WorldWideScience

Sample records for selective catalytic hydrogenation

  1. Selective catalytic reduction of nitrogen oxides from industrial gases by hydrogen or methane

    International Nuclear Information System (INIS)

    Engelmann Pirez, M.

    2004-12-01

    This work deals with the selective catalytic reduction of nitrogen oxides (NO x ), contained in the effluents of industrial plants, by hydrogen or methane. The aim is to replace ammonia, used as reducing agent, in the conventional process. The use of others reducing agents such as hydrogen or methane is interesting for different reasons: practical, economical and ecological. The catalyst has to convert selectively NO into N 2 , in presence of an excess of oxygen, steam and sulfur dioxide. The developed catalyst is constituted by a support such as perovskites, particularly LaCoO 3 , on which are dispersed noble metals (palladium, platinum). The interaction between the noble metal and the support, generated during the activation of the catalyst, allows to minimize the water and sulfur dioxide inhibitor phenomena on the catalytic performances, particularly in the reduction of NO by hydrogen. (O.M.)

  2. Hydrogen Production From catalytic reforming of greenhouse gases ...

    African Journals Online (AJOL)

    ADOWIE PERE

    a fixed bed stainless steel reactor. The 20wt%. ... catalytic activity for hydrogen production with the highest yield and selectivity of 32.5% and 17.6% respectively. © JASEM ... CO2 reforming of methane is however not fully developed ..... Design and preparation of .... catalytic nickel membrane for gas to liquid (GTL) process.

  3. Hydrogen cyanide formation in selective catalytic reduction of nitrogen oxides over Cu/ZSM-5

    Energy Technology Data Exchange (ETDEWEB)

    Radtke, F; Koeppel, R; Baiker, A [Department of Chemical Engineering and Industrial Chemistry, Swiss Federal Institute of Technology, Zurich, (Switzerland)

    1994-01-06

    Hydrogen cyanide is formed over Cu/ZSM-5 during the selective catalytic reduction of NO[sub x] by either propylene or ethylene in the temperature range 450-600 K. Under the reaction conditions used (reactant feed: 973 ppm NO, 907 ppm propene or 1448 ppm ethylene, 2% oxygen, W/F=0.1 g s cm[sup -3]), the concentration of hydrogen cyanide reaches 20, respectively, 30 ppm, depending on whether ethylene or propene are used as hydrocarbons. In addition, significant N[sub 2]O formation is observed at temperatures lower than 700 K, independent of the hydrocarbon used

  4. Selective Catalytic Hydrogenation of Arenols by a Well-Defined Complex of Ruthenium and Phosphorus–Nitrogen PN3–Pincer Ligand Containing a Phenanthroline Backbone

    KAUST Repository

    Li, Huaifeng; Wang, Yuan; Lai, Zhiping; Huang, Kuo-Wei

    2017-01-01

    Selective catalytic hydrogenation of aromatic compounds is extremely challenging using transition-metal catalysts. Hydrogenation of arenols to substituted tetrahydronaphthols or cyclohexanols has been reported only with heterogeneous catalysts. Herein, we demonstrate the selective hydrogenation of arenols to the corresponding tetrahydronaphthols or cyclohexanols catalyzed by a phenanthroline-based PN3-ruthenium pincer catalyst.

  5. Selective Catalytic Hydrogenation of Arenols by a Well-Defined Complex of Ruthenium and Phosphorus–Nitrogen PN3–Pincer Ligand Containing a Phenanthroline Backbone

    KAUST Repository

    Li, Huaifeng

    2017-05-30

    Selective catalytic hydrogenation of aromatic compounds is extremely challenging using transition-metal catalysts. Hydrogenation of arenols to substituted tetrahydronaphthols or cyclohexanols has been reported only with heterogeneous catalysts. Herein, we demonstrate the selective hydrogenation of arenols to the corresponding tetrahydronaphthols or cyclohexanols catalyzed by a phenanthroline-based PN3-ruthenium pincer catalyst.

  6. Liquid-phase chemical hydrogen storage: catalytic hydrogen generation under ambient conditions.

    Science.gov (United States)

    Jiang, Hai-Long; Singh, Sanjay Kumar; Yan, Jun-Min; Zhang, Xin-Bo; Xu, Qiang

    2010-05-25

    There is a demand for a sufficient and sustainable energy supply. Hence, the search for applicable hydrogen storage materials is extremely important owing to the diversified merits of hydrogen energy. Lithium and sodium borohydride, ammonia borane, hydrazine, and formic acid have been extensively investigated as promising hydrogen storage materials based on their relatively high hydrogen content. Significant advances, such as hydrogen generation temperatures and reaction kinetics, have been made in the catalytic hydrolysis of aqueous lithium and sodium borohydride and ammonia borane as well as in the catalytic decomposition of hydrous hydrazine and formic acid. In this Minireview we briefly survey the research progresses in catalytic hydrogen generation from these liquid-phase chemical hydrogen storage materials.

  7. Selective catalytic reduction of nitrogen oxides from industrial gases by hydrogen or methane; Reduction catalytique selective des oxydes d'azote (NO{sub x}) provenant d'effluents gazeux industriels par l'hydrogene ou le methane

    Energy Technology Data Exchange (ETDEWEB)

    Engelmann Pirez, M

    2004-12-15

    This work deals with the selective catalytic reduction of nitrogen oxides (NO{sub x}), contained in the effluents of industrial plants, by hydrogen or methane. The aim is to replace ammonia, used as reducing agent, in the conventional process. The use of others reducing agents such as hydrogen or methane is interesting for different reasons: practical, economical and ecological. The catalyst has to convert selectively NO into N{sub 2}, in presence of an excess of oxygen, steam and sulfur dioxide. The developed catalyst is constituted by a support such as perovskites, particularly LaCoO{sub 3}, on which are dispersed noble metals (palladium, platinum). The interaction between the noble metal and the support, generated during the activation of the catalyst, allows to minimize the water and sulfur dioxide inhibitor phenomena on the catalytic performances, particularly in the reduction of NO by hydrogen. (O.M.)

  8. Selective catalytic reduction of nitrogen oxides from industrial gases by hydrogen or methane; Reduction catalytique selective des oxydes d'azote (NO{sub x}) provenant d'effluents gazeux industriels par l'hydrogene ou le methane

    Energy Technology Data Exchange (ETDEWEB)

    Engelmann Pirez, M

    2004-12-15

    This work deals with the selective catalytic reduction of nitrogen oxides (NO{sub x}), contained in the effluents of industrial plants, by hydrogen or methane. The aim is to replace ammonia, used as reducing agent, in the conventional process. The use of others reducing agents such as hydrogen or methane is interesting for different reasons: practical, economical and ecological. The catalyst has to convert selectively NO into N{sub 2}, in presence of an excess of oxygen, steam and sulfur dioxide. The developed catalyst is constituted by a support such as perovskites, particularly LaCoO{sub 3}, on which are dispersed noble metals (palladium, platinum). The interaction between the noble metal and the support, generated during the activation of the catalyst, allows to minimize the water and sulfur dioxide inhibitor phenomena on the catalytic performances, particularly in the reduction of NO by hydrogen. (O.M.)

  9. A new approach to inertise the containments during catalytic removal of hydrogen

    International Nuclear Information System (INIS)

    Chakraborty, A.K.; Markandeya, S.G.

    1994-01-01

    Use of catalytic recombiners for the removal of hydrogen during a severe accident has been recommended by the German Reactor Safety Commission (RSK) due to numerous successful demonstrations of their performances. At the early stages of the accident, a huge quantity of hydrogen is expected to be released in some compartments requiring supplementary measures to ensure that the excess hydrogen concentration wouldn't pose a threat of deflagration /1/. In this presentation a new idea based on catalytic removal of hydrogen with simultaneous passive inertisation of the atmosphere is proposed for large dry containments particularly for those compartments where high H 2 -concentrations are expected. During the catalytic oxidation of hydrogen, the large exothermic heat of reaction causes strong heating of the catalytic plates as well as a continuous energy input in the containment. This can be limited if this large heat energy is efficiently used for heating some chemical compounds to release inert gases such as steam and/or CO 2 by dissociation at moderate temperatures. Such compounds can be arranged in the form of thin slabs in good thermal contact with the catalytic plates. Several such compounds have been identified which are capable of releasing steam and CO 2 equivalent to about 40 - 75% of their mass. Preliminary calculations have been carded out to demonstrate the effectiveness of the proposed concept for the case of two such selected chemicals placed adjacent to the catalytic plate type recombiners. The calculations performed show promising results. (author)

  10. A Dynamic Supramolecular System Exhibiting Substrate Selectivity in the Catalytic Epoxidation of Olefins

    DEFF Research Database (Denmark)

    Jonsson, Stefan; Odille, Fabrice G. J.; Norrby, Per-Ola

    2005-01-01

    A dynamic supramolecular system involving hydrogen bonding between a Mn(III) salen catalyst and a Zn(II) porphyrin receptor exhibits selectivity for pyridine appended cis-beta-substituted styrene derivatives over phenyl appended derivatives in a catalytic epoxidation reaction.......A dynamic supramolecular system involving hydrogen bonding between a Mn(III) salen catalyst and a Zn(II) porphyrin receptor exhibits selectivity for pyridine appended cis-beta-substituted styrene derivatives over phenyl appended derivatives in a catalytic epoxidation reaction....

  11. Synthesis and Catalytic Hydrogen Transfer Reaction of Ruthenium(II) Complex

    Energy Technology Data Exchange (ETDEWEB)

    Son, Jung Ik; Kim, Aram; Noh, Hui Bog; Lee, Hyun Ju; Shim, Yoon Bo; Park, Kang Hyun [Pusan National University, Busan (Korea, Republic of)

    2012-01-15

    The ruthenium(II) complex [Ru(bpy){sub 2}-(PhenTPy)] was synthesized, and used for the transfer hydrogenation of ketones and the desired products were obtained in good yield. Based on the presented results, transition-metal complexes can be used as catalysts for a wide range of organic transformations. The relationship between the electro-reduction current density and temperature are being examined in this laboratory. Attempts to improve the catalytic activity and determine the transfer hydrogenation mechanism are currently in progress. The catalytic hydrogenation of a ketone is a basic and critical process for making many types of alcohols used as the final products and precursors in the pharmaceutical, agrochemical, flavor, fragrance, materials, and fine chemicals industries. The catalytic hydrogenation process developed by Noyori is a very attractive process. Formic acid and 2-propanol have been used extensively as hydrogenation sources. The advantage of using 2-propanol as a hydrogen source is that the only side product will be acetone, which can be removed easily during the workup process. Hydrogen transfer (HT) catalysis, which generates alcohols through the reduction of ketones, is an attractive protocol that is used widely. Ruthenium(II) complexes are the most useful catalysts for the hydrogen transfer (HT) of ketones. In this method, a highly active catalytic system employs a transition metal as a catalyst to synthesize alcohols, and is a replacement for the hydrogen-using hydrogenation process. The most active system is based on Ru, Rh and Ir, which includes a nitrogen ligand that facilitates the formation of a catalytically active hydride and phosphorus.

  12. Synthesis and Catalytic Hydrogen Transfer Reaction of Ruthenium(II) Complex

    International Nuclear Information System (INIS)

    Son, Jung Ik; Kim, Aram; Noh, Hui Bog; Lee, Hyun Ju; Shim, Yoon Bo; Park, Kang Hyun

    2012-01-01

    The ruthenium(II) complex [Ru(bpy) 2 -(PhenTPy)] was synthesized, and used for the transfer hydrogenation of ketones and the desired products were obtained in good yield. Based on the presented results, transition-metal complexes can be used as catalysts for a wide range of organic transformations. The relationship between the electro-reduction current density and temperature are being examined in this laboratory. Attempts to improve the catalytic activity and determine the transfer hydrogenation mechanism are currently in progress. The catalytic hydrogenation of a ketone is a basic and critical process for making many types of alcohols used as the final products and precursors in the pharmaceutical, agrochemical, flavor, fragrance, materials, and fine chemicals industries. The catalytic hydrogenation process developed by Noyori is a very attractive process. Formic acid and 2-propanol have been used extensively as hydrogenation sources. The advantage of using 2-propanol as a hydrogen source is that the only side product will be acetone, which can be removed easily during the workup process. Hydrogen transfer (HT) catalysis, which generates alcohols through the reduction of ketones, is an attractive protocol that is used widely. Ruthenium(II) complexes are the most useful catalysts for the hydrogen transfer (HT) of ketones. In this method, a highly active catalytic system employs a transition metal as a catalyst to synthesize alcohols, and is a replacement for the hydrogen-using hydrogenation process. The most active system is based on Ru, Rh and Ir, which includes a nitrogen ligand that facilitates the formation of a catalytically active hydride and phosphorus

  13. Catalytic production of hydrogen from methanol for mobile, stationary and portable fuel-cell power plants

    International Nuclear Information System (INIS)

    Lukyanov, Boris N

    2008-01-01

    Main catalytic processes for hydrogen production from methanol are considered. Various schemes of fuel processors for hydrogen production in stationary, mobile and portable power plants based on fuel cells are analysed. The attention is focussed on the design of catalytic reactors of fuel processors and on the state-of-the-art in the design of catalysts for methanol conversion, carbon monoxide steam conversion and carbon monoxide selective oxidation. Prospects for the use of methanol in on-board fuel processors are discussed.

  14. Hydrogen production via catalytic processing of renewable feedstocks

    International Nuclear Information System (INIS)

    Nazim Muradov; Franklyn Smith; Ali T-Raissi

    2006-01-01

    Landfill gas (LFG) and biogas can potentially become important feedstocks for renewable hydrogen production. The objectives of this work were: (1) to develop a catalytic process for direct reforming of CH 4 -CO 2 gaseous mixture mimicking LFG, (2) perform thermodynamic analysis of the reforming process using AspenPlus chemical process simulator, (3) determine operational conditions for auto-thermal (or thermo-neutral) reforming of a model CH 4 -CO 2 feedstock, and (4) fabricate and test a bench-scale hydrogen production unit. Experimental data obtained from catalytic reformation of the CH 4 -CO 2 and CH 4 -CO 2 -O 2 gaseous mixtures using Ni-catalyst were in a good agreement with the simulation results. It was demonstrated that catalytic reforming of LFG-mimicking gas produced hydrogen with the purity of 99.9 vol.%. (authors)

  15. Catalytic steam reforming of ethanol for hydrogen production: Brief status

    Directory of Open Access Journals (Sweden)

    Bineli Aulus R.R.

    2016-01-01

    Full Text Available Hydrogen represents a promising fuel since it is considered as a cleanest energy carrier and also because during its combustion only water is emitted. It can be produced from different kinds of renewable feedstocks, such as ethanol, in this sense hydrogen could be treated as biofuel. Three chemical reactions can be used to achieve this purpose: the steam reforming (SR, the partial oxidation (POX and the autothermal reforming (ATR. In this study, the catalysts implemented in steam reforming of ethanol were reviewed. A wide variety of elements can be used as catalysts for this reaction, such as base metals (Ni, Cu and Co or noble metals (Rh, Pt and Ru usually deposited on a support material that increases surface area and improves catalytic function. The use of Rh, Ni and Pt supported or promoted with CeO2, and/or La2O3 shows excellent performance in ethanol SR catalytic process. The ratio of water to ethanol, reaction temperatures, catalysts loadings, selectivity and activity are also discussed as they are extremely important for high hydrogen yields.

  16. Production of hydrogen from biomass by catalytic steam reforming of fast pyrolysis oil

    Energy Technology Data Exchange (ETDEWEB)

    Czernik, S.; Wang, D.; Chornet, E. [National Renewable Energy Lab., Golden, CO (United States). Center for Renewable Chemical Technologies and Materials

    1998-08-01

    Hydrogen is the prototype of the environmentally cleanest fuel of interest for power generation using fuel cells and for transportation. The thermochemical conversion of biomass to hydrogen can be carried out through two distinct strategies: (a) gasification followed by water-gas shift conversion, and (b) catalytic steam reforming of specific fractions derived from fast pyrolysis and aqueous/steam processes of biomass. This paper presents the latter route that begins with fast pyrolysis of biomass to produce bio-oil. This oil (as a whole or its selected fractions) can be converted to hydrogen via catalytic steam reforming followed by a water-gas shift conversion step. Such a process has been demonstrated at the bench scale using model compounds, poplar oil aqueous fraction, and the whole pyrolysis oil with commercial Ni-based steam reforming catalysts. Hydrogen yields as high as 85% have been obtained. Catalyst initial activity can be recovered through regeneration cycles by steam or CO{sub 2} gasification of carbonaceous deposits.

  17. Short hydrogen bonds in the catalytic mechanism of serine proteases

    Directory of Open Access Journals (Sweden)

    VLADIMIR LESKOVAC

    2008-04-01

    Full Text Available The survey of crystallographic data from the Protein Data Bank for 37 structures of trypsin and other serine proteases at a resolution of 0.78–1.28 Å revealed the presence of hydrogen bonds in the active site of the enzymes, which are formed between the catalytic histidine and aspartate residues and are on average 2.7 Å long. This is the typical bond length for normal hydrogen bonds. The geometric properties of the hydrogen bonds in the active site indicate that the H atom is not centered between the heteroatoms of the catalytic histidine and aspartate residues in the active site. Taken together, these findings exclude the possibility that short “low-barrier” hydrogen bonds are formed in the ground state structure of the active sites examined in this work. Some time ago, it was suggested by Cleland that the “low-barrier hydrogen bond” hypothesis is operative in the catalytic mechanism of serine proteases, and requires the presence of short hydrogen bonds around 2.4 Å long in the active site, with the H atom centered between the catalytic heteroatoms. The conclusions drawn from this work do not exclude the validity of the “low-barrier hydrogen bond” hypothesis at all, but they merely do not support it in this particular case, with this particular class of enzymes.

  18. Catalytic hydrogen recombination for nuclear containments

    International Nuclear Information System (INIS)

    Koroll, G.W.; Lau, D.W.P.; Dewit, W.A.; Graham, W.R.C.

    1994-01-01

    Catalytic recombiners appear to be a credible option for hydrogen mitigation in nuclear containments. The passive operation, versatility and ease of back fitting are appealing for existing stations and new designs. Recently, a generation of wet-proofed catalyst materials have been developed at AECL which are highly specific to H 2 -O 2 , are active at ambient temperatures and are being evaluated for containment applications. Two types of catalytic recombiners were evaluated for hydrogen removal in containments based on the AECL catalyst. The first is a catalytic combustor for application in existing air streams such as provided by fans or ventilation systems. The second is an autocatalytic recombiner which uses the enthalpy of reaction to produce natural convective flow over the catalyst elements. Intermediate-scale results obtained in 6 m 3 and 10 m 3 spherical and cylindrical vessels are given to demonstrate self-starting limits, operating limits, removal capacity, scaling parameters, flow resistance, mixing behaviour in the vicinity of an operating recombiner and sensitivity to poisoning, fouling and radiation. (author). 13 refs., 10 figs

  19. Catalytic heat exchangers for small-scale production of hydrogen - feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Silversand, F [Catator AB, Lund (Sweden)

    2002-02-01

    A feasibility study concerning heat-exchanger reactors in small-scale production of hydrogen has been performed on the request of Svenskt Gastekniskt Center AB and SWEP International AB. The basic idea is to implement different catalysts into brazed plate-type heat exchangers. This can be achieved by installing catalytic cylinders in the inlet-and outlet ports of the heat exchangers or through treatment of the plates to render them catalytically active. It is also possible to sandwich catalytically active wire meshes between the plates. Experiments concerning steam reforming of methanol and methane have been performed in a micro-reactor to gather kinetic data for modelling purposes. Performance calculations concerning heat exchanger reactors have then been conducted with Catator's generic simulation code for catalytic reactors (CatalystExplorer). The simulations clearly demonstrate the technical performance of these reactors. Indeed, the production rate of hydrogen is expected to be about 10 nm{sup 3}/h per litre of heat exchanger. The corresponding value for a conventional steam-reforming unit is about 1 nm{sup 3}/h or less per litre of reactor volume. Also, the compactness and the high degree of integration together with the possibilities of mass production will give an attractive cost for such units. Depending on the demands concerning the purity of the hydrogen it is possible to add secondary catalytic steps like water-gas shifters, methanation and selective oxidation, into a one-train unit, i.e. to design an all-inclusive design. Such reactors can be used for the supply of hydrogen to fuel cells. The production cost for hydrogen can be cut by 60 - 70% through the utilisation of heat exchanger reactors instead of conventional electrolysis. This result is primarily a result of the high price for electricity compared to the feed stock prices in steam reforming. It is important to verify the performance calculations and the simulation results through experimental

  20. Catalytic heat exchangers for small-scale production of hydrogen - feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Silversand, F. [Catator AB, Lund (Sweden)

    2002-02-01

    A feasibility study concerning heat-exchanger reactors in small-scale production of hydrogen has been performed on the request of Svenskt Gastekniskt Center AB and SWEP International AB. The basic idea is to implement different catalysts into brazed plate-type heat exchangers. This can be achieved by installing catalytic cylinders in the inlet-and outlet ports of the heat exchangers or through treatment of the plates to render them catalytically active. It is also possible to sandwich catalytically active wire meshes between the plates. Experiments concerning steam reforming of methanol and methane have been performed in a micro-reactor to gather kinetic data for modelling purposes. Performance calculations concerning heat exchanger reactors have then been conducted with Catator's generic simulation code for catalytic reactors (CatalystExplorer). The simulations clearly demonstrate the technical performance of these reactors. Indeed, the production rate of hydrogen is expected to be about 10 nm{sup 3}/h per litre of heat exchanger. The corresponding value for a conventional steam-reforming unit is about 1 nm{sup 3}/h or less per litre of reactor volume. Also, the compactness and the high degree of integration together with the possibilities of mass production will give an attractive cost for such units. Depending on the demands concerning the purity of the hydrogen it is possible to add secondary catalytic steps like water-gas shifters, methanation and selective oxidation, into a one-train unit, i.e. to design an all-inclusive design. Such reactors can be used for the supply of hydrogen to fuel cells. The production cost for hydrogen can be cut by 60 - 70% through the utilisation of heat exchanger reactors instead of conventional electrolysis. This result is primarily a result of the high price for electricity compared to the feed stock prices in steam reforming. It is important to verify the performance calculations and the simulation results through

  1. Hydrogen generator, via catalytic partial oxidation of methane for fuel cells

    Science.gov (United States)

    Recupero, Vincenzo; Pino, Lidia; Di Leonardo, Raffaele; Lagana', Massimo; Maggio, Gaetano

    It is well known that the most acknowledged process for generation of hydrogen for fuel cells is based upon the steam reforming of methane or natural gas. A valid alternative could be a process based on partial oxidation of methane, since the process is mildly exothermic and therefore not energy intensive. Consequently, great interest is expected from conversion of methane into syngas, if an autothermal, low energy intensive, compact and reliable process could be developed. This paper covers the activities, performed by the CNR Institute of Transformation and Storage of Energy (CNR-TAE), on theoretical and experimental studies for a compact hydrogen generator, via catalytic selective partial oxidation of methane, integrated with second generation fuel cells (EC-JOU2 contract). In particular, the project focuses the attention on methane partial oxidation via heterogeneous selective catalysts, in order to: demonstrate the basic catalytic selective partial oxidation of methane (CSPOM) technology in a subscale prototype, equivalent to a nominal output of 5 kWe; develop the CSPOM technology for its application in electric energy production by means of fuel cells; assess, by a balance of plant analysis, and a techno-economic evaluation, the potential benefits of the CSPOM for different categories of fuel cells.

  2. Catalytic Transfer Hydrogenation of Furfural to 2-Methylfuran and 2-Methyltetrahydrofuran over Bimetallic Copper-Palladium Catalysts.

    Science.gov (United States)

    Chang, Xin; Liu, An-Feng; Cai, Bo; Luo, Jin-Yue; Pan, Hui; Huang, Yao-Bing

    2016-12-08

    The catalytic transfer hydrogenation of furfural to the fuel additives 2-methylfuran (2-MF) and 2-methyltetrahydrofuran (2-MTHF) was investigated over various bimetallic catalysts in the presence of the hydrogen donor 2-propanol. Of all the as-prepared catalysts, bimetallic Cu-Pd catalysts showed the highest catalytic activities towards the formation of 2-MF and 2-MTHF with a total yield of up to 83.9 % yield at 220 °C in 4 h. By modifying the Pd ratios in the Cu-Pd catalyst, 2-MF or 2-MTHF could be obtained selectively as the prevailing product. The other reaction conditions also had a great influence on the product distribution. Mechanistic studies by reaction monitoring and intermediate conversion revealed that the reaction proceeded mainly through the hydrogenation of furfural to furfuryl alcohol, which was followed by deoxygenation to 2-MF in parallel to deoxygenation/ring hydrogenation to 2-MTHF. Finally, the catalyst showed a high reactivity and stability in five catalyst recycling runs, which represents a significant step forward toward the catalytic transfer hydrogenation of furfural. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Biomass-to-hydrogen via fast pyrolysis and catalytic steam reforming

    Energy Technology Data Exchange (ETDEWEB)

    Chornet, E.; Wang, D.; Czernik, S. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-10-01

    Pyrolysis of lignocellulosic biomass and reforming the pyroligneous oils is being studied as a strategy for producing hydrogen. Novel technologies for the rapid pyrolysis of biomass have been developed in the past decade. They provide compact and efficient systems to transform biomass into vapors that are condensed to oils, with yields as high as 75-80 wt.% of the anhydrous biomass. This {open_quotes}bio-oil{close_quotes} is a mixture of aldehydes, alcohols, acids, oligomers from the constitutive carbohydrates and lignin, and some water derived from the dehydration reactions. Hydrogen can be produced by reforming the bio-oil or its fractions with steam. A process of this nature has the potential to be cost competitive with conventional means of producing hydrogen. The reforming facility can be designed to handle alternate feedstocks, such as natural gas and naphtha, if necessary. Thermodynamic modeling of the major constituents of the bio-oil has shown that reforming is possible within a wide range of temperatures and steam-to-carbon ratios. Existing catalytic data on the reforming of oxygenates have been studied to guide catalyst selection. Tests performed on a microreactor interfaced with a molecular beam mass spectrometer showed that, by proper selection of the process variables: temperature, steam-to-carbon ratio, gas hourly space velocity, and contact time, almost total conversion of carbon in the feed to CO and CO{sub 2} could be obtained. These tests also provided possible reaction mechanisms where thermal cracking competes with catalytic processes. Bench-scale, fixed bed reactor tests demonstrated high hydrogen yields from model compounds and carbohydrate-derived pyrolysis oil fractions. Reforming bio-oil or its fractions required proper dispersion of the liquid to avoid vapor-phase carbonization of the feed in the inlet to the reactor. A special spraying nozzle injector was designed and successfully tested with an aqueous fraction of bio-oil.

  4. Hydrogen Recombination Rates of Plate-type Passive Auto-catalytic Recombiner

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongtae; Hong, Seong-Wan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Gun Hong [Kyungwon E-C Co., Seongnam (Korea, Republic of)

    2014-10-15

    The hydrogen mitigation system may include igniters, passive autocatalytic recombiner (PAR), and venting or dilution system. Recently PAR is commonly used as a main component of HMS in a NPP containment because of its passive nature. PARs are categorized by the shape and material of catalytic surface. Catalytic surface coated by platinum is mostly used for the hydrogen recombiners. The shapes of the catalytic surface can be grouped into plate type, honeycomb type and porous media type. Among them, the plate-type PAR is well tested by many experiments. PAR performance analysis can be approached by a multi-scale method which is composed of micro, meso and macro scales. The criterion of the scaling is the ratio of thickness of boundary layer developed on a catalytic surface to representative length of a computational domain. Mass diffusion in the boundary layer must be resolved in the micro scale analysis. In a lumped parameter (LP) analysis using a system code such as MAAP or MELCOR, the chamber of the PAR is much smaller than a computational node. The hydrogen depletion by a PAR is modeled as a source of mass and energy conservation equations. Te catalytic surface reaction of hydrogen must be modeled by a volume-averaged correlation. In this study, a micro scale analysis method is developed using libraries in OpenFOAM to evaluate a hydrogen depletion rate depending on parameters such as size and number of plates and plate arrangement. The analysis code is validated by simulating REKO-3 experiment. And hydrogen depletion analysis is conducted by changing the plate arrangement as a trial of the performance enhancement of a PAR. In this study, a numerical code for an analysis of a PAR performance in a micro scale has been developed by using OpenFOAM libraries. The physical and numerical models were validated by simulating the REKO-3 experiment. As a try to enhance the performance of the plate-type PAR, it was proposed to apply a staggered two-layer arrangement of the

  5. Hydrogen Recombination Rates of Plate-type Passive Auto-catalytic Recombiner

    International Nuclear Information System (INIS)

    Kim, Jongtae; Hong, Seong-Wan; Kim, Gun Hong

    2014-01-01

    The hydrogen mitigation system may include igniters, passive autocatalytic recombiner (PAR), and venting or dilution system. Recently PAR is commonly used as a main component of HMS in a NPP containment because of its passive nature. PARs are categorized by the shape and material of catalytic surface. Catalytic surface coated by platinum is mostly used for the hydrogen recombiners. The shapes of the catalytic surface can be grouped into plate type, honeycomb type and porous media type. Among them, the plate-type PAR is well tested by many experiments. PAR performance analysis can be approached by a multi-scale method which is composed of micro, meso and macro scales. The criterion of the scaling is the ratio of thickness of boundary layer developed on a catalytic surface to representative length of a computational domain. Mass diffusion in the boundary layer must be resolved in the micro scale analysis. In a lumped parameter (LP) analysis using a system code such as MAAP or MELCOR, the chamber of the PAR is much smaller than a computational node. The hydrogen depletion by a PAR is modeled as a source of mass and energy conservation equations. Te catalytic surface reaction of hydrogen must be modeled by a volume-averaged correlation. In this study, a micro scale analysis method is developed using libraries in OpenFOAM to evaluate a hydrogen depletion rate depending on parameters such as size and number of plates and plate arrangement. The analysis code is validated by simulating REKO-3 experiment. And hydrogen depletion analysis is conducted by changing the plate arrangement as a trial of the performance enhancement of a PAR. In this study, a numerical code for an analysis of a PAR performance in a micro scale has been developed by using OpenFOAM libraries. The physical and numerical models were validated by simulating the REKO-3 experiment. As a try to enhance the performance of the plate-type PAR, it was proposed to apply a staggered two-layer arrangement of the

  6. Hydrogen assisted catalytic biomass pyrolysis for green fuels

    DEFF Research Database (Denmark)

    Stummann, Magnus Zingler; Høj, Martin; Gabrielsen, Jostein

    2017-01-01

    due to coking of the catalyst is an inhibitive problem for this technology. The objective of the present work is to produce oxygen free gasoline and diesel from biomass by hydrogen assisted catalytic fast pyrolysis. Fast pyrolysis of beech wood has been performed in high-pressure hydrogen atmosphere...

  7. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water

    Science.gov (United States)

    Cortright, R. D.; Davda, R. R.; Dumesic, J. A.

    2002-08-01

    Concerns about the depletion of fossil fuel reserves and the pollution caused by continuously increasing energy demands make hydrogen an attractive alternative energy source. Hydrogen is currently derived from nonrenewable natural gas and petroleum, but could in principle be generated from renewable resources such as biomass or water. However, efficient hydrogen production from water remains difficult and technologies for generating hydrogen from biomass, such as enzymatic decomposition of sugars, steam-reforming of bio-oils and gasification, suffer from low hydrogen production rates and/or complex processing requirements. Here we demonstrate that hydrogen can be produced from sugars and alcohols at temperatures near 500K in a single-reactor aqueous-phase reforming process using a platinum-based catalyst. We are able to convert glucose-which makes up the major energy reserves in plants and animals-to hydrogen and gaseous alkanes, with hydrogen constituting 50% of the products. We find that the selectivity for hydrogen production increases when we use molecules that are more reduced than sugars, with ethylene glycol and methanol being almost completely converted into hydrogen and carbon dioxide. These findings suggest that catalytic aqueous-phase reforming might prove useful for the generation of hydrogen-rich fuel gas from carbohydrates extracted from renewable biomass and biomass waste streams.

  8. Morphological effects on the selectivity of intramolecular versus intermolecular catalytic reaction on Au nanoparticles.

    Science.gov (United States)

    Wang, Dan; Sun, Yuanmiao; Sun, Yinghui; Huang, Jing; Liang, Zhiqiang; Li, Shuzhou; Jiang, Lin

    2017-06-14

    It is hard for metal nanoparticle catalysts to control the selectivity of a catalytic reaction in a simple process. In this work, we obtain active Au nanoparticle catalysts with high selectivity for the hydrogenation reaction of aromatic nitro compounds, by simply employing spine-like Au nanoparticles. The density functional theory (DFT) calculations further elucidate that the morphological effect on thermal selectivity control is an internal key parameter to modulate the nitro hydrogenation process on the surface of Au spines. These results show that controlled morphological effects may play an important role in catalysis reactions of noble metal NPs with high selectivity.

  9. Bridging the Gap: From Model Surfaces to Nanoparticle Analogs for Selective Oxidation and Steam Reforming of Methanol and Selective Hydrogenation Catalysis

    Science.gov (United States)

    Boucher, Matthew B.

    Most industrial catalysts are very complex, comprising of non-uniform materials with varying structures, impurities, and interaction between the active metal and supporting substrate. A large portion of the ongoing research in heterogeneous catalysis focuses on understanding structure-function relationships in catalytic materials. In parallel, there is a large area of surface science research focused on studying model catalytic systems for which structural parameters can be tuned and measured with high precision. It is commonly argued, however, that these systems are oversimplified, and that observations made in model systems do not translate to robust catalysts operating in practical environments; this discontinuity is often referred to as a "gap." The focus of this thesis is to explore the mutual benefits of surface science and catalysis, or "bridge the gap," by studying two catalytic systems in both ultra-high vacuum (UHV) and near ambient-environments. The first reaction is the catalytic steam reforming of methanol (SRM) to hydrogen and carbon dioxide. The SRM reaction is a promising route for on-demand hydrogen production. For this catalytic system, the central hypothesis in this thesis is that a balance between redox capability and weak binding of reaction intermediates is necessary for high SRM activity and selectivity to carbon dioxide. As such, a new catalyst for the SRM reaction is developed which incorporates very small amounts of gold (liquid-phase, stirred-tank batch reactor under a hydrogen head pressure of approximately 7 bar. Palladium alloyed into the surface of otherwise inactive copper nanoparticles shows a marked improvement in selectivity when compared to monometallic palladium catalysts with the same metal loading. This effect is attributed hydrogen spillover onto the copper surface. In summary, the development of new, highly active and selective catalysts for the methanol steam reforming reaction and for the partial hydrogenation of alkynes

  10. Catalytic Hydrogenation of Acetone to Isopropanol: An Environmentally Benign Approach

    Directory of Open Access Journals (Sweden)

    Ateeq Rahman

    2011-01-01

    Full Text Available The catalytic hydrogenation of acetone is an important area of catalytic process to produce fine chemicals. Hydrogenation of acetone has important applications for heat pumps, fuel cells or in fulfilling the sizeable demand for the production of 2-propanol. Catalytic vapour phase hydrogenation of acetone has gained attention over the decades with variety of homogeneous catalysts notably Iridium, Rh, Ru complexes and heterogeneous catalysts comprising of Raney Nickel, Raney Sponge, Ni/Al2O3, Ni/SiO2, or Co-Al2O3, Pd, Rh, Ru, Re, or Fe/Al2O3 supported on SiO2 or MgO and even CoMgAl, NiMg Al layered double hydroxide, Cu metal, CuO, Cu2O. Nano catalysts are developed for actone reduction Ni maleate, cobalt oxide prepared in organic solvents. Author present a review on acetone hydrogenation under different conditions with various homogeneous and heterogeneous catalysts studied so far in literature and new strategies to develop economic and environmentally benign approach. ©2010 BCREC UNDIP. All rights reserved(Received: 16th June 2010, Revised: 18th October 2010; Accepted: 25th October 2010[How to Cite:Ateeq Rahman. (2010. Catalytic Hydrogenation of Acetone to Isopropanol: An Environmentally Benign Approach. Bulletin of Chemical Reaction Engineering and Catalysis, 5(2: 113-126. doi:10.9767/bcrec.5.2.798.113-126][DOI: http://dx.doi.org/10.9767/bcrec.5.2.798.113-126 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/798

  11. The ab initio study of the catalytic hydrogenation of the oxirene

    Directory of Open Access Journals (Sweden)

    J.B. Mensah

    2008-04-01

    Full Text Available The oxirene is an unsaturated heterocyclic molecule with one oxygen atom and two carbon atoms. Its hydrogenation has been performed on two catalytic site based on molybdenum disulfide (MoS2 and tungsten disulfide (WS2 of MoS3H3+ and WS3H3+ type, respectively. The calculations were carried out using the SCF and MP2 methods and B3LYP functional calculations. The results obtained showed that the hydrogenation of the oxirene is possible on these two kinds of catalytic sites on the one hand, and the reaction product is the acetaldehyde molecule, on the other hand. The reaction process study that led to the results showed that the catalytic hydrogenation of the oxirene is a dissociative process. On the basis of the variation of some parameters during the process, a mechanism of the reaction has been proposed.

