WorldWideScience

Sample records for selective detection techniques

  1. Toward automated selective retina treatment (SRT): an optical microbubble detection technique

    Science.gov (United States)

    Seifert, Eric; Park, Young-Gun; Theisen-Kunde, Dirk; Roh, Young-Jung; Brinkmann, Ralf

    2018-02-01

    Selective retina therapy (SRT) is an ophthalmological laser technique, targeting the retinal pigment epithelium (RPE) with repetitive microsecond laser pulses, while causing no thermal damage to the neural retina, the photoreceptors as well as the choroid. The RPE cells get damaged mechanically by microbubbles originating, at the intracellular melanosomes. Beneficial effects of SRT on Central Serous Retinopathy (CSR) and Diabetic Macula Edema (DME) have already been shown. Variations in the transmission of the anterior eye media and pigmentation variation of RPE yield in intra- and inter- individual thresholds of the pulse energy required for selective RPE damage. Those selective RPE lesions are not visible. Thus, dosimetry-systems, designed to detect microbubbles as an indicator for RPE cell damage, are demanded elements to facilitate SRT application. Therefore, a technique based on the evaluation of backscattered treatment light has been developed. Data of 127 spots, acquired during 10 clinical treatments of CSR patients, were assigned to a RPE cell damage class, validated by fluorescence angiography (FLA). An algorithm has been designed to match the FLA based information. A sensitivity of 0.9 with a specificity close to 1 is achieved. The data can be processed within microseconds. Thus, the process can be implemented in existing SRT lasers with an automatic pulse wise increasing energy and an automatic irradiation ceasing ability to enable automated treatment close above threshold to prevent adverse effects caused by too high pulse energy. Alternatively, a guidance procedure, informing the treating clinician about the adequacy of the actual settings, is possible.

  2. Multipath Detection Using Boolean Satisfiability Techniques

    Directory of Open Access Journals (Sweden)

    Fadi A. Aloul

    2011-01-01

    Full Text Available A new technique for multipath detection in wideband mobile radio systems is presented. The proposed scheme is based on an intelligent search algorithm using Boolean Satisfiability (SAT techniques to search through the uncertainty region of the multipath delays. The SAT-based scheme utilizes the known structure of the transmitted wideband signal, for example, pseudo-random (PN code, to effectively search through the entire space by eliminating subspaces that do not contain a possible solution. The paper presents a framework for modeling the multipath detection problem as a SAT application. It also provides simulation results that demonstrate the effectiveness of the proposed scheme in detecting the multipath components in frequency-selective Rayleigh fading channels.

  3. Experimental Study on Corrosion Detection of Aluminum Alloy Using Lamb Wave Mixing Technique

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Heeung; Lee, Jaesun; Cho, Younho [Pusan Nat’l Univ., Busan (Korea, Republic of)

    2016-11-15

    In this study, the Lamb wave mixing technique, which is basised on advanced research on the nonlinear bulk wave mixing technique, is applied for corrosion detection. To demonstrate the validity of the Lamb wave mixing technique, an experiment was performed with normal and corroded specimens. Comparison group in an experimentation are selected to mode and frequency with dominant in-plane displacement and out-of-plane displacement of Lamb waves. The results showed that the Lamb wave mixing technique can monitor corrosion defects, and it has a trend similar to that of the conventional Lamb wave technique. It was confirmed that the dominant displacement and mode matching the theory were generated. Flaw detectability is determined depending on displacement ratio instead of using the measurement method and mode selection.

  4. The effect of destination linked feature selection in real-time network intrusion detection

    CSIR Research Space (South Africa)

    Mzila, P

    2013-07-01

    Full Text Available techniques in the network intrusion detection system (NIDS) is the feature selection technique. The ability of NIDS to accurately identify intrusion from the network traffic relies heavily on feature selection, which describes the pattern of the network...

  5. Technique for ship/wake detection

    Science.gov (United States)

    Roskovensky, John K [Albuquerque, NM

    2012-05-01

    An automated ship detection technique includes accessing data associated with an image of a portion of Earth. The data includes reflectance values. A first portion of pixels within the image are masked with a cloud and land mask based on spectral flatness of the reflectance values associated with the pixels. A given pixel selected from the first portion of pixels is unmasked when a threshold number of localized pixels surrounding the given pixel are not masked by the cloud and land mask. A spatial variability image is generated based on spatial derivatives of the reflectance values of the pixels which remain unmasked by the cloud and land mask. The spatial variability image is thresholded to identify one or more regions within the image as possible ship detection regions.

  6. New detection systems of bacteria using highly selective media designed by SMART: selective medium-design algorithm restricted by two constraints.

    Directory of Open Access Journals (Sweden)

    Takeshi Kawanishi

    Full Text Available Culturing is an indispensable technique in microbiological research, and culturing with selective media has played a crucial role in the detection of pathogenic microorganisms and the isolation of commercially useful microorganisms from environmental samples. Although numerous selective media have been developed in empirical studies, unintended microorganisms often grow on such media probably due to the enormous numbers of microorganisms in the environment. Here, we present a novel strategy for designing highly selective media based on two selective agents, a carbon source and antimicrobials. We named our strategy SMART for highly Selective Medium-design Algorithm Restricted by Two constraints. To test whether the SMART method is applicable to a wide range of microorganisms, we developed selective media for Burkholderia glumae, Acidovorax avenae, Pectobacterium carotovorum, Ralstonia solanacearum, and Xanthomonas campestris. The series of media developed by SMART specifically allowed growth of the targeted bacteria. Because these selective media exhibited high specificity for growth of the target bacteria compared to established selective media, we applied three notable detection technologies: paper-based, flow cytometry-based, and color change-based detection systems for target bacteria species. SMART facilitates not only the development of novel techniques for detecting specific bacteria, but also our understanding of the ecology and epidemiology of the targeted bacteria.

  7. Exploring machine-learning-based control plane intrusion detection techniques in software defined optical networks

    Science.gov (United States)

    Zhang, Huibin; Wang, Yuqiao; Chen, Haoran; Zhao, Yongli; Zhang, Jie

    2017-12-01

    In software defined optical networks (SDON), the centralized control plane may encounter numerous intrusion threatens which compromise the security level of provisioned services. In this paper, the issue of control plane security is studied and two machine-learning-based control plane intrusion detection techniques are proposed for SDON with properly selected features such as bandwidth, route length, etc. We validate the feasibility and efficiency of the proposed techniques by simulations. Results show an accuracy of 83% for intrusion detection can be achieved with the proposed machine-learning-based control plane intrusion detection techniques.

  8. Biosensor-based microRNA detection: techniques, design, performance, and challenges.

    Science.gov (United States)

    Johnson, Blake N; Mutharasan, Raj

    2014-04-07

    The current state of biosensor-based techniques for amplification-free microRNA (miRNA) detection is critically reviewed. Comparison with non-sensor and amplification-based molecular techniques (MTs), such as polymerase-based methods, is made in terms of transduction mechanism, associated protocol, and sensitivity. Challenges associated with miRNA hybridization thermodynamics which affect assay selectivity and amplification bias are briefly discussed. Electrochemical, electromechanical, and optical classes of miRNA biosensors are reviewed in terms of transduction mechanism, limit of detection (LOD), time-to-results (TTR), multiplexing potential, and measurement robustness. Current trends suggest that biosensor-based techniques (BTs) for miRNA assay will complement MTs due to the advantages of amplification-free detection, LOD being femtomolar (fM)-attomolar (aM), short TTR, multiplexing capability, and minimal sample preparation requirement. Areas of future importance in miRNA BT development are presented which include focus on achieving high measurement confidence and multiplexing capabilities.

  9. Multimodal technique to eliminate humidity interference for specific detection of ethanol.

    Science.gov (United States)

    Jalal, Ahmed Hasnain; Umasankar, Yogeswaran; Gonzalez, Pablo J; Alfonso, Alejandro; Bhansali, Shekhar

    2017-01-15

    Multimodal electrochemical technique incorporating both open circuit potential (OCP) and amperometric techniques have been conceptualized and implemented to improve the detection of specific analyte in systems where more than one analyte is present. This approach has been demonstrated through the detection of ethanol while eliminating the contribution of water in a micro fuel cell sensor system. The sensor was interfaced with LMP91000 potentiostat, controlled through MSP430F5529LP microcontroller to implement an auto-calibration algorithm tailored to improve the detection of alcohol. The sensor was designed and fabricated as a three electrode system with Nafion as a proton exchange membrane (PEM). The electrochemical signal of the interfering phase (water) was eliminated by implementing the multimodal electrochemical detection technique. The results were validated by comparing sensor and potentiostat performances with a commercial sensor and potentiostat respectively. The results suggest that such a sensing system can detect ethanol at concentrations as low as 5ppm. The structure and properties such as low detection limit, selectivity and miniaturized size enables potential application of this device in wearable transdermal alcohol measurements. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Neutron detection technique

    International Nuclear Information System (INIS)

    Oblath, N.S.; Poon, A.W.P.

    2000-01-01

    The Sudbury Neutrino Observatory (SNO) has the ability to measure the total flux of all active flavors of neutrinos using the neutral current reaction, whose signature is a neutron. By comparing the rates of the neutral current reaction to the charged current reaction, which only detects electron neutrinos, one can test the neutrino oscillation hypothesis independent of solar models. It is necessary to understand the neutron detection efficiency of the detector to make use of the neutral current reaction. This report demonstrates a coincidence technique to identify neutrons emitted from the 252 Cf neutron calibration source. The source releases on average four neutrons when a 252 Cf nucleus spontaneously fissions. Each neutron is detected as a separate event when the neutron is captured by a deuteron, releasing a gamma ray of approximately 6.25 MeV. This gamma ray is in turn detected by the photomultiplier tube (PMT) array. By investigating the time and spatial separation between neutron-like events, it is possible to obtain a pure sample of neutrons for calibration study. Preliminary results of the technique applied to two calibration runs are presented

  11. Technique of experimental evaluation of cloud environment attacks detection accuracy

    Directory of Open Access Journals (Sweden)

    Sergey A. Klimachev

    2018-05-01

    Full Text Available The article is devoted to research of efficiency evaluation of IDS used for dynamic and complex organizational and technical structure computing platform guard. The components of the platform have a set of heterogeneous parameters. Analysis of existing IDS evaluation technique revealed shortcomings in justification of quantitative metrics that describe the efficiency and reliability IDS resolving. This makes if difficult to prove IDS evaluation technique. The purpose of the study is to increase IDS evaluation objectivity. To achive the purpose it is necessary to develop the correct technique, tools, experimental stand. The article proposes the results of development and approbation of the technique of IDS efficiency evaluation and software for it. The technique is based on defining of optimal set of attack detection accuracy scores. The technique and the software allow solving problems of comparative analysis of IDS that have similar functionality. As a result of the research, a number of task have been solved, including the selection of universal quantitative metrics for attack detection accuracy evaluation, the defining of summarised attack detection accuracy evaluation metric based on defining of pareto-optimal set of scores that ensure the confidentiality, integrity and accessibility of cloud environment information and information resources,  the development of a functional model,  a functional scheme and a software for cloud environment IDS research.

  12. Replica Node Detection Using Enhanced Single Hop Detection with Clonal Selection Algorithm in Mobile Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    L. S. Sindhuja

    2016-01-01

    Full Text Available Security of Mobile Wireless Sensor Networks is a vital challenge as the sensor nodes are deployed in unattended environment and they are prone to various attacks. One among them is the node replication attack. In this, the physically insecure nodes are acquired by the adversary to clone them by having the same identity of the captured node, and the adversary deploys an unpredictable number of replicas throughout the network. Hence replica node detection is an important challenge in Mobile Wireless Sensor Networks. Various replica node detection techniques have been proposed to detect these replica nodes. These methods incur control overheads and the detection accuracy is low when the replica is selected as a witness node. This paper proposes to solve these issues by enhancing the Single Hop Detection (SHD method using the Clonal Selection algorithm to detect the clones by selecting the appropriate witness nodes. The advantages of the proposed method include (i increase in the detection ratio, (ii decrease in the control overhead, and (iii increase in throughput. The performance of the proposed work is measured using detection ratio, false detection ratio, packet delivery ratio, average delay, control overheads, and throughput. The implementation is done using ns-2 to exhibit the actuality of the proposed work.

  13. Technique Selectively Represses Immune System

    Science.gov (United States)

    ... Research Matters December 3, 2012 Technique Selectively Represses Immune System Myelin (green) encases and protects nerve fibers (brown). A new technique prevents the immune system from attacking myelin in a mouse model of ...

  14. Comparing Face Detection and Recognition Techniques

    OpenAIRE

    Korra, Jyothi

    2016-01-01

    This paper implements and compares different techniques for face detection and recognition. One is find where the face is located in the images that is face detection and second is face recognition that is identifying the person. We study three techniques in this paper: Face detection using self organizing map (SOM), Face recognition by projection and nearest neighbor and Face recognition using SVM.

  15. Application of the Sampling Selection Technique in Approaching Financial Audit

    Directory of Open Access Journals (Sweden)

    Victor Munteanu

    2018-03-01

    Full Text Available In his professional approach, the financial auditor has a wide range of working techniques, including selection techniques. They are applied depending on the nature of the information available to the financial auditor, the manner in which they are presented - paper or electronic format, and, last but not least, the time available. Several techniques are applied, successively or in parallel, to increase the safety of the expressed opinion and to provide the audit report with a solid basis of information. Sampling is used in the phase of control or clarification of the identified error. The main purpose is to corroborate or measure the degree of risk detected following a pertinent analysis. Since the auditor does not have time or means to thoroughly rebuild the information, the sampling technique can provide an effective response to the need for valorization.

  16. A leakage-free resonance sparse decomposition technique for bearing fault detection in gearboxes

    Science.gov (United States)

    Osman, Shazali; Wang, Wilson

    2018-03-01

    Most of rotating machinery deficiencies are related to defects in rolling element bearings. Reliable bearing fault detection still remains a challenging task, especially for bearings in gearboxes as bearing-defect-related features are nonstationary and modulated by gear mesh vibration. A new leakage-free resonance sparse decomposition (LRSD) technique is proposed in this paper for early bearing fault detection of gearboxes. In the proposed LRSD technique, a leakage-free filter is suggested to remove strong gear mesh and shaft running signatures. A kurtosis and cosine distance measure is suggested to select appropriate redundancy r and quality factor Q. The signal residual is processed by signal sparse decomposition for highpass and lowpass resonance analysis to extract representative features for bearing fault detection. The effectiveness of the proposed technique is verified by a succession of experimental tests corresponding to different gearbox and bearing conditions.

  17. High resolution x-ray fluorescence spectroscopy - a new technique for site- and spin-selectivity

    International Nuclear Information System (INIS)

    Wang, Xin

    1996-12-01

    X-ray spectroscopy has long been used to elucidate electronic and structural information of molecules. One of the weaknesses of x-ray absorption is its sensitivity to all of the atoms of a particular element in a sample. Through out this thesis, a new technique for enhancing the site- and spin-selectivity of the x-ray absorption has been developed. By high resolution fluorescence detection, the chemical sensitivity of K emission spectra can be used to identify oxidation and spin states; it can also be used to facilitate site-selective X-ray Absorption Near Edge Structure (XANES) and site-selective Extended X-ray Absorption Fine Structure (EXAFS). The spin polarization in K fluorescence could be used to generate spin selective XANES or spin-polarized EXAFS, which provides a new measure of the spin density, or the nature of magnetic neighboring atoms. Finally, dramatic line-sharpening effects by the combination of absorption and emission processes allow observation of structure that is normally unobservable. All these unique characters can enormously simplify a complex x-ray spectrum. Applications of this novel technique have generated information from various transition-metal model compounds to metalloproteins. The absorption and emission spectra by high resolution fluorescence detection are interdependent. The ligand field multiplet model has been used for the analysis of Kα and Kβ emission spectra. First demonstration on different chemical states of Fe compounds has shown the applicability of site selectivity and spin polarization. Different interatomic distances of the same element in different chemical forms have been detected using site-selective EXAFS

  18. The influence of elements of synchronized swimming on technique of the selected swimming strokes

    OpenAIRE

    Široký, Michal

    2015-01-01

    Title: The influence of elements of synchronized swimming on technique of the selected swimming strokes Objectives: The objective of the thesis is to assess the effect of the elements of synchronized swimming at improving the techniques of swimming. Methods: The results were detected by overt observation with active participation and subsequent scaling on the ordinal scale 1 to 5. Results: The results show that the influence of the elements of synchronized swimming on improving the technique ...

  19. Techniques for detecting explosives and contraband

    International Nuclear Information System (INIS)

    Vourvopoulos, G.

    1994-01-01

    Because terrorism continues to be a societal threat, scientists are still searching for ways to identify concealed weapons that can be used in terrorist attacks. Explosives are singled out for particular attention because they can easily be shaped to look innocuous, and are still hard to detect. At present, there are three methods under development for the detection of explosives: X-ray imaging, vapour detection and nuclear techniques, and this article will concentrate on the latter. Since there is no single technology that can address all the questions concerning the detection of explosives and other illicit contraband, the philosophy that emerges is that of an integral system combining methodologies. Such a system could contain a nuclear technology device, a vapour detector, and an X-ray imaging device, all backed by an intelligence gathering system. In this paper methods are suggested for identifying explosives which may be used in terrorist attacks and for detecting concealed drugs. Techniques discussed are X-ray imaging, combining high and low energy x-ray machines, vapour detection using a ''sniffer'' to collect vapour samples then analysing the vapour by gas chromatography, chemiluminescence and mass spectroscopy and nuclear techniques. Nuclear techniques, such as neutron activation analysis, are discussed in detail but it is stressed that they need to be carried out at speed to eliminate disruption and delay at airports etc. (UK)

  20. Channel selection for automatic seizure detection

    DEFF Research Database (Denmark)

    Duun-Henriksen, Jonas; Kjaer, Troels Wesenberg; Madsen, Rasmus Elsborg

    2012-01-01

    Objective: To investigate the performance of epileptic seizure detection using only a few of the recorded EEG channels and the ability of software to select these channels compared with a neurophysiologist. Methods: Fifty-nine seizures and 1419 h of interictal EEG are used for training and testing...... of an automatic channel selection method. The characteristics of the seizures are extracted by the use of a wavelet analysis and classified by a support vector machine. The best channel selection method is based upon maximum variance during the seizure. Results: Using only three channels, a seizure detection...... sensitivity of 96% and a false detection rate of 0.14/h were obtained. This corresponds to the performance obtained when channels are selected through visual inspection by a clinical neurophysiologist, and constitutes a 4% improvement in sensitivity compared to seizure detection using channels recorded...

  1. In Situ Techniques for Life Detection on Mars

    Science.gov (United States)

    Becker, L.; Brinckerhoff, W.; Cotter, R.

    2006-12-01

    The search for organic matter on Mars is rapidly emerging as a result of technological advancements and the study of early "life" on our own planet. As we learned from the Viking missions and the examination of martian meteorites, the criteria for establishing life require the appropriate strategy. One such approach would require careful mapping of the surface from orbit for the selection of the appropriate landing sites, robotic space missions equipped with several life detection in situ techniques for selection of samples, and sample return missions for additional verification of in situ results and laboratory measurements. It may, however, be possible to obtain critical information about the organic matter and associated mineral assemblages present on Mars, in situ, in a single measurement that is both capable of flight and is nondestructive to the sample. We discuss a new multi-source mass spectrometer, `MOMA' (Mars Organic Molecule Analyzer) that incorporates multiple methods of volatilizing and ionizing chemical compounds from intact samples without further processing or manipulation. Moreover, MOMA is capable of detecting a broad range of organics enabling the evaluation of the origin of the organics and the presence of terrestrial contaminants.

  2. Edge detection techniques for iris recognition system

    International Nuclear Information System (INIS)

    Tania, U T; Motakabber, S M A; Ibrahimy, M I

    2013-01-01

    Nowadays security and authentication are the major parts of our daily life. Iris is one of the most reliable organ or part of human body which can be used for identification and authentication purpose. To develop an iris authentication algorithm for personal identification, this paper examines two edge detection techniques for iris recognition system. Between the Sobel and the Canny edge detection techniques, the experimental result shows that the Canny's technique has better ability to detect points in a digital image where image gray level changes even at slow rate

  3. The technique of flashback in selected Northern Sotho literary texts

    Directory of Open Access Journals (Sweden)

    M.J. Mojalefa

    2005-07-01

    Full Text Available This article aims at investigating and explaining the application of the technique of flashback in selected Northern Sotho literary texts. Five kinds of flashback are distinguished, namely external retrospection, internal retrospection, mixed retrospection, flashback to complicate events and flashback of similar events. These kinds of flashback have certain and specific functions, such as reminding readers of past events, foregrounding themes of the text, and so on. This technique is evident in a text when ordinary, everyday events turn out to be the key to surprising secrets that are revealed later. Though flashback seems to be similar to foreshadowing (prolepsis in that both techniques contain features of repetition and the narration of a specific experience, the techniques, however, differ in that flashback focuses on the elements of secrecy, suspense and surprise, and foreshadowing does not. This article also reveals that a relationship between flashback and the structure of detective stories can be indicated.

  4. Technique for Increasing the Selectivity of the Method of Laser Fragmentation/Laser-Induced Fluorescence

    Science.gov (United States)

    Bobrovnikov, S. M.; Gorlov, E. V.; Zharkov, V. I.

    2018-05-01

    A technique for increasing the selectivity of the method of detecting high-energy materials (HEMs) based on laser fragmentation of HEM molecules with subsequent laser excitation of fluorescence of the characteristic NO fragments from the first vibrational level of the ground state is suggested.

  5. Pipeline Leak Detection Techniques

    OpenAIRE

    Chis, Timur

    2009-01-01

    Leak detection systems range from simple, visual line walking and checking ones to complex arrangements of hard-ware and software. No one method is universally applicable and operating requirements dictate which method is the most cost effective. The aim of the paper is to review the basic techniques of leak detection that are currently in use. The advantages and disadvantages of each method are discussed and some indications of applicability are outlined.

  6. Pipeline Leak Detection Techniques

    Directory of Open Access Journals (Sweden)

    Timur Chis, Ph.D., Dipl.Eng.

    2007-01-01

    Full Text Available Leak detection systems range from simple, visual line walking and checking ones to complex arrangements of hard-ware and software. No one method is universally applicable and operating requirements dictate which method is the most cost effective. The aim of the paper is to review the basic techniques of leak detection that are currently in use. The advantages and disadvantages of each method are discussed and some indications of applicability are outlined.

  7. Biosensing Using Magnetic Particle Detection Techniques

    Directory of Open Access Journals (Sweden)

    Yi-Ting Chen

    2017-10-01

    Full Text Available Magnetic particles are widely used as signal labels in a variety of biological sensing applications, such as molecular detection and related strategies that rely on ligand-receptor binding. In this review, we explore the fundamental concepts involved in designing magnetic particles for biosensing applications and the techniques used to detect them. First, we briefly describe the magnetic properties that are important for bio-sensing applications and highlight the associated key parameters (such as the starting materials, size, functionalization methods, and bio-conjugation strategies. Subsequently, we focus on magnetic sensing applications that utilize several types of magnetic detection techniques: spintronic sensors, nuclear magnetic resonance (NMR sensors, superconducting quantum interference devices (SQUIDs, sensors based on the atomic magnetometer (AM, and others. From the studies reported, we note that the size of the MPs is one of the most important factors in choosing a sensing technique.

  8. Ambient air contamination: Characterization and detection techniques

    Science.gov (United States)

    Nulton, C. P.; Silvus, H. S.

    1985-01-01

    Techniques to characterize and detect sources of ambient air contamination are described. Chemical techniques to identify indoor contaminants are outlined, they include gas chromatography, or colorimetric detection. Organics generated from indoor materials at ambient conditions and upon combustion are characterized. Piezoelectric quartz crystals are used as precision frequency determining elements in electronic oscillators.

  9. Signal processing techniques for sodium boiling noise detection

    International Nuclear Information System (INIS)

    1989-05-01

    At the Specialists' Meeting on Sodium Boiling Detection organized by the International Working Group on Fast Reactors (IWGFR) of the International Atomic Energy Agency at Chester in the United Kingdom in 1981 various methods of detecting sodium boiling were reported. But, it was not possible to make a comparative assessment of these methods because the signal condition in each experiment was different from others. That is why participants of this meeting recommended that a benchmark test should be carried out in order to evaluate and compare signal processing methods for boiling detection. Organization of the Co-ordinated Research Programme (CRP) on signal processing techniques for sodium boiling noise detection was also recommended at the 16th meeting of the IWGFR. The CRP on Signal Processing Techniques for Sodium Boiling Noise Detection was set up in 1984. Eight laboratories from six countries have agreed to participate in this CRP. The overall objective of the programme was the development of reliable on-line signal processing techniques which could be used for the detection of sodium boiling in an LMFBR core. During the first stage of the programme a number of existing processing techniques used by different countries have been compared and evaluated. In the course of further work, an algorithm for implementation of this sodium boiling detection system in the nuclear reactor will be developed. It was also considered that the acoustic signal processing techniques developed for boiling detection could well make a useful contribution to other acoustic applications in the reactor. This publication consists of two parts. Part I is the final report of the co-ordinated research programme on signal processing techniques for sodium boiling noise detection. Part II contains two introductory papers and 20 papers presented at four research co-ordination meetings since 1985. A separate abstract was prepared for each of these 22 papers. Refs, figs and tabs

  10. Cermet based solar selective absorbers : further selectivity improvement and developing new fabrication technique

    OpenAIRE

    Nejati, Mohammadreza

    2008-01-01

    Spectral selectivity of cermet based selective absorbers were increased by inducing surface roughness on the surface of the cermet layer using a roughening technique (deposition on hot substrates) or by micro-structuring the metallic substrates before deposition of the absorber coating using laser and imprint structuring techniques. Cu-Al2O3 cermet absorbers with very rough surfaces and excellent selectivity were obtained by employing a roughness template layer under the infrared reflective l...

  11. Feathering effect detection and artifact agglomeration index-based video deinterlacing technique

    Science.gov (United States)

    Martins, André Luis; Rodrigues, Evandro Luis Linhari; de Paiva, Maria Stela Veludo

    2018-03-01

    Several video deinterlacing techniques have been developed, and each one presents a better performance in certain conditions. Occasionally, even the most modern deinterlacing techniques create frames with worse quality than primitive deinterlacing processes. This paper validates that the final image quality can be improved by combining different types of deinterlacing techniques. The proposed strategy is able to select between two types of deinterlaced frames and, if necessary, make the local correction of the defects. This decision is based on an artifact agglomeration index obtained from a feathering effect detection map. Starting from a deinterlaced frame produced by the "interfield average" method, the defective areas are identified, and, if deemed appropriate, these areas are replaced by pixels generated through the "edge-based line average" method. Test results have proven that the proposed technique is able to produce video frames with higher quality than applying a single deinterlacing technique through getting what is good from intra- and interfield methods.

  12. Early tumour detection: a transillumination, time-resolved technique

    International Nuclear Information System (INIS)

    Behin-Ain, S.; Van Doorn, T.; Patterson, J.

    2000-01-01

    Full text: Research into transillumination techniques for the detection of tumours in soft tissue has been ongoing for over 70 years. The resolution and contrast, however, remain severely limited by scatter. Single photon detection techniques, with ideally infinite extinction coefficients, have been proposed to accumulate sub-hertz photon transmitted frequencies in the early part of a transmitted pulse. Computer based simulations have been undertaken to examine the theoretical performance requirements of the detector and the resultant image qualities that may be expected with this imaging technique. This paper reports on the computational techniques required for implementing these simulations in an efficient manner. Controlled Monte Carlo (CMC) and Convolution of Layers (CL) techniques were employed to constrain the photon to those having more chance of detection and hence enhance the detection statistics. Extrapolation techniques are proposed to reconstruct the early part of the temporal profile. Computational methods were implemented to evaluate Path Integrals, which are otherwise overly complex to evaluate. CMC and CL reduce the computational time by more than 10 orders of magnitude by only tracking those photons more likely to reach the detector. In the case of an optically thick medium with high scattering coefficient, extrapolation techniques are used to reconstruct the early part of temporal profile. Analytical solutions were found to be too involved for the simplest geometries. However the CL and implementation of computational techniques make Path integrals a useful analytical tool to compliment full Monte Carlo techniques. Results have shown that these methods collectively enable detection of small inhomogeneites within soft tissues. Reduced computation times and full reconstruction of the temporal profile of transmitted photons through optically thick medium enable fast simulations of single photon detectors to be achieved with the above described

  13. New technique for alpha particles detection

    International Nuclear Information System (INIS)

    Morsy, A.A.; Khattab, F.M.

    1998-01-01

    Man possesses no biological sensors of ionizing radiation as a consequence he must depend entirely on instrumentation for the detection and measurement of radiation. The recent discovery of the solid state nuclear track detection ( SSNTD ) techniques and its advantages over other dosimeters made them a useful tool for radiation dosimetry. This work is devoted to review and illustrate the application of SSNTD technique in some branches of science and technology specially the newly produced TASTRAK obtained from Track Analysis System Limited, Bristol, UK. The detector is successfully irradiated, chemically etched and calibrated for the aim of the Alpha radiation dosimetry

  14. X-ray backscatter imaging for radiography by selective detection and snapshot: Evolution, development, and optimization

    Science.gov (United States)

    Shedlock, Daniel

    Compton backscatter imaging (CBI) is a single-sided imaging technique that uses the penetrating power of radiation and unique interaction properties of radiation with matter to image subsurface features. CBI has a variety of applications that include non-destructive interrogation, medical imaging, security and military applications. Radiography by selective detection (RSD), lateral migration radiography (LMR) and shadow aperture backscatter radiography (SABR) are different CBI techniques that are being optimized and developed. Radiography by selective detection (RSD) is a pencil beam Compton backscatter imaging technique that falls between highly collimated and uncollimated techniques. Radiography by selective detection uses a combination of single- and multiple-scatter photons from a projected area below a collimation plane to generate an image. As a result, the image has a combination of first- and multiple-scatter components. RSD techniques offer greater subsurface resolution than uncollimated techniques, at speeds at least an order of magnitude faster than highly collimated techniques. RSD scanning systems have evolved from a prototype into near market-ready scanning devices for use in a variety of single-sided imaging applications. The design has changed to incorporate state-of-the-art detectors and electronics optimized for backscatter imaging with an emphasis on versatility, efficiency and speed. The RSD system has become more stable, about 4 times faster, and 60% lighter while maintaining or improving image quality and contrast over the past 3 years. A new snapshot backscatter radiography (SBR) CBI technique, shadow aperture backscatter radiography (SABR), has been developed from concept and proof-of-principle to a functional laboratory prototype. SABR radiography uses digital detection media and shaded aperture configurations to generate near-surface Compton backscatter images without scanning, similar to how transmission radiographs are taken. Finally, a

  15. Breath Analysis Using Laser Spectroscopic Techniques: Breath Biomarkers, Spectral Fingerprints, and Detection Limits

    Directory of Open Access Journals (Sweden)

    Peeyush Sahay

    2009-10-01

    Full Text Available Breath analysis, a promising new field of medicine and medical instrumentation, potentially offers noninvasive, real-time, and point-of-care (POC disease diagnostics and metabolic status monitoring. Numerous breath biomarkers have been detected and quantified so far by using the GC-MS technique. Recent advances in laser spectroscopic techniques and laser sources have driven breath analysis to new heights, moving from laboratory research to commercial reality. Laser spectroscopic detection techniques not only have high-sensitivity and high-selectivity, as equivalently offered by the MS-based techniques, but also have the advantageous features of near real-time response, low instrument costs, and POC function. Of the approximately 35 established breath biomarkers, such as acetone, ammonia, carbon dioxide, ethane, methane, and nitric oxide, 14 species in exhaled human breath have been analyzed by high-sensitivity laser spectroscopic techniques, namely, tunable diode laser absorption spectroscopy (TDLAS, cavity ringdown spectroscopy (CRDS, integrated cavity output spectroscopy (ICOS, cavity enhanced absorption spectroscopy (CEAS, cavity leak-out spectroscopy (CALOS, photoacoustic spectroscopy (PAS, quartz-enhanced photoacoustic spectroscopy (QEPAS, and optical frequency comb cavity-enhanced absorption spectroscopy (OFC-CEAS. Spectral fingerprints of the measured biomarkers span from the UV to the mid-IR spectral regions and the detection limits achieved by the laser techniques range from parts per million to parts per billion levels. Sensors using the laser spectroscopic techniques for a few breath biomarkers, e.g., carbon dioxide, nitric oxide, etc. are commercially available. This review presents an update on the latest developments in laser-based breath analysis.

  16. Detecting selection needs comparative data

    DEFF Research Database (Denmark)

    Nielsen, Rasmus; Hubisz, Melissa J.

    2005-01-01

    Positive selection at the molecular level is usually indicated by an increase in the ratio of non-synonymous to synonymous substitutions (dN/dS) in comparative data. However, Plotkin et al. 1 describe a new method for detecting positive selection based on a single nucleotide sequence. We show here...... that this method is particularly sensitive to assumptions regarding the underlying mutational processes and does not provide a reliable way to identify positive selection....

  17. Analytical detection techniques for droplet microfluidics—A review

    International Nuclear Information System (INIS)

    Zhu, Ying; Fang, Qun

    2013-01-01

    Graphical abstract: -- Highlights: •This is the first review paper focused on the analytical techniques for droplet-based microfluidics. •We summarized the analytical methods used in droplet-based microfluidic systems. •We discussed the advantage and disadvantage of each method through its application. •We also discuss the future development direction of analytical methods for droplet-based microfluidic systems. -- Abstract: In the last decade, droplet-based microfluidics has undergone rapid progress in the fields of single-cell analysis, digital PCR, protein crystallization and high throughput screening. It has been proved to be a promising platform for performing chemical and biological experiments with ultra-small volumes (picoliter to nanoliter) and ultra-high throughput. The ability to analyze the content in droplet qualitatively and quantitatively is playing an increasing role in the development and application of droplet-based microfluidic systems. In this review, we summarized the analytical detection techniques used in droplet systems and discussed the advantage and disadvantage of each technique through its application. The analytical techniques mentioned in this paper include bright-field microscopy, fluorescence microscopy, laser induced fluorescence, Raman spectroscopy, electrochemistry, capillary electrophoresis, mass spectrometry, nuclear magnetic resonance spectroscopy, absorption detection, chemiluminescence, and sample pretreatment techniques. The importance of analytical detection techniques in enabling new applications is highlighted. We also discuss the future development direction of analytical detection techniques for droplet-based microfluidic systems

  18. IMAGE ANALYSIS BASED ON EDGE DETECTION TECHNIQUES

    Institute of Scientific and Technical Information of China (English)

    纳瑟; 刘重庆

    2002-01-01

    A method that incorporates edge detection technique, Markov Random field (MRF), watershed segmentation and merging techniques was presented for performing image segmentation and edge detection tasks. It first applies edge detection technique to obtain a Difference In Strength (DIS) map. An initial segmented result is obtained based on K-means clustering technique and the minimum distance. Then the region process is modeled by MRF to obtain an image that contains different intensity regions. The gradient values are calculated and then the watershed technique is used. DIS calculation is used for each pixel to define all the edges (weak or strong) in the image. The DIS map is obtained. This help as priority knowledge to know the possibility of the region segmentation by the next step (MRF), which gives an image that has all the edges and regions information. In MRF model,gray level l, at pixel location i, in an image X, depends on the gray levels of neighboring pixels. The segmentation results are improved by using watershed algorithm. After all pixels of the segmented regions are processed, a map of primitive region with edges is generated. The edge map is obtained using a merge process based on averaged intensity mean values. A common edge detectors that work on (MRF) segmented image are used and the results are compared. The segmentation and edge detection result is one closed boundary per actual region in the image.

  19. Highly Sensitive and Selective Potassium Ion Detection Based on Graphene Hall Effect Biosensors

    Directory of Open Access Journals (Sweden)

    Xiangqi Liu

    2018-03-01

    Full Text Available Potassium (K+ ion is an important biological substance in the human body and plays a critical role in the maintenance of transmembrane potential and hormone secretion. Several detection techniques, including fluorescent, electrochemical, and electrical methods, have been extensively investigated to selectively recognize K+ ions. In this work, a highly sensitive and selective biosensor based on single-layer graphene has been developed for K+ ion detection under Van der Pauw measurement configuration. With pre-immobilization of guanine-rich DNA on the graphene surface, the graphene devices exhibit a very low limit of detection (≈1 nM with a dynamic range of 1 nM–10 μM and excellent K+ ion specificity against other alkali cations, such as Na+ ions. The origin of K+ ion selectivity can be attributed to the fact that the formation of guanine-quadruplexes from guanine-rich DNA has a strong affinity for capturing K+ ions. The graphene-based biosensors with improved sensing performance for K+ ion recognition can be applied to health monitoring and early disease diagnosis.

  20. Modified Single Photo-diode (MSPD) Detection Technique for SAC-OCDMA System

    Science.gov (United States)

    Abdulqader, Sarah G.; Fadhil, Hilal A.; Aljunid, S. A.

    2015-03-01

    In this paper, a new detection technique called modified single photo-diode (MSPD) detection for SAC-OCDMA system is proposed. The proposed system based on the single photo-diode (SPD) detection technique. The new detection technique is proposed to overcome the limitation of phase-induced intensity noise (PIIN) in SPD detection technique. However, the proposed detection is based on an optical hard limiter (OHL) followed by a SPD and a low-pass filter (LPF) in order to suppress the phase intensity noise (PIIN) at the receiver side. The results show that the MSPD detection based on OHL has a good performance even when the transmission distance is long, which is different from the case of SPD detection technique. Therefore, the MSPD detection technique is shown to be effective to improve the bit error rate (BER<10-9) and to suppress the noise in the practical optical fiber network.

  1. A New Generic Taxonomy on Hybrid Malware Detection Technique

    OpenAIRE

    Robiah, Y.; Rahayu, S. Siti; Zaki, M. Mohd; Shahrin, S.; Faizal, M. A.; Marliza, R.

    2009-01-01

    Malware is a type of malicious program that replicate from host machine and propagate through network. It has been considered as one type of computer attack and intrusion that can do a variety of malicious activity on a computer. This paper addresses the current trend of malware detection techniques and identifies the significant criteria in each technique to improve malware detection in Intrusion Detection System (IDS). Several existing techniques are analyzing from 48 various researches and...

  2. Selective detection of crystalline cellulose in plant cell walls with sum-frequency-generation (SFG) vibration spectroscopy.

    Science.gov (United States)

    Barnette, Anna L; Bradley, Laura C; Veres, Brandon D; Schreiner, Edward P; Park, Yong Bum; Park, Junyeong; Park, Sunkyu; Kim, Seong H

    2011-07-11

    The selective detection of crystalline cellulose in biomass was demonstrated with sum-frequency-generation (SFG) vibration spectroscopy. SFG is a second-order nonlinear optical response from a system where the optical centrosymmetry is broken. In secondary plant cell walls that contain mostly cellulose, hemicellulose, and lignin with varying concentrations, only certain vibration modes in the crystalline cellulose structure can meet the noninversion symmetry requirements. Thus, SFG can be used to detect and analyze crystalline cellulose selectively in lignocellulosic biomass without extraction of noncellulosic species from biomass or deconvolution of amorphous spectra. The selective detection of crystalline cellulose in lignocellulosic biomass is not readily achievable with other techniques such as XRD, solid-state NMR, IR, and Raman analyses. Therefore, the SFG analysis presents a unique opportunity to reveal the cellulose crystalline structure in lignocellulosic biomass.

  3. Ergonomic factors related to drop-off detection with the long cane: effects of cane tips and techniques.

    Science.gov (United States)

    Kim, Dae Shik; Emerson, Robert S Wall; Curtis, Amy B

    2010-06-01

    This study examined the effect of cane tips and cane techniques on drop-off detection with the long cane. Blind pedestrians depend on a long cane to detect drop-offs. Missing a drop-off may result in falls or collision with moving vehicles in the street. Although cane tips appear to affect a cane user's ability to detect drop-offs, few experimental studies have examined such effect. A repeated-measures design with block randomization was used for the study. Participants were 17 adults who were legally blind and had no other disabilities. Participants attempted to detect the drop-offs of varied depths using different cane tips and cane techniques. Drop-off detection rates were similar between the marshmallow tip (77.0%) and the marshmallow roller tip (79.4%) when both tips were used with the constant contact technique, p = .294. However, participants detected drop-offs at a significantly higher percentage when they used the constant contact technique with the marshmallow roller tip (79.4%) than when they used the two-point touch technique with the marshmallow tip (63.2%), p marshmallow roller tip (perceived as a less advantageous tip) was more effective than the two-point touch technique used with a marshmallow tip (perceived as a more advantageous tip) in detecting drop-offs. The findings of the study may help cane users and orientation and mobility specialists select appropriate cane techniques and cane tips in accordance with the cane user's characteristics and the nature of the travel environment.

  4. Detection technique of targets for missile defense system

    Science.gov (United States)

    Guo, Hua-ling; Deng, Jia-hao; Cai, Ke-rong

    2009-11-01

    Ballistic missile defense system (BMDS) is a weapon system for intercepting enemy ballistic missiles. It includes ballistic-missile warning system, target discrimination system, anti-ballistic-missile guidance systems, and command-control communication system. Infrared imaging detection and laser imaging detection are widely used in BMDS for surveillance, target detection, target tracking, and target discrimination. Based on a comprehensive review of the application of target-detection techniques in the missile defense system, including infrared focal plane arrays (IRFPA), ground-based radar detection technology, 3-dimensional imaging laser radar with a photon counting avalanche photodiode (APD) arrays and microchip laser, this paper focuses on the infrared and laser imaging detection techniques in missile defense system, as well as the trends for their future development.

  5. Construction of prototype of on-line analyzer detection system for coal on belt conveyor using neutron activation technique

    International Nuclear Information System (INIS)

    Rony Djokorayono; Agus Cahyono; MP Indarzah; SG Usep; Sukandar

    2015-01-01

    The use of on-line neutron activation technique for coal analysis is proposed as an alternative method for analysis based on sampling technique. Compared to this conventional technique, the on-line neutron activation technique has much shorter time of analysis and more accurate results. The construction of detection system prototype for the on-line analyzer is described in this paper. This on-line analyzer consists of detection system, data acquisition system, and computer console. This detection system comprises several modules, i.e. NaI(Tl) scintillation detector completed with a photomultiplier tube (PMT), pre-amplifier, single channel analyzer (SCA), and analog signal transmitter and pulse counter processor. The construction processes of these four modules include the development of configuration block, lay out, and selection of electronic components. The modules have been integrated and tested. This detection system was tested using radioactive element Zn-65 having energy of 1115.5 keV and activity of 1 μCi. The test results show that the prototype of the on-line analyzer detection system has functioned as expected. (author)

  6. Selection of regularization parameter for l1-regularized damage detection

    Science.gov (United States)

    Hou, Rongrong; Xia, Yong; Bao, Yuequan; Zhou, Xiaoqing

    2018-06-01

    The l1 regularization technique has been developed for structural health monitoring and damage detection through employing the sparsity condition of structural damage. The regularization parameter, which controls the trade-off between data fidelity and solution size of the regularization problem, exerts a crucial effect on the solution. However, the l1 regularization problem has no closed-form solution, and the regularization parameter is usually selected by experience. This study proposes two strategies of selecting the regularization parameter for the l1-regularized damage detection problem. The first method utilizes the residual and solution norms of the optimization problem and ensures that they are both small. The other method is based on the discrepancy principle, which requires that the variance of the discrepancy between the calculated and measured responses is close to the variance of the measurement noise. The two methods are applied to a cantilever beam and a three-story frame. A range of the regularization parameter, rather than one single value, can be determined. When the regularization parameter in this range is selected, the damage can be accurately identified even for multiple damage scenarios. This range also indicates the sensitivity degree of the damage identification problem to the regularization parameter.

  7. Selecting a Sustainable Disinfection Technique for Wastewater Reuse Projects

    Directory of Open Access Journals (Sweden)

    Jorge Curiel-Esparza

    2014-09-01

    Full Text Available This paper presents an application of the Analytical Hierarchy Process (AHP by integrating a Delphi process for selecting the best sustainable disinfection technique for wastewater reuse projects. The proposed methodology provides project managers a tool to evaluate problems with multiple criteria and multiple alternatives which involve non-commeasurable decision criteria, with expert opinions playing a major role in the selection of these treatment technologies. Five disinfection techniques for wastewater reuse have been evaluated for each of the nine criteria weighted according to the opinions of consulted experts. Finally, the VIKOR method has been applied to determine a compromise solution, and to establish the stability of the results. Therefore, the expert system proposed to select the optimal disinfection alternative is a hybrid method combining the AHP with the Delphi method and the VIKOR technique, which is shown to be appropriate in realistic scenarios where multiple stakeholders are involved in the selection of a sustainable disinfection technique for wastewater reuse projects.

  8. [Research Progress of Vitreous Humor Detection Technique on Estimation of Postmortem Interval].

    Science.gov (United States)

    Duan, W C; Lan, L M; Guo, Y D; Zha, L; Yan, J; Ding, Y J; Cai, J F

    2018-02-01

    Estimation of postmortem interval (PMI) plays a crucial role in forensic study and identification work. Because of the unique anatomy location, vitreous humor is considered to be used for estima- ting PMI, which has aroused interest among scholars, and some researches have been carried out. The detection techniques of vitreous humor are constantly developed and improved which have been gradually applied in forensic science, meanwhile, the study of PMI estimation using vitreous humor is updated rapidly. This paper reviews various techniques and instruments applied to vitreous humor detection, such as ion selective electrode, capillary ion analysis, spectroscopy, chromatography, nano-sensing technology, automatic biochemical analyser, flow cytometer, etc., as well as the related research progress on PMI estimation in recent years. In order to provide a research direction for scholars and promote a more accurate and efficient application in PMI estimation by vitreous humor analysis, some inner problems are also analysed in this paper. Copyright© by the Editorial Department of Journal of Forensic Medicine.

  9. A Comparative Analysis for Selection of Appropriate Mother Wavelet for Detection of Stationary Disturbances

    Science.gov (United States)

    Kamble, Saurabh Prakash; Thawkar, Shashank; Gaikwad, Vinayak G.; Kothari, D. P.

    2017-12-01

    Detection of disturbances is the first step of mitigation. Power electronics plays a crucial role in modern power system which makes system operation efficient but it also bring stationary disturbances in the power system and added impurities to the supply. It happens because of the non-linear loads used in modern day power system which inject disturbances like harmonic disturbances, flickers, sag etc. in power grid. These impurities can damage equipments so it is necessary to mitigate these impurities present in the supply very quickly. So, digital signal processing techniques are incorporated for detection purpose. Signal processing techniques like fast Fourier transform, short-time Fourier transform, Wavelet transform etc. are widely used for the detection of disturbances. Among all, wavelet transform is widely used because of its better detection capabilities. But, which mother wavelet has to use for detection is still a mystery. Depending upon the periodicity, the disturbances are classified as stationary and non-stationary disturbances. This paper presents the importance of selection of mother wavelet for analyzing stationary disturbances using discrete wavelet transform. Signals with stationary disturbances of various frequencies are generated using MATLAB. The analysis of these signals is done using various mother wavelets like Daubechies and bi-orthogonal wavelets and the measured root mean square value of stationary disturbance is obtained. The measured value obtained by discrete wavelet transform is compared with the exact RMS value of the frequency component and the percentage differences are presented which helps to select optimum mother wavelet.

  10. Evaluation of radiographic imaging techniques in lung nodule detection

    International Nuclear Information System (INIS)

    Ho, J.T.; Kruger, R.A.

    1989-01-01

    Dual-energy radiography appears to be the most effective technique to address bone superposition that compromises conventional chest radiography. A dual-energy, single-exposure, film-based technique was compared with a dual-energy, dual-exposure technique and conventional chest radiography in a simulated lung nodule detection study. Observers detected more nodules on images produced by dual-energy techniques than on images produced by conventional chest radiography. The difference between dual-energy and conventional chest radiography is statistically significant and the difference between dual-energy, dual-exposure and single-exposure techniques is statistically insignificant. The single-exposure technique has the potential to replace the dual-exposure technique in future clinical application

  11. A Novel Technique to Detect Code for SAC-OCDMA System

    Science.gov (United States)

    Bharti, Manisha; Kumar, Manoj; Sharma, Ajay K.

    2018-04-01

    The main task of optical code division multiple access (OCDMA) system is the detection of code used by a user in presence of multiple access interference (MAI). In this paper, new method of detection known as XOR subtraction detection for spectral amplitude coding OCDMA (SAC-OCDMA) based on double weight codes has been proposed and presented. As MAI is the main source of performance deterioration in OCDMA system, therefore, SAC technique is used in this paper to eliminate the effect of MAI up to a large extent. A comparative analysis is then made between the proposed scheme and other conventional detection schemes used like complimentary subtraction detection, AND subtraction detection and NAND subtraction detection. The system performance is characterized by Q-factor, BER and received optical power (ROP) with respect to input laser power and fiber length. The theoretical and simulation investigations reveal that the proposed detection technique provides better quality factor, security and received power in comparison to other conventional techniques. The wide opening of eye in case of proposed technique also proves its robustness.

  12. A calixarene-based ion-selective electrode for thallium(I) detection

    International Nuclear Information System (INIS)

    Chester, Ryan; Sohail, Manzar; Ogden, Mark I.; Mocerino, Mauro; Pretsch, Ernö; De Marco, Roland

    2014-01-01

    Highlights: • Tuning of metal binding cavities in thallium(I) calixarene ionophores. • Novel calixarene-based ionophores with improved selectivity for thallium(I). • Sandwich membrane characterization of thallium(I) binding in novel calixarenes. • Improved selectivity and sensitivity with novel thallium(I) calixarene ionophores. • Solid contact ion-selective electrodes for novel thallium(I) calixarene ionophores. - Abstract: Three new calixarene Tl + ionophores have been utilized in Tl + ion-selective electrodes (ISEs) yielding Nernstian response in the concentration range of 10 −2 –10 −6 M TlNO 3 with a non-optimized filling solution in a conventional liquid contact ISE configuration. The complex formation constants (log β IL ) for two of the calixarene derivatives with thallium(I) (i.e. 6.44 and 5.85) were measured using the sandwich membrane technique, with the other ionophore immeasurable due to eventual precipitation of the ionophore during these long-term experiments. Furthermore, the unbiased selectivity coefficients for these ionophores displayed excellent selectivity against Zn 2+ , Ca 2+ , Ba 2+ , Cu 2+ , Cd 2+ and Al 3+ with moderate selectivity against Pb 2+ , Li + , Na + , H + , K + , NH 4 + and Cs + , noting that silver was the only significant interferent with these calixarene-based ionophores. When optimizing the filling solution in a liquid contact ISE, it was possible to achieve a lower limit of detection of approximately 8 nM according to the IUPAC definition. Last, the new ionophores were also evaluated in four solid-contact (SC) designs leading to Nernstian response, with the best response noted with a SC electrode utilizing a gold substrate, a poly(3-octylthiophene) (POT) ion-to-electron transducer and a poly(methyl methacrylate)–poly(decyl methacrylate) (PMMA–PDMA) co-polymer membrane. This electrode exhibited a slope of 58.4 mV decade −1 and a lower detection limit of 30.2 nM. Due to the presence of an undesirable

  13. 46 CFR 108.404 - Selection of fire detection system.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Selection of fire detection system. 108.404 Section 108... DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.404 Selection of fire detection system. (a) If a... space. (b) The fire detection system must be designed to minimize false alarms. ...

  14. Correlations Between Life-Detection Techniques and Implications for Sampling Site Selection in Planetary Analog Missions

    Science.gov (United States)

    Gentry, Diana M.; Amador, Elena S.; Cable, Morgan L.; Chaudry, Nosheen; Cullen, Thomas; Jacobsen, Malene B.; Murukesan, Gayathri; Schwieterman, Edward W.; Stevens, Adam H.; Stockton, Amanda; Tan, George; Yin, Chang; Cullen, David C.; Geppert, Wolf

    2017-10-01

    We conducted an analog sampling expedition under simulated mission constraints to areas dominated by basaltic tephra of the Eldfell and Fimmvörðuháls lava fields (Iceland). Sites were selected to be "homogeneous" at a coarse remote sensing resolution (10-100 m) in apparent color, morphology, moisture, and grain size, with best-effort realism in numbers of locations and replicates. Three different biomarker assays (counting of nucleic-acid-stained cells via fluorescent microscopy, a luciferin/luciferase assay for adenosine triphosphate, and quantitative polymerase chain reaction (qPCR) to detect DNA associated with bacteria, archaea, and fungi) were characterized at four nested spatial scales (1 m, 10 m, 100 m, and >1 km) by using five common metrics for sample site representativeness (sample mean variance, group F tests, pairwise t tests, and the distribution-free rank sum H and u tests). Correlations between all assays were characterized with Spearman's rank test. The bioluminescence assay showed the most variance across the sites, followed by qPCR for bacterial and archaeal DNA; these results could not be considered representative at the finest resolution tested (1 m). Cell concentration and fungal DNA also had significant local variation, but they were homogeneous over scales of >1 km. These results show that the selection of life detection assays and the number, distribution, and location of sampling sites in a low biomass environment with limited a priori characterization can yield both contrasting and complementary results, and that their interdependence must be given due consideration to maximize science return in future biomarker sampling expeditions.

  15. A correlation-based pulse detection technique for gamma-ray/neutron detectors

    International Nuclear Information System (INIS)

    Faisal, Muhammad; Schiffer, Randolph T.; Flaska, Marek; Pozzi, Sara A.; Wentzloff, David D.

    2011-01-01

    We present a correlation-based detection technique that significantly improves the probability of detection for low energy pulses. We propose performing a normalized cross-correlation of the incoming pulse data to a predefined pulse template, and using a threshold correlation value to trigger the detection of a pulse. This technique improves the detector sensitivity by amplifying the signal component of incoming pulse data and rejecting noise. Simulation results for various different templates are presented. Finally, the performance of the correlation-based detection technique is compared to the current state-of-the-art techniques.

  16. Designing of fluorescent and magnetic imprinted polymer for rapid, selective and sensitive detection of imidacloprid via activators regenerated by the electron transfer-atom transfer radical polymerization (ARGET-ATRP) technique

    Science.gov (United States)

    Kumar, Sunil; Karfa, Paramita; Madhuri, Rashmi; Sharma, Prashant K.

    2018-05-01

    In this work, we report on a dual-behavior electrochemical/optical sensor for sensitive determination of Imidacloprid by fluorescent dye (fluorescein, FL) and imprinted polymer modified europium doped superparamagnetic iron oxide nanoparticles (FL@SPIONs@MIP). The imidacloprid (IMD)-imprinted polymer was directly synthesized on the Eu-SPIONs surface via Activators regenerated by the electron transfer-atom transfer radical polymerization (ARGET-ATRP) technique. Preparation, characterization and application of the prepared FL@SPIONs@MIP were systematically investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), fluorescence spectroscopy and electrochemical techniques. The electrochemical experiments exhibited a remarkable selectivity of the prepared sensor towards IMD. Determination of IMD by the square wave stripping voltammetry method represented a wide linear range of 0.059-0.791 μg L-1 with a detection limit of 0.0125 μg L-1. In addition, the fluorescence method shows a linear range of 0.039-0.942 μg L-1 and LOD of 0.0108 μg L-1. The fluorescence property of prepared FL@SPIONs@MIP was used for rapid, on-spot but selective detection of IMD in real samples. The proposed electrode displayed excellent repeatability and long-term stability and was successfully applied for quantitative and trace level determination of IMD in several real samples.

  17. A cement channel-detection technique using the pulsed-neutron log

    International Nuclear Information System (INIS)

    Myers, G.D.

    1991-01-01

    A channel-detection technique has been developed using boron solutions and pulsed-neutron logging (PNL) tools. This technique relies on the extremely high-neutron-absorption cross section that boron exhibits relative to other common elements, including chlorine. The PNL tool is used to detect movement of a boron solution in a log-inject-log procedure. The technique has identified channels in such difficult applications as logging through two strings of pipe and in highly deviated wellbores. Logging procedures are simple and cement channels can be readily identified. The boron solutions are relatively inexpensive, safe to handle, and nonradioactive. Additional PNL information for reservoir performance evaluation is collected simultaneously during channel-detection logging. This paper describes the theory, development, field application, and limitations of this channel-detection logging technique

  18. Molecularly imprinted fluorescent probe based on FRET for selective and sensitive detection of doxorubicin

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhifeng, E-mail: 897061147@qq.com [College of Chemistry and Materials Science, Hengyang Normal University, Key Laboratory of Functional Organometallic Materials of Hunan Province University, Hengyang 421008 (China); Deng, Peihong; Li, Junhua [College of Chemistry and Materials Science, Hengyang Normal University, Key Laboratory of Functional Organometallic Materials of Hunan Province University, Hengyang 421008 (China); Xu, Li [Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou 510642 (China); Tang, Siping [College of Chemistry and Materials Science, Hengyang Normal University, Key Laboratory of Functional Organometallic Materials of Hunan Province University, Hengyang 421008 (China)

    2017-04-15

    Highlights: • FRET-based molecularly imprinted probe for detection of doxorubicin was prepared. • The detection limit of the probe was 13.8 nM for doxorubicin. • The FRET-based probe had a higher selectivity for the template than ordinary MIMs. - Abstract: In this work, a new type of fluorescent probe for detection of doxorubicin has been constructed by the combined use of fluorescence resonance energy transfer (FRET) technology and molecular imprinting technique (MIT). Using doxorubicin as the template, the molecularly imprinted polymer thin layer was fabricated on the surfaces of carbon dot (CD) modified silica by sol-gel polymerization. The excitation energy of the fluorescent donor (CDs) could be transferred to the fluorescent acceptor (doxorubicin). The FRET based fluorescent probe demonstrated high sensitivity and selectivity for doxorubicin. The detection limit was 13.8 nM. The fluorescent probe was successfully applied for detecting doxorubicin in doxorubicin-spiked plasmas with a recovery of 96.8–103.8%, a relative standard deviation (RSD) of 1.3–2.8%. The strategy for construction of FRET-based molecularly imprinted materials developed in this work is very promising for analytical applications.

  19. QUALITY OF SERVICE ORIENTED WEB SERVICE SELECTION: AN EVALUATION OF TECHNIQUES

    Directory of Open Access Journals (Sweden)

    Munjiah Nur Saadah

    2014-08-01

    Full Text Available Abstract In service-oriented computing, web services are the basic foundation that aims to facilitate building of business application in a more flexible and interoperable manner for enterprise collaboration. One of the most promising advantages of web service technology is the possibility of creating added-value services by combining existing ones. A key step for composing and executing services lies in the selection of the individual service to use. Much attention has been devoted to appropriate selection of service functionalities, but also the non-functional properties of the services play a key role. A web service selection technique must take as much as possible the important influencing aspects into account to the selection process in order to minimize the selection efforts. This paper evaluates several web service selection techniques published in literature with the focus on their contributions to web service selection. The evaluation results can be used as a basis for improving web service selection techniques and then simplifying the selection tasks.

  20. An observer study comparing spot imaging regions selected by radiologists and a computer for an automated stereo spot mammography technique

    International Nuclear Information System (INIS)

    Goodsitt, Mitchell M.; Chan, Heang-Ping; Lydick, Justin T.; Gandra, Chaitanya R.; Chen, Nelson G.; Helvie, Mark A.; Bailey, Janet E.; Roubidoux, Marilyn A.; Paramagul, Chintana; Blane, Caroline E.; Sahiner, Berkman; Petrick, Nicholas A.

    2004-01-01

    We are developing an automated stereo spot mammography technique for improved imaging of suspicious dense regions within digital mammograms. The technique entails the acquisition of a full-field digital mammogram, automated detection of a suspicious dense region within that mammogram by a computer aided detection (CAD) program, and acquisition of a stereo pair of images with automated collimation to the suspicious region. The latter stereo spot image is obtained within seconds of the original full-field mammogram, without releasing the compression paddle. The spot image is viewed on a stereo video display. A critical element of this technique is the automated detection of suspicious regions for spot imaging. We performed an observer study to compare the suspicious regions selected by radiologists with those selected by a CAD program developed at the University of Michigan. True regions of interest (TROIs) were separately determined by one of the radiologists who reviewed the original mammograms, biopsy images, and histology results. We compared the radiologist and computer-selected regions of interest (ROIs) to the TROIs. Both the radiologists and the computer were allowed to select up to 3 regions in each of 200 images (mixture of 100 CC and 100 MLO views). We computed overlap indices (the overlap index is defined as the ratio of the area of intersection to the area of interest) to quantify the agreement between the selected regions in each image. The averages of the largest overlap indices per image for the 5 radiologist-to-computer comparisons were directly related to the average number of regions per image traced by the radiologists (about 50% for 1 region/image, 84% for 2 regions/image and 96% for 3 regions/image). The average of the overlap indices with all of the TROIs was 73% for CAD and 76.8%+/-10.0% for the radiologists. This study indicates that the CAD determined ROIs could potentially be useful for a screening technique that includes stereo spot

  1. Nondestructive damage detection and evaluation technique for seismically damaged structures

    Science.gov (United States)

    Adachi, Yukio; Unjoh, Shigeki; Kondoh, Masuo; Ohsumi, Michio

    1999-02-01

    The development of quantitative damage detection and evaluation technique, and damage detection technique for invisible damages of structures are required according to the lessons from the 1995 Hyogo-ken Nanbu earthquake. In this study, two quantitative damage sensing techniques for highway bridge structures are proposed. One method is to measure the change of vibration characteristics of the bridge structure. According to the damage detection test for damaged bridge column by shaking table test, this method can successfully detect the vibration characteristic change caused by damage progress due to increment excitations. The other method is to use self-diagnosis intelligent materials. According to the reinforced concrete beam specimen test, the second method can detect the damage by rupture of intelligent sensors, such as optical fiber or carbon fiber reinforced plastic rod.

  2. Product-selective blot: a technique for measuring enzyme activities in large numbers of samples and in native electrophoresis gels

    International Nuclear Information System (INIS)

    Thompson, G.A.; Davies, H.M.; McDonald, N.

    1985-01-01

    A method termed product-selective blotting has been developed for screening large numbers of samples for enzyme activity. The technique is particularly well suited to detection of enzymes in native electrophoresis gels. The principle of the method was demonstrated by blotting samples from glutaminase or glutamate synthase reactions into an agarose gel embedded with ion-exchange resin under conditions favoring binding of product (glutamate) over substrates and other substances in the reaction mixture. After washes to remove these unbound substances, the product was measured using either fluorometric staining or radiometric techniques. Glutaminase activity in native electrophoresis gels was visualized by a related procedure in which substrates and products from reactions run in the electrophoresis gel were blotted directly into a resin-containing image gel. Considering the selective-binding materials available for use in the image gel, along with the possible detection systems, this method has potentially broad application

  3. The Hydrogen Detection Technique for SG Protection System

    International Nuclear Information System (INIS)

    Lv Mingyu; Pei Zhiyong; Yu Huajin

    2015-01-01

    SG that is pressure boundary between secondary loop and triple loop is the key equipment of fast reactor, in which heat in secondary loop is transferred to water or steam in triple loop. According to data from IAEA, SG is the highest failure rate equipment in fast reactor, especially because of failure of heat transfer tube. In order to monitor failure of heat transfer tube, Fast Reactor Engineering Department develops diffusion type hydrogen detection system, which is used to detect sodium-water reaction in time. This paper firstly introduces experimental research scheme and results of this hydrogen detection technique; Subsequently, it is described that how this technique can be engineering realized in CEFR; Moreover, through developing a series of calibration tests and hydrogen injection tests, it is obtained that sensitivity, response time and calibration curse for hydrogen detection system of CEFR. (author)

  4. Technique detection software for Sparse Matrices

    Directory of Open Access Journals (Sweden)

    KHAN Muhammad Taimoor

    2009-12-01

    Full Text Available Sparse storage formats are techniques for storing and processing the sparse matrix data efficiently. The performance of these storage formats depend upon the distribution of non-zeros, within the matrix in different dimensions. In order to have better results we need a technique that suits best the organization of data in a particular matrix. So the decision of selecting a better technique is the main step towards improving the system's results otherwise the efficiency can be decreased. The purpose of this research is to help identify the best storage format in case of reduced storage size and high processing efficiency for a sparse matrix.

  5. Left and right-hand guitar playing techniques detection

    OpenAIRE

    Reboursière, Loïc; Lähdeoja, Otso; Drugman, Thomas; Dupont, Stéphane; Picard-Limpens, Cécile; Riche, Nicolas

    2012-01-01

    In this paper we present a series of algorithms developed to detect the following guitar playing techniques : bend, hammer-on, pull-off, slide, palm muting and harmonic. Detection of playing techniques can be used to control exter-nal content (i.e audio loops and effects, videos, light events, etc.), as well as to write real-time score or to assist guitar novices in their learning process. The guitar used is a Godin Multiac with an under-saddle RMC hexaphonic piezo pickup (one pickup per stri...

  6. A calixarene-based ion-selective electrode for thallium(I) detection

    Energy Technology Data Exchange (ETDEWEB)

    Chester, Ryan [Nanochemistry Research Institute, Department of Chemistry, Curtin University, GPO Box U1987, Perth, Western Australia 6845 (Australia); Sohail, Manzar [Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Locked Bag 4, Maroochydore DC, Queensland 4556 (Australia); Ogden, Mark I.; Mocerino, Mauro [Nanochemistry Research Institute, Department of Chemistry, Curtin University, GPO Box U1987, Perth, Western Australia 6845 (Australia); Pretsch, Ernö [ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics (IBP), Universitätstrasse 16, CH-8092, Zürich (Switzerland); De Marco, Roland, E-mail: rdemarc1@usc.edu.au [Nanochemistry Research Institute, Department of Chemistry, Curtin University, GPO Box U1987, Perth, Western Australia 6845 (Australia); Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Locked Bag 4, Maroochydore DC, Queensland 4556 (Australia)

    2014-12-03

    Highlights: • Tuning of metal binding cavities in thallium(I) calixarene ionophores. • Novel calixarene-based ionophores with improved selectivity for thallium(I). • Sandwich membrane characterization of thallium(I) binding in novel calixarenes. • Improved selectivity and sensitivity with novel thallium(I) calixarene ionophores. • Solid contact ion-selective electrodes for novel thallium(I) calixarene ionophores. - Abstract: Three new calixarene Tl{sup +} ionophores have been utilized in Tl{sup +} ion-selective electrodes (ISEs) yielding Nernstian response in the concentration range of 10{sup −2}–10{sup −6} M TlNO{sub 3} with a non-optimized filling solution in a conventional liquid contact ISE configuration. The complex formation constants (log β{sub IL}) for two of the calixarene derivatives with thallium(I) (i.e. 6.44 and 5.85) were measured using the sandwich membrane technique, with the other ionophore immeasurable due to eventual precipitation of the ionophore during these long-term experiments. Furthermore, the unbiased selectivity coefficients for these ionophores displayed excellent selectivity against Zn{sup 2+}, Ca{sup 2+}, Ba{sup 2+}, Cu{sup 2+}, Cd{sup 2+} and Al{sup 3+} with moderate selectivity against Pb{sup 2+}, Li{sup +}, Na{sup +}, H{sup +}, K{sup +}, NH{sub 4}{sup +} and Cs{sup +}, noting that silver was the only significant interferent with these calixarene-based ionophores. When optimizing the filling solution in a liquid contact ISE, it was possible to achieve a lower limit of detection of approximately 8 nM according to the IUPAC definition. Last, the new ionophores were also evaluated in four solid-contact (SC) designs leading to Nernstian response, with the best response noted with a SC electrode utilizing a gold substrate, a poly(3-octylthiophene) (POT) ion-to-electron transducer and a poly(methyl methacrylate)–poly(decyl methacrylate) (PMMA–PDMA) co-polymer membrane. This electrode exhibited a slope of 58.4 mV decade

  7. Hybrid feature selection for supporting lightweight intrusion detection systems

    Science.gov (United States)

    Song, Jianglong; Zhao, Wentao; Liu, Qiang; Wang, Xin

    2017-08-01

    Redundant and irrelevant features not only cause high resource consumption but also degrade the performance of Intrusion Detection Systems (IDS), especially when coping with big data. These features slow down the process of training and testing in network traffic classification. Therefore, a hybrid feature selection approach in combination with wrapper and filter selection is designed in this paper to build a lightweight intrusion detection system. Two main phases are involved in this method. The first phase conducts a preliminary search for an optimal subset of features, in which the chi-square feature selection is utilized. The selected set of features from the previous phase is further refined in the second phase in a wrapper manner, in which the Random Forest(RF) is used to guide the selection process and retain an optimized set of features. After that, we build an RF-based detection model and make a fair comparison with other approaches. The experimental results on NSL-KDD datasets show that our approach results are in higher detection accuracy as well as faster training and testing processes.

  8. A Review of Non-Invasive Techniques to Detect and Predict Localised Muscle Fatigue

    Directory of Open Access Journals (Sweden)

    Mohamed R. Al-Mulla

    2011-03-01

    Full Text Available Muscle fatigue is an established area of research and various types of muscle fatigue have been investigated in order to fully understand the condition. This paper gives an overview of the various non-invasive techniques available for use in automated fatigue detection, such as mechanomyography, electromyography, near-infrared spectroscopy and ultrasound for both isometric and non-isometric contractions. Various signal analysis methods are compared by illustrating their applicability in real-time settings. This paper will be of interest to researchers who wish to select the most appropriate methodology for research on muscle fatigue detection or prediction, or for the development of devices that can be used in, e.g., sports scenarios to improve performance or prevent injury. To date, research on localised muscle fatigue focuses mainly on the clinical side. There is very little research carried out on the implementation of detecting/predicting fatigue using an autonomous system, although recent research on automating the process of localised muscle fatigue detection/prediction shows promising results.

