid chromatography mass spectrometry for the determination of bisphenols in thermal papers with the aid of response surface methodology.

    Science.gov (United States)

    Asati, Ankita; Satyanarayana, G N V; Panchal, Smita; Thakur, Ravindra Singh; Ansari, Nasreen G; Patel, Devendra K

    2017-08-04

    A sensitive, rapid and efficient ionic liquid-based vortex assisted liquid-liquid microextraction (IL-VALLME) with Liquid Chromatography Mass spectrometry (LC-MS/MS) method is proposed for the determination of bisphenols in thermal paper. Extraction factors were systematically optimized by response surface methodology. Experimental factors showing significant effects on the analytical responses were evaluated using design of experiment. The limit of detection for Bisphenol-A (BPA) and Bisphenol-S (BPS) in thermal paper were 1.25 and 0.93μgkg -1 respectively. The dynamic linearity range for BPA was between 4 and 100μgkg -1 and the determination of coefficient (R 2 ) was 0.996. The values of the same parameters were 3-100μgkg -1 and 0.998 for BPS. The extraction recoveries of BPA and BPS in thermal paper were 101% and 99%. Percent relative standard deviation (% RSD) for matrix effect and matrix match effects were not more than 10%, for both bisphenols. The proposed method uses a statistical approach for the analysis of bisphenols in environmental samples, and is easy, rapid, requires minimum organic solvents and efficient. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Solid Catalyst with Ionic Liquid Layer (SCILL). A concept to improve the selectivity of selective hydrogenations

    Energy Technology Data Exchange (ETDEWEB)

    Jess, A.; Korth, W. [Bayreuth Univ. (Germany). Chair of Chemical Engineering

    2011-07-01

    Catalytic hydrogenations are important for refinery processes, petrochemical applications as well as for numerous processes of the fine chemicals industry. In some cases, hydrogenations consist of a sequence of consecutive reactions, and the desired product is the intermediate. An important goal is then a high yield and selectivity to the intermediate, if possible at a high conversion degree. The selectivity to an intermediate primarily depends on the chemical nature of the catalyst, but may also be influenced by diffusion processes. Ionic liquids (ILs) are low melting salts (< 100 C) and represent a promising solvent class. This paper focuses on the concept of a Solid Catalyst with Ionic Liquid Layer (SCILL), where the solid catalyst is coated with a thin IL layer to improve the selectivity. (orig.)

  6. Highly Selective Continuous Gas-Phase Methoxycarbonylation of Ethylene with Supported Ionic Liquid Phase (SILP) Catalysts

    DEFF Research Database (Denmark)

    Khokarale, Santosh Govind; Garcia Suárez, Eduardo José; Fehrmann, Rasmus

    2017-01-01

    Supported ionic liquid phase (SILP) technology was applied for the first time to the Pd-catalyzed continuous, gas-phase methoxycarbonylation of ethylene to selectively produce methyl propanoate (MP) in high yields. The influence of catalyst and reaction parameters such as, for example, ionic liquid...

  7. Selective extraction of copper, mercury, silver and palladium ionsfrom water using hydrophobic ionic liquids.

    Energy Technology Data Exchange (ETDEWEB)

    Papaiconomou, Nicolas; Lee, Jong-Min; Salminen, Justin; VonStosch, Moritz; Prausnitz, John M.

    2007-06-25

    Extraction of dilute metal ions from water was performed near room temperature with a variety of ionic liquids. Distribution coefficients are reported for fourteen metal ions extracted with ionic liquids containing cations 1-octyl-4-methylpyridinium [4MOPYR]{sup +}, 1-methyl-1-octylpyrrolidinium [MOPYRRO]{sup +} or 1-methyl-1-octylpiperidinium [MOPIP]{sup +}, and anions tetrafluoroborate [BF{sub 4}]{sup +}, trifluoromethyl sulfonate [TfO]{sup +} or nonafluorobutyl sulfonate [NfO]{sup +}. Ionic liquids containing octylpyridinium cations are very good for extracting mercury ions. However, other metal ions were not significantly extracted by any of these ionic liquids. Extractions were also performed with four new task-specific ionic liquids. Such liquids containing a disulfide functional group are efficient and selective for mercury and copper, whereas those containing a nitrile functional group are efficient and selective for silver and palladium.

  8. Selective extraction and detection of noble metal based on ionic ...

    Indian Academy of Sciences (India)

    62.26 mg g−1). Furthermore, SG–. ClPrNTf2 phase was effectively performed for the determination of Au(III) in real water samples with satisfactory results. Keywords. Au(III); ionic liquid; silica gel; adsorption; kinetic model; batch mode. 1.

  9. Scalable Graphene-Based Membranes for Ionic Sieving with Ultrahigh Charge Selectivity.

    Science.gov (United States)

    Hong, Seunghyun; Constans, Charlotte; Surmani Martins, Marcos Vinicius; Seow, Yong Chin; Guevara Carrió, Juan Alfredo; Garaj, Slaven

    2017-02-08

    Nanostructured graphene-oxide (GO) laminate membranes, exhibiting ultrahigh water flux, are excellent candidates for next generation nanofiltration and desalination membranes, provided the ionic rejection could be further increased without compromising the water flux. Using microscopic drift-diffusion experiments, we demonstrated the ultrahigh charge selectivity for GO membranes, with more than order of magnitude difference in the permeabilities of cationic and anionic species of equivalent hydration radii. Measuring diffusion of a wide range of ions of different size and charge, we were able to clearly disentangle different physical mechanisms contributing to the ionic sieving in GO membranes: electrostatic repulsion between ions and charged chemical groups; and the compression of the ionic hydration shell within the membrane's nanochannels, following the activated behavior. The charge-selectivity allows us to rationally design membranes with increased ionic rejection and opens up the field of ion exchange and electrodialysis to the GO membranes.

  10. Selective Reversible Absorption of the Industrial Off-Gas Components CO2 and NOx by Ionic Liquids

    DEFF Research Database (Denmark)

    Kaas-Larsen, Peter Kjartan; Thomassen, P.; Schill, Leonhard

    2016-01-01

    carriers in the form of so-called Supported Ionic Liquid Phase (SILP) materials. The potential of selected ionic liquids for absorption of CO2 and NOx are demonstrated and the possible interference of other gases influencing the stability and absorption capacity of the ionic liquids are investigated......Ionic liquids are promising new materials for climate and pollution control by selective absorption of CO2 and NOx in industrial off-gases. In addition practical cleaning of industrial off gases seems to be attractive by use of ionic liquids distributed on the surface of porous, high surface area...

  11. Structure-driven CO2 selectivity and gas capacity of ionic clathrate hydrates.

    Science.gov (United States)

    Hashimoto, Hidenori; Yamaguchi, Tsutomu; Ozeki, Hiroyuki; Muromachi, Sanehiro

    2017-12-08

    Ionic clathrate hydrates can selectively capture small gas molecules such as CO 2 , N 2 , CH 4 and H 2 . We investigated CO 2  + N 2 mixed gas separation properties of ionic clathrate hydrates formed with tetra-n-butylammonium bromide (TBAB), tetra-n-butylammonium chloride (TBAC), tetra-n-butylphosphonium bromide (TBPB) and tetra-n-butylphosphonium chloride (TBPC). The results showed that CO 2 selectivity of TBAC hydrates was remarkably higher than those of the other hydrates despite less gas capacity of TBAC hydrates. The TBAB hydrates also showed irregularly high CO 2 selectivity at a low pressure. X-ray diffraction and Raman spectroscopic analyses clarified that TBAC stably formed the tetragonal hydrate structure, and TBPB and TBPC formed the orthorhombic hydrate structure. The TBAB hydrates showed polymorphic phases which may consist of the both orthorhombic and tetragonal hydrate structures. These results showed that the tetragonal hydrate captured CO 2 more efficiently than the orthorhombic hydrate, while the orthorhombic hydrate has the largest gas capacity among the basic four structures of ionic clathrate hydrates. The present study suggests new potential for improving gas capacity and selectivity of ionic clathrate hydrates by choosing suitable ionic guest substances for guest gas components.

  12. Chirality-selected phase behaviour in ionic polypeptide complexes

    Science.gov (United States)

    Perry, Sarah L.; Leon, Lorraine; Hoffmann, Kyle Q.; Kade, Matthew J.; Priftis, Dimitrios; Black, Katie A.; Wong, Derek; Klein, Ryan A.; Pierce, Charles F.; Margossian, Khatcher O.; Whitmer, Jonathan K.; Qin, Jian; de Pablo, Juan J.; Tirrell, Matthew

    2015-01-01

    Polyelectrolyte complexes present new opportunities for self-assembled soft matter. Factors determining whether the phase of the complex is solid or liquid remain unclear. Ionic polypeptides enable examination of the effects of stereochemistry on complex formation. Here we demonstrate that chirality determines the state of polyelectrolyte complexes, formed from mixing dilute solutions of oppositely charged polypeptides, via a combination of electrostatic and hydrogen-bonding interactions. Fluid complexes occur when at least one of the polypeptides in the mixture is racemic, which disrupts backbone hydrogen-bonding networks. Pairs of purely chiral polypeptides, of any sense, form compact, fibrillar solids with a β-sheet structure. Analogous behaviour occurs in micelles formed from polypeptide block copolymers with polyethylene oxide, where assembly into aggregates with either solid or fluid cores, and eventually into ordered phases at high concentrations, is possible. Chirality is an exploitable tool for manipulating material properties in polyelectrolyte complexation. PMID:25586861

  13. Extraction of S- and N-Compounds from the Mixture of Hydrocarbons by Ionic Liquids as Selective Solvents

    Science.gov (United States)

    Gabrić, Beata; Sander, Aleksandra; Cvjetko Bubalo, Marina; Macut, Dejan

    2013-01-01

    Liquid-liquid extraction is an alternative method that can be used for desulfurization and denitrification of gasoline and diesel fuels. Recent approaches employ different ionic liquids as selective solvents, due to their general immiscibility with gasoline and diesel, negligible vapor pressure, and high selectivity to sulfur- and nitrogen-containing compounds. For that reason, five imidazolium-based ionic liquids and one pyridinium-based ionic liquid were selected for extraction of thiophene, dibenzothiophene, and pyridine from two model solutions. The influences of hydrodynamic conditions, mass ratio, and number of stages were investigated. Increasing the mass ratio of ionic liquid/model fuel and multistage extraction promotes the desulfurization and denitrification abilities of the examined ionic liquids. All selected ionic liquids can be reused and regenerated by means of vacuum evaporation. PMID:23843736

  14. Selective conversion of cellulose to levulinic acid via microwave-assisted synthesis in ionic liquids.

    Science.gov (United States)

    Ren, Huifang; Zhou, Yonggui; Liu, Li

    2013-02-01

    A highly selective approach to produce levulinic acid from cellulose was developed via microwave-assisted synthesis in SO3H-functionalized ionic liquids (SFILs). The effects of reaction conditions and ionic liquid structures on the yield of levulinic acid have been investigated, where the highest yield of 55.0% was obtained. The catalytic activities of SFILs depend on the anions and decrease in the order: HSO4->CH3SO3->H2PO4-, which is in good agreement with their acidity order. The SFILs are efficient catalysts for cellulose conversion into levulinic acid and the subsequent esterification, which facilitates the separation of product and reuse of ionic liquids. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Physical origin of selectivity in ionic channels of biological membranes.

    Science.gov (United States)

    Laio, A; Torre, V

    1999-01-01

    This paper shows that the selectivity properties of monovalent cation channels found in biological membranes can originate simply from geometrical properties of the inner core of the channel without any critical contribution from electrostatic interactions between the permeating ions and charged or polar groups. By using well-known techniques of statistical mechanics, such as the Langevin equations and Kramer theory of reaction rates, a theoretical equation is provided relating the permeability ratio PB/PA between ions A and B to simple physical properties, such as channel geometry, thermodynamics of ion hydration, and electrostatic interactions between the ion and charged (or polar) groups. Diffusive corrections and recrossing rates are also considered and evaluated. It is shown that the selectivity found in usual K+, gramicidin, Na+, cyclic nucleotide gated, and end plate channels can be explained also in the absence of any charged or polar group. If these groups are present, they significantly change the permeability ratio only if the ion at the selectivity filter is in van der Waals contact with them, otherwise these groups simply affect the channel conductance, lowering the free energy barrier of the same amount for the two ions, thus explaining why single channel conductance, as it is experimentally observed, can be very different in channels sharing the same selectivity sequence. The proposed theory also provides an estimate of channel minimum radius for K+, gramicidin, Na+, and cyclic nucleotide gated channels.

  16. Preparation and application of a poly (ionic liquid)-based molecularly imprinted polymer for multiple monolithic fiber solid-phase microextraction of phenolic acids in fruit juice and beer samples.

    Science.gov (United States)

    Chen, Lei; Huang, Xiaojia

    2017-10-23

    In this work, a new molecularly imprinted polymer (MIP) using a poly (ionic liquid) (PIL) as a functional monomer was prepared and utilized as the extraction medium of multiple monolithic fiber solid-phase microextraction (MMF-SPME). A PIL, 1-ally-3-vinylimidazolium chloride, was used as a functional monomer, and 3,4-dihydroxybenzenepropanoic acid (DBA) and ethylene dimethacrylate were chosen as the template molecule and cross-linker, respectively, to synthesize the PIL/MIP. Under the optimized preparation conditions, the recognition coefficient of PIL-MIP for DBA was as high as 11.6. The combination of PIL/MIP-MMF-SPME and high-performance liquid chromatography with diode array detection (HPLC/DAD) was developed for the sensitive determination of phenolic acids (PAs) in fruit juice and beer samples. Under the optimal conditions which were investigated in detail, the limits of detection (LODs, S/N = 3) for PAs in fruit juice were 0.024-0.24 μg L -1 , and the related values were 0.011-0.052 μg L -1 for the beer sample. The intra-day and inter-day precision (relative standard deviations, n = 4, %) at 1.0 and 100.0 μg L -1 spiking concentration were both less than 10%. In the analysis of PAs in fruit juice and beer samples, satisfactory recoveries and repeatability were achieved. In comparison with reported approaches, the proposed method exhibited some advantages including high selectivity, convenience, satisfactory sensitivity and environmental friendliness.

  17. The Solvent Selection framework: solvents for organic synthesis, separation processes and ionic-organic synthesis

    DEFF Research Database (Denmark)

    Mitrofanov, Igor; Sansonetti, Sascha; Abildskov, Jens

    2012-01-01

    This paper presents a systematic integrated framework for solvent selection and solvent design. The framework is divided into several modules, which can tackle specific problems in various solvent-based applications. In particular, three modules corresponding to the following solvent selection...... problems are presented: 1) solvent selection and design for organic synthesis, 2) solvent screening and design of solvent mixtures for pharmaceutical applications and 3) ionic liquids selection and design as solvents. The application of the framework is highlighted successfully through case studies...... focusing on solvent replacement problem in organic synthesis and solvent mixture design for ibuprofen respectively....

  18. Ionic Selectivity and Permeation Properties of Human PIEZO1 Channels.

    Directory of Open Access Journals (Sweden)

    Radhakrishnan Gnanasambandam

    Full Text Available Members of the eukaryotic PIEZO family (the human orthologs are noted hPIEZO1 and hPIEZO2 form cation-selective mechanically-gated channels. We characterized the selectivity of human PIEZO1 (hPIEZO1 for alkali ions: K+, Na+, Cs+ and Li+; organic cations: TMA and TEA, and divalents: Ba2+, Ca2+, Mg2+ and Mn2+. All monovalent ions permeated the channel. At a membrane potential of -100 mV, Cs+, Na+ and K+ had chord conductances in the range of 35-55 pS with the exception of Li+, which had a significantly lower conductance of ~ 23 pS. The divalents decreased the single-channel permeability of K+, presumably because the divalents permeated slowly and occupied the open channel for a significant fraction of the time. In cell-attached mode, 90 mM extracellular divalents had a conductance for inward currents carried by the divalents of: 25 pS for Ba2+ and 15 pS for Ca2+ at -80 mV and 10 pS for Mg2+ at -50 mV. The organic cations, TMA and TEA, permeated slowly and attenuated K+ currents much like the divalents. As expected, the channel K+ conductance increased with K+ concentration saturating at ~ 45 pS and the KD of K+ for the channel was 32 mM. Pure divalent ion currents were of lower amplitude than those with alkali ions and the channel opening rate was lower in the presence of divalents than in the presence of monovalents. Exposing cells to the actin disrupting reagent cytochalasin D increased the frequency of openings in cell-attached patches probably by reducing mechanoprotection.

  19. Double salts of ionic-liquid-based surfactants in microextraction: application of their mixed hemimicelles as novel sorbents in magnetic-assisted micro-dispersive solid-phase extraction for the determination of phenols.

    Science.gov (United States)

    Trujillo-Rodríguez, María J; Pino, Verónica; Anderson, Jared L; Ayala, Juan H; Afonso, Ana M

    2015-11-01

    The use of mixed hemimicelles of ionic liquid (IL)-based surfactants in a magnetic-based micro-dispersive solid-phase extraction (m-μdSPE) approach is described. Not only is the symmetric monocationic IL-based surfactant 1,3-didodecylimidazolium bromide (C12C12Im-Br) studied for first time in m-μdSPE, but double-salt (DS) IL (DSIL)-based surfactants are also examined. Nine DSIL-based surfactants were formed by combination of C12C12Im-Br with other IL-based surfactants, including nonsymmetric monocationic and dicationic ILs combined at three different molar fractions. The analytical application was focused on the determination of a group of eight phenols, including bisphenol A, in water samples. The best results were obtained with the DSIL formed by C12C12Im-Br (molar fraction 0.5) and 1-hexadecyl-3-methylimidazolium bromide (C16MIm-Br), after proper optimization of the overall method in combination with high-performance liquid chromatography (HPLC) and diode-array detection (DAD). The optimum conditions for 100 mL of water samples require a small amount (10 mg) of Fe3O4 magnetic nanoparticles, a low content (5.0 mg of C12C12Im-Br and 3.9 mg of C16MIm-Br) of the selected DSIL, pH 11, a sonication time of 2.5 min, and an equilibration time of 5 min with the aid of NdFeB magnets, followed by elution of phenols, evaporation, and reconstitution with 0.5 mL of acetonitrile. The overall m-μdSPE-HPLC-DAD method is characterized for limits of detection down to 1.3 μg · L(-1), intraday relative standard deviations lower than 13 % (n = 3), and interday relative standard deviations lower than 17 % (n = 9), with a spiking level of 15 μg · L(-1); with enrichment factors between 15.7 and 141, and average relative recoveries of 99.9 %.

  20. Development and validation of a fast ionic liquid-based dispersive liquid-liquid microextraction procedure combined with LC-MS/MS analysis for the quantification of benzodiazepines and benzodiazepine-like hypnotics in whole blood.

    Science.gov (United States)

    De Boeck, Marieke; Missotten, Sophie; Dehaen, Wim; Tytgat, Jan; Cuypers, Eva

    2017-05-01

    To date, thorough clean-up of complex biological samples remains an essential part of the analytical process. The solid phase extraction (SPE) technique is the well-known standard, however, its main weaknesses are the labor-intensive and time-consuming protocols. In this respect, dispersive liquid-liquid microextractions (DLLME) seem to offer less complex and more efficient extraction procedures. Furthermore, ionic liquids (ILs) - liquid salts - are emerging as new promising extraction solvents, thanks to their non-flammable nature, negligible vapor pressure and easily adaptable physiochemical properties. In this study, we investigated whether ILs can be used as an extraction solvent in a DLLME procedure for the extraction of a broad range of benzodiazepines and benzodiazepine-like hypnotics in whole blood samples. 1.0mL whole blood was extracted using an optimized 30-min IL-based DLLME procedure, followed by LC-ESI(+)-MS/MS analysis in scheduled MRM scan mode. The optimized analytical method was successfully validated for 7-aminoflunitrazepam, alprazolam, bromazepam, clobazam, clonazepam, clotiazepam, diazepam, estazolam, ethyl loflazepate, etizolam, flurazepam, lormetazepam, midazolam, oxazepam, prazepam, temazepam, triazolam, zolpidem and zopiclone. The method showed good selectivity for endogenous interferences based on 12 sources of blank whole blood. No benzodiazepine interferences were observed, except for clorazepate and nordiazepam, which were excluded from the quantitative method. Matrix-matched calibration curves were constructed covering the whole therapeutic range, including low toxic plasma concentrations. Accuracy and precision results met the proposed acceptance criteria for the vast majority of compounds, except for brotizolam, chlordiazepoxide, cloxazolam, flunitrazepam, loprazolam, lorazepam and nitrazepam, which can only be determined in a semi-quantitative way. Recoveries were within the range of 24.7%-127.2% and matrix effects were within 20

  1. Selective oxidation of cyclohexanol to cyclohexanone in the ionic liquid 1-octyl-3-methylimidazolium chloride.

    Science.gov (United States)

    Chen, Long; Zhou, Teng; Chen, Lifang; Ye, Yinmei; Qi, Zhiwen; Freund, Hannsjörg; Sundmacher, Kai

    2011-09-07

    Ionic liquid (IL) 1-octyl-3-methylimidazolium chloride was found to effectively intensify cyclohexanol oxidation and resulted in 100% conversion of cyclohexanol with 100% selectivity to cyclohexanone using hydrogen peroxide as an oxidant and WO(3) as a catalyst. The effect of the IL as a solvent is discussed with the support of COSMO-RS theory. This journal is © The Royal Society of Chemistry 2011

  2. A bio-inspired, sensitive, and selective ionic gate driven by silver (I) ions.

    Science.gov (United States)

    Gao, Loujun; Li, Pei; Zhang, Yuqi; Xiao, Kai; Ma, Jie; Xie, Ganhua; Hou, Guanglei; Zhang, Zhen; Wen, Liping; Jiang, Lei

    2015-02-04

    By grafting specific response DNA on the interior surface of ion track-etched conical nanochannels, a highly sensitive and selective ionic gate that can be driven by silver (I) ions is demonstrated. The switches between the OFF-state and the ON-state are mainly dependent on silver (I) ions and cysteine. Such a biomimetic nanodevice shows potential for application in sensing, pharmaceuticals, and sterilization. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Ionic-liquid-based dispersive liquid-liquid microextraction combined with magnetic solid-phase extraction for the determination of aflatoxins B1, B2, G1, and G2in animal feeds by high-performance liquid chromatography with fluorescence detection.

    Science.gov (United States)

    Zhao, Jiao; Zhu, Yan; Jiao, Yang; Ning, Jinyan; Yang, Yaling

    2016-10-01

    A novel two-step extraction technique combining ionic-liquid-based dispersive liquid-liquid microextraction with magnetic solid-phase extraction was developed for the preconcentration and separation of aflatoxins in animal feedstuffs before high-performance liquid chromatography coupled with fluorescence detection. In this work, ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate was used as the extractant in dispersive liquid-liquid microextraction, and hydrophobic pelargonic acid modified Fe 3 O 4 magnetic nanoparticles as an efficient adsorbent were applied to retrieve the aflatoxins-containing ionic liquid. Notably, the target of magnetic nanoparticles was the ionic liquid rather than the aflatoxins. Because of the rapid mass transfer associated with the dispersive liquid-liquid microextraction and magnetic solid phase steps, fast extraction could be achieved. The main parameters affecting the extraction recoveries of aflatoxins were investigated and optimized. Under the optimum conditions, vortexing at 2500 rpm for 1 min in the dispersive liquid-liquid microextraction and magnetic solid-phase extraction and then desorption by sonication for 2 min with acetonitrile as eluent. The recoveries were 90.3-103.7% with relative standard deviations of 3.2-6.4%. Good linearity was observed with correlation coefficients ranged from 0.9986 to 0.9995. The detection limits were 0.632, 0.087, 0.422 and 0.146 ng/mL for aflatoxins B 1 , B2, G1, and G2, respectively. The results were also compared with the pretreatment method carried out by conventional immunoaffinity columns. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Quaternary ammonium based task specific ionic liquid for the efficient and selective extraction of neptunium

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Nishesh Kumar [National Institute of Technology, Odisha (India). Dept. of Chemistry; Sengupta, Arijit [Bhabha Atomic Research Centre, Mumbai (India). Radiochemistry Div.; Biswas, Sujoy [Bhabha Atomic Research Centre, Mumbai (India). Uranium Extraction Div.

    2017-07-01

    Liquid-liquid extraction of neptunium from aqueous acidic solution using quaternary ammonium based task specific ionic liquid (TSIL) was investigated. The extraction of Np was predominated by the 'cation exchange' mechanism via [NpO{sub 2}.Hpth]{sup +} species for NpO{sub 2}{sup 2+}, while NpO{sub 2}{sup +} was extracted in ionic liquid as [NpO{sub 2}.H.Hpth]{sup +}. The extraction process was thermodynamically spontaneous while kinetically slower. Na{sub 2}CO{sub 3} as strippant showed quantitative back extraction of neptunium ions from TSIL. TSIL showed excellent radiolytic stability upto 500 kGy gamma exposure. Finally, the TSIL was employed for the processing of simulated high level waste solutions revealing high selectivity of TSIL towards neptunium.

  5. Pd(II-dissolved in ionic liquids: a recyclable catalytic system for the selective biphasic hydrogenation of dienes to monoenes

    Directory of Open Access Journals (Sweden)

    Dupont Jairton

    2000-01-01

    Full Text Available Palladium acetylacetonate dissolved in 1-n-butyl-3-methylimidazolium tetrafluoroborate ionic liquid catalyses the selective two-phase hydrogenation of conjugated and non-conjugated (functionalized and non-functionalized dienes into the respective monoenes. The system does not require the use of organic solvents, the products are removed by simple decantation or distillation and the recovered ionic catalytic solution can be reused several times without any significant changes in its catalytic activity and selectivity.

  6. Composites of ionic liquid and amine-modified SAPO 34 improve CO2 separation of CO2-selective polymer membranes

    Science.gov (United States)

    Hu, Leiqing; Cheng, Jun; Li, Yannan; Liu, Jianzhong; Zhang, Li; Zhou, Junhu; Cen, Kefa

    2017-07-01

    Mixed matrix membranes with ionic liquids and molecular sieve particles had high CO2 permeabilities, but CO2 separation from small gas molecules such as H2 was dissatisfied because of bad interfacial interaction between ionic liquid and molecular sieve particles. To solve that, amine groups were introduced to modify surface of molecular sieve particles before loading with ionic liquid. SAPO 34 was adopted as the original filler, and four mixed matrix membranes with different fillers were prepared on the outer surface of ceramic hollow fibers. Both surface voids and hard agglomerations disappeared, and the surface became smooth after SAPO 34 was modified by amine groups and ionic liquid [P66614][2-Op]. Mixed matrix membranes with composites of amine-modified SAPO 34 and ionic liquid exhibited excellent CO2 permeability (408.9 Barrers) and CO2/H2 selectivity (22.1).

  7. High rate performance of flexible pseudocapacitors fabricated using ionic-liquid-based proton conducting polymer electrolyte with poly(3, 4-ethylenedioxythiophene):poly(styrene sulfonate) and its hydrous ruthenium oxide composite electrodes.

    Science.gov (United States)

    Sellam; Hashmi, S A

    2013-05-01

    We report the studies on all-solid-state flexible pseudocapacitors based on poly (3,4-ethylenedioxythiophene)-poly (styrene sulfonate) (PEDOT-PSS) and PEDOT-PSS/hydrous ruthenium oxide composite electrodes separated by nonaqueous proton conducting polymer electrolyte. Structural, thermal and electrochemical properties including high ionic conductivity (6.2 × 10(-2) S cm(-1) at 20 °C) of the polymer electrolyte, comprising ionic liquid 1-ethyl 3-methyl imidazolium hydrogen sulfate (EMIHSO4) immobilized in the blend of poly (vinyl alcohol) (PVA) and poly (vinyl pyrrolidone) (PVP), demonstrate its excellent suitability in supercapacitor fabrication. A substantial improvement in the specific capacitance (hence the specific energy) has been obtained when the PEDOT-PSS electrodes in the symmetrical pseudocapacitor are replaced by the composite electrodes PEDOT-PSS/RuO2·xH2O. High rate capability of the capacitor cell (with PEDOT-PSS electrodes) has been observed, as evidenced from the high knee frequency (∼966 Hz), low response time (∼70 ms) and high pulse power (∼10.2 kW kg(-1)), observed by impedance analysis. Almost rectangular (capacitive) cyclic voltammetric patterns for high scan rates (up to 15 V s(-1)) confirm the high rate performance of the pseudocapacitor. The PEDOT-PSS/RuO2·xH2O composite electrodes show the lower rate capability (knee frequency ∼312 Hz, response time ∼1 s, pulse power ∼3.2 kW kg(-1) and capacitive CV response up to 500 mV s(-1)) because of slow exchange of charges at the interfaces via RuO2·xH2O. However, the pseudocapacitor with composite electrodes shows higher rate performance relative to many reported RuO2·xH2O systems. About 15% improvement is noticed in the capacitance value when the capacitor with composite electrodes is initially charged and discharged up to ∼200 cycles. Thereafter, the cell shows almost constant value of specific capacitance (∼70 F g(-1)) for 1000 cycles.

  8. Selective and recyclable depolymerization of cellulose to levulinic acid catalyzed by acidic ionic liquid.

    Science.gov (United States)

    Ren, Huifang; Girisuta, Buana; Zhou, Yonggui; Liu, Li

    2015-03-06

    Cellulose depolymerization to levulinic acid (LA) was catalyzed by acidic ionic liquids (ILs) selectively and recyclably under hydrothermal conditions. The effects of reaction temperature, time, water amount and cellulose intake were investigated. Dilution effect becomes more pronounced at lower cellulose intake, dramatically improving the yield of LA to 86.1%. A kinetic model has been developed based on experimental data, whereby a good fit was obtained and kinetic parameters were derived. The relationships between IL structure, polymeric structure and depolymerization efficiency were established, shedding light on the in-depth catalytic mechanism of IL, inclusive of acidity and hydrogen bonding ability. The LA product can be readily separated through extraction by methyl isobutyl ketone (MIBK) and IL can be reused over five cycles without loss of activity. This environmentally friendly methodology can be applied to selective production of LA from versatile biomass feedstocks, including cellulose and derivatives, glucose, fructose and HMF. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. A Molecular Dynamics Study on Selective Cation Depletion from an Ionic Liquid Droplet under an Electric Field

    Science.gov (United States)

    Yang, Yudong; Ahn, Myungmo; Im, Dojin; Oh, Jungmin; Kang, Inseok

    2017-11-01

    General electrohydrodynamic behavior of ionic liquid droplets under an electric field is investigated using MD simulations. Especially, a unique behavior of ion depletion of an ionic liquid droplet under a uniform electric field is studied. Shape deformation due to electric stress and ion distributions inside the droplet are calculated to understand the ionic motion of imidazolium-based ionic liquid droplets with 200 ion pairs of 2 kinds of ionic liquids: EMIM-NTf2 and EMIM-ES. The intermolecular force between cations and anions can be significantly different due to the nature of the structure and charge distribution of the ions. Together with an analytical interpretation of the conducting droplet in an electric field, the MD simulation successfully explains the mechanism of selective ion depletion of an ionic liquid droplet in an electric field. The selective ion depletion phenomenon has been adopted to explain the experimentally observed retreating motion of a droplet in a uniform electric field. The effect of anions on the cation depletion phenomenon can be accounted for from a direct approach to the intermolecular interaction. This research was supproted by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (No. 2017R1D1A1B05035211).

  10. Selective alkaline stripping of metal ions after solvent extraction by base-stable 1,2,3-triazolium ionic liquids.

    Science.gov (United States)

    Raiguel, Stijn; Depuydt, Daphne; Vander Hoogerstraete, Tom; Thomas, Joice; Dehaen, Wim; Binnemans, Koen

    2017-04-19

    Novel 1,2,3-triazolium ionic liquids with a high base stability were synthesized for use in solvent extraction of first-row transition elements and rare earths from chloride media. The synthesis of these ionic liquids makes use of a recently reported, metal-free multicomponent reaction that allows full substitution of the 1,2,3-triazolium skeleton. The physical and chemical properties of these ionic liquids are compared with those of a trisubstituted analog. Peralkylation of the 1,2,3-triazolium skeleton leads to ionic liquids with superior properties, such as low viscosity, low solubility in water and higher thermal and base stability. Iodide and thiocyanate ionic liquids with peralkylated cations were applied to the solvent extraction of metal ions, and their stability in alkaline media was exploited in the selective stripping of the metals from the loaded ionic liquid phase by alkaline solutions. EXAFS and Raman spectroscopy were performed to gain insight into the extraction mechanism. The applicability of these extraction systems was demonstrated in separations relevant for the recovery of metals from ores and end-of-life products: Fe(iii)/Cu(ii)/Zn(ii) (copper ores, brass scraps) and Fe(iii)/Nd(iii) (rare earth magnets).

  11. Protein structure and ionic selectivity in calcium channels: Selectivity filter size, not shape, matters

    OpenAIRE

    Malasics, Attila; Gillespie, Dirk; Nonner, Wolfgang; Henderson, Douglas; Eisenberg, Bob; Boda, Dezső

    2009-01-01

    Calcium channels have highly charged selectivity filters (4 COO− groups) that attract cations in to balance this charge and minimize free energy, forcing the cations (Na+ and Ca2+) to compete for space in the filter. A reduced model was developed to better understand the mechanism of ion selectivity in calcium channels. The charge/space competition (CSC) mechanism implies that Ca2+ is more efficient in balancing the charge of the filter because it provides twice the charge as Na+ while occupy...

  12. Protein structure and ionic selectivity in calcium channels: selectivity filter size, not shape, matters.

    Science.gov (United States)

    Malasics, Attila; Gillespie, Dirk; Nonner, Wolfgang; Henderson, Douglas; Eisenberg, Bob; Boda, Dezso

    2009-12-01

    Calcium channels have highly charged selectivity filters (4 COO(-) groups) that attract cations in to balance this charge and minimize free energy, forcing the cations (Na(+) and Ca(2+)) to compete for space in the filter. A reduced model was developed to better understand the mechanism of ion selectivity in calcium channels. The charge/space competition (CSC) mechanism implies that Ca(2+) is more efficient in balancing the charge of the filter because it provides twice the charge as Na(+) while occupying the same space. The CSC mechanism further implies that the main determinant of Ca(2+) versus Na(+) selectivity is the density of charged particles in the selectivity filter, i.e., the volume of the filter (after fixing the number of charged groups in the filter). In this paper we test this hypothesis by changing filter length and/or radius (shape) of the cylindrical selectivity filter of our reduced model. We show that varying volume and shape together has substantially stronger effects than varying shape alone with volume fixed. Our simulations show the importance of depletion zones of ions in determining channel conductance calculated with the integrated Nernst-Planck equation. We show that confining the protein side chains with soft or hard walls does not influence selectivity.

  13. A cobalt(II) bis(salicylate)-based ionic liquid that shows thermoresponsive and selective water coordination

    Energy Technology Data Exchange (ETDEWEB)

    Kohno, Y; Cowan, MG; Masuda, M; Bhowmick, I; Shores, MP; Gin, DL; Noble, RD

    2014-01-01

    A metal-containing ionic liquid (MCIL) has been prepared in which the [CoII(salicylate)(2)](2-) anion is able to selectively coordinate two water molecules with a visible colour change, even in the presence of alcohols. Upon moderate heating or placement in vacuo, the hydrated MCIL undergoes reversible thermochromism by releasing the bound water molecules.

  14. A cobalt(II) bis(salicylate)-based ionic liquid that shows thermoresponsive and selective water coordination.

    Science.gov (United States)

    Kohno, Yuki; Cowan, Matthew G; Masuda, Miyuki; Bhowmick, Indrani; Shores, Matthew P; Gin, Douglas L; Noble, Richard D

    2014-06-25

    A metal-containing ionic liquid (MCIL) has been prepared in which the [Co(II)(salicylate)2](2-) anion is able to selectively coordinate two water molecules with a visible colour change, even in the presence of alcohols. Upon moderate heating or placement in vacuo, the hydrated MCIL undergoes reversible thermochromism by releasing the bound water molecules.

  15. Ideal gas solubilities and solubility selectivities in a binary mixture of room-temperature ionic liquids.

    Science.gov (United States)

    Finotello, Alexia; Bara, Jason E; Narayan, Suguna; Camper, Dean; Noble, Richard D

    2008-02-28

    This study focuses on the solubility behaviors of CO2, CH4, and N2 gases in binary mixtures of imidazolium-based room-temperature ionic liquids (RTILs) using 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C2mim][Tf2N]) and 1-ethyl-3-methylimidazolium tetrafluoroborate ([C2mim][BF4]) at 40 degrees C and low pressures (approximately 1 atm). The mixtures tested were 0, 25, 50, 75, 90, 95, and 100 mol % [C2mim][BF4] in [C2mim][Tf2N]. Results show that regular solution theory (RST) can be used to describe the gas solubility and selectivity behaviors in RTIL mixtures using an average mixture solubility parameter or an average measured mixture molar volume. Interestingly, the solubility selectivity, defined as the ratio of gas mole fractions in the RTIL mixture, of CO2 with N2 or CH4 in pure [C2mim][BF4] can be enhanced by adding 5 mol % [C2mim][Tf2N].

  16. Ionic liquids for the passive sampling of sulfonamides from water-applicability and selectivity study.

    Science.gov (United States)

    Męczykowska, Hanna; Kobylis, Paulina; Stepnowski, Piotr; Caban, Magda

    2017-06-01

    Ionic liquids (ILs) are new-generation, non-volatile solvents which are designable, and their structure may be specifically adjusted to the current application needs. Therefore, it is possible to create and apply ILs which efficiently and selectively extract various analytes from different matrices. It has already been examined that ILs may be applied as receiving phases in passive sampling for the long-term water monitoring of PAHs and pharmaceuticals in water. In this paper, the concept of passive sampling with ILs (PASSIL applied as receiving phases) was continued and developed using phosphonium-, imidazolium-, and morpholinium-cation-based ILs. The target group of analytes was pharmaceuticals which represent one of the most common categories of water contaminants. Fourteen-day-long extractions using various ILs were performed in stirred conditions at a constant temperature (20 °C). The best extraction efficiency was achieved for trihexyl(tetradecyl)phosphonium dicyanamide ([P666-14][N(CN) 2 ]). For this preliminary calibration, the sampling rates were calculated for each sulfonamide. Once again, selectivity was observed in passive sampling using [P666-14][N(CN) 2 ]. Therefore, PASSIL is seen as a very promising method for pharmaceutical monitoring in water.

  17. Shape selectivity using ionic liquids for the preparation of silver and silver sulphide nanomaterials.

    Science.gov (United States)

    Patil, Amol B; Bhanage, Bhalchandra M

    2014-02-21

    Electrodeposition of silver and silver sulphide was carried out from two protic ionic liquids. A change of the anion moiety of ionic liquid was found to bring about significant changes in the morphology of the nanocrystalline silver and silver sulphide deposits obtained. Effects of various parameters like deposition overpotential, change of the substrate, deposition time, etc. on the particle size and shape were studied. It was found that a change of anions of the ionic liquid from acetate to nitrate results in a wide difference in the morphology of the deposits obtained. Acetate containing ionic liquids result in globular nanocrystalline deposits whereas nitrate containing ionic liquids result in flat plates or sheets of silver deposits. Similar results were obtained for silver sulphide nanocrystals.

  18. Selective extraction of metal ions from aqueous phase to ionic liquids: a novel thermodynamic approach to separations.

    Science.gov (United States)

    Janssen, Camiel H C; Sánchez, Antonio; Kobrak, Mark N

    2014-11-10

    The selective extraction of metals from aqueous mixtures has generally relied on the use of selective ionophores. We present an alternative strategy that exploits a recently developed approach to extraction into an ionic liquid phase, and show that a high degree of control over selectivity can be obtained by tuning the relative concentrations of extraction agents. A thermodynamic model for the approach is presented, and an experimental separation of strontium and potassium ions is performed. It is shown that tuning the concentrations of the species involved can shift the ratio of potassium to strontium in the ionic liquid phase from 4:1 to 3:4. This extraction is performed under mild conditions with relatively common reagents. The result is a proof-of-concept for a novel separations scheme that could have great importance in a wide range of technological applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Selective extraction and recovery of rare earth metals from phosphor powders in waste fluorescent lamps using an ionic liquid system

    International Nuclear Information System (INIS)

    Yang, Fan; Kubota, Fukiko; Baba, Yuzo; Kamiya, Noriho; Goto, Masahiro

    2013-01-01

    Highlights: • Recycling of rare earth metals from fluorescent lamps was conducted by ionic liquid-mediated extraction. • Acid leaching from a waste phosphor powder was carried out using sulfuric and nitric acids. • An ionic liquid was used as extracting solvent for the rare earth metals. • Selective extraction of rare earth metals from leach solutions was attained. •The extracting ionic liquid phase was recyclable in the recovery process. -- Abstract: The recycling of rare earth metals from phosphor powders in waste fluorescent lamps by solvent extraction using ionic liquids was studied. Acid leaching of rare earth metals from the waste phosphor powder was examined first. Yttrium (Y) and europium (Eu) dissolved readily in the acid solution; however, the leaching of other rare earth metals required substantial energy input. Ionization of target rare earth metals from the waste phosphor powders into the leach solution was critical for their successful recovery. As a high temperature was required for the complete leaching of all rare earth metals, ionic liquids, for which vapor pressure is negligible, were used as an alternative extracting phase to the conventional organic diluent. An extractant, N, N-dioctyldiglycol amic acid (DODGAA), which was recently developed, showed a high affinity for rare earth metal ions in liquid–liquid extraction although a conventional commercial phosphonic extractant did not. An effective recovery of the rare earth metals, Y, Eu, La and Ce, from the metal impurities, Fe, Al and Zn, was achieved from the acidic leach solution of phosphor powders using an ionic liquid containing DODGAA as novel extractant system

  20. Toxicity evaluation of selected ammonium-based ionic liquid forms with MCPP and dicamba moieties on Pseudomonas putida.

    Science.gov (United States)

    Piotrowska, Aleksandra; Syguda, Anna; Wyrwas, Bogdan; Chrzanowski, Łukasz; Heipieper, Hermann J

    2017-01-01

    Combination of the hydrophilic herbicidal anion with hydrophobic, antimicrobial ammonium cation allows to obtain compounds in ionic liquid form with better properties then conventional herbicides. Both cation and anion can be modified by selection of herbicide and the length of alkyl chains in cation structure. However the knowledge of their potential toxic effects are still limited. Furthermore, the relation between hydrophobicity associated with the length of alkyl chains and toxicity for ionic liquids has not been thoroughly studied. Therefore we investigated toxic effects of herbicidal ionic liquid forms on growth inhibition, given as EC 50, of the common soil bacterium Pseudomonas putida. We thereby concentrated on quaternary ammonium salts. Analyzed compounds were composed of dicamba or MCPP moieties and cation with various alkyl chain lengths (n = 6,8,10) We compared them with commercial herbicides, and ammonium-based ionic liquids with neutral anion (Br - ). In addition, cis-trans isomerisation of unsaturated membrane fatty acids in Pseudomonas putida was applied as the proxy for toxicity and membrane activity. We showed that toxicity increased with the length of alkyl chains. However, this correlation is only valid for six and eight carbon atom in alkyl chains, where for n = 10 the EC 50 values rise by one order of magnitude. In our studies, the herbicidal ionic liquids [C 10 ,C 10 ,C 1 ,C 1 N][MCPP] and [C 10 ,C 10 ,C 1 ,C 1 N][dicamba] showed the lowest toxicity among analyzed quaternary ammonium salts and comparable toxicity with corresponding herbicides. No clear increase in toxicity could be followed by changing the anion moieties for ammonium-based ionic liquid forms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. DEVELOPMENT AND SELECTION OF IONIC LIQUID ELECTROLYTES FOR HYDROXIDE CONDUCTING POLYBENZIMIDAZOLE MEMBRANES IN ALKALINE FUEL CELLS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, E.

    2012-05-01

    Alkaline fuel cell (AFC) operation is currently limited to specialty applications such as low temperatures and pure HO due to the corrosive nature of the electrolyte and formation of carbonates. AFCs are the cheapest and potentially most efficient (approaching 70%) fuel cells. The fact that non-Pt catalysts can be used, makes them an ideal low cost alternative for power production. The anode and cathode are separated by and solid electrolyte or alkaline porous media saturated with KOH. However, CO from the atmosphere or fuel feed severely poisons the electrolyte by forming insoluble carbonates. The corrosivity of KOH (electrolyte) limits operating temperatures to no more than 80°C. This chapter examines the development of ionic liquids electrolytes that are less corrosive, have higher operating temperatures, do not chemically bond to CO and enable alternative fuels. Work is detailed on the IL selection and characterization as well as casting methods within the polybenzimidazole based solid membrane. This approach is novel as it targets the root of the problem (the electrolyte) unlike other current work in alkaline fuel cells which focus on making the fuel cell components more durable.

  2. CHEMICAL STABILITY AND ADSORPTION SELECTIVITY ON Cd2+ IONIC IMPRINTED Nannochloropsis sp MATERIAL WITH SILICA MATRIX FROM TETRAETHYL ORTHOSILICATE

    Directory of Open Access Journals (Sweden)

    Buhani Buhani

    2012-02-01

    Full Text Available Chemical stability, reusability, and adsorption selectivity of Cd2+ ionic imprinted Nannochloropsis sp with silica matrix (Cd(II-IIP from precursor tetraethyl orthosilicate (TEOS have been studied through adsorption experiment series with batch method. Nannochloropsis sp (Cd(II-IIP material was characterized with an infrared spectrophotometer (IR to identify the functional groups in this material and identification of metal ion concentration was analyzed with an atomic absorption spectrophotometer (AAS. Chemical stability was determined in solution media of acid, neutral, and base. Adsorption selectivity was obtained with determination of selectivity coefficient (α of Cd2+ ion toward its ionic pair such as Ag+, Zn2+, Cu2+, and Ni2+ ions. Nannochloropsis sp Cd(II-IIP material is very stable in acid media and lack stable in base media as well as it can be reused for extraction 4 cycles with adsorption capacity value > 95% using eluent of 0.1 M Na2EDTA. Selectivity of Cd(II-IIP material upon Cd2+ ion is higher than non imprinted polymer (NIP and it increases with these orders; Cd2+/Ag+ < Cd2+/Zn2+ < Cd2+/Cu2+ < Cd2+/Ni2+ for each α at metal ionic ratio of 1:1; 0.887; 20.180; 28.053; 33.417, respectively.

  3. Amperometric Ion-Selective Electrode for Alkali Metal Cations Based on a Room-Temperature Ionic Liquid Membrane

    Czech Academy of Sciences Publication Activity Database

    Langmaier, Jan; Trojánek, Antonín; Samec, Zdeněk

    2009-01-01

    Roč. 21, 17-18 (2009), s. 1977-1983 ISSN 1040-0397 R&D Projects: GA MŠk ME08098; GA AV ČR IAA400400704 Institutional research plan: CEZ:AV0Z40400503 Keywords : room-temperature ionic liquid * alkali metals * Crown ether * cyclic voltammetry * amperometric ion-selective elkectrode Subject RIV: CG - Electrochemistry Impact factor: 2.630, year: 2009

  4. Selection of optimum ionic liquid solvents for flavonoid and phenolic acids extraction

    Science.gov (United States)

    Rahman, N. R. A.; Yunus, N. A.; Mustaffa, A. A.

    2017-06-01

    Phytochemicals are important in improving human health with their functions as antioxidants, antimicrobials and anticancer agents. However, the quality of phytochemicals extract relies on the efficiency of extraction process. Ionic liquids (ILs) have become a research phenomenal as extraction solvent due to their unique properties such as unlimited range of ILs, non-volatile, strongly solvating and may become either polarity. In phytochemical extraction, the determination of the best solvent that can extract highest yield of solute (phytochemical) is very important. Therefore, this study is conducted to determine the best IL solvent to extract flavonoids and phenolic acids through a property prediction modeling approach. ILs were selected from the imidazolium-based anion for alkyl chains ranging from ethyl > octyl and cations consisting of Br, Cl, [PF6], BF4], [H2PO4], [SO4], [CF3SO3], [TF2N] and [HSO4]. This work are divided into several stages. In Stage 1, a Microsoft Excel-based database containing available solubility parameter values of phytochemicals and ILs including its prediction models and their parameters has been established. The database also includes available solubility data of phytochemicals in IL, and activity coefficient models, for solid-liquid phase equilibrium (SLE) calculations. In Stage 2, the solubility parameter values of the flavonoids (e.g. kaempferol, quercetin and myricetin) and phenolic acids (e.g. gallic acid and caffeic acid) are determined either directly from database or predicted using Stefanis and Marrero-Gani group contribution model for the phytochemicals. A cation-anion contribution model is used for IL. In Stage 3, the amount of phytochemicals extracted can be determined by using SLE relationship involving UNIFAC-IL model. For missing parameters (UNIFAC-IL), they are regressed using available solubility data. Finally, in Stage 4, the solvent candidates are ranked and five ILs, ([OMIM] [TF2N], [HeMIM] [TF2N], [HMIM] [TF2N

  5. Functional dependency of structures of ionic liquids: do substituents govern the selectivity of enzymatic glycerolysis?

    DEFF Research Database (Denmark)

    Guo, Zheng; Chen, Biqiang; Murillo, Rafael López

    2006-01-01

    The concept of regulating the preference of a reversible multi-step reaction by adjusting the substituents of ionic liquids (ILs) has been successfully exemplified with a group of tetraammonium-based ionic liquids as medium for the enzymatic glycerolysis. Simultaneous existence of long chain...... preference to monoglyceride formation. Interestingly the predicted results from COSMO-RS (a quantum chemical model programme) achieved a good agreement with the experimental data, mapping out the specific solvation from the ILs as well as demonstrating the interaction between ILs, substrates and products...

  6. Persistence of selected ammonium- and phosphonium-based ionic liquids in urban park soil microcosms

    DEFF Research Database (Denmark)

    Sydow, Mateusz; Szczepaniak, Zuzanna; Framski, Grzegorz

    2015-01-01

    Knowledge about biodegradability of ionic liquids (ILs) in terrestrial systems is limited. Here, using urban park soil microcosms spiked with either ammonium- or phosphonium-based ILs [didecyldimethylammonium 3-amino-1,2,4-triazolate, benzalkonium 3-amino-1,2,4-triazolate, trihexyl(tetradecyl)pho......Knowledge about biodegradability of ionic liquids (ILs) in terrestrial systems is limited. Here, using urban park soil microcosms spiked with either ammonium- or phosphonium-based ILs [didecyldimethylammonium 3-amino-1,2,4-triazolate, benzalkonium 3-amino-1,2,4-triazolate, trihexyl...