  12. Hydrodehalogenation of alkyl iodides with base-mediated hydrogenation and catalytic transfer hydrogenation: application to the asymmetric synthesis of N-protected α-methylamines.

    Science.gov (United States)

    Mandal, Pijus K; Birtwistle, J Sanderson; McMurray, John S

    2014-09-05

    We report a very mild synthesis of N-protected α-methylamines from the corresponding amino acids. Carboxyl groups of amino acids are reduced to iodomethyl groups via hydroxymethyl intermediates. Reductive deiodination to methyl groups is achieved by hydrogenation or catalytic transfer hydrogenation under alkaline conditions. Basic hydrodehalogenation is selective for the iodomethyl group over hydrogenolysis-labile protecting groups, such as benzyloxycarbonyl, benzyl ester, benzyl ether, and 9-fluorenyloxymethyl, thus allowing the conversion of virtually any protected amino acid into the corresponding N-protected α-methylamine.

  13. Production of hydrogen from bio-ethanol in catalytic membrane reactor

    International Nuclear Information System (INIS)

    Gernot, E.; Aupretre, F.; Deschamps, A.; Etievant, C.; Epron, F.; Marecot, P.; Duprez, D.

    2006-01-01

    Production of hydrogen from renewable energy sources offers a great potential for CO 2 emission reduction, responsible for global warming. Among renewable energies, liquid biofuels are very convenient hydrogen carriers for decentralized applications such as micro-cogeneration and transports. Ethanol, produced from sugar plants and cereals, allows a reduction of more than 60% of CO 2 emissions in comparison to gasoline. BIOSTAR is an R and D project, co-funded by the French Agency for Environment and Energy Management (ADEME) which aims at developing an efficient source of hydrogen from bio-ethanol, suitable for proton exchange membrane fuel cell systems. The objectives are to obtain, through catalytic process at medium temperature range, an efficient conversion of bio-ethanol into pure hydrogen directly usable for PEMFC. CETH has developed a catalytic membrane reformer (CMR), based on a patented technology, integrating a steam reforming catalyst as well as a combustion catalyst. Both catalysts have been developed and optimized for membrane reactor in partnership with the University of Poitiers. The composite metallic membrane developed by CETH allows hydrogen extraction near the hydrogen production sites, which enhances both efficiency and compactness. (authors)

  14. Catalytic fast pyrolysis of biomass impregnated with potassium phosphate in a hydrogen atmosphere for the production of phenol and activated carbon

    Science.gov (United States)

    Lu, Qiang; Zhang, Zhen-xi; Wang, Xin; Guo, Hao-qiang; Cui, Min-shu; Yang, Yong-ping

    2018-02-01

    A new technique was proposed to co-produce phenol and activated carbon (AC) from catalytic fast pyrolysis of biomass impregnated with K3PO4 in a hydrogen atmosphere, followed by activation of the pyrolytic solid residues. Lab-scale catalytic fast pyrolysis experiments were performed to quantitatively determine the pyrolytic product distribution, as well as to investigate the effects of several factors on the phenol production, including pyrolysis atmosphere, catalyst type, biomass type, catalytic pyrolysis temperature, and catalyst impregnation content. In addition, the pyrolytic solid residues were activated to prepare ACs with high specific surface areas. The results indicated that phenol could be obtained due to the synergistic effects of K3PO4 and hydrogen atmosphere, with the yield and selectivity reaching 5.3 wt% and 17.8% from catalytic fast pyrolysis of poplar wood with 8 wt% K3PO4 at 550 oC in a hydrogen atmosphere. This technique was adaptable to different woody materials for phenol production. Moreover, gas product generated from the pyrolysis process was feasible to be recycled to provide the hydrogen atmosphere, instead of extra hydrogen supply. In addition, the pyrolytic solid residue was suitable for AC preparation, using CO2 activation method, the specific surface area was as high as 1605 m2/g.

  15. Potential application of palladium nanoparticles as selective recyclable hydrogenation catalysts

    International Nuclear Information System (INIS)

    Mukherjee, DebKumar

    2008-01-01

    The search for more efficient catalytic systems that might combine the advantages of both homogeneous (catalyst modulation) and heterogeneous (catalyst recycling) catalysis is one of the most exciting challenges of modern chemistry. More recently with the advances of nanochemistry, it has been possible to prepare soluble analogues of heterogeneous catalysts. These nanoparticles are generally stabilized against aggregation into larger particles by electrostatic or steric protection. Herein we demonstrate the use of room temperature ionic liquid for the stabilization of palladium nanoparticles that are recyclable catalysts for the hydrogenation of carbon-carbon double bonds and application of these catalysts to the selective hydrogenation of internal or terminal C=C bonds in unsaturated primary alcohols. The particles suspended in room temperature ionic liquid show no metal aggregation or loss of catalytic activity even on prolonged use

  16. Highly Selective Synthesis of Catalytically Active Monodisperse Rhodium Nanocubes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.; Grass, M.E.; Kuhn, J.N.; Tao, F.; Habas, S.E.; Huang, W.; Yang, P.; Somorjai, G.A.

    2009-02-21

    Synthesis of monodisperse and shape-controlled colloidal inorganic nanocrystals (NCs) is of increasing scientific interest and technological significance. Recently, shape control of Pt, Pd, Ag, Au, and Rh NCs has been obtained by tuning growth kinetics in various solution-phase approaches, including modified polyol methods, seeded growth by polyol reduction, thermolysis of organometallics, and micelle techniques. Control of reduction kinetics of the noble metal precursors and regulation of the relative growth rates of low-index planes (i.e. {l_brace}100{r_brace} and {l_brace}111{r_brace}) via selective adsorption of selected chemical species are two keys for achieving shape modification of noble metal NCs. One application for noble metal NCs of well-defined shape is in understanding how NC faceting (determines which crystallographic planes are exposed) affects catalytic performance. Rh NCs are used in many catalytic reactions, including hydrogenation, hydroformylation, hydrocarbonylation, and combustion reactions. Shape manipulation of Rh NCs may be important in understanding how faceting on the nanoscale affects catalytic properties, but such control is challenging and there are fewer reports on the shape control of Rh NCs compared to other noble metals. Xia and coworkers obtained Rh multipods exhibiting interesting surface plasmonic properties by a polyol approach. The Somorjai and Tilley groups synthesized crystalline Rh multipods, cubes, horns and cuboctahedra, via polyol seeded growth. Son and colleagues prepared catalytically active monodisperse oleylamine-capped tetrahedral Rh NCs for the hydrogenation of arenes via an organometallic route. More recently, the Somorjai group synthesized sizetunable monodisperse Rh NCs using a one-step polyol technique. In this Communication, we report the highly selective synthesis of catalytically active, monodisperse Rh nanocubes of < 10 nm by a seedless polyol method. In this approach, Br{sup -} ions from trimethyl

  17. Catalytic Fast Pyrolysis of Biomass Impregnated with Potassium Phosphate in a Hydrogen Atmosphere for the Production of Phenol and Activated Carbon

    Science.gov (United States)

    Lu, Qiang; Zhang, Zhen-xi; Wang, Xin; Guo, Hao-qiang; Cui, Min-shu; Yang, Yong-ping

    2018-01-01

    A new technique was proposed to co-produce phenol and activated carbon (AC) from catalytic fast pyrolysis of biomass impregnated with K3PO4 in a hydrogen atmosphere, followed by activation of the pyrolytic solid residues. Lab-scale catalytic fast pyrolysis experiments were performed to quantitatively determine the pyrolytic product distribution, as well as to investigate the effects of several factors on the phenol production, including pyrolysis atmosphere, catalyst type, biomass type, catalytic pyrolysis temperature, and catalyst impregnation content. In addition, the pyrolytic solid residues were activated to prepare ACs with high specific surface areas. The results indicated that phenol could be obtained due to the synergistic effects of K3PO4 and hydrogen atmosphere, with the yield and selectivity reaching 5.3 wt% and 17.8% from catalytic fast pyrolysis of poplar wood with 8 wt% K3PO4 at 550°C in a hydrogen atmosphere. This technique was adaptable to different woody materials for phenol production. Moreover, gas product generated from the pyrolysis process was feasible to be recycled to provide the hydrogen atmosphere, instead of extra hydrogen supply. In addition, the pyrolytic solid residue was suitable for AC preparation, using CO2 activation method, the specific surface area was as high as 1,605 m2/g. PMID:29515994

  18. Effect of chemically reduced palladium supported catalyst on sunflower oil hydrogenation conversion and selectivity

    Directory of Open Access Journals (Sweden)

    Abdulmajid Alshaibani

    2017-02-01

    Full Text Available Catalytic hydrogenation of sunflower oil was studied in order to improve the conversion and to reduce the trans-isomerization selectivity. The hydrogenation was performed using Pd–B/γ-Al2O3 prepared catalyst and Pd/Al2O3 commercial catalyst under similar conditions. The Pd–B/γ-Al2O3 catalyst was prepared by wet impregnation and chemical reduction processes. It was characterized by Brunauer–Emmett–Teller surface area analysis (BET, X-ray powder diffraction (XRD, scanning electron microscopy (SEM, and transmission electron microscopy (TEM. The result of sunflower oil hydrogenation on Pd–B/γ-Al2O3 catalyst showed a 17% higher conversion and a 23% lower trans-isomerization selectivity compared to the commercial Pd/Al2O3 catalyst. The chemical reduction of palladium supported catalyst using potassium borohydride (KBH4 has affected the Pd–B/γ-Al2O3 catalyst’s structure and particle size. These most likely influenced its catalytic performance toward higher conversion and lower trans-isomerization selectivity.

  19. Selective hydrogenation of phenol to cyclohexanone over Pd@CN (N-doped porous carbon): Role of catalyst reduction method

    Science.gov (United States)

    Hu, Shuo; Yang, Guangxin; Jiang, Hong; Liu, Yefei; Chen, Rizhi

    2018-03-01

    Selective phenol hydrogenation is a green and sustainable technology to produce cyclohexanone. The work focused on investigating the role of catalyst reduction method in the liquid-phase phenol hydrogenation to cyclohexanone over Pd@CN (N-doped porous carbon). A series of reduction methods including flowing hydrogen reduction, in-situ reaction reduction and liquid-phase reduction were designed and performed. The results highlighted that the reduction method significantly affected the catalytic performance of Pd@CN in the liquid-phase hydrogenation of phenol to cyclohexanone, and the liquid-phase reduction with the addition of appropriate amount of phenol was highly efficient to improve the catalytic activity of Pd@CN. The influence mechanism was explored by a series of characterizations. The results of TEM, XPS and CO chemisorption confirmed that the reduction method mainly affected the size, surface composition and dispersion of Pd in the CN material. The addition of phenol during the liquid-phase reduction could inhibit the aggregation of Pd NPs and promote the reduction of Pd (2+), and then improved the catalytic activity of Pd@CN. The work would aid the development of high-performance Pd@CN catalysts for selective phenol hydrogenation.

  20. Properties and application of noble metal catalysts for heterogeneous catalytic hydrogenations

    Energy Technology Data Exchange (ETDEWEB)

    Horn, G; Frohning, C D; Cornils, B [Ruhrchemie A.G., Oberhausen (Germany, F.R.)

    1976-07-01

    The special properties of the six platinum group elements - ruthenium, rhodium, palladium, osmium, iridium, platinum - make them useful as active metals for catalytic reactions. Especially valuable is their property of favouring a single reaction even when the possibility of a number of parallel reactions exists under certain reaction conditions. This selectivity of the noble metal catalyst may be directed or enhanced through appropriate choise of the metal, the reaction conditions, the duration of the reaction, the amount of hydrogen etc. Even the physical state of the catalyst - supported or unsupported - is of influence when using noble metal catalysts as described in this report.

  1. Gold Supported on Graphene Oxide: An Active and Selective Catalyst for Phenylacetylene Hydrogenations at Low Temperatures

    DEFF Research Database (Denmark)

    Shao, Lidong; Huang, Xing; Teschner, Detre

    2014-01-01

    A constraint to industrial implementation of gold-catalyzed alkyne hydrogenation is that the catalytic activity was always inferior to those of other noble metals. In this work, gold was supported on graphene oxide (Au/GO) and used in a hydrogenation application. A 99% selectivity toward styrene...

  2. Solid Catalyst with Ionic Liquid Layer (SCILL). A concept to improve the selectivity of selective hydrogenations

    Energy Technology Data Exchange (ETDEWEB)

    Jess, A.; Korth, W. [Bayreuth Univ. (Germany). Chair of Chemical Engineering

    2011-07-01

    Catalytic hydrogenations are important for refinery processes, petrochemical applications as well as for numerous processes of the fine chemicals industry. In some cases, hydrogenations consist of a sequence of consecutive reactions, and the desired product is the intermediate. An important goal is then a high yield and selectivity to the intermediate, if possible at a high conversion degree. The selectivity to an intermediate primarily depends on the chemical nature of the catalyst, but may also be influenced by diffusion processes. Ionic liquids (ILs) are low melting salts (< 100 C) and represent a promising solvent class. This paper focuses on the concept of a Solid Catalyst with Ionic Liquid Layer (SCILL), where the solid catalyst is coated with a thin IL layer to improve the selectivity. (orig.)

  3. Catalytic hydrogenation of carbon monoxide

    International Nuclear Information System (INIS)

    Wayland, B.B.

    1993-12-01

    Focus of this project is on developing new approaches for hydrogenation of carbon monoxide to produce organic oxygenates at mild conditions. The strategies to accomplish CO reduction are based on favorable thermodynamics manifested by rhodium macrocycles for producing a series of intermediates implicated in the catalytic hydrogenation of CO. Metalloformyl complexes from reactions of H 2 and CO, and CO reductive coupling to form metallo α-diketone species provide alternate routes to organic oxygenates that utilize these species as intermediates. Thermodynamic and kinetic-mechanistic studies are used in guiding the design of new metallospecies to improve the thermodynamic and kinetic factors for individual steps in the overall process. Electronic and steric effects associated with the ligand arrays along with the influences of the reaction medium provide the chemical tools for tuning these factors. Non-macrocyclic ligand complexes that emulate the favorable thermodynamic features associated with rhodium macrocycles, but that also manifest improved reaction kinetics are promising candidates for future development

  4. Catalytic Activities of Noble Metal Phosphides for Hydrogenation and Hydrodesulfurization Reactions

    Directory of Open Access Journals (Sweden)

    Yasuharu Kanda

    2018-04-01

    Full Text Available In this work, the development of a highly active noble metal phosphide (NMXPY-based hydrodesulfurization (HDS catalyst with a high hydrogenating ability for heavy oils was studied. NMXPY catalysts were obtained by reduction of P-added noble metals (NM-P, NM: Rh, Pd, Ru supported on SiO2. The order of activities for the hydrogenation of biphenyl was Rh-P > NiMoS > Pd-P > Ru-P. This order was almost the same as that of the catalytic activities for the HDS of dibenzothiophene. In the HDS of 4,6-dimethyldibenzothiophene (4,6-DMDBT, the HDS activity of the Rh-P catalyst increased with increasing reaction temperature, but the maximum HDS activity for the NiMoS catalyst was observed at 270 °C. The Rh-P catalyst yielded fully hydrogenated products with high selectivity compared with the NiMoS catalyst. Furthermore, XRD analysis of the spent Rh-P catalysts revealed that the Rh2P phase possessed high sulfur tolerance and resistance to sintering.

  5. Reactivity and Catalytic Activity of Hydrogen Atom Chemisorbed Silver Clusters.

    Science.gov (United States)

    Manzoor, Dar; Pal, Sourav

    2015-06-18

    Metal clusters of silver have attracted recent interest of researchers as a result of their potential in different catalytic applications and low cost. However, due to the completely filled d orbital and very high first ionization potential of the silver atom, the silver-based catalysts interact very weakly with the reacting molecules. In the current work, density functional theory calculations were carried out to investigate the effect of hydrogen atom chemisorption on the reactivity and catalytic properties of inert silver clusters. Our results affirm that the hydrogen atom chemisorption leads to enhancement in the binding energy of the adsorbed O2 molecule on the inert silver clusters. The increase in the binding energy is also characterized by the decrease in the Ag-O and increase in the O-O bond lengths in the case of the AgnH silver clusters. Pertinent to the increase in the O-O bond length, a significant red shift in the O-O stretching frequency is also noted in the case of the AgnH silver clusters. Moreover, the hydrogen atom chemisorbed silver clusters show low reaction barriers and high heat of formation of the final products for the environmentally important CO oxidation reaction as compared to the parent catalytically inactive clusters. The obtained results were compared with those of the corresponding gold and hydrogen atom chemisorbed gold clusters obtained at the same level of theory. It is expected the current computational study will provide key insights for future advances in the design of efficient nanosilver-based catalysts through the adsorption of a small atom or a ligand.

  6. A DFT study and micro-kinetic analysis of acetylene selective hydrogenation on Pd-doped Cu(111) surfaces

    International Nuclear Information System (INIS)

    Ma, Ling-Ling; Lv, Cun-Qin; Wang, Gui-Chang

    2017-01-01

    Semi-hydrogenation of acetylene in a hydrogen-rich stream is an industrially important process. Inspired by the recent experiments that Cu(111) surface doped by a small number of Pd atoms can exhibit excellent catalytic performance toward the dissociation of H_2 molecule as well as the high selective hydrogenation of acetylene as compared with pure Cu and Pd metal alone at low-temperature, here we performed systematic first-principles calculations to investigate the corresponding reaction mechanism related to the acetylene hydrogenation processes on single atom alloys (SAAs) and monolayer Pd/Cu(111) (i.e.,1.00 ML Pd/Cu(111)) model catalysts in detail, and to explore the possible factors controlling the high selectivity on SAAs. Our results clearly demonstrate that the SAA catalyst has higher selectivity for the ethylene formation than that of 1.00 ML Pd/Cu(111), and lower activity for the acetylene conversion compared with that of 1.00 ML Pd/Cu(111). The relatively high selectivity on SAA is mainly due to the facile desorption of ethylene and moderate activity in the dissociation of molecular H_2. The main factor which lowers the selectivity towards the ethylene formation on 1.00 ML Pd/Cu(111) is that this system has a higher capacity to promote the breaking of C−H/C−C bonds, which leads to the formation of carbonaceous deposits and polymers such as benzene, and thus reduces the selectivity for the ethylene formation. Meanwhile, it was found that the desorption energy of ethylene on these two surfaces was smaller than the energy barrier of further hydrogenation, which results in the absence of ethane on these two systems. Micro-kinetic model analysis provides a further valuable insight into the evidence for the key factors controlling the catalytic activity and selectivity towards the selective hydrogenation of acetylene. Our findings may help people to design a highly selective hydrogenation catalyst by controlling the balance between the H_2 dissociation and

  7. A DFT study and micro-kinetic analysis of acetylene selective hydrogenation on Pd-doped Cu(111) surfaces

    Science.gov (United States)

    Ma, Ling-Ling; Lv, Cun-Qin; Wang, Gui-Chang

    2017-07-01

    Semi-hydrogenation of acetylene in a hydrogen-rich stream is an industrially important process. Inspired by the recent experiments that Cu(111) surface doped by a small number of Pd atoms can exhibit excellent catalytic performance toward the dissociation of H2 molecule as well as the high selective hydrogenation of acetylene as compared with pure Cu and Pd metal alone at low-temperature, here we performed systematic first-principles calculations to investigate the corresponding reaction mechanism related to the acetylene hydrogenation processes on single atom alloys (SAAs) and monolayer Pd/Cu(111) (i.e.,1.00 ML Pd/Cu(111)) model catalysts in detail, and to explore the possible factors controlling the high selectivity on SAAs. Our results clearly demonstrate that the SAA catalyst has higher selectivity for the ethylene formation than that of 1.00 ML Pd/Cu(111), and lower activity for the acetylene conversion compared with that of 1.00 ML Pd/Cu(111). The relatively high selectivity on SAA is mainly due to the facile desorption of ethylene and moderate activity in the dissociation of molecular H2. The main factor which lowers the selectivity towards the ethylene formation on 1.00 ML Pd/Cu(111) is that this system has a higher capacity to promote the breaking of Csbnd H/Csbnd C bonds, which leads to the formation of carbonaceous deposits and polymers such as benzene, and thus reduces the selectivity for the ethylene formation. Meanwhile, it was found that the desorption energy of ethylene on these two surfaces was smaller than the energy barrier of further hydrogenation, which results in the absence of ethane on these two systems. Micro-kinetic model analysis provides a further valuable insight into the evidence for the key factors controlling the catalytic activity and selectivity towards the selective hydrogenation of acetylene. Our findings may help people to design a highly selective hydrogenation catalyst by controlling the balance between the H2 dissociation and

  8. Hydrogen production via catalytic steam reforming of fast pyrolysis oil fractions

    International Nuclear Information System (INIS)

    Wang, D.; Czernik, S.; Montane, D.; Mann, M.; Chornet, E.

    1997-01-01

    Hydrogen is the prototype of the environmentally cleanest fuel of interest for power generation using fuel cells, and as a co-adjuvant or autonomous transportation fuel in internal combustion engines. The conversion of biomass to hydrogen can be carried out through two distinct thermochemical strategies: (a) gasification followed by shift conversion; (b) catalytic steam reforming and shift conversion of specific fractions derived from fast pyrolysis and aqueous/steam processes of biomass. This paper shows that fast pyrolysis of biomass results in a bio-oil that can be adequately fractionated into valuable co-products leaving as by-product an aqueous fraction containing soluble organics (a mixture of alcohols, aldehydes and acids). This fraction can be converted to hydrogen by catalytic steam reforming followed by a shift conversion step. The methods used, the yields obtained and their economic significance will be discussed. (author)

  9. Catalytic hydrogenation of carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Wayland, B.B.

    1992-12-01

    This project is focused on developing strategies to accomplish the reduction and hydrogenation of carbon monoxide to produce organic oxygenates at mild conditions. Our approaches to this issue are based on the recognition that rhodium macrocycles have unusually favorable thermodynamic values for producing a series of intermediate implicated in the catalytic hydrogenation of CO. Observations of metalloformyl complexes produced by reactions of H{sub 2} and CO, and reductive coupling of CO to form metallo {alpha}-diketone species have suggested a multiplicity of routes to organic oxygenates that utilize these species as intermediates. Thermodynamic and kinetic-mechanistic studies are used in constructing energy profiles for a variety of potential pathways, and these schemes are used in guiding the design of new metallospecies to improve the thermodynamic and kinetic factors for individual steps in the overall process. Variation of the electronic and steric effects associated with the ligand arrays along with the influences of the reaction medium provide the chemical tools for tuning these factors. Emerging knowledge of the factors that contribute to M-H, M-C and M-O bond enthalpies is directing the search for ligand arrays that will expand the range of metal species that have favorable thermodynamic parameters to produce the primary intermediates for CO hydrogenation. Studies of rhodium complexes are being extended to non-macrocyclic ligand complexes that emulate the favorable thermodynamic features associated with rhodium macrocycles, but that also manifest improved reaction kinetics. Multifunctional catalyst systems designed to couple the ability of rhodium complexes to produce formyl and diketone intermediates with a second catalyst that hydrogenates these imtermediates are promising approaches to accomplish CO hydrogenation at mild conditions.

  10. Selective heterogeneous catalytic hydrogenation of ketone (C═O) to alcohol (OH) by magnetite nanoparticles following Langmuir-Hinshelwood kinetic approach.

    Science.gov (United States)

    Shah, Muhammad Tariq; Balouch, Aamna; Rajar, Kausar; Sirajuddin; Brohi, Imdad Ali; Umar, Akrajas Ali

    2015-04-01

    Magnetite nanoparticles were successfully synthesized and effectively employed as heterogeneous catalyst for hydrogenation of ketone moiety to alcohol moiety by NaBH4 under the microwave radiation process. The improvement was achieved in percent recovery of isopropyl alcohol by varying and optimizing reaction time, power of microwave radiations and amount of catalyst. The catalytic study revealed that acetone would be converted into isopropyl alcohol (IPA) with 99.5% yield in short period of reaction time, using 10 μg of magnetite NPs (Fe3O4). It was observed that the catalytic hydrogenation reaction, followed second-order of reaction and the Langmuir-Hinshelwood kinetic mechanism, which elucidated that both reactants get adsorb onto the surface of silica coated magnetite nanocatalyst to react. Consequently, the rate-determining step was the surface reaction of acetone and sodium borohydride. The current study revealed an environment friendly conversion of acetone to IPA on the basis of its fast, efficient, and highly economical method of utilization of microwave irradiation process and easy catalyst recovery.

  11. Catalytic activation of molecular hydrogen in alkyne hydrogenation reactions by lanthanide metal vapor reaction products

    International Nuclear Information System (INIS)

    Evans, W.J.; Bloom, I.; Engerer, S.C.

    1983-01-01

    A rotary metal vapor was used in the synthesis of Lu, Er, Nd, Sm, Yb, and La alkyne, diene, and phosphine complexes. A typical catalytic hydrogenation experiment is described. The lanthanide metal vapor product is dissolved in tetrahydrofuran or toluene and placed in a pressure reaction vessel 3-hexyne (or another substrate) is added, the chamber attached to a high vacuum line, cooled to -196 0 C, evacuated, warmed to ambient temperature and hydrogen is added. The solution is stirred magnetically while the pressure in monitored. The reaction products were analyzed by gas chromatography. Rates and products of various systems are listed. This preliminary survey indicates that catalytic reaction chemistry is available to these metals in a wide range of coordination environments. Attempts to characterize these compounds are hampered by their paramagnetic nature and their tendency to polymerize

  12. A DFT study and micro-kinetic analysis of acetylene selective hydrogenation on Pd-doped Cu(111) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ling-Ling [Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071 (China); Lv, Cun-Qin, E-mail: lcq173@126.com [College of Chemistry and Environmental Engineering, Shanxi Datong University, Datong 037009, Shanxi Province (China); Wang, Gui-Chang, E-mail: wangguichang@nankai.edu.cn [Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071 (China)

    2017-07-15

    Semi-hydrogenation of acetylene in a hydrogen-rich stream is an industrially important process. Inspired by the recent experiments that Cu(111) surface doped by a small number of Pd atoms can exhibit excellent catalytic performance toward the dissociation of H{sub 2} molecule as well as the high selective hydrogenation of acetylene as compared with pure Cu and Pd metal alone at low-temperature, here we performed systematic first-principles calculations to investigate the corresponding reaction mechanism related to the acetylene hydrogenation processes on single atom alloys (SAAs) and monolayer Pd/Cu(111) (i.e.,1.00 ML Pd/Cu(111)) model catalysts in detail, and to explore the possible factors controlling the high selectivity on SAAs. Our results clearly demonstrate that the SAA catalyst has higher selectivity for the ethylene formation than that of 1.00 ML Pd/Cu(111), and lower activity for the acetylene conversion compared with that of 1.00 ML Pd/Cu(111). The relatively high selectivity on SAA is mainly due to the facile desorption of ethylene and moderate activity in the dissociation of molecular H{sub 2}. The main factor which lowers the selectivity towards the ethylene formation on 1.00 ML Pd/Cu(111) is that this system has a higher capacity to promote the breaking of C−H/C−C bonds, which leads to the formation of carbonaceous deposits and polymers such as benzene, and thus reduces the selectivity for the ethylene formation. Meanwhile, it was found that the desorption energy of ethylene on these two surfaces was smaller than the energy barrier of further hydrogenation, which results in the absence of ethane on these two systems. Micro-kinetic model analysis provides a further valuable insight into the evidence for the key factors controlling the catalytic activity and selectivity towards the selective hydrogenation of acetylene. Our findings may help people to design a highly selective hydrogenation catalyst by controlling the balance between the H{sub 2

  13. Review of literature on catalytic recombination of hydrogen--oxygen

    International Nuclear Information System (INIS)

    Homsy, R.V.; Glatron, C.A.

    1968-01-01

    The results are reported of a literature search for information concerning the heterogeneous, gas phase, catalytic hydrogen-oxygen recombination. Laboratory scale experiments to test the performance of specific metal oxide catalysts under conditions simulating the atmosphere within a nuclear reactor containment vessel following a loss-of-coolant blowdown accident are suggested

  14. Electroless preparation and characterization of Ni-B nanoparticles supported on multi-walled carbon nanotubes and their catalytic activity towards hydrogenation of styrene

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zheng; Li, Zhilin [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Institute of Carbon Fibers and Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Wang, Feng, E-mail: wangf@mail.buct.edu.cn [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Institute of Carbon Fibers and Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Liu, Jingjun; Ji, Jing [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Institute of Carbon Fibers and Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Park, Ki Chul [Institute of Carbon Science and Technology (ICST), Shinshu University, 4-17-1 Wakasato, Nagano-shi, Nagano 380-8553 (Japan); Endo, Morinobu [Department of Electrical and Electronic Engineering, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano-shi, Nagano 380-8553 (Japan)

    2012-02-15

    Graphical abstract: The MWCNT/Ni-B catalyst has been successfully prepared by an electroless deposition process. The Ni-B nanoparticles on the supporter are amorphous and are well-distributed. The catalytic conversion towards hydrogenation of styrene shows excellent catalytic activity of the obtained materials. Highlights: Black-Right-Pointing-Pointer A two-step treatment of MWCNTs enabled the homogeneous growth of Ni-B nanoparticles. Black-Right-Pointing-Pointer Ni-B nanoparticles were amorphous with an average size of 60 nm. Black-Right-Pointing-Pointer There were electron transfer between Ni and B. Black-Right-Pointing-Pointer The catalyst had excellent catalytic activity towards hydrogenation of styrene. -- Abstract: Nickel-boron (Ni-B) nanoparticles supported on multi-walled carbon nanotubes (MWCNTs) were successfully synthesized through an electroless deposition process using the plating bath with sodium borohydride as a reducing agent. The structural and morphological analyses using field-emission scanning electron microscopy, X-ray diffractometry and high-resolution transmission electron microscopy have shown that the Ni-B nanoparticles deposited on the sidewalls of MWCNTs are fine spheres comprised of amorphous structure with the morphologically unique fine-structure like flowers, and homogenously dispersed with a narrow particle size distribution centered at around 60 nm diameter. The catalytic activity of MWCNT/Ni-B nanoparticles was evaluated with respect to hydrogenation of styrene. The hydrogenation catalyzed by MWCNT-supported Ni-B nanoparticles has been found to make styrene selectively converted into ethylbenzene. The highest conversion reaches 99.8% under proper reaction conditions, which demonstrates the high catalytic activity of MWCNT/Ni-B nanoparticles.

  15. Catalytic Transfer Hydrogenation of Furfural to Furfuryl Alcohol over Nitrogen-Doped Carbon-Supported Iron Catalysts.

    Science.gov (United States)

    Li, Jiang; Liu, Jun-Ling; Zhou, Hong-Jun; Fu, Yao

    2016-06-08

    Iron-based heterogeneous catalysts, which were generally prepared by pyrolysis of iron complexes on supports at elevated temperature, were found to be capable of catalyzing the transfer hydrogenation of furfural (FF) to furfuryl alcohol (FFA). The effects of metal precursor, nitrogen precursor, pyrolysis temperature, and support on catalytic performance were examined thoroughly, and a comprehensive study of the reaction parameters was also performed. The highest selectivity of FFA reached 83.0 % with a FF conversion of 91.6 % under the optimal reaction condition. Catalyst characterization suggested that iron cations coordinated by pyridinic nitrogen functionalities were responsible for the enhanced catalytic activity. The iron catalyst could be recycled without significant loss of catalytic activity for five runs, and the destruction of the nitrogen-iron species, the presence of crystallized Fe2 O3 phase, and the pore structure change were the main reasons for catalyst deactivation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Theoretical study of catalytic hydrogenation of oxirane and its methyl ...

    African Journals Online (AJOL)

    C3H6O) is its methyl derivative. Theoretical studies on catalytic hydrogenation of both compounds, in presence of aluminium chloride (AlCl3) catalyst, are carried out. The products of reactions are ethanol and propan-1-ol from oxirane and ...

  17. Microchannel Reactor System for Catalytic Hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Adeniyi Lawal; Woo Lee; Ron Besser; Donald Kientzler; Luke Achenie

    2010-12-22

    We successfully demonstrated a novel process intensification concept enabled by the development of microchannel reactors, for energy efficient catalytic hydrogenation reactions at moderate temperature, and pressure, and low solvent levels. We designed, fabricated, evaluated, and optimized a laboratory-scale microchannel reactor system for hydrogenation of onitroanisole and a proprietary BMS molecule. In the second phase of the program, as a prelude to full-scale commercialization, we designed and developed a fully-automated skid-mounted multichannel microreactor pilot plant system for multiphase reactions. The system is capable of processing 1 – 10 kg/h of liquid substrate, and an industrially relevant immiscible liquid-liquid was successfully demonstrated on the system. Our microreactor-based pilot plant is one-of-akind. We anticipate that this process intensification concept, if successfully demonstrated, will provide a paradigm-changing basis for replacing existing energy inefficient, cost ineffective, environmentally detrimental slurry semi-batch reactor-based manufacturing practiced in the pharmaceutical and fine chemicals industries.

  18. Selective catalytic reduction system and process using a pre-sulfated zirconia binder

    Science.gov (United States)

    Sobolevskiy, Anatoly; Rossin, Joseph A.

    2010-06-29

    A selective catalytic reduction (SCR) process with a palladium catalyst for reducing NOx in a gas, using hydrogen as a reducing agent is provided. The process comprises contacting the gas stream with a catalyst system, the catalyst system comprising (ZrO.sub.2)SO.sub.4, palladium, and a pre-sulfated zirconia binder. The inclusion of a pre-sulfated zirconia binder substantially increases the durability of a Pd-based SCR catalyst system. A system for implementing the disclosed process is further provided.

  19. Hydrogen removal from LWR containments by catalytic-coated thermal insulation elements (THINCAT)

    International Nuclear Information System (INIS)

    Fischer, K.; Broeckerhoff, P.; Ahlers, G.; Gustavsson, V.; Herranz, L.; Polo, J.; Dominguez, T.; Royl, P.

    2003-01-01

    In the THINCAT project, an alternative concept for hydrogen mitigation in a light water reactor (LWR) containment is being developed. Based on catalytic coated thermal insulation elements of the main coolant loop components, it could be considered either as an alternative to backfitting passive autocatalytic recombiner devices, or as a reinforcement of their preventive effect. The present paper summarises the results achieved at about project mid-term. Potential advantages of catalytic thermal insulation studied in the project are:-reduced risk of unintended ignition,;-no work space obstruction in the containment,;-no need for seismic qualification of additional equipment,;-improved start-up behaviour of recombination reaction. Efforts to develop a suitable catalytic layer resulted in the identification of a coating procedure that ensures high chemical reactivity and mechanical stability. Test samples for use in forthcoming experiments with this coating were produced. Models to predict the catalytic rates were developed, validated and applied in a safety analysis study. Results show that an overall hydrogen concentration reduction can be achieved which is comparable to the reduction obtained using conventional recombiners. Existing experimental information supports the argument of a reduced ignition risk

  20. Continuous-flow processes for the catalytic partial hydrogenation reaction of alkynes

    Directory of Open Access Journals (Sweden)

    Carmen Moreno-Marrodan

    2017-04-01

    Full Text Available The catalytic partial hydrogenation of substituted alkynes to alkenes is a process of high importance in the manufacture of several market chemicals. The present paper shortly reviews the heterogeneous catalytic systems engineered for this reaction under continuous flow and in the liquid phase. The main contributions appeared in the literature from 1997 up to August 2016 are discussed in terms of reactor design. A comparison with batch and industrial processes is provided whenever possible.

  1. Catalytic processing of high-sulfur fuels for distributed hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Muradov, Nazim; Ramasamy, Karthik; Huang, Cunping; T-Raissi, Ali [Central Florida Univ., FL (United States)

    2010-07-01

    In this work, the development of a new on-demand hydrogen production technology is reported. In this process, a liquid hydrocarbon fuel (e.g., high-S diesel) is first catalytically pre-reformed to shorter chain gaseous hydrocarbons (predominantly, C{sub 1}-C{sub 3}) before being directed to the steam reformer, where it is converted to syngas and then to high-purity hydrogen. In the pre-reformer, most sulfurous species present in the fuel are catalytically converted to H{sub 2}S. In the desulfurization unit, H{sub 2}S is scrubbed and converted to H{sub 2} and elemental sulfur. Desulfurization of the pre-reformate gas is carried out in a special regenerative redox system, which includes Fe(II)/Fe(III)-containing aqueous phase scrubber coupled with an electrolyzer. The integrated pre-reformer/scrubber/electrolyzer unit operated successfully on high-S diesel fuel for more than 100 hours meeting the required desulfurization target of >95 % sulfur removal. (orig.)

  2. Ferric hydroxide supported gold subnano clusters or quantum dots: enhanced catalytic performance in chemoselective hydrogenation.