  9. A Review of Non-Invasive Techniques to Detect and Predict Localised Muscle Fatigue

    Science.gov (United States)

    Al-Mulla, Mohamed R.; Sepulveda, Francisco; Colley, Martin

    2011-01-01

    Muscle fatigue is an established area of research and various types of muscle fatigue have been investigated in order to fully understand the condition. This paper gives an overview of the various non-invasive techniques available for use in automated fatigue detection, such as mechanomyography, electromyography, near-infrared spectroscopy and ultrasound for both isometric and non-isometric contractions. Various signal analysis methods are compared by illustrating their applicability in real-time settings. This paper will be of interest to researchers who wish to select the most appropriate methodology for research on muscle fatigue detection or prediction, or for the development of devices that can be used in, e.g., sports scenarios to improve performance or prevent injury. To date, research on localised muscle fatigue focuses mainly on the clinical side. There is very little research carried out on the implementation of detecting/predicting fatigue using an autonomous system, although recent research on automating the process of localised muscle fatigue detection/prediction shows promising results. PMID:22163810

  10. A calixarene-based ion-selective electrode for thallium(I) detection.

    Science.gov (United States)

    Chester, Ryan; Sohail, Manzar; Ogden, Mark I; Mocerino, Mauro; Pretsch, Ernö; De Marco, Roland

    2014-12-03

    Three new calixarene Tl(+) ionophores have been utilized in Tl(+) ion-selective electrodes (ISEs) yielding Nernstian response in the concentration range of 10(-2)-10(-6)M TlNO3 with a non-optimized filling solution in a conventional liquid contact ISE configuration. The complex formation constants (logβIL) for two of the calixarene derivatives with thallium(I) (i.e. 6.44 and 5.85) were measured using the sandwich membrane technique, with the other ionophore immeasurable due to eventual precipitation of the ionophore during these long-term experiments. Furthermore, the unbiased selectivity coefficients for these ionophores displayed excellent selectivity against Zn(2+), Ca(2+), Ba(2+), Cu(2+), Cd(2+) and Al(3+) with moderate selectivity against Pb(2+), Li(+), Na(+), H(+), K(+), NH4(+) and Cs(+), noting that silver was the only significant interferent with these calixarene-based ionophores. When optimizing the filling solution in a liquid contact ISE, it was possible to achieve a lower limit of detection of approximately 8nM according to the IUPAC definition. Last, the new ionophores were also evaluated in four solid-contact (SC) designs leading to Nernstian response, with the best response noted with a SC electrode utilizing a gold substrate, a poly(3-octylthiophene) (POT) ion-to-electron transducer and a poly(methyl methacrylate)-poly(decyl methacrylate) (PMMA-PDMA) co-polymer membrane. This electrode exhibited a slope of 58.4mVdecade(-1) and a lower detection limit of 30.2nM. Due to the presence of an undesirable water layer and/or leaching of redox mediator from the graphite redox buffered SC, a coated wire electrode on gold and graphite redox buffered SC yielded grossly inferior detection limits against the polypyrrole/PVC SC and POT/PMMA-PDMA SC ISEs that did not display signs of a water layer or leaching of SC ingredients into the membrane. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Selective detection of antibodies in microstructured polymer optical fibers

    DEFF Research Database (Denmark)

    Jensen, Jesper Bo Damm; Hoiby, P.E.; Emiliyanov, Grigoriy Andreev

    2005-01-01

    was applied to selectively capture either α-streptavidin or α-CRP antibodies inside these air holes. A sensitive and easy-to-use fluorescence method was used for the optical detection. Our results show that mPOF based biosensors can provide reliable and selective antibody detection in ultra small sample......We demonstrate selective detection of fluorophore labeled antibodies from minute samples probed by a sensor layer of complementary biomolecules immobilized inside the air holes of microstructured Polymer Optical Fiber (mPOF). The fiber core is defined by a ring of 6 air holes and a simple procedure...

  12. Selectivity/Specificity Improvement Strategies in Surface-Enhanced Raman Spectroscopy Analysis

    Directory of Open Access Journals (Sweden)

    Feng Wang

    2017-11-01

    Full Text Available Surface-enhanced Raman spectroscopy (SERS is a powerful technique for the discrimination, identification, and potential quantification of certain compounds/organisms. However, its real application is challenging due to the multiple interference from the complicated detection matrix. Therefore, selective/specific detection is crucial for the real application of SERS technique. We summarize in this review five selective/specific detection techniques (chemical reaction, antibody, aptamer, molecularly imprinted polymers and microfluidics, which can be applied for the rapid and reliable selective/specific detection when coupled with SERS technique.

  13. Detection limit calculations for different total reflection techniques

    International Nuclear Information System (INIS)

    Sanchez, H.J.

    2000-01-01

    In this work, theoretical calculations of detection limits for different total-reflection techniques are presented.. Calculations include grazing incidence (TXRF) and gracing exit (GEXRF) conditions. These calculations are compared with detection limits obtained for conventional x-ray fluorescence (XRF). In order to compute detection limits the Shiraiwa and Fujino's model to calculate x-ray fluorescence intensities was used. This model made certain assumptions and approximations to achieve the calculations, specially in the case of the geometrical conditions of the sample, and the incident and takeoff beams. Nevertheless the calculated data of detection limits for conventional XRF and total-reflection XRF show a good agreement with previous results. The model proposed here allows to analyze the different sources of background and the influence of the excitation geometry, which contribute to the understanding of the physical processes involved in the XRF analysis by total reflection. Finally, a comparison between detection limits in total-reflection analysis at grazing incidence and at grazing exit is carried out. Here a good agreement with the theoretical predictions of the reversibility principle is found, showing that detection limits are similar for both techniques. (author)

  14. Comparison of survey techniques on detection of northern flying squirrels

    Science.gov (United States)

    Diggins, Corinne A.; Gilley, L. Michelle; Kelly, Christine A.; Ford, W. Mark

    2016-01-01

    The ability to detect a species is central to the success of monitoring for conservation and management purposes, especially if the species is rare or endangered. Traditional methods, such as live capture, can be labor-intensive, invasive, and produce low detection rates. Technological advances and new approaches provide opportunities to more effectively survey for species both in terms of accuracy and efficiency than previous methods. We conducted a pilot comparison study of a traditional technique (live-trapping) and 2 novel noninvasive techniques (camera-trapping and ultrasonic acoustic surveys) on detection rates of the federally endangered Carolina northern flying squirrel (Glaucomys sabrinus coloratus) in occupied habitat within the Roan Mountain Highlands of North Carolina, USA. In 2015, we established 3 5 × 5 live-trapping grids (6.5 ha) with 4 camera traps and 4 acoustic detectors systematically embedded in each grid. All 3 techniques were used simultaneously during 2 4-day survey periods. We compared techniques by assessing probability of detection (POD), latency to detection (LTD; i.e., no. of survey nights until initial detection), and survey effort. Acoustics had the greatest POD (0.37 ± 0.06 SE), followed by camera traps (0.30 ± 0.06) and live traps (0.01 ± 0.005). Acoustics had a lower LTD than camera traps (P = 0.017), where average LTD was 1.5 nights for acoustics and 3.25 nights for camera traps. Total field effort was greatest with live traps (111.9 hr) followed by acoustics (8.4 hr) and camera traps (9.6 hr), although processing and examination for data of noninvasive techniques made overall effort similar among the 3 methods. This pilot study demonstrated that both noninvasive methods were better rapid-assessment detection techniques for flying squirrels than live traps. However, determining seasonal effects between survey techniques and further development of protocols for both noninvasive techniques is

  15. Detection of selected plant viruses by microarrays

    OpenAIRE

    HRABÁKOVÁ, Lenka

    2013-01-01

    The main aim of this master thesis was the simultaneous detection of four selected plant viruses ? Apple mosaic virus, Plum pox virus, Prunus necrotic ringspot virus and Prune harf virus, by microarrays. The intermediate step in the process of the detection was optimizing of multiplex polymerase chain reaction (PCR).

  16. Detection of Glaucoma Using Image Processing Techniques: A Critique.

    Science.gov (United States)

    Kumar, B Naveen; Chauhan, R P; Dahiya, Nidhi

    2018-01-01

    The primary objective of this article is to present a summary of different types of image processing methods employed for the detection of glaucoma, a serious eye disease. Glaucoma affects the optic nerve in which retinal ganglion cells become dead, and this leads to loss of vision. The principal cause is the increase in intraocular pressure, which occurs in open-angle and angle-closure glaucoma, the two major types affecting the optic nerve. In the early stages of glaucoma, no perceptible symptoms appear. As the disease progresses, vision starts to become hazy, leading to blindness. Therefore, early detection of glaucoma is needed for prevention. Manual analysis of ophthalmic images is fairly time-consuming and accuracy depends on the expertise of the professionals. Automatic analysis of retinal images is an important tool. Automation aids in the detection, diagnosis, and prevention of risks associated with the disease. Fundus images obtained from a fundus camera have been used for the analysis. Requisite pre-processing techniques have been applied to the image and, depending upon the technique, various classifiers have been used to detect glaucoma. The techniques mentioned in the present review have certain advantages and disadvantages. Based on this study, one can determine which technique provides an optimum result.

  17. Detecting selection signatures between Duroc and Duroc synthetic pig populations using high-density SNP chip.

    Science.gov (United States)

    Edea, Z; Hong, J-K; Jung, J-H; Kim, D-W; Kim, Y-M; Kim, E-S; Shin, S S; Jung, Y C; Kim, K-S

    2017-08-01

    The development of high throughput genotyping techniques has facilitated the identification of selection signatures of pigs. The detection of genomic selection signals in a population subjected to differential selection pressures may provide insights into the genes associated with economically and biologically important traits. To identify genomic regions under selection, we genotyped 488 Duroc (D) pigs and 155 D × Korean native pigs (DKNPs) using the Porcine SNP70K BeadChip. By applying the F ST and extended haplotype homozygosity (EHH-Rsb) methods, we detected genes under directional selection associated with growth/stature (DOCK7, PLCB4, HS2ST1, FBP2 and TG), carcass and meat quality (TG, COL14A1, FBXO5, NR3C1, SNX7, ARHGAP26 and DPYD), number of teats (LOC100153159 and LRRC1), pigmentation (MME) and ear morphology (SOX5), which are all mostly near or at fixation. These results could be a basis for investigating the underlying mutations associated with observed phenotypic variation. Validation using genome-wide association analysis would also facilitate the inclusion of some of these markers in genetic evaluation programs. © 2017 Stichting International Foundation for Animal Genetics.

  18. Tyrosinase-Based Biosensors for Selective Dopamine Detection

    Directory of Open Access Journals (Sweden)

    Monica Florescu

    2017-06-01

    Full Text Available A novel tyrosinase-based biosensor was developed for the detection of dopamine (DA. For increased selectivity, gold electrodes were previously modified with cobalt (II-porphyrin (CoP film with electrocatalytic activity, to act both as an electrochemical mediator and an enzyme support, upon which the enzyme tyrosinase (Tyr was cross-linked. Differential pulse voltammetry was used for electrochemical detection and the reduction current of dopamine-quinone was measured as a function of dopamine concentration. Our experiments demonstrated that the presence of CoP improves the selectivity of the electrode towards dopamine in the presence of ascorbic acid (AA, with a linear trend of concentration dependence in the range of 2–30 µM. By optimizing the conditioning parameters, a separation of 130 mV between the peak potentials for ascorbic acid AA and DA was obtained, allowing the selective detection of DA. The biosensor had a sensitivity of 1.22 ± 0.02 µA·cm−2·µM−1 and a detection limit of 0.43 µM. Biosensor performances were tested in the presence of dopamine medication, with satisfactory results in terms of recovery (96%, and relative standard deviation values below 5%. These results confirmed the applicability of the biosensors in real samples such as human urine and blood serum.

  19. THE PHASE REACTOR INDUCTANCE SELECTION TECHNIQUE FOR POWER ACTIVE FILTER

    Directory of Open Access Journals (Sweden)

    D. V. Tugay

    2016-12-01

    Full Text Available Purpose. The goal is to develop technique of the phase inductance power reactors selection for parallel active filter based on the account both low-frequency and high-frequency components of the electromagnetic processes in a power circuit. Methodology. We have applied concepts of the electrical circuits theory, vector analysis, mathematical simulation in Matlab package. Results. We have developed a new technique of the phase reactors inductance selection for parallel power active filter. It allows us to obtain the smallest possible value of THD network current. Originality. We have increased accuracy of methods of the phase reactor inductance selection for power active filter. Practical value. The proposed technique can be used in the design and manufacture of the active power filter for real objects of energy supply.

  20. Diversity Techniques for Single-Carrier Packet Retransmissions over Frequency-Selective Channels

    Directory of Open Access Journals (Sweden)

    Assimi Abdel-Nasser

    2009-01-01

    Full Text Available In data packet communication systems over multipath frequency-selective channels, hybrid automatic repeat request (HARQ protocols are usually used in order to ensure data reliability. For single-carrier packet transmission in slow fading environment, an identical retransmission of the same packet, due to a decoding failure, does not fully exploit the available time diversity in retransmission-based HARQ protocols. In this paper, we compare two transmit diversity techniques, namely, cyclic frequency-shift diversity and bit-interleaving diversity. Both techniques can be integrated in the HARQ scheme in order to improve the performance of the joint detector. Their performance in terms of pairwise error probability is investigated using maximum likelihood detection and decoding. The impact of the channel memory and the modulation order on the performance gain is emphasized. In practice, we use low complexity linear filter-based equalization which can be efficiently implemented in the frequency domain. The use of iterative equalization and decoding is also considered. The performance gain in terms of frame error rate and data throughput is evaluated by numerical simulations.

  1. A Review of Financial Accounting Fraud Detection based on Data Mining Techniques

    Science.gov (United States)

    Sharma, Anuj; Kumar Panigrahi, Prabin

    2012-02-01

    With an upsurge in financial accounting fraud in the current economic scenario experienced, financial accounting fraud detection (FAFD) has become an emerging topic of great importance for academic, research and industries. The failure of internal auditing system of the organization in identifying the accounting frauds has lead to use of specialized procedures to detect financial accounting fraud, collective known as forensic accounting. Data mining techniques are providing great aid in financial accounting fraud detection, since dealing with the large data volumes and complexities of financial data are big challenges for forensic accounting. This paper presents a comprehensive review of the literature on the application of data mining techniques for the detection of financial accounting fraud and proposes a framework for data mining techniques based accounting fraud detection. The systematic and comprehensive literature review of the data mining techniques applicable to financial accounting fraud detection may provide a foundation to future research in this field. The findings of this review show that data mining techniques like logistic models, neural networks, Bayesian belief network, and decision trees have been applied most extensively to provide primary solutions to the problems inherent in the detection and classification of fraudulent data.

  2. Detection of plum pox virus infection in selection plum trees using spectral imaging

    Science.gov (United States)

    Angelova, Liliya; Stoev, Antoniy; Borisova, Ekaterina; Avramov, Latchezar

    2016-01-01

    Plum pox virus (PPV) is among the most studied viral diseases in the world in plants. It is considered to be one of the most devastating diseases of stone fruits in terms of agronomic impact and economic importance. Noninvasive, fast and reliable techniques are required for evaluation of the pathology in selection trees with economic impact. Such advanced tools for PPV detection could be optical techniques as light-induced fluorescence and diffuse reflectance spectroscopies. Specific regions in the electromagnetic spectra have been found to provide information about the physiological stress in plants, and consequently, diseased plants usually exhibit different spectral signature than non-stressed healthy plants in those specific ranges. In this study spectral reflectance and chlorophyll fluorescence were used for the identification of biotic stress caused by the pox virus on plum trees. The spectral responses of healthy and infected leaves from cultivars, which are widespread in Bulgaria were investigated. The two applied techniques revealed statistically significant differences between the spectral data of healthy plum leaves and those infected by PPV in the visible and near-infrared spectral ranges. Their application for biotic stress detection helps in monitoring diseases in plants using the different plant spectral properties in these spectral ranges. The strong relationship between the results indicates the applicability of diffuse reflectance and fluorescence techniques for conducting health condition assessments of vegetation and their importance for plant protection practices.

  3. The 'sniffer-patch' technique for detection of neurotransmitter release.

    Science.gov (United States)

    Allen, T G

    1997-05-01

    A wide variety of techniques have been employed for the detection and measurement of neurotransmitter release from biological preparations. Whilst many of these methods offer impressive levels of sensitivity, few are able to combine sensitivity with the necessary temporal and spatial resolution required to study quantal release from single cells. One detection method that is seeing a revival of interest and has the potential to fill this niche is the so-called 'sniffer-patch' technique. In this article, specific examples of the practical aspects of using this technique are discussed along with the procedures involved in calibrating these biosensors to extend their applications to provide quantitative, in addition to simple qualitative, measurements of quantal transmitter release.

  4. Detection and sizing of cracks using potential drop techniques based on electromagnetic induction

    International Nuclear Information System (INIS)

    Sato, Yasumoto; Kim, Hoon

    2011-01-01

    The potential drop techniques based on electromagnetic induction are classified into induced current focused potential drop (ICFPD) technique and remotely induced current potential drop (RICPD) technique. The possibility of numerical simulation of the techniques is investigated and the applicability of these techniques to the measurement of defects in conductive materials is presented. Finite element analysis (FEA) for the RICPD measurements on the plate specimen containing back wall slits is performed and calculated results by FEA show good agreement with experimental results. Detection limit of the RICPD technique in depth of back wall slits can also be estimated by FEA. Detection and sizing of artificial defects in parent and welded materials are successfully performed by the ICFPD technique. Applicability of these techniques to detection of cracks in field components is investigated, and most of the cracks in the components investigated are successfully detected by the ICFPD and RICPD techniques. (author)

  5. PRIMUS: INFRARED AND X-RAY AGN SELECTION TECHNIQUES AT 0.2 < z < 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Mendez, Alexander J.; Coil, Alison L.; Aird, James; Diamond-Stanic, Aleksandar M. [Center for Astrophysics and Space Sciences, Department of Physics, University of California, 9500 Gilman Dr., La Jolla, San Diego, CA 92093 (United States); Moustakas, John [Department of Physics and Astronomy, Siena College, 515 Loudon Road, Loudonville, NY 12211 (United States); Blanton, Michael R. [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Cool, Richard J. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Eisenstein, Daniel J. [Harvard College Observatory, 60 Garden St., Cambridge, MA 02138 (United States); Wong, Kenneth C. [Steward Observatory, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721 (United States); Zhu Guangtun [Department of Physics and Astronomy, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218 (United States)

    2013-06-10

    We present a study of Spitzer/IRAC and X-ray active galactic nucleus (AGN) selection techniques in order to quantify the overlap, uniqueness, contamination, and completeness of each. We investigate how the overlap and possible contamination of the samples depend on the depth of both the IR and X-ray data. We use Spitzer/IRAC imaging, Chandra and XMM-Newton X-ray imaging, and spectroscopic redshifts from the PRism MUlti-object Survey to construct galaxy and AGN samples at 0.2 < z < 1.2 over 8 deg{sup 2}. We construct samples over a wide range of IRAC flux limits (SWIRE to GOODS depth) and X-ray flux limits (10 ks to 2 Ms). We compare IR-AGN samples defined using both the IRAC color selection of Stern et al. and Donley et al. with X-ray-detected AGN samples. For roughly similar depth IR and X-ray surveys, we find that {approx}75% of IR-selected AGNs are also identified as X-ray AGNs. This fraction increases to {approx}90% when comparing against the deepest X-ray data, indicating that at most {approx}10% of IR-selected AGNs may be heavily obscured. The IR-AGN selection proposed by Stern et al. suffers from contamination by star-forming galaxies at various redshifts when using deeper IR data, though the selection technique works well for shallow IR data. While similar overall, the IR-AGN samples preferentially contain more luminous AGNs, while the X-ray AGN samples identify a wider range of AGN accretion rates including low specific accretion rate AGNs, where the host galaxy light dominates at IR wavelengths. The host galaxy populations of the IR and X-ray AGN samples have similar rest-frame colors and stellar masses; both selections identify AGNs in blue, star-forming and red, quiescent galaxies.

  6. Active neutron technique for detecting attempted special nuclear material diversion

    International Nuclear Information System (INIS)

    Smith, G.W.; Rice, L.G. III.

    1979-01-01

    The identification of special nuclear material (SNM) diversion is necessary if SNM inventory control is to be maintained at nuclear facilities. (Special nuclear materials are defined for this purpose as either 235 U of 239 Pu.) Direct SNM identification by the detection of natural decay or fission radiation is inadequate if the SNM is concealed by appropriate shielding. The active neutron interrogation technique described combines direct SNM identification by delayed fission neutron (DFN) detection with implied SNM detection by the identification of materials capable of shielding SNM from direct detection. This technique is being developed for application in an unattended material/equipment portal through which items such as electronic instruments, packages, tool boxes, etc., will pass. The volume of this portal will be 41-cm wide, 53-cm high and 76-cm deep. The objective of this technique is to identify an attempted diversion of at least 20 grams of SNM with a measurement time of 30 seconds

  7. A spatial approach of magnitude-squared coherence applied to selective attention detection.

    Science.gov (United States)

    Bonato Felix, Leonardo; de Souza Ranaudo, Fernando; D'affonseca Netto, Aluizio; Ferreira Leite Miranda de Sá, Antonio Mauricio

    2014-05-30

    Auditory selective attention is the human ability of actively focusing in a certain sound stimulus while avoiding all other ones. This ability can be used, for example, in behavioral studies and brain-machine interface. In this work we developed an objective method - called Spatial Coherence - to detect the side where a subject is focusing attention to. This method takes into consideration the Magnitude Squared Coherence and the topographic distribution of responses among electroencephalogram electrodes. The individuals were stimulated with amplitude-modulated tones binaurally and were oriented to focus attention to only one of the stimuli. The results indicate a contralateral modulation of ASSR in the attention condition and are in agreement with prior studies. Furthermore, the best combination of electrodes led to a hit rate of 82% for 5.03 commands per minute. Using a similar paradigm, in a recent work, a maximum hit rate of 84.33% was achieved, but with a greater a classification time (20s, i.e. 3 commands per minute). It seems that Spatial Coherence is a useful technique for detecting focus of auditory selective attention. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. A review on creatinine measurement techniques.

    Science.gov (United States)

    Mohabbati-Kalejahi, Elham; Azimirad, Vahid; Bahrami, Manouchehr; Ganbari, Ahmad

    2012-08-15

    This paper reviews the entire recent global tendency for creatinine measurement. Creatinine biosensors involve complex relationships between biology and micro-mechatronics to which the blood is subjected. Comparison between new and old methods shows that new techniques (e.g. Molecular Imprinted Polymers based algorithms) are better than old methods (e.g. Elisa) in terms of stability and linear range. All methods and their details for serum, plasma, urine and blood samples are surveyed. They are categorized into five main algorithms: optical, electrochemical, impedometrical, Ion Selective Field-Effect Transistor (ISFET) based technique and chromatography. Response time, detection limit, linear range and selectivity of reported sensors are discussed. Potentiometric measurement technique has the lowest response time of 4-10 s and the lowest detection limit of 0.28 nmol L(-1) belongs to chromatographic technique. Comparison between various techniques of measurements indicates that the best selectivity belongs to MIP based and chromatographic techniques. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Fundamentals of electrochemical detection techniques for CE and MCE.

    Science.gov (United States)

    Kubán, Pavel; Hauser, Peter C

    2009-10-01

    The electroanalytical techniques of amperometry, conductometry and potentiometry match well with the instrumental simplicity of CE. Indeed, all three detection approaches have been reported for electrophoretic separations. However, the characteristics of the three methods are quite distinct and these are not related to the optical methods more commonly employed. A detailed discussion of the underlying principles of each is given. The issue of possible effects of the separation voltage on the electrochemical detection techniques is considered in depth, and approaches to the elimination of such interferences are also discussed for each case.

  10. Detecting negative selection on recurrent mutations using gene genealogy

    Science.gov (United States)

    2013-01-01

    Background Whether or not a mutant allele in a population is under selection is an important issue in population genetics, and various neutrality tests have been invented so far to detect selection. However, detection of negative selection has been notoriously difficult, partly because negatively selected alleles are usually rare in the population and have little impact on either population dynamics or the shape of the gene genealogy. Recently, through studies of genetic disorders and genome-wide analyses, many structural variations were shown to occur recurrently in the population. Such “recurrent mutations” might be revealed as deleterious by exploiting the signal of negative selection in the gene genealogy enhanced by their recurrence. Results Motivated by the above idea, we devised two new test statistics. One is the total number of mutants at a recurrently mutating locus among sampled sequences, which is tested conditionally on the number of forward mutations mapped on the sequence genealogy. The other is the size of the most common class of identical-by-descent mutants in the sample, again tested conditionally on the number of forward mutations mapped on the sequence genealogy. To examine the performance of these two tests, we simulated recurrently mutated loci each flanked by sites with neutral single nucleotide polymorphisms (SNPs), with no recombination. Using neutral recurrent mutations as null models, we attempted to detect deleterious recurrent mutations. Our analyses demonstrated high powers of our new tests under constant population size, as well as their moderate power to detect selection in expanding populations. We also devised a new maximum parsimony algorithm that, given the states of the sampled sequences at a recurrently mutating locus and an incompletely resolved genealogy, enumerates mutation histories with a minimum number of mutations while partially resolving genealogical relationships when necessary. Conclusions With their

  11. pH tuning of Nafion for selective detection of tryptophan

    International Nuclear Information System (INIS)

    Frith, K.-A.; Limson, J.L.

    2009-01-01

    Selective and sensitive detection of the amino acid tryptophan is of importance in food processing, pharmaceutical formulations and in biological fluids. Electrochemical methods of detection of tryptophan are hampered by sluggish electron transfer kinetics and in complex matrices through overlapping peaks from interferents. This study examines the potential of the cation exchange membrane Nafion to enhance selectivity and sensitivity of this analyte through a seldom explored feature of this membrane: pH manipulation. A detailed examination of the effect of pH on the selectivity afforded by Nafion as a function of the analyte charge is presented. Selective detection of tryptophan and significant increases in sensitivity of its detection was observed in the presence of melatonin, dopamine and other interferents present in a pharmaceutical formulation through manipulation of the pH of the solution. At pH 3.0 at a Nafion-modified electrode, changes in the protonation of melatonin and tryptophan lowered the anodic potential of the analytes in a non-uniform manner increasing the peak resolution and permitting analyses with detection limits of 1.6 ± 0.1 nM and 1.6 ± 0.2 nM, respectively.

  12. pH tuning of Nafion for selective detection of tryptophan

    Energy Technology Data Exchange (ETDEWEB)

    Frith, K.-A. [Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown, 6140 (South Africa); Limson, J.L. [Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown, 6140 (South Africa)], E-mail: j.limson@ru.ac.za

    2009-05-01

    Selective and sensitive detection of the amino acid tryptophan is of importance in food processing, pharmaceutical formulations and in biological fluids. Electrochemical methods of detection of tryptophan are hampered by sluggish electron transfer kinetics and in complex matrices through overlapping peaks from interferents. This study examines the potential of the cation exchange membrane Nafion to enhance selectivity and sensitivity of this analyte through a seldom explored feature of this membrane: pH manipulation. A detailed examination of the effect of pH on the selectivity afforded by Nafion as a function of the analyte charge is presented. Selective detection of tryptophan and significant increases in sensitivity of its detection was observed in the presence of melatonin, dopamine and other interferents present in a pharmaceutical formulation through manipulation of the pH of the solution. At pH 3.0 at a Nafion-modified electrode, changes in the protonation of melatonin and tryptophan lowered the anodic potential of the analytes in a non-uniform manner increasing the peak resolution and permitting analyses with detection limits of 1.6 {+-} 0.1 nM and 1.6 {+-} 0.2 nM, respectively.

  13. Research on ultrasonic flow detection techniques for LWR facilities

    International Nuclear Information System (INIS)

    Kimura, Katsumi; Fukuhara, Hiroaki; Hoshimoto, Kenichi; Matsumoto, Shojiro; Yamawaki, Hisashi; Ito, Hideyuki; Uetake, Ichizo

    1986-01-01

    Aiming at establishing the techniques for inspecting the inside of LWR pressure vessels by ultrasonic flaw detection from the outside of the vessels, the development of a probe suitable to the flaw detection in the thick steel plates with stainless steel overlay and the method of its driving, the examination of the ultrasonic characteristics of austenitic stainless steel welded metal used for overlay, and the improvement of the detectability of defects and the accuracy of measuring dimensions by the application of signal processing techniques to ultrasonic flaw detection were attempted. In order to cope with the impedance lowering accompanying the increase of oscillator size, the oscillator was divided into the rings with equal area, and the driving and signal receiving were carried out individually, in this way, the good results were obtained by summing the signals. It was theoretically proved that it is rational to use longitudinal waves for the flaw detection in overlay. It was found that by displaying the results of flaw detection as pictures using a microcomputer, the capability of defect detection was increased. Also by the signal processing combining Fourier transformation and filtering, noise removal and the heightening of the accuracy of measuring dimensions were able to be attained. (Kako, I.)

  14. Planetary Gearbox Fault Detection Using Vibration Separation Techniques

    Science.gov (United States)

    Lewicki, David G.; LaBerge, Kelsen E.; Ehinger, Ryan T.; Fetty, Jason

    2011-01-01

    Studies were performed to demonstrate the capability to detect planetary gear and bearing faults in helicopter main-rotor transmissions. The work supported the Operations Support and Sustainment (OSST) program with the U.S. Army Aviation Applied Technology Directorate (AATD) and Bell Helicopter Textron. Vibration data from the OH-58C planetary system were collected on a healthy transmission as well as with various seeded-fault components. Planetary fault detection algorithms were used with the collected data to evaluate fault detection effectiveness. Planet gear tooth cracks and spalls were detectable using the vibration separation techniques. Sun gear tooth cracks were not discernibly detectable from the vibration separation process. Sun gear tooth spall defects were detectable. Ring gear tooth cracks were only clearly detectable by accelerometers located near the crack location or directly across from the crack. Enveloping provided an effective method for planet bearing inner- and outer-race spalling fault detection.

  15. Selective weed control using laser techniques

    OpenAIRE

    Marx, Christian; Pastrana-Perez, Julio; Hustedt, Michael; Barcikowski, Stephan; Haferkamp, Heinz; Rath, Thomas

    2012-01-01

    This contribution discusses technical and growth relevant aspects of using laser techniques for weed control. The research on thermal weed control via laser first focused on the interaction of laser beams and weed plants. Due to preliminary studies, a CO2-laser was selected for further studies with regard to the process factors laser energy, laser spot area, coverage of the weeds meristem, weed species (Amaranthus retroflexus), and weed growth stage. Thereby, the laser damage was modeled in o...

  16. Automatic irradiation control by an optical feedback technique for selective retina treatment (SRT) in a rabbit model

    Science.gov (United States)

    Seifert, Eric; Roh, Young-Jung; Fritz, Andreas; Park, Young Gun; Kang, Seungbum; Theisen-Kunde, Dirk; Brinkmann, Ralf

    2013-06-01

    Selective Retina Therapy (SRT) targets the Retinal Pigment Epithelium (RPE) without effecting neighboring layers as the photoreceptors or the choroid. SRT related RPE defects are ophthalmoscopically invisible. Owing to this invisibility and the variation of the threshold radiant exposure for RPE damage the treating physician does not know whether the treatment was successful or not. Thus measurement techniques enabling a correct dosing are a demanded element in SRT devices. The acquired signal can be used for monitoring or automatic irradiation control. Existing monitoring techniques are based on the detection of micro-bubbles. These bubbles are the origin of RPE cell damage for pulse durations in the ns and μs time regime 5μs. The detection can be performed by optical or acoustical approaches. Monitoring based on an acoustical approach has already been used to study the beneficial effects of SRT on diabetic macula edema and central serous retinopathy. We have developed a first real time feedback technique able to detect micro-bubble induced characteristics in the backscattered laser light fast enough to cease the laser irradiation within a burst. Therefore the laser energy within a burst of at most 30 pulses is increased linearly with every pulse. The laser irradiation is ceased as soon as micro-bubbles are detected. With this automatic approach it was possible to observe invisible lesions, an intact photoreceptor layer and a reconstruction of the RPE within one week.

  17. Changepoint detection techniques for VoIP traffic

    NARCIS (Netherlands)

    Mandjes, M.; Zuraniewski, P.W.

    2013-01-01

    The control of communication networks critically relies on procedures capable of detecting unanticipated load changes. In this chapter we present an overview of such techniques, in a setting in which each connection consumes roughly the same amount of bandwidth (with VoIP as a leading example). For

  18. Changepoint Detection Techniques for VoIP Traffic

    NARCIS (Netherlands)

    Mandjes, M.; Żuraniewski, P.; Biersack, E.; Callegari, C.; Matijasevic, M.

    2013-01-01

    The control of communication networks critically relies on procedures capable of detecting unanticipated load changes. In this chapter we present an overview of such techniques, in a setting in which each connection consumes roughly the same amount of bandwidth (with VoIP as a leading example). For

  19. Features of application of test techniques in selection and certification of personnel

    Directory of Open Access Journals (Sweden)

    Levina E.V.

    2017-04-01

    Full Text Available this article investigates the problem of use of test techniques in the course of selection and certification of personnel, and also for detection of features of formation of social and psychological climate in small groups and labor collectives. The group dynamics including individual preferences of players in the choice of strategy of behavior in a conflict situation in definition of the most acceptable social role, in identification of the most constructive and effective type of the administrative decision has the special importance. The author of the article offers a set of the test methods allowing to define social and psychological type of the individual at a stage of staff recruitment and to reveal its individual behavioral preferences that can structurally influence on team work.

  20. CHANGE DETECTION VIA SELECTIVE GUIDED CONTRASTING FILTERS

    Directory of Open Access Journals (Sweden)

    Y. V. Vizilter

    2017-05-01

    Full Text Available Change detection scheme based on guided contrasting was previously proposed. Guided contrasting filter takes two images (test and sample as input and forms the output as filtered version of test image. Such filter preserves the similar details and smooths the non-similar details of test image with respect to sample image. Due to this the difference between test image and its filtered version (difference map could be a basis for robust change detection. Guided contrasting is performed in two steps: at the first step some smoothing operator (SO is applied for elimination of test image details; at the second step all matched details are restored with local contrast proportional to the value of some local similarity coefficient (LSC. The guided contrasting filter was proposed based on local average smoothing as SO and local linear correlation as LSC. In this paper we propose and implement new set of selective guided contrasting filters based on different combinations of various SO and thresholded LSC. Linear average and Gaussian smoothing, nonlinear median filtering, morphological opening and closing are considered as SO. Local linear correlation coefficient, morphological correlation coefficient (MCC, mutual information, mean square MCC and geometrical correlation coefficients are applied as LSC. Thresholding of LSC allows operating with non-normalized LSC and enhancing the selective properties of guided contrasting filters: details are either totally recovered or not recovered at all after the smoothing. These different guided contrasting filters are tested as a part of previously proposed change detection pipeline, which contains following stages: guided contrasting filtering on image pyramid, calculation of difference map, binarization, extraction of change proposals and testing change proposals using local MCC. Experiments on real and simulated image bases demonstrate the applicability of all proposed selective guided contrasting filters. All

  1. Computational Intelligence based techniques for islanding detection of distributed generation in distribution network: A review

    International Nuclear Information System (INIS)

    Laghari, J.A.; Mokhlis, H.; Karimi, M.; Bakar, A.H.A.; Mohamad, Hasmaini

    2014-01-01

    Highlights: • Unintentional and intentional islanding, their causes, and solutions are presented. • Remote, passive, active and hybrid islanding detection techniques are discussed. • The limitation of these techniques in accurately detect islanding are discussed. • Computational intelligence techniques ability in detecting islanding is discussed. • Review of ANN, fuzzy logic control, ANFIS, Decision tree techniques is provided. - Abstract: Accurate and fast islanding detection of distributed generation is highly important for its successful operation in distribution networks. Up to now, various islanding detection technique based on communication, passive, active and hybrid methods have been proposed. However, each technique suffers from certain demerits that cause inaccuracies in islanding detection. Computational intelligence based techniques, due to their robustness and flexibility in dealing with complex nonlinear systems, is an option that might solve this problem. This paper aims to provide a comprehensive review of computational intelligence based techniques applied for islanding detection of distributed generation. Moreover, the paper compares the accuracies of computational intelligence based techniques over existing techniques to provide a handful of information for industries and utility researchers to determine the best method for their respective system

  2. Mining for diagnostic information in body surface potential maps: A comparison of feature selection techniques

    Directory of Open Access Journals (Sweden)

    McCullagh Paul J

    2005-09-01

    Full Text Available Abstract Background In body surface potential mapping, increased spatial sampling is used to allow more accurate detection of a cardiac abnormality. Although diagnostically superior to more conventional electrocardiographic techniques, the perceived complexity of the Body Surface Potential Map (BSPM acquisition process has prohibited its acceptance in clinical practice. For this reason there is an interest in striking a compromise between the minimum number of electrocardiographic recording sites required to sample the maximum electrocardiographic information. Methods In the current study, several techniques widely used in the domains of data mining and knowledge discovery have been employed to mine for diagnostic information in 192 lead BSPMs. In particular, the Single Variable Classifier (SVC based filter and Sequential Forward Selection (SFS based wrapper approaches to feature selection have been implemented and evaluated. Using a set of recordings from 116 subjects, the diagnostic ability of subsets of 3, 6, 9, 12, 24 and 32 electrocardiographic recording sites have been evaluated based on their ability to correctly asses the presence or absence of Myocardial Infarction (MI. Results It was observed that the wrapper approach, using sequential forward selection and a 5 nearest neighbour classifier, was capable of choosing a set of 24 recording sites that could correctly classify 82.8% of BSPMs. Although the filter method performed slightly less favourably, the performance was comparable with a classification accuracy of 79.3%. In addition, experiments were conducted to show how (a features chosen using the wrapper approach were specific to the classifier used in the selection model, and (b lead subsets chosen were not necessarily unique. Conclusion It was concluded that both the filter and wrapper approaches adopted were suitable for guiding the choice of recording sites useful for determining the presence of MI. It should be noted however

  3. [Wavelength Selection in Hemolytic Evaluation Systems with Spectrophotometry Detection].

    Science.gov (United States)

    Zhang, Hong; Su, Baochang; Ye, Xunda; Luo, Man

    2016-04-01

    Spectrophotometry is a simple hemolytic evaluation method commonly used in new drugs,biomedical materials and blood products.It is for the quantitative analysis of the characteristic absorption peaks of hemoglobin.Therefore,it is essential to select the correct detection wavelength when the evaluation system has influences on the conformation of hemoglobin.Based on the study of changes in the characteristic peaks over time of the hemolysis supernatant in four systems,namely,cell culture medium,phosphate buffered saline(PBS),physiological saline and banked blood preservation solution,using continuous wavelength scanning,the selections of detection wavelength were proposed as follows.In the cell culture medium system,the wavelength of 415 nm should be selected within 4h;,near 408 nm should be selected within 4~72h.In PBS system,within 4h,541 nm,577nm or 415 nm should be selected;4~72h,541 nm,577nm or near 406 nm should be selected.In physiological saline system,within 4h,414 nm should be selected;4~72h,near 405 nm should be selected;within 12 h,541nm or 577 nm could also be selected.In banked blood preservation solution system,within 72 h,415nm,540 nm or 576 nm should be selected.

  4. Multi-Layer Approach for the Detection of Selective Forwarding Attacks.

    Science.gov (United States)

    Alajmi, Naser; Elleithy, Khaled

    2015-11-19

    Security breaches are a major threat in wireless sensor networks (WSNs). WSNs are increasingly used due to their broad range of important applications in both military and civilian domains. WSNs are prone to several types of security attacks. Sensor nodes have limited capacities and are often deployed in dangerous locations; therefore, they are vulnerable to different types of attacks, including wormhole, sinkhole, and selective forwarding attacks. Security attacks are classified as data traffic and routing attacks. These security attacks could affect the most significant applications of WSNs, namely, military surveillance, traffic monitoring, and healthcare. Therefore, there are different approaches to detecting security attacks on the network layer in WSNs. Reliability, energy efficiency, and scalability are strong constraints on sensor nodes that affect the security of WSNs. Because sensor nodes have limited capabilities in most of these areas, selective forwarding attacks cannot be easily detected in networks. In this paper, we propose an approach to selective forwarding detection (SFD). The approach has three layers: MAC pool IDs, rule-based processing, and anomaly detection. It maintains the safety of data transmission between a source node and base station while detecting selective forwarding attacks. Furthermore, the approach is reliable, energy efficient, and scalable.

  5. Multi-Layer Approach for the Detection of Selective Forwarding Attacks

    Directory of Open Access Journals (Sweden)

    Naser Alajmi

    2015-11-01

    Full Text Available Security breaches are a major threat in wireless sensor networks (WSNs. WSNs are increasingly used due to their broad range of important applications in both military and civilian domains. WSNs are prone to several types of security attacks. Sensor nodes have limited capacities and are often deployed in dangerous locations; therefore, they are vulnerable to different types of attacks, including wormhole, sinkhole, and selective forwarding attacks. Security attacks are classified as data traffic and routing attacks. These security attacks could affect the most significant applications of WSNs, namely, military surveillance, traffic monitoring, and healthcare. Therefore, there are different approaches to detecting security attacks on the network layer in WSNs. Reliability, energy efficiency, and scalability are strong constraints on sensor nodes that affect the security of WSNs. Because sensor nodes have limited capabilities in most of these areas, selective forwarding attacks cannot be easily detected in networks. In this paper, we propose an approach to selective forwarding detection (SFD. The approach has three layers: MAC pool IDs, rule-based processing, and anomaly detection. It maintains the safety of data transmission between a source node and base station while detecting selective forwarding attacks. Furthermore, the approach is reliable, energy efficient, and scalable.

  6. Selection of an optimal neural network architecture for computer-aided detection of microcalcifications - Comparison of automated optimization techniques

    International Nuclear Information System (INIS)

    Gurcan, Metin N.; Sahiner, Berkman; Chan Heangping; Hadjiiski, Lubomir; Petrick, Nicholas

    2001-01-01

    Many computer-aided diagnosis (CAD) systems use neural networks (NNs) for either detection or classification of abnormalities. Currently, most NNs are 'optimized' by manual search in a very limited parameter space. In this work, we evaluated the use of automated optimization methods for selecting an optimal convolution neural network (CNN) architecture. Three automated methods, the steepest descent (SD), the simulated annealing (SA), and the genetic algorithm (GA), were compared. We used as an example the CNN that classifies true and false microcalcifications detected on digitized mammograms by a prescreening algorithm. Four parameters of the CNN architecture were considered for optimization, the numbers of node groups and the filter kernel sizes in the first and second hidden layers, resulting in a search space of 432 possible architectures. The area A z under the receiver operating characteristic (ROC) curve was used to design a cost function. The SA experiments were conducted with four different annealing schedules. Three different parent selection methods were compared for the GA experiments. An available data set was split into two groups with approximately equal number of samples. By using the two groups alternately for training and testing, two different cost surfaces were evaluated. For the first cost surface, the SD method was trapped in a local minimum 91% (392/432) of the time. The SA using the Boltzman schedule selected the best architecture after evaluating, on average, 167 architectures. The GA achieved its best performance with linearly scaled roulette-wheel parent selection; however, it evaluated 391 different architectures, on average, to find the best one. The second cost surface contained no local minimum. For this surface, a simple SD algorithm could quickly find the global minimum, but the SA with the very fast reannealing schedule was still the most efficient. The same SA scheme, however, was trapped in a local minimum on the first cost

  7. An energy kurtosis demodulation technique for signal denoising and bearing fault detection

    International Nuclear Information System (INIS)

    Wang, Wilson; Lee, Hewen

    2013-01-01

    Rolling element bearings are commonly used in rotary machinery. Reliable bearing fault detection techniques are very useful in industries for predictive maintenance operations. Bearing fault detection still remains a very challenging task especially when defects occur on rotating bearing components because the fault-related features are non-stationary in nature. In this work, an energy kurtosis demodulation (EKD) technique is proposed for bearing fault detection especially for non-stationary signature analysis. The proposed EKD technique firstly denoises the signal by using a maximum kurtosis deconvolution filter to counteract the effect of signal transmission path so as to highlight defect-associated impulses. Next, the denoised signal is modulated over several frequency bands; a novel signature integration strategy is proposed to enhance feature characteristics. The effectiveness of the proposed EKD fault detection technique is verified by a series of experimental tests corresponding to different bearing conditions. (paper)

  8. Colorimetric biomimetic sensor systems based on molecularly imprinted polymer membranes for highly-selective detection of phenol in environmental samples

    Directory of Open Access Journals (Sweden)

    Sergeyeva T. A.

    2014-05-01

    Full Text Available Aim. Development of an easy-to-use colorimetric sensor system for fast and accurate detection of phenol in envi- ronmental samples. Methods. Technique of molecular imprinting, method of in situ polymerization of molecularly imprinted polymer membranes. Results. The proposed sensor is based on free-standing molecularly imprinted polymer (MIP membranes, synthesized by in situ polymerization, and having in their structure artificial binding sites capable of selective phenol recognition. The quantitative detection of phenol, selectively adsorbed by the MIP membranes, is based on its reaction with 4-aminoantipyrine, which gives a pink-colored product. The intensity of staining of the MIP membrane is proportional to phenol concentration in the analyzed sample. Phenol can be detected within the range 50 nM–10 mM with limit of detection 50 nM, which corresponds to the concentrations that have to be detected in natural and waste waters in accordance with environmental protection standards. Stability of the MIP-membrane-based sensors was assessed during 12 months storage at room temperature. Conclusions. The sensor system provides highly-selective and sensitive detection of phenol in both mo- del and real (drinking, natural, and waste water samples. As compared to traditional methods of phenol detection, the proposed system is characterized by simplicity of operation and can be used in non-laboratory conditions.

  9. Fluorescence hyperspectral imaging technique for foreign substance detection on fresh-cut lettuce.

    Science.gov (United States)

    Mo, Changyeun; Kim, Giyoung; Kim, Moon S; Lim, Jongguk; Cho, Hyunjeong; Barnaby, Jinyoung Yang; Cho, Byoung-Kwan

    2017-09-01

    Non-destructive methods based on fluorescence hyperspectral imaging (HSI) techniques were developed to detect worms on fresh-cut lettuce. The optimal wavebands for detecting the worms were investigated using the one-way ANOVA and correlation analyses. The worm detection imaging algorithms, RSI-I (492-626)/492 , provided a prediction accuracy of 99.0%. The fluorescence HSI techniques indicated that the spectral images with a pixel size of 1 × 1 mm had the best classification accuracy for worms. The overall results demonstrate that fluorescence HSI techniques have the potential to detect worms on fresh-cut lettuce. In the future, we will focus on developing a multi-spectral imaging system to detect foreign substances such as worms, slugs and earthworms on fresh-cut lettuce. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. Data re-arranging techniques leading to proper variable selections in high energy physics

    Science.gov (United States)

    Kůs, Václav; Bouř, Petr

    2017-12-01

    We introduce a new data based approach to homogeneity testing and variable selection carried out in high energy physics experiments, where one of the basic tasks is to test the homogeneity of weighted samples, mainly the Monte Carlo simulations (weighted) and real data measurements (unweighted). This technique is called ’data re-arranging’ and it enables variable selection performed by means of the classical statistical homogeneity tests such as Kolmogorov-Smirnov, Anderson-Darling, or Pearson’s chi-square divergence test. P-values of our variants of homogeneity tests are investigated and the empirical verification through 46 dimensional high energy particle physics data sets is accomplished under newly proposed (equiprobable) quantile binning. Particularly, the procedure of homogeneity testing is applied to re-arranged Monte Carlo samples and real DATA sets measured at the particle accelerator Tevatron in Fermilab at DØ experiment originating from top-antitop quark pair production in two decay channels (electron, muon) with 2, 3, or 4+ jets detected. Finally, the variable selections in the electron and muon channels induced by the re-arranging procedure for homogeneity testing are provided for Tevatron top-antitop quark data sets.

  11. Junction detection and pathway selection

    Science.gov (United States)

    Peck, Alex N.; Lim, Willie Y.; Breul, Harry T.

    1992-02-01

    The ability to detect junctions and make choices among the possible pathways is important for autonomous navigation. In our script-based navigation approach where a journey is specified as a script of high-level instructions, actions are frequently referenced to junctions, e.g., `turn left at the intersection.' In order for the robot to carry out these kind of instructions, it must be able (1) to detect an intersection (i.e., an intersection of pathways), (2) know that there are several possible pathways it can take, and (3) pick the pathway consistent with the high level instruction. In this paper we describe our implementation of the ability to detect junctions in an indoor environment, such as corners, T-junctions and intersections, using sonar. Our approach uses a combination of partial scan of the local environment and recognition of sonar signatures of certain features of the junctions. In the case where the environment is known, we use additional sensor information (such as compass bearings) to help recognize the specific junction. In general, once a junction is detected and its type known, the number of possible pathways can be deduced and the correct pathway selected. Then the appropriate behavior for negotiating the junction is activated.

  12.  Methods of detection of selected respiratory viruses

    Directory of Open Access Journals (Sweden)

    Ilona Stefańska

    2012-06-01

    Full Text Available  Respiratory viruses contribute to significant morbidity and mortality in healthy and immunocompromised individuals and are considered as a significant economic burden in the healthcare system. The similar clinical symptoms in the course of different viral and bacterial respiratory infections make the proper diagnosis difficult. An accurate and prompt diagnostics is crucial for infection control and patient management decisions, especially regarding the use of antibacterial or antiviral therapy and hospitalization. Moreover, the identification of the causative agent eliminates inappropriate use of antibiotics and may reduce the cost of healthcare.A wide variety of diagnostic procedures is applied for the detection of viral agents responsible for respiratory tract infections. For many years, the viral antigen detection and standard isolation technique in cell culture was the main method used in routine diagnostics. However, in recent years the nucleic acid amplification techniques have become widely used and have significantly improved the sensitivity of viral detection in clinical specimens. Molecular diagnostic assays have contributed to revealing high rates of co-infection (multiplex reactions and allow identification of agents that are difficult to culture.This paper discusses a number of technical aspects of the current most commonly used techniques, their general principles, main benefits and diagnostic value, but also some of their limitations.

  13. Applying Information Retrieval Techniques to Detect Duplicates and to Rank References in the Preliminary Phases of Systematic Literature Reviews

    Directory of Open Access Journals (Sweden)

    Ramon Abilio

    2015-08-01

    Full Text Available Systematic Literature Review (SLR is a means to synthesize relevant and high quality studies related to a specific topic or research questions. In the Primary Selection stage of an SLR, the selection of studies is usually performed manually by reading title, abstract and keywords of each study. In the last years, the number of published scientific studies has grown increasing the effort to perform this sort of reviews. In this paper, we proposed strategies to detect non-papers and duplicated references in results exported by search engines, and strategies to rank the references in decreasing order of importance for an SLR, regarding the terms in the search string. These strategies are based on Information Retrieval techniques. We implemented the strategies and carried out an experimental evaluation of their applicability using two real datasets. As results, the strategy to detect non-papers presented 100% of precision and 50% of recall; the strategy to detect duplicates detected more duplicates than the manual inspection; and one of the strategies to rank relevant references presented 50% of precision and 80% of recall. Therefore, the results show that the proposed strategies can minimize the effort in the Primary Selection stage of an SLR.

  14. Intrusion detection model using fusion of chi-square feature selection and multi class SVM

    Directory of Open Access Journals (Sweden)

    Ikram Sumaiya Thaseen

    2017-10-01

    Full Text Available Intrusion detection is a promising area of research in the domain of security with the rapid development of internet in everyday life. Many intrusion detection systems (IDS employ a sole classifier algorithm for classifying network traffic as normal or abnormal. Due to the large amount of data, these sole classifier models fail to achieve a high attack detection rate with reduced false alarm rate. However by applying dimensionality reduction, data can be efficiently reduced to an optimal set of attributes without loss of information and then classified accurately using a multi class modeling technique for identifying the different network attacks. In this paper, we propose an intrusion detection model using chi-square feature selection and multi class support vector machine (SVM. A parameter tuning technique is adopted for optimization of Radial Basis Function kernel parameter namely gamma represented by ‘ϒ’ and over fitting constant ‘C’. These are the two important parameters required for the SVM model. The main idea behind this model is to construct a multi class SVM which has not been adopted for IDS so far to decrease the training and testing time and increase the individual classification accuracy of the network attacks. The investigational results on NSL-KDD dataset which is an enhanced version of KDDCup 1999 dataset shows that our proposed approach results in a better detection rate and reduced false alarm rate. An experimentation on the computational time required for training and testing is also carried out for usage in time critical applications.

  15. From Pacemaker to Wearable: Techniques for ECG Detection Systems.

    Science.gov (United States)

    Kumar, Ashish; Komaragiri, Rama; Kumar, Manjeet

    2018-01-11

    With the alarming rise in the deaths due to cardiovascular diseases (CVD), present medical research scenario places notable importance on techniques and methods to detect CVDs. As adduced by world health organization, technological proceeds in the field of cardiac function assessment have become the nucleus and heart of all leading research studies in CVDs in which electrocardiogram (ECG) analysis is the most functional and convenient tool used to test the range of heart-related irregularities. Most of the approaches present in the literature of ECG signal analysis consider noise removal, rhythm-based analysis, and heartbeat detection to improve the performance of a cardiac pacemaker. Advancements achieved in the field of ECG segments detection and beat classification have a limited evaluation and still require clinical approvals. In this paper, approaches on techniques to implement on-chip ECG detector for a cardiac pacemaker system are discussed. Moreover, different challenges regarding the ECG signal morphology analysis deriving from medical literature is extensively reviewed. It is found that robustness to noise, wavelet parameter choice, numerical efficiency, and detection performance are essential performance indicators required by a state-of-the-art ECG detector. Furthermore, many algorithms described in the existing literature are not verified using ECG data from the standard databases. Some ECG detection algorithms show very high detection performance with the total number of detected QRS complexes. However, the high detection performance of the algorithm is verified using only a few datasets. Finally, gaps in current advancements and testing are identified, and the primary challenge remains to be implementing bullseye test for morphology analysis evaluation.

  16. A Simple Ultrasonic Experiment Using a Phase Shift Detection Technique.

    Science.gov (United States)

    Yunus, W. Mahmood Mat; Ahmad, Maulana

    1996-01-01

    Describes a simple ultrasonic experiment that can be used to measure the purity of liquid samples by detecting variations in the velocity of sound. Uses a phase shift detection technique that incorporates the use of logic gates and a piezoelectric transducer. (JRH)

  17. Fast Selective Detection of Pyocyanin Using Cyclic Voltammetry

    Science.gov (United States)

    Alatraktchi, Fatima AlZahra’a; Breum Andersen, Sandra; Krogh Johansen, Helle; Molin, Søren; Svendsen, Winnie E.

    2016-01-01

    Pyocyanin is a virulence factor uniquely produced by the pathogen Pseudomonas aeruginosa. The fast and selective detection of pyocyanin in clinical samples can reveal important information about the presence of this microorganism in patients. Electrochemical sensing of the redox-active pyocyanin is a route to directly quantify pyocyanin in real time and in situ in hospitals and clinics. The selective quantification of pyocyanin is, however, limited by other redox-active compounds existing in human fluids and by other metabolites produced by pathogenic bacteria. Here we present a direct selective method to detect pyocyanin in a complex electroactive environment using commercially available electrodes. It is shown that cyclic voltammetry measurements between −1.0 V to 1.0 V reveal a potential detection window of pyocyanin of 0.58–0.82 V that is unaffected by other redox-active interferents. The linear quantification of pyocyanin has an R2 value of 0.991 across the clinically relevant concentration range of 2–100 µM. The proposed method was tested on human saliva showing a standard deviation of 2.5% ± 1% (n = 5) from the known added pyocyanin concentration to the samples. This inexpensive procedure is suggested for clinical use in monitoring the presence and state of P. aeruginosa infection in patients. PMID:27007376

  18. Review on Malware and Malware Detection ‎Using Data Mining Techniques

    Directory of Open Access Journals (Sweden)

    Wesam S Bhaya

    2017-11-01

    Full Text Available Malicious software is any type of software or codes which hooks some: private information, data from the computer system, computer operations or(and merely just to do malicious goals of the author on the computer system, without permission of the computer users. (The short abbreviation of malicious software is Malware. However, the detection of malware has become one of biggest issues in the computer security field because of the current communication infrastructures are vulnerable to penetration from many types of malware infection strategies and attacks.  Moreover, malwares are variant and diverse in volume and types and that strictly explode the effectiveness of traditional defense methods like signature approach, which is unable to detect a new malware. However, this vulnerability will lead to a successful computer system penetration (and attack as well as success of more advanced attacks like distributed denial of service (DDoS attack. Data mining methods can be used to overcome limitation of signature-based techniques to detect the zero-day malware. This paper provides an overview of malware and malware detection system using modern techniques such as techniques of data mining approach to detect known and unknown malware samples.

  19. Improved detection limits for phthalates by selective solid-phase micro-extraction

    KAUST Repository

    Zia, Asif I.

    2016-03-30

    Presented research reports on an improved method and enhanced limits of detection for phthalates; a hazardous additive used in the production of plastics by solid-phase micro-extraction (SPME) polymer in comparison to molecularly imprinted solid-phase extraction (MISPE) polymer. The polymers were functionalized on an interdigital capacitive sensor for selective binding of phthalate molecules from a complex mixture of chemicals. Both polymers owned predetermined selectivity by formation of valuable molecular recognition sites for Bis (2-ethylhexyl) phthalate (DEHP). Polymers were immobilized on planar electrochemical sensor fabricated on a single crystal silicon substrate with 500 nm sputtered gold electrodes fabricated using MEMS fabrication techniques. Impedance spectra were obtained using electrochemical impedance spectroscopy (EIS) to determine sample conductance for evaluation of phthalate concentration in the spiked sample solutions with various phthalate concentrations. Experimental results revealed that the ability of SPME polymer to adsorb target molecules on the sensing surface is better than that of MISPE polymer for phthalates in the sensing system. Testing the extracted samples using high performance liquid chromatography with photodiode array detectors validated the results.

  20. Food sensing: selection and characterization of DNA aptamers to Alicyclobacillus spores for trapping and detection from orange juice.

    Science.gov (United States)

    Hünniger, Tim; Fischer, Christin; Wessels, Hauke; Hoffmann, Antonia; Paschke-Kratzin, Angelika; Haase, Ilka; Fischer, Markus

    2015-03-04

    The quality of the beverage industry's products has to be constantly monitored to fulfill consumers' high expectations. The thermo-acidophilic Gram-positive Alicyclobacillus spp. are not pathogenic, but their heat-resistant endospores can survive juice-processing conditions and have become a major economic concern for the fruit juice industry. Current detection methods rely on cultivation, isolation, and organism identification, which can take up to a week, resulting in economic loss. This work presents the selection and identification of DNA aptamers targeting Alicyclobacillus spores by spore-SELEX (systematic evolution of ligands by exponential enrichment) in orange-juice-simulating buffer. The selection process was verified by various techniques, including flow cytometric binding assays, radioactive binding assays, and agarose gel electrophoresis. The subsequent aptamer characterization included the determination of dissociations constants and selectivity by different techniques, such as surface plasmon resonance spectroscopy and fluorescence microscopy. In summary, 10 different aptamers with an affinity to Alicyclobacillus spp. have been developed, analyzed, and characterized in terms of affinity and specificity.

  1. Detection of Fundus Lesions Using Classifier Selection

    Science.gov (United States)

    Nagayoshi, Hiroto; Hiramatsu, Yoshitaka; Sako, Hiroshi; Himaga, Mitsutoshi; Kato, Satoshi

    A system for detecting fundus lesions caused by diabetic retinopathy from fundus images is being developed. The system can screen the images in advance in order to reduce the inspection workload on doctors. One of the difficulties that must be addressed in completing this system is how to remove false positives (which tend to arise near blood vessels) without decreasing the detection rate of lesions in other areas. To overcome this difficulty, we developed classifier selection according to the position of a candidate lesion, and we introduced new features that can distinguish true lesions from false positives. A system incorporating classifier selection and these new features was tested in experiments using 55 fundus images with some lesions and 223 images without lesions. The results of the experiments confirm the effectiveness of the proposed system, namely, degrees of sensitivity and specificity of 98% and 81%, respectively.

  2. Reducing wrong patient selection errors: exploring the design space of user interface techniques.

    Science.gov (United States)

    Sopan, Awalin; Plaisant, Catherine; Powsner, Seth; Shneiderman, Ben

    2014-01-01

    Wrong patient selection errors are a major issue for patient safety; from ordering medication to performing surgery, the stakes are high. Widespread adoption of Electronic Health Record (EHR) and Computerized Provider Order Entry (CPOE) systems makes patient selection using a computer screen a frequent task for clinicians. Careful design of the user interface can help mitigate the problem by helping providers recall their patients' identities, accurately select their names, and spot errors before orders are submitted. We propose a catalog of twenty seven distinct user interface techniques, organized according to a task analysis. An associated video demonstrates eighteen of those techniques. EHR designers who consider a wider range of human-computer interaction techniques could reduce selection errors, but verification of efficacy is still needed.

  3. Detection and localization of lower gastrointestinal bleeding site with scintigraphic techniques

    International Nuclear Information System (INIS)

    Alavi, A.

    1988-01-01

    Successful management of acute gastrointestinal (GI) bleeding frequently depends on accurate localization of the bleeding site. History and clinical findings are often misleading in localizing the site of hemorrhage. The widespread application of flexible endoscopy and selective arteriography now provides accurate diagnoses for the majority of patients with upper GI tract hemorrhage, but lower GI bleeding still is a serious diagnostic problem. Endoscopy and barium studies are of limited value in examining the small bowel and colon in the face of active hemorrhage. Arteriography, although successful in many cases, has limitations. The angiographic demonstration of bleeding is possible only when the injection of contrast material coincides with active bleeding. Since lower GI bleeding is commonly intermittent rather than continuous, a high rate of negative angiographic examinations has been reported. Repeated angiography to pursue recurrent episodes of bleeding is impractical. Because of these shortcomings, in the past decade several noninvasive scintigraphic techniques have been developed to detect and localize sites of GI bleeding. In this chapter the authors discuss details related to the technetium 99m sulfur colloid (Tc-SC) and technetium 99m-labeled red blood cell (Tc-RBC) techniques

  4. QUALITY OF SERVICE BASED WEB SERVICE SELECTION: AN EVALUATION OF TECHNIQUES

    Directory of Open Access Journals (Sweden)

    Rigga Widar Atmagi

    2012-07-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 st1\\:*{behavior:url(#ieooui } /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} In service oriented computing, web services are the basic construct that aims to facilitate building of business application in a more flexible and interoperable manner for enterprise collaboration. One of the most promising advantages of web service technology is the possibility of creating added-value services by combining existing ones. A key step for composing and executing services lies in the selection of the individual services to use. Much attention has been devoted to appropriate selection of service functionalities, but also the non-functional properties of the services play a key role. A web service selection technique must take as much as possible the important influencing aspects into account to the selection processes in order to minimize the selection efforts. This paper evaluates several web service selection techniques published in literature with the focus on their contributions to web service selection. The evaluation results may be used as a basis for improving web service selection techniques that may simplify the selection tasks.

  5. An Analysis of Pre-Infection Detection Techniques for Botnets and other Malware

    OpenAIRE

    Graham, Mark; Winckles, Adrian

    2014-01-01

    Traditional techniques for detecting malware, such as viruses, worms and rootkits, rely on identifying virus-specific signature definitions within network traffic, applications or memory. Because a sample of malware is required to define an attack signature, signature detection has drawbacks when accounting for malware code mutation, has limited use in zero-day protection and is a post-infection technique requiring malware to be present on a device in order to be detected. \\ud A malicious bot...

  6. NATO Advanced Research Workshop on Explosives Detection Using Magnetic and Nuclear Resonance Techniques

    CERN Document Server

    Fraissard, Jacques

    2009-01-01

    Nuclear quadrupole resonance (NQR) a highly promising new technique for bulk explosives detection: relatively inexpensive, more compact than NMR, but with considerable selectivity. Since the NQR frequency is insensitive to long-range variations in composition, mixing explosives with other materials, such as the plasticizers in plastic explosives, makes no difference. The NQR signal strength varies linearly with the amount of explosive, and is independent of its distribution within the volume monitored. NQR spots explosive types in configurations missed by the X-ray imaging method. But if NQR is so good, why it is not used everywhere? Its main limitation is the low signal-to-noise ratio, particularly with the radio-frequency interference that exists in a field environment, NQR polarization being much weaker than that from an external magnetic field. The distinctive signatures are there, but are difficult to extract from the noise. In addition, the high selectivity is partly a disadvantage, as it is hard to bui...

  7. Robustness of movement detection techniques from motor execution

    DEFF Research Database (Denmark)

    Aliakbaryhosseinabadi, Susan; Jiang, Ning; Petrini, Laura

    2015-01-01

    subjects completed a set of movement executions prior to and following the oddball paradigm. The locality preserving projection followed by the linear discriminant analysis (LPP-LDA) and the matched-filter (MF) technique were applied offline for detection of movement. Results show that LPP...

  8. Mode Selection for Axial Flaw Detection in Steam Generator Tube Using Ultrasonic Guided Wave

    International Nuclear Information System (INIS)

    Yoon, Byung Sik; Yang, Seung Han; Guon, Ki Il; Kim, Yong Sik

    2009-01-01

    The eddy current testing method is mainly used to inspect steam generator tube during in-service inspection period. But the general problem of assessing the structural integrity of the steam generator tube using eddy current inspection is rather complex due to the presence of noise and interference signal under various conditions. However, ultrasonic testing as a nondestructive testing tool has become quite popular and effective for the flaw detection and material characterization. Currently, ultrasonic guided wave is emerging technique in power industry because of its various merits. But most of previous studies are focused on detection of circumferential oriented flaws. In this study, the steam generator tube of nuclear power plant was selected to detect axially oriented flaws and investigate guided wave mode identification. The longitudinal wave mode is generated using piezoelectric transducer frequency from 0.5 MHz, 1.0 MHz, 2.25MHz and 5MHz. Dispersion based STFT algorithm is used as mode identification tool

  9. Detection of underground mined voids using line electrode resistivity technique - case study

    Energy Technology Data Exchange (ETDEWEB)

    Peng, S.S.; Ziaie, F. (West Virginia University, Morgantown, WV (USA))

    1991-06-01

    A new resistivity method was developed and tested in three phases; simulated model, similitude model, and field survey. This resistivity method was a combination of the Bristow arrangement and line electrode method. Three line electrodes were chosen so that the sinkhole electrode was emplaced at a far distance from the other two electrodes. Any of the two electrodes and the sinkhole electrode were activated and several resistivity profiles perpendicular to the line electrode prepared for different electrodes activation. Subsurface cavities caused resistivity anomalies which were interpreted to locate their sources (cavities) and estimate the depths and dimension of the cavities. A coal mine site employing the room and pillar mining system was selected to confirm the results of the laboratory. The results of the interpretation indicated that the entry with a dimension of 135 cm high and 5.40 m wide at a depth of 25.50 m can be detected by this method. The resolution of the detectability of this method proved a great success when compared to other resistivity techniques. 6 refs., 6 figs.

  10. Technique for detecting a small magnitude loss of special nuclear material

    International Nuclear Information System (INIS)

    Pike, D.H.; Chernick, M.R.; Downing, D.J.

    The detection of losses of special nuclear materials has been the subject of much research in recent years. The standard industry practice using ID/LEID will detect large magnitude losses. Time series techniques such as the Kalman Filter or CUSUM methods will detect small magnitude losses if they occur regularly over a sustained period of time. To date no technique has been proposed which adequately addresses the problem of detecting a small magnitude loss occurring in a single period. This paper proposes a method for detecting a small magnitude loss. The approach makes use of the influence function of Hempel. The influence function measures the effect of a single inventory difference on a group of statistics. An inventory difference for a period in which a loss occurs can be expected to produce an abnormality in the calculated statistics. This abnormality is measurable by the influence function. It is shown that a one period loss smaller in magnitude than the LEID can be detected using this approach

  11. Label and Label-Free Detection Techniques for Protein Microarrays

    Directory of Open Access Journals (Sweden)

    Amir Syahir

    2015-04-01

    Full Text Available Protein microarray technology has gone through numerous innovative developments in recent decades. In this review, we focus on the development of protein detection methods embedded in the technology. Early microarrays utilized useful chromophores and versatile biochemical techniques dominated by high-throughput illumination. Recently, the realization of label-free techniques has been greatly advanced by the combination of knowledge in material sciences, computational design and nanofabrication. These rapidly advancing techniques aim to provide data without the intervention of label molecules. Here, we present a brief overview of this remarkable innovation from the perspectives of label and label-free techniques in transducing nano‑biological events.

  12. Wear Detection of Drill Bit by Image-based Technique

    Science.gov (United States)

    Sukeri, Maziyah; Zulhilmi Paiz Ismadi, Mohd; Rahim Othman, Abdul; Kamaruddin, Shahrul

    2018-03-01

    Image processing for computer vision function plays an essential aspect in the manufacturing industries for the tool condition monitoring. This study proposes a dependable direct measurement method to measure the tool wear using image-based analysis. Segmentation and thresholding technique were used as the means to filter and convert the colour image to binary datasets. Then, the edge detection method was applied to characterize the edge of the drill bit. By using cross-correlation method, the edges of original and worn drill bits were correlated to each other. Cross-correlation graphs were able to detect the difference of the worn edge despite small difference between the graphs. Future development will focus on quantifying the worn profile as well as enhancing the sensitivity of the technique.

  13. Molecular detection of salmonella species from selected vegetables ...

    African Journals Online (AJOL)

    Molecular detection of salmonella species from selected vegetables sold in a north-central ... African Journal of Clinical and Experimental Microbiology ... of the pure isolates testing positive as being pathogenic after biochemical analysis.

  14. Detection of plant leaf diseases using image segmentation and soft computing techniques

    Directory of Open Access Journals (Sweden)

    Vijai Singh

    2017-03-01

    Full Text Available Agricultural productivity is something on which economy highly depends. This is the one of the reasons that disease detection in plants plays an important role in agriculture field, as having disease in plants are quite natural. If proper care is not taken in this area then it causes serious effects on plants and due to which respective product quality, quantity or productivity is affected. For instance a disease named little leaf disease is a hazardous disease found in pine trees in United States. Detection of plant disease through some automatic technique is beneficial as it reduces a large work of monitoring in big farms of crops, and at very early stage itself it detects the symptoms of diseases i.e. when they appear on plant leaves. This paper presents an algorithm for image segmentation technique which is used for automatic detection and classification of plant leaf diseases. It also covers survey on different diseases classification techniques that can be used for plant leaf disease detection. Image segmentation, which is an important aspect for disease detection in plant leaf disease, is done by using genetic algorithm.

  15. Modified scintigrafic technique for amputation level selection in diabetics

    Energy Technology Data Exchange (ETDEWEB)

    Dwars, B.J.; Rauwerda, J.A.; Broek, T.A.A. van den; Rij, G.L. van; Hollander, W. den; Heidendal, G.A.K.