  7. Determination of total mercury in seafood by ion-selective electrodes based on a thiol functionalized ionic liquid

    Directory of Open Access Journals (Sweden)

    Juan Miao

    2018-04-01

    Full Text Available A mercury(II ion-selective electrode with an ionic liquid (IL, 1-methyl-2-butylthioimidazolium bis(trifluoromethanesulphonylimide ([C1C4Sim]NTf2 as active material was constructed. Parameters affecting the performance of the electrodes such as the dosages of the IL and carbon nanotubes and the aqueous pH values were investigated. Experimental results indicated that the optimal composition of the electrode filling material was 47.6% [C1C4Sim]NTf2, 47.6% tetrabutylphosphonium bis(trifluoromethanesulphonylimide (TBPNTf2 and 4.8% carboxylic multi-walled carbon nanotubes (MWCNTs-COOH. Under the selected conditions, the proposed electrodes showed a good linear response in the concentration range of 10−10–10−5 mol L−1 and had a detection limit of 4.1 × 10−11 mol L−1. No great interference from common metal ions was found. The proposed electrodes were applied to determine Hg2+ in seafood samples; the results were comparable to those of the direct mercury analyzer. Keywords: Ionic liquids (ILs, Mercury, Ion-selective electrodes, Carbon nanotubes, Seafood

  8. Ionic Liquid Crystals Modifier for Selective Determination of Terazosin Antihypertensive Drug in Presence of Common Interference Compounds

    Directory of Open Access Journals (Sweden)

    Nada F. Atta

    2017-01-01

    Full Text Available Electrochemical sensor was fabricated based on carbon paste electrode modified with an ionic liquid crystal ILC (2-chloro-1,3-dimethyl-imidazolidinium hexafluorophosphate in presence of sodium dodecyl sulfate for the selective electrochemical determination of Terazosin (TZ in presence of common interference compounds. The electrode performance was compared in presence of other ionic liquids ILs (1-Butyl-4-methyl pyridinium tetrafluoroborate and (1-n-Hexyl-3-methyl imidazolium tetrafluoroborate. Ultrasensitive determination of Terazosin HCl at the ILC modified electrode in the linear dynamic ranges of 0.002 to 0.09 μmol·L−1 and 0.2 to 30 μmol·L−1 with correlation coefficients 0.996 and 0.995 and LODs 1.69 × 10−11 mol·L−1 and 6.43 × 10−9 mol·L−1, respectively, were obtained. Selective determination of TZ in presence of uric acid and ascorbic acid and simultaneous determination of binary mixtures of TZ/dopamine, TZ/paracetamol and TZ/Morphine were also determined successfully using the modified sensor.

  9. High selective delignification using oxidative ionic liquid pretreatment at mild conditions for efficient enzymatic hydrolysis of lignocellulose.

    Science.gov (United States)

    Pang, Zhiqiang; Lyu, Wenkang; Dong, Cuihua; Li, Hongxing; Yang, Guihua

    2016-08-01

    Herein, the oxidative ionic liquid (IL) pretreatment for overcoming recalcitrance of lignocellulose with selective delignification was investigated, and the subsequent enzymatic hydrolysis was evaluated. IL pretreatment incorporating oxygen delignification could enhance lignin extraction with high selectivity at low carbohydrate loss. The dual-action of oxidative decomposition and dissolution by 1-butyl-3-methlimidazolium chloride (BmimCl) on biomass were synergistically acted, accounting for efficient recalcitrance removal. In addition, the mild oxidative IL treatment only slightly converted crystalline cellulose into amorphous structure, and the extensive extraction of the amorphous lignin and carbohydrate resulted to the expose of cellulose with high susceptibility. Correspondingly, the enzymatic hydrolysis of the pretreated lignocellulose was greatly enhanced. The oxidative IL treatment at mild conditions, collaborating BmimCl treatment with oxygen delignification is a promising and effective system for overcoming the robust structure of lignocellulose. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Development of a sensitive and selective Riboflavin sensor based on carbon ionic liquid electrode

    International Nuclear Information System (INIS)

    Safavi, Afsaneh; Maleki, Norouz; Ershadifar, Hamid; Tajabadi, Fariba

    2010-01-01

    The electrochemical properties of Riboflavin adsorbed on carbon ionic liquid electrode (CILE) were studied by cyclic voltammetry. A film with a surface coverage of up to 3.3 x 10 -9 mol cm -2 was formed after 10 min exposure time. Electron transfer coefficient and rate constant of electron transfer across the modified electrode were found to be 0.43 and 3.03 s -1 , respectively. Differential pulse voltammetry was used for the determination of Riboflavin. Two linear working ranges of 0.8-110 nM and 0.11-1.0 μM were obtained with correlation coefficients of 0.998 and 0.996, respectively. The experimental detection limit was obtained as 0.1 nM. The relative standard deviation for five replicate analyses was 4.7%. Other soluble vitamins had no significant interferences and the electrode was used for the determination of Riboflavin in pharmaceutical products, nutrition and beverages.

  11. Effects of ionic strength, temperature, and pH on degradation of selected antibiotics

    Science.gov (United States)

    Loftin, K.A.; Adams, C.D.; Meyer, M.T.; Surampalli, R.

    2008-01-01

    Aqueous degradation rates, which include hydrolysis and epimerization, for chlorretracycline (CTC), oxytetracycline (OTC), tetracycline (TET), lincomycin (LNC), sulfachlorpyridazine (SCP), sulfadimethoxine (SDM), sulfathiazole (STZ), trimethoprim (TRM), and tylosin A (TYL) were studied as a function of ionic strength (0.0015, 0.050, or 0.084 mg/L as Na2HPO4), temperature (7, 22, and 35??C), and pH (2, 5, 7, 9, and 11). Multiple linear regression revealed that ionic strength did not significantly affect (?? = 0.05) degradation rates for all compounds, but temperature and pH affected rates for CTC, OTC, and TET significandy (?? = 0.05). Degradation also was observed for TYL at pH 2 and 11. No significant degradation was observed for LNC, SCR SDM, STZ, TRM, and TYL (pH 5, 7, and 9) under study conditions. Pseudo first-order rate constants, half-lives, and Arrhenius coefficients were calculated where appropriate. In general, hydrolysis rates for CTC, OTC, and TET increased as pH and temperature increased following Arrhenius relationships. Known degradation products were used to confirm that degradation had occurred, but these products were not quantified. Half-lives ranged from less than 6 h up to 9.7 wk for the tetracyclines and for TYL (pH 2 and 11), but no degradation of LIN, the sulfonamides, or TRM was observed during the study period. These results indicate that tetracyclines and TYL at pH 2 and 11 are prone to pH-mediated transformation and hydrolysis in some cases, but not the sulfonamides, LIN nor TRM are inclined to degrade under study conditions. This indicates that with the exception of CTC OTC, and TET, pH-mediated reactions such as hydrolysis and epimerization are not likely removal mechanisms in surface water, anaerobic swine lagoons, wastewater, and ground water. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  12. Development of a sensitive and selective Riboflavin sensor based on carbon ionic liquid electrode

    Energy Technology Data Exchange (ETDEWEB)

    Safavi, Afsaneh, E-mail: safavi@chem.susc.ac.ir [Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of); Maleki, Norouz; Ershadifar, Hamid; Tajabadi, Fariba [Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of)

    2010-08-03

    The electrochemical properties of Riboflavin adsorbed on carbon ionic liquid electrode (CILE) were studied by cyclic voltammetry. A film with a surface coverage of up to 3.3 x 10{sup -9} mol cm{sup -2} was formed after 10 min exposure time. Electron transfer coefficient and rate constant of electron transfer across the modified electrode were found to be 0.43 and 3.03 s{sup -1}, respectively. Differential pulse voltammetry was used for the determination of Riboflavin. Two linear working ranges of 0.8-110 nM and 0.11-1.0 {mu}M were obtained with correlation coefficients of 0.998 and 0.996, respectively. The experimental detection limit was obtained as 0.1 nM. The relative standard deviation for five replicate analyses was 4.7%. Other soluble vitamins had no significant interferences and the electrode was used for the determination of Riboflavin in pharmaceutical products, nutrition and beverages.

  13. Selective Single-Step Separation of a Mixture of Three Metal Ions by a Triphasic Ionic-Liquid-Water-Ionic-Liquid Solvent Extraction System.

    Science.gov (United States)

    Vander Hoogerstraete, Tom; Blockx, Jonas; De Coster, Hendrik; Binnemans, Koen

    2015-08-10

    In a conventional solvent extraction system, metal ions are distributed between two immiscible phases, typically an aqueous and an organic phase. In this paper, the proof-of-principle is given for the distribution of metal ions between three immiscible phases, two ionic liquid phases with an aqueous phase in between them. Three-liquid-phase solvent extraction allows separation of a mixture of three metal ions in a single step, whereas at least two steps are required to separate three metals in the case of two-liquid-phase solvent extraction. In the triphasic system, the lower organic phase is comprised of the ionic liquid betainium- or choline bis(trifluoromethylsulfonyl)imide, whereas the upper organic phase is comprised of the ionic liquid trihexyl(tetradecyl)phosphonium bis(trifluoromethylsulfonyl)imide. The triphasic system was used for the separation of a mixture of tin(II), yttrium(III), and scandium(III) ions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Application of carbon nanotubes-ionic liquid hybrid in a sensitive atorvastatin ion-selective electrode

    International Nuclear Information System (INIS)

    Jalali, Fahimeh; Ardeshiri, Moslem

    2016-01-01

    Atorvastatin (ATR) was determined by a potentiometric method. The ion-pair of ATR and cetyltrimethylammonium bromide (CTAB) was used as a suitable ionophore. A graphite paste electrode was modified with ATR-CTAB ion-pair, multiwalled carbon nanotubes (MWCNTs), and an ionic liquid, 1-butyl-3-mtehyl-imidazolium hexafluorophosphate (BMIMPF 6 ). The amounts of electrode ingredients were optimized (graphite powder: paraffin oil: ATR-CTAB: MWCNTs: BMIMPF 6 (58:26:5:8:3 w/w%). Surface characterization was done by using scanning electron microscopy. The potential measurements were recorded at optimized pH by using acetate buffer solution (0.1 mol L −1 , pH 5.5). At the above experimental conditions, calibration curve (E vs. log [ATR]) was linear (R 2 = 0.9977) in the concentration range of 1.0 × 10 −9 –1.0 × 10 −3 mol L −1 (0.0012–1209 mg L −1 ) of ATR with a Nernstian slope of 58.14 ± 0.2 mV decade −1 , and detection limit of 1.0 × 10 −9 mol L −1 (0.0013 mg L −1 ). After each injection of ATR to the buffer solution, the potential was stabilized in a very short time (average response time ~ 6 s) at 25 °C. The modified graphite paste electrode had a long lifetime (> 4 months). Recovery of the spiked drug to blood serum samples (95.3–98.2%) revealed the reliability of electrode response to ATR. Blood serum samples from consumers were analyzed by the proposed method; the results were comparable with those from HPLC standard method. The potentiometric analysis of ATR tablets by the proposed electrode resulted in a relative error of 0.8% and 1.5% for 20 and 40 mg per tablets, respectively. Finally, the electrode was used in potentiometric titration of ATR (1.0 × 10 −3 mol L −1 ) by CTAB (1.0 × 10 −3 mol L −1 ). Excellent accuracy (≈ 100%) was obtained from the volume of the titrant at the endpoint. - Graphical abstract: Graphite paste was modified with atorvastatin-CTAB (ATR-CTAB), ionic liquid (BMIMPF 6 ) and multiwalled carbon

  15. Extraction of DNA by magnetic ionic liquids: tunable solvents for rapid and selective DNA analysis.

    Science.gov (United States)

    Clark, Kevin D; Nacham, Omprakash; Yu, Honglian; Li, Tianhao; Yamsek, Melissa M; Ronning, Donald R; Anderson, Jared L

    2015-02-03

    DNA extraction represents a significant bottleneck in nucleic acid analysis. In this study, hydrophobic magnetic ionic liquids (MILs) were synthesized and employed as solvents for the rapid and efficient extraction of DNA from aqueous solution. The DNA-enriched microdroplets were manipulated by application of a magnetic field. The three MILs examined in this study exhibited unique DNA extraction capabilities when applied toward a variety of DNA samples and matrices. High extraction efficiencies were obtained for smaller single-stranded and double-stranded DNA using the benzyltrioctylammonium bromotrichloroferrate(III) ([(C8)3BnN(+)][FeCl3Br(-)]) MIL, while the dicationic 1,12-di(3-hexadecylbenzimidazolium)dodecane bis[(trifluoromethyl)sulfonyl]imide bromotrichloroferrate(III) ([(C16BnIM)2C12(2+)][NTf2(-), FeCl3Br(-)]) MIL produced higher extraction efficiencies for larger DNA molecules. The MIL-based method was also employed for the extraction of DNA from a complex matrix containing albumin, revealing a competitive extraction behavior for the trihexyl(tetradecyl)phosphonium tetrachloroferrate(III) ([P6,6,6,14(+)][FeCl4(-)]) MIL in contrast to the [(C8)3BnN(+)][FeCl3Br(-)] MIL, which resulted in significantly less coextraction of albumin. The MIL-DNA method was employed for the extraction of plasmid DNA from bacterial cell lysate. DNA of sufficient quality and quantity for polymerase chain reaction (PCR) amplification was recovered from the MIL extraction phase, demonstrating the feasibility of MIL-based DNA sample preparation prior to downstream analysis.

  16. Fluorescence enhancement of imidazolium ionic liquid by its confinement on PVC for in situ selective quantification of hemoglobin.

    Science.gov (United States)

    Shu, Yang; Han, Lu; Wang, Xiaofeng; Chen, Xuwei; Wang, Jianhua

    2013-11-27

    A hydrophilic ionic liquid (methylimidazolium chloride, NmimCl)-polyvinyl chloride ionomer (NmimCl-PVC) was prepared by immobilizing and confining N-methylimidazole onto PVC chains. The NmimCl-PVC ionomer exhibits a 4-fold enhancement on the fluorescence intensity with respect to that of NmimCl, attributing to the confinement of ionic liquid by the PVC chain. The fluorescence is excitation-dependent with a maximum at λem 430 nm when excited at 325 nm. In addition, the fluorescence intensity of NmimCl-PVC ionomer increases remarkably with the loading ratio of N-methylimidazole in the range of 4.3-15.1%. The fluorescence quantum yield and lifetime were derived to be 0.112/7.1 ns for the NmimCl-PVC ionomer and 0.063/8.8 ns for NmimCl. Furthermore, hemoglobin is selectively adsorbed by NmimCl-PVC and causes significant fluorescence quenching of the ionomer via dynamic quenching and energy transfer between NmimCl-PVC and hemoglobin. A solid surface fluorimetric procedure was developed for surface adsorption and preconcentration of hemoglobin followed by in situ detection. A linear dynamic range of 0.3-26.2 μg mg(-1) is achieved with a detection limit of 0.1 μg mg(-1). Regarding hemoglobin in aqueous solution, the linear range 5-300 μg mL(-1) is achieved along with a detection limit of 2 μg mL(-1).

  17. Application of carbon nanotubes-ionic liquid hybrid in a sensitive atorvastatin ion-selective electrode.

    Science.gov (United States)

    Jalali, Fahimeh; Ardeshiri, Moslem

    2016-12-01

    Atorvastatin (ATR) was determined by a potentiometric method. The ion-pair of ATR and cetyltrimethylammonium bromide (CTAB) was used as a suitable ionophore. A graphite paste electrode was modified with ATR-CTAB ion-pair, multiwalled carbon nanotubes (MWCNTs), and an ionic liquid, 1-butyl-3-mtehyl-imidazolium hexafluorophosphate (BMIMPF6). The amounts of electrode ingredients were optimized (graphite powder: paraffin oil: ATR-CTAB: MWCNTs: BMIMPF6 (58:26:5:8:3 w/w%). Surface characterization was done by using scanning electron microscopy. The potential measurements were recorded at optimized pH by using acetate buffer solution (0.1molL(-1), pH5.5). At the above experimental conditions, calibration curve (E vs. log [ATR]) was linear (R(2)=0.9977) in the concentration range of 1.0×10(-9)-1.0×10(-3)molL(-1) (0.0012-1209mgL(-1)) of ATR with a Nernstian slope of 58.14±0.2mV decade(-1), and detection limit of 1.0×10(-9)molL(-1) (0.0013mgL(-1)). After each injection of ATR to the buffer solution, the potential was stabilized in a very short time (average response time~6s) at 25°C. The modified graphite paste electrode had a long lifetime (>4months). Recovery of the spiked drug to blood serum samples (95.3-98.2%) revealed the reliability of electrode response to ATR. Blood serum samples from consumers were analyzed by the proposed method; the results were comparable with those from HPLC standard method. The potentiometric analysis of ATR tablets by the proposed electrode resulted in a relative error of 0.8% and 1.5% for 20 and 40mg per tablets, respectively. Finally, the electrode was used in potentiometric titration of ATR (1.0×10(-3)molL(-1)) by CTAB (1.0×10(-3)molL(-1)). Excellent accuracy (≈100%) was obtained from the volume of the titrant at the endpoint. Copyright © 2016. Published by Elsevier B.V.

  18. Comparison of ionic selectivity of batrachotoxin-activated channels with different tetrodotoxin dissociation constants.

    Science.gov (United States)

    Huang, L Y; Catterall, W A; Ehrenstein, G

    1979-06-01

    The purpose of these experiments is to test whether the differences between normal and tetrodotoxin-resistant Na+ channels reside in the selectivity filter. To do this, we have compared the selectivity of batrachotoxin-activated channels for alkali cations, organic cations, and nonelectrolytes in two neuroblastoma clonal cell lines: N18, which has normal tetrodotoxin (TTX) sensitivity, and C9, which is relatively TTX-resistant. We have also studied the effect of H+ on Na+ permeability and on the interaction between TTX and its receptor site in both cell lines. There is no qualitative difference between the two cell lines in any of these properties. In both cell lines the batrachotoxin-activated Na+ channels have a selectivity sequence of Tl+ greater than Na+ greater than K+, guanidinium greater than Rb+ greater than Cs+, methylamine. Also, in both cell lines H+ blocks Na+ channels with a pKa of 5.5 and inhibits the action of TTX with the same pKa. These observations indicate that the selectivity filters of the Na+ channels in C9 and N18 do not differ significantly despite the 100-fold difference in TTX-affinity. Our selectivity studies of batrachotoxin-activated Na+ channels for both cell lines suggest that these toxin-activated Na+ channels have a limiting pore size of 3.8 x 6.0 A, as compared to a pore size of 3.0 x 5.0 A for potential-activated Na+ channels.

  19. Use of selective ionic liquids and ionic liquid/salt mixtures as entrainer in a (vapor + liquid) system to separate n-heptane from toluene

    International Nuclear Information System (INIS)

    González, Emilio J.; Navarro, Pablo; Larriba, Marcos; García, Julián; Rodríguez, Francisco

    2015-01-01

    Highlights: • Two thiocyanate-based ionic liquids were tested as entrainers to separate n-heptane and toluene. • (Vapor + liquid) equilibrium data were measured at T = (323.2, 343.2, and 363.2) K. • Relative volatility of n-heptane from toluene using ionic liquids was calculated. • VLE data for {n-heptane + toluene + ionic liquid} mixtures were model using NRTL. • Mixtures of [EMim][SCN]/inorganic salts were also tested as entrainers. - Abstract: During the last years, a large number of studies have evaluated the ability of ionic liquids (ILs) to separate aromatic from aliphatic hydrocarbons by liquid extraction. Nevertheless, in order to design a global process, a post-extraction step based on the aromatic recovery from the extract stream and the regeneration of the IL is required. Taking into account the negligible vapor pressure of the ILs, the use of separation units based on the difference of volatility among the components of the extract could be an appropriate way. However, that requires additional (vapor + liquid) equilibrium (VLE) data, which are scarce today. In this work, the isothermal VLE data for {n-heptane + toluene + 1-ethyl-3-methylimidazolium thiocyanate ([EMim][SCN])} and {n-heptane + toluene + 1-butyl-3-methylimidazolium thiocyanate ([BMim][SCN])} mixtures were experimentally measured at T = (323.2, 343.2 and 363.2) K over the whole composition range within the rich-IL miscibility region. For that, a static headspace gas chromatograph (HS-GC) was used. In addition, the non-random two liquids (NRTL) thermodynamic model was satisfactory applied to correlate the experimental VLE data. Finally, the effect of thiocyanate-based inorganic salts (AgSCN, Co(SCN) 2 and CuSCN) on the phase behavior of the above mentioned mixtures were also analyzed through the experimental determination of the isothermal VLE of the pseudo-ternary systems {n-heptane + toluene + [EMim][SCN]/salt mixture}. The obtained results show that the use of pure thiocyanate

  20. Evaluating the complexation behavior and regeneration of boron selective glucaminium-based ionic liquids when used as extraction solvents

    International Nuclear Information System (INIS)

    Joshi, Manishkumar D.; Steyer, Daniel J.; Anderson, Jared L.

    2012-01-01

    Highlights: ► Glucaminium-based ILs exhibit high selectivity for boron species using DLLME. ► The concentration of glucaminium-based IL affects type of boron complex formed. ► Use of 0.1 M HCl allows for regeneration of the IL solvent following extraction. ► Selectivity of the glucaminium-based ILs for boron species in seawater is similar to Milli-Q water. - Abstract: Glucaminium-based ionic liquids are a new class of solvents capable of extracting boron-species from water with high efficiency. The complexation behavior of these ILs with borate was thoroughly studied using 11 B NMR. Two different complexes, namely, monochelate complex and bischelate complex, were observed. 11 B NMR was used extensively to determine the formation constants for monochelate and bischelate complexes. The IL concentration was observed to have a significant effect on the IL–borate complexes. Using an in situ dispersive liquid–liquid microextraction (in situ DLLME) method, the extraction efficiency for boron species was increased dramatically when lithium bis[(trifluoromethyl)sulfonyl]imide (LiNTf 2 ) was used as the metathesis salt in an aqueous solution containing 0.1 M sodium chloride. IL regeneration after extraction was achieved using 0.1 M hydrochloric acid. The extraction efficiency of boron species was consistent when the IL was employed after three regeneration cycles. The selectivity of the IL for boron species in synthetic seawater samples was similar to performing the same extraction from Milli-Q water samples.

  1. Novel Protic Ionic Liquid Composite Membranes with Fast and Selective Gas Transport Nanochannels for Ethylene/Ethane Separation.

    Science.gov (United States)

    Dou, Haozhen; Jiang, Bin; Xiao, Xiaoming; Xu, Mi; Tantai, Xiaowei; Wang, Baoyu; Sun, Yongli; Zhang, Luhong

    2018-04-25

    Protic ionic liquids (PILs) were utilized for the fabrication of composite membranes containing silver salt as the C 2 H 4 transport carrier to perform C 2 H 4 /C 2 H 6 separation for the first time. The intrinsic nanostructures of PILs were adopted to construct fast and selective C 2 H 4 transport nanochannels. The investigation of structure-performance relationships of composite membranes suggested that transport nanochannels (polar domains of PILs) could be tuned by the sizes of cations, which greatly manipulated activity of the carrier and determined the separation performances of membranes. The role of different carriers in the facilitated transport was studied, which revealed that the PILs were good solvents for dissolution and activation of the carrier due to their hydrogen bond networks and waterlike properties. The operating conditions of separation process were investigated systemically and optimized, confirming C 2 H 4 /C 2 H 6 selectivity was enhanced with the increase of silver salt concentration, the flow rate of sweep gas, and the feed ratio of C 2 H 4 to C 2 H 6 , as well as the decrease of the transmembrane pressure and operating temperature. Furthermore, the composite membranes exhibited long-term stability and obtained very competitive separation performances compared with other results. In summary, PIL composite membranes, which possess good long-term stability, high C 2 H 4 /C 2 H 6 selectivity, and excellent C 2 H 4 permeability, may have a good perspective in industrial C 2 H 4 /C 2 H 6 separation.

  2. Selective ionic liquid ferrofluid based dispersive-solid phase extraction for simultaneous preconcentration/separation of lead and cadmium in milk and biological samples.

    Science.gov (United States)

    Fasih Ramandi, Negin; Shemirani, Farzaneh

    2015-01-01

    For the first time, a selective ionic liquid ferrofluid has been used in dispersive solid phase extraction (IL-FF-D-SPE) for simultaneous preconcentration and separation of lead and cadmium in milk and biological samples combined with flame atomic absorption spectrometry. To improve the selectivity of the ionic liquid ferrofluid, the surface of TiO2 nanoparticles with a magnetic core as sorbent was modified by loading 1-(2-pyridylazo)-2-naphtol. Due to the rapid injection of an appropriate amount of ionic liquid ferrofluid into the aqueous sample by a syringe, extraction can be achieved within a few seconds. In addition, based on the attraction of the ionic liquid ferrofluid to a magnet, no centrifugation step is needed for phase separation. The experimental parameters of IL-FF-D-SPE were optimized using a Box-Behnken design (BBD) after a Plackett-Burman screening design. Under the optimum conditions, the relative standard deviations of 2.2% and 2.4% were obtained for lead and cadmium, respectively (n=7). The limit of detections were 1.21 µg L(-1) for Pb(II) and 0.21 µg L(-1) for Cd(II). The preconcentration factors were 250 for lead and 200 for cadmium and the maximum adsorption capacities of the sorbent were 11.18 and 9.34 mg g(-1) for lead and cadmium, respectively. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Selective extraction of emerging contaminants from water samples by dispersive liquid-liquid microextraction using functionalized ionic liquids.

    Science.gov (United States)

    Yao, Cong; Li, Tianhao; Twu, Pamela; Pitner, William R; Anderson, Jared L

    2011-03-25

    Functionalized ionic liquids containing the tris(pentafluoroethyl)trifluorophosphate (FAP) anion were used as extraction solvents in dispersive liquid-liquid microextraction (DLLME) for the extraction of 14 emerging contaminants from water samples. The extraction efficiencies and selectivities were compared to those of an in situ IL DLLME method which uses an in situ metathesis reaction to exchange 1-butyl-3-methylimidazolium chloride (BMIM-Cl) to 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide (BMIM-NTf(2)). Compounds containing tertiary amine functionality were extracted with high selectivity and sensitivity by the 1-(6-amino-hexyl)-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate (HNH(2)MPL-FAP) IL compared to other FAP-based ILs and the BMIM-NTf(2) IL. On the other hand, polar or acidic compounds without amine groups exhibited higher enrichment factors using the BMIM-NTf(2) IL. The detection limits for the studied analytes varied from 0.1 to 55.1 μg/L using the traditional IL DLLME method with the HNH(2)MPL-FAP IL as extraction solvent, and from 0.1 to 55.8 μg/L using in situ IL DLLME method with BMIM-Cl+LiNTf(2) as extraction solvent. A 93-fold decrease in the detection limit of caffeine was observed when using the HNH(2)MPL-FAP IL compared to that obtained using in situ IL DLLME method. Real water samples including tap water and creek water were analyzed with both IL DLLME methods and yielded recoveries ranging from 91% to 110%. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. An efficient and highly selective ortho-tert-butylation of p-cresol with methyl tert-butyl ether catalyzed by sulfonated ionic liquids

    Directory of Open Access Journals (Sweden)

    Alamdari Reza Fareghi

    2014-01-01

    Full Text Available A novel series of sulfonic acid-functionalized ionic liquids (SFILs was found to act as efficient catalysts for ortho-tert-butylation of p-cresol with methyl tert-butyl ether (MTBE as the tert-butylating agent without an added solvent. The mono o-tert-butylated product was obtained in up to 80.4% isolated yield and 95.2% selectivity under such green conditions. No O-tert-butylated byproducts were formed.

  5. CHEMICAL STABILITY AND ADSORPTION SELECTIVITY ON Cd2+ IONIC IMPRINTED Nannochloropsis sp MATERIAL WITH SILICA MATRIX FROM TETRAETHYL ORTHOSILICATE

    OpenAIRE

    Buhani Buhani; Suharso Suharso; Liza Aprilia

    2012-01-01

    Chemical stability, reusability, and adsorption selectivity of Cd2+ ionic imprinted Nannochloropsis sp with silica matrix (Cd(II)-IIP) from precursor tetraethyl orthosilicate (TEOS) have been studied through adsorption experiment series with batch method. Nannochloropsis sp (Cd(II)-IIP) material was characterized with an infrared spectrophotometer (IR) to identify the functional groups in this material and identification of metal ion concentration was analyzed with an atomic absorption spectr...

  6. Ultrasound-Assisted Extraction of Carnosic Acid and Rosmarinic Acid Using Ionic Liquid Solution from Rosmarinus officinalis

    Science.gov (United States)

    Zu, Ge; Zhang, Rongrui; Yang, Lei; Ma, Chunhui; Zu, Yuangang; Wang, Wenjie; Zhao, Chunjian

    2012-01-01

    Ionic liquid based, ultrasound-assisted extraction was successfully applied to the extraction of phenolcarboxylic acids, carnosic acid and rosmarinic acid, from Rosmarinus officinalis. Eight ionic liquids, with different cations and anions, were investigated in this work and [C8mim]Br was selected as the optimal solvent. Ultrasound extraction parameters, including soaking time, solid–liquid ratio, ultrasound power and time, and the number of extraction cycles, were discussed by single factor experiments and the main influence factors were optimized by response surface methodology. The proposed approach was demonstrated as having higher efficiency, shorter extraction time and as a new alternative for the extraction of carnosic acid and rosmarinic acid from R. officinalis compared with traditional reference extraction methods. Ionic liquids are considered to be green solvents, in the ultrasound-assisted extraction of key chemicals from medicinal plants, and show great potential. PMID:23109836

  7. Designing CO2-resistant oxygen-selective mixed ionic-electronic conducting membranes: guidelines, recent advances, and forward directions.

    Science.gov (United States)

    Zhang, Chi; Sunarso, Jaka; Liu, Shaomin

    2017-05-22

    CO 2 resistance is an enabling property for the wide-scale implementation of oxygen-selective mixed ionic-electronic conducting (MIEC) membranes in clean energy technologies, i.e., oxyfuel combustion, clean coal energy delivery, and catalytic membrane reactors for greener chemical synthesis. The significant rise in the number of studies over the past decade and the major progress in CO 2 -resistant MIEC materials warrant systematic guidelines on this topic. To this end, this review features the pertaining aspects in addition to the recent status and advances of the two most promising membrane materials, perovskite and fluorite-based dual-phase materials. We explain how to quantify and design CO 2 resistant membranes using the Lewis acid-base reaction concept and thermodynamics perspective and highlight the relevant characterization techniques. For perovskite materials, a trade-off generally exists between CO 2 resistance and O 2 permeability. Fluorite materials, despite their inherent CO 2 resistance, typically have low O 2 permeability but this can be improved via different approaches including thin film technology and the recently developed minimum internal electronic short-circuit second phase and external electronic short-circuit decoration. We then elaborate the two main future directions that are centralized around the development of new oxide compositions capable of featuring simultaneously high CO 2 resistance and O 2 permeability and the exploitation of phase reactions to create a new conductive phase along the grain boundaries of dual-phase materials. The final part of the review discusses various complimentary characterization techniques and the relevant studies that can provide insights into the degradation mechanism of oxide-based materials upon exposure to CO 2 .

  8. Polymeric ionic liquid-assembled graphene-immobilized silica composite for selective isolation of human serum albumin from human whole blood.

    Science.gov (United States)

    Liu, Jiawei; Liang, Yixun; Shen, Jiwei; Bai, Quan

    2018-01-01

    Polymeric ionic liquids (PILs) with 1-vinyl-3-ethylimidazolium cations and two different anions of Br - and PF 6 - were assembled onto the surface of graphene (G) nanosheets. The derived two composites, i.e., PIL(Br)-G and PIL(PF 6 )-G, were further efficiently immobilized onto the surface of silica nanoparticles via self-assembly technique. The obtained two PIL-G/SiO 2 nanocomposites exhibited diverse adsorption performances toward proteins through adjusting the anions of PILs. Electrostatic attractions between proteins and the nanocomposites dominated protein adsorption, while the presence of PF 6 - anions weakened electrostatic interactions and deteriorated the selective adsorption of target protein, i.e., bovine serum albumin (BSA) in this case. Specifically, PIL(Br)-G/SiO 2 nanocomposite displayed high selectivity toward BSA and a high adsorption efficiency of ca. 98% was achieved for 100 mg L -1 BSA in a Britton-Robinson (B-R) buffer at pH 5. HPLC analysis demonstrated the selectivity of PIL(Br)-G/SiO 2 nanocomposite toward BSA in the presence of abundant hemoglobin and cytochrome c. The practical applicability was verified by performing selective isolation of human serum albumin (HSA) from human whole blood. Graphical abstract Selective isolation of human serum albumin from blood by polymeric ionic liquid assembled graphene immobilized silica nanocomposite with tunable anions.

  9. Oligomerization of ethylene catalysed by nickel complexes associated with nitrogen ligands in ionic liquids; Oligomerisation de l'ethylene catalysee par des complexes du nickel associes a des ligands azotes dans les liquides ioniques

    Energy Technology Data Exchange (ETDEWEB)

    Lecocq, V.

    2003-09-01

    We report here the use of a new class of catalytic systems based on a nickel active center associated with nitrogen ligands, such as di-imines, or imino-pyridines, for the oligomerization of ethylene in a biphasic medium using ionic liquids as the catalyst solvent. The nickel catalyst is immobilized in the ionic liquid phase in which the olefinic reaction products are poorly miscible. This biphasic system makes possible an easy separation and recycle of the catalyst. Numerous di-imine and imino-pyridine ligands with different steric and electronic properties have been synthesized and their corresponding nickel complexes isolated and characterized. Different ionic liquids, based on chloro-aluminates or non-chloro-aluminates anions, have also been prepared and characterized. The effect of the nature of the ligand, the ionic liquid, the nickel precursor and its mode of activation have been studied and correlated with the selectivity and activity of the transformation of ethylene. (author)

  10. Learning Ionic

    CERN Document Server

    Ravulavaru, Arvind

    2015-01-01

    This book is intended for those who want to learn how to build hybrid mobile applications using Ionic. It is also ideal for people who want to explore theming for Ionic apps. Prior knowledge of AngularJS is essential to complete this book successfully.

  11. Polystyrene-supported pyridinium chloroaluminate ionic liquid as a new heterogeneous Lewis acid catalyst for selective synthesis of benzimidazoles

    Directory of Open Access Journals (Sweden)

    Parvanak Boroujeni Kaveh

    2013-01-01

    Full Text Available Polystyrene-supported pyridinium chloroaluminate ionic liquid was prepared from the reaction of Merrifield resin with pyridine followed by reaction with aluminium chloride. This catalyst was used as a new chemoselective Lewis acid catalyst for the exclusive synthesis of 2-substituted benzimidazoles from the reaction of aldehydes with o-phenylenediamines. The catalyst is stable (as a bench top catalyst and can be easily recovered and reused without appreciable change in its efficiency.

  12. Ionic flotation of complexing oxyanions. Thermodynamics of uranyl complexation in a sulfuric medium. Definition of selectivity conditions of the process

    International Nuclear Information System (INIS)

    Bouzat, G.

    1987-01-01

    Oxyanion ionic flotation process with dodecylamine hydrochloride as collector is studied by investigation of flotation and filtration recovery curves, suspension turbidity, conductimetric measurements, and solubility of ionic species. The process is controlled by chemical reactions of precipitation and by adsorption of surfactant confering hydrophobic or hydrophilic surface properties to the solid phase respectively when one or two monolayers of surfactant are successively adsorbed. Equilibrium constants (in terms of activity) of the uranium (VI) complexation with sulphate oxyanions are calculated through Raman spectroscopic study of uranyl sulphate aqueous solutions. The complexation results in a shift of the symmetrical stretching vibration band of U0 2 to low wavenumbers and an increase of their cross section. The solubility curves of ionic species in the precipitation of uranyl -sulphate complexes by dodecylamine hydrochloride are modelled. The knowledge of solubility products, activity coefficients of the species and critical micellar concentration of the surfactant allow the modelling of flotation recovery curves. Temperature and collector structure modifications are studied in terms of optimization parameters and uranium extraction of mine drainage water is processed. Residual concentration of surfactant is considerably lowered by adsorption on montmorillonite

  13. Selective extraction and recovery of rare earth metals from phosphor powders in waste fluorescent lamps using an ionic liquid system.

    Science.gov (United States)

    Yang, Fan; Kubota, Fukiko; Baba, Yuzo; Kamiya, Noriho; Goto, Masahiro

    2013-06-15

    The recycling of rare earth metals from phosphor powders in waste fluorescent lamps by solvent extraction using ionic liquids was studied. Acid leaching of rare earth metals from the waste phosphor powder was examined first. Yttrium (Y) and europium (Eu) dissolved readily in the acid solution; however, the leaching of other rare earth metals required substantial energy input. Ionization of target rare earth metals from the waste phosphor powders into the leach solution was critical for their successful recovery. As a high temperature was required for the complete leaching of all rare earth metals, ionic liquids, for which vapor pressure is negligible, were used as an alternative extracting phase to the conventional organic diluent. An extractant, N, N-dioctyldiglycol amic acid (DODGAA), which was recently developed, showed a high affinity for rare earth metal ions in liquid-liquid extraction although a conventional commercial phosphonic extractant did not. An effective recovery of the rare earth metals, Y, Eu, La and Ce, from the metal impurities, Fe, Al and Zn, was achieved from the acidic leach solution of phosphor powders using an ionic liquid containing DODGAA as novel extractant system. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. High-capacity hollow porous dummy molecular imprinted polymers using ionic liquid as functional monomer for selective recognition of salicylic acid.

    Science.gov (United States)

    Xiang, Haiyan; Peng, Mijun; Li, Hui; Peng, Sheng; Shi, Shuyun

    2017-01-30

    The existence of strong intramolecular hydrogen bond in salicylic acid (SA) weakens its intermolecular hydrogen bonding with functional monomer, then it is a challenge work to fabricate molecularly imprinted polymers (MIPs) for SA recognition with high capacity and good selectivity. Here, hollow porous dummy MIPs (HPDMIPs) were prepared using benzoic acid (BA) as dummy template, ionic liquid (i.e. 1-vinyl-3-methylimidazolium chloride) as functional monomer, and MCM-48 as sacrificial support. Factors that affected adsorption, such as type of template and porogen, mole ratio of template-functional monomer-cross-linker and type of binding solvent, were optimized in detail. Multiple strong interactions between SA and ionic liquid in HPDMIPs deduced higher binding capacity (29.75mg/g), imprinting factor (5.61) and selectivity than any previously reported MIPs by traditional or surface imprinting technology. The large surface area (543.9m 2 /g) with hollow porous structure resulted in faster kinetic binding (25min). The equilibrium data fitted well to Freundlich equation and the adsorption process could be described by pseudo-second order model. Finally, HPDMIPs were successfully applied to selectively extract and enrich SA from Actinidia chinensis with a relatively high recovery (84.6-94.5%). Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Ultrasound-Assisted Extraction of Carnosic Acid and Rosmarinic Acid Using Ionic Liquid Solution from Rosmarinus officinalis

    Directory of Open Access Journals (Sweden)

    Chunjian Zhao

    2012-09-01

    Full Text Available Ionic liquid based, ultrasound-assisted extraction was successfully applied to the extraction of phenolcarboxylic acids, carnosic acid and rosmarinic acid, from Rosmarinus officinalis. Eight ionic liquids, with different cations and anions, were investigated in this work and [C8mim]Br was selected as the optimal solvent. Ultrasound extraction parameters, including soaking time, solid–liquid ratio, ultrasound power and time, and the number of extraction cycles, were discussed by single factor experiments and the main influence factors were optimized by response surface methodology. The proposed approach was demonstrated as having higher efficiency, shorter extraction time and as a new alternative for the extraction of carnosic acid and rosmarinic acid from R. officinalis compared with traditional reference extraction methods. Ionic liquids are considered to be green solvents, in the ultrasound-assisted extraction of key chemicals from medicinal plants, and show great potential.

  16. Extraction and Chromatographic Determination of Shikimic Acid in Chinese Conifer Needles with 1-Benzyl-3-methylimidazolium Bromide Ionic Liquid Aqueous Solutions

    Science.gov (United States)

    Chen, Fengli; Hou, Kexin; Li, Shuangyang; Zu, Yuangang; Yang, Lei

    2014-01-01

    An ionic liquids-based ultrasound-assisted extraction (ILUAE) method was successfully developed for extracting shikimic acid from conifer needles. Eleven 1-alkyl-3-methylimidazolium ionic liquids with different cations and anions were investigated and 1-benzyl-3-methylimidazolium bromide solution was selected as the solvent. The conditions for ILUAE, including the ionic liquid concentration, ultrasound power, ultrasound time, and liquid-solid ratio, were optimized. The proposed method had good recovery (99.37%–100.11%) and reproducibility (RSD, n = 6; 3.6%). ILUAE was an efficient, rapid, and simple sample preparation technique that showed high reproducibility. Based on the results, a number of plant species, namely, Picea koraiensis, Picea meyeri, Pinus elliottii, and Pinus banksiana, were identified as among the best resources of shikimic acid. PMID:24782942

  17. Thioimidazolium Ionic Liquids as Tunable Alkylating Agents.

    Science.gov (United States)

    Guterman, Ryan; Miao, Han; Antonietti, Markus

    2018-01-19

    Alkylating ionic liquids based on the thioimidazolium structure combine the conventional properties of ionic liquids, including low melting point and nonvolatility, with the alkylating function. Alkyl transfer occurs exclusively from the S-alkyl position, thus allowing for easy derivatization of the structure without compromising specificity. We apply this feature to tune the electrophilicty of the cation to profoundly affect the reactivity of these alkylating ionic liquids, with a caffeine-derived compound possessing the highest reactivity. Anion choice was found to affect reaction rates, with iodide anions assisting in the alkylation reaction through a "shuttling" process. The ability to tune the properties of the alkylating agent using the toolbox of ionic liquid chemistry highlights the modular nature of these compounds as a platform for alkylating agent design and integration in to future systems.

  18. Towards the selection and development of ionic liquids for application in the field of energy generation and storage, and efficient separation- and compression-processes; Zur Auswahl und Entwicklung ionischer Fluessigkeiten fuer spezielle Anwendungen der Energieerzeugung, Energiespeicherung und zur Nutzung in energieeffizienten Trenn- und Kompressionsverfahren

    Energy Technology Data Exchange (ETDEWEB)

    Gerhard, Dirk

    2007-07-01

    The aim of this work is the development of a suitable methodology for the selection of ionic liquids. This approach should be tested for four different applications; the generation and storage of energy, compression and separation. This approach should allow a meaningful and rapid screening of different ionic liquids in order to evaluate the potential of such material in a more efficiently way. The following projects were chosen: Application 1: Dye sensitized solar cells When light irradiates the dye sensitized solar cell it is absorbed by the dye. The electrons that are excited by the extra energy the light provides, can escape from the dye into the TiO2 and diffuse through the TiO2 to the electrode. They are eventually returned to the dye through the electrolyte. The most commonly used electrolyte are based on organic solvents like acetonitrile and often exhibit poor long-term stability.[3] By using electrolytes based on ionic liquids an increase of stability was already reported.[3] The pronounced low vapour pressure of such electrolytes are considered as one reason for this improvement because of the reduced loss of solvent due to evaporation. The aim of this work was the development and optimization of novel ionic liquid based electrolytes for dye sensitized solar cells. Application 2: Compression of Oxygen Compressed oxygen is used for different applications. Beside its common utilization in chemical industry it is used in medicine and steel treatment. Due to the high risk of fire and explosion during the compression the gas is compressed to the desired pressure by using so-called dry running compressors. No lubricant is used in such devices since contamination or ignition of the pure oxygen can occur under operation condition. Compared to lubricated systems the dry running compressors show a lower degree of efficiency and therefore higher energy consumption. In addition there is an increased degree of abrasion. This leads to higher investments and currents

  19. Ionic Liquid Fuels for Chemical Propulsion

    Science.gov (United States)

    2016-10-31

    supplied the drawings, specifications, or other data does not license the holder or any other person or corporation; or convey any rights or...PROPELLANTS 10/2012- 9/2015 BERMAN USAF-AFRL Brand NASA Providing advanced monopropellant based on AFOSR material for spacecraft...demonstration Spacecraft Monopropulsion L,I O Pd IONIC LIQUID- BASED PROPELLANTS 6/2012- 12/2014 BERMAN USAF-AFRL Brand Aerojet Providing advanced

  20. Structures of Ionic Liquids Dictate the Conversion and Selectivity of Enzymatic Glycerolysis: Theoretical Characterization by COSMO-RS

    DEFF Research Database (Denmark)

    Guo, Zheng

    2008-01-01

    Lipase-catalyzed glycerolysis of triolein has been examined using a group of tetraammonium-based ionic liquids (ILs) as media, specifically with functional groups in cation part. The results demonstrated that the reaction evolution and profile specificity of respective IL system could be quantita......Lipase-catalyzed glycerolysis of triolein has been examined using a group of tetraammonium-based ionic liquids (ILs) as media, specifically with functional groups in cation part. The results demonstrated that the reaction evolution and profile specificity of respective IL system could...... be quantitatively associated with the structural characteristics of the IL by means of quantum chemical and COSMO-RS calculation. Misfit interaction, Van der Waals interaction and chemical potential, etc. derived from COSMO-RS calculation are shown to be effective measures to delineate multiple interactions of ILs....... This might be of general value to help to understand the multiple solvation interaction among IL reaction systems at molecular level and promote the application of IL-mediated reactions to practical interests....

  1. Selective determination of inorganic cobalt in nutritional supplements by ultrasound-assisted temperature-controlled ionic liquid dispersive liquid phase microextraction and electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Berton, Paula; Martinis, Estefania M. [Analytical Chemistry Research and Development Group (QUIANID), (LISAMEN-CCT-CONICET-Mendoza), Av. Ruiz Leal S/N Parque General San Martin, M 5502 IRA Mendoza (Argentina); Martinez, Luis D. [INQUISAL-CONICET, Departamento de Quimica Analitica, Facultad de Quimica, Bioquimica y Farmacia, Universidad Nacional de San Luis, San Luis (Argentina); Wuilloud, Rodolfo G., E-mail: rwuilloud@mendoza-conicet.gob.ar [Analytical Chemistry Research and Development Group (QUIANID), (LISAMEN-CCT-CONICET-Mendoza), Av. Ruiz Leal S/N Parque General San Martin, M 5502 IRA Mendoza (Argentina); Instituto de Ciencias Basicas, Universidad Nacional de Cuyo, Mendoza (Argentina)

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer Synergy of ultrasound energy and TILDLME technique for improved metal extraction. Black-Right-Pointing-Pointer Highly selective determination of inorganic Co species at trace levels. Black-Right-Pointing-Pointer Speciation analysis of Co in several nutritional supplements with highly complex matrices. Black-Right-Pointing-Pointer Development of an environmentally friendly microextraction technique with minimal waste production and sample consumption. - Abstract: In the present work, a simple and rapid analytical method based on application of ionic liquids (ILs) for inorganic Co(II) species (iCo) microextraction in a variety of nutrient supplements was developed. Inorganic Co was initially chelated with 1-nitroso-2-naphtol (1N2N) reagent followed by a modern technique named ultrasound-assisted temperature-controlled ionic liquid dispersive liquid phase microextraction (USA-TILDLME). The extraction was performed with 1-hexyl-3-methylimidazolium hexafluorophosphate [C{sub 6}mim][PF{sub 6}] with the aid of ultrasound to improve iCo recovery. Finally, the iCo-enriched IL phase was solubilized in methanol and directly injected into an electrothermal atomic absorption spectrometer (ETAAS). Several parameters that could influence iCo microextraction and detection were carefully studied. Since the main difficulty in these samples is caused by high concentrations of potential interfering ions, different approaches were evaluated to eliminate interferences. The limit of detection (LOD) was 5.4 ng L{sup -1}, while the relative standard deviation (RSD) was 4.7% (at 0.5 {mu}g L{sup -1} Co level and n = 10), calculated from the peak height of absorbance signals. Selective microextraction of iCo species was achieved only by controlling the pH value during the procedure. The method was thus successfully applied for determination of iCo species in nutritional supplements.

  2. Activity coefficients at infinite dilution and physicochemical properties for organic solutes and water in the ionic liquid 4-(2-methoxyethyl)-4-methylmorpholinium bis(trifluoromethylsulfonyl)-amide

    International Nuclear Information System (INIS)

    Marciniak, Andrzej; Wlazło, Michał

    2012-01-01

    The activity coefficients at infinite dilution, γ 13 ∞ and gas–liquid partition coefficients, K L for 62 solutes: alkanes, alkenes, alkynes, cycloalkanes, aromatic hydrocarbons, alcohols, thiophene, ethers, ketones, esters, 1-nitropropane, butanal, acetonitrile, acetic acid and water in the ionic liquid 4-(2-methoxyethyl)-4-methylmorpholinium bis(trifluoromethylsulfonyl)-amide were determined by gas–liquid chromatography at the temperatures from (318.15 to 368.15) K. The partial molar excess Gibbs free energies ΔG 1 E,∞ , enthalpies ΔH 1 E,∞ and entropies ΔS 1 E,∞ at infinite dilution were calculated from the experimental γ 13 ∞ values obtained over the temperature range. The selectivities for selected compounds which form azeotropic mixtures were calculated from the γ 13 ∞ and compared to the literature values for other ionic liquids based on bis(trifluoromethylsulfonyl)-amide anion.

  3. Modified Ionic Liquid-Based High-Performance Lubricants for Robotic Operations Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA requires a highly efficient lubrication system for robotic operations, which will withstand very low temperatures (20 K) and other rigors of outer space and...

  4. Ionic-Liquid-Based Acidic Aqueous Biphasic Systems for Simultaneous Leaching and Extraction of Metallic Ions.

    Science.gov (United States)

    Gras, Matthieu; Papaiconomou, Nicolas; Schaeffer, Nicolas; Chainet, Eric; Tedjar, Farouk; Coutinho, Joao A P; Billard, Isabelle

    2018-02-05

    The first instance of an acidic aqueous biphasic system (AcABS) based on tributyltetradecyl phosphonium chloride ([P 44414 ][Cl]) and an acid is here reported. This AcABS exhibits pronounced thermomorphic behavior and is shown to be applicable to the extraction of metal ions from concentrated acidic solutions. Metal ions such as cobalt(II), iron(III), platinum(IV) and nickel(II) are found to partition preferentially to one of the phases of the acidic aqueous biphasic system and it is here shown that it successfully allows the difficult separation of Co II from Ni II , here studied at 24 and 50 °C. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Modified Ionic Liquid-Based High-Performance Lubricants for Robotic Operations, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA requires a highly efficient lubrication system for robotic operations, which will withstand very low temperatures (20 K) and other rigors of outer space and...

  6. Modified Ionic Liquid-Based Phase Change Materials as Effective Heat Exchangers, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Future manned spacecraft venturing into deep space will require sophisticated thermal control systems to protect against extreme environments ranging from direct...