    Science.gov (United States)

    Liu, Lequan; Qiao, Botao; Ma, Yubo; Zhang, Juan; Deng, Youquan

    2008-05-21

    An attempt to prepare ferric hydroxide supported Au subnano clusters via modified co-precipitation without any calcination was made. High resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) have been employed to study the structure and chemical states of these catalysts. No Au species could be observed in the HRTEM image nor from the XRD pattern, suggesting that the sizes of the Au species in and on the ferric hydroxide support were less than or around 1 nm. Chemoselective hydrogenation of aromatic nitro compounds and alpha,beta-unsaturated aldehydes was selected as a probe reaction to examine the catalytic properties of this catalyst. Under the same reaction conditions, such as 100 degrees C and 1 MPa H2 in the hydrogenation of aromatic nitro compounds, a 96-99% conversion (except for 4-nitrobenzonitrile) with 99% selectivity was obtained over the ferric hydroxide supported Au catalyst, and the TOF values were 2-6 times higher than that of the corresponding ferric oxide supported catalyst with 3-5 nm size Au particles. For further evaluation of this Au catalyst in the hydrogenation of citral and cinnamaldehyde, selectivity towards unsaturated alcohols was 2-20 times higher than that of the corresponding ferric oxide Au catalyst.

  3. COMPARISON OF CATALYTIC ACTIVITIES BOTH FOR SELECTIVE OXIDATION AND DECOMPOSITION OF AMMONIA OVER Fe/HZβ CATALYST

    Directory of Open Access Journals (Sweden)

    YELİZ ÇETİN

    2016-11-01

    Full Text Available Ammonia is one of the syngas contaminants that must be removed before using the syngas downstream applications. The most promising hot-gas clean-up techniques of ammonia are selective catalytic oxidation (SCO and catalytic decomposition. In this study, the catalytic activities over Zeolite Hβ supported iron catalyst (Fe/HZβ were compared both for the two catalytic routes. For SCO experiments; temperature (300-550 °C, O2 (2000-6000 ppmv and (0-10% H2 concentrations were investigated with the presence of 800 ppm NH3 in each of the final gas mixture. In the second route, catalytic ammonia decomposition experiments were carried out with H2 in balance N2 (0-30% containing 800 ppm NH3 at 700°C and 800°C. In the SCO, NH3 conversions were increased with increasing reaction temperatures with the absence of H2 in the reaction mixture. With 10% H2, it was shown that NH3 conversions increased with decreasing the reaction temperature. This was interpreted as the competing H2 and NH3 oxidations over the catalyst. On the other hand, in the catalytic decomposition, thermodynamic equilibrium conversion of almost 100% was attained at both 700 and 800 °C. Upon H2 addition, all conversions decreased. The decrease in conversion seemed to be linear with inlet hydrogen concentration. Hydrogen was seen to inhibit ammonia decomposition reaction. It was shown that Fe/HZβ catalyst is better to use for catalytic decomposition of NH3 in syngas rather than SCO of NH3 in spite of higher reaction temperatures needed in the decomposition reaction.

  4. Multifaceted catalytic hydrogenation of amides via diverse activation of a sterically confined bipyridine-ruthenium framework.

    Science.gov (United States)

    Miura, Takashi; Naruto, Masayuki; Toda, Katsuaki; Shimomura, Taiki; Saito, Susumu

    2017-05-16

    Amides are ubiquitous and abundant in nature and our society, but are very stable and reluctant to salt-free, catalytic chemical transformations. Through the activation of a "sterically confined bipyridine-ruthenium (Ru) framework (molecularly well-designed site to confine adsorbed H 2 in)" of a precatalyst, catalytic hydrogenation of formamides through polyamide is achieved under a wide range of reaction conditions. Both C=O bond and C-N bond cleavage of a lactam became also possible using a single precatalyst. That is, catalyst diversity is induced by activation and stepwise multiple hydrogenation of a single precatalyst when the conditions are varied. The versatile catalysts have different structures and different resting states for multifaceted amide hydrogenation, but the common structure produced upon reaction with H 2 , which catalyzes hydrogenation, seems to be "H-Ru-N-H."

  5. Catalytic on-board hydrogen production from methanol and ammonia for mobile application

    Energy Technology Data Exchange (ETDEWEB)

    Soerijanto, H.

    2008-08-15

    This PhD thesis deals with the catalytic hydrogen production for mobile application, for example for the use in fuel cells for electric cars. Electric powered buses with fuel cells as driving system are well known, but the secure hydrogen storage in adequate amounts for long distance drive is still a topic of discussion. Methanol is an excellent hydrogen carrier. First of all it has a high H:C ratio and therefore a high energy density. Secondly the operating temperature of steam reforming of methanol is comparatively low (250 C) and there is no risk of coking since methanol has no C-C bond. Thirdly methanol is a liquid, which means that the present gasoline infrastructure can be used. For the further development of catalysts and for the construction of a reformer it is very important to characterize the catalysts very well. For the dimensioning and the control of an on-board production of hydrogen it is essential to draw accurately on the thermodynamic, chemical and kinetic data of the reaction. At the first part of this work the mesoporous Cu/ZrO{sub 2}/CeO{sub 2}-catalysts with various copper contents were characterized and their long-term stability and selectivity were investigated, and the kinetic data were determined. Carbon monoxide is generated by reforming of carbon containing material. This process is undesired since CO poisons the Pt electrode of the fuel cell. The separation of hydrogen by metal membranes is technically feasible and a high purity of hydrogen can be obtained. However, due to their high density this procedure is not favourable because of its energy loss. In this study a concept is presented, which enables an autothermal mode by application of ceramic membrane and simultaneously could help to deal with the CO problem. The search for an absolutely selective catalyst is uncertain. The production of CO can be neither chemically nor thermodynamically excluded, if carbon is present in the hydrogen carrier. Since enrichment or separation are

  6. Catalytic on-board hydrogen production from methanol and ammonia for mobile application

    Energy Technology Data Exchange (ETDEWEB)

    Soerijanto, H

    2008-08-15

    This PhD thesis deals with the catalytic hydrogen production for mobile application, for example for the use in fuel cells for electric cars. Electric powered buses with fuel cells as driving system are well known, but the secure hydrogen storage in adequate amounts for long distance drive is still a topic of discussion. Methanol is an excellent hydrogen carrier. First of all it has a high H:C ratio and therefore a high energy density. Secondly the operating temperature of steam reforming of methanol is comparatively low (250 C) and there is no risk of coking since methanol has no C-C bond. Thirdly methanol is a liquid, which means that the present gasoline infrastructure can be used. For the further development of catalysts and for the construction of a reformer it is very important to characterize the catalysts very well. For the dimensioning and the control of an on-board production of hydrogen it is essential to draw accurately on the thermodynamic, chemical and kinetic data of the reaction. At the first part of this work the mesoporous Cu/ZrO{sub 2}/CeO{sub 2}-catalysts with various copper contents were characterized and their long-term stability and selectivity were investigated, and the kinetic data were determined. Carbon monoxide is generated by reforming of carbon containing material. This process is undesired since CO poisons the Pt electrode of the fuel cell. The separation of hydrogen by metal membranes is technically feasible and a high purity of hydrogen can be obtained. However, due to their high density this procedure is not favourable because of its energy loss. In this study a concept is presented, which enables an autothermal mode by application of ceramic membrane and simultaneously could help to deal with the CO problem. The search for an absolutely selective catalyst is uncertain. The production of CO can be neither chemically nor thermodynamically excluded, if carbon is present in the hydrogen carrier. Since enrichment or separation are

  7. Pt Single Atoms Embedded in the Surface of Ni Nanocrystals as Highly Active Catalysts for Selective Hydrogenation of Nitro Compounds.

    Science.gov (United States)

    Peng, Yuhan; Geng, Zhigang; Zhao, Songtao; Wang, Liangbing; Li, Hongliang; Wang, Xu; Zheng, Xusheng; Zhu, Junfa; Li, Zhenyu; Si, Rui; Zeng, Jie

    2018-06-13

    Single-atom catalysts exhibit high selectivity in hydrogenation due to their isolated active sites, which ensure uniform adsorption configurations of substrate molecules. Compared with the achievement in catalytic selectivity, there is still a long way to go in exploiting the catalytic activity of single-atom catalysts. Herein, we developed highly active and selective catalysts in selective hydrogenation by embedding Pt single atoms in the surface of Ni nanocrystals (denoted as Pt 1 /Ni nanocrystals). During the hydrogenation of 3-nitrostyrene, the TOF numbers based on surface Pt atoms of Pt 1 /Ni nanocrystals reached ∼1800 h -1 under 3 atm of H 2 at 40 °C, much higher than that of Pt single atoms supported on active carbon, TiO 2 , SiO 2 , and ZSM-5. Mechanistic studies reveal that the remarkable activity of Pt 1 /Ni nanocrystals derived from sufficient hydrogen supply because of spontaneous dissociation of H 2 on both Pt and Ni atoms as well as facile diffusion of H atoms on Pt 1 /Ni nanocrystals. Moreover, the ensemble composed of the Pt single atom and nearby Ni atoms in Pt 1 /Ni nanocrystals leads to the adsorption configuration of 3-nitrostyrene favorable for the activation of nitro groups, accounting for the high selectivity for 3-vinylaniline.

  8. Ni-Pt nanoparticles growing on metal organic frameworks (MIL-96) with enhanced catalytic activity for hydrogen generation from hydrazine at room temperature.

    Science.gov (United States)

    Wen, Lan; Du, Xiaoqiong; Su, Jun; Luo, Wei; Cai, Ping; Cheng, Gongzhen

    2015-04-07

    Well-dispersed bimetallic Ni-Pt nanoparticles (NPs) with different compositions have been successfully grown on the MIL-96 by a simple liquid impregnation method using NaBH4 as the reducing agent. Powder X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray spectroscopy, N2 adsorption-desorption, and inductively coupled plasma-atomic emission spectroscopy measurements were employed to characterize the NiPt/MIL-96. Catalytic activity of NiPt/MIL-96 catalysts was tested in the hydrogen generation from the aqueous alkaline solution of hydrazine at room temperature. These catalysts are composition dependent on their catalytic activity, while Ni64Pt36/MIL-96 exhibits the highest catalytic activity among all the catalysts tested, with a turnover frequency value of 114.3 h(-1) and 100% hydrogen selectivity. This excellent catalytic performance might be due to the synergistic effect of the MIL-96 support and NiPt NPs, while NiPt NPs supported on other conventional supports, such as SiO2, carbon black, γ-Al2O3, poly(N-vinyl-2-pyrrolidone) (PVP), and the physical mixture of NiPt and MIL-96, all of them exhibit inferior catalytic activity compared to that of NiPt/MIL-96.

  9. Tunable preparation of ruthenium nanoparticles with superior size-dependent catalytic hydrogenation properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yuan; Luo, Yaodong; Yang, Xuan; Yang, Yaxin; Song, Qijun, E-mail: qsong@jiangnan.edu.cn

    2017-06-15

    Highlights: • A facile and efficient strategy is firstly developed for the synthesis of Ru NPs. • Ru NPs are stable and uniform with the controllable sizes from 2.6 to 51.5 nm. • Ru NPs exhibit size-dependent and superior catalytic hydrogenation activity. - Abstract: Ruthenium (Ru) featured with an unusual catalytic behavior is of great significance in several heterogeneous and electro-catalytic reactions. The preparation of tractable Ru nanocatalysts and the building of highly active catalytic system at ambient temperature remains a grand challenge. Herein, a facile strategy is developed for the controllable preparation of Ru nanoparticles (NPs) with the sizes ranging from 2.6 to 51.5 nm. Ru NPs show superior size-dependent catalytic performance with the best kinetic rate constant as high as −1.52 min{sup −1}, which could far surpass the other traditional noble metals. Ru NPs exert exceedingly efficient low-temperature catalytic activity and good recyclability in the catalytic reduction of nitroaromatic compounds (NACs) and azo dyes. The developed catalytic system provides a distinguishing insight for the artificial preparation of Ru NPs with desired sizes, and allows for the development of rational design rules for exploring catalysts with superior catalytic performances, potentially broadening the applications of metallic NP-enabled catalytic analysis.

  10. Liquid-Phase Catalytic Transfer Hydrogenation of Furfural over Homogeneous Lewis Acid-Ru/C Catalysts.

    Science.gov (United States)

    Panagiotopoulou, Paraskevi; Martin, Nickolas; Vlachos, Dionisios G

    2015-06-22

    The catalytic performance of homogeneous Lewis acid catalysts and their interaction with Ru/C catalyst are studied in the catalytic transfer hydrogenation of furfural by using 2-propanol as a solvent and hydrogen donor. We find that Lewis acid catalysts hydrogenate the furfural to furfuryl alcohol, which is then etherified with 2-propanol. The catalytic activity is correlated with an empirical scale of Lewis acid strength and exhibits a volcano behavior. Lanthanides are the most active, with DyCl3 giving complete furfural conversion and a 97 % yield of furfuryl alcohol at 180 °C after 3 h. The combination of Lewis acid and Ru/C catalysts results in synergy for the stronger Lewis acid catalysts, with a significant increase in the furfural conversion and methyl furan yield. Optimum results are obtained by using Ru/C combined with VCl3 , AlCl3 , SnCl4 , YbCl3 , and RuCl3 . Our results indicate that the combination of Lewis acid/metal catalysts is a general strategy for performing tandem reactions in the upgrade of furans. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Organo-bridged silsesquioxane titanates for heterogeneous catalytic epoxidation with aqueous hydrogen peroxide

    NARCIS (Netherlands)

    Wang, Y.M.; Magusin, P.C.M.M.; Santen, van R.A.; Abbenhuis, H.C.L.

    2007-01-01

    Organo-bridged silsesquioxane titanates for heterogeneous catalytic epoxidation with aqueous hydrogen peroxide were synthesized through the acid-catalyzed hydrolysis and co-condensation of organotrialkoxysilane monomers and a,¿-bis(trialkoxysilyl) alkane cross-linkers in ethanol–water solution, with

  12. Transfer Hydrogenation: Employing a Simple, In Situ Prepared Catalytic System

    KAUST Repository

    Ang, Eleanor Pei Ling

    2017-04-01

    Transfer hydrogenation has been recognized to be an important synthetic method in both academic and industrial research to obtain valuable products including alcohols. Transition metal catalysts based on precious metals, such as Ru, Rh and Ir, are typically employed for this process. In recent years, iron-based catalysts have attracted considerable attention as a greener and more sustainable alternative since iron is earth abundant, inexpensive and non-toxic. In this work, a combination of iron disulfide with chelating bipyridine ligand was found to be effective for the transfer hydrogenation of a variety of ketones to the corresponding alcohols in the presence of a simple base. It provided a convenient and economical way to conduct transfer hydrogenation. A plausible role of sulfide next to the metal center in facilitating the catalytic reaction is demonstrated.

  13. Catalytic glycerol steam reforming for hydrogen production

    International Nuclear Information System (INIS)

    Dan, Monica; Mihet, Maria; Lazar, Mihaela D.

    2015-01-01

    Hydrogen production from glycerol by steam reforming combine two major advantages: (i) using glycerol as raw material add value to this by product of bio-diesel production which is obtained in large quantities around the world and have a very limited utilization now, and (ii) by implication of water molecules in the reaction the efficiency of hydrogen generation is increased as each mol of glycerol produces 7 mol of H 2 . In this work we present the results obtained in the process of steam reforming of glycerol on Ni/Al 2 O 3 . The catalyst was prepared by wet impregnation method and characterized through different methods: N 2 adsorption-desorption, XRD, TPR. The catalytic study was performed in a stainless steel tubular reactor at atmospheric pressure by varying the reaction conditions: steam/carbon ratio (1-9), gas flow (35 ml/min -133 ml/min), temperature (450-650°C). The gaseous fraction of the reaction products contain: H 2 , CH 4 , CO, CO 2 . The optimum reaction conditions as resulted from this study are: temperature 550°C, Gly:H 2 O ratio 9:1 and Ar flow 133 ml/min. In these conditions the glycerol conversion to gaseous products was 43% and the hydrogen yield was 30%

  14. Catalytic Transfer Hydrogenation of Furfural to Furfuryl Alcohol with Recyclable Al-Zr@Fe Mixed Oxides

    DEFF Research Database (Denmark)

    He, Jian; Li, Hu; Riisager, Anders

    2017-01-01

    A series of magnetic, acid/base bifunctional Al–Zr@Fe3O4 catalysts were successfully prepared by a facile coprecipitation method and utilized in the catalytic transfer hydrogenation (CTH) of furfural to furfuryl alcohol with 2-propanol as hydrogen source. The physicochemical properties and morpho......A series of magnetic, acid/base bifunctional Al–Zr@Fe3O4 catalysts were successfully prepared by a facile coprecipitation method and utilized in the catalytic transfer hydrogenation (CTH) of furfural to furfuryl alcohol with 2-propanol as hydrogen source. The physicochemical properties...... with a Al3+/Zr4+/Fe3O4 molar ratio of 21:9:3 was found to exhibit a high furfuryl alcohol yield of 90.5 % in the CTH from furfural at 180 °C after 4 h with a comparatively low activation energy of 45.3 kJ mol−1, as calculated from the Arrhenius equation. Moreover, leaching and recyclability tests confirmed...

  15. Selective Hydrogenation of Furfural to Furfuryl Alcohol in the Presence of a Recyclable Cobalt/SBA-15 Catalyst.

    Science.gov (United States)

    Audemar, Maïté; Ciotonea, Carmen; De Oliveira Vigier, Karine; Royer, Sébastien; Ungureanu, Adrian; Dragoi, Brindusa; Dumitriu, Emil; Jérôme, François

    2015-06-08

    The hydrogenation of furfural to furfuryl alcohol was performed in the presence of a Co/SBA-15 catalyst. High selectivity (96 %) at a conversion higher than 95 % is reported over this catalytic system. As the conversion of furfural to furfuryl alcohol occurs over metallic Co sites, the effect of reduction temperature, H2 pressure, and reaction temperature were studied. Optimum reaction conditions were: 150 °C, 1.5 h, 2.0 MPa of H2 . The catalyst was recyclable, and furfuryl alcohol was recovered with a purity higher than 90 %. The effect of the solvent concentration was also studied. With a minimum of 50 wt % of solvent, the selectivity to furfuryl alcohol and the conversion of furfural remained high (both over 80 %). Likewise, the activity of the catalyst is maintained even in pure furfural, which confirms the real potential of the proposed catalytic system. This catalyst was also used in the hydrogenation of levulinic acid to produce γ-valerolactone selectively. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. One-pot process combining transesterification and selective hydrogenation for biodiesel production from starting material of high degree of unsaturation.

    Science.gov (United States)

    Yang, Ru; Su, Mengxing; Li, Min; Zhang, Jianchun; Hao, Xinmin; Zhang, Hua

    2010-08-01

    A one-pot process combining transesterification and selective hydrogenation was established to produce biodiesel from hemp (Cannabis sativa L.) seed oil which is eliminated as a potential feedstock by a specification of iodine value (IV; 120 g I(2)/100g maximum) contained in EN 14214. A series of alkaline earth metal oxides and alkaline earth metal supported copper oxide were prepared and tested as catalysts. SrO supported 10 wt.% CuO showed the superior catalytic activity for transesterification with a biodiesel yield of 96% and hydrogenation with a reduced iodine value of 113 and also exhibited a promising selectivity for eliminating methyl linolenate and increasing methyl oleate without rising methyl stearate in the selective hydrogenation. The fuel properties of the selective hydrogenated methyl esters are within biodiesel specifications. Furthermore, cetane numbers and iodine values were well correlated with the compositions of the hydrogenated methyl esters according to degrees of unsaturation. (c) 2010 Elsevier Ltd. All rights reserved.

  17. Substrate-mediated enhanced activity of Ru nanoparticles in catalytic hydrogenation of benzene

    KAUST Repository

    Liu, Xin

    2012-01-01

    The impact of carbon substrate-Ru nanoparticle interactions on benzene and hydrogen adsorption that is directly related to the performance in catalytic hydrogenation of benzene has been investigated by first-principles based calculations. The stability of Ru 13 nanoparticles is enhanced by the defective graphene substrate due to the hybridization between the dsp states of the Ru 13 particle with the sp 2 dangling bonds at the defect sites. The local curvature formed at the interface will also raise the Ru atomic diffusion barrier, and prohibit the particle sintering. The strong interfacial interaction results in the shift of averaged d-band center of the deposited Ru nanoparticle, from -1.41 eV for a freestanding Ru 13 particle, to -1.17 eV for the Ru/Graphene composites, and to -1.54 eV on mesocellular foam carbon. Accordingly, the adsorption energies of benzene are increased from -2.53 eV for the Ru/mesocellular foam carbon composites, to -2.62 eV on freestanding Ru 13 particles, to -2.74 eV on Ru/graphene composites. A similar change in hydrogen adsorption is also observed, and all these can be correlated to the shift of the d-band center of the nanoparticle. Thus, Ru nanoparticles graphene composites are expected to exhibit both high stability and superior catalytic performance in hydrogenation of arenes. © 2012 The Royal Society of Chemistry.

  18. Catalytic effect of additional metallic phases on the hydrogen absorption behavior of a Zr-Based alloy

    International Nuclear Information System (INIS)

    Ruiz, F; Peretti, H; Castro, E; Real, S; Visitin, A; Triaca, W

    2005-01-01

    The electrochemical hydrogen absorption of electrodes containing Zr 0 .9Ti 0 .1(Ni 0 .5Mn 0 .25Cr 0 .20V 0 .05) 2 is studied in alkaline media by monitoring the activation and discharge capacity along charge-discharge cycling.The considered alloy is tested in both as melted and annealed condition in order to investigate the catalytic effect of small amounts of micro segregated secondary phases of the Zr-Ni system. Since these catalytic phases are only present in the as melted alloys, tests are also carried out using a composite material elaborated from powders of the annealed alloy with the addition of 18 wt.% of the suspected catalytic phases, melted separately.The hydrogen absorption-desorption behavior for the different cases is discussed and correlated with the metallurgical characterization of the materials.The catalytic effects are studied employing cyclic voltammetry and electrochemical impedance techniques. The results are analyzed in terms of a developed physicochemical model

  19. Formic Acid Free Flowsheet Development To Eliminate Catalytic Hydrogen Generation In The Defense Waste Processing

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, Dan P.; Stone, Michael E.; Newell, J. David; Fellinger, Terri L.; Bricker, Jonathan M.

    2012-09-14

    The Defense Waste Processing Facility (DWPF) processes legacy nuclear waste generated at the Savannah River Site (SRS) during production of plutonium and tritium demanded by the Cold War. The nuclear waste is first treated via a complex sequence of controlled chemical reactions and then vitrified into a borosilicate glass form and poured into stainless steel canisters. Converting the nuclear waste into borosilicate glass canisters is a safe, effective way to reduce the volume of the waste and stabilize the radionuclides. Testing was initiated to determine whether the elimination of formic acid from the DWPF's chemical processing flowsheet would eliminate catalytic hydrogen generation. Historically, hydrogen is generated in chemical processing of alkaline High Level Waste sludge in DWPF. In current processing, sludge is combined with nitric and formic acid to neutralize the waste, reduce mercury and manganese, destroy nitrite, and modify (thin) the slurry rheology. The noble metal catalyzed formic acid decomposition produces hydrogen and carbon dioxide. Elimination of formic acid by replacement with glycolic acid has the potential to eliminate the production of catalytic hydrogen. Flowsheet testing was performed to develop the nitric-glycolic acid flowsheet as an alternative to the nitric-formic flowsheet currently being processed at the DWPF. This new flowsheet has shown that mercury can be reduced and removed by steam stripping in DWPF with no catalytic hydrogen generation. All processing objectives were also met, including greatly reducing the Slurry Mix Evaporator (SME) product yield stress as compared to the baseline nitric/formic flowsheet. Ten DWPF tests were performed with nonradioactive simulants designed to cover a broad compositional range. No hydrogen was generated in testing without formic acid.

  20. Catalytic glycerol steam reforming for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Dan, Monica, E-mail: monica.dan@itim-cj.ro; Mihet, Maria, E-mail: maria.mihet@itim-cj.ro; Lazar, Mihaela D., E-mail: diana.lazar@itim-cj.ro [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj Napoca (Romania)

    2015-12-23

    Hydrogen production from glycerol by steam reforming combine two major advantages: (i) using glycerol as raw material add value to this by product of bio-diesel production which is obtained in large quantities around the world and have a very limited utilization now, and (ii) by implication of water molecules in the reaction the efficiency of hydrogen generation is increased as each mol of glycerol produces 7 mol of H{sub 2}. In this work we present the results obtained in the process of steam reforming of glycerol on Ni/Al{sub 2}O{sub 3}. The catalyst was prepared by wet impregnation method and characterized through different methods: N{sub 2} adsorption-desorption, XRD, TPR. The catalytic study was performed in a stainless steel tubular reactor at atmospheric pressure by varying the reaction conditions: steam/carbon ratio (1-9), gas flow (35 ml/min -133 ml/min), temperature (450-650°C). The gaseous fraction of the reaction products contain: H{sub 2}, CH{sub 4}, CO, CO{sub 2}. The optimum reaction conditions as resulted from this study are: temperature 550°C, Gly:H{sub 2}O ratio 9:1 and Ar flow 133 ml/min. In these conditions the glycerol conversion to gaseous products was 43% and the hydrogen yield was 30%.

  1. Detailed modelling of processes inside a catalytic recombiner for hydrogen removal

    International Nuclear Information System (INIS)

    Heitsch, M.

    1999-01-01

    Under accidental conditions, considerable amounts of hydrogen may be released into the containment. Catalytic reacting surfaces in recombiners are a reliable method to recombine this hydrogen and other burnable gases like carbon monoxide from the atmosphere in a passive way. Many experiments have been carried out to study the main phenomena occurring inside recombiners, like the efficiency of hydrogen removal, the start-up conditions, poisoning, oxygen starvation, steam and water impact, and others. In addition, the global behavior of a given recombiner device in a larger environment has been investigated in order to demonstrate the effectiveness and to facilitate the derivation of simplified models for long term, severe accident analyses. These long-term severe accident models are complemented by detailed investigations to understand the interaction of chemistry and flow inside a recombiner box. This helps to provide the dependencies of non-measurable variables (e.g. the reaction rate distribution), of local surface temperatures etc. to make long-term or system models more reliable. It also offers possibilities for increasing the chemical efficiency by optimising the geometric design properly. Computational Fluid Dynamics (CFD) codes are available for use as development tools to include the specifics of catalytic surface reactors. The present paper describes the use of the code system CFX [1] for creating a recombiner model. Some model predictions are compared to existing test data. (author)

  2. Hydrogen production from palm kernel shell via integrated catalytic adsorption (ICA) steam gasification

    International Nuclear Information System (INIS)

    Khan, Zakir; Yusup, Suzana; Ahmad, Murni Melati; Chin, Bridgid Lai Fui

    2014-01-01

    Highlights: • The paper presents integrated catalytic adsorption (ICA) steam gasification for H 2 yield. • Effects of adsorbent to biomass, biomass particle size and fluidization velocity on H 2 yield are examined. • The present study produces higher H 2 yield as compared to that obtained in literatures. • The ICA provides enhancement of H 2 yield as compared to independent catalytic and CO 2 adsorption gasification systems. - Abstract: The present study investigates the integrated catalytic adsorption (ICA) steam gasification of palm kernel shell for hydrogen production in a pilot scale atmospheric fluidized bed gasifier. The biomass steam gasification is performed in the presence of an adsorbent and a catalyst in the system. The effect of adsorbent to biomass (A/B) ratio (0.5–1.5 wt/wt), fluidization velocity (0.15–0.26 m/s) and biomass particle size (0.355–2.0 mm) are studied at temperature of 675 °C, steam to biomass (S/B) ratio of 2.0 (wt/wt) and biomass to catalyst ratio of 0.1 (wt/wt). Hydrogen composition and yield, total gas yield, and lower product gas heating values (LHV gas ) increases with increasing A/B ratio, while particle size has no significant effect on hydrogen composition and yield, total gas and char yield, gasification and carbon conversion efficiency. However, gas heating values increased with increasing biomass particle size which is due to presence of high methane content in product gas. Meanwhile, medium fluidization velocity of 0.21 m/s favoured hydrogen composition and yield. The results showed that the maximum hydrogen composition and yield of 84.62 vol% and 91.11 g H 2 /kg biomass are observed at A/B ratio of 1.5, S/B ratio of 2.0, catalyst to biomass ratio of 0.1 and temperature of 675 °C. The product gas heating values are observed in the range of 10.92–17.02 MJ/N m 3 . Gasification and carbon conversion efficiency are observed in the range of 25.66–42.95% and 20.61–41.95%, respectively. These lower

  3. Field-controlled electron transfer and reaction kinetics of the biological catalytic system of microperoxidase-11 and hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Yongki Choi

    2011-12-01

    Full Text Available Controlled reaction kinetics of the bio-catalytic system of microperoxidase-11 and hydrogen peroxide has been achieved using an electrostatic technique. The technique allowed independent control of 1 the thermodynamics of the system using electrochemical setup and 2 the quantum mechanical tunneling at the interface between microperoxidase-11 and the working electrode by applying a gating voltage to the electrode. The cathodic currents of electrodes immobilized with microperoxidase-11 showed a dependence on the gating voltage in the presence of hydrogen peroxide, indicating a controllable reduction reaction. The measured kinetic parameters of the bio-catalytic reduction showed nonlinear dependences on the gating voltage as the result of modified interfacial electron tunnel due to the field induced at the microperoxidase-11-electrode interface. Our results indicate that the kinetics of the reduction of hydrogen peroxide can be controlled by a gating voltage and illustrate the operation of a field-effect bio-catalytic transistor, whose current-generating mechanism is the conversion of hydrogen peroxide to water with the current being controlled by the gating voltage.

  4. A low-barrier hydrogen bond mediates antibiotic resistance in a noncanonical catalytic triad

    Science.gov (United States)

    2018-01-01

    One group of enzymes that confer resistance to aminoglycoside antibiotics through covalent modification belongs to the GCN5-related N-acetyltransferase (GNAT) superfamily. We show how a unique GNAT subfamily member uses a previously unidentified noncanonical catalytic triad, consisting of a glutamic acid, a histidine, and the antibiotic substrate itself, which acts as a nucleophile and attacks the acetyl donor molecule. Neutron diffraction studies allow for unambiguous identification of a low-barrier hydrogen bond, predicted in canonical catalytic triads to increase basicity of the histidine. This work highlights the role of this unique catalytic triad in mediating antibiotic resistance while providing new insights into the design of the next generation of aminoglycosides. PMID:29632894

  5. Magnetic nickel ferrite nanoparticles as highly durable catalysts for catalytic transfer hydrogenation of bio-based aldehydes

    DEFF Research Database (Denmark)

    He, Jian; Yang, Song; Riisager, Anders

    2018-01-01

    Magnetic nickel ferrite (NiFe2O4) nanoparticles were exploited as stable and easily separable heterogeneous catalysts for catalytic transfer hydrogenation (CTH) of furfural to furfuryl alcohol with 2-propanol as both the hydrogen source and the solvent providing 94% product yield at 180 degrees C...

  6. Heterogeneous kinetic modeling of the catalytic conversion of cycloparaffins

    Science.gov (United States)

    Al-Sabawi, Mustafa N.

    The limited availability of high value light hydrocarbon feedstocks along with the rise in crude prices has resulted in the international recognition of the vast potential of Canada's oil sands. With the recent expansion of Canadian bitumen production come, however, many technical challenges, one of which is the significant presence of aromatics and cycloparaffins in bitumen-derived feedstocks. In addition to their negative environmental impact, aromatics limit fluid catalytic cracking (FCC) feedstock conversion, decrease the yield and quality of valuable products such as gasoline and middle distillates, increase levels of polyaromatic hydrocarbons prone to form coke on the catalyst, and ultimately compromise the FCC unit performance. Although cycloparaffins do not have such negative impacts, they are precursors of aromatics as they frequently undergo hydrogen transfer reactions. However, cycloparaffin cracking chemistry involves other competing reactions that are complex and need much investigation. This dissertation provides insights and understanding of the fundamentals of the catalytic cracking of cycloparaffins using carefully selected model compounds such as methylcyclohexane (MCH) and decalin. Thermal and catalytic cracking of these cycloparaffins on FCC-type catalysts are carried out using the CREC Riser Simulator under operating conditions similar to those of the industrial FCC units in terms of temperature, reaction time, reactant partial pressure and catalyst-to-hydrocarbon ratio. The crystallite size of the supported zeolites is varied between 0.4 and 0.9 microns, with both activity and selectivity being monitored. Catalytic conversions ranged between 4 to 16 wt% for MCH and between 8 to 27 wt% for decalin. Reaction pathways of cycloparaffins are determined, and these include ring-opening, protolytic cracking, isomerization, hydrogen transfer and transalkylation. The yields and selectivities of over 60 and 140 products, formed during MCH and decalin

  7. Facile synthesis of polypyrrole functionalized nickel foam with catalytic activity comparable to Pt for the poly-generation of hydrogen and electricity

    Science.gov (United States)

    Tang, Tiantian; Li, Kan; Shen, Zhemin; Sun, Tonghua; Wang, Yalin; Jia, Jinping

    2016-01-01

    Polypyrrole functionalized nickel foam is facilely prepared through the potentiostatic electrodeposition. The PPy-functionalized Ni foam functions as a hydrogen-evolution cathode in a rotating disk photocatalytic fuel cell, in which hydrogen energy and electric power are generated by consuming organic wastes. The PPy-functionalized Ni foam cathode exhibits stable catalytic activities after thirteen continuous runs. Compared with net or plate structure, the Ni foam with a unique three-dimensional reticulate structure is conducive to the electrodeposition of PPy. Compared with Pt-group electrode, PPy-coated Ni foam shows a satisfactory catalytic performance for the H2 evolution. The combination of PPy and Ni forms a synergistic effect for the rapid trapping and removal of proton from solution and the catalytic reduction of proton to hydrogen. The PPy-functionalized Ni foam could be applied in photocatalytic and photoelectrochemical generation of H2. In all, we report a low cost, high efficient and earth abundant PPy-functionalized Ni foam with a satisfactory catalytic activities comparable to Pt for the practical application of poly-generation of hydrogen and electricity.

  8. New catalysts for selective hydrogenation of diene and acetylene hydrocarbons into olefins

    Energy Technology Data Exchange (ETDEWEB)

    Frolov, V.M.; Parenago, O.P.; Shuikina, L.P.

    1978-12-01

    New catalysts for selective hydrogenation of diene and acetylene hydrocarbons into olefins were obtained by reacting aqueous palladium, rhodium, or nickel chloride (0.005-0.05 mole/l.) at 50/sup 0/C, in an argon atmosphere with chelating nitrogen compounds, i.e., o-phenanthroline, ..cap alpha..,..cap alpha..'-dipyridyl, sodium ethylenediaminetetracetate, morpholine, branched polyethylene imines, or amino acids such as glycine, ..cap alpha..-alanine, ..beta..-phenyl-..cap alpha..-alanine, tyrosine, or histidine, and treating the complexes so obtained with sodium borohydride at 1:1-1:5 NaBH/sub 4/-metal ratios, in an aqueous medium. Palladium-based complexes showed the highest activities (20-98Vertical Bar3< conversion) and selectivities (98-100Vertical Bar3<) in heterogeneous hydrogenation of cyclopentadiene, butadiene, 1-hexyne, 1,3-cyclohexadiene, or 1,3-cyclooctadiene at 20/sup 0/-60/sup 0/C and 0.5-15 atm hydrogen, carried out in a kinetic circulation reactor or a metallic autoclave. Thus, a catalytic system based on PdCl/sub 2/ and ..beta..-phenyl-..cap alpha..-alanine converted 98Vertical Bar3< of cyclopentadiene to cyclopentene with 99Vertical Bar3< selectivity. The palladium-based catalyst did not deactivate on the contact with air.

  9. H2CAP - Hydrogen assisted catalytic biomass pyrolysis for green fuels

    DEFF Research Database (Denmark)

    Stummann, Magnus Zingler; Høj, Martin; Gabrielsen, Jostein

    -oil by catalytic hydrodeoxygenation (HDO) is challenged by severe polymerization and coking upon heating the oil. Alternatively, performing fast pyrolysis in high-pressure hydrogen atmosphere in a fluid bed reactor with a HDO catalyst as bed medium could immediately stabilize reactive pyrolysis vapors [2...

  10. Process for hydrogen isotope exchange and concentration between liquid water and hydrogen gas and catalyst assembly therefor

    International Nuclear Information System (INIS)

    Stevens, W.H.

    1975-01-01

    A bithermal, catalytic, hydrogen isotope exchange process between liquid water and hydrogen gas to effect concentration of the deuterium isotope of hydrogen is described. Liquid water and hydrogen gas are contacted with one another and with at least one catalytically active metal selected from Group VIII of the Periodic Table; the catalyst body has a water repellent, gas and water vapor permeable, organic polymer or resin coating, preferably a fluorinated olefin polymer or silicone resin coating, so that the isotope exchange takes place by two simultaneously occurring, and closely coupled in space, steps and concentration is effected by operating two interconnected sections containing catalyst at different temperatures. (U.S.)