    1989-01-01

    A modified /sup 123/I-antipyrine cutaneous washout technique for the selection of amputation levels is described. The modifications imply a reduction of time needed for the examination by simultaneous recordings on different levels, and a better patient acceptance by reducing inconvenience. Furthermore, both skin perfusion pressure (SPP) and skin blood flow (SBF) are determined from each clearance curve. In a prospective study among 26 diabetic patients presenting with ulcers or gangrene of the foot, both SPP and SBF were determined preoperatively on the selected level of surgery and on adjacent amputation sites. These 26 patients underwent 12 minor foot amputations and 17 major lower limb amputations. Two of these amputations failed to heal. SBF values appeared indicative for the degree of peripheral vascular disease, as low SBF values were found with low SPP values. SPP determinations revealed good predictive values: All surgical procedures healed when SPP>20 mmHg, but 2 out of 3 failed when SPP<2 mmHg. If SPP values would have been decisive, the amputation would have been converted to a lower level in 6 out of 17 cases. This modified scintigrafic technique provides accurate objective information for amputation level selection.

  16. Simulation of land mine detection processes using nuclear techniques

    International Nuclear Information System (INIS)

    Aziz, M.

    2005-01-01

    A computer models were designed to study the processes of land mine detection using nuclear technique. Parameters that affect the detection were analyzed . Mines of different masses at different depths in the soil are considered using two types of sources , 252 C f and 14 MeV neutron source. The capability to differentiate between mines and other objects such as concrete , iron , wood , Aluminum ,water and polyethylene were analyzed and studied

  17. Indirect fluorometric detection techniques on thin layer chromatography and effect of ultrasound on gel electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Yinfa, Ma.

    1990-12-10

    Thin-layer chromatography (TLC) is a broadly applicable separation technique. It offers many advantages over high performance liquid chromatography (HPLC), such as easily adapted for two-dimensional separation, for whole-column'' detection and for handling multiple samples, etc. However, due to its draggy development of detection techniques comparing with HPLC, TLC has not received the attention it deserves. Therefore, exploring new detection techniques is very important to the development of TLC. It is the principal of this dissertation to present a new detection method for TLC -- indirect fluorometric detection method. This detection technique is universal sensitive, nondestructive, and simple. This will be described in detail from Sections 1 through Section 5. Section 1 and 3 describe the indirect fluorometric detection of anions and nonelectrolytes in TLC. In Section 2, a detection method for cations based on fluorescence quenching of ethidium bromide is presented. In Section 4, a simple and interesting TLC experiment is designed, three different fluorescence detection principles are used for the determination of caffeine, saccharin and sodium benzoate in beverages. A laser-based indirect fluorometric detection technique in TLC is developed in Section 5. Section 6 is totally different from Sections 1 through 5. An ultrasonic effect on the separation of DNA fragments in agarose gel electrophoresis is investigated. 262 refs.

  18. Laboratory insights into the detection of surface biosignatures by remote-sensing techniques

    Science.gov (United States)

    Poch, O.; Pommerol, A.; Jost, B.; Roditi, I.; Frey, J.; Thomas, N.

    2014-03-01

    With the progress of direct imaging techniques, it will be possible in the short or long-term future to retrieve more efficiently the information on the physical properties of the light reflected by rocky exoplanets (Traub et al., 2010). The search for visible-infrared absorption bands of peculiar gases (O2, CH4 etc.) in this light could give clues for the presence of life (Kaltenegger and Selsis, 2007). Even more uplifting would be the direct detection of life itself, on the surface of an exoplanet. Considering this latter possibility, what is the potential of optical remote-sensing methods to detect surface biosignatures? Reflected light from the surface of the Earth exhibits a strong surface biosignature in the form of an abrupt change of reflectance between the visible and infrared range of the spectrum (Seager et al., 2005). This spectral feature called "vegetation red-edge" is possibly the consequence of biological evolution selecting the right chemical structures enabling the plants to absorb the visible energy, while preventing them from overheating by reflecting more efficiently the infrared. Such red-edge is also found in primitive photosynthetic bacteria, cyanobacteria, that colonized the surface of the Earth ocean and continents billions of years before multicellular plants (Knacke, 2003). If life ever arose on an Earth-like exoplanet, one could hypothesize that some form of its surface-life evolves into similar photo-active organisms, also exhibiting a red-edge. In this paper, we will present our plan and preliminary results of a laboratory study aiming at precising the potentiality of remote sensing techniques in detecting such surface biosignatures. Using equipment that has been developed in our team for surface photometry studies (Pommerol 2011, Jost 2013, Pommerol 2013), we will investigate the reflectance spectra and bidirectional reflectance function of soils containing bacteria such as cyanobacteria, in various environmental conditions. We will

  19. Selection of bioindicators to detect lead pollution in Ebro delta microbial mats, using high-resolution microscopic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Maldonado, J.; Sole, A.; Puyen, Z.M. [Departament de Genetica i Microbiologia, Facultat de Biociencies, Universitat Autonoma de Barcelona, Edifici C, Campus de la UAB, Cerdanyola del Valles, Bellaterra (Spain); Esteve, I., E-mail: isabel.esteve@uab.cat [Departament de Genetica i Microbiologia, Facultat de Biociencies, Universitat Autonoma de Barcelona, Edifici C, Campus de la UAB, Cerdanyola del Valles, Bellaterra (Spain)

    2011-07-15

    Lead (Pb) is a metal that is non-essential to any metabolic process and, moreover, highly deleterious to life. In microbial mats - benthic stratified ecosystems - located in coastal areas, phototrophic microorganisms (algae and oxygenic phototrophic bacteria) are the primary producers and they are exposed to pollution by metals. In this paper we describe the search for bioindicators among phototrophic populations of Ebro delta microbial mats, using high-resolution microscopic techniques that we have optimized in previous studies. Confocal laser scanning microscopy coupled to a spectrofluorometric detector (CLSM-{lambda}scan) to determine in vivo sensitivity of different cyanobacteria to lead, and scanning electron microscopy (SEM) and transmission electron microscopy (TEM), both coupled to energy dispersive X-ray microanalysis (EDX), to determine the extra- and intracellular sequestration of this metal in cells, were the techniques used for this purpose. Oscillatoria sp. PCC 7515, Chroococcus sp. PCC 9106 and Spirulina sp. PCC 6313 tested in this paper could be considered bioindicators for lead pollution, because all of these microorganisms are indigenous, have high tolerance to high concentrations of lead and are able to accumulate this metal externally in extracellular polymeric substances (EPS) and intracellularly in polyphosphate (PP) inclusions. Experiments made with microcosms demonstrated that Phormidium-like and Lyngbya-like organisms selected themselves at the highest concentrations of lead assayed. In the present study it is shown that all cyanobacteria studied (both in culture and in microcosms) present PP inclusions in their cytoplasm and that these increase in number in lead polluted cultures and microcosms. We believe that the application of these microscopic techniques open up broad prospects for future studies of metal ecotoxicity.

  20. Selection of bioindicators to detect lead pollution in Ebro delta microbial mats, using high-resolution microscopic techniques

    International Nuclear Information System (INIS)

    Maldonado, J.; Sole, A.; Puyen, Z.M.; Esteve, I.

    2011-01-01

    Lead (Pb) is a metal that is non-essential to any metabolic process and, moreover, highly deleterious to life. In microbial mats - benthic stratified ecosystems - located in coastal areas, phototrophic microorganisms (algae and oxygenic phototrophic bacteria) are the primary producers and they are exposed to pollution by metals. In this paper we describe the search for bioindicators among phototrophic populations of Ebro delta microbial mats, using high-resolution microscopic techniques that we have optimized in previous studies. Confocal laser scanning microscopy coupled to a spectrofluorometric detector (CLSM-λscan) to determine in vivo sensitivity of different cyanobacteria to lead, and scanning electron microscopy (SEM) and transmission electron microscopy (TEM), both coupled to energy dispersive X-ray microanalysis (EDX), to determine the extra- and intracellular sequestration of this metal in cells, were the techniques used for this purpose. Oscillatoria sp. PCC 7515, Chroococcus sp. PCC 9106 and Spirulina sp. PCC 6313 tested in this paper could be considered bioindicators for lead pollution, because all of these microorganisms are indigenous, have high tolerance to high concentrations of lead and are able to accumulate this metal externally in extracellular polymeric substances (EPS) and intracellularly in polyphosphate (PP) inclusions. Experiments made with microcosms demonstrated that Phormidium-like and Lyngbya-like organisms selected themselves at the highest concentrations of lead assayed. In the present study it is shown that all cyanobacteria studied (both in culture and in microcosms) present PP inclusions in their cytoplasm and that these increase in number in lead polluted cultures and microcosms. We believe that the application of these microscopic techniques open up broad prospects for future studies of metal ecotoxicity.

  1. Selection of bioindicators to detect lead pollution in Ebro delta microbial mats, using high-resolution microscopic techniques.

    Science.gov (United States)

    Maldonado, J; Solé, A; Puyen, Z M; Esteve, I

    2011-07-01

    Lead (Pb) is a metal that is non-essential to any metabolic process and, moreover, highly deleterious to life. In microbial mats - benthic stratified ecosystems - located in coastal areas, phototrophic microorganisms (algae and oxygenic phototrophic bacteria) are the primary producers and they are exposed to pollution by metals. In this paper we describe the search for bioindicators among phototrophic populations of Ebro delta microbial mats, using high-resolution microscopic techniques that we have optimized in previous studies. Confocal laser scanning microscopy coupled to a spectrofluorometric detector (CLSM-λscan) to determine in vivo sensitivity of different cyanobacteria to lead, and scanning electron microscopy (SEM) and transmission electron microscopy (TEM), both coupled to energy dispersive X-ray microanalysis (EDX), to determine the extra- and intracellular sequestration of this metal in cells, were the techniques used for this purpose. Oscillatoria sp. PCC 7515, Chroococcus sp. PCC 9106 and Spirulina sp. PCC 6313 tested in this paper could be considered bioindicators for lead pollution, because all of these microorganisms are indigenous, have high tolerance to high concentrations of lead and are able to accumulate this metal externally in extracellular polymeric substances (EPS) and intracellularly in polyphosphate (PP) inclusions. Experiments made with microcosms demonstrated that Phormidium-like and Lyngbya-like organisms selected themselves at the highest concentrations of lead assayed. In the present study it is shown that all cyanobacteria studied (both in culture and in microcosms) present PP inclusions in their cytoplasm and that these increase in number in lead polluted cultures and microcosms. We believe that the application of these microscopic techniques open up broad prospects for future studies of metal ecotoxicity. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Selective Detection of Peptide-Oligonucleotide Heteroconjugates Utilizing Capillary HPLC-ICPMS

    Science.gov (United States)

    Catron, Brittany; Caruso, Joseph A.; Limbach, Patrick A.

    2012-06-01

    A method for the selective detection and quantification of peptide:oligonucleotide heteroconjugates, such as those generated by protein:nucleic acid cross-links, using capillary reversed-phase high performance liquid chromatography (cap-RPHPLC) coupled with inductively coupled plasma mass spectrometry detection (ICPMS) is described. The selective detection of phosphorus as 31P+, the only natural isotope, in peptide-oligonucleotide heteroconjugates is enabled by the elemental detection capabilities of the ICPMS. Mobile phase conditions that allow separation of heteroconjugates while maintaining ICPMS compatibility were investigated. We found that trifluoroacetic acid (TFA) mobile phases, used in conventional peptide separations, and hexafluoroisopropanol/triethylamine (HFIP/TEA) mobile phases, used in conventional oligonucleotide separations, both are compatible with ICPMS and enable heteroconjugate separation. The TFA-based separations yielded limits of detection (LOD) of ~40 ppb phosphorus, which is nearly seven times lower than the LOD for HFIP/TEA-based separations. Using the TFA mobile phase, 1-2 pmol of a model heteroconjugate were routinely separated and detected by this optimized capLC-ICPMS method.

  3. Enhancement of crack detection in stud bolts of nuclear reactor by ultrasonic technique

    International Nuclear Information System (INIS)

    Lee, Joon-Hyun; Choi, Sang-Woo; Oh, Won-Deok

    2004-01-01

    The stud bolt is one of crucial parts for safety of reactor vessels in nuclear power plants. Crack initiation and propagation were reported in stud bolts using closure of reactor vessel and head. Stud bolts are inspected by ultrasonic technique during overhaul periodically for the prevention of stud bolt failure and radioactive leakage from nuclear reactor. In conventional ultrasonic testing for inspection of stud bolts, crack was detected by using shadow effect. It takes too much time to inspect stud bolt by using conventional ultrasonic technique. In addition, there were numerous spurious signals reflected from every oblique surfaces of thread. In this study, the signal processing technique for enhancing conventional ultrasonic technique and the advanced ultrasonic phased array technique were introduced for inspect stud bolts. The signal processing technique provides removing spurious signal reflected from every oblique surfaces of thread and enhances detectability of defects. The phased array technique provides fast inspection and can be applied for structure of complex shape. There are sector scanning and linear scanning methods in phased array technique, and these scanning methods were applied to inspect stud bolt and detectability was investigated. (author)

  4. Development of a systematic methodology to select hazard analysis techniques for nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, Vanderley de; Reis, Sergio Carneiro dos; Costa, Antonio Carlos Lopes da [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)]. E-mails: vasconv@cdtn.br; reissc@cdtn.br; aclc@cdtn.br; Jordao, Elizabete [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Faculdade de Engenharia Quimica]. E-mail: bete@feq.unicamp.br

    2008-07-01

    In order to comply with licensing requirements of regulatory bodies risk assessments of nuclear facilities should be carried out. In Brazil, such assessments are part of the Safety Analysis Reports, required by CNEN (Brazilian Nuclear Energy Commission), and of the Risk Analysis Studies, required by the competent environmental bodies. A risk assessment generally includes the identification of the hazards and accident sequences that can occur, as well as the estimation of the frequencies and effects of these unwanted events on the plant, people, and environment. The hazard identification and analysis are also particularly important when implementing an Integrated Safety, Health, and Environment Management System following ISO 14001, BS 8800 and OHSAS 18001 standards. Among the myriad of tools that help the process of hazard analysis can be highlighted: CCA (Cause- Consequence Analysis); CL (Checklist Analysis); ETA (Event Tree Analysis); FMEA (Failure Mode and Effects Analysis); FMECA (Failure Mode, Effects and Criticality Analysis); FTA (Fault Tree Analysis); HAZOP (Hazard and Operability Study); HRA (Human Reliability Analysis); Pareto Analysis; PHA (Preliminary Hazard Analysis); RR (Relative Ranking); SR (Safety Review); WI (What-If); and WI/CL (What-If/Checklist Analysis). The choice of a particular technique or a combination of techniques depends on many factors like motivation of the analysis, available data, complexity of the process being analyzed, expertise available on hazard analysis, and initial perception of the involved risks. This paper presents a systematic methodology to select the most suitable set of tools to conduct the hazard analysis, taking into account the mentioned involved factors. Considering that non-reactor nuclear facilities are, to a large extent, chemical processing plants, the developed approach can also be applied to analysis of chemical and petrochemical plants. The selected hazard analysis techniques can support cost

  5. Development of a systematic methodology to select hazard analysis techniques for nuclear facilities

    International Nuclear Information System (INIS)

    Vasconcelos, Vanderley de; Reis, Sergio Carneiro dos; Costa, Antonio Carlos Lopes da; Jordao, Elizabete

    2008-01-01

    In order to comply with licensing requirements of regulatory bodies risk assessments of nuclear facilities should be carried out. In Brazil, such assessments are part of the Safety Analysis Reports, required by CNEN (Brazilian Nuclear Energy Commission), and of the Risk Analysis Studies, required by the competent environmental bodies. A risk assessment generally includes the identification of the hazards and accident sequences that can occur, as well as the estimation of the frequencies and effects of these unwanted events on the plant, people, and environment. The hazard identification and analysis are also particularly important when implementing an Integrated Safety, Health, and Environment Management System following ISO 14001, BS 8800 and OHSAS 18001 standards. Among the myriad of tools that help the process of hazard analysis can be highlighted: CCA (Cause- Consequence Analysis); CL (Checklist Analysis); ETA (Event Tree Analysis); FMEA (Failure Mode and Effects Analysis); FMECA (Failure Mode, Effects and Criticality Analysis); FTA (Fault Tree Analysis); HAZOP (Hazard and Operability Study); HRA (Human Reliability Analysis); Pareto Analysis; PHA (Preliminary Hazard Analysis); RR (Relative Ranking); SR (Safety Review); WI (What-If); and WI/CL (What-If/Checklist Analysis). The choice of a particular technique or a combination of techniques depends on many factors like motivation of the analysis, available data, complexity of the process being analyzed, expertise available on hazard analysis, and initial perception of the involved risks. This paper presents a systematic methodology to select the most suitable set of tools to conduct the hazard analysis, taking into account the mentioned involved factors. Considering that non-reactor nuclear facilities are, to a large extent, chemical processing plants, the developed approach can also be applied to analysis of chemical and petrochemical plants. The selected hazard analysis techniques can support cost

  6. Data-Mining Techniques in Detecting Factors Linked to Academic Achievement

    Science.gov (United States)

    Martínez Abad, Fernando; Chaparro Caso López, Alicia A.

    2017-01-01

    In light of the emergence of statistical analysis techniques based on data mining in education sciences, and the potential they offer to detect non-trivial information in large databases, this paper presents a procedure used to detect factors linked to academic achievement in large-scale assessments. The study is based on a non-experimental,…

  7. Application of signal processing techniques for islanding detection of distributed generation in distribution network: A review

    International Nuclear Information System (INIS)

    Raza, Safdar; Mokhlis, Hazlie; Arof, Hamzah; Laghari, J.A.; Wang, Li

    2015-01-01

    Highlights: • Pros & cons of conventional islanding detection techniques (IDTs) are discussed. • Signal processing techniques (SPTs) ability in detecting islanding is discussed. • SPTs ability in improving performance of passive techniques are discussed. • Fourier, s-transform, wavelet, HHT & tt-transform based IDTs are reviewed. • Intelligent classifiers (ANN, ANFIS, Fuzzy, SVM) application in SPT are discussed. - Abstract: High penetration of distributed generation resources (DGR) in distribution network provides many benefits in terms of high power quality, efficiency, and low carbon emissions in power system. However, efficient islanding detection and immediate disconnection of DGR is critical in order to avoid equipment damage, grid protection interference, and personnel safety hazards. Islanding detection techniques are mainly classified into remote, passive, active, and hybrid techniques. From these, passive techniques are more advantageous due to lower power quality degradation, lower cost, and widespread usage by power utilities. However, the main limitations of these techniques are that they possess a large non detection zones and require threshold setting. Various signal processing techniques and intelligent classifiers have been used to overcome the limitations of passive islanding. Signal processing techniques, in particular, are adopted due to their versatility, stability, cost effectiveness, and ease of modification. This paper presents a comprehensive overview of signal processing techniques used to improve common passive islanding detection techniques. A performance comparison between the signal processing based islanding detection techniques with existing techniques are also provided. Finally, this paper outlines the relative advantages and limitations of the signal processing techniques in order to provide basic guidelines for researchers and field engineers in determining the best method for their system

  8. Evaluation of Anomaly Detection Techniques for SCADA Communication Resilience

    OpenAIRE

    Shirazi, Syed Noor Ul Hassan; Gouglidis, Antonios; Syeda, Kanza Noor; Simpson, Steven; Mauthe, Andreas Ulrich; Stephanakis, Ioannis M.; Hutchison, David

    2016-01-01

    Attacks on critical infrastructures’ Supervisory Control and Data Acquisition (SCADA) systems are beginning to increase. They are often initiated by highly skilled attackers, who are capable of deploying sophisticated attacks to exfiltrate data or even to cause physical damage. In this paper, we rehearse the rationale for protecting against cyber attacks and evaluate a set of Anomaly Detection (AD) techniques in detecting attacks by analysing traffic captured in a SCADA network. For this purp...

  9. Technique for rapid detection of phthalates in water and beverages

    KAUST Repository

    Zia, Asif I.

    2013-05-01

    The teratogenic and carcinogenic effects of phthalate esters on living beings are proven in toxicology studies. These ubiquitous food and environmental pollutants pose a great danger to the human race due to their extraordinary use as a plasticizer in the consumer product industry. Contemporary detection techniques used for phthalates require a high level of skills, expensive equipment and longer analysis time than the presented technique. Presented research work introduces a real time non-invasive detection technique using a new type of silicon substrate based planar interdigital (ID) sensor fabricated on basis of thin film micro-electromechanical system (MEMS) semiconductor device fabrication technology. Electrochemical impedance spectroscopy (EIS) was used in conjunction with the fabricated sensor to detect phthalates in deionized water. Various concentrations of di(2-ethylhexyl) phthalate (DEHP) as low as 2 ppb to a higher level of 2 ppm in deionized water were detected distinctively using new planar ID sensor based EIS sensing system. Dip testing method was used to obtain the conductance and dielectric properties of the bulk samples. Parylene C polymer coating was used as a passivation layer on the surface of the fabricated sensor to reduce the influence of Faradaic currents. In addition, inherent dielectric properties of the coating enhanced the sensitivity of the capacitive type sensor. Electrochemical spectrum analysis algorithm was used to model experimentally observed impedance spectrum to deduce constant phase element (CPE) equivalent circuit to analyse the kinetic processes taking place inside the electrochemical cell. Curve fitting technique was used to extract the values of the circuit components and explain experimental results on theoretical grounds. The sensor performance was tested by adding DEHP to an energy drink at concentrations above and below the minimal risk level (MRL) limit set by the ATSDR (Agency for Toxic Substances & Disease Registry

  10. A new imaging technique for detecting interstellar communications

    Science.gov (United States)

    Vallerga, John; Welsh, Barry; Kotze, Marissa; Siegmund, Oswald

    2017-01-01

    We report on a unique detection methodology using the Berkeley Visible Image Tube (BVIT) mounted on the 10m Southern African Large Telescope (SALT) to search for laser pulses originating in communications from advanced extraterrestrial (ET) civilizations residing on nearby Earth-like planets located within their habitability zones. The detection technique assumes that ET communicates through high powered pulsed lasers with pulse durations on the order of 5 nanoseconds, the signals thereby being brighter than that of the host star within this very short period of time. Our technique turns down the gain of the optically sensitive photon counting microchannel plate detector such that ~30 photons are required in a 5ns window to generate an imaged event. Picking a priori targets with planets in the habitable zone substantially reduces the false alarm rate. Interplanetary communication by optical masers was first postulated by Schwartz and Townes in 1961. Under the assumption that ET has access to a 10 m class telescope operated as a transmitter then we could detect lasers with a similar power to that of the Livermore Laboratory laser (~1.8Mj per pulse), to a distance of ~ 1000 pc. In this talk we present the results of 2400 seconds of BVIT observations on the SALT of the star Wolf 1061, which is known to harbor an Earth-sized exoplanet located in the habitability zone. At this distance (4.3 pc), BVIT on SALT could detect a 48 joule per pulse laser, now commercially available as tabletop devices.

  11. Air Conditioning Compressor Air Leak Detection by Image Processing Techniques for Industrial Applications

    Directory of Open Access Journals (Sweden)

    Pookongchai Kritsada

    2015-01-01

    Full Text Available This paper presents method to detect air leakage of an air conditioning compressor using image processing techniques. Quality of air conditioning compressor should not have air leakage. To test an air conditioning compressor leak, air is pumped into a compressor and then submerged into the water tank. If air bubble occurs at surface of the air conditioning compressor, that leakage compressor must be returned for maintenance. In this work a new method to detect leakage and search leakage point with high accuracy, fast, and precise processes was proposed. In a preprocessing procedure to detect the air bubbles, threshold and median filter techniques have been used. Connected component labeling technique is used to detect the air bubbles while blob analysis is searching technique to analyze group of the air bubbles in sequential images. The experiments are tested with proposed algorithm to determine the leakage point of an air conditioning compressor. The location of the leakage point was presented as coordinated point. The results demonstrated that leakage point during process could be accurately detected. The estimation point had error less than 5% compared to the real leakage point.

  12. Toward Bulk Synchronous Parallel-Based Machine Learning Techniques for Anomaly Detection in High-Speed Big Data Networks

    Directory of Open Access Journals (Sweden)

    Kamran Siddique

    2017-09-01

    Full Text Available Anomaly detection systems, also known as intrusion detection systems (IDSs, continuously monitor network traffic aiming to identify malicious actions. Extensive research has been conducted to build efficient IDSs emphasizing two essential characteristics. The first is concerned with finding optimal feature selection, while another deals with employing robust classification schemes. However, the advent of big data concepts in anomaly detection domain and the appearance of sophisticated network attacks in the modern era require some fundamental methodological revisions to develop IDSs. Therefore, we first identify two more significant characteristics in addition to the ones mentioned above. These refer to the need for employing specialized big data processing frameworks and utilizing appropriate datasets for validating system’s performance, which is largely overlooked in existing studies. Afterwards, we set out to develop an anomaly detection system that comprehensively follows these four identified characteristics, i.e., the proposed system (i performs feature ranking and selection using information gain and automated branch-and-bound algorithms respectively; (ii employs logistic regression and extreme gradient boosting techniques for classification; (iii introduces bulk synchronous parallel processing to cater computational requirements of high-speed big data networks; and; (iv uses the Infromation Security Centre of Excellence, of the University of Brunswick real-time contemporary dataset for performance evaluation. We present experimental results that verify the efficacy of the proposed system.

  13. Support Vector Feature Selection for Early Detection of Anastomosis Leakage From Bag-of-Words in Electronic Health Records.

    Science.gov (United States)

    Soguero-Ruiz, Cristina; Hindberg, Kristian; Rojo-Alvarez, Jose Luis; Skrovseth, Stein Olav; Godtliebsen, Fred; Mortensen, Kim; Revhaug, Arthur; Lindsetmo, Rolv-Ole; Augestad, Knut Magne; Jenssen, Robert

    2016-09-01

    The free text in electronic health records (EHRs) conveys a huge amount of clinical information about health state and patient history. Despite a rapidly growing literature on the use of machine learning techniques for extracting this information, little effort has been invested toward feature selection and the features' corresponding medical interpretation. In this study, we focus on the task of early detection of anastomosis leakage (AL), a severe complication after elective surgery for colorectal cancer (CRC) surgery, using free text extracted from EHRs. We use a bag-of-words model to investigate the potential for feature selection strategies. The purpose is earlier detection of AL and prediction of AL with data generated in the EHR before the actual complication occur. Due to the high dimensionality of the data, we derive feature selection strategies using the robust support vector machine linear maximum margin classifier, by investigating: 1) a simple statistical criterion (leave-one-out-based test); 2) an intensive-computation statistical criterion (Bootstrap resampling); and 3) an advanced statistical criterion (kernel entropy). Results reveal a discriminatory power for early detection of complications after CRC (sensitivity 100%; specificity 72%). These results can be used to develop prediction models, based on EHR data, that can support surgeons and patients in the preoperative decision making phase.

  14. Carbon filter property detection with thermal neutron technique

    International Nuclear Information System (INIS)

    Deng Zhongbo; Han Jun; Li Wenjie

    2003-01-01

    The paper discussed the mechanism that the antigas property of the carbon filter will decrease because of its carbon bed absorbing water from the air while the carbon filter is being stored, and introduced the principle and method of detection the amount of water absorption with thermal neutron technique. Because some certain relation between the antigas property of the carbon filter and the amount of water absorption exists, the decrease degree of the carbon filter antigas property can be estimated through the amount of water absorption, offering a practicable facility technical pathway to quickly non-destructively detect the carbon filter antigas property

  15. Statistical evaluation of vibration analysis techniques

    Science.gov (United States)

    Milner, G. Martin; Miller, Patrice S.

    1987-01-01

    An evaluation methodology is presented for a selection of candidate vibration analysis techniques applicable to machinery representative of the environmental control and life support system of advanced spacecraft; illustrative results are given. Attention is given to the statistical analysis of small sample experiments, the quantification of detection performance for diverse techniques through the computation of probability of detection versus probability of false alarm, and the quantification of diagnostic performance.

  16. Reprint of 'pH tuning of Nafion for selective detection of tryptophan'

    International Nuclear Information System (INIS)

    Frith, K.-A.; Limson, J.L.

    2010-01-01

    Selective and sensitive detection of the amino acid tryptophan is of importance in food processing, pharmaceutical formulations and in biological fluids. Electrochemical methods of detection of tryptophan are hampered by sluggish electron transfer kinetics and in complex matrices through overlapping peaks from interferents. This study examines the potential of the cation exchange membrane Nafion to enhance selectivity and sensitivity of this analyte through a seldom explored feature of this membrane: pH manipulation. A detailed examination of the effect of pH on the selectivity afforded by Nafion as a function of the analyte charge is presented. Selective detection of tryptophan and significant increases in sensitivity of its detection was observed in the presence of melatonin, dopamine and other interferents present in a pharmaceutical formulation through manipulation of the pH of the solution. At pH 3.0 at a Nafion-modified electrode, changes in the protonation of melatonin and tryptophan lowered the anodic potential of the analytes in a non-uniform manner increasing the peak resolution and permitting analyses with detection limits of 1.6 ± 0.1 nM and 1.6 ± 0.2 nM, respectively.

  17. Selection of productivity improvement techniques via mathematical modeling

    Directory of Open Access Journals (Sweden)

    Mahassan M. Khater

    2011-07-01

    Full Text Available This paper presents a new mathematical model to select an optimal combination of productivity improvement techniques. The proposed model of this paper considers four-stage cycle productivity and the productivity is assumed to be a linear function of fifty four improvement techniques. The proposed model of this paper is implemented for a real-world case study of manufacturing plant. The resulted problem is formulated as a mixed integer programming which can be solved for optimality using traditional methods. The preliminary results of the implementation of the proposed model of this paper indicate that the productivity can be improved through a change on equipments and it can be easily applied for both manufacturing and service industries.

  18. Electricity market price spike analysis by a hybrid data model and feature selection technique

    International Nuclear Information System (INIS)

    Amjady, Nima; Keynia, Farshid

    2010-01-01

    In a competitive electricity market, energy price forecasting is an important activity for both suppliers and consumers. For this reason, many techniques have been proposed to predict electricity market prices in the recent years. However, electricity price is a complex volatile signal owning many spikes. Most of electricity price forecast techniques focus on the normal price prediction, while price spike forecast is a different and more complex prediction process. Price spike forecasting has two main aspects: prediction of price spike occurrence and value. In this paper, a novel technique for price spike occurrence prediction is presented composed of a new hybrid data model, a novel feature selection technique and an efficient forecast engine. The hybrid data model includes both wavelet and time domain variables as well as calendar indicators, comprising a large candidate input set. The set is refined by the proposed feature selection technique evaluating both relevancy and redundancy of the candidate inputs. The forecast engine is a probabilistic neural network, which are fed by the selected candidate inputs of the feature selection technique and predict price spike occurrence. The efficiency of the whole proposed method for price spike occurrence forecasting is evaluated by means of real data from the Queensland and PJM electricity markets. (author)

  19. Size-selective detection in integrated optical interferometric biosensors

    NARCIS (Netherlands)

    Mulder, Harmen K P; Ymeti, Aurel; Subramaniam, Vinod; Kanger, Johannes S

    2012-01-01

    We present a new size-selective detection method for integrated optical interferometric biosensors that can strongly enhance their performance. We demonstrate that by launching multiple wavelengths into a Young interferometer waveguide sensor it is feasible to derive refractive index changes from

  20. Non-target activity detection by post-radioembolization yttrium-90 PET/CT: Image assessment technique and case examples

    Directory of Open Access Journals (Sweden)

    Yung Hsiang eKao

    2014-02-01

    Full Text Available High-resolution yttrium-90 (90Y imaging of post-radioembolization microsphere biodistribution may be achieved by conventional positron emission tomography with integrated computed tomography (PET/CT scanners that have time-of-flight capability. However, reconstructed 90Y PET/CT images have high background noise, making non-target activity detection technically challenging. This educational article describes our image assessment technique for non-target activity detection by 90Y PET/CT which qualitatively overcomes the problem of background noise. We present selected case examples of non-target activity in untargeted liver, stomach, gallbladder, chest wall and kidney, supported by angiography and 90Y bremsstrahlung single photon emission computed tomography with integrated computed tomography (SPECT/CT or technetium-99m macroaggregated albumin SPECT/CT.

  1. Detecting Internet Worms Using Data Mining Techniques

    Directory of Open Access Journals (Sweden)

    Muazzam Siddiqui

    2008-12-01

    Full Text Available Internet worms pose a serious threat to computer security. Traditional approaches using signatures to detect worms pose little danger to the zero day attacks. The focus of malware research is shifting from using signature patterns to identifying the malicious behavior displayed by the malwares. This paper presents a novel idea of extracting variable length instruction sequences that can identify worms from clean programs using data mining techniques. The analysis is facilitated by the program control flow information contained in the instruction sequences. Based upon general statistics gathered from these instruction sequences we formulated the problem as a binary classification problem and built tree based classifiers including decision tree, bagging and random forest. Our approach showed 95.6% detection rate on novel worms whose data was not used in the model building process.

  2. Cooperative Technique Based on Sensor Selection in Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    ISLAM, M. R.

    2009-02-01

    Full Text Available An energy efficient cooperative technique is proposed for the IEEE 1451 based Wireless Sensor Networks. Selected numbers of Wireless Transducer Interface Modules (WTIMs are used to form a Multiple Input Single Output (MISO structure wirelessly connected with a Network Capable Application Processor (NCAP. Energy efficiency and delay of the proposed architecture are derived for different combination of cluster size and selected number of WTIMs. Optimized constellation parameters are used for evaluating derived parameters. The results show that the selected MISO structure outperforms the unselected MISO structure and it shows energy efficient performance than SISO structure after a certain distance.

  3. MySQL based selection of appropriate indexing technique in ...

    African Journals Online (AJOL)

    This paper deals with selection of appropriate indexing technique applied on MySQL Database for a health care system and related performance issues using multiclass support vector machine (SVM). The patient database is generally huge and contains lot of variations. For the quick search or fast retrieval of the desired ...

  4. Using molecular techniques for rapid detection of Salmonella ...

    African Journals Online (AJOL)

    PRECIOUS

    2010-02-01

    Feb 1, 2010 ... A total of 152 samples of chicken and chicken products ... detection of Salmonella species in the collected field samples ... that 16 million new cases of typhoid fever occur each ... vative methods for the rapid identification of Salmonella ... saved for the PCR-Non Selective test (PCR-NS) and 1 ml of the.

  5. Detection of illicit drugs with the technique of spectral fluorescence signatures (SFS)

    Science.gov (United States)

    Poryvkina, Larisa; Babichenko, Sergey

    2010-10-01

    The SFS technology has already proved its analytical capabilities in a variety of industrial and environmental tasks. Recently it has been introduced for forensic applications. The key features of the SFS method - measuring a 3-dimensional spectrum of fluorescence of the sample (intensity versus excitation and emission wavelengths) with following recognition of specific spectral patterns of SFS responsible for individual drugs - provide an effective tool for the analysis of untreated seized samples, without any separation of the substance of interest from its mixture with accompanying cutting agents and diluents as a preparatory step. In such approach the chemical analysis of the sample is substituted by the analysis of SFS matrix visualized as an optical image. The SFS technology of drug detection is realized by NarTest® NTX2000 analyzer, compact device intended to measure suspicious samples in liquid, solid and powder forms. It simplifies the detection process due to fully automated procedures of SFS measuring and integrated expert system for recognition of spectral patterns. Presently the expert system of NTX2000 is able to detect marijuana, cocaine, heroin, MDMA, amphetamine and methamphetamine with the detection limit down to 5% of the drug concentration in various mixtures. The numerous tests with street samples confirmed that the use of SFS method provides reliable results with high sensitivity and selectivity for identification of drugs of abuse. More than 3000 street samples of the aforesaid drugs were analyzed with NTX2000 during validation process, and the correspondence of SFS results and conclusions of standard forensic analyses with GC/MS techniques was in 99.4% cases.

  6. Selective solid-phase extraction of Hg(II) using silica gel surface - imprinting technique

    International Nuclear Information System (INIS)

    Zheng, H.; Geng, T.; Hu, L.

    2008-01-01

    A new ion-imprinted amino-functionalized silica gel sorbent was synthesized by surface-imprinting technique for preconcentration and separation of Hg(II) prior to its determination by inductively coupled plasma optical emission spectrometry (ICP-OES). Compared to the traditional solid sorbents and non-imprinted polymer particles, the ion-imprinted polymers (IIPs) have higher adsorption capacity and selectivity for Hg(II). The maximum static adsorption capacity of the imprinted and non-imprinted sorbent for Hg(II) was 29.89 mg g -1 and 11.21 mg g -1 , respectively. The highest selectivity coefficient for Hg(II) in the presence of Zn(II) exceeded 230. The detection limit (3σ) of the method was 0.25 μg L -1 . The relative standard deviation of the method was 2.5% for eight replicate determinations of 10 μg of Hg 2+ in 200 mL-in-volume water sample. The procedure was validated by performing the analysis of the certified river sediment sample (GBW 08603, China) using the standard addition method. The developed method was also successfully applied to the determination of trace mercury in Chinese traditional medicine and water samples with satisfactory results. (authors)

  7. Automatic Detection of Optic Disc in Retinal Image by Using Keypoint Detection, Texture Analysis, and Visual Dictionary Techniques

    Directory of Open Access Journals (Sweden)

    Kemal Akyol

    2016-01-01

    Full Text Available With the advances in the computer field, methods and techniques in automatic image processing and analysis provide the opportunity to detect automatically the change and degeneration in retinal images. Localization of the optic disc is extremely important for determining the hard exudate lesions or neovascularization, which is the later phase of diabetic retinopathy, in computer aided eye disease diagnosis systems. Whereas optic disc detection is fairly an easy process in normal retinal images, detecting this region in the retinal image which is diabetic retinopathy disease may be difficult. Sometimes information related to optic disc and hard exudate information may be the same in terms of machine learning. We presented a novel approach for efficient and accurate localization of optic disc in retinal images having noise and other lesions. This approach is comprised of five main steps which are image processing, keypoint extraction, texture analysis, visual dictionary, and classifier techniques. We tested our proposed technique on 3 public datasets and obtained quantitative results. Experimental results show that an average optic disc detection accuracy of 94.38%, 95.00%, and 90.00% is achieved, respectively, on the following public datasets: DIARETDB1, DRIVE, and ROC.

  8. Outlier Detection Techniques For Wireless Sensor Networks: A Survey

    NARCIS (Netherlands)

    Zhang, Y.; Meratnia, Nirvana; Havinga, Paul J.M.

    2008-01-01

    In the field of wireless sensor networks, measurements that significantly deviate from the normal pattern of sensed data are considered as outliers. The potential sources of outliers include noise and errors, events, and malicious attacks on the network. Traditional outlier detection techniques are

  9. Detection of radionuclides from weak and poorly resolved spectra using Lasso and subsampling techniques

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Er-Wei, E-mail: er-wei-bai@uiowa.edu [Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA 52242 (United States); Chan, Kung-sik, E-mail: kung-sik-chan@uiowa.edu [Department of Statistical and Actuarial Science, University of Iowa, Iowa City, IA 52242 (United States); Eichinger, William, E-mail: william-eichinger@uiowa.edu [Department of Civil and Environmental Engineering, University of Iowa, Iowa City, IA 52242 (United States); Kump, Paul [Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA 52242 (United States)

    2011-10-15

    We consider a problem of identification of nuclides from weak and poorly resolved spectra. A two stage algorithm is proposed and tested based on the principle of majority voting. The idea is to model gamma-ray counts as Poisson processes. Then, the average part is taken to be the model and the difference between the observed gamma-ray counts and the average is considered as random noise. In the linear part, the unknown coefficients correspond to if isotopes of interest are present or absent. Lasso types of algorithms are applied to find non-vanishing coefficients. Since Lasso or any prediction error based algorithm is inconsistent with variable selection for finite data length, an estimate of parameter distribution based on subsampling techniques is added in addition to Lasso. Simulation examples are provided in which the traditional peak detection algorithms fail to work and the proposed two stage algorithm performs well in terms of both the False Negative and False Positive errors. - Highlights: > Identification of nuclides from weak and poorly resolved spectra. > An algorithm is proposed and tested based on the principle of majority voting. > Lasso types of algorithms are applied to find non-vanishing coefficients. > An estimate of parameter distribution based on sub-sampling techniques is included. > Simulations compare the results of the proposed method with those of peak detection.

  10. Detection of radionuclides from weak and poorly resolved spectra using Lasso and subsampling techniques

    International Nuclear Information System (INIS)

    Bai, Er-Wei; Chan, Kung-sik; Eichinger, William; Kump, Paul

    2011-01-01

    We consider a problem of identification of nuclides from weak and poorly resolved spectra. A two stage algorithm is proposed and tested based on the principle of majority voting. The idea is to model gamma-ray counts as Poisson processes. Then, the average part is taken to be the model and the difference between the observed gamma-ray counts and the average is considered as random noise. In the linear part, the unknown coefficients correspond to if isotopes of interest are present or absent. Lasso types of algorithms are applied to find non-vanishing coefficients. Since Lasso or any prediction error based algorithm is inconsistent with variable selection for finite data length, an estimate of parameter distribution based on subsampling techniques is added in addition to Lasso. Simulation examples are provided in which the traditional peak detection algorithms fail to work and the proposed two stage algorithm performs well in terms of both the False Negative and False Positive errors. - Highlights: → Identification of nuclides from weak and poorly resolved spectra. → An algorithm is proposed and tested based on the principle of majority voting. → Lasso types of algorithms are applied to find non-vanishing coefficients. → An estimate of parameter distribution based on sub-sampling techniques is included. → Simulations compare the results of the proposed method with those of peak detection.

  11. Detection of corrosion by radiographic techniques

    International Nuclear Information System (INIS)

    Ahmad, M.; Ashraf, M.M.; Khurshid, U.

    2004-01-01

    Radiation processing technologies are playing an increasing role during manufacturing and subsequent use of everyday products. These technologies are now well established and are extensively practiced in industries, to ensure quality and safety of machinery. Corrosion reduces the operational life of the component, its efficiency and helps generate waste. There is an increasing need to detect and characterize the formation of corrosion in industrial components and assemblies at an early stage. Radiation methods and techniques are applied worldwide to examine defects and corrosion-formation in industrial components. For safety and economic reason, appropriate monitoring of the machinery and industrial components would help reduce accidental risks during operation and avoid production-losses. In the present study, X-ray and neutron-radiography techniques were applied for the inspection and evaluation of corrosion in metallic samples for thickness values of the order of 5 mm or less. Relative contrast at various degrees of metal corrosion product loss was computed theoretical and also measured experimentally by applying radiographic techniques. The relative contrast-sensitivity was also measured in two different ways by X-ray and neutron radiography, to compare the visibility of coarse and fine features. Thick metallic areas, free from sealant and variable paint thickness, were imaged with thermal neutrons beam. Low KV X-rays were also applied for imaging corrosion in metallic components. To optimize exposure-time at low KV in X-ray radiography, a medical film/screen combination was used. X-ray radiography approved to be the more promising technique for imaging of corrosion, as compared to neutron radiography. (author)

  12. Detection of cavitation vortex in hydraulic turbines using acoustic techniques

    International Nuclear Information System (INIS)

    Candel, I; Ioana, C; Bunea, F; Politehnica University of Bucharest (Romania))" data-affiliation=" (Power Engineering Faculty, Politehnica University of Bucharest (Romania))" >Dunca, G; Politehnica University of Bucharest (Romania))" data-affiliation=" (Power Engineering Faculty, Politehnica University of Bucharest (Romania))" >Bucur, D M; Division Technique Générale, Grenoble (France))" data-affiliation=" (Electricité de France, Division Technique Générale, Grenoble (France))" >Reeb, B; Ciocan, G D

    2014-01-01

    Cavitation phenomena are known for their destructive capacity in hydraulic machineries and are caused by the pressure decrease followed by an implosion when the cavitation bubbles find an adverse pressure gradient. A helical vortex appears in the turbine diffuser cone at partial flow rate operation and can be cavitating in its core. Cavity volumes and vortex frequencies vary with the under-pressure level. If the vortex frequency comes close to one of the eigen frequencies of the turbine, a resonance phenomenon may occur, the unsteady fluctuations can be amplified and lead to important turbine and hydraulic circuit damage. Conventional cavitation vortex detection techniques are based on passive devices (pressure sensors or accelerometers). Limited sensor bandwidths and low frequency response limit the vortex detection and characterization information provided by the passive techniques. In order to go beyond these techniques and develop a new active one that will remove these drawbacks, previous work in the field has shown that techniques based on acoustic signals using adapted signal content to a particular hydraulic situation, can be more robust and accurate. The cavitation vortex effects in the water flow profile downstream hydraulic turbines runner are responsible for signal content modifications. Basic signal techniques use narrow band signals traveling inside the flow from an emitting transducer to a receiving one (active sensors). Emissions of wide band signals in the flow during the apparition and development of the vortex embeds changes in the received signals. Signal processing methods are used to estimate the cavitation apparition and evolution. Tests done in a reduced scale facility showed that due to the increasing flow rate, the signal -- vortex interaction is seen as modifications on the received signal's high order statistics and bandwidth. Wide band acoustic transducers have a higher dynamic range over mechanical elements; the system

  13. Field experience with advanced inservice inspection NDE-techniques for detection and sizing

    International Nuclear Information System (INIS)

    Engl, G.; Kronig, M.

    1988-01-01

    This document deals with Non-Destructive Examination (NDE) techniques used for the detection and sizing of cracks. Several techniques, such as L-SAFT, ALOK and Phased Array with UT-Tomography are discussed and compared. (TEC)

  14. Field experience with advanced inservice inspection NDE-techniques for detection and sizing

    Energy Technology Data Exchange (ETDEWEB)

    Engl, G; Kronig, M

    1988-12-31

    This document deals with Non-Destructive Examination (NDE) techniques used for the detection and sizing of cracks. Several techniques, such as L-SAFT, ALOK and Phased Array with UT-Tomography are discussed and compared. (TEC).

  15. A Wearable Channel Selection-Based Brain-Computer Interface for Motor Imagery Detection.

    Science.gov (United States)

    Lo, Chi-Chun; Chien, Tsung-Yi; Chen, Yu-Chun; Tsai, Shang-Ho; Fang, Wai-Chi; Lin, Bor-Shyh

    2016-02-06

    Motor imagery-based brain-computer interface (BCI) is a communication interface between an external machine and the brain. Many kinds of spatial filters are used in BCIs to enhance the electroencephalography (EEG) features related to motor imagery. The approach of channel selection, developed to reserve meaningful EEG channels, is also an important technique for the development of BCIs. However, current BCI systems require a conventional EEG machine and EEG electrodes with conductive gel to acquire multi-channel EEG signals and then transmit these EEG signals to the back-end computer to perform the approach of channel selection. This reduces the convenience of use in daily life and increases the limitations of BCI applications. In order to improve the above issues, a novel wearable channel selection-based brain-computer interface is proposed. Here, retractable comb-shaped active dry electrodes are designed to measure the EEG signals on a hairy site, without conductive gel. By the design of analog CAR spatial filters and the firmware of EEG acquisition module, the function of spatial filters could be performed without any calculation, and channel selection could be performed in the front-end device to improve the practicability of detecting motor imagery in the wearable EEG device directly or in commercial mobile phones or tablets, which may have relatively low system specifications. Finally, the performance of the proposed BCI is investigated, and the experimental results show that the proposed system is a good wearable BCI system prototype.

  16. Void detection beneath reinforced concrete sections: The practical application of ground-penetrating radar and ultrasonic techniques

    Science.gov (United States)

    Cassidy, Nigel J.; Eddies, Rod; Dods, Sam

    2011-08-01

    Ground-penetrating radar (GPR) and ultrasonic 'pulse echo' techniques are well-established methods for the imaging, investigation and analysis of steel reinforced concrete structures and are important civil engineering survey tools. GPR is, arguably, the more widely-used technique as it is suitable for a greater range of problem scenarios (i.e., from rebar mapping to moisture content determination). Ultrasonic techniques are traditionally associated with the engineering-based, non-destructive testing of concrete structures and their integrity analyses (e.g., flaw detection, shear/longitudinal velocity determination, etc). However, when used in an appropriate manner, both techniques can be considered complementary and provide a unique way of imaging the sub-surface that is suited to a range of geotechnical problems. In this paper, we present a comparative study between mid-to-high frequency GPR (450 MHz and 900 MHz) and array-based, shear wave, pulse-echo ultrasonic surveys using proprietary instruments and conventional GPR data processing and visualisation techniques. Our focus is the practical detection of sub-metre scale voids located under steel reinforced concrete sections in realistic survey conditions (e.g., a capped, relict mine shaft or vent). Representative two-dimensional (2D) sections are presented for both methods illustrating the similarities/differences in signal response and the temporal-spatial target resolutions achieved with each technique. The use of three-dimensional data volumes and time slices (or 'C-scans') for advanced interpretation is also demonstrated, which although common in GPR applications is under-utilised as a technique in general ultrasonic surveys. The results show that ultrasonic methods can perform as well as GPR for this specific investigation scenario and that they have the potential of overcoming some of the inherent limitations of GPR investigations (i.e., the need for careful antenna frequency selection and survey design in

  17. Game Theoretic Approach for Systematic Feature Selection; Application in False Alarm Detection in Intensive Care Units

    Directory of Open Access Journals (Sweden)

    Fatemeh Afghah

    2018-03-01

    Full Text Available Intensive Care Units (ICUs are equipped with many sophisticated sensors and monitoring devices to provide the highest quality of care for critically ill patients. However, these devices might generate false alarms that reduce standard of care and result in desensitization of caregivers to alarms. Therefore, reducing the number of false alarms is of great importance. Many approaches such as signal processing and machine learning, and designing more accurate sensors have been developed for this purpose. However, the significant intrinsic correlation among the extracted features from different sensors has been mostly overlooked. A majority of current data mining techniques fail to capture such correlation among the collected signals from different sensors that limits their alarm recognition capabilities. Here, we propose a novel information-theoretic predictive modeling technique based on the idea of coalition game theory to enhance the accuracy of false alarm detection in ICUs by accounting for the synergistic power of signal attributes in the feature selection stage. This approach brings together techniques from information theory and game theory to account for inter-features mutual information in determining the most correlated predictors with respect to false alarm by calculating Banzhaf power of each feature. The numerical results show that the proposed method can enhance classification accuracy and improve the area under the ROC (receiver operating characteristic curve compared to other feature selection techniques, when integrated in classifiers such as Bayes-Net that consider inter-features dependencies.

  18. Leak detection and localization in a pipeline system by application of statistical analysis techniques

    International Nuclear Information System (INIS)

    Fukuda, Toshio; Mitsuoka, Toyokazu.

    1985-01-01

    The detection of leak in piping system is an important diagnostic technique for facilities to prevent accidents and to take maintenance measures, since the occurrence of leak lowers productivity and causes environmental destruction. As the first step, it is necessary to detect the occurrence of leak without delay, and as the second step, if the place of leak occurrence in piping system can be presumed, accident countermeasures become easy. The detection of leak by pressure is usually used for detecting large leak. But the method depending on pressure is simple and advantageous, therefore the extension of the detecting technique by pressure gradient method to the detection of smaller scale leak using statistical analysis techniques was examined for a pipeline in steady operation in this study. Since the flow in a pipe irregularly varies during pumping, statistical means is required for the detection of small leak by pressure. The index for detecting leak proposed in this paper is the difference of the pressure gradient at the both ends of a pipeline. The experimental results on water and air in nylon tubes are reported. (Kako, I.)

  19. Selected techniques in water resources investigations, 1965

    Science.gov (United States)

    Mesnier, Glennon N.; Chase, Edith B.

    1966-01-01

    Increasing world activity in water-resources development has created an interest in techniques for conducting investigations in the field. In the United States, the Geological Survey has the responsibility for extensive and intensive hydrologic studies, and the Survey places considerable emphasis on discovering better ways to carry out its responsibility. For many years, the dominant interest in field techniques has been "in house," but the emerging world interest has led to a need for published accounts of this progress. In 1963 the Geological Survey published "Selected Techniques in Water Resources Investigations" (Water-Supply Paper 1669-Z) as part of the series "Contributions to the Hydrology of the United States."The report was so favorably received that successive volumes are planned, of which this is the first. The present report contains 25 papers that represent new ideas being tested or applied in the hydrologic field program of the Geological Survey. These ideas range from a proposed system for monitoring fluvial sediment to how to construct stream-gaging wells from steel oil drums. The original papers have been revised and edited by the compilers, but the ideas presented are those of the authors. The general description of the bubble gage on page 2 has been given by the compilers as supplementary information.

  20. Criteria for assessing the quality of signal processing techniques for acoustic leak detection

    International Nuclear Information System (INIS)

    Prabhakar, R.; Singh, O.P.

    1990-01-01

    In this paper the criteria used in the first IAEA coordinated research programme to assess the quality of signal processing techniques for sodium boiling noise detection are highlighted. Signal processing techniques, using new features sensitive to boiling and a new approach for achieving higher reliability of detection, which were developed at Indira Gandhi Centre for Atomic Research are also presented. 10 refs, 3 figs, 2 tabs

  1. Detection, characterization and quantification of salicylic acid conjugates in plant extracts by ESI tandem mass spectrometric techniques.

    Science.gov (United States)

    Pastor, Victoria; Vicent, Cristian; Cerezo, Miguel; Mauch-Mani, Brigitte; Dean, John; Flors, Victor

    2012-04-01

    An approach for the detection and characterization of SA derivatives in plant samples is presented based on liquid chromatography coupled to electrospray ionization (ESI) tandem mass spectrometric techniques. Precursor ion scan methods using an ESI triple quadrupole spectrometer for samples from plants challenged with the virulent Pseudomonas syringae pv tomato DC3000 allowed us to detect two potential SA derivatives. The criterion used to consider a potential SA derivative is based on the detection of analytes in the precursor ion scan chromatogram upon selecting m/z 137 and m/z 93 that correspond to the salicylate and its main product ion, respectively. Product ion spectra of the newly-detected analytes as well as accurate m/z determinations using an ESI Q-time-of-flight instrument were registered as means of characterization and strongly suggest that glucosylated forms of SA at the carboxylic and at the phenol functional groups are present in plant samples. The specific synthesis and subsequent chromatography of salicylic glucosyl ester (SGE) and glucosyl salicylate (SAG) standards confirmed the chemical identity of both peaks that were obtained applying different tandem mass spectrometric techniques and accurate m/z determinations. A multiple reaction monitoring method has been developed and applied to plant samples. The advantages of this LC-ESI-MS/MS methods with respect to the traditional analysis of glucosyl conjugates are also discussed. Preliminary results revealed that SA and the glucosyl conjugates are accumulated in Arabidopsis thaliana in a time dependent manner, accordingly to the up-regulation of SA-dependent defenses following P. syringae infection. This technique applied to plant hormones or fragment ions may be useful to obtain chemical family members of plant metabolites and help identify their contribution in the signaling of plant defenses. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  2. A modified scintigrafic technique for amputation level selection in diabetics

    International Nuclear Information System (INIS)

    Dwars, B.J.; Rauwerda, J.A.; Broek, T.A.A. van den; Rij, G.L. van; Hollander, W. den; Heidendal, G.A.K.

    1989-01-01

    A modified 123 I-antipyrine cutaneous washout technique for the selection of amputation levels is described. The modifications imply a reduction of time needed for the examination by simultaneous recordings on different levels, and a better patient acceptance by reducing inconvenience. Furthermore, both skin perfusion pressure (SPP) and skin blood flow (SBF) are determined from each clearance curve. In a prospective study among 26 diabetic patients presenting with ulcers or gangrene of the foot, both SPP and SBF were determined preoperatively on the selected level of surgery and on adjacent amputation sites. These 26 patients underwent 12 minor foot amputations and 17 major lower limb amputations. Two of these amputations failed to heal. SBF values appeared indicative for the degree of peripheral vascular disease, as low SBF values were found with low SPP values. SPP determinations revealed good predictive values: All surgical procedures healed when SPP>20 mmHg, but 2 out of 3 failed when SPP<2 mmHg. If SPP values would have been decisive, the amputation would have been converted to a lower level in 6 out of 17 cases. This modified scintigrafic technique provides accurate objective information for amputation level selection. (orig.)

  3. Transsexual Mastectomy: Selection of Appropriate Technique According to Breast Characteristics

    Directory of Open Access Journals (Sweden)

    Hüsamettin Top

    2017-04-01

    Full Text Available Background: Subcutaneous mastectomy for female- to-male transsexuals is usually the first surgical pro- cedure in sexual reassignment. The main objective of subcutaneous mastectomy is to create an aesthetically pleasing male chest contour by removing all glandular tissue while minimizing chest wall scars. Aims: In this paper, we present our experience with subcutaneous mastectomy performed in female-to- male transsexual patients. The authors recommend their point of view to aid in selecting the most suitable subcutaneous mastectomy technique depending on breast characteristics. Study Design: Retrospective cross-sectional study. Methods: Between March 2011 and December 2014, 52 patients underwent bilateral subcutaneous mastec- tomies (total of 104 mastectomies, performed using the following four techniques: Webster semicircular, concentric circular, vertical, and apron flap. The tech- nique decision depended on the breast size, degree of skin excess, skin elasticity, chest width, nipple areolar complex size and position. Results: Seventeen patients (32.7% were operated with Webster semicircular, 7 patients (13.5% with con- centric periareolar, 12 patients with vertical (23%; and 16 patients (30.8% with the apron flap technique. The overall postoperative complication rate was 13.4%. All patients were satisfied with the aesthetic results of their subcutaneous mastectomies within the follow-up period. Conclusion: To obtain higher patient satisfaction with aesthetic results and lower postoperative complication rates, breast characteristics are evaluated in a detailed fashion, while choosing the ideal technique of Female-to-Male (FtM subcutaneous mastectomy. The presented surgical new algorithm facilitates the selection of the most reliable surgical technique

  4. Sample size estimation and sampling techniques for selecting a representative sample

    Directory of Open Access Journals (Sweden)

    Aamir Omair

    2014-01-01

    Full Text Available Introduction: The purpose of this article is to provide a general understanding of the concepts of sampling as applied to health-related research. Sample Size Estimation: It is important to select a representative sample in quantitative research in order to be able to generalize the results to the target population. The sample should be of the required sample size and must be selected using an appropriate probability sampling technique. There are many hidden biases which can adversely affect the outcome of the study. Important factors to consider for estimating the sample size include the size of the study population, confidence level, expected proportion of the outcome variable (for categorical variables/standard deviation of the outcome variable (for numerical variables, and the required precision (margin of accuracy from the study. The more the precision required, the greater is the required sample size. Sampling Techniques: The probability sampling techniques applied for health related research include simple random sampling, systematic random sampling, stratified random sampling, cluster sampling, and multistage sampling. These are more recommended than the nonprobability sampling techniques, because the results of the study can be generalized to the target population.

  5. Experimental techniques for the detection of the high energy gamma rays of cosmic origin

    International Nuclear Information System (INIS)

    Dumitrescu, Gh.; Angelescu, T.; Radu, A.A.

    2002-01-01

    The observation of high energy gamma rays of cosmic origin in the early 90 by Volcano Ranch experiment opened a new direction of study in astrophysics. The very high energy and the very low flux of these gamma rays, posed numerous detection problems which in turn were the object of a very intense research activity. The present article tries to review the detection techniques for the high energy gamma rays of cosmic origin. In the 'Introduction' we summarize the specific problems involved in the detection of this type of radiation. 'Chapter 1' presents the classic technique based on the use of scintillation detectors. 'Chapter 2' includes the imaging atmospheric Cherenkov technique (IACT) and the sampling wavefront technique. 'Chapter 3' is dedicated to the detection of the atmospheric nitrogen. 'Chapter 4' describes issues related to the calibration of the detectors, the cross checking of the experimental data, the use of the Monte Carlo simulations and the use of the density observed at a distance of 600 m S(600), in order to estimate the primary energy. The characteristics of some future developments of the above presented techniques are included in the last chapter. (authors)

  6. Properties of hypothesis testing techniques and (Bayesian) model selection for exploration-based and theory-based (order-restricted) hypotheses.

    Science.gov (United States)

    Kuiper, Rebecca M; Nederhoff, Tim; Klugkist, Irene

    2015-05-01

    In this paper, the performance of six types of techniques for comparisons of means is examined. These six emerge from the distinction between the method employed (hypothesis testing, model selection using information criteria, or Bayesian model selection) and the set of hypotheses that is investigated (a classical, exploration-based set of hypotheses containing equality constraints on the means, or a theory-based limited set of hypotheses with equality and/or order restrictions). A simulation study is conducted to examine the performance of these techniques. We demonstrate that, if one has specific, a priori specified hypotheses, confirmation (i.e., investigating theory-based hypotheses) has advantages over exploration (i.e., examining all possible equality-constrained hypotheses). Furthermore, examining reasonable order-restricted hypotheses has more power to detect the true effect/non-null hypothesis than evaluating only equality restrictions. Additionally, when investigating more than one theory-based hypothesis, model selection is preferred over hypothesis testing. Because of the first two results, we further examine the techniques that are able to evaluate order restrictions in a confirmatory fashion by examining their performance when the homogeneity of variance assumption is violated. Results show that the techniques are robust to heterogeneity when the sample sizes are equal. When the sample sizes are unequal, the performance is affected by heterogeneity. The size and direction of the deviations from the baseline, where there is no heterogeneity, depend on the effect size (of the means) and on the trend in the group variances with respect to the ordering of the group sizes. Importantly, the deviations are less pronounced when the group variances and sizes exhibit the same trend (e.g., are both increasing with group number). © 2014 The British Psychological Society.

  7. Increasing the selectivity and sensitivity of gas sensors for the detection of explosives

    Science.gov (United States)

    Mallin, Daniel

    Over the past decade, the use of improvised explosive devices (IEDs) has increased, domestically and internationally, highlighting a growing need for a method to quickly and reliably detect explosive devices in both military and civilian environments before the explosive can cause damage. Conventional techniques have been successful in explosive detection, however they typically suffer from enormous costs in capital equipment and maintenance, costs in energy consumption, sampling, operational related expenses, and lack of continuous and real-time monitoring. The goal was thus to produce an inexpensive, portable sensor that continuously monitors the environment, quickly detects the presence of explosive compounds and alerts the user. In 2012, here at URI, a sensor design was proposed for the detection of triacetone triperoxide (TATP). The design entailed a thermodynamic gas sensor that measures the heat of decomposition between trace TATP vapor and a metal oxide catalyst film. The sensor was able to detect TATP vapor at the part per million level (ppm) and showed great promise for eventual commercial use, however, the sensor lacked selectivity. Thus, the specific objective of this work was to take the original sensor design proposed in 2012 and to make several key improvements to advance the sensor towards commercialization. It was demonstrated that a sensor can be engineered to detect TATP and ignore the effects of interferent H2O2 molecules by doping SnO2 films with varying amounts of Pd. Compared with a pure SnO2 catalyst, a SnO2, film doped with 8 wt. % Pd had the highest selectivity between TATP and H2O2. Also, at 12 wt. % Pd, the response to TATP and H2O2 was enhanced, indicating that sensitivity, not only selectivity, can be increased by modifying the composition of the catalyst. An orthogonal detection system was demonstrated. The platform consists of two independent sensing mechanisms, one thermodynamic and one conductometric, which take measurements from

  8. Novel selective and non-selective optical detection of microorganisms.

    Science.gov (United States)

    Shelef, L A; Firstenberg-Eden, R

    1997-09-01

    A new instrument, capable of detecting metabolic changes due to microbiological activity, is described. Optical changes in growth media are monitored in a semi-fluid zone that separates the liquid medium containing the sample. Data demonstrate that common media can be utilized in conjunction with this rapid automated technology. Nutrient broth with the pH dye indicator. bromocresol purple was suitable for total counts. Selective media containing dyes were utilized to assess the presence or absence of specific groups of organisms. Biochemical reactions, such as lysine decarboxylase activity, were identified by the unique generated patterns, and specific enzymatic cleavage reactions with chromogenic substrates, such as 5-bromo-4 chloro-3 indolyl-beta-D-glucuronic acid (X-GLUC), were monitored.

  9. Two-dimensional ytterbium oxide nanodisks based biosensor for selective detection of urea.

    Science.gov (United States)

    Ibrahim, Ahmed A; Ahmad, Rafiq; Umar, Ahmad; Al-Assiri, M S; Al-Salami, A E; Kumar, Rajesh; Ansari, S G; Baskoutas, S

    2017-12-15

    Herein, we demonstrate synthesis and application of two-dimensional (2D) rectangular ytterbium oxide (Yb 2 O 3 ) nanodisks via a facile hydrothermal method. The structural, morphological, compositional, crystallinity, and phase properties of as-synthesized nanodisks were carried out using several analytical techniques that showed well defined 2D rectangular nanodisks/sheet like morphologies. The average thickness and edge length of the nanosheet structures were 20 ± 5nm and 600 ± 50nm, respectively. To develop urea biosensor, glassy carbon electrodes (GCE) were modified with Yb 2 O 3 nanodisks, followed by urease immobilization and Nafion membrane covering (GCE/Yb 2 O 3 /Urease/Nafion). The fabricated biosensor showed sensitivity of 124.84μAmM -1 cm -2 , wide linear range of 0.05-19mM, detection limit down to ~ 2μM, and fast response time of ~ 3s. The developed biosensor was also used for the urea detection in water samples through spike-recovery experiments, which illustrates satisfactory recoveries. In addition, the obtained desirable selectivity towards specific interfering species, long-term stability, reproducibility, and repeatability further confirm the potency of as-fabricated urea biosensor. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Detection of Listeria monocytogenes from selective enrichment broth using MALDI-TOF Mass Spectrometry.

    Science.gov (United States)

    Jadhav, Snehal; Sevior, Danielle; Bhave, Mrinal; Palombo, Enzo A

    2014-01-31

    Conventional methods used for primary detection of Listeria monocytogenes from foods and subsequent confirmation of presumptive positive samples involve prolonged incubation and biochemical testing which generally require four to five days to obtain a result. In the current study, a simple and rapid proteomics-based MALDI-TOF MS approach was developed to detect L. monocytogenes directly from selective enrichment broths. Milk samples spiked with single species and multiple species cultures were incubated in a selective enrichment broth for 24h, followed by an additional 6h secondary enrichment. As few as 1 colony-forming unit (cfu) of L. monocytogenes per mL of initial selective broth culture could be detected within 30h. On applying the same approach to solid foods previously implicated in listeriosis, namely chicken pâté, cantaloupe and Camembert cheese, detection was achieved within the same time interval at inoculation levels of 10cfu/mL. Unlike the routine application of MALDI-TOF MS for identification of bacteria from solid media, this study proposes a cost-effective and time-saving detection scheme for direct identification of L. monocytogenes from broth cultures.This article is part of a Special Issue entitled: Trends in Microbial Proteomics. Globally, foodborne diseases are major causes of illness and fatalities in humans. Hence, there is a continual need for reliable and rapid means for pathogen detection from food samples. Recent applications of MALDI-TOF MS for diagnostic microbiology focused on detection of microbes from clinical specimens. However, the current study has emphasized its use as a tool for detecting the major foodborne pathogen, Listeria monocytogenes, directly from selective enrichment broths. This proof-of-concept study proposes a detection scheme that is more rapid and simple compared to conventional methods of Listeria detection. Very low levels of the pathogen could be identified from different food samples post-enrichment in

  11. Detection of uranium enrichment activities using environmental monitoring techniques

    International Nuclear Information System (INIS)

    Belew, W.L.; Carter, J.A.; Smith, D.H.; Walker, R.L.

    1993-01-01

    Uranium enrichment processes have the capability of producing weapons-grade material in the form of highly enriched uranium. Thus, detection of undeclared uranium enrichment activities is an international safeguards concern. The uranium separation technologies currently in use employ UF 6 gas as a separation medium, and trace quantities of enriched uranium are inevitably released to the environment from these facilities. The isotopic content of uranium in the vegetation, soil, and water near the plant site will be altered by these releases and can provide a signature for detecting the presence of enriched uranium activities. This paper discusses environmental sampling and analytical procedures that have been used for the detection of uranium enrichment facilities and possible safeguards applications of these techniques

  12. Development of technique on the induction and selection of in vitro mutant lines (Potato, Solanum tuberosum L.)

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jang Ryoel; Lee, Yeong Il; Song, Hee Seop; Kim, Jae Seong; Sin, In Cheol; Lee, Sang Jae; Lee, Ki Un; Lim, Yong Taek [Korea Atomic Energy Res. Inst., Taejon (Korea, Republic of)

    1993-09-01

    For the development of the technique on the plant tissue culture and application of nuclear technique in the in vitro mutation breeding, present research laid emphasis on the development of techniques of potato tissue culture, and on the induction and selection of radiation mutation. Another culture for haploid induction, optimum radiation dosage for cybrid formation of potato and mutation induction from in vitro cultured microtuber and plantlets were investigated for modelling the technique on the induction and selection of in vitro mutant lines. Inheritance stability of the selected mutants were also studied in field condition. In vitro system of micropropagation and selection of mutation was summarized.

  13. Development of technique on the induction and selection of in vitro mutant lines (Potato, Solanum tuberosum L.)

    International Nuclear Information System (INIS)

    Yoo, Jang Ryoel; Lee, Yeong Il; Song, Hee Seop; Kim, Jae Seong; Sin, In Cheol; Lee, Sang Jae; Lee, Ki Un; Lim, Yong Taek

    1993-09-01

    For the development of the technique on the plant tissue culture and application of nuclear technique in the in vitro mutation breeding, present research laid emphasis on the development of techniques of potato tissue culture, and on the induction and selection of radiation mutation. Another culture for haploid induction, optimum radiation dosage for cybrid formation of potato and mutation induction from in vitro cultured microtuber and plantlets were investigated for modelling the technique on the induction and selection of in vitro mutant lines. Inheritance stability of the selected mutants were also studied in field condition. In vitro system of micropropagation and selection of mutation was summarized

  14. Beam synchronous detection techniques for X-Ray spectroscopy

    International Nuclear Information System (INIS)

    Goujon, Gérard; Rogalev, Andreï; Goulon, José; Feite, Serge; Wilhelm, Fabrice

    2013-01-01

    The Photo diode detectors combine a set of properties that make them most appropriate, in particular, for X-ray Magnetic Circular Dichroism (XMCD) experiments. Under standard operating conditions, the detection bandwidth is primarily limited by the transimpedance preamplifier that converts the very low ac photocurrent into a voltage. On the other hand, when the photodiode is reverse biased, its finite shunt resistance will cause an undesirable, temperature dependent DC dark current. The best strategy to get rid of it is to use synchronous detection techniques. A classical implementation is based on the use of a chopper modulating the X-ray beam intensity at rather low frequencies (typically below 1 kHz). Here we report on the recent development of a fast Xray detection which has the capability to fully exploit the frequency structure of the ESRF X-ray beam (355 KHz and its harmonics). The availability of new wide band preamplifiers allowed us to extend the working frequency range up to a few MHz. A beam synchronous data processing was implemented in large FPGAs. Performances of the new detection system implemented at the ESRF beamline ID12 are illustrated with detection of the Fe K-edge XMCD spectra in garnets, using 4 bunches operation mode with modulation frequency of 1.4 MHz.