  7. Modified Ionic Liquid-Based Phase Change Materials as Effective Heat Exchangers, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Future manned mission venturing into deep space will require sophisticated thermal control systems to protect against extreme environments ranging from direct...

  8. Modified Ionic Liquid-Based High-Performance Lubricants for Robotic Operations, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA needs an advanced lubrication solution for its future robotic systems and planetary surface assets. The required lubrication technology must offer...

  9. Synthesis, Characterization, Thermal Analyses, and Spectroscopic Properties of Novel Naphthyl-Functionalized Imidazolium Ionic Liquids

    Science.gov (United States)

    Yao, Meihuan; Li, Qing; Xia, Yanqiu; Liang, Yongmin

    2018-03-01

    A series of novel ionic liquids based on naphthyl-functionalized imidazolium cation have been prepared. Their structure was characterized by NMR. The thermal stabilities of the prepared liquids were studied by thermal gravimetric analysis. The new ionic liquids containing NTf- 2 anion display significantly higher thermal stabilities (>400°C). Anion exchange to PF- 6, BF- 4, and Br- decreases the thermal stabilities of such ionic liquids. Fluorescence and UV-Vis absorption spectroscopy were used to study the spectroscopic properties of the ionic liquids. Compared with common ionic liquids, the described ionic liquids provide robust fluorescence properties and remarkably increased UV-Vis absorption. This research may enrich the field of functionalized ionic liquids and provide a platform for extension of ionic liquid applications.

  10. Battery electrolytes based on saturated ring ionic liquids: Physical and electrochemical properties

    International Nuclear Information System (INIS)

    Di Leo, Roberta A.; Marschilok, Amy C.; Takeuchi, Kenneth J.; Takeuchi, Esther S.

    2013-01-01

    Physical and electrochemical properties of mixtures of ionic liquids based on saturated ring systems with carbonate based solvents were investigated. The conductivity and electrochemical stability of two series of ionic liquids based on piperidinium and pyrrolidinium cations with tetrafluoroborate and bis(trifluorosulfonylimide) anions were evaluated. The effects of the ionic liquid cation, substituent chain length of the cation function group, and the anion type on conductivity and electrochemical stability as determined by cyclic voltammetry were studied. The conductivity was influenced by the substituent chain length of the ionic liquid cation and the solvent carbonate type, where higher conductivities were observed with shorter substituent chains and EC versus PC. The saturated ring ionic liquid–carbonate mixtures may show particular promise for implementation as battery electrolytes due to notable high voltage stabilities, where stability >5.5 V was maintained in the presence of lithium salt. This study should promote development of future safe, high voltage lithium ion battery systems

  11. Effect of ionic strength and cationic DNA affinity binders on the DNA sequence selective alkylation of guanine N7-positions by nitrogen mustards

    International Nuclear Information System (INIS)

    Hartley, J.A.; Forrow, S.M.; Souhami, R.L.

    1990-01-01

    Large variations in alkylation intensities exist among guanines in a DNA sequence following treatment with chemotherapeutic alkylating agents such as nitrogen mustards, and the substituent attached to the reactive group can impose a distinct sequence preference for reaction. In order to understand further the structural and electrostatic factors which determine the sequence selectivity of alkylation reactions, the effect of increase ionic strength, the intercalator ethidium bromide, AT-specific minor groove binders distamycin A and netropsin, and the polyamine spermine on guanine N7-alkylation by L-phenylalanine mustard (L-Pam), uracil mustard (UM), and quinacrine mustard (QM) was investigated with a modification of the guanine-specific chemical cleavage technique for DNA sequencing. The result differed with both the nitrogen mustard and the cationic agent used. The effect, which resulted in both enhancement and suppression of alkylation sites, was most striking in the case of netropsin and distamycin A, which differed from each other. DNA footprinting indicated that selective binding to AT sequences in the minor groove of DNA can have long-range effects on the alkylation pattern of DNA in the major groove

  12. Hollow porous ionic liquids composite polymers based solid phase extraction coupled online with high performance liquid chromatography for selective analysis of hydrophilic hydroxybenzoic acids from complex samples.

    Science.gov (United States)

    Dai, Xingping; Wang, Dongsheng; Li, Hui; Chen, Yanyi; Gong, Zhicheng; Xiang, Haiyan; Shi, Shuyun; Chen, Xiaoqing

    2017-02-10

    Polar and hydrophilic properties of hydroxybenzoic acids usually made them coelute with interferences in high performance liquid chromatography (HPLC) analysis. Then selective analysis of them was necessary. Herein, hollow porous ionic liquids composite polymers (PILs) based solid phase extraction (SPE) was firstly fabricated and coupled online with HPLC for selective analysis of hydroxybenzoic acids from complex matrices. Hollow porous PILs were firstly synthesized using Mobil Composition of Matter No. 48 (MCM-48) spheres as sacrificial support, 1-vinyl-3-methylimidazolium chloride (VMIM + Cl - ) as monomer, and ethylene glycol dimethacrylate (EGDMA) as cross-linker. Various parameters affecting synthesis, adsorption and desorption behaviors were investigated and optimized. Steady-state adsorption studies showed the resulting hollow porous PILs exhibited high adsorption capacity, fast adsorption kinetics, and excellent specific adsorption. Subsequently, the application of online SPE system was studied by selective analysis of protocatechuic acid (PCA), 4-hydroxybenzoic acid (4-HBA), and vanillic acid (VA) from Pollen Typha angustifolia. The obtained limit of detection (LOD) varied from 0.002 to 0.01μg/mL, the linear range (0.05-5.0μg/mL) was wide with correlation coefficient (R) from 0.9982 to 0.9994, and the average recoveries at three spiking levels ranged from 82.7 to 102.4%, with column-to-column relative standard deviation (RSD) below 8.1%. The proposed online method showed good accuracy, precision, specificity and convenience, which opened up a universal and efficient route for selective analysis of hydroxybenzoic acids from complex samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Ion-Selective Ionic Polymer Metal Composite (IPMC) Actuator Based on Crown Ether Containing Sulfonated Poly(Arylene Ether Ketone)

    NARCIS (Netherlands)

    Tas, Sinem; Zoetebier, Bram; Sardan Sukas, Ö.; Bayraktar, Muharrem; Hempenius, Mark A.; Vancso, Gyula J.; Nijmeijer, Dorothea C.

    This study introduces the concept of ion selective actuation in polymer metal composite actuators, employing crown ether bearing aromatic polyether materials. For this purpose, sulfonated poly(arylene ether ketone) (SPAEK) and crown ether containing SPAEK with molar masses suitable for membrane

  14. Application and recovery of ionic liquids in the preparative separation of four flavonoids from Rhodiola rosea by on-line three-dimensional liquid chromatography.

    Science.gov (United States)

    Ma, Shufeng; Hu, Liming; Ma, Chaoyang; Lv, Wenping; Wang, Hongxin

    2014-09-01

    A novel on-line three-dimensional liquid chromatography method was developed to separate four main flavonoids from Rhodiola rosea. Ethyl acetate/0.5 mol/L ionic liquid 1-butyl-3-methylimidazolium chloride aqueous solution was selected as the solvent system. In the first-dimension separation, the target flavonoids were entrapped and subsequently desorbed into the second-dimension high-speed countercurrent chromatographic column for separation. In the third-dimension chromatography, the residual ionic liquid in the four separated flavonoids was removed and the used ionic liquid was recovered. As a result, 35.1 mg of compound 1, 20.4 mg of compound 2, 8.5 mg of compound 3, and 10.6 mg of compound 4 were obtained from 1.53 g R. rosea extract. They were identified as rhodiosin, rhodionin, herbacetin, and kaempferol, respectively. The recovery of ionic liquid reached 99.1% of the initial amount. The results showed that this method is a powerful technology for the separation of R. rosea flavonoids and that the ionic-liquid-based solvent system has advantages over traditional solvent systems in renewable and environmentally friendly properties. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Ionic liquid and nanoparticle hybrid systems: Emerging applications.

    Science.gov (United States)

    He, Zhiqi; Alexandridis, Paschalis

    2017-06-01

    Having novel electronic and optical properties that emanate from their nano-scale dimensions, nanoparticles are central to numerous applications. Ionic liquids can confer to nanoparticle chemical protection and physicochemical property enhancement through intermolecular interactions and can consequently improve the stability and reusability of nanoparticle for various operations. With an aim to combine the novel properties of nanoparticles and ionic liquids, different structures have been generated, based on a balance of several intermolecular interactions. Such ionic liquid and nanoparticle hybrids are showing great potential in diverse applications. In this review, we first introduce various types of ionic liquid and nanoparticle hybrids, including nanoparticle colloidal dispersions in ionic liquids, ionic liquid-grafted nanoparticles, and nanoparticle-stabilized ionic liquid-based emulsions. Such hybrid materials exhibit interesting synergisms. We then highlight representative applications of ionic liquid and nanoparticle hybrids in the catalysis, electrochemistry and separations fields. Such hybrids can attain better stability and higher efficiency under a broad range of conditions. Novel and enhanced performance can be achieved in these applications by combining desired properties of ionic liquids and of nanoparticles within an appropriate hybrid nanostructure. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Ionic Liquid Crystals: Versatile Materials.

    Science.gov (United States)

    Goossens, Karel; Lava, Kathleen; Bielawski, Christopher W; Binnemans, Koen

    2016-04-27

    This Review covers the recent developments (2005-2015) in the design, synthesis, characterization, and application of thermotropic ionic liquid crystals. It was designed to give a comprehensive overview of the "state-of-the-art" in the field. The discussion is focused on low molar mass and dendrimeric thermotropic ionic mesogens, as well as selected metal-containing compounds (metallomesogens), but some references to polymeric and/or lyotropic ionic liquid crystals and particularly to ionic liquids will also be provided. Although zwitterionic and mesoionic mesogens are also treated to some extent, emphasis will be directed toward liquid-crystalline materials consisting of organic cations and organic/inorganic anions that are not covalently bound but interact via electrostatic and other noncovalent interactions.

  17. Super ionic conductive glass

    Science.gov (United States)

    Susman, S.; Volin, K.J.

    Described is an ionically conducting glass for use as a solid electrolyte in a power or secondary cell containing an alkali metal-containing anode and a cathode separated by an alkali metal ion conducting glass having an ionic transference number of unity and the general formula: A/sub 1 + x/D/sub 2-x/3/Si/sub x/P/sub 3 - x/O/sub 12 - 2x/3/, wherein A is a network modifier for the glass and is an alkali metal of the anode, D is an intermediate for the glass and is selected from the class consisting of Zr, Ti, Ge, Al, Sb, Be, and Zn and X is in the range of from 2.25 to 3.0. Of the alkali metals, Na and Li are preferred and of the intermediate, Zr, Ti and Ge are preferred.

  18. Surface engineering of a chromium metal-organic framework with bifunctional ionic liquids for selective CO2 adsorption: Synergistic effect between multiple active sites.

    Science.gov (United States)

    Chen, Chong; Feng, Nengjie; Guo, Qirui; Li, Zhong; Li, Xue; Ding, Jing; Wang, Lei; Wan, Hui; Guan, Guofeng

    2018-07-01

    Targeting CO 2 capture application, a new strategy for building multiple adsorption sites in metal-organic framework MIL-101(Cr) was constructed through the incorporation of diethylenetriamine-based ionic liquid (DETA-Ac) via a post-synthetic modification approach. The DETA-Ac, with multi-amine-tethered cation and acetate anion, could not only provide additional binding sites, but also enhance the affinity of framework surfaces toward CO 2 . Simultaneously, the high surface area and large cage size of MIL-101(Cr) ensured the better dispersion of IL, thus exposing more active sites for CO 2 adsorption. In addition, enough free space was still retained after functionalization, which facilitated CO 2 transport and allowed the Cr(III) sites deep within the pores to be accessed. The multiple adsorption sites originating from IL and MOF were found to synergistically affect the CO 2 capture performance of the composite. The adsorption capacity and selectivity of DETA-Ac@MIL-101(Cr) for CO 2 were significantly improved. The higher isosteric heats of adsorption (Q st ) evidenced the stronger interaction between the composite and CO 2 molecules. Moreover, a possible two-step mechanism was proposed to reveal the manner in which CO 2 bound to the IL-incorporated frameworks. Despite the relatively high initial Q st value, the DETA-Ac@MIL-101(Cr) could be easily regenerated with almost no drop in CO 2 uptake during six cycles. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. The structure of normal ionic micelles by interpretation of small-angle neutron scattering data from selectively labeled (2H, 19F) surfactant solutions

    International Nuclear Information System (INIS)

    Berr, S.S.

    1986-12-01

    We have determined the structure of micelles formed in water by several classes of ionic surfactants under a variety of experimental conditions using small-angle neutron scattering (SANS) techniques. Contrast between the micelles and the solvent was achieved through either selective deuteration or fluorination of the surfactant, or through the use of D 2 O. Interpretation of SANS data was facilitated by the use of Hayter, Penfold, and Hansen's rescaled Mean Spherical Approximation theory to calculate the scattering due to interparticle interactions. We have devised a number of micelle models, both spherical and ellipsoidal, to account for the scattering due to single micelles. It was found that changing the solvent from H 2 O to D 2 O results in the formation of larger micelles due to changes in the solvent-surfactant hydrocarbon interactions. This solvent isotope effect increased as the length of the alkyl chain increased. The fractional micellar charge did not change with respect to isotopic composition of solvent. We found that alkyltrimethylammonium bromide surfactants form drier micelles than do the sodium alkyl sulfate surfactants of equal chain length. Also, all micelles studied were found to be dry near the critical micelle concentration (cmc) and to become increasingly wetter as the concentration increased. The increase in aggregation number with respect to the square root of surfactant concentration was found to be linear for all systems studied. 80 figs

  20. [Potential-dependent changes in the ionic selectivity of batrachotoxin-modified sodium channels of a frog nerve fiber].

    Science.gov (United States)

    Mozhaeva, G N; Naumov, A P; Khodorov, B I

    1983-01-01

    Currents through batrachotoxin-modified sodium channels in frog myelinated fibres were measured under voltage-clamp conditions. Reversal potential (Erev) of steady-state currents is shown to be about 5 mV less positive than Erev of initial (peak) currents. Control experiments with procaine and tetrodotoxin in external solutions showed that this shift of Erev during depolarizing pulse cannot be accounted for by the presence of unmodified sodium channels, unblocked potassium channels, nonlinearity of the leakage or any changes in transmembrane gradients of current-carrying cations. "Instantaneous" current measurements showed that Erev becomes less positive as amplitude and duration of preliminary depolarization increase. The results obtained are consistent with assumption that sodium-potassium selectivity of the batrachotoxin-modified channels depends on potential.

  1. Computer-Assisted Design of Imidazolate-Based Ionic Liquids for Improving Sulfur Dioxide Capture, Carbon Dioxide Capture, and Sulfur Dioxide/Carbon Dioxide Selectivity.

    Science.gov (United States)

    Cui, Guokai; Zhao, Ning; Wang, Jianji; Wang, Congmin

    2017-11-02

    A new strategy involving the computer-assisted design of substituted imidazolate-based ionic liquids (ILs) through tuning the absorption enthalpy as well as the basicity of the ILs to improve SO 2 capture, CO 2 capture, and SO 2 /CO 2 selectivity was explored. The best substituted imidazolate-based ILs as absorbents for different applications were first predicted. During absorption, high SO 2 capacities up to ≈5.3 and 2.4 molSO2  mol IL -1 could be achieved by ILs with the methylimidazolate anions under 1.0 and 0.1 bar (1 bar=0.1 MPa), respectively, through tuning multiple N⋅⋅⋅S interactions between SO 2 and the N atoms in the imidazolate anion with different substituents. In addition, CO 2 capture by the imidazolate-based ILs could also be easily tuned through changing the substituents of the ILs, and 4-bromoimidazolate IL showed a high CO 2 capacity but a low absorption enthalpy. Furthermore, a high selectivity for SO 2 /CO 2 could be reached by IL with 4,5-dicyanoimidazolate anion owing to its high SO 2 capacity but low CO 2 capacity. The results put forward in this work are in good agreement with the predictions. Quantum-chemical calculations and FTIR and NMR spectroscopy analysis methods were used to discuss the SO 2 and CO 2 absorption mechanisms. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Membrane separation of ionic liquid solutions

    Science.gov (United States)

    Campos, Daniel; Feiring, Andrew Edward; Majumdar, Sudipto; Nemser, Stuart

    2015-09-01

    A membrane separation process using a highly fluorinated polymer membrane that selectively permeates water of an aqueous ionic liquid solution to provide dry ionic liquid. Preferably the polymer is a polymer that includes polymerized perfluoro-2,2-dimethyl-1,3-dioxole (PDD). The process is also capable of removing small molecular compounds such as organic solvents that can be present in the solution. This membrane separation process is suitable for drying the aqueous ionic liquid byproduct from precipitating solutions of biomass dissolved in ionic liquid, and is thus instrumental to providing usable lignocellulosic products for energy consumption and other industrial uses in an environmentally benign manner.

  3. Thermotropic Ionic Liquid Crystals

    Science.gov (United States)

    Axenov, Kirill V.; Laschat, Sabine

    2011-01-01

    The last five years’ achievements in the synthesis and investigation of thermotropic ionic liquid crystals are reviewed. The present review describes the mesomorphic properties displayed by organic, as well as metal-containing ionic mesogens. In addition, a short overview on the ionic polymer and self-assembled liquid crystals is given. Potential and actual applications of ionic mesogens are also discussed. PMID:28879986

  4. Thermotropic Ionic Liquid Crystals.

    Science.gov (United States)

    Axenov, Kirill V; Laschat, Sabine

    2011-01-14

    The last five years' achievements in the synthesis and investigation of thermotropic ionic liquid crystals are reviewed. The present review describes the mesomorphic properties displayed by organic, as well as metal-containing ionic mesogens. In addition, a short overview on the ionic polymer and self-assembled liquid crystals is given. Potential and actual applications of ionic mesogens are also discussed.

  5. Thermotropic Ionic Liquid Crystals

    OpenAIRE

    Axenov, Kirill V.; Laschat, Sabine

    2011-01-01

    The last five years’ achievements in the synthesis and investigation of thermotropic ionic liquid crystals are reviewed. The present review describes the mesomorphic properties displayed by organic, as well as metal-containing ionic mesogens. In addition, a short overview on the ionic polymer and self-assembled liquid crystals is given. Potential and actual applications of ionic mesogens are also discussed.

  6. Activity coefficients at infinite dilution and physicochemical properties for organic solutes and water in the ionic liquid 1-(2-methoxyethyl)-1-methylpiperidinium bis(trifluoromethylsulfonyl)-amide

    International Nuclear Information System (INIS)

    Marciniak, Andrzej; Wlazło, Michał

    2012-01-01

    Highlights: The and KL for 61 solutes in the ionic liquid [COC2mPIP][NTf2] were determined by IGC at different temperatures. ► The partial molar excess Gibbs energies, enthalpies and entropies at infinite dilution were calculated. ► The selectivities for selected compounds which form azeotropic mixtures were calculated and compared to other ILs. ► LFER system constants as a function of temperature for [COC2mPIP][NTf2] were calculated. - Abstract: The activity coefficients at infinite dilution, γ ∞ and gas–liquid partition coefficients, K L for 61 solutes: alkanes, alkenes, alkynes, cycloalkanes, aromatic hydrocarbons, alcohols, thiophene, ethers, ketones, esters, 1-nitropropane, butanal, acetonitrile, and water in the ionic liquid 1-(2-methoxyethyl)-1-methylpiperidinium bis(trifluoromethylsulfonyl)-amide were determined by inverse gas chromatography at the temperatures from (318.15 to 368.15) K. The partial molar excess Gibbs free energies ΔG 1 E,∞ , enthalpies ΔH 1 E,∞ and entropies ΔS 1 E,∞ at infinite dilution were calculated from the experimental γ ∞ values obtained over the temperature range. The selectivities for selected compounds, which form azeotropic mixtures, were calculated from the γ ∞ and compared to the literature values for other ionic liquids based on bis(trifluoromethylsulfonyl)-amide anion.

  7. Ionic liquid containing hydroxamate and N-alkyl sulfamate ions

    Science.gov (United States)

    Friesen, Cody A.; Wolfe, Derek; Johnson, Paul Bryan

    2016-03-15

    Embodiments of the invention are related to ionic liquids and more specifically to ionic liquids used in electrochemical metal-air cells in which the ionic liquid includes a cation and an anion selected from hydroxamate and/or N-alkyl sulfamate anions.

  8. Ionic fluxes in erythrocyte membranes of sickle cell anaemia ...

    African Journals Online (AJOL)

    Ionic fluxes in erythrocyte membranes of sickle cell anaemia subjects at different tonicities. ... Journal of African Association of Physiological Sciences ... The aim of this study was to investigate ionic fluxes in membrane of erythrocytes at different tonicities with a view to highlighting any selective ionic-fluxing potential of ...

  9. Studies on electrical double layer capacitor with a low-viscosity ionic ...

    Indian Academy of Sciences (India)

    1Present address: Center for Autonomous Solar Power (CASP), Binghamton University, State University of New York,. Binghamton, NY 13902, USA. MS received 4 October 2011; revised 22 ... Recently, some ionic liquids based EDLCs are reported with different car- bon electrodes (Lewandowski and Galinski 2004; Xu et ...

  10. A novel solution configuration on liquid-based endometrial cytology.

    Directory of Open Access Journals (Sweden)

    Shulan Lv

    Full Text Available Early detection and diagnosis of endometrial carcinoma and precancerous change would undoubtedly become the most alluring part for researchers. With the emergence of endometrial brush samplers, a new upsurge in endometrial cytology is in the making. But endometrial specimens obtained by the endometrial brush samplers require special preservation solution. The objective of this study is to develop a new kind of endometrial-cell preservation solution and to test the availability compared with a patented liquid-based cell preservation solution.In this controlled study, we had 5 endometrial cases collected with Li Brush from the First Affiliated Hospital of Xi'an Jiaotong University (09/2016 to 12/2016. The samples of each case were collected 2 times separately and perserved in different perservation solutions. One was a kind of novel endometrial cell preservation solution and the other was a kind of patented liquid-based cell (LBC preservation solution. The endometrial cells were smeared on slides by using the ZP-C automated slide preparation system and stained with Papanicolaou stain. A semi-quantitative scoring system was used to analyze the quality of slides. Statistical analysis was performed using the Wilcoxon signed rank test on the SPSS program (SPSS 18.0. In all LBC preparations, endometrial cells from the novel endometrial cells preservation solution had more cell quantity, less red blood cell fragments, and the background was cleaner compared with control group. Although the novel endometrial-cell preservation solution showed cellularity and absence of blood and debris expressed by no statistically significant differences (p = 0.063 and 0.102 respectively. The preservation period of the two kinds of liquids was equivalent.The novel endometrial-cell preservation solution is superior to the liquid-base cell preservation solution for cervical cells, with clear background, diagnostic cells and low cost.

  11. Thermotropic Ionic Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Sabine Laschat

    2011-01-01

    Full Text Available The last five years’ achievements in the synthesis and investigation of thermotropic ionic liquid crystals are reviewed. The present review describes the mesomorphic properties displayed by organic, as well as metal-containing ionic mesogens. In addition, a short overview on the ionic polymer and self-assembled liquid crystals is given. Potential and actual applications of ionic mesogens are also discussed.

  12. Newly developed liquid-based cytology. TACAS™: cytological appearance and HPV testing using liquid-based sample.

    Science.gov (United States)

    Kubushiro, Kaneyuki; Taoka, Hideki; Sakurai, Nobuyuki; Yamamoto, Yasuhiro; Kurasaki, Akiko; Asakawa, Yasuyuki; Iwahara, Minoru; Takahashi, Kei

    2011-09-01

    Cell profiles determined by the thin-layer advanced cytology assay system (TACAS™), a liquid-based cytology technique newly developed in Japan, were analyzed in this study. Hybrid capture 2 (HC-2) was also performed using the liquid-based samples prepared by TACAS to ascertain its ability to detect human papillomavirus (HPV). Cell collection samples from uterine cervix were obtained from 359 patients and examined cytologically. A HC-2 assay for HPV was carried out in the cell specimens. All specimens were found to show background factors such as leukocytes. After excluding the 5 unsatisfactory cases from the total 354 cases, 82 cases (23.2%) were positive and 272 cases (76.8%) were negative for HPV. Cell specimens from 30 HPV-positive cases and 166 HPV-negative cases were subjected to 4 weeks of preservation at room temperature. Then, when subsequently re-assayed, 28 cases (93.3%) in the former group were found to be HPV positive and 164 cases (98.8%) in the latter group were found to be HPV negative. These results supported the excellent reproducibility of TACAS for HPV testing. A reasonable inference from the foregoing analysis is that TACAS may be distinguished from other liquid-based cytological approaches, such as ThinPrep and SurePath, in that it can retain the cell backgrounds. Furthermore, this study raises the possibility that cell specimens prepared using TACAS could be preserved for at least 4 weeks prior to carrying out a HC-2 assay for HPV.

  13. Ionic Liquid-Liquid Chromatography: A New General Purpose Separation Methodology.

    Science.gov (United States)

    Brown, Leslie; Earle, Martyn J; Gîlea, Manuela A; Plechkova, Natalia V; Seddon, Kenneth R

    2017-08-10

    Ionic liquids can form biphasic solvent systems with many organic solvents and water, and these solvent systems can be used in liquid-liquid separations and countercurrent chromatography. The wide range of ionic liquids that can by synthesised, with specifically tailored properties, represents a new philosophy for the separation of organic, inorganic and bio-based materials. A customised countercurrent chromatograph has been designed and constructed specifically to allow the more viscous character of ionic liquid-based solvent systems to be used in a wide variety of separations (including transition metal salts, arenes, alkenes, alkanes, bio-oils and sugars).

  14. Selective Ion Transporting Polymerized Ionic Liquid Membrane Separator for Enhancing Cycle Stability and Durability in Secondary Zinc-Air Battery Systems.

    Science.gov (United States)

    Hwang, Ho Jung; Chi, Won Seok; Kwon, Ohchan; Lee, Jin Goo; Kim, Jong Hak; Shul, Yong-Gun

    2016-10-05

    Rechargeable secondary zinc-air batteries with superior cyclic stability were developed using commercial polypropylene (PP) membrane coated with polymerized ionic liquid as separators. The anionic exchange polymer was synthesized copolymerizing 1-[(4-ethenylphenyl)methyl]-3-butylimidazolium hydroxide (EBIH) and butyl methacrylate (BMA) monomers by free radical polymerization for both functionality and structural integrity. The ionic liquid induced copolymer was coated on a commercially available PP membrane (Celguard 5550). The coat allows anionic transfer through the separator and minimizes the migration of zincate ions to the cathode compartment, which reduces electrolyte conductivity and may deteriorate catalytic activity by the formation of zinc oxide on the surface of the catalyst layer. Energy dispersive X-ray spectroscopy (EDS) data revealed the copolymer-coated separator showed less zinc element in the cathode, indicating lower zinc crossover through the membrane. Ion coupled plasma optical emission spectroscopy (ICP-OES) analysis confirmed over 96% of zincate ion crossover was reduced. In our charge/discharge setup, the constructed cell with the ionic liquid induced copolymer casted separator exhibited drastically improved durability as the battery life increased more than 281% compared to the pure commercial PP membrane. Electrochemical impedance spectroscopy (EIS) during the cycle process elucidated the premature failure of cells due to the zinc crossover for the untreated cell and revealed a substantial importance must be placed in zincate control.

  15. IONIC LIQUIDS MATERIAL AS MODERN CONTEXT OF CHEMISTRY IN SCHOOL

    Directory of Open Access Journals (Sweden)

    Hernani Hernani

    2016-04-01

    Full Text Available One way to improve students’ chemistry literacy which is demanded in the modernization of modern technology-based chemistry learning is by studying ionic liquids. Low level of scientific literacy of students in Indonesia as revealed in the PISA in 2012 was the main reason of the research. Ionic liquids-based technology are necessary to be applied as a context for learning chemistry because: (1 the attention of the scientific an technology community in the use of ionic liquids as a new generation of green solvent, electrolyte material and fluidic engineering in recent years becomes larger, in line with the strong demands of the industry for the provision of new materials that are reliable, safe, and friendly for various purposes; (2 scientific explanations related to the context of the ionic liquid contains a lot of facts, concepts, principles, laws, models and theories can be used to reinforce the learning content as a media to develop thinking skill (process/competence as demanded by PISA; (3 The modern technology-based ionic liquid can also be used as a discourse to strengthen scientific attitude. The process of synthesis of ionic liquid involves fairly simple organic reagents, so it deserves to be included in the chemistry subject in school.

  16. Jet-noise reduction through liquid-base foam injection.

    Science.gov (United States)

    Manson, L.; Burge, H. L.

    1971-01-01

    An experimental investigation has been made of the sound-absorbing properties of liquid-base foams and of their ability to reduce jet noise. Protein, detergent, and polymer foaming agents were used in water solutions. A method of foam generation was developed to permit systematic variation of the foam density. The investigation included measurements of sound-absorption coefficents for both plane normal incidence waves and diffuse sound fields. The intrinsic acoustic properties of foam, e.g., the characteristic impedance and the propagation constant, were also determined. The sound emitted by a 1-in.-diam cold nitrogen jet was measured for subsonic (300 m/sec) and supersonic (422 m/sec) jets, with and without foam injection. Noise reductions up to 10 PNdB were measured.

  17. Modeling electrokinetics in ionic liquids: General

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chao [Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland WA USA; Bao, Jie [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA USA; Pan, Wenxiao [Department of Mechanical Engineering, University of Wisconsin-Madison, Madison WI USA; Sun, Xin [Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland WA USA

    2017-04-07

    Using direct numerical simulations we provide a thorough study on the electrokinetics of ionic liquids. In particular, the modfied Poisson-Nernst-Planck (MPNP) equations are solved to capture the crowding and overscreening effects that are the characteristics of an ionic liquid. For modeling electrokinetic flows in an ionic liquid, the MPNP equations are coupled with the Navier-Stokes equations to study the coupling of ion transport, hydrodynamics, and electrostatic forces. Specifically, we consider the ion transport between two parallel plates, charging dynamics in a 2D straight-walled pore, electro-osmotic ow in a nano-channel, electroconvective instability on a plane ion-selective surface, and electroconvective ow on a curved ion-selective surface. We discuss how the crowding and overscreening effects and their interplay affect the electrokinetic behaviors of ionic liquids in these application problems.

  18. Research progress of SO2 removal from flue gas by functionalized ionic liquids

    Directory of Open Access Journals (Sweden)

    Xinle SHI

    2017-02-01

    Full Text Available Functionalized ionic liquids are receiving increasing attention in the field of flue gas desulfurization due to its unique physical and chemical properties. Research progress on the field of SO2 removal by ionic liquids (ILs including guanidinium-based, amines-based and ether-based ILs is summarized. Industrial application of polymerization ILs and loaded ILs to desulfurization is reviewed. Relevant suggestions on industrial application of ionic liquids based on fundamental research are put forward. The first thing is to develop functional ionic liquid for desulfurization,and thus investigate and propose its desulfurization mechanism and model; the second is to carry out the research work on immobilized ionic liquid, and explore its recycling properties, thus prolonging its service life.

  19. Electrochemical functionalization of glassy carbon electrode by reduction of diazonium cations in protic ionic liquid

    International Nuclear Information System (INIS)

    Shul, Galyna; Ruiz, Carlos Alberto Castro; Rochefort, Dominic; Brooksby, Paula A.; Bélanger, Daniel

    2013-01-01

    Protic ionic liquid based on 2-methoxypyridine and trifluoroacetic acid was used as electrolyte for the functionalization of a glassy carbon electrode surface by electrochemical reduction of in situ generated 4-chlorobenzene diazonium and 4-nitrobenzene diazonium cations. The diazonium cations were synthesized in an electrochemical cell by reaction of the corresponding amines with NaNO 2 dissolved in protic ionic liquid. The resulting electrografted organic layers exhibit similar properties to those layers obtained by the derivatization from isolated diazonium salts dissolved in protic ionic liquid. Functionalized glassy carbon electrode surfaces were characterized by cyclic voltammetry, Fourier transform infrared and X-ray photoelectron spectroscopies. Atomic force microscopy thickness measurements revealed that, in our experimental conditions, the use of protic ionic liquid led to the formation of film with a thickness of about 1.5 nm. It is also demonstrated that the nitrobenzene chemisorbed on glassy carbon electrode or dissolved in protic ionic liquid undergoes electrochemical conversion to hydroxyaminobenzene

  20. Superbase-derived protic ionic liquids

    Science.gov (United States)

    Dai, Sheng; Luo, Huimin; Baker, Gary A.

    2013-09-03

    Protic ionic liquids having a composition of formula (A.sup.-)(BH.sup.+) wherein A.sup.- is a conjugate base of an acid HA, and BH.sup.+ is a conjugate acid of a superbase B. In particular embodiments, BH.sup.+ is selected from phosphazenium species and guanidinium species encompassed, respectively, by the general formulas: ##STR00001## The invention is also directed to films and membranes containing these protic ionic liquids, with particular application as proton exchange membranes for fuel cells.

  1. A peroxotungstate-ionic liquid brush assembly: an efficient and reusable catalyst for selectively oxidizing sulfides with aqueous H{sub 2}O{sub 2} solution in neat water

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xianying; Ma, Wenjuan; Ou, Hui; Han, Xiaoyan; Lu, Congmin; Chen, Yan; Wei, Junfa, E-mail: shixy@snnu.edu.cn, E-mail: weijf@snnu.edu.cn [School of Chemistry and Chemical Engineering, Shaanxi Normal University and Key Laboratory for Macromolecular Science of Shaanxi Province, Xian (China)

    2012-08-15

    An efficient and reusable heterogeneous catalytic assembly of peroxotungstate held in a ionic liquid (IL) brush was synthesized and an environmentally-friendly procedure was developed for selective oxidation of sulfides at room temperature using 30 wt.% hydrogen peroxide as the terminal oxidant and water as a sole solvent. No organic co-solvent or other additive was needed. A 1.5-2.0 mol% (based on W atom) loading catalyst was found to be sufficient for a smooth and clean reaction. Both aliphatic and aromatic sulfides were efficiently and selectively transformed into their respective sulfoxides or sulfones by simply controlling of equivalents of hydrogen peroxide. In addition to the high catalytic activity, the catalyst exhibits excellent chemoselectivity. Sensitive functional groups, such as double bond and hydroxyl, remained under the oxidation conditions the reaction even with an excess hydrogen peroxide. The catalyst was easily recovered (via simple filtration) and reused at least eight times without a noticeable loss of activity. (author)

  2. Noble metal ionic catalysts.

    Science.gov (United States)

    Hegde, M S; Madras, Giridhar; Patil, K C

    2009-06-16

    Because of growing environmental concerns and increasingly stringent regulations governing auto emissions, new more efficient exhaust catalysts are needed to reduce the amount of pollutants released from internal combustion engines. To accomplish this goal, the major pollutants in exhaust-CO, NO(x), and unburned hydrocarbons-need to be fully converted to CO(2), N(2), and H(2)O. Most exhaust catalysts contain nanocrystalline noble metals (Pt, Pd, Rh) dispersed on oxide supports such as Al(2)O(3) or SiO(2) promoted by CeO(2). However, in conventional catalysts, only the surface atoms of the noble metal particles serve as adsorption sites, and even in 4-6 nm metal particles, only 1/4 to 1/5 of the total noble metal atoms are utilized for catalytic conversion. The complete dispersion of noble metals can be achieved only as ions within an oxide support. In this Account, we describe a novel solution to this dispersion problem: a new solution combustion method for synthesizing dispersed noble metal ionic catalysts. We have synthesized nanocrystalline, single-phase Ce(1-x)M(x)O(2-delta) and Ce(1-x-y)Ti(y)M(x)O(2-delta) (M = Pt, Pd, Rh; x = 0.01-0.02, delta approximately x, y = 0.15-0.25) oxides in fluorite structure. In these oxide catalysts, Pt(2+), Pd(2+), or Rh(3+) ions are substituted only to the extent of 1-2% of Ce(4+) ion. Lower-valent noble metal ion substitution in CeO(2) creates oxygen vacancies. Reducing molecules (CO, H(2), NH(3)) are adsorbed onto electron-deficient noble metal ions, while oxidizing (O(2), NO) molecules are absorbed onto electron-rich oxide ion vacancy sites. The rates of CO and hydrocarbon oxidation and NO(x) reduction (with >80% N(2) selectivity) are 15-30 times higher in the presence of these ionic catalysts than when the same amount of noble metal loaded on an oxide support is used. Catalysts with palladium ion dispersed in CeO(2) or Ce(1-x)Ti(x)O(2) were far superior to Pt or Rh ionic catalysts. Therefore, we have demonstrated that the

  3. Radiation stability of diglycolamide functionalized calix[4]arenes in ionic liquid: Solvent extraction, EPR and GC–MS studies

    NARCIS (Netherlands)

    Sengupta, A; Mohapatra, P.K.; Patil, A.B.; Kadam, R.M.; Verboom, Willem

    2016-01-01

    Ionic liquid-based solvent systems containing diglycolamide-functionalized calix[4]arenes (C4DGAs) are efficient for actinide ion extraction from nitric acid feeds. Therefore, the radiolytic stability of three C4DGAs (wide-rim, narrow-rim and both side DGA-functionalized calix[4]arenes) and TODGA

  4. Novel developments in hydrogen storage, hydrogen activation and ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Doroodian, Amir

    2010-12-03

    This dissertation is divided into three chapters. Recently, metal-free hydrogen activation using phosphorous compounds has been reported in science magazine. We have investigated the interaction between hydrogen and phosphorous compounds in presence of strong Lewis acids (chapter one). A new generation of metal-free hydrogen activation, using amines and strong Lewis acids with sterically demanding nature, was already developed in our group. Shortage of high storage capacity using large substitution to improve sterical effect led us to explore the amine borane derivatives, which are explained in chapter two. Due to the high storage capacity of hydrogen in aminoborane derivatives, we have explored these materials to extend hydrogen release. These compounds store hydrogen as proton and hydride on adjacent atoms or ions. These investigations resulted in developing hydrogen storage based on ionic liquids containing methyl guanidinium cation. Then we have continued to develop ionic liquids based on methyl guanidinium cation with different anions, such as tetrafluoro borate (chapter three). We have replaced these anions with transition metal anions to investigate hydrogen bonding and catalytic activity of ionic liquids. This chapter illustrates the world of ionic liquid as a green solvent for organic, inorganic and catalytic reactions and combines the concept of catalysts and solvents based on ionic liquids. The catalytic activity is investigated particularly with respect to the interaction with CO{sub 2}. (orig.)

  5. Pysico-chemical properties of hydrophobic ionic liquids containing1-octylpyridinium, 1-octyl-2-methylpyridinium or1-octyl-4-methylpyridinium cations

    Energy Technology Data Exchange (ETDEWEB)

    Papaiconomou, Nicolas; Salminen, Justin; Lee, Jong-Min; Prausnitz, John M.

    2006-09-15

    This paper reports synthesis of some ionic liquids based on cations 1-octylpyridinium, 1-octyl-2-methylpyridinium or 1-octyl-4-methylpyridinium and anions dicyanamide [N(CN)2]-, bis(trifluoromethylsulfonyl)imide [Tf2N]-, bis(pentafluoroethylsulfonyl)imide [BETI]-, trifluoromethyl sulfonate [TfO]-, nonafluorobutyl sulfonate [NfO]-, tetrafluoroborate [BF4]-, trifluorophenylborate [BF3Ph]- or hexafluoroarsenate [AsF6]-. Melting points, decomposition temperatures, densities, mutual solubilities with water, and viscosities have been measured. Unlike similar ionic liquids containing imidazolium cations, pyridinium ionic liquids studied here are nearly immiscible in water. Viscosities are similar and water content is slightly lower than those for ionic liquids containing imidazolium cations.

  6. Rapid analysis of ethanol and water in commercial products using ionic liquid capillary gas chromatography with thermal conductivity detection and/or barrier discharge ionization detection.

    Science.gov (United States)

    Weatherly, Choyce A; Woods, Ross M; Armstrong, Daniel W

    2014-02-26

    Analysis of ethanol and water in consumer products is important in a variety of processes and often is mandated by regulating agencies. A method for the simultaneous quantitation of ethanol and water that is simple, accurate, precise, rapid, and cost-effective is demonstrated. This approach requires no internal standard for the quantitation of both ethanol and water at any/all levels in commercial products. Ionic liquid based gas chromatography (GC) capillary columns are used to obtain a fast analysis with high selectivity and resolution of water and ethanol. Typical run times are just over 3 min. Examination of the response range of water and ethanol with GC, thermal conductivity detection (TCD), and barrier ionization detection (BID) is performed. Quantitation of both ethanol and water in consumer products is accomplished with both TCD and BID GC detectors using a nonlinear calibration. Validation of method accuracy is accomplished by using standard reference materials.

  7. Liquid-based cervical cytology in the United Kingdom and South Africa

    African Journals Online (AJOL)

    2012-02-01

    Feb 1, 2012 ... blood or mucus, which obscure the sample. Women with inadequate test results are required to attend for a repeat test, which is inconvenient and may cause anxiety.6. What is liquid-based cytology? Liquid-based cytology (LBC) is a new method of cervical cell sample preparation. Samples are collected in ...

  8. Chromium(VI Removal from Aqueous Solution by Magnetite Coated by a Polymeric Ionic Liquid-Based Adsorbent

    Directory of Open Access Journals (Sweden)

    Thania Alexandra Ferreira

    2017-05-01

    Full Text Available An evaluation of the chromium(VI adsorption capacity of four magnetite sorbents coated with a polymer phase containing polymethacrylic acid or polyallyl-3-methylimidazolium is presented. Factors that influence the chromium(VI removal such as solution pH and contact time were investigated in batch experiments and in stirred tank reactor mode. Affinity and rate constants increased with the molar ratio of the imidazolium. The highest adsorption was obtained at pH 2.0 due to the contribution of electrostatic interactions.

  9. Mechanical heterogeneity in ionic liquids

    Science.gov (United States)

    Veldhorst, Arno A.; Ribeiro, Mauro C. C.

    2018-05-01

    Molecular dynamics (MD) simulations of five ionic liquids based on 1-alkyl-3-methylimidazolium cations, [CnC1im]+, have been performed in order to calculate high-frequency elastic moduli and to evaluate heterogeneity of local elastic moduli. The MD simulations of [CnC1im][NO3], n = 2, 4, 6, and 8, assessed the effect of domain segregation when the alkyl chain length increases, and [C8C1im][PF6] assessed the effect of strength of anion-cation interaction. Dispersion curves of excitation energies of longitudinal and transverse acoustic, LA and TA, modes were obtained from time correlation functions of mass currents at different wavevectors. High-frequency sound velocity of LA modes depends on the alkyl chain length, but sound velocity for TA modes does not. High-frequency bulk and shear moduli, K∞ and G∞, depend on the alkyl chain length because of a density effect. Both K∞ and G∞ are strongly dependent on the anion. The calculation of local bulk and shear moduli was accomplished by performing bulk and shear deformations of the systems cooled to 0 K. The simulations showed a clear connection between structural and elastic modulus heterogeneities. The development of nano-heterogeneous structure with increasing length of the alkyl chain in [CnC1im][NO3] implies lower values for local bulk and shear moduli in the non-polar domains. The mean value and the standard deviations of distributions of local elastic moduli decrease when [NO3]- is replaced by the less coordinating [PF6]- anion.

  10. Coupling of OECD standardized test and immunomarkers to select the most environmentally benign ionic liquids option—Towards an innovative “safety by design” approach

    Energy Technology Data Exchange (ETDEWEB)

    Bado-Nilles, Anne, E-mail: Anne.Bado-Nilles@ineris.fr [Institut National de l’Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, B.P. 2, 60550 Verneuil-en-Halatte (France); Université de Reims Champagne-Ardenne, UMR-I 02 SEBIO, Campus Moulin de la Housse, B.P. 1039, 51687 REIMS cedex (France); Diallo, Alpha-Oumar, E-mail: Alpha-Oumar.Diallo@ineris.fr [INERIS, Pôle Substances et Procédés, B.P. 2, 60550 Verneuil-en-Halatte (France); Marlair, Guy, E-mail: Guy.Marlair@ineris.fr [INERIS, Pôle Substances et Procédés, B.P. 2, 60550 Verneuil-en-Halatte (France); Pandard, Pascal, E-mail: Pascal.Pandard@ineris.fr [INERIS, Unité Expertise et essais en écotoxicologie, B.P. 2, 60550 Verneuil-en-Halatte (France); Chabot, Laure, E-mail: Laure.Chabot@ineris.fr [INERIS, Unité Expertise et essais en écotoxicologie, B.P. 2, 60550 Verneuil-en-Halatte (France); Geffard, Alain, E-mail: Alain.Geffard@univ-reims.fr [Université de Reims Champagne-Ardenne, UMR-I 02 SEBIO, Campus Moulin de la Housse, B.P. 1039, 51687 REIMS cedex (France); Len, Christophe, E-mail: Christophe.Len@utc.fr [Université Technologique de Compiègne/ESCOM, EA 4297, Transformations Intégrées de la Matière Renouvelable, Centre de Recherches de Royallieu, B.P. 20529, F-60205 Compiègne Cedex (France); Department of Chemistry, University of Hull, Hull HU6 7RX (United Kingdom); and others

    2015-02-11

    Highlights: • Development of innovative method for more in depth assessment of ecotoxicity of ILs. • Lower toxicity of imidazolium compared to phosphonium-based ILs. • ILs families possessed dissimilar effect on immune system of fish. • More impact of cation than anion in toxicological and biological activities. - Abstract: This paper proposed a potential industrial accompaniment to reduce ionic liquid harmfulness by a novel combination of OECD Daphnia magna standardized test and fish immunomarkers. The combination of these two tests allowed multicriteria examination of ILs impacts in different organisms and trophic levels. The work provided new data for legislation and opened a door towards an integrative environmental evaluation due to direct implications of immune system in fish and ecosystem health. Whatever the species, each IL tested induced deleterious effects suggesting that toxic impact was especially due to IL lipophilicity properties. Nevertheless, cation moieties of ILs seemed to draw overall toxicity of ILs to significant extent as supported by lower cell mortality shown with imidazolium-based ILs compared to phosphonium-based ILs. However, the anions moieties have some additional effect, as revealed by quite dissimilar toxicity within same IL family. Concerning the more integrative biomarkers, the cationic-based ILs tested possessed also dissimilar effect on immune system of fish, especially on leucocyte distribution, lysosomal membrane integrity and phagocytosis activity. These results confirm that ILs toxicity could be influenced by design and that chemical engineering processes can integrate ecological footprint reduction strategies for successful IL utilization in the future.

  11. Selective Micellar Extraction of Ultratrace Levels of Uranium in Aqueous Samples by Task Specific Ionic Liquid Followed by Its Detection Employing Total Reflection X-ray Fluorescence Spectrometry.

    Science.gov (United States)

    Saha, Abhijit; Sanyal, Kaushik; Rawat, Neetika; Deb, Sadhan Bijoy; Saxena, Manoj Kumar; Tomar, Bhupendra Singh

    2017-10-03

    A task specific ionic liquid (TSIL) bearing phosphoramidate group, viz., N-propyl(diphenylphosphoramidate)trimethylammonium bis(trifluoromethanesulfonyl)imide, was synthesized and characterized by 1 H NMR, 13 C NMR, 31 P NMR, and IR spectroscopies, elemental (C H N S) analysis, and electrospray ionization mass spectrometry (ESI-MS). Using this TSIL a cloud point extraction (CPE) or micelle mediated extraction procedure was developed for preconcentration of uranium (U) in environmental aqueous samples. Total reflection X-ray fluorescence spectrometry was utilized to determine the concentration of U in the preconcentrated samples. In order to understand the mechanism of the CPE procedure, complexation study of the TSIL with U was carried out by isothermal calorimetric titration, liquid-liquid extraction, 31 P NMR and IR spectroscopies, and ESI-MS. The developed analytical technique resulted in quantitative extraction efficiency of 99.0 ± 0.5% and a preconcentration factor of 99 for U. The linear dynamic range and method detection limit of the procedure were found to be 0.1-1000 ng mL -1 and 0.02 ng mL -1 , respectively. The CPE procedure was found to tolerate a higher concentration of commonly available interfering cations and anions, especially the lanthanides. The developed analytical method was validated by determining the concentration of U in a certified reference material, viz., NIST SRM 1640a natural water, which was found to be in good agreement at a 95% confidence limit with the certified value. The method was successfully applied to the U determination in three natural water samples with ≤4% relative standard deviation (1σ).

  12. The potential for ionic liquid electrolytes to stabilise the magnesium interface for magnesium/air batteries

    International Nuclear Information System (INIS)

    Khoo, Timothy; Howlett, Patrick C.; Tsagouria, Maureen; MacFarlane, Douglas R.; Forsyth, Maria

    2011-01-01

    Magnesium/air batteries are a possible high-energy density power source that, to date, have not received strong commercial interest due to issues with the corrosion of the magnesium and evaporation of the electrolyte. In this work we report on the use of ionic liquid based electrolytes to stabilise the metal/electrolyte interface and their impact on the electrochemical performance. Galvanostatic measurements indicate that the water content of the ionic liquid electrolyte plays an important role in the cell discharge characteristics. Surface characterisation using EIS, ATR-FTIR and powder diffraction examined the unique properties of the surface film formed on the magnesium anode.

  13. Photophysics of ionic biochromophores

    CERN Document Server

    Brøndsted Nielsen, Steen

    2014-01-01

    This concise guide to studying ionic biochromophores features the first integrated overview of the photophysics of differing classes of biomolecules, from single amino acids to DNA. It includes an appraisal of the latest theories and experimental techniques.

  14. A novel task specific magnetic polymeric ionic liquid for selective preconcentration of potassium in oil samples using centrifuge-less dispersive liquid-liquid microextraction technique and its determination by flame atomic emission spectroscopy.