  11. Effect of the method for rhenium neptasulfide preparation on its catalytic properties in hydrogenation of nitrobenzene and m-nitrobenzoic acid

    International Nuclear Information System (INIS)

    Pal'chevskaya, T.A.; Bogutskaya, L.V.; Belousov, V.M.

    1988-01-01

    The effect of conditions of rhenium heptasulfide synthesis by thiosulfate method on its physicochemical and catalytic properties during hydrogenation of nitrobenzene and m-nitrobenzoic acid has been studied. It is shown that the maximum yield of m-aminobenzoic acid can be attained on insoluble sulfide rhenium contacts, containing excessive amount of sulfur (3.5 %). Under certain conditions of catalyst synthesis particles of Re 2 S 7 soluble in dimethylformamide are formed, which possess selectivity towards amine

  12. Research of Hydrogen Preparation with Catalytic Steam-Carbon Reaction Driven by Photo-Thermochemistry Process

    Directory of Open Access Journals (Sweden)

    Xiaoqing Zhang

    2013-01-01

    Full Text Available An experiment of hydrogen preparation from steam-carbon reaction catalyzed by K2CO3 was carried out at 700°C, which was driven by the solar reaction system simulated with Xenon lamp. It can be found that the rate of reaction with catalyst is 10 times more than that without catalyst. However, for the catalytic reaction, there is no obvious change for the rate of hydrogen generation with catalyst content range from 10% to 20%. Besides, the conversion efficiency of solar energy to chemical energy is more than 13.1% over that by photovoltaic-electrolysis route. An analysis to the mechanism of catalytic steam-carbon reaction with K2CO3 is given, and an explanation to the nonbalanced [H2]/[CO + 2CO2] is presented, which is a phenomenon usually observed in experiment.

  13. Hydrogen production by catalytic processing of renewable methane-rich gases

    Energy Technology Data Exchange (ETDEWEB)

    Muradov, Nazim; Smith, Franklyn; T-Raissi, Ali [Florida Solar Energy Center, University of Central Florida, Cocoa, FL 32922-5703 (United States)

    2008-04-15

    Biomass-derived methane-rich gases such as landfill gas (LFG), biogas and digester gas are promising renewable resources for near-future production of hydrogen. The technical and economical feasibility of hydrogen production via catalytic reforming of LFG and other methane-rich gases is evaluated in this paper. The thermodynamic equilibrium calculations and experimental measurements of reformation of methane-rich CH{sub 4}-CO{sub 2} mixtures over Ni-based catalyst were conducted. The problems associated with the catalyst deactivation due to carbon lay down and effects of steam and oxygen on the process sustainability were explored. Two technological approaches distinguished by the mode of heat input to the endothermic process (i.e., external vs autothermal) were modeled using AspenPlus trademark chemical process simulator and validated experimentally. A 5 kW{sub th} pilot unit for hydrogen production from LFG-mimicking CH{sub 4}-CO{sub 2} mixture was fabricated and operated. A preliminary techno-economic assessment indicates that the liquid hydrogen production costs are in the range of 3.00-7.00 per kilogram depending upon the plant capacity, the process heat input option and whether or not carbon sequestration is included in the process. (author)

  14. Dynamic simulation of pure hydrogen production via ethanol steam reforming in a catalytic membrane reactor

    International Nuclear Information System (INIS)

    Hedayati, Ali; Le Corre, Olivier; Lacarrière, Bruno; Llorca, Jordi

    2016-01-01

    Ethanol steam reforming (ESR) was performed over Pd-Rh/CeO 2 catalyst in a catalytic membrane reactor (CMR) as a reformer unit for production of fuel cell grade pure hydrogen. Experiments were performed at 923 K, 6–10 bar, and fuel flow rates of 50–200 μl/min using a mixture of ethanol and distilled water with steam to carbon ratio of 3. A static model for the catalytic zone was derived from the Arrhenius law to calculate the total molar production rates of ESR products, i.e. CO, CO 2 , CH 4 , H 2 , and H 2 O in the catalytic zone of the CMR (coefficient of determination R 2  = 0.993). The pure hydrogen production rate at steady state conditions was modeled by means of a static model based on the Sieverts' law. Finally, a dynamic model was developed under ideal gas law assumptions to simulate the dynamics of pure hydrogen production rate in the case of the fuel flow rate or the operating pressure set point adjustment (transient state) at isothermal conditions. The simulation of fuel flow rate change dynamics was more essential compared to the pressure change one, as the system responded much faster to such an adjustment. The results of the dynamic simulation fitted very well to the experimental values at P = 7–10 bar, which proved the robustness of the simulation based on the Sieverts' law. The simulation presented in this work is similar to the hydrogen flow rate adjustments needed to set the electrical load of a fuel cell, when fed online by the pure hydrogen generating reformer studied. - Highlights: • Ethanol steam reforming (ESR) experiments were performed in a Pd-Ag membrane reactor. • The model of the catalytic zone of the reactor was derived from the Arrhenius law. • The permeation zone (membrane) was modeled based on the Sieverts' law. • The Sieverts' law model showed good results for the range of P = 7–10 bar. • Pressure and fuel flow rate adjustments were considered for dynamic simulation.

  15. A new type separation column for the water-hydrogen isotope catalytic exchange process

    International Nuclear Information System (INIS)

    Fedorchenko, O.A.; Alekseev, I.A.; Trenin, V.D.

    2001-01-01

    The catalytic water/hydrogen isotope exchange process is by right considered the most attractive for the solution a number of urgent problems of hydrogen isotope separation. A new type exchange reaction column is described and studied in details by computer simulation and with the help of McCabe-Thiele diagrams. It is shown that the new column in comparison with a traditional one needs less catalyst quantity and a smaller diameter for the solving of the same separation tasks. Generalized calculation data are presented in graphical form

  16. μ-reactor measurements of catalytic activity of mass selected nano-particles

    DEFF Research Database (Denmark)

    Riedel, Jakob Nordheim

    The work of this thesis revolves around catalytic activity measurements of nano-particles tested using a μ-reactor platform, developed and produced at DTU, in a collaboration between CINF and Nanotech. The thesis contains the results from two separate research projects; both utilising μ-reactors ......The work of this thesis revolves around catalytic activity measurements of nano-particles tested using a μ-reactor platform, developed and produced at DTU, in a collaboration between CINF and Nanotech. The thesis contains the results from two separate research projects; both utilising μ......-reactors in combination with surface science techniques and computer simulations. The first project described is a study of hydrogen dissociation on mono-disperse platinum clusters. The second project studies methanation from carbon monoxide and hydrogen on nano-particles of nickel-iron alloys. The second study is a work...... in progress, and the corresponding chapter aims to summarise the results so far. Other projects are not included in the thesis because they are inconclusive or dead ends. Hydrogen dissociation was studied by the H2/D2 exchange reaction on SiO2-supported mono-disperse platinum clusters in a -reactor...

  17. System and method for selective catalytic reduction of nitrogen oxides in combustion exhaust gases

    Science.gov (United States)

    Sobolevskiy, Anatoly; Rossin, Joseph A

    2014-04-08

    A multi-stage selective catalytic reduction (SCR) unit (32) provides efficient reduction of NOx and other pollutants from about 50-550.degree. C. in a power plant (19). Hydrogen (24) and ammonia (29) are variably supplied to the SCR unit depending on temperature. An upstream portion (34) of the SCR unit catalyzes NOx+NH.sub.3 reactions above about 200.degree. C. A downstream portion (36) catalyzes NOx+H.sub.2 reactions below about 260.degree. C., and catalyzes oxidation of NH.sub.3, CO, and VOCs with oxygen in the exhaust above about 200.degree. C., efficiently removing NOx and other pollutants over a range of conditions with low slippage of NH.sub.3. An ammonia synthesis unit (28) may be connected to the SCR unit to provide NH.sub.3 as needed, avoiding transport and storage of ammonia or urea at the site. A carbonaceous gasification plant (18) on site may supply hydrogen and nitrogen to the ammonia synthesis unit, and hydrogen to the SCR unit.

  18. New advances in hydrogen production via the catalytic decomposition of wax by-products using nanoparticles of SBA frame-worked MoO_3

    International Nuclear Information System (INIS)

    El Naggar, Ahmed M.A.; Gobara, Heba M.; El Sayed, Hussien A.; Soliman, Fathi S.

    2015-01-01

    Graphical abstract: Feedstock-to-gases & hydrogen conversion using the Mo-SBA15 catalyst compared to commercial catalysts. - Highlights: • Synthesis of meso-porous molybdenum oxide catalyst in SBA framework. • Confirming the structural characteristics of this catalyst by different analyses. • New trend for the H_2 & CH_4, production is revealed in this work. • Nano-carbon species of well-ordered structure was produced. • In-situ non-pressurized-low temperature wax isomerization was imposed. - Abstract: The alternative energy sources in general and hydrogen based energy in particular have been currently grabbing great attention. Hydrogen is an efficient green source for power generation owing to its huge energy content. The operational costs and the hydrogen output are the key factors in the selection of a certain technique for the hydrogen production industrially. This study summarizes a new route for hydrogen production starting from a bit complicated hydrogen-containing molecules. Particular attention is given during this work towards a direct pyrrolysis catalytic conversion of long chains n-paraffin into hydrogen with in-situ production of nano-structured carbon particles. The simultaneous isomerization of the n-paraffin contented in the feedstock is also discussed during this process. This research study had provided new advances in the hydrogen production based on carrying out the production process at non-severe conditions namely; low operational temperatures and no pressure was applied. The introduction of a meso-porous molybdenum oxide catalyst for the catalytic hydrogen production is also a point of novelty for the presented work. Promising results have been disclosed at the end of this investigation; approximately 60 wt.% of the feedstock was converted to fuel gases while nearly 30 wt.% of the feed had turned as nano-carbon species. The hydrogen productivity had been detected as high as 42 wt.% of the original feedstock. This in fact might

  19. MIS-based sensors with hydrogen selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Li,; Dongmei, [Boulder, CO; Medlin, J William [Boulder, CO; McDaniel, Anthony H [Livermore, CA; Bastasz, Robert J [Livermore, CA

    2008-03-11

    The invention provides hydrogen selective metal-insulator-semiconductor sensors which include a layer of hydrogen selective material. The hydrogen selective material can be polyimide layer having a thickness between 200 and 800 nm. Suitable polyimide materials include reaction products of benzophenone tetracarboxylic dianhydride 4,4-oxydianiline m-phenylene diamine and other structurally similar materials.

  20. Iron Phthalocyanine as New Efficient Catalyst for Catalytic Transfer Hydrogenation of Simple Aldehydes and Ketones

    Czech Academy of Sciences Publication Activity Database

    Bata, P.; Notheisz, F.; Klusoň, Petr; Zsigmond, A.

    2015-01-01

    Roč. 29, JAN 2015 (2015), s. 45-49 ISSN 0268-2605 Institutional support: RVO:67985858 Keywords : heterogenized complexes * catalytic transfer hydrogenation * reusable catalyst Subject RIV: CC - Organic Chemistry Impact factor: 2.452, year: 2015

  1. Simple and rapid hydrogenation of p-nitrophenol with aqueous formic acid in catalytic flow reactors

    Directory of Open Access Journals (Sweden)

    Rahat Javaid

    2013-06-01

    Full Text Available The inner surface of a metallic tube (i.d. 0.5 mm was coated with a palladium (Pd-based thin metallic layer by flow electroless plating. Simultaneous plating of Pd and silver (Ag from their electroless-plating solution produced a mixed distributed bimetallic layer. Preferential acid leaching of Ag from the Pd–Ag layer produced a porous Pd surface. Hydrogenation of p-nitrophenol was examined in the presence of formic acid simply by passing the reaction solution through the catalytic tubular reactors. p-Aminophenol was the sole product of hydrogenation. No side reaction occurred. Reaction conversion with respect to p-nitrophenol was dependent on the catalyst layer type, the temperature, pH, amount of formic acid, and the residence time. A porous and oxidized Pd (PdO surface gave the best reaction conversion among the catalytic reactors examined. p-Nitrophenol was converted quantitatively to p-aminophenol within 15 s of residence time in the porous PdO reactor at 40 °C. Evolution of carbon dioxide (CO2 was observed during the reaction, although hydrogen (H2 was not found in the gas phase. Dehydrogenation of formic acid did not occur to any practical degree in the absence of p-nitrophenol. Consequently, the nitro group was reduced via hydrogen transfer from formic acid to p-nitrophenol and not by hydrogen generated by dehydrogenation of formic acid.

  2. Autothermal hydrogen storage and delivery systems

    Science.gov (United States)

    Pez, Guido Peter [Allentown, PA; Cooper, Alan Charles [Macungie, PA; Scott, Aaron Raymond [Allentown, PA

    2011-08-23

    Processes are provided for the storage and release of hydrogen by means of dehydrogenation of hydrogen carrier compositions where at least part of the heat of dehydrogenation is provided by a hydrogen-reversible selective oxidation of the carrier. Autothermal generation of hydrogen is achieved wherein sufficient heat is provided to sustain the at least partial endothermic dehydrogenation of the carrier at reaction temperature. The at least partially dehydrogenated and at least partially selectively oxidized liquid carrier is regenerated in a catalytic hydrogenation process where apart from an incidental employment of process heat, gaseous hydrogen is the primary source of reversibly contained hydrogen and the necessary reaction energy.

  3. Hydrogenation of Maltose in Catalytic Membrane Reactor for Maltitol Production

    Directory of Open Access Journals (Sweden)

    Makertihartha I.G.B.N.

    2018-01-01

    Full Text Available Maltitol is one of the low-calorie sweeteners which has a major role in food industries. Due to its characteristics of comparable sweetness level to sucrose, maltitol can be a suitable sugar replacement. In this work, catalytic membrane reactor (CMR was examined in maltitol production through hydrogenation of maltose. Commercial ceramic membrane impregnated with Kalcat 8030 Nickel was used as the CMR. The reaction was conducted at a batch mode operation, 95 to 110°C of temperature, and 5 to 8 bar of pressure. In the range of working conditions used in this study, up to 47% conversion was achieved. The reaction conversion was significantly affected by temperature and pressure. Results of this preliminary study indicated that CMR can be used for hydrogenation of maltose with good performance under a relatively low operating pressure.

  4. Microwave-activated Ni/carbon catalysts for highly selective hydrogenation of nitrobenzene to cyclohexylamine.

    Science.gov (United States)

    Lu, Xinhuan; He, Jie; Jing, Run; Tao, Peipei; Nie, Renfeng; Zhou, Dan; Xia, Qinghua

    2017-06-01

    Biocarbon supported Ni catalysts have been prepared by facile impregnation of Ni species by microwave-heating and used for selective hydrogenation of nitrobenzene to cyclohexylamine. These catalysts were characterized by X-ray diffraction, Raman spectra, N2 sorption measurement, X-ray photoelectron spectroscopy, temperature programmed reduction of H2 and H2 temperature-programmed desorption. The morphology and particle size of catalysts were imaged by scanning electron microscope and transmission electron microscope. For the hydrogenation of nitrobenzene to cyclohexylamine, 10%Ni/CSC-II(b) exhibits the best catalytic activity to achieve 100 mol% conversion of nitrobenzene and 96.7% selectivity of cyclohexylamine under reaction conditions of 2.0 MPa H2 and 200 °C, ascribed to high dispersion of Ni species and formation of nanosized Ni particles on the support aided by microwave-heating. Thus-prepared Ni/CSC catalyst is greatly activated, in which the addition of precious metal like Rh is totally avoided.

  5. Catalytic activity of mono and bimetallic Zn/Cu/MWCNTs catalysts for the thermocatalyzed conversion of methane to hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Erdelyi, B. [Department of Physical Chemistry, Faculty of Science, P.J. Šafárik University, Moyzesova 11, 041 54 Košice (Slovakia); Institute of Physics, Faculty of Science, P.J. Šafárik University, Park Angelium 9, 040 01 Košice (Slovakia); Oriňak, A., E-mail: andrej.orinak@upjs.sk [Department of Physical Chemistry, Faculty of Science, P.J. Šafárik University, Moyzesova 11, 041 54 Košice (Slovakia); Oriňaková, R. [Department of Physical Chemistry, Faculty of Science, P.J. Šafárik University, Moyzesova 11, 041 54 Košice (Slovakia); Lorinčík, J. [Research Center Rez, Hlavní 130, 250 68 Husinec-Řež (Czech Republic); Jerigová, M. [Department of Physical Chemistry, Comenius University, Mlynská dolina 842 15 Bratislava 4 (Slovakia); Velič, D. [Department of Physical Chemistry, Comenius University, Mlynská dolina 842 15 Bratislava 4 (Slovakia); International Laser Centre, Ilkovičová 3, 841 01 Bratislava (Slovakia); Mičušík, M. [Polymer institute, Slovak Academy of Sciences, Dubravská cesta 9, 84541 Bratislava (Slovakia); and others

    2017-02-28

    Highlights: • Zn/Cu/MWCNTs catalyst with good activity. • Methane conversion to hydrogen with high effectivity. • ZnO/Cu responsible for catalytic activity. - Abstract: Mono and bimetallic multiwalled carbon nanotubes (MWCNTs) fortified with Cu and Zn metal particles were studied to improve the efficiency of the thermocatalytic conversion of methane to hydrogen. The surface of the catalyst and the dispersion of the metal particles were studied by scanning electron microscopy (SEM), secondary ion mass spectrometry (SIMS) and with energy-dispersive X-ray spectroscopy (EDS). It was confirmed that the metal particles were successfully dispersed on the MWCNT surface and XPS analysis showed that the Zn was oxidised to ZnO at high temperatures. The conversion of methane to hydrogen during the catalytic pyrolysis was studied by pyrolysis gas chromatography using different amounts of catalyst. The best yields of hydrogen were obtained using pyrolysis conditions of 900 °C and 1.2 mg of Zn/Cu/MWCNT catalyst for 1.5 mL of methane.The initial conversion of methane to hydrogen obtained with Zn/Cu/MWCNTs was 49%, which represent a good conversion rate of methane to hydrogen for a non-noble metal catalyst.

  6. Hydrogen storage evaluation based on investigations of the catalytic properties of metal/metal oxides in electrospun carbon fibers

    Energy Technology Data Exchange (ETDEWEB)

    Im, Ji Sun; Lee, Young-Seak [Department of Fine Chemical Engineering and Chemistry, Chungnam National University, Daejeon 305-764 (Korea); Park, Soo-Jin [Department of Chemistry, Inha University, Incheon 402-751 (Korea); Kim, Taejin [Core Technology Research Center for Fuel Cell, Jeollabuk-do 561-844 (Korea)

    2009-05-15

    In order to investigate the catalytic capacity of metals and metal oxides based on electrospun carbon fibers for improving hydrogen storage, electrospinning and heat treatments were carried out to obtain metal/metal oxide-embedded carbon fibers. Although the fibers were treated with the same activation procedure, they had different pore structures, due to the nature of the metal oxide. When comparing the catalytic capacity of metal and metal oxide, metal exhibits better performance as a catalyst for the improvement of hydrogen storage, when considering the hydrogen storage system. When a metal oxide with an m.p. lower than the temperature of heat treatment was used, the metal oxide was changed to metal during the heat treatment, developing a micropore structure. The activation process produced a high specific surface area of up to 2900 m{sup 2}/g and a pore volume of up to 2.5 cc/g. The amount of hydrogen adsorption reached approximately 3 wt% at 100 bar and room temperature. (author)

  7. The mechanism of the catalytic oxidation of hydrogen sulfide: II. Kinetics and mechanism of hydrogen sulfide oxidation catalyzed by sulfur

    NARCIS (Netherlands)

    Steijns, M.; Derks, F.; Verloop, A.; Mars, P.

    1976-01-01

    The kinetics of the catalytic oxidation of hydrogen sulfide by molecular oxygen have been studied in the temperature range 20–250 °C. The primary reaction product is sulfur which may undergo further oxidation to SO2 at temperatures above 200 °C. From the kinetics of this autocatalytic reaction we

  8. Catalytic properties of lanthanide amide, imide and nitride formed by thermal degradation of liquid ammonia solutions of Eu and Yb metal

    International Nuclear Information System (INIS)

    Imamura, H.; Mizuno, K.; Ohishi, K.; Suda, E.; Kanda, K.; Sakata, Y.; Tsuchiya, S.

    1998-01-01

    The catalytic properties of lanthanide amide, imide and nitride prepared by the use of liquid ammonia solutions of lanthanide metals (Ln=Eu and Yb) were studied for catalytic hydrogenation. The reaction of Eu or Yb metal solutions in liquid ammonia with silica yielded SiO 2 -grafted lanthanide amide in the divalent state. The divalent amide showed catalytic activity for the selective hydrogenation of dienes and benzene. It was found that partial hydrogenation of benzene occurred with a very high selectivity for cyclohexene. Amides of calcium, strontium and barium were examined similarly in connection with catalytic studies on divalent amides. Imide and nitride, into which the lanthanide (Ln/AC) deposited by impregnation of active carbon (AC) with liquid ammonia solutions of lanthanide metals were converted thermally, were studied catalytically. It was concluded that imide or imide-like species generated during the thermal degradation of lanthanide amide to nitride were very active in the hydrogenation of ethene. Lanthanide nitride was virtually inactive, but the nitride highly dispersed on active carbon was activated when subjected to evacuation treatment above about 1000 K. (orig.)

  9. Catalytic Metal Free Production of Large Cage Structure Carbon Particles: A Candidate for Hydrogen Storage

    Science.gov (United States)

    Kimura, Yuki; Nuth, Joseph A., III; Ferguson, Frank T.

    2005-01-01

    We will demonstrate that carbon particles consisting of large cages can be produced without catalytic metal. The carbon particles were produced in CO gas as well as by introduction of 5% methane gas into the CO gas. The gas-produced carbon particles were able to absorb approximately 16.2 wt% of hydrogen. This value is 2.5 times higher than the 6.5 wt% goal for the vehicular hydrogen storage proposed by the Department of Energy in the USA. Therefore, we believe that this carbon particle is an excellent candidate for hydrogen storage for fuel cells.

  10. Effect of antimony oxide on magnesium vanadates for the selective oxidation of hydrogen sulfide to sulfur

    Energy Technology Data Exchange (ETDEWEB)

    Li, K.T.; Chi, Z.H. [Department of Chemical Engineering, Tunghai University, ROC Taichung (Taiwan)

    2001-05-17

    The effect of antimony oxide addition to MgV{sub 2}O{sub 6} and Mg{sub 3}V{sub 2}O{sub 8} was studied in the selective oxidation of hydrogen sulfide to sulfur. Significant improvements in sulfur selectivity and yield were observed for the uncalcined mechanical mixtures of magnesium vanadates with {alpha}-Sb{sub 2}O{sub 4}. Calcination of the mechanical mixtures resulted in the much stronger synergy in catalytic activity and sulfur selectivity. For the uncalcined samples, XRD, TPR and XPS studies indicated that antimony reduction behaviors in the mechanical mixtures differed very much from those in {alpha}-Sb{sub 2}O{sub 4} alone, suggested that their selectivity improvements might be due to the interactions (probably oxygen transfer) between {alpha}-Sb{sub 2}O{sub 4} and magnesium vanadates. For the calcined samples, XRD results indicated that their better catalytic performances in H{sub 2}S oxidation were primarily attributed to the formation of VSbO{sub 4} compound from antimony oxide and magnesium vanadates.

  11. Sub-10 nm Platinum Nanocrystals with Size and Shape Control: Catalytic Study for Ethylene and Pyrrole Hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Tsung, Chia-Kuang; Kuhn, John N.; Huang, Wenyu; Aliaga, Cesar; Hung, Ling-I; Somorjai, Gabor A.; Yang, Peidong

    2009-03-02

    Platinum nanocubes and nanopolyhedra with tunable size from 5 to 9 nm were synthesized by controlling the reducing rate of metal precursor ions in a one-pot polyol synthesis. A two-stage process is proposed for the simultaneous control of size and shape. In the first stage, the oxidation state of the metal ion precursors determined the nucleation rate and consequently the number of nuclei. The reaction temperature controlled the shape in the second stage by regulation of the growth kinetics. These well-defined nanocrystals were loaded into MCF-17 mesoporous silica for examination of catalytic properties. Pt loadings and dispersions of the supported catalysts were determined by elemental analysis (ICP-MS) and H2 chemisorption isotherms, respectively. Ethylene hydrogenation rates over the Pt nanocrystals were independent of both size and shape and comparable to Pt single crystals. For pyrrole hydrogenation, the nanocubes enhanced ring-opening ability and thus showed a higher selectivity to n-butylamine as compared to nanopolyhedra.

  12. Promotion Effect of Alkali Metal Hydroxides on Polymer-Stabilized Pd Nanoparticles for Selective Hydrogenation of C–C Triple Bonds in Alkynols

    OpenAIRE

    Nikoshvili, Linda Zh.; Bykov, Alexey V.; Khudyakova, Tatiana E.; Lagrange, Thomas; Héroguel, Florent; Luterbacher, Jeremy S.; Matveeva, Valentina G.; Sulman, Esther M.; Dyson, Paul J.; Kiwi-Minsker, Lioubov

    2017-01-01

    Postimpregnation of Pd nanoparticles (NPs) stabilized within hyper-cross-linked polystyrene with sodium or potassium hydroxides of optimal concentration was found to significantly increase the catalytic activity for the partial hydrogenation of the C–C triple bond in 2-methyl-3-butyn-2-ol at ambient hydrogen pressure. The alkali metal hydroxide accelerates the transformation of the residual Pd(II) salt into Pd(0) NPs and diminishes the reaction induction period. In addition, the selectivity t...

  13. Catalytic Ammonia Decomposition over High-Performance Ru/Graphene Nanocomposites for Efficient COx-Free Hydrogen Production

    Directory of Open Access Journals (Sweden)

    Gang Li

    2017-01-01

    Full Text Available Highly-dispersed Ru nanoparticles were grown on graphene nanosheets by simultaneously reducing graphene oxide and Ru ions using ethylene glycol (EG, and the resultant Ru/graphene nanocomposites were applied as a catalyst to ammonia decomposition for COx-free hydrogen production. Tuning the microstructures of Ru/graphene nanocomposites was easily accomplished in terms of Ru particle size, morphology, and loading by adjusting the preparation conditions. This was the key to excellent catalytic activity, because ammonia decomposition over Ru catalysts is structure-sensitive. Our results demonstrated that Ru/graphene prepared using water as a co-solvent greatly enhanced the catalytic performance for ammonia decomposition, due to the significantly improved nano architectures of the composites. The long-term stability of Ru/graphene catalysts was evaluated for COx-free hydrogen production from ammonia at high temperatures, and the structural evolution of the catalysts was investigated during the catalytic reactions. Although there were no obvious changes in the catalytic activities at 450 °C over a duration of 80 h, an aggregation of the Ru nanoparticles was still observed in the nanocomposites, which was ascribed mainly to a sintering effect. However, the performance of the Ru/graphene catalyst was decreased gradually at 500 °C within 20 h, which was ascribed mainly to both the effect of the methanation of the graphene nanosheet under a H2 atmosphere and to enhanced sintering under high temperatures.

  14. Catalytic Fast Pyrolysis: A Review

    Directory of Open Access Journals (Sweden)

    Theodore Dickerson

    2013-01-01

    Full Text Available Catalytic pyrolysis is a promising thermochemical conversion route for lignocellulosic biomass that produces chemicals and fuels compatible with current, petrochemical infrastructure. Catalytic modifications to pyrolysis bio-oils are geared towards the elimination and substitution of oxygen and oxygen-containing functionalities in addition to increasing the hydrogen to carbon ratio of the final products. Recent progress has focused on both hydrodeoxygenation and hydrogenation of bio-oil using a variety of metal catalysts and the production of aromatics from bio-oil using cracking zeolites. Research is currently focused on developing multi-functional catalysts used in situ that benefit from the advantages of both hydrodeoxygenation and zeolite cracking. Development of robust, highly selective catalysts will help achieve the goal of producing drop-in fuels and petrochemical commodities from wood and other lignocellulosic biomass streams. The current paper will examine these developments by means of a review of existing literature.

  15. [Study of hydrogen bonds in the "catalytic triad" of trypsin by NMR spectra at 1H, 13C, and 15N nuclei].

    Science.gov (United States)

    Golubeb, N S; Gindin, V A; Ligaĭ, S S; Smirnov, S N

    1994-05-01

    The 1H and 13C NMR of trypsin stabilized by chemical modification with a hydrophilic polymer have been obtained in a wide range of pH (1.0-11.0). The spectral features referred to some nuclei of the "catalytic triad" have been identified using different NMR techniques as well as chemical modification with selective reagents. It was found that the monoprotonation of this system results in a quasi-symmetrical hydrogen bond formed between the basic groups which provided explanation for the discrepancies between the experimental findings obtained by different authors concerning the protonation site in this catalytic system. Simulation of the catalytic triad by a 15N-labelled low molecular model suggests that an increase in the OH-group acidity is unaccompanied by a discrete double proton transfer; however, a smooth shift of the bridging protons from one basic atom to another occurs with quasi-symmetrical hydrogen bonds formed in intermediate cases. On the basis of experimental data a new concept has been proposed for the mechanism of acid-base catalysis performed by pains of weak basic groups, such as His-Im and Asp(Glu)-COO- (pKa = 3-7) which are not capable of proton abstraction from alcoholic or water OH-groups (pKa > 13). The catalysis may consist in changing the charge densities on the reacting groups due to strong H-bonding and, on the other hand, in facilitating the free movement of a proton in the field of several basic atoms when going along the reaction coordinate. The energy of very strong hydrogen bonds thus formed diminishes the activation energy of the reaction.

  16. Selective purge for hydrogenation reactor recycle loop

    Science.gov (United States)

    Baker, Richard W.; Lokhandwala, Kaaeid A.

    2001-01-01

    Processes and apparatus for providing improved contaminant removal and hydrogen recovery in hydrogenation reactors, particularly in refineries and petrochemical plants. The improved contaminant removal is achieved by selective purging, by passing gases in the hydrogenation reactor recycle loop or purge stream across membranes selective in favor of the contaminant over hydrogen.

  17. Enhanced catalytic activity of the nanostructured Co-W-B film catalysts for hydrogen evolution from the hydrolysis of ammonia borane.

    Science.gov (United States)

    Li, Chao; Wang, Dan; Wang, Yan; Li, Guode; Hu, Guijuan; Wu, Shiwei; Cao, Zhongqiu; Zhang, Ke

    2018-08-15

    In this work, nanostructured Co-W-B films are successfully synthesized on the foam sponge by electroless plating method and employed as the catalysts with enhanced catalytic activity towards hydrogen evolution from the hydrolysis of ammonia borane (NH 3 BH 3 , AB) at room temperature. The particle size of the as-prepared Co-W-B film catalysts is varied by adjusting the depositional pH value to identify the most suitable particle size for hydrogen evolution of AB hydrolysis. The Co-W-B film catalyst with the particle size of about 67.3 nm shows the highest catalytic activity and can reach a hydrogen generation rate of 3327.7 mL min -1 g cat -1 at 298 K. The activation energy of the hydrolysis reaction of AB is determined to be 32.2 kJ mol -1 . Remarkably, the as-obtained Co-W-B film is also a reusable catalyst preserving 78.4% of their initial catalytic activity even after 5 cycles in hydrolysis of AB at room temperature. Thus, the enhanced catalytic activity illustrates that the Co-W-B film is a promising catalyst for AB hydrolytic dehydrogenation in fuel cells and the related fields. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Activation of the C-H bond: catalytic hydroxylation of hydrocarbons by new cobaltic alkylperoxydic complexes; selective and catalytic cycloalkane dehydrogenation in presence of uranium for hydrogen transfer

    International Nuclear Information System (INIS)

    Brazi, E.

    1987-01-01

    The aim of the thesis is to improve efficiency and selectivity of chemical reactions for alkane transformations. In the first part decomposition of hydroperoxides and hydrocarbon hydroxylation by cobalt complexes is studied. In the second part cycloalkanes are dehydrogenated into aromatics with a Pt catalyst, trapping hydrogen by uranium. Uranium hydride UH 3 can yield very pure hydrogen at reasonable temperature [fr

  19. Palladium-pyridyl catalytic films: a highly active and recyclable catalyst for hydrogenation of styrene under mild conditions.

    Science.gov (United States)

    Gao, Shuiying; Li, Weijin; Cao, Rong

    2015-03-01

    Palladium-pyridyl catalytic films, (PdCl2/bpy)n, were created by alternating immersions of a substrate in PdCl2 and bpy (bpy=4, 4'-bipyridyl) solutions. The as-prepared (PdCl2/bpy)10 catalyst demonstrated a remarkable catalytic activity toward hydrogenation of styrene under mild conditions and the turnover frequency (TOF) is as high as 6944h(-1). Pd(II) ions of (PdCl2/bpy)n films are in situ reduced to Pd nanoparticles (NPs) during the hydrogenation of styrene process, which results in the catalytic activity of the films. The results of X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) further demonstrate that Pd(II) ions of (PdCl2/bpy)n films were gradually converted to Pd(0) states. The catalytic activity is related to bilayer numbers and the activity increases with the number of bilayers below 10 bilayers. The solid substrates coated with (PdCl2/bpy)n multilayer catalysts were easily removed from the reaction mixture without separation filtration. Moreover, (PdCl2/bpy)n catalysts were reused for 10 consecutive reactions without loss of activity. The present (PdCl2/bpy)n heterogeneous catalysts have the advantages of easy separation and good recyclability. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Hydrogenation of o-cresol on platinum catalyst: Catalytic experiments and first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yaping [Department of Physics and Engineering Physics, The University of Tulsa, Tulsa, OK 74104 (United States); Liu, Zhimin [School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, OK 73019 (United States); Xue, Wenhua [Department of Physics and Engineering Physics, The University of Tulsa, Tulsa, OK 74104 (United States); Crossley, Steven P.; Jentoft, Friederike C. [School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, OK 73019 (United States); Wang, Sanwu, E-mail: sanwu-wang@utulsa.edu [Department of Physics and Engineering Physics, The University of Tulsa, Tulsa, OK 74104 (United States)

    2017-01-30

    Highlights: • Hydrogenation of o-cresol over Pt results in formation of two products. • Dissociation of hydrogen from the −OH group involves a low activation energy. • Following hydrogenation of the aromatic ring forms 2-methyl-cyclohexanone. • Further hydrogenation produces the final product, 2-methyl-cyclohexanol. - Abstract: Catalytic experiments were performed for the hydrogenation of o-cresol in n-dodecane over a platinum catalyst. Batch reactions analyzed with an in-situ ATR IR probe suggest that the hydrogenation results in the formation of the final product, 2-methyl-cyclohexanol, with 2-methyl-cyclohexanone as the intermediate product. Ab initio density-functional theory was employed to investigate the atomic-scale mechanism of o-cresol hydrogenation on the Pt(111) surface. The formation of 2-methyl-cyclohexanone was found to involve two steps. The first step is a hydrogen abstraction, that is, the H atom in the hydroxyl group migrates to the Pt surface. The second step is hydrogenation, that is, the pre-existing H atoms on Pt react with the carbon atoms in the aromatic ring. On the other hand, 2-methyl-cyclohexanonol may be produced through two paths, with activation energies slightly greater than that for the formation of 2-methyl-cyclohexanone. One path involves direct hydrogenation of the aromatic ring. Another path involves three steps, with the partial hydrogenation of the ring as the first step, hydrogen abstraction of the −OH group as the second, and hydrogenation of remaining C atoms and the O atom the last.

  1. Modelling of the aerosol deposition in a hydrogen catalytic recombiner

    International Nuclear Information System (INIS)

    Vendel, J.; Studer, E.; Zavaleta, P.; Hadida, Ph.