  15. Directional Track Selection Technique in CR39 SSNTD for lowyield reaction experiments

    Science.gov (United States)

    Ingenito, Francesco; Andreoli, Pierluigi; Batani, Dimitri; Bonasera, Aldo; Boutoux, Guillaume; Burgy, Frederic; Cipriani, Mattia; Consoli, Fabrizio; Cristofari, Giuseppe; De Angelis, Riccardo; Di Giorgio, Giorgio; Ducret, Jean Eric; Giulietti, Danilo; Jakubowska, Katarzyna

    2018-01-01

    There is a great interest in the study of p-11B aneutronic nuclear fusion reactions, both for energy production and for determination of fusion cross-sections at low energies. In this context we performed experiments at CELIA in which energetic protons, accelerated by the laser ECLIPSE, were directed toward a solid Boron target. Because of the small cross-sections at these energies the number of expected reactions is low. CR39 Solid-State Nuclear Track Detectors (SSNTD) were used to detect the alpha particles produced. Because of the low expected yield, it is difficult to discriminate the tracks due to true fusion products from those due to natural background in the CR39. To this purpose we developed a methodology of particle recognition according to their direction with respect to the detector normal, able to determine the position of their source. We applied this to the specific experiment geometry, so to select from all the tracks those due to particles coming from the region of interaction between accelerated protons and solid boron target. This technique can be of great help on the analysis of SSNTD in experiments with low yield reactions, but can be also generally applied to any experiment where particles reach the track detector with known directions, and for example to improve the detection limit of particle spectrometers using CR39.

  16. Rolling cycle amplification based single-color quantum dots–ruthenium complex assembling dyads for homogeneous and highly selective detection of DNA

    Energy Technology Data Exchange (ETDEWEB)

    Su, Chen; Liu, Yufei; Ye, Tai; Xiang, Xia; Ji, Xinghu; He, Zhike, E-mail: zhkhe@whu.edu.cn

    2015-01-01

    Graphical abstract: A universal, label-free, homogeneous, highly sensitive, and selective fluorescent biosensor for DNA detection is developed by using rolling-circle amplification (RCA) based single-color quantum dots–ruthenium complex (QDs–Ru) assembling dyads. - Highlights: • The single-color QDs–Ru assembling dyads were applied in homogeneous DNA assay. • This biosensor exhibited high selectivity against base mismatched sequences. • This biosensor could be severed as universal platform for the detection of ssDNA. • This sensor could be used to detect the target in human serum samples. • This DNA sensor had a good selectivity under the interference of other dsDNA. - Abstract: In this work, a new, label-free, homogeneous, highly sensitive, and selective fluorescent biosensor for DNA detection is developed by using rolling-circle amplification (RCA) based single-color quantum dots–ruthenium complex (QDs–Ru) assembling dyads. This strategy includes three steps: (1) the target DNA initiates RCA reaction and generates linear RCA products; (2) the complementary DNA hybridizes with the RCA products to form long double-strand DNA (dsDNA); (3) [Ru(phen){sub 2}(dppx)]{sup 2+} (dppx = 7,8-dimethyldipyrido [3,2-a:2′,3′-c] phenanthroline) intercalates into the long dsDNA with strong fluorescence emission. Due to its strong binding propensity with the long dsDNA, [Ru(phen){sub 2}(dppx)]{sup 2+} is removed from the surface of the QDs, resulting in restoring the fluorescence of the QDs, which has been quenched by [Ru(phen){sub 2}(dppx)]{sup 2+} through a photoinduced electron transfer process and is overlaid with the fluorescence of dsDNA bonded Ru(II) polypyridyl complex (Ru-dsDNA). Thus, high fluorescence intensity is observed, and is related to the concentration of target. This sensor exhibits not only high sensitivity for hepatitis B virus (HBV) ssDNA with a low detection limit (0.5 pM), but also excellent selectivity in the complex matrix. Moreover

  17. Selective detection of labeled DNA using an air-clad photonic crystal fiber

    DEFF Research Database (Denmark)

    Jensen, Jesper Bo Damm; Hoiby, P.E.; Pedersen, L.H.

    2004-01-01

    Demonstration of selective detection of fluorophore labeled DNA by hybridization inside the air holes of a photonic crystal fiber A laser exposes the fiber from the side and the emitted fluorescence tunnels into the core.......Demonstration of selective detection of fluorophore labeled DNA by hybridization inside the air holes of a photonic crystal fiber A laser exposes the fiber from the side and the emitted fluorescence tunnels into the core....

  18. Voltage switching technique for detecting nuclear spin polarization in a quantum dot

    International Nuclear Information System (INIS)

    Takahashi, Ryo; Kono, Kimitoshi; Tarucha, Seigo; Ono, Keiji

    2010-01-01

    We have introduced a source-drain voltage switching technique for studying nuclear spins in a vertical double quantum dot. Switching the source-drain voltage between the spin-blockade state and the zero-bias Coulomb blockade state can tune the energy difference between the spin singlet and triplet, and effectively turn on/off the hyperfine interaction. Since the change in the nuclear spin state affects the source-drain current, nuclear spin properties can only be detected by transport measurement. Using this technique, we have succeeded in measuring the timescale of nuclear spin depolarization. Furthermore, combining this technique and an RF ac magnetic field, we successfully detected continuous-wave NMR signals of 75 As, 69 Ga, and 71 Ga, which are contained in a quantum dot. (author)

  19. Novel Damage Detection Techniques for Structural Health Monitoring Using a Hybrid Sensor

    Directory of Open Access Journals (Sweden)

    Dengjiang Wang

    2016-01-01

    Full Text Available This study presents a technique for detecting fatigue cracks based on a hybrid sensor monitoring system consisting of a combination of intelligent coating monitoring (ICM and piezoelectric transducer (PZT sensors. An experimental procedure using this hybrid sensor system was designed to monitor the cracks generated by fatigue testing in plate structures. A probability of detection (POD model that quantifies the reliability of damage detection for a specific sensor or the nondestructive testing (NDT method was used to evaluate the weight factor for the ICM and PZT sensors. To estimate the uncertainty of model parameters in this study, the Bayesian method was employed. Realistic data from fatigue testing was used to validate the overall method, and the results show that the novel damage detection technique using a hybrid sensor can quantify fatigue cracks more accurately than results obtained by conventional sensor methods.

  20. Selective versus non-selective culture medium for group B streptococcus detection in pregnancies complicated by preterm labor or preterm-premature rupture of membranes

    Directory of Open Access Journals (Sweden)

    Marcelo Luís Nomura

    Full Text Available The objective of this study was to identify group B streptococcus (GBS colonization rates and compare detection efficiency of selective versus non-selective culture media and anorectal versus vaginal cultures in women with preterm labor and preterm-premature rupture of membranes (PROM. A prospective cohort study of 203 women was performed. Two vaginal and two anorectal samples from each woman were collected using sterile swabs. Two swabs (one anorectal and one vaginal were placed separately in Stuart transport media and cultured in blood-agar plates for 48 hours; the other two swabs were inoculated separately in Todd-Hewitt selective media for 24 hours and then subcultured in blood-agar plates. Final GBS identification was made by the CAMP test. A hundred thrity-two cultures out of 812 were positive. The maternal colonization rate was 27.6%. Colonization rates were 30% for preterm PROM and 25.2% for preterm labor. Todd-Hewitt selective medium detected 87.5% and non-selective medium 60.7% GBS-positive women. Vaginal samples and anorectal samples had the same detection rate of 80.3%. Anorectal selective cultures detected 75% of carriers; 39% of GBS-positive women were detected only in selective medium. A combined vaginal-anorectal selective culture is appropriate for GBS screening in this population, minimizing laboratory costs.

  1. Statistical Techniques For Real-time Anomaly Detection Using Spark Over Multi-source VMware Performance Data

    Energy Technology Data Exchange (ETDEWEB)

    Solaimani, Mohiuddin [Univ. of Texas-Dallas, Richardson, TX (United States); Iftekhar, Mohammed [Univ. of Texas-Dallas, Richardson, TX (United States); Khan, Latifur [Univ. of Texas-Dallas, Richardson, TX (United States); Thuraisingham, Bhavani [Univ. of Texas-Dallas, Richardson, TX (United States); Ingram, Joey Burton [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    Anomaly detection refers to the identi cation of an irregular or unusual pat- tern which deviates from what is standard, normal, or expected. Such deviated patterns typically correspond to samples of interest and are assigned different labels in different domains, such as outliers, anomalies, exceptions, or malware. Detecting anomalies in fast, voluminous streams of data is a formidable chal- lenge. This paper presents a novel, generic, real-time distributed anomaly detection framework for heterogeneous streaming data where anomalies appear as a group. We have developed a distributed statistical approach to build a model and later use it to detect anomaly. As a case study, we investigate group anomaly de- tection for a VMware-based cloud data center, which maintains a large number of virtual machines (VMs). We have built our framework using Apache Spark to get higher throughput and lower data processing time on streaming data. We have developed a window-based statistical anomaly detection technique to detect anomalies that appear sporadically. We then relaxed this constraint with higher accuracy by implementing a cluster-based technique to detect sporadic and continuous anomalies. We conclude that our cluster-based technique out- performs other statistical techniques with higher accuracy and lower processing time.

  2. Applications of pattern recognition techniques to online fault detection

    International Nuclear Information System (INIS)

    Singer, R.M.; Gross, K.C.; King, R.W.

    1993-01-01

    A common problem to operators of complex industrial systems is the early detection of incipient degradation of sensors and components in order to avoid unplanned outages, to orderly plan for anticipated maintenance activities and to assure continued safe operation. In such systems, there usually are a large number of sensors (upwards of several thousand is not uncommon) serving many functions, ranging from input to control systems, monitoring of safety parameters and component performance limits, system environmental conditions, etc. Although sensors deemed to measure important process conditions are generally alarmed, the alarm set points usually are just high-low limits and the operator's response to such alarms is based on written procedures and his or her experience and training. In many systems this approach has been successful, but in situations where the cost of a forced outage is high an improved method is needed. In such cases it is desirable, if not necessary, to detect disturbances in either sensors or the process prior to any actual failure that could either shut down the process or challenge any safety system that is present. Recent advances in various artificial intelligence techniques have provided the opportunity to perform such functions of early detection and diagnosis. In this paper, the experience gained through the application of several pattern-recognition techniques to the on-line monitoring and incipient disturbance detection of several coolant pumps and numerous sensors at the Experimental Breeder Reactor-II (EBR-II) which is located at the Idaho National Engineering Laboratory is presented

  3. A copper ion-selective electrode with high selectivity prepared by sol-gel and coated wire techniques.

    Science.gov (United States)

    Mazloum Ardakani, M; Salavati-Niasari, M; Khayat Kashani, M; Ghoreishi, S M

    2004-03-01

    A sol-gel electrode and a coated wire ion-selective poly(vinyl chloride) membrane, based on thiosemicarbazone as a neutral carrier, were successfully developed for the detection of Cu (II) in aqueous solutions. The sol-gel electrode and coated electrode exhibited linear response with Nernstian slopes of 29.2 and 28.1 mV per decade respectively, within the copper ion concentration ranges 1.0 x 10(-5) - 1.0 x 10(-1) M and 6.0 x 10(-6) - 1.0 x 10(-1) M for coated and sol-gel sensors. The coated and sol-gel electrodes show detection limits of 3.0 x 10(-6) and 6.0 x 10(-6) M respectively. The electrodes exhibited good selectivities for a number of alkali, alkaline earth, transition and heavy metal ions. The proposed electrodes have response times ranging from 10-50 s to achieve a 95% steady potential for Cu2+ concentration. The electrodes are suitable for use in aqueous solutions over a wide pH range (4-7.5). Applications of these electrodes for the determination of copper in real samples, and as an indicator electrode for potentiometric titration of Cu2+ ion using EDTA, are reported. The lifetimes of the electrodes were tested over a period of six months to investigate their stability. No significant change in the performance of the sol-gel electrode was observed over this period, but after two months the coated wire copper-selective electrode exhibited a gradual decrease in the slope. The selectivity of the sol-gel electrode was found to be better than that of the coated wire copper-selective electrode. Based on these results, a novel sol-gel copper-selective electrode is proposed for the determination of copper, and applied to real sample assays.

  4. Detection of irradiated spices using photo-stimulated luminescence technique (PSL)

    Energy Technology Data Exchange (ETDEWEB)

    Ramli, Ros Anita Ahmad; Yasir, Muhamad Samudi [Faculty of Science and Technology, National University of Malaysia, Bangi, 43000 Kajang, Selangor (Malaysia); Othman, Zainon; Abdullah, Wan Saffiey Wan [Malaysian Nuclear Agency, Bangi 43000 Kajang, Selangor (Malaysia)

    2014-09-03

    Photo-stimulated luminescence (PSL) technique was applied to detect irradiated black pepper (Piper nigrum), cinnamon (Cinnamomum verum) and turmeric (Curcuma longa) after dark storage for 1 day, 3 and 6 months. Using screening and calibrated PSL, all samples were correctly discriminated between non-irradiated and spices irradiated with doses 1, 5 and 10 kGy. The PSL photon counts (PCs) of irradiated spices increased with increasing dose, with turmeric showing highest sensitivity index to irradiation compared to black pepper and cinnamon. The differences in response are possibly attributed to the varying quantity and quality of silicate minerals present in each spice sample. PSL signals of all irradiated samples reduced after 3 and 6 months storage. The results of this study provide a useful database on the applicability of PSL technique for the detection of Malaysian irradiated spices.

  5. Detection of irradiated spices using photo-stimulated luminescence technique (PSL)

    International Nuclear Information System (INIS)

    Ramli, Ros Anita Ahmad; Yasir, Muhamad Samudi; Othman, Zainon; Abdullah, Wan Saffiey Wan

    2014-01-01

    Photo-stimulated luminescence (PSL) technique was applied to detect irradiated black pepper (Piper nigrum), cinnamon (Cinnamomum verum) and turmeric (Curcuma longa) after dark storage for 1 day, 3 and 6 months. Using screening and calibrated PSL, all samples were correctly discriminated between non-irradiated and spices irradiated with doses 1, 5 and 10 kGy. The PSL photon counts (PCs) of irradiated spices increased with increasing dose, with turmeric showing highest sensitivity index to irradiation compared to black pepper and cinnamon. The differences in response are possibly attributed to the varying quantity and quality of silicate minerals present in each spice sample. PSL signals of all irradiated samples reduced after 3 and 6 months storage. The results of this study provide a useful database on the applicability of PSL technique for the detection of Malaysian irradiated spices

  6. Detection of irradiated spices using photo-stimulated luminescence technique (PSL)

    Science.gov (United States)

    Ramli, Ros Anita Ahmad; Yasir, Muhamad Samudi; Othman, Zainon; Abdullah, Wan Saffiey Wan

    2014-09-01

    Photo-stimulated luminescence (PSL) technique was applied to detect irradiated black pepper (Piper nigrum), cinnamon (Cinnamomum verum) and turmeric (Curcuma longa) after dark storage for 1 day, 3 and 6 months. Using screening and calibrated PSL, all samples were correctly discriminated between non-irradiated and spices irradiated with doses 1, 5 and 10 kGy. The PSL photon counts (PCs) of irradiated spices increased with increasing dose, with turmeric showing highest sensitivity index to irradiation compared to black pepper and cinnamon. The differences in response are possibly attributed to the varying quantity and quality of silicate minerals present in each spice sample. PSL signals of all irradiated samples reduced after 3 and 6 months storage. The results of this study provide a useful database on the applicability of PSL technique for the detection of Malaysian irradiated spices.

  7. A Wearable Gait Phase Detection System Based on Force Myography Techniques

    Directory of Open Access Journals (Sweden)

    Xianta Jiang

    2018-04-01

    Full Text Available (1 Background: Quantitative evaluation of gait parameters can provide useful information for constructing individuals’ gait profile, diagnosing gait abnormalities, and better planning of rehabilitation schemes to restore normal gait pattern. Objective determination of gait phases in a gait cycle is a key requirement in gait analysis applications; (2 Methods: In this study, the feasibility of using a force myography-based technique for a wearable gait phase detection system is explored. In this regard, a force myography band is developed and tested with nine participants walking on a treadmill. The collected force myography data are first examined sample-by-sample and classified into four phases using Linear Discriminant Analysis. The gait phase events are then detected from these classified samples using a set of supervisory rules; (3 Results: The results show that the force myography band can correctly detect more than 99.9% of gait phases with zero insertions and only four deletions over 12,965 gait phase segments. The average temporal error of gait phase detection is 55.2 ms, which translates into 2.1% error with respect to the corresponding labelled stride duration; (4 Conclusions: This proof-of-concept study demonstrates the feasibility of force myography techniques as viable solutions in developing wearable gait phase detection systems.

  8. Evaluation of different selective media and culturing techniques for the quantification of Campylobacter ssp. from broiler litter.

    Science.gov (United States)

    Kiess, A S; Parker, H M; McDaniel, C D

    2010-08-01

    Poultry is a major reservoir for Campylobacter, the leading cause of foodborne illness in the United States, but how broilers become initially colonized is still under debate. Broiler litter is a potential source, but the best technique for quantifying Campylobacter from litter is still unknown. Therefore, our objectives were to determine if certain media are more selective for quantifying Campylobacter and if enrichment allows for the detection of stressed or viable but nonculturable cells from broiler litter samples. In this trial, 5 media and 2 culturing techniques were used to enumerate Campylobacter from broiler litter. The media used were campy-Line agar (CLA), campy-cefex agar (CCA), modified CCA, Campylobacter agar plates (CAP), and modified charcoal cefoperazone deoxycholate agar. Litter samples were obtained from a commercial broiler house. Each sample was equally divided and diluted 10-fold into peptone, for direct plating, or 4-fold into Campylobacter enrichment broth. Samples diluted in peptone were direct-plated onto each media and incubated under microaerophilic conditions for 48 h at 42 degrees C. Samples diluted in enrichment broth were incubated under the same conditions for 24 h, then further diluted to 10-fold before plating. Plates from enriched samples were incubated for an additional 24 h after plating. After incubation, all plates (direct and enriched) were counted and presumptive positive colonies were confirmed using a Campylobacter latex agglutination kit. Results indicated that there was no difference in the ability of any of the selective media tested to grow Campylobacter. Direct-plated samples had a higher Campylobacter isolation rate compared with enriched samples. The CLA and CAP were able to suppress total bacterial growth better than modified charcoal cefoperazone deoxycholate, modified CCA, and CCA. The CLA and CAP were the only media able to detect total bacterial population shifts over time. In conclusion, it is important

  9. Molecular modelling of a chemodosimeter for the selective detection ...

    Indian Academy of Sciences (India)

    Wintec

    Molecular modelling of a chemodosimeter for the selective detection of. As(III) ion in water. † ... high levels of arsenic cause severe skin diseases in- cluding skin cancer ..... Special Attention to Groundwater in SE Asia (eds) D. Chakraborti, A ...

  10. Robust online tracking via adaptive samples selection with saliency detection

    Science.gov (United States)

    Yan, Jia; Chen, Xi; Zhu, QiuPing

    2013-12-01

    Online tracking has shown to be successful in tracking of previously unknown objects. However, there are two important factors which lead to drift problem of online tracking, the one is how to select the exact labeled samples even when the target locations are inaccurate, and the other is how to handle the confusors which have similar features with the target. In this article, we propose a robust online tracking algorithm with adaptive samples selection based on saliency detection to overcome the drift problem. To deal with the problem of degrading the classifiers using mis-aligned samples, we introduce the saliency detection method to our tracking problem. Saliency maps and the strong classifiers are combined to extract the most correct positive samples. Our approach employs a simple yet saliency detection algorithm based on image spectral residual analysis. Furthermore, instead of using the random patches as the negative samples, we propose a reasonable selection criterion, in which both the saliency confidence and similarity are considered with the benefits that confusors in the surrounding background are incorporated into the classifiers update process before the drift occurs. The tracking task is formulated as a binary classification via online boosting framework. Experiment results in several challenging video sequences demonstrate the accuracy and stability of our tracker.

  11. Development of a HIV-1 Virus Detection System Based on Nanotechnology

    Directory of Open Access Journals (Sweden)

    Jin-Ho Lee

    2015-04-01

    Full Text Available Development of a sensitive and selective detection system for pathogenic viral agents is essential for medical healthcare from diagnostics to therapeutics. However, conventional detection systems are time consuming, resource-intensive and tedious to perform. Hence, the demand for sensitive and selective detection system for virus are highly increasing. To attain this aim, different aspects and techniques have been applied to develop virus sensor with improved sensitivity and selectivity. Here, among those aspects and techniques, this article reviews HIV virus particle detection systems incorporated with nanotechnology to enhance the sensitivity. This review mainly focused on four different detection system including vertically configured electrical detection based on scanning tunneling microscopy (STM, electrochemical detection based on direct electron transfer in virus, optical detection system based on localized surface plasmon resonance (LSPR and surface enhanced Raman spectroscopy (SERS using plasmonic nanoparticle.

  12. Development of a HIV-1 Virus Detection System Based on Nanotechnology.

    Science.gov (United States)

    Lee, Jin-Ho; Oh, Byung-Keun; Choi, Jeong-Woo

    2015-04-27

    Development of a sensitive and selective detection system for pathogenic viral agents is essential for medical healthcare from diagnostics to therapeutics. However, conventional detection systems are time consuming, resource-intensive and tedious to perform. Hence, the demand for sensitive and selective detection system for virus are highly increasing. To attain this aim, different aspects and techniques have been applied to develop virus sensor with improved sensitivity and selectivity. Here, among those aspects and techniques, this article reviews HIV virus particle detection systems incorporated with nanotechnology to enhance the sensitivity. This review mainly focused on four different detection system including vertically configured electrical detection based on scanning tunneling microscopy (STM), electrochemical detection based on direct electron transfer in virus, optical detection system based on localized surface plasmon resonance (LSPR) and surface enhanced Raman spectroscopy (SERS) using plasmonic nanoparticle.

  13. Chemiluminescence of creatinine/H2O2/Co(2+) and its application for selective creatinine detection.

    Science.gov (United States)

    Hanif, Saima; John, Peter; Gao, Wenyue; Saqib, Muhammad; Qi, Liming; Xu, Guobao

    2016-01-15

    Creatinine is an important biomarker in clinical diagnosis and biomonitoring programs as well as urinary metabolomic/metabonomics research. Current methods are either nonselective, time consuming or require heavy and expensive instruments. In this study, chemiluminescence of creatinine with hydrogen peroxide has been reported for the first time, and its chemiluminescence is remarkably enhanced in the presence of cobalt ions. By utilizing these phenomena, we have developed a sensitive and selective chemiluminescence method for creatinine determination by coupling with flow injection analysis. The calibration curve is linear in the range of 1×10(-7)-3×10(-5)mol/L with a limit of detection (S/N=3) of 7.2×10(-8)mol/L, which is adequate for detecting creatinine in the clinically accepted range. The relative standard deviation for seven measurements of 3×10(-5)mol/L creatinine is 1.2%. The chemiluminescence method was then utilized to detect creatinine in human urine samples after simple dilution with water. It takes less than 1min each measurement and the recoveries for spiked urine samples were 100-103%. The interference study demonstrates that some common species in urine, such as amino acids, ascorbic acid and creatine, have negligible effects on creatinine detection. The present method does not use expensive instruments, enzymes and separation technique. This method has the advantages of sensitivity, selectivity, simplicity, rapidity, and low cost. It holds great promise for basic or comprehensive metabolic panel, drug screening, anti-dopping, and urinary metabolomic/metabonomics research. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Fracture detection in crystalline rock using ultrasonic reflection techniques: Volume 1

    International Nuclear Information System (INIS)

    Palmer, S.P.

    1982-11-01

    This research was initiated to investigate using ultrasonic seismic reflection techniques to detect fracture discontinuities in a granitic rock. Initial compressional (P) and shear (SH) wave experiments were performed on a 0.9 x 0.9 x 0.3 meter granite slab in an attempt to detect seismic energy reflected from the opposite face of the slab. It was found that processing techniques such as deconvolution and array synthesis could improve the standout of the reflection event. During the summers of 1979 and 1980 SH reflection experiments were performed at a granite quarry near Knowles, California. The purpose of this study was to use SH reflection methods to detect an in situ fracture located one to three meters behind the quarry face. These SH data were later analyzed using methods similar to those applied in the laboratory. Interpretation of the later-arriving events observed in the SH field data as reflections from a steeply-dipping fracture was inconclusive. 41 refs., 43 figs., 7 tabs

  15. Radiation detection technique on the fishery foods

    International Nuclear Information System (INIS)

    Oikawa, Hiroshi; Satomi, Masataka; Nakamura, Koji; Yano, Yutaka

    1999-01-01

    Recently irradiation of fishery products such as sea bream, lobster etc has been spreading in South-east Asia. It is thus necessary to establish a detection technique for irradiated foods . This study aimed to investigate the effects of irradiation on the production of tyrosine isomers with relation to the status of food sample (frozen and cold-storage) and also the stabilities of the isomers in frozen foods after irradiation. Production of tyrosin isomers (meta-tyrosine, ortho-tyrosine) due to γ-ray irradiation (5 kGy) were observed in the muscles of frozen prawns as well as those at room temperature and the contents of these isomers after the irradiation was not different between the two states of the sample. The content increased depending on the radiation dose. The contents of these tyrosine isomers were not changed after storage at -20degC for 120 days. Therefore, it was thought that the tyrosine isomers were available as an effective indicator for detection of an irradiated food. (M.N.)

  16. Effective Sensor Selection and Data Anomaly Detection for Condition Monitoring of Aircraft Engines

    Directory of Open Access Journals (Sweden)

    Liansheng Liu

    2016-04-01

    Full Text Available In a complex system, condition monitoring (CM can collect the system working status. The condition is mainly sensed by the pre-deployed sensors in/on the system. Most existing works study how to utilize the condition information to predict the upcoming anomalies, faults, or failures. There is also some research which focuses on the faults or anomalies of the sensing element (i.e., sensor to enhance the system reliability. However, existing approaches ignore the correlation between sensor selecting strategy and data anomaly detection, which can also improve the system reliability. To address this issue, we study a new scheme which includes sensor selection strategy and data anomaly detection by utilizing information theory and Gaussian Process Regression (GPR. The sensors that are more appropriate for the system CM are first selected. Then, mutual information is utilized to weight the correlation among different sensors. The anomaly detection is carried out by using the correlation of sensor data. The sensor data sets that are utilized to carry out the evaluation are provided by National Aeronautics and Space Administration (NASA Ames Research Center and have been used as Prognostics and Health Management (PHM challenge data in 2008. By comparing the two different sensor selection strategies, the effectiveness of selection method on data anomaly detection is proved.

  17. Greenhouse Effect Detection Experiment (GEDEX). Selected data sets

    Science.gov (United States)

    Olsen, Lola M.; Warnock, Archibald, III

    1992-01-01

    This CD-ROM contains selected data sets compiled by the participants of the Greenhouse Effect Detection Experiment (GEDEX) workshop on atmospheric temperature. The data sets include surface, upper air, and/or satellite-derived measurements of temperature, solar irradiance, clouds, greenhouse gases, fluxes, albedo, aerosols, ozone, and water vapor, along with Southern Oscillation Indices and Quasi-Biennial Oscillation statistics.

  18. IMRT QA: Selecting gamma criteria based on error detection sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Steers, Jennifer M. [Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California 90048 and Physics and Biology in Medicine IDP, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095 (United States); Fraass, Benedick A., E-mail: benedick.fraass@cshs.org [Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California 90048 (United States)

    2016-04-15

    Purpose: The gamma comparison is widely used to evaluate the agreement between measurements and treatment planning system calculations in patient-specific intensity modulated radiation therapy (IMRT) quality assurance (QA). However, recent publications have raised concerns about the lack of sensitivity when employing commonly used gamma criteria. Understanding the actual sensitivity of a wide range of different gamma criteria may allow the definition of more meaningful gamma criteria and tolerance limits in IMRT QA. We present a method that allows the quantitative determination of gamma criteria sensitivity to induced errors which can be applied to any unique combination of device, delivery technique, and software utilized in a specific clinic. Methods: A total of 21 DMLC IMRT QA measurements (ArcCHECK®, Sun Nuclear) were compared to QA plan calculations with induced errors. Three scenarios were studied: MU errors, multi-leaf collimator (MLC) errors, and the sensitivity of the gamma comparison to changes in penumbra width. Gamma comparisons were performed between measurements and error-induced calculations using a wide range of gamma criteria, resulting in a total of over 20 000 gamma comparisons. Gamma passing rates for each error class and case were graphed against error magnitude to create error curves in order to represent the range of missed errors in routine IMRT QA using 36 different gamma criteria. Results: This study demonstrates that systematic errors and case-specific errors can be detected by the error curve analysis. Depending on the location of the error curve peak (e.g., not centered about zero), 3%/3 mm threshold = 10% at 90% pixels passing may miss errors as large as 15% MU errors and ±1 cm random MLC errors for some cases. As the dose threshold parameter was increased for a given %Diff/distance-to-agreement (DTA) setting, error sensitivity was increased by up to a factor of two for select cases. This increased sensitivity with increasing dose

  19. Evaluation of neutron techniques for illicit substance detection

    International Nuclear Information System (INIS)

    Fink, C.L.; Micklich, B.J.; Yule, T.J.; Humm, P.; Sagalovsky, L.; Martin, M.M.

    1995-01-01

    We are studying inspection systems based on the use of fast neutrons for detecting illicit substances such as explosives and drugs in luggage and cargo containers. Fast-neutron techniques can determine the quantities of light elements such as carbon, nitrogen, and oxygen in a volume element. Illicit substances containing these elements are characterized by distinctive elemental densities or density ratios. We discuss modeling and tomographic reconstruction studies for fast-neutron transmission spectroscopy. (orig.)

  20. Evaluation of neutron techniques for illicit substance detection

    International Nuclear Information System (INIS)

    Fink, C.L.; Micklich, B.J.; Yule, T.J.; Humm, P.; Sagalovsky, L.; Martin, M.M.

    1994-01-01

    The authors are studying inspection systems based on the use of fast neutrons for detecting illicit substances such as explosives and drugs in luggage and cargo containers. Fast neutron techniques can determine the quantities of light elements such as carbon, nitrogen, and oxygen in a volume element. Illicit substances containing these elements are characterized by distinctive elemental densities or density ratios. They discuss modeling and tomographic reconstruction studies for fast-neutron transmission spectroscopy

  1. Detection of Atmospheric Explosions at IMS Monitoring Stations using Infrasound Techniques

    National Research Council Canada - National Science Library

    Christie, Douglas R; Kennett, Brian L; Tarlowski, Chris

    2006-01-01

    Work is continuing on the development of infrasound techniques that can be used to improve detection, location and discrimination capability for atmospheric nuclear explosions at International Monitoring System (IMS...

  2. Detecting non-coding selective pressure in coding regions

    Directory of Open Access Journals (Sweden)

    Blanchette Mathieu

    2007-02-01

    Full Text Available Abstract Background Comparative genomics approaches, where orthologous DNA regions are compared and inter-species conserved regions are identified, have proven extremely powerful for identifying non-coding regulatory regions located in intergenic or intronic regions. However, non-coding functional elements can also be located within coding region, as is common for exonic splicing enhancers, some transcription factor binding sites, and RNA secondary structure elements affecting mRNA stability, localization, or translation. Since these functional elements are located in regions that are themselves highly conserved because they are coding for a protein, they generally escaped detection by comparative genomics approaches. Results We introduce a comparative genomics approach for detecting non-coding functional elements located within coding regions. Codon evolution is modeled as a mixture of codon substitution models, where each component of the mixture describes the evolution of codons under a specific type of coding selective pressure. We show how to compute the posterior distribution of the entropy and parsimony scores under this null model of codon evolution. The method is applied to a set of growth hormone 1 orthologous mRNA sequences and a known exonic splicing elements is detected. The analysis of a set of CORTBP2 orthologous genes reveals a region of several hundred base pairs under strong non-coding selective pressure whose function remains unknown. Conclusion Non-coding functional elements, in particular those involved in post-transcriptional regulation, are likely to be much more prevalent than is currently known. With the numerous genome sequencing projects underway, comparative genomics approaches like that proposed here are likely to become increasingly powerful at detecting such elements.

  3. A Quantum Hybrid PSO Combined with Fuzzy k-NN Approach to Feature Selection and Cell Classification in Cervical Cancer Detection

    Directory of Open Access Journals (Sweden)

    Abdullah M. Iliyasu

    2017-12-01

    Full Text Available A quantum hybrid (QH intelligent approach that blends the adaptive search capability of the quantum-behaved particle swarm optimisation (QPSO method with the intuitionistic rationality of traditional fuzzy k-nearest neighbours (Fuzzy k-NN algorithm (known simply as the Q-Fuzzy approach is proposed for efficient feature selection and classification of cells in cervical smeared (CS images. From an initial multitude of 17 features describing the geometry, colour, and texture of the CS images, the QPSO stage of our proposed technique is used to select the best subset features (i.e., global best particles that represent a pruned down collection of seven features. Using a dataset of almost 1000 images, performance evaluation of our proposed Q-Fuzzy approach assesses the impact of our feature selection on classification accuracy by way of three experimental scenarios that are compared alongside two other approaches: the All-features (i.e., classification without prior feature selection and another hybrid technique combining the standard PSO algorithm with the Fuzzy k-NN technique (P-Fuzzy approach. In the first and second scenarios, we further divided the assessment criteria in terms of classification accuracy based on the choice of best features and those in terms of the different categories of the cervical cells. In the third scenario, we introduced new QH hybrid techniques, i.e., QPSO combined with other supervised learning methods, and compared the classification accuracy alongside our proposed Q-Fuzzy approach. Furthermore, we employed statistical approaches to establish qualitative agreement with regards to the feature selection in the experimental scenarios 1 and 3. The synergy between the QPSO and Fuzzy k-NN in the proposed Q-Fuzzy approach improves classification accuracy as manifest in the reduction in number cell features, which is crucial for effective cervical cancer detection and diagnosis.

  4. Verification Techniques for Parameter Selection and Bayesian Model Calibration Presented for an HIV Model

    Science.gov (United States)

    Wentworth, Mami Tonoe

    Uncertainty quantification plays an important role when making predictive estimates of model responses. In this context, uncertainty quantification is defined as quantifying and reducing uncertainties, and the objective is to quantify uncertainties in parameter, model and measurements, and propagate the uncertainties through the model, so that one can make a predictive estimate with quantified uncertainties. Two of the aspects of uncertainty quantification that must be performed prior to propagating uncertainties are model calibration and parameter selection. There are several efficient techniques for these processes; however, the accuracy of these methods are often not verified. This is the motivation for our work, and in this dissertation, we present and illustrate verification frameworks for model calibration and parameter selection in the context of biological and physical models. First, HIV models, developed and improved by [2, 3, 8], describe the viral infection dynamics of an HIV disease. These are also used to make predictive estimates of viral loads and T-cell counts and to construct an optimal control for drug therapy. Estimating input parameters is an essential step prior to uncertainty quantification. However, not all the parameters are identifiable, implying that they cannot be uniquely determined by the observations. These unidentifiable parameters can be partially removed by performing parameter selection, a process in which parameters that have minimal impacts on the model response are determined. We provide verification techniques for Bayesian model calibration and parameter selection for an HIV model. As an example of a physical model, we employ a heat model with experimental measurements presented in [10]. A steady-state heat model represents a prototypical behavior for heat conduction and diffusion process involved in a thermal-hydraulic model, which is a part of nuclear reactor models. We employ this simple heat model to illustrate verification

  5. Optimization of immunochemistry for sensing techniques to detect pesticide residues in water

    DEFF Research Database (Denmark)

    Uthuppu, Basil; Kostesha, Natalie; Jakobsen, Mogens Havsteen

    2011-01-01

    We are working on the development of a real-time electrochemical sensor based on an immunoassay detection system to detect and quantify the presence of pesticide residues in ground water. Highly selective and sensitive immuno-reactions are being investigated to be optimized in order to bring them...

  6. Investigating the probability of detection of typical cavity shapes through modelling and comparison of geophysical techniques

    Science.gov (United States)

    James, P.

    2011-12-01

    With a growing need for housing in the U.K., the government has proposed increased development of brownfield sites. However, old mine workings and natural cavities represent a potential hazard before, during and after construction on such sites, and add further complication to subsurface parameters. Cavities are hence a limitation to certain redevelopment and their detection is an ever important consideration. The current standard technique for cavity detection is a borehole grid, which is intrusive, non-continuous, slow and expensive. A new robust investigation standard in the detection of cavities is sought and geophysical techniques offer an attractive alternative. Geophysical techniques have previously been utilised successfully in the detection of cavities in various geologies, but still has an uncertain reputation in the engineering industry. Engineers are unsure of the techniques and are inclined to rely on well known techniques than utilise new technologies. Bad experiences with geophysics are commonly due to the indiscriminate choice of particular techniques. It is imperative that a geophysical survey is designed with the specific site and target in mind at all times, and the ability and judgement to rule out some, or all, techniques. To this author's knowledge no comparative software exists to aid technique choice. Also, previous modelling software limit the shapes of bodies and hence typical cavity shapes are not represented. Here, we introduce 3D modelling software (Matlab) which computes and compares the response to various cavity targets from a range of techniques (gravity, gravity gradient, magnetic, magnetic gradient and GPR). Typical near surface cavity shapes are modelled including shafts, bellpits, various lining and capping materials, and migrating voids. The probability of cavity detection is assessed in typical subsurface and noise conditions across a range of survey parameters. Techniques can be compared and the limits of detection distance

  7. Improved CT-detection of acute bowel ischemia using frequency selective non-linear image blending.

    Science.gov (United States)

    Schneeweiss, Sven; Esser, Michael; Thaiss, Wolfgang; Boesmueller, Hans; Ditt, Hendrik; Nikolau, Konstantin; Horger, Marius

    2017-07-01

    Computed tomography (CT) as a fast and reliable diagnostic technique is the imaging modality of choice for acute bowel ischemia. However, diagnostic is often difficult mainly due to low attenuation differences between ischemic and perfused segments. To compare the diagnostic efficacy of a new post-processing tool based on frequency selective non-linear blending with that of conventional linear contrast-enhanced CT (CECT) image blending for the detection of bowel ischemia. Twenty-seven consecutive patients (19 women; mean age = 73.7 years, age range = 50-94 years) with acute bowel ischemia were scanned using multidetector CT (120 kV; 100-200 mAs). Pre-contrast and portal venous scans (65-70 s delay) were acquired. All patients underwent surgery for acute bowel ischemia and intraoperative diagnosis as well as histologic evaluation of explanted bowel segments was considered "gold standard." First, two radiologists read the conventional CECT images in which linear blending was adapted for optimal contrast, and second (three weeks later) the frequency selective non-linear blending (F-NLB) image. Attenuation values were compared, both in the involved and non-involved bowel segments creating ratios between unenhanced and CECT. The mean attenuation difference between ischemic and non-ischemic wall in the portal venous scan was 69.54 HU (reader 2 = 69.01 HU) higher for F-NLB compared with conventional CECT. Also, the attenuation ratio between contrast-enhanced and pre-contrast CT data for the non-ischemic walls showed significantly higher values for the F-NLB image (CECT: reader 1 = 2.11 (reader 2 = 3.36), F-NLB: reader 1 = 4.46 (reader 2 = 4.98)]. Sensitivity in detecting ischemic areas increased significantly for both readers using F-NLB (CECT: reader 1/2 = 53%/65% versus F-NLB: reader 1/2 = 62%/75%). Frequency selective non-linear blending improves detection of bowel ischemia compared with conventional CECT by increasing

  8. Improved BER based on intensity noise alleviation using developed detection technique for incoherent SAC-OCDMA systems

    Science.gov (United States)

    Al-Khafaji, Hamza M. R.; Aljunid, S. A.; Fadhil, Hilal A.

    2012-06-01

    The major drawback of incoherent spectral-amplitude coding optical code-division multiple-access (SAC-OCDMA) systems is their inherent intensity noise originating due to the incoherency of the broadband light sources. In this paper, we propose a developed detection technique named the modified-AND subtraction detection for incoherent SAC-OCDMA systems. This detection technique is based upon decreasing the received signal strength during the decoding process by dividing the spectrum of the utilized code sequence. The proposed technique is capable of mitigating the intensity noise effect, as well as suppressing the multiple-access interference impact. Based on modified quadratic congruence (MQC) code, the analytical results reveal that the modified-AND detection offer best bit-error rate (BER) performance and enables MQC code to support higher transmission rate up to 1.25 Gb/s compared to conventional AND detection. Furthermore, we ascertained that the proposed technique enhances the system performance using a simulation experiment.

  9. A Low-Cost Inkjet-Printed Aptamer-Based Electrochemical Biosensor for the Selective Detection of Lysozyme

    Directory of Open Access Journals (Sweden)

    Niazul Islam Khan

    2018-01-01

    Full Text Available Recently, inkjet-printing has gained increased popularity in applications such as flexible electronics and disposable sensors, as well as in wearable sensors because of its multifarious advantages. This work presents a novel, low-cost immobilization technique using inkjet-printing for the development of an aptamer-based biosensor for the detection of lysozyme, an important biomarker in various disease diagnosis. The strong affinity between the carbon nanotube (CNT and the single-stranded DNA is exploited to immobilize the aptamers onto the working electrode by printing the ink containing the dispersion of CNT-aptamer complex. The inkjet-printing method enables aptamer density control, as well as high resolution patternability. Our developed sensor shows a detection limit of 90 ng/mL with high target selectivity against other proteins. The sensor also demonstrates a shelf-life for a reasonable period. This technology has potential for applications in developing low-cost point-of-care diagnostic testing kits for home healthcare.

  10. Contrast based band selection for optimized weathered oil detection in hyperspectral images

    Science.gov (United States)

    Levaux, Florian; Bostater, Charles R., Jr.; Neyt, Xavier

    2012-09-01

    Hyperspectral imagery offers unique benefits for detection of land and water features due to the information contained in reflectance signatures such as the bi-directional reflectance distribution function or BRDF. The reflectance signature directly shows the relative absorption and backscattering features of targets. These features can be very useful in shoreline monitoring or surveillance applications, for example to detect weathered oil. In real-time detection applications, processing of hyperspectral data can be an important tool and Optimal band selection is thus important in real time applications in order to select the essential bands using the absorption and backscatter information. In the present paper, band selection is based upon the optimization of target detection using contrast algorithms. The common definition of the contrast (using only one band out of all possible combinations available within a hyperspectral image) is generalized in order to consider all the possible combinations of wavelength dependent contrasts using hyperspectral images. The inflection (defined here as an approximation of the second derivative) is also used in order to enhance the variations in the reflectance spectra as well as in the contrast spectrua in order to assist in optimal band selection. The results of the selection in term of target detection (false alarms and missed detection) are also compared with a previous method to perform feature detection, namely the matched filter. In this paper, imagery is acquired using a pushbroom hyperspectral sensor mounted at the bow of a small vessel. The sensor is mechanically rotated using an optical rotation stage. This opto-mechanical scanning system produces hyperspectral images with pixel sizes on the order of mm to cm scales, depending upon the distance between the sensor and the shoreline being monitored. The motion of the platform during the acquisition induces distortions in the collected HSI imagery. It is therefore

  11. Driver drowsiness detection using behavioral measures and machine learning techniques: A review of state-of-art techniques

    CSIR Research Space (South Africa)

    Ngxande, Mkhuseli

    2017-11-01

    Full Text Available This paper presents a literature review of driver drowsiness detection based on behavioral measures using machine learning techniques. Faces contain information that can be used to interpret levels of drowsiness. There are many facial features...

  12. Evaluation of New Ultrasound Techniques for Clinical Imaging in selected Liver and Vascular Applications

    DEFF Research Database (Denmark)

    Brandt, Andreas Hjelm

    blinded to information about the technique, which B-mode images they preferred, as well as detection of pathology. Evaluation showed that the techniques were preferred equally and tumor could be detected equally well. Study II deals with the ability of vector flow imaging (VFI) to monitor patients......This Ph.D. project is based on a longstanding collaboration between physicists and engineers from the Center of Fast Ultrasound Imaging (CFU) at the Technical University of Denmark and medical doctors from the department of Radiology at Rigshospitalet. The intent of this cooperation is to validate...... new ultrasonic methods for future clinical use. Study I compares two B-mode ultrasound methods: the new experimental technique Synthetic Aperture Sequential Beamforming combined with Tissue Harmonic Imaging (SASB-THI), and a conventional technique combined with THI. While SASB reduces the amount...

  13. Sonochemical and sustainable synthesis of graphene-gold (G-Au) nanocomposites for enzymeless and selective electrochemical detection of nitric oxide.

    Science.gov (United States)

    Geetha Bai, Renu; Muthoosamy, Kasturi; Zhou, Meifang; Ashokkumar, Muthupandian; Huang, Nay Ming; Manickam, Sivakumar

    2017-01-15

    In this study, a sonochemical approach was utilised for the development of graphene-gold (G-Au) nanocomposite. Through the sonochemical method, simultaneous exfoliation of graphite and the reduction of gold chloride occurs to produce highly crystalline G-Au nanocomposite. The in situ growth of gold nanoparticles (AuNPs) took place on the surface of exfoliated few-layer graphene sheets. The G-Au nanocomposite was characterised by UV-vis, XRD, FTIR, TEM, XPS and Raman spectroscopy techniques. This G-Au nanocomposite was used to modify glassy carbon electrode (GCE) to fabricate an electrochemical sensor for the selective detection of nitric oxide (NO), a critical cancer biomarker. G-Au modified GCE exhibited an enhanced electrocatalytic response towards the oxidation of NO as compared to other control electrodes. The electrochemical detection of NO was investigated by linear sweep voltammetry analysis, utilising the G-Au modified GCE in a linear range of 10-5000μM which exhibited a limit of detection of 0.04μM (S/N=3). Furthermore, this enzyme-free G-Au/GCE exhibited an excellent selectivity towards NO in the presence of interferences. The synergistic effect of graphene and AuNPs, which facilitated exceptional electron-transfer processes between the electrolyte and the GCE thereby improving the sensing performance of the fabricated G-Au modified electrode with stable and reproducible responses. This G-Au nanocomposite introduces a new electrode material in the sensitive and selective detection of NO, a prominent biomarker of cancer. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. WRHT: A Hybrid Technique for Detection of Wormhole Attack in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Rupinder Singh

    2016-01-01

    Full Text Available Wormhole attack is a challenging security threat to wireless sensor networks which results in disrupting most of the routing protocols as this attack can be triggered in different modes. In this paper, WRHT, a wormhole resistant hybrid technique, is proposed, which can detect the presence of wormhole attack in a more optimistic manner than earlier techniques. WRHT is based on the concept of watchdog and Delphi schemes and ensures that the wormhole will not be left untreated in the sensor network. WRHT makes use of the dual wormhole detection mechanism of calculating probability factor time delay probability and packet loss probability of the established path in order to find the value of wormhole presence probability. The nodes in the path are given different ranking and subsequently colors according to their behavior. The most striking feature of WRHT consists of its capacity to defend against almost all categories of wormhole attacks without depending on any required additional hardware such as global positioning system, timing information or synchronized clocks, and traditional cryptographic schemes demanding high computational needs. The experimental results clearly indicate that the proposed technique has significant improvement over the existing wormhole attack detection techniques.

  15. Buried pipeline leak-detection technique and instruments using radioactive tracers

    International Nuclear Information System (INIS)

    Zhou Shuxuan; Lu Qingqian; Tang Yonghua

    1987-01-01

    For detecting and locating leaks on buried pipelines, a leak-detection technique and related instruments have been developed. Some quantity of fluid mixed with a radioactive tracer is injected. After the pipeline is cleaned, a leak-detector is put into and moves along the pipline to monitor the leaked radioactivity and to record both the radioactive signal and the time signal on a magnetic tape. From the signal curves, it can be judged whether there are any leaks on the pipeline and, if any, where they are

  16. Plagiarism detection and prevention techniques in engineering education

    OpenAIRE

    Halak, Basel; El-Hajjar, Mohammed

    2016-01-01

    Plagiarism seriously damages the education process in a number of ways; it prevents students from developing the skills of creative thinking and critical analysis; it undermines the trust between lectures and students, and if goes undetected, it can impact the reputation of the academic institution and devalue its degrees. In this paper, we present two techniques for plagiarism detection and prevention. The first method is based on the allocation of a unique assignment for each student, and t...

  17. Selective attention in peacocks during predator detection.

    Science.gov (United States)

    Yorzinski, Jessica L; Platt, Michael L

    2014-05-01

    Predation can exert strong selective pressure on the evolution of behavioral and morphological traits in birds. Because predator avoidance is key to survival and birds rely heavily on visual perception, predation may have shaped avian visual systems as well. To address this question, we examined the role of visual attention in antipredator behavior in peacocks (Pavo cristatus). Peacocks were exposed to a model predator while their gaze was continuously recorded with a telemetric eye-tracker. We found that peacocks spent more time looking at and made more fixations on the predator compared to the same spatial location before the predator was revealed. The duration of fixations they directed toward conspecifics and environmental features decreased after the predator was revealed, indicating that the peacocks were rapidly scanning their environment with their eyes. Maximum eye movement amplitudes and amplitudes of consecutive saccades were similar before and after the predator was revealed. In cases where conspecifics detected the predator first, peacocks appeared to learn that danger was present by observing conspecifics' antipredator behavior. Peacocks were faster to detect the predator when they were fixating closer to the area where the predator would eventually appear. In addition, pupil size increased after predator exposure, consistent with increased physiological arousal. These findings demonstrate that peacocks selectively direct their attention toward predatory threats and suggest that predation has influenced the evolution of visual orienting systems.

  18. Fluorescent cadmium sulfide nanoparticles for selective and sensitive detection of toxic pesticides in aqueous medium

    International Nuclear Information System (INIS)

    Walia, Shanka; Acharya, Amitabha

    2014-01-01

    The detection of pesticide residues in ground water, food, or soil samples is extremely important. The currently available laboratory techniques have several drawbacks and needs to be replaced. Fluorescent chemosensors for pesticide detection were reported in the literature, with few reports published on quantum dot-based pesticide sensors, but none of these were focused toward differentiating organophosphorus and organochlorine pesticides specifically. In this respect, glutathione-coated CdS nanoparticles were synthesized and characterized. The TEM studies of the nanoparticles suggested mostly monodispersed spherical particles, with size in the range of 11.5±1 nm. The prepared fluorescent nanoparticles were found to selectively recognize organochlorine pesticide dicofol among all the other pesticides studied, by increasing the fluorescence intensity of the nanoparticles ∼ 2.5 times. Similar studies carried out with organophosphorous pesticide dimethoate did not result any change in the fluorescence intensity of the nanoparticles. Further studies carried out with commercially available pesticide solutions, also confirmed similar results. The TEM, SEM, and DLS studies suggested aggregation of the nanoparticles in the presence of dicofol. Control experiments suggested possible role of both amine and carboxylic acid functional groups of glutathione in the recognition of dicofol. The limit of detection of dicofol was found to be ∼ 55±11 ppb.Graphical AbstractGlutathione-coated CdS nanoparticles selectively recognize organochlorine pesticide dicofol among all the other pesticides studied, by increasing the fluorescence intensity of the nanoparticles. The TEM, SEM, and DLS studies suggested aggregation of the nanoparticles in the presence of dicofol

  19. Fluorescent cadmium sulfide nanoparticles for selective and sensitive detection of toxic pesticides in aqueous medium

    Energy Technology Data Exchange (ETDEWEB)

    Walia, Shanka; Acharya, Amitabha, E-mail: amitabhachem@gmail.com [CSIR-Institute of Himalayan Bioresource Technology, Biotechnology Division (India)

    2014-12-15

    The detection of pesticide residues in ground water, food, or soil samples is extremely important. The currently available laboratory techniques have several drawbacks and needs to be replaced. Fluorescent chemosensors for pesticide detection were reported in the literature, with few reports published on quantum dot-based pesticide sensors, but none of these were focused toward differentiating organophosphorus and organochlorine pesticides specifically. In this respect, glutathione-coated CdS nanoparticles were synthesized and characterized. The TEM studies of the nanoparticles suggested mostly monodispersed spherical particles, with size in the range of 11.5±1 nm. The prepared fluorescent nanoparticles were found to selectively recognize organochlorine pesticide dicofol among all the other pesticides studied, by increasing the fluorescence intensity of the nanoparticles ∼ 2.5 times. Similar studies carried out with organophosphorous pesticide dimethoate did not result any change in the fluorescence intensity of the nanoparticles. Further studies carried out with commercially available pesticide solutions, also confirmed similar results. The TEM, SEM, and DLS studies suggested aggregation of the nanoparticles in the presence of dicofol. Control experiments suggested possible role of both amine and carboxylic acid functional groups of glutathione in the recognition of dicofol. The limit of detection of dicofol was found to be ∼ 55±11 ppb.Graphical AbstractGlutathione-coated CdS nanoparticles selectively recognize organochlorine pesticide dicofol among all the other pesticides studied, by increasing the fluorescence intensity of the nanoparticles. The TEM, SEM, and DLS studies suggested aggregation of the nanoparticles in the presence of dicofol.

  20. Introducing molecular selectivity in rapid impedimetric sensing of phthalates

    KAUST Repository

    Zia, Asif I.; Mukhopadhyay, Subhas Chandra; Al-Bahadly, Ibrahim H.; Yu, Paklam; Gooneratne, Chinthaka Pasan; Kosel, Jü rgen

    2014-01-01

    This research article reports a real-time and non-invasive detection technique for phthalates in liquids by Electrochemical Impedance Spectroscopy (EIS), incorporating molecular imprinting technique to introduce selectivity for the phthalate

  1. [Demand for and the Development of Detection Techniques for Source of Schistosome Infection in China].

    Science.gov (United States)

    Wang, Shi-ping; He, Xin; Zhou, Yun-fei

    2015-12-01

    Schistosomiasis is a type of zoonotic parasitosis that severely impairs human health. Rapid detection of infection sources is a key to the control of schistosomiasis. With the effective control of schistosomiasis in China, the detection techniques for infection sources have also been developed. The rate and the intensity of infection among humans and livestocks have been significantly decreased in China, as the control program has entered the transmission control stage in most of the endemic areas. Under this situation, the traditional etiological diagnosing techniques and common immunological methods can not afford rapid detection of infection sources of schistosomiasis. Instead, we are calling for detection methods with higher sensitivity, specificity and stability while being less time-consuming, more convenient and less costing. In recent years, many improved or novel detection methods have been applied for the epidemiological surveillance of schistosomiasis, such as the automatic scanning microscopic image acquisition system, PCR-ELISA, immunosensors, loop-mediated isothermal amplification, etc. The development of new monitoring techniques can facilitate rapid detection of schistosome infection sources in endemic areas.

  2. Copy-Move Forgery Detection Technique for Forensic Analysis in Digital Images

    Directory of Open Access Journals (Sweden)

    Toqeer Mahmood

    2016-01-01

    Full Text Available Due to the powerful image editing tools images are open to several manipulations; therefore, their authenticity is becoming questionable especially when images have influential power, for example, in a court of law, news reports, and insurance claims. Image forensic techniques determine the integrity of images by applying various high-tech mechanisms developed in the literature. In this paper, the images are analyzed for a particular type of forgery where a region of an image is copied and pasted onto the same image to create a duplication or to conceal some existing objects. To detect the copy-move forgery attack, images are first divided into overlapping square blocks and DCT components are adopted as the block representations. Due to the high dimensional nature of the feature space, Gaussian RBF kernel PCA is applied to achieve the reduced dimensional feature vector representation that also improved the efficiency during the feature matching. Extensive experiments are performed to evaluate the proposed method in comparison to state of the art. The experimental results reveal that the proposed technique precisely determines the copy-move forgery even when the images are contaminated with blurring, noise, and compression and can effectively detect multiple copy-move forgeries. Hence, the proposed technique provides a computationally efficient and reliable way of copy-move forgery detection that increases the credibility of images in evidence centered applications.

  3. Detecting directional selection in the presence of recent admixture in African-Americans.

    Science.gov (United States)

    Lohmueller, Kirk E; Bustamante, Carlos D; Clark, Andrew G

    2011-03-01

    We investigate the performance of tests of neutrality in admixed populations using plausible demographic models for African-American history as well as resequencing data from African and African-American populations. The analysis of both simulated and human resequencing data suggests that recent admixture does not result in an excess of false-positive results for neutrality tests based on the frequency spectrum after accounting for the population growth in the parental African population. Furthermore, when simulating positive selection, Tajima's D, Fu and Li's D, and haplotype homozygosity have lower power to detect population-specific selection using individuals sampled from the admixed population than from the nonadmixed population. Fay and Wu's H test, however, has more power to detect selection using individuals from the admixed population than from the nonadmixed population, especially when the selective sweep ended long ago. Our results have implications for interpreting recent genome-wide scans for positive selection in human populations. © 2011 by the Genetics Society of America

  4. A ROC-based feature selection method for computer-aided detection and diagnosis

    Science.gov (United States)

    Wang, Songyuan; Zhang, Guopeng; Liao, Qimei; Zhang, Junying; Jiao, Chun; Lu, Hongbing

    2014-03-01

    Image-based computer-aided detection and diagnosis (CAD) has been a very active research topic aiming to assist physicians to detect lesions and distinguish them from benign to malignant. However, the datasets fed into a classifier usually suffer from small number of samples, as well as significantly less samples available in one class (have a disease) than the other, resulting in the classifier's suboptimal performance. How to identifying the most characterizing features of the observed data for lesion detection is critical to improve the sensitivity and minimize false positives of a CAD system. In this study, we propose a novel feature selection method mR-FAST that combines the minimal-redundancymaximal relevance (mRMR) framework with a selection metric FAST (feature assessment by sliding thresholds) based on the area under a ROC curve (AUC) generated on optimal simple linear discriminants. With three feature datasets extracted from CAD systems for colon polyps and bladder cancer, we show that the space of candidate features selected by mR-FAST is more characterizing for lesion detection with higher AUC, enabling to find a compact subset of superior features at low cost.

  5. Improvement and development of automatic detection techniques

    International Nuclear Information System (INIS)

    Yamada, Kiyomi; Takai, Setsuo; Togashi, Chikako; Itami, Jun

    2000-01-01

    For detection of radiation-induced mutation, establishment of a new sample preparation method and its procedures suitable for its automation is thought to be the key step to improve the detection efficacy and save labor. In this study, an investigation was made on the sensitivity to radiation exposure in respect of the occurrence of chromosomal breakage by high precision chromosome coloring method utilizing FISH. The number of chromosome breakage per cell was determined in chromosome 1, 4, 5, 9, 11 and 13 prepared from an identical sample exposed to three different grays. The breakage number was found to increase linearly as an increase in the amount of chromosomal DNA and hotspots of the radiation-induced breakages tended to concentrate in R band and the position of R band was almost coincident with the sites of chromosomal translocation breakages specific to leukemia, showing a correlation of radiation exposure to leukemia. Chromosome 13, 14 and 15, which were different in band pattern but similar in its length taken from cells exposed to X-ray at 5 Gy were investigated in detail and it was found that the sensitivity of chromosome to radiation was depending on the quantity and the quality of R band in each chromosome. The benefits of this chromosome coloring method for the analysis of chromosome breakage were as follows: when compared with the conventional dicentric method, the kinds of chromosomal abnormalities to be detectable were much more and its detection rate as well as accuracy was higher. In addition, the time required for determination was loess than one tenth of the conventional one. A breakage site was detectable with differences in color tone and thus, any special technique was not necessary. Therefore, the chromosome coloring method by FISH was demonstrated to be much suitable for automatic image analysis by computer. (M.N.)

  6. Reprint of 'pH tuning of Nafion for selective detection of tryptophan'

    Energy Technology Data Exchange (ETDEWEB)

    Frith, K.-A. [Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown, 6140 (South Africa); Limson, J.L., E-mail: j.limson@ru.ac.z [Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown, 6140 (South Africa)

    2010-05-30

    Selective and sensitive detection of the amino acid tryptophan is of importance in food processing, pharmaceutical formulations and in biological fluids. Electrochemical methods of detection of tryptophan are hampered by sluggish electron transfer kinetics and in complex matrices through overlapping peaks from interferents. This study examines the potential of the cation exchange membrane Nafion to enhance selectivity and sensitivity of this analyte through a seldom explored feature of this membrane: pH manipulation. A detailed examination of the effect of pH on the selectivity afforded by Nafion as a function of the analyte charge is presented. Selective detection of tryptophan and significant increases in sensitivity of its detection was observed in the presence of melatonin, dopamine and other interferents present in a pharmaceutical formulation through manipulation of the pH of the solution. At pH 3.0 at a Nafion-modified electrode, changes in the protonation of melatonin and tryptophan lowered the anodic potential of the analytes in a non-uniform manner increasing the peak resolution and permitting analyses with detection limits of 1.6 +- 0.1 nM and 1.6 +- 0.2 nM, respectively.

  7. The background influence of cadmium detection in saline water using PGNAA technique

    International Nuclear Information System (INIS)

    Daqian Hei; Zhou Jiang; Hongtao Wang; Jiatong Li

    2016-01-01

    In order to solve the background influence of cadmium detection in saline water using prompt gamma neutron activation analysis (PGNAA) technique, a series experiments have been designed and carried out. Furthermore, a method based on internal standard was used to correct the neutron self-shielding effect, and the background influence has been decreased sequentially. The results showed a good linear relationship between the characteristic peak counts and the concentrations of cadmium after the neutron self-shielding correction. And in the detection of saline water by PGNAA technique, the proposed methodology can be used to reduce the influence of background with the self-shielding effect correction. (author)

  8. Resection of recurrent branchial cleft deformity using selective neck dissection technique.

    Science.gov (United States)

    Cai, Qian; Pan, Yong; Xu, Yaodong; Liang, Faya; Huang, Xiaoming; Jiang, Xiaoyu; Han, Ping

    2014-07-01

    This study explores application of selective neck dissection technique in recurrent second, third, and fourth branchial cleft deformities. A total of 19 cases of recurrent second, third, and fourth branchial cleft deformities were treated using the selective neck dissection technique, during which the sternocleidomastoid muscle, cervical anterior muscle, and carotid sheath were contoured. The lesion above the prevertebral fascia was then resected en bloc. Finally, the opening of the internal fistula was ligated and sutured using the purse-string approach. Patients in this study had no injures to their internal carotid artery, jugular vein, vagus nerve, accessory nerve, hypoglossal nerve, or recurrent laryngeal nerve. There were also no complications such as poor wound healing. The patients were monitored for 7-73 months and showed no recurrences. Using selective neck dissection to treat second, third, and fourth branchial cleft deformities resulted in en bloc lesion resections and reduced the chance of recurrence. Contouring the sternocleidomastoid muscle, strap muscle, and carotid sheath is key to the surgical procedure, as it leads to en bloc lesion resection while retaining the recurrent laryngeal nerve and carotid sheath. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Rapid and simple preparation of rhodamine 6G loaded HY zeolite for highly selective nitrite detection

    Science.gov (United States)

    Viboonratanasri, Duangkamon; Pabchanda, Suwat; Prompinit, Panida

    2018-05-01

    In this study, a simple, rapid and relatively less toxic method for rhodamine 6G dye adsorption on hydrogen-form Y-type zeolite for highly selective nitrite detection was demonstrated. The adsorption behavior was described by Langmuir isotherm and the adsorption process reached the equilibrium promptly within a minute. The developed test papers characterized by fluorescence technique display high sensing performance with wide working range (0.04-20.0 mg L-1) and high selectivity. The test papers show good reproducibility with relative standard deviation (RSD) of 7% for five replicated determinations of 3 mg L-1 of nitrite. The nitrite concentration determined by using the test paper was in the same range as using ion chromatography within a 95% confidence level. The test papers offer advantages in terms of low cost and practical usage enabling them to be a promising candidate for nitrite sensor in environmental samples, food, and fertilizers.

  10. Multicolor fluorescence technique to detect apoptotic cells in advanced coronary atherosclerotic plaques

    Directory of Open Access Journals (Sweden)

    C Soldani

    2009-06-01

    Full Text Available Apoptosis occurring in atherosclerotic lesions has been suggested to be involved in the evolution and the structural stability of the plaques. It is still a matter of debate whether apoptosis mainly involves vascular smooth muscle cells (vSMCs in the fibrous tissue or inflammatory (namely foam cells, thus preferentially affecting the cell-poor lipid core of the atherosclerotic plaques. The aim of the present investigation was to detect the presence of apoptotic cells and to estimate their percentage in a series of atherosclerotic plaques obtained either by autopsy or during surgical atherectomy. Apoptotic cells were identified on paraffinembedded sections on the basis of cell nuclear morphology after DNA staining and/or by cytochemical reactions (TUNEL assay, immunodetection of the proteolytic poly (ADP-ribose polymerase-1 [PARP-1] fragment; biochemical procedures (identifying DNA fragmentation or PARP-1 proteolysis were also used. Indirect immunofluorescence techniques were performed to label specific antigens for either vSMCs or macrophages (i.e., the cells which are most likely prone to apoptosis in atherosclerotic lesions: the proper selection of fluorochrome labeling allowed the simultaneous detection of the cell phenotype and the apoptotic characteristics, by multicolor fluorescence techniques. Apoptotic cells proved to be less than 5% of the whole cell population, in atherosclerotic plaque sections: this is, in fact, a too low cell fraction to be detected by widely used biochemical methods, such as agarose gel electrophoresis of low-molecular-weight DNA or Western-blot analysis of PARP-1 degradation. Most apoptotic cells were of macrophage origin, and clustered in the tunica media, near or within the lipid-rich core; only a few TUNEL-positive cells were labeled for antigens specific for vSMCs. These results confirm that, among the cell populations in atherosclerotic plaques, macrophage foam-cells are preferentially involved in apoptosis

  11. Curve fitting and modeling with splines using statistical variable selection techniques

    Science.gov (United States)

    Smith, P. L.

    1982-01-01

    The successful application of statistical variable selection techniques to fit splines is demonstrated. Major emphasis is given to knot selection, but order determination is also discussed. Two FORTRAN backward elimination programs, using the B-spline basis, were developed. The program for knot elimination is compared in detail with two other spline-fitting methods and several statistical software packages. An example is also given for the two-variable case using a tensor product basis, with a theoretical discussion of the difficulties of their use.

  12. A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms.

    Science.gov (United States)

    Bansod, BabanKumar; Kumar, Tejinder; Thakur, Ritula; Rana, Shakshi; Singh, Inderbir

    2017-08-15

    Heavy metal ions are non-biodegradable and contaminate most of the natural resources occurring in the environment including water. Some of the heavy metals including Lead (Pb), Mercury (Hg), Arsenic (As), Chromium (Cr) and Cadmium (Cd) are considered to be highly toxic and hazardous to human health even at trace levels. This leads to the requirement of fast, accurate and reliable techniques for the detection of heavy metal ions. This review presents various electrochemical detection techniques for heavy metal ions those are user friendly, low cost, provides on-site and real time monitoring as compared to other spectroscopic and optical techniques. The categorization of different electrochemical techniques is done on the basis of different types of detection signals generated due to presence of heavy metal ions in the solution matrix like current, potential, conductivity, electrochemical impedance, and electrochemiluminescence. Also, the recent trends in electrochemical detection of heavy metal ions with various types of sensing platforms including metals, metal films, metal oxides, nanomaterials, carbon nano tubes, polymers, microspheres and biomaterials have been evoked. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Damage detection methodology under variable load conditions based on strain field pattern recognition using FBGs, nonlinear principal component analysis, and clustering techniques

    Science.gov (United States)

    Sierra-Pérez, Julián; Torres-Arredondo, M.-A.; Alvarez-Montoya, Joham

    2018-01-01

    Structural health monitoring consists of using sensors integrated within structures together with algorithms to perform load monitoring, damage detection, damage location, damage size and severity, and prognosis. One possibility is to use strain sensors to infer structural integrity by comparing patterns in the strain field between the pristine and damaged conditions. In previous works, the authors have demonstrated that it is possible to detect small defects based on strain field pattern recognition by using robust machine learning techniques. They have focused on methodologies based on principal component analysis (PCA) and on the development of several unfolding and standardization techniques, which allow dealing with multiple load conditions. However, before a real implementation of this approach in engineering structures, changes in the strain field due to conditions different from damage occurrence need to be isolated. Since load conditions may vary in most engineering structures and promote significant changes in the strain field, it is necessary to implement novel techniques for uncoupling such changes from those produced by damage occurrence. A damage detection methodology based on optimal baseline selection (OBS) by means of clustering techniques is presented. The methodology includes the use of hierarchical nonlinear PCA as a nonlinear modeling technique in conjunction with Q and nonlinear-T 2 damage indices. The methodology is experimentally validated using strain measurements obtained by 32 fiber Bragg grating sensors bonded to an aluminum beam under dynamic bending loads and simultaneously submitted to variations in its pitch angle. The results demonstrated the capability of the methodology for clustering data according to 13 different load conditions (pitch angles), performing the OBS and detecting six different damages induced in a cumulative way. The proposed methodology showed a true positive rate of 100% and a false positive rate of 1.28% for a

  14. An optimal baseline selection methodology for data-driven damage detection and temperature compensation in acousto-ultrasonics

    International Nuclear Information System (INIS)

    Torres-Arredondo, M-A; Sierra-Pérez, Julián; Cabanes, Guénaël

    2016-01-01

    The process of measuring and analysing the data from a distributed sensor network all over a structural system in order to quantify its condition is known as structural health monitoring (SHM). For the design of a trustworthy health monitoring system, a vast amount of information regarding the inherent physical characteristics of the sources and their propagation and interaction across the structure is crucial. Moreover, any SHM system which is expected to transition to field operation must take into account the influence of environmental and operational changes which cause modifications in the stiffness and damping of the structure and consequently modify its dynamic behaviour. On that account, special attention is paid in this paper to the development of an efficient SHM methodology where robust signal processing and pattern recognition techniques are integrated for the correct interpretation of complex ultrasonic waves within the context of damage detection and identification. The methodology is based on an acousto-ultrasonics technique where the discrete wavelet transform is evaluated for feature extraction and selection, linear principal component analysis for data-driven modelling and self-organising maps for a two-level clustering under the principle of local density. At the end, the methodology is experimentally demonstrated and results show that all the damages were detectable and identifiable. (paper)

  15. An optimal baseline selection methodology for data-driven damage detection and temperature compensation in acousto-ultrasonics

    Science.gov (United States)

    Torres-Arredondo, M.-A.; Sierra-Pérez, Julián; Cabanes, Guénaël

    2016-05-01

    The process of measuring and analysing the data from a distributed sensor network all over a structural system in order to quantify its condition is known as structural health monitoring (SHM). For the design of a trustworthy health monitoring system, a vast amount of information regarding the inherent physical characteristics of the sources and their propagation and interaction across the structure is crucial. Moreover, any SHM system which is expected to transition to field operation must take into account the influence of environmental and operational changes which cause modifications in the stiffness and damping of the structure and consequently modify its dynamic behaviour. On that account, special attention is paid in this paper to the development of an efficient SHM methodology where robust signal processing and pattern recognition techniques are integrated for the correct interpretation of complex ultrasonic waves within the context of damage detection and identification. The methodology is based on an acousto-ultrasonics technique where the discrete wavelet transform is evaluated for feature extraction and selection, linear principal component analysis for data-driven modelling and self-organising maps for a two-level clustering under the principle of local density. At the end, the methodology is experimentally demonstrated and results show that all the damages were detectable and identifiable.