    Science.gov (United States)

    Beiraghi, Asadollah; Shokri, Masood

    2018-02-01

    In the present study a new centrifuge-less dispersive liquid-liquid microextraction technique based on application of a new task specific magnetic polymeric ionic liquid (TSMPIL) as a chelating and extraction solvent for selective preconcentration of trace amounts of potassium from oil samples is developed, for the first time. After extraction, the fine droplets of TSMPIL were transferred into an eppendorf tube and diluted to 500µL using distilled water. Then, the enriched analyte was determined by flame atomic emission spectroscopy (FAES). Several important factors affecting both the complexation and extraction efficiency including extraction time, rate of vortex agitator, amount of carbonyl iron powder, pH of sample solution, volume of ionic liquid as well as effects of interfering species were investigated and optimized. Under the optimal conditions, the limits of detection (LOD) and quantification (LOQ) were 0.5 and 1.6µgL -1 respectively with the preconcentration factor of 128. The precision (RSD %) for seven replicate determinations at 10µgL -1 of potassium was better than 3.9%. The relative recoveries for the spiked samples were in the acceptable range of 95-104%. The results demonstrated that no remarkable interferences are created by other various ions in the determination of potassium, so that the tolerance limits (W Ion /W K ) of major cations and anions were in the range of 2500-10,000. The purposed method was successfully applied for the analysis of potassium in some oil samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Cycling performance of lithium polymer cells assembled by in situ polymerization of a non-flammable ionic liquid monomer

    International Nuclear Information System (INIS)

    Lee, Yoon-Sung; Kim, Dong-Won

    2013-01-01

    Highlights: • Gel polymer electrolytes were synthesized by in situ polymerization of ionic liquid in the lithium polymer cells. • Flammability of the electrolyte was significantly reduced by polymerizing electrolyte containing a non-flammable ionic liquid monomer. • The cells assembled with polymeric ionic liquid-based electrolytes exhibited reversible cycling behavior with good capacity retention. -- Abstract: Lithium polymer cells composed of a lithium negative electrode and a LiCoO 2 positive electrode were assembled with a gel polymer electrolyte obtained by in situ polymerization of an electrolyte solution containing an ionic liquid monomer with vinyl groups. The polymerization of the electrolyte solution containing the non-flammable ionic liquid monomer resulted in a significant reduction of the flammability of the gel polymer electrolytes. The lithium polymer cell assembled with the stable gel polymer electrolyte delivered a discharge capacity of 134.3 mAh g −1 at ambient temperature and exhibited good capacity retention

  16. Fullerol ionic fluids

    KAUST Repository

    Fernandes, Nikhil

    2010-01-01

    We report for the first time an ionic fluid based on hydroxylated fullerenes (fullerols). The ionic fluid was synthesized by neutralizing the fully protonated fullerol with an amine terminated polyethylene/polypropylene oxide oligomer (Jeffamine®). The ionic fluid was compared to a control synthesized by mixing the partially protonated form (sodium form) of the fullerols with the same oligomeric amine in the same ratio as in the ionic fluids (20 wt% fullerol). In the fullerol fluid the ionic bonding significantly perturbs the thermal transitions and melting/crystallization behavior of the amine. In contrast, both the normalized heat of fusion and crystallization of the amine in the control are similar to those of the neat amine consistent with a physical mixture of the fullerols/amine with minimal interactions. In addition to differences in thermal behavior, the fullerol ionic fluid exhibits a complex viscoelastic behavior intermediate between the neat Jeffamine® (liquid-like) and the control (solid-like). © 2010 The Royal Society of Chemistry.

  17. Comparison of liquid-based cytology with conventional cytology for detection of cervical cancer precursors: a randomized controlled trial.

    NARCIS (Netherlands)

    Siebers, A.G.; Klinkhamer, P.J.; Grefte, J.M.M.; Massuger, L.F.A.G.; Vedder, J.E.; Beijers-Broos, A.; Bulten, J.; Arbyn, M.

    2009-01-01

    CONTEXT: Liquid-based cytology has been developed as an alternative for conventional cervical cytology. Despite numerous studies and systematic reviews, controversy remains about its diagnostic accuracy. OBJECTIVE: To assess the performance of liquid-based cytology compared with conventional

  18. Thermoelectric Power in Bilayer Graphene Device with Ionic Liquid Gating.

    Science.gov (United States)

    Chien, Yung-Yu; Yuan, Hongtao; Wang, Chang-Ran; Lee, Wei-Li

    2016-02-08

    The quest for materials showing large thermoelectric power has long been one of the important subjects in material science and technology. Such materials have great potential for thermoelectric cooling and also high figure of merit ZT thermoelectric applications. We have fabricated bilayer graphene devices with ionic-liquid gating in order to tune its band gap via application of a perpendicular electric field on a bilayer graphene. By keeping the Fermi level at charge neutral point during the cool-down, we found that the charge puddles effect can be greatly reduced and thus largely improve the transport properties at low T in graphene-based devices using ionic liquid gating. At (Vig, Vbg) = (-1 V, +23 V), a band gap of about 36.6 ± 3 meV forms, and a nearly 40% enhancement of thermoelectric power at T = 120 K is clearly observed. Our works demonstrate the feasibility of band gap tuning in a bilayer graphene using ionic liquid gating. We also remark on the significant influence of the charge puddles effect in ionic-liquid-based devices.

  19. Survey of renewable chemicals produced from lignocellulosic biomass during ionic liquid pretreatment

    Directory of Open Access Journals (Sweden)

    Varanasi Patanjali

    2013-01-01

    Full Text Available Abstract Background Lignin is often overlooked in the valorization of lignocellulosic biomass, but lignin-based materials and chemicals represent potential value-added products for biorefineries that could significantly improve the economics of a biorefinery. Fluctuating crude oil prices and changing fuel specifications are some of the driving factors to develop new technologies that could be used to convert polymeric lignin into low molecular weight lignin and or monomeric aromatic feedstocks to assist in the displacement of the current products associated with the conversion of a whole barrel of oil. We present an approach to produce these chemicals based on the selective breakdown of lignin during ionic liquid pretreatment. Results The lignin breakdown products generated are found to be dependent on the starting biomass, and significant levels were generated on dissolution at 160°C for 6 hrs. Guaiacol was produced on dissolution of biomass and technical lignins. Vanillin was produced on dissolution of kraft lignin and eucalytpus. Syringol and allyl guaiacol were the major products observed on dissolution of switchgrass and pine, respectively, whereas syringol and allyl syringol were obtained by dissolution of eucalyptus. Furthermore, it was observed that different lignin-derived products could be generated by tuning the process conditions. Conclusions We have developed an ionic liquid based process that depolymerizes lignin and converts the low molecular weight lignin fractions into a variety of renewable chemicals from biomass. The generated chemicals (phenols, guaiacols, syringols, eugenol, catechols, their oxidized products (vanillin, vanillic acid, syringaldehyde and their easily derivatized hydrocarbons (benzene, toluene, xylene, styrene, biphenyls and cyclohexane already have relatively high market value as commodity and specialty chemicals, green building materials, nylons, and resins.

  20. Solid-phase extraction of chlorophenols in seawater using a magnetic ionic liquid molecularly imprinted polymer with incorporated silicon dioxide as a sorbent.

    Science.gov (United States)

    Ma, Wanwan; Row, Kyung Ho

    2018-01-06

    A type of magnetic ionic liquid based molecularly imprinted polymer coated on SiO 2 (Fe 3 O 4 @SiO 2 @IL-MIPs) was prepared with 1-vinyl-3-ethylimidazole ionic liquid as functional monomer, and 1,4-butane-3,3'-bis-1-ethylimidazole ionic liquid as cross linker, 4-Chlorophenol as template was successfully applied as a selective adsorbent for selective extraction of 5 chlorophenols in seawater samples by using the magnetic solid-phase extraction (MSPE) method. 11 types of Fe 3 O 4 @SiO 2 @IL-MIPs were synthesized and investigated for their different compositions of functional monomer (such as [C 2 min][Br], [C 2 min][BF 4 ], [C 2 min][PF 6 ], acrylamide, methacrylic acid and 4-vinyl pyridine) and cross-linker (such as [C 4 min 2 ][Br], [C 4 min 2 ][BF 4 ], [C 4 min 2 ][PF 6 ], divinylbenzene, and ethylene glycol dimethacrylate), respectively. The [C 2 min][BF 4 ] and [C 4 min 2 ][PF 6 ] based Fe 3 O 4 @SiO 2 @IL-MIP with the highest extraction efficiencies was applied to the optimization experiment of MSPE process (including extraction time, adsorbent mass and desorption solvents). Good linearity was obtained with correlation coefficients (R 2 ) over 0.9990 and the relative standard deviations for the intra-day and inter-day determination were less than 3.10% with the extraction recoveries ranged from 85.0% to 98.4%. The results indicated that the proposed Fe 3 O 4 @SiO 2 @IL-MIPs possesses great identification and adsorption properties, and could be used as a good sorbent for selective extraction of CPs in environment waters. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Selective deoxygenation of sugar polyols to alpha,omega-diols and other oxygen content reduced materials--a new challenge to homogeneous ionic hydrogenation and hydrogenolysis catalysis.

    Science.gov (United States)

    Schlaf, Marcel

    2006-10-21

    An oxygen atom on every carbon--this is the problem! While nature provides linear C(3) to C(6) building blocks in the form of sugar alcohols in large and renewable abundance, they are overfunctionalized for the purpose of most chemical applications. Selective deoxygenation by anthropogenic catalyst systems may be one answer to this challenge.

  2. Evaluation of a low-cost liquid-based Pap test in rural El Salvador: a split-sample study.

    Science.gov (United States)

    Guo, Jin; Cremer, Miriam; Maza, Mauricio; Alfaro, Karla; Felix, Juan C

    2014-04-01

    We sought to test the diagnostic efficacy of a low-cost, liquid-based cervical cytology that could be implemented in low-resource settings. A prospective, split-sample Pap study was performed in 595 women attending a cervical cancer screening clinic in rural El Salvador. Collected cervical samples were used to make a conventional Pap (cell sample directly to glass slide), whereas residual material was used to make the liquid-based sample using the ClearPrep method. Selected samples were tested from the residual sample of the liquid-based collection for the presence of high-risk Human papillomaviruses. Of 595 patients, 570 were interpreted with the same diagnosis between the 2 methods (95.8% agreement). There were comparable numbers of unsatisfactory cases; however, ClearPrep significantly increased detection of low-grade squamous intraepithelial lesions and decreased the diagnoses of atypical squamous cells of undetermined significance. ClearPrep identified an equivalent number of high-grade squamous intraepithelial lesion cases as the conventional Pap. High-risk human papillomavirus was identified in all cases of high-grade squamous intraepithelial lesion, adenocarcinoma in situ, and cancer as well as in 78% of low-grade squamous intraepithelial lesions out of the residual fluid of the ClearPrep vials. The low-cost ClearPrep Pap test demonstrated equivalent detection of squamous intraepithelial lesions when compared with the conventional Pap smear and demonstrated the potential for ancillary molecular testing. The test seems a viable option for implementation in low-resource settings.

  3. Functional ionic liquids

    International Nuclear Information System (INIS)

    Baecker, Tobias

    2012-01-01

    In the thesis at hand, new functional ionic liquids were investigated. Main focus was attended to their structure property relations and the structural features leading to a decrease of the melting point. New compounds of the type 1-butyl-3-methylimidazolium tris(N,Ndialkyldithiocarbamato) uranylate with variously substituated dithiocarbamato ligands were synthesized and characterized. Ligands with asymmetrical substitution pattern proved to be most suitable for ionic liquid formation. The single-crystal X-ray structures revealed the interactions in the solid state. Here, the first spectroscopic investigation of the U-S bond in sulfur donated uranyl complexes, up to now only observed in single-crystal X-ray structures, is presented, and the participation of the uranium f-orbitals is shown by theoretical calculations. Electrochemical investigations showed the accessibility of the respective U V O 2 + compounds. As well, ionic liquids with [FeCl 4 ] - and [Cl 3 FeOFeCl 3 ] 2- as anion were synthesized. Both of these anions contain high-spin Fe(III) centres in distorted tetrahedral environment, but exhibit different magnetic behaviour. The tetrachloroferrates show the usual paramagnetism, the m-oxobis(trichloroferrate) exhibits unexpectedly strong antiferromagnetic coupling, as was observed by NMR experiments and susceptibility measurements. To investigate structure-property relations in functionalized ionic liquids, a set of protic, primary alkylammonium and aprotic, quarternary trimethylalkylammonium based ionic liquids was synthesized, and characterized. The length of the alkyl chain was systematically varied, and all compounds were synthesized with and without hydroxyl group, as well as formate and bis(triflyl)amide salts, aiming at getting insight into the influence of the different structure parts on the respective ionic liquid's properties.

  4. Radiochemical investigation of the processes which determine the ionic sensitivity of cadmium-selective electrodes based on chalcogenide glasses. I. Exchange of cadmium ions

    International Nuclear Information System (INIS)

    Vlasov, Yu.G.; Miloshova, M.S.; Moreno, R.A.; Bychkov, E.A.; Antonov, P.P.

    1988-01-01

    The exchange of cadmium ions between solutions and a cadmium-containing chalcogenide glass of the cadmium iodide-silver sulfide-arsenic sulfide system, which is used as a membrane in ion-selective electrodes, was studied by means of the radioactive 115m Cd isotope. It was shown that the exchange of cadmium ions obeys identical relationships both in the case of the labeled glass and in the case of the solution containing radioactive cadmium nitrate. The exchange of cadmium ions is proportional to the concentration of cadmium nitrate in the solution

  5. Functionalized ionic liquids and their applications

    Energy Technology Data Exchange (ETDEWEB)

    Hariprakasha, Humcha Krishnamurthy; Rangan, Krishnaswamy Kasthuri; Sudarshan, Tirumalai Srinivas

    2018-01-16

    Disclosure of functionalized ionic liquids. Use of disclosed ionic liquids as solvent for carbon dioxide. Use of disclosed ionic liquids as flame retardant. Use of disclosed ionic liquids for coating fabric to obtain flame retardant fabric.

  6. Ionic smoke detectors

    CERN Document Server

    2002-01-01

    Ionic smoke detectors are products incorporating radioactive material. This article summarises the process for their commercialization and marketing, and how the activity is controlled, according to regulations establishing strict design and production requisites to guarantee the absence of radiological risk associated both with their use and their final handling as conventional waste. (Author)

  7. Synthesis of ionic liquids

    Science.gov (United States)

    Dai, Sheng [Knoxville, TN; Luo, Huimin [Knoxville, TN

    2008-09-09

    Ionic compounds which are liquids at room temperature are formed by the method of mixing a neutral organic liqand with the salt of a metal cation and its conjugate anion. The liquids are hydrophobic, conductive and stable and have uses as solvents and in electrochemical devices.

  8. Positrons in ionic crystals

    International Nuclear Information System (INIS)

    Pareja, R.

    1988-01-01

    Positron annihilation experiments in ionic crystals are reviewed and their results are arranged. A discussion about the positron states in these materials is made in the light of these results and the different proposed models. The positronium in alkali halides is specially considered. (Author)

  9. Thermoelectric Generators Based on Ionic Liquids

    Science.gov (United States)

    Laux, Edith; Uhl, Stefanie; Jeandupeux, Laure; López, Pilar Pérez; Sanglard, Pauline; Vanoli, Ennio; Marti, Roger; Keppner, Herbert

    2018-03-01

    Looking at energy harvesting using body or waste heat for portable electronic or on-board devices, Ionic liquids are interesting candidates as thermoactive materials in thermoelectric generators (TEGs) because of their outstanding properties. Two different kinds of ionic liquid, with alkylammonium and choline as cations, were studied, whereby different anions and redox couples were combined. This study focussed on the intention to find non-hazardous and environmentally friendly ionic liquids for TEGs to be selected among the thousands that can potentially be used. Seebeck coefficients (SEs) as high as - 15 mV/K were measured, in a particular case for an electrode temperature difference of 20 K. The bottleneck of our TEG device is still the abundance of negative SE liquids matching the internal resistance with the existing positive SE-liquids at series connections. In this paper, we show further progress in finding increased negative SE liquids. For current extraction from the TEG, the ionic liquid must be blended with a redox couple, allowing carrier exchange in a cyclic process under a voltage which is incuced by the asymmetry of the generator in terms of hot and cold electrodes. In our study, two types of redox pairs were tested. It was observed that a high SE of an ionic liquid/redox blend is not a sufficient condition for high power output. It appears that more complex effects between the ionic liquid and the electrode determine the magnitude of the final current/power output. The physico-chemical understanding of such a TEG cell is not yet available.

  10. Reclamation of niobium compounds from ionic liquid electrochemical polishing of superconducting radio frequency cavities

    Energy Technology Data Exchange (ETDEWEB)

    Wixtrom, Alex I. [Christopher Newport University, Newport News, VA (United States); Buhler, Jessica E. [Christopher Newport University, Newport News, VA (United States); Reece, Charles E. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Abdel-Fattah, Tarek M. [Christopher Newport University, Newport News, VA (United States)

    2013-06-01

    Recent research has shown that choline chloride (vitamin B4)-based solutions can be used as a greener alternative to acid-based electrochemical polishing solutions. This study demonstrated a successful method for electrochemical deposition of niobium compounds onto the surface of copper substrates using a novel choline chloride-based ionic liquid. Niobium ions present in the ionic liquid solution were dissolved into the solution prior to deposition via electrochemical polishing of solid niobium. A black coating was clearly visible on the surface of the Cu following deposition. This coating was analyzed using scanning electron microscopy (SEM), electron dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), and X-ray fluorescence spectroscopy (XRF). This ionic liquid-based electrochemical deposition method effectively recycles previously dissolved niobium from electrochemical polishing of superconducting radio frequency (SRF) cavities.

  11. IONIC LIQUIDS: PREPARATIONS AND LIMITATIONS

    Directory of Open Access Journals (Sweden)

    Dzulkefly Kuang Abdullah

    2010-11-01

    Full Text Available Ionic liquids are considered as an ideal alternative to volatile organic solvents and chemical industries in the future,because they are non-volatile. Ionic liquids are also considered as new novel chemical agents and widely regarded as agreener alternative to many commonly used solvents. Ionic liquids have been studied for a wide range of syntheticapplications and have attracted considerable interest for use as electrolytes in the areas of organic synthesis, catalysis,solar cell, fuel cells, electrodeposition and supercapacitors. However, some ionic liquids suffer from more or less somedrawbacks such as toxicity, preparation and high cost in the process for use. Most recently, three types of ionic liquidsare attracted much attentions specifically traditional ionic liquid, protic ionic liquid and deep eutectic solvent, wheretheir preparation, mechanism and limitation were differentiated. However, those liquids are having their ownadvantages and limitations based on applications. Traditional ionic liquid and protic ionic liquid are highly cost andtoxic for applied engineering research, but they consist of micro-biphasic systems composed of ionic compounds whichhave more varieties in the applications. The deep eutectic solvent is very economic for large-scale possessing but thereare only limited ionic mixtures to certain application such as electrochemistry.

  12. Extraction and separation of proteins by ionic liquid aqueous two-phase system.

    Science.gov (United States)

    Lin, Xiao; Wang, Yuzhi; Zeng, Qun; Ding, Xueqin; Chen, Jing

    2013-11-07

    A satisfactory protocol of protein extraction and separation has been established based on the ionic liquid aqueous two-phase system (IL-ATPS) for the purification of bioactive substances. Compared with the effects of eight different ionic liquids, 1-octyl-3-methylimidazolium bromide ([omim][Br]) was selected as the suitable ionic liquid. Based on the single-factor experiment, an initial serial investigative test was used to identify the optimal conditions of the extraction. Owing to their different isoelectric points, bovine serum albumin (BSA), hemoglobin (Hb) and lysozyme (Lys) were used to determine the effect of pH value on the protein extraction. Trypsin (Try) was used to confirm the protein activity. The linearity for analyzing BSA, Hb, Try and Lys was in the concentration range of 0.05-1.00 mg ml(-1), 0.025-1 mg ml(-1), 0.01-1.00 mg ml(-1) and 0.01-1.00 mg ml(-1), respectively, with a correlation coefficient of between 0.9985 and 0.9999. Limits of detection (LODs) were 16.47-7.02 μg ml(-1) and RSDs of inter-day stability were less than 2.9%. Repeatability and precision were respectively lower than 5.3% and 1.1%. Under the optimum conditions, the average recoveries of BSA, Hb, Try and Lys were 90.5%, 94.5%, 92.7% and 93.8% and the obtained RSDs were 1.19%, 1.23%, 1.34% and 1.04%, respectively. According to UV spectra, conductivity, dynamic light scattering (DLS), and transmission electron microscope (TEM) images, the cluster phenomenon originating from IL itself or combined with protein was evaluated. As the driving forces which are involved in the partitioning of protein between the IL-rich phase and the phosphate phase, the cluster phenomenon could, in principle, be applied to a variety of different samples and exhibited potential value.

  13. Dissolving Polymers in Ionic Liquids.

    Science.gov (United States)

    Hoagland, David; Harner, John

    2009-03-01

    Dissolution and phase behavior of polymers in ionic liquids have been assessed by solution characterization techniques such as intrinsic viscosity and light scattering (static and dynamic). Elevated viscosity proved the greatest obstacle. As yet, whether principles standard to conventional polymer solutions apply to ionic liquid solutions is uncertain, especially for polymers such as polyelectrolytes and hydrophilic block copolymers that may specifically interact with ionic liquid anions or cations. For flexible polyelectrolytes (polymers releasing counterions into high dielectric solvents), characterization in ionic liquids suggests behaviors more typical of neutral polymer. Coil sizes and conformations are approximately the same as in aqueous buffer. Further, several globular proteins dissolve in a hydrophilic ionic liquid with conformations analogous to those in buffer. General principles of solubility, however, remain unclear, making predictions of which polymer dissolves in which ionic liquid difficult; several otherwise intractable polymers (e.g., cellulose, polyvinyl alcohol) dissolve and can be efficiently functionalized in ionic liquids.

  14. Infrared spectroscopy of ionic clusters

    International Nuclear Information System (INIS)

    Price, J.M.

    1990-11-01

    This thesis describes new experiments wherein the infrared vibrational predissociation spectra of a number of mass-selected ionic cluster systems have been obtained and analyzed in the 2600 to 4000 cm -1 region. The species studied include: the hydrated hydronium ions, H 3 O + (H 2 O) 3 -10 , ammoniated ammonium ions, NH 4 + (NH 3 ) 1 -10 and cluster ions involving both water and ammonia around an ammonium ion core, (mixed clusters) NH 4 + (NH 3 ) n (H 2 O) m (n+m=4). In each case, the spectra reveal well resolved structures that can be assigned to transitions arising from the vibrational motions of both the ion core of the clusters and the surrounding neutral solvent molecules. 154 refs., 19 figs., 8 tabs

  15. Infrared spectroscopy of ionic clusters

    Energy Technology Data Exchange (ETDEWEB)

    Price, J.M. (California Univ., Berkeley, CA (USA). Dept. of Chemistry Lawrence Berkeley Lab., CA (USA))

    1990-11-01

    This thesis describes new experiments wherein the infrared vibrational predissociation spectra of a number of mass-selected ionic cluster systems have been obtained and analyzed in the 2600 to 4000 cm{sup {minus}1} region. The species studied include: the hydrated hydronium ions, H{sub 3}O{sup +} (H{sub 2}O){sub 3 {minus}10}, ammoniated ammonium ions, NH{sub 4}{sup +}(NH{sub 3}){sub 1 {minus}10} and cluster ions involving both water and ammonia around an ammonium ion core, (mixed clusters) NH{sub 4}{sup +}(NH{sub 3}){sub n}(H{sub 2}O){sub m} (n+m=4). In each case, the spectra reveal well resolved structures that can be assigned to transitions arising from the vibrational motions of both the ion core of the clusters and the surrounding neutral solvent molecules. 154 refs., 19 figs., 8 tabs.

  16. Review of available scientific and technical evidence regarding liquid-based cytology

    Directory of Open Access Journals (Sweden)

    Alberto Frutos Pérez-Surio

    2017-06-01

    Full Text Available Introduction. Cervical cancer can be prevented by early diagnosis and treatment of patients with abnormal results, thus decreasing their incidence and mortality. In contrast to conventional techniques (Papanicolau, diagnostic techniques have been developed based on the preservation of the sample in a stabilizing solution (liquid-based cytology. The different methods of liquid-based cytology used in the screening of cervical cancer against the Papanicolau technique are evaluated. Material and methods. A systematic review of the literature has been performed (2010-2015. The search was developed by including MeSH terms as cervical intraepithelial neoplasia and papilloma virus infection in the MedLine, Embase, Cochrane Library, CRD, LILACS and IBECS databases. Inclusion criteria were adult women screened for cervical cancer using liquid-based cytology techniques, compared with conventional methods. Results. 464 references were found related to the reliability-precision of the test, of which 13 were included in the report. A health technology assessment report was conducted in 2013 by the Agency for Health Technology Assessment of Andalusia (AETSA. The quality of the studies was moderate and moderate-low. AETSA found studies that included more than 700,000 women between 14 and 90 years old, who were screened by liquid-based cytology, compared to the conventional one. Studies have shown that liquid-based cytology techniques reduce the percentage of unsatisfactory samples compared to conventional ones. The analysis of detection of cellular abnormalities and diagnostic validity indexes showed significant differences when comparing both methods. Conclusions. The studies analyzed presented methodological limitations. Hence, the results should be interpreted with caution. Liquid-based cytology did not present greater diagnostic capacity than conventional methods, but it reduced, with statistically significant results, the number of samples unsatisfactory

  17. Fabrication of Greener Membranes from Ionic Liquid Solutions

    KAUST Repository

    Kim, DooLi

    2017-06-01

    Membrane technology plays a crucial role in different separation processes such as biotechnology, pharmaceutical, and food industries, drinking water supply, and wastewater treatment. However, there is a growing concern that solvents commonly used for membrane fabrication, such as dimethylformamide (DMF), dimethylacetamide (DMAc), and 1-methyl-2-pyrrolidone (NMP), are toxic to the environment and human health. To explore the possibility of substituting these toxic solvents by less toxic or safer solvents, polymers commonly used for membrane fabrication, such as polyacrylonitrile (PAN), cellulose acetate (CA), polyethersulfone (PES), and poly(ether imide sulfone) (EXTEMTM), were dissolved in ionic liquids. Flat sheet and hollow fiber membranes were then fabricated. The thermodynamics of the polymer solutions, the kinetics of phase inversion and other factors, which resulted in significant differences in the membrane structure, compared to those of membranes fabricated from more toxic solvents, were investigated. Higher water permeance with smaller pores, unique and uniform morphologies, and narrower pore size distribution, were observed in the ionic liquid-based membranes. Furthermore, comparable performance on separation of peptides and proteins with various molecular weights was achieved with the membranes fabricated from ionic liquid solutions. In summary, we propose less hazardous polymer solutions to the environment, which can be used for the membrane fabrication with better performance and more regular morphology.

  18. On the concept of ionicity in ionic liquids.

    Science.gov (United States)

    MacFarlane, Douglas R; Forsyth, Maria; Izgorodina, Ekaterina I; Abbott, Andrew P; Annat, Gary; Fraser, Kevin

    2009-07-07

    Ionic liquids are liquids comprised totally of ions. However, not all of the ions present appear to be available to participate in conduction processes, to a degree that is dependent on the nature of the ionic liquid and its structure. There is much interest in quantifying and understanding this 'degree of ionicity' phenomenon. In this paper we present transport data for a range of ionic liquids and evaluate the data firstly in terms of the Walden plot as an approximate and readily accessible approach to estimating ionicity. An adjusted Walden plot that makes explicit allowance for differences in ion sizes is shown to be an improvement to this approach for the series of ionic liquids described. In some cases, where diffusion measurements are possible, it is feasible to directly quantify ionicity via the Nernst-Einstein equation, confirming the validity of the adjusted Walden plot approach. Some of the ionic liquids studied exhibit ionicity values very close to ideal; this is discussed in terms of a model of a highly associated liquid in which the ion correlations have similar impact on both the diffusive and conductive motions. Ionicity, as defined, is thus a useful measure of adherence to the Nernst-Einstein equation, but is not necessarily a measure of ion availability in the chemical sense.

  19. Nanoscale Ionic Materials

    KAUST Repository

    Rodriguez, Robert

    2008-11-18

    Polymer nanocomposites (nanoparticles dispersed in a polymer matrix) have been the subject of intense research for almost two decades in both academic and industrial settings. This interest has been fueled by the ability of nanocomposites to not only improve the performance of polymers, but also by their ability to introduce new properties. Yet, there are still challenges that polymer nanocomposites must overcome to reach their full potential. In this Research News article we discuss a new class of hybrids termed nanoparticle ionic materials (NIMS). NIMS are organic-inorganic hybrid materials comprising a nanoparticle core functionalized with a covalently tethered ionic corona. They are facilely engineered to display flow properties that span the range from glassy solids to free flowing liquids. These new systems have unique properties that can overcome some of the challenges facing nanocomosite materials. © 2008 WILEY-VCH Verlag GmbH & Co. KGaA.

  20. Thermodynamic estimation: Ionic materials

    International Nuclear Information System (INIS)

    Glasser, Leslie

    2013-01-01

    Thermodynamics establishes equilibrium relations among thermodynamic parameters (“properties”) and delineates the effects of variation of the thermodynamic functions (typically temperature and pressure) on those parameters. However, classical thermodynamics does not provide values for the necessary thermodynamic properties, which must be established by extra-thermodynamic means such as experiment, theoretical calculation, or empirical estimation. While many values may be found in the numerous collected tables in the literature, these are necessarily incomplete because either the experimental measurements have not been made or the materials may be hypothetical. The current paper presents a number of simple and relible estimation methods for thermodynamic properties, principally for ionic materials. The results may also be used as a check for obvious errors in published values. The estimation methods described are typically based on addition of properties of individual ions, or sums of properties of neutral ion groups (such as “double” salts, in the Simple Salt Approximation), or based upon correlations such as with formula unit volumes (Volume-Based Thermodynamics). - Graphical abstract: Thermodynamic properties of ionic materials may be readily estimated by summation of the properties of individual ions, by summation of the properties of ‘double salts’, and by correlation with formula volume. Such estimates may fill gaps in the literature, and may also be used as checks of published values. This simplicity arises from exploitation of the fact that repulsive energy terms are of short range and very similar across materials, while coulombic interactions provide a very large component of the attractive energy in ionic systems. Display Omitted - Highlights: • Estimation methods for thermodynamic properties of ionic materials are introduced. • Methods are based on summation of single ions, multiple salts, and correlations. • Heat capacity, entropy

  1. Course on Ionic Channels

    CERN Document Server

    1986-01-01

    This book is based on a series of lectures for a course on ionic channels held in Santiago, Chile, on November 17-20, 1984. It is intended as a tutorial guide on the properties, function, modulation, and reconstitution of ionic channels, and it should be accessible to graduate students taking their first steps in this field. In the presentation there has been a deliberate emphasis on the spe­ cific methodologies used toward the understanding of the workings and function of channels. Thus, in the first section, we learn to "read" single­ channel records: how to interpret them in the theoretical frame of kinetic models, which information can be extracted from gating currents in re­ lation to the closing and opening processes, and how ion transport through an open channel can be explained in terms of fluctuating energy barriers. The importance of assessing unequivocally the origin and purity of mem­ brane preparations and the use of membrane vesicles and optical tech­ niques in the stUGY of ionic channels a...

  2. Cost and cost-effectiveness of conventional and liquid-based ...

    African Journals Online (AJOL)

    Background. South Africa has a high prevalence of cervical cancer. Early detection can significantly reduce the burden of this disease. New screening technologies to detect cervical pathology have become available in recent years. Objectives. To determine the cost and cost-effectiveness of liquid-based cytology (LBC) ...

  3. Novel routes to liquid-based self-healing polymer systems

    NARCIS (Netherlands)

    Mookhoek, S.D.

    2010-01-01

    Inspired by the current state-of-the-art and the progressing advancements in the field of self-healing materials, this thesis addresses several novel routes to advance the concept of liquid-based self-healing polymer systems. This thesis presents the concept and characterisation of a one-component

  4. VOC and HAP recovery using ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Michael R. Milota : Kaichang Li

    2007-05-29

    (trihexyl)phosphonium dicyanamide as the RTIL. It was determined that it has good absorption properties for methanol and α-pinene, is thermally stable, and is relatively easy to synthesize. It has a density of 0.89 g/mL at 20°C and a molecular weight of 549.9 g/mol. Trials were conducted with a small absorption system and a larger absorption system. Methanol, formaldehyde, and other HAPs were absorbed well, nearly 100%. Acetaldehyde was difficult to capture. Total VOC capture, while satisfactory on methanol and α-pinene in a lab system, was less than expected in the field, 60-80%. The inability to capture the broad spectrum of total organics is likely due to difficulties in cleaning them from the ionic liquid rather than the ability of the ionic liquid to absorb. It’s likely that a commercial system could be constructed to remove 90 to 100% of the gas contaminates. Selecting the correct ionic liquid would be key to this. Absorption may not be the main selection criterion, but rather how easily the ionic liquid can be cleaned is very important. The ionic liquid absorption system might work very well in a system with a limited spectrum of pollutants, such as a paint spray line, where there are not very high molecular weight, non volatile, compounds in the exhaust.

  5. Controlled electrodeposition of Au monolayer film on ionic liquid

    Science.gov (United States)

    Ma, Qiang; Pang, Liuqing; Li, Man; Zhang, Yunxia; Ren, Xianpei; Liu, Shengzhong Frank

    2016-05-01

    Gold (Au) nanoparticles have been attractive for centuries for their vibrant appearance enhanced by their interaction with sunlight. Nowadays, there have been tremendous research efforts to develop them for high-tech applications including therapeutic agents, sensors, organic photovoltaics, medical applications, electronics and catalysis. However, there remains to be a challenge to fabricate a monolayer Au coating with complete coverage in controlled fashion. Here we present a facile method to deposit a uniform Au monolayer (ML) film on the [BMIM][PF6] ionic liquid substrate using an electrochemical deposition process. It demonstrates that it is feasible to prepare a solid phase coating on the liquid-based substrate. Moreover, the thickness of the monolayer coating can be controlled to a layer-by-layer accuracy.

  6. Automation-assisted cervical cancer screening in manual liquid-based cytology with hematoxylin and eosin staining.

    Science.gov (United States)

    Zhang, Ling; Kong, Hui; Ting Chin, Chien; Liu, Shaoxiong; Fan, Xinmin; Wang, Tianfu; Chen, Siping

    2014-03-01

    Current automation-assisted technologies for screening cervical cancer mainly rely on automated liquid-based cytology slides with proprietary stain. This is not a cost-efficient approach to be utilized in developing countries. In this article, we propose the first automation-assisted system to screen cervical cancer in manual liquid-based cytology (MLBC) slides with hematoxylin and eosin (H&E) stain, which is inexpensive and more applicable in developing countries. This system consists of three main modules: image acquisition, cell segmentation, and cell classification. First, an autofocusing scheme is proposed to find the global maximum of the focus curve by iteratively comparing image qualities of specific locations. On the autofocused images, the multiway graph cut (GC) is performed globally on the a* channel enhanced image to obtain cytoplasm segmentation. The nuclei, especially abnormal nuclei, are robustly segmented by using GC adaptively and locally. Two concave-based approaches are integrated to split the touching nuclei. To classify the segmented cells, features are selected and preprocessed to improve the sensitivity, and contextual and cytoplasm information are introduced to improve the specificity. Experiments on 26 consecutive image stacks demonstrated that the dynamic autofocusing accuracy was 2.06 μm. On 21 cervical cell images with nonideal imaging condition and pathology, our segmentation method achieved a 93% accuracy for cytoplasm, and a 87.3% F-measure for nuclei, both outperformed state of the art works in terms of accuracy. Additional clinical trials showed that both the sensitivity (88.1%) and the specificity (100%) of our system are satisfyingly high. These results proved the feasibility of automation-assisted cervical cancer screening in MLBC slides with H&E stain, which is highly desirable in community health centers and small hospitals. © 2013 International Society for Advancement of Cytometry.

  7. Ionic liquids, electrolyte solutions including the ionic liquids, and energy storage devices including the ionic liquids

    Science.gov (United States)

    Gering, Kevin L.; Harrup, Mason K.; Rollins, Harry W.

    2015-12-08

    An ionic liquid including a phosphazene compound that has a plurality of phosphorus-nitrogen units and at least one pendant group bonded to each phosphorus atom of the plurality of phosphorus-nitrogen units. One pendant group of the at least one pendant group comprises a positively charged pendant group. Additional embodiments of ionic liquids are disclosed, as are electrolyte solutions and energy storage devices including the embodiments of the ionic liquid.

  8. Ionic-Functionalized Polymeric Microporous Materials

    Science.gov (United States)

    Rukmani, Shalini J.; Liyana-Arachchi, Thilanga; Hart, Kyle; Colina, Coray

    Ionic-functionalized microporous materials are attractive for gas adsorption and separation applications. In this study, we investigate the effect of changing ions (Li+, Na+, K+, Rb+, and Mg2+) on the porosity, carbon dioxide (CO2) gas adsorption, and selectivity in ionic functionalized polymers of intrinsic microporosity (IonomIMs). Structure generation and gas adsorption are studied using molecular dynamics and Monte Carlo simulations respectively. The IonomIMs show an enhanced performance for CO2 selectivity in CO2 /CH4 and CO2 /N2 gas mixtures at pressure swing adsorption and vacuum swing adsorption conditions. For 100% ionic concentration, ions with the same charge show a decrease in the adsorption capacity with increasing cation size. Mg2+ has the highest pure CO2 adsorption and lowest mixed gas separation performance. The increasing concentration of ions decreases the porosity of the framework and increases the tunability of structural and adsorption properties. Hence, the concentration of ions, size, and charge play a vital role in determining the optimum adsorbent for a targeted industrial application.

  9. Probing the Interaction of Ionic Liquids with CO2: A Raman Spectroscopy and Ab Initio Study

    National Research Council Canada - National Science Library

    Eucker, IV, William

    2008-01-01

    ...) with selected ionic liquids (ILs). Raman spectroscopy and first principle quantum mechanical calculations were performed on selected IL solvents in contact with CO2 in the effort to discover how the solvents interact with the gas. ILs are salts...

  10. Energy consumption analysis for CO2 separation using imidazolium-based ionic liquids

    International Nuclear Information System (INIS)

    Xie, Yujiao; Zhang, Yingying; Lu, Xiaohua; Ji, Xiaoyan

    2014-01-01

    Highlights: • CO 2 solubility in imidazolium-based ionic liquids was surveyed and evaluated. • CO 2 absorption enthalpy was calculated based on thermodynamic model. • The effects of cation and anion on CO 2 absorption enthalpy were discussed. • Energy consumption for a CO 2 separation process was investigated. - Abstract: CO 2 solubility in ionic liquids has been measured extensively in order to develop ionic liquid-based technology for CO 2 separation. However, the energy consumption analysis has not been investigated well for such technology. In order to carry out the energy consumption analysis for CO 2 separation using ionic liquids based on available experimental data, in this work, the experimental data of the CO 2 solubility in imidazolium-based ionic liquids at pressures below 10 MPa was surveyed and evaluated by a semi-empirical thermodynamic model firstly. Based on the reliable experimental solubility data, the enthalpy of CO 2 absorption was further calculated by the thermodynamic model. The results show that the CO 2 absorption enthalpy in the studied ionic liquids is dominated by the enthalpy of CO 2 dissolution and the contribution of excess enthalpy increases with increasing CO 2 solubility in ionic liquids. The magnitude of the CO 2 absorption enthalpy decreases with increasing chain length in cation and strongly depends on the anion of ionic liquids. Furthermore, the energy consumption for a CO 2 separation process by pressure swing and/or temperature swing was investigated. For the pressure swing process, the Henry’s constant of CO 2 in ionic liquids is an important factor for energy consumption analysis; If CO 2 is absorbed at 298 K and 1 MPa and ionic liquid is regenerated by decreasing the pressure to 0.1 MPa at the same temperature, among the studied ionic liquids, [emim][EtSO 4 ] is the solvent with the lowest energy consumption of 9.840 kJ/mol CO 2 . For the temperature swing process, the heat capacity of ionic liquids plays a more

  11. Hydrogen production from glucose in ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Assenbaum, D.W.; Taccardi, N.; Berger, M.E.M.; Boesmann, A.; Enzenberger, F.; Woelfel, R.; Wasserscheid, P. [Erlangen-Nuernberg Univ. (Germany). Lehrstuhl fuer chemische Reaktionstechnik

    2010-07-01

    technologies suffer from the fact that the overall reaction rates are often restricted by mass and heat transport problems. Lastly, there are severe limitations concerning the feedstock selection as for some important substrates, such as e.g. glucose, the process can only be operated in very diluted systems to avoid rapid tar formation [22,23,24]. In this contribution we describe for the first time a catalytic reaction system producing hydrogen from glucose in astonishingly high selectivities using a single reaction step under very mild conditions. The catalytic reaction system is characterized by its homogeneous nature and comprises a Ru-complex catalyst dissolved and stabilized in an ionic liquid medium. Ionic liquids are salts of melting points below 100 C [25]. These liquid materials have attracted much interest in the last decade as solvents for catalytic reactions [26] and separation technologies (extraction, distillation) [27,28,29,30,31,32]. Besides, these liquids have found industrial applications as process fluids for mechanic [33] and electrochemical applications [34]. Finally, from the pioneering work of Rogers and co-workers, it is known that ionic liquids are able to dissolve significant amounts of water-insoluble biopolymers (such as e.g. cellulose and chitin)[35] and even complex biopolymer mixtures, such as e.g. wood, have been completely dissolved in some ionic liquids [36]. In our specific application, the role of the ionic liquid is threefold: a) the ionic liquid dissolves the carbohydrate starting material thus expanding the range of applicable carbohydrate to water insoluble polymers; b) the ionic liquid provides a medium to dissolve and stabilize the catalyst; c) the ionic liquid dissolves hydrogen at a very low level, so inhibiting any possible collateral hydrogen-consuming process (detailed investigation of the hydrogen solubility in ionic liquids have been reported by e.g. Brennecke and coworkers [37]). (orig.)

  12. Ionic Liquid Membranes for Carbon Dioxide Separation

    Energy Technology Data Exchange (ETDEWEB)

    Myers, C.R.; Ilconich, J.B.; Luebke, D.R.; Pennline, H.W.

    2008-07-12

    Recent scientific studies are rapidly advancing novel technological improvements and engineering developments that demonstrate the ability to minimize, eliminate, or facilitate the removal of various contaminants and green house gas emissions in power generation. The Integrated Gasification Combined Cycle (IGCC) shows promise for carbon dioxide mitigation not only because of its higher efficiency as compared to conventional coal firing plants, but also due to a higher driving force in the form of high partial pressure. One of the novel technological concepts currently being developed and investigated is membranes for carbon dioxide (CO2) separation, due to simplicity and ease of scaling. A challenge in using membranes for CO2 capture in IGCC is the possibility of failure at elevated temperatures or pressures. Our earlier research studies examined the use of ionic liquids on various supports for CO2 separation over the temperature range, 37°C-300°C. The ionic liquid, 1-hexyl-3methylimidazolium Bis(trifluoromethylsulfonyl)imide, ([hmim][Tf2N]), was chosen for our initial studies with the following supports: polysulfone (PSF), poly(ether sulfone) (PES), and cross-linked nylon. The PSF and PES supports had similar performance at room temperature, but increasing temperature caused the supported membranes to fail. The ionic liquid with the PES support greatly affected the glass transition temperature, while with the PSF, the glass transition temperature was only slightly depressed. The cross-linked nylon support maintained performance without degradation over the temperature range 37-300°C with respect to its permeability and selectivity. However, while the cross-linked nylon support was able to withstand temperatures, the permeability continued to increase and the selectivity decreased with increasing temperature. Our studies indicated that further testing should examine the use of other ionic liquids, including those that form chemical complexes with CO2 based on

  13. Graphene oxide doped ionic liquid ultrathin composite membranes for efficient CO2 capture

    KAUST Repository

    Karunakaran, Madhavan

    2016-11-28

    Advanced membrane systems with high flux and sufficient selectivity are required for industrial gas separation processes. In order to achieve high flux and high selectivity, the membrane material should be as thin as possible and it should have selective sieving channels and long term stability. This could be achieved by designing a three component material consisting of a blend of an ionic liquid and graphene oxide covered by a highly permeable low selective polymeric coating. By using a simple dip coating technique, we prepared high flux and CO selective ultrathin graphene oxide (GO)/ionic liquid membranes on a porous ultrafiltration support. The ultrathin composite membranes derived from GO/ionic liquid complex displays remarkable combinations of permeability (CO flux: 37 GPU) and selectivity (CO/N selectivity: 130) that surpass the upper bound of ionic liquid membranes for CO/N separation. Moreover, the membranes were stable when tested for 120 hours.

  14. Thermophysical characterization of N-methyl-2-hydroxyethylammonium carboxilate ionic liquids

    OpenAIRE

    Talavera-Prieto, Nieves M. C.; Ferreira, Abel G. M.; Simões, Pedro N.; Carvalho, Pedro J.; Mattedi, Silvana; Coutinho, João A. P.

    2014-01-01

    The thermophysical properties including density, heat capacity, thermal stability and phase behaviour of protic ionic liquids based on the N-methyl-2-hydroxyethylammonium cation, [C2OHC1NH2]+, with the carboxylate anions (propionate, [C2COO]−, butyrate, [C3COO]−, and pentanoate, [C4COO]−) are reported and used to evaluate structure-property relationships. The density was measured over the temperature and pressure ranges, T = (298.15 to 358.15) K and p = (0.1 to 25) MPa, respectively, with an ...

  15. Fast Measurement of Methanol Concentration in Ionic Liquids by Potential Step Method

    Science.gov (United States)

    Hainstock, Michael L.; Tang, Yijun

    2015-01-01

    The development of direct methanol fuel cells required the attention to the electrolyte. A good electrolyte should not only be ionic conductive but also be crossover resistant. Ionic liquids could be a promising electrolyte for fuel cells. Monitoring methanol was critical in several locations in a direct methanol fuel cell. Conductivity could be used to monitor the methanol content in ionic liquids. The conductivity of 1-butyl-3-methylimidazolium tetrafluoroborate had a linear relationship with the methanol concentration. However, the conductivity was significantly affected by the moisture or water content in the ionic liquid. On the contrary, potential step could be used in sensing methanol in ionic liquids. This method was not affected by the water content. The sampling current at a properly selected sampling time was proportional to the concentration of methanol in 1-butyl-3-methylimidazolium tetrafluoroborate. The linearity still stood even when there was 2.4 M water present in the ionic liquid. PMID:25802522

  16. Fast Measurement of Methanol Concentration in Ionic Liquids by Potential Step Method

    Directory of Open Access Journals (Sweden)

    Michael L. Hainstock

    2015-01-01

    Full Text Available The development of direct methanol fuel cells required the attention to the electrolyte. A good electrolyte should not only be ionic conductive but also be crossover resistant. Ionic liquids could be a promising electrolyte for fuel cells. Monitoring methanol was critical in several locations in a direct methanol fuel cell. Conductivity could be used to monitor the methanol content in ionic liquids. The conductivity of 1-butyl-3-methylimidazolium tetrafluoroborate had a linear relationship with the methanol concentration. However, the conductivity was significantly affected by the moisture or water content in the ionic liquid. On the contrary, potential step could be used in sensing methanol in ionic liquids. This method was not affected by the water content. The sampling current at a properly selected sampling time was proportional to the concentration of methanol in 1-butyl-3-methylimidazolium tetrafluoroborate. The linearity still stood even when there was 2.4 M water present in the ionic liquid.

  17. Phase Behavior and Ionic Conductivity of Concentrated Solutions of Polystyrene-Poly(ethylene oxide) Diblock Copolymers in an Ionic Liquid

    Energy Technology Data Exchange (ETDEWEB)

    Simone, Peter M.; Lodge, Timothy P.; (UMM)

    2010-03-16

    Concentrated solutions of poly(styrene-b-ethylene oxide) (PS-PEO) diblock copolymers were prepared using the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [EMI][TFSI] as the solvent. The self-assembled microstructures adopted by the copolymer solutions have been characterized using small-angle X-ray scattering. Lyotropic mesophase transitions were observed, with a progression from hexagonally packed cylinders of PEO, to lamellae, to hexagonally packed cylinders of PS upon increasing [EMI][TFSI] content. The change in lamellar domain spacing with ionic liquid concentration was found to be comparable to that reported for other block copolymers in strongly selective solvents. The ionic conductivity of the concentrated PS-PEO/[EMI][TFSI] solutions was measured via impedance spectroscopy, and ranged from 1 x 10{sup -7} to 1 x 10{sup -3} S/cm at temperatures from 25-100 C. Additionally, the ionic conductivity of the solutions was found to increase with both ionic liquid concentration and molecular weight of the PEO blocks. The ionic conductivity of PEO homopolymer/[EMI][TFSI] solutions was also measured in order to compare the conductivity of the PS-PEO solutions to the expected limit for a lamellar sample with randomly oriented microstructure grains.

  18. Biopolymer Processing Using Ionic Liquids

    Science.gov (United States)

    2014-08-07

    reaction and degradation products of the conversion of chitin and chitosan, and 3) investigate the effects of various reaction conditions, such as...reaction temperature, and catalyst loading, on the reaction rate and degradation products from the depolymerization of chitin and chitosan. 15. SUBJECT... based ionic liquid for the dissolution of chitin and a sulfonic acid functionalized ionic liquid, chitin can be hydrolyzed into its monomer unit, N

  19. Ionic Liquid Epoxy Resin Monomers

    Science.gov (United States)

    Paley, Mark S. (Inventor)

    2013-01-01

    Ionic liquid epoxide monomers capable of reacting with cross-linking agents to form polymers with high tensile and adhesive strengths. Ionic liquid epoxide monomers comprising at least one bis(glycidyl) N-substituted nitrogen heterocyclic cation are made from nitrogen heterocycles corresponding to the bis(glycidyl) N-substituted nitrogen heterocyclic cations by a method involving a non-nucleophilic anion, an alkali metal cation, epichlorohydrin, and a strong base.

  20. Fluctuating hydrodynamics for ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Lazaridis, Konstantinos [Department of Mathematics and Statistics, Washington State University, Pullman, 99163 (United States); Wickham, Logan [Department of Computer Science, Washington State University, Richland, 99354 (United States); Voulgarakis, Nikolaos, E-mail: n.voulgarakis@wsu.edu [Department of Mathematics and Statistics, Washington State University, Pullman, 99163 (United States)

    2017-04-25

    We present a mean-field fluctuating hydrodynamics (FHD) method for studying the structural and transport properties of ionic liquids in bulk and near electrified surfaces. The free energy of the system consists of two competing terms: (1) a Landau–Lifshitz functional that models the spontaneous separation of the ionic groups, and (2) the standard mean-field electrostatic interaction between the ions in the liquid. The numerical approach used to solve the resulting FHD-Poisson equations is very efficient and models thermal fluctuations with remarkable accuracy. Such density fluctuations are sufficiently strong to excite the experimentally observed spontaneous formation of liquid nano-domains. Statistical analysis of our simulations provides quantitative information about the properties of ionic liquids, such as the mixing quality, stability, and the size of the nano-domains. Our model, thus, can be adequately parameterized by directly comparing our prediction with experimental measurements and all-atom simulations. Conclusively, this work can serve as a practical mathematical tool for testing various theories and designing more efficient mixtures of ionic liquids. - Highlights: • A new fluctuating hydrodynamics method for ionic liquids. • Description of ionic liquid morphology in bulk and near electrified surfaces. • Direct comparison with experimental measurements.