    1997-01-01

    Catalytic recombiners are used to remove the hydrogen released in case of a severe accident in a nuclear power plant, so as to reduce the risk of deflagration or detonation. H 2 PAR experiments are carried out to precise the behaviour of recombiners in term of poisoning by aerosols. Firstly, some calculations have been done with the Trio-EF code to assess the structure of convection loops in the experimental tent. We note that when the recombiner is active, it may have a strong influence on the flow inside the tent and may even interact with an other heat source such as a furnace. In the second part, we study the deposition of aerosols on catalytic plates for a given recombiner, when it is active or passive. We list the different mechanisms and quantify them by introducing the deposition velocity. In fact, thermophoresis appears to be the main mechanism, compared to brownian diffusion or difrusiophoresis, which governs aerosols deposition. It favours deposition on > plates and acts against it for > plates. (author)

  2. Catalytic process for tritium exchange reaction

    International Nuclear Information System (INIS)

    Hansoo Lee; Kang, H.S.; Paek, S.W.; Hongsuk Chung; Yang Geun Chung; Sook Kyung Lee

    2001-01-01

    The catalytic activities for a hydrogen isotope exchange were measured through the reaction of a vapor and gas mixture. The catalytic activity showed to be comparable with the published data. Since the gas velocity is relatively low, the deactivation was not found clearly during the 5-hour experiment. Hydrogen isotope transfer experiments were also conducted through the liquid phase catalytic exchange reaction column that consisted of a catalytic bed and a hydrophilic bed. The efficiencies of both the catalytic and hydrophilic beds were higher than 0.9, implying that the column performance was excellent. (author)

  3. Hydrogen metal hydride storage with integrated catalytic recombiner for mobile application

    Energy Technology Data Exchange (ETDEWEB)

    Marinescu-Pasoi, L.; Behrens, U.; Langer, G.; Gramatte, W.; Rastogi, A.K.; Schmitt, R.E. (Battelle-Institut e.V., Frankfurt am Main (DE). Dept. of Energy Technology)

    1991-01-01

    A novel, thermodynamically efficient device is under development at Battelle in Frankfurt, by which the range of hydrogen-driven cars with a metal hydride tank might be roughly doubled. The device makes use of the properties of metal hydrides, combined with catalytic combustion. Its development is funded by the Hessian Ministry of Economic Affairs and Technology; it is to be completed by the end of 1990. High-temperature hydrides (HTH) have about three times the storage capacity of low temperature hydrides (LTH), but require relatively large amounts of heat at high temperatures to release the hydrogen. The exhaust heat from combustion-engine-driven vehicles is insufficient for this, and vehicles with electric (fuel cell) drive produce practically no exhaust heat at all. The Battelle-developed device is a combination of an HTH storage cell, an LTH storage cell and a catalyst. (author).

  4. The role of tin-promoted Pd/MWNTs via the management of carbonaceous species in selective hydrogenation of high concentration acetylene

    International Nuclear Information System (INIS)

    Esmaeili, Elaheh; Mortazavi, Yadollah; Khodadadi, Abbas Ali; Rashidi, Ali Morad; Rashidzadeh, Mehdi

    2012-01-01

    Highlights: ► Synthesis of highly active tin-promoted catalysts by polyol method for selective hydrogenation of high concentration of acetylene. ► A positive change in the catalytic activities of tin-promoted catalysts results from distinct geometric and electronic effects. ► Change in the coverage of acetylenic overlayers for different temperature regions corresponds to the change of the number of isolated adsorption sites. ► The isolated adsorption sites are responsible for the enhancement of selectivity to ethylene with increased temperatures, via the management of the carbonaceous species over the catalyst surface. - Abstract: In the present study, Pd/MWNTs are synthesized using polyol process and modified by tin as a promoter for selective hydrogenation of high concentrated acetylene feedstock. Polyol method results in highly dispersed nanoparticles with a depletion of particle size for tin-promoted Pd catalysts as characterized by TEM. Tin promoter plays a considerable role in hydrogenation of pure acetylene stream. This is attributed to formation of Pd 2 Sn structural phase, confirmed by XRD and TPR techniques, composed mainly of intermetallic species. Catalytic behavior of tin-promoted Pd catalysts is affected by geometric and electronic factors which are more pronounced in the case of Sn/Pd = 0.25. A discontinuity in Arrhenius plots for the Sn-promoted catalysts is appeared, which seems to be due to a kinetic factor as a result of change in acetylene coverage on Pd metallic ensembles at low and high temperature ranges. Higher selectivity of the catalysts to ethylene is attributed to the presence of more isolated adsorption sites on the catalyst surface originated from both intermetallic compounds confirmed by XPS and the ones formed via the carbonaceous species upon the acetylene hydrogenation reaction.

  5. Selective Hydrogenation of m-Dinitrobenzene to m-Nitroaniline over Ru-SnOx/Al2O3 Catalyst

    Directory of Open Access Journals (Sweden)

    Haiyang Cheng

    2014-07-01

    Full Text Available Series catalysts of Ru-SnOx/Al2O3 with varying SnOx loading of 0–3 wt% were prepared, and their catalytic activity and selectivity have been discussed and compared for the selective hydrogenation of m-dinitrobenzene (m-DNB to m-nitroaniline (m-NAN. The Ru-SnOx/Al2O3 catalysts were characterized by X-ray powder diffraction (XRD, X-ray photoelectron spectroscopy (XPS, transmission electron microscopy (TEM and hydrogen temperature-programmed reduction (H2-TPR and desorption (H2-TPD. Under the modification of SnOx, the reaction activity increased obviously, and the best selectivity to m-NAN reached above 97% at the complete conversion of m-DNB. With the increasing of the SnOx loading, the amount of active hydrogen adsorption on the surface of the catalyst increased according to the H2-TPD analysis, and the electron transferred from Ru to SnOx species, as determined by XPS, inducing an electron-deficient Ru, which is a benefit for the absorption of the nitro group. Therefore, the reaction rate and product selectivity were greatly enhanced. Moreover, the Ru-SnOx/Al2O3 catalyst presented high stability: it could be recycled four times without any loss in activity and selectivity.

  6. Ligand iron catalysts for selective hydrogenation

    Science.gov (United States)

    Casey, Charles P.; Guan, Hairong

    2010-11-16

    Disclosed are iron ligand catalysts for selective hydrogenation of aldehydes, ketones and imines. A catalyst such as dicarbonyl iron hydride hydroxycyclopentadiene) complex uses the OH on the five member ring and hydrogen linked to the iron to facilitate hydrogenation reactions, particularly in the presence of hydrogen gas.

  7. Ab initio molecular dynamics simulations for the role of hydrogen in catalytic reactions of furfural on Pd(111)

    Science.gov (United States)

    Xue, Wenhua; Dang, Hongli; Liu, Yingdi; Jentoft, Friederike; Resasco, Daniel; Wang, Sanwu

    2014-03-01

    In the study of catalytic reactions of biomass, furfural conversion over metal catalysts with the presence of hydrogen has attracted wide attention. We report ab initio molecular dynamics simulations for furfural and hydrogen on the Pd(111) surface at finite temperatures. The simulations demonstrate that the presence of hydrogen is important in promoting furfural conversion. In particular, hydrogen molecules dissociate rapidly on the Pd(111) surface. As a result of such dissociation, atomic hydrogen participates in the reactions with furfural. The simulations also provide detailed information about the possible reactions of hydrogen with furfural. Supported by DOE (DE-SC0004600). This research used the supercomputer resources of the XSEDE, the NERSC Center, and the Tandy Supercomputing Center.

  8. Size Control of Iron Oxide Nanoparticles Using Reverse Microemulsion Method: Morphology, Reduction, and Catalytic Activity in CO Hydrogenation

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Housaindokht

    2013-01-01

    Full Text Available Iron oxide nanoparticles were prepared by microemulsion method and evaluated in Fischer-Tropsch synthesis. The precipitation process was performed in a single-phase microemulsion operating region. Different HLB values of surfactant were prepared by mixing of sodium dodecyl sulfate (SDS and Triton X-100. Transmission electron microscopy (TEM, surface area, pore volume, average pore diameter, pore size distribution, and XRD patterns were used to analyze size distribution, shape, and structure of precipitated hematite nanoparticles. Furthermore, temperature programmed reduction (TPR and catalytic activity in CO hydrogenation were implemented to assess the performance of the samples. It was found that methane and CO2 selectivity and also the syngas conversion increased as the HLB value of surfactant decreased. In addition, the selectivity to heavy hydrocarbons and chain growth probability (α decreased by decreasing the catalyst crystal size.

  9. Selective hydrogenation processes in steam cracking

    Energy Technology Data Exchange (ETDEWEB)

    Bender, M.; Schroeter, M.K.; Hinrichs, M.; Makarczyk, P. [BASF SE, Ludwigshafen (Germany)

    2010-12-30

    Hydrogen is the key elixir used to trim the quality of olefinic and aromatic product slates from steam crackers. Being co-produced in excess amounts in the thermal cracking process a small part of the hydrogen is consumed in the ''cold part'' of a steam cracker to selectively hydrogenate unwanted, unsaturated hydrocarbons. The compositions of the various steam cracker product streams are adjusted by these processes to the outlet specifications. This presentation gives an overview over state-of-art selective hydrogenation technologies available from BASF for these processes. (Published in summary form only) (orig.)

  10. Hydrogen production from biomass tar by catalytic steam reforming

    International Nuclear Information System (INIS)

    Yoon, Sang Jun; Choi, Young-Chan; Lee, Jae-Goo

    2010-01-01

    The catalytic steam reforming of model biomass tar, toluene being a major component, was performed at various conditions of temperature, steam injection rate, catalyst size, and space time. Two kinds of nickel-based commercial catalyst, the Katalco 46-3Q and the Katalco 46-6Q, were evaluated and compared with dolomite catalyst. Production of hydrogen generally increased with reaction temperature, steam injection rate and space time and decreased with catalyst size. In particular, zirconia-promoted nickel-based catalyst, Katalco 46-6Q, showed a higher tar conversion efficiency and shows 100% conversion even relatively lower temperature conditions of 600 deg. C. Apparent activation energy was estimated to 94 and 57 kJ/mol for dolomite and nickel-based catalyst respectively.

  11. Pyrolysis of de-oiled seed cake of Jatropha Curcas and catalytic steam reforming of pyrolytic bio-oil to hydrogen.

    Science.gov (United States)

    Renny, Andrew; Santhosh, Viswanathan; Somkuwar, Nitin; Gokak, D T; Sharma, Pankaj; Bhargava, Sanjay

    2016-11-01

    The aim of this work was to study the pyrolysis of de-oiled seed cake of Jatropha Curcas and catalytic steam reforming of pyrolytic bio-oil to hydrogen. As per literature, presence of heavy nitrogenous and oxygenated compounds leads to catalyst deactivation. Here, an attempt has been made to tune pyrolytic reactions to optimize the N and O content of the pyrolytic bio-oil. Bio-oil conversion and hydrogen yield decreased as reaction progressed, which attributes to temporary loss of catalytic activity by blockage of catalyst pores by carbon deposition. Further, retention of steam reforming activity after repetitive steam activation suggests long-term catalyst usage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Surface spintronics enhanced photo-catalytic hydrogen evolution: Mechanisms, strategies, challenges and future

    Science.gov (United States)

    Zhang, Wenyan; Gao, Wei; Zhang, Xuqiang; Li, Zhen; Lu, Gongxuan

    2018-03-01

    Hydrogen is a green energy carrier with high enthalpy and zero environmental pollution emission characteristics. Photocatalytic hydrogen evolution (HER) is a sustainable and promising way to generate hydrogen. Despite of great achievements in photocatalytic HER research, its efficiency is still limited due to undesirable electron transfer loss, high HER over-potential and low stability of some photocatalysts, which lead to their unsatisfied performance in HER and anti-photocorrosion properties. In recent years, many spintronics works have shown their enhancing effects on photo-catalytic HER. For example, it was reported that spin polarized photo-electrons could result in higher photocurrents and HER turn-over frequency (up to 200%) in photocatalytic system. Two strategies have been developed for electron spin polarizing, which resort to heavy atom effect and magnetic induction respectively. Both theoretical and experimental studies show that controlling spin state of OHrad radicals in photocatalytic reaction can not only decrease OER over-potential (even to 0 eV) of water splitting, but improve stability and charge lifetime of photocatalysts. A convenient strategy have been developed for aligning spin state of OHrad by utilizing chiral molecules to spin filter photo-electrons. By chiral-induced spin filtering, electron polarization can approach to 74%, which is significantly larger than some traditional transition metal devices. Those achievements demonstrate bright future of spintronics in enhancing photocatalytic HER, nevertheless, there is little work systematically reviewing and analysis this topic. This review focuses on recent achievements of spintronics in photocatalytic HER study, and systematically summarizes the related mechanisms and important strategies proposed. Besides, the challenges and developing trends of spintronics enhanced photo-catalytic HER research are discussed, expecting to comprehend and explore such interdisciplinary research in

  13. INDUSTRIAL BOILER RETROFIT FOR NOX CONTROL: COMBINED SELECTIVE NONCATALYTIC REDUCTION AND SELECTIVE CATALYTIC REDUCTION

    Science.gov (United States)

    The paper describes retrofitting and testing a 590 kW (2 MBtu/hr), oil-fired, three-pass, fire-tube package boiler with a combined selective noncatalytic reduction (SNCR) and selective catalytic reduction (SCR) system. The system demonstrated 85% nitrogen oxides (NOx) reduction w...

  14. Electrocatalytic hydrogenation of organic molecules on conductive new catalytic material

    Energy Technology Data Exchange (ETDEWEB)

    Tountian, D. [Louis Pasteur Univ., Strasbourg (France). Laboratoire d' Electrochimie et de Chimie Physique du Corps Solide; Sherbrooke Univ., Sherbrooke, PQ (Canada). Dept. de Chimie, Centre de Recherche en Electrochimie et Electrocatalyse; Brisach-Wittmeyer, A.; Menard, H. [Sherbrooke Univ., Sherbrooke, PQ (Canada). Dept. de Chimie, Centre de Recherche en Electrochimie et Electrocatalyse; Nkeng, P.; Poillerat, G. [Louis Pasteur Univ., Strasbourg (France). Laboratoire d' Electrochimie et de Chimie Physique du Corps Solide

    2008-07-01

    Electrocatalytic hydrogenation (ECH) of organic molecules is a process where chemisorbed hydrogen is produced by electroreduction of water which reacts with the species in bulk. Greater emphasis is being placed on improving the nature of the building material of the electrodes in order to increase ECH efficiency. The effectiveness of the ECH is known to be linked to the nature of electrode materials used and their adsorption properties. This work presented the effect of conductive support material on ECH. The conductive catalysts were obtained from tin dioxide which is chemically stable. Palladium was the catalytic metal used in this study. The production of chemisorbed hydrogen was shown to depend on the quantity of metallic nanoaggregates in electrical contact with the reticulated vitreous carbon use as electrode. The conductive support, F-doped tin dioxide, was obtained by the sol-gel method. The electrocatalysts were characterized by different methods as resistivity measurements, linear sweep voltammetry, XRD, SEM, TGA/DSC, and FTIR analysis. The effects of temperature and time of calcination were also investigated. The study showed that the F-doped SnO2 electrocatalyst appeared to increase the rate of phenol electrohydrogenation. It was concluded that the improved electrocatalytic activity of Pd/F-doped SnO2 can be attributed to the simultaneous polarization of all the metallic Pd nanoaggregates present on the surface as well as in the pores of the matrix by contact with RVC. This results in a better production of chemisorbed atomic hydrogen with a large number of adlienation points. 9 refs., 3 figs.

  15. Microwave-Assisted Selective Hydrogenation of Furfural to Furfuryl Alcohol Employing a Green and Noble Metal-Free Copper Catalyst.

    Science.gov (United States)

    Romano, Pedro N; de Almeida, João M A R; Carvalho, Yuri; Priecel, Peter; Falabella Sousa-Aguiar, Eduardo; Lopez-Sanchez, Jose A

    2016-12-20

    Green, inexpensive, and robust copper-based heterogeneous catalysts achieve 100 % conversion and 99 % selectivity in the conversion of furfural to furfuryl alcohol when using cyclopentyl-methyl ether as green solvent and microwave reactors at low H 2 pressures and mild temperatures. The utilization of pressurized microwave reactors produces a 3-4 fold increase in conversion and an unexpected enhancement in selectivity as compared to the reaction carried out at the same conditions using conventional autoclave reactors. The enhancement in catalytic rate produced by microwave irradiation is temperature dependent. This work highlights that using microwave irradiation in the catalytic hydrogenation of biomass-derived compounds is a very strong tool for biomass upgrade that offers immense potential in a large number of transformations where it could be a determining factor for commercial exploitation. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Preparation and characterization of LTA-type zeolite framework dispersed ruthenium nanoparticles and their catalytic application in the hydrolytic dehydrogenation of ammonia–borane for efficient hydrogen generation

    International Nuclear Information System (INIS)

    Zahmakiran, Mehmet

    2012-01-01

    Highlights: ► Ru(0)NPs-ZK-4 were prepared and characterized by advanced analytical techniques. ► They achieve the hydrolysis of ammonia-borane with TOF = 5410 h −1 and TTO = 36700. ► They maintain 85% of their activity even at the fifth catalytic run. - Abstract: The safe and efficient hydrogen storage and production are major obstacles to use hydrogen as an energy carrier. Therefore, significant efforts have been focused on the development of new materials for the chemical hydrogen storage and production. Of particular importance, ammonia–borane (NH 3 BH 3 ) is emerging as one of the most promising solid hydrogen carrier due to its high gravimetric hydrogen storage capacity (19.6 wt.%) and low molecular weight (30.8 g/mol). ammonia–borane can release hydrogen gas upon catalytic hydrolysis under mild conditions. Herein, the discovery of a new catalytic material, ruthenium nanoparticles stabilized by ZK-4 zeolite framework, for this important reaction has been reported. This new catalyst system was prepared by borohydride reduction of ruthenium(III)-exchanged ZK-4 zeolite in water at room temperature. The characterization of the resulting material by advanced analytical tools shows the formation of ZK-4 zeolite dispersed ruthenium nanoparticles (2.9 ± 0.9 nm). The catalytic performance of the resulting supported ruthenium nanoparticles depending on activity, lifetime and reusability was demonstrated in the hydrolytic dehydrogenation of ammonia–borane. They were found to be highly active (initial TOF = 5410 h −1 ), long-lived (TTO = 36,700) and reusable catalyst (retaining of >85% of initial activity in the 5th reuse) in this important catalytic reaction at room temperature under air.

  17. Investigations on the heterogenous catalytic hydrogenation using isotope effect and gamma- and neutron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kudlacek, R; Cabicar, J [Ceske Vysoke Uceni Technicke, Prague (Czechoslovakia). Katedra Jaderne Chemie

    1976-01-01

    The kinetic and solvent isotope effects during the maleic acid heterogeneous catalytic hydrogenation and deuteration in light and heavy water have been studied. Also the effect of the gamma and neutron irradiation on the Ni-ZnO catalysts (with various ratios of components) on the reaction kinetics and mechanism has been measured, as well as the effect of pH on the adsorption behaviour of maleic acid and the temperature dependence of the reaction rate. Existence of different adsorption centers for hydrogen and maleic acid could be deduced from these experiments. A reaction mechanism based on the two-dimensional diffusion of components in the surface is proposed. The catalyst is formed from Ni and ZnO-microspheres. Hydrogen is bound to nickel and maleic acid is adsorbed on the ZnO-microspheres. The reaction takes place on the boundary layers of these microspheres.

  18. Catalytic Reforming of Higher Hydrocarbon Fuels to Hydrogen: Process Investigations with Regard to Auxiliary Power Units

    OpenAIRE

    Kaltschmitt, Torsten

    2012-01-01

    This thesis discusses the investigation of the catalytic partial oxidation on rhodium-coated honeycomb catalysts with respect to the conversion of a model surrogate fuel and commercial diesel fuel into hydrogen for the use in auxiliary power units. Furthermore, the influence of simulated tail-gas recycling was investigated.

  19. State of the art on hydrogen passive auto-catalytic recombiner (european union Parsoar project)

    International Nuclear Information System (INIS)

    Arnould, F.; Bachellerie, E.; Auglaire, M.; Boeck, B. de; Braillard, O.; Eckardt, B.; Ferroni, F.; Moffett, R.; Van Goethem, G.

    2001-01-01

    This paper presents an overview of the European Union PARSOAR project, which consists in carrying out a state of the art on hydrogen passive auto-catalytic recombiner (PAR) and a handbook guide for implementing these devices in nuclear power plants. This work is performed in the area ''Operational Safety of Existing Installations'' of the key action ''Nuclear Fission'' of the fifth Euratom Framework Programme (1998-2002). (author)

  20. Two-dimensional gold nanostructures with high activity for selective oxidation of carbon–hydrogen bonds

    KAUST Repository

    Wang, Liang

    2015-04-22

    Efficient synthesis of stable two-dimensional (2D) noble metal catalysts is a challenging topic. Here we report the facile synthesis of 2D gold nanosheets via a wet chemistry method, by using layered double hydroxide as the template. Detailed characterization with electron microscopy and X-ray photoelectron spectroscopy demonstrates that the nanosheets are negatively charged and [001] oriented with thicknesses varying from single to a few atomic layers. X-ray absorption spectroscopy reveals unusually low gold–gold coordination numbers. These gold nanosheets exhibit high catalytic activity and stability in the solvent-free selective oxidation of carbon–hydrogen bonds with molecular oxygen.

  1. Two-dimensional gold nanostructures with high activity for selective oxidation of carbon-hydrogen bonds

    Science.gov (United States)

    Wang, Liang; Zhu, Yihan; Wang, Jian-Qiang; Liu, Fudong; Huang, Jianfeng; Meng, Xiangju; Basset, Jean-Marie; Han, Yu; Xiao, Feng-Shou

    2015-04-01

    Efficient synthesis of stable two-dimensional (2D) noble metal catalysts is a challenging topic. Here we report the facile synthesis of 2D gold nanosheets via a wet chemistry method, by using layered double hydroxide as the template. Detailed characterization with electron microscopy and X-ray photoelectron spectroscopy demonstrates that the nanosheets are negatively charged and [001] oriented with thicknesses varying from single to a few atomic layers. X-ray absorption spectroscopy reveals unusually low gold-gold coordination numbers. These gold nanosheets exhibit high catalytic activity and stability in the solvent-free selective oxidation of carbon-hydrogen bonds with molecular oxygen.

  2. Physical and combustion characterization of pyrolytic oils derived from biomass material upgraded by catalytic hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Vitolo, S.; Ghetti, P. (Universita di Pisa, Pisa (Italy). Dipartimento di Ingegneria Chimica)

    1994-11-01

    Physical and combustion properties of a pyrolytic bio-oil are determined both as-obtained and after catalytic hydrodeoxygenation. The tests demonstrate that the hydrogenation treatment improves the oil as regards combustibility, viscosity and acidity. Combustion properties of the oil have been characterized by evaporation and temperature programmed combustion profiles. Short communication. 21 refs., 4 figs., 2 tabs.

  3. Dynamic\tmodelling of catalytic three-phase reactors for hydrogenation and oxidation processes

    Directory of Open Access Journals (Sweden)

    Salmi T.

    2000-01-01

    Full Text Available The dynamic modelling principles for typical catalytic three-phase reactors, batch autoclaves and fixed (trickle beds were described. The models consist of balance equations for the catalyst particles as well as for the bulk phases of gas and liquid. Rate equations, transport models and mass balances were coupled to generalized heterogeneous models which were solved with respect to time and space with algorithms suitable for stiff differential equations. The aspects of numerical solution strategies were discussed and the procedure was illustrated with three case studies: hydrogenation of aromatics, hydrogenation of aldehydes and oxidation of ferrosulphate. The case studies revealed the importance of mass transfer resistance inside the catalyst pallets as well as the dynamics of the different phases being present in the reactor. Reliable three-phase reactor simulation and scale-up should be based on dynamic heterogeneous models.

  4. Catalytic performance improvement of styrene hydrogenation in trickle bed reactor by using periodic operation

    International Nuclear Information System (INIS)

    Wongkia, Atittahn; Praserthdam, Piyasan; Assabumrungrat, Suttichai; Suriye, Kongkiat; Nonkhamwong, Anuwat

    2013-01-01

    We investigated the catalytic performance improvement of styrene hydrogenation in a trickle bed reactor by using periodic operation. The effects of cycle period and split on relative conversion, which is defined as styrene conversion obtained from periodic operation over that from steady state operation, were examined at various operating conditions including gas and average liquid flow rates, pressure and temperature. The experimental results reveal that both cycle period and split have strong influence on the catalytic performance. The fast mode (short cycle period) is a favorable condition. The improvement by the periodic operation becomes less pronounced for operations at high average liquid flow rate, pressure and temperature. From this study, a maximum improvement of styrene conversion of 18% is observed

  5. Catalytic performance improvement of styrene hydrogenation in trickle bed reactor by using periodic operation

    Energy Technology Data Exchange (ETDEWEB)

    Wongkia, Atittahn; Praserthdam, Piyasan; Assabumrungrat, Suttichai [Chulalongkorn University, Bangkok (Thailand); Suriye, Kongkiat; Nonkhamwong, Anuwat [SCG Chemicals Co. Ltd., Bangkok (Thailand)

    2013-03-15

    We investigated the catalytic performance improvement of styrene hydrogenation in a trickle bed reactor by using periodic operation. The effects of cycle period and split on relative conversion, which is defined as styrene conversion obtained from periodic operation over that from steady state operation, were examined at various operating conditions including gas and average liquid flow rates, pressure and temperature. The experimental results reveal that both cycle period and split have strong influence on the catalytic performance. The fast mode (short cycle period) is a favorable condition. The improvement by the periodic operation becomes less pronounced for operations at high average liquid flow rate, pressure and temperature. From this study, a maximum improvement of styrene conversion of 18% is observed.

  6. Efficient catalytic cycloalkane oxidation employing a "helmet" phthalocyaninato iron(III) complex.

    Science.gov (United States)

    Brown, Elizabeth S; Robinson, Jerome R; McCoy, Aaron M; McGaff, Robert W

    2011-06-14

    We have examined the catalytic activity of an iron(III) complex bearing the 14,28-[1,3-diiminoisoindolinato]phthalocyaninato (diiPc) ligand in oxidation reactions with three substrates (cyclohexane, cyclooctane, and indan). This modified metallophthalocyaninato complex serves as an efficient and selective catalyst for the oxidation of cyclohexane and cyclooctane, and to a far lesser extent indan. In the oxidations of cyclohexane and cyclooctane, in which hydrogen peroxide is employed as the oxidant under inert atmosphere, we have observed turnover numbers of 100.9 and 122.2 for cyclohexanol and cyclooctanol, respectively. The catalyst shows strong selectivity for alcohol (vs. ketone) formation, with alcohol to ketone (A/K) ratios of 6.7 and 21.0 for the cyclohexane and cyclooctane oxidations, respectively. Overall yields (alcohol + ketone) were 73% for cyclohexane and 92% for cyclooctane, based upon the total hydrogen peroxide added. In the catalytic oxidation of indan under similar conditions, the TON for 1-indanol was 10.1, with a yield of 12% based upon hydrogen peroxide. No 1-indanone was observed in the product mixture.

  7. Catalytic biorefining of plant biomass to non-pyrolytic lignin bio-oil and carbohydrates through hydrogen transfer reactions.

    Science.gov (United States)

    Ferrini, Paola; Rinaldi, Roberto

    2014-08-11

    Through catalytic hydrogen transfer reactions, a new biorefining method results in the isolation of depolymerized lignin--a non-pyrolytic lignin bio-oil--in addition to pulps that are amenable to enzymatic hydrolysis. Compared with organosolv lignin, the lignin bio-oil is highly susceptible to further hydrodeoxygenation under low-severity conditions and therefore establishes a unique platform for lignin valorization by heterogeneous catalysis. Overall, the potential of a catalytic biorefining method designed from the perspective of lignin utilization is reported. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Production of natural antioxidants from vegetable oil deodorizer distillates: effect of catalytic hydrogenation.

    Science.gov (United States)

    Pagani, María Ayelén; Baltanás, Miguel A

    2010-02-01

    Natural tocopherols are one of the main types of antioxidants found in living creatures, but they also have other critical biological functions. The biopotency of natural (+)-alpha-tocopherol (RRR) is 36% higher than that of the synthetic racemic mixture and 300% higher than the SRR stereoisomer. Vegetable oil deodorizer distillates (DD) are an excellent source of natural tocopherols. Catalytic hydrogenation of DD preconcentrates has been suggested as a feasible route for recovery of tocopherols in high yield. However, it is important to know whether the hydrogenation operation, as applied to these tocopherol-rich mixtures, is capable of preserving the chiral (RRR) character, which is critical to its biopotency. Fortified (i.e., (+)-alpha-tocopherol enriched) sunflower oil and methyl stearate, as well as sunflower oil DD, were fully hydrogenated using commercial Ni and Pd catalysts (120-180 degrees C; 20-60 psig). Products were analyzed by chiral HPLC. Results show that the desired chiral configuration (RRR) is fully retained. Thus, the hydrogenation route can be safely considered as a valid alternative for increasing the efficiency of tocopherol recovery processes from DDs while preserving their natural characteristics.

  9. Selective catalytic reduction of NO{sub x} by olefins

    Energy Technology Data Exchange (ETDEWEB)

    Radtke, F

    1997-12-31

    The removal of nitrogen oxides from the exhaust of lean-burn gasoline fuelled and diesel-fuelled engines, operating under net oxidizing conditions, has recently attracted considerable attention. In this work, three different catalytic systems (Al{sub 2}O{sub 3}, Cu/Al{sub 2}O{sub 3} and Cu/ZSM-5) are investigated for their suitability as catalysts for the selective reduction of nitrogen oxides by hydrocarbons in excess oxygen. Special emphasis is given to the formation of potentially harmful byproducts such as hydrogen cyanide (HCN), cyanic acid (HNCO), ammonia (NH{sub 3}) and nitrous oxide (N{sub 2}O). The effect of reaction temperature, nitrogen oxide (NO, NO{sub 2}), hydrocarbon (ethene, propene) and water on activity and the formation of byproducts is investigated. In situ FTIR spectroscopy and temperature-programmed surface reactions (TPSR) of absorbed species in different atmospheres were used to investigate the nature and reactivity of adsorbates formed under reaction conditions. The catalytic activity was strongly influenced by the presence of water in the feed. The effects of the other parameters were suppressed and the performance generally decreased, except when propene was used for the reduction of NO{sub x} over Cu/ZSM-5. Over Cu/ZSM-5 clearly higher conversion was obtained, when ethene was used as reducing agent, while there was no significant difference when starting from NO or NO{sub 2}. In contrast, with {gamma}-Al{sub 2}O{sub 3} NO{sub 2} was reduced more efficiently than NO with both reductants. The impregnation of {gamma}-Al{sub 2}O{sub 3} with copper led to an extensive loss of this performance. For dry feeds and with increasing CuO loading, the catalysts reached maximum activity at lower temperature and the maximum yield of nitrogen slightly decreased. (author) figs., tabs., refs.

  10. β-Molybdenum nitride: synthesis mechanism and catalytic response in the gas phase hydrogenation of p-chloronitrobenzene

    NARCIS (Netherlands)

    Cárdenas-Lizana, F.; Gómez-Quero, S.; Perret, N.; Kiwi-Minsker, L.; Keane, M.A.

    2011-01-01

    A temperature programmed treatment of MoO3 in flowing N2 + H2 has been employed to prepare β-phase molybdenum nitride (β-Mo2N) which has been used to promote, for the first time, the catalytic hydrogenation of p-chloronitrobenzene. The reduction/nitridation synthesis steps have been monitored in

  11. Experimental and Numerical Evaluation of the By-Pass Flow in a Catalytic Plate Reactor for Hydrogen Production

    DEFF Research Database (Denmark)

    Sigurdsson, Haftor Örn; Kær, Søren Knudsen

    2011-01-01

    Numerical and experimental study is performed to evaluate the reactant by-pass flow in a catalytic plate reactor with a coated wire mesh catalyst for steam reforming of methane for hydrogen generation. By-pass of unconverted methane is evaluated under different wire mesh catalyst width to reactor...

  12. Single cobalt sites in mesoporous N-doped carbon matrix for selective catalytic hydrogenation of nitroarenes

    KAUST Repository

    Sun, Xiaohui

    2017-11-20

    A supported cobalt catalyst with atomically dispersed Co-Nx sites (3.5 wt% Co) in a mesoporous N-doped carbon matrix (named Co@mesoNC) is synthesized by hydrolysis of tetramethyl orthosilicate (TMOS) in a Zn/Co bimetallic zeolitic imidazolate framework (BIMZIF(Co,Zn)), followed by high-temperature pyrolysis and SiO2 leaching. A combination of TEM, XRD XPS and X-ray absorption spectroscopy studies confirm the absence of cobalt nanoparticles and indicate that these highly dispersed cobalt species are present in the form of Co-Nx. The exclusive formation of Co-Nx sites in the carbon matrix is attributed to the presence of a large amount of Zn and N in the BIMZIF precursor together with the presence of SiO2 in the pore space of this framework, extending the initial spatial distance between cobalt atoms and thereby impeding their agglomeration. The presence of SiO2 during high-temperature pyrolysis is proven crucial to create mesoporosity and a high BET area and pore volume in the N-doped carbon support (1780 m2 g−1, 1.54 cm3 g−1). This heterogeneous Co@mesoNC catalyst displays high activity and selectivity (>99%) for the selective hydrogenation of nitrobenzene to aniline at mild conditions (0.5–3 MPa, 343–383 K). When more challenging substrates (functionalized nitroarenes) are hydrogenated, the catalyst Co@mesoNC displays an excellent chemoselectivity to the corresponding substituted anilines.The presence of mesoporosity improves mass transport of reactants and/or products and the accessibility of the active Co-Nx sites, and greatly reduces deactivation due to fouling.

  13. Single cobalt sites in mesoporous N-doped carbon matrix for selective catalytic hydrogenation of nitroarenes

    KAUST Repository

    Sun, Xiaohui; Olivos-Suarez, Alma I.; Osadchii, Dmitrii; Romero, Maria Jose Valero; Kapteijn, Freek; Gascon, Jorge

    2017-01-01

    A supported cobalt catalyst with atomically dispersed Co-Nx sites (3.5 wt% Co) in a mesoporous N-doped carbon matrix (named Co@mesoNC) is synthesized by hydrolysis of tetramethyl orthosilicate (TMOS) in a Zn/Co bimetallic zeolitic imidazolate framework (BIMZIF(Co,Zn)), followed by high-temperature pyrolysis and SiO2 leaching. A combination of TEM, XRD XPS and X-ray absorption spectroscopy studies confirm the absence of cobalt nanoparticles and indicate that these highly dispersed cobalt species are present in the form of Co-Nx. The exclusive formation of Co-Nx sites in the carbon matrix is attributed to the presence of a large amount of Zn and N in the BIMZIF precursor together with the presence of SiO2 in the pore space of this framework, extending the initial spatial distance between cobalt atoms and thereby impeding their agglomeration. The presence of SiO2 during high-temperature pyrolysis is proven crucial to create mesoporosity and a high BET area and pore volume in the N-doped carbon support (1780 m2 g−1, 1.54 cm3 g−1). This heterogeneous Co@mesoNC catalyst displays high activity and selectivity (>99%) for the selective hydrogenation of nitrobenzene to aniline at mild conditions (0.5–3 MPa, 343–383 K). When more challenging substrates (functionalized nitroarenes) are hydrogenated, the catalyst Co@mesoNC displays an excellent chemoselectivity to the corresponding substituted anilines.The presence of mesoporosity improves mass transport of reactants and/or products and the accessibility of the active Co-Nx sites, and greatly reduces deactivation due to fouling.

  14. Sustainable production of hydrogen and chemical commodities from biodiesel waste crude glycerol and cellulose by biological and catalytic processes

    OpenAIRE

    Maru, Biniam Taddele

    2013-01-01

    Hydrogen has a significant potential as clean and ‘green’ fuel of the future. Accordingly, this thesis investigated how to generate a sustainable production of hydrogen and other chemical commodities through study of: 1) Fermentative behavior of anaerobichydrogen producing microorganisms from pure glycerol and biodiesel waste crude glycerol; 2) The advantage of using a solid supportimmobilisationof microorganisms 3) The integration of the dark fermentative system with the catalytic hydrolysi...

  15. State of the art on hydrogen passive auto-catalytic recombiner (european union Parsoar project)

    Energy Technology Data Exchange (ETDEWEB)

    Arnould, F.; Bachellerie, E. [Technicatome, 13 - Aix en Provence (France); Auglaire, M. [Tractebel Energy Engineering, Brussels (Belgium); Boeck, B. de [Association Vincotte Nuclear, Brussels (Belgium); Braillard, O. [CEA Cadarache, 13 - Saint Paul lez Durance (France); Eckardt, B. [Siemens AG, Offenbach am Main (Germany); Ferroni, F. [Electrowatt Engineering Limited, Zurich (Switzerland); Moffett, R. [Atomic Energy Canada Limited, Pinawa (Canada); Van Goethem, G. [European Commission, Brussels (Belgium)

    2001-07-01

    This paper presents an overview of the European Union PARSOAR project, which consists in carrying out a state of the art on hydrogen passive auto-catalytic recombiner (PAR) and a handbook guide for implementing these devices in nuclear power plants. This work is performed in the area ''Operational Safety of Existing Installations'' of the key action ''Nuclear Fission'' of the fifth Euratom Framework Programme (1998-2002). (author)

  16. Preparation of Pd-Loaded Hierarchical FAU Membranes and Testing in Acetophenone Hydrogenation

    Directory of Open Access Journals (Sweden)

    Raffaele Molinari

    2016-03-01

    Full Text Available Pd-loaded hierarchical FAU (Pd-FAU membranes, containing an intrinsic secondary non-zeolitic (mesoporosity, were prepared and tested in the catalytic transfer hydrogenation of acetophenone (AP to produce phenylethanol (PE, an industrially relevant product. The best operating conditions were preliminarily identified by testing different solvents and organic hydrogen donors in a batch hydrogenation process where micron-sized FAU seeds were employed as catalyst support. Water as solvent and formic acid as hydrogen source resulted to be the best choice in terms of conversion for the catalytic hydrogenation of AP, providing the basis for the design of a green and sustainable process. The best experimental conditions were selected and applied to the Pd-loaded FAU membrane finding enhanced catalytic performance such as a five-fold higher productivity than with the unsupported Pd-FAU crystals (11.0 vs. 2.2 mgproduct gcat−1·h−1. The catalytic performance of the membrane on the alumina support was also tested in a tangential flow system obtaining a productivity higher than that of the batch system (22.0 vs. 11.0 mgproduct gcat−1·h−1.