  16. Molecular detection of pathogens in water--the pros and cons of molecular techniques.

    Science.gov (United States)

    Girones, Rosina; Ferrús, Maria Antonia; Alonso, José Luis; Rodriguez-Manzano, Jesus; Calgua, Byron; Corrêa, Adriana de Abreu; Hundesa, Ayalkibet; Carratala, Anna; Bofill-Mas, Sílvia

    2010-08-01

    Pollution of water by sewage and run-off from farms produces a serious public health problem in many countries. Viruses, along with bacteria and protozoa in the intestine or in urine are shed and transported through the sewer system. Even in highly industrialized countries, pathogens, including viruses, are prevalent throughout the environment. Molecular methods are used to monitor viral, bacterial, and protozoan pathogens, and to track pathogen- and source-specific markers in the environment. Molecular techniques, specifically polymerase chain reaction-based methods, provide sensitive, rapid, and quantitative analytical tools with which to study such pathogens, including new or emerging strains. These techniques are used to evaluate the microbiological quality of food and water, and to assess the efficiency of virus removal in drinking and wastewater treatment plants. The range of methods available for the application of molecular techniques has increased, and the costs involved have fallen. These developments have allowed the potential standardization and automation of certain techniques. In some cases they facilitate the identification, genotyping, enumeration, viability assessment, and source-tracking of human and animal contamination. Additionally, recent improvements in detection technologies have allowed the simultaneous detection of multiple targets in a single assay. However, the molecular techniques available today and those under development require further refinement in order to be standardized and applicable to a diversity of matrices. Water disinfection treatments may have an effect on the viability of pathogens and the numbers obtained by molecular techniques may overestimate the quantification of infectious microorganisms. The pros and cons of molecular techniques for the detection and quantification of pathogens in water are discussed. (c) 2010 Elsevier Ltd. All rights reserved.

  17. Cyanotoxins: Which detection technique for an optimum risk assessment?

    Science.gov (United States)

    Gaget, Virginie; Lau, Melody; Sendall, Barbara; Froscio, Suzanne; Humpage, Andrew R

    2017-07-01

    The presence of toxigenic cyanobacteria (blue-green algae) in drinking water reservoirs poses a risk to human and animal health worldwide. Guidelines and health alert levels have been issued in the Australian Drinking Water Guidelines for three major toxins, which are therefore the subject of routine monitoring: microcystin, cylindrospermopsin and saxitoxin. While it is agreed that these toxic compounds should be monitored closely, the routine surveillance of these bioactive chemicals can be done in various ways and deciding which technique to use can therefore be challenging. This study compared several assays available for the detection of these toxins and their producers in environmental samples: microscopy (for identification and enumeration of cyanobacteria), ELISA (Enzyme-Linked ImmunoSorbant Assay), PPIA (Protein phosphatase inhibition assay), PSI (Protein synthesis inhibition), chemical analysis and PCR (Polymerase Chain Reaction). Results showed that there was generally a good correlation between the presence of potentially toxigenic cyanobacteria and the detection of the toxin by ELISA. Nevertheless data suggest that cell numbers and toxin concentrations measured in bioassays do not necessarily correlate and that enumeration of potentially toxic cyanobacteria by microscopy, while commonly used for monitoring and risk assessment, is not the best indicator of real toxin exposure. The concentrations of saxitoxins quantified by ELISA were significantly different than those measured by LC-MS, while results were comparable in both assays for microcystin and cylindrospermopsin. The evaluation of these analytical methods led to the conclusion that there is no "gold standard" technique for the detection of the aforementioned cyanotoxins but that the choice of detection assay depends on cost, practicality, reliability and comparability of results and essentially on the question to be answered, notably on toxin exposure potential. Copyright © 2017 Elsevier Ltd. All

  18. An improved autoradiographic technique for the detection of antibody-forming cells

    International Nuclear Information System (INIS)

    Mason, D.W.

    1976-01-01

    An autoradiographic technique for the detection of antibody-forming cells has been developed for the assay of anti-DNP responses. The lymphoid cell suspension to be assayed was allowed to sediment on to a glass slide coated with DNP-conjugated gelatin to which the secreted antibody bound during subsequent incubation. The bound antibody and its Ig class was revealed by a second incubation using 125 I-anti-immunoglobulin reagents followed by autoradiography. Studies on the sensitivity and specificity of the method are presented and its advantages over other techniques described. The technique should be readily applicable to other haptens

  19. Target-specific NMR detection of protein–ligand interactions with antibody-relayed {sup 15}N-group selective STD

    Energy Technology Data Exchange (ETDEWEB)

    Hetényi, Anasztázia [University of Szeged, Department of Medical Chemistry (Hungary); Hegedűs, Zsófia [University of Szeged, SZTE-MTA Lendület Foldamer Research Group, Institute of Pharmaceutical Analysis Department (Hungary); Fajka-Boja, Roberta; Monostori, Éva [Biological Research Center of the Hungarian Academy of Sciences, Lymphocyte Signal Transduction Laboratory, Institute of Genetics (Hungary); Kövér, Katalin E. [University of Debrecen, Department of Inorganic and Analytical Chemistry (Hungary); Martinek, Tamás A., E-mail: martinek@pharm.u-szeged.hu [University of Szeged, SZTE-MTA Lendület Foldamer Research Group, Institute of Pharmaceutical Analysis Department (Hungary)

    2016-12-15

    Fragment-based drug design has been successfully applied to challenging targets where the detection of the weak protein–ligand interactions is a key element. {sup 1}H saturation transfer difference (STD) NMR spectroscopy is a powerful technique for this work but it requires pure homogeneous proteins as targets. Monoclonal antibody (mAb)-relayed {sup 15}N-GS STD spectroscopy has been developed to resolve the problem of protein mixtures and impure proteins. A {sup 15}N-labelled target-specific mAb is selectively irradiated and the saturation is relayed through the target to the ligand. Tests on the anti-Gal-1 mAb/Gal-1/lactose system showed that the approach is experimentally feasible in a reasonable time frame. This method allows detection and identification of binding molecules directly from a protein mixture in a multicomponent system.

  20. Contactless conductivity detection for analytical techniques — Developments from 2014 to 2016

    Czech Academy of Sciences Publication Activity Database

    Kubáň, Pavel; Hauser, P.C.

    2017-01-01

    Roč. 38, č. 1 (2017), s. 95-114 ISSN 0173-0835 R&D Projects: GA ČR(CZ) GA16-09135S Institutional support: RVO:68081715 Keywords : capacitively coupled contactless conductivity detection * capillary electrophoresis * contactless conductivity detection * analytical techniques * review Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 2.744, year: 2016

  1. Visual and efficient immunosensor technique for advancing biomedical applications of quantum dots on Salmonella detection and isolation

    Science.gov (United States)

    Tang, Feng; Pang, Dai-Wen; Chen, Zhi; Shao, Jian-Bo; Xiong, Ling-Hong; Xiang, Yan-Ping; Xiong, Yan; Wu, Kai; Ai, Hong-Wu; Zhang, Hui; Zheng, Xiao-Li; Lv, Jing-Rui; Liu, Wei-Yong; Hu, Hong-Bing; Mei, Hong; Zhang, Zhen; Sun, Hong; Xiang, Yun; Sun, Zi-Yong

    2016-02-01

    It is a great challenge in nanotechnology for fluorescent nanobioprobes to be applied to visually detect and directly isolate pathogens in situ. A novel and visual immunosensor technique for efficient detection and isolation of Salmonella was established here by applying fluorescent nanobioprobes on a specially-designed cellulose-based swab (a solid-phase enrichment system). The selective and chromogenic medium used on this swab can achieve the ultrasensitive amplification of target bacteria and form chromogenic colonies in situ based on a simple biochemical reaction. More importantly, because this swab can serve as an attachment site for the targeted pathogens to immobilize and immunologically capture nanobioprobes, our mAb-conjugated QD bioprobes were successfully applied on the solid-phase enrichment system to capture the fluorescence of targeted colonies under a designed excitation light instrument based on blue light-emitting diodes combined with stereomicroscopy or laser scanning confocal microscopy. Compared with the traditional methods using 4-7 days to isolate Salmonella from the bacterial mixture, this method took only 2 days to do this, and the process of initial screening and preliminary diagnosis can be completed in only one and a half days. Furthermore, the limit of detection can reach as low as 101 cells per mL Salmonella on the background of 105 cells per mL non-Salmonella (Escherichia coli, Proteus mirabilis or Citrobacter freundii, respectively) in experimental samples, and even in human anal ones. The visual and efficient immunosensor technique may be proved to be a favorable alternative for screening and isolating Salmonella in a large number of samples related to public health surveillance.It is a great challenge in nanotechnology for fluorescent nanobioprobes to be applied to visually detect and directly isolate pathogens in situ. A novel and visual immunosensor technique for efficient detection and isolation of Salmonella was established here

  2. Tissue printing technique in nitrocelullose membranes: a rapid detection technique for estimating incidence of PVX, PVY, PVS and PLRV viruses infecting potato (Solanum spp.

    Directory of Open Access Journals (Sweden)

    Mónica Guzmán

    2002-07-01

    Full Text Available The ELISA serological technique has been used since the 1970s as a quantative technique for the detection of many groups of virus which infect plants. The immune-impression (IMI in nitrocelullose membrane qualitative technique has been implemented more recently for the detection of different viral groups. In this work, the IMI technique has been adapted for the detection of PVX, PVY PVS and PLRV viruses which attack different species and varieties of potato crop (Solanum spp., such as Egg yolk, Capiro, Morita, Pastusa, Monserrate, Tuquerreña, ICA Puracé and ICA Nariño, all from the Nariño department. The four viruses mentioned above can cause 30% and 60% losses in production, be they acting alone or synergistically. This means that they can easily reduce the economic benefits of a country like Colombia, characterised as being a great potato producer (i.e. more than 2.8 million tons per year. The IMI technique was compared with the ELISA technique (Enzymne Linked Immunosorbent Assay using the same samples, leading to confirmation of the test's sensitivity for detecting the virus. From a total of 800 samples analyzed by IMI from different areas in the Nariño department, 72% incidence for PVY, 38.7% for PVX, 85.6% for PVS and 91.1% for PLRV was found; these estimates were similar or greater than those obtained using ELISA. These results are new for Colombia in terms of imple-menting the easy and sensitive IMI technique for detecting these four viral groups infecting the potato as well as estimating their incidence in Nariño, one of Colombia's most important potato-producing departments. The opportune and flexible detection of virus leads to an effective response to eradicating contaminated material, both material in the field as well as that from in vitro culture. Results lead to it being suggested that implementing IMI could bringing wide benefits for potato seed certification programmes, as they maintain sensitivity and specificity, they

  3. Element selective detection of molecular species applying chromatographic techniques and diode laser atomic absorption spectrometry.

    Science.gov (United States)

    Kunze, K; Zybin, A; Koch, J; Franzke, J; Miclea, M; Niemax, K

    2004-12-01

    Tunable diode laser atomic absorption spectroscopy (DLAAS) combined with separation techniques and atomization in plasmas and flames is presented as a powerful method for analysis of molecular species. The analytical figures of merit of the technique are demonstrated by the measurement of Cr(VI) and Mn compounds, as well as molecular species including halogen atoms, hydrogen, carbon and sulfur.

  4. Multiplexed wavelet transform technique for detection of microcalcification in digitized mammograms.

    Science.gov (United States)

    Mini, M G; Devassia, V P; Thomas, Tessamma

    2004-12-01

    Wavelet transform (WT) is a potential tool for the detection of microcalcifications, an early sign of breast cancer. This article describes the implementation and evaluates the performance of two novel WT-based schemes for the automatic detection of clustered microcalcifications in digitized mammograms. Employing a one-dimensional WT technique that utilizes the pseudo-periodicity property of image sequences, the proposed algorithms achieve high detection efficiency and low processing memory requirements. The detection is achieved from the parent-child relationship between the zero-crossings [Marr-Hildreth (M-H) detector] /local extrema (Canny detector) of the WT coefficients at different levels of decomposition. The detected pixels are weighted before the inverse transform is computed, and they are segmented by simple global gray level thresholding. Both detectors produce 95% detection sensitivity, even though there are more false positives for the M-H detector. The M-H detector preserves the shape information and provides better detection sensitivity for mammograms containing widely distributed calcifications.

  5. Detection of corrosion by a radiometric technique

    International Nuclear Information System (INIS)

    Charlton, J.S.; Ross, J.F.

    1975-01-01

    A method is described for the detection and measurement of corrosion in metal tube bundles using a radioisotope technique. The method is stated to be accurate and quick, and dismantling is unnecessary. A radioactive source is inserted into one of the tubes of the bundle and radiation detectors are inserted into the remainder of the tubes, which may be up to six in number with the apparatus described. The radiation absorption by the walls of each pair of tubes is compared with a standard measurement representing a known thickness of the material of the tubes. Simultaneous measurements may be made. Suitable apparatus is described in detail. (U.K.)

  6. Depauperate genetic variability detected in the American and European bison using genomic techniques

    DEFF Research Database (Denmark)

    Pertoldi, Cino; Tokarska, Magorzata; Wójcik, Jan M

    2009-01-01

    , likely reflecting drift overwhelming selection. We suggest that utilization of genome-wide screening technologies, followed by utilization of less expensive techniques (e.g. VeraCode and Fluidigm EP1), holds large potential for genetic monitoring of populations. Additionally, these techniques will allow...

  7. Fluorescence hyperspectral imaging technique for the foreign substance detection on fresh-cut lettuce

    Science.gov (United States)

    Nondestructive methods based on fluorescence hyperspectral imaging (HSI) techniques were developed in order to detect worms on fresh-cut lettuce. The optimal wavebands for detecting worms on fresh-cut lettuce were investigated using the one-way ANOVA analysis and correlation analysis. The worm detec...

  8. A Comprehensive Review and meta-analysis on Applications of Machine Learning Techniques in Intrusion Detection

    Directory of Open Access Journals (Sweden)

    Manojit Chattopadhyay

    2018-05-01

    Full Text Available Securing a machine from various cyber-attacks has been of serious concern for researchers, statutory bodies such as governments, business organizations and users in both wired and wireless media. However, during the last decade, the amount of data handling by any device, particularly servers, has increased exponentially and hence the security of these devices has become a matter of utmost concern. This paper attempts to examine the challenges in the application of machine learning techniques to intrusion detection. We review different inherent issues in defining and applying the machine learning techniques to intrusion detection. We also attempt to identify the best technological solution for changing usage pattern by comparing different machine learning techniques on different datasets and summarizing their performance using various performance metrics. This paper highlights the research challenges and future trends of intrusion detection in dynamic scenarios of intrusion detection problems in diverse network technologies.

  9. A localized in vivo detection method for lactate using zero quantum coherence techniques

    NARCIS (Netherlands)

    van Dijk, J. E.; Bosman, D. K.; Chamuleau, R. A.; Bovee, W. M.

    1991-01-01

    A method is described to selectively measure lactate in vivo using proton zero quantum coherence techniques. The signal from lipids is eliminated. A surface coil and additionally slice selective localization are used. The resulting spectra demonstrate the good performance of the method

  10. Selection of Dogs for Land Mine and Booby Trap Detection Training. Volume I

    Science.gov (United States)

    1976-09-01

    Sarcoptes scabier, the 12 causes of demodectic and sarcoptic mange , respectively, may be speci- fically diagnosed by microscopic examination of skin scrapings...8217 UNCLASSIFIED 10 - SELECTION OF DOGS FOR LAND MINE AND BOOBY TRAP DETECTION TRAINING (U) FINAL TECHNICAL REPORT VOLUME i by Daniel S. Mitchell...1 ...... I " SELECTION OF DOGS k- FOR LAND MINE AND OOlBY TRAP DETECTION TRAINING * Contract -3C p t DAA1WC.LYA by , /ODaniel S

  11. Polymer platforms for selective detection of cocaine in street samples adulterated with levamisole

    OpenAIRE

    Florea, Anca; Cowen, Todd; Piletsky, Sergey; Wael, De, Karolien

    2018-01-01

    Abstract: Accurate drug detection is of utmost importance for fighting against drug abuse. With a high number of cutting agents and adulterants being added to cut or mask drugs in street powders the number of false results is increasing. We demonstrate for the first time the usefulness of employing polymers readily synthesized by electrodeposition to selectively detect cocaine in the presence of the commonly used adulterant levamisole. The polymers were selected by computational modelling to ...

  12. Recursive estimation techniques for detection of small objects in infrared image data

    Science.gov (United States)

    Zeidler, J. R.; Soni, T.; Ku, W. H.

    1992-04-01

    This paper describes a recursive detection scheme for point targets in infrared (IR) images. Estimation of the background noise is done using a weighted autocorrelation matrix update method and the detection statistic is calculated using a recursive technique. A weighting factor allows the algorithm to have finite memory and deal with nonstationary noise characteristics. The detection statistic is created by using a matched filter for colored noise, using the estimated noise autocorrelation matrix. The relationship between the weighting factor, the nonstationarity of the noise and the probability of detection is described. Some results on one- and two-dimensional infrared images are presented.

  13. Detecting consistent patterns of directional adaptation using differential selection codon models.

    Science.gov (United States)

    Parto, Sahar; Lartillot, Nicolas

    2017-06-23

    Phylogenetic codon models are often used to characterize the selective regimes acting on protein-coding sequences. Recent methodological developments have led to models explicitly accounting for the interplay between mutation and selection, by modeling the amino acid fitness landscape along the sequence. However, thus far, most of these models have assumed that the fitness landscape is constant over time. Fluctuations of the fitness landscape may often be random or depend on complex and unknown factors. However, some organisms may be subject to systematic changes in selective pressure, resulting in reproducible molecular adaptations across independent lineages subject to similar conditions. Here, we introduce a codon-based differential selection model, which aims to detect and quantify the fine-grained consistent patterns of adaptation at the protein-coding level, as a function of external conditions experienced by the organism under investigation. The model parameterizes the global mutational pressure, as well as the site- and condition-specific amino acid selective preferences. This phylogenetic model is implemented in a Bayesian MCMC framework. After validation with simulations, we applied our method to a dataset of HIV sequences from patients with known HLA genetic background. Our differential selection model detects and characterizes differentially selected coding positions specifically associated with two different HLA alleles. Our differential selection model is able to identify consistent molecular adaptations as a function of repeated changes in the environment of the organism. These models can be applied to many other problems, ranging from viral adaptation to evolution of life-history strategies in plants or animals.

  14. Neutron techniques in Safeguards

    International Nuclear Information System (INIS)

    Zucker, M.S.

    1982-01-01

    An essential part of Safeguards is the ability to quantitatively and nondestructively assay those materials with special neutron-interactive properties involved in nuclear industrial or military technology. Neutron techniques have furnished most of the important ways of assaying such materials, which is no surprise since the neutronic properties are what characterizes them. The techniques employed rely on a wide selection of the many methods of neutron generation, detection, and data analysis that have been developed for neutron physics and nuclear science in general

  15. Advancing Lie Detection by Inducing Cognitive Load on Liars: A Review of Relevant Theories and Techniques Guided by Lessons from Polygraph-Based Approaches

    Science.gov (United States)

    Walczyk, Jeffrey J.; Igou, Frank P.; Dixon, Alexa P.; Tcholakian, Talar

    2013-01-01

    This article critically reviews techniques and theories relevant to the emerging field of “lie detection by inducing cognitive load selectively on liars.” To help these techniques benefit from past mistakes, we start with a summary of the polygraph-based Controlled Question Technique (CQT) and the major criticisms of it made by the National Research Council (2003), including that it not based on a validated theory and administration procedures have not been standardized. Lessons from the more successful Guilty Knowledge Test are also considered. The critical review that follows starts with the presentation of models and theories offering insights for cognitive lie detection that can undergird theoretically load-inducing approaches. This is followed by evaluation of specific research-based, load-inducing proposals, especially for their susceptibility to rehearsal and other countermeasures. To help organize these proposals and suggest new direction for innovation and refinement, a theoretical taxonomy is presented based on the type of cognitive load induced in examinees (intrinsic or extraneous) and how open-ended the responses to test items are. Finally, four recommendations are proffered that can help researchers and practitioners to avert the corresponding mistakes with the CQT and yield new, valid cognitive lie detection technologies. PMID:23378840

  16. Selective extraction and detection of noble metal based on ionic ...

    Indian Academy of Sciences (India)

    ClPrNTf2) was developed for selective detection of gold(III) by use of inductively coupled ... The importance to develop pre- ... attention. Ionic liquids (ILs) immobilized onto SG have been successfully applied as solid phase adsorbents for.

  17. Highly selective and sensitive detection of neurotransmitters using receptor-modified single-walled carbon nanotube sensors

    Science.gov (United States)

    Kim, Byeongju; Song, Hyun Seok; Jin, Hye Jun; Park, Eun Jin; Lee, Sang Hun; Lee, Byung Yang; Park, Tai Hyun; Hong, Seunghun

    2013-07-01

    We present receptor-modified carbon nanotube sensors for the highly selective and sensitive detection of acetylcholine (ACh), one kind of neurotransmitter. Here, we successfully expressed the M1 muscarinic acetylcholine receptor (M1 mAChR), a family of G protein-coupled receptors (GPCRs), in E. coli and coated single-walled carbon nanotube (swCNT)-field effect transistors (FETs) with lipid membrane including the receptor, enabling highly selective and sensitive ACh detection. Using this sensor, we could detect ACh at 100 pM concentration. Moreover, we showed that this sensor could selectively detect ACh among other neurotransmitters. This is the first demonstration of the real-time detection of ACh using specific binding between ACh and M1 mAChR, and it may lead to breakthroughs for various applications such as disease diagnosis and drug screening.

  18. Highly selective and sensitive detection of neurotransmitters using receptor-modified single-walled carbon nanotube sensors

    International Nuclear Information System (INIS)

    Kim, Byeongju; Jin, Hye Jun; Park, Eun Jin; Hong, Seunghun; Song, Hyun Seok; Lee, Sang Hun; Park, Tai Hyun; Lee, Byung Yang

    2013-01-01

    We present receptor-modified carbon nanotube sensors for the highly selective and sensitive detection of acetylcholine (ACh), one kind of neurotransmitter. Here, we successfully expressed the M1 muscarinic acetylcholine receptor (M1 mAChR), a family of G protein-coupled receptors (GPCRs), in E. coli and coated single-walled carbon nanotube (swCNT)-field effect transistors (FETs) with lipid membrane including the receptor, enabling highly selective and sensitive ACh detection. Using this sensor, we could detect ACh at 100 pM concentration. Moreover, we showed that this sensor could selectively detect ACh among other neurotransmitters. This is the first demonstration of the real-time detection of ACh using specific binding between ACh and M1 mAChR, and it may lead to breakthroughs for various applications such as disease diagnosis and drug screening. (paper)

  19. Railway Crossing Risk Area Detection Using Linear Regression and Terrain Drop Compensation Techniques

    Science.gov (United States)

    Chen, Wen-Yuan; Wang, Mei; Fu, Zhou-Xing

    2014-01-01

    Most railway accidents happen at railway crossings. Therefore, how to detect humans or objects present in the risk area of a railway crossing and thus prevent accidents are important tasks. In this paper, three strategies are used to detect the risk area of a railway crossing: (1) we use a terrain drop compensation (TDC) technique to solve the problem of the concavity of railway crossings; (2) we use a linear regression technique to predict the position and length of an object from image processing; (3) we have developed a novel strategy called calculating local maximum Y-coordinate object points (CLMYOP) to obtain the ground points of the object. In addition, image preprocessing is also applied to filter out the noise and successfully improve the object detection. From the experimental results, it is demonstrated that our scheme is an effective and corrective method for the detection of railway crossing risk areas. PMID:24936948

  20. Railway Crossing Risk Area Detection Using Linear Regression and Terrain Drop Compensation Techniques

    Directory of Open Access Journals (Sweden)

    Wen-Yuan Chen

    2014-06-01

    Full Text Available Most railway accidents happen at railway crossings. Therefore, how to detect humans or objects present in the risk area of a railway crossing and thus prevent accidents are important tasks. In this paper, three strategies are used to detect the risk area of a railway crossing: (1 we use a terrain drop compensation (TDC technique to solve the problem of the concavity of railway crossings; (2 we use a linear regression technique to predict the position and length of an object from image processing; (3 we have developed a novel strategy called calculating local maximum Y-coordinate object points (CLMYOP to obtain the ground points of the object. In addition, image preprocessing is also applied to filter out the noise and successfully improve the object detection. From the experimental results, it is demonstrated that our scheme is an effective and corrective method for the detection of railway crossing risk areas.

  1. Molecular detection of drug resistance in microbes by isotopic techniques: The IAEA experience

    International Nuclear Information System (INIS)

    Dar, L.; Boussaha, A.; Padhy, A.K.; Khan, B.

    2003-01-01

    The International Atomic Energy Agency (IAEA) supports various programmes on the uses of radionuclide techniques in the management of human communicable diseases. An important issue, being addressed through several technology transfer projects, is the detection of drug resistance in microbes by radioisotope based molecular-biology diagnostic procedures. The techniques employed include dot blot hybridisation with P-32 labelled oligonucleotide probes to detect point mutations, associated with drug resistance, in microbial genes amplified by the polymerase chain reaction (PCR). Molecular methods have been used for the detection of drug resistance in the malarial parasite, Plasmodium falciparum, and in Mycobacterium tuberculosis. Radioisotope based molecular-biology methods have been demonstrated to have comparative advantages in being sensitive, specific, cost-effective, and suitable for application to large-scale molecular surveillance for drug resistance. (author)

  2. A proposed framework on hybrid feature selection techniques for handling high dimensional educational data

    Science.gov (United States)

    Shahiri, Amirah Mohamed; Husain, Wahidah; Rashid, Nur'Aini Abd

    2017-10-01

    Huge amounts of data in educational datasets may cause the problem in producing quality data. Recently, data mining approach are increasingly used by educational data mining researchers for analyzing the data patterns. However, many research studies have concentrated on selecting suitable learning algorithms instead of performing feature selection process. As a result, these data has problem with computational complexity and spend longer computational time for classification. The main objective of this research is to provide an overview of feature selection techniques that have been used to analyze the most significant features. Then, this research will propose a framework to improve the quality of students' dataset. The proposed framework uses filter and wrapper based technique to support prediction process in future study.

  3. Sensitive and selective electrochemical detection of chromium(VI) based on gold nanoparticle-decorated titania nanotube arrays.

    Science.gov (United States)

    Jin, Wei; Wu, Guosheng; Chen, Aicheng

    2014-01-07

    Owing to the severe toxicity and mobility of Cr(VI) in biological and environmental systems, it is of great importance to develop convenient and reliable methods for its detection. Here we report on a facile and effective electrochemical technique for monitoring Cr(VI) concentrations based on the utilization of Au nanoparticle-decorated titania nanotubes (TiO2NTs) grown on a titanium substrate. It was found that the electrochemical reduction of Cr(VI) at the Ti/TiO2NT/Au electrode exhibited an almost 23 fold improvement in activity as compared to a polycrystalline gold electrode, due to its nanoparticle/nanotubular heterojunction infrastructure. As a result, the Ti/TiO2NT/Au electrode demonstrated a wide linear concentration range from 0.10 μM to 105 μM, a low detection limit of 0.03 μM, and a high sensitivity of 6.91 μA μM(-1) Cr(VI) via amperometry, satisfying the detection requirements of the World Health Organization (WHO). Moreover, the Ti/TiO2NT/Au electrode exhibited good resistance against interference from coexisting Cr(III) and other metal ions, and excellent recovery for Cr(VI) detection in both tap and lake water samples. These attributes suggest that this hybrid sensor has strong potential in applications for the selective detection of Cr(VI).

  4. Advanced detection techniques for educational experiments in cosmic ray physics

    International Nuclear Information System (INIS)

    Aiola, Salvatore; La-Rocca, Paola; Riggi, Francesco; Riggi, Simone

    2013-06-01

    In this paper we describe several detection techniques that can be employed to study cosmic ray properties and carry out training activities at high school and undergraduate level. Some of the proposed devices and instrumentation are inherited from professional research experiments, while others were especially developed and marketed for educational cosmic ray experiments. The educational impact of experiments in cosmic ray physics in high-school or undergraduate curricula will be exploited through various examples, going from simple experiments carried out with small Geiger counters or scintillation devices to more advanced detection instrumentation which can offer starting points for not trivial research work. (authors)

  5. Detection of coffee flavour ageing by solid-phase microextraction/surface acoustic wave sensor array technique (SPME/SAW).

    Science.gov (United States)

    Barié, Nicole; Bücking, Mark; Stahl, Ullrich; Rapp, Michael

    2015-06-01

    The use of polymer coated surface acoustic wave (SAW) sensor arrays is a very promising technique for highly sensitive and selective detection of volatile organic compounds (VOCs). We present new developments to achieve a low cost sensor setup with a sampling method enabling the highly reproducible detection of volatiles even in the ppb range. Since the VOCs of coffee are well known by gas chromatography (GC) research studies, the new sensor array was tested for an easy assessable objective: coffee ageing during storage. As reference method these changes were traced with a standard GC/FID set-up, accompanied by sensory panellists. The evaluation of GC data showed a non-linear characteristic for single compound concentrations as well as for total peak area values, disabling prediction of the coffee age. In contrast, the new SAW sensor array demonstrates a linear dependency, i.e. being capable to show a dependency between volatile concentration and storage time. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Chromatographic air analyser microsystem for the selective and sensitive detection of atmospheric pollutants

    International Nuclear Information System (INIS)

    Sanchez, Jean-Baptiste; Lahlou, Houda; Mohsen, Yehya; Berger, Franck; Vilanova, Xavier; Correig, Xavier

    2011-01-01

    The development of industry and automotive trafic produces Volatile Organic Compounds (VOCs) whose toxicity can affect seriously human health and environment. The level of those contaminants in air must be as low as possible. In this context, there is a need for in situ systems that could monitor selectively the concentration of these compounds. The aim of this study is to demonstrate the efficiency of a system build with a pre-concentrator, a chromatographic micro-column and a tin oxide-based gas sensor for the selective and sensitive detection of atmospheric pollutants. In particular, this study is focused on the selective detection of benzene and 1,3 butadiene.

  7. Development of Photostimulated Luminescence Technique for Detecting Irradiated Food

    International Nuclear Information System (INIS)

    Ros Anita Ahmad Ramli; Ahmad Zainuri Mohd Dzomir; Zainon Othman; Wan Saffiey Wan Abdullah; Muhamad Samudi Yasir

    2015-01-01

    The exposure of food to ionizing radiation is being progressively used in many countries to inactivate food pathogens, to eradicate pests and to extend shelf-life of food. To ensure free consumer choice, irradiated food will be labeled. The availability of a reliable method to detect irradiated food is important to enforce legal controls on labeling requirements, ensure proper distribution and increase consumer confidence. This paper reports on the preliminary application of photostimulated luminescence technique (PSL) as a potential method to detect irradiated food and perhaps be used for monitoring irradiated food on sale locally in the near future. Thus this study will be beneficial and relevant for application of food irradiation towards improving food safety and security in Malaysia. (author)

  8. Radiotracer technique for leakage detection under simulated conditions

    International Nuclear Information System (INIS)

    Yelgaonkar, V.N.; Sharma, V.K.; Tapase, A.S.

    2001-01-01

    Radiotracer techniques are often used to locate leaks in underground pipelines. An attempt was made to standardize radiotracer pulse migration in terms of minimum detectable limit. For this purpose a 6 inch diameter 1200 long steel pipe was used. Two leak rates viz. 10 litres per minute and 1 litre per minute with an accuracy of ± 10% were simulated. The experiments on this pipeline showed that this method could be used to locate a leak of the order of 1 litre per minute in a 6 inch diameter isolated underground pipeline. (author)

  9. DNA microarray technique for detecting food-borne pathogens

    Directory of Open Access Journals (Sweden)

    Xing GAO

    2012-08-01

    Full Text Available Objective To study the application of DNA microarray technique for screening and identifying multiple food-borne pathogens. Methods The oligonucleotide probes were designed by Clustal X and Oligo 6.0 at the conserved regions of specific genes of multiple food-borne pathogens, and then were validated by bioinformatic analyses. The 5' end of each probe was modified by amino-group and 10 Poly-T, and the optimized probes were synthesized and spotted on aldehyde-coated slides. The bacteria DNA template incubated with Klenow enzyme was amplified by arbitrarily primed PCR, and PCR products incorporated into Aminoallyl-dUTP were coupled with fluorescent dye. After hybridization of the purified PCR products with DNA microarray, the hybridization image and fluorescence intensity analysis was acquired by ScanArray and GenePix Pro 5.1 software. A series of detection conditions such as arbitrarily primed PCR and microarray hybridization were optimized. The specificity of this approach was evaluated by 16 different bacteria DNA, and the sensitivity and reproducibility were verified by 4 food-borne pathogens DNA. The samples of multiple bacteria DNA and simulated water samples of Shigella dysenteriae were detected. Results Nine different food-borne bacteria were successfully discriminated under the same condition. The sensitivity of genomic DNA was 102 -103pg/ μl, and the coefficient of variation (CV of the reproducibility of assay was less than 15%. The corresponding specific hybridization maps of the multiple bacteria DNA samples were obtained, and the detection limit of simulated water sample of Shigella dysenteriae was 3.54×105cfu/ml. Conclusions The DNA microarray detection system based on arbitrarily primed PCR can be employed for effective detection of multiple food-borne pathogens, and this assay may offer a new method for high-throughput platform for detecting bacteria.

  10. Damage detection in wind turbine blades using acoustic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Juengert, A., E-mail: anne.juengert@mpa.uni-stuttgart.de [Univ. of Stuttgart, Materialpruefungsanstalt Stuttgart, Stuttgart (Germany)

    2013-05-15

    Facing climate change, the use of renewable energy gains importance. The wind energy sector grows very fast. Bigger and more powerful wind turbines will be built in the coming decades and the safety and reliability of the turbines will become more important. Wind turbine blades have to be inspected at regular intervals, because they are highly stressed during operation and a blade breakdown can cause big economic damages. The turbine blades consist of fiber reinforced plastics (GFRP/CFRP) and sandwich areas containing wood or plastic foam. The blades are manufactured as two halves and glued together afterwards. Typical damages are delaminations within the GFRP or the sandwich and missing adhesive or deficient bond at the bonding surfaces. The regular inspections of wind turbine blades are performed manually by experts and are limited to visual appraisals and simple tapping tests. To improve the inspections of wind turbine blades non-destructive testing techniques using acoustic waves are being developed. To detect delaminations within the laminates of the turbine blade, a local resonance spectroscopy was used. To detect missing bond areas from the outside of the blade the impulse-echo-technique was applied. This paper is an updated reprint of an article published on ndt.net in 2008. (author)

  11. Damage detection in wind turbine blades using acoustic techniques

    International Nuclear Information System (INIS)

    Juengert, A.

    2013-01-01

    Facing climate change, the use of renewable energy gains importance. The wind energy sector grows very fast. Bigger and more powerful wind turbines will be built in the coming decades and the safety and reliability of the turbines will become more important. Wind turbine blades have to be inspected at regular intervals, because they are highly stressed during operation and a blade breakdown can cause big economic damages. The turbine blades consist of fiber reinforced plastics (GFRP/CFRP) and sandwich areas containing wood or plastic foam. The blades are manufactured as two halves and glued together afterwards. Typical damages are delaminations within the GFRP or the sandwich and missing adhesive or deficient bond at the bonding surfaces. The regular inspections of wind turbine blades are performed manually by experts and are limited to visual appraisals and simple tapping tests. To improve the inspections of wind turbine blades non-destructive testing techniques using acoustic waves are being developed. To detect delaminations within the laminates of the turbine blade, a local resonance spectroscopy was used. To detect missing bond areas from the outside of the blade the impulse-echo-technique was applied. This paper is an updated reprint of an article published on ndt.net in 2008. (author)

  12. Colour and shape analysis techniques for weed detection in cereal fields

    DEFF Research Database (Denmark)

    Pérez, A.J; López, F; Benlloch, J.V.

    2000-01-01

    . The proposed methods use colour information to discriminate between vegetation and background, whilst shape analysis techniques are applied to distinguish between crop and weeds. The determination of crop row position helps to reduce the number of objects to which shape analysis techniques are applied....... The performance of algorithms was assessed by comparing the results with a human classification, providing an acceptable success rate. The study has shown that despite the difficulties in accurately determining the number of seedlings (as in visual surveys), it is feasible to use image processing techniques......Information on weed distribution within the field is necessary to implement spatially variable herbicide application. This paper deals with the development of near-ground image capture and processing techniques in order to detect broad-leaved weeds in cereal crops under actual field conditions...

  13. Lesion Detection in CT Images Using Deep Learning Semantic Segmentation Technique

    Science.gov (United States)

    Kalinovsky, A.; Liauchuk, V.; Tarasau, A.

    2017-05-01

    In this paper, the problem of automatic detection of tuberculosis lesion on 3D lung CT images is considered as a benchmark for testing out algorithms based on a modern concept of Deep Learning. For training and testing of the algorithms a domestic dataset of 338 3D CT scans of tuberculosis patients with manually labelled lesions was used. The algorithms which are based on using Deep Convolutional Networks were implemented and applied in three different ways including slice-wise lesion detection in 2D images using semantic segmentation, slice-wise lesion detection in 2D images using sliding window technique as well as straightforward detection of lesions via semantic segmentation in whole 3D CT scans. The algorithms demonstrate superior performance compared to algorithms based on conventional image analysis methods.

  14. Selection of mother wavelets for the detection of the oscillation frequencies in power signals of nuclear reactors

    International Nuclear Information System (INIS)

    Amador G, R.; Castillo D, R.; Ortiz V, J.

    2007-01-01

    Diverse types of transitory events can lead to oscillations of power in nuclear reactors. In such events, the power monitors provide a signal that contains important characteristics of the transitory one, as the oscillation frequency, tendencies, changes and the instants or periods in those that important events are presented. This characteristics are detected by means of diverse analysis techniques, as Autoregressive methods, Fourier Transform, Fourier Transform in Short Time, Wavelets Transform, among others. Presently work is used the one Wavelets Continuous Transform because it allows to carry out studies of the stationary, quasi-stationary and transitory signals in the Time-scale and Time-scale-spectrum planes. Contrary to other similar works, this work describes a methodology for the selection of the scales and the Wavelet mother to be applied the one Wavelets Continuous Transform, with the objective of detecting to the dominant frequencies of the system. To prove the proposal a broadly well-known real signal of an event of power oscillations it has been used. The obtained results correspond to three families of Wavelets mothers that fulfilled the conditions of scales and central frequency of the proposal. The results show that the value of the certain frequency oscillation in this work is practically the same one reported in other studies with other techniques. (Author)

  15. TAWS: TABLE ASSISTED WALK STRATEGY IN CLONE ATTACK DETECTION

    Directory of Open Access Journals (Sweden)

    J Sybi Cynthia

    2016-12-01

    Full Text Available Wireless Sensor Networks (WSNs deployed in the destructive atmosphere are susceptible to clone attacks. Clone attack in wireless sensor network is a complicated problem because it deployed in hostile environments, and also the nodes could be physically compromised by an adversary. For valuable clone attack detection, the selection criteria play an important role in the proposed work. In this paper, it has been classified the existing detection schemes regarding device type, detection methodologies, deployment strategies and detection ranges and far explore various proposals in deployment based selection criteria category. And also this paper provides a review of detection methodology based on various clone attack detection techniques. It is also widely agreed that clones should be detected quickly as possible with the best optional. Our work is exploratory in that the proposed algorithm concern with table assisted random walk with horizontal and vertical line, frequent level key change and revokes the duplicate node. Our simulation results show that it is more efficient than the detection criteria in terms of security feature, and in detection rate with high resiliency. Specifically, it concentrates on deployment strategy which includes grid based deployment technique. These all come under the selection criteria for better security performance. Our protocol analytically provides effective and clone attack detection capability of robustness.

  16. Picomolar detection limits with current-polarized Pb2+ ion-selective membranes.

    Science.gov (United States)

    Pergel, E; Gyurcsányi, R E; Tóth, K; Lindner, E

    2001-09-01

    Minor ion fluxes across ion-selective membranes bias submicromolar activity measurements with conventional ion-selective electrodes. When ion fluxes are balanced, the lower limit of detection is expected to be dramatically improved. As proof of principle, the flux of lead ions across an ETH 5435 ionophore-based lead-selective membrane was gradually compensated by applying a few nanoamperes of galvanostatic current. When the opposite ion fluxes were matched, and the undesirable leaching of primary ions was eliminated, Nernstian response down to 3 x 10(-12) M was achieved.

  17. A Technique for Real-Time Ionospheric Ranging Error Correction Based On Radar Dual-Frequency Detection

    Science.gov (United States)

    Lyu, Jiang-Tao; Zhou, Chen

    2017-12-01

    Ionospheric refraction is one of the principal error sources for limiting the accuracy of radar systems for space target detection. High-accuracy measurement of the ionospheric electron density along the propagation path of radar wave is the most important procedure for the ionospheric refraction correction. Traditionally, the ionospheric model and the ionospheric detection instruments, like ionosonde or GPS receivers, are employed for obtaining the electron density. However, both methods are not capable of satisfying the requirements of correction accuracy for the advanced space target radar system. In this study, we propose a novel technique for ionospheric refraction correction based on radar dual-frequency detection. Radar target range measurements at two adjacent frequencies are utilized for calculating the electron density integral exactly along the propagation path of the radar wave, which can generate accurate ionospheric range correction. The implementation of radar dual-frequency detection is validated by a P band radar located in midlatitude China. The experimental results present that the accuracy of this novel technique is more accurate than the traditional ionospheric model correction. The technique proposed in this study is very promising for the high-accuracy radar detection and tracking of objects in geospace.

  18. Analytical Technique of Selection of Constructive Parameters Pneumatichydraulic Springs

    Directory of Open Access Journals (Sweden)

    A. A. Tsipilev

    2014-01-01

    Full Text Available The article "Technique for Analytical Selection of Design Parameters of Pneumatichydraulic Springs concerns the ride smoothness of high-speed vehicles. Author of article Tsipilev A.A. is an assistant at chair "Multi-purpose Tracked Vehicles and Mobile Robots" of BMSTU. The article represents a synthesis of known information on the springing systems and an analysis of relation between spring design data and running gear. It describes standard units of running gear of vehicle in the context of springing systems. Classification of springing systems is considered. Modernization general policy for existing suspensions and prospects for creation of new ones are given. The article considers a design of various pneumatic-hydraulic springs to be set on domestic tracked vehicles. A developed technique allows us to have elastic characteristics of pneumatic-hydraulic springs of various types using these design data and kinematics of the running gear. The article provides recommendations to calculate characteristics of springing systems. The adequacy analysis of the given technique based on the comparison of real and rated characteristics of the existing suspension is conducted. This article can be useful to the experts dealing with springing systems of wheel and tracked vehicles.

  19. Right hemisphere dominance during spatial selective attention and target detection occurs outside the dorsal fronto-parietal network

    Science.gov (United States)

    Shulman, Gordon L.; Pope, Daniel L. W.; Astafiev, Serguei V.; McAvoy, Mark P.; Snyder, Abraham Z.; Corbetta, Maurizio

    2010-01-01

    Spatial selective attention is widely considered to be right hemisphere dominant. Previous functional magnetic resonance imaging (fMRI) studies, however, have reported bilateral blood-oxygenation-level-dependent (BOLD) responses in dorsal fronto-parietal regions during anticipatory shifts of attention to a location (Kastner et al., 1999; Corbetta et al., 2000; Hopfinger et al., 2000). Right-lateralized activity has mainly been reported in ventral fronto-parietal regions for shifts of attention to an unattended target stimulus (Arrington et al., 2000; Corbetta et al., 2000). However, clear conclusions cannot be drawn from these studies because hemispheric asymmetries were not assessed using direct voxel-wise comparisons of activity in left and right hemispheres. Here, we used this technique to measure hemispheric asymmetries during shifts of spatial attention evoked by a peripheral cue stimulus and during target detection at the cued location. Stimulus-driven shifts of spatial attention in both visual fields evoked right-hemisphere dominant activity in temporo-parietal junction (TPJ). Target detection at the attended location produced a more widespread right hemisphere dominance in frontal, parietal, and temporal cortex, including the TPJ region asymmetrically activated during shifts of spatial attention. However, hemispheric asymmetries were not observed during either shifts of attention or target detection in the dorsal fronto-parietal regions (anterior precuneus, medial intraparietal sulcus, frontal eye fields) that showed the most robust activations for shifts of attention. Therefore, right hemisphere dominance during stimulus-driven shifts of spatial attention and target detection reflects asymmetries in cortical regions that are largely distinct from the dorsal fronto-parietal network involved in the control of selective attention. PMID:20219998

  20. Selective Filtration of Gadolinium Trichloride for Use in Neutron Detection in Large Water Cherenkov Detectors

    International Nuclear Information System (INIS)

    Vagins, Mark R.

    2013-01-01

    Super-??Kamiokande Water Cherenkov detectors have been used for many years as inexpensive, effective detectors for neutrino interactions and nucleon decay searches. While many important measurements have been made with these detectors a major drawback has been their inability to detect the absorption of thermal neutrons. We believe an inexpensive, effective technique could be developed to overcome this situation via the addition to water of a solute with a large neutron cross section and energetic gamma daughters which would make neutrons detectable. Gadolinium seems an excellent candidate especially since in recent years it has become very inexpensive, now less than $8 per kilogram in the form of commercially-available gadolinium trichloride, GdCl 3 . This non-toxic, non-reactive substance is highly soluble in water. Neutron capture on gadolinium yields a gamma cascade which would be easily seen in detectors like Super-Kamiokande. We have been investigating the use of GdCl 3 as a possible upgrade for the Super-Kamiokande detector with a view toward improving its performance as a detector for atmospheric neutrinos, supernova neutrinos, wrong-sign solar neutrinos, reactor neutrinos, proton decay, and also as a target for the coming T2K long-baseline neutrino experiment. This focused study of selective water filtration and GdCl 3 extraction techniques, conducted at UC Irvine, followed up on highly promising benchtop-scale and kiloton-scale work previously carried out with the assistance of 2003 and 2005 Advanced Detector Research Program grants

  1. Fabrication of Stretchable Copper Coated Carbon Nanotube Conductor for Non-Enzymatic Glucose Detection Electrode with Low Detection Limit and Selectivity

    Directory of Open Access Journals (Sweden)

    Dawei Jiang

    2018-03-01

    Full Text Available The increasing demand for wearable glucose sensing has stimulated growing interest in stretchable electrodes. The development of the electrode materials having large stretchability, low detection limit, and good selectivity is the key component for constructing high performance wearable glucose sensors. In this work, we presented fabrication of stretchable conductor based on the copper coated carbon nanotube sheath-core fiber, and its application as non-enzymatic electrode for glucose detection with high stretchability, low detection limit, and selectivity. The sheath-core fiber was fabricated by coating copper coated carbon nanotube on a pre-stretched rubber fiber core followed by release of pre-stretch, which had a hierarchically buckled structure. It showed a small resistance change as low as 27% as strain increasing from 0% to 500% strain, and a low resistance of 0.4 Ω·cm−1 at strain of 500%. This electrode showed linear glucose concentration detection in the range between 0.05 mM and 5 mM and good selectivity against sucrose, lactic acid, uric acid, acrylic acid in phosphate buffer saline solution, and showed stable signal in high salt concentration. The limit of detection (LOD was 0.05 mM, for the range of 0.05–5 mM, the sensitivity is 46 mA·M−1. This electrode can withstand large strain of up to 60% with negligible influence on its performance.

  2. Capped Mesoporous Silica Nanoparticles for the Selective and Sensitive Detection of Cyanide.

    Science.gov (United States)

    Sayed, Sameh El; Licchelli, Maurizio; Martínez-Máñez, Ramón; Sancenón, Félix

    2017-10-18

    The development of easy and affordable methods for the detection of cyanide is of great significance due to the high toxicity of this anion and the potential risks associated with its pollution. Herein, optical detection of cyanide in water has been achieved by using a hybrid organic-inorganic nanomaterial. Mesoporous silica nanoparticles were loaded with [Ru(bipy) 3 ] 2+ , functionalized with macrocyclic nickel(II) complex subunits, and capped with a sterically hindering anion (hexametaphosphate). Cyanide selectively induces demetallation of nickel(II) complexes and the removal of capping anions from the silica surface, allowing the release of the dye and the consequent increase in fluorescence intensity. The response of the capped nanoparticles in aqueous solution is highly selective and sensitive towards cyanide with a limit of detection of 2 μm. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The role of sentinel node detection techniques in vulvar and cervival cancer

    International Nuclear Information System (INIS)

    Wydra, D.; Sawicki, S.; Emerich, J.; Romanowicz, G.

    2002-01-01

    The sentinel node is the first lymph node that receives the lymph drainage from the primary tumour. The pathological status of the sentinel node should reflect the histopathology of the entire regional lymph drainage area - both vulvar and cervical cancer spread through the lymphatic system. In gynaecological oncology recent studies have confirmed the utility of the sentinel node concept in vulvar and cervical cancer. Three techniques for sentinel node localisation are available. The preoperative lymphoscintigraphy and intraoperative handheld gamma probe detection require the administration of the technetium-99m-labelled colloid around the tumour. The other method is based on the injection of the patent blue dye - during the surgery of the sentinel node because of the dye uptake becomes visible. Following detection, the sentinel lymph node can be removed separately and assessed with ultrastaging and immunohistochemical staining. In the early stages of vulvar and cervical cancer the lymph nodes metastases rate is relatively low - in most cases lymphadenectomy is not necessary. The determination of the regional lymph nodes' pathological status may limit the extent of the surgical treatment. The sentinel node detection rate is relatively high and depends on the applied technique. This technique may play an important role in the treatment of vulvar and cervical cancer. This paper describes the details of sentinel node identification and reviews the literature. (author)

  4. Aircraft applications of fault detection and isolation techniques

    Science.gov (United States)

    Marcos Esteban, Andres

    In this thesis the problems of fault detection & isolation and fault tolerant systems are studied from the perspective of LTI frequency-domain, model-based techniques. Emphasis is placed on the applicability of these LTI techniques to nonlinear models, especially to aerospace systems. Two applications of Hinfinity LTI fault diagnosis are given using an open-loop (no controller) design approach: one for the longitudinal motion of a Boeing 747-100/200 aircraft, the other for a turbofan jet engine. An algorithm formalizing a robust identification approach based on model validation ideas is also given and applied to the previous jet engine. A general linear fractional transformation formulation is given in terms of the Youla and Dual Youla parameterizations for the integrated (control and diagnosis filter) approach. This formulation provides better insight into the trade-off between the control and the diagnosis objectives. It also provides the basic groundwork towards the development of nested schemes for the integrated approach. These nested structures allow iterative improvements on the control/filter Youla parameters based on successive identification of the system uncertainty (as given by the Dual Youla parameter). The thesis concludes with an application of Hinfinity LTI techniques to the integrated design for the longitudinal motion of the previous Boeing 747-100/200 model.

  5. Detection of localized damage by eddy currents technique

    Directory of Open Access Journals (Sweden)

    Aoukili A.

    2014-01-01

    Full Text Available Non destructive evaluation techniques based on eddy currents (EC are largely used for quality control of the castings in a lot of industries. The principle of detection by EC consists in using an adequate inductive coil to generate them by a variable magnetic field, and measuring their effects by using one or several sensors. These effects result from the interaction between the induced magnetic field and the excited conductive material. A local variation of the physical properties or geometry of the tested sample, due to a singularity or a flaw, causes a modification of the EC distribution, enabling thus detection. In order to optimize the capacity of defect revealing by means of EC based probes, an accurate modelling of the problem is essential. This can be used to perform simulation of the EC distribution under different circumstances and to analyze the EC sensitivity to the various implicated parameters. In this work, the modelling of EC is made by using the finite element method. Using a B-scan strategy was used, detection of a small defect having the shape of an open cavity is shown to be correctly indicated via monitoring variations of the induced voltage in the receiver coil.

  6. The accessory super-selective techniques in performing the transarterial embolization of intracranial dural arteriovenous fistulas

    International Nuclear Information System (INIS)

    Zhao Wenyuan; Liu Jianmin; Li Qiang; Fang Yibin; Xu Yi; Hong Bo; Huang Qinghai

    2010-01-01

    Objective: To evaluate the assistant techniques in performing transarterial embolization of intracranial dural arteriovenous fistulas (DAVF) when routine super-selective catheterization with microcatheter fails. Methods: Temporary balloon occlusion of the parent artery was adopted in 4 cases of anterior fossa DAVF and in one case of tentorial DAVF, and permanent occlusion of the distal main trunk with coils was carried out in one tentorial DAVF in order to help the super-selective catheterization. Results: The microcatheter was successfully advanced to, or near, the nidus with the help of these assistant techniques and all 6 cases were cured with single session. After the surgery no operation-related complications occurred. Conclusion: Our preliminary results indicate that the assistant techniques, including temporary balloon occlusion of the parent artery and permanent occlusion of the distal main trunk with coils, are a safe and effective method which can reliably help the successful performance of microcatheter catheterization, it can be safely used in complex cases when routine super-selective catheterization fails. (authors)

  7. Detection of a faint fast-moving near-Earth asteroid using the synthetic tracking technique

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Chengxing; Shao, Michael; Nemati, Bijan; Werne, Thomas; Zhou, Hanying; Turyshev, Slava G.; Sandhu, Jagmit [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Hallinan, Gregg; Harding, Leon K., E-mail: chengxing.zhai@jpl.nasa.gov [Department of Astronomy, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States)

    2014-09-01

    We report a detection of a faint near-Earth asteroid (NEA) using our synthetic tracking technique and the CHIMERA instrument on the Palomar 200 inch telescope. With an apparent magnitude of 23 (H = 29, assuming detection at 20 lunar distances), the asteroid was moving at 6.°32 day{sup –1} and was detected at a signal-to-noise ratio (S/N) of 15 using 30 s of data taken at a 16.7 Hz frame rate. The detection was confirmed by a second observation 77 minutes later at the same S/N. Because of its high proper motion, the NEA moved 7 arcsec over the 30 s of observation. Synthetic tracking avoided image degradation due to trailing loss that affects conventional techniques relying on 30 s exposures; the trailing loss would have degraded the surface brightness of the NEA image on the CCD down to an approximate magnitude of 25 making the object undetectable. This detection was a result of our 12 hr blind search conducted on the Palomar 200 inch telescope over two nights, scanning twice over six (5.°3 × 0.°046) fields. Detecting only one asteroid is consistent with Harris's estimates for the distribution of the asteroid population, which was used to predict a detection of 1.2 NEAs in the H-magnitude range 28-31 for the two nights. The experimental design, data analysis methods, and algorithms are presented. We also demonstrate milliarcsecond-level astrometry using observations of two known bright asteroids on the same system with synthetic tracking. We conclude by discussing strategies for scheduling observations to detect and characterize small and fast-moving NEAs using the new technique.

  8. Evaluation of an Improved Branch-Site Likelihood Method for Detecting Positive Selection at the Molecular Level

    DEFF Research Database (Denmark)

    Zhang, Jianzhi; Nielsen, Rasmus; Yang, Ziheng

    2005-01-01

    of interest, while test 2 had acceptable false-positive rates and appeared robust against violations of model assumptions. As test 2 is a direct test of positive selection on the lineages of interest, it is referred to as the branch-site test of positive selection and is recommended for use in real data......Detecting positive Darwinian selection at the DNA sequence level has been a subject of considerable interest. However, positive selection is difficult to detect because it often operates episodically on a few amino acid sites, and the signal may be masked by negative selection. Several methods have...... been developed to test positive selection that acts on given branches (branch methods) or on a subset of sites (site methods). Recently, Yang, Z., and R. Nielsen (2002. Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Mol. Biol. Evol. 19...

  9. Does Angling Technique Selectively Target Fishes Based on Their Behavioural Type?

    Directory of Open Access Journals (Sweden)

    Alexander D M Wilson

    Full Text Available Recently, there has been growing recognition that fish harvesting practices can have important impacts on the phenotypic distributions and diversity of natural populations through a phenomenon known as fisheries-induced evolution. Here we experimentally show that two common recreational angling techniques (active crank baits versus passive soft plastics differentially target wild largemouth bass (Micropterus salmoides and rock bass (Ambloplites rupestris based on variation in their behavioural tendencies. Fish were first angled in the wild using both techniques and then brought back to the laboratory and tested for individual-level differences in common estimates of personality (refuge emergence, flight-initiation-distance, latency-to-recapture and with a net, and general activity in an in-lake experimental arena. We found that different angling techniques appear to selectively target these species based on their boldness (as characterized by refuge emergence, a standard measure of boldness in fishes but not other assays of personality. We also observed that body size was independently a significant predictor of personality in both species, though this varied between traits and species. Our results suggest a context-dependency for vulnerability to capture relative to behaviour in these fish species. Ascertaining the selective pressures angling practices exert on natural populations is an important area of fisheries research with significant implications for ecology, evolution, and resource management.

  10. The selection of probabilistic safety assessment techniques for non-reactor nuclear facilities

    International Nuclear Information System (INIS)

    Vail, J.

    1992-01-01

    Historically, the probabilistic safety assessment (PSA) methodology of choice is the well known event tree/fault tree inductive technique. For reactor facilities is has stood the test of time. Some non-reactor nuclear facilities have found inductive methodologies difficult to apply. The stand-alone fault tree deductive technique has been used effectively to analyze risk in nuclear chemical processing facilities and waste handling facilities. The selection between the two choices suggest benefits from use of the deductive method for non-reactor facilities

  11. A Multi-Agent Framework for Anomalies Detection on Distributed Firewalls Using Data Mining Techniques

    Science.gov (United States)

    Karoui, Kamel; Ftima, Fakher Ben; Ghezala, Henda Ben

    The Agents and Data Mining integration has emerged as a promising area for disributed problems solving. Applying this integration on distributed firewalls will facilitate the anomalies detection process. In this chapter, we present a set of algorithms and mining techniques to analyse, manage and detect anomalies on distributed firewalls' policy rules using the multi-agent approach; first, for each firewall, a static agent will execute a set of data mining techniques to generate a new set of efficient firewall policy rules. Then, a mobile agent will exploit these sets of optimized rules to detect eventual anomalies on a specific firewall (intra-firewalls anomalies) or between firewalls (inter-firewalls anomalies). An experimental case study will be presented to demonstrate the usefulness of our approach.

  12. Mass Detection in Mammographic Images Using Wavelet Processing and Adaptive Threshold Technique.

    Science.gov (United States)

    Vikhe, P S; Thool, V R

    2016-04-01

    Detection of mass in mammogram for early diagnosis of breast cancer is a significant assignment in the reduction of the mortality rate. However, in some cases, screening of mass is difficult task for radiologist, due to variation in contrast, fuzzy edges and noisy mammograms. Masses and micro-calcifications are the distinctive signs for diagnosis of breast cancer. This paper presents, a method for mass enhancement using piecewise linear operator in combination with wavelet processing from mammographic images. The method includes, artifact suppression and pectoral muscle removal based on morphological operations. Finally, mass segmentation for detection using adaptive threshold technique is carried out to separate the mass from background. The proposed method has been tested on 130 (45 + 85) images with 90.9 and 91 % True Positive Fraction (TPF) at 2.35 and 2.1 average False Positive Per Image(FP/I) from two different databases, namely Mammographic Image Analysis Society (MIAS) and Digital Database for Screening Mammography (DDSM). The obtained results show that, the proposed technique gives improved diagnosis in the early breast cancer detection.

  13. A double isotope technique for the detection of diffuse liver disease

    International Nuclear Information System (INIS)

    McCready, V.R.; Seelentag, W.W.; Lillicrap, S.C.; Royal Mardsen Hospital, Sutton, Surrey

    1978-01-01

    Radioisotope, ultrasound and CT X-ray scanning are all moderately successful in diagnosing focal abnormalities of the liver. However, the diagnosis of diffuse disease remains difficult or impossible in spite of recent advances in imaging and biochemical techniques. This paper investigates the possibility of using two radioactive compounds which detect different aspects of liver function to determine the presence of diffuse disease. Normal patients and patients with obvious metastases were studied after an injection of a mixture of Tc 99m sulphur colloid and Gallium 67 citrate. Measurements of the absolute and relative uptake in the liver were made within one hour and at 48 hours using a quantitative dual probe system and a collimated dual detector system. The Tc 99m:Ga-67 ratio was calculated. The ratio for abnormals ranged from 1.5-3.9 mean=2.5 and the normals ranged from 3.67-6.25 (mean=4.5). The technique shows promise in the detection of diffuse disease. (author)

  14. Study on Instrument Fault Detection using OLM Techniques for PHM Application in NPPs

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Hwan; Park, Gee Yong; Kim, Jung Taek; Hur, Seop [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The diagnosis system is relatively being mature owing to many research. Among the various models, this paper introduces some On-Line Monitoring (OLM) models for instrument health monitoring and review applicability on NPPs. In recent years, many researchers are being focused on the prognostics which is predicting the future failure of instruments or equipment by using the status monitoring data. By using the prognostic techniques, we can expect a lot of advantages such as ease of control, power optimization, or optimal use of maintenance resources. And we have performed the test for detecting fault of safety-critical instruments and analyzed the fault detection sensitivity for various instrument failure modes using OLM techniques. OLM techniques using data-driven based model such AAKR or AANN can be useful tools for securing integrity of safety-critical instrument that should always keep healthy conditions for the plant safety.

  15. Selective Excitation of Lamb-Waves for Damage Detection in Composites

    Science.gov (United States)

    Petculescu, G.; Krishnaswamy, S.; Achenbach, J. D.

    2006-03-01

    Sensors based on periodic arrays of coherent piezoelectric sources (comb design) are used to selectively excite and detect Lamb waves in aluminum and AS4/3601 unidirectional carbon-epoxy plates. 110 μm PVDF film poled in the thickness direction is used as piezoelectric material. An algorithm to eliminate the effect of coupling in amplitude measurements, using individual Lamb modes excited/detected by the same transducer pair, is described. A multiple-impact test showing a decrease in amplitude and group velocity as damage progresses is used as an example.

  16. Sensitivity of field tests, serological and molecular techniques for Plum Pox Virus detection in various tissues

    Directory of Open Access Journals (Sweden)

    Mojca VIRŠČEK MARN

    2015-12-01

    Full Text Available Sensitivity of field tests (AgriStrip  and Immunochromato, DAS-ELISA, two step RT-PCR and real-time RT-PCR for Plum pox virus (PPV detection was tested in various tissues of apricot, peach, plum and damson plum trees infected with isolates belonging to PPV-D, PPV-M or PPV-Rec, the three strains present in Slovenia. Flowers of apricot and plum in full bloom proved to be a very good source for detection of PPV. PPV could be detected with all tested techniques in symptomatic parts of leaves in May and with one exception even in the beginning of August, but it was not detected in asymptomatic leaves using field tests, DAS-ELISA and partly also molecular techniques. PPV was detected only in some of the samples of asymptomatic parts of the leaves with symptoms and of stalks by field tests and DAS-ELISA. Infections were not detected in buds in August using field tests or DAS-ELISA. Field tests are useful for confirmation of the PPV infection in symptomatic leaves, but in tissues without symptoms DAS-ELISA should be combined or replaced by molecular techniques.

  17. A COMPARISON OF SPECTROSCOPIC VERSUS IMAGING TECHNIQUES FOR DETECTING CLOSE COMPANIONS TO KEPLER OBJECTS OF INTEREST

    International Nuclear Information System (INIS)

    Teske, Johanna K.; Everett, Mark E.; Hirsch, Lea; Furlan, Elise; Ciardi, David R.; Horch, Elliott P.; Howell, Steve B.; Gonzales, Erica; Crepp, Justin R.

    2015-01-01

    Kepler planet candidates require both spectroscopic and imaging follow-up observations to rule out false positives and detect blended stars. Traditionally, spectroscopy and high-resolution imaging have probed different host star companion parameter spaces, the former detecting tight binaries and the latter detecting wider bound companions as well as chance background stars. In this paper, we examine a sample of 11 Kepler host stars with companions detected by two techniques—near-infrared adaptive optics and/or optical speckle interferometry imaging, and a new spectroscopic deblending method. We compare the companion effective temperatures (T eff ) and flux ratios (F B /F A , where A is the primary and B is the companion) derived from each technique and find no cases where both companion parameters agree within 1σ errors. In 3/11 cases the companion T eff values agree within 1σ errors, and in 2/11 cases the companion F B /F A values agree within 1σ errors. Examining each Kepler system individually considering multiple avenues (isochrone mapping, contrast curves, probability of being bound), we suggest two cases for which the techniques most likely agree in their companion detections (detect the same companion star). Overall, our results support the advantage that the spectroscopic deblending technique has for finding very close-in companions (θ ≲ 0.″02–0.″05) that are not easily detectable with imaging. However, we also specifically show how high-contrast AO and speckle imaging observations detect companions at larger separations (θ ≥ 0.″02–0.″05) that are missed by the spectroscopic technique, provide additional information for characterizing the companion and its potential contamination (e.g., position angle, separation, magnitude differences), and cover a wider range of primary star effective temperatures. The investigation presented here illustrates the utility of combining the two techniques to reveal higher-order multiples in known

  18. A COMPARISON OF SPECTROSCOPIC VERSUS IMAGING TECHNIQUES FOR DETECTING CLOSE COMPANIONS TO KEPLER OBJECTS OF INTEREST

    Energy Technology Data Exchange (ETDEWEB)

    Teske, Johanna K. [Carnegie DTM, 5241 Broad Branch Road, NW, Washington, DC 20015 (United States); Everett, Mark E. [National Optical Astronomy Observatory, 950 N. Cherry Ave., Tucson, AZ 85719 (United States); Hirsch, Lea [Astronomy Department, University of California at Berkeley, Berkeley, CA 94720 (United States); Furlan, Elise; Ciardi, David R. [NASA Exoplanet Science Institute, California Institute of Technology, 770 South Wilson Ave., Pasadena, CA 91125 (United States); Horch, Elliott P. [Department of Physics, Southern Connecticut State University, 501 Crescent Street, New Haven, CT 06515 (United States); Howell, Steve B. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Gonzales, Erica; Crepp, Justin R., E-mail: jteske@carnegiescience.edu [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States)

    2015-11-15

    Kepler planet candidates require both spectroscopic and imaging follow-up observations to rule out false positives and detect blended stars. Traditionally, spectroscopy and high-resolution imaging have probed different host star companion parameter spaces, the former detecting tight binaries and the latter detecting wider bound companions as well as chance background stars. In this paper, we examine a sample of 11 Kepler host stars with companions detected by two techniques—near-infrared adaptive optics and/or optical speckle interferometry imaging, and a new spectroscopic deblending method. We compare the companion effective temperatures (T{sub eff}) and flux ratios (F{sub B}/F{sub A}, where A is the primary and B is the companion) derived from each technique and find no cases where both companion parameters agree within 1σ errors. In 3/11 cases the companion T{sub eff} values agree within 1σ errors, and in 2/11 cases the companion F{sub B}/F{sub A} values agree within 1σ errors. Examining each Kepler system individually considering multiple avenues (isochrone mapping, contrast curves, probability of being bound), we suggest two cases for which the techniques most likely agree in their companion detections (detect the same companion star). Overall, our results support the advantage that the spectroscopic deblending technique has for finding very close-in companions (θ ≲ 0.″02–0.″05) that are not easily detectable with imaging. However, we also specifically show how high-contrast AO and speckle imaging observations detect companions at larger separations (θ ≥ 0.″02–0.″05) that are missed by the spectroscopic technique, provide additional information for characterizing the companion and its potential contamination (e.g., position angle, separation, magnitude differences), and cover a wider range of primary star effective temperatures. The investigation presented here illustrates the utility of combining the two techniques to reveal higher

  19. AN IMAGE-ANALYSIS TECHNIQUE FOR DETECTION OF RADIATION-INDUCED DNA FRAGMENTATION AFTER CHEF ELECTROPHORESIS

    NARCIS (Netherlands)

    ROSEMANN, M; KANON, B; KONINGS, AWT; KAMPINGA, HH

    CHEF-electrophoresis was used as a technique to detect radiation-induced DNA breakage with special emphasis to biological relevant X-ray doses (0-10 Gy). Fluorescence detection of DNA-fragments using a sensitive image analysis system was directly compared with conventional scintillation counting of

  20. Label-free aptamer biosensor for selective detection of thrombin

    Energy Technology Data Exchange (ETDEWEB)

    Na, Weidan; Liu, Xiaotong; Wang, Lei; Su, Xingguang, E-mail: suxg@jlu.edu.cn

    2015-10-29

    We fabricated a novel fluorescence biosensor for the selective detection of thrombin by using bovine serum albumin-capped CdS quantum dots (BSA-CdS QDs). Two kinds of designed DNA (DNA1 and DNA2) could bind to CdS QDs through the electrostatic interaction between DNA and Cd{sup 2+} on the surface of CdS QDs. The obtained DNA/BSA-CdS QDs kept stable in the solution with the fluorescence intensity obviously enhanced. Hairpin structure of DNA1contained two domains, one is the aptamer sequence of thrombin and the other is the complementary sequence of DNA2. When thrombin was added, it would bind to DNA1 and induce the hairpin structure of DNA1 changed into G-quadplex structure. Meanwhile, DNA2 would transfer from the surface of CdS QDs to DNA1 via hybridization, which resulted in the removal of DNA1 and DNA2 from the surface of CdS QDs, and led to the fluorescence intensity of CdS QDs reduced. Thus, the determination of thrombin could be achieved by monitoring the change of the fluorescence intensity of CdS QDs. The present method is simple and fast, and exhibits good selectivity for thrombin over other proteins. We have successfully detected thrombin in human serum samples with satisfactory results. - Highlights: • A novel strategy for the detection of thrombin was established based on BSA-CdS QDs. • DNA could serve as the co-ligands to stabilize CdS QDs and enhance the fluorescence intensity. • Thrombin could change the structure of DNA1 and quench the fluorescence of CdS QDs. • Thrombin in real sample was detected with satisfactory results.