  1. Developing Ionic Liquid Know-How for the Design of Modular Functionality, Versatile Platforms, and New Synthetic Methodologies for Energetic Materials

    Science.gov (United States)

    2013-12-05

    filtration, and the filtrate checked for the presence of silver ions using HCl. The solvent was then evaporated at 80 °C under vacuum . A final...10. Graphene and Graphene Oxide Can ‘ Lubricate ’ Ionic Liquids based on Specific 36 Surface Interactions Leading to Improved Low Temperature...16-20[DCA]) salts were prepared by metathesis of the analogous halides (4-20[X]), either by using an ion exchange resin (nitrate salts) or a silver

  2. Hydrogenation of Cinnamaldehyde over an Ionic Cobalt Promoted ...

    African Journals Online (AJOL)

    NICO

    selectivity of Pd towards the formation of saturated carbonyls as products, is explained by the preferred adsorption of the. C=C bond on Pd.14. It has been shown that promotion of metallic catalysts with an ionic compound increase the hydrogenation rate of the. C=O bond of unsaturated aldehydes,15 due to the activation of.

  3. Separation of Ionic Solutes: Abstracts of the sixth international conference

    International Nuclear Information System (INIS)

    1995-05-01

    The publication has been set up as a abstracts of the international conference dealing with separation of ionic solutes. The book consists of the sections: (A) Theory of solutions and processes; (B) Solvent extraction, liquid membranes and biphasic separations; (C) Capillary electrophoresis and isotachophoresis; (D) Selective and natural sorbents; (E) Fractionation of radionuclides and metals in natural systems - transfer and speciation

  4. NOvel Fission Product Separation Based on Room-Temperature Ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Hussey, Charles L.

    2005-11-13

    The effective extraction of Cs+ and Sr2+ into a relatively new and heretofore untested hydrophobic ionic liquid, tri-n-butylmethylammonium bis[(trifluoromethyl)sulfonyl]imide was demonstrated with calix[4]arene-bis(tert-octylbenzo-crown-6) and dicyclohexano-18-crown-6, respectively. The coordinated Cs+ and Sr2+ were subsequently removed from the ionic liquid extraction solvent by an electrochemical reduction process carried out at mercury electrodes. This process is non-destructive, permitting the ionic liquid and ionophores to be recycled. Although the process is based on mercury electrodes, this is a benefit rather than a detriment because the liquid mercury containing the Cs and Sr can be easily transported to another electrochemical cell where the Cs and Sr could be electrochemically recovered from the mercury amalgam and concentrated into a minimum volume of water or some other inexpensive solvent. This should facilitate the development of a suitable waste form for the extracted Cs+ and Sr2+. Thus, the feasibility of the proposed ionic liquid-based extraction cycle for the removal of 137Cs+ and 90Sr2+ from simulated aqueous tank waste was demonstrated.

  5. Solvation of an excess electron in pyrrolidinium dicyanamide based ionic liquids.

    Science.gov (United States)

    Xu, Changhui; Margulis, Claudio J

    2015-01-15

    In a recent article [J. Am. Chem. Soc. 2011, 133, 20186], we described the nature of the "dry" excess electron in a variety of different ionic liquids. We found that this could delocalize over cations or anions depending on the nature of the ions involved. A second article [J. Am. Chem. Soc. 2013, 135, 17528] explored the nature of the "dry to trapped" excess electron transition, the early localization dynamics, and associated spectroscopic signatures in alkylamonium and pyrrolidinium bis(trifluoromethylsulfonyl)amide based ionic liquids. In this study we predicted that the trapped electron localizes on an anion, resulting in fragmentation that is undesirable for photochemical, electrochemical, and radiation chemistry applications. The current work focuses instead on an ionic liquid based on the dicyanamide anion that on a time scale relevant to electron transfer and solvation dynamics does not appear to undergo facile fragmentation. Although electrochemical cathodic and anodic limits were correctly predicted by our recent study, it is unclear whether the reaction channels explored are necessarily those responsible for the observed near-infrared (NIR) band typical of excess electrons at long time. Could it be possible that the electrochemically relevant reaction channel is not necessarily the one giving rise to the NIR signal? This work attempts to approach such structural and dynamical aspects relevant to photodegradation, radiation chemistry, and electrochemistry in the case of pyrrolidinium dicyanamide based ionic liquids.

  6. Ionic Conductivity of Polyelectrolyte Hydrogels.

    Science.gov (United States)

    Lee, Chen-Jung; Wu, Haiyan; Hu, Yang; Young, Megan; Wang, Huifeng; Lynch, Dylan; Xu, Fujian; Cong, Hongbo; Cheng, Gang

    2018-02-14

    Polyelectrolytes have many important functions in both living organisms and man-made applications. One key property of polyelectrolytes is the ionic conductivity due to their porous networks that allow the transport of water and small molecular solutes. Among polyelectrolytes, zwitterionic polymers have attracted huge attention for applications that involve ion transport in a polyelectrolyte matrix; however, it is still unclear how the functional groups of zwitterionic polymer side chains affect their ion transport and swelling properties. In this study, zwitterionic poly(carboxybetaine acrylamide), poly(2-methacryloyloxyethyl phosphorylcholine), and poly(sulfobetaine methacrylate) hydrogels were synthesized and their ionic conductivity was studied and compared to cationic, anionic, and nonionic hydrogels. The change of the ionic conductivity of zwitterionic and nonionic hydrogels in different saline solutions was investigated in detail. Zwitterionic hydrogels showed much higher ionic conductivity than that of the widely used nonionic poly(ethylene glycol) methyl ether methacrylate hydrogel in all tested solutions. For both cationic and anionic hydrogels, the presence of mobile counterions led to high ionic conductivity in low salt solutions; however, the ionic conductivity of zwitterionic hydrogels surpassed that of cationic and ionic hydrogels in high salt solutions. Cationic and anionic hydrogels showed much higher water content than that of zwitterionic hydrogels in deionized water; however, the cationic hydrogels shrank significantly with increasing saline concentration. This work provides insight into the effects of polyelectrolyte side chains on ion transport. This can guide us in choosing better polyelectrolytes for a broad spectrum of applications, including bioelectronics, neural implants, battery, and so on.

  7. High-efficiency technology for lithium isotope separation using an ionic-liquid impregnated organic membrane

    International Nuclear Information System (INIS)

    Hoshino, Tsuyoshi; Terai, Takayuki

    2011-01-01

    The tritium needed as a fuel for fusion reactors is produced by the neutron capture reaction of lithium-6 ( 6 Li) in tritium breeding materials. New lithium isotope separation technique using ionic-liquid impregnated organic membranes (Ionic-Liquid-i-OMs) have been developed. Lithium ions are able to move by electrodialysis through certain Ionic-Liquid-i-OMs between the cathode and the anode in lithium solutions. In this report, the effects of protection cover and membrane thickness on the durability of membrane and the efficiency of isotope separation were evaluated. In order to improve the durability of the Ionic-Liquid-i-OM, we developed highly-durable Ionic-Liquid-i-OM. Both surfaces of the Ionic-Liquid-i-OM were covered by a nafion 324 overcoat or a cation exchange membrane (SELEMION TM CMD) to prevent the outflow of the ionic liquid. It was observed that the durability of the Ionic-Liquid-i-OM was improved by a nafion 324 overcoat. On the other hand, the organic membrane selected was 1, 2 or 3 mm highly-porous Teflon film, in order to efficiently impregnate the ionic liquid. The 6 Li isotope separation factor by electrodialysis using highly-porous Teflon film of 3 mm thickness was larger than using that of 1 or 2 mm thickness.

  8. Liquid-Based Cytology of the Cerebrospinal Fluid in a Case of Cryptococcal Meningitis

    Directory of Open Access Journals (Sweden)

    Jiwoon Choi

    2018-01-01

    Full Text Available Cryptococcus neoformans is the most common microorganism found in cerebrospinal fluid (CSF cytology and causes life-threatening infections in immunocompromised hosts. Although its cytomorphologic features in conventional smear cytology have been well described, those in liquid-based cytology have rarely been. A 73-year-old woman with diffuse large B-cell lymphoma presented with mental confusion and a spiking fever. To rule out infectious conditions, CSF examination was performed. A cytology slide that was prepared using the ThinPrep method showed numerous spherical yeast-form organisms with diameters of 4–11 μm and thick capsules. Occasional asymmetrical, narrow-based budding but no true hyphae or pseudohyphae were observed. Gomori methenamine silver staining was positive. Cryptococcosis was confirmed in blood and CSF through the cryptococcal antigen test and culture. Liquid-based cytology allows for a clean background and additional slides for ancillary testing, facilitating the detection of microorganisms in CSF specimens, particularly when the number of organisms is small.

  9. Liquid-Based Cytology of the Cerebrospinal Fluid in a Case of Cryptococcal Meningitis.

    Science.gov (United States)

    Choi, Jiwoon; Kim, Se Hoon

    2018-01-01

    Cryptococcus neoformans is the most common microorganism found in cerebrospinal fluid (CSF) cytology and causes life-threatening infections in immunocompromised hosts. Although its cytomorphologic features in conventional smear cytology have been well described, those in liquid-based cytology have rarely been. A 73-year-old woman with diffuse large B-cell lymphoma presented with mental confusion and a spiking fever. To rule out infectious conditions, CSF examination was performed. A cytology slide that was prepared using the ThinPrep method showed numerous spherical yeast-form organisms with diameters of 4-11 μm and thick capsules. Occasional asymmetrical, narrow-based budding but no true hyphae or pseudohyphae were observed. Gomori methenamine silver staining was positive. Cryptococcosis was confirmed in blood and CSF through the cryptococcal antigen test and culture. Liquid-based cytology allows for a clean background and additional slides for ancillary testing, facilitating the detection of microorganisms in CSF specimens, particularly when the number of organisms is small.

  10. Raman spectral signatures of cervical exfoliated cells from liquid-based cytology samples

    Science.gov (United States)

    Kearney, Padraig; Traynor, Damien; Bonnier, Franck; Lyng, Fiona M.; O'Leary, John J.; Martin, Cara M.

    2017-10-01

    It is widely accepted that cervical screening has significantly reduced the incidence of cervical cancer worldwide. The primary screening test for cervical cancer is the Papanicolaou (Pap) test, which has extremely variable specificity and sensitivity. There is an unmet clinical need for methods to aid clinicians in the early detection of cervical precancer. Raman spectroscopy is a label-free objective method that can provide a biochemical fingerprint of a given sample. Compared with studies on infrared spectroscopy, relatively few Raman spectroscopy studies have been carried out to date on cervical cytology. The aim of this study was to define the Raman spectral signatures of cervical exfoliated cells present in liquid-based cytology Pap test specimens and to compare the signature of high-grade dysplastic cells to each of the normal cell types. Raman spectra were recorded from single exfoliated cells and subjected to multivariate statistical analysis. The study demonstrated that Raman spectroscopy can identify biochemical signatures associated with the most common cell types seen in liquid-based cytology samples; superficial, intermediate, and parabasal cells. In addition, biochemical changes associated with high-grade dysplasia could be identified suggesting that Raman spectroscopy could be used to aid current cervical screening tests.

  11. Designing Ionic Liquids for CO2 CaptureWhat’s the role for computation?

    Energy Technology Data Exchange (ETDEWEB)

    Brennecke, Joan F. [University of Texas, Austin, TX

    2018-05-01

    Presentation on the computational aspects of ionic liquid selection for carbon dioxide capture to the conference attendees at the New Vistas in Molecular Thermodynamics: Experimentation, Molecular Modeling, and Inverse Design, Berkeley, CA, January 7 through 9, 2018

  12. A recyclable enzymatic biodiesel production process in ionic liquids.

    Science.gov (United States)

    De Diego, Teresa; Manjón, Arturo; Lozano, Pedro; Iborra, José L

    2011-05-01

    Immobilized Candida antarctica lipase B suspended in ionic liquids containing long alkyl-chain cations showed excellent synthetic activity and operational stability for biodiesel production. The interest of this process lies in the possibility of recycling the biocatalyst and the easy separation of the biodiesel from the reaction mixture. The ionic liquids used, 1-hexadecyl-3-methylimidazolium triflimide ([C(16)MIM][NTf(2)]) and 1-octadecyl-3-methylimidazolium triflimide ([C(18)MIM][NTf(2)]), produced homogeneous systems at the start of the reaction and, at the end of the same, formed a three-phase system, allowing the selective extraction of the products using straightforward separation techniques, and the recycling of both the ionic liquid and the enzyme. These are very important advantages which may be found useful in environmentally friendly production conditions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Physicochemical properties and toxicities of hydrophobicpiperidinium and pyrrolidinium ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Salminen, Justin; Papaiconomou, Nicolas; Kumar, R. Anand; Lee,Jong-Min; Kerr, John; Newman, John; Prausnitz, John M.

    2007-06-25

    Some properties are reported for hydrophobic ionic liquids (IL) containing 1-methyl-1-propyl pyrrolidinium [MPPyrro]{sup +}, 1-methyl-1-butyl pyrrolidinium [MBPyrro]{sup +}, 1-methyl-1-propyl piperidinium [MPPip]{sup +}, 1-methyl-1-butyl piperidinium [MBPip]{sup +}, 1-methyl-1-octylpyrrolidinium [MOPyrro]{sup +} and 1-methyl-1-octylpiperidinium [MOPip]{sup +} cations. These liquids provide new alternatives to pyridinium and imidazolium ILs. High thermal stability of an ionic liquid increases safety in applications like rechargeable lithium-ion batteries and other electrochemical devices. Thermal properties, ionic conductivities, viscosities, and mutual solubilities with water are reported. In addition, toxicities of selected ionic liquids have been measured using a human cancer cell-line. The ILs studied here are sparingly soluble in water but hygroscopic. We show some structure-property relationships that may help to design green solvents for specific applications. While ionic liquids are claimed to be environmentally-benign solvents, as yet few data have been published to support these claims.

  14. Ionic conductivity in irradiated KCL

    International Nuclear Information System (INIS)

    Vignolo Rubio, J.

    1979-01-01

    The ionic conductivity of X and gamma irradiated KCL single crystals has been studied between room temperature and 600 degree centigree. the radiation induced damage resulting in a decrease of the conductivity heals by thermal annealing in two steps which are at about 350 and 550 degree centigree respectively. It has been found that the radiation induced colour centres are not involved in the observed decrease of the ionic conductivity. However. It has been observed that the effects of quenching and plastic deformation on the conductivity of the samples are very similar to the effect induced by irradiation. It is suggested that, samples radiation induced dislocation loops might cause the ionic conductivity decrease observed in irradiated samples. (Author)

  15. Ionic conductivity in irradiated KCL

    International Nuclear Information System (INIS)

    Vignolo Rubio, J.

    1979-01-01

    The ionic conductivity of X and gamma irradiated KCl single crystals has been studied between room temperature and 600 deg C. The radiation induced damage resulting in a decrease of the conductivity heals by thermal annealing in two steps which are at about 350 and 550 deg C respectively. It has been found that the radiation induced colour centres are not involved in the observed decrease of the ionic conductivity. Howewer, it has been observed that the effects of quenching and plastic deformation on the conductivity of the samples are very similar to the effect induced by irradiation. It is suggested that small radiation induced dislocation loops might cause the ionic conductivity decrease observed in irradiated samples. (auth)

  16. Ionic conducting poly-benzimidazoles

    International Nuclear Information System (INIS)

    Jouanneau, J.

    2006-11-01

    Over the last years, many research works have been focused on new clean energy systems. Hydrogen fuel cell seems to be the most promising one. However, the large scale development of this technology is still limited by some key elements. One of them is the polymer electrolyte membrane 'Nafion' currently used, for which the ratio performance/cost is too low. The investigations we carried out during this thesis work are related to a new class of ionic conducting polymer, the sulfonated poly-benzimidazoles (sPBI). Poly-benzimidazoles (PBI) are aromatic heterocyclic polymers well-known for their excellent thermal and chemical stability. Ionic conduction properties are obtained by having strong acid groups (sulfonic acid SO 3 H) on the macromolecular structure. For that purpose, we first synthesized sulfonated monomers. Their poly-condensation with an appropriate non-sulfonated co-monomer yields to sPBI with sulfonation range from 0 to 100 per cent. Three different sPBI structures were obtained, and verified by appropriate analytical techniques. We also showed that the protocol used for the synthesis resulted in high molecular weights polymers. We prepared ionic conducting membrane by casting sPBI solutions on glass plates. Their properties of stability, water swelling and ionic conductivity were investigated. Surprisingly, the behaviour of sPBI was quite different from the other sulfonated aromatic polymers with same amount of SO 3 H, their stability was much higher, but their water swelling and ionic conductivity were quite low. We attributed these differences to strong ionic interactions between the sulfonic acid groups and the basic benzimidazole groups of our polymers. However, we managed to solve this problem synthesizing very highly sulfonated PBI, obtaining membranes with a good balance between all the properties necessary. (author)

  17. Local fields in ionic crystals

    International Nuclear Information System (INIS)

    Claro, F.

    1981-08-01

    Local fields arising from the electronic distortion in perfect ionic crystals are described in terms of multipolar excitations. Field factors for the alkali halides and chalcogenide ions are found to differ significantly from the Lorentz value of 4π/3, the correction size following an exponential dependence on the difference in ionic radii. Local fields are only slightly modified by these corrections however, and together with the Clausius-Mossotti relation may be regarded as accurate to within 2% if the Lorentz value is adopted. (author)

  18. Lithium ion conducting ionic electrolytes

    Science.gov (United States)

    Angell, C.A.; Xu, K.; Liu, C.

    1996-01-16

    A liquid, predominantly lithium-conducting, ionic electrolyte is described which has exceptionally high conductivity at temperatures of 100 C or lower, including room temperature. It comprises molten lithium salts or salt mixtures in which a small amount of an anionic polymer lithium salt is dissolved to stabilize the liquid against recrystallization. Further, a liquid ionic electrolyte which has been rubberized by addition of an extra proportion of anionic polymer, and which has good chemical and electrochemical stability, is described. This presents an attractive alternative to conventional salt-in-polymer electrolytes which are not cationic conductors. 4 figs.

  19. Surface tension of ionic liquids and ionic liquid solutions.

    Science.gov (United States)

    Tariq, Mohammad; Freire, Mara G; Saramago, Benilde; Coutinho, João A P; Lopes, José N Canongia; Rebelo, Luís Paulo N

    2012-01-21

    Some of the most active scientific research fronts of the past decade are centered on ionic liquids. These fluids present characteristic surface behavior and distinctive trends of their surface tension versus temperature. One way to explore and understand their unique nature is to study their surface properties. This critical review analyses most of the surface tension data reported between 2001 and 2010 (187 references).

  20. CO2/CH4 Separation Performance of Ionic-Liquid-Based Epoxy-Amine Ion Gel Membranes under Mixed Feed Conditions Relevant to Biogas Processing.

    Czech Academy of Sciences Publication Activity Database

    Friess, K.; Lanč, M.; Pilnáček, Kryštof; Fíla, V.; Vopička, O.; Sedláková, Zuzana; Cowan, M.G.; McDaniel, W.M.; Noble, R.D.; Gin, D.L.; Izák, Pavel

    2017-01-01

    Roč. 528, APRIL (2017), s. 64-71 ISSN 0376-7388 R&D Projects: GA ČR GA14-12695S; GA MŠk LH14006; GA TA ČR TE01020080 Institutional support: RVO:67985858 Keywords : epoxy-amine-based ion gel membranes * biogas processing * humid mixed-gas permeation Subject RIV: CI - Industrial Chemistry, Chemical Engineering OBOR OECD: Chemical process engineering Impact factor: 6.035, year: 2016

  1. Ionic liquid based on α-amino acid anion and N7,N9-dimethylguaninium cation ([dMG][AA]): theoretical study on the structure and electronic properties.

    Science.gov (United States)

    Shakourian-Fard, Mehdi; Fattahi, Alireza; Bayat, Ahmad

    2012-06-07

    The interactions between five amino acid based anions ([AA](-) (AA = Gly, Phe, His, Try, and Tyr)) and N7,N9-dimethylguaninium cation ([dMG](+)) have been investigated by the hybrid density functional theory method B3LYP together with the basis set 6-311++G(d,p). The calculated interaction energy was found to decrease in magnitude with increasing side-chain length in the amino acid anion. The interaction between the [dMG](+) cation and [AA](-) anion in the most stable configurations of ion pairs is a hydrogen bonding interaction. These hydrogen bonds (H bonds) were analyzed by the quantum theory of atoms in molecules (QTAIM) and natural bond orbital (NBO) analysis. Finally, several correlations between electron densities in bond critical points of hydrogen bonds and interaction energy as well as vibrational frequencies in the most stable configurations of ion pairs have been checked.

  2. CO2/CH4 Separation Performance of Ionic-Liquid-Based Epoxy-Amine Ion Gel Membranes under Mixed Feed Conditions Relevant to Biogas Processing.

    Czech Academy of Sciences Publication Activity Database

    Friess, K.; Lanč, M.; Pilnáček, Kryštof; Fíla, V.; Vopička, O.; Sedláková, Zuzana; Cowan, M.G.; McDaniel, W.M.; Noble, R.D.; Gin, D.L.; Izák, Pavel

    2017-01-01

    Roč. 528, APRIL (2017), s. 64-71 ISSN 0376-7388 R&D Projects: GA ČR GA14-12695S; GA MŠk LH14006; GA TA ČR TE01020080 Institutional support: RVO:67985858 Keywords : epoxy-amine-based ion gel membranes * biogas processing * humid mixed- gas permeation Subject RIV: CI - Industrial Chemistry, Chemical Engineering OBOR OECD: Chemical process engineering Impact factor: 6.035, year: 2016

  3. Ionic liquid-tolerant cellulase enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Gladden, John; Park, Joshua; Singer, Steven; Simmons, Blake; Sale, Ken

    2017-10-31

    The present invention provides ionic liquid-tolerant cellulases and method of producing and using such cellulases. The cellulases of the invention are useful in saccharification reactions using ionic liquid treated biomass.

  4. Electric Current Fluctuations, Entropy and Ionic Conductivity

    OpenAIRE

    Zhang, Yong-Jun

    2016-01-01

    This paper reports a relation between ionic conductivity and electric current fluctuations. The relation was derived using statistical analysis and entropy approach. The relation can be used to calculate ionic conductivity.

  5. Nanoparticle enhanced ionic liquid heat transfer fluids

    Science.gov (United States)

    Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Gray, Joshua R.; Garcia-Diaz, Brenda L.

    2014-08-12

    A heat transfer fluid created from nanoparticles that are dispersed into an ionic liquid is provided. Small volumes of nanoparticles are created from e.g., metals or metal oxides and/or alloys of such materials are dispersed into ionic liquids to create a heat transfer fluid. The nanoparticles can be dispersed directly into the ionic liquid during nanoparticle formation or the nanoparticles can be formed and then, in a subsequent step, dispersed into the ionic liquid using e.g., agitation.

  6. Ionic-Liquid-Tethered Nanoparticles: Hybrid Electrolytes

    KAUST Repository

    Moganty, Surya S.

    2010-10-22

    A new class of solventless electrolytes was created by tethering ionic liquids to hard inorganic ZrO2 nanostructures (see picture; NIM=nanoscale ionic material). These hybrid fluids exhibit exceptional redox stability windows, excellent thermal stability, good lithium transference numbers, long-term interfacial stability in the presence of a lithium anode and, when doped with lithium salt, reasonable ionic conductivities.

  7. Cellulose multilayer Membranes manufacture with Ionic liquid

    KAUST Repository

    Livazovic, Sara

    2015-05-09

    Membrane processes are considered energy-efficient for water desalination and treatment. However most membranes are based on polymers prepared from fossil petrochemical sources. The development of multilayer membranes for nanofiltration and ultrafiltration, with thin selective layers of naturally available cellulose has been hampered by the availability of non-aggressive solvents. We propose the manufacture of cellulose membranes based on two approaches: (i) silylation, coating from solutions in tetrahydrofuran, followed by solvent evaporation and cellulose regeneration by acid treatment; (ii) casting from solution in 1-ethyl-3-methylimidazolum acetate ([C2mim]OAc), an ionic liquid, followed by phase inversion in water. By these methods porous supports could be easily coated with semi-crystalline cellulose. The membranes were hydrophilic with contact angles as low as 22.0°, molecular weight cut-off as low as 3000 g mol-1 with corresponding water permeance of 13.8 Lm−2 h−1 bar−1. Self-standing cellulose membranes were also manufactured without porous substrate, using only ionic liquid as green solvent. This membrane was insoluble in water, tetrahydrofuran, hexane, N,N-dimethylformamide, 1-methyl-2-pyrrolidinone and N,N-dimethylacetamide.

  8. Continuum electrostatics for ionic solutions with non-uniform ionic sizes

    International Nuclear Information System (INIS)

    Li Bo

    2009-01-01

    This work concerns electrostatic properties of an ionic solution with multiple ionic species of possibly different ionic sizes. Such properties are described by the minimization of an electrostatic free-energy functional of ionic concentrations. Bounds are obtained for ionic concentrations with low electrostatic free energies. Such bounds are used to show that there exists a unique set of equilibrium ionic concentrations that minimizes the free-energy functional. The equilibrium ionic concentrations are found to depend sorely on the equilibrium electrostatic potential, resembling the classical Boltzmann distributions that relate the equilibrium ionic concentrations to the equilibrium electrostatic potential. Unless all the ionic and solvent molecular sizes are assumed to be the same, explicit formulae of such dependence are, however, not available in general. It is nevertheless proved that in equilibrium the ionic charge density is a decreasing function of the electrostatic potential. This determines a variational principle with a convex functional for the electrostatic potential

  9. Recent Developments in Chemical Synthesis with Biocatalysts in Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Mahesh K. Potdar

    2015-09-01

    Full Text Available Over the past decade, a variety of ionic liquids have emerged as greener solvents for use in the chemical manufacturing industries. Their unique properties have attracted the interest of chemists worldwide to employ them as replacement for conventional solvents in a diverse range of chemical transformations including biotransformations. Biocatalysts are often regarded as green catalysts compared to conventional chemical catalysts in organic synthesis owing to their properties of low toxicity, biodegradability, excellent selectivity and good catalytic performance under mild reaction conditions. Similarly, a selected number of specific ionic liquids can be considered as greener solvents superior to organic solvents owing to their negligible vapor pressure, low flammability, low toxicity and ability to dissolve a wide range of organic and biological substances, including proteins. A combination of biocatalysts and ionic liquids thus appears to be a logical and promising opportunity for industrial use as an alternative to conventional organic chemistry processes employing organic solvents. This article provides an overview of recent developments in this field with special emphasis on the application of more sustainable enzyme-catalyzed reactions and separation processes employing ionic liquids, driven by advances in fundamental knowledge, process optimization and industrial deployment.

  10. Phase behavior of ionic microemulsions

    NARCIS (Netherlands)

    Lekkerkerker, H.N.W.; Kegel, W.K.; Overbeek, J.Th.G.

    1996-01-01

    Non-polar oils and water can form thermodynamically stable quasi-homogeneous (colloidal) mixtures (called microemulsions) in the presence of relatively large amounts (several %) of ionic surfactants. If the surfactant contains a single hydrocarbon chain (e.g. Sodium Dodecyl Sulphate) the presence of

  11. Fluctuating hydrodynamics for ionic liquids

    Science.gov (United States)

    Lazaridis, Konstantinos; Wickham, Logan; Voulgarakis, Nikolaos

    2017-04-01

    We present a mean-field fluctuating hydrodynamics (FHD) method for studying the structural and transport properties of ionic liquids in bulk and near electrified surfaces. The free energy of the system consists of two competing terms: (1) a Landau-Lifshitz functional that models the spontaneous separation of the ionic groups, and (2) the standard mean-field electrostatic interaction between the ions in the liquid. The numerical approach used to solve the resulting FHD-Poisson equations is very efficient and models thermal fluctuations with remarkable accuracy. Such density fluctuations are sufficiently strong to excite the experimentally observed spontaneous formation of liquid nano-domains. Statistical analysis of our simulations provides quantitative information about the properties of ionic liquids, such as the mixing quality, stability, and the size of the nano-domains. Our model, thus, can be adequately parameterized by directly comparing our prediction with experimental measurements and all-atom simulations. Conclusively, this work can serve as a practical mathematical tool for testing various theories and designing more efficient mixtures of ionic liquids.

  12. Carbon Dioxide Separation with Supported Ionic Liquid Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Luebke, D.R.; Ilconich, J.B.; Myers, C.R.; Pennline, H.W.

    2007-04-01

    Supported liquid membranes are a class of materials that allow the researcher to utilize the wealth of knowledge available on liquid properties as a direct guide in the development of a capture technology. These membranes also have the advantage of liquid phase diffusivities higher than those observed in polymeric membranes which grant proportionally greater permeabilities. The primary shortcoming of the supported liquid membranes demonstrated in past research has been the lack of stability caused by volatilization of the transport liquid. Ionic liquids, which possess high carbon dioxide solubility relative to light gases such as hydrogen, are an excellent candidate for this type of membrane since they have negligible vapor pressure and are not susceptible to evaporation. A study has been conducted evaluating the use of several ionic liquids, including 1-hexyl-3-methyl-imidazolium bis(trifuoromethylsulfonyl)imide, 1-butyl-3-methyl-imidazolium nitrate, and 1-ethyl-3-methyl-imidazolium sulfate in supported ionic liquid membranes for the capture of carbon dioxide from streams containing hydrogen. In a joint project, researchers at the University of Notre Dame lent expertise in ionic liquid synthesis and characterization, and researchers at the National Energy Technology Laboratory incorporated candidate ionic liquids into supports and evaluated the resulting materials for membrane performance. Initial results have been very promising with carbon dioxide permeabilities as high as 950 barrers and significant improvements in carbon dioxide/hydrogen selectivity over conventional polymers at 37C and at elevated temperatures. Results include a comparison of the performance of several ionic liquids and a number of supports as well as a discussion of innovative fabrication techniques currently under development.

  13. Hydrogen Bonding in Ion-pair Molecules in Vapors over ionic liquids, studied by Raman Spectroscopy and ab initio Calculations

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    The hydrogen bonding interactions in selected archetypal vapor molecules formed in the gas phase over protic ionic liquids are discussed, based on Raman spectroscopy assisted with ab initio molecular orbital DFT-type quantum mechanical calculations (B3LYP with 6-311+G(d,p) basis sets) on assumed...... Ionic Liquid, To be submitted for J. Phys. Chem. A (2009)....

  14. Ionic conductivity studies of gel polyelectrolyte based on ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Cha, E.H. [The Faculty of Liberal Arts (Chemistry), Hoseo University, Asan Choongnam 336-795 (Korea); Lim, S.A. [Functional Proteomics Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea); Park, J.H. [Department of Herbal Medicine, Hoseo University, Asan Choongnam 336-795 (Korea); Kim, D.W. [Department of Chemical Technology, Han Bat National University, Daejon 305-719 (Korea); Macfarlane, D.R. [School of Chemistry, Monash University, Clayton, Vic. 3800 (Australia)

    2008-04-01

    Novel lithium polyelectrolyte-ionic liquids have been prepared and characterized of their properties. Poly(lithium 2-acrylamido-2-methyl propanesulfonate) (PAMPSLi) and its copolymer with N-vinyl formamide (VF) also has been prepared as a copolymer. 1-Ethyl-3-methylimidazolium tricyanomethanide (emImTCM) and N,N-dimethyl-N-propyl-N-butyl ammonium tricyanomethanide (N{sub 1134}TCM) which are chosen because of the same with the anion of ionic liquid were prepared. The ionic conductivity of copolymer system (PAMPSLi/PVF/emImTCM: 5.43 x 10{sup -3} S cm{sup -1} at 25 C) exhibits about over four times higher than that of homopolymer system (PAMPSLi/emImTCM: 1.28 x 10{sup -3} S cm{sup -1} at 25 C). Introduction of vinyl formamide into the copolymer type can increase the dissociation of the lithium cations from the polymer backbone. The ionic conductivity of copolymer with emImTCM (PAMPSLi/PVF/emImTCM) exhibits the higher conductivity than that of PAMPSLi/PVF/N{sub 1134}TCM (2.48 x 10{sup -3} S cm{sup -1}). Because of using the polymerizable anion it is seen to maintain high flexibility of imidazolium cation effectively to exhibit the higher conductivity. And also the viscosity of emImTCM (19.56 cP) is lower than that of N{sub 1134}TCM (28.61 cP). Low viscosity leads to a fast rate of diffusion of redox species. (author)

  15. Synthesis and physical properties of new layered double hydroxides based on ionic liquids: Application to a polylactide matrix

    KAUST Repository

    Livi, Sébastien

    2012-12-01

    Ionic liquids based on tetraalkylphosphonium salts combined with different anions (decanoate and dodecylsulfonate) have been used as intercalating agents of layered double hydroxides (LDHs) by ion exchange. The synthesized phosphonium-treated LDHs display a dramatically improved thermal degradation and a significant increase in the interlayer distance as confirmed by thermogravimetric analysis (TGA) and X-ray Diffraction (XRD), respectively. To highlight the effect of thermostable ionic liquids, a very low amount of LDHs has been introduced within a polylactide (PLA) matrix and PLA/LDHs nanocomposites have been processed in melt by twin-screw extrusion. Then, transmission electron microscopy (TEM) analysis has been used to investigate the influence of ILs on the different morphologies of these nanocomposites. Even though the thermal stability of PLA matrix decreased, an excellent stiffness-toughness compromise has been obtained. © 2012 Elsevier Inc.

  16. Direct Catalytic Conversion of Cellulose to 5-Hydroxymethylfurfural Using Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Sanan Eminov

    2016-10-01

    Full Text Available Cellulose is the single largest component of lignocellulosic biomass and is an attractive feedstock for a wide variety of renewable platform chemicals and biofuels, providing an alternative to petrochemicals and petrofuels. This potential is currently limited by the existing methods of transforming this poorly soluble polymer into useful chemical building blocks, such as 5-hydroxymethylfurfural (HMF. Ionic liquids have been used successfully to separate cellulose from the other components of lignocellulosic biomass and so the use of the same medium for the challenging transformation of cellulose into HMF would be highly attractive for the development of the biorefinery concept. In this report, ionic liquids based on 1-butyl-3-methylimidazolium cations [C4C1im]+ with Lewis basic (X = Cl− and Brønsted acidic (X = HSO4− anions were used to investigate the direct catalytic transformation of cellulose to HMF. Variables probed included the composition of the ionic liquid medium, the metal catalyst, and the reaction conditions (temperature, substrate concentration. Lowering the cellulose loading and optimising the temperature achieved a 58% HMF yield after only one hour at 150 °C using a 7 mol % loading of the CrCl3 catalyst. This compares favourably with current literature procedures requiring much longer reactions times or approaches that are difficult to scale such as microwave irradiation.

  17. Characteristics of an ionic liquid electrolyte for sodium-ion batteries

    Science.gov (United States)

    Hasa, Ivana; Passerini, Stefano; Hassoun, Jusef

    2016-01-01

    We study the liquid mixture of sodium bis(trifluoromethanesulfonyl)imide in N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr14TFSI-NaTFSI) for application in sodium-ion batteries. The ionic liquid-based electrolyte is characterized in terms of electrochemical and thermal properties. Ionic conductivity and electrochemical stability windows are evaluated through electrochemical impedance spectroscopy (EIS) measurements and voltammetry tests, respectively. The thermal stability is evaluated by differential scanning calorimetry (DSC) and thermo-gravimetric analysis (TGA). Moreover, the suitability of the IL-electrolyte is preliminary verified in half and in full-cells at room temperature, using P2-Na0.6Ni0.22Fe0.11Mn0.66O2 layered oxide cathode and nanostructured Sb-C composite anode. The cell shows promising characteristics with a working voltage of about 2.7 V and a delivered capacity of about 100 mAh g-1. Despite requiring further optimization in terms of cycle life and energy density, the data here reported suggest the suitability of the ionic liquid electrolyte for application in sodium-ion battery.

  18. Separation of Flue Gas Components by SILP (Supported Ionic Liquid-Phase) Absorbers

    DEFF Research Database (Denmark)

    Thomassen, P.; Kunov-Kruse, Andreas Jonas; Mossin, Susanne L.

    2013-01-01

    . The results show that CO2, NO and SO2 can be reversible and selective absorbed using different ILs and that Supported Ionic Liquid-Phase (SILP) absorbers are promising materials for industrial flue gas cleaning. Absorption/desorption dynamics can be tuned by temperature, pressure and gas concentration. © 2012......Reversible absorption of the flue gas components CO2, NO, NO2 and SO2 has been tested for different ionic liquids (ILs) at different temperatures and flue gas compositions where porous, high surface area carriers have been applied as supports for the ionic liquids to obtain Supported Ionic Liquid......-Phase (SILP) absorber materials. The use of solid SILP absorbers with selected ILs were found to significantly improve the absorption capacity and sorption dynamics at low flue gas concentration, thus making the applicability of ILs viable in technical, continuous flow processes for flue gas cleaning...

  19. Simultaneous determination of brazilin and protosappanin B in Caesalpinia sappan by ionic-liquid dispersive liquid-phase microextraction method combined with HPLC.

    Science.gov (United States)

    Xia, Zhaoyang; Li, Dongdong; Li, Qing; Zhang, Yan; Kang, Wenyi

    2017-11-13

    The conditions of heating, ionic liquid-based ultrasonic-assisted extraction combined with reverse-phase high performance liquid chromatography were optimized to simultaneously isolate and determinate brazilin and protosappanin B in Caesalpinia sappan. Ionic liquids, including [BMIM]Br, [BMIM]BF 4 , [BMIM]PF 6 and [HMIM]PF 6 , were selected as extraction solvents while methanol, acetone, acetonitrile, ethanol and water were selected as dispersants. The chromatographic column was Purospher star RP-C 18 (250 mm × 4.6 mm, 5 μm), a mixture of methanol and 0.2% phosphoric acid-water was used as mobile phase at a flow rate 0.65 mL/min. The result displayed that the extraction yields of brazilin and protosappanin B were highest when the concentration of [BMIM]Br methanol solution as extraction solvent was 0.5 mol/L and the solid-liquid ratio was 1:50 (g/mL). Under the optimal extraction conditions, the contents of brazilin showed a good linearity (r = 1.0000) within the range of 1.25-7.50 μg with the average recovery of 99.33%, the contents of protosappanin B also showed a good linearity (r = 0.9999) within the range of 0.50-3.00 μg with the average recovery of 98.31%. This experiment, which adopted environmentally friendly reagent as extraction solvent, not only improved the extraction efficiency, but also avoided the environmental pollution caused by organic solvent. Moreover, it was simple and reliable, and can be of important significance in the study of Traditional Chinese Medicine active ingredient extraction methods. The antibacterial activities of the ionic liquids and methanol extracts were determined using the paper disc diffusion method. The ionic liquid extract was found to possess antibacterial activity against Staphylococcus aureus and methicillin-resistant S. aureus (MIC value of 37.5 mg crude drug/mL), β-Lactamase producing S. aureus (MIC values of 18.8 mg crude drug/mL), but not against E. coli, Extended spectrum β-Lactamases E. coli

  20. Superior performance of liquid-based versus conventional cytology in a population-based cervical cancer screening program

    NARCIS (Netherlands)

    Beerman, H.; van Dorst, E. B. L.; Kuenen-Boumeester, V.; Hogendoorn, P. C. W.

    Objective. Liquid-based cytology may offer improvements over conventional cytology for cervical cancer screening. The two cytology techniques were compared in a group of 86,469 women who participated in a population-based screening program. Using a nation-wide pathology database containing both

  1. Lipid processing in ionic liquids

    DEFF Research Database (Denmark)

    Lue, Bena-Marie; Guo, Zheng; Xu, Xuebing

    2007-01-01

    Ionic liquids (ILs) have been touted as “green” alternatives to traditional molecular solvents and have many unique properties which make them extremely desirable substitutes. Among their most attractive properties are their lack of vapour pressure, broad liquid range, strong solvating power...... and the ability to tailor properties of individual ILs to meet specific requirements. This article highlights current research as well as the vast potential of ILs for use as media for reactions, separation and processing in the lipid area....

  2. Dissolution of agro-waste in ionic liquids

    International Nuclear Information System (INIS)

    Lee, Kiat Moon; Ngoh, Gek Cheng; Chua, Adeline Seak May

    2010-01-01

    Full text: There are abundant of agro-wastes being produced in Malaysia. One of the largely produced agro wastes is the sago hampas. It is known as a strong environmental pollutant due to its cellulosic fibrous material. However, the presence of the starch, cellulose and hemicelluloses in the hampas can be converted into valuable products such as reducing sugars. Hence, this study was performed to investigate the ability of ionic liquids in hydrolysing the ligno celluloses biomass into reducing sugars. Three types of ionic liquids were used, 1-butyl-3-methylimidazolium chloride (BMIM Cl), 1-ethyl-3- methylimidazolium acetate (EMIM Ac) and 1-ethyl-3-methylimidazolium diethyl phosphate (EMIM DEP). The reaction was performed by heating the reaction mixture of sago hampas and ionic liquids at 100 degree Celsius. The concentrations of reducing sugars in the hydrolysates were determined by DNS method. Maximum concentration of reducing sugars were 0.424, 0.299, 0.260 mg/ml for BmimCl, EmimAc and EmimDEP respectively. These concluded that the selected ionic liquids were inefficient in hydrolysing the sago hampas to reducing sugars. (author)

  3. Ionic Liquids to Replace Hydrazine

    Science.gov (United States)

    Koelfgen, Syri; Sims, Joe; Forton, Melissa; Allan, Barry; Rogers, Robin; Shamshina, Julia

    2011-01-01

    A method for developing safe, easy-to-handle propellants has been developed based upon ionic liquids (ILs) or their eutectic mixtures. An IL is a binary combination of a typically organic cation and anion, which generally produces an ionic salt with a melting point below 100 deg C. Many ILs have melting points near, or even below, room temperature (room temperature ionic liquids, RTILs). More importantly, a number of ILs have a positive enthalpy of formation. This means the thermal energy released during decomposition reactions makes energetic ILs ideal for use as propellants. In this specific work, to date, a baseline set of energetic ILs has been identified, synthesized, and characterized. Many of the ILs in this set have excellent performance potential in their own right. In all, ten ILs were characterized for their enthalpy of formation, density, melting point, glass transition point (if applicable), and decomposition temperature. Enthalpy of formation was measured using a microcalorimeter designed specifically to test milligram amounts of energetic materials. Of the ten ILs characterized, five offer higher Isp performance than hydrazine, ranging between 10 and 113 seconds higher than the state-of-the-art propellant. To achieve this level of performance, the energetic cations 4- amino-l,2,4-triazolium and 3-amino-1,2,4-triazolium were paired with various anions in the nitrate, dicyanamide, chloride, and 3-nitro-l,2,4-triazole families. Protonation, alkylation, and butylation synthesis routes were used for creation of the different salts.

  4. Radiation Chemistry and Photochemistry of Ionic Liquids

    International Nuclear Information System (INIS)

    Wishart, J.F.; Takahaski, K.

    2010-01-01

    As our understanding of ionic liquids and their tunable properties has grown, it is possible to see many opportunities for ionic liquids to contribute to the sustainable use of energy. The potential safety and environmental benefits of ionic liquids, as compared to conventional solvents, have attracted interest in their use as processing media for the nuclear fuel cycle. Therefore, an understanding of the interactions of ionizing radiation and photons with ionic liquids is strongly needed. However, the radiation chemistry of ionic liquids is still a relatively unexplored topic although there has been a significant increase in the number of researchers in the field recently. This article provides a brief introduction to ionic liquids and their interesting properties, and recent advances in the radiation chemistry and photochemistry of ionic liquids. In this article, we will mainly focus on excess electron dynamics and radical reaction dynamics. Because solvation dynamics processes in ionic liquids are much slower than in molecular solvents, one of the distinguishing characteristics is that pre-solvated electrons play an important role in ionic liquid radiolysis. It will be also shown that the reaction dynamics of radical ions is significantly different from that observed in molecular solvents because of the Coulombic screening effects and electrostatic interactions in ionic liquids.

  5. Development of a Conceptual Process for Selective CO 2 Capture from Fuel Gas Streams Using [hmim][Tf 2 N] Ionic Liquid as a Physical Solvent

    Energy Technology Data Exchange (ETDEWEB)

    Basha, Omar M.; Keller, Murphy J.; Luebke, David R.; Resnik, Kevin P.; Morsi, Badie I.

    2013-06-04

    The Ionic Liquid (IL) [hmim][Tf2N] was used as a physical solvent in an Aspen Plus simulation, employing the Peng-Robinson Equation of State (P-R EOS) with Boston-Mathias (BM) alpha function and standard mixing rules, to develop a conceptual process for CO2 capture from a shifted warm fuel gas stream produced from Pittsburgh # 8 coal for a 400 MWe power plant. The physical properties of the IL, including density, viscosity, surface tension, vapor pressure and heat capacity were obtained from literature and modeled as a function of temperature. Also, available experimental solubility values for CO2, H2, H2S, CO, and CH4 in this IL were compiled and their binary interaction parameters (Δij and lij) were optimized and correlated as functions of temperature. The Span-Wager Equation-of-State EOS was also employed to generate CO2 solubilities in [hmim][Tf2N] at high pressures (up to 10 MPa) and temperatures (up to 510 K). The conceptual process developed consisted of 4 adiabatic absorbers (2.4 m ID, 30 m high) arranged in parallel and packed with Plastic Pall Rings of 0.025 m for CO2 capture; 3 flash drums arranged in series for solvent (IL) regeneration with the pressure-swing option; and a pressure-intercooling system for separating and pumping CO2 up to 153 bar to the sequestration sites. The compositions of all process streams, CO2 capture efficiency, and net power were calculated using Aspen Plus simulator. The results showed that, based on the composition of the inlet gas stream to the absorbers, 95.67 mol% of CO2 was captured and sent to sequestration sites; 99.5 mol% of H2 was separated and sent to turbines; the solvent exhibited a minimum loss of 0.31 mol%; and the net power balance of the entire system was 30.81 MW. These results indicated that [hmim][Tf2N] IL could be used as a physical

  6. Molecular Simulation of Ionic Polyimides and Composites with Ionic Liquids as Gas-Separation Membranes.

    Science.gov (United States)

    Abedini, Asghar; Crabtree, Ellis; Bara, Jason E; Turner, C Heath

    2017-10-24

    Polyimides are at the forefront of advanced membrane materials for CO 2 capture and gas-purification processes. Recently, ionic polyimides (i-PIs) have been reported as a new class of condensation polymers that combine structural components of both ionic liquids (ILs) and polyimides through covalent linkages. In this study, we report CO 2 and CH 4 adsorption and structural analyses of an i-PI and an i-PI + IL composite containing [C 4 mim][Tf 2 N]. The combination of molecular dynamics (MD) and grand canonical Monte Carlo (GCMC) simulations is used to compute the gas solubility and the adsorption performance with respect to the density, fractional free volume (FFV), and surface area of the materials. Our results highlight the polymer relaxation process and its correlation to the gas solubility. In particular, the surface area can provide meaningful guidance with respect to the gas solubility, and it tends to be a more sensitive indicator of the adsorption behavior versus only considering the system density and FFV. For instance, as the polymer continues to relax, the density, FFV, and pore-size distribution remain constant while the surface area can continue to increase, enabling more adsorption. Structural analyses are also conducted to identify the nature of the gas adsorption once the ionic liquid is added to the polymer. The presence of the IL significantly displaces the CO 2 molecules from the ligand nitrogen sites in the neat i-PI to the imidazolium rings in the i-PI + IL composite. However, the CH 4 molecules move from the imidazolium ring sites in the neat i-PI to the ligand nitrogen atoms in the i-PI + IL composite. These molecular details can provide critical information for the experimental design of highly selective i-PI materials as well as provide additional guidance for the interpretation of the simulated adsorption systems.

  7. Ionic liquid electrolytes based on multi-methoxyethyl substituted ammoniums and perfluorinated sulfonimides: Preparation, characterization, and properties

    International Nuclear Information System (INIS)

    Han Hongbo; Liu Kai; Feng Shaowei; Zhou Sisi; Feng Wenfang; Nie Jin; Li Hong; Huang Xuejie; Matsumoto, Hajime; Armand, Michel; Zhou Zhibin

    2010-01-01

    Graphical abstract: New functionalized ionic liquids based on multi-methoxyethyl substituted quaternary ammonium cations and perfluorinated sulfonimide anions are introduced. -- Abstract: New functionalized ionic liquids (ILs), comprised of multi-methoxyethyl substituted quaternary ammonium cations (i.e. [N(CH 2 CH 2 OCH 3 ) 4-n (R) n ] + ; n = 1, R = CH 3 OCH 2 CH 2 ; n = 1, R = CH 3 , CH 2 CH 3 ; n = 2, R = CH 3 CH 2 ), and two representative perfluorinated sulfonimide anions (i.e. bis(fluorosulfonyl)imide (FSI - ) and bis(trifluoromethanesulfonyl)imide (TFSI - )), were prepared. Their fundamental properties, including phase transition, thermal stability, viscosity, density, specific conductivity and electrochemical window, were extensively characterized. These multi-ether functionalized ionic liquids exhibit good capability of dissolving lithium salts. Their binary electrolytes containing high concentration of the corresponding lithium salt ([Li + ] >1.6 mol kg -1 ) show Li + ion transference number (t Li + ) as high as 0.6-0.7. Their electrochemical stability allows Li deposition/stripping realized at room temperature. The desired properties of these multi-ether functionalized ionic liquids make them potential electrolytes for Li (or Li-ion) batteries.

  8. Isobutane as a probe of the structure of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids

    International Nuclear Information System (INIS)

    Pison, Laure; Bernales, Varinia; Fuentealba, Patricio; Padua, Agilio A.H.