  17. Preparation of Pd-Loaded Hierarchical FAU Membranes and Testing in Acetophenone Hydrogenation.

    Science.gov (United States)

    Molinari, Raffaele; Lavorato, Cristina; Mastropietro, Teresa F; Argurio, Pietro; Drioli, Enrico; Poerio, Teresa

    2016-03-22

    Pd-loaded hierarchical FAU (Pd-FAU) membranes, containing an intrinsic secondary non-zeolitic (meso)porosity, were prepared and tested in the catalytic transfer hydrogenation of acetophenone (AP) to produce phenylethanol (PE), an industrially relevant product. The best operating conditions were preliminarily identified by testing different solvents and organic hydrogen donors in a batch hydrogenation process where micron-sized FAU seeds were employed as catalyst support. Water as solvent and formic acid as hydrogen source resulted to be the best choice in terms of conversion for the catalytic hydrogenation of AP, providing the basis for the design of a green and sustainable process. The best experimental conditions were selected and applied to the Pd-loaded FAU membrane finding enhanced catalytic performance such as a five-fold higher productivity than with the unsupported Pd-FAU crystals (11.0 vs. 2.2 mgproduct gcat(-1)·h(-1)). The catalytic performance of the membrane on the alumina support was also tested in a tangential flow system obtaining a productivity higher than that of the batch system (22.0 vs. 11.0 mgproduct gcat(-1)·h(-1)).

  18. Control of hydrogen concentration in reactor containment buildings by using passive catalytic recombiners

    International Nuclear Information System (INIS)

    Wolff, U.

    1993-01-01

    Severe accidents in nuclear power plants have the potential to generate hydrogen within the reactor containment building in concentrations likely to deflagrate or even detonate. This could endanger the containment integrity. Autocatalytic devices have been developed by the NIS company in Hanau, Germany, to control the hydrogen concentration within the containment. These devices have been tested by the Battelle Institute in Frankfurt, Germany, under conditions relevant to severe accidents. The catalytic device functions as required in a wide band of gas mixtures ranging from inerted conditions with low-hydrogen and/or low-oxygen concentrations up to detonable mixtures. The device starts up quickly, and has a high resistance against catalyst poisons including the effects of oil or cable fires. The device makes a strong contribution to gas mixing in the containment atmosphere. The paper summarizes the development work done and describes the final design of the device. Theoretical tools for analysis and prediction of catalyst performance in containment environments have been developed by the Battelle Institute and the Technical University of Munich. These tools have been verified and validated against experimental data. A phenomenological discussion of accident scenarios is used to explain the functional requirements for the autocatalytic devices in the control of hydrogen. Both the potential for and limitations of such devices for hydrogen control are discussed for large dry containments (PWRs) and for those which are originally inerted (BWRs)

  19. Catalytic Hydrogenation of Levulinic Acid in Water into g-Valerolactone over Bulk Structure of Inexpensive Intermetallic Ni-Sn Alloy Catalysts

    Directory of Open Access Journals (Sweden)

    Rodiansono Rodiansono

    2015-07-01

    Full Text Available A bulk structure of inexpensive intermetallic nickel-tin (Ni-Sn alloys catalysts demonstrated highly selective in the hydrogenation of levulinic acid in water into g-valerolactone. The intermetallic Ni-Sn catalysts were synthesized via a very simple thermochemical method from non-organometallic precursor at low temperature followed by hydrogen treatment at 673 K for 90 min. The molar ratio of nickel salt and tin salt was varied to obtain the corresponding Ni/Sn ratio of 4.0, 3.0, 2.0, 1.5, and 0.75. The formation of Ni-Sn alloy species was mainly depended on the composition and temperature of H2 treatment. Intermetallics Ni-Sn that contain Ni3Sn, Ni3Sn2, and Ni3Sn4 alloy phases are known to be effective heterogeneous catalysts for levulinic acid hydrogenation giving very excellence g-valerolactone yield of >99% at 433 K, initial H2 pressure of 4.0 MPa within 6 h. The effective hydrogenation was obtained in H2O without the formation of by-product. Intermetallic Ni-Sn(1.5 that contains Ni3Sn2 alloy species demonstrated very stable and reusable catalyst without any significant loss of its selectivity. © 2015 BCREC UNDIP. All rights reserved. Received: 26th February 2015; Revised: 16th April 2015; Accepted: 22nd April 2015  How to Cite: Rodiansono, R., Astuti, M.D., Ghofur, A., Sembiring, K.C. (2015. Catalytic Hydrogenation of Levulinic Acid in Water into g-Valerolactone over Bulk Structure of Inexpensive Intermetallic Ni-Sn Alloy Catalysts. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (2: 192-200. (doi:10.9767/bcrec.10.2.8284.192-200Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.2.8284.192-200  

  20. Hydrogen peroxide as a sustainable energy carrier: Electrocatalytic production of hydrogen peroxide and the fuel cell

    International Nuclear Information System (INIS)

    Fukuzumi, Shunichi; Yamada, Yusuke; Karlin, Kenneth D.

    2012-01-01

    This review describes homogeneous and heterogeneous catalytic reduction of dioxygen with metal complexes focusing on the catalytic two-electron reduction of dioxygen to produce hydrogen peroxide. Whether two-electron reduction of dioxygen to produce hydrogen peroxide or four-electron O 2 -reduction to produce water occurs depends on the types of metals and ligands that are utilized. Those factors controlling the two processes are discussed in terms of metal–oxygen intermediates involved in the catalysis. Metal complexes acting as catalysts for selective two-electron reduction of oxygen can be utilized as metal complex-modified electrodes in the electrocatalytic reduction to produce hydrogen peroxide. Hydrogen peroxide thus produced can be used as a fuel in a hydrogen peroxide fuel cell. A hydrogen peroxide fuel cell can be operated with a one-compartment structure without a membrane, which is certainly more promising for the development of low-cost fuel cells as compared with two compartment hydrogen fuel cells that require membranes. Hydrogen peroxide is regarded as an environmentally benign energy carrier because it can be produced by the electrocatalytic two-electron reduction of O 2 , which is abundant in air, using solar cells; the hydrogen peroxide thus produced could then be readily stored and then used as needed to generate electricity through the use of hydrogen peroxide fuel cells.

  1. Hydrogen Peroxide as a Sustainable Energy Carrier: Electrocatalytic Production of Hydrogen Peroxide and the Fuel Cell.

    Science.gov (United States)

    Fukuzumi, Shunichi; Yamada, Yusuke; Karlin, Kenneth D

    2012-11-01

    This review describes homogeneous and heterogeneous catalytic reduction of dioxygen with metal complexes focusing on the catalytic two-electron reduction of dioxygen to produce hydrogen peroxide. Whether two-electron reduction of dioxygen to produce hydrogen peroxide or four-electron O 2 -reduction to produce water occurs depends on the types of metals and ligands that are utilized. Those factors controlling the two processes are discussed in terms of metal-oxygen intermediates involved in the catalysis. Metal complexes acting as catalysts for selective two-electron reduction of oxygen can be utilized as metal complex-modified electrodes in the electrocatalytic reduction to produce hydrogen peroxide. Hydrogen peroxide thus produced can be used as a fuel in a hydrogen peroxide fuel cell. A hydrogen peroxide fuel cell can be operated with a one-compartment structure without a membrane, which is certainly more promising for the development of low-cost fuel cells as compared with two compartment hydrogen fuel cells that require membranes. Hydrogen peroxide is regarded as an environmentally benign energy carrier because it can be produced by the electrocatalytic two-electron reduction of O 2 , which is abundant in air, using solar cells; the hydrogen peroxide thus produced could then be readily stored and then used as needed to generate electricity through the use of hydrogen peroxide fuel cells.

  2. Incorporating nitrogen atoms into cobalt nanosheets as a strategy to boost catalytic activity toward CO2 hydrogenation

    Science.gov (United States)

    Wang, Liangbing; Zhang, Wenbo; Zheng, Xusheng; Chen, Yizhen; Wu, Wenlong; Qiu, Jianxiang; Zhao, Xiangchen; Zhao, Xiao; Dai, Yizhou; Zeng, Jie

    2017-11-01

    Hydrogenation of CO2 into fuels and useful chemicals could help to reduce reliance on fossil fuels. Although great progress has been made over the past decades to improve the activity of catalysts for CO2 hydrogenation, more efficient catalysts, especially those based on non-noble metals, are desired. Here we incorporate N atoms into Co nanosheets to boost the catalytic activity toward CO2 hydrogenation. For the hydrogenation of CO2, Co4N nanosheets exhibited a turnover frequency of 25.6 h-1 in a slurry reactor under 32 bar pressure at 150 °C, which was 64 times that of Co nanosheets. The activation energy for Co4N nanosheets was 43.3 kJ mol-1, less than half of that for Co nanosheets. Mechanistic studies revealed that Co4N nanosheets were reconstructed into Co4NHx, wherein the amido-hydrogen atoms directly interacted with the CO2 to form HCOO* intermediates. In addition, the adsorbed H2O* activated amido-hydrogen atoms via the interaction of hydrogen bonds.

  3. Electrochemical promotion of catalytic reactions with Pt/C (or Pt/Ru/C)//PBI catalysts

    DEFF Research Database (Denmark)

    Petrushina, Irina; Bjerrum, Niels; Bandur, Viktor

    2007-01-01

    The paper is an overview of the results of the investigation on electrochemical promotion of three catalytic reactions: methane oxidation with oxygen, NO reduction with hydrogen at 135 degrees C and Fischer-Tropsch synthesis (FTS) at 170 degrees C in the [CH4/O-2(or NO/H-2 or CO/H-2)/Ar//Pt(or Pt....../Ru)//PBI(H3PO4)/H-2, Ar] fuel cell. It has been shown that the partial methane oxidation to C2H2 and the C-2 selectivity were electrochemically promoted by the negative catalyst polarization. This was also the case in NO reduction with hydrogen for low NO and H-2 partial pressures. In both cases the catalytic...... reactions have been promoted by the electrochemically produced hydrogen. It has been found that the NO reduction with hydrogen on the Pt/PBI strongly depends on NO and hydrogen partial pressures in the working gas mixture. At higher NO and H-2 partial pressures the catalysis is promoted...

  4. Catalytic hydrolysis of ammonia borane for hydrogen generation using cobalt nanocluster catalyst supported on polydopamine functionalized multiwalled carbon nanotube

    International Nuclear Information System (INIS)

    Arthur, Ernest Evans; Li, Fang; Momade, Francis W.Y.; Kim, Hern

    2014-01-01

    Hydrogen was generated from ammonia borane complex by hydrolysis using cobalt nanocluster catalyst supported on polydopamine functionalized MWCNTs (multi-walled carbon nanotubes). The impregnation-chemical reduction method was used for the preparation of the supported catalyst. The nanocluster catalyst support was formed by in-situ oxidative polymerization of dopamine on the MWCNTs in alkaline solution at room temperature. The structural and physical–chemical properties of the nanocluster catalyst were characterized by FT-IR (Fourier transform infrared spectroscopy), EDX (energy-dispersive X-ray spectroscopy), SEM (scanning electron microscope), XRD (X-ray diffraction) and TEM (transmission electron microscopy). The nanocluster catalyst showed good catalytic activity for the hydrogen generation from aqueous ammonia borane complex. A reusability test to determine the practical usage of the catalyst was also investigated. The result revealed that the catalyst maintained an appreciable catalytic performance and stability in terms of its reusability after three cycle of reuse for the hydrolysis reaction. Also, the activation energy for the hydrolysis of ammonia borane complex was estimated to be 50.41 kJmol −1 , which is lower than the values of some of the reported catalyst. The catalyst can be considered as a promising candidate in developing highly efficient portable hydrogen generation systems such as PEMFC (proton exchange membrane fuel cells). - Highlights: • Co/Pdop-o-MWCNT (Pdop functionalized MWCNT supported cobalt nanocluster) catalyst was synthesized for hydrogen generation. • It is an active catalyst for hydrogen generation via hydrolysis of ammonia borane. • It showed good stability in terms of reusability for the hydrogen generation

  5. Simulation of hydrogen mitigation in catalytic recombiner. Part-II: Formulation of a CFD model

    International Nuclear Information System (INIS)

    Prabhudharwadkar, Deoras M.; Iyer, Kannan N.

    2011-01-01

    Research highlights: → Hydrogen transport in containment with recombiners is a multi-scale problem. → A novel methodology worked out to lump the recombiner characteristics. → Results obtained using commercial code FLUENT are cast in the form of correlations. → Hence, coarse grids can obtain accurate distribution of H 2 in containment. → Satisfactory working of the methodology is clearly demonstrated. - Abstract: This paper aims at formulation of a model compatible with CFD code to simulate hydrogen distribution and mitigation using a Passive Catalytic Recombiner in the Nuclear power plant containments. The catalytic recombiner is much smaller in size compared to the containment compartments. In order to fully resolve the recombination processes during the containment simulations, it requires the geometric details of the recombiner to be modelled and a very fine mesh size inside the recombiner channels. This component when integrated with containment mixing calculations would result in a large number of mesh elements which may take large computational times to solve the problem. This paper describes a method to resolve this simulation difficulty. In this exercise, the catalytic recombiner alone was first modelled in detail using the best suited option to describe the reaction rate. A detailed parametric study was conducted, from which correlations for the heat of reaction (hence the rate of reaction) and the heat transfer coefficient were obtained. These correlations were then used to model the recombiner channels as single computational cells providing necessary volumetric sources/sinks to the energy and species transport equations. This avoids full resolution of these channels, thereby allowing larger mesh size in the recombiners. The above mentioned method was successfully validated using both steady state and transient test problems and the results indicate very satisfactory modelling of the component.

  6. Near-surface alloys for hydrogen fuel cell applications

    DEFF Research Database (Denmark)

    Greeley, Jeffrey Philip; Mavrikakis, Manos

    2006-01-01

    of CO with relatively facile H-2 activation is nearly ideal for this application. We suggest that. as nanoscale materials synthesis techniques improve, it will become feasible to reproducibly prepare NSAs with highly specified surface structures, resulting in the design and manufacture of a wide variety...... facile H-2 activation. These NSAs could, potentially, facilitate highly selective hydrogenation reactions at low temperatures. In the present work, the suitability of NSAs for use as hydrogen fuel cell anodes has been evaluated: the combination of properties, possessed by selected NSAs, of weak binding...... of such materials for use in fuel cells and in an ever. increasing range of catalytic applications. Furthermore, we introduce a new concept for NSA-defect sites, which could be responsible for the promotional catalytic effects of a second metal added. even in minute quantities, to a host metal catalyst....

  7. Selective N-alkylation of amines using nitriles under hydrogenation conditions: facile synthesis of secondary and tertiary amines.

    Science.gov (United States)

    Ikawa, Takashi; Fujita, Yuki; Mizusaki, Tomoteru; Betsuin, Sae; Takamatsu, Haruki; Maegawa, Tomohiro; Monguchi, Yasunari; Sajiki, Hironao

    2012-01-14

    Nitriles were found to be highly effective alkylating reagents for the selective N-alkylation of amines under catalytic hydrogenation conditions. For the aromatic primary amines, the corresponding secondary amines were selectively obtained under Pd/C-catalyzed hydrogenation conditions. Although the use of electron poor aromatic amines or bulky nitriles showed a lower reactivity toward the reductive alkylation, the addition of NH(4)OAc enhanced the reactivity to give secondary aromatic amines in good to excellent yields. Under the same reaction conditions, aromatic nitro compounds instead of the aromatic primary amines could be directly transformed into secondary amines via a domino reaction involving the one-pot hydrogenation of the nitro group and the reductive alkylation of the amines. While aliphatic amines were effectively converted to the corresponding tertiary amines under Pd/C-catalyzed conditions, Rh/C was a highly effective catalyst for the N-monoalkylation of aliphatic primary amines without over-alkylation to the tertiary amines. Furthermore, the combination of the Rh/C-catalyzed N-monoalkylation of the aliphatic primary amines and additional Pd/C-catalyzed alkylation of the resulting secondary aliphatic amines could selectively prepare aliphatic tertiary amines possessing three different alkyl groups. According to the mechanistic studies, it seems reasonable to conclude that nitriles were reduced to aldimines before the nucleophilic attack of the amine during the first step of the reaction.

  8. Experimental studies on catalytic hydrogen recombiners for light water reactors

    International Nuclear Information System (INIS)

    Drinovac, P.

    2006-01-01

    In the course of core melt accidents in nuclear power plants a large amount of hydrogen can be produced and form an explosive or even detonative gas mixture with aerial oxygen in the reactor building. In the containment atmosphere of pressurized water reactors hydrogen combines a phlogistically with the oxygen present to form water vapor even at room temperature. In the past, experimental work conducted at various facilities has contributed little or nothing to an understanding of the operating principles of catalytic recombiners. Hence, the purpose of the present study was to conduct detailed investigations on a section of a recombiner essentially in order to deepen the understanding of reaction kinetics and heat transport processes. The results of the experiments presented in this dissertation form a large data base of measurements which provides an insight into the processes taking place in recombiners. The reaction-kinetic interpretation of the measured data confirms and deepens the diffusion theory - proposed in an earlier study. Thus it is now possible to validate detailed numeric models representing the processes in recombiners. Consequently the present study serves to broaden and corroborate competence in this significant area of reactor technology. In addition, the empirical knowledge thus gained may be used for a critical reassessment of previous numeric model calculations. (orig.)

  9. Influence of different preparation conditions on catalytic activity of ag /gama-al/sub 2/o/sub 3/ for hydrogenation of coal slime pyrolysis

    International Nuclear Information System (INIS)

    Lei, Z.; Rong, C.

    2014-01-01

    This paper, introducing variable conditional factors with Ag/AL/sub 2/O/sub 3/ as catalyst, selects five variables to investigate the influences of experimental conditions on Ag/Al2O/sub 3/ catalytic activity and define the optimal process conditions. These variables include Ag loading amount, calcinations temperature, calcinations time, reduction temperature, reduction time. X ray diffraction (XRD), hydrogen temperature-programmed reduction (TPR), X ray photoelectron spectrum (XPS) and scanning electron microscopy (SEM) were utilized to characterize the catalytic activity of Ag/-Al/sub 2/O/sub 3/, active center structure and state and those of carrier were emphatically studied, In the meantime the effects of active center and carrier on catalytic activity are studied. The results showed that: (1) In the range of 600 degree C-900 degree C, the catalytic activity of Ag/-Al/sub 2/O/sub 3/ with different loading showed little difference when changing loading amount, in the range of 900 degree C-1100 degree C, when the loading was 5%, the catalytic activity was very high; From the XRD and SEM characterizations, when the loading was 5%, it showed strong intensity diffraction peak of Ag crystal, crystal Ag is the most important activity center to promote hydrogen yield. (2) the catalytic activity of Ag/-Al/sub 2/O/sub 3/ at 450 degree C was considerably higher than that at 400 degree C and 500 degree C. By BET, XRD and SEM characterization, it can be seen, the diffraction peaks intensity of Ag crystal at 450 degree C is higher and sharper than that at 400 degree C and 500 degree C and with the increase of calcinations temperature, the specific surface area of catalysts also increased. (3) In the range of 600 degree C - 1000 degree C, the effects of calcinations time can be negligible, while, with temperature higher than 1000 degree C, 4-hour-calcinations-time catalyst exhibits a more noticeable catalytic activity than 3-hour and 5-hour catalyst do; From the XRD

  10. Promising SiC support for Pd catalyst in selective hydrogenation of acetylene to ethylene

    Science.gov (United States)

    Guo, Zhanglong; Liu, Yuefeng; Liu, Yan; Chu, Wei

    2018-06-01

    In this study, SiC supported Pd nanoparticles were found to be an efficient catalyst in acetylene selective hydrogenation reaction. The ethylene selectivity can be about 20% higher than that on Pd/TiO2 catalyst at the same acetylene conversion at 90%. Moreover, Pd/SiC catalyst showed a stable catalytic life at 65 °C with 80% ethylene selectivity. With the detailed characterization using temperature-programmed reduction (H2-TPR), powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), N2 adsorption/desorption analysis, CO-chemisorption and thermo-gravimetric analysis (TGA), it was found that SiC owns a lower surface area (22.9 m2/g) and a broad distribution of meso-/macro-porosity (from 5 to 65 nm), which enhanced the mass transfer during the chemical process at high reaction rate and decreased the residence time of ethylene on catalyst surface. Importantly, SiC support has the high thermal conductivity, which favored the rapid temperature homogenization through the catalyst bed and inhabited the over-hydrogenation of acetylene. The surface electronic density of Pd on Pd/SiC catalyst was higher than that on Pd/TiO2, which could promote desorption of ethylene from surface of the catalyst. TGA results confirmed a much less coke deposition on Pd/SiC catalyst.

  11. Catalytic Hydrolysis of Ammonia Borane by Cobalt Nickel Nanoparticles Supported on Reduced Graphene Oxide for Hydrogen Generation

    Directory of Open Access Journals (Sweden)

    Yuwen Yang

    2014-01-01

    Full Text Available Well dispersed magnetically recyclable bimetallic CoNi nanoparticles (NPs supported on the reduced graphene oxide (RGO were synthesized by one-step in situ coreduction of aqueous solution of cobalt(II chloride, nickel (II chloride, and graphite oxide (GO with ammonia borane (AB as the reducing agent under ambient condition. The CoNi/RGO NPs exhibits excellent catalytic activity with a total turnover frequency (TOF value of 19.54 mol H2 mol catalyst−1 min−1 and a low activation energy value of 39.89 kJ mol−1 at room temperature. Additionally, the RGO supported CoNi NPs exhibit much higher catalytic activity than the monometallic and RGO-free CoNi counterparts. Moreover, the as-prepared catalysts exert satisfying durable stability and magnetically recyclability for the hydrolytic dehydrogenation of AB, which make the practical reusing application of the catalysts more convenient. The usage of the low-cost, easy-getting catalyst to realize the production of hydrogen under mild condition gives more confidence for the application of ammonia borane as a hydrogen storage material. Hence, this general method indicates that AB can be used as both a potential hydrogen storage material and an efficient reducing agent, and can be easily extended to facile preparation of other RGO-based metallic systems.

  12. Application of microscopy technology in thermo-catalytic methane decomposition to hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Mei, Irene Lock Sow, E-mail: irene.sowmei@gmail.com; Lock, S. S. M., E-mail: serenelock168@gmail.com; Abdullah, Bawadi, E-mail: bawadi-abdullah@petronas.com.my [Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Sri Iskandar, 31750, Perak (Malaysia)

    2015-07-22

    Hydrogen production from the direct thermo-catalytic decomposition of methane is a promising alternative for clean fuel production because it produces pure hydrogen without any CO{sub x} emissions. However, thermal decomposition of methane can hardly be of any practical and empirical interest in the industry unless highly efficient and effective catalysts, in terms of both specific activity and operational lifetime have been developed. In this work, bimetallic Ni-Pd on gamma alumina support have been developed for methane cracking process by using co-precipitation and incipient wetness impregnation method. The calcined catalysts were characterized to determine their morphologies and physico-chemical properties by using Brunauer-Emmett-Teller method, Field Emission Scanning Electron Microscopy, Energy-dispersive X-ray spectroscopy and Thermogravimetric Analysis. The results suggested that that the catalyst which is prepared by the co-precipitation method exhibits homogeneous morphology, higher surface area, have uniform nickel and palladium dispersion and higher thermal stability as compared to the catalyst which is prepared by wet impregnation method. This characteristics are significant to avoid deactivation of the catalysts due to sintering and carbon deposition during methane cracking process.

  13. Selective Catalytic Synthesis Using the Combination of Carbon Dioxide and Hydrogen: Catalytic Chess at the Interface of Energy and Chemistry.

    Science.gov (United States)

    Klankermayer, Jürgen; Wesselbaum, Sebastian; Beydoun, Kassem; Leitner, Walter

    2016-06-20

    The present Review highlights the challenges and opportunities when using the combination CO2 /H2 as a C1 synthon in catalytic reactions and processes. The transformations are classified according to the reduction level and the bond-forming processes, covering the value chain from high volume basic chemicals to complex molecules, including biologically active substances. Whereas some of these concepts can facilitate the transition of the energy system by harvesting renewable energy into chemical products, others provide options to reduce the environmental impact of chemical production already in today's petrochemical-based industry. Interdisciplinary fundamental research from chemists and chemical engineers can make important contributions to sustainable development at the interface of the energetic and chemical value chain. The present Review invites the reader to enjoy this exciting area of "catalytic chess" and maybe even to start playing some games in her or his laboratory. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Selective catalytic oxidation of ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Leppaelahti, J; Koljonen, T [VTT Energy, Espoo (Finland)

    1997-12-31

    In the combustion of fossil fuels, the principal source of nitrogen oxides is nitrogen bound in the fuel structure. In gasification, a large part of fuel nitrogen forms NH{sub 3}, which may form nitrogen oxides during gas combustion. If NH{sub 3} and other nitrogen species could be removed from hot gas, the NO emission could be considerably reduced. However, relatively little attention has been paid to finding new means of removing nitrogen compounds from the hot gasification gas. The possibility of selectively oxidizing NH{sub 3} to N{sub 2} in the hot gasification has been studied at VTT Energy. The largest NH{sub 3} reductions have been achieved by catalytic oxidation on aluminium oxides. (author) (4 refs.)

  15. Selective catalytic oxidation of ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Leppaelahti, J.; Koljonen, T. [VTT Energy, Espoo (Finland)

    1996-12-31

    In the combustion of fossil fuels, the principal source of nitrogen oxides is nitrogen bound in the fuel structure. In gasification, a large part of fuel nitrogen forms NH{sub 3}, which may form nitrogen oxides during gas combustion. If NH{sub 3} and other nitrogen species could be removed from hot gas, the NO emission could be considerably reduced. However, relatively little attention has been paid to finding new means of removing nitrogen compounds from the hot gasification gas. The possibility of selectively oxidizing NH{sub 3} to N{sub 2} in the hot gasification has been studied at VTT Energy. The largest NH{sub 3} reductions have been achieved by catalytic oxidation on aluminium oxides. (author) (4 refs.)

  16. Selective Production of Aromatic Aldehydes from Heavy Fraction of Bio-oil via Catalytic Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yan; Chang, Jie; Ouyang, Yong; Zheng, Xianwei [South China Univ. of Technology, Guangzhou (China)

    2014-06-15

    High value-added aromatic aldehydes (e. g. vanillin and syringaldehyde) were produced from heavy fraction of bio-oil (HFBO) via catalytic oxidation. The concept is based on the use of metalloporphyin as catalyst and hydrogen peroxide (H{sub 2}O{sub 2}) as oxidant under alkaline condition. The biomimetic catalyst cobalt(II)-sulfonated tetraphenylporphyrin (Co(TPPS{sub 4})) was prepared and characterized. It exhibited relative high activity in the catalytic oxidation of HFBO. 4.57 wt % vanillin and 1.58 wt % syringaldehyde were obtained from catalytic oxidation of HFBO, compared to 2.6 wt % vanillin and 0.86 wt % syringaldehyde without Co(TPPS{sub 4}). Moreover, a possible mechanism of HFBO oxidation using Co(TPPS{sub 4})/H{sub 2}O{sub 2} was proposed by the research of model compounds. The results showed that this is a promising and environmentally friendly method for production of aromatic aldehydes from HFBO under Co(TPPS{sub 4})/H{sub 2}O{sub 2} system.

  17. Selective Production of Aromatic Aldehydes from Heavy Fraction of Bio-oil via Catalytic Oxidation

    International Nuclear Information System (INIS)

    Li, Yan; Chang, Jie; Ouyang, Yong; Zheng, Xianwei

    2014-01-01

    High value-added aromatic aldehydes (e. g. vanillin and syringaldehyde) were produced from heavy fraction of bio-oil (HFBO) via catalytic oxidation. The concept is based on the use of metalloporphyin as catalyst and hydrogen peroxide (H 2 O 2 ) as oxidant under alkaline condition. The biomimetic catalyst cobalt(II)-sulfonated tetraphenylporphyrin (Co(TPPS 4 )) was prepared and characterized. It exhibited relative high activity in the catalytic oxidation of HFBO. 4.57 wt % vanillin and 1.58 wt % syringaldehyde were obtained from catalytic oxidation of HFBO, compared to 2.6 wt % vanillin and 0.86 wt % syringaldehyde without Co(TPPS 4 ). Moreover, a possible mechanism of HFBO oxidation using Co(TPPS 4 )/H 2 O 2 was proposed by the research of model compounds. The results showed that this is a promising and environmentally friendly method for production of aromatic aldehydes from HFBO under Co(TPPS 4 )/H 2 O 2 system

  18. Development of wet-proofed catalyst and catalytic exchange process for tritium extraction

    Energy Technology Data Exchange (ETDEWEB)

    Song, Myung Jae; Son, Soon Hwan; Chung, Yang Gun; Lee, Gab Bock [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center

    1996-12-31

    To apply a liquid phase catalytic exchange(LPCE) process for the tritium extraction from tritiated heavy water, the wet proofed catalyst to allow the hydrogen isotopic exchange reaction between liquid water and hydrogen gas was developed. A styrene divinyl benzene copolymer was selected as am effective catalyst support and prepared by suspension copolymerization. After post-treatment, final catalyst supports were dipped in chloroplatinic acid solution. The catalyst support had a good physical properties at a particular preparation condition. The catalytic performance was successfully verified through hydrogen isotopic exchange reaction in the exchange column. A mathematical model for the tritium removal process consisted of LPCE front-ended process and cryogenic distillation process was established using the NTU-HTU method for LPCE column and the FUG method for cryogenic distillation column, respectively. A computer program was developed using the model and then used to investigate optimum design variables which affect the size of columns and tritium inventory (author). 84 refs., 113 figs.

  19. Selective catalytic oxidation of hydrocarbons as a challenge to the chemical engineer

    Energy Technology Data Exchange (ETDEWEB)

    Emig, G [Erlangen-Nuernberg Univ., Erlangen (Germany, F.R.). Inst. fuer Technische Chemie 1

    1977-11-01

    In the conversion of the most important chemical raw materials, natural oil and natural gas, to intermediate or end products, selective catalytic oxidation plays an increasing role. This method makes it possible in many cases to use more economical, single-step processes instead of the older multi-step processes. Using the typical example of propylene oxidation or ammonoxidation, the problems encountered by chemical engineers in the development of a heterogeneous-catalytic method of oxidation are demonstrated. The importance of systematic catalyst development is stressed. General aspects of the development of novel processes or the improvement of existing catalytic processes are discussed.

  20. Influence of ionizing radiation on the catalytic properties of oxide catalysts tested by hydrogen peroxide decomposition

    International Nuclear Information System (INIS)

    Mucka, V.

    1987-01-01

    Results of a study of some physical and catalytic properties of different oxide catalysts as affected by ionizing radiation (γ, n, e - ) and tested by the decomposition of hydrogen peroxide in aqueous solution are presented in this paper. The oxidation state of the active component present on the catalyst surface was found to be one of the most sensitive properties to the ionizing radiation. Changes of this state induced by γ-irradiation were found to be positive in most cases; electron pre-irradiation of the oxides leads, as a rule, to negative effects and the effects of neutron irradiation may be positive or negative. On the other hand, changes in the catalytic activity of the oxides after γ-or electron-irradiation seem to be mostly negative and positive, respectively; the effects of fast neutrons seem to vary here. Neither quantitative or qualitative correlation was found between the radiation-induced changes in these two quantities. The results give evidence that ionizing radiation principally affects the surface concentration of the catalytic sites. Both the character and magnitude of the changes in surface oxidation abilities and in catalytic activities of the oxide catalysts seem to be dependent upon the actual state of the catalyst surface. (author)

  1. Catalytic hydrogen production over RhPd/CeO2 catalysts and CO purification over Au/TiO2 catalysts

    OpenAIRE

    Jiménez Divins, Núria

    2015-01-01

    La consulta íntegra de la tesi, inclosos els articles no comunicats públicament per drets d'autor, es pot realitzar prèvia petició a l'Arxiu UPC Premi Extraordinari de Doctorat, promoció 2014-2015. Àmbit d'Enginyeria Industrial This Thesis focuses on the study of the catalytic production of hydrogen from a biofuel, namely the bioethanol. It also studies the subsequent purification of pre-cleaned reformate streams. The end use of the hydrogen produced is to feed fuel cells to power porta...

  2. A new experimental setup for high-pressure catalytic activity measurements on surface deposited mass-selected Pt clusters

    International Nuclear Information System (INIS)

    Watanabe, Yoshihide; Isomura, Noritake

    2009-01-01

    A new experimental setup to study catalytic and electronic properties of size-selected clusters on metal oxide substrates from the viewpoint of cluster-support interaction and to formulate a method for the development of heterogeneous catalysts such as automotive exhaust catalysts has been developed. The apparatus consists of a size-selected cluster source, a photoemission spectrometer, a scanning tunneling microscope (STM), and a high-pressure reaction cell. The high-pressure reaction cell measurements provided information on catalytic properties in conditions close to practical use. The authors investigated size-selected platinum clusters deposited on a TiO 2 (110) surface using a reaction cell and STM. Catalytic activity measurements showed that the catalytic activities have a cluster-size dependency.

  3. Agro-industrial waste-mediated synthesis and characterization of gold and silver nanoparticles and their catalytic activity for 4-nitroaniline hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Dauthal, Preeti; Mukhopadhyay, Mausumi [S.V. National Institute of Technology, Surat (India)

    2015-05-15

    The biosynthesis of gold (Au-NPs) and silver nanoparticles (Ag-NPs) using agro-industrial waste Citrus aurantifolia peel extract as a bio-reducing agent is reported. Catalytic activity of nanoparticles (NPs) was evaluated for hydrogenation of anthropogenic pollutant 4-nitroaniline (4-NA). Both synthesized NPs were nearly spherical and distributed in size range of 6-46 and 10-32 nm for Au-NPs and Ag-NPs, respectively. XRD analysis revealed face centered cubic (fcc) structure of both NPs. ζ potential value obtained from colloidal solution of Au-NPs and Ag-NPs was −28.0 and −26.1mV, respectively, indicating the stability of the NPs in colloidal solution. FTIR spectra supported the role of citric and ascorbic acids of peel extract for biosynthesis and stabilization of NPs. The biosynthesized NPs exhibited excellent catalytic activity for hydrogenation of 4-NA in the presence of NaBH{sub 4}.

  4. Atomically Precise Metal Nanoclusters for Catalytic Application

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Rongchao [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2016-11-18

    The central goal of this project is to explore the catalytic application of atomically precise gold nanoclusters. By solving the total structures of ligand-protected nanoclusters, we aim to correlate the catalytic properties of metal nanoclusters with their atomic/electronic structures. Such correlation unravel some fundamental aspects of nanocatalysis, such as the nature of particle size effect, origin of catalytic selectivity, particle-support interactions, the identification of catalytically active centers, etc. The well-defined nanocluster catalysts mediate the knowledge gap between single crystal model catalysts and real-world conventional nanocatalysts. These nanoclusters also hold great promise in catalyzing certain types of reactions with extraordinarily high selectivity. These aims are in line with the overall goals of the catalytic science and technology of DOE and advance the BES mission “to support fundamental research to understand, predict, and ultimately control matter and energy at the level of electrons, atoms, and molecules”. Our group has successfully prepared different sized, robust gold nanoclusters protected by thiolates, such as Au25(SR)18, Au28(SR)20, Au38(SR)24, Au99(SR)42, Au144(SR)60, etc. Some of these nanoclusters have been crystallographically characterized through X-ray crystallography. These ultrasmall nanoclusters (< 2 nm diameter) exhibit discrete electronic structures due to quantum size effect, as opposed to quasicontinuous band structure of conventional metal nanoparticles or bulk metals. The available atomic structures (metal core plus surface ligands) of nanoclusters serve as the basis for structure-property correlations. We have investigated the unique catalytic properties of nanoclusters (i.e. not observed in conventional nanogold catalysts) and revealed the structure-selectivity relationships. Highlights of our

  5. Enhanced catalytic hydrogenation activity of Ni/reduced graphene oxide nanocomposite prepared by a solid-state method

    Science.gov (United States)

    Li, Yizhao; Cao, Yali; Jia, Dianzeng

    2018-01-01

    A simple solid-state method has been applied to synthesize Ni/reduced graphene oxide (Ni/rGO) nanocomposite under ambient condition. Ni nanoparticles with size of 10-30 nm supported on reduced graphene oxide (rGO) nanosheets are obtained through one-pot solid-state co-reduction among nickel chloride, graphene oxide, and sodium borohydride. The Ni/rGO nanohybrid shows enhanced catalytic activity toward the reduction of p-nitrophenol (PNP) into p-aminophenol compared with Ni nanoparticles. The results of kinetic research display that the pseudo-first-order rate constant for hydrogenation reaction of PNP with Ni/rGO nanocomposite is 7.66 × 10-3 s-1, which is higher than that of Ni nanoparticles (4.48 × 10-3 s-1). It also presents superior turnover frequency (TOF, 5.36 h-1) and lower activation energy ( E a, 29.65 kJ mol-1) in the hydrogenation of PNP with Ni/rGO nanocomposite. Furthermore, composite catalyst can be magnetically separated and reused for five cycles. The large surface area and high electron transfer property of rGO support are beneficial for good catalytic performance of Ni/rGO nanocomposite. Our study demonstrates a simple approach to fabricate metal-rGO heterogeneous nanostructures with advanced functions.