  1. A Hybrid Islanding Detection Technique Using Average Rate of Voltage Change and Real Power Shift

    DEFF Research Database (Denmark)

    Mahat, Pukar; Chen, Zhe; Bak-Jensen, Birgitte

    2009-01-01

    The mainly used islanding detection techniques may be classified as active and passive techniques. Passive techniques don't perturb the system but they have larger nondetection znes, whereas active techniques have smaller nondetection zones but they perturb the system. In this paper, a new hybrid...... technique is proposed to solve this problem. An average rate of voltage change (passive technique) has been used to initiate a real power shift (active technique), which changes the eal power of distributed generation (DG), when the passive technique cannot have a clear discrimination between islanding...

  2. Accelerator based techniques for contraband detection

    Science.gov (United States)

    Vourvopoulos, George

    1994-05-01

    It has been shown that narcotics, explosives, and other contraband materials, contain various chemical elements such as H, C, N, O, P, S, and Cl in quantities and ratios that differentiate them from each other and from other innocuous substances. Neutrons and γ-rays have the ability to penetrate through various materials at large depths. They are thus able, in a non-intrusive way, to interrogate volumes ranging from suitcases to Sea-Land containers, and have the ability to image the object with an appreciable degree of reliability. Neutron induced reactions such as (n, γ), (n, n') (n, p) or proton induced γ-resonance absorption are some of the reactions currently investigated for the identification of the chemical elements mentioned above. Various DC and pulsed techniques are discussed and their advantages, characteristics, and current progress are shown. Areas where use of these methods is currently under evaluation are detection of hidden explosives, illicit drug interdiction, chemical war agents identification, nuclear waste assay, nuclear weapons destruction and others.

  3. Fracture detection using subsurface electromagnetic techniques

    International Nuclear Information System (INIS)

    Zhou, Q.; Becker, A.; Goldstein, N.E.; Morrison, H.F.; Lee, K.H.

    1987-01-01

    Audio frequency subsurface electromagnetic (EM) techniques using cross-hole and in-hole arrays for fracture detection are evaluated numerically. The fracture zone is represented by a thin rectangular conductor with finite dimensions, embedded in a conductive host rock. Because of its practical advantages, the EM source considered in this study is a grounded vertical electrical dipole (G.V.E.D.) placed in a vertical bore hole. Three source-receiver configurations are considered. The first is the cross-hole configuration with the source and receiver moving parallel to each other in separate holes. The second configuration is a fixed source in one hole and a moving receiver in the other. Finally, the author also treat the case of a tandem source and receiver at fixed separation traversing a single hole. In all cases the conductive fracture zone is not intersected by either hole. Comparisons between the grounded electric dipole and the vertical magnetic dipole indicate clear advantages for the former

  4. Selective vs. nonselective media and direct plating vs. enrichment technique in isolation of Vibrio cholerae: recommendations for clinical laboratories.

    Science.gov (United States)

    Rennels, M B; Levine, M M; Daya, V; Angle, P; Young, C

    1980-09-01

    The occurrence of human cholera along the Gulf of Mexico and the isolation of Vibrio cholerae O1 from the Gulf and Chesapeake Bay make it imperative that microbiology laboratories along estuaries develop the capabilities to culture for these pathogens. In attempts to devise a simplified but efficient culture procedure, a selective medium, thiosulfate-citrate-bile salts-sucrose (TCBS) agar, was compared with a nonselective medium, gelatin agar (GA), and the utility of enrichment was examined. TCBS agar detected 99% of the stools found to be positive by all techniques combined, whereas GA identified only 80%. Of acute diarrheal stools, 96% were positive on direct plating, whereas only 66% of formed stools containing V. cholerae were detected by direct plating. Stools from patients with acute diarrhea can be plated directly into TCBS agar alone; stools from persons shedding low numbers of organisms (such as contacts, carriers, or patients receiving antibiotics) should be incubated first in an enrichment broth and then on TCBS agar.

  5. Hollow-core fiber sensing technique for pipeline leak detection

    Science.gov (United States)

    Challener, W. A.; Kasten, Matthias A.; Karp, Jason; Choudhury, Niloy

    2018-02-01

    Recently there has been increased interest on the part of federal and state regulators to detect and quantify emissions of methane, an important greenhouse gas, from various parts of the oil and gas infrastructure including well pads and pipelines. Pressure and/or flow anomalies are typically used to detect leaks along natural gas pipelines, but are generally very insensitive and subject to false alarms. We have developed a system to detect and localize methane leaks along gas pipelines that is an order of magnitude more sensitive by combining tunable diode laser spectroscopy (TDLAS) with conventional sensor tube technology. This technique can potentially localize leaks along pipelines up to 100 km lengths with an accuracy of +/-50 m or less. A sensor tube buried along the pipeline with a gas-permeable membrane collects leaking gas during a soak period. The leak plume within the tube is then carried to the nearest sensor node along the tube in a purge cycle. The time-to-detection is used to determine leak location. Multiple sensor nodes are situated along the pipeline to minimize the time to detection, and each node is composed of a short segment of hollow core fiber (HCF) into which leaking gas is transported quickly through a small pressure differential. The HCF sensing node is spliced to standard telecom solid core fiber which transports the laser light for spectroscopy to a remote interrogator. The interrogator is multiplexed across the sensor nodes to minimize equipment cost and complexity.

  6. Robust Ground Target Detection by SAR and IR Sensor Fusion Using Adaboost-Based Feature Selection

    Science.gov (United States)

    Kim, Sungho; Song, Woo-Jin; Kim, So-Hyun

    2016-01-01

    Long-range ground targets are difficult to detect in a noisy cluttered environment using either synthetic aperture radar (SAR) images or infrared (IR) images. SAR-based detectors can provide a high detection rate with a high false alarm rate to background scatter noise. IR-based approaches can detect hot targets but are affected strongly by the weather conditions. This paper proposes a novel target detection method by decision-level SAR and IR fusion using an Adaboost-based machine learning scheme to achieve a high detection rate and low false alarm rate. The proposed method consists of individual detection, registration, and fusion architecture. This paper presents a single framework of a SAR and IR target detection method using modified Boolean map visual theory (modBMVT) and feature-selection based fusion. Previous methods applied different algorithms to detect SAR and IR targets because of the different physical image characteristics. One method that is optimized for IR target detection produces unsuccessful results in SAR target detection. This study examined the image characteristics and proposed a unified SAR and IR target detection method by inserting a median local average filter (MLAF, pre-filter) and an asymmetric morphological closing filter (AMCF, post-filter) into the BMVT. The original BMVT was optimized to detect small infrared targets. The proposed modBMVT can remove the thermal and scatter noise by the MLAF and detect extended targets by attaching the AMCF after the BMVT. Heterogeneous SAR and IR images were registered automatically using the proposed RANdom SAmple Region Consensus (RANSARC)-based homography optimization after a brute-force correspondence search using the detected target centers and regions. The final targets were detected by feature-selection based sensor fusion using Adaboost. The proposed method showed good SAR and IR target detection performance through feature selection-based decision fusion on a synthetic database generated

  7. Robust Ground Target Detection by SAR and IR Sensor Fusion Using Adaboost-Based Feature Selection

    Directory of Open Access Journals (Sweden)

    Sungho Kim

    2016-07-01

    Full Text Available Long-range ground targets are difficult to detect in a noisy cluttered environment using either synthetic aperture radar (SAR images or infrared (IR images. SAR-based detectors can provide a high detection rate with a high false alarm rate to background scatter noise. IR-based approaches can detect hot targets but are affected strongly by the weather conditions. This paper proposes a novel target detection method by decision-level SAR and IR fusion using an Adaboost-based machine learning scheme to achieve a high detection rate and low false alarm rate. The proposed method consists of individual detection, registration, and fusion architecture. This paper presents a single framework of a SAR and IR target detection method using modified Boolean map visual theory (modBMVT and feature-selection based fusion. Previous methods applied different algorithms to detect SAR and IR targets because of the different physical image characteristics. One method that is optimized for IR target detection produces unsuccessful results in SAR target detection. This study examined the image characteristics and proposed a unified SAR and IR target detection method by inserting a median local average filter (MLAF, pre-filter and an asymmetric morphological closing filter (AMCF, post-filter into the BMVT. The original BMVT was optimized to detect small infrared targets. The proposed modBMVT can remove the thermal and scatter noise by the MLAF and detect extended targets by attaching the AMCF after the BMVT. Heterogeneous SAR and IR images were registered automatically using the proposed RANdom SAmple Region Consensus (RANSARC-based homography optimization after a brute-force correspondence search using the detected target centers and regions. The final targets were detected by feature-selection based sensor fusion using Adaboost. The proposed method showed good SAR and IR target detection performance through feature selection-based decision fusion on a synthetic

  8. NEUROIMAGING AND PATTERN RECOGNITION TECHNIQUES FOR AUTOMATIC DETECTION OF ALZHEIMER’S DISEASE: A REVIEW

    Directory of Open Access Journals (Sweden)

    Rupali Kamathe

    2017-08-01

    Full Text Available Alzheimer’s disease (AD is the most common form of dementia with currently unavailable firm treatments that can stop or reverse the disease progression. A combination of brain imaging and clinical tests for checking the signs of memory impairment is used to identify patients with AD. In recent years, Neuroimaging techniques combined with machine learning algorithms have received lot of attention in this field. There is a need for development of automated techniques to detect the disease well before patient suffers from irreversible loss. This paper is about the review of such semi or fully automatic techniques with detail comparison of methods implemented, class labels considered, data base used and the results obtained for related study. This review provides detailed comparison of different Neuroimaging techniques and reveals potential application of machine learning algorithms in medical image analysis; particularly in AD enabling even the early detection of the disease- the class labelled as Multiple Cognitive Impairment.

  9. Some fuzzy techniques for staff selection process: A survey

    Science.gov (United States)

    Md Saad, R.; Ahmad, M. Z.; Abu, M. S.; Jusoh, M. S.

    2013-04-01

    With high level of business competition, it is vital to have flexible staff that are able to adapt themselves with work circumstances. However, staff selection process is not an easy task to be solved, even when it is tackled in a simplified version containing only a single criterion and a homogeneous skill. When multiple criteria and various skills are involved, the problem becomes much more complicated. In adddition, there are some information that could not be measured precisely. This is patently obvious when dealing with opinions, thoughts, feelings, believes, etc. One possible tool to handle this issue is by using fuzzy set theory. Therefore, the objective of this paper is to review the existing fuzzy techniques for solving staff selection process. It classifies several existing research methods and identifies areas where there is a gap and need further research. Finally, this paper concludes by suggesting new ideas for future research based on the gaps identified.

  10. Evaluation of two reverse passive haemagglutination techniques and a solid-phase radioimmunoassay for detection of hepatitis B surface antigen

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, H [Beijing Medical College (China); Coulepis, A G; Gust, I D [Fairfield Hospital for Communicable Diseases, Melbourne (Australia)

    1972-08-01

    The sensitivity and specificity of two commercially available reverse passive haemagglutination tests (Hepatest and Raphadex B) for the detection of hepatitis B surface antigen, were compared with the most widely used radioimmunoassay (Ausria II-125). A selected group of 282 sera were tested: these included the Australian hepatitis B reference panel, and a batch of 257 sera collected from patients with acute hepatitis B, chronic carriers of hepatitis B surface antigen and two populations in which hepatitis B virus infection is known to be endemic. The two reverse passive haemagglutination techniques were of comparable sensitivity but slightly less sensitive than radioimmunoassay. While radioimmunoassay still remains the test of choice for blood transfusion services, the reverse passive haemagglutination techniques are of great value for smaller laboratories and for field studies because of their longer shelf life, the absence of radioactive reagents and the lack of need to acquire a gammacounter.

  11. Use of forensic accounting techniques in the detection of fraud in ...

    African Journals Online (AJOL)

    This study investigated the extent of use of forensic accounting techniques in the detection of fraud in tertiary institutions in Anambra State, Nigeria. One research question guided the study and one null hypothesis was tested. Related literature pertinent to the study was reviewed which exposed the need for the study.

  12. A novel input-parasitic compensation technique for a nanopore-based CMOS DNA detection sensor

    Science.gov (United States)

    Kim, Jungsuk

    2016-12-01

    This paper presents a novel input-parasitic compensation (IPC) technique for a nanopore-based complementary metal-oxide-semiconductor (CMOS) DNA detection sensor. A resistive-feedback transimpedance amplifier is typically adopted as the headstage of a DNA detection sensor to amplify the minute ionic currents generated from a nanopore and convert them to a readable voltage range for digitization. But, parasitic capacitances arising from the headstage input and the nanopore often cause headstage saturation during nanopore sensing, thereby resulting in significant DNA data loss. To compensate for the unwanted saturation, in this work, we propose an area-efficient and automated IPC technique, customized for a low-noise DNA detection sensor, fabricated using a 0.35- μm CMOS process; we demonstrated this prototype in a benchtop test using an α-hemolysin ( α-HL) protein nanopore.

  13. Relevant test set using feature selection algorithm for early detection ...

    African Journals Online (AJOL)

    The objective of feature selection is to find the most relevant features for classification. Thus, the dimensionality of the information will be reduced and may improve classification's accuracy. This paper proposed a minimum set of relevant questions that can be used for early detection of dyslexia. In this research, we ...

  14. The close objects buffer : a sharp shadow detection technique for radiosity methods

    NARCIS (Netherlands)

    Telea, A.C.; Overveld, van C.W.A.M.

    1997-01-01

    Detecting sharp illumination variations such as shadow boundaries is an important problem for radiosity methods. Such illumination variations are captured using a nonuniform mesh that refines the areas exhibiting high illumination gradients. Nonuniform meshing techniques like discontinuity meshing

  15. The Close Objects Buffer : A Sharp Shadow Detection Technique for Radiosity Methods

    NARCIS (Netherlands)

    Telea, A.C.; Overveld, C.W.A.M. van

    1998-01-01

    Detecting sharp illumination variations such as shadow boundaries is an important problem for radiosity methods. Such illumination variations are captured using a nonuniform mesh that refines the areas exhibiting high illumination gradients. Nonuniform meshing techniques like discontinuity meshing

  16. Selective fluorescence sensors for detection of nitroaniline and metal Ions based on ligand-based luminescent metal-organic frameworks

    International Nuclear Information System (INIS)

    Yu, Zongchao; Wang, Fengqin; Lin, Xiangyi; Wang, Chengmiao; Fu, Yiyuan; Wang, Xiaojun; Zhao, Yongnan; Li, Guodong

    2015-01-01

    Metal-organic frameworks (MOFs) are porous crystalline materials with high potential for applications in fluorescence sensors. In this work, two solvent-induced Zn(II)–based metal-organic frameworks, Zn_3L_3(DMF)_2 (1) and Zn_3L_3(DMA)_2(H_2O)_3 (2) (L=4,4′-stilbenedicarboxylic acid), were investigated as selective sensing materials for detection of nitroaromatic compounds and metal ions. The sensing experiments show that 1 and 2 both exhibit selective fluorescence quenching toward nitroaniline with a low detection limit. In addition, 1 exhibits high selectivity for detection of Fe"3"+ and Al"3"+ by significant fluorescence quenching or enhancement effect. While for 2, it only exhibits significant fluorescence quenching effect for Fe"3"+. The results indicate that 1 and 2 are both promising fluorescence sensors for detecting and recognizing nitroaniline and metal ions with high sensitivity and selectivity. - Graphical abstract: Two MOFs have been selected as the fluorescence sensing materials for selectively sensing mitroaromatic compounds and metal ions. The high selectivity makes them promising fluorescence sensors for detecting and recognizing nitroaniline and Fe"3"+ or Al"3"+.

  17. Nanoneedle transistor-based sensors for the selective detection of intracellular calcium ions.

    Science.gov (United States)

    Son, Donghee; Park, Sung Young; Kim, Byeongju; Koh, Jun Tae; Kim, Tae Hyun; An, Sangmin; Jang, Doyoung; Kim, Gyu Tae; Jhe, Wonho; Hong, Seunghun

    2011-05-24

    We developed a nanoneedle transistor-based sensor (NTS) for the selective detection of calcium ions inside a living cell. In this work, a single-walled carbon nanotube-based field effect transistor (swCNT-FET) was first fabricated at the end of a glass nanopipette and functionalized with Fluo-4-AM probe dye. The selective binding of calcium ions onto the dye molecules altered the charge state of the dye molecules, resulting in the change of the source-drain current of the swCNT-FET as well as the fluorescence intensity from the dye. We demonstrated the electrical and fluorescence detection of the concentration change of intracellular calcium ions inside a HeLa cell using the NTS.

  18. Observability analysis for model-based fault detection and sensor selection in induction motors

    International Nuclear Information System (INIS)

    Nakhaeinejad, Mohsen; Bryant, Michael D

    2011-01-01

    Sensors in different types and configurations provide information on the dynamics of a system. For a specific task, the question is whether measurements have enough information or whether the sensor configuration can be changed to improve the performance or to reduce costs. Observability analysis may answer the questions. This paper presents a general algorithm of nonlinear observability analysis with application to model-based diagnostics and sensor selection in three-phase induction motors. A bond graph model of the motor is developed and verified with experiments. A nonlinear observability matrix based on Lie derivatives is obtained from state equations. An observability index based on the singular value decomposition of the observability matrix is obtained. Singular values and singular vectors are used to identify the most and least observable configurations of sensors and parameters. A complex step derivative technique is used in the calculation of Jacobians to improve the computational performance of the observability analysis. The proposed algorithm of observability analysis can be applied to any nonlinear system to select the best configuration of sensors for applications of model-based diagnostics, observer-based controller, or to determine the level of sensor redundancy. Observability analysis on induction motors provides various sensor configurations with corresponding observability indices. Results show the redundancy levels for different sensors, and provide a sensor selection guideline for model-based diagnostics, and for observer-based controllers. The results can also be used for sensor fault detection and to improve the reliability of the system by increasing the redundancy level in measurements

  19. A Monte Carlo technique for signal level detection in implanted intracranial pressure monitoring.

    Science.gov (United States)

    Avent, R K; Charlton, J D; Nagle, H T; Johnson, R N

    1987-01-01

    Statistical monitoring techniques like CUSUM, Trigg's tracking signal and EMP filtering have a major advantage over more recent techniques, such as Kalman filtering, because of their inherent simplicity. In many biomedical applications, such as electronic implantable devices, these simpler techniques have greater utility because of the reduced requirements on power, logic complexity and sampling speed. The determination of signal means using some of the earlier techniques are reviewed in this paper, and a new Monte Carlo based method with greater capability to sparsely sample a waveform and obtain an accurate mean value is presented. This technique may find widespread use as a trend detection method when reduced power consumption is a requirement.

  20. Mass Spectrometric C-14 Detection Techniques: Progress Report

    Science.gov (United States)

    Synal, H.

    2013-12-01

    Accelerator Mass Spectrometry (AMS) has been established as the best-suited radiocarbon detection technique. In the past years, significant progress with AMS instrumentation has been made resulting in a boom of new AMS facilities around the World. Today, carbon only AMS systems predominantly utilize 1+ charge state and molecule destruction in multiple ion gas collisions in stripper gas cell. This has made possible a significant simplification of the instruments, a reduction of ion energies and related to this less required space of the installations. However, state-of-the-art AMS instruments have still not reached a development stage where they can be regarded as table-top systems. In this respect, more development is needed to further advance the applicability of radiocarbon not only in the traditional fields of dating but also in biomedical research and new fields in Earth and environmental sciences. In a the proof-of-principle experiment the feasibility of radiocarbon detection over the entire range of dating applications was demonstrated using a pure mass spectrometer and ion energies below 50 keV. Now an experimental platform has been completed to test performance and to explore operation and measurement conditions of pure mass spectrometric radiocarbon detection. This contribution will overview the physical principles, which make this development possible and discuss key parameters of the instrumental design and performance of such an instrument.

  1. Detecting effects of donepezil on visual selective attention using signal detection parameters in Alzheimer's disease.

    Science.gov (United States)

    Foldi, Nancy S; White, Richard E C; Schaefer, Lynn A

    2005-05-01

    Attentional function is impaired in Alzheimer's disease (AD). Moreover, attention is mediated by acetylcholine. But, despite the widespread use of acetylcholinesterase inhibitors (AChE-I) to augment available acetylcholine in AD, measures of attentional function have not been used to assess the drug response. We hypothesized that as cholinergic augmentation impacts directly on the attentional system, higher-order measures of visual selective attention would be sensitive to effects of treatment using an AChE-I (donepezil hydrochloride). We also sought to determine whether these attentional measures were more sensitive to treatment than other measures of cognitive function. Seventeen patients with AD (8 untreated, 9 treated with donepezil) were contrasted on performance of a selective cancellation task. Two signal detection parameters were used as outcome measures: decision strategy (beta, beta) and discriminability (d-prime, d'). Standard screening and cognitive domain measures of vigilance, language, memory, and executive function were also contrasted. Treated patients judged stimuli more conservatively (p = 0.29) by correctly endorsing targets and rejecting false alarms. They also discriminated targets from distractors more easily (p = 0.58). The screening and neuropsychological measures failed to differentiate the groups. Higher-order attentional measures captured the effects of donepezil treatment in small groups of patients with AD. The results suggest that cholinergic availability may directly affect the attentional system, and that these selective attention measures are sensitive markers to detect treatment response. Copyright 2005 John Wiley & Sons, Ltd.

  2. Patterns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylation-sensitive amplification polymorphism technique.

    Science.gov (United States)

    Xiong, L Z; Xu, C G; Saghai Maroof, M A; Zhang, Q

    1999-04-01

    DNA methylation is known to play an important role in the regulation of gene expression in eukaryotes. In this study, we assessed the extent and pattern of cytosine methylation in the rice genome, using the technique of methylation-sensitive amplified polymorphism (MSAP), which is a modification of the amplified fragment length polymorphism (AFLP) method that makes use of the differential sensitivity of a pair of isoschizomers to cytosine methylation. The tissues assayed included seedlings and flag leaves of an elite rice hybrid, Shanyou 63, and the parental lines Zhenshan 97 and Minghui 63. In all, 1076 fragments, each representing a recognition site cleaved by either or both of the isoschizomers, were amplified using 16 pairs of selective primers. A total of 195 sites were found to be methylated at cytosines in one or both parents, and the two parents showed approximately the same overall degree of methylation (16.3%), as revealed by the incidence of differential digestion by the isoschizomers. Four classes of patterns were identified in a comparative assay of cytosine methylation in the parents and hybrid; increased methylation was detected in the hybrid compared to the parents at some of the recognition sites, while decreased methylation in the hybrid was detected at other sites. A small proportion of the sites was found to be differentially methylated in seedlings and flag leaves; DNA from young seedlings was methylated to a greater extent than that from flag leaves. Almost all of the methylation patterns detected by MSAP could be confirmed by Southern analysis using the isolated amplified fragments as probes. The results clearly demonstrate that the MSAP technique is highly efficient for large-scale detection of cytosine methylation in the rice genome. We believe that the technique can be adapted for use in other plant species.

  3. Enhancement of crack detection in stud bolts of nuclear reactor by ultrasonic signal processing technique

    International Nuclear Information System (INIS)

    Lee, J.H.; Oh, W.D.; Choi, S.W.; Park, M.H.

    2004-01-01

    'Full-text:' The stud bolts is one of the most critical parts for safety of reactor vessels in the nuclear power plants. However, in the application of ultrasonic technique for crack detection in stud bolt, some difficulties encountered are classification of crack signal from the signals reflected from threads part in stud bolt. In this study, shadow effect technique combined with new signal processing method is Investigated to enhance the detectability of small crack initiated from root of thread in stud bolt. The key idea of signal processing is based on the fact that the shape of waveforms from the threads is uniform since the shape of the threads in a bolt is same. If some cracks exist in the thread, the flaw signals are different to the reference signals. It is demonstrated that the small flaws are efficiently detected by novel ultrasonic technique combined with this new signal processing concept. (author)

  4. Detection of radiation deformation in crystalline polymers using the speckle photography technique

    International Nuclear Information System (INIS)

    El-Ghandoor, H.; Hashem, A.A.; Sharaf, F.

    1995-01-01

    In order to measure the resulting deformation due to gamma irradiation of polymers, a new optical technique, namely speckle-photography, was established and used. Thin films of tetrafluoroethene, with constant thickness were irradiated by different doses of gamma rays and the diffraction patterns of a laser beam passing through these films were recorded using the speckle photography technique. This technique has been applied to detect the radiation deformation in (Teflon) TFE, which is a crystalline polymer. A diffraction pattern due to the TFE thin layer is obtained and superimposed on the interference pattern displaying the speckle pattern pairs recorded on the same emulsion. (author)

  5. Portable instrument for selectively detecting alpha-particles derived from radon

    International Nuclear Information System (INIS)

    Chapuis, A.M.; DaJlevic, D.

    1975-01-01

    A portable instrument of the pocket type designed primarily for monitoring atmospheric contamination in uranium mines by selectively detecting the α-particles emitted simultaneously by the daughter products of radon, namely radium A and radium C' is described. The instrument comprises in combination a tube containing a suction fan for drawing external air through a filter which retains the α-emitting aerosols, a detector in which the α-particles corresponding to the respective energies of the α-emissions of radium A and of radium C' are detected separately, and two collimators placed between the filter and the detector

  6. An Evaluation of Risk Factors and Preventive Techniques for Decubitus Ulcers in Selected Nigeria Hospitals

    Directory of Open Access Journals (Sweden)

    Onigbinde A. Teslim

    2012-08-01

    Full Text Available AIM: The aim of this study was to determine if in-patients in some selected Nigeria hospitals are at risk of developing pressure sore and to determine the preventive techniques adopted by Health Care Professionals. METHOD: A questionnaire was used for this study and it was divided into two parts. The part A is a structured questionnaire that took care of socio-demographic data and preventive techniques while part B is the Braden Scale which was used to assess the risk of developing pressure ulcer. Three hundred and eighteen (318 In-patients in five Nigeria purposively selected hospitals in southwest Nigeria volunteered to participate in this study. The statistical method that was employed was descriptive statistics. RESULTS: The result of the study showed that In-patients in the selected hospitals are “at risk” of developing pressure ulcers. Also, General Practitioners (50.47% and nursing staff (49.52% mostly prescribed at least one of the preventive techniques while few (31.23% reported that physiotherapists prescribed at least one of the preventive techniques. However, a considerable number of the patients (35.02% were never informed by any of the health staff on preventive measures. CONCLUSION: It was concluded that In-patients in Nigeria hospitals are “at risk” of developing pressure ulcers and that health care providers in Nigeria are not prescribing adequate preventive techniques to prevent pressure ulcers. [TAF Prev Med Bull 2012; 11(4.000: 415-420

  7. Techniques for detection of transition phases in calcined alumina

    International Nuclear Information System (INIS)

    Pandolfelli, V.C.; Folgueras-Dominguez, S.

    1987-01-01

    Detection of transition phases in alumina, is very important in the receiving control and calcination of aluminium hydroxide. The non alfa or transition phases difficults the processability and causes localized shrinkage on sintering compromising the dimensional and mechanical aspects of the product. In this research using refraction index, absorption of dyes, specific density, X-ray diffraction and scanning electron microscopy, analyses, are done in calcined hydroxides submited to different thermal treatments. The limits and facilities of each technique are discussed and compared. (Author) [pt

  8. Detection of breast cancer using advanced techniques of data mining with neural networks

    International Nuclear Information System (INIS)

    Ortiz M, J. A.; Celaya P, J. M.; Martinez B, M. R.; Solis S, L. O.; Castaneda M, R.; Garza V, I.; Martinez F, M.; Lopez H, Y.; Ortiz R, J. M.

    2016-10-01

    The breast cancer is one of the biggest health problems worldwide, is the most diagnosed cancer in women and prevention seems impossible since its cause is unknown, due to this; the early detection has a key role in the patient prognosis. In developing countries such as Mexico, where access to specialized health services is minimal, the regular clinical review is infrequent and there are not enough radiologists; the most common form of detection of breast cancer is through self-exploration, but this is only detected in later stages, when is already palpable. For these reasons, the objective of the present work is the creation of a system of computer assisted diagnosis (CAD x) using information analysis techniques such as data mining and advanced techniques of artificial intelligence, seeking to offer a previous medical diagnosis or a second opinion, as if it was a second radiologist in order to reduce the rate of mortality from breast cancer. In this paper, advances in the design of computational algorithms using computer vision techniques for the extraction of features derived from mammograms are presented. Using data mining techniques of data mining is possible to identify patients with a high risk of breast cancer. With the information obtained from the mammography analysis, the objective in the next stage will be to establish a methodology for the generation of imaging bio-markers to establish a breast cancer risk index for Mexican patients. In this first stage we present results of the classification of patients with high and low risk of suffering from breast cancer using neural networks. (Author)

  9. Land cover change detection of Hatiya Island, Bangladesh, using remote sensing techniques

    Science.gov (United States)

    Kumar, Lalit; Ghosh, Manoj Kumer

    2012-01-01

    Land cover change is a significant issue for environmental managers for sustainable management. Remote sensing techniques have been shown to have a high probability of recognizing land cover patterns and change detection due to periodic coverage, data integrity, and provision of data in a broad range of the electromagnetic spectrum. We evaluate the applicability of remote sensing techniques for land cover pattern recognition, as well as land cover change detection of the Hatiya Island, Bangladesh, and quantify land cover changes from 1977 to 1999. A supervised classification approach was used to classify Landsat Enhanced Thematic Mapper (ETM), Thematic Mapper (TM), and Multispectral Scanner (MSS) images into eight major land cover categories. We detected major land cover changes over the 22-year study period. During this period, marshy land, mud, mud with small grass, and bare soil had decreased by 85%, 46%, 44%, and 24%, respectively, while agricultural land, medium forest, forest, and settlement had positive changes of 26%, 45%, 363%, and 59%, respectively. The primary drivers of such landscape change were erosion and accretion processes, human pressure, and the reforestation and land reclamation programs of the Bangladesh Government.

  10. A new technique for detection of dynamic crack initiation

    International Nuclear Information System (INIS)

    Miya, K.; Yanagi, H.; Someya, K.

    1986-01-01

    A new test device was constructed to measure dynamic fracture toughness using electromagnetic force as a dynamic load and a laser system for the detection of load-line deflection. This method provides several advantages with respect to load control, high strain rate and easy instrumentation of the test device. Using the device, experiments on the dynamic fracture were performed with use of edge-cracked three point bending specimens which were made from the nuclear pressure vessel material A508cl.3. The present paper reports on the characteristic feature of dynamic fracture, the measuring technique of dynamic loading and deflection, the detection of dynamic crack initiation and fractographic observation. The detection of the dynamic crack initiation was made possible by the application of an AC electrical potential method that employs a lock-in amplifier driven by a demodulation mode of signal averager and guarantees a fast response to the crack initiation. It was found that the fracture was initiated after unloading of the electromagnetic force is finished, in other words, the fracture was caused by an inertia force and the dynamic fracture toughness Jsub(Id) of the test material was elevated with the increasing loading rate. (orig.)

  11. Techniques used detection and quantification of aflatoxin M1 in milk

    Directory of Open Access Journals (Sweden)

    Adriana Frizzarin

    2012-02-01

    Full Text Available Aflatoxin is a group of toxic substances produced by fungi, mainly Aspergillus flavus and Aspergillus parasiticus. It can be developed in agriculture products such as grains or processed food, when environment conditions of humidity and air humidity are favorable. Aflatoxins can be presented as several forms. In Milk, are called M1 and M2, resulting from aflatoxins B1 and B2 metabolism. Aflatoxin M1 (AFM1 is classified as a possible carcinogen to humans, so the occurrence of aflatoxin M1 in milk of lactating cows is a public health issue, and because of its importance several techniques are used for its detection and quantification. These techniques include the physical-chemical as thin layer chromatography and high performance liquid chromatography and the biological techniques including immunoassays such as RIA and ELISA. This review aimed to present the techniques used to quantify aflatoxins M1 and M2 in milk and dairy products.

  12. Reducing BER of spectral-amplitude coding optical code-division multiple-access systems by single photodiode detection technique

    Science.gov (United States)

    Al-Khafaji, H. M. R.; Aljunid, S. A.; Amphawan, A.; Fadhil, H. A.; Safar, A. M.

    2013-03-01

    In this paper, we present a single photodiode detection (SPD) technique for spectral-amplitude coding optical code-division multiple-access (SAC-OCDMA) systems. The proposed technique eliminates both phase-induced intensity noise (PIIN) and multiple-access interference (MAI) in the optical domain. Analytical results show that for 35 simultaneous users transmitting at data rate of 622 Mbps, the bit-error rate (BER) = 1.4x10^-28 for SPD technique is much better compared to 9.3x10^-6 and 9.6x10^-3 for the modified-AND as well as the AND detection techniques, respectively. Moreover, we verified the improved performance afforded by the proposed technique using data transmission simulations.

  13. Recent advances in sample preparation techniques and methods of sulfonamides detection - A review.

    Science.gov (United States)

    Dmitrienko, Stanislava G; Kochuk, Elena V; Apyari, Vladimir V; Tolmacheva, Veronika V; Zolotov, Yury A

    2014-11-19

    Sulfonamides (SAs) have been the most widely used antimicrobial drugs for more than 70 years, and their residues in foodstuffs and environmental samples pose serious health hazards. For this reason, sensitive and specific methods for the quantification of these compounds in numerous matrices have been developed. This review intends to provide an updated overview of the recent trends over the past five years in sample preparation techniques and methods for detecting SAs. Examples of the sample preparation techniques, including liquid-liquid and solid-phase extraction, dispersive liquid-liquid microextraction and QuEChERS, are given. Different methods of detecting the SAs present in food and feed and in environmental, pharmaceutical and biological samples are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Safeguards applications of far infrared radiometric techniques for the detection of contraband

    International Nuclear Information System (INIS)

    Hodges, D.T.; Reber, E.E.; Foote, F.B.; Schellenbaum, R.L.

    1980-02-01

    A new safeguards system under development employs radiometers in the 100 to 300 GHz spectral band to detect contraband, including shielding materials (used to attenuate the gamma ray emissions from nuclear materials), weapons, or explosives covertly concealed on personnel. Clothing is highly transparent at these frequencies and imaging techniques can detect contraband by its emissivity and reflectivity differences relative to human tissues. Experimental data are presented and sample images are used as a basis to discuss system advantages and limitations

  15. Safeguards applications of far infrared radiometric techniques for the detection of contraband

    Energy Technology Data Exchange (ETDEWEB)

    Hodges, D.T.; Reber, E.E.; Foote, F.B.; Schellenbaum, R.L.

    1980-02-01

    A new safeguards system under development employs radiometers in the 100 to 300 GHz spectral band to detect contraband, including shielding materials (used to attenuate the gamma ray emissions from nuclear materials), weapons, or explosives covertly concealed on personnel. Clothing is highly transparent at these frequencies and imaging techniques can detect contraband by its emissivity and reflectivity differences relative to human tissues. Experimental data are presented and sample images are used as a basis to discuss system advantages and limitations.

  16. Environmental Exposure of Sperm Sex-Chromosomes: A Gender Selection Technique.

    Science.gov (United States)

    Oyeyipo, Ibukun P; van der Linde, Michelle; du Plessis, Stefan S

    2017-10-01

    Preconceptual sex selection is still a highly debatable process whereby X- and Y-chromosome-bearing spermatozoa are isolated prior to fertilization of the oocyte. Although various separation techniques are available, none can guarantee 100% accuracy. The aim of this study was to separate X- and Y-chromosome-bearing spermatozoa using methods based on the viability difference between the X- and Y-chromosome-bearing spermatozoa. A total of 18 experimental semen samples were used, written consent was obtained from all donors and results were analysed in a blinded fashion. Spermatozoa were exposed to different pH values (5.5, 6.5, 7.5, 8.5, and 9.5), increased temperatures (37°C, 41°C, and 45°C) and ROS level (50 μM, 750 μM, and 1,000 μM). The live and dead cell separation was done through a modified swim-up technique. Changes in the sex-chromosome ratio of samples were established by double-label fluorescent in situ hybridization (FISH) before and after processing. The results indicated successful enrichment of Xchromosome-bearing spermatozoa upon incubation in acidic media, increased temperatures, and elevated H 2 O 2 . This study demonstrated the potential role for exploring the physiological differences between X-and Y-chromosome-bearing spermatozoa in the development of preconceptual gender selection.

  17. A video authentication technique

    International Nuclear Information System (INIS)

    Johnson, C.S.

    1987-01-01

    Unattended video surveillance systems are particularly vulnerable to the substitution of false video images into the cable that connects the camera to the video recorder. New technology has made it practical to insert a solid state video memory into the video cable, freeze a video image from the camera, and hold this image as long as desired. Various techniques, such as line supervision and sync detection, have been used to detect video cable tampering. The video authentication technique described in this paper uses the actual video image from the camera as the basis for detecting any image substitution made during the transmission of the video image to the recorder. The technique, designed for unattended video systems, can be used for any video transmission system where a two-way digital data link can be established. The technique uses similar microprocessor circuitry at the video camera and at the video recorder to select sample points in the video image for comparison. The gray scale value of these points is compared at the recorder controller and if the values agree within limits, the image is authenticated. If a significantly different image was substituted, the comparison would fail at a number of points and the video image would not be authenticated. The video authentication system can run as a stand-alone system or at the request of another system

  18. Gamma scan technique for detecting coupon inside the mother pipeline

    International Nuclear Information System (INIS)

    Rasif Mohd Zain; Roslan Yahya; Mohamad Rabaie Shari; Airwan Affandi Mahmood; Mior Ahmad Khusaini Adnan

    2012-01-01

    Many times a year natural gas transmission and distribution companies need to make new connections to pipelines to expand or modify their existing system through hot tapping procedure. This procedure involves the installation of a new pipeline connection while the pipeline remains in service, flowing natural gas under pressure. The hot tap procedure includes attaching a branch connection and valve on the outside of an operating pipeline, and then cutting out the pipe-line wall within the branch and removing the wall section, which is called object of coupon through the valve. During the hot tapping process a critical problems occurred when a coupon fell into the mother pipeline. To overcome this problem, a gamma-ray absorption technique was chosen whereby a mapping technique will be done to detect the coupon position. The technique is non-destructive as it applies Co-60 (5 mCi) as a radioisotope sealed source to emit gamma radiation and a NaI(Tl) scintillation as detector. The result provided a visible representation of density profile inside pipeline where the coupon location can be located. This paper provides the detail of the technique used and presents the result obtained. (author)

  19. Laser induced fluorescence technique for detecting organic matter in East China Sea

    Science.gov (United States)

    Chen, Peng; Wang, Tianyu; Pan, Delu; Huang, Haiqing

    2017-10-01

    A laser induced fluorescence (LIF) technique for fast diagnosing chromophoric dissolved organic matter (CDOM) in water is discussed. We have developed a new field-portable laser fluorometer for rapid fluorescence measurements. In addtion, the fluorescence spectral characteristics of fluorescent constituents (e.g., CDOM, chlorophyll-a) were analyzed with a spectral deconvolution method of bi-Gaussian peak function. In situ measurements by the LIF technique compared well with values measured by conventional spectrophotometer method in laboratory. A significant correlation (R2 = 0.93) was observed between fluorescence by the technique and absorption by laboratory spectrophotometer. Influence of temperature variation on LIF measurement was investigated in lab and a temperature coefficient was deduced for fluorescence correction. Distributions of CDOM fluorescence measured using this technique in the East China Sea coast were presented. The in situ result demonstrated the utility of the LIF technique for rapid detecting dissolved organic matter.

  20. Techniques for detecting effects of urban and rural land-use practices on stream-water chemistry in selected watersheds in Texas, Minnesota,and Illinois

    Science.gov (United States)

    Walker, J.F.

    1993-01-01

    Although considerable effort has been expended during the past two decades to control nonpoint-source contamination of streams and lakes in urban and rural watersheds, little has been published on the effectiveness of various management practices at the watershed scale. This report presents a discussion of several parametric and nonparametric statistical techniques for detecting changes in water-chemistry data. The need for reducing the influence of natural variability was recognized and accomplished through the use of regression equations. Traditional analyses have focused on fixed-frequency instantaneous concentration data; this report describes the use of storm load data as an alternative.

  1. Fast Selective Detection of Pyocyanin Using Cyclic Voltammetry

    DEFF Research Database (Denmark)

    Alatraktchi, Fatima AlZahra'a; Andersen, Sandra Breum; Johansen, Helle Krogh

    2016-01-01

    Pyocyanin is a virulence factor uniquely produced by the pathogen Pseudomonas aeruginosa. The fast and selective detection of pyocyanin in clinical samples can reveal important information about the presence of this microorganism in patients. Electrochemical sensing of the redox-active pyocyanin....... The linear quantification of pyocyanin has an R² value of 0.991 across the clinically relevant concentration range of 2-100 µM. The proposed method was tested on human saliva showing a standard deviation of 2.5% ± 1% (n = 5) from the known added pyocyanin concentration to the samples. This inexpensive...

  2. Development of photo stimulated luminescence technique for detecting irradiated food

    International Nuclear Information System (INIS)

    Ros Anita Ahmad Ramli; Ahmad Zainuri Mohd Dzomir; Zainon Othman; Wan Saffiey Wan Abdullah

    2012-01-01

    The exposure of food to ionizing radiation is being progressively used in many countries to inactivate food pathogens, to eradicate pests and to extend shelf-life of food. To ensure free consumer choice, irradiated food will be labeled. The availability of a reliable method to detect irradiated food is important to enforce legal controls on labeling requirements, ensure proper distribution and increase consumer confidence. This paper reports on the preliminary application of photo stimulated luminescence technique (PSL) as a potential method to detect irradiated food and perhaps be used for monitoring irradiated food on sale locally in the near future. Thus this study will be beneficial and relevant for application of food irradiation towards improving food safety and security in Malaysia. (author)

  3. Automated detection of macular drusen using geometric background leveling and threshold selection.

    Science.gov (United States)

    Smith, R Theodore; Chan, Jackie K; Nagasaki, Takayuki; Ahmad, Umer F; Barbazetto, Irene; Sparrow, Janet; Figueroa, Marta; Merriam, Joanna

    2005-02-01

    Age-related macular degeneration (ARMD) is the most prevalent cause of visual loss in patients older than 60 years in the United States. Observation of drusen is the hallmark finding in the clinical evaluation of ARMD. To segment and quantify drusen found in patients with ARMD using image analysis and to compare the efficacy of image analysis segmentation with that of stereoscopic manual grading of drusen. Retrospective study. University referral center.Patients Photographs were randomly selected from an available database of patients with known ARMD in the ongoing Columbia University Macular Genetics Study. All patients were white and older than 60 years. Twenty images from 17 patients were selected as representative of common manifestations of drusen. Image preprocessing included automated color balancing and, where necessary, manual segmentation of confounding lesions such as geographic atrophy (3 images). The operator then chose among 3 automated processing options suggested by predominant drusen type. Automated processing consisted of elimination of background variability by a mathematical model and subsequent histogram-based threshold selection. A retinal specialist using a graphic tablet while viewing stereo pairs constructed digital drusen drawings for each image. The sensitivity and specificity of drusen segmentation using the automated method with respect to manual stereoscopic drusen drawings were calculated on a rigorous pixel-by-pixel basis. The median sensitivity and specificity of automated segmentation were 70% and 81%, respectively. After preprocessing and option choice, reproducibility of automated drusen segmentation was necessarily 100%. Automated drusen segmentation can be reliably performed on digital fundus photographs and result in successful quantification of drusen in a more precise manner than is traditionally possible with manual stereoscopic grading of drusen. With only minor preprocessing requirements, this automated detection

  4. The Application of Helicopter Rotor Defect Detection Using Wavelet Analysis and Neural Network Technique

    Directory of Open Access Journals (Sweden)

    Jin-Li Sun

    2014-06-01

    Full Text Available When detect the helicopter rotor beam with ultrasonic testing, it is difficult to realize the noise removing and quantitative testing. This paper used the wavelet analysis technique to remove the noise among the ultrasonic detection signal and highlight the signal feature of defect, then drew the curve of defect size and signal amplitude. Based on the relationship of defect size and signal amplitude, a BP neural network was built up and the corresponding estimated value of the simulate defect was obtained by repeating training. It was confirmed that the wavelet analysis and neural network technique met the requirements of practical testing.

  5. Carbon Nanodots as Dual-Mode Nanosensors for Selective Detection of Hydrogen Peroxide

    Science.gov (United States)

    Shen, Cheng-Long; Su, Li-Xia; Zang, Jin-Hao; Li, Xin-Jian; Lou, Qing; Shan, Chong-Xin

    2017-07-01

    Hydrogen peroxide (H2O2) is an important product of oxidase-based enzymatic reactions, such as glucose/glucose oxidase (GOD) reaction. Therefore, the probing of generated H2O2 for achieving the detection of various carbohydrates and their oxidases is very significative. Herein, we report one kind of dual-emission carbon nanodots (CDs) that can serve as novel dual-mode nanosensors with both fluorometric and colorimetric output for the selective detection of H2O2. The dual-model nanosensors are established only by the undecorated dual-emission CDs, where significant fluorometric and colorimetric changes are observed with the addition of different concentrations of H2O2 in the CD solution, which benefit to the achievement of the naked-eye detection for H2O2. The mechanism of the nanosensors can be attributed to the fact that the external chemical stimuli like hydroxyl radicals from H2O2 bring about the change of surface properties and the aggregation of CDs, which dominate the emission and absorption of CDs. The constructed dual-mode nanosensors exhibit good biocompatibility and high selectivity toward H2O2 with a linear detection range spanning from 0.05 to 0.5 M and allow the detection of H2O2 as low as 14 mM.

  6. Radiation detection technique on the fishery foods

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Koji; Yano, Yutaka; Oikawa, Hiroshi [National Research Inst. of Fisheries Science, Yokohama (Japan)

    2000-02-01

    When muscles and myofibril are irradiated by gamma ray, Mg-ATPase activity increased with increasing of dose, but EDTA-ATPase decreased. If dose is very large, Ca-ATPase activity increased. The effects of state of protein on these phenomena were investigated. The muscles, myofibril and myosin B of Tilapia nilotica were used as samples. Change of Ca-ATPase, Mg-ATPase and EDTA-ATPase activity of myosin B by gamma-ray irradiation was the same as myofibril and muscles, but myosin B showed high sensitivity and each ATPase activity was changed by low dose. Accordingly, these values were more difficult to apply to detection technique of irradiation than state of muscle and myofibril. Collagen is known to degenerate and coagulate by gamma-ray irradiation. However, amount of hot water soluble collagen was increased with increasing of dose. (S.Y.)

  7. Evaluation of a technique for the intraoperative detection of a radiolabelled monoclonal antibody against colorectal cancer

    International Nuclear Information System (INIS)

    Waddington, W.A.; Todd-Pokropek, A.; Short, M.D.; Davidson, B.R.; Boulos, P.B.; Middlesex Hospital, London

    1991-01-01

    Occult tumour deposits may be localised at operation with a radiation detecting probe following the administration of a radiolabelled monoclonal antibody (MoAb) recognising a tumour-associated antigen. We have recently evaluated the clinical usefulness of this technique in detecting primary colorectal tumours targetted with an indium-111 MoAb. In the present study the physical characteristics of the two detector systems used were investigated; a sodium iodide [NaI(Tl)] scintilation detector and a cadmium telluride (CdTe) semiconductor probe. Limitations of the technique in use have been examined by testing the statistical significance of tumour detecting using an abdominal phantom based on the currently available clinical biodistribution data for tumour uptake of radiolabelled MoAbs. The effect of tumour volume, antibody uptake, collimation and counting conditions was examined. Results indicate that tumours of 10-ml volume may be detected with the NaI(Tl) probe at the lowest levels of radiolabelled antibody uptake currently reported in the literature but that at higher published levels, lesions as small as 1 ml may be identified with both detector systems. Detector sensitivity and limited antibody specificity restrict the usefulness of the technique, although moderate improvements in tumour uptake may allow the detection of tumour deposits not clinically apparent. The statistical significance criterion used for this study could be an accurate and reliable indicator for tumour detection in vivo. (orig.)

  8. A selective and sensitive optical sensor for dissolved ammonia detection via agglomeration of fluorescent Ag nanoclusters and temperature gradient headspace single drop microextraction.

    Science.gov (United States)

    Dong, Jiang Xue; Gao, Zhong Feng; Zhang, Ying; Li, Bang Lin; Li, Nian Bing; Luo, Hong Qun

    2017-05-15

    In this paper, a simple sensor platform is presented for highly selective and sensitive detection of dissolved ammonia in aqueous solutions without pretreatment based on temperature gradient headspace single drop microextraction (HS-SDME) technique, and fluorescence and UV-vis spectrophotometry are utilized with the Ag nanoclusters (Ag NCs) functioned by citrate and glutathione as the probe. The sensing mechanism is based on the volatility of ammonia gas and the active response of Ag NCs to pH change caused by the introduction of ammonia. High pH can make the Ag NCs agglomerate and lead to the obvious decrease of fluorescence intensity and absorbance of Ag NCs solution. Moreover, the presented method exhibits a remarkably high selectivity toward dissolved ammonia over most of inorganic ions and amino acid, and shows a good linear range of 10-350μM (0.14-4.9mgNL -1 ) with a low detection limit of 336nM (4.70μgNL -1 ) at a signal-to-noise ratio of 3. In addition, the practical applications of the sensor have been successfully demonstrated by detecting dissolved ammonia in real samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Double wavelength differential absorption as a technique for early diagnosis of breast cancer

    Science.gov (United States)

    Liger, Vladimir V.; Zybin, Alexander V.; Niemax, Kay; Kuritsyn, Yuri A.; Bolshov, Mikhail A.

    2005-08-01

    The double-wavelength differential molecular absorption technique with diode lasers is proposed for sensitive detection of functional status of breast tissues. The method is based on the measurement of the transmitted intensity differences of the two beams of diode lasers tuned to selected wavelengths within a broad absorption band of a human breast tissue within 700 - 800 nm spectral range. The strategy for the optimum selection of the diode laser wavelengths and initial adjustment of the detection scheme is developed. The method is demonstrated by the detection of the relative concentrations of two dyes, the optical properties of which are similar to those of a mixture of oxy- and deoxy- hemoglobin. The results of the first clinical tests of the proposed technique are briefly described.

  10. The use of tissue culture techniques to detect irradiated vegetables

    International Nuclear Information System (INIS)

    Al-Safadi, B.; Sharabi, N.E.; Nabulsi, I

    2001-01-01

    the ability of two tissue culture methods, callus and vegetable growth induction, to detect irradiated vegetables was evaluated. Potato tubers, carrot roots, garlic cloves and onion bulbs were subjected to various gamma radiation doses (0, 25, 100, 150, 250, 500, 750, and 1000 Gy). Irradiated vegetables were cultured in vitro and in vivo (pots). Gamma irradiation significantly reduced callus-forming ability especially in carrot and potato where no callus was observed in doses higher than 50 Gy. Length of shoots and roots growing from irradiated garlic and onion explants was considerably reduced starting from the 25 Gy dose. No roots were formed on garlic explants at any irradiation dose. Garlic leaves growing from irradiated explants were spotted with purple to brown spots. The intensity of these spots increased as gamma ray dosage increased. In the pot experiment, potato plant appeared in the control only. On the contrary, a complete sprouting of garlic and onion was seen in all irradiation treatments. It was not possible to distinguish between the various irradiation treatments and the control 3 days after planting in pots. The two in vitro techniques, tested in our study, may effectively be used to detect irradiated vegetables and estimate the range of doses used. The callus formation method is more useful for potato and carrot, since regeneration of shoots in vitro from these two plants takes along time, making this method unpractical. The other technique is very useful in the case of onion and garlic since it is rapid. The two techniques can be used with most of the vegetables that can be cultured in vitro. (Author)

  11. A COMPARATIVE ANALYSIS OF SINGLE AND COMBINATION FEATURE EXTRACTION TECHNIQUES FOR DETECTING CERVICAL CANCER LESIONS

    Directory of Open Access Journals (Sweden)

    S. Pradeep Kumar Kenny

    2016-02-01

    Full Text Available Cervical cancer is the third most common form of cancer affecting women especially in third world countries. The predominant reason for such alarming rate of death is primarily due to lack of awareness and proper health care. As they say, prevention is better than cure, a better strategy has to be put in place to screen a large number of women so that an early diagnosis can help in saving their lives. One such strategy is to implement an automated system. For an automated system to function properly a proper set of features have to be extracted so that the cancer cell can be detected efficiently. In this paper we compare the performances of detecting a cancer cell using a single feature versus a combination feature set technique to see which will suit the automated system in terms of higher detection rate. For this each cell is segmented using multiscale morphological watershed segmentation technique and a series of features are extracted. This process is performed on 967 images and the data extracted is subjected to data mining techniques to determine which feature is best for which stage of cancer. The results thus obtained clearly show a higher percentage of success for combination feature set with 100% accurate detection rate.

  12. Technique for selection of transient radiation-hard junction-isolated integrated circuits

    International Nuclear Information System (INIS)

    Crowley, J.L.; Junga, F.A.; Stultz, T.J.

    1976-01-01

    A technique is presented which demonstrates the feasibility of selecting junction-isolated integrated circuits (JI/ICS) for use in transient radiation environments. The procedure guarantees that all PNPN paths within the integrated circuit are identified and describes the methods used to determine whether the paths represent latchup susceptible structures. Two examples of the latchup analysis are given involving an SSI and an LSI bipolar junction-isolated integrated circuit

  13. Radioisotope detection and dating with accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Mast, T S; Muller, R A [California Univ., Berkeley (USA). Lawrence Berkeley Lab.

    1980-07-01

    The status of the new technique of high energy mass spectrometry is reviewed. This sensitive method of measuring isotope concentrations has been applied to the detection of rare radioisotopes used for age estimation. The techniques used to select and identify the individual radioisotope atoms in a sample are described and then the status of the radioisotope measurements and their applications is reviewed.

  14. Detection of Impaired Cerebral Autoregulation Using Selected Correlation Analysis: A Validation Study.

    Science.gov (United States)

    Proescholdt, Martin A; Faltermeier, Rupert; Bele, Sylvia; Brawanski, Alexander

    2017-01-01

    Multimodal brain monitoring has been utilized to optimize treatment of patients with critical neurological diseases. However, the amount of data requires an integrative tool set to unmask pathological events in a timely fashion. Recently we have introduced a mathematical model allowing the simulation of pathophysiological conditions such as reduced intracranial compliance and impaired autoregulation. Utilizing a mathematical tool set called selected correlation analysis (sca), correlation patterns, which indicate impaired autoregulation, can be detected in patient data sets (scp). In this study we compared the results of the sca with the pressure reactivity index (PRx), an established marker for impaired autoregulation. Mean PRx values were significantly higher in time segments identified as scp compared to segments showing no selected correlations (nsc). The sca based approach predicted cerebral autoregulation failure with a sensitivity of 78.8% and a specificity of 62.6%. Autoregulation failure, as detected by the results of both analysis methods, was significantly correlated with poor outcome. Sca of brain monitoring data detects impaired autoregulation with high sensitivity and sufficient specificity. Since the sca approach allows the simultaneous detection of both major pathological conditions, disturbed autoregulation and reduced compliance, it may become a useful analysis tool for brain multimodal monitoring data.

  15. Detection of Impaired Cerebral Autoregulation Using Selected Correlation Analysis: A Validation Study

    Directory of Open Access Journals (Sweden)

    Martin A. Proescholdt

    2017-01-01

    Full Text Available Multimodal brain monitoring has been utilized to optimize treatment of patients with critical neurological diseases. However, the amount of data requires an integrative tool set to unmask pathological events in a timely fashion. Recently we have introduced a mathematical model allowing the simulation of pathophysiological conditions such as reduced intracranial compliance and impaired autoregulation. Utilizing a mathematical tool set called selected correlation analysis (sca, correlation patterns, which indicate impaired autoregulation, can be detected in patient data sets (scp. In this study we compared the results of the sca with the pressure reactivity index (PRx, an established marker for impaired autoregulation. Mean PRx values were significantly higher in time segments identified as scp compared to segments showing no selected correlations (nsc. The sca based approach predicted cerebral autoregulation failure with a sensitivity of 78.8% and a specificity of 62.6%. Autoregulation failure, as detected by the results of both analysis methods, was significantly correlated with poor outcome. Sca of brain monitoring data detects impaired autoregulation with high sensitivity and sufficient specificity. Since the sca approach allows the simultaneous detection of both major pathological conditions, disturbed autoregulation and reduced compliance, it may become a useful analysis tool for brain multimodal monitoring data.

  16. A brief review of ultra-rare alpha decay detection technique

    International Nuclear Information System (INIS)

    Tsyganov, Yu.S.

    2006-01-01

    Three approaches to the measurement of rare alpha decaying products produced in heavy-ion induced nuclear reactions are described. One is based on a chemical extraction and following deposition of the nuclides under investigation onto the surface of the detector, whereas the second one is associated with long-lived products implanted into silicon detectors by using the electromagnetic separation technique. The third approach relates with an application of real-time mode detection of correlated energy-time-position recoil-alpha sequences from 48 Ca-induced nuclear reactions with actinide targets, like 242,244 Pu, 245,248 Cm, 243 Am, and 249 Cf. Namely with this technique it has became possible to provide a radical suppression of backgrounds in the full fusion (3-5n) reactions aimed at the synthesis of superheavy elements with Z = 113-118

  17. A novel technique with enhanced detection and quantitation of HPV-16 E1- and E2-mediated DNA replication

    International Nuclear Information System (INIS)

    Taylor, Ewan R.; Morgan, Iain M.

    2003-01-01

    Transient DNA replication assays to detect papillomavirus E1/E2-mediated DNA replication have depended upon Southern blotting. This technique is hazardous (radioactive), labour intensive, semiquantitative, and physically limited in the number of samples that can be processed at any one time. We have overcome these problems by developing a real-time PCR protocol for the detection of E1/E2-mediated transient DNA replication. The results demonstrate detection of replication at levels not seen using Southern blotting demonstrating enhanced sensitivity. This technique is also, by definition, highly quantitative. Therefore, the real-time PCR technique is the optimal method for the detection of E1/E2-mediated DNA replication

  18. Histidine–dialkoxyanthracene dyad for selective and sensitive detection of mercury ions

    KAUST Repository

    Patil, Sachin

    2017-12-18

    Histidine-dialkoxyanthracene (HDA) was synthesised as a turn off type fluorescent sensor for fast and sensitive detection of mercury ions (Hg2+) in aqueous media. The two histidine moieties act as ‘claws’ to selectively complex Hg2+. The binding ratio of HDA to Hg2+ was 1:1 (metal-to-ligand ratio). The association constant for Hg2+ towards the receptor HDA obtained from Benesi–Hildebrand plot was found to be 3.22 × 104 M−1 with detection limit as low as 4.7 nM (0.94 μg/L).

  19. Impurity monitoring by laser-induced fluorescence techniques

    International Nuclear Information System (INIS)

    Gelbwachs, J.A.

    1984-01-01

    Laser-induced fluorescence spectroscopy can provide a highly sensitive and selective means of detecting atomic and ionic impurities. Because the photodetector can be physically isolated from the laser-excited region, these techniques can be applied to monitoring in hostile environments. The basic concepts behind fluorescence detection are reviewed. Saturated optical excitation is shown to maximize impurity atom emission yield while mitigating effects of laser intensity fluctuations upon absolute density calibration. Monitoring in high- and low-pressure monitoring environments is compared. Methods to improve detection sensitivity by luminescence background suppression are presented

  20. Selective Electrochemical Detection of Epinephrine Using Gold Nanoporous Film

    Directory of Open Access Journals (Sweden)

    Dina M. Fouad

    2016-01-01

    Full Text Available Epinephrine (EP is one of the important catecholamine neurotransmitters that play an important role in the mammalian central nervous system. Therefore, it is necessary to determine the change of its concentrations. Nanoporous materials have wide applications that include catalysis, energy storages, environmental pollution control, wastewater treatment, and sensing applications. These unique properties could be attributable to their high surface area, a large pore volume, and uniform pore sizes. A gold nanoporous layer modified gold electrode was prepared and applied for the selective determination of epinephrine neurotransmitter at low concentration in the presence of several other substances including ascorbic acid (AA and uric acid (UA. The constructed electrode was characterized using scanning electron microscopy and cyclic voltammetry. The resulting electrode showed a selective detection of epinephrine with the interferences of dopamine and uric acid over a wide linear range (from 50 μM to 1 mM. The coverage of gold nanoporous on the surface of gold electrode represents a promising electrochemical sensor with high selectivity and sensitivity.

  1. Focused detection logging technique

    International Nuclear Information System (INIS)

    Turcotte, R.E.

    1977-01-01

    In accordance with an illustrative embodiment of the present invention, a method and apparatus is disclosed for determining a characteristic of the media surrounding a borehole by emitting gamma radiation in at least one tightly collimated beam toward an earth formation adjacent a borehole, by detecting from a plurality of tightly collimated paths that are focused at a zone of intersection with and aligned to intersect with each emitted beam the gamma radiation scattered by the interaction of the emitted gamma radiation and the media at the zones of intersection, by misaligning the emitted beams and the tightly collimated paths to prevent their intersection, by detecting gamma radiation scattered by the interaction of the emitted gamma radiation and the media with the emitted beams and the tightly collimated paths misaligned and by determining from the detected gamma radiation a media characteristic. In one embodiment, the detection collimater used is formed of a material that is essentially opaque to gamma radiation at the energies of interest and includes a plurality of passageways that are spherically focused at a zone of intersection with one of the emitted beams of gamma radiation and that are arranged in a number of surfaces that are curved to be azimuthally symmetrical about the axis of the intersected beam. 14 figures

  2. Detection of Cavities by Inverse Heat Conduction Boundary Element Method Using Minimal Energy Technique

    International Nuclear Information System (INIS)

    Choi, C. Y.

    1997-01-01

    A geometrical inverse heat conduction problem is solved for the infrared scanning cavity detection by the boundary element method using minimal energy technique. By minimizing the kinetic energy of temperature field, boundary element equations are converted to the quadratic programming problem. A hypothetical inner boundary is defined such that the actual cavity is located interior to the domain. Temperatures at hypothetical inner boundary are determined to meet the constraints of measurement error of surface temperature obtained by infrared scanning, and then boundary element analysis is performed for the position of an unknown boundary (cavity). Cavity detection algorithm is provided, and the effects of minimal energy technique on the inverse solution method are investigated by means of numerical analysis

  3. Invading stacking primer: A trigger for high-efficiency isothermal amplification reaction with superior selectivity for detecting microRNA variants.

    Science.gov (United States)

    Liu, Weipeng; Zhu, Minjun; Liu, Hongxing; Wei, Jitao; Zhou, Xiaoming; Xing, Da

    2016-07-15

    Searching for a strategy to enhance the efficiency of nucleic acid amplification and achieve exquisite discrimination of nucleic acids at the single-base level for biological detection has become an exciting research direction in recent years. Here, we have developed a simple and universal primer design strategy which produces a fascinating effect on isothermal strand displacement amplification (iSDA). We refer to the resultant primer as "invading stacking primer (IS-Primer)" which is based on contiguous stacking hybridization and toehold-mediated exchange reaction and function by merely changing the hybridization location of the primer. Using the IS-Primer, the sensitivity in detecting the target miR-21 is improved approximately five fold compared with the traditional iSDA reaction. It was further demonstrated that the IS-Primer acts as an invading strand to initiate branch migration which can increase the efficiency of the untwisting of the hairpin probe. This effect is equivalent to reducing the free energy of the stem, and the technique shows superior selectivity for single-base mismatches. By demonstrating the enhanced effect of the IS-Primer in the iSDA reaction, this work may provide a potentially new avenue for developing more sensitive and selective nucleic acids assays. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Fast Selective Detection of Pyocyanin Using Cyclic Voltammetry

    DEFF Research Database (Denmark)

    Al Atraktchi, Fatima Al-Zahraa; Breum Andersen, Sandra; Johansen, Helle Krogh

    2016-01-01

    Pyocyanin is a virulence factor uniquely produced by the pathogen Pseudomonas aeruginosa. The fast and selective detection of pyocyanin in clinical samples can reveal important information about the presence of this microorganism in patients. Electrochemical sensing of the redox-active pyocyanin....... The linear quantification of pyocyanin has an R2 value of 0.991 across the clinically relevant concentration range of 2–100 ηM. The proposed method was tested on human saliva showing a standard deviation of 2.5% ±1% (n = 5) from the known added pyocyanin concentration to the samples. This inexpensive...

  5. Methods for the selective detection of alkyne-presenting molecules and related compositions and systems

    Science.gov (United States)

    Valdez, Carlos A.; Vu, Alexander K.

    2017-10-17

    Provided herein are methods for selectively detecting an alkyne-presenting molecule in a sample and related detection reagents, compositions, methods and systems. The methods include contacting a detection reagent with the sample for a time and under a condition to allow binding of the detection reagent to the one or more alkyne-presenting molecules possibly present in the matrix to the detection reagent. The detection reagent includes an organic label moiety presenting an azide group. The binding of the azide group to the alkyne-presenting molecules results in emission of a signal from the organic label moiety.

  6. Development of an incipient rotor crack detection method by acoustic emission techniques

    International Nuclear Information System (INIS)

    Le Reverend, D.; Massouri, M.H.

    1988-01-01

    The objective of the program presented is to develop a method of detection and monitoring of crack growth in machine rotor by application of acoustic emission techniques. This program is performed by R and D Division of Electricite de France, jointly with INSA de Lyon. The first task of the program is relative to the characterization of acoustic emission during a progressive tensile test performed on a NCT specimen. The second task of the program deals with the experimentation of acoustic emission techniques for the monitoring of a specimen during cycling bending tests. The last task of the program is relative to evaluation of application of acoustic emission techniques for a small rotor integrity monitoring during fatigue rotation tests [fr

  7. Ultra-sensitive and selective Hg{sup 2+} detection based on fluorescent carbon dots

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ruihua; Li, Haitao; Kong, Weiqian; Liu, Juan [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China); Liu, Yang, E-mail: yangl@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China); Tong, Cuiyan, E-mail: tongcy959@nenu.edu.cn [Chemisty Department, Northeast Normal University, Changchun 130024 (China); Zhang, Xing [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China); Kang, Zhenhui, E-mail: zhkang@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China)

    2013-07-15

    Graphical abstract: Fluorescent carbon dots were efficiently synthesized by one-step sodium hydroxide-assisted reflux method from PEG and demonstrated to show high selectivity toward Hg2+ ions detection. - Highlights: • FCDs were synthesized by one-step sodium hydroxide-assisted reflux method from PEG. • The FCDs emit blue photoluminescence and have upconversion fluorescent property. • The FCDs show ultra-sensitive detective ability for Hg{sup 2+} ions. - Abstract: Fluorescent carbon dots (FCDs) were efficiently synthesized by one-step sodium hydroxide-assisted reflux method from poly(ethylene glycol) (PEG). The obtained FCDs exhibit excellent water-solubility and high stability. Under the UV irradiation, the FCDs could emit bright blue photoluminescence, and also they were found to show excellent up-conversion fluorescence. It was further demonstrated that such FCDs can serve as effective fluorescent sensing platform for Hg{sup 2+} ions detection with ultra-sensitivity and selectivity. The sensing system achieved a limit of detection as low as 1 fM, which is much lower than all the previous reported sensing systems for Hg{sup 2+} ions detection. This FCDs sensing system has been successfully applied for the analysis of Hg{sup 2+} ions in water samples from river, lake, and tap water, showing good practical feasibility.

  8. Differences in attentional functioning between preterm and full-term children underline the importance of new neuropsychological detection techniques.

    Science.gov (United States)

    Giordano, V; Fuiko, R; Leiss, U; Brandstetter, S; Hayde, M; Bartha-Doering, E; Klebermaß-Schrehof, K; Weiler, L J

    2017-04-01

    The aim of this study was to investigate specific attentional components in preterm born children who had not yet started school. Between January and December 2011, we assessed 52 preterm and 52 full-term children aged between five years five months and six years two months, of comparable age and gender, at the Medical University of Vienna. Different attentional components were evaluated through selected subtests of the Test of Attentional Performance and the German version of the Wechsler Intelligence Scale for Children. Each child's behaviour was also evaluated using parental ratings and descriptive item-based evaluation during neuropsychological assessment. Children born preterm showed poor attentional performance in sustained attention, focused attention and distractibility, as well as reductions in processing speed in divided attention and flexibility tasks. Children born preterm also showed decreased volitional attention compared with automatic attention. No problems were detected in alertness or inhibition. In addition, a higher rate of aborted tests, decreased motivation and poorer parental ratings were detected among the preterm population compared with full-term born children. Our results highlighted differences in attentional functioning between preterm and full-term children, indicating the importance of new neuropsychological techniques for the detection of specific attentional disorders. ©2016 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  9. Detection of microbial concentration in ice-cream using the impedance technique.

    Science.gov (United States)

    Grossi, M; Lanzoni, M; Pompei, A; Lazzarini, R; Matteuzzi, D; Riccò, B

    2008-06-15

    The detection of microbial concentration, essential for safe and high quality food products, is traditionally made with the plate count technique, that is reliable, but also slow and not easily realized in the automatic form, as required for direct use in industrial machines. To this purpose, the method based on impedance measurements represents an attractive alternative since it can produce results in about 10h, instead of the 24-48h needed by standard plate counts and can be easily realized in automatic form. In this paper such a method has been experimentally studied in the case of ice-cream products. In particular, all main ice-cream compositions of real interest have been considered and no nutrient media has been used to dilute the samples. A measurement set-up has been realized using benchtop instruments for impedance measurements on samples whose bacteria concentration was independently measured by means of standard plate counts. The obtained results clearly indicate that impedance measurement represents a feasible and reliable technique to detect total microbial concentration in ice-cream, suitable to be implemented as an embedded system for industrial machines.