    2015-01-01

    Highlights: • The solubility of isobutane was determined in [C n C 1 Im][NTf 2 ] (n = 2, 4, 6, 8 and 10). • Iso-C 4 H 10 solubility decreases with T and increases with n to reach x = 0.1 (n = 10, T = 303 K). • Isobutane is, on average, 1.6 times less soluble than n-butane in this family of ionic liquids. • Solubility increase with n is due to a more negative enthalpy of dissolution (n ⩾ 6). - Abstract: An experimental study of the solubility and of the thermodynamic properties of solvation, between temperatures (303 and 343) K and at pressures close to atmospheric, of 2-methylpropane (isobutane) in several ionic liquids based on the bis(trifluoromethylsulfonyl)imide anion and on 1-alkyl-3-methylimidazolium cations, [C n C 1 Im][NTf 2 ], with alkyl side-chains varying from two to ten carbon atoms is presented. The isobutane solubility increases with increasing size of the alkyl side-chain of the cation in the ionic liquid and decreases with increasing temperature (as typical of an exothermal dissolution process). The mole fraction solubility of isobutane varies from 0.904 · 10 −2 in [C 2 C 1 Im][NTf 2 ] at T = 343 K to 1.002 · 10 −1 in [C 10 C 1 Im][NTf 2 ] at T = 303 K. The values measured in this work are compared to the behaviour of n-butane in the same ionic liquids published in a previous study (Costa Gomes et al., 2012). Isobutane was found to be significantly less soluble than n-butane in all the ionic liquids. The differences found are interpreted in relation to the molecular structures obtained by molecular dynamics simulations for the solutions of n-butane and isobutane in the studied [C n C 1 Im][NTf 2 ] ionic liquids

  9. Electrophoretic efficiency of an ionic toothbrush:

    OpenAIRE

    Gaberšček, Miran; Klemenc, Franek

    2006-01-01

    The eventual electrophoretic effects during application of an ionic toothbrushare examined. Firstly, the electrical conditions to which the teeth are exposed during application of the ionic tootbrush are determined. Secondly, a method for monitoring the change of bacteria number density on thesurface of extracted teeth under the influence of external electric field is presented. After a regular application of the ionic toothbrush this change is detectable, but - from the practical point - neg...

  10. Enzyme catalysis with small ionic liquid quantities.

    Science.gov (United States)

    Fischer, Fabian; Mutschler, Julien; Zufferey, Daniel

    2011-04-01

    Enzyme catalysis with minimal ionic liquid quantities improves reaction rates, stereoselectivity and enables solvent-free processing. In particular the widely used lipases combine well with many ionic liquids. Demonstrated applications are racemate separation, esterification and glycerolysis. Minimal solvent processing is also an alternative to sluggish solvent-free catalysis. The method allows simplified down-stream processing, as only traces of ionic liquids have to be removed.

  11. Improved Ionic Liquids as Space Lubricants Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Ionic liquids are candidate lubricant materials. However for application in low temperature space mechanisms their lubrication performance needs to be enhanced. UES...

  12. Metal Nanoparticles in Ionic Liquids.

    Science.gov (United States)

    Wegner, Susann; Janiak, Christoph

    2017-08-01

    During the last years ionic liquids (ILs) were increasingly used and investigated as reaction media, hydrogen sources, catalysts, templating agents and stabilizers for the synthesis of (monometallic and bimetallic) metal nanoparticles (M-NPs). Especially ILs with 1,3-dialkyl-imidazolium cations featured prominently in the formation and stabilization of M-NPs. This chapter summarizes studies which focused on the interdependencies of the IL with the metal nanoparticle and tried to elucidate, for example, influences of the IL-cation, -anion and alkyl chain length. Qualitatively, the size of M-NPs was found to increase with the size of the IL-anion. The influence of the size of imidazolium-cation is less clear. The M-NP size was both found to increase and to decrease with increasing chain lengths of the 1,3-dialkyl-imidazolium cation. It is evident from such reports on cation and anion effects of ILs that the interaction between an IL and a (growing) metal nanoparticle is far from understood. Factors like IL-viscosity, hydrogen-bonding capability and the relative ratio of polar and non-polar domains of ILs may also influence the stability of nanoparticles in ionic liquids and an improved understanding of the IL-nanoparticle interaction would be needed for a more rational design of nanomaterials in ILs. Furthermore, thiol-, ether-, carboxylic acid-, amino- and hydroxyl-functionalized ILs add to the complexity by acting also as coordinating capping ligands. In addition imidazolium cations are precursors to N-heterocyclic carbenes, NHCs which form from imidazolium-based ionic liquids by in situ deprotonation at the acidic C2-H ring position as intermediate species during the nanoparticle seeding and growth process or as surface coordinating ligand for the stabilization of the metal nanoparticle.

  13. Ionic Structure at Dielectric Interfaces

    Science.gov (United States)

    Jing, Yufei

    The behavior of ions in liquids confined between macromolecules determines the outcome of many nanoscale assembly processes in synthetic and biological materials such as colloidal dispersions, emulsions, hydrogels, DNA, cell membranes, and proteins. Theoretically, the macromolecule-liquid boundary is often modeled as a dielectric interface and an important quantity of interest is the ionic structure in a liquid confined between two such interfaces. The knowledge gleaned from the study of ionic structure in such models can be useful in several industrial applications, such as biosensors, lithium-ion batteries double-layer supercapacitors for energy storage and seawater desalination. Electrostatics plays a critical role in the development of such functional materials. Many of the functions of these materials, result from charge and composition heterogeneities. There are great challenges in solving electrostatics problems in heterogeneous media with arbitrary shapes because electrostatic interactions remains unknown but depend on the particular density of charge distributions. Charged molecules in heterogeneous media affect the media's dielectric response and hence the interaction between the charges is unknown since it depends on the media and on the geometrical properties of the interfaces. To determine the properties of heterogeneous systems including crucial effects neglected in classical mean field models such as the hard core of the ions, the dielectric mismatch and interfaces with arbitrary shapes. The effect of hard core interactions accounts properly for short range interactions and the effect of local dielectric heterogeneities in the presence of ions and/or charged molecules for long-range interactions are both analyzed via an energy variational principle that enables to update charges and the medium's response in the same simulation time step. In particular, we compute the ionic structure in a model system of electrolyte confined by two planar dielectric

  14. Novel Polymeric Materials With Superior Mechanical Properties via Ionic Interactions

    National Research Council Canada - National Science Library

    Hara, Masanori

    2000-01-01

    We have developed novel liquid crystalline polymer (LCP) in which ionic groups (ionic bonds) are incorporated. A base polymer of ionic LCPs is a wholly aromatic polyester, better known as Vectra of Hoechst-Celanese...

  15. Ionic liquids for separation of olefin-paraffin mixtures

    Science.gov (United States)

    Dai, Sheng; Luo, Huimin; Huang, Jing-Fang

    2013-09-17

    The invention is directed to an ionic liquid comprising (i) a cationic portion containing a complex of a silver (I) ion and one or more neutral ligands selected from organoamides, organoamines, olefins, and organonitriles, and (ii) an anionic portion having the chemical formula ##STR00001## wherein m and n are independently 0 or an integer of 1 or above, and p is 0 or 1, provided that when p is 0, the group --N--SO.sub.2--(CF.sub.2).sub.nCF.sub.3 subtended by p is replaced with an oxide atom connected to the shown sulfur atom. The invention is also directed to a method for separating an olefin from an olefin-paraffin mixture by passing the mixture through a layer of the ionic liquid described above.

  16. Regio and stereoselectivity in ionic cycloadditions

    Indian Academy of Sciences (India)

    WINTEC

    Though the reactions have both electrostatic control and frontier orbital control the former dominates in the initial stages of the reaction. Keywords. Stereoselectivity; ionic cycloaddition; density functional theory; acridizinium ion; methyl vinyl ether; 2,3-dimethylisoquinolinium ion. 1. Introduction. In polar or ionic cycloadditions ...

  17. Improved ionic model of liquid uranium dioxide

    NARCIS (Netherlands)

    Gryaznov, [No Value; Iosilevski, [No Value; Yakub, E; Fortov, [No Value; Hyland, GJ; Ronchi, C

    The paper presents a model for liquid uranium dioxide, obtained by improving a simplified ionic model, previously adopted to describe the equation of state of this substance [1]. A "chemical picture" is used for liquid UO2 of stoichiometric and non-stoichiometric composition. Several ionic species

  18. Aqueous solutions of ionic liquids: microscopic assembly

    NARCIS (Netherlands)

    Vicent-Luna, J.M.; Dubbeldam, D.; Gómez-Álvarez, P.; Calero, S.

    2016-01-01

    Aqueous solutions of ionic liquids are of special interest, due to the distinctive properties of ionic liquids, in particular, their amphiphilic character. A better understanding of the structure-property relationships of such systems is hence desirable. One of the crucial molecular-level

  19. Ionic strength sensing in living cells

    NARCIS (Netherlands)

    Liu, Boqun; Poolman, Bert; Boersma, Arnold J

    Knowledge of the ionic strength in cells is required to understand the in vivo biochemistry of the charged biomacromolecules. Here, we present the first sensors to determine the ionic strength in living cells, by designing protein probes based on Förster resonance energy transfer (FRET). These

  20. Ionic conduction in the solid state

    Indian Academy of Sciences (India)

    Solid state ionic conductors are important from an industrial viewpoint. A variety of such conductors have been found. In order to understand the reasons for high ionic conductivity in these solids, there have been a number of experimental, theoretical and computational studies in the literature. We provide here a survey of ...

  1. Application of Ionic Liquids in Hydrometallurgy

    Directory of Open Access Journals (Sweden)

    Jesik Park

    2014-08-01

    Full Text Available Ionic liquids, low temperature molten salts, have various advantages manifesting themselves as durable and environmentally friendly solvents. Their application is expanding into various fields including hydrometallurgy due to their unique properties such as non-volatility, inflammability, low toxicity, good ionic conductivity, and wide electrochemical potential window. This paper reviews previous literatures and our recent results adopting ionic liquids in extraction, synthesis and processing of metals with an emphasis on the electrolysis of active/light, rare earth, and platinum group metals. Because the research and development of ionic liquids in this area are still emerging, various, more fundamental approaches are expected to popularize ionic liquids in the metal manufacturing industry.

  2. First application of supported ionic liquid phase (SILP) catalysis for continuous methanol carbonylation

    DEFF Research Database (Denmark)

    Riisager, Anders; Jørgensen, Betina; Wasserscheid, Peter

    2006-01-01

    A solid, silica-supported ionic liquid phase (SILP) rhodium iodide Monsanto-type catalyst system, [BMIM][Rh(CO)(2)I-2]-[BMIM]I -SiO2, exhibits excellent activity and selectivity towards acetyl products in fixed-bed, continuous gas-phase methanol carbonylation.......A solid, silica-supported ionic liquid phase (SILP) rhodium iodide Monsanto-type catalyst system, [BMIM][Rh(CO)(2)I-2]-[BMIM]I -SiO2, exhibits excellent activity and selectivity towards acetyl products in fixed-bed, continuous gas-phase methanol carbonylation....

  3. Understanding the impact of ionic liquid pretreatment on eucalyptus

    Energy Technology Data Exchange (ETDEWEB)

    Centikol, Ozgul [Joint Bioenergy Institute; Dibble, Dean [Joint Bioenergy Institute; Cheng, Gang [Joint Bioenergy Institute; Kent, Michael S [ORNL; Knierim, Manfred [Joint Bioenergy Institute; Melnichenko, Yuri B [ORNL

    2010-01-01

    The development of cost-competitive biofuels necessitates the realization of advanced biomass pretreatment technologies. Ionic liquids provide a basis for one of the most promising pretreatment technologies and are known to allow effective processing of cellulose and some biomass species. Here, we demonstrate that the ionic liquid 1-ethyl-3-methyl imidazolium acetate, [C2mim][OAc], induces structural changes at the molecular level in the cell wall of Eucalyptus globulus. Deacetylation of xylan, acetylation of the lignin units, selective removal of guaiacyl units (increasing the syringyl:guaiacyl ratio) and decreased {beta}-ether content were the most prominent changes observed. Scanning electron microscopy images of the plant cell wall sections reveal extensive swelling during [C2mim][OAc] pretreatment. X-ray diffraction measurements indicate a change in cellulose crystal structure from cellulose I to cellulose II after [C2mim][OAc] pretreatment. Enzymatic saccharification of the pretreated material produced increased sugar yields and improved hydrolysis kinetics after [C2mim][OAc] pretreatment. These results provide new insight into the mechanism of ionic liquid pretreatment and reaffirm that this approach may be promising for the production of cellulosic biofuels from woody biomass.

  4. Ionic liquids: solvents and sorbents in sample preparation.

    Science.gov (United States)

    Clark, Kevin D; Emaus, Miranda N; Varona, Marcelino; Bowers, Ashley N; Anderson, Jared L

    2018-01-01

    The applications of ionic liquids (ILs) and IL-derived sorbents are rapidly expanding. By careful selection of the cation and anion components, the physicochemical properties of ILs can be altered to meet the requirements of specific applications. Reports of IL solvents possessing high selectivity for specific analytes are numerous and continue to motivate the development of new IL-based sample preparation methods that are faster, more selective, and environmentally benign compared to conventional organic solvents. The advantages of ILs have also been exploited in solid/polymer formats in which ordinarily nonspecific sorbents are functionalized with IL moieties in order to impart selectivity for an analyte or analyte class. Furthermore, new ILs that incorporate a paramagnetic component into the IL structure, known as magnetic ionic liquids (MILs), have emerged as useful solvents for bioanalytical applications. In this rapidly changing field, this Review focuses on the applications of ILs and IL-based sorbents in sample preparation with a special emphasis on liquid phase extraction techniques using ILs and MILs, IL-based solid-phase extraction, ILs in mass spectrometry, and biological applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Recent development of ionic liquid membranes

    Directory of Open Access Journals (Sweden)

    Junfeng Wang

    2016-04-01

    Full Text Available The interest in ionic liquids (IL is motivated by its unique properties, such as negligible vapor pressure, thermal stability, wide electrochemical stability window, and tunability of properties. ILs have been highlighted as solvents for liquid–liquid extraction and liquid membrane separation. To further expand its application in separation field, the ionic liquid membranes (ILMs and its separation technology have been proposed and developed rapidly. This paper is to give a comprehensive overview on the recent applications of ILMs for the separation of various compounds, including organic compounds, mixed gases, and metal ions. Firstly, ILMs was classified into supported ionic liquid membranes (SILMs and quasi-solidified ionic liquid membranes (QSILMs according to the immobilization method of ILs. Then, preparation methods of ILMs, membrane stability as well as applications of ILMs in the separation of various mixtures were reviewed. Followed this, transport mechanisms of gaseous mixtures and organic compounds were elucidated in order to better understand the separation process of ILMs. This tutorial review intends to not only offer an overview on the development of ILMs but also provide a guide for ILMs preparations and applications. Keywords: Ionic liquid membrane, Supported ionic liquid membrane, Qusai-solidified ionic liquid membrane, Stability, Application

  6. Solid-phase extractants based on ionic liquids for radionuclide preconcentration and separation

    International Nuclear Information System (INIS)

    Suchanek, P.; Galambos, M.; Rosskopfova, O.; Rajec, P.; Meciarova, M.

    2014-01-01

    Ionic liquids are organic salts composed by ions with melting temperature lower than 100 grad C. According to their unique properties such as immeasurable vapour pressure, non-flammablity, stability at higher temperatures, ability to solvate organic, inorganic or polymeric materials and high ionic conductivity are proposed to be used in various industry applications such as catalysts or environmental friendly solvents. One of the main objectives of ionic liquids research is their ability to replace conventional organic solvents, which are volatile, flammable, have carcinogenic effects on living organisms and have high impact on environment in industrial processes. They can be also used in biological reactions, as catalysts, in inorganic or organic synthesis, purification processes and for gas separation. Radionuclide extraction properties of ionic liquids are studied due to their high selectivity and kinetic properties of these compounds. The possibility of solid matrix impregnation with ionic liquids shows high potential for development of new solid phase extractants for radionuclide removal or concentration. The result of this work indicate that phosphonium ionic liquid Cyphos 101 impregnated on Teflon or Amberchrom CG-300s solid matrix is suitable for TcO 4 - extraction from aquaeous phase. (authors)

  7. Removal of anionic azo dyes from aqueous solution by functional ionic liquid cross-linked polymer

    International Nuclear Information System (INIS)

    Gao, Hejun; Kan, Taotao; Zhao, Siyuan; Qian, Yixia; Cheng, Xiyuan; Wu, Wenli; Wang, Xiaodong; Zheng, Liqiang

    2013-01-01

    Highlights: • Equilibrium, kinetic and thermodynamic of adsorption of dyes onto PDVB-IL was investigated. • PDVB-IL has a high adsorption capacity to treat dyes solution. • Higher adsorption capacity is due to the functional groups of PDVB-IL. • Molecular structure of dyes influences the adsorption capacity. -- Abstract: A novel functional ionic liquid based cross-linked polymer (PDVB-IL) was synthesized from 1-aminoethyl-3-vinylimidazolium chloride and divinylbenzene for use as an adsorbent. The physicochemical properties of PDVB-IL were investigated by Fourier transform infrared spectroscopy, scanning electron microscopy and thermogravimetric analysis. The adsorptive capacity was investigated using anionic azo dyes of orange II, sunset yellow FCF, and amaranth as adsorbates. The maximum adsorption capacity could reach 925.09, 734.62, and 547.17 mg/g for orange II, sunset yellow FCF and amaranth at 25 °C, respectively, which are much better than most of the other adsorbents reported earlier. The effect of pH value was investigated in the range of 1–8. The result shows that a low pH value is found to favor the adsorption of those anionic azo dyes. The adsorption kinetics and isotherms are well fitted by a pseudo second-order model and Langmuir model, respectively. The adsorption process is found to be dominated by physisorption. The introduction of functional ionic liquid moieties into cross-linked poly(divinylbenzene) polymer constitutes a new and efficient kind of adsorbent

  8. Ionic-Liquid-Mediated Extraction and Separation Processes for Bioactive Compounds: Past, Present, and Future Trends

    Science.gov (United States)

    2017-01-01

    Ionic liquids (ILs) have been proposed as promising media for the extraction and separation of bioactive compounds from the most diverse origins. This critical review offers a compilation on the main results achieved by the use of ionic-liquid-based processes in the extraction and separation/purification of a large range of bioactive compounds (including small organic extractable compounds from biomass, lipids, and other hydrophobic compounds, proteins, amino acids, nucleic acids, and pharmaceuticals). ILs have been studied as solvents, cosolvents, cosurfactants, electrolytes, and adjuvants, as well as used in the creation of IL-supported materials for separation purposes. The IL-based processes hitherto reported, such as IL-based solid–liquid extractions, IL-based liquid–liquid extractions, IL-modified materials, and IL-based crystallization approaches, are here reviewed and compared in terms of extraction and separation performance. The key accomplishments and future challenges to the field are discussed, with particular emphasis on the major lacunas found within the IL community dedicated to separation processes and by suggesting some steps to overcome the current limitations. PMID:28151648

  9. Microsiemens or Milligrams: Measures of Ionic Mixtures ...

    Science.gov (United States)

    In December of 2016, EPA released the Draft Field-Based Methods for Developing Aquatic Life Criteria for Specific Conductivity for public comment. Once final, states and authorized tribes may use these methods to derive field-based ecoregional ambient Aquatic Life Ambient Water Quality Criteria (AWQC) for specific conductivity (SC) in flowing waters. The methods provide flexible approaches for developing science-based SC criteria that reflect ecoregional or state specific factors. The concentration of a dissolved salt mixture can be measured in a number of ways including measurement of total dissolved solids, freezing point depression, refractive index, density, or the sum of the concentrations of individually measured ions. For the draft method, SC was selected as the measure because SC is a measure of all ions in the mixture; the measurement technology is fast, inexpensive, and accurate, and it measures only dissolved ions. When developing water quality criteria for major ions, some stakeholders may prefer to identify the ionic constituents as a measure of exposure instead of SC. A field-based method was used to derive example chronic and acute water quality criteria for SC and two anions a common mixture of ions (bicarbonate plus sulfate, [HCO3−] + [SO42−] in mg/L) that represent common mixtures in streams. These two anions are sufficient to model the ion mixture and SC (R2 = 0.94). Using [HCO3−] + [SO42−] does not imply that these two anions are the

  10. Enhanced Mixed Feedstock Processing Using Ionic Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Blake A [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)

    2016-10-22

    Biomass pretreatment using certain ionic liquids (ILs) is very efficient, generally producing a substrate that is amenable to saccharification with fermentable sugar yields approaching theoretical limits. Although promising, several challenges must be addressed before IL pretreatment technology becomes commercially viable. Once of the most significant challenges is the affordable and scalable recovery and recycle or the IL itself. Pervaporation is a highly selective and scalable membrane separation process for quantitatively recovering volatile solutes or solvents directly from non-volatile solvents that could prove more versatile for IL dehydration than traditional solvent extraction processes, as well as efficient and energetically more advantageous than standard evaporative techniques. In this study we evaluated a commercially available pervaporation system for IL dehydration and recycling as part of an integrated IL pretreatment process using 1-ethyl-3-methylimidazolium acetate ([C2C1Im][OAc]) that has been proven to be very effective as a biomass pretreatment solvent. We demonstrate that >99.9 wt% [C2C1Im][OAc] can be recovered from aqueous solution and recycled at least five times. A preliminary techno-economic analysis validated the promising role of pervaporation in improving overall biorefinery process economics, especially in the case where other IL recovery technologies might lead to significant losses. These findings establish the foundation for further development of pervaporation as an effective method of recovering and recycling ILs using a commercially viable process technology.

  11. Efficacy of liquid-based cytology versus conventional smears in FNA samples

    Directory of Open Access Journals (Sweden)

    Kalpalata Tripathy

    2015-01-01

    Conclusion: LBC performed on FNA samples can be a simple and valuable technique. Only in few selected cases, where background factor is an essential diagnostic clue, a combination of both CP and TP is necessary.

  12. Ionic liquids: radiation chemistry, solvation dynamics and reactivity patterns

    International Nuclear Information System (INIS)

    Wishart, J.F.; Funston, A.M.; Szreder, T.

    2006-01-01

    that the diffusion rate for the solvated electron in ionic liquids can be significantly lower than those of small neutral molecules or radicals such as the H-atom, in contrast to the situation in molecular solvents. They support the contention that the diffusion constants of charged and neutral reactants differ considerably in ionic liquids, which could lead to a means of controlling reactivity and transport phenomena through rational selection of ionic liquid properties. This work was supported by the U.S. Department of Energy, Division of Chemical Sciences, Office of Basic Energy Sciences, under contract DE-AC02-98-CH10886. (authors)

  13. Synthesis of hetero ionic compounds using dialkylcarbonate quaternization

    Energy Technology Data Exchange (ETDEWEB)

    Friesen, Cody A.; Wolfe, Derek; Johnson, Paul Bryan

    2018-04-03

    Methods of preparing hetero ionic complexes, and ionic liquids from bisulfate salts of heteroatomic compounds using dialkylcarbonates as a primary quaternizing reactant are disclosed. Also disclosed are methods of making electrochemical cells comprising the ionic liquids, and an electrochemical cell comprising an alkaline electrolyte and a hetero ionic complex additive.

  14. Salting-out-enhanced ionic liquid microextraction with a dual-role solvent for simultaneous determination of trace pollutants with a wide polarity range in aqueous samples.

    Science.gov (United States)

    Gao, Man; Qu, Jingang; Chen, Kai; Jin, Lide; Dahlgren, Randy Alan; Wang, Huili; Tan, Chengxia; Wang, Xuedong

    2017-11-01

    In real aquatic environments, many occupational pollutants with a wide range of polarities coexist at nanogram to milligram per liter levels. Most reported microextraction methods focus on extracting compounds with similar properties (e.g., polarity or specific functional groups). Herein, we developed a salting-out-enhanced ionic liquid microextraction based on a dual-role solvent (SILM-DS) for simultaneous detection of tetracycline, doxycycline, bisphenol A, triclosan, and methyltriclosan, with log K ow ranging from -1.32 to 5.40 in complex milk and environmental water matrices. The disperser in the ionic-liquid-based dispersive liquid-liquid microextraction was converted to the extraction solvent in the subsequent salting-out-assisted microextraction procedures, and thus a single solvent performed a dual role as both extractant and disperser in the SILM-DS process. Acetonitrile was selected as the dual-role solvent because of its strong affinity for both ionic liquids and water, as well as the extractant in the salting-out step. Optimized experimental conditions were 115 μL [C 8 MIM][PF 6 ] as extractor, 1200 μL acetonitrile as dual-role solvent, pH 2.0, 5.0 min ultrasound extraction time, 3.0 g Na 2 SO 4 , and 3.0 min vortex extraction time. Under optimized conditions, the recoveries of the five pollutants ranged from 74.5 to 106.9%, and their LODs were 0.12-0.75 μg kg -1 in milk samples and 0.11-0.79 μg L -1 in environmental waters. Experimental precision based on relative standard deviation was 1.4-6.4% for intraday and 2.3-6.5% for interday analyses. Compared with previous methods, the prominent advantages of the newly developed method are simultaneous determination of pollutants with a wide range of polarities and a substantially reduced workload for ordinary environmental monitoring and food tests. Therefore, the new method has great application potential for simultaneous determination of trace pollutants with strongly contrasting polarities in several

  15. Comparison of conventional Papanicolaou smear and SurePath® liquid-based cytology in the Copenhagen population screening programme for cervical cancer

    DEFF Research Database (Denmark)

    Kirschner, Benny; Simonsen, Kåre; Junge, Jette

    2006-01-01

    OBJECTIVE: To compare diagnostic performance of conventional Papanicolaou smear with SurePath liquid-based cytology in a population screening programme. METHODS: A retrospective comparison was performed on data from two 18-month periods of the screening programme for cervical cancer in the munici......OBJECTIVE: To compare diagnostic performance of conventional Papanicolaou smear with SurePath liquid-based cytology in a population screening programme. METHODS: A retrospective comparison was performed on data from two 18-month periods of the screening programme for cervical cancer...... in the municipality of Copenhagen with conventional Papanicolaou technique (n = 82,116) and liquid-based cytology (n = 84,414). RESULTS: After the conversion to liquid-based cytology the percentage of unsatisfactory samples decreased from 2.3% to 0.3% (P ...-based technique. CONCLUSIONS: This study showed the number of unsatisfactory samples to be significantly reduced with the liquid-based technique. The data suggest that there is an increased detection rate of cervical precancerous lesions with liquid-based cytology, but the number of false positive tests is still...

  16. The synthesis and properties of nanoscale ionic materials

    KAUST Repository

    Rodriguez, Robert Salgado

    2010-02-17

    In this article we discuss the effect of constituents on structure, flow, and thermal properties of nanoscale ionic materials (NIMs). NIMs are a new class of nanohybrids consisting of a nanometer-sized core, a charged corona covalently attached to the core, and an oppositely charged canopy. The hybrid nature of NIMs allows for their properties to be engineered by selectively varying their components. The unique properties associated with these systems can help overcome some of the issues facing the implementation of nanohybrids to various commercial applications, including carbon dioxide capture,water desalinization and as lubricants. Copyright © 2010 John Wiley & Sons, Ltd.

  17. Phosphonium-based ionic liquids and uses

    Science.gov (United States)

    Del Sesto, Rico E; Koppisch, Andrew T; Lovejoy, Katherine S; Purdy, Geraldine M

    2014-12-30

    Phosphonium-based room temperature ionic liquids ("RTILs") were prepared. They were used as matrices for Matrix-Assisted Laser Desorption Ionization (MALDI) mass spectrometry and also for preparing samples of dyes for analysis.

  18. Ionic Liquid Epoxy Composite Cryotanks, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this work is to determine the optimal process for manufacturing lightweight linerless cryogenic storage tanks using ionic liquid epoxy composite...

  19. Ionic liquid-nanoparticle hybrid electrolytes

    KAUST Repository

    Lu, Yingying

    2012-01-01

    We investigate physical and electrochemical properties of a family of organic-inorganic hybrid electrolytes based on the ionic liquid 1-methyl-3-propylimidazolium bis(trifluoromethanesulfone) imide covalently tethered to silica nanoparticles (SiO 2-IL-TFSI). The ionic conductivity exhibits a pronounced maximum versus LiTFSI composition, and in mixtures containing 13.4 wt% LiTFSI, the room-temperature ionic conductivity is enhanced by over 3 orders of magnitude relative to either of the mixture components, without compromising lithium transference number. The SiO 2-IL-TFSI/LiTFSI hybrid electrolytes are thermally stable up to 400°C and exhibit tunable mechanical properties and attractive (4.25V) electrochemical stability in the presence of metallic lithium. We explain these observations in terms of ionic coupling between counterion species in the mobile and immobile (particle-tethered) phases of the electrolytes. © 2012 The Royal Society of Chemistry.

  20. Supported Ionic Liquid Phase (SILP) catalysis

    DEFF Research Database (Denmark)

    Riisager, Anders; Fehrmann, Rasmus; Haumann, Marco

    2006-01-01

    Applications of ionic liquids to replace conventional solvents in homogeneous transition-metal catalysis have increased significantly during the last decade. Biphasic ionic liquid/organic liquid systems offer advantages with regard to product separation, catalyst stability, and recycling but util......Applications of ionic liquids to replace conventional solvents in homogeneous transition-metal catalysis have increased significantly during the last decade. Biphasic ionic liquid/organic liquid systems offer advantages with regard to product separation, catalyst stability, and recycling...... concept is surveyed by presenting results for the continuous gas-phase hydroformylation of propene, as a reaction example. (c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006....

  1. Study of thermodynamic and transport properties of phosphonium-based ionic liquids

    International Nuclear Information System (INIS)

    Deive, Francisco J.; Rivas, Miguel A.; Rodríguez, Ana

    2013-01-01

    Highlights: ► Physical and transport properties of three hydrophilic phoshonium ILs were determined. ► Experimental density, viscosity, refractive index and speed of sound were correlated. ► Predictive equations were successfully employed to predict density of the three ILs. -- Abstract: In this work, the experimental values of density, speed of sound, refractive index and dynamic viscosity have been obtained from T = (293.15 to 343.15) K for the three phosphonium-based ionic liquids: tributyl methyl phoshponium methylsulfate (P 4441 C 1 SO 4 ), tributyl ethyl phosphonium diethylphosphate (P 4442 (C 2 ) 2 PO 4 ) and tributyl octyl phosphonium chloride (P 4448 Cl). The isentropic compressibility has been calculated by means of the Laplace equation from the experimental speed of sound results for the three ionic liquids at different temperatures. Density, speed of sound, refractive index and isentropic compressibility have been correlated by polynomial equations. The Lorentz–Lorenz, Dale–Gladstone, Eykman, Oster, Arago–Biot, Newton and modified Eykman equations were the empirical models used to correlate satisfactorily the relationship between the densities and refractive indices of the ionic liquids selected. The temperature dependence of the experimental dynamic viscosities for the ionic liquids selected can be described by an Arrhenius-like law and by VFT equations. The Riedel, Narsimham, Bradford–Thodos, Yen–Woods, Rackett, Spencer–Danner, Gunn–Yamada, Hankinson–Thomson (COSTALD model), VSY, VSD, MH and LGM equations were employed to predict the densities of the pure ionic liquids

  2. Study of thioglycosylation in ionic liquids

    Directory of Open Access Journals (Sweden)

    Ragauskas Arthur

    2006-06-01

    Full Text Available Abstract A novel, green chemistry, glycosylation strategy was developed based upon the use of ionic liquids. Research studies demonstrated that thiomethyl glycosides could readily be activated with methyl trifluoromethane sulfonate, using 1-butyl-3-methylimidazolium tetrafluoroborate as a solvent. This green chemistry glycosylation strategy provided disaccharides with typical yields averaging 75%. The ionic liquid solvent could be readily reused for five sequential glycosylation reactions with no impact on product yield.

  3. Metathesis and hydroformylation reactions in ionic liquids.

    OpenAIRE

    2008-01-01

    Ionic liquids (ILs), consisting of ions that are liquid at ambient temperatures, can act as solvents for a broad spectrum of chemical processes. These ionic liquids are attracting increasing attention from industry because they promise significant environmental as well as product and process benefits. ILs were used as solvents for two industrially important homogeneous reactions namely metathesis of 1-octene and the hydroformylation of vinyl acetate. In the metathesis of 1-octene, several rea...

  4. Fast Ignition and Sustained Combustion of Ionic Liquids

    Science.gov (United States)

    Joshi, Prakash B. (Inventor); Piper, Lawrence G. (Inventor); Oakes, David B. (Inventor); Sabourin, Justin L. (Inventor); Hicks, Adam J. (Inventor); Green, B. David (Inventor); Tsinberg, Anait (Inventor); Dokhan, Allan (Inventor)

    2016-01-01

    A catalyst free method of igniting an ionic liquid is provided. The method can include mixing a liquid hypergol with a HAN (Hydroxylammonium nitrate)-based ionic liquid to ignite the HAN-based ionic liquid in the absence of a catalyst. The HAN-based ionic liquid and the liquid hypergol can be injected into a combustion chamber. The HAN-based ionic liquid and the liquid hypergol can impinge upon a stagnation plate positioned at top portion of the combustion chamber.

  5. Supported ionic liquid membrane in membrane reactor

    Science.gov (United States)

    Makertihartha, I. G. B. N.; Zunita, M.; Dharmawijaya, P. T.; Wenten, I. G.

    2017-01-01

    Membrane reactor is a device that integrates membrane based separation and (catalytic) chemical reaction vessel in a single device. Ionic liquids, considered to be a relatively recent magical chemical due to their unique properties, have a large variety of applications in all areas of chemical industries. Moreover, the ionic liquid can be used as membrane separation layer and/or catalytically active site. This paper will review utilization of ionic liquid in membrane reactor related applications especially Fischer-Tropsch, hydrogenation, and dehydrogenation reaction. This paper also reviews about the capability of ionic liquid in equilibrium reaction that produces CO2 product so that the reaction will move towards the product. Water gas shift reaction in ammonia production also direct Dimethyl Ether (DME) synthesis that produces CO2 product will be discussed. Based on a review of numerous articles on supported ionic liquid membrane (SILM) indicate that ionic liquids have the potential to support the process of chemical reaction and separation in a membrane reactor.

  6. The structure of ionic liquids

    CERN Document Server

    Gontrani, Lorenzo

    2014-01-01

    This volume describes the most recent findings on the structure of ILs interpreted through cutting-edge experimental and theoretical methods. Research in the field of ionic liquids (ILs) keeps a fast and steady pace. Since these new-generation molten salts first appeared in the chemistry and physics landscape, a large number of new compounds has been synthesized. Most of them display unexpected behaviour and possess stunning properties. The coverage in this book ranges from the mesoscopic structure of ILs to their interaction with proteins. The reader will learn how diffraction techniques (small and large angle X-Ray and neutron scattering, powder methods), X-Ray absorption spectroscopies (EXAFS/XANES), optical methods (IR, RAMAN), NMR and calorimetric methods can help the study of ILs, both as neat liquids and in mixtures with other compounds. It will enable the reader to choose the best method to suit their experimental needs. A detailed survey of theoretical methods, both quantum-chemical and classical, ...

  7. Comparison of three sampling instruments, Cytobrush, Curette and OralCDx, for liquid-based cytology of the oral mucosa.

    Science.gov (United States)

    Reboiras-López, M D; Pérez-Sayáns, M; Somoza-Martín, J M; Antúnez-López, J R; Gándara-Vila, P; Gayoso-Diz, P; Gándara-Rey, J M; García-García, A

    2012-01-01

    Exfoliative cytology of the oral cavity is a simple and noninvasive technique that permits the study of epithelial cells. Liquid-based cytology is an auxiliary diagnostic tool for improving the specificity and sensitivity of conventional cytology. The objective of our study was to compare the quality of normal oral mucosa cytology samples obtained using three different instruments, Cytobrush®, dermatological curette and Oral CDx® for liquid-based cytology. One hundred four cytological samples of oral cavity were analyzed. Samples were obtained from healthy volunteer subjects using all three instruments. The clinical and demographic variables were age, sex and smoking habits. We analyzed cellularity, quality of the preparation and types of cells in the samples. All preparations showed appropriate preparation quality. In all smears analyzed, cells were distributed uniformly and showed no mucus, bleeding, inflammatory exudate or artifacts. We found no correlation between the average number of cells and the type of instrument. The samples generally consisted of two types of cells: superficial and intermediate. No differences were found among the cytological preparations of these three instruments. We did not observe basal cells in any of the samples analyzed.

  8. Process for carrying out a chemical reaction with ionic liquid and carbon dioxide under pressure

    NARCIS (Netherlands)

    Kroon, M.C.; Shariati, A.; Florusse, L.J.; Peters, C.J.; Van Spronsen, J.; Witkamp, G.J.; Sheldon, R.A.; Gutkowski, K.I.

    2006-01-01

    The invention is directed to a process for carrying out a chemical reaction in an ionic liquid as solvent and CO2 as cosolvent, in which process reactants are reacted in a homogeneous phase at selected pressure and temperature to generate a reaction product at least containing an end-product of the

  9. How do polymerized room-temperature ionic liquid membranes plasticize during high pressure CO2 permeation?

    NARCIS (Netherlands)

    Simons-Fischbein, K.; Nijmeijer, Dorothea C.; Bara, J.B.; Noble, R.D.; Wessling, Matthias

    2010-01-01

    Room-temperature ionic liquids (RTILs) are a class of organic solvents that have been explored as novel media for CO2 separations. Polymerized RTILs (poly(RTILs)) can be synthesized from RTIL monomers to form dense, solid gas selective membranes. It is of interest to understand the permeation

  10. A novel class of gas separation membrane based on organic ionic plastic crystals.

    Science.gov (United States)

    McDonald, Jonathan L; MacFarlane, Douglas R; Forsyth, Maria; Pringle, Jennifer M

    2016-10-27

    The first use of organic ionic plastic crystals (OIPCs) as CO 2 separation membranes is reported. The novel OIPC/PVDF nanofiber composites show CO 2 /N 2 ideal selectivities of 30 at 35 °C. The dependence of gas permeability on the thermal phase of the plastic crystals is discussed.

  11. Selective extraction and detection of noble metal based on ionic ...

    Indian Academy of Sciences (India)

    With the dramatic increase in economic growth, noble metals have been extensively utilized for wide range of industries and economic activities. Gold is one of the noble metals, which used in various applications because of its unique properties. However, various reports have mentioned that gold species may cause an ...

  12. Chirality-selected phase behavior in ionic polypeptide complexes

    Science.gov (United States)

    Tirrell, Matthew

    2015-03-01

    We demonstrate that chirality determines the phase state of polyelectrolyte complexes formed from mixing dilute solutions of oppositely charged polypeptides. In these systems, the physical state of the resultant complex is determined by the combination of electrostatic and hydrogen bonding interactions. The formation of fluid complexes occurs when at least one of the polypeptides in the mixture is racemic, which disrupts backbone hydrogen bonding networks. Pairs of purely chiral polypeptides, of any sense, form compact, fibrillar solids with a β-sheet structure on mixing. Analogous behavior occurs in micellar cores formed from polypeptide block copolymers with polyethylene oxide, where microphase separation into discrete, self-assembled aggregates with either solid or fluid cores, and eventually into ordered phases at high concentrations, is possible. Chirality is an exploitable tool for manipulating material properties in systems based on polyelectrolyte complexation. Its role in these systems gives insight into polyelectrolyte complex phase behavior more broadly. This work was supported by the U.S. Department of Energy Office of Science Program in Basic Energy Sciences, Materials Sciences and Engineering Division.

  13. Selective extraction and detection of noble metal based on ionic ...

    Indian Academy of Sciences (India)

    The kinetics study indicated that Au(III) adsorption kinetics data were well fit with the pseudo-second-order kinetic model on the basis of correlation coefficient fitting (0.996) and adsorption capacity agreement (62.26 mg g − 1 ). Furthermore, SG–ClPrNTf 2 phase was effectively performed for the determination of Au(III) in real ...

  14. Ionic liquid processing of cellulose.

    Science.gov (United States)

    Wang, Hui; Gurau, Gabriela; Rogers, Robin D

    2012-02-21

    Utilization of natural polymers has attracted increasing attention because of the consumption and over-exploitation of non-renewable resources, such as coal and oil. The development of green processing of cellulose, the most abundant biorenewable material on Earth, is urgent from the viewpoints of both sustainability and environmental protection. The discovery of the dissolution of cellulose in ionic liquids (ILs, salts which melt below 100 °C) provides new opportunities for the processing of this biopolymer, however, many fundamental and practical questions need to be answered in order to determine if this will ultimately be a green or sustainable strategy. In this critical review, the open fundamental questions regarding the interactions of cellulose with both the IL cations and anions in the dissolution process are discussed. Investigations have shown that the interactions between the anion and cellulose play an important role in the solvation of cellulose, however, opinions on the role of the cation are conflicting. Some researchers have concluded that the cations are hydrogen bonding to this biopolymer, while others suggest they are not. Our review of the available data has led us to urge the use of more chemical units of solubility, such as 'g cellulose per mole of IL' or 'mol IL per mol hydroxyl in cellulose' to provide more consistency in data reporting and more insight into the dissolution mechanism. This review will also assess the greenness and sustainability of IL processing of biomass, where it would seem that the choices of cation and anion are critical not only to the science of the dissolution, but to the ultimate 'greenness' of any process (142 references).

  15. Ionic liquids behave as dilute electrolyte solutions

    Science.gov (United States)

    Gebbie, Matthew A.; Valtiner, Markus; Banquy, Xavier; Fox, Eric T.; Henderson, Wesley A.; Israelachvili, Jacob N.

    2013-01-01

    We combine direct surface force measurements with thermodynamic arguments to demonstrate that pure ionic liquids are expected to behave as dilute weak electrolyte solutions, with typical effective dissociated ion concentrations of less than 0.1% at room temperature. We performed equilibrium force–distance measurements across the common ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C4mim][NTf2]) using a surface forces apparatus with in situ electrochemical control and quantitatively modeled these measurements using the van der Waals and electrostatic double-layer forces of the Derjaguin–Landau–Verwey–Overbeek theory with an additive repulsive steric (entropic) ion–surface binding force. Our results indicate that ionic liquids screen charged surfaces through the formation of both bound (Stern) and diffuse electric double layers, where the diffuse double layer is comprised of effectively dissociated ionic liquid ions. Additionally, we used the energetics of thermally dissociating ions in a dielectric medium to quantitatively predict the equilibrium for the effective dissociation reaction of [C4mim][NTf2] ions, in excellent agreement with the measured Debye length. Our results clearly demonstrate that, outside of the bound double layer, most of the ions in [C4mim][NTf2] are not effectively dissociated and thus do not contribute to electrostatic screening. We also provide a general, molecular-scale framework for designing ionic liquids with significantly increased dissociated charge densities via judiciously balancing ion pair interactions with bulk dielectric properties. Our results clear up several inconsistencies that have hampered scientific progress in this important area and guide the rational design of unique, high–free-ion density ionic liquids and ionic liquid blends. PMID:23716690

  16. Phosphonium-based ionic liquids and their use in the capture of polluting gases

    Science.gov (United States)

    Dai, Sheng; Wang, Congmin; Luo, Huimin; Jiang, De-en

    2017-06-06

    An ionic liquid composition having the following chemical structural formula: ##STR00001## wherein R.sup.1, R.sup.2, R.sup.3, and R.sup.4 are independently selected from hydrocarbon groups containing at least 1 and up to 20 carbon atoms, and X.sup.- is a cyclic anion that possesses a negatively-charged group reactive with a gaseous electrophilic species, particularly carbon dioxide or sulfur dioxide. Methods for capturing a gaseous electrophilic species, such as CO.sub.2 or SO.sub.2, by contacting the gaseous electrophilic species with an ionic liquid according to Formula (1) are also described.

  17. Ionic liquids as transesterification catalysts: applications for the synthesis of linear and cyclic organic carbonates

    Directory of Open Access Journals (Sweden)

    Maurizio Selva

    2016-08-01

    Full Text Available The use of ionic liquids (ILs as organocatalysts is reviewed for transesterification reactions, specifically for the conversion of nontoxic compounds such as dialkyl carbonates to both linear mono-transesterification products or alkylene carbonates. An introductory survey compares pros and cons of classic catalysts based on both acidic and basic systems, to ionic liquids. Then, innovative green syntheses of task-specific ILs and their representative applications are introduced to detail the efficiency and highly selective outcome of ILs-catalyzed transesterification reactions. A mechanistic hypothesis is discussed by the concept of cooperative catalysis based on the dual (electrophilic/nucleophilic activation of reactants.

  18. Green Imidazolium Ionics-From Truly Sustainable Reagents to Highly Functional Ionic Liquids.

    Science.gov (United States)

    Tröger-Müller, Steffen; Brandt, Jessica; Antonietti, Markus; Liedel, Clemens

    2017-09-04

    We report the synthesis of task-specific imidazolium ionic compounds and ionic liquids with key functionalities of organic molecules from electro-, polymer-, and coordination chemistry. Such products are highly functional and potentially suitable for technology applications even though they are formed without elaborate reactions and from cheap and potentially green reagents. We further demonstrate the versatility of the used synthetic approach by introducing different functional and green counterions to the formed ionic liquids directly during the synthesis or after metathesis reactions. The influence of different cation structures and different anions on the thermal and electrochemical properties of the resulting ionic liquids is discussed. Our goal is to make progress towards economically competitive and sustainable task-specific ionic liquids. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Molecular tests for human papillomavirus (HPV, Chlamydia trachomatis and Neisseria gonorrhoeae in liquid-based cytology specimen

    Directory of Open Access Journals (Sweden)

    Vigliotti Veronica S

    2009-04-01

    Full Text Available Abstract Background Laboratory detection of Human papillomavirus (HPV, Chlamydia trachomatis and Neisseria gonorrhoeae in liquid-based cervicovaginal cytology specimens is now based on identification of the DNA sequences unique to these infectious agents. However, current commercial test kits rely on nucleotide probe hybridization to determine DNA sequences, which may lead to diagnostic errors due to cross-reactivity. The aim of this study was to find a practical approach to perform automated Sanger DNA sequencing in clinical laboratories for validation of the DNA tests for these three infectious agents. Methods A crude proteinase K digestate of 5% of the cells collected in a liquid-based cervicovaginal cytology specimen was used for the detection of DNA molecules specific for HPV, C trachomatis and N gonorrhoeae, and for preparation of materials suitable for direct automated DNA sequencing. Several sets of commercially available polymerase chain reaction (PCR primers were used to prepare nested PCR amplicons for direct DNA sequencing. Results Some variants of HPV-16 and HPV-31 were found to share an at least 34-base long sequence homology downstream of the GP5+ binding site, and all HPV-6 and HPV-11 variants shared an upstream 34-base sequence including part of the GP5+ primer. Accurate HPV genotyping frequently required more than 34-bases for sequence alignments to distinguish some of the HPV genotype variants with closely related sequences in this L1 gene hypervariable region. Using the automated Sanger DNA sequencing method for parallel comparative studies on split samples and to retest the residues of samples previously tested positive for C trachomatis and/or for N gonorrhoeae, we also found false-negative and false-positive results as reported by two commercial nucleic acid test kits. Conclusion Identification of a signature DNA sequence by the automated Sanger method is useful for validation of HPV genotyping and for molecular testing of

  20. Water Contaminant Mitigation in Ionic Liquid Propellant

    Science.gov (United States)

    Conroy, David; Ziemer, John

    2009-01-01

    Appropriate system and operational requirements are needed in order to ensure mission success without unnecessary cost. Purity requirements applied to thruster propellants may flow down to materials and operations as well as the propellant preparation itself. Colloid electrospray thrusters function by applying a large potential to a room temperature liquid propellant (such as an ionic liquid), inducing formation of a Taylor cone. Ions and droplets are ejected from the Taylor cone and accelerated through a strong electric field. Electrospray thrusters are highly efficient, precise, scaleable, and demonstrate low thrust noise. Ionic liquid propellants have excellent properties for use as electrospray propellants, but can be hampered by impurities, owing to their solvent capabilities. Of foremost concern is the water content, which can result from exposure to atmosphere. Even hydrophobic ionic liquids have been shown to absorb water from the air. In order to mitigate the risks of bubble formation in feed systems caused by water content of the ionic liquid propellant, physical properties of the ionic liquid EMI-Im are analyzed. The effects of surface tension, material wetting, physisorption, and geometric details of the flow manifold and electrospray emitters are explored. Results are compared to laboratory test data.

  1. Diffusion, Coulombic interactions and multicomponent ionic transport of charged species in saturated porous media

    DEFF Research Database (Denmark)

    Rolle, Massimo; Muniruzzaman, Muhammad

    of their aqueous diffusion coefficients also the electrostatic interactions significantly affect solute displacement. We investigated electrostatic interactions between ionic species under flow-through conditions resulting in multicomponent ionic dispersion: the dispersive fluxes of the different ions in the pore...... water are cross-coupled due to the effects of Coulombic interactions. Such effects are illustrated in flow-through experiments in saturated porous media. Simple strong electrolytes (i.e., salts and strong acid solutions) were selected as tracers and their transport was studied under different advection......-dominated conditions in homogeneous and heterogeneous porous media [2-3]. The model-based interpretation of the experimental results is challenging since it requires a multicomponent ionic formulation with an accurate description of local hydrodynamic dispersion and explicitly accounting for the cross...

  2. Effect of potential attraction term on surface tension of ionic liquids

    Science.gov (United States)

    Vaziri, N.; Khordad, R.; Rezaei, G.

    2018-03-01

    In this work, we have studied the effect of attraction term of molecular potential on surface tension of ionic liquids (ILs). For this purpose, we have introduced two different potential models to obtain analytical expressions for the surface tension of ILs. The introduced potential models have different attraction terms. The obtained surface tensions in this work have been compared with other theoretical methods and also experimental data. Using the calculated surface tension, the sound velocity is also estimated. We have studied the structural effects on the surface tensions of imidazolium-based ionic liquids. It is found that the cation alkyl chain length and the anion size play important roles to the surface tension of the selected ionic liquids. The calculated surface tensions show a good harmony with experimental data. It is clear that the attraction term of molecular potential has an important role on surface tension and sound velocity of our system.

  3. Ionic, paramagnetic and photophysical properties of a new biohybrid material incorporating copper perchlorate

    International Nuclear Information System (INIS)

    Leones, R.; Donoso, J.P.; Magon, C.J.; Silva, I.D.A.; Camargo, A.S.S. de; Pawlicka, A.; Silva, M.M.