  6. Tunable and selective hydrogenation of furfural to furfuryl alcohol and cyclopentanone over Pt supported on biomass-derived porous heteroatom doped carbon.

    Science.gov (United States)

    Liu, Xiuyun; Zhang, Bo; Fei, Benhua; Chen, Xiufang; Zhang, Junyi; Mu, Xindong

    2017-09-21

    The search for and exploitation of efficient catalytic systems for selective conversion of furfural into various high value-added chemicals remains a huge challenge for green synthesis in the chemical industry. Here, novel Pt nanoparticles supported on bamboo shoot-derived porous heteroatom doped carbon materials were designed as highly active catalysts for controlled hydrogenation of furfural in aqueous media. The porous heteroatom doped carbon supported Pt catalysts were endowed with a large surface area with a hierarchical porous structure, a high content of nitrogen and oxygen functionalities, a high dispersion of the Pt nanoparticles, good water dispersibility and reaction stability. Benefiting from these features, the novel Pt catalysts displayed a high activity and controlled tunable selectivity for furfural hydrogenation to produce furfuryl alcohol and cyclopentanone in water. The product selectivity could be easily modulated by controlling the carbonization temperature of the porous heteroatom doped carbon support and the reaction conditions (temperature and H 2 pressure). Under mild conditions (100 °C, 1 MPa H 2 ), furfuryl alcohol was obtained in water with complete conversion of the furfural and an impressive furfuryl alcohol selectivity of >99% in the presence of Pt/NC-BS-500. A higher reaction temperature, in water, favored rearrangement of the furfural (FFA) with Pt/NC-BS-800 as the catalyst, which resulted in a high cyclopentanone yield of >76% at 150 °C and 3 MPa H 2 . The surface properties and pore structure of the heteroatom doped carbon support, adjusted using the carbonization temperature, might determine the interactions between the Pt nanoparticles, carbon support and catalytic reactants in water, which in turn could have led to a good selectivity control. The effect of different reaction temperatures and reaction times on the product selectivity was also explored. Combined with exploration of the distribution of the reaction products, a

  7. Project of CO{sub 2} fixation and utilization using catalytic hydrogenation reaction for coping with the global environment issues

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Discussions were given on a carbon dioxide fixing and utilizing project utilizing hydrogenating reaction by means of a catalytic method. In the discussions, development was made on such foundation technologies as CO2 separation by using Cardo type CO2 membrane, a technology to synthesize methanol through hydrogen addition by means of the catalytic method, and an electrolytic technology of membrane-electrode mixed type, as well as a methanol synthesis bench test of 50 kg/d scale. In order to develop this result into specific applications, demonstration tests are required that use methanol synthesizing pilot plants of 4 t/d and 80 t/d capacities. In addition, for the electric power to produce a huge amount of hydrogen, development is necessary on a solar energy utilizing technology of large scale and low cost. Furthermore, from the economic and social viewpoints, the achievements of this project are regarded to depend on understanding of the necessity of a policy of putting a large number of methanol fuel cell automobiles into use, and dealing with the global warming problem. Energy required to change CO2 into useful chemical substance requires five times as much energy as has been produced, hence prevention of the global warming through this channel is difficult. (NEDO)

  8. Proceedings of the 1996 U.S. DOE hydrogen program review. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    The 29 papers contained in Volume 1 are related to systems analysis and hydrogen production. Papers in the systems analysis section discuss utility markets, comparison of hydrogen with other alternative fuels, hydrogen vehicles, renewable hydrogen production, storage, and detection, and hydrogen storage systems development. Hydrogen production methods include the use of algae, photosynthesis, glucose dehydrogenase, syngas, photoelectrochemical reactions, photovoltaics, water electrolysis, solar photochemical reactions, pyrolysis, catalytic steam reforming, municipal solid wastes, thermocatalytic cracking of natural gas, and plasma reformers. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  9. Novel developments in hydrogen storage, hydrogen activation and ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Doroodian, Amir

    2010-12-03

    This dissertation is divided into three chapters. Recently, metal-free hydrogen activation using phosphorous compounds has been reported in science magazine. We have investigated the interaction between hydrogen and phosphorous compounds in presence of strong Lewis acids (chapter one). A new generation of metal-free hydrogen activation, using amines and strong Lewis acids with sterically demanding nature, was already developed in our group. Shortage of high storage capacity using large substitution to improve sterical effect led us to explore the amine borane derivatives, which are explained in chapter two. Due to the high storage capacity of hydrogen in aminoborane derivatives, we have explored these materials to extend hydrogen release. These compounds store hydrogen as proton and hydride on adjacent atoms or ions. These investigations resulted in developing hydrogen storage based on ionic liquids containing methyl guanidinium cation. Then we have continued to develop ionic liquids based on methyl guanidinium cation with different anions, such as tetrafluoro borate (chapter three). We have replaced these anions with transition metal anions to investigate hydrogen bonding and catalytic activity of ionic liquids. This chapter illustrates the world of ionic liquid as a green solvent for organic, inorganic and catalytic reactions and combines the concept of catalysts and solvents based on ionic liquids. The catalytic activity is investigated particularly with respect to the interaction with CO{sub 2}. (orig.)

  10. Multi-stage selective catalytic reduction of NOx in lean burn engine exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Penetrante, B.M.; Hsaio, M.C.; Merritt, B.T.; Vogtlin, G.E. [Lawrence Livermore National Lab., CA (United States)

    1997-12-31

    Many studies suggest that the conversion of NO to NO{sub 2} is an important intermediate step in the selective catalytic reduction (SCR) of NO{sub x} to N{sub 2}. Some effort has been devoted to separating the oxidative and reductive functions of the catalyst in a multi-stage system. This method works fine for systems that require hydrocarbon addition. The hydrocarbon has to be injected between the NO oxidation catalyst and the NO{sub 2} reduction catalyst; otherwise, the first-stage oxidation catalyst will also oxidize the hydrocarbon and decrease its effectiveness as a reductant. The multi-stage catalytic scheme is appropriate for diesel engine exhausts since they contain insufficient hydrocarbons for SCR, and the hydrocarbons can be added at the desired location. For lean-burn gasoline engine exhausts, the hydrocarbons already present in the exhausts will make it necessary to find an oxidation catalyst that can oxidize NO to NO{sub 2} but not oxidize the hydrocarbon. A plasma can also be used to oxidize NO to NO{sub 2}. Plasma oxidation has several advantages over catalytic oxidation. Plasma-assisted catalysis can work well for both diesel engine and lean-burn gasoline engine exhausts. This is because the plasma can oxidize NO in the presence of hydrocarbons without degrading the effectiveness of the hydrocarbon as a reductant for SCR. In the plasma, the hydrocarbon enhances the oxidation of NO, minimizes the electrical energy requirement, and prevents the oxidation of SO{sub 2}. This paper discusses the use of multi-stage systems for selective catalytic reduction of NO{sub x}. The multi-stage catalytic scheme is compared to the plasma-assisted catalytic scheme.

  11. Combining Ru, Ni and Ni(OH){sub 2} active sites for improving catalytic performance in benzene hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Lihua, E-mail: lihuazhu@stu.xmu.edu.cn [School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi (China); Department of Chemical and Biochemical Engineering, National Engineering Laboratory for Green Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Sun, Hanlei; Zheng, Jinbao [Department of Chemical and Biochemical Engineering, National Engineering Laboratory for Green Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Yu, Changlin, E-mail: yuchanglinjx@163.com [School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi (China); Zhang, Nuowei [Department of Chemical and Biochemical Engineering, National Engineering Laboratory for Green Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Shu, Qing [School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi (China); Chen, Bing H., E-mail: chenbh@xmu.edu.cn [Department of Chemical and Biochemical Engineering, National Engineering Laboratory for Green Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China)

    2017-05-01

    In this study, the Ru{sub 0.04}Ni{sub 0.96}/C(T) catalysts were successfully prepared by the simple methods of hydrazine-reduction and galvanic replacement, where 0.04/0.96 and T represented the Ru/Ni atomic ratio and reducing temperature of the catalyst in N{sub 2}+10%H{sub 2}, respectively. The nanostructures of the Ru{sub 0.04}Ni{sub 0.96} nanoparticles in the Ru{sub 0.04}Ni{sub 0.96}/C(T) catalysts were controlled by modulating their annealing temperature in N{sub 2}+10%H{sub 2} and characterized by an array of techniques, including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), scanning transmission electron microscopy energy dispersive X-ray spectroscopy (STEM-EDS) mapping and high-sensitivity low-energy ion scattering (HS-LEIS). The Ru{sub 0.04}Ni{sub 0.96}/C(30) catalyst, which was composed of Ru clusters or single atoms supported on Ni/Ni(OH){sub 2} nanoparticles, exhibited much better catalytic performance for benzene hydrogenation than the Ru{sub 0.04}Ni{sub 0.96}/C(T) catalysts reduced at above 30 °C, such as Ru{sub 0.04}Ni{sub 0.96}/C(160) with the nanostructure of partial Ru{sub 0.04}Ni{sub 0.9} alloy and Ru{sub 0.04}Ni{sub 0.96}/C(280) with the nanostructure of complete Ru{sub 0.04}Ni{sub 0.9} alloy. The reason was that the synergistic effect of multiple active sites – Ru, Ni and Ni(OH){sub 2} sites was present in the Ru{sub 0.04}Ni{sub 0.96}/C(30) catalyst, where hydrogen was preferentially activated at Ru sites, benzene was probably activated at Ni(OH){sub 2} surface and Ni acted as a “bridge” for transferring activated H{sup ∗} species to activated benzene by hydrogen spillover effect, hydrogenating and forming product – cyclohexane. This study also provided a typical example to illustrate that the synergy effect of multiple active sites can largely improve the catalytic hydrogenation performance. - Highlights: • The Ru

  12. An insight on hydrogen fuel injection techniques with SCR system for NO{sub X} reduction in a hydrogen-diesel dual fuel engine

    Energy Technology Data Exchange (ETDEWEB)

    Saravanan, N. [ERC Engines, Hall 11A, Tata Motors, Pimpri, Pune 411019, Maharashtra (India); Nagarajan, G. [Department of Mechanical Engineering, ICE Division, College of Engineering, Guindy, Anna University-Chennai, Chennai 600 025 (India)

    2009-11-15

    Internal combustion engines continue to dominate in many fields like transportation, agriculture and power generation. Among the various alternative fuels, hydrogen is a long-term renewable and less polluting fuel (Produced from renewable energy sources). In the present experimental investigation, the performance and emission characteristics were studied on a direct injection diesel engine in dual fuel mode with hydrogen inducted along with air adopting carburetion, timed port and manifold injection techniques. Results showed that in timed port injection, the specific energy consumption reduces by 15% and smoke level by 18%. The brake thermal efficiency and NO{sub X} increases by 17% and 34% respectively compared to baseline diesel. The variation in performance between port and manifold injection is not significant. The unburnt hydrocarbons and carbon monoxide emissions are lesser in port injection. The oxides of nitrogen are higher in hydrogen operation (both port and manifold injection) compared to diesel engine. In order to reduce the NO{sub X} emissions, a selective catalytic converter was used in hydrogen port fuel injection. The NO{sub X} emission reduced upto a maximum of 74% for ANR (ratio of flow rate of ammonia to the flow rate of NO) of 1.1 with a marginal reduction in efficiency. Selective catalytic reduction technique has been found to be effective in reducing the NO{sub X} emission from hydrogen fueled diesel engines. (author)

  13. Hydrogenation of Anthracene in Supercritical Carbon Dioxide Solvent Using Ni Supported on Hβ-Zeolite Catalyst

    Directory of Open Access Journals (Sweden)

    Ashraf Aly Hassan

    2012-01-01

    Full Text Available Catalytic hydrogenation of anthracene was studied over Ni supported on Hβ-zeolite catalyst under supercritical carbon dioxide (sc-CO2 solvent. Hydrogenation of anthracene in sc-CO2 yielded 100% conversion at 100 °C, which is attributed to the reduced mass transfer limitations, and increased solubility of H2 and substrate in the reaction medium. The total pressure of 7 MPa was found to be optimum for high selectivity of octahydroanthracene (OHA. The conversion and selectivity for OHA increased with an increase in H2 partial pressure, which is attributed to higher concentration of hydrogen atoms at higher H2 pressures. The selectivity reduced the pressure below 7 MPa because of enhanced desorption of the tetrahydro-molecules and intermediates from Ni active sites, due to higher solubility of the surface species in sc-CO2. The selectivity of OHA increased with the increase in catalyst weight and reaction time. The rate of hydrogenation of anthracene was compared with that found for napthalene and phenanthrene. The use of acetonitrile as co-solvent or expanded liquid with CO2 decreased the catalytic activity.

  14. Modification of Coal Char-loaded TiO2 by Sulfonation and Alkylsilylation to Enhance Catalytic Activity in Styrene Oxidation with Hydrogen Peroxide as Oxidant

    Directory of Open Access Journals (Sweden)

    Mukhamad Nurhadi

    2017-04-01

    Full Text Available The modified coal char from low-rank coal by sulfonation, titanium impregnation and followed by alkyl silylation possesses high catalytic activity in styrene oxidation. The surface of coal char was undergone several steps as such: modification using concentrated sulfuric acid in the sulfonation process, impregnation of 500 mmol titanium(IV isopropoxide and followed by alkyl silylation of n-octadecyltriclorosilane (OTS. The catalysts were characterized by X-ray diffraction (XRD, IR spectroscopy, nitrogen adsorption, and hydrophobicity. The catalytic activity of the catalysts has been examined in the liquid phase styrene oxidation by using aqueous hydrogen peroxide as oxidant. The catalytic study showed the alkyl silylation could enhance the catalytic activity of Ti-SO3H/CC-600(2.0. High catalytic activity and reusability of the o-Ti-SO3H/CC-600(2.0 were related to the modification of local environment of titanium active sites and the enhancement the hydrophobicity of catalyst particle by alkyl silylation. Copyright © 2017 BCREC GROUP. All rights reserved Received: 24th May 2016; Revised: 11st October 2016; Accepted: 18th October 2016 How to Cite: Nurhadi, M. (2017. Modification of Coal Char-loaded TiO2 by Sulfonation and Alkylsilylation to Enhance Catalytic Activity in Styrene Oxidation with Hydrogen Peroxide as Oxidant. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (1: 55-61 (doi:10.9767/bcrec.12.1.501.55-61 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.1.501.55-61

  15. N- versus C-domain selectivity of catalytic inactivation of human angiotensin converting enzyme by lisinopril-coupled transition metal chelates.

    Science.gov (United States)

    Hocharoen, Lalintip; Joyner, Jeff C; Cowan, J A

    2013-12-27

    The N- and C-terminal domains of human somatic angiotensin I converting enzyme (sACE-1) demonstrate distinct physiological functions, with resulting interest in the development of domain-selective inhibitors for specific therapeutic applications. Herein, the activity of lisinopril-coupled transition metal chelates was tested for both reversible binding and irreversible catalytic inactivation of each domain of sACE-1. C/N domain binding selectivity ratios ranged from 1 to 350, while rates of irreversible catalytic inactivation of the N- and C-domains were found to be significantly greater for the N-domain, suggesting a more optimal orientation of M-chelate-lisinopril complexes within the active site of the N-domain of sACE-1. Finally, the combined effect of binding selectivity and inactivation selectivity was assessed for each catalyst (double-filter selectivity factors), and several catalysts were found to cause domain-selective catalytic inactivation. The results of this study demonstrate the ability to optimize the target selectivity of catalytic metallopeptides through both binding and catalytic factors (double-filter effect).

  16. Catalytic hydrogenation of carbon monoxide. Progress report, December 15, 1991--December 14, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Wayland, B.B.

    1992-12-01

    This project is focused on developing strategies to accomplish the reduction and hydrogenation of carbon monoxide to produce organic oxygenates at mild conditions. Our approaches to this issue are based on the recognition that rhodium macrocycles have unusually favorable thermodynamic values for producing a series of intermediate implicated in the catalytic hydrogenation of CO. Observations of metalloformyl complexes produced by reactions of H{sub 2} and CO, and reductive coupling of CO to form metallo {alpha}-diketone species have suggested a multiplicity of routes to organic oxygenates that utilize these species as intermediates. Thermodynamic and kinetic-mechanistic studies are used in constructing energy profiles for a variety of potential pathways, and these schemes are used in guiding the design of new metallospecies to improve the thermodynamic and kinetic factors for individual steps in the overall process. Variation of the electronic and steric effects associated with the ligand arrays along with the influences of the reaction medium provide the chemical tools for tuning these factors. Emerging knowledge of the factors that contribute to M-H, M-C and M-O bond enthalpies is directing the search for ligand arrays that will expand the range of metal species that have favorable thermodynamic parameters to produce the primary intermediates for CO hydrogenation. Studies of rhodium complexes are being extended to non-macrocyclic ligand complexes that emulate the favorable thermodynamic features associated with rhodium macrocycles, but that also manifest improved reaction kinetics. Multifunctional catalyst systems designed to couple the ability of rhodium complexes to produce formyl and diketone intermediates with a second catalyst that hydrogenates these imtermediates are promising approaches to accomplish CO hydrogenation at mild conditions.

  17. Session 4: Combinatorial research of methane catalytic decomposition on supported nitride catalysts for CO-free hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Jianghan, Shen; Hua, Wang; Zhongmin, Liu; Hongchao, Liu [Natural Gas Utilization and Applied Catalysis Lab., Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian P. R. (China)

    2004-07-01

    CO-free Hydrogen production is needed for proton exchange membrane fuel cells (PEMs) because CO strongly poisons the anode-electrocatalysts. Methane directly catalytic decomposition is an attractive way to produce CO-free hydrogen for the large abundance of methane and its high H/C ratio. It is more effective to employ high-throughput screening (HTS) technology in heterogeneous catalysis. In this paper, a combinatorial multi-stream reaction system with online multi-stream mass spectrometer screening (MSMSS) detection technique was applied to study the decomposition of methane over supported MoN{sub x}O{sub y} catalysts (supports = Al{sub 2}O{sub 3}, SiO{sub 2}, SBA-15, ZSM-5,13X, and NaY), which is a catalyst system seldom reported recently. (authors)

  18. Formation of polyhedral ceria nanoparticles with enhanced catalytic CO oxidation activity in thermal plasma via a hydrogen mediated shape control mechanism

    International Nuclear Information System (INIS)

    Zheng Jie; Zhang Yaohua; Song Xubo; Li Xingguo

    2011-01-01

    Ceria nanoparticles with well defined facets are prepared in argon–hydrogen thermal plasma followed by controlled oxidation. With increasing hydrogen fraction in the plasma, a clear sphere-to-polyhedron shape transition is observed. The heat released during the hydrogenation of cerium, which significantly enhances the species mobility on the surface, favors the growth of well defined facets. The polyhedron ceria nanoparticles, though lower in specific surface area, exhibit superior catalytic performance for CO oxidation over the round particles, which is attributed to the higher density of the reactive {200} and {220} facets on the surface. The hydrogen mediated shape control mechanism provides new insights into the shape control of nanoparticles during thermal plasma processing.

  19. Highly selective hydrogenation of furfural to furfuryl alcohol over Pt nanoparticles supported on g-C3N4 nanosheets catalysts in water

    Science.gov (United States)

    Chen, Xiufang; Zhang, Ligang; Zhang, Bo; Guo, Xingcui; Mu, Xindong

    2016-06-01

    Graphitic carbon nitride nanosheets were investigated for developing effective Pt catalyst supports for selective hydrogenation of furfural to furfuryl alcohol in water. The nanosheets with an average thickness of about 3 nm were synthesized by a simple and green method through thermal oxidation etching of bulk g-C3N4 in air. Combined with the unique feature of nitrogen richness and locally conjugated structure, the g-C3N4 nanosheets with a high surface area of 142 m2 g-1 were demonstrated to be an excellent supports for loading small-size Pt nanoparticles. Superior furfural hydrogenation activity in water with complete conversion of furfural and high selectivity of furfuryl alcohol (>99%) was observed for g-C3N4 nanosheets supported Pt catalysts. The large specific surface area, uniform dispersion of Pt nanoparticles and the stronger furfural adsorption ability of nanosheets contributed to the considerable catalytic performance. The reusability tests showed that the novel Pt catalyst could maintain high activity and stability in the furfural hydrogenation reaction.

  20. Highly selective hydrogenation of furfural to furfuryl alcohol over Pt nanoparticles supported on g-C3N4 nanosheets catalysts in water.

    Science.gov (United States)

    Chen, Xiufang; Zhang, Ligang; Zhang, Bo; Guo, Xingcui; Mu, Xindong

    2016-06-22

    Graphitic carbon nitride nanosheets were investigated for developing effective Pt catalyst supports for selective hydrogenation of furfural to furfuryl alcohol in water. The nanosheets with an average thickness of about 3 nm were synthesized by a simple and green method through thermal oxidation etching of bulk g-C3N4 in air. Combined with the unique feature of nitrogen richness and locally conjugated structure, the g-C3N4 nanosheets with a high surface area of 142 m(2) g(-1) were demonstrated to be an excellent supports for loading small-size Pt nanoparticles. Superior furfural hydrogenation activity in water with complete conversion of furfural and high selectivity of furfuryl alcohol (>99%) was observed for g-C3N4 nanosheets supported Pt catalysts. The large specific surface area, uniform dispersion of Pt nanoparticles and the stronger furfural adsorption ability of nanosheets contributed to the considerable catalytic performance. The reusability tests showed that the novel Pt catalyst could maintain high activity and stability in the furfural hydrogenation reaction.

  1. Nanocrystalline Mn-Mo-Ce Oxide Anode Doped Rare Earth Ce and Its Selective Electro-catalytic Performance

    Directory of Open Access Journals (Sweden)

    SHI Yan-hua

    2017-09-01

    Full Text Available The anode oxide of nanocrystalline Mn-Mo-Ce was prepared by anode electro-deposition technology, and its nanostructure and selective electro-catalytic performance were investigated using the SEM, EDS, XRD, HRTEM, electrochemical technology and oxygen evolution efficiency testing. Furthermore, the selective electro-catalytic mechanism of oxygen evolution and chlorine depression was discussed. The results show that the mesh-like nanostructure Mn-Mo-Ce oxide anode with little cerium doped is obtained, and the oxygen evolution efficiency for the anode in the seawater is 99.51%, which means a high efficiency for the selective electro-catalytic for the oxygen evolution. Due to the structural characteristics of γ-MnO2, the OH- ion is preferentially absorbed, while Cl- absorption is depressed. OH- accomplishes the oxygen evolution process during the valence transition electrocatalysis of Mn4+/Mn3+, completing the selective electro-catalysis process. Ce doping greatly increases the reaction activity, and promotes the absorption and discharge; the rising interplanar spacing between active (100 crystalline plane promotes OH- motion and the escape of newborn O2, so that the selective electro-catalytic property with high efficient oxygen evolution and chlorine depression is achieved from the nano morphology effect.

  2. Preparation of Cu-Fe-Al-O nanosheets and their catalytic application in methanol steam reforming for hydrogen production

    Science.gov (United States)

    Wang, Leilei; Zhang, Fan; Miao, Dinghao; Zhang, Lei; Ren, Tiezhen; Hui, Xidong; He, Zhanbing

    2017-03-01

    Candidates of precious metal catalysts, prepared in a facile and environmental way and showing high catalytic performances at low temperatures, are always highly desired by industry. In this work, large-scale Cu-Fe-Al-O nanosheets were synthesized by facile dealloying of Al-Cu-Fe alloys in NaOH solution. The composition, microscopic morphology, and crystal structure were respectively investigated using wavelength-dispersive x-ray spectroscopy with an electron probe microanalyzer, scanning electron microscopy, x-ray diffraction, and transmission electron microscopy. Furthermore, we found that the 2D Cu-Fe-Al-O nanosheets gave excellent catalytic performances in hydrogen production by methanol steam reforming at relatively low temperatures, e.g. 513 K.

  3. Catalytic reduction of nitrate and nitrite ions by hydrogen : investigation of the reaction mechanism over Pd and Pd-Cu catalysts

    NARCIS (Netherlands)

    Ilinitch, OM; Nosova, LV; Gorodetskii, VV; Ivanov, VP; Trukhan, SN; Gribov, EN; Bogdanov, SV; Cuperus, FP

    2000-01-01

    The catalytic behavior of mono- and bimetallic catalysts with Pd and/or Cu supported over gamma-Al2O3 in the reduction of aqueous nitrate and nitrite ions by hydrogen was investigated. The composition of the supported metal catalysts was analysed using secondary ion mass spectroscopy (SIMS) and

  4. Chemistry - Toward efficient hydrogen production at surfaces

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet; Christensen, Claus H.

    2006-01-01

    Calculations are providing a molecular picture of hydrogen production on catalytic surfaces and within enzymes, knowledge that may guide the design of new, more efficient catalysts for the hydrogen economy.......Calculations are providing a molecular picture of hydrogen production on catalytic surfaces and within enzymes, knowledge that may guide the design of new, more efficient catalysts for the hydrogen economy....

  5. An investigation of turbulent catalytically stabilized channel flow combustion of lean hydrogen - air mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Mantzaras, I; Benz, P; Schaeren, R; Bombach, R [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The catalytically stabilised thermal combustion (CST) of lean hydrogen-air mixtures was investigated numerically in a turbulent channel flow configuration using a two-dimensional elliptic model with detailed heterogeneous and homogeneous chemical reactions. Comparison between turbulent and laminar cases having the same incoming mean properties shows that turbulence inhibits homogeneous ignition due to increased heat transport away from the near-wall layer. The peak root-mean-square temperature and species fluctuations are always located outside the extent of the homogeneous reaction zone indicating that thermochemical fluctuations have no significant influence on gaseous combustion. (author) 4 figs., 6 refs.

  6. Selective catalytic oxidation of hydrocarbons as a challenge to the chemical engineer

    Energy Technology Data Exchange (ETDEWEB)

    Emig, G [Erlangen-Nuernberg Univ., Erlangen (Germany, F.R.). Lehrstuhl fuer Technische Chemie 1

    1978-08-01

    Selective catalytic oxidation is beginning to play a more and more significant role in the process of converting the most important chemical raw materials, crude oil and natural gas, into intermediate and end products. In many cases, this technique makes it possible to replace old processes consisting of many steps by more economical single-step reactions. The typical example of oxidation or ammoxidation of propylene demonstrates the problems which must be solved by the chemical engineer during the development of a heterogeneous catalytic oxidation process. The particular importance of a systematic development of a catalyst is emphasized. General aspects relating to the design of new catalytic processes, or the improvement of existing ones are also discussed.

  7. Reactivity of organic compounds in catalytic synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Minachev, Kh M; Bragin, O V

    1978-01-01

    A comprehensive review of 1976 Soviet research on catalysis delivered to the 1977 annual session of the USSR Academy of Science Council on Catalysis (Baku 6/16-20/77) covers hydrocarbon reactions, including hydrogenation and hydrogenolysis, dehydrogenation, olefin dimerization and disproportionation, and cyclization and dehydrocyclization (e.g., piperylene cyclization and ethylene cyclotrimerization); catalytic and physicochemical properties of zeolites, including cracking, dehydrogenation, and hydroisomerization catalytic syntheses and conversion of heterocyclic and functional hydrocarbon derivatives, including partial and total oxidation (e.g., of o-xylene to phthalic anhydride); syntheses of thiophenes from alkanes and hydrogen sulfide over certain dehydrogenation catalysts; catalytic syntheses involving carbon oxides ( e.g., the development of a new heterogeneous catalyst for hydroformylation of olefins), and of Co-MgO zeolitic catalysts for synthesis of aliphatic hydrocarbons from carbon dioxide and hydrogen, and fabrication of high-viscosity lubricating oils over bifunctional aluminosilicate catalysts.

  8. Data acquisition and quantitative analysis of stable hydrogen isotope in liquid and gas in the liquid phase catalytic exchange process

    International Nuclear Information System (INIS)

    Choi, H. J.; Lee, H. S.; Kim, K. R.; Cheong, H. S.; Ahn, D. H.; Lee, S. H.; Paek, S. W.; Kang, H. S.; Kim, J. G.

    2001-01-01

    A pilot plant for the Liquid Phase Catalytic Exchange process was built and has been operating to test the hydrophobic catalyst developed to remove the tritium generated at the CANDU nuclear power plants. The methods of quantitative analysis of hydrogen stable isotope were compared. Infrared spectroscopy was used for the liquid samples, and gas chromatography with hydrogen carrier gas showed the best result for gas samples. Also, a data acquisition system was developed to record the operation parameters. This record was very useful to investigate the causes of the system trip

  9. Selective Precipitation of Thorium lodate from a Tartaric Acid-Hydrogen Peroxide Medium Application to Rapid Spectrophotometric Determination of Thorium in Silicate Rocks and in Ores

    Science.gov (United States)

    Grimaldi, F.S.

    1957-01-01

    This paper presents a selective iodate separation of thorium from nitric acid medium containing d-tartaric acid and hydrogen peroxide. The catalytic decomposition of hydrogen peroxide is prevented by the use of 8quinolinol. A few micrograms of thorium are separated sufficiently clean from 30 mg. of such oxides as cerium, zirconium, titanium, niobium, tantalum, scandium, or iron with one iodate precipitation to allow an accurate determination of thorium with the thoronmesotartaric acid spectrophotometric method. The method is successful for the determination of 0.001% or more of thorium dioxide in silicate rocks and for 0.01% or more in black sand, monazite, thorite, thorianite, eschynite, euxenite, and zircon.

  10. First-principles quantum mechanical investigations: Catalytic reactions of furfural on Pd(111) and at the water/Pd(111) interface

    Science.gov (United States)

    Xue, Wenhua

    Bio-oils have drawn more and more attention from scientists as a promising new clean, cheap energy source. One of the most interesting relevant issues is the effect of catalysts on the catalytic reactions that are used for producing bio-oils. Furfural, as a very important intermediate during these reactions, has attracted significant studies. However, the effect of catalysts, including particularly the liquid/solid interface formed by a metal catalyst and liquid water, in the catalytic reactions involving furfural still remains elusive. In this research, we performed ab initio molecular dynamics simulations and first-principles density-functional theory calculations to investigate the atomic-scale mechanisms of catalytic hydrogenation of furfural on the palladium surface and at the liquid/state interface formed by the palladium surface and liquid water. We studied all the possible mechanisms that lead to formation of furfuryl alcohol (FOL), formation of tetrahydrofurfural (THFAL), and formation of tetrahydrofurfurfuryl alcohol (THFOL). We found that liquid water plays a significant role in the hydrogenation reactions. During the reaction in the presence of water and the palladium catalyst, in particular, water directly participates in the hydrogenation of the aldehyde group of furfural and facilitates the formation of FOL by reducing the activation energy. Our calculations show that water provides hydrogen for the hydrogenation of the aldehyde group, and at the same time, a pre-existing hydrogen atom, which is resulted from dissociation of molecular hydrogen (experimentally, molecular hydrogen is always supplied for hydrogenation) on the palladium surface, is bonded to water, making the water molecule intact in structure. In the absence of water, on the other hand, formation of FOL and THFAL on the palladium surface involves almost the same energy barriers, suggesting a comparable selectivity. Overall, as water reduces the activation energy for the formation of FOL

  11. Tuning the synthesis of platinum-copper nanoparticles with a hollow core and porous shell for the selective hydrogenation of furfural to furfuryl alcohol

    Science.gov (United States)

    Huang, Shuangshuang; Yang, Nating; Wang, Shibin; Sun, Yuhan; Zhu, Yan

    2016-07-01

    Pt-Cu nanoparticles constructed with a hollow core and porous shell have been synthesized in which Pt-Cu cages with multiporous outermost shells are formed at the initial stage and then the Pt and Cu atoms in solution continuously fed these hollow-core of cages by passing through the porous tunnels of the outermost shells, finally leading to the formation of hollow structures with different sizes. Furthermore, these hollow-core Pt-Cu nanoparticles are more effective than the solid-core Pt-Cu nanoparticles for the catalytic hydrogenation of furfural toward furfuryl alcohol. The former can achieve almost 100% conversion of furfural with 100% selectivity toward the alcohol.Pt-Cu nanoparticles constructed with a hollow core and porous shell have been synthesized in which Pt-Cu cages with multiporous outermost shells are formed at the initial stage and then the Pt and Cu atoms in solution continuously fed these hollow-core of cages by passing through the porous tunnels of the outermost shells, finally leading to the formation of hollow structures with different sizes. Furthermore, these hollow-core Pt-Cu nanoparticles are more effective than the solid-core Pt-Cu nanoparticles for the catalytic hydrogenation of furfural toward furfuryl alcohol. The former can achieve almost 100% conversion of furfural with 100% selectivity toward the alcohol. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr03894h

  12. NOx Selective Catalytic Reduction (SCR) on Self-Supported V-W-doped TiO2 Nanofibers

    DEFF Research Database (Denmark)

    Marani, Debora; Silva, Rafael Hubert; Dankeaw, Apiwat

    2017-01-01

    Electrospun V–W–TiO2 catalysts, resulting in a solid solution of V and W in the anatase phase, are prepared as nonwoven nanofibers for NOx selective catalytic reduction (SCR). Preliminary catalytic characterization indicates their superior NOx conversion efficiency to the-state-of-the-art materia...

  13. Cyanogel-derived N-doped C nanosheets immobilizing Pd-P nanoparticles: One-pot synthesis and enhanced hydrogenation catalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hao; Yan, Xiaohong; Huang, Yundi; Zhang, Mengru; Tang, Yawen; Sun, Dongmei; Xu, Lin, E-mail: njuxulin@gmail.com; Wei, Shaohua, E-mail: weishaohua@njnu.edu.cn

    2017-02-28

    Highlights: • Cyanogel-bridged approach was developed for the synthesis of Pd-P@N-Cnanosheets. • Pd-P@N-C nanosheets exhibit high activity and stability for reduction of 4-NP. • Compositional and structural advantages account for the high catalytic activity. • The feasible synthesis could be extendable to other carbon-based nanohybrids. - Abstract: For Pd-based nanocatalysts, stabilization of Pd nanoparticles on carbon support could not only effectively avoid particle aggregation and maintain catalytic stability during catalytic processes, but also facilitate enhancing the catalytic activity due to the synergy between Pd nanoparticles and carbon support. Furthermore, the incorporation of non-metal of phosphorus (P) into Pd could effectively modulate the electronic structure of Pd and thus help to boost the catalytic properties. However, one-pot synthesis of such nanohybrids remains a great challenge due to the distinct physiochemical properties of Pd, P and C components. Herein, we demonstrate a one-pot and scalable synthesis of highly dispersed PdP alloy nanoparticle-immobilized on N-doped graphitic carbon nanosheets (abbreviated as Pd-P@N-C nanosheets) by using inorganic-organic hybrid cyanogel as a reaction precursor. In virtue of both compositional and structural advantages, the as-synthesized Pd-P@N-C nanosheets manifest a superior catalytic activity and stability toward the hydrogenation of 4-nitrophenol (4-NP). We believe that the present work will provide a feasible and versatile strategy for the development of efficient catalysts for environmental remediation and can also be extendable to other carbon-based nanohybrids with desirable functionalities.

  14. An alternative process for hydrogenation of sunflower oil

    Directory of Open Access Journals (Sweden)

    Rosana de Cassia de Souza Schneider

    2010-12-01

    Full Text Available Classic methodologies for hydrogenation of vegetable oils have traditionally been carried out by nickel catalysts under high pressure of H2 and high temperature. An alternative method for hydrogenation of sunflower oil using limonene and palladium-on-carbon was investigated in this study. The use of limonene as a hydrogen donor solvent was proposed in order to avoid high temperature and high-pressure conditions. The catalytic transfer of hydrogenation was studied by using 0.5 to 2% of Pd as a catalyst, a limonene:oil ratio of 3:1, and reaction times from 0.5 to 2 hours. Under these conditions, high selectivities for oleic acid and low concentrations of stearic acid were obtained.