  10. A novel technique for detection efficiency determination of HPGe

    International Nuclear Information System (INIS)

    Tayyebi, Pouneh; Abbasi Davani, Fereydoun; Tabasi, Mohsen; Afarideh, Hossein

    2017-01-01

    In this work, we present an experimental method to determine the detection efficiency of HPGe when the reference source according to the geometry of interest is not accessible. We use known activity point sources (PS) of 152 Eu, 137 Cs, 241 Am and 133 Ba to find the detection efficiency for disc source (DS) geometry. It can be assumed that a DS consists of several PS's. Mapping the detector surface by means of 137 Cs PS shows that there is radial symmetry for detection efficiency vs. energy. Each radial distance on the detector surface contains some points, which can be considered as a PS. By selecting two points in two different radii and central point, the DS efficiency is obtained. To ensure that the method is correct, we measure the activity of a known activity DS considering DS efficiency obtained by PS's. The DS comprises 137 Cs, 133 Ba and 60 Co. The relative difference between the measured and the reported activity of DS in most energies is less than 5%. - Highlights: • Exact knowledge of the detector dimension is not necessary • There is no need to have standard source according to the sample • It is a simple method that can be done at any laboratories

  11. Artificial neural network techniques to improve the ability of optical coherence tomography to detect optic neuritis.

    Science.gov (United States)

    Garcia-Martin, Elena; Herrero, Raquel; Bambo, Maria P; Ara, Jose R; Martin, Jesus; Polo, Vicente; Larrosa, Jose M; Garcia-Feijoo, Julian; Pablo, Luis E

    2015-01-01

    To analyze the ability of Spectralis optical coherence tomography (OCT) to detect multiple sclerosis (MS) and to distinguish MS eyes with antecedent optic neuritis (ON). To analyze the capability of artificial neural network (ANN) techniques to improve the diagnostic precision. MS patients and controls were enrolled (n = 217). OCT was used to determine the 768 retinal nerve fiber layer thicknesses. Sensitivity and specificity were evaluated to test the ability of OCT to discriminate between MS and healthy eyes, and between MS with and without antecedent ON using ANN. Using ANN technique multilayer perceptrons, OCT could detect MS with a sensitivity of 89.3%, a specificity of 87.6%, and a diagnostic precision of 88.5%. Compared with the OCT-provided parameters, the ANN had a better sensitivity-specificity balance. ANN technique improves the capability of Spectralis OCT to detect MS disease and to distinguish MS eyes with or without antecedent ON.

  12. A Comparison of Techniques for Camera Selection and Hand-Off in a Video Network

    Science.gov (United States)

    Li, Yiming; Bhanu, Bir

    Video networks are becoming increasingly important for solving many real-world problems. Multiple video sensors require collaboration when performing various tasks. One of the most basic tasks is the tracking of objects, which requires mechanisms to select a camera for a certain object and hand-off this object from one camera to another so as to accomplish seamless tracking. In this chapter, we provide a comprehensive comparison of current and emerging camera selection and hand-off techniques. We consider geometry-, statistics-, and game theory-based approaches and provide both theoretical and experimental comparison using centralized and distributed computational models. We provide simulation and experimental results using real data for various scenarios of a large number of cameras and objects for in-depth understanding of strengths and weaknesses of these techniques.

  13. Simple lock-in detection technique utilizing multiple harmonics for digital PGC demodulators.

    Science.gov (United States)

    Duan, Fajie; Huang, Tingting; Jiang, Jiajia; Fu, Xiao; Ma, Ling

    2017-06-01

    A simple lock-in detection technique especially suited for digital phase-generated carrier (PGC) demodulators is proposed in this paper. It mixes the interference signal with rectangular waves whose Fourier expansions contain multiple odd or multiple even harmonics of the carrier to recover the quadrature components needed for interference phase demodulation. In this way, the use of a multiplier is avoided and the efficiency of the algorithm is improved. Noise performance with regard to light intensity variation and circuit noise is analyzed theoretically for both the proposed technique and the traditional lock-in technique, and results show that the former provides a better signal-to-noise ratio than the latter with proper modulation depth and average interference phase. Detailed simulations were conducted and the theoretical analysis was verified. A fiber-optic Michelson interferometer was constructed and the feasibility of the proposed technique is demonstrated.

  14. Detection and Sizing of Fatigue Cracks in Steel Welds with Advanced Eddy Current Techniques

    Science.gov (United States)

    Todorov, E. I.; Mohr, W. C.; Lozev, M. G.

    2008-02-01

    Butt-welded specimens were fatigued to produce cracks in the weld heat-affected zone. Advanced eddy current (AEC) techniques were used to detect and size the cracks through a coating. AEC results were compared with magnetic particle and phased-array ultrasonic techniques. Validation through destructive crack measurements was also conducted. Factors such as geometry, surface treatment, and crack tightness interfered with depth sizing. AEC inspection techniques have the potential of providing more accurate and complete sizing flaw data for manufacturing and in-service inspections.

  15. A highly selective molecularly imprinted electrochemiluminescence sensor for ultra-trace beryllium detection

    International Nuclear Information System (INIS)

    Li, Jianping; Ma, Fei; Wei, Xiaoping; Fu, Cong; Pan, Hongcheng

    2015-01-01

    Graphical abstract: A novel molecular imprinted electrochemiluminescence sensor was fabricated for ultra-trace Be 2+ detection with an extremely lower detection limit based on the luminol–H 2 O 2 ECL system. - Highlights: • A novel molecular imprinted electrochemiluminescence sensor was fabricated for ultra-trace Be 2+ detection. • Imprint cavities in the MIPs from elution the Be–PAR complex could provide more recognition sites for analytes. • ECL emission produced by the luminol–H 2 O 2 ECL system, which was applied to detect Be 2+ . • It gave an extremely lower detection limit (2.35 × 10 −11 mol L −1 ) than the reported methods. - Abstract: A new molecularly imprinted electrochemiluminescence (ECL) sensor was proposed for highly sensitive and selective determination of ultratrace Be 2+ determination. The complex of Be 2+ with 4-(2-pyridylazo)-resorcinol (PAR) was chosen as the template molecule for the molecularly imprinted polymer (MIP). In this assay, the complex molecule could be eluted from the MIP, and the cavities formed could then selectively recognize the complex molecules. The cavities formed could also work as the tunnel for the transfer of probe molecules to produce sound responsive signal. The determination was based on the intensity of the signal, which was proportional to the concentrations of the complex molecule in the sample solution, and the Be 2+ concentration could then be determined indirectly. The results showed that in the range of 7 × 10 −11 mol L −1 to 8.0 × 10 −9 mol L −1 , the ECL intensity had a linear relationship with the Be 2+ concentrations, with the limit of detection of 2.35 × 10 −11 mol L −1 . This method was successfully used to detect Be 2+ in real water samples

  16. Max-AUC feature selection in computer-aided detection of polyps in CT colonography.

    Science.gov (United States)

    Xu, Jian-Wu; Suzuki, Kenji

    2014-03-01

    We propose a feature selection method based on a sequential forward floating selection (SFFS) procedure to improve the performance of a classifier in computerized detection of polyps in CT colonography (CTC). The feature selection method is coupled with a nonlinear support vector machine (SVM) classifier. Unlike the conventional linear method based on Wilks' lambda, the proposed method selected the most relevant features that would maximize the area under the receiver operating characteristic curve (AUC), which directly maximizes classification performance, evaluated based on AUC value, in the computer-aided detection (CADe) scheme. We presented two variants of the proposed method with different stopping criteria used in the SFFS procedure. The first variant searched all feature combinations allowed in the SFFS procedure and selected the subsets that maximize the AUC values. The second variant performed a statistical test at each step during the SFFS procedure, and it was terminated if the increase in the AUC value was not statistically significant. The advantage of the second variant is its lower computational cost. To test the performance of the proposed method, we compared it against the popular stepwise feature selection method based on Wilks' lambda for a colonic-polyp database (25 polyps and 2624 nonpolyps). We extracted 75 morphologic, gray-level-based, and texture features from the segmented lesion candidate regions. The two variants of the proposed feature selection method chose 29 and 7 features, respectively. Two SVM classifiers trained with these selected features yielded a 96% by-polyp sensitivity at false-positive (FP) rates of 4.1 and 6.5 per patient, respectively. Experiments showed a significant improvement in the performance of the classifier with the proposed feature selection method over that with the popular stepwise feature selection based on Wilks' lambda that yielded 18.0 FPs per patient at the same sensitivity level.

  17. Pollution detection using the spectral fluorescent signatures (SFS technique

    Directory of Open Access Journals (Sweden)

    Mª Del Carmen Martín

    2014-06-01

    Full Text Available This work has been developed in the Applied Physics Department at the University of Vigo within the line of research based on the treatment of the degraded water by pollutants through the use of microalgae, reducing the emissions of greenhouse gases through the absorption of CO2 in the process and the reuse of biomass as biofuel. Remote sensing techniques have contributed to a great extent to the development of oil pollution monitoring systems. However, the available detection methods, mainly designed for spaceborne and airborne long distance inspection, are too expensive and complex to be used in an operational way by relatively unskilled personnel. In the framework of DEOSOM project (European AMPERA project, an innovative water monitoring method was proposed, in two steps: early oil spill detection using a portable shipborne laser-induced fluorescence LIDAR (LIF/LIDAR, and analysis of suspicious water samples in laboratory using the Spectral Fluorescent Signature (SFS technique. This work is focused on the second technique. This system aims to optimize the production of microalgae for biofuel and contaminant cleaning applications and was developed and tested in photo-bioreactors in the University of Vigo within the EnerBioAlgae project (SUDOE. In this project, the SFS technique was used as a diagnostic tool employing the fluorescence analyzer INSTANT-SCREENER M53UVC. The Spectral Fluorescence Signature technique (SFS is based on compounds fluorescence properties. The fluorescence intensity of a sample is measured at different excitation and emission wavelengths to produce a 3-dimensional fluorescence matrix, which can also be presented as a 2-dimensional color image where the color shows the intensity of the fluorescence. These matrices offer qualitative and quantitative information, since they can be useful for the identification of different substances from their characteristic excitation and emission spectra of fluorescence. They also

  18. Detection vs. selection: integration of genetic, epigenetic and environmental cues in fluctuating environments.

    Science.gov (United States)

    McNamara, John M; Dall, Sasha R X; Hammerstein, Peter; Leimar, Olof

    2016-10-01

    There are many inputs during development that influence an organism's fit to current or upcoming environments. These include genetic effects, transgenerational epigenetic influences, environmental cues and developmental noise, which are rarely investigated in the same formal framework. We study an analytically tractable evolutionary model, in which cues are integrated to determine mature phenotypes in fluctuating environments. Environmental cues received during development and by the mother as an adult act as detection-based (individually observed) cues. The mother's phenotype and a quantitative genetic effect act as selection-based cues (they correlate with environmental states after selection). We specify when such cues are complementary and tend to be used together, and when using the most informative cue will predominate. Thus, we extend recent analyses of the evolutionary implications of subsets of these effects by providing a general diagnosis of the conditions under which detection and selection-based influences on development are likely to evolve and coexist. © 2016 John Wiley & Sons Ltd/CNRS.

  19. Resonance ionization detection of combustion radicals

    Energy Technology Data Exchange (ETDEWEB)

    Cool, T.A. [Cornell Univ., Ithaca, NY (United States)

    1993-12-01

    Fundamental research on the combustion of halogenated organic compounds with emphasis on reaction pathways leading to the formation of chlorinated aromatic compounds and the development of continuous emission monitoring methods will assist in DOE efforts in the management and disposal of hazardous chemical wastes. Selective laser ionization techniques are used in this laboratory for the measurement of concentration profiles of radical intermediates in the combustion of chlorinated hydrocarbon flames. A new ultrasensitive detection technique, made possible with the advent of tunable VUV laser sources, enables the selective near-threshold photoionization of all radical intermediates in premixed hydrocarbon and chlorinated hydrocarbon flames.

  20. Highly sensitive and selective determination of hydrogen sulfide by resonance light scattering technique based on silver nanoparticles.

    Science.gov (United States)

    Kuang, Yangfang; Chen, Shu; Long, Yunfei

    2017-06-01

    We have developed a green approach to prepare DNA-templated silver nanoparticles (Ag-NPs) from the direct reaction between Ag + and ascorbic acid in the presence of DNA and sodium hydroxide. The Ag-NPs showed strong resonance light scattering (RLS) intensity property. Then, the interaction between hydrogen sulfide (H 2 S) and Ag-NPs was studied by measuring their RLS spectra. The results showed that there is a strong interaction between Ag-NPs and H 2 S, which resulted in a decrease in the size of Ag-NPs and a decrease in the RLS intensity of the Ag-NPs solution at the wavelength of 467 nm. The results demonstrated that the RLS technique offers a sensitive and simple tool for investigating the interaction between Ag-NPs and H 2 S, which can be applied to detect H 2 S with high sensitivity and selectivity without complex readout equipment. The linear range for H 2 S determination was found to be the range from 5.0 × 10 -9 to 1.0 × 10 -7  mol L -1 , and the detection limit (3σ/k) was 2.8 × 10 -9  mol L -1 . Moreover, the proposed method was applied for the determination of H 2 S in natural water samples with satisfactory results. Graphical abstract The application of Ag-NPs in H 2 S detection.

  1. FEM Techniques for High Stress Detection in Accelerated Fatigue Simulation

    Science.gov (United States)

    Veltri, M.

    2016-09-01

    This work presents the theory and a numerical validation study in support to a novel method for a priori identification of fatigue critical regions, with the aim to accelerate durability design in large FEM problems. The investigation is placed in the context of modern full-body structural durability analysis, where a computationally intensive dynamic solution could be required to identify areas with potential for fatigue damage initiation. The early detection of fatigue critical areas can drive a simplification of the problem size, leading to sensible improvement in solution time and model handling while allowing processing of the critical areas in higher detail. The proposed technique is applied to a real life industrial case in a comparative assessment with established practices. Synthetic damage prediction quantification and visualization techniques allow for a quick and efficient comparison between methods, outlining potential application benefits and boundaries.

  2. Arrays of Size-Selected Metal Nanoparticles Formed by Cluster Ion Beam Technique

    DEFF Research Database (Denmark)

    Ceynowa, F. A.; Chirumamilla, Manohar; Zenin, Volodymyr

    2018-01-01

    Deposition of size-selected copper and silver nanoparticles (NPs) on polymers using cluster beam technique is studied. It is shown that ratio of particle embedment in the film can be controlled by simple thermal annealing. Combining electron beam lithography, cluster beam deposition, and heat...... with required configurations which can be applied for wave-guiding, resonators, in sensor technologies, and surface enhanced Raman scattering....

  3. A Review of Ground Target Detection and Classification Techniques in Forward Scattering Radars

    Directory of Open Access Journals (Sweden)

    M. E. A. Kanona

    2018-06-01

    Full Text Available This paper presents a review of target detection and classification in forward scattering radar (FSR which is a special state of bistatic radars, designed to detect and track moving targets in the narrow region along the transmitter-receiver base line. FSR has advantages and incredible features over other types of radar configurations. All previous studies proved that FSR can be used as an alternative system for ground target detection and classification. The radar and FSR fundamentals were addressed and classification algorithms and techniques were debated. On the other hand, the current and future applications and the limitations of FSR were discussed.

  4. 3,9-Dithia-6-azaundecane-appended Iridium (III) Complex for the Selective Detection of Hg2+ in Aqueous Acetonitrile

    International Nuclear Information System (INIS)

    Ann, Jee Hye; Li, Yinan; Hyun, Myung Ho

    2012-01-01

    Detection of mercuric ion (Hg 2+ ) originated from natural or industrial sources is very important because it is extremely toxic even at low levels and causes serious environmental and health problems. Consequently, many efforts have been devoted to the development of sensitive chemosensors for the detection of Hg 2+ . For example, various fluorescent chemosensors based on rhodamine, nitrobenzoxadiazole, fluorescein, boradiazaindacene (BODIPY), dansyl, pyrene, or other fluorophores have been developed for the selective detection of Hg 2+ . While various fluorescent chemosensors for the selective detection of Hg 2+ have been developed, phosphorescent chemosensors for the selective detection of Hg 2+ are relatively rare. Among various phosphors, iridium (III) complexes with sulfur containing cyclometalated ligands have been used as phosphorescent chemosensors for the selective detection of Hg 2+ . Azacrown ether-appended iridium (III) complex developed in our laboratory has also been utilized as a phosphorescent chemosensor for the selective detection of Hg 2+ . As an another iridium (III) complex-based phosphorescent chemosensors for the selective detection of Hg 2+ , in this study, we wish to prepare iridium (III) complex containing two 3,9-dithia-6-azaundecane units as chelating ligands for metal ions. Some fluorophores containing 3,9-dithia-6-azaundecane unit have been successfully applied for the selective detection of Hg 2+ . In this instance, iridium (III) complex containing two 3,9-dithia-6-azaundecane units is expected to be useful as a phosphorescent chemosensor for the selective detection of Hg 2+ . Iridium (III) complex containing two 3,9-dithia-6-azaundecane units was prepared starting from 2-phenylpyridine according to the procedure shown in Scheme 1. 2-Phenylpyridine was transformed into chloride bridged dimeric iridium complex, [(ppy) 2 IrCl] 2 , via the reported procedure. By treating [(ppy) 2 IrCl] 2 with 4,4'-bis(bromomethyl)-2,2'-bipyridine, which

  5. Comparison of different sampling techniques and of different culture methods for detection of group B streptococcus carriage in pregnant women

    Directory of Open Access Journals (Sweden)

    Verhelst Rita

    2010-09-01

    Full Text Available Abstract Background Streptococcus agalactiae (group B streptococcus; GBS is a significant cause of perinatal and neonatal infections worldwide. To detect GBS colonization in pregnant women, the CDC recommends isolation of the bacterium from vaginal and anorectal swab samples by growth in a selective enrichment medium, such as Lim broth (Todd-Hewitt broth supplemented with selective antibiotics, followed by subculture on sheep blood agar. However, this procedure may require 48 h to complete. We compared different sampling and culture techniques for the detection of GBS. Methods A total of 300 swabs was taken from 100 pregnant women at 35-37 weeks of gestation. For each subject, one rectovaginal, one vaginal and one rectal ESwab were collected. Plating onto Columbia CNA agar (CNA, group B streptococcus differential agar (GBSDA (Granada Medium and chromID Strepto B agar (CA, with and without Lim broth enrichment, were compared. The isolates were confirmed as S. agalactiae using the CAMP test on blood agar and by molecular identification with tDNA-PCR or by 16S rRNA gene sequence determination. Results The overall GBS colonization rate was 22%. GBS positivity for rectovaginal sampling (100% was significantly higher than detection on the basis of vaginal sampling (50%, but not significantly higher than for rectal sampling (82%. Direct plating of the rectovaginal swab on CNA, GBSDA and CA resulted in detection of 59, 91 and 95% of the carriers, respectively, whereas subculturing of Lim broth yielded 77, 95 and 100% positivity, respectively. Lim broth enrichment enabled the detection of only one additional GBS positive subject. There was no significant difference between GBSDA and CA, whereas both were more sensitive than CNA. Direct culture onto GBSDA or CA (91 and 95% detected more carriers than Lim broth enrichment and subculture onto CNA (77%. One false negative isolate was observed on GBSDA, and three false positives on CA. Conclusions In

  6. Three-dimensional imaging of individual point defects using selective detection angles in annular dark field scanning transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Jared M.; Im, Soohyun; Windl, Wolfgang; Hwang, Jinwoo, E-mail: hwang.458@osu.edu

    2017-01-15

    We propose a new scanning transmission electron microscopy (STEM) technique that can realize the three-dimensional (3D) characterization of vacancies, lighter and heavier dopants with high precision. Using multislice STEM imaging and diffraction simulations of β-Ga{sub 2}O{sub 3} and SrTiO{sub 3}, we show that selecting a small range of low scattering angles can make the contrast of the defect-containing atomic columns substantially more depth-dependent. The origin of the depth-dependence is the de-channeling of electrons due to the existence of a point defect in the atomic column, which creates extra “ripples” at low scattering angles. The highest contrast of the point defect can be achieved when the de-channeling signal is captured using the 20–40 mrad detection angle range. The effect of sample thickness, crystal orientation, local strain, probe convergence angle, and experimental uncertainty to the depth-dependent contrast of the point defect will also be discussed. The proposed technique therefore opens new possibilities for highly precise 3D structural characterization of individual point defects in functional materials. - Highlights: • A new electron microscopy technique that can visualize 3D position of point defect is proposed. • The technique relies on the electron de-channeling signals at low scattering angles. • The technique enables precise determination of the depth of vacancies and lighter impurity atoms.

  7. Recent developments and evaluation of selected geochemical techniques applied to uranium exploration

    International Nuclear Information System (INIS)

    Wenrich-Verbeek, K.J.; Cadigan, R.A.; Felmlee, J.K.; Reimer, G.M.; Spirakis, C.S.

    1976-01-01

    Various geochemical techniques for uranium exploration are currently under study by the geochemical techniques team of the Branch of Uranium and Thorium Resources, US Geological Survey. Radium-226 and its parent uranium-238 occur in mineral spring water largely independently of the geochemistry of the solutions and thus are potential indicators of uranium in source rocks. Many radioactive springs, hot or cold, are believed to be related to hydrothermal systems which contain uranium at depth. Radium, when present in the water, is co-precipitated in iron and/or manganese oxides and hydroxides or in barium sulphate associated with calcium carbonate spring deposits. Studies of surface water samples have resulted in improved standardized sample treatment and collection procedures. Stream discharge has been shown to have a significant effect on uranium concentration, while conductivity shows promise as a ''pathfinder'' for uranium. Turbid samples behave differently and consequently must be treated with more caution than samples from clear streams. Both water and stream sediments should be sampled concurrently, as anomalous uranium concentrations may occur in only one of these media and would be overlooked if only one, the wrong one, were analysed. The fission-track technique has been applied to uranium determinations in the above water studies. The advantages of the designed sample collecting system are that only a small quantity, typically one drop, of water is required and sample manipulation is minimized, thereby reducing contamination risks. The fission-track analytical technique is effective at the uranium concentration levels commonly found in natural waters (5.0-0.01 μg/litre). Landsat data were used to detect alteration associated with uranium deposits. Altered areas were detected but were not uniquely defined. Nevertheless, computer processing of Landsat data did suggest a smaller size target for further evaluation and thus is useful as an exploration tool

  8. Biological, serological and molecular techniques to xanthomonas axonopodis pv. Ci tri Asymptomatic detection

    International Nuclear Information System (INIS)

    Peyrou, M.; Del Campo, R.; Russi, P.; Mara, H.; Rigamonti, N.; Larrechart, L.; Perez, E.

    2012-01-01

    Xanthomonas axonopodis pv. ci tri (X ac) produces citrus canker disease in all citrus commercial species. The bacteria can be disseminated through vegetative propagation material in asymptomatic form. To optimize bacteria detection techniques applicable to asymptomatic citrus plant tissue routine analysis, ELISA, Immunofluorescence, Pcr, qRT P CR and host plant inoculation (bioassay) diagnostic techniques were compared. Tests were made from decimal dilutions between 108 uf6.ml-1 and 102 ufc.mL-1 using a pure culture of 49b strain.The detection level obtained was 1.8 x 102 ufc.mL-1 using Inmunofluorescence; 1.8x104 ufc.mL-1 with indirect ELISA, 1.8 x 103 ufc.mL-1 by means of PCR; 10 ufc.mL-1 through of qRT P CR and 230 ufc.mL-1 in sour orange inoculated plants. The experiment was repeated at least three times for each technique. Considering this result, and taking into account that sensitivity, practicity and cost, are important when a great number of plants need to be tested, the PCR and inoculation in host plants were those that met the best characteristics to be evaluated in asymptomatic plant material

  9. Selection of Suitable Endogenous Reference Genes for Relative Copy Number Detection in Sugarcane

    Directory of Open Access Journals (Sweden)

    Bantong Xue

    2014-05-01

    Full Text Available Transgene copy number has a great impact on the expression level and stability of exogenous gene in transgenic plants. Proper selection of endogenous reference genes is necessary for detection of genetic components in genetically modification (GM crops by quantitative real-time PCR (qPCR or by qualitative PCR approach, especially in sugarcane with polyploid and aneuploid genomic structure. qPCR technique has been widely accepted as an accurate, time-saving method on determination of copy numbers in transgenic plants and on detection of genetically modified plants to meet the regulatory and legislative requirement. In this study, to find a suitable endogenous reference gene and its real-time PCR assay for sugarcane (Saccharum spp. hybrids DNA content quantification, we evaluated a set of potential “single copy” genes including P4H, APRT, ENOL, CYC, TST and PRR, through qualitative PCR and absolute quantitative PCR. Based on copy number comparisons among different sugarcane genotypes, including five S. officinarum, one S. spontaneum and two S. spp. hybrids, these endogenous genes fell into three groups: ENOL-3—high copy number group, TST-1 and PRR-1—medium copy number group, P4H-1, APRT-2 and CYC-2—low copy number group. Among these tested genes, P4H, APRT and CYC were the most stable, while ENOL and TST were the least stable across different sugarcane genotypes. Therefore, three primer pairs of P4H-3, APRT-2 and CYC-2 were then selected as the suitable reference gene primer pairs for sugarcane. The test of multi-target reference genes revealed that the APRT gene was a specific amplicon, suggesting this gene is the most suitable to be used as an endogenous reference target for sugarcane DNA content quantification. These results should be helpful for establishing accurate and reliable qualitative and quantitative PCR analysis of GM sugarcane.

  10. Glyphosate detection with ammonium nitrate and humic acids as potential interfering substances by pulsed voltammetry technique.

    Science.gov (United States)

    Martínez Gil, Pablo; Laguarda-Miro, Nicolas; Camino, Juan Soto; Peris, Rafael Masot

    2013-10-15

    Pulsed voltammetry has been used to detect and quantify glyphosate on buffered water in presence of ammonium nitrate and humic substances. Glyphosate is the most widely used herbicide active ingredient in the world. It is a non-selective broad spectrum herbicide but some of its health and environmental effects are still being discussed. Nowadays, glyphosate pollution in water is being monitored but quantification techniques are slow and expensive. Glyphosate wastes are often detected in countryside water bodies where organic substances and fertilizers (commonly based on ammonium nitrate) may also be present. Glyphosate also forms complexes with humic acids so these compounds have also been taken into consideration. The objective of this research is to study the interference of these common pollutants in glyphosate measurements by pulsed voltammetry. The statistical treatment of the voltammetric data obtained lets us discriminate glyphosate from the other studied compounds and a mathematical model has been built to quantify glyphosate concentrations in a buffer despite the presence of humic substances and ammonium nitrate. In this model, the coefficient of determination (R(2)) is 0.977 and the RMSEP value is 2.96 × 10(-5) so the model is considered statistically valid. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. A novel reduced-complexity group detection structure in MIMO frequency selective fading channels

    KAUST Repository

    Qaraqe, Khalid A.; Ahimian, Nariman R.; Alouini, Mohamed-Slim

    2010-01-01

    In this paper a novel reduced complexity detection method named modified symbol flipping method is introduced and its advantages on reducing the burden of the calculations at the receiver compared to the optimum maximum likelihood detection method on multiple input- multiple output frequency selective fading channels are explained. The initial concept of the symbol flipping method is derived from a preliminary detection scheme named bit flipping which was introduced in [1]. The detection structure employed in this paper is ing, detection, and cancellation. On the detection stage, the proposed method is employed and the results are compared to the group maximum likelihood detection scheme proposed in [2]. Simulation results show that a 6 dB performance gain can be achieved at the expense of a slight increase in complexity in comparison with the conventional symbol flipping scheme. © 2010 Crown.

  12. A novel reduced-complexity group detection structure in MIMO frequency selective fading channels

    KAUST Repository

    Qaraqe, Khalid A.

    2010-09-01

    In this paper a novel reduced complexity detection method named modified symbol flipping method is introduced and its advantages on reducing the burden of the calculations at the receiver compared to the optimum maximum likelihood detection method on multiple input- multiple output frequency selective fading channels are explained. The initial concept of the symbol flipping method is derived from a preliminary detection scheme named bit flipping which was introduced in [1]. The detection structure employed in this paper is ing, detection, and cancellation. On the detection stage, the proposed method is employed and the results are compared to the group maximum likelihood detection scheme proposed in [2]. Simulation results show that a 6 dB performance gain can be achieved at the expense of a slight increase in complexity in comparison with the conventional symbol flipping scheme. © 2010 Crown.

  13. Fungal disease detection in plants: Traditional assays, novel diagnostic techniques and biosensors.

    Science.gov (United States)

    Ray, Monalisa; Ray, Asit; Dash, Swagatika; Mishra, Abtar; Achary, K Gopinath; Nayak, Sanghamitra; Singh, Shikha

    2017-01-15

    Fungal diseases in commercially important plants results in a significant reduction in both quality and yield, often leading to the loss of an entire plant. In order to minimize the losses, it is essential to detect and identify the pathogens at an early stage. Early detection and accurate identification of pathogens can control the spread of infection. The present article provides a comprehensive overview of conventional methods, current trends and advances in fungal pathogen detection with an emphasis on biosensors. Traditional techniques are the "gold standard" in fungal detection which relies on symptoms, culture-based, morphological observation and biochemical identifications. In recent times, with the advancement of biotechnology, molecular and immunological approaches have revolutionized fungal disease detection. But the drawback lies in the fact that these methods require specific and expensive equipments. Thus, there is an urgent need for rapid, reliable, sensitive, cost effective and easy to use diagnostic methods for fungal pathogen detection. Biosensors would become a promising and attractive alternative, but they still have to be subjected to some modifications, improvements and proper validation for on-field use. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Comparing fairness perceptions of personnel selection techniques of American, French and South African job applicants

    Directory of Open Access Journals (Sweden)

    Delene Visser

    2001-12-01

    Full Text Available The purpose of the study was to determine whether job applicants' perceptions of commonly used selection procedures vary across nationalities, because a negative impression of prospective employers that use selection techniques that are viewed as unfair, may result. In this study the fairness perceptions of 179 South African employees were compared with results obtained with 142 American and 117 French participants with regard to ten selection techniques using the framework of organisational justice theory. Opsomming Die doel van die ondersoek was om te bepaal of werkaansoekers van verskillende nasionaliteite se persepsies van bekende keuringsprosedures verskil. Indien voomemende werkgewers keuringstegnieke wat as onbillik beskou word, gebruik, kan 'n negatiewe beeld van hul organisasies geskep word. In hierdie studie is 179 Suid-Afrikaanse werknemers se persepsies van tien keuringstegnieke binne die raamwerk van organisasiebillikheidsteone vergelyk met persepsies van 142 Amerikaanse en 117 Franse respondente, In die algemeen was die Suid-Afrikaanse Wit groep die positiefste teenoor die keuringstegnieke.

  15. Digital Image Processing Technique for Breast Cancer Detection

    Science.gov (United States)

    Guzmán-Cabrera, R.; Guzmán-Sepúlveda, J. R.; Torres-Cisneros, M.; May-Arrioja, D. A.; Ruiz-Pinales, J.; Ibarra-Manzano, O. G.; Aviña-Cervantes, G.; Parada, A. González

    2013-09-01

    Breast cancer is the most common cause of death in women and the second leading cause of cancer deaths worldwide. Primary prevention in the early stages of the disease becomes complex as the causes remain almost unknown. However, some typical signatures of this disease, such as masses and microcalcifications appearing on mammograms, can be used to improve early diagnostic techniques, which is critical for women’s quality of life. X-ray mammography is the main test used for screening and early diagnosis, and its analysis and processing are the keys to improving breast cancer prognosis. As masses and benign glandular tissue typically appear with low contrast and often very blurred, several computer-aided diagnosis schemes have been developed to support radiologists and internists in their diagnosis. In this article, an approach is proposed to effectively analyze digital mammograms based on texture segmentation for the detection of early stage tumors. The proposed algorithm was tested over several images taken from the digital database for screening mammography for cancer research and diagnosis, and it was found to be absolutely suitable to distinguish masses and microcalcifications from the background tissue using morphological operators and then extract them through machine learning techniques and a clustering algorithm for intensity-based segmentation.

  16. Rhodium Nanoparticle-mesoporous Silicon Nanowire Nanohybrids for Hydrogen Peroxide Detection with High Selectivity

    Science.gov (United States)

    Song, Zhiqian; Chang, Hucheng; Zhu, Weiqin; Xu, Chenlong; Feng, Xinjian

    2015-01-01

    Developing nanostructured electrocatalysts, with low overpotential, high selectivity and activity has fundamental and technical importance in many fields. We report here rhodium nanoparticle and mesoporous silicon nanowire (RhNP@mSiNW) hybrids for hydrogen peroxide (H2O2) detection with high electrocatalytic activity and selectivity. By employing electrodes that loaded with RhNP@mSiNW nanohybrids, interference caused from both many electroactive substances and dissolved oxygen were eliminated by electrochemical assaying at an optimal potential of +75 mV. Furthermore, the electrodes exhibited a high detection sensitivity of 0.53 μA/mM and fast response (< 5 s). This high-performance nanohybrid electrocatalyst has great potential for future practical application in various oxidase-base biosensors. PMID:25588953

  17. Chipless RFID design procedure and detection techniques

    CERN Document Server

    Rezaiesarlak, Reza

    2015-01-01

    This book examines the design of chipless RFID systems. The authors begin with the historical development of wireless identification systems and finally arrive at a representation of the chipless RFID system as a block diagram illustration. Chapter 2 is devoted to the theoretical bases for the design of chipless RFID tags and detection techniques in the reader. A rigorous mathematical formulation is presented based on the singularity expansion method (SEM) and characteristic mode theory (CMT) in order to study the scattered fields from an object in a general form. Th e authors attempt to explain some physical concepts behind the mathematical descriptions of the theories in this chapter. In Chapter 3, two design procedures based on complex natural resonance and CMT are presented for the design of the chipless RFID tag. By studying the effects of structural parameters on radiation and resonant behaviors of the tag, some design conclusions are presented in this chapter. Chapter 4 is dedicated to the time-frequen...

  18. Reduced and selective integration techniques in the finite element analysis of plates

    International Nuclear Information System (INIS)

    Hughes, T.J.R.; Cohen, M.; Haroun, M.

    1978-01-01

    Efforts to develop effective plate bending finite elements by reduced integration techniques are described. The basis for the development is a 'thick' plate theory in which transverse shear strains are accounted for. The variables in the theory are all kinematic, namely, displacements and independent rotations. As only C 0 continuity is required, isoparametric elements may be employed, which result in several advantages over thin plate elements. It is shown that the avoidance of shear 'locking' may be facilitated by reduced integration techniques. Both uniform and selective schemes are considered. Conditions under which selective schemes are invariant are identified, and they are found to have an advantage over uniform schemes in the present situation. It is pointed out that the present elements are not subject to the difficulties encountered by thin plate theory elements, concerning boundary conditions. For example, the polygonal approximation of curved, simply supported edges is convergent. Other topics discussed are the equivalence with mixed methods, rank deficiency, convergence criteria and useful mass 'lumping' schemes for dynamics. Numerical results for several thin plate problems indicate the high degree of accuracy attainable by the present elements. (Auth.)

  19. Characterisation of PDO olive oil Chianti Classico by non-selective (UV–visible, NIR and MIR spectroscopy) and selective (fatty acid composition) analytical techniques

    International Nuclear Information System (INIS)

    Casale, M.; Oliveri, P.; Casolino, C.; Sinelli, N.; Zunin, P.; Armanino, C.; Forina, M.; Lanteri, S.

    2012-01-01

    Highlights: ► Characterisation of the Italian PDO extra virgin olive oil Chianti Classico. ► Comparison between non-selective (UV–vis, NIR and MIR spectroscopy) and selective (fatty acid composition) analytical techniques. ► Synergy among spectroscopic techniques, by the fusion of the respective spectra. ► Prediction of the content of oleic and linoleic acids in the olive oils. - Abstract: An authentication study of the Italian PDO (protected designation of origin) extra virgin olive oil Chianti Classico was performed; UV–visible (UV–vis), Near-Infrared (NIR) and Mid-Infrared (MIR) spectroscopies were applied to a set of samples representative of the whole Chianti Classico production area. The non-selective signals (fingerprints) provided by the three spectroscopic techniques were utilised both individually and jointly, after fusion of the respective profile vectors, in order to build a model for the Chianti Classico PDO olive oil. Moreover, these results were compared with those obtained by the gas chromatographic determination of the fatty acids composition. In order to characterise the olive oils produced in the Chianti Classico PDO area, UNEQ (unequal class models) and SIMCA (soft independent modelling of class analogy) were employed both on the MIR, NIR and UV–vis spectra, individually and jointly, and on the fatty acid composition. Finally, PLS (partial least square) regression was applied on the UV–vis, NIR and MIR spectra, in order to predict the content of oleic and linoleic acids in the extra virgin olive oils. UNEQ, SIMCA and PLS were performed after selection of the relevant predictors, in order to increase the efficiency of both classification and regression models. The non-selective information obtained from UV–vis, NIR and MIR spectroscopy allowed to build reliable models for checking the authenticity of the Italian PDO extra virgin olive oil Chianti Classico.

  20. Characterisation of PDO olive oil Chianti Classico by non-selective (UV-visible, NIR and MIR spectroscopy) and selective (fatty acid composition) analytical techniques

    Energy Technology Data Exchange (ETDEWEB)

    Casale, M., E-mail: monica@dictfa.unige.it [Universita degli Studi di Genova, Department of Chemistry and Food and Pharmaceutical Technologies, Via Brigata Salerno 13, I-16147, Genoa (Italy); Oliveri, P.; Casolino, C. [Universita degli Studi di Genova, Department of Chemistry and Food and Pharmaceutical Technologies, Via Brigata Salerno 13, I-16147, Genoa (Italy); Sinelli, N. [Universita degli Studi di Milano, Department of Food Science and Technology, Via Celoria, 2 - I-20133 Milan (Italy); Zunin, P.; Armanino, C.; Forina, M.; Lanteri, S. [Universita degli Studi di Genova, Department of Chemistry and Food and Pharmaceutical Technologies, Via Brigata Salerno 13, I-16147, Genoa (Italy)

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer Characterisation of the Italian PDO extra virgin olive oil Chianti Classico. Black-Right-Pointing-Pointer Comparison between non-selective (UV-vis, NIR and MIR spectroscopy) and selective (fatty acid composition) analytical techniques. Black-Right-Pointing-Pointer Synergy among spectroscopic techniques, by the fusion of the respective spectra. Black-Right-Pointing-Pointer Prediction of the content of oleic and linoleic acids in the olive oils. - Abstract: An authentication study of the Italian PDO (protected designation of origin) extra virgin olive oil Chianti Classico was performed; UV-visible (UV-vis), Near-Infrared (NIR) and Mid-Infrared (MIR) spectroscopies were applied to a set of samples representative of the whole Chianti Classico production area. The non-selective signals (fingerprints) provided by the three spectroscopic techniques were utilised both individually and jointly, after fusion of the respective profile vectors, in order to build a model for the Chianti Classico PDO olive oil. Moreover, these results were compared with those obtained by the gas chromatographic determination of the fatty acids composition. In order to characterise the olive oils produced in the Chianti Classico PDO area, UNEQ (unequal class models) and SIMCA (soft independent modelling of class analogy) were employed both on the MIR, NIR and UV-vis spectra, individually and jointly, and on the fatty acid composition. Finally, PLS (partial least square) regression was applied on the UV-vis, NIR and MIR spectra, in order to predict the content of oleic and linoleic acids in the extra virgin olive oils. UNEQ, SIMCA and PLS were performed after selection of the relevant predictors, in order to increase the efficiency of both classification and regression models. The non-selective information obtained from UV-vis, NIR and MIR spectroscopy allowed to build reliable models for checking the authenticity of the Italian PDO extra virgin olive oil

  1. Detection of EnteroinvasiveEscherichia coli by PCR technique in Children with Diarrhea

    Directory of Open Access Journals (Sweden)

    v Aein

    2014-11-01

    Full Text Available Background & aim: EnteroinvasiveEscherichia coliis one of the important agents of invasion to intestinal epithelial cells, damage and cell death which due to dysentery. The aim of this study wastoDetection of EnteroinvasiveEscherichia coli by PCR technique from Children’s Diarrheain yasuj. Methods:This cross-sectional study was performed on 200 stool samples taken from children with diarrhea in Yasuj. After initial identification of E.coli strains by culture and biochemical tests, EIEC gene such as ipaH detected by PCR technicque and antibiotic susceptibility of isolates was evaluated by using disc diffusion (CLSI method. Results: Out of all examined samples, 16(8% EIEC were separated. Antibiotic susceptibility test showed that the most susceptible antibiotic is ciprofloxacin for EIEC and also most resistant antibiotic is ceftizoxime. Conclusion: Results showed that EIEC strains have a moderate prevalence than other studies in our study area. Therefore, for importance of this strain to producing dysentery, hospital-wide surveillance using molecular techniques hase been proposed in other regions of country.

  2. Modified multiphotodiode balanced detection technique for improving SAC-OCDMA networks

    Science.gov (United States)

    Tseng, Shin-Pin

    2015-06-01

    The aim of this study was to develop a feasible modified multiphotodiode balanced detection (MMBD) technique suitable for application in spectral-amplitude-coding optical code-division multiple-access networks, which could mitigate the effect of phase-induced intensity noise (PIIN). Because PIIN is related to the beating between optical signals with wavelengths arriving simultaneously at a balanced photodetector, combining spectral partitioning and an MMBD scheme facilitates reducing PIIN, which tends to dominate performance. Therefore, the system using the proposed scheme exhibited an enhanced performance.

  3. Enhancing the mathematical properties of new haplotype homozygosity statistics for the detection of selective sweeps.

    Science.gov (United States)

    Garud, Nandita R; Rosenberg, Noah A

    2015-06-01

    Soft selective sweeps represent an important form of adaptation in which multiple haplotypes bearing adaptive alleles rise to high frequency. Most statistical methods for detecting selective sweeps from genetic polymorphism data, however, have focused on identifying hard selective sweeps in which a favored allele appears on a single haplotypic background; these methods might be underpowered to detect soft sweeps. Among exceptions is the set of haplotype homozygosity statistics introduced for the detection of soft sweeps by Garud et al. (2015). These statistics, examining frequencies of multiple haplotypes in relation to each other, include H12, a statistic designed to identify both hard and soft selective sweeps, and H2/H1, a statistic that conditional on high H12 values seeks to distinguish between hard and soft sweeps. A challenge in the use of H2/H1 is that its range depends on the associated value of H12, so that equal H2/H1 values might provide different levels of support for a soft sweep model at different values of H12. Here, we enhance the H12 and H2/H1 haplotype homozygosity statistics for selective sweep detection by deriving the upper bound on H2/H1 as a function of H12, thereby generating a statistic that normalizes H2/H1 to lie between 0 and 1. Through a reanalysis of resequencing data from inbred lines of Drosophila, we show that the enhanced statistic both strengthens interpretations obtained with the unnormalized statistic and leads to empirical insights that are less readily apparent without the normalization. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. FTIR gas analysis with improved sensitivity and selectivity for CWA and TIC detection

    Science.gov (United States)

    Phillips, Charles M.; Tan, Huwei

    2010-04-01

    This presentation describes the use of an FTIR (Fourier Transform Infrared)-based spectrometer designed to continuously monitor ambient air for the presence of chemical warfare agents (CWAs) and toxic industrial chemicals (TICs). The necessity of a reliable system capable of quickly and accurately detecting very low levels of CWAs and TICs while simultaneously retaining a negligible false alarm rate will be explored. Technological advancements in FTIR sensing have reduced noise while increasing selectivity and speed of detection. These novel analyzer design characteristics are discussed in detail and descriptions are provided which show how optical throughput, gas cell form factor, and detector response are optimized. The hardware and algorithms described here will explain why this FTIR system is very effective for the simultaneous detection and speciation of a wide variety of toxic compounds at ppb concentrations. Analytical test data will be reviewed demonstrating the system's sensitivity to and selectivity for specific CWAs and TICs; this will include recent data acquired as part of the DHS ARFCAM (Autonomous Rapid Facility Chemical Agent Monitor) project. These results include analyses of the data from live agent testing for the determination of CWA detection limits, immunity to interferences, detection times, residual noise analysis and false alarm rates. Sensing systems such as this are critical for effective chemical hazard identification which is directly relevant to the CBRNE community.

  5. Physiological techniques for detecting expiratory flow limitation during tidal breathing

    Directory of Open Access Journals (Sweden)

    N.G. Koulouris

    2011-09-01

    Full Text Available Patients with severe chronic obstructive pulmonary disease (COPD often exhale along the same flow–volume curve during quiet breathing as they do during the forced expiratory vital capacity manoeuvre, and this has been taken as an indicator of expiratory flow limitation at rest (EFLT. Therefore, EFLT, namely attainment of maximal expiratory flow during tidal expiration, occurs when an increase in transpulmonary pressure causes no increase in expiratory flow. EFLT leads to small airway injury and promotes dynamic pulmonary hyperinflation, with concurrent dyspnoea and exercise limitation. In fact, EFLT occurs commonly in COPD patients (mainly in Global Initiative for Chronic Obstructive Lung Disease III and IV stage, in whom the latter symptoms are common, but is not exclusive to COPD, since it can also be detected in other pulmonary and nonpulmonary diseases like asthma, acute respiratory distress syndrome, heart failure and obesity, etc. The existing up to date physiological techniques of assessing EFLT are reviewed in the present work. Among the currently available techniques, the negative expiratory pressure has been validated in a wide variety of settings and disorders. Consequently, it should be regarded as a simple, noninvasive, practical and accurate new technique.

  6. Real-Time, Label-Free Detection of Biomolecular Interactions in Sandwich Assays by the Oblique-Incidence Reflectivity Difference Technique

    Directory of Open Access Journals (Sweden)

    Yung-Shin Sun

    2014-12-01

    Full Text Available One of the most important goals in proteomics is to detect the real-time kinetics of diverse biomolecular interactions. Fluorescence, which requires extrinsic tags, is a commonly and widely used method because of its high convenience and sensitivity. However, in order to maintain the conformational and functional integrality of biomolecules, label-free detection methods are highly under demand. We have developed the oblique-incidence reflectivity difference (OI-RD technique for label-free, kinetic measurements of protein-biomolecule interactions. Incorporating the total internal refection geometry into the OI-RD technique, we are able to detect as low as 0.1% of a protein monolayer, and this sensitivity is comparable with other label-free techniques such as surface plasmon resonance (SPR. The unique advantage of OI-RD over SPR is no need for dielectric layers. Moreover, using a photodiode array as the detector enables multi-channel detection and also eliminates the over-time signal drift. In this paper, we demonstrate the applicability and feasibility of the OI-RD technique by measuring the kinetics of protein-protein and protein-small molecule interactions in sandwich assays.

  7. Techniques used by United Kingdom consultant plastic surgeons to select implant size for primary breast augmentation.

    Science.gov (United States)

    Holmes, W J M; Timmons, M J; Kauser, S

    2015-10-01

    Techniques used to estimate implant size for primary breast augmentation have evolved since the 1970s. Currently no consensus exists on the optimal method to select implant size for primary breast augmentation. In 2013 we asked United Kingdom consultant plastic surgeons who were full members of BAPRAS or BAAPS what was their technique for implant size selection for primary aesthetic breast augmentation. We also asked what was the range of implant sizes they commonly used. The answers to question one were grouped into four categories: experience, measurements, pre-operative external sizers and intra-operative sizers. The response rate was 46% (164/358). Overall, 95% (153/159) of all respondents performed some form of pre-operative assessment, the others relied on "experience" only. The most common technique for pre-operative assessment was by external sizers (74%). Measurements were used by 57% of respondents and 3% used intra-operative sizers only. A combination of measurements and sizers was used by 34% of respondents. The most common measurements were breast base (68%), breast tissue compliance (19%), breast height (15%), and chest diameter (9%). The median implant size commonly used in primary breast augmentation was 300cc. Pre-operative external sizers are the most common technique used by UK consultant plastic surgeons to select implant size for primary breast augmentation. We discuss the above findings in relation to the evolution of pre-operative planning techniques for breast augmentation. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  8. UWB radar technique for arc detection in coaxial cables and waveguides

    International Nuclear Information System (INIS)

    Maggiora, R.; Salvador, S.

    2009-01-01

    As spread spectrum technology has revolutionized the communications industry, Ultra Wide Band (UWB) technology is dramatically improving radar performances. These advanced signal processing techniques have been adapted to coaxial cables and waveguides to provide new features and enhanced performance on arc detection. UWB signals constituted by a sequence of chips (properly chosen to reduce side lobes and to improve detection accuracy) are transmitted along the transmission lines at a specified Pulse Repetition Frequency (PRF) and their echoes are received by means of directional couplers. The core of the receiver is an ultra high-speed correlator implemented in a Digital Signal Processor (DSP). When a target (arc) is detected, its position and its 'radar cross section' are calculated to be able to provide the arc position along the transmission line and to be able to classify the type of detected arc. The 'background scattering' is routinely extracted from the received signal at any pulse. This permits to be resilient to the background structure of transmission lines (bends, junctions, windows, etc.). Thanks to the localization feature, segmentation is also possible for creating sensed and non-sensed zones (for example, to be insensitive to antenna load variations).

  9. Comparative analysis of peak-detection techniques for comprehensive two-dimensional chromatography.

    Science.gov (United States)

    Latha, Indu; Reichenbach, Stephen E; Tao, Qingping

    2011-09-23

    Comprehensive two-dimensional gas chromatography (GC×GC) is a powerful technology for separating complex samples. The typical goal of GC×GC peak detection is to aggregate data points of analyte peaks based on their retention times and intensities. Two techniques commonly used for two-dimensional peak detection are the two-step algorithm and the watershed algorithm. A recent study [4] compared the performance of the two-step and watershed algorithms for GC×GC data with retention-time shifts in the second-column separations. In that analysis, the peak retention-time shifts were corrected while applying the two-step algorithm but the watershed algorithm was applied without shift correction. The results indicated that the watershed algorithm has a higher probability of erroneously splitting a single two-dimensional peak than the two-step approach. This paper reconsiders the analysis by comparing peak-detection performance for resolved peaks after correcting retention-time shifts for both the two-step and watershed algorithms. Simulations with wide-ranging conditions indicate that when shift correction is employed with both algorithms, the watershed algorithm detects resolved peaks with greater accuracy than the two-step method. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Detection of drugs and explosives using neutron computerized tomography and artificial intelligence techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, F.J.O. [Instituto de Engenharia Nuclear, Cidade Universitaria, Rio de Janeiro, CEP 21945-970, Caixa Postal 68550 (Brazil)], E-mail: fferreira@ien.gov.br; Crispim, V.R.; Silva, A.X. [DNC/Poli, PEN COPPE CT, UFRJ Universidade Federal do Rio de Janeiro, CEP 21941-972, Caixa Postal 68509, Rio de Janeiro (Brazil)

    2010-06-15

    In this study the development of a methodology to detect illicit drugs and plastic explosives is described with the objective of being applied in the realm of public security. For this end, non-destructive assay with neutrons was used and the technique applied was the real time neutron radiography together with computerized tomography. The system is endowed with automatic responses based upon the application of an artificial intelligence technique. In previous tests using real samples, the system proved capable of identifying 97% of the inspected materials.

  11. Detection of drugs and explosives using neutron computerized tomography and artificial intelligence techniques

    International Nuclear Information System (INIS)

    Ferreira, F.J.O.; Crispim, V.R.; Silva, A.X.

    2010-01-01

    In this study the development of a methodology to detect illicit drugs and plastic explosives is described with the objective of being applied in the realm of public security. For this end, non-destructive assay with neutrons was used and the technique applied was the real time neutron radiography together with computerized tomography. The system is endowed with automatic responses based upon the application of an artificial intelligence technique. In previous tests using real samples, the system proved capable of identifying 97% of the inspected materials.

  12. Detection of fecal residue on poultry carcasses by laser induced fluorescence imaging techniques

    Science.gov (United States)

    The potential use of laser-induced fluorescence imaging techniques was investigated for the detection of diluted fecal matters from various parts of the digestive tract, including colon, ceca, small intestine, and duodenum, on poultry carcasses. One of the challenges for using fluorescence imaging f...

  13. Development of detection techniques for a single-particle of fissile material(II)

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, S. C.; Kim, W. H.; Park, Y. J.; Song, B. C.; Jeon, Y. S.; Jee, K. Y.; Pyo, H. Y.; Kwack, E. H

    2001-06-01

    The Analytical methods and detection limit of signatures, and the particle discrimination techniques of unknown particles by microscope were investigated in this technical report. In connection with pre-treatment of swipe samples, sampling and treatment of particles, etching method, fission track observation and the preparation of sample for the neutron activation analysis were also described in this thchnical report.

  14. Development of detection techniques for a single-particle of fissile material(II)

    International Nuclear Information System (INIS)

    Sohn, S. C.; Kim, W. H.; Park, Y. J.; Song, B. C.; Jeon, Y. S.; Jee, K. Y.; Pyo, H. Y.; Kwack, E. H.

    2001-06-01

    The Analytical methods and detection limit of signatures, and the particle discrimination techniques of unknown particles by microscope were investigated in this technical report. In connection with pre-treatment of swipe samples, sampling and treatment of particles, etching method, fission track observation and the preparation of sample for the neutron activation analysis were also described in this thchnical report

  15. Selecting the Most Economic Project under Uncertainty Using Bootstrap Technique and Fuzzy Simulation

    Directory of Open Access Journals (Sweden)

    Kamran Shahanaghi

    2012-01-01

    Full Text Available This article, by leaving pre-determined membership function of a fuzzy set which is a basic assumption for such subject, will try to propose a hybrid technique to select the most economic project among alternative projects in fuzziness interest rates condition. In this way, net present worth (NPW would be the economic indicator. This article tries to challenge the assumption of large sample sizes availability for membership function determination and shows that some other techniques may have less accuracy. To give a robust solution, bootstrapping and fuzzy simulation is suggested and a numerical example is given and analyzed.

  16. Neutron activation techniques in the detection and measurement of environmental pollutants

    International Nuclear Information System (INIS)

    Spyrou, N.M.; Maheswaran, P.; Nagy, K.; Oezek, F.

    1976-01-01

    The Medical and Environmental Group at the University of Surrey has been involved for several years in the development and application of nuclear activation techniques to biomedical and environmental problems. One such project has been a study of air pollution in the city of Guildford, which requires a routine but quick analytical process for the detection of trace elements in the atmosphere in order to handle data with limited resources and manpower. The proposed method comprises cyclic irradiation and counting, followed by further counting on a low-energy photon detector and a Ge(Li) detector. The scheme concentrates on the measurement of short-lived isotopes. In order to test its efficacy it is compared with conventional activation experiments for irradiation times of 1 min, 10 min and 60 min; various types of filter papers and membranes, used for collection of the samples, are analysed under these conditions. The paper illustrates this comparison by analysis of NBS Standard Reference Material 1571 (Orchard Leaves) on Whatman grade 1 filter paper. The analysis of a typical Guildford sample is also shown. The technique enhances the detection of 38 Clsup(m)(0.74 s), 207 Pbsup(m)(0.8 s), 20 F(11.56 s), 77 Sesup(m)(17.5 s) and 110 Ag(24.4 s). (author)

  17. Automatic reference selection for quantitative EEG interpretation: identification of diffuse/localised activity and the active earlobe reference, iterative detection of the distribution of EEG rhythms.

    Science.gov (United States)

    Wang, Bei; Wang, Xingyu; Ikeda, Akio; Nagamine, Takashi; Shibasaki, Hiroshi; Nakamura, Masatoshi

    2014-01-01

    EEG (Electroencephalograph) interpretation is important for the diagnosis of neurological disorders. The proper adjustment of the montage can highlight the EEG rhythm of interest and avoid false interpretation. The aim of this study was to develop an automatic reference selection method to identify a suitable reference. The results may contribute to the accurate inspection of the distribution of EEG rhythms for quantitative EEG interpretation. The method includes two pre-judgements and one iterative detection module. The diffuse case is initially identified by pre-judgement 1 when intermittent rhythmic waveforms occur over large areas along the scalp. The earlobe reference or averaged reference is adopted for the diffuse case due to the effect of the earlobe reference depending on pre-judgement 2. An iterative detection algorithm is developed for the localised case when the signal is distributed in a small area of the brain. The suitable averaged reference is finally determined based on the detected focal and distributed electrodes. The presented technique was applied to the pathological EEG recordings of nine patients. One example of the diffuse case is introduced by illustrating the results of the pre-judgements. The diffusely intermittent rhythmic slow wave is identified. The effect of active earlobe reference is analysed. Two examples of the localised case are presented, indicating the results of the iterative detection module. The focal and distributed electrodes are detected automatically during the repeating algorithm. The identification of diffuse and localised activity was satisfactory compared with the visual inspection. The EEG rhythm of interest can be highlighted using a suitable selected reference. The implementation of an automatic reference selection method is helpful to detect the distribution of an EEG rhythm, which can improve the accuracy of EEG interpretation during both visual inspection and automatic interpretation. Copyright © 2013 IPEM

  18. Employing image processing techniques for cancer detection using microarray images.

    Science.gov (United States)

    Dehghan Khalilabad, Nastaran; Hassanpour, Hamid

    2017-02-01

    Microarray technology is a powerful genomic tool for simultaneously studying and analyzing the behavior of thousands of genes. The analysis of images obtained from this technology plays a critical role in the detection and treatment of diseases. The aim of the current study is to develop an automated system for analyzing data from microarray images in order to detect cancerous cases. The proposed system consists of three main phases, namely image processing, data mining, and the detection of the disease. The image processing phase performs operations such as refining image rotation, gridding (locating genes) and extracting raw data from images the data mining includes normalizing the extracted data and selecting the more effective genes. Finally, via the extracted data, cancerous cell is recognized. To evaluate the performance of the proposed system, microarray database is employed which includes Breast cancer, Myeloid Leukemia and Lymphomas from the Stanford Microarray Database. The results indicate that the proposed system is able to identify the type of cancer from the data set with an accuracy of 95.45%, 94.11%, and 100%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Detection of selection signatures for ear carriage in Maltese goat breed

    Directory of Open Access Journals (Sweden)

    Andrea Talenti

    2017-05-01

    Full Text Available Selection and breeding practices in goats have led to the fixation of several traits. This is probably due to the standardization of several peculiar morphological characteristics that have always been one of the major exclusion criteria of individuals from selection. Among these, ear carriage is one of the most ancient and considered a signature of domestication in several species, such as the dog, pig, sheep and goat (Boyko et al., 2010. The availability of improved genomic analyses tools for goats may provide useful information on genes involved in this trait. By studying, for example, the homozygosity decay of haplotypes (contiguous length of alleles such information can be detected. In the current study, we focused on the Maltese goat, a breed showing floppy ears, in comparison with other Italian breeds using a goat medium density SNP chip (Nicoloso et al., 2015. A total 48,767 SNP markers for 369 animals belonging to 16 breeds or populations were analyzed. Genotypes were imputed within population excluding markers without known position on the current genome assembly (ARS1, Bickhart et al., 2017. Population analysis using MDS, ADMIXTURE and fastSTRUCTURE confirmed the good differentiation among the populations. Integrated Haplotype Score (iHS, Sabeti et al., 2007 was performed for each population, comparing the regions detected on the Maltese breed with the others considered to detect genes that may be involved into shaping  ear morphology. These results may provide new insights into ear carriage phenotype by detecting genes that play a pivotal role in shaping the goat phenotypic diversity. Acknowledgement The research was funded by INNOVAGEN project.

  20. Day-ahead price forecasting of electricity markets by a new feature selection algorithm and cascaded neural network technique

    International Nuclear Information System (INIS)

    Amjady, Nima; Keynia, Farshid

    2009-01-01

    With the introduction of restructuring into the electric power industry, the price of electricity has become the focus of all activities in the power market. Electricity price forecast is key information for electricity market managers and participants. However, electricity price is a complex signal due to its non-linear, non-stationary, and time variant behavior. In spite of performed research in this area, more accurate and robust price forecast methods are still required. In this paper, a new forecast strategy is proposed for day-ahead price forecasting of electricity markets. Our forecast strategy is composed of a new two stage feature selection technique and cascaded neural networks. The proposed feature selection technique comprises modified Relief algorithm for the first stage and correlation analysis for the second stage. The modified Relief algorithm selects candidate inputs with maximum relevancy with the target variable. Then among the selected candidates, the correlation analysis eliminates redundant inputs. Selected features by the two stage feature selection technique are used for the forecast engine, which is composed of 24 consecutive forecasters. Each of these 24 forecasters is a neural network allocated to predict the price of 1 h of the next day. The whole proposed forecast strategy is examined on the Spanish and Australia's National Electricity Markets Management Company (NEMMCO) and compared with some of the most recent price forecast methods.

  1. Leak detection of complex pipelines based on the filter diagonalization method: robust technique for eigenvalue assessment

    International Nuclear Information System (INIS)

    Lay-Ekuakille, Aimé; Pariset, Carlo; Trotta, Amerigo

    2010-01-01

    The FDM (filter diagonalization method), an interesting technique used in nuclear magnetic resonance data processing for tackling FFT (fast Fourier transform) limitations, can be used by considering pipelines, especially complex configurations, as a vascular apparatus with arteries, veins, capillaries, etc. Thrombosis, which might occur in humans, can be considered as a leakage for the complex pipeline, the human vascular apparatus. The choice of eigenvalues in FDM or in spectra-based techniques is a key issue in recovering the solution of the main equation (for FDM) or frequency domain transformation (for FFT) in order to determine the accuracy in detecting leaks in pipelines. This paper deals with the possibility of improving the leak detection accuracy of the FDM technique thanks to a robust algorithm by assessing the problem of eigenvalues, making it less experimental and more analytical using Tikhonov-based regularization techniques. The paper starts from the results of previous experimental procedures carried out by the authors

  2. Detection of hepatitis A virus by the nucleic acid sequence-based amplification technique and comparison with reverse transcription-PCR.

    Science.gov (United States)

    Jean, J; Blais, B; Darveau, A; Fliss, I

    2001-12-01

    A nucleic acid sequence-based amplification (NASBA) technique for the detection of hepatitis A virus (HAV) in foods was developed and compared to the traditional reverse transcription (RT)-PCR technique. Oligonucleotide primers targeting the VP1 and VP2 genes encoding the major HAV capsid proteins were used for the amplification of viral RNA in an isothermal process resulting in the accumulation of RNA amplicons. Amplicons were detected by hybridization with a digoxigenin-labeled oligonucleotide probe in a dot blot assay format. Using the NASBA, as little as 0.4 ng of target RNA/ml was detected per comparison to 4 ng/ml for RT-PCR. When crude HAV viral lysate was used, a detection limit of 2 PFU (4 x 10(2) PFU/ml) was obtained with NASBA, compared to 50 PFU (1 x 10(4) PFU/ml) obtained with RT-PCR. No interference was encountered in the amplification of HAV RNA in the presence of excess nontarget RNA or DNA. The NASBA system successfully detected HAV recovered from experimentally inoculated samples of waste water, lettuce, and blueberries. Compared to RT-PCR and other amplification techniques, the NASBA system offers several advantages in terms of sensitivity, rapidity, and simplicity. This technique should be readily adaptable for detection of other RNA viruses in both foods and clinical samples.

  3. Intrusion detection techniques for plant-wide network in a nuclear power plant

    International Nuclear Information System (INIS)

    Rajasekhar, P.; Shrikhande, S.V.; Biswas, B.B.; Patil, R.K.

    2012-01-01

    Nuclear power plants have a lot of critical data to be sent to the operator workstations. A plant wide integrated communication network, with high throughput, determinism and redundancy, is required between the workstations and the field. Switched Ethernet network is a promising prospect for such an integrated communication network. But for such an integrated system, intrusion is a major issue. Hence the network should have an intrusion detection system to make the network data secure and enhance the network availability. Intrusion detection is the process of monitoring the events occurring in a network and analyzing them for signs of possible incidents, which are violations or imminent threats of violation of network security policies, acceptable user policies, or standard security practices. This paper states the various intrusion detection techniques and approaches which are applicable for analysis of a plant wide network. (author)

  4. Selectivity in catalytic alkyne cyclotrimerization over chromium(VI): kinetic evaluation using the characteristics of radioactive carbon-11 decay for nondisruptive ultrasensitive detection of adsorbed species

    International Nuclear Information System (INIS)

    Ferrieri, R.A.; Wolf, A.P.

    1984-01-01

    The application of carbon-11 to kinetic measurements of molecular sorption is reported using positron annihilation surface detection (PASD). The technique is nondisruptive to dynamic processes and has the sensitivity to detect 10 -8 of a monolayer. In studies of alkyne cyclomerization on silica-alumina-supported Cr(VI), a high selectivity toward p-xylene formation was observed when acetylene-propyne mixtures were cotrimerized at monolayer total alkyne coverages. This selectivity was enhanced to 84% p-xylene, as the partial acetylene coverage was reduced to 1.0% of a monolayer. Competitive sorption studies utilized PASD to measure the surface concentration of [ 11 C]-acetylene coupled with macroscopic sorption measurements of propyne. Surface displacement of sorbed acetylene by propyne was observed with subsequent readsorption. The kinetics of this displacement were evaluated by using PASD in pulse-flow studies with various acetylene and propyne coverages and were modeled to a calculation of the isomeric xylene distribution. A near-identical fit was obtained between experimental and modeled results. This strongly suggested that the observed selectivity for p-xylene formation was due to sorbate interactions resulting in a specific molecular ordering of the alkyne mixture on the catalyst surface

  5. Power analysis of QTL detection in half-sib families using selective DNA pooling

    Directory of Open Access Journals (Sweden)

    López Teresa

    2001-05-01

    Full Text Available Abstract Individual loci of economic importance (QTL can be detected by comparing the inheritance of a trait and the inheritance of loci with alleles readily identifiable by laboratory methods (genetic markers. Data on allele segregation at the individual level are costly and alternatives have been proposed that make use of allele frequencies among progeny, rather than individual genotypes. Among the factors that may affect the power of the set up, the most important are those intrinsic to the QTL: the additive effect of the QTL, and its dominance, and distance between markers and QTL. Other factors are relative to the choice of animals and markers, such as the frequency of the QTL and marker alleles among dams and sires. Data collection may affect the detection power through the size of half-sib families, selection rate within families, and the technical error incurred when estimating genetic frequencies. We present results for a sensitivity analysis for QTL detection using pools of DNA from selected half-sibs. Simulations showed that conclusive detection may be achieved with families of at least 500 half-sibs if sires are chosen on the criteria that most of their marker alleles are either both missing, or one is fixed, among dams.

  6. Detection, characterization and quantification of inorganic engineered nanomaterials: A review of techniques and methodological approaches for the analysis of complex samples

    Energy Technology Data Exchange (ETDEWEB)

    Laborda, Francisco, E-mail: flaborda@unizar.es; Bolea, Eduardo; Cepriá, Gemma; Gómez, María T.; Jiménez, María S.; Pérez-Arantegui, Josefina; Castillo, Juan R.

    2016-01-21

    The increasing demand of analytical information related to inorganic engineered nanomaterials requires the adaptation of existing techniques and methods, or the development of new ones. The challenge for the analytical sciences has been to consider the nanoparticles as a new sort of analytes, involving both chemical (composition, mass and number concentration) and physical information (e.g. size, shape, aggregation). Moreover, information about the species derived from the nanoparticles themselves and their transformations must also be supplied. Whereas techniques commonly used for nanoparticle characterization, such as light scattering techniques, show serious limitations when applied to complex samples, other well-established techniques, like electron microscopy and atomic spectrometry, can provide useful information in most cases. Furthermore, separation techniques, including flow field flow fractionation, capillary electrophoresis and hydrodynamic chromatography, are moving to the nano domain, mostly hyphenated to inductively coupled plasma mass spectrometry as element specific detector. Emerging techniques based on the detection of single nanoparticles by using ICP-MS, but also coulometry, are in their way to gain a position. Chemical sensors selective to nanoparticles are in their early stages, but they are very promising considering their portability and simplicity. Although the field is in continuous evolution, at this moment it is moving from proofs-of-concept in simple matrices to methods dealing with matrices of higher complexity and relevant analyte concentrations. To achieve this goal, sample preparation methods are essential to manage such complex situations. Apart from size fractionation methods, matrix digestion, extraction and concentration methods capable of preserving the nature of the nanoparticles are being developed. This review presents and discusses the state-of-the-art analytical techniques and sample preparation methods suitable for

  7. Detection, characterization and quantification of inorganic engineered nanomaterials: A review of techniques and methodological approaches for the analysis of complex samples

    International Nuclear Information System (INIS)

    Laborda, Francisco; Bolea, Eduardo; Cepriá, Gemma; Gómez, María T.; Jiménez, María S.; Pérez-Arantegui, Josefina; Castillo, Juan R.

    2016-01-01

    The increasing demand of analytical information related to inorganic engineered nanomaterials requires the adaptation of existing techniques and methods, or the development of new ones. The challenge for the analytical sciences has been to consider the nanoparticles as a new sort of analytes, involving both chemical (composition, mass and number concentration) and physical information (e.g. size, shape, aggregation). Moreover, information about the species derived from the nanoparticles themselves and their transformations must also be supplied. Whereas techniques commonly used for nanoparticle characterization, such as light scattering techniques, show serious limitations when applied to complex samples, other well-established techniques, like electron microscopy and atomic spectrometry, can provide useful information in most cases. Furthermore, separation techniques, including flow field flow fractionation, capillary electrophoresis and hydrodynamic chromatography, are moving to the nano domain, mostly hyphenated to inductively coupled plasma mass spectrometry as element specific detector. Emerging techniques based on the detection of single nanoparticles by using ICP-MS, but also coulometry, are in their way to gain a position. Chemical sensors selective to nanoparticles are in their early stages, but they are very promising considering their portability and simplicity. Although the field is in continuous evolution, at this moment it is moving from proofs-of-concept in simple matrices to methods dealing with matrices of higher complexity and relevant analyte concentrations. To achieve this goal, sample preparation methods are essential to manage such complex situations. Apart from size fractionation methods, matrix digestion, extraction and concentration methods capable of preserving the nature of the nanoparticles are being developed. This review presents and discusses the state-of-the-art analytical techniques and sample preparation methods suitable for

  8. Biomolecule-free, selective detection of o-diphenol and its derivatives with WS2/TiO2-based photoelectrochemical platform.