    2015-01-01

    Graphical abstract: Display Omitted -- Highlights: •Poly(ϵ-caprolactone)/siloxane biohybrids electrolytes were prepared by sol-gel method. •The polymer electrolytes were doped with copper perchlorate salt. •The ionic, paramagnetic and photophysical properties of the samples were evaluated. •The samples were analyzed by means of impedance spectroscopy, electron paramagnetic resonance (EPR) and photoluminescence spectroscopy. -- Abstract: The sol-gel method was employed in the synthesis of di-urethane cross-linked poly(ϵ-caprolactone) (d-PCL(530)/siloxane biohybrid ormolytes incorporating copper perchlorate (Cu(ClO 4 ) 2 ). The highest ionic conductivity of the d-PCL(530)/siloxane n Cu(ClO 4 ) 2 system is that with n = 10 (1.4 × 10 −7 and 1.4 × 10 −5 S cm −1 , at 25 and 100 °C, respectively). In an attempt to understand the ionic conductivity/ionic association relationship, we decided to inspect the chemical environment experienced by the Cu 2+ ions in the d-PCL(530)/siloxane medium. The observed EPR spectra are typical of isolated monomeric Cu 2+ ions in axially distorted sites. The molecular orbital coefficients obtained from the EPR spin Hamiltonian parameters and the optical absorption band suggests that bonding between the Cu 2+ and its ligand in the ormolytes are moderately ionic. Investigation by photoluminescence spectroscopy did not evidence or allow selective excitation of transitions corresponding to complexed Cu 2+ species

  4. Surface effects on ionic Coulomb blockade in nanometer-size pores

    Science.gov (United States)

    Tanaka, Hiroya; Iizuka, Hideo; Pershin, Yuriy V.; Di Ventra, Massimiliano

    2018-01-01

    Ionic Coulomb blockade in nanopores is a phenomenon that shares some similarities but also differences with its electronic counterpart. Here, we investigate this phenomenon extensively using all-atom molecular dynamics of ionic transport through nanopores of about one nanometer in diameter and up to several nanometers in length. Our goal is to better understand the role of atomic roughness and structure of the pore walls in the ionic Coulomb blockade. Our numerical results reveal the following general trends. First, the nanopore selectivity changes with its diameter, and the nanopore position in the membrane influences the current strength. Second, the ionic transport through the nanopore takes place in a hopping-like fashion over a set of discretized states caused by local electric fields due to membrane atoms. In some cases, this creates a slow-varying ‘crystal-like’ structure of ions inside the nanopore. Third, while at a given voltage, the resistance of the nanopore depends on its length, the slope of this dependence appears to be independent of the molarity of ions. An effective kinetic model that captures the ionic Coulomb blockade behavior observed in MD simulations is formulated.

  5. Reduction of silanophilic interactions in liquid chromatography with the use of ionic liquids

    International Nuclear Information System (INIS)

    MarszaII, MichaI Piotr; Baczek, Tomasz; Kaliszan, Roman

    2005-01-01

    A suppression of silanophilic interactions by the selected ionic liquids added to the mobile phase in thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC) is reported. Acetonitrile was used as the eluent, alone or with various concentrations of water and phosphoric buffer pH 3. Selectivity of the normal (NP) and the reversed (RP) stationary phase material was examined using a series of proton-acceptor basic drugs analytes. The ionic liquids studied appeared to significantly affect analyte retention in NP-TLC, RP-TLC and RP-HPLC systems tested. Consequently, the increased separation selectivity was attained. Due to ionic liquid additives to eluent even analytes could be chromatographed, which were not eluted from the silica-based stationary phase materials with 100% of acetonitrile in the mobile phase. Addition of ionic liquid already in very small concentration (0.5%, v/v) could reduce the amount of acetonitrile used during the optimization of basic analytes separations in TLC and HPLC systems. Moreover, the influence of temperature on the separation of basic analytes was demonstrated and considered in practical HPLC method development

  6. Reduction of silanophilic interactions in liquid chromatography with the use of ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    MarszaII, MichaI Piotr [Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdansk, Gen. J. Hallera 107, 80-416 Gdansk (Poland); Baczek, Tomasz [Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdansk, Gen. J. Hallera 107, 80-416 Gdansk (Poland); Kaliszan, Roman [Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdansk, Gen. J. Hallera 107, 80-416 Gdansk (Poland)]. E-mail: roman.kaliszan@amg.gda.pl

    2005-08-22

    A suppression of silanophilic interactions by the selected ionic liquids added to the mobile phase in thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC) is reported. Acetonitrile was used as the eluent, alone or with various concentrations of water and phosphoric buffer pH 3. Selectivity of the normal (NP) and the reversed (RP) stationary phase material was examined using a series of proton-acceptor basic drugs analytes. The ionic liquids studied appeared to significantly affect analyte retention in NP-TLC, RP-TLC and RP-HPLC systems tested. Consequently, the increased separation selectivity was attained. Due to ionic liquid additives to eluent even analytes could be chromatographed, which were not eluted from the silica-based stationary phase materials with 100% of acetonitrile in the mobile phase. Addition of ionic liquid already in very small concentration (0.5%, v/v) could reduce the amount of acetonitrile used during the optimization of basic analytes separations in TLC and HPLC systems. Moreover, the influence of temperature on the separation of basic analytes was demonstrated and considered in practical HPLC method development.

  7. Weeding atypical glandular cell look-alikes from the true atypical lesions in liquid-based Pap tests: a review.

    Science.gov (United States)

    Wood, Moira D; Horst, Julie A; Bibbo, Marluce

    2007-01-01

    The purpose of this review is to identify features that separate atypical glandular cells (AGC) associated with glandular neoplasia from its mimickers, both benign and neoplastic. We reviewed cases of AGC diagnosed on liquid-based Pap tests (LBP) for which corresponding histological follow-up was available. A review of the literature for similar studies in LBP tests was also conducted. We find that certain benign mimics can be reliably separated from AGC, but recommend caution in attempting to increase specificity at the risk of losing sensitivity. Although accounting for only a small percentage of diagnoses AGC require a thorough clinical evaluation, including colposcopy. Most cases are ultimately found to be benign. When evaluating smears suspicious for AGC, it is important to examine the subtle features which make truly atypical cells discernible from their numerous benign mimickers.

  8. Significance of atypia in conventional Papanicolaou smears and liquid-based cytology: a follow-up study

    DEFF Research Database (Denmark)

    Schledermann, D; Ejersbo, D; Hoelund, B

    2004-01-01

    Papanicolaou smears (CP) and liquid-based samples by the ThinPrep Pap Test (TP). A total of 1607 CP smears from 1 January 2000 to 31 December 2000 and 798 TP samples from 1 January 2002 to 31 December 2002 diagnosed as atypia were included. The results show that the detection rate of atypia in cervical......-up diagnosis of mild dysplasia was seen more than twice as often in TP than in CP (12.8% versus 5.0%, P Pap Test yielded...... a significant decrease in atypia rates compared with the conventional Papanicolaou test. In subsequent follow-up the percentage of neoplastic lesions was significantly increased in the ThinPrep Pap Test samples....

  9. A comparative analysis of conventional and SurePath liquid-based cervicovaginal cytology: A study of 140 cases

    Directory of Open Access Journals (Sweden)

    Jyotsna Sharma

    2016-01-01

    Full Text Available Background: The role of Papanicolaou (Pap test in cervical cancer screening need not be overemphasized. While most Western countries have adopted the liquid-based cytology (LBC, which is considered superior, many developing countries are still using the conventional Pap smear (CPS technique. Objective: To compare the staining and cytomorphological features on conventional versus liquid-based cervicovaginal smears. Materials and Methods: One hundred and forty cervicovaginal smears prepared by the standard conventional and LBC techniques were interpreted as per the Bethesda system of reporting cervicovaginal smears. Twelve parameters were studied, compared, and statistically analyzed. A P value <0.05 was considered to be statistically significant. Results: 129/140 (92% of CPSs and 130/140 (93% LBC smears were satisfactory. LBC had a significantly shorter screening time (2.0 ± 0.08 vs 4.0 ± 0.65 and better representative material than that of CPS (50% vs 42%. Neutrophils were significantly more in CPS than LBC (96% vs 92% with a P value <0.05 while hemorrhagic background and red blood cells (RBCs were more prominent in CPS. LBC showed significant artifactual changes in squamous epithelial cells. Epithelial abnormalities ranging from atypical squamous cells of undetermined significance (ASCUS to high grade squamous intraepithelial lesion (HSIL were seen in 3% (4 and 2% (2 of CPSs and LBCs, respectively. Organisms were better picked up in CPS (99% in CPS vs 73% LBC with a value of P = 0.0001. Conclusion: Although a shorter screening time and cleaner background are the major advantages of LBC, CPS is not inferior to LBC. Considering the high cost, rather than the advantages associated with LBC, we feel that CPS is a better option for developing countries.

  10. Accuracy of reading liquid based cytology slides using the ThinPrep Imager compared with conventional cytology: prospective study

    Science.gov (United States)

    d'Assuncao, Jefferson; Irwig, Les; Macaskill, Petra; Chan, Siew F; Richards, Adele; Farnsworth, Annabelle

    2007-01-01

    Objective To compare the accuracy of liquid based cytology using the computerised ThinPrep Imager with that of manually read conventional cytology. Design Prospective study. Setting Pathology laboratory in Sydney, Australia. Participants 55 164 split sample pairs (liquid based sample collected after conventional sample from one collection) from consecutive samples of women choosing both types of cytology and whose specimens were examined between August 2004 and June 2005. Main outcome measures Primary outcome was accuracy of slides for detecting squamous lesions. Secondary outcomes were rate of unsatisfactory slides, distribution of squamous cytological classifications, and accuracy of detecting glandular lesions. Results Fewer unsatisfactory slides were found for imager read cytology than for conventional cytology (1.8% v 3.1%; Pcytology (7.4% v 6.0% overall and 2.8% v 2.2% for cervical intraepithelial neoplasia of grade 1 or higher). Among 550 patients in whom imager read cytology was cervical intraepithelial neoplasia grade 1 or higher and conventional cytology was less severe than grade 1, 133 of 380 biopsy samples taken were high grade histology. Among 294 patients in whom imager read cytology was less severe than cervical intraepithelial neoplasia grade 1 and conventional cytology was grade 1 or higher, 62 of 210 biopsy samples taken were high grade histology. Imager read cytology therefore detected 71 more cases of high grade histology than did conventional cytology, resulting from 170 more biopsies. Similar results were found when one pathologist reread the slides, masked to cytology results. Conclusion The ThinPrep Imager detects 1.29 more cases of histological high grade squamous disease per 1000 women screened than conventional cytology, with cervical intraepithelial neoplasia grade 1 as the threshold for referral to colposcopy. More imager read slides than conventional slides were satisfactory for examination and more contained low grade cytological

  11. Preliminary Testing For Anionic, Cationic and Non-ionic

    Directory of Open Access Journals (Sweden)

    Bokic, Lj.

    2007-11-01

    Full Text Available Detergents present a major environmental problem due to large quantities of surfactants released from laundries. For this reason, it is important to apply an appropriate analytical method for their determination. In this work, we propose two simple, fast and inexpensive analytical methods for anionic, cationic and non-ionic surfactant determination: thin layer chromatography (TLC separation for qualitative screening and quantitative potentiometric determination with ion-selective electrodes. These methods have been chosen because of their many advantages: rapidity, ease of operation, low cost of analysis and a wide variety of TLC application possibilities. The advantage of potentiometric titration is its very high degree of automation and very low detection limits obtained with different ion-selective electrodes applied for different surfactants.

  12. Individual SWCNT based ionic field effect transistor

    Science.gov (United States)

    Pang, Pei; He, Jin; Park, Jae Hyun; Krstic, Predrag; Lindsay, Stuart

    2011-03-01

    Here we report that the ionic current through a single-walled carbon nanotube (SWCNT) can be effectively gated by a perpendicular electrical field from a top gate electrode, working as ionic field effect transistor. Both our experiment and simulation confirms that the electroosmotic current (EOF) is the main component in the ionic current through the SWCNT and is responsible for the gating effect. We also studied the gating efficiency as a function of solution concentration and pH and demonstrated that the device can work effectively in the physiological relevant condition. This work opens the door to use CNT based nanofluidics for ion and molecule manipulation. This work was supported by the DNA Sequencing Technology Program of the National Human Genome Research Institute (1RC2HG005625-01, 1R21HG004770-01), Arizona Technology Enterprises and the Biodesign Institute.

  13. CPE OF URANIUM (VI USING IONIC LIQUID

    Directory of Open Access Journals (Sweden)

    SANAA NAÏT-TAHAR

    2016-07-01

    Full Text Available Cloud point extraction (CPE was used to extract uranium (VI from an aqueous solution in acetate media. The methodology used is based on the formation of uranyl-ionic liquid (I complexes and uranyl-D2EHPA soluble in a micellar phase of non-ionic surfactant (Triton X-100. The uranium (VI complexes are then extracted into the surfactant-rich phase at ambient temperature. The ionic liquid (IL used as a chelating agent was synthesized and characterized in this study. It is composed of N-butyl N’-triethoxy methyl imidazolium cation and diethylhexylphosphate (D2EHPA-H as anion. The effect of the IL on the extraction efficiency was studied in presence and in absence of IL’s cation in acetate medium.

  14. Synthesis and characterization of new ionic liquids

    International Nuclear Information System (INIS)

    Oliveira, L.M.C. de; Mattedi, S.; Boaventura, J.S.; Iglesias, M.; Universidad de Santiago de Compostela

    2010-01-01

    In recent years, ionic liquids have been highlighted for its potential in various industrial applications. Among them, the salts of Broensted has a promising profile for the low toxicity, low cost and simple synthesis. This paper presents the synthesis and characterization of new salts of Bronsted with branched (lactate) or large chain anions (oleate) for future use as additives promoters of proton conductivity in fuel cells of ethanol. Experimental data were measured for density, sound velocity and conductivity of pure ionic liquids and mixtures. The density decreases linearly with increasing temperature, and sound velocity shows a similar trend, but not linear. The conductivity increases according to the Arrhenius model with activation energy less than 10 J/mol. Tests NMR, FTIR and TGA confirm ionic structure and thermal stability up to 165 deg C. (author)

  15. Key Developments in Ionic Liquid Crystals.

    Science.gov (United States)

    Alvarez Fernandez, Alexandra; Kouwer, Paul H J

    2016-05-16

    Ionic liquid crystals are materials that combine the classes of liquid crystals and ionic liquids. The first one is based on the multi-billion-dollar flat panel display industry, whilst the latter quickly developed in the past decades into a family of highly-tunable non-volatile solvents. The combination yields materials with a unique set of properties, but also with many challenges ahead. In this review, we provide an overview of the key concepts in ionic liquid crystals, particularly from a molecular perspective. What are the important molecular parameters that determine the phase behavior? How should they be introduced into the molecules? Finally, which other tools does one have to realize specific properties in the material?

  16. Key Developments in Ionic Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Alexandra Alvarez Fernandez

    2016-05-01

    Full Text Available Ionic liquid crystals are materials that combine the classes of liquid crystals and ionic liquids. The first one is based on the multi-billion-dollar flat panel display industry, whilst the latter quickly developed in the past decades into a family of highly-tunable non-volatile solvents. The combination yields materials with a unique set of properties, but also with many challenges ahead. In this review, we provide an overview of the key concepts in ionic liquid crystals, particularly from a molecular perspective. What are the important molecular parameters that determine the phase behavior? How should they be introduced into the molecules? Finally, which other tools does one have to realize specific properties in the material?

  17. Lattice mechanics of ionic crystals - unified study

    International Nuclear Information System (INIS)

    Sengupta, S.; Roy, D.; Basu, A.N.

    1979-01-01

    The up-to-date situation in the understanding of the mechanical properties of ionic solids is reviewed. These properties are determined by the Born-Oppenheimer (B-O) potential energy function. For ionic crystals this potential energy function can be written down with some precision. To keep the expression tractable, the dominant electron deformation, the dipolar deformation, is treated as an adiabatic variable and the energy then becomes a function of both the nuclear coordinates and the ionic dipole moments. All the well known models for ionic crystals are discussed in terms of the energy expression they imply. This makes the comparison straight forward and brings out the essential difference between the models clearly. Next various quantum mechanical treatments for ionic crystals are reviewed. An attempt is made to obtain the B-O potential energy expression using a Heitler-London approach. By comparing the various models one can arrive at some definitive conclusions about the degree of validity and the assumptions underlying these models. Finally a comprehensive review of the results of actual computation on various ionic crystals done by different authors is undertaken. The crucial quantitative results are examined and the success and shortcoming of each calculation are critically analysed. The guiding principle in this part is the unified approach. i.e. to see how far a model with a given set of parameters accounts for both the dynamic and static properties. The discussion is divided in three sections for crystals with sodium chloride, cesium chloride and zinc sulfide structures. Outstanding problems and difficulties in the present understanding are pointed out. (auth.)

  18. Functional ionic liquids; Funktionelle ionische Fluessigkeiten

    Energy Technology Data Exchange (ETDEWEB)

    Baecker, Tobias

    2012-07-01

    In the thesis at hand, new functional ionic liquids were investigated. Main focus was attended to their structure property relations and the structural features leading to a decrease of the melting point. New compounds of the type 1-butyl-3-methylimidazolium tris(N,Ndialkyldithiocarbamato) uranylate with variously substituated dithiocarbamato ligands were synthesized and characterized. Ligands with asymmetrical substitution pattern proved to be most suitable for ionic liquid formation. The single-crystal X-ray structures revealed the interactions in the solid state. Here, the first spectroscopic investigation of the U-S bond in sulfur donated uranyl complexes, up to now only observed in single-crystal X-ray structures, is presented, and the participation of the uranium f-orbitals is shown by theoretical calculations. Electrochemical investigations showed the accessibility of the respective U{sup V}O{sub 2}{sup +} compounds. As well, ionic liquids with [FeCl{sub 4}]{sup -} and [Cl{sub 3}FeOFeCl{sub 3}]{sup 2-} as anion were synthesized. Both of these anions contain high-spin Fe(III) centres in distorted tetrahedral environment, but exhibit different magnetic behaviour. The tetrachloroferrates show the usual paramagnetism, the m-oxobis(trichloroferrate) exhibits unexpectedly strong antiferromagnetic coupling, as was observed by NMR experiments and susceptibility measurements. To investigate structure-property relations in functionalized ionic liquids, a set of protic, primary alkylammonium and aprotic, quarternary trimethylalkylammonium based ionic liquids was synthesized, and characterized. The length of the alkyl chain was systematically varied, and all compounds were synthesized with and without hydroxyl group, as well as formate and bis(triflyl)amide salts, aiming at getting insight into the influence of the different structure parts on the respective ionic liquid's properties.

  19. Similar nature of ionic imbalances in cardiovascular and renal disorders

    International Nuclear Information System (INIS)

    Shahid, S.M.; Jawed, M.; Akram, H.; Mahboob, T.

    2004-01-01

    Background: Several studies have reported improper ionic environment in cardiovascular and renal patients but how the diseases are associated on ionic basis is still not clear. Objective: The present study was aimed to investigate sodium and potassium concentrations and their transport abnormalities in cardiovascular and renal patients. Patients and Methods: Thirty patients of various cardiovascular and thirty patients of various renal disorders (53.33% males, 46.67% females) were selected. Erythrocytes were isolated from freshly drawn blood samples, washed and used for the estimation of sodium and potassium levels using flame photometer (Corning 410). Serum sodium and potassium were measured by flame photometer. RBC membranes were prepared for the estimation of Na/sup +/-K/sup +/-ATPase activity in terms of inorganic phosphate released/mg protein/hour. Results: Intra-erythrocyte and serum sodium and potassium concentrations and Na/sup +/-K/sup +/-ATPase activity were different in cardiovascular and renal patients from controls. Intra-erythrocyte sodium level was increased significantly (P<0.01) in cardiovascular patients and non-significantly in renal patients as compared to controls. Na/sup +/-K/sup +/-ATPase activity and serum sodium level were decreased significantly (P<0.01) in both the groups as compared to controls. Serum potassium was found to be decreased significantly (P<0.01) in cardiovascular patients whereas it was raised significantly (P<0.01) in renal patients as compared to control subjects. Conclusion: The results indicated similar nature of ionic and electrolyte imbalances in cardiovascular and renal disorders resulting from impaired Na/sup +/-K/sup +/-ATPase system. Further investigations in the same area, may be of help to establish an understanding of the progression of diseases, associated complications and the preventive steps that should-be taken to arrest the progression of these disorders. (author)

  20. Inadvertent intrathecal use of ionic contrast agent

    Energy Technology Data Exchange (ETDEWEB)

    Leede, H. van der; Jorens, P.G. [Department of Intensive Care Medicine, University Hospital of Antwerp, Wilrijkstraat 10, 2650 Edegem (Belgium); Parizel, P. [Department of Radiology, University Hospital of Antwerp, Wilrijkstraat 10, 2650 Edegem (Belgium); Cras, P. [Department of Neurology, University Hospital of Antwerp, Wilrijkstraat 10, 2650 Edegem (Belgium)

    2002-07-01

    Intrathecal administration of ionic contrast media may cause severe and fatal neurotoxic reactions due to their hyperosmolarity and ionic nature. They are therefore strictly contraindicated for all radiologic applications involving the central nervous system (e.g., myelography). We present a case in which ioxitalamate was accidentally injected intrathecally. The patient recovered completely due to a combination of the different therapeutic options reported in the literature, including early mechanical ventilation and neuromuscular paralysis, aggressive control of seizures, elevation of head and trunk to prevent cephalad migration of contrast, steroids, cerebrospinal fluid drainage and lavage and prophylactic antibiotics. (orig.)

  1. Inadvertent intrathecal use of ionic contrast agent

    International Nuclear Information System (INIS)

    Leede, H. van der; Jorens, P.G.; Parizel, P.; Cras, P.

    2002-01-01

    Intrathecal administration of ionic contrast media may cause severe and fatal neurotoxic reactions due to their hyperosmolarity and ionic nature. They are therefore strictly contraindicated for all radiologic applications involving the central nervous system (e.g., myelography). We present a case in which ioxitalamate was accidentally injected intrathecally. The patient recovered completely due to a combination of the different therapeutic options reported in the literature, including early mechanical ventilation and neuromuscular paralysis, aggressive control of seizures, elevation of head and trunk to prevent cephalad migration of contrast, steroids, cerebrospinal fluid drainage and lavage and prophylactic antibiotics. (orig.)

  2. Functional Materials from Polymeric Ionic Liquids

    Science.gov (United States)

    Segalman, Rachel; Sanoja, Gabriel; Michenfelder-Schauser, Nicole; Mitragotri, Samir; Seshadri, Ram

    Ionic liquids (IL's) have been suggested for applications as diverse as solubilizing cellulose, antimicrobial treatments, and electrolytes in batteries due to their molten salt properties. A polymeric cation (such as imidazolium) is an excellent host for any associated anion. As a result, polymerized ionic liquids are not just solid counterparts to IL's, but are shown to be vectors for the inclusion of a wide variety of functionalities ranging from multi-valent ions to magnetic anions. Moreover, PIL block copolymers allow orthogonal control over mechanical and morphological properties, ultimately leading to a conceptual framework for processable, tunable, multifunctional materials.

  3. Physical Chemistry of Reaction Dynamics in Ionic Liquid

    Energy Technology Data Exchange (ETDEWEB)

    Maroncelli, Mark [Pennsylvania State Univ., University Park, PA (United States)

    2016-10-02

    Work completed over the past year mainly involves finishing studies related to solvation dynamics in ionic liquids, amplifying and extending our initial PFG-NMR work on solute diffusion, and learning how to probe rotational dynamics in ionic liquids.

  4. Applications of ionic liquids in polymer science and technology

    CERN Document Server

    2015-01-01

    This book summarizes the latest knowledge in the science and technology of ionic liquids and polymers in different areas. Ionic liquids (IL) are actively being investigated in polymer science and technology for a number of different applications. In the first part of the book the authors present the particular properties of ionic liquids as speciality solvents. The state-of-the art in the use of ionic liquids in polymer synthesis and modification reactions including polymer recycling is outlined. The second part focuses on the use of ionic liquids as speciality additives such as plasticizers or antistatic agents.  The third part examines the use of ionic liquids in the design of functional polymers (usually called polymeric ionic liquids (PIL) or poly(ionic liquids)). Many important applications in diverse scientific and industrial areas rely on these polymers, like polymer electrolytes in electrochemical devices, building blocks in materials science, nanocomposites, gas membranes, innovative anion sensitive...

  5. Synthetic Organic Electrochemistry in Ionic Liquids: The Viscosity Question

    Directory of Open Access Journals (Sweden)

    Scott T. Handy

    2011-07-01

    Full Text Available Ionic liquids are obvious candidates for use in electrochemical applications due to their ionic character. Nevertheless, relatively little has been done to explore their application in electrosynthesis. We have studied the Shono oxidation of arylamines and carbamates using ionic liquids as recyclable solvents and have noted that the viscosity of the medium is a major problem, although with the addition of sufficient co-solvent, good results and excellent recovery and recycling of the ionic liquid can be achieved.

  6. PEG-bis phosphonic acid based ionic supramolecular structures

    DEFF Research Database (Denmark)

    Gonzalez, Lidia; Skov, Anne Ladegaard; Hvilsted, Søren

    2014-01-01

    . The resulting ionic assemblies are very comprehensively characterized by ATR-FTIR, proton, and carbon-13 NMR spectroscopy that unequivocally demonstrate the ionic network formation through ammonium phophonates. The resulting salt and ionic networks are additionally analyzed by differential scanning calorimetry...... and thermogravimetric analysis. The conclusion is that mixing the virgin components at room temperature spontaneously form either a salt or ionic supramolecular networks. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim....

  7. Ionic copolyesters and their nanocomposites: synthesis, characterization and properties

    OpenAIRE

    Bautista Betancur, Mayka Irina

    2015-01-01

    A polymer containing small amounts of ionic groups either along the polymer backbone chains or as pendant groups is defined as ionomer. As originally proposed by Eisenberg, the interaction between ionic groups leads to the formation of multiplets containing a small number of ion pairs, and also to ionic clusters, which constitute a second phase made of many multiplets as well as portions of the hydrocarbon chains. These ionic structures have been shown to act as strong electrostatic cross-lin...

  8. Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis.

    Science.gov (United States)

    Zhao, Hua; Jones, Cecil L; Baker, Gary A; Xia, Shuqian; Olubajo, Olarongbe; Person, Vernecia N

    2009-01-01

    The efficient conversion of lignocellulosic materials into fuel ethanol has become a research priority in producing affordable and renewable energy. The pretreatment of lignocelluloses is known to be key to the fast enzymatic hydrolysis of cellulose. Recently, certain ionic liquids (ILs) were found capable of dissolving more than 10wt% cellulose. Preliminary investigations [Dadi, A.P., Varanasi, S., Schall, C.A., 2006. Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnol. Bioeng. 95, 904-910; Liu, L., Chen, H., 2006. Enzymatic hydrolysis of cellulose materials treated with ionic liquid [BMIM]Cl. Chin. Sci. Bull. 51, 2432-2436; Dadi, A.P., Schall, C.A., Varanasi, S., 2007. Mitigation of cellulose recalcitrance to enzymatic hydrolysis by ionic liquid pretreatment. Appl. Biochem. Biotechnol. 137-140, 407-421] suggest that celluloses regenerated from IL solutions are subject to faster saccharification than untreated substrates. These encouraging results offer the possibility of using ILs as alternative and non-volatile solvents for cellulose pretreatment. However, these studies are limited to two chloride-based ILs: (a) 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), which is a corrosive, toxic and extremely hygroscopic solid (m.p. approximately 70 degrees C), and (b) 1-allyl-3-methylimidazolium chloride ([AMIM]Cl), which is viscous and has a reactive side-chain. Therefore, more in-depth research involving other ILs is much needed to explore this promising pretreatment route. For this reason, we studied a number of chloride- and acetate-based ILs for cellulose regeneration, including several ILs newly developed in our laboratory. This will enable us to select inexpensive, efficient and environmentally benign solvents for processing cellulosic biomass. Our data confirm that all regenerated celluloses are less crystalline (58-75% lower) and more accessible to cellulase (>2 times) than untreated substrates. As a result

  9. Ionic Liquids in Polymer Design: From Energy to Health

    Science.gov (United States)

    2016-10-19

    is to identify and highlight emerging materials that combine ionic liquids and polymer chemistry and the unique properties that arise from this...combination. This symposium covers all aspects of ionic liquids in polymers from synthesis, properties , and applications. The research should be...ionic liquids 2. Synthesis and Processing 3. Structure- Property Relationships 4. New materials and emerging Applications 5. Energy and Environmental

  10. Evidence for high ionic conductivity in lithium–lanthanum titanate,

    Indian Academy of Sciences (India)

    The high bulk ionic conductivity is reported as 1·12 ×. 10−3 S cm−1 at room temperature. D.C. conductivity measurements indicate that the compound is a good ionic conductor. Keywords. Perovskite; ionic conductivity; electrolyte. 1. Introduction. Among various rechargeable batteries, lithium-ion recharge- able batteries are ...

  11. Ionic flotation of uranium contained in industrial phosphoric acid

    International Nuclear Information System (INIS)

    Jdid; Blazy; Bessiere

    1983-01-01

    A new process for uranium recovery from industrial phosphoric acid at 30% of P 2 O 5 is applied by the ionic flotation process. Research is carried out on determination of the nature of ionic species of U in H 3 PO 4 5.5 M and the behavior of reagents from CECA Co. in very acid media. Reagents able to form complexes directly with uranium and stable in phosphoric acid selected are: potassium ethylene diamine tetra (methylene phosphonate) (INIPOL AD32) and sodium dialkyldiphosphonate (34S). Uranium IV, obtained by reduction of uranium VI with iron powder, is precipitated by these reagents. Flotation of the precipitate obtained with INIPOL AD 32 is realized by addition of hexylamino bis (methylene phosphonic acid). A recovery of 80 wt% is obtained. Flotation of the coprecipitate 34S-U(IV) is obtained without any other additions because 34S is a surfactant. Metal recovery is better than 90% and the coprecipitate contains more than 10% U. The process is fast precipitation 10 minutes and flotation 5 minutes and is efficient even at 60 0 C [fr

  12. Lyotropic Phase Behavior of Polybutadiene-Poly(ethylene oxide) Diblock Copolymers in Ionic Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Simone, Peter M.; Lodge, Timothy P. (UMM)

    2008-08-26

    The lyotropic phase behavior of three poly(1,2-butadiene-b-ethylene oxide) diblock copolymers (PB-PEO) with different monomer volume fractions has been studied in two different ionic liquids, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMI][TFSI]) and 1-butyl-3-methylimidazolium hexafluorophosphate ([BMI][PF{sub 6}]), across the complete concentration range. The ordered microstructures present in the solutions were characterized via small-angle X-ray scattering (SAXS). The phase diagrams for the PB-PEO/ionic liquid solutions include regions corresponding to the classical copolymer microstructures: body-centered-cubic lattices of spheres, hexagonally ordered cylinders, and lamellae. Additionally, the phase diagrams also include wide regions of coexisting microstructures and regions apparently corresponding to a disordered network microstructure. The phase behavior of the PB-PEO copolymers in both ionic liquids was comparable to their previously reported aqueous solution behavior. The temperature dependence of the phase diagrams was very modest, indicative of a highly segregated system. The level of solvent selectivity was also investigated via cryogenic transmission electron microscopy (cryo-TEM) on dilute solutions. On the basis of the morphology of the dilute solution copolymer aggregate structures in the ionic liquid solvents, and on the structural length scales of the concentrated solutions, it was concluded that for PB-PEO [BMI][PF{sub 6}] behaves as a more selective solvent than [EMI][TFSI].

  13. Reactions of Starch in Ionic Liquids

    Science.gov (United States)

    We found that starches are found to be soluble at 80 ºC in ionic liquids such as 1-butyl-3-methylimidazolium chloride (BMIMCl) and 1-butyl-3-methylimidazolium dicyanamide (BMIMdca) in concentration up to 10% (w/w). Higher concentrations of biopolymers in these novel solvents resulted in solutions w...

  14. Functionalized dicationic ionic liquids: Green and efficient ...

    Indian Academy of Sciences (India)

    biodiesel through transesterification from cottonseed oil,23 and esterification of organic acids with ethanol was carried out in the presence of a dicationic ionic liquid.24 A group of imidazolium-based DCILs have been used for esterification of alcohols by carboxylic acids.25 In these reactions, researchers have focused on.

  15. Tilts and Ionic Shifts in Rhombohedral Perovskites

    NARCIS (Netherlands)

    Noheda, Beatriz; Duan, Ning; Cereceda, Noé; Gonzalo, Julio A.

    1998-01-01

    We make a comparative analysis of rhombohedral perovskites (ABO3) with/without oxygen rotations and ionic shifts, within the framework of a generalised effective field approach. We analyse available data on LaAlO3 and LiTaO3 and new data on Zr-rich PZT, examples of three different ways of structural

  16. SANS analysis of aqueous ionic perfluoropolyether micelles

    CERN Document Server

    Gambi, C M C; Chittofrati, A; Pieri, R; Baglioni, P; Teixeira, J

    2002-01-01

    Preliminary SANS results of ionic chlorine terminated perfluoropolyether micelles in water are given. The experimental spectra have been analyzed by a two-shell ellipsoidal model for the micellar form factor and a screened Coulombic plus hard-sphere repulsion potential for the structure factor. (orig.)

  17. Ionic conduction in the solid state

    Indian Academy of Sciences (India)

    Unknown

    Ionic conduction; solid state; atomistic computer simulations; NASICON structure. 1. Introduction. There exist many solids with .... The other skeleton structures examined in- cludes that of the high-pressure-stabilized cubic Im3 ..... volves solution of the coupled differential equations. (11) and (12). This gives the time evolution ...

  18. Catalytic Alkene Metathesis in Ionic Liquids

    Science.gov (United States)

    Fischmeister, Cédric

    Olefin metathesis has found a tremendous number of application in the past 25 years. Immobilisation of olefin metathesis (pre)catalysts in room temperature ionic liquids (RTILs) offers the opportunity to recover and reuse the catalyst and also to reduce the level of ruthenium (Ru) contaminants in the products.

  19. Supported ionic liquid-phase (SILP) catalysis

    DEFF Research Database (Denmark)

    Riisager, Anders; Fehrmann, Rasmus; Wasserscheid, P.

    2005-01-01

    The concept of supported ionic liquid-phase (SILP) catalysis has been demonstrated for gas- and liquid-phase continuous fixed-bed reactions using rhodium phosphine catalyzed hydroformylation of propene and 1-octene as examples. The nature of the support had important influence on both the catalytic...

  20. Mechanistic aspects of ionic reactions in flames

    DEFF Research Database (Denmark)

    Egsgaard, H.; Carlsen, L.

    1993-01-01

    Some fundamentals of the ion chemistry of flames are summarized. Mechanistic aspects of ionic reactions in flames have been studied using a VG PlasmaQuad, the ICP-system being substituted by a simple quartz burner. Simple hydrocarbon flames as well as sulfur-containing flames have been investigated...

  1. Analysis of ionic conductance of carbon nanotubes

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Bazant, M.Z.

    2016-01-01

    We use space-charge (SC) theory (also called the capillary pore model) to describe the ionic conductance, G, of charged carbon nanotubes (CNTs). Based on the reversible adsorption of hydroxyl ions to CNT pore walls, we use a Langmuir isotherm for surface ionization and make calculations as a

  2. Ionic effects in collapse of polyelectrolyte brushes.

    Science.gov (United States)

    Jiang, Tao; Wu, Jianzhong

    2008-07-03

    We investigated the effect of counterion valence on the structure and swelling behavior of polyelectrolyte brushes using a nonlocal density functional theory that accounts for the excluded-volume effects of all ionic species and intrachain and electrostatic correlations. It was shown that charge correlation in the presence of multivalent counterions results in collapse of a polyelectrolyte brush at an intermediate polyion grafting density. At high grafting density, the brush reswells in a way similar to that in a monovalent ionic solution. In the presence of multivalent counterions, the nonmonotonic swelling of a polyelectrolyte brush in response to the increase of the grafting density can be attributed to a competition of the counterion-mediated electrostatic attraction between polyions with the excluded-volume effect of all ionic species. While a polyelectrolyte brush exhibits an "osmotic brush" regime at low salt concentration and a "salted brush" regime at high salt concentration regardless of the counterion valence, we found a smoother transition as the valence of the counterions increases. As observed in recent experiments, a quasi-power-law dependence of the brush thickness on the concentration ratio can be identified when the monovalent counterions are replaced with trivalent counterions at a fixed ionic strength.

  3. Polypyrrole for Artificial Muscles: Ionic Mechanisms

    DEFF Research Database (Denmark)

    Skaarup, Steen

    2006-01-01

    is centered on polypyrrole (PPy), which is the material most used and studied. The tetraethyl ammonium cation (TEA) is shown to be able to move in and out of PPy(DBS) polymer films, in contrast to expectations. There is a switching between ionic mechanisms during cycling in TEACl electrolyte....

  4. 'Ionic crystals' consisting of trinuclear macrocations and ...

    Indian Academy of Sciences (India)

    T Arumuganathan

    'Ionic crystals' consisting of trinuclear macrocations and polyoxometalate anions exhibiting single crystal to single crystal transformation: breathing of crystals. †. T ARUMUGANATHANa, ASHA SIDDIKHAb and SAMAR K DASb,∗. aDepartment of Chemistry, Thiagarajar College, Madurai 625 009, Tamilnadu, India. bSchool ...

  5. Sustainable Poly(Ionic Liquids) for CO2 Capture Based on Deep Eutectic Monomers

    KAUST Repository

    Isik, Mehmet

    2016-10-05

    The design of high performance solid sorbent materials for CO2 capture is a technology which has been employed to mitigate global warming. However, the covalent incorporation of functionalities into polymeric supports usually involves multistep energy-intensive chemical processes. This fact makes the net CO2 balance of the materials negative even though they possess good properties as CO2 sorbents. Here we show a new family of polymers which are based on amines, amidoximes, and natural carboxylic acids and can be obtained using sustainable low energy processes. Thus, deep eutectic monomers based on natural carboxylic acids, amidoximes, and amines have been prepared by just mixing with cholinium type methacrylic ammonium monomer. The formation of deep eutectic monomers was confirmed by differential scanning calorimetry measurements. In all cases, the monomers displayed glass transition temperatures well below room temperature. Computational studies revealed that the formation of eutectic complexes lengthens the distance between the cation and the anion causing charge delocalization. The liquid nature of the resulting deep eutectic monomers (DEMs) made it possible to conduct a fast photopolymerization process to obtain the corresponding poly(ionic liquids). Materials were characterized by means of nuclear magnetic resonance, differential scanning calorimetry, thermogravimetric analysis, and X-ray diffraction to evaluate the properties of the polymers. The polymers were then used as solid sorbents for CO2 capture. It has been shown that the polymers prepared with citric acid displayed better performance both experimentally and computationally. The current endeavor showed that sustainable poly(ionic liquids) based on deep eutectic monomers can be easily prepared to produce low-energy-cost alternatives to the materials currently being researched for CO2 capture. © 2016 American Chemical Society.

  6. Cloud Point Extraction of Parabens Using Non-Ionic Surfactant with Cylodextrin Functionalized Ionic Liquid as a Modifier

    Directory of Open Access Journals (Sweden)

    Md Saleh Noorashikin

    2013-12-01

    Full Text Available A cloud point extraction (CPE process using non-ionic surfactant (DC193C to extract selected paraben compounds from water samples was investigated using reversed phase high performance liquid chromatography (RP-HPLC. The CPE process with the presence of β-cyclodextrin (βCD functionalized ionic liquid as a modifier (CPE-DC193C-βCD-IL is a new extraction technique that has been applied on the optimization of parameters, i.e., pH, βCD-IL concentration and phase volume ratio. This CPE-DC193C-βCD-IL method is facilitated at 30 °C, showing great losses of water content in the surfactant-rich phase, resulting in a high pre-concentration factor and high distribution coefficient. The developed method CPE-DC193C-βCD-IL did show enhanced properties compared to the CPE method without the modifier (CPE-DC193C. The developed method of CPE-DC193C-βCD-IL gives an excellent performance on the detection of parabens from water samples with the limit of detection falling in the range of 0.013–0.038 µg mL−1. Finally, the inclusion complex formation, hydrogen bonding, and π–π interaction between the βCD-IL, benzyl paraben (ArP, and DC 193C were proven using 1H NMR and 2D NOESY spectroscopy.

  7. Cloud Point Extraction of Parabens Using Non-Ionic Surfactant with Cylodextrin Functionalized Ionic Liquid as a Modifier

    Science.gov (United States)

    Noorashikin, Md Saleh; Raoov, Muggundha; Mohamad, Sharifah; Abas, Mhd Radzi

    2013-01-01

    A cloud point extraction (CPE) process using non-ionic surfactant (DC193C) to extract selected paraben compounds from water samples was investigated using reversed phase high performance liquid chromatography (RP-HPLC). The CPE process with the presence of β-cyclodextrin (βCD) functionalized ionic liquid as a modifier (CPE-DC193C-βCD-IL) is a new extraction technique that has been applied on the optimization of parameters, i.e., pH, βCD-IL concentration and phase volume ratio. This CPE-DC193C-βCD-IL method is facilitated at 30 °C, showing great losses of water content in the surfactant-rich phase, resulting in a high pre-concentration factor and high distribution coefficient. The developed method CPE-DC193C-βCD-IL did show enhanced properties compared to the CPE method without the modifier (CPE-DC193C). The developed method of CPE-DC193C-βCD-IL gives an excellent performance on the detection of parabens from water samples with the limit of detection falling in the range of 0.013–0.038 μg mL−1. Finally, the inclusion complex formation, hydrogen bonding, and π–π interaction between the βCD-IL, benzyl paraben (ArP), and DC 193C were proven using 1H NMR and 2D NOESY spectroscopy. PMID:24351832

  8. High-temperature ionic and electronic resistivity of MgO- and Ta2O5- doped aluminum nitride

    Science.gov (United States)

    Yu, Dongsu; Lee, Eunsil; Lee, Sung-Min; Kim, Jong-Young; Park, Myung Ha

    2018-01-01

    In this work, using high-temperature impedance spectroscopy and microstructure analysis, we investigated the ionic and the electronic transport properties of aluminum nitride materials doped with MgO and Ta2O5 at temperatures up to 773 K. The electronic conductivity, due to the electron carrier, was greatly inhibited by addition of MgO, which might be due to the decreased electron carrier concentration via electronic compensation of MgO in the AlN matrix. The ionic conductivity due to grains of MgO-doped AlN increased by several orders of magnitude due to ionic defects generated by MgO substitution, whereas the ionic conductivity of the grain boundary of MgO-doped AlN decreased by one order of magnitude as a result of the formation of Mg'Al defects in the grain boundary, which elevated the Schottky barrier. The microstructural analysis showed that MgO addition promoted formation of an amorphous liquid phase including Mg, which is evidence of the selective precipitation of Mg in the grain boundary. Ta2O5-doped AlN also exhibited a decreased ionic conductivity of the grain boundary, which might have been due to the formation of an ionic pair of (ON ·-V‴Al) caused by the dissolution of Ta in the AlN matrix.

  9. Bio-oil extraction of Jatropha curcas with ionic liquid co-solvent: Fate of biomass protein.

    Science.gov (United States)

    Severa, Godwin; Edwards, Melisa; Cooney, Michael J

    2017-02-01

    The fate of oil-seed biomass protein has been tracked through all steps of a multi-phase extraction process using an ionic liquid based co-solvent system previously demonstrated to extract bio-oil and phorbol esters and to recover fermentable sugars from Jatropha oil seed. These analyses, however, did not address the fate of biomass protein. This work demonstrated that the majority of protein (∼86%) tracked with the biomass with the balance lost to co-solvent (∼12%) and methanol (∼2%) washes. A significant portion of the ionic liquid remained with the treated biomass and required aggressive methanol washes to recover. A system analysis showed a net-positive energy balance and thus the potential of this system to produce both bio-oil and protein-rich toxin-free biomass. While these results further support Jatropha as an oil seed crop, the additional costs of solvent recovery will need to be addressed if commercialization is to be realized. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Phase Behavior of Mixtures of Ionic Liquids and Organic Solvents

    DEFF Research Database (Denmark)

    Abildskov, Jens; Ellegaard, Martin Dela; O’Connell, J.P.

    2010-01-01

    are implemented, leading to an entirely predictive method for densities of mixed compressed ionic liquids. Quantitative agreement with experimental data is obtained over wide ranges of conditions. Previously, the method has been applied to solubilities of sparingly soluble gases in ionic liquids and in organic......A corresponding-states form of the generalized van der Waals equation, previously developed for mixtures of an ionic liquid and a supercritical solute, is here extended to mixtures including an ionic liquid and a solvent (water or organic). Group contributions to characteristic parameters...... solvents. Here we show results for heavier and more-than-sparingly solutes such as carbon dioxide and propane in ionic liquids....

  11. Liquid-based cervical cytology using ThinPrep technology: weighing the pros and cons in a cost-effectiveness analysis.

    NARCIS (Netherlands)

    Bekker-Grob, E.W. de; Kok, I.M. de; Bulten, J.; Rosmalen, J. van; Vedder, J.E.M.; Arbyn, M.; Klinkhamer, P.J.; Siebers, A.G.; Ballegooijen, M. van

    2012-01-01

    PURPOSE: Cervical cancer screening with liquid-based cytology (LBC) has been developed as an alternative to the conventional Papanicolaou (CP) smear. Cost-effectiveness is one of the issues when evaluating LBC. Based on the results of a Dutch randomised controlled trial, we conducted

  12. Accuracy of a Low Priced Liquid-Based Method for Cervical Cytology in 632 Women Referred for Colposcopy After a Positive Pap Smear

    NARCIS (Netherlands)

    van Hemel, B. M.; Buikema, H. J.; Groen, H.; Suurmeijer, A. J. H.

    The aim of this quality controlling study was to determine the accuracy of liquid-based cytology (LBC) with the Turbitec (R) cytocentrifuge technique. Cervical smears of 632 Women, Who were referred to our CIN outpatient department, after at least two smears with ASCUS or higher were evaluated and

  13. APTIMA assay on SurePath liquid-based cervical samples compared to endocervical swab samples facilitated by a real time database

    Directory of Open Access Journals (Sweden)

    Khader Samer

    2010-01-01

    Full Text Available Background: Liquid-based cytology (LBC cervical samples are increasingly being used to test for pathogens, including: HPV, Chlamydia trachomatis (CT and Neisseria gonorrhoeae (GC using nucleic acid amplification tests. Several reports have shown the accuracy of such testing on ThinPrep (TP LBC samples. Fewer studies have evaluated SurePath (SP LBC samples, which utilize a different specimen preservative. This study was undertaken to assess the performance of the Aptima Combo 2 Assay (AC2 for CT and GC on SP versus endocervical swab samples in our laboratory. Materials and Methods: The live pathology database of Montefiore Medical Center was searched for patients with AC2 endocervical swab specimens and SP Paps taken the same day. SP samples from CT- and/or GC-positive endocervical swab patients and randomly selected negative patients were studied. In each case, 1.5 ml of the residual SP vial sample, which was in SP preservative and stored at room temperature, was transferred within seven days of collection to APTIMA specimen transfer tubes without any sample or patient identifiers. Blind testing with the AC2 assay was performed on the Tigris DTS System (Gen-probe, San Diego, CA. Finalized SP results were compared with the previously reported endocervical swab results for the entire group and separately for patients 25 years and younger and patients over 25 years. Results: SP specimens from 300 patients were tested. This included 181 swab CT-positive, 12 swab GC-positive, 7 CT and GC positive and 100 randomly selected swab CT and GC negative patients. Using the endocervical swab results as the patient′s infection status, AC2 assay of the SP samples showed: CT sensitivity 89.3%, CT specificity 100.0%; GC sensitivity and specificity 100.0%. CT sensitivity for patients 25 years or younger was 93.1%, versus 80.7% for patients over 25 years, a statistically significant difference (P = 0.02. Conclusions: Our results show that AC2 assay of 1.5 ml SP

  14. Poly(ionic liquid)/Ionic Liquid Ion-Gels with High "Free" Ionic Liquid Content: Platform Membrane Materials for CO2/Light Gas Separations.

    Science.gov (United States)

    Cowan, Matthew G; Gin, Douglas L; Noble, Richard D

    2016-04-19

    -films (ca. 100-nm-thick active layer). Traditional polymeric membrane materials are limited by a trade-off between permeability and selectivity empirically described by the "Robeson upper bound"-placing the desired membrane properties beyond reach. Therefore, the investigation of advanced and composite materials that can overcome the limitations of traditional polymeric materials is the focus of significant academic and industrial research. In particular, there has been substantial work on ionic-liquid (IL)-based materials due to their gas transport properties. This review provides an overview of our collaborative work on developing poly(ionic liquid)/ionic liquid (PIL/IL) ion-gel membrane technology. We detail developmental work on the preparation of PIL/IL composites and describe how this chemical technology was adapted to allow the roll-to-roll processing and preparation of membranes with defect-free active layers ca. 100 nm thick, CO2 permeances of over 6000 GPU, and CO2/N2 selectivity of ≥20-properties with the potential to reduce the cost of CO2 removal from coal-fired power plant flue gas to ca. $15 per ton of CO2 captured. Additionally, we examine the materials developments that have produced advanced PIL/IL composite membranes. These advancements include cross-linked PIL/IL blends, step-growth PIL/IL networks with facilitated transport groups, and PIL/IL composites with microporous additives for CO2/CH4 separations.

  15. Structure, ionic conductivity and mobile carrier density in fast ionic conducting chalcogenide glasses

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Wenlong [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    This thesis consists of six sections. The first section gives the basic research background on the ionic conduction mechanism in glass, polarization in the glass, and the method of determining the mobile carrier density in glass. The proposed work is also included in this section. The second section is a paper that characterizes the structure of MI + M2S + (0.1 Ga2S3 + 0.9 GeS2) (M = Li, Na, K and Cs) glasses using Raman and IR spectroscopy. Since the ionic radius plays an important role in determining the ionic conductivity in glasses, the glass forming range for the addition of different alkalis into the basic glass forming system 0.1 Ga2S3 + 0.9 GeS2 was studied. The study found that the change of the alkali radius for the same nominal composition causes significant structure change to the glasses. The third section is a paper that investigates the ionic conductivity of MI + M2S + (0.1Ga2S3 + 0.9 GeS2) (M = Li, Na, K and Cs) glasses system. Corresponding to the compositional changes in these fast ionic conducting glasses, the ionic conductivity shows changes due to the induced structural changes. The ionic radius effect on the ionic conductivity in these glasses was investigated. The fourth section is a paper that examines the mobile carrier density based upon the measurements of space charge polarization. For the first time, the charge carrier number density in fast ionic conducting chalcogenide glasses was determined. The experimental impedance data were fitted using equivalent circuits and the obtained parameters were used to determine the mobile carrier density. The influence of mobile carrier density and mobility on the ionic conductivity was separated. The fifth section is a paper that studies the structures of low-alkali-content Na2S + B2S3 (x ≤ 0.2) glasses by neutron and synchrotron x-ray diffraction

  16. Active chemisorption sites in functionalized ionic liquids for carbon capture.

    Science.gov (United States)

    Cui, Guokai; Wang, Jianji; Zhang, Suojiang

    2016-07-25

    Development of novel technologies for the efficient and reversible capture of CO2 is highly desired. In the last decade, CO2 capture using ionic liquids has attracted intensive attention from both academia and industry, and has been recognized as a very promising technology. Recently, a new approach has been developed for highly efficient capture of CO2 by site-containing ionic liquids through chemical interaction. This perspective review focuses on the recent advances in the chemical absorption of CO2 using site-containing ionic liquids, such as amino-based ionic liquids, azolate ionic liquids, phenolate ionic liquids, dual-functionalized ionic liquids, pyridine-containing ionic liquids and so on. Other site-containing liquid absorbents such as amine-based solutions, switchable solvents, and functionalized ionic liquid-amine blends are also investigated. Strategies have been discussed for how to activate the existent reactive sites and develop novel reactive sites by physical and chemical methods to enhance CO2 absorption capacity and reduce absorption enthalpy. The carbon capture mechanisms of these site-containing liquid absorbents are also presented. Particular attention has been paid to the latest progress in CO2 capture in multiple-site interactions by amino-free anion-functionalized ionic liquids. In the last section, future directions and prospects for carbon capture by site-containing ionic liquids are outlined.

  17. Comparison of Unsatisfactory Samples from Conventional Smear versus Liquid-Based Cytology in Uterine Cervical Cancer Screening Test

    Directory of Open Access Journals (Sweden)

    Hoiseon Jeong

    2017-05-01

    Full Text Available Background Cervical cytology for uterine cervical cancer screening has transitioned from conventional smear (CS to liquid-based cytology (LBC, which has many advantages. The aim of this study was to compare the proportion of unsatisfactory specimens from CS versus LBC at multiple institutions including general hospitals and commercial laboratories. Methods Each participating institution provided a minimum of 500 Papanicolaou (Pap test results for analysis. Pap tests were classified according to the participating institution (commercial laboratory or general hospital and the processing method (CS, ThinPrep, SurePath, or CellPrep. The causes of unsatisfactory results were classified as technical problems, scant cellularity, or complete obscuring factors. Results A total of 38,956 Pap test results from eight general hospitals and three commercial laboratories were analyzed. The mean unsatisfactory rate of LBC was significantly lower than that of CS (1.26% and 3.31%, p = .018. In the LBC method, samples from general hospitals had lower unsatisfactory rates than those from commercial laboratories (0.65% vs 2.89%, p = .006. The reasons for unsatisfactory results were heterogeneous in CS. On the other hand, 66.2% of unsatisfactory results in LBC were due to the scant cellularity. Conclusions Unsatisfactory rate of cervical cancer screening test results varies according to the institution and the processing method. LBC has a significantly lower unsatisfactory rate than CS.

  18. Liquid-based cytology versus conventional cytology for evaluation of cervical Pap smears: Experience from the first 1000 split samples

    Directory of Open Access Journals (Sweden)

    Vikrant Bhar Singh

    2015-01-01

    Full Text Available Context and Aim: Screening programs using conventional cytology conventional Pap smear (CPS have successfully reduced cervical cancer, but newer tests like liquid-based cytology (LBC and human papillomavirus testing might enhance screening. The main aim of the present study was to assess the diagnostic accuracy of LBC versus CPS using "split samples." Materials and Methods: This was a prospective study comprising of 1000 consecutive cervical "split samples" over a period of 1 year. Split sample was obtained using cervex-brush. CPS was prepared from the brush and the brush head was suspended in the LBC vial and processed by SurePath™ LBC. Results: There were 4.3% unsatisfactory (U/S cases in CPS and 1.7% in LBC; the main cause is insufficient cells, and excess of blood in CPS. About 25/100 (2.5% split samples had epithelial abnormalities both in CPS and LBC (1.2%-atypical squamous cells of undetermined significance; 0.4%-low grade squamous intraepithelial lesion; 0.2%-high grade squamous intraepithelial lesion; 0.5%-squamous cell carcinoma; 0.1%-atypical glandular cells favouring neoplasia; 0.2%-adenocarcinoma. Inflammatory organisms were almost equally identified in both techniques but were better seen in LBC samples. Conclusions: LBC technique leads to significant reduction of U/S rate. LBC samples offered better clarity, uniform spread of smears, less time for screening and better handling of hemorrhagic and inflammatory samples. LBC had equivalent sensitivity and specificity to CPS.

  19. Olefins hydro-formylation catalysed by rhodium complexes using ionic liquids; Hydroformylation des olefines par les complexes du rhodium dans les liquides ioniques

    Energy Technology Data Exchange (ETDEWEB)

    Favre, F.

    2000-10-26

    Biphasic long chain olefins hydro-formylation catalysed by rhodium complexes using ionic liquids allows a selective reaction and an easy separation of the products from the catalyst. This study reports the synthesis of ionic liquids that were used as the catalyst's solvent. Their physical and chemical properties (melting point, solubility of organic substrates) can be varied with the structure of the organic cation (imidazolium, pyridinium, pyrrolydinium) and with its substituents (nature, length, number). It depends also on the nature of the inorganic anion (hexa-fluoro-phosphate, tetrafluoroborate, tri-fluoro-acetate, triflate, bistriflylamidure...). The use of phosphorus ligands bearing ionic functions proved to be efficient to maintain the onerous rhodium catalyst in the ionic liquid phase. Phosphines, phosphites and phosphinites including anionic (sulfonate, carboxylate) or cationic (imidazolium, pyridinium, guanidinium, phosphonium) groups have been synthesised. Finally, the influences of the ligand and of the ionic liquid on the catalytic system performances are described. Selectivities in aldehydes and reaction rates proved to be highly dependent on the nature of the ligand and of the ionic liquid. The different possibilities of recycling the ionic phase containing the rhodium catalyst have been also studied. (author)

  20. Catalytic Ionic-Liquid Membranes: The Convergence of Ionic-Liquid Catalysis and Ionic-Liquid Membrane Separation Technologies.

    Czech Academy of Sciences Publication Activity Database

    Izák, Pavel; Bobbink, F.D.; Hulla, M.; Klepic, M.; Friess, K.; Hovorka, Š.; Dyson, P.J.

    2018-01-01

    Roč. 83, č. 1 (2018), s. 7-18 ISSN 2192-6506 R&D Projects: GA ČR(CZ) GA17-00089S; GA ČR GA17-05421S Institutional support: RVO:67985858 Keywords : heterogeneous catalysis * ionic liquids * membranes Subject RIV: CI - Industrial Chemistry, Chemical Engineering OBOR OECD: Chemical process engineering Impact factor: 2.797, year: 2016

  1. Catalytic Ionic-Liquid Membranes: The Convergence of Ionic-Liquid Catalysis and Ionic-Liquid Membrane Separation Technologies.

    Czech Academy of Sciences Publication Activity Database

    Izák, Pavel; Bobbink, F.D.; Hulla, M.; Klepic, M.; Friess, K.; Hovorka, Š.; Dyson, P.J.

    2018-01-01

    Roč. 83, č. 1 (2018), s. 7-18 ISSN 2192-6506 R&D Projects: GA ČR(CZ) GA17-00089S; GA ČR GA17-05421S Institutional support: RVO:67985858 Keywords : heterogeneous catalysis * ionic liquid s * membranes Subject RIV: CI - Industrial Chemistry, Chemical Engineering OBOR OECD: Chemical process engineering Impact factor: 2.797, year: 2016

  2. Comparison of soft tissue effects of conventional ionic, low osmolar ionic and nonionic iodine containing contrast material in experimental animals

    International Nuclear Information System (INIS)

    McAlister, W.H.; Kissane, J.M.

    1990-01-01

    Conventional, low osmolar, and non-ionic iodine containing contrast media and saline controls were placed in the paws, muscles, and subcutaneous tissues of Sprague-Dawley rat thighs. The paw injections were observed and photographed, while the thighs were examined histologically. Results showed that although the low osmolar and non-ionic agents did produce inflammatory reactions and focal necrosis in the soft tissues, they were much better tolerated than were the conventional ionic agents. A non-ionic or low osmolar ionic contrast agent should be strongly considered when a possibility for extravasation exists. (orig.)

  3. Connection between Lithium Coordination and Lithium Diffusion in [Pyr12O1][FTFSI] Ionic Liquid Electrolytes.

    Science.gov (United States)

    Giffin, Guinevere A; Moretti, Arianna; Jeong, Sangsik; Pilar, Kartik; Brinkkötter, Marc; Greenbaum, Steven G; Schönhoff, Monika; Passerini, Stefano

    2017-12-27

    The use of highly concentrated ionic liquid-based electrolytes results in improved rate capability and capacity retention at 20 °C compared to Li + -dilute systems in Li-metal and Li-ion cells. This work explores the connection between the bulk electrolyte properties and the molecular organization to provide insight into the concentration dependence of the Li + transport mechanisms. Below 30 mol %, the Li + -containing species are primarily smaller complexes (one Li + cation) and the Li + ion transport is mostly derived from the vehicular transport. Above 30 mol %, where the viscosity is substantially higher and the conductivity lower, the Li + -containing species are a mix of small and large complexes (one and more than one Li + cation, respectively). The overall conduction mechanism likely changes to favor structural diffusion through the exchange of anions in the first Li + solvation shell. The good rate performance is likely directly influenced by the presence of larger Li + complexes, which promote Li + -ion transport (as opposed to Li + -complex transport) and increase the Li + availability at the electrode. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Measurements of activity coefficients at infinite dilution of aromatic and aliphatic hydrocarbons, alcohols, and water in the new ionic liquid [EMIM][SCN] using GLC

    International Nuclear Information System (INIS)

    Domanska, Urszula; Marciniak, Andrzej

    2008-01-01

    A new ionic liquid was chosen for the separation of aromatic hydrocarbons from aliphatic hydrocarbons. The activity coefficients at infinite dilution, γ 13 ∞ for 29 solutes: alkanes, alkenes, alkynes, cycloalkanes, aromatic hydrocarbons, alcohols, and water in the ionic liquid 1-ethyl-3-methyl-imidazolium thiocyanate [EMIM][SCN] were determined by gas-liquid chromatography at the temperatures from 298.15 K to 368.15 K. The values of the partial molar excess enthalpies at infinite dilution ΔH 1 E,∞ were calculated from the experimental γ 13 ∞ values obtained over the temperature range. The selectivities for the hexane/benzene and cyclohexane/benzene separation problems were calculated from the γ 13 ∞ and compared to the other ionic liquids, NMP and sulfolane, taken from the recent literature. This work demonstrates that with chosen ionic liquid it is possible to separate different organic compounds with the highest selectivity ever published

  5. Isotope separation by ionic cyclotron resonance

    International Nuclear Information System (INIS)

    Louvet, P.

    1987-01-01

    The principle of the process of isotopic separation by ionic cyclotron resonance is reviewed succinctly. Afterwards, the main parts of the demonstration device which is in operation at the CEA, are described here: the superconducting magnetic field, the used diagnostics, the principle of the source and the collecting apparatus. The theoretical calculations presented here included a multi-fluid flow model of the plasma source ionic components and the theoretical calculation of the isotopic effect. This effect is given as functions of the electric and magnetic fields in the frame of single particle approximation and of plasma collective theory. Some experimental results for chromium are compared to the computations. The application of the process to ponderal separation of metal isotopes, as Chromium, Nickel, Molybdenum... is discussed in view of production of medical, structural and irradiation isotopes

  6. Computationally Efficient Prediction of Ionic Liquid Properties

    DEFF Research Database (Denmark)

    Chaban, V. V.; Prezhdo, O. V.

    2014-01-01

    Due to fundamental differences, room-temperature ionic liquids (RTIL) are significantly more viscous than conventional molecular liquids and require long simulation times. At the same time, RTILs remain in the liquid state over a much broader temperature range than the ordinary liquids. We exploit...... the ability of RTILs to stay liquid at several hundred degrees Celsius and introduce a straightforward and computationally efficient method for predicting RTIL properties at ambient temperature. RTILs do not alter phase behavior at 600-800 K. Therefore, their properties can be smoothly extrapolated down...... to ambient temperatures. We numerically prove the validity of the proposed concept for density and ionic diffusion of four different RTILs. This simple method enhances the computational efficiency of the existing simulation approaches as applied to RTILs by more than an order of magnitude....

  7. Ion density deviations in semipermeable ionic microcapsules.

    Science.gov (United States)

    Tang, Qiyun; Denton, Alan R

    2015-04-28

    By implementing the nonlinear Poisson-Boltzmann theory in a cell model, we theoretically investigate the influence of polyelectrolye gel permeability on ion densities and pH deviations inside the cavities of ionic microcapsules. Our calculations show that variations in permeability of a charged capsule shell cause a redistribution of ion densities within the capsule, which ultimately affects the pH deviation and Donnan potential induced by the electric field of the shell. We find that semipermeable capsules can induce larger pH deviations inside their cavities that can permeable capsules. Furthermore, with increasing capsule charge, the influence of permeability on pH deviations progressively increases. Our theory, while providing a self-consistent method for modeling the influence of permeability on fundamental properties of ionic microgels, makes predictions of practical significance for the design of microcapsules loaded with fluorescent dyes, which can serve as biosensors for diagnostic purposes.

  8. Nontoxic Ionic Liquid Fuels for Exploration Applications

    Science.gov (United States)

    Coil, Millicent

    2015-01-01

    The toxicity of propellants used in conventional propulsion systems increases not only safety risks to personnel but also costs, due to special handling required during the entire lifetime of the propellants. Orbital Technologies Corporation (ORBITEC) has developed and tested novel nontoxic ionic liquid fuels for propulsion applications. In Phase I of the project, the company demonstrated the feasibility of several ionic liquid formulations that equaled the performance of conventional rocket propellant monomethylhydrazine (MMH) and also provided low volatility and low toxicity. In Phase II, ORBITEC refined the formulations, conducted material property tests, and investigated combustion behavior in droplet and microreactor experiments. The company also explored the effect of injector design on performance and demonstrated the fuels in a small-scale thruster. The ultimate goal is to replace propellants such as MMH with fuels that are simultaneously high-performance and nontoxic. The fuels will have uses in NASA's propulsion applications and also in a range of military and commercial functions.

  9. Phytoremediation of Ionic and Methyl Mercury Pollution

    Energy Technology Data Exchange (ETDEWEB)

    Meagher, Richard B.

    2005-06-01

    Phytoremediation is defined as the use of plants to extract, resist, detoxify, and/or sequester toxic environmental pollutants. The long-term goal of the proposed research is to develop and test highly productive, field-adapted plant species that have been engineered for the phytoremediation of mercury. A variety of different genes, which should enable plants to clean mercury polluted sites are being tested as tools for mercury phytoremediation, first in model laboratory plants and then in potential field species. Several of these genes have already been shown to enhance mercury phytoremediation. Mercury pollution is a serious, world-wide problem affecting the health of human and wildlife populations. Environmentally, the most serious mercury threat is the production of methylmercury (CH3Hg+) by native bacteria at mercury contaminated wetland sites. Methylmercury is inherently more toxic than metallic (Hg(0)) or ionic (Hg(II)) mercury, and because methylmercury is prolifically biomagnified up the food chain, it poses the most immediate danger to animal populations. We have successfully engineered two model plants, Arabidopsis and tobacco, to use the bacterial merB gene to convert methylmercury to less toxic ionic mercury and to use the bacterial merA gene to further detoxify ionic mercury to the least toxic form of mercury, metallic mercury. Plants expressing both MerA and MerB proteins detoxify methylmercury in two steps to the metallic form. These plants germinate, grow, and set seed at normal growth rates on levels of methylmercury or ionic mercury that are lethal to normal plants. Our newest efforts involve engineering plants with several additional bacterial and plant genes that allow for higher levels of mercury resistance and mercury hyperaccumulation. The potential for these plants to hyperaccumulate mercury was further advanced by developing constitutive, aboveground, and root-specific gene expression systems. Our current strategy is to engineer plants to

  10. Phytoremediation of Ionic and Methyl Mercury Pollution

    Energy Technology Data Exchange (ETDEWEB)

    Meagher, Richard B.

    2004-12-01

    Phytoremediation is defined as the use of plants to extract, resist, detoxify, and/or sequester toxic environmental pollutants. The long-term goal of the proposed research is to develop and test highly productive, field-adapted plant species that have been engineered for the phytoremediation of mercury. A variety of different genes, which should enable plants to clean mercury polluted sites are being tested as tools for mercury phytoremediation, first in model laboratory plants and then in potential field species. Several of these genes have already been shown to enhance mercury phytoremediation. Mercury pollution is a serious, world-wide problem affecting the health of human and wildlife populations. Environmentally, the most serious mercury threat is the production of methylmercury (CH3Hg+) by native bacteria at mercury contaminated wetland sites. Methylmercury is inherently more toxic than metallic (Hg(0)) or ionic (Hg(II)) mercury, and because methylmercury is prolifically biomagnified up the food chain, it poses the most immediate danger to animal populations. We have successfully engineered two model plants, Arabidopsis and tobacco, to use the bacterial merB gene to convert methylmercury to less toxic ionic mercury and to use the bacterial merA gene to further detoxify ionic mercury to the least toxic form of mercury, metallic mercury. Plants expressing both MerA and MerB proteins detoxify methylmercury in two steps to the metallic form. These plants germinate, grow, and set seed at normal growth rates on levels of methylmercury or ionic mercury that are lethal to normal plants. Our newest efforts involve engineering plants with several additional bacterial and plant genes that allow for higher levels of mercury resistance and mercury hyperaccumulation. The potential for these plants to hyperaccumulate mercury was further advanced by developing constitutive, aboveground, and root-specific gene expression systems.

  11. Polarization versus Temperature in Pyridinium Ionic Liquids

    DEFF Research Database (Denmark)

    Chaban, V. V.; Prezhdo, O. V.

    2014-01-01

    Electronic polarization and charge transfer effects play a crucial role in thermodynamic, structural, and transport properties of room-temperature ionic liquids (RTILs). These nonadditive interactions constitute a useful tool for tuning physical chemical behavior of RTILs. Polarization and charge...... electronic density description for a cationanion pair. Atom-centered density matrix propagation molecular dynamics, supplemented by a weak coupling to an external bath, is used to simulate the temperature impact on system properties. We show that, quite surprisingly, nonadditivity in the cationanion...

  12. Supported ionic liquids fundamentals and applications

    CERN Document Server

    Fehrmann, Rasmus; Haumann, Marco

    2013-01-01

    This unique book gives a timely overview about the fundamentals and applications of supported ionic liquids in modern organic synthesis. It introduces the concept and synthesis of SILP materials and presents important applications in the field of catalysis (e.g. hydroformylation, hydrogenation, coupling reactions, fine chemical synthesis) as well as energy technology and gas separation. Written by pioneers in the field, this book is an invaluable reference book for organic chemists in academia or industry.

  13. Solubility and first hydrolysis constants of europium at different ionic strength and 303 K

    International Nuclear Information System (INIS)

    Ramirez-Garcia, J.J.; Jimenez-Reyes, M.; Lopez-Gonzalez, H.; Autonoma Metropolitana-Iztapalapa Univ., Mexico City; Solache-Rios, M.; Fernandez-Ramirez, E.; Centro Interamericano de Recursos del Agua, Toluca; Rojas-Hernandez, A.

    2003-01-01

    The solubility of europium at 0.02M, 0.1M and 0.7M NaClO 4 ionic strength solutions was determined by a radiometric method and pEu s -pC H diagrams were obtained. Hydrolysis constants were also determined at the same ionic strengths by pH titration and the values found were log *β 1 -7.68±0.11, -8.07±0.10 and -8.20±0.11. The log K sp values were -23.5±0.2, -22.7±0.2 and -21.9±0.2 for 0.02M, 0.1M and 0.7M NaClO 4 ionic strengths, respectively, at 303 K under CO 2 -free conditions and the extrapolated value at zero ionic strength was log K sp 0 = -24.15. The working pC H ranges for the calculation of the hydrolysis constants were selected from the pEu s -pC H diagrams in the region where precipitation of europium oxide or hydroxide was less than 20%. Europium removal from aqueous solutions with zeolites was explored. (author)

  14. Ionomers of intrinsic microporosity: in silico development of ionic-functionalized gas-separation membranes.

    Science.gov (United States)

    Hart, Kyle E; Colina, Coray M

    2014-10-14

    This work presents the predictive molecular simulations of a functionalized polymer of intrinsic microporosity (PIM) with an ionic backbone (carboxylate) and extra-framework counterions (Na(+)) for CO2 gas storage and separation applications. The CO2-philic carboxylate-functionalized polymers are predicted to contain similar degrees of free volume to PIM-1, with Brunauer-Emmett-Teller (BET) surface areas from 510 to 890 m(2)/g, depending on concentration of ionic groups from 100% to 17%. As a result of ionic groups enhancing the CO2 enthalpy of adsorption (to 42-50 kJ/mol), the uptake of the proposed polymers at 293 K exceeded 1.7 mmol/g at 10 kPa and 3.3 mmol/g at 100 kPa for the polymers containing 100% and 50% ionic functional groups, respectively. In addition, CO2/CH4 and CO2/N2 mixed-gas separation performance was evaluated under several industrially relevant conditions, where the IonomIMs are shown to increase both the working capacity and selection performance in certain pressure swing applications (e.g., natural gas separations). These simulations reveal that intrinsically microporous ionomers show great potential as the future of energy-efficient gas-separation polymeric materials.

  15. Ionic Block Copolymers for Anion Exchange Membranes

    Science.gov (United States)

    Tsai, Tsung-Han; Herbst, Dan; Giffin, Guinevere A.; di Noto, Vito; Witten, Tom; Coughlin, E. Bryan

    2013-03-01

    Anion exchange membrane (AEM) fuel cells have regained interest because it allows the use of non-noble metal catalysts. Until now, most of the studies on AEM were based on random polyelectrolytes. In this work, Poly(vinylbenzyltrimethylammonium bromide)-b- (methylbutylene) ([PVBTMA][Br]-b-PMB) was studied by SAXS, TEM and dielectric spectroscopy to understand the fundamental structure-conductivity relationship of ion transport mechanisms within well-ordered block copolymers. The ionic conductivity and the formation of order structure were dependent on the casting solvent. Higher ion exchange capacity (IEC) of the membranes showed higher conductivity at as IEC values below 1.8mmol/g, as above this, the ionic conductivity decreases due to more water uptake leading to dilution of charge density. The humidity dependence of morphology exhibited the shifting of d-spacing to higher value and the alteration in higher characteristic peak of SAXS plot as the humidity increase from the dry to wet state. This phenomenon can be further explained by a newly developed polymer brush theory. Three ionic conduction pathways with different conduction mechanism within the membranes can be confirmed by broadband electric spectroscopy. US Army MURI (W911NF1010520)

  16. Canopy Dynamics in Nanoscale Ionic Materials

    KAUST Repository

    Jespersen, Michael L.

    2010-07-27

    Nanoscale ionic materials (NIMS) are organic - inorganic hybrids in which a core nanostructure is functionalized with a covalently attached corona and an ionically tethered organic canopy. NIMS are engineered to be liquids under ambient conditions in the absence of solvent and are of interest for a variety of applications. We have used nuclear magnetic resonance (NMR) relaxation and pulse-field gradient (PFG) diffusion experiments to measure the canopy dynamics of NIMS prepared from 18-nm silica cores modified by an alkylsilane monolayer possessing terminal sulfonic acid functionality, paired with an amine-terminated ethylene oxide/propylene oxide block copolymer canopy. Carbon NMR studies show that the block copolymer canopy is mobile both in the bulk and in the NIMS and that the fast (ns) dynamics are insensitive to the presence of the silica nanoparticles. Canopy diffusion in the NIMS is slowed relative to the neat canopy, but not to the degree predicted from the diffusion of hard-sphere particles. Canopy diffusion is not restricted to the surface of the nanoparticles and shows unexpected behavior upon addition of excess canopy. Taken together, these data indicate that the liquid-like behavior in NIMS is due to rapid exchange of the block copolymer canopy between the ionically modified nanoparticles. © 2010 American Chemical Society.

  17. Impact of Ionic Liquids on Silver Thermoplastic Composite Membrane Polyurethane for Propane/Propylene Separation

    OpenAIRE

    Wang, Yu; Yong Goh, Tee; Goodrich, Peter; Atilhan, Mert; Khraisheh, Majeda; Rooney, David; Thompson, Jillian; Jacquemin, Johan

    2017-01-01

    This work describes newly synthesized composite polymeric membranes and their utilization in propane/propylene separation in a gas mixture. The nonporous composite polymers were successfully synthesized by using thermoplastic polyurethane (TPU) and several silver salts/silver salts with ionic liquids (ILs). Our studies showed that silver bis(trifluoromethanesulfonyl)imide (Ag[Tf2N]) containing membranes outperformed other silver salt containing membranes in terms of selectivity. In addition, ...

  18. Liquid-based and conventional cytology for bronchial washings/bronchoalveolar lavages in the diagnosis of malignancy - An institutional experience.

    Science.gov (United States)

    Thakur, Abha; Bakshi, Pooja; Kaur, Gagandeep; Verma, Kusum

    2017-01-01

    Liquid-based cytology (LBC) has been developed as an alternative for conventional cytology (CC) in cervical smears. It is now increasingly being used all over the world for cervical cancer screening. However, its role and diagnostic accuracy in bronchial wash (BW)/bronchoalveolar lavage (BAL) specimens remains undetermined. To assess and compare the diagnostic performance and accuracy of LBC with CC for detecting malignancy in bronchial specimens. This was a retrospective analytical hospital-based study. Bronchial specimens (BW/BAL) received over a period of 4.5 years were reviewed. The samples were processed by CC from June 2010 to September 2012 (2.25 years) and by LBC from October 2012 to December 2014 (2.25 years). Data were retrieved from the records of cytology laboratory and compared among both the groups. Detection rate for histologically or cytologically verified samples was calculated. A total of 559 cases verified by histological and cytological follow-up were evaluated. These included 247 CC cases and 312 LBC cases. The positive diagnostic rate for malignancy in CC was 28.6% whereas that for LBC was 32.9%. The negative diagnostic rates were 66.5% and 66.3% for CC and LBC, respectively. However, unsatisfactory rates had shown a good reduction from 4.4% in CC to 0.6% after LBC introduction. The smears showed more homogeneous distribution of cells with elimination of obscuring factors such as blood, inflammation, and mucus. The diagnostic accuracy of LBC was slightly better than CC. The unsatisfactory rates showed reduction in LBC preparation. Thus, LBC is a viable alternative to CC and has the advantages of standardization of preparation with decrease in unsatisfactory rates.

  19. Liquid-based and conventional cytology for bronchial washings/bronchoalveolar lavages in the diagnosis of malignancy - An institutional experience

    Directory of Open Access Journals (Sweden)

    Abha Thakur

    2017-01-01

    Full Text Available Background: Liquid-based cytology (LBC has been developed as an alternative for conventional cytology (CC in cervical smears. It is now increasingly being used all over the world for cervical cancer screening. However, its role and diagnostic accuracy in bronchial wash (BW/bronchoalveolar lavage (BAL specimens remains undetermined. Aims: To assess and compare the diagnostic performance and accuracy of LBC with CC for detecting malignancy in bronchial specimens. Settings and Design: This was a retrospective analytical hospital-based study. Materials and Methods: Bronchial specimens (BW/BAL received over a period of 4.5 years were reviewed. The samples were processed by CC from June 2010 to September 2012 (2.25 years and by LBC from October 2012 to December 2014 (2.25 years. Data were retrieved from the records of cytology laboratory and compared among both the groups. Detection rate for histologically or cytologically verified samples was calculated. Results: A total of 559 cases verified by histological and cytological follow-up were evaluated. These included 247 CC cases and 312 LBC cases. The positive diagnostic rate for malignancy in CC was 28.6% whereas that for LBC was 32.9%. The negative diagnostic rates were 66.5% and 66.3% for CC and LBC, respectively. However, unsatisfactory rates had shown a good reduction from 4.4% in CC to 0.6% after LBC introduction. The smears showed more homogeneous distribution of cells with elimination of obscuring factors such as blood, inflammation, and mucus. Conclusions: The diagnostic accuracy of LBC was slightly better than CC. The unsatisfactory rates showed reduction in LBC preparation. Thus, LBC is a viable alternative to CC and has the advantages of standardization of preparation with decrease in unsatisfactory rates.

  20. The role of liquid-based cytology and ancillary techniques in pleural and pericardic effusions: an institutional experience.

    Science.gov (United States)

    Rossi, Esther Diana; Bizzarro, Tommaso; Schmitt, Fernando; Longatto-Filho, Adhemar

    2015-04-01

    Fine-needle aspiration cytology (FNAC) of serous membrane effusions may fulfil a challenging role in the diagnostic analysis of both primary and metastatic disease. From this perspective, liquid-based cytology (LBC) represents a feasible and reliable method for empowering the performance of ancillary techniques (ie, immunocytochemistry and molecular testing) with high diagnostic accuracy. In total, 3171 LBC pleural and pericardic effusions were appraised between January 2000 and December 2013. They were classified as negative for malignancy (NM), suspicious for malignancy (SM), or positive for malignancy (PM). The cytologic diagnoses included 2721 NM effusions (2505 pleural and 216 pericardic), 104 SM effusions (93 pleural and 11 pericardic), and 346 PM effusions (321 pleural and 25 pericardic). The malignant pleural series included 76 unknown malignancies (36 SM and 40 PM effusions), 174 metastatic lesions (85 SM and 89 PM effusions), 14 lymphomas (3 SM and 11 PM effusions), 16 mesotheliomas (5 SM and 11 SM effusions), and 3 myelomas (all SM effusions). The malignant pericardic category included 20 unknown malignancies (5 SM and 15 PM effusions), 15 metastatic lesions (1 SM and 14 PM effusions), and 1 lymphoma (1 PM effusion). There were 411 conclusive immunocytochemical analyses and 47 molecular analyses, and the authors documented 88% sensitivity, 100% specificity, 98% diagnostic accuracy, 98% negative predictive value, and 100% positive predictive value for FNAC. FNAC represents a primary diagnostic tool for effusions and a reliable approach with which to determine the correct follow-up. Furthermore, LBC is useful for ancillary techniques, such as immunocytochemistry and molecular analysis, with feasible diagnostic and predictive utility. © 2015 American Cancer Society.

  1. The Role of Liquid Based Cytology and Ancillary Techniques in the Peritoneal Washing Analysis: Our Institutional Experience

    Science.gov (United States)

    Rossi, Esther; Bizzarro, Tommaso; Martini, Maurizio; Longatto-Filho, Adhemar; Schmitt, Fernando; Fagotti, Anna; Scambia, Giovanni; Zannoni, Gian Franco

    2017-01-01

    Background The cytological analysis of peritoneal effusions serves as a diagnostic and prognostic aid for either primary or metastatic diseases. Among the different cytological preparations, liquid based cytology (LBC) represents a feasible and reliable method ensuring also the application of ancillary techniques (i.e immunocytochemistry-ICC and molecular testing). Methods We recorded 10348 LBC peritoneal effusions between January 2000 and December 2014. They were classified as non-diagnostic (ND), negative for malignancy-NM, atypical-suspicious for malignancy-SM and positive for malignancy-PM. Results The cytological diagnosis included 218 ND, 9.035 NM, 213 SM and 882 PM. A total of 8048 (7228 NM, 115SM, 705 PM) cases with histological follow-up were included. Our NM included 21 malignant and 7207 benign histological diagnoses. Our 820 SMs+PMs were diagnosed as 107 unknown malignancies (30SM and 77PM), 691 metastatic lesions (81SM and 610PM), 9 lymphomas (2SM and 7PM), 9 mesotheliomas (1SM and 8SM), 4 sarcomas (1SM and 3PM). Primary gynecological cancers contributed with 64% of the cases. We documented 97.4% sensitivity, 99.9% specificity, 98% diagnostic accuracy, 99.7% negative predictive value (NPV) and 99.7% positive predictive value (PPV). Furthermore, the morphological diagnoses were supported by either 173 conclusive ICC results or 50 molecular analyses. Specifically the molecular testing was performed for the EGFR and KRAS mutational analysis based on the previous or contemporary diagnoses of Non Small Cell Lung Cancer (NSCLC) and colon carcinomas. We identified 10 EGFR in NSCCL and 7 KRAS mutations on LBC stored material. Conclusions Peritoneal cytology is an adjunctive tool in the surgical management of tumors mostly gynecological cancers. LBC maximizes the application of ancillary techniques such as ICC and molecular analysis with feasible diagnostic and predictive yields also in controversial cases. PMID:28099523

  2. Ionic Liquid Confined in Mesoporous Polymer Membrane with Improved Stability for CO2/N2 Separation

    Directory of Open Access Journals (Sweden)

    Ming Tan

    2017-09-01

    Full Text Available Supported ionic liquid membranes (SILMs have a promising prospect of application in flue gas separation, owing to its high permeability and selectivity of CO2. However, existing SILMs have the disadvantage of poor stability due to the loss of ionic liquid from the large pores of the macroporous support. In this study, a novel SILM with high stability was developed by confining ionic liquid in a mesoporous polymer membrane. First, a mesoporous polymer membrane derived from a soluble, low-molecular-weight phenolic resin precursor was deposited on a porous Al2O3 support, and then 1-ethyl-3-methylimidazolium tetrafluoroborate ([emim][BF4] was immobilized inside mesopores of phenolic resin, forming the SILM under vacuum. Effects of trans-membrane pressure difference on the SILM separation performance were investigated by measuring the permeances of CO2 and N2. The SILM exhibits a high ideal CO2/N2 selectivity of 40, and an actual selectivity of approximately 25 in a mixed gas (50% CO2 and 50% N2 at a trans-membrane pressure difference of 2.5 bar. Compared to [emim][BF4] supported by polyethersulfone membrane with a pore size of around 0.45 μm, the [emim][BF4] confined in a mesoporous polymer membrane exhibits an improved stability, and its separation performance remained stable for 40 h under a trans-membrane pressure difference of 1.5 bar in a mixed gas before the measurement was intentionally stopped.

  3. Clinical trial of non-ionic contrast media -comparison of efficacy and safety between non-ionic iopromide (Ultravist) and ionic contrast media-

    International Nuclear Information System (INIS)

    Lee, Ghi Jai; Kim, Seung Hyup; Park, Jae Hyung; Chang, Kee Hyun; Han, Man Chung; Kim, Chu Wan

    1988-01-01

    Non-ionic contrast media, iopromide (Ultravist) was compared with ioxitalamate (Telebrix) and/or ioxaglate (Hexabrix) for efficacy and safety in 203 patients undergoing cardiac angiography, neurovascular angiography, peripheral and visceral angiography and intravenous pyelography. In all patients, adverse symptoms and signs including heat sense, pain, nausea, vomiting, etc. were checked during and after the injection. In addition, EKG and LV pressure were monitored during the cardiac angiography. And also CBC, UA, BUN and creatinine were checked before and 24 hours after the cardiac angiography. Serious adverse effect did not occur in any case. Minor effects, such as nausea and abdominal pain, were less frequently caused by non-ionic contrast media than by ionic contrast media, especially in cardiac angiography and intravenous pyelography. There was no significant difference between ionic and non-ionic contrast media in regard to electrophysiologic parameters such as EKG and LV pressure. In case of intravenous pyelography, nonionic contrast media seemed to be superior to ionic contrast media in image quality. It is suggested that, in spite of higher cost, non-ionic contrast media be needed for the safety and image quality, particularly in those patients at high risk of adverse effects by ionic contrast media

  4. Phytoremediation of Ionic and Methyl Mercury Pollution

    Energy Technology Data Exchange (ETDEWEB)

    Meagher, Richard B.

    2005-06-01

    Phytoremediation is defined as the use of plants to extract, resist, detoxify, and/or sequester toxic environmental pollutants. The long-term goal of the proposed research is to develop and test highly productive, field-adapted plant species that have been engineered for the phytoremediation of mercury. A variety of different genes, which should enable plants to clean mercury polluted sites are being tested as tools for mercury phytoremediation, first in model laboratory plants and then in potential field species. Several of these genes have already been shown to enhance mercury phytoremediation. Mercury pollution is a serious, world-wide problem affecting the health of human and wildlife populations. Environmentally, the most serious mercury threat is the production of methylmercury (CH3Hg+) by native bacteria at mercury contaminated wetland sites. Methylmercury is inherently more toxic than metallic (Hg(0)) or ionic (Hg(II)) mercury, and because methylmercury is prolifically biomagnified up the food chain, it poses the most immediate danger to animal populations. We have successfully engineered two model plants, Arabidopsis and tobacco, to use the bacterial merB gene to convert methylmercury to less toxic ionic mercury and to use the bacterial merA gene to further detoxify ionic mercury to the least toxic form of mercury, metallic mercury. Plants expressing both MerA and MerB proteins detoxify methylmercury in two steps to the metallic form. These plants germinate, grow, and set seed at normal growth rates on levels of methylmercury or ionic mercury that are lethal to normal plants. Our newest efforts involve engineering plants with several additional bacterial and plant genes that allow for higher levels of mercury resistance and mercury hyperaccumulation. The potential for these plants to hyperaccumulate mercury was further advanced by developing constitutive, aboveground, and root-specific gene expression systems. Our current strategy is to engineer plants to

  5. Synthesis of glucaminium-based ionic liquids and their application in the removal of boron from water.

    Science.gov (United States)

    Joshi, Manishkumar D; Chalumot, Guillaume; Kim, Yong-wah; Anderson, Jared L

    2012-02-01

    A novel class of ionic liquids (ILs), exhibiting high selectivity towards boron species as well as the ability to phase separate from water, were synthesized from N-methyl-D-glucamine. The complexation of boric acid/borate with the ILs was confirmed using (11)B NMR. This journal is © The Royal Society of Chemistry 2012

  6. EFFECTS OF PH, SOLID/SOLUTION RATIO, IONIC STRENGTH, AND ORGANIC ACIDS ON PB AND CD SOPRTION ON KAOLINITE

    Science.gov (United States)

    Potentiometric and ion-selective electrode titrations together with batch sorption/desorption experiments, were performed to explain the aqueous and surface complexation reactions between kaolinite, Pb, Cd and three organic acids. Variables included pH, ionic strength, metal conc...

  7. Annual Report - Compatibility of ZDDP and ionic liquid anti-wear additives with hard coatings for engine lubrications

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Jun [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Zhou, Yan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Leonard, Donovan N [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Meyer, III, Harry M [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Luo, Huimin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-03-01

    The objectives for this considerations described here are to; investigate the compatibility of engine lubricant antiwear (AW) additives, specifically conventional zinc dialkyldithiophosphate (ZDDP) and newly developed ionic liquids (ILs), with selected commercial hard coatings, and provide fundamental understanding to guide future development of engine lubricants.

  8. Ionic liquids for addressing unmet needs in healthcare

    Science.gov (United States)

    Agatemor, Christian; Ibsen, Kelly N.; Tanner, Eden E. L.

    2018-01-01

    Abstract Advances in the field of ionic liquids have opened new applications beyond their traditional use as solvents into other fields especially healthcare. The broad chemical space, rich with structurally diverse ions, and coupled with the flexibility to form complementary ion pairs enables task‐specific optimization at the molecular level to design ionic liquids for envisioned functions. Consequently, ionic liquids now are tailored as innovative solutions to address many problems in medicine. To date, ionic liquids have been designed to promote dissolution of poorly soluble drugs and disrupt physiological barriers to transport drugs to targeted sites. Also, their antimicrobial activity has been demonstrated and could be exploited to prevent and treat infectious diseases. Metal‐containing ionic liquids have also been designed and offer unique features due to incorporation of metals. Here, we review application‐driven investigations of ionic liquids in medicine with respect to current status and future potential. PMID:29376130

  9. EDITORIAL: Nanotechnological selection Nanotechnological selection

    Science.gov (United States)

    Demming, Anna

    2013-01-01

    At the nanoscale measures can move from a mass-scale analogue calibration to counters of discrete units. The shift redefines the possible levels of control that can be achieved in a system if adequate selectivity can be imposed. As an example as ionic substances pass through nanoscale pores, the quantity of ions is low enough that the pore can contain either negative or positive ions. Yet precise control over this selectivity still raises difficulties. In this issue researchers address the challenge of how to regulate the ionic selectivity of negative and positive charges with the use of an external charge. The approach may be useful for controlling the behaviour, properties and chemical composition of liquids and has possible technical applications for nanofluidic field effect transistors [1]. Selectivity is a critical advantage in the administration of drugs. Nanoparticles functionalized with targeting moieties can allow delivery of anti-cancer drugs to tumour cells, whilst avoiding healthy cells and hence reducing some of the debilitating side effects of cancer treatments [2]. Researchers in Belarus and the US developed a new theranostic approach—combining therapy and diagnosis—to support the evident benefits of cellular selectivity that can be achieved when nanoparticles are applied in medicine [3]. Their process uses nanobubbles of photothermal vapour, referred to as plasmonic nanobubbles, generated by plasmonic excitations in gold nanoparticles conjugated to diagnosis-specific antibodies. The intracellular plasmonic nanobubbles are controlled by laser fluence so that the response can be tuned in individual living cells. Lower fluence allows non-invasive high-sensitive imaging for diagnosis and higher fluence can disrupt the cellular membrane for treatments. The selective response of carbon nanotubes to different gases has leant them to be used within various different types of sensors, as summarized in a review by researchers at the University of

  10. The Colloidal Stability of Magnetic Nanoparticles in Ionic Liquids

    Science.gov (United States)

    2015-08-03

    Ionic Liquids 5a. CONTRACT NUMBER FA2386-14-1-4062 5b. GRANT NUMBER Grant 14IOA088 AOARD-144062 5c. PROGRAM ELEMENT NUMBER 61102F 6...NOTES 14. ABSTRACT During the reporting period the development of the ionic liquid ferrofluid (ILFF) based on EMIM-NTf2 was continued. The...ferrofluids based on other high-boiling solvents. 15. SUBJECT TERMS Electric Propulsion, Ionic liquids 16. SECURITY CLASSIFICATION

  11. Fluorine-functionalized ionic liquids with high oxygen solubility

    OpenAIRE

    Vanhoutte, Gijs; Hojniak, Sandra; Bardé, Fanny; Binnemans, Koen; Fransaer, Jan

    2018-01-01

    Eight fluorine-functionalized ionic liquids were synthesized and the oxygen solubility was compared to commercial ionic liquids without the extra fluorinated chain. The concentration of dissolved oxygen increased with the fluorine content of the alkyl chain, which can be attached either to the cation or the anion. This approach maintains the freedom to design an ionic liquid for a specific application, while at the same time the oxygen solubility is increased.

  12. Ionic Liquids in Electro-active Devices (ILED)

    Science.gov (United States)

    2013-12-12

    of Physical Chemistry B, (03 2010): . doi: B. aitken, M. Lee, M. Hunley, H. Gibson, K. Wagener . Synthesis of Precision Ionic Polyolefins Derived...2008): . doi: B. Aitken, M. Lee, M. Hunley, H. Gibson, K. Wagener . Synthesis of precision ionic polyolefins derived from ionic liquids...Harry W. Gibson, Karen I. Winey, Brian S. Aitken, Kenneth B. Wagener . Precision Ionomers: Synthesis and Thermal/Mechanical Characterization

  13. 2012 Gordon Research Conference On Molecular And Ionic Clusters

    International Nuclear Information System (INIS)

    McCoy, Anne

    2012-01-01

    The Gordon Research Conference on 'Molecular and Ionic Clusters' focuses on clusters, which are the initial molecular species found in gases when condensation begins to occur. Condensation can take place solely from molecules interacting with each other, mostly at low temperatures, or when molecules condense around charged particles (electrons, protons, metal cations, molecular ions), producing ion molecule clusters. These clusters provide models for solvation, allow a pristine look at geometric as well as electronic structures of molecular complexes or matter in general, their interaction with radiation, their reactivity, their thermodynamic properties and, in particular, the related dynamics. This conference focuses on new ways to make clusters composed of different kinds of molecules, new experimental techniques to investigate the properties of the clusters and new theoretical methods with which to calculate the structures, dynamical motions and energetics of the clusters. Some of the main experimental methods employed include molecular beams, mass spectrometry, laser spectroscopy (from infrared to XUV; in the frequency as well as the time domain) and photoelectron spectroscopy. Techniques include laser absorption spectroscopy, laser induced fluorescence, resonance enhanced photoionization, mass-selected photodissociation, photofragment imaging, ZEKE photoelectron spectroscopy, etc. From the theoretical side, this conference highlights work on potential surfaces and measurable properties of the clusters. The close ties between experiment, theory and computation have been a hallmark of the Gordon Research Conference on Molecular and Ionic Clusters. In the 2012 meeting, we plan to have sessions that will focus on topics including: (1) The use of cluster studies to probe fundamental phenomena; (2) Finite size effects on structure and thermodynamics; (3) Intermolecular forces and cooperative effects; (4) Molecular clusters as models for solvation; and (5) Studies of

  14. The Structure and Characteristics of Tribological Systems with Diamond Like Carbon Coatings under Ionic Liquid Lubrication Conditions

    Directory of Open Access Journals (Sweden)

    Madej M.

    2016-06-01

    Full Text Available The results from the tests on tribological a-C:H diamond coatings deposited by PACVD (plasma assisted chemical vapour deposition on 100Cr6 steel components are presented in this work. Mechanical properties - nanohardness and Young’s modulus - were assessed by instrumented indentation. Tribological tests were conducted with T-01M tester in a ball-on-disc test under dry and boundary friction conditions. Selected ionic liquids - synthetic new generation lubricants - were used for lubrication. The results from the experiments indicate that diamond-like coatings improved tribological characteristics of the friction pairs tested, with the ionic liquids intensifying this effect.

  15. Highly effective ionic liquids for biodiesel production from waste vegetable oils

    Directory of Open Access Journals (Sweden)

    Fathy A. Yassin

    2015-03-01

    Full Text Available As conventional energy sources deplete, the need for developing alternative energy resources which are environment friendly becomes more imperative. Vegetable oils are attracting increased interest in this purpose. The methanolysis of vegetable oil to produce a fatty acid methyl ester (FAME, i.e., biodiesel fuel was catalyzed by commercial ionic liquid and its chloride modification. The imidazolium chloride ionic liquid was frequently chosen for the synthesis of biodiesel. The dual-functionalized’ ionic liquid is prepared by a direct combination reaction between imidazolium cation and various metal chlorides such as CoCl2, CuCl2, NiCl2, FeCl3 and AlCl3. Imidazolium tetrachloroferrate was proved to be a selective catalyst for the methanolysis reaction at a yield of 97% when used at 1:10, catalyst: oil ratio for 8 h at 55 °C. Operational simplicity, reusability of the used catalyst for 8 times at least, high yields and no saponification are the key features of this methodology. The dynamic viscosity and density of the upgraded vegetable oil decreased from 32.1 cP and 0.9227 g/cm3 to 10.2 cP and 0.9044 g/cm3 respectively, compared to those of the base vegetable oil. The objective of this study was the synthesis and characterization of biodiesel using commercial ionic liquid and its chloride modification. The ionic liquid catalysts were characterized using FTIR, Raman spectroscopy, DSC, TG and UV.

  16. Theoretical and Experimental Study of the Friction Behavior of Halogen-Free Ionic Liquids in Elastohydrodynamic Regime

    Directory of Open Access Journals (Sweden)

    Karthik Janardhanan

    2016-05-01

    Full Text Available Ionic Liquids have emerged as effective lubricants and additives to lubricants, in the last decade. Halogen-free ionic liquids have recently been considered as more environmentally stable than their halogenated counterparts, which tend to form highly toxic and corrosive acids when exposed to moisture. Most of the studies using ionic liquids as lubricants or additives of lubricants have been done experimentally. Due to the complex nature of the lubrication mechanism of these ordered fluids, the development of a theoretical model that predicts the ionic liquid lubrication ability is currently one of the biggest challenges in tribology. In this study, a suitable and existing friction model to describe lubricating ability of ionic liquids in the elastohydrodynamic lubrication regime is identified and compared to experimental results. Two phosphonium-based, halogen-free ionic liquids are studied as additives to a Polyalphaolefin base oil in steel–steel contacts using a ball-on-flat reciprocating tribometer. Experimental conditions (speed, load and roughness are selected to ensure that operations are carried out in the elastohydrodynamic regime. Wear volume was also calculated for tests at high speed. A good agreement was found between the model and the experimental results when [THTDP][Phos] was used as an additive to the base oil, but some divergence was noticed when [THTDP][DCN] was added, particularly at the highest speed studied. A significant decrease in the steel disks wear volume is observed when 2.5 wt. % of the two ionic liquids were added to the base lubricant.

  17. [Detection of human papilloma virus (HPV) in liquid-based cervical samples. Correlation with protein p16INK4a expression].

    Science.gov (United States)

    Toro de Méndez, Morelva; Ferrández Izquierdo, Antonio

    2011-03-01

    The liquid-based cervical cytology improves the quality of the sample and the residual sample could be used efficiently to carry out complementary tests, such as the detection of HPV DNA and the immunocytochemical biomarkers study. The purpose of this study was to correlate the presence of HPV and immunoexpression of p16INK4a in liquid-based cervical samples to examine the utility of these new tools in the detection of cervical cancer. The included patients (n = 67) presented an abnormal cytology or previous cervical pathology. The HPV detection and genotyping were carried out with PCR-SPF10/LiPA (INNOLiPA Extra Amp) and for p16INK4a immunodetection was used antibody clone E6H4. The conventional cytology provided the same cytologic interpretations that those of liquid-based cytology. The overall HPV prevalence was 43.3% (29/67). HPV16 was the most frequent viral type (31.03%) and 48.3% of the cases were infected with multiple HPV types. p16INK4a immunoexpression was observed in 35.8% of liquid-based cytological samples and this was significantly (p < 0.020) associated to the HPV presence. These results support the evidence that the implementation of new technologies in the daily routine of the laboratory, contribute significantly in the early detection of cervical cancer and provide important data to help in the patient's efficient management. The combined use of HPV detection and p16INK4a expression could be used for evaluation of patients with more risk to develop significant cervical lesions.

  18. Predictions of Physicochemical Properties of Ionic Liquids with DFT

    Directory of Open Access Journals (Sweden)

    Karl Karu

    2016-07-01

    Full Text Available Nowadays, density functional theory (DFT-based high-throughput computational approach is becoming more efficient and, thus, attractive for finding advanced materials for electrochemical applications. In this work, we illustrate how theoretical models, computational methods, and informatics techniques can be put together to form a simple DFT-based throughput computational workflow for predicting physicochemical properties of room-temperature ionic liquids. The developed workflow has been used for screening a set of 48 ionic pairs and for analyzing the gathered data. The predicted relative electrochemical stabilities, ionic charges and dynamic properties of the investigated ionic liquids are discussed in the light of their potential practical applications.

  19. Highly luminescent and color-tunable salicylate ionic liquids.

    Science.gov (United States)

    Campbell, Paul S; Yang, Mei; Pitz, Demian; Cybinska, Joanna; Mudring, Anja-Verena

    2014-04-14

    High quantum yields of up to 40.5% can be achieved in salicylate-bearing ionic liquids. A range of these ionic liquids have been synthesized and their photoluminescent properties studied in detail. The differences noted can be related back to the structure of the ionic liquid cation and possible interionic interactions. It is found that shifts of emission, particularly in the pyridinium-based ionic liquids, can be related to cation-anion pairing interactions. Facile and controlled emission color mixing is demonstrated through combining different ILs, with emission colors ranging from blue to yellow. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Improved Ionic Liquids as Space Lubricants, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Ionic liquids are candidate lubricant materials. However for application in low temperature space mechanisms their lubrication performance needs to be enhanced. UES...