    Science.gov (United States)

    Ma, Weiguang; Wang, Lingnan; Zhang, Nan; Han, Dongxue; Dong, Xiandui; Niu, Li

    2015-01-01

    Herein, a novel photoelectrochemical platform with WS2/TiO2 composites as optoelectronic materials was designed for selective detection of o-diphenol and its derivatives without any biomolecule auxiliary. First, catechol was chosen as a model compound for the discrimination from resorcinol and hydroquinone; then several o-diphenol derivatives such as dopamine, caffeic acid, and catechin were also detected by employing this proposed photoelectrochemical sensor. Finally, the mechanism of such a selective detection has been elaborately explored. The excellent selectivity and high sensitivity should be attributed to two aspects: (i) chelate effect of adjacent double oxygen atoms in the o-diphenol with the Ti(IV) surface site to form a five/six-atom ring structure, which is considered as the key point for distinction and selective detection. (ii) This selected WS2/TiO2 composites with proper band level between WS2 and TiO2, which could make the photogenerated electron and hole easily separated and results in great improvement of sensitivity. By employing such a photoelectrochemical platform, practical samples including commercial clinic drugs and human urine samples have been successfully performed for dopamine detection. This biomolecule-free WS2/TiO2 based photoelectrochemical platform demonstrates excellent stability, reproducibility, remarkably convenient, and cost-effective advantages, as well as low detection limit (e.g., 0.32 μmol L(-1) for dopamine). It holds great promise to be applied for detection of o-diphenol kind species in environment and food fields.

  9. Methods and techniques of detecting petroleum-polluted water. Metody i tekhnika obnaruzheniya neftyanykh zagroyaznenii vod

    Energy Technology Data Exchange (ETDEWEB)

    Bogorodskii, V V; Kropotkin, M A; Sheveleva, T Yu

    1975-01-01

    The booklet presents physical principles and techniques of contact and remote sensing of oil pollution. Different methods and their practical possibilities are discussed. The possibility of application of remote CO/sub 2/-laser radar technique for the detection of oil pollution is considered. The booklet may be useful for specialists in oceanology, oceanic physics, meteorology, and in remote physical methods for environmental studies.

  10. Optimizing detectability

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    HPLC is useful for trace and ultratrace analyses of a variety of compounds. For most applications, HPLC is useful for determinations in the nanogram-to-microgram range; however, detection limits of a picogram or less have been demonstrated in certain cases. These determinations require state-of-the-art capability; several examples of such determinations are provided in this chapter. As mentioned before, to detect and/or analyze low quantities of a given analyte at submicrogram or ultratrace levels, it is necessary to optimize the whole separation system, including the quantity and type of sample, sample preparation, HPLC equipment, chromatographic conditions (including column), choice of detector, and quantitation techniques. A limited discussion is provided here for optimization based on theoretical considerations, chromatographic conditions, detector selection, and miscellaneous approaches to detectability optimization. 59 refs

  11. Selective detection of viable seed-borne Acidovorax citrulli by real-time PCR with propidium monoazide.

    Science.gov (United States)

    Tian, Qian; Feng, Jian-Jun; Hu, Jie; Zhao, Wen-Jun

    2016-10-14

    In recent years, use of the DNA-intercalating dye propidium monoazide (PMA) in real-time PCR has been reported as a novel method to detect viable bacteria in different types of samples, such as food, environmental, and microbiological samples. In this study, viable cells of Acidovorax citrulli, the causal agent of bacterial seedling blight and fruit blotch, were selectively detected and differentiated from dead cells by real-time fluorescent polymerase chain reaction amplification after the bacterial solution was treated with the DNA-binding dye PMA. The primers and TaqMan probe were based on the A. citrulli genome (Aave_1909, Gene ID: 4669443) and were highly specific for A. citrulli. The detection threshold of this assay was 10 3 colony-forming units per mL (CFU/mL) in pure cell suspensions containing viable and dead cells and infected watermelon seeds. Application of this assay enables the selective detection of viable cells of A. citrulli and facilitates monitoring of the pathogen in watermelon and melon seeds.

  12. Temperature modulation and quadrature detection for selective titration of two-state exchanging reactants.

    Science.gov (United States)

    Zrelli, K; Barilero, T; Cavatore, E; Berthoumieux, H; Le Saux, T; Croquette, V; Lemarchand, A; Gosse, C; Jullien, L

    2011-04-01

    Biological samples exhibit huge molecular diversity over large concentration ranges. Titrating a given compound in such mixtures is often difficult, and innovative strategies emphasizing selectivity are thus demanded. To overcome limitations inherent to thermodynamics, we here present a generic technique where discrimination relies on the dynamics of interaction between the target of interest and a probe introduced in excess. Considering an ensemble of two-state exchanging reactants submitted to temperature modulation, we first demonstrate that the amplitude of the out-of-phase concentration oscillations is maximum for every compound involved in a reaction whose equilibrium constant is equal to unity and whose relaxation time is equal to the inverse of the excitation angular frequency. Taking advantage of this feature, we next devise a highly specific detection protocol and validate it using a microfabricated resistive heater and an epifluorescence microscope, as well as labeled oligonucleotides to model species displaying various dynamic properties. As expected, quantification of a sought for strand is obtained even if interfering reagents are present in similar amounts. Moreover, our approach does not require any separation and is compatible with imaging. It could then benefit some of the numerous binding assays performed every day in life sciences.

  13. Localization of proteins in paint cross-sections by scanning electrochemical microscopy as an alternative immunochemical detection technique

    Energy Technology Data Exchange (ETDEWEB)

    Sciutto, Giorgia; Prati, Silvia [Microchemistry and Microscopy Art Diagnostic Laboratory, University of Bologna, Via Guaccimanni 42, Ravenna 48121 (Italy); Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi, Bologna 2 40126 (Italy); Mazzeo, Rocco, E-mail: rocco.mazzeo@unibo.it [Microchemistry and Microscopy Art Diagnostic Laboratory, University of Bologna, Via Guaccimanni 42, Ravenna 48121 (Italy); Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi, Bologna 2 40126 (Italy); Zangheri, Martina; Roda, Aldo; Bardini, Luca; Valenti, Giovanni; Rapino, Stefania [Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi, Bologna 2 40126 (Italy); Marcaccio, Massimo, E-mail: massimo.marcaccio@unibo.it [Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi, Bologna 2 40126 (Italy)

    2014-06-01

    Highlights: • Advanced immuno-electrochemical detection of proteins in paint samples by SECM. • Analysis performed directly on cross-section with high spatial resolution. • Identification of HRP catalytic activity for a selective location of analyte. • Satisfactory results were obtained for aged real samples. • The way forward for an extensive application of SECM in conservation science is shown. - Abstract: The qualitative identification of proteinaceous substances, as well as their location within a complex paint stratigraphy, is one of the most challenging issues in the characterization of painting materials. Nevertheless, information on paint components represent a crucial task for studies concerning both the ancient painting techniques adopted and the state of conservation, being fundamental investigations for the selection of appropriate conservation actions. The present research was aimed at developing a new detection approach for the immunochemical localization of ovalbumin in paint cross-sections based on the use of scanning electrochemical microscopy (SECM). The immunochemical analyses were performed using an anti-ovalbumin primary antibody and a secondary antibody labelled with horseradish peroxidase (HRP). SECM measurements were performed in feedback mode using benzoquinone (BQ)/hydroquinone (H{sub 2}Q) redox couple. In presence of hydrogen peroxide (H{sub 2}O{sub 2}), HRP catalyzes the re-oxidation of H{sub 2}Q to BQ and the increment of BQ concentration in correspondence of the target protein was detected by SECM through the electrochemical reduction of the regenerated BQ at the microelectrode. Indeed, the localization of ovalbumin was possible thanks to a clear discrimination of SECM currents, achieved by the comparison of the measurements recorded before and after H{sub 2}O{sub 2} administration, based on the HRP on/off approach. The method was evaluated both on samples from standard mocks-up and on a historical sample, collected from a

  14. Development of a selective agar plate for the detection of Campylobacter spp. in fresh produce.

    Science.gov (United States)

    Yoo, Jin-Hee; Choi, Na-Young; Bae, Young-Min; Lee, Jung-Su; Lee, Sun-Young

    2014-10-17

    This study was conducted to develop a selective medium for the detection of Campylobacter spp. in fresh produce. Campylobacter spp. (n=4), non-Campylobacter (showing positive results on Campylobacter selective agar) strains (n=49) isolated from fresh produce, indicator bacteria (n=13), and spoilage bacteria isolated from fresh produce (n=15) were plated on four Campylobacter selective media. Bolton agar and modified charcoal cefoperazone deoxycholate agar (mCCDA) exhibited higher sensitivity for Campylobacter spp. than did Preston agar and Hunt agar, although certain non-Campylobacter strains isolated from fresh produce by using a selective agar isolation method, were still able to grow on Bolton agar and mCCDA. To inhibit the growth of non-Campylobacter strains, Bolton agar and mCCDA were supplemented with 5 antibiotics (rifampicin, polymyxin B, sodium metabisulfite, sodium pyruvate, ferrous sulfate) and the growth of Campylobacter spp. (n=7) and non-Campylobacter strains (n=44) was evaluated. Although Bolton agar supplemented with rifampicin (BR agar) exhibited a higher selectivity for Campylobacter spp. than did mCCDA supplemented with antibiotics, certain non-Campylobacter strains were still able to grow on BR agar (18.8%). When BR agar with various concentrations of sulfamethoxazole-trimethoprim were tested with Campylobacter spp. (n=8) and non-Campylobacter (n=7), sulfamethoxazole-trimethoprim was inhibitory against 3 of 7 non-Campylobacter strains. Finally, we validated the use of BR agar containing 50mg/L sulfamethoxazole (BRS agar) or 0.5mg/L ciprofloxacin (BRCS agar) and other selective agars for the detection of Campylobacter spp. in chicken and fresh produce. All chicken samples were positive for Campylobacter spp. when tested on mCCDA, BR agar, and BRS agar. In fresh produce samples, BRS agar exhibited the highest selectivity for Campylobacter spp., demonstrating its suitability for the detection of Campylobacter spp. in fresh produce. Copyright

  15. Cell Phone Detection Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, Richard M.; Bunch, Kyle J.; Puzycki, David J.; Slaugh, Ryan W.; Good, Morris S.; McMakin, Douglas L.

    2007-10-01

    A team composed of Rick Pratt, Dave Puczyki, Kyle Bunch, Ryan Slaugh, Morris Good, and Doug McMakin teamed together to attempt to exploit cellular telephone features and detect if a person was carrying a cellular telephone into a Limited Area. The cell phone’s electromagnetic properties were measured, analyzed, and tested in over 10 different ways to determine if an exploitable signature exists. The method that appears to have the most potential for success without adding an external tag is to measure the RF spectrum, not in the cell phone band, but between 240 and 400MHz. Figures 1- 7 show the detected signal levels from cell phones from three different manufacturers.

  16. Microfluidic Chip-based Nucleic Acid Testing using Gingival Crevicular Fluid as a New Technique for Detecting HIV-1 Infection

    Directory of Open Access Journals (Sweden)

    Alex Willyandre

    2013-05-01

    Full Text Available Transmission of HIV-1 infection by individuals in window period who are tested negative in conventional HIV-1 detection would pose the community with serious problems. Several diagnostic tools require specific labora-tory equipment, perfect timing of diagnosis, antibody to HIV-1, and invasive technique to get sample for examination, until high amount of time to process the sample as well as accessibility of remote areas. Many attempts have been made to solve those problems to come to a new detection technique. This review aims to give information about the current development technique for detection of HIV infection. Microfluidic Chip-based Nucleic Acid Testing is currently introduced for detection of HIV-1 infection. This review also cover the possible usage of gingival crevicular fluid as sample specimen that could be taken noninvasively from the individual.DOI: 10.14693/jdi.v18i2.63

  17. Techniques of biomolecular quantification through AMS detection of radiocarbon

    International Nuclear Information System (INIS)

    Vogel, S.J.; Turteltaub, K.W.; Frantz, C.; Felton, J.S.; Gledhill, B.L.

    1992-01-01

    Accelerator mass spectrometry offers a large gain over scintillation counting in sensitivity for detecting radiocarbon in biomolecular tracing. Application of this sensitivity requires new considerations of procedures to extract or isolate the carbon fraction to be quantified, to inventory all carbon in the sample, to prepare graphite from the sample for use in the spectrometer, and to derive a meaningful quantification from the measured isotope ratio. These procedures need to be accomplished without contaminating the sample with radiocarbon, which may be ubiquitous in laboratories and on equipment previously used for higher dose, scintillation experiments. Disposable equipment, materials and surfaces are used to control these contaminations. Quantification of attomole amounts of labeled substances are possible through these techniques

  18. NO{sub 2} detection by DFWM and LITGS techniques

    Energy Technology Data Exchange (ETDEWEB)

    Fantoni, Roberta; Giorgi, Mariano [ENEA, Centro Ricerche Frascati, Rome (Italy). Dipt. Innovazione; De Dominicis, Luigi

    1997-03-01

    Laser-induced grating techniques indicated as D.F.W.M. (Degenerate Four Wave Mixing) and L.I.T.G.S. (Laser Induced Thermal Grating Spectroscopy) have been developed in different geometries in order to detect small concentration of nitric oxide in a broad pressure and temperature range. NO{sub 2} spectra in the Douglas-Huber band originating from the {sup 2} B{sub 1} (k` = 0) - {sup 2} A{sub 1} (k` = 1) transition have been measured at low and high resolution. The role played by population and thermal gratings has been investigated in various experimental conditions upon addition of buffer gases in calibration cells at room temperature and on heated samples.

  19. Determining Plutonium Mass in Spent Fuel with Nondestructive Assay Techniques -- Preliminary Modeling Results Emphasizing Integration among Techniques

    International Nuclear Information System (INIS)

    Tobin, S.J.; Fensin, M.L.; Ludewigt, B.A.; Menlove, H.O.; Quiter, B.J.; Sandoval, N.P.; Swinhoe, M.T.; Thompson, S.J.

    2009-01-01

    There are a variety of motivations for quantifying Pu in spent (used) fuel assemblies by means of nondestructive assay (NDA) including the following: strengthen the capabilities of the International Atomic Energy Agencies to safeguards nuclear facilities, quantifying shipper/receiver difference, determining the input accountability value at reprocessing facilities and providing quantitative input to burnup credit determination for repositories. For the purpose of determining the Pu mass in spent fuel assemblies, twelve NDA techniques were identified that provide information about the composition of an assembly. A key point motivating the present research path is the realization that none of these techniques, in isolation, is capable of both (1) quantifying the elemental Pu mass of an assembly and (2) detecting the diversion of a significant number of pins. As such, the focus of this work is determining how to best integrate 2 or 3 techniques into a system that can quantify elemental Pu and to assess how well this system can detect material diversion. Furthermore, it is important economically to down-select among the various techniques before advancing to the experimental phase. In order to achieve this dual goal of integration and down-selection, a Monte Carlo library of PWR assemblies was created and is described in another paper at Global 2009 (Fensin et al.). The research presented here emphasizes integration among techniques. An overview of a five year research plan starting in 2009 is given. Preliminary modeling results for the Monte Carlo assembly library are presented for 3 NDA techniques: Delayed Neutrons, Differential Die-Away, and Nuclear Resonance Fluorescence. As part of the focus on integration, the concept of 'Pu isotopic correlation' is discussed and the role of cooling time determination.

  20. Development of neutron interrogation techniques for detection of hazardous substances in containers port

    International Nuclear Information System (INIS)

    D’Amico, N. M. B; Mayer, R.E; Tartaglione, A.

    2013-01-01

    This work is aimed at contributing to the effort of nations seeking to control international borders movement of dangerous chemical substances and nuclear material, in accordance with a multitude of agreements signed to that purpose. At this stage, we try to identify the signature of pure substances: chlorine (Cl), nitrogen (N), chromium (Cr), mercury (Hg), cadmium (Cd), uranium (U) y arsenic (As) and, later, to detect their presence in simulated large cargo containers. The technique employed in previous and in current work, consists in the detection of prompt and early decay gammas induced by incident thermal neutrons or fast neutrons thermalized in the cargo array. Uranium has also been detected through the counting of fast neutrons originated in induced fissions. (author)

  1. Detection of Moving Targets Based on Doppler Spectrum Analysis Technique for Passive Coherent Radar

    Directory of Open Access Journals (Sweden)

    Zhao Yao-dong

    2013-06-01

    Full Text Available A novel method of moving targets detection taking Doppler spectrum analysis technique for Passive Coherent Radar (PCR is provided. After dividing the receiving signals into segments as pulse series, it utilizes the technique of pulse compress and Doppler processing to detect and locate the targets. Based on the algorithm for Pulse-Doppler (PD radar, the equipollence between continuous and pulsed wave in match filtering is proved and details of this method are introduced. To compare it with the traditional method of Cross-Ambiguity Function (CAF calculation, the relationship and mathematical modes of them are analyzed, with some suggestions on parameters choosing. With little influence to the gain of targets, the method can greatly promote the processing efficiency. The validity of the proposed method is demonstrated by offline processing real collected data sets and simulation results.

  2. On resilience studies of system detection and recovery techniques against stealthy insider attacks

    Science.gov (United States)

    Wei, Sixiao; Zhang, Hanlin; Chen, Genshe; Shen, Dan; Yu, Wei; Pham, Khanh D.; Blasch, Erik P.; Cruz, Jose B.

    2016-05-01

    With the explosive growth of network technologies, insider attacks have become a major concern to business operations that largely rely on computer networks. To better detect insider attacks that marginally manipulate network traffic over time, and to recover the system from attacks, in this paper we implement a temporal-based detection scheme using the sequential hypothesis testing technique. Two hypothetical states are considered: the null hypothesis that the collected information is from benign historical traffic and the alternative hypothesis that the network is under attack. The objective of such a detection scheme is to recognize the change within the shortest time by comparing the two defined hypotheses. In addition, once the attack is detected, a server migration-based system recovery scheme can be triggered to recover the system to the state prior to the attack. To understand mitigation of insider attacks, a multi-functional web display of the detection analysis was developed for real-time analytic. Experiments using real-world traffic traces evaluate the effectiveness of Detection System and Recovery (DeSyAR) scheme. The evaluation data validates the detection scheme based on sequential hypothesis testing and the server migration-based system recovery scheme can perform well in effectively detecting insider attacks and recovering the system under attack.

  3. Hlaallele Detection Using Molecular Techniques

    Directory of Open Access Journals (Sweden)

    Philip A. Dyer

    1993-01-01

    Full Text Available There are now many molecular biological techniques available to define HLA class I and class II alleles. Some of these are also applicable to other human polymorphic genes, in particular to those non-HLA genes encoded within the Mhc. The range of techniques available allows laboratories to choose those most suited to their purpose. The routine laboratory supporting solid organ transplants will need to type large numbers of potential recipients over a period of time, probably using PCR-SSOP while donors will be typed singly and rapidly using PCR-SSP with HLA allele compatibility determined by heteroduplex analysis. Laboratories supporting bone marrow transplantation, where time is less pressing, can choose from the whole range of techniques to determine accurately donor recipient Mhc compatibility. For disease studies, techniques defining precise HLA allele sequence polymorphisms are needed and high sample numbers have to be accommodated. When an association is established allele sequencing has to be used. In the near future, the precise role of HLA alleles in transplantation and disease susceptibility is likely to be established unambiguously.

  4. Development of ultrasonic inspection technique for crack detection in retaining rings

    International Nuclear Information System (INIS)

    Brook, M.V.

    1990-01-01

    The majority of retaining rings which are currently in service, are composed of a material which is susceptible to stress corrosion when exposed to moisture. Due to the inherent stress levels in the shrunk-on areas, they are particularly susceptible to stress corrosion attack. Therefore, retaining rings require non-destructive examination to avert catastrophic failure. Guidelines for retaining ring inspection issued by EPRI recommend ultrasonic manual and automated methods of inspection for rings in place. Application of the conventional manual method, using S-waves is difficult, and yields unreliable results. Due to the unreliability factor, utilities have been forced to depend upon surface examination methods, such as visual and penetrant techniques. In most instances, a surface exam will necessitate the costly and potentially damaging removal of the rings from the rotor to provide full access to areas of interest. Due to the various complexities of conventional ultrasonic retaining ring inspections, it is essential that the front end ultrasonics (i.e., transducers and techniques) be optimized to produce the best possible examination. For this reason, AMDATA has developed custom transducers and techniques to enhance automated detection capability of flaws in the various suspect areas of retaining rings. When the optimized techniques are applied to generate the best possible raw data, the Intraspect /98 trademark is then used to reliably apply technique, acquire the data and perform post processing evaluations. One of the most promising ultrasonic techniques for retaining ring inspection is creeping waves. This paper investigates the use of creeping waves for retaining ring inspection

  5. Comparison of different diagnostic techniques for the detection of cryptosporidiosis in bovines

    Directory of Open Access Journals (Sweden)

    H. K. M. Rekha

    2016-02-01

    Full Text Available Aim: Aim of the present study was to compare different methods, viz., Sheather’s sugar flotation (SSF, Ziehl-Neelsen (ZN, Kinyoun’s acid-fast method (KAF, safranin-methylene blue staining (SMB, and negative staining techniques such as nigrosin staining, light green staining, and malachite green staining for the detection of Cryptosporidium spp. oocysts in bovines. Materials and Methods: A total of 455 fecal samples from bovines were collected from private, government farms and from the clinical cases presented to Department of Medicine, Veterinary College, Bengaluru. They were subjected for SSF, ZN, KAF, SMB and negative staining methods. Results: Out of 455 animal fecal samples screened 5.71% were found positive for Cryptosporidium spp. oocysts. The species were identified as Cryptosporidium parvum in calves and Cryptosporidium andersoni in adults based on the morphological characterization and micrometry of the oocysts. Conclusions: Of all the techniques, fecal flotation with sheather’s was found to be more specific and sensitive method for the detection of Cryptosporidium spp. oocysts. Among the conventional staining methods, the SMB gives better differentiation between oocysts and yeast. Among the three negative staining methods, malachite green was found sensitive over the other methods.

  6. Development of safety analysis and constraint detection techniques for process interaction errors

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Chin-Feng, E-mail: csfanc@saturn.yzu.edu.tw [Computer Science and Engineering Dept., Yuan-Ze University, Taiwan (China); Tsai, Shang-Lin; Tseng, Wan-Hui [Computer Science and Engineering Dept., Yuan-Ze University, Taiwan (China)

    2011-02-15

    Among the new failure modes introduced by computer into safety systems, the process interaction error is the most unpredictable and complicated failure mode, which may cause disastrous consequences. This paper presents safety analysis and constraint detection techniques for process interaction errors among hardware, software, and human processes. Among interaction errors, the most dreadful ones are those that involve run-time misinterpretation from a logic process. We call them the 'semantic interaction errors'. Such abnormal interaction is not adequately emphasized in current research. In our static analysis, we provide a fault tree template focusing on semantic interaction errors by checking conflicting pre-conditions and post-conditions among interacting processes. Thus, far-fetched, but highly risky, interaction scenarios involve interpretation errors can be identified. For run-time monitoring, a range of constraint types is proposed for checking abnormal signs at run time. We extend current constraints to a broader relational level and a global level, considering process/device dependencies and physical conservation rules in order to detect process interaction errors. The proposed techniques can reduce abnormal interactions; they can also be used to assist in safety-case construction.

  7. Development of safety analysis and constraint detection techniques for process interaction errors

    International Nuclear Information System (INIS)

    Fan, Chin-Feng; Tsai, Shang-Lin; Tseng, Wan-Hui

    2011-01-01

    Among the new failure modes introduced by computer into safety systems, the process interaction error is the most unpredictable and complicated failure mode, which may cause disastrous consequences. This paper presents safety analysis and constraint detection techniques for process interaction errors among hardware, software, and human processes. Among interaction errors, the most dreadful ones are those that involve run-time misinterpretation from a logic process. We call them the 'semantic interaction errors'. Such abnormal interaction is not adequately emphasized in current research. In our static analysis, we provide a fault tree template focusing on semantic interaction errors by checking conflicting pre-conditions and post-conditions among interacting processes. Thus, far-fetched, but highly risky, interaction scenarios involve interpretation errors can be identified. For run-time monitoring, a range of constraint types is proposed for checking abnormal signs at run time. We extend current constraints to a broader relational level and a global level, considering process/device dependencies and physical conservation rules in order to detect process interaction errors. The proposed techniques can reduce abnormal interactions; they can also be used to assist in safety-case construction.

  8. Ground Receiving Station Reference Pair Selection Technique for a Minimum Configuration 3D Emitter Position Estimation Multilateration System

    Directory of Open Access Journals (Sweden)

    Abdulmalik Shehu Yaro

    2017-01-01

    Full Text Available Multilateration estimates aircraft position using the Time Difference Of Arrival (TDOA with a lateration algorithm. The Position Estimation (PE accuracy of the lateration algorithm depends on several factors which are the TDOA estimation error, the lateration algorithm approach, the number of deployed GRSs and the selection of the GRS reference used for the PE process. Using the minimum number of GRSs for 3D emitter PE, a technique based on the condition number calculation is proposed to select the suitable GRS reference pair for improving the accuracy of the PE using the lateration algorithm. Validation of the proposed technique was performed with the GRSs in the square and triangular GRS configuration. For the selected emitter positions, the result shows that the proposed technique can be used to select the suitable GRS reference pair for the PE process. A unity condition number is achieved for GRS pair most suitable for the PE process. Monte Carlo simulation result, in comparison with the fixed GRS reference pair lateration algorithm, shows a reduction in PE error of at least 70% for both GRS in the square and triangular configuration.

  9. Selective detection of heavy metal ions by calixarene-based fluorescent molecular sensors

    Science.gov (United States)

    Zhang, Haitao; Faye, Djibril; Zhang, Han; Lefevre, Jean-Pierre; Delaire, J. A.; Leray, Isabelle

    2012-06-01

    The synthesis, spectroscopic characterization and complexing properties of calixarene-based fluorescent sensors are reported. The calixarene bearing four dansyl fluorophores (Calix-DANS4) exhibits a very high affinity for the detection of lead. A fluorimetric micro-device based on the use of a Y-shape microchannel was developed and allows lead detection with a 5 ppb detection limit. For mercury detection, a fluorescent molecular sensor containing a calixarene anchored with four 8-quinolinoloxy groups (Calix-Q) has been synthesized. The absorption and fluorescence spectra of this sensor are sensitive to the presence of metal cations. An efficient fluorescence quenching is observed upon mercury complexation because of a photoinduced electron transfer from the fluorophore to the bound mercury. Calix-Q shows a high selectivity towards Hg2+ over interfering cations (Na+, K+, Ca2+, Cu2+, Zn2+, Cd2+ and Pb2+) and a 70 ppb sensitivity.

  10. A highly sensitive and selective fluorescent sensor for detection of sulfide anion based on the steric hindrance effect

    Science.gov (United States)

    Chen, Guanfan; Tang, Mengzhuo; Fu, Xiufang; Cheng, Fenmin; Zou, Xianghua; Wang, Jingpei; Zeng, Rongjin

    2018-01-01

    Sulfide anions are not only generated as a byproduct from industrial processes but also as a crucial kind of element in biological systems. Therefore, fluorescent probes for detecting sulfide anion with sensitive and selective characters are highly popular. In this study, we report a highly sensitive and selective fluorescent sensor M1 for detection of sulfide anion based on the steric hindrance effect, where the recognition unit, dinitrobenzenesulfonate ester group is linked to aromatic ortho-position in the porphyrin, and correspondingly the fluorescence of fluorescein is efficiently quenched. Compared with the sensors with recognition unit linked to the other aromatic positions, the fluorescent sensor M1 has a lower fluorescence background. Furthermore, the corresponding fluorescence responses (F/F0) of M1 for mercapto amino-acid GSH, Hcy and Cys, were all far lower than the relative fluorescence ratio F/F0 values for S2-. It means that M1 is sensitive and selective to detection of S2-, and has an anti-disturbance ability to the biologically-relevant thiols, GSH, Hcy and Cys, and has the prospect of application in the exact detection of sulfide anions in living organisms. This approach offers some useful insights for realizing sensitive and selective fluorescent turn-on sensing in the detection assays for other analytes.

  11. Detection and identification of explosives and illicit drugs using neutron based techniques

    International Nuclear Information System (INIS)

    Papp, A.; Csikai, J.; Debrecen University,

    2011-01-01

    Some methods developed in collaboration between the ATOMKI and IEP for bulk hydrogen analysis and for the detection and identification of illicit drugs are presented. Advantages and limitations of neutron techniques (reflection, transmission, elastic and inelastic scatterings, leakage spectra and angular yields of Be(d,n), Pu-Be, D-D, D-T and 252 Cf neutrons transmitted from thick samples, effects of hidden materials) are discussed. (author)

  12. Performance effects of nicotine during selective attention, divided attention, and simple stimulus detection: an fMRI study.

    Science.gov (United States)

    Hahn, Britta; Ross, Thomas J; Wolkenberg, Frank A; Shakleya, Diaa M; Huestis, Marilyn A; Stein, Elliot A

    2009-09-01

    Attention-enhancing effects of nicotine appear to depend on the nature of the attentional function. Underlying neuroanatomical mechanisms, too, may vary depending on the function modulated. This functional magnetic resonance imaging study recorded blood oxygen level-dependent (BOLD) activity in minimally deprived smokers during tasks of simple stimulus detection, selective attention, or divided attention after single-blind application of a transdermal nicotine (21 mg) or placebo patch. Smokers' performance in the placebo condition was unimpaired as compared with matched nonsmokers. Nicotine reduced reaction time (RT) in the stimulus detection and selective attention but not divided attention condition. Across all task conditions, nicotine reduced activation in frontal, temporal, thalamic, and visual regions and enhanced deactivation in so-called "default" regions. Thalamic effects correlated with RT reduction selectively during stimulus detection. An interaction with task condition was observed in middle and superior frontal gyri, where nicotine reduced activation only during stimulus detection. A visuomotor control experiment provided evidence against nonspecific effects of nicotine. In conclusion, although prefrontal activity partly displayed differential modulation by nicotine, most BOLD effects were identical across tasks, despite differential performance effects, suggesting that common neuronal mechanisms can selectively benefit different attentional functions. Overall, the effects of nicotine may be explained by increased functional efficiency and downregulated task-independent "default" functions.

  13. Selective and sensitive detection of chromium(VI) in waters using electrospray ionization mass spectrometry.

    Science.gov (United States)

    Weldy, Effie; Wolff, Chloe; Miao, Zhixin; Chen, Hao

    2013-09-01

    From 2000 through 2011, there were 14 criminal cases of violations of the Clean Water Act involving the discharge of chromium, a toxic heavy metal, into drinking and surface water sources. As chromium(VI), a potential carcinogen present in the environment, represents a significant safety concern, it is currently the subject of an EPA health risk assessment. Therefore, sensitive and selective detection of this species is highly desired. This study reports the analysis of chromium(VI) in water samples by electrospray ionization mass spectrometry (ESI-MS) following its reduction and complexation with ammonium pyrrolidinedithiocarbamate (APDC). The reduction and subsequent complexation produce a characteristic [Cr(III)O]-PDC complex which can be detected as a protonated ion of m/z 507 in the positive ion mode. The detection is selective to chromium(VI) under acidic pH, even in the presence of chromium(III) and other metal ions, providing high specificity. Different water samples were examined, including deionized, tap, and river waters, and sensitive detection was achieved. In the case of deionized water, quantification over the concentration range of 3.7 to 148ppb gave an excellent correlation coefficient of 0.9904 using the enhanced MS mode scan. Using the single-reaction monitoring (SRM) mode (monitoring the characteristic fragmentation of m/z 507 to m/z 360), the limit of detection (LOD) was found to be 0.25ppb. The LOD of chromium(VI) for both tap and river water samples was determined to be 2.0ppb. A preconcentration strategy using simple vacuum evaporation of the aqueous sample was shown to further improve the ESI signal by 15 fold. This method, with high sensitivity and selectivity, should provide a timely solution for the real-world analysis of toxic chromium(VI). Copyright © 2012 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.

  14. Selective electrochemical detection of dopamine in a microfluidic channel on carbon nanoparticulate electrodes.

    Science.gov (United States)

    Rozniecka, Ewa; Jonsson-Niedziolka, Martin; Celebanska, Anna; Niedziolka-Jonsson, Joanna; Opallo, Marcin

    2014-06-07

    There is a continuous need for the construction of detection systems in microfluidic devices. In particular, electrochemical detection allows the separation of signals from the analyte and interfering substances in the potential domain. Here, a simple microfluidic device for the sensitive and selective determination of dopamine in the presence of interfering substances was constructed and tested. It employs a carbon nanoparticulate electrode allowing the separation of voltammetric signals of dopamine and common interfering substances (ascorbic acid and acetaminophen) both in quiescent conditions and in flow due to the electrocatalytic effect. These voltammograms were also successfully simulated. The limit of detection of dopamine detected by square wave voltammetry in 1 mM solutions of interfering substances in phosphate buffered saline is about 100 nM. In human serum a clear voltammetric signal could be seen for a 200 nM solution, sufficient to detect dopamine in the cerebral fluid. Flow injection analysis allows a decrease in the limit of detection down to 3.5 nM.

  15. Obscured AGN at z ~ 1 from the zCOSMOS-Bright Survey. I. Selection and optical properties of a [Ne v]-selected sample

    Science.gov (United States)

    Mignoli, M.; Vignali, C.; Gilli, R.; Comastri, A.; Zamorani, G.; Bolzonella, M.; Bongiorno, A.; Lamareille, F.; Nair, P.; Pozzetti, L.; Lilly, S. J.; Carollo, C. M.; Contini, T.; Kneib, J.-P.; Le Fèvre, O.; Mainieri, V.; Renzini, A.; Scodeggio, M.; Bardelli, S.; Caputi, K.; Cucciati, O.; de la Torre, S.; de Ravel, L.; Franzetti, P.; Garilli, B.; Iovino, A.; Kampczyk, P.; Knobel, C.; Kovač, K.; Le Borgne, J.-F.; Le Brun, V.; Maier, C.; Pellò, R.; Peng, Y.; Perez Montero, E.; Presotto, V.; Silverman, J. D.; Tanaka, M.; Tasca, L.; Tresse, L.; Vergani, D.; Zucca, E.; Bordoloi, R.; Cappi, A.; Cimatti, A.; Koekemoer, A. M.; McCracken, H. J.; Moresco, M.; Welikala, N.

    2013-08-01

    Aims: The application of multi-wavelength selection techniques is essential for obtaining a complete and unbiased census of active galactic nuclei (AGN). We present here a method for selecting z ~ 1 obscured AGN from optical spectroscopic surveys. Methods: A sample of 94 narrow-line AGN with 0.65 advantage of the large amount of data available in the COSMOS field, the properties of the [Ne v]-selected type 2 AGN were investigated, focusing on their host galaxies, X-ray emission, and optical line-flux ratios. Finally, a previously developed diagnostic, based on the X-ray-to-[Ne v] luminosity ratio, was exploited to search for the more heavily obscured AGN. Results: We found that [Ne v]-selected narrow-line AGN have Seyfert 2-like optical spectra, although their emission line ratios are diluted by a star-forming component. The ACS morphologies and stellar component in the optical spectra indicate a preference for our type 2 AGN to be hosted in early-type spirals with stellar masses greater than 109.5 - 10 M⊙, on average higher than those of the galaxy parent sample. The fraction of galaxies hosting [Ne v]-selected obscured AGN increases with the stellar mass, reaching a maximum of about 3% at ≈2 × 1011 M⊙. A comparison with other selection techniques at z ~ 1, namely the line-ratio diagnostics and X-ray detections, shows that the detection of the [Ne v] λ3426 line is an effective method for selecting AGN in the optical band, in particular the most heavily obscured ones, but cannot provide a complete census of type 2 AGN by itself. Finally, the high fraction of [Ne v]-selected type 2 AGN not detected in medium-deep (≈100-200 ks) Chandra observations (67%) is suggestive of the inclusion of Compton-thick (i.e., with NH > 1024 cm-2) sources in our sample. The presence of a population of heavily obscured AGN is corroborated by the X-ray-to-[Ne v] ratio; we estimated, by means of an X-ray stacking technique and simulations, that the Compton-thick fraction in our

  16. Analysis of various NDT techniques to determine their feasibility for detecting thin layers of ferrite on Type 316 stainless steel

    International Nuclear Information System (INIS)

    Dudder, G.B.; Atteridge, D.G.; Davis, T.J.

    1978-09-01

    The applicability of various NDT techniques for detecting thin layers of ferrite on Type 316 stainless steel cladding was studied. The ability to detect sodium-induced ferrite layers on fuel pins would allow an experimental determination of the fuel pin temperature distribution. The research effort was broken down into three basic sections. Phase one consisted of a theoretical determination of the ferrite detection potential of each of the propsed NDT techniques. The second phase consisted of proof-of-principle experiments on the techniques that passed phase one. The third phase consisted of in-hot cell testing on actual EBR-II fuel pins. Most of the candidate techniques were eliminated in the first phase of analysis. Four potential techniques passed the initial phase of analysis but only three of these passed the second analysis phase. The three techniques that passed the proof-of-principle section of analysis were heat tinting, magnetic force and electromagnetic techniques. The electromagnetic technique was successfully demonstrated on actual fuel pins irradiated in EBR-II in the third phase of analysis while the other two techniques were not carried to the hot cell analysis phase. Results of this technique screening study indicates that an electromagnetic and/or heat tinting ferrite layer NDT technique should be readily adoptable to hot cell inspection requirements. It wasalso concluded that the magnetic force technique, while feasible, would not readily lend itself to hot cell fuel pin inspection

  17. Introducing molecular selectivity in rapid impedimetric sensing of phthalates

    KAUST Repository

    Zia, Asif I.

    2014-05-01

    This research article reports a real-time and non-invasive detection technique for phthalates in liquids by Electrochemical Impedance Spectroscopy (EIS), incorporating molecular imprinting technique to introduce selectivity for the phthalate molecule in the detection system. A functional polymer with Bis (2-ethylhexyl) phthalate (DEHP) template was immobilized on the sensing surface of the inter-digital (ID) capacitive sensor with sputtered gold sensing electrodes fabricated over a native layer of silicon dioxide on a single crystal silicon substrate. Various concentrations (10 to 200 ppm) of DEHP in deionized MilliQ water were exposed to the sensor surface functionalized with molecular imprinted polymer (MIP) in order to capture the analyte molecule, hence introducing molecular selectivity to the testing system. Impedance spectra were obtained using EIS in order to determine sample conductance for evaluation of phthalate concentration in the solution. Electrochemical Spectrum Analyzer algorithm was used to deduce equivalent circuit and equivalent component parameters from the experimentally obtained impedance spectra employing Randle\\'s cell model curve fitting technique. Experimental results confirmed that the immobilization of the functional polymer on sensing surface introduces selectivity for phthalates in the sensing system. The results were validated by testing the samples using High Performance Liquid Chromatography (HPLC-DAD). © 2014 IEEE.

  18. Biophysical Techniques for Detection of cAMP and cGMP in Living Cells

    Directory of Open Access Journals (Sweden)

    Viacheslav O. Nikolaev

    2013-04-01

    Full Text Available Cyclic nucleotides cAMP and cGMP are ubiquitous second messengers which regulate myriads of functions in virtually all eukaryotic cells. Their intracellular effects are often mediated via discrete subcellular signaling microdomains. In this review, we will discuss state-of-the-art techniques to measure cAMP and cGMP in biological samples with a particular focus on live cell imaging approaches, which allow their detection with high temporal and spatial resolution in living cells and tissues. Finally, we will describe how these techniques can be applied to the analysis of second messenger dynamics in subcellular signaling microdomains.

  19. Specific and selective target detection of supra-genome 21 Mers Salmonella via silicon nanowires biosensor

    Science.gov (United States)

    Mustafa, Mohammad Razif Bin; Dhahi, Th S.; Ehfaed, Nuri. A. K. H.; Adam, Tijjani; Hashim, U.; Azizah, N.; Mohammed, Mohammed; Noriman, N. Z.

    2017-09-01

    The nano structure based on silicon can be surface modified to be used as label-free biosensors that allow real-time measurements. The silicon nanowire surface was functionalized using 3-aminopropyltrimethoxysilane (APTES), which functions as a facilitator to immobilize biomolecules on the silicon nanowire surface. The process is simple, economical; this will pave the way for point-of-care applications. However, the surface modification and subsequent detection mechanism still not clear. Thus, study proposed step by step process of silicon nano surface modification and its possible in specific and selective target detection of Supra-genome 21 Mers Salmonella. The device captured the molecule with precisely; the approach took the advantages of strong binding chemistry created between APTES and biomolecule. The results indicated how modifications of the nanowires provide sensing capability with strong surface chemistries that can lead to specific and selective target detection.

  20. Filtering technique for detection and identification of measurement failures in nuclear power plants

    International Nuclear Information System (INIS)

    Racz, A.

    1989-11-01

    The basic requirement of the safe operation of nuclear power plants (NPP) is to have reliable information on all quantities that can be measured, monitored or controlled during the operation. Kalman filtering techniques have been applied for prompt detection and identification of failures in the measurement systems used in NPPs. Mathematical basis of Kalman filtering and various models applied to failure detection are overviewed. The applicability of some models are evaluated by real results of NPP measurements. A sample system for an NPP is suggested, based on several numerical tests. (R.P.) 23 refs.; 40 figs.; 2 tabs

  1. The detection of irradiated foods using the Direct Epifluorescent Filter Technique

    International Nuclear Information System (INIS)

    Betts, R.P.; Bankes, P.; Stringer, M.F.; Farr, L.

    1988-01-01

    A method was evaluated which has the potential to detect a food sample which has been irradiated. The technique will give an indication of the total number of viable micro-organisms present before irradiation. It is based on the comparison of an aerobic plate count (APC) with a count obtained using the Direct Epifluorescent Filter Technique (DEFT). When the APC of an irradiated sample was compared with the DEFT count on the same sample, the APC was considerably lower than that obtained by DEFT. The count of orange fluorescing cells after irradiation, however, correlated well with an APC of the same sample before irradiation. For the samples examined the DEFT count determined the viable microbial population in the sample before irradiation. The difference between the APC and the DEFT count gave the number of organisms rendered non-viable by the process. (author)

  2. 3,9-Dithia-6-azaundecane-appended Iridium (III) Complex for the Selective Detection of Hg{sup 2+} in Aqueous Acetonitrile

    Energy Technology Data Exchange (ETDEWEB)

    Ann, Jee Hye; Li, Yinan; Hyun, Myung Ho [Pusan National Univ., Busan (Korea, Republic of)

    2012-10-15

    Detection of mercuric ion (Hg{sup 2+}) originated from natural or industrial sources is very important because it is extremely toxic even at low levels and causes serious environmental and health problems. Consequently, many efforts have been devoted to the development of sensitive chemosensors for the detection of Hg{sup 2+}. For example, various fluorescent chemosensors based on rhodamine, nitrobenzoxadiazole, fluorescein, boradiazaindacene (BODIPY), dansyl, pyrene, or other fluorophores have been developed for the selective detection of Hg{sup 2+}. While various fluorescent chemosensors for the selective detection of Hg{sup 2+} have been developed, phosphorescent chemosensors for the selective detection of Hg{sup 2+} are relatively rare. Among various phosphors, iridium (III) complexes with sulfur containing cyclometalated ligands have been used as phosphorescent chemosensors for the selective detection of Hg{sup 2+}. Azacrown ether-appended iridium (III) complex developed in our laboratory has also been utilized as a phosphorescent chemosensor for the selective detection of Hg{sup 2+}. As an another iridium (III) complex-based phosphorescent chemosensors for the selective detection of Hg{sup 2+}, in this study, we wish to prepare iridium (III) complex containing two 3,9-dithia-6-azaundecane units as chelating ligands for metal ions. Some fluorophores containing 3,9-dithia-6-azaundecane unit have been successfully applied for the selective detection of Hg{sup 2+}. In this instance, iridium (III) complex containing two 3,9-dithia-6-azaundecane units is expected to be useful as a phosphorescent chemosensor for the selective detection of Hg{sup 2+}. Iridium (III) complex containing two 3,9-dithia-6-azaundecane units was prepared starting from 2-phenylpyridine according to the procedure shown in Scheme 1. 2-Phenylpyridine was transformed into chloride bridged dimeric iridium complex, [(ppy){sub 2}IrCl]{sub 2}, via the reported procedure. By treating [(ppy){sub 2}Ir

  3. A novel dansyl-based fluorescent probe for highly selective detection of ferric ions.

    Science.gov (United States)

    Yang, Min; Sun, Mingtai; Zhang, Zhongping; Wang, Suhua

    2013-02-15

    A novel dansyl-based fluorescent probe was synthesized and characterized. It exhibits high selectivity and sensitivity towards Fe(3+) ion. This fluorescent probe is photostable, water soluble and pH insensitive. The limit of detection is found to be 0.62 μM. These properties make it a good fluorescent probe for Fe(3+) ion detection in both chemical and biological systems. Spike recovery test confirms its practical application in tap water samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Improving Intrusion Detection System Based on Snort Rules for Network Probe Attacks Detection with Association Rules Technique of Data Mining

    Directory of Open Access Journals (Sweden)

    Nattawat Khamphakdee

    2015-07-01

    Full Text Available The intrusion detection system (IDS is an important network security tool for securing computer and network systems. It is able to detect and monitor network traffic data. Snort IDS is an open-source network security tool. It can search and match rules with network traffic data in order to detect attacks, and generate an alert. However, the Snort IDS  can detect only known attacks. Therefore, we have proposed a procedure for improving Snort IDS rules, based on the association rules data mining technique for detection of network probe attacks.  We employed the MIT-DARPA 1999 data set for the experimental evaluation. Since behavior pattern traffic data are both normal and abnormal, the abnormal behavior data is detected by way of the Snort IDS. The experimental results showed that the proposed Snort IDS rules, based on data mining detection of network probe attacks, proved more efficient than the original Snort IDS rules, as well as icmp.rules and icmp-info.rules of Snort IDS.  The suitable parameters for the proposed Snort IDS rules are defined as follows: Min_sup set to 10%, and Min_conf set to 100%, and through the application of eight variable attributes. As more suitable parameters are applied, higher accuracy is achieved.

  5. New evaluation methods for conceptual design selection using computational intelligence techniques

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hong Zhong; Liu, Yu; Li, Yanfeng; Wang, Zhonglai [University of Electronic Science and Technology of China, Chengdu (China); Xue, Lihua [Higher Education Press, Beijing (China)

    2013-03-15

    The conceptual design selection, which aims at choosing the best or most desirable design scheme among several candidates for the subsequent detailed design stage, oftentimes requires a set of tools to conduct design evaluation. Using computational intelligence techniques, such as fuzzy logic, neural network, genetic algorithm, and physical programming, several design evaluation methods are put forth in this paper to realize the conceptual design selection under different scenarios. Depending on whether an evaluation criterion can be quantified or not, the linear physical programming (LPP) model and the RAOGA-based fuzzy neural network (FNN) model can be utilized to evaluate design alternatives in conceptual design stage. Furthermore, on the basis of Vanegas and Labib's work, a multi-level conceptual design evaluation model based on the new fuzzy weighted average (NFWA) and the fuzzy compromise decision-making method is developed to solve the design evaluation problem consisting of many hierarchical criteria. The effectiveness of the proposed methods is demonstrated via several illustrative examples.

  6. New evaluation methods for conceptual design selection using computational intelligence techniques

    International Nuclear Information System (INIS)

    Huang, Hong Zhong; Liu, Yu; Li, Yanfeng; Wang, Zhonglai; Xue, Lihua

    2013-01-01

    The conceptual design selection, which aims at choosing the best or most desirable design scheme among several candidates for the subsequent detailed design stage, oftentimes requires a set of tools to conduct design evaluation. Using computational intelligence techniques, such as fuzzy logic, neural network, genetic algorithm, and physical programming, several design evaluation methods are put forth in this paper to realize the conceptual design selection under different scenarios. Depending on whether an evaluation criterion can be quantified or not, the linear physical programming (LPP) model and the RAOGA-based fuzzy neural network (FNN) model can be utilized to evaluate design alternatives in conceptual design stage. Furthermore, on the basis of Vanegas and Labib's work, a multi-level conceptual design evaluation model based on the new fuzzy weighted average (NFWA) and the fuzzy compromise decision-making method is developed to solve the design evaluation problem consisting of many hierarchical criteria. The effectiveness of the proposed methods is demonstrated via several illustrative examples.

  7. Optimization Techniques for Design Problems in Selected Areas in WSNs: A Tutorial.

    Science.gov (United States)

    Ibrahim, Ahmed; Alfa, Attahiru

    2017-08-01

    This paper is intended to serve as an overview of, and mostly a tutorial to illustrate, the optimization techniques used in several different key design aspects that have been considered in the literature of wireless sensor networks (WSNs). It targets the researchers who are new to the mathematical optimization tool, and wish to apply it to WSN design problems. We hence divide the paper into two main parts. One part is dedicated to introduce optimization theory and an overview on some of its techniques that could be helpful in design problem in WSNs. In the second part, we present a number of design aspects that we came across in the WSN literature in which mathematical optimization methods have been used in the design. For each design aspect, a key paper is selected, and for each we explain the formulation techniques and the solution methods implemented. We also provide in-depth analyses and assessments of the problem formulations, the corresponding solution techniques and experimental procedures in some of these papers. The analyses and assessments, which are provided in the form of comments, are meant to reflect the points that we believe should be taken into account when using optimization as a tool for design purposes.

  8. Exact and Direct Modeling Technique for Rotor-Bearing Systems with Arbitrary Selected Degrees-of-Freedom

    Directory of Open Access Journals (Sweden)

    Shilin Chen

    1994-01-01

    Full Text Available An exact and direct modeling technique is proposed for modeling of rotor-bearing systems with arbitrary selected degrees-of-freedom. This technique is based on the combination of the transfer and dynamic stiffness matrices. The technique differs from the usual combination methods in that the global dynamic stiffness matrix for the system or the subsystem is obtained directly by rearranging the corresponding global transfer matrix. Therefore, the dimension of the global dynamic stiffness matrix is independent of the number of the elements or the substructures. In order to show the simplicity and efficiency of the method, two numerical examples are given.

  9. Applying the GNSS Volcanic Ash Plume Detection Technique to Consumer Navigation Receivers

    Science.gov (United States)

    Rainville, N.; Palo, S.; Larson, K. M.

    2017-12-01

    Global Navigation Satellite Systems (GNSS) such as the Global Positioning System (GPS) rely on predictably structured and constant power RF signals to fulfill their primary use for navigation and timing. When the received strength of GNSS signals deviates from the expected baseline, it is typically due to a change in the local environment. This can occur when signal reflections from the ground are modified by changes in snow or soil moisture content, as well as by attenuation of the signal from volcanic ash. This effect allows GNSS signals to be used as a source for passive remote sensing. Larson et al. (2017) have developed a detection technique for volcanic ash plumes based on the attenuation seen at existing geodetic GNSS sites. Since these existing networks are relatively sparse, this technique has been extended to use lower cost consumer GNSS receiver chips to enable higher density measurements of volcanic ash. These low-cost receiver chips have been integrated into a fully stand-alone sensor, with independent power, communications, and logging capabilities as part of a Volcanic Ash Plume Receiver (VAPR) network. A mesh network of these sensors transmits data to a local base-station which then streams the data real-time to a web accessible server. Initial testing of this sensor network has uncovered that a different detection approach is necessary when using consumer GNSS receivers and antennas. The techniques to filter and process the lower quality data from consumer receivers will be discussed and will be applied to initial results from a functioning VAPR network installation.

  10. A simple infrared-augmented digital photography technique for detection of pupillary abnormalities.

    Science.gov (United States)

    Shazly, Tarek A; Bonhomme, G R

    2015-03-01

    The purpose of the study was to describe a simple infrared photography technique to aid in the diagnosis and documentation of pupillary abnormalities. An unmodified 12-megapixel "point and shoot" digital camera was used to obtain binocular still photos and videos under different light conditions with near-infrared illuminating frames. The near-infrared light of 850 nm allows the capture of clear pupil images in both dim and bright light conditions. It also allows easy visualization of the pupil despite pigmented irides by augmenting the contrast between the iris and the pupil. The photos and videos obtained illustrated a variety of pupillary abnormalities using the aforementioned technique. This infrared-augmented photography technique supplements medical education, and aids in the more rapid detection, diagnosis, and documentation of a wide spectrum of pupillary abnormalities. Its portability and ease of use with minimal training complements the education of trainees and facilitates the establishment of difficult diagnoses.

  11. Ultra-sensitive and selective detection of mercury ion (Hg2+) using free-standing silicon nanowire sensors

    Science.gov (United States)

    Jin, Yan; Gao, Anran; Jin, Qinghui; Li, Tie; Wang, Yuelin; Zhao, Jianlong

    2018-04-01

    In this paper, ultra-sensitive and highly selective Hg2+ detection in aqueous solutions was studied by free-standing silicon nanowire (SiNW) sensors. The all-around surface of SiNW arrays was functionalized with (3-Mercaptopropyl)trimethoxysilane serving as Hg2+ sensitive layer. Due to effective electrostatic control provided by the free-standing structure, a detection limit as low as 1 ppt was obtained. A linear relationship (R 2 = 0.9838) between log(CHg2+ ) and a device current change from 1 ppt to 5 ppm was observed. Furthermore, the developed SiNW sensor exhibited great selectivity for Hg2+ over other heavy metal ions, including Cd2+. Given the extraordinary ability for real-time Hg2+ detection, the small size and low cost of the SiNW device, it is expected to be a potential candidate in field detection of environmentally toxic mercury.

  12. Iterative Method of Regularization with Application of Advanced Technique for Detection of Contours

    International Nuclear Information System (INIS)

    Niedziela, T.; Stankiewicz, A.

    2000-01-01

    This paper proposes a novel iterative method of regularization with application of an advanced technique for detection of contours. To eliminate noises, the properties of convolution of functions are utilized. The method can be accomplished in a simple neural cellular network, which creates the possibility of extraction of contours by automatic image recognition equipment. (author)

  13. Selective separation of Cu, Zn, and As from solution by flotation techniques

    International Nuclear Information System (INIS)

    Stalidis, G.A.; Matis, K.A.; Lazaridis, N.K.

    1989-01-01

    The selective precipitation and flotation of copper, zinc, and arsenic ions from dilute aqueous solutions were investigated. Phase separation was accomplished effectively by the dissolved-air technique for the production of fine gas bubbles, and a short-chain xanthate was applied as the collector for copper ions, dialkyl-dithiocarbamate for zinc, and ferric sulfate for the pentavalent arsenic. The procedures followed were ion flotation for copper and zinc, and adsorbing colloid flotation for arsenic (without a surfactant)

  14. Chemiluminescent labels released from long spacer arm-functionalized magnetic particles: a novel strategy for ultrasensitive and highly selective detection of pathogen infections.

    Science.gov (United States)

    Yang, Haowen; Liang, Wenbiao; He, Nongyue; Deng, Yan; Li, Zhiyang

    2015-01-14

    Previously, the unique advantages provided by chemiluminescence (CL) and magnetic particles (MPs) have resulted in the development of many useful nucleic acid detection methods. CL is highly sensitive, but when applied to MPs, its intensity is limited by the inner filter-like effect arising from excess dark MPs. Herein, we describe a modified strategy whereby CL labels are released from MPs to eliminate this negative effect. This approach relies on (1) the magnetic capture of target molecules on long spacer arm-functionalized magnetic particles (LSA-MPs), (2) the conjugation of streptavidin-alkaline phosphatase (SA-AP) to biotinylated amplicons of target pathogens, (3) the release of CL labels (specifically, AP tags), and (4) the detection of the released labels. CL labels were released from LSA-MPs through LSA ultrasonication or DNA enzymolysis, which proved to be the superior method. In contrast to conventional MPs, LSA-MPs exhibited significantly improved CL detection, because of the introduction of LSA, which was made of water-soluble carboxymethylated β-1,3-glucan. Detection of hepatitis B virus with this technique revealed a low detection limit of 50 fM, high selectivity, and excellent reproducibility. Thus, this approach may hold great potential for early stage clinical diagnosis of infectious diseases.

  15. Optimal Scale Edge Detection Utilizing Noise within Images

    Directory of Open Access Journals (Sweden)

    Adnan Khashman

    2003-04-01

    Full Text Available Edge detection techniques have common problems that include poor edge detection in low contrast images, speed of recognition and high computational cost. An efficient solution to the edge detection of objects in low to high contrast images is scale space analysis. However, this approach is time consuming and computationally expensive. These expenses can be marginally reduced if an optimal scale is found in scale space edge detection. This paper presents a new approach to detecting objects within images using noise within the images. The novel idea is based on selecting one optimal scale for the entire image at which scale space edge detection can be applied. The selection of an ideal scale is based on the hypothesis that "the optimal edge detection scale (ideal scale depends on the noise within an image". This paper aims at providing the experimental evidence on the relationship between the optimal scale and the noise within images.

  16. Genome-wide detection and characterization of positive selection in human populations.

    Science.gov (United States)

    Sabeti, Pardis C; Varilly, Patrick; Fry, Ben; Lohmueller, Jason; Hostetter, Elizabeth; Cotsapas, Chris; Xie, Xiaohui; Byrne, Elizabeth H; McCarroll, Steven A; Gaudet, Rachelle; Schaffner, Stephen F; Lander, Eric S; Frazer, Kelly A; Ballinger, Dennis G; Cox, David R; Hinds, David A; Stuve, Laura L; Gibbs, Richard A; Belmont, John W; Boudreau, Andrew; Hardenbol, Paul; Leal, Suzanne M; Pasternak, Shiran; Wheeler, David A; Willis, Thomas D; Yu, Fuli; Yang, Huanming; Zeng, Changqing; Gao, Yang; Hu, Haoran; Hu, Weitao; Li, Chaohua; Lin, Wei; Liu, Siqi; Pan, Hao; Tang, Xiaoli; Wang, Jian; Wang, Wei; Yu, Jun; Zhang, Bo; Zhang, Qingrun; Zhao, Hongbin; Zhao, Hui; Zhou, Jun; Gabriel, Stacey B; Barry, Rachel; Blumenstiel, Brendan; Camargo, Amy; Defelice, Matthew; Faggart, Maura; Goyette, Mary; Gupta, Supriya; Moore, Jamie; Nguyen, Huy; Onofrio, Robert C; Parkin, Melissa; Roy, Jessica; Stahl, Erich; Winchester, Ellen; Ziaugra, Liuda; Altshuler, David; Shen, Yan; Yao, Zhijian; Huang, Wei; Chu, Xun; He, Yungang; Jin, Li; Liu, Yangfan; Shen, Yayun; Sun, Weiwei; Wang, Haifeng; Wang, Yi; Wang, Ying; Xiong, Xiaoyan; Xu, Liang; Waye, Mary M Y; Tsui, Stephen K W; Xue, Hong; Wong, J Tze-Fei; Galver, Luana M; Fan, Jian-Bing; Gunderson, Kevin; Murray, Sarah S; Oliphant, Arnold R; Chee, Mark S; Montpetit, Alexandre; Chagnon, Fanny; Ferretti, Vincent; Leboeuf, Martin; Olivier, Jean-François; Phillips, Michael S; Roumy, Stéphanie; Sallée, Clémentine; Verner, Andrei; Hudson, Thomas J; Kwok, Pui-Yan; Cai, Dongmei; Koboldt, Daniel C; Miller, Raymond D; Pawlikowska, Ludmila; Taillon-Miller, Patricia; Xiao, Ming; Tsui, Lap-Chee; Mak, William; Song, You Qiang; Tam, Paul K H; Nakamura, Yusuke; Kawaguchi, Takahisa; Kitamoto, Takuya; Morizono, Takashi; Nagashima, Atsushi; Ohnishi, Yozo; Sekine, Akihiro; Tanaka, Toshihiro; Tsunoda, Tatsuhiko; Deloukas, Panos; Bird, Christine P; Delgado, Marcos; Dermitzakis, Emmanouil T; Gwilliam, Rhian; Hunt, Sarah; Morrison, Jonathan; Powell, Don; Stranger, Barbara E; Whittaker, Pamela; Bentley, David R; Daly, Mark J; de Bakker, Paul I W; Barrett, Jeff; Chretien, Yves R; Maller, Julian; McCarroll, Steve; Patterson, Nick; Pe'er, Itsik; Price, Alkes; Purcell, Shaun; Richter, Daniel J; Sabeti, Pardis; Saxena, Richa; Schaffner, Stephen F; Sham, Pak C; Varilly, Patrick; Altshuler, David; Stein, Lincoln D; Krishnan, Lalitha; Smith, Albert Vernon; Tello-Ruiz, Marcela K; Thorisson, Gudmundur A; Chakravarti, Aravinda; Chen, Peter E; Cutler, David J; Kashuk, Carl S; Lin, Shin; Abecasis, Gonçalo R; Guan, Weihua; Li, Yun; Munro, Heather M; Qin, Zhaohui Steve; Thomas, Daryl J; McVean, Gilean; Auton, Adam; Bottolo, Leonardo; Cardin, Niall; Eyheramendy, Susana; Freeman, Colin; Marchini, Jonathan; Myers, Simon; Spencer, Chris; Stephens, Matthew; Donnelly, Peter; Cardon, Lon R; Clarke, Geraldine; Evans, David M; Morris, Andrew P; Weir, Bruce S; Tsunoda, Tatsuhiko; Johnson, Todd A; Mullikin, James C; Sherry, Stephen T; Feolo, Michael; Skol, Andrew; Zhang, Houcan; Zeng, Changqing; Zhao, Hui; Matsuda, Ichiro; Fukushima, Yoshimitsu; Macer, Darryl R; Suda, Eiko; Rotimi, Charles N; Adebamowo, Clement A; Ajayi, Ike; Aniagwu, Toyin; Marshall, Patricia A; Nkwodimmah, Chibuzor; Royal, Charmaine D M; Leppert, Mark F; Dixon, Missy; Peiffer, Andy; Qiu, Renzong; Kent, Alastair; Kato, Kazuto; Niikawa, Norio; Adewole, Isaac F; Knoppers, Bartha M; Foster, Morris W; Clayton, Ellen Wright; Watkin, Jessica; Gibbs, Richard A; Belmont, John W; Muzny, Donna; Nazareth, Lynne; Sodergren, Erica; Weinstock, George M; Wheeler, David A; Yakub, Imtaz; Gabriel, Stacey B; Onofrio, Robert C; Richter, Daniel J; Ziaugra, Liuda; Birren, Bruce W; Daly, Mark J; Altshuler, David; Wilson, Richard K; Fulton, Lucinda L; Rogers, Jane; Burton, John; Carter, Nigel P; Clee, Christopher M; Griffiths, Mark; Jones, Matthew C; McLay, Kirsten; Plumb, Robert W; Ross, Mark T; Sims, Sarah K; Willey, David L; Chen, Zhu; Han, Hua; Kang, Le; Godbout, Martin; Wallenburg, John C; L'Archevêque, Paul; Bellemare, Guy; Saeki, Koji; Wang, Hongguang; An, Daochang; Fu, Hongbo; Li, Qing; Wang, Zhen; Wang, Renwu; Holden, Arthur L; Brooks, Lisa D; McEwen, Jean E; Guyer, Mark S; Wang, Vivian Ota; Peterson, Jane L; Shi, Michael; Spiegel, Jack; Sung, Lawrence M; Zacharia, Lynn F; Collins, Francis S; Kennedy, Karen; Jamieson, Ruth; Stewart, John

    2007-10-18

    With the advent of dense maps of human genetic variation, it is now possible to detect positive natural selection across the human genome. Here we report an analysis of over 3 million polymorphisms from the International HapMap Project Phase 2 (HapMap2). We used 'long-range haplotype' methods, which were developed to identify alleles segregating in a population that have undergone recent selection, and we also developed new methods that are based on cross-population comparisons to discover alleles that have swept to near-fixation within a population. The analysis reveals more than 300 strong candidate regions. Focusing on the strongest 22 regions, we develop a heuristic for scrutinizing these regions to identify candidate targets of selection. In a complementary analysis, we identify 26 non-synonymous, coding, single nucleotide polymorphisms showing regional evidence of positive selection. Examination of these candidates highlights three cases in which two genes in a common biological process have apparently undergone positive selection in the same population:LARGE and DMD, both related to infection by the Lassa virus, in West Africa;SLC24A5 and SLC45A2, both involved in skin pigmentation, in Europe; and EDAR and EDA2R, both involved in development of hair follicles, in Asia.

  17. How Can Synchrotron Radiation Techniques Be Applied for Detecting Microstructures in Amorphous Alloys?

    Directory of Open Access Journals (Sweden)

    Gu-Qing Guo

    2015-11-01

    Full Text Available In this work, how synchrotron radiation techniques can be applied for detecting the microstructure in metallic glass (MG is studied. The unit cells are the basic structural units in crystals, though it has been suggested that the co-existence of various clusters may be the universal structural feature in MG. Therefore, it is a challenge to detect microstructures of MG even at the short-range scale by directly using synchrotron radiation techniques, such as X-ray diffraction and X-ray absorption methods. Here, a feasible scheme is developed where some state-of-the-art synchrotron radiation-based experiments can be combined with simulations to investigate the microstructure in MG. By studying a typical MG composition (Zr70Pd30, it is found that various clusters do co-exist in its microstructure, and icosahedral-like clusters are the popular structural units. This is the structural origin where there is precipitation of an icosahedral quasicrystalline phase prior to phase transformation from glass to crystal when heating Zr70Pd30 MG.

  18. Detection of cavitation inception by acoustic technique in centrifugal pumps for nuclear application

    International Nuclear Information System (INIS)

    Prakash, V.; Prabhakar, R.; Rao, A.S.L.K.; Kale, R.D.

    1994-01-01

    The primary centrifugal pumps in a pool type reactor like the proposed Prototype Fast Breeder Reactor (PFBR) are required to operate at low values of available net positive suction head due to the limited submergence available in the pool. Pump hydraulics are designed to ensure that there is no cavitation or only minimum cavitation in the pump impeller in order to minimise long term erosion damage. Rigorous cavitation tests are usually carried out during development and final testing phase and a promising cavitation detection technique lies in acoustic noise measurements on the pump. As part of PFBR pump development programme, cavitation noise measurements were initially carried out on an experimental sodium pump in a water rig to establish detection procedures. Recently cavitation noise measurements were carried out on a 1/3 scale model impeller of PFBR pump along with visual observation of impeller passages to establish a correlation between visual and acoustic technique. Accelerometer responding to structure borne noise seems to give the best result. (author). 4 refs., 6 figs

  19. SPIDERS: selection of spectroscopic targets using AGN candidates detected in all-sky X-ray surveys

    Science.gov (United States)

    Dwelly, T.; Salvato, M.; Merloni, A.; Brusa, M.; Buchner, J.; Anderson, S. F.; Boller, Th.; Brandt, W. N.; Budavári, T.; Clerc, N.; Coffey, D.; Del Moro, A.; Georgakakis, A.; Green, P. J.; Jin, C.; Menzel, M.-L.; Myers, A. D.; Nandra, K.; Nichol, R. C.; Ridl, J.; Schwope, A. D.; Simm, T.

    2017-07-01

    SPIDERS (SPectroscopic IDentification of eROSITA Sources) is a Sloan Digital Sky Survey IV (SDSS-IV) survey running in parallel to the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) cosmology project. SPIDERS will obtain optical spectroscopy for large numbers of X-ray-selected active galactic nuclei (AGN) and galaxy cluster members detected in wide-area eROSITA, XMM-Newton and ROSAT surveys. We describe the methods used to choose spectroscopic targets for two sub-programmes of SPIDERS X-ray selected AGN candidates detected in the ROSAT All Sky and the XMM-Newton Slew surveys. We have exploited a Bayesian cross-matching algorithm, guided by priors based on mid-IR colour-magnitude information from the Wide-field Infrared Survey Explorer survey, to select the most probable optical counterpart to each X-ray detection. We empirically demonstrate the high fidelity of our counterpart selection method using a reference sample of bright well-localized X-ray sources collated from XMM-Newton, Chandra and Swift-XRT serendipitous catalogues, and also by examining blank-sky locations. We describe the down-selection steps which resulted in the final set of SPIDERS-AGN targets put forward for spectroscopy within the eBOSS/TDSS/SPIDERS survey, and present catalogues of these targets. We also present catalogues of ˜12 000 ROSAT and ˜1500 XMM-Newton Slew survey sources that have existing optical spectroscopy from SDSS-DR12, including the results of our visual inspections. On completion of the SPIDERS programme, we expect to have collected homogeneous spectroscopic redshift information over a footprint of ˜7500 deg2 for >85 per cent of the ROSAT and XMM-Newton Slew survey sources having optical counterparts in the magnitude range 17 < r < 22.5, producing a large and highly complete sample of bright X-ray-selected AGN suitable for statistical studies of AGN evolution and clustering.

  20. Label free selective detection of estriol using graphene oxide-based fluorescence sensor

    Science.gov (United States)

    Kushwaha, H. S.; Sao, Reshma; Vaish, Rahul

    2014-07-01

    Water-soluble and fluorescent Graphene oxide (GO) is biocompatible, easy, and economical to synthesize. Interestingly, GO is also capable of quenching fluorescence. On the basis of its fluorescence and quenching abilities, GO has been reported to serve as an energy acceptor in a fluorescence resonance energy transfer (FRET) sensor. GO-based FRET biosensors have been widely reported for sensing of proteins, nucleic acid, ATP (Adenosine triphosphate), etc. GO complexes with fluorescent dyes and enzymes have been used to sense metal ions. Graphene derivatives have been used for sensing endocrine-disrupting chemicals like bisphenols and chlorophenols with high sensitivity and good reproducibility. On this basis, a novel GO based fluorescent sensor has been successfully designed to detect estriol with remarkable selectivity and sensitivity. Estriol is one of the three estrogens in women and is considered to be medically important. Estriol content of maternal urine or plasma acts as an important screening marker for estimating foetal growth and development. In addition, estriol is also used as diagnostic marker for diseases like breast cancer, osteoporosis, neurodegenerative and cardiovascular diseases, insulin resistance, lupus erythematosus, endometriosis, etc. In this present study, we report for the first time a rapid, sensitive with detection limit of 1.3 nM, selective and highly biocompatible method for label free detection of estriol under physiological conditions using fluorescence assay.