  15. Catalytic allylic oxidation of internal alkenes to a multifunctional chiral building block

    Science.gov (United States)

    Bayeh, Liela; Le, Phong Q.; Tambar, Uttam K.

    2017-07-01

    The stereoselective oxidation of hydrocarbons is one of the most notable advances in synthetic chemistry over the past fifty years. Inspired by nature, enantioselective dihydroxylations, epoxidations and other oxidations of unsaturated hydrocarbons have been developed. More recently, the catalytic enantioselective allylic carbon-hydrogen oxidation of alkenes has streamlined the production of pharmaceuticals, natural products, fine chemicals and other functional materials. Allylic functionalization provides a direct path to chiral building blocks with a newly formed stereocentre from petrochemical feedstocks while preserving the olefin functionality as a handle for further chemical elaboration. Various metal-based catalysts have been discovered for the enantioselective allylic carbon-hydrogen oxidation of simple alkenes with cyclic or terminal double bonds. However, a general and selective allylic oxidation using the more common internal alkenes remains elusive. Here we report the enantioselective, regioselective and E/Z-selective allylic oxidation of unactivated internal alkenes via a catalytic hetero-ene reaction with a chalcogen-based oxidant. Our method enables non-symmetric internal alkenes to be selectively converted into allylic functionalized products with high stereoselectivity and regioselectivity. Stereospecific transformations of the resulting multifunctional chiral building blocks highlight the potential for rapidly converting internal alkenes into a broad range of enantioenriched structures that can be used in the synthesis of complex target molecules.

  16. N- vs. C-Domain Selectivity of Catalytic Inactivation of Human Angiotensin Converting Enzyme by Lisinopril-Coupled Transition Metal Chelates

    Science.gov (United States)

    Hocharoen, Lalintip; Joyner, Jeff C.; Cowan, J. A.

    2014-01-01

    The N- and C-terminal domains of human somatic Angiotensin I Converting Enzyme (sACE-1) demonstrate distinct physiological functions, with resulting interest in the development of domain-selective inhibitors for specific therapeutic applications. Herein, the activity of lisinopril-coupled transition metal chelates were tested for both reversible binding and irreversible catalytic inactivation of sACE-1. C/N domain binding selectivity ratios ranged from 1 to 350, while rates of irreversible catalytic inactivation of the N- and C-domains were found to be significantly greater for the N-domain, suggesting a more optimal orientation of the M-chelate-lisinopril complexes within the active site of the N-domain of sACE-1. Finally, the combined effect of binding selectivity and inactivation selectivity was assessed for each catalyst (double-filter selectivity factors), and several catalysts were found to cause domain-selective catalytic inactivation. The results of this study demonstrate the ability to optimize the target selectivity of catalytic metallopeptides through both binding and orientation factors (double-filter effect). PMID:24228790

  17. Catalytic activity of metallic nanoisland coatings. The influence of size effects on the recombination properties

    International Nuclear Information System (INIS)

    Tomilina, O A; Berzhansky, V N; Shaposhnikov, A N; Tomilin, S V

    2016-01-01

    The results of investigations of the quantum-size effects influence on selective properties of heterogeneous nanocatalysts are presents. As etalon exothermic reaction was used the reaction of atomic hydrogen recombination. The nanostructured Pd and Pt films on Teflon substrate were used as a samples of heterogeneous nanocatalysts. It was shown that for nanoparticles with various sizes the catalytic activity has the periodic dependence. It has been found that for certain sizes of nanoparticles their catalytic activity is less than that of Teflon substrate. (paper)

  18. High Zn/Al ratios enhance dehydrogenation vs hydrogen transfer reactions of Zn-ZSM-5 catalytic systems in methanol conversion to aromatics

    DEFF Research Database (Denmark)

    Pinilla-Herrero, Irene; Borfecchia, Elisa; Holzinger, Julian

    2018-01-01

    suggest that catalytic activity is associated with [Zn(H2O)n(OH)]+ species located in the exchange positions of the materials with little or no contribution of ZnO or metallic Zn. The effect of Zn/Al ratio on their catalytic performance in methanol conversion to aromatics has been investigated. In all...... cases, higher Zn content causes an increase in the yield of aromatics while keeping the production of alkanes low. For similar Zn contents, high densities of Al sites favour the hydrogen transfer reactions and alkane formation whereas in samples with low Al contents, and thus higher Zn/Al ratio...

  19. Tuning of catalytic CO2 hydrogenation by changing composition of CuO–ZnO–ZrO2 catalysts

    International Nuclear Information System (INIS)

    Witoon, Thongthai; Kachaban, Nantana; Donphai, Waleeporn; Kidkhunthod, Pinit; Faungnawakij, Kajornsak; Chareonpanich, Metta

    2016-01-01

    Graphical abstract: The catalyst with an optimum composition of Cu:Zn:Zr (38.2:28.6:33.2) exhibited a homogeneous dispersion of metal components, and achieved the highest methanol yield. - Highlights: • A series of CuO–ZnO–ZrO 2 catalysts with different metal compositions were prepared. • Binary CuO–ZrO 2 catalyst exhibited higher methanol selectivity. • Increasing Zn/Cu ratios provided a better inter-dispersion of metal components. • The optimum catalyst composition of Cu–Zn–Zr (CZZ-4) was 38.2:28.6:33.2. • The CZZ-4 achieved the highest methanol yield (219.7 g CH3OH kg cat −1 h −1 ) at 240 °C. - Abstract: CO 2 hydrogenation was carried out over a series of CuO–ZnO–ZrO 2 catalysts prepared via a reverse co-precipitation method. The influence of catalyst compositions on the physicochemical properties of the catalysts as well as their catalytic performance was investigated. The catalysts were characterized by means of N 2 -sorption, X-ray diffraction (XRD), inductively coupled plasma optical emission spectrometry (ICP-OES), scanning electron microscopy (SEM), H 2 -temperature programmed reduction (H 2 -TPR), H 2 and CO 2 temperature-programmed desorption (H 2 - and CO 2 -TPD). The binary CuO–ZrO 2 (67:33) catalyst exhibits the highest methanol selectivity at all reaction temperature and its maximum yield of methanol (144.5 g methanol kg cat −1 h −1 ) is achieved at 280 °C, owing to the strong basic sites and the largest CuO crystallite size. The addition of Zn to the binary CuO–ZrO 2 catalyst causes a higher Cu dispersion and an increased number of active sites for CO 2 and H 2 adsorption. However, the basic strength of the ternary CuO–ZnO–ZrO 2 catalysts is lower than the binary CuO–ZrO 2 catalyst which provides the maximum yield of methanol at lower reaction tempertures (240 and 250 °C), depending on the catalyst compositions. The optimum catalyst composition of Cu–Zn–Zr (38.2:28.6:33.2) gives a superior methanol

  20. Non-Classical C–H···X Hydrogen Bonding and Its Role in Asymmetric Organocatalysis

    KAUST Repository

    Ajitha, Manjaly John; Huang, Kuo-Wei

    2016-01-01

    Non-classical hydrogen bonds (NCHBs) have attracted significant interest in the past decade particularly because of their important role in asymmetric catalytic systems. These weak interactions (< 4 kcal/mol) offer much flexibility1 Introduction2 Hydrogen Bonds (HBs) and Non-Classical Hydrogen Bonds (NCHBs)3 Early Developments in NCHBs4 Selected Examples of NCHBs in Organic Transformations5 Recent Examples of NCHBs in Enantioselective Reactions6 Conclusions and Outlook

  1. Effect of Copper Nanoparticles Dispersion on Catalytic Performance of Cu/SiO2 Catalyst for Hydrogenation of Dimethyl Oxalate to Ethylene Glycol

    Directory of Open Access Journals (Sweden)

    Yajing Zhang

    2013-01-01

    Full Text Available Cu/SiO2 catalysts, for the synthesis of ethylene glycol (EG from hydrogenation of dimethyl oxalate (DMO, were prepared by ammonia-evaporation and sol-gel methods, respectively. The structure, size of copper nanoparticles, copper dispersion, and the surface chemical states were investigated by X-ray diffraction (XRD, transmission electron microscopy (TEM, temperature-programmed reduction (TPR, and X-ray photoelectron spectroscopy (XPS and N2 adsorption. It is found the structures and catalytic performances of the catalysts were highly affected by the preparation method. The catalyst prepared by sol-gel method had smaller average size of copper nanoparticles (about 3-4 nm, better copper dispersion, higher Cu+/C0 ratio and larger BET surface area, and higher DMO conversion and EG selectivity under the optimized reaction conditions.

  2. Formation of alkanes alkylcycloalkanes and alkylbenzenes during the catalytic hydrocracking of vegetable oils

    Energy Technology Data Exchange (ETDEWEB)

    Filho, G.N. da Rocha; Brodzki, D.; Djega-Mariadassou, G. (Universite Pierre et Marie Curie, Paris (France). Lab. Reactivite de Surface et Structure)

    1993-04-01

    Catalytic hydrocracking of vegetable oils was performed in the presence of a NiMo/[gamma]-Al[sub 2]O[sub 3] catalyst sulfided in situ with elemental sulfur under hydrogen pressure. Various vegetable oils were selected to study the effect of the degree of saturation and lateral chain length: [ital Passiflora edulis] (maracuja), [ital Astrocaryum vulgare] (tucuma), [ital Mauritia flexuosa] (buriti), [ital Orbygnya martiana] (babassu) and soybean. The effects of reaction temperature and hydrogen pressure in cyclization were studied. Carboxylic acids were used as model compounds. 29 refs., 5 figs., 5 tabs.

  3. Catalytic Hydrogenation of CO2 to Methanol: Study of Synergistic Effect on Adsorption Properties of CO2 and H2 in CuO/ZnO/ZrO2 System

    Directory of Open Access Journals (Sweden)

    Chunjie Huang

    2015-11-01

    Full Text Available A series of CuO/ZnO/ZrO2 (CZZ catalysts with different CuO/ZnO weight ratios have been synthesized by citrate method and tested in the catalytic hydrogenation of CO2 to methanol. Experimental results showed that the catalyst with the lowest CuO/ZnO weight ratio of 2/7 exhibited the best catalytic performance with a CO2 conversion of 32.9%, 45.8% methanol selectivity, and a process delivery of 193.9 gMeOH·kgcat−1·h−1. A synergetic effect is found by systematic temperature-programmed-desorption (TPD studies. Comparing with single and di-component systems, the interaction via different components in a CZZ system provides additional active sites to adsorb more H2 and CO2 in the low temperature range, resulting in higher weight time yield (WTY of methanol.

  4. Theoretical studies of acrolein hydrogenation on Au20 nanoparticle

    Science.gov (United States)

    Li, Zhe; Chen, Zhao-Xu; He, Xiang; Kang, Guo-Jun

    2010-05-01

    Gold nanoparticles play a key role in catalytic processes. We investigated the kinetics of stepwise hydrogenation of acrolein on Au20 cluster model and compared with that on Au(110) surface. The rate-limiting step barrier of CC reduction is about 0.5 eV higher than that of CO hydrogenation on Au(110) surface. On Au20 nanoparticle, however, the energy barrier of the rate-determining step for CC hydrogenation turns out to be slightly lower than the value for the CO reduction. The selectivity difference on the two substrate models are attributed to different adsorption modes of acrolein: via the CC on Au20, compared to through both CC and CO on Au(110). The preference switch implies that the predicted selectivity of competitive hydrogenation depends on substrate model sensitively, and particles with more low-coordinated Au atoms than flat surfaces are favorable for CC hydrogenation, which is in agreement with experimental result.

  5. Catalytic oxidative desulfurization of diesel utilizing hydrogen peroxide and functionalized-activated carbon in a biphasic diesel-acetonitrile system

    Energy Technology Data Exchange (ETDEWEB)

    Haw, Kok-Giap; Bakar, Wan Azelee Wan Abu; Ali, Rusmidah; Chong, Jiunn-Fat [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia); Kadir, Abdul Aziz Abdul [Department of Petroleum Engineering, Faculty of Chemical and Natural Resources Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia)

    2010-09-15

    This paper presents the development of granular functionalized-activated carbon as catalysts in the catalytic oxidative desulfurization (Cat-ODS) of commercial Malaysian diesel using hydrogen peroxide as oxidant. Granular functionalized-activated carbon was prepared from oil palm shell using phosphoric acid activation method and carbonized at 500 C and 700 C for 1 h. The activated carbons were characterized using various analytical techniques to study the chemistry underlying the preparation and calcination treatment. Nitrogen adsorption/desorption isotherms exhibited the characteristic of microporous structure with some contribution of mesopore property. The Fourier Transform Infrared Spectroscopy results showed that higher activation temperature leads to fewer surface functional groups due to thermal decomposition. Micrograph from Field Emission Scanning Electron Microscope showed that activation at 700 C creates orderly and well developed pores. Furthermore, X-ray Diffraction patterns revealed that pyrolysis has converted crystalline cellulose structure of oil palm shell to amorphous carbon structure. The influence of the reaction temperature, the oxidation duration, the solvent, and the oxidant/sulfur molar ratio were examined. The rates of the catalytic oxidative desulfurization reaction were found to increase with the temperature, and H{sub 2}O{sub 2}/S molar ratio. Under the best operating condition for the catalytic oxidative desulfurization: temperature 50 C, atmospheric pressure, 0.5 g activated carbon, 3 mol ratio of hydrogen peroxide to sulfur, 2 mol ratio of acetic acid to sulfur, 3 oxidation cycles with 1 h for each cycle using acetonitrile as extraction solvent, the sulfur content in diesel was reduced from 2189 ppm to 190 ppm with 91.3% of total sulfur removed. (author)

  6. Hydrogen production by steam reforming of bio-alcohols. The use of conventional and membrane-assisted catalytic reactors

    Energy Technology Data Exchange (ETDEWEB)

    Seelam, P. K.

    2013-11-01

    The energy consumption around the globe is on the rise due to the exponential population growth and urbanization. There is a need for alternative and non-conventional energy sources, which are CO{sub 2}-neutral, and a need to produce less or no environmental pollutants and to have high energy efficiency. One of the alternative approaches is hydrogen economy with the fuel cell (FC) technology which is forecasted to lead to a sustainable society. Hydrogen (H{sub 2}) is recognized as a potential fuel and clean energy carrier being at the same time a carbon-free element. Moreover, H{sub 2} is utilized in many processes in chemical, food, metallurgical, and pharmaceutical industry and it is also a valuable chemical in many reactions (e.g. refineries). Non-renewable resources have been the major feedstock for H{sub 2} production for many years. At present, {approx}50% of H{sub 2} is produced via catalytic steam reforming of natural gas followed by various down-stream purification steps to produce {approx}99.99% H{sub 2}, the process being highly energy intensive. Henceforth, bio-fuels like biomass derived alcohols (e.g. bio-ethanol and bio-glycerol), can be viable raw materials for the H{sub 2} production. In a membrane based reactor, the reaction and selective separation of H{sub 2} occur simultaneously in one unit, thus improving the overall reactor efficiency. The main motivation of this work is to produce H{sub 2} more efficiently and in an environmentally friendly way from bio-alcohols with a high H{sub 2} selectivity, purity and yield. In this thesis, the work was divided into two research areas, the first being the catalytic studies using metal decorated carbon nanotube (CNT) based catalysts in steam reforming of ethanol (SRE) at low temperatures (<450 deg C). The second part was the study of steam reforming (SR) and the water-gas-shift (WGS) reactions in a membrane reactor (MR) using dense and composite Pd-based membranes to produce high purity H{sub 2}. CNTs

  7. Removal of nitrogen compounds from gasification gas by selective catalytic or non-catalytic oxidation; Typpiyhdisteiden poisto kaasutuskaasusta selektiivisellae katalyyttisellae ja ei-katalyyttisellae hapetuksella

    Energy Technology Data Exchange (ETDEWEB)

    Leppaelahti, J.; Koljonen, T. [VTT Energy, Espoo (Finland)

    1996-12-01

    In gasification reactive nitrogenous compounds are formed from fuel nitrogen, which may form nitrogen oxides in gas combustion. In fluidized bed gasification the most important nitrogenous compound is ammonia (NH{sub 3}). If ammonia could be decomposed to N{sub 2} already before combustion, the emissions if nitrogen oxides could be reduced significantly. One way of increasing the decomposition rate of NH{sub 3} could be the addition of suitable reactants to the gas, which would react with NH{sub 3} and produce N{sub 2}. The aim of this research is to create basic information, which can be used to develop a new method for removal of nitrogen compounds from gasification gas. The reactions of nitrogen compounds and added reactants are studied in reductive atmosphere in order to find conditions, in which nitrogen compounds can be oxidized selectively to N{sub 2}. The project consists of following subtasks: (1) Selective non-catalytic oxidation (SNCO): Reactions of nitrogen compounds and oxidizers in the gas phase, (2) Selective catalytic oxidation (SCO): Reactions of nitrogen compounds and oxidizers on catalytically active surfaces, (3) Kinetic modelling of experimental results in co-operation with the Combustion Chemistry Research Group of Aabo Akademi University. The most important finding has been that NH{sub 3} can be made to react selectively with the oxidizers even in the presence of large amounts of CO and H{sub 2}. Aluminium oxides were found to be the most effective materials promoting selectivity. (author)

  8. Numerical study of the behavior of methane-hydrogen/air pre-mixed flame in a micro reactor equipped with catalytic segmented bluff body

    International Nuclear Information System (INIS)

    Baigmohammadi, Mohammadreza; Tabejamaat, Sadegh; Zarvandi, Jalal

    2015-01-01

    In this work, combustion characteristics of premixed methane-hydrogen/air in a micro reactor equipped with a catalytic bluff body is investigated numerically. In this regard, the detailed chemistry schemes for gas phase (homogeneous) and the catalyst surface (heterogeneous) are used. The applied catalytic bluff body is coated with a thin layer of platinum (Pt) on its surface. Also, the lean reactive mixture is entered to the reactor with equivalence ratio 0.9. The results of this study showed that the use of catalytic bluff body in the center of a micro reactor can significantly increase the flame stability, especially at high velocities. Moreover, it is found that a catalytic bluff body with several cavities on its surface and also high thermal conductivity improves the flame stability more than a catalytic bluff body without cavities and low thermal conductivity. Finally, it is maintained that the most advantage of using the catalytic bluff body is its easy manufacturing process as compared to the catalytic wall. This matter seems to be more prevalent when we want to create several cavities with various sizes on the bluff-body. - Highlights: • Presence of a bluff body in a micro reactor can move the flame towards the upstream. • Catalytic bluff body can significantly increase flame stability at high velocities. • Creating non-catalytic cavities on the bluff body promotes homogeneous reactions. • Segmented catalytic bluff body improves the flame stability more than a simple one. • Creating the segments on a bluff body is easier compared to a wall

  9. Green diesel production via catalytic hydrogenation/decarboxylation of triglycerides and fatty acids of vegetable oil and brown grease

    Science.gov (United States)

    Sari, Elvan

    than activated carbon itself for both decarboxylation of oleic acid and hydrogenation of alkenes. In an additional effort to reduce Pd amount in the catalyst, Pd2Co/C catalysts with various Pd content were prepared and the catalytic activity study showed that 0.5 wt% Pd2Co/C catalyst performs even better than a 5 wt% Pd/C catalyst. Pd and Co alloys were very well dispersed and formed fine clusters, which led to a higher active metal surface area and hence favored the decarboxylation of oleic acid. This study showed that an alloy of Pd on carbon with a significantly low Pd content is much more active and selective to diesel hydrocarbons production from an unsaturated fatty acid in super-critical water and may be regarded as a prospective feasible decarboxylation catalyst for the removal of oxygen from vegetable oil/animal fat without the need of additional hydrogen.

  10. Catalytic synthesis of alcoholic fuels for transportation from syngas

    DEFF Research Database (Denmark)

    Wu, Qiongxiao

    This work has investigated the catalytic conversion of syngas into methanol and higher alcohols. Based on input from computational catalyst screening, an experimental investigation of promising catalyst candidates for methanol synthesis from syngas has been carried out. Cu-Ni alloys of different...... composition have been identified as potential candidates for methanol synthesis. These Cu-Ni alloy catalysts have been synthesized and tested in a fixed-bed continuous-flow reactor for CO hydrogenation. The metal area based activity for a Cu-Ni/SiO2 catalyst is at the same level as a Cu/ZnO/Al2O3 model...... catalyst. The high activity and selectivity of silica supported Cu-Ni alloy catalysts agrees with the fact that the DFT calculations identified Cu-Ni alloys as highly active and selective catalysts for the hydrogenation of CO to form methanol. This work has also provided a systematic study of Cu...

  11. Renewable hydrocarbons for jet fuels from biomass and plastics via microwave-induced pyrolysis and hydrogenation processes

    Science.gov (United States)

    Zhang, Xuesong

    This dissertation aims to enhance the production of aromatic hydrocarbons in the catalytic microwave-induced pyrolysis, and maximize the production of renewable cycloalkanes for jet fuels in the hydrogenation process. In the process, ZSM-5 catalyst as the highly efficient catalyst was employed for catalyzing the pyrolytic volatiles from thermal decomposition of cellulose (a model compound of lignocellulosic biomass). A central composite experiment design (CCD) was used to optimize the product yields as a function of independent factors (e.g. catalytic temperature and catalyst to feed mass ratio). The low-density polyethylene (a mode compound of waste plastics) was then carried out in the catalytic microwave-induced pyrolysis in the presence of ZSM-5 catalyst. Thereafter, the catalytic microwave-induced co-pyrolysis of cellulose with low-density polyethylene (LDPE) was conducted over ZSM-5 catalyst. The results showed that the production of aromatic hydrocarbons was significantly enhanced and the coke formation was also considerably reduced comparing with the catalytic microwave pyrolysis of cellulose or LDPE alone. Moreover, practical lignocellulosic biomass (Douglas fir sawdust pellets) was converted into aromatics-enriched bio-oil by catalytic microwave pyrolysis. The bio-oil was subsequently hydrogenated by using the Raney Ni catalyst. A liquid-liquid extraction step was implemented to recover the liquid organics and remove the water content. Over 20% carbon yield of liquid product regarding lignocellulosic biomass was obtained. Up to 90% selectivity in the liquid product belongs to jet fuel range cycloalkanes. As the integrated processes was developed, catalytic microwave pyrolysis of cellulose with LDPE was conducted to improve aromatic production. After the liquid-liquid extraction by the optimal solvent (n-heptane), over 40% carbon yield of hydrogenated organics based on cellulose and LDPE were achieved in the hydrogenation process. As such, real

  12. CATALYTIC KINETIC SPECTROPHOTOMETRIC DETERMINATION ...

    African Journals Online (AJOL)

    Preferred Customer

    acetylchlorophosphonazo(CPApA) by hydrogen peroxide in 0.10 M phosphoric acid. A novel catalytic kinetic-spectrophotometric method is proposed for the determination of copper based on this principle. Copper(II) can be determined spectrophotometrically ...

  13. Effect of pretreatment temperature on catalytic performance of the catalysts derived from cobalt carbonyl cluster in Fischer-Tropsch Synthesis

    Directory of Open Access Journals (Sweden)

    Byambasuren O

    2017-02-01

    Full Text Available The monometallic cobalt-based catalysts were prepared by pretreating the catalysts derived from carbonyl cluster precursor (CO6Co2CC(COOH2 supported on γ-Al2O3 with hydrogen at 180, 220, and 260°C respectively. The temperature effect of the pretreatments on the structure evolution of cluster precursors and the catalytic performance of the Fischer-Tropsch (F-T synthesis was investigated. The pretreated catalyst at 220°C with unique phase structure exhibited best catalytic activity and selectivity among three pretreated catalysts. Moreover, the catalysts exhibited high dispersion due to the formation of hydrogen bonds between the cluster precursor and γ-Al2O3 support.

  14. Selective Electrochemical Generation of Hydrogen Peroxide from Water Oxidation

    DEFF Research Database (Denmark)

    Viswanathan, Venkatasubramanian; Hansen, Heine Anton; Nørskov, Jens K.

    2015-01-01

    evolution and form hydrogen peroxide. Using density functional theory calculations, we show that the free energy of adsorbed OH* can be used to determine selectivity trends between the 2e(-) water oxidation to H2O2 and the 4e(-) oxidation to O2. We show that materials which bind oxygen intermediates...... sufficiently weakly, such as SnO2, can activate hydrogen peroxide evolution. We present a rational design principle for the selectivity in electrochemical water oxidation and identify new material candidates that could perform H2O2 evolution selectively....

  15. Selective hydrogenation of 1,3-butadiene from crude C{sub 4} cracker stream with a solid catalyst with ionic liquid layer (SCILL). DSC and solubility study

    Energy Technology Data Exchange (ETDEWEB)

    Mangartz, T.; Korth, W.; Kern, C.; Jess, A. [Bayreuth Univ. (Germany). Dept. of Chemical Engineering

    2013-11-01

    In petroleum as well as in fine chemical industry, selective catalytic hydrogenation is an important reaction. The selective hydrogenation of 1,3-butadiene (BD) to butene (trans-,1- and cis-butene) from the crude C4 steam cracker fraction represents one example, but under today's technical conditions undesired butane forms inevitably in relevant amounts. To increase the butene yield, the concept of Solid Catalyst with Ionic Liquid Layer (SCILL) was employed. The SCILL catalyst, in contrast to the uncoated catalyst, yielded a remarkably high selectivity to butenes (S{sub butenes} > 99 %) even at high residence times or at high hydrogen partial pressure. Nearly no butane (S{sub butane} {approx} 0 %) was analytically detected. We expected that due to different solubility, the poorer soluble compounds discharged from the ionic liquid and, thus, caused the shift in selectivity to a great extent. Temperature dependent solubility measurements in the used ionic liquid ([DMIM][DMP]) revealed that the order of increasing solubility is 1,3-butadiene > butenes > butane which matches the assumption. However, since differences in solubility cannot explain this SCILL effect satisfyingly, ionic liquids are expected to affect the surface of the catalyst (side-specific ligand-type effect). Investigations using spectroscopic methods (e.g. FTIR) confirmed this suggestion. (orig.)

  16. Monodisperse metal nanoparticle catalysts on silica mesoporous supports: synthesis, characterizations, and catalytic reactions

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, G.A.

    2009-09-14

    The design of high performance catalyst achieving near 100% product selectivity at maximum activity is one of the most important goals in the modern catalytic science research. To this end, the preparation of model catalysts whose catalytic performances can be predicted in a systematic and rational manner is of significant importance, which thereby allows understanding of the molecular ingredients affecting the catalytic performances. We have designed novel 3-dimensional (3D) high surface area model catalysts by the integration of colloidal metal nanoparticles and mesoporous silica supports. Monodisperse colloidal metal NPs with controllable size and shape were synthesized using dendrimers, polymers, or surfactants as the surface stabilizers. The size of Pt, and Rh nanoparticles can be varied from sub 1 nm to 15 nm, while the shape of Pt can be controlled to cube, cuboctahedron, and octahedron. The 3D model catalysts were generated by the incorporation of metal nanoparticles into the pores of mesoporous silica supports via two methods: capillary inclusion (CI) and nanoparticle encapsulation (NE). The former method relies on the sonication-induced inclusion of metal nanoparticles into the pores of mesoporous silica, whereas the latter is performed by the encapsulation of metal nanoparticles during the hydrothermal synthesis of mesoporous silica. The 3D model catalysts were comprehensively characterized by a variety of physical and chemical methods. These catalysts were found to show structure sensitivity in hydrocarbon conversion reactions. The Pt NPs supported on mesoporous SBA-15 silica (Pt/SBA-15) displayed significant particle size sensitivity in ethane hydrogenolysis over the size range of 1-7 nm. The Pt/SBA-15 catalysts also exhibited particle size dependent product selectivity in cyclohexene hydrogenation, crotonaldehyde hydrogenation, and pyrrole hydrogenation. The Rh loaded SBA-15 silica catalyst showed structure sensitivity in CO oxidation reaction. In

  17. Catalytic performance and durability of Ni/AC for HI decomposition in sulfur–iodine thermochemical cycle for hydrogen production

    International Nuclear Information System (INIS)

    Fu, Guangshi; He, Yong; Zhang, Yanwei; Zhu, Yanqun; Wang, Zhihua; Cen, Kefa

    2016-01-01

    Highlights: • The relation between Ni content and Ni particle dispersion were disclosed. • The effect of Ni content on the catalytic activity of Ni/AC catalyst was revealed. • The optimal content of Ni for Ni/AC catalysts in HI decomposition was found. - Abstract: This work reports the Ni content effect on the Ni/AC catalytic performance in the HI decomposition reaction of the sulfur–iodine (SI) thermochemical cycle for hydrogen production and the Ni/AC catalyst durability in a long-term test. Accordingly, five catalysts with the Ni content ranging from 5% to 15% were prepared by an incipient-wetness impregnation method. The activity of all catalysts was examined under the temperature range of 573–773 K. The catalytic performance evaluation suggests that Ni content plays a significant role in the Ni dispersion, Ni particle size, and eventually the catalytic activity in HI decomposition. 12% is the optimal Ni content for Ni/AC catalysts in HI decomposition which is balanced between poor dispersion of Ni particles and increasing active center. The results of 24 h durability test, which incorporated with BET and TEM investigations of the 12%Ni/AC catalyst before and after the reaction, indicate that establishing a better Ni particle dispersion pattern and improving the stability of Ni particles on the support should be considered in the future.

  18. UV Light-Assisted Synthesis of Highly Efficient Pd-Based Catalyst over NiO for Hydrogenation of o-Chloronitrobenzene.

    Science.gov (United States)

    Jiang, Weidong; Xu, Bin; Fan, Guangyin; Zhang, Kaiming; Xiang, Zhen; Liu, Xiaoqiang

    2018-04-14

    Supported Pd-based catalyst over active nickel oxide (NiO) was repared using the impregnation method companying with UV-light irradiation. Moreover, the catalytic performance of the obtained Pd-based catalysts was evaluated towards the hydrogenation of o -chloronitrobenzene ( o -CNB). Observations indicate that the as-prepared UV-irradiated Pd/NiO catalyst with a mole fraction 0.2% (0.2%Pd/NiO) has higher activity and selectivity in the o -CNB hydrogenation. Especially, UV-light irradiation played a positive role in the improvement of catalytic activity of 0.2%Pd/NiO catalyst, exhibiting an excess 11-fold activity superiority in contrast with non-UV-irradiated 0.2%Pd/NiO catalyst. In addition, it was investigated that effects of varied factors (i.e., reaction time, temperature, o -CNB/Pd ratio, Pd loading, hydrogen pressure) on the selective hydrogenation of ο -CNB catalyzed by UV-irradiated 0.2%Pd/NiO catalyst. Under the reaction conditions of 60 °C, 0.5 h, 1 MPa H₂ pressure, 100% conversion of o -CNB, and 81.1% o -CAN selectivity were obtained, even at high molar ratio (8000:1) of o -CNB to Pd.

  19. Effective modeling of hydrogen mixing and catalytic recombination in containment atmosphere with an Eulerian Containment Code

    International Nuclear Information System (INIS)

    Bott, E.; Frepoli, C.; Monti, R.; Notini, V.; Carcassi, M.; Fineschi, F.; Heitsch, M.

    1999-01-01

    Large amounts of hydrogen can be generated in the containment of a nuclear power plant following a postulated accident with significant fuel damage. Different strategies have been proposed and implemented to prevent violent hydrogen combustion. An attractive one aims to eliminate hydrogen without burning processes; it is based on the use of catalytic hydrogen recombiners. This paper describes a simulation methodology which is being developed by Ansaldo, to support the application of the above strategy, in the frame of two projects sponsored by the Commission of the European Communities within the IV Framework Program on Reactor Safety. Involved organizations also include the DCMN of Pisa University (Italy), Battelle Institute and GRS (Germany), Politechnical University of Madrid (Spain). The aims to make available a simulation approach, suitable for use for containment design at industrial level (i.e. with reasonable computer running time) and capable to correctly capture the relevant phenomenologies (e.g. multiflow convective flow patterns, hydrogen, air and steam distribution in the containment atmosphere as determined by containment structures and geometries as well as by heat and mass sources and sinks). Eulerian algorithms provide the capability of three dimensional modelling with a fairly accurate prediction, however lower than CFD codes with a full Navier Stokes formulation. Open linking of an Eulerian code as GOTHIC to a full Navier Stokes CFD code as CFX 4.1 allows to dynamically tune the solving strategies of the Eulerian code itself. The effort in progress is an application of this innovative methodology to detailed hydrogen recombination simulation and a validation of the approach itself by reproducing experimental data. (author)

  20. Ruthenium dioxide nanoparticles in ionic liquids: synthesis, characterization and catalytic properties in hydrogenation of olefins and arenes

    International Nuclear Information System (INIS)

    Rossi, Liane M.; Dupont, Jairton; Machado, Giovanna; Fichtner, Paulo F.P.; Radtke, Claudio; Baumvol, Israel J.R.; Teixeira, Sergio R.

    2004-01-01

    The reaction of NaBH 4 with RuCl 3 dissolved in 1-n-butyl-3-methylimidazolium hexafluorophosphate (BMI.PF 6 ) ionic liquid is a simple and reproducible method for the synthesis of stable RuO 2 nanoparticles with a narrow size distribution within 2-3 nm. RuO 2 nanoparticles were characterized by XRD, XPS, EDS and TEM. These nanoparticles showed high catalytic activity either in the solventless or liquid-liquid biphasic hydrogenation of olefins and arenes under mild reaction conditions. Hg(0) and CS 2 poisoning experiments and XRD and TEM analysis of particles isolated after catalysis indicated the formation of Ru(0) nanoparticles. The nanoparticles could be re-used in solventless conditions up to 10 times in the hydrogenation of 1-hexene yielding a total turnover number for exposed Ru atoms of 175,000. (author)

  1. Highly Selective Hydrogenation of Levulinic Acid to γ-Valerolactone Over Ru/ZrO2 Catalysts

    NARCIS (Netherlands)

    Filiz, B.C.; Gnanakumar, E.S.; Martinez-Arias, A.; Gengler, R.; Rudolf, P.; Rothenberg, G.; Shiju, N.R.

    We studied the catalytic hydrogenation of levulinic acid over zirconia supported ruthenium catalysts. Four different Ru/ZrO2 catalysts were prepared by different pre-treatments and using different zirconium supports (ZrOx(OH)4−2x and ZrO2). Although the final compositions of the catalysts are the

  2. Highly Selective Hydrogenation of Levulinic Acid to gamma-Valerolactone Over Ru/ZrO2 Catalysts

    NARCIS (Netherlands)

    Filiz, Bilge Coskuner; Gnanakumar, Edwin S.; Martinez-Arias, Arturo; Gengler, Regis; Rudolf, Petra; Rothenberg, Gadi; Shiju, N. Raveendran

    We studied the catalytic hydrogenation of levulinic acid over zirconia supported ruthenium catalysts. Four different Ru/ZrO2 catalysts were prepared by different pre-treatments and using different zirconium supports (ZrOx(OH)(4-2x) and ZrO2). Although the final compositions of the catalysts are the

  3. Method of fabricating a catalytic structure

    Science.gov (United States)

    Rollins, Harry W [Idaho Falls, ID; Petkovic, Lucia M [Idaho Falls, ID; Ginosar, Daniel M [Idaho Falls, ID

    2009-09-22

    A precursor to a catalytic structure comprising zinc oxide and copper oxide. The zinc oxide has a sheet-like morphology or a spherical morphology and the copper oxide comprises particles of copper oxide. The copper oxide is reduced to copper, producing the catalytic structure. The catalytic structure is fabricated by a hydrothermal process. A reaction mixture comprising a zinc salt, a copper salt, a hydroxyl ion source, and a structure-directing agent is formed. The reaction mixture is heated under confined volume conditions to produce the precursor. The copper oxide in the precursor is reduced to copper. A method of hydrogenating a carbon oxide using the catalytic structure is also disclosed, as is a system that includes the catalytic structure.

  4. Dealloyed Ruthenium Film Catalysts for Hydrogen Generation from Chemical Hydrides

    Directory of Open Access Journals (Sweden)

    Ramis B. Serin

    2017-07-01

    Full Text Available Thin-film ruthenium (Ru and copper (Cu binary alloys have been prepared on a Teflon™ backing layer by cosputtering of the precious and nonprecious metals, respectively. Alloys were then selectively dealloyed by sulfuric acid as an etchant, and their hydrogen generation catalysts performances were evaluated. Sputtering time and power of Cu atoms have been varied in order to tailor the hydrogen generation performances. Similarly, dealloying time and the sulfuric acid concentration have also been altered to tune the morphologies of the resulted films. A maximum hydrogen generation rate of 35 mL min−1 was achieved when Cu sputtering power and time were 200 W and 60 min and while acid concentration and dealloying time were 18 M and 90 min, respectively. It has also been demonstrated that the Ru content in the alloy after dealloying gradually increased with the increasing the sputtering power of Cu. After 90 min dealloying, the Ru to Cu ratio increased to about 190 times that of bare alloy. This is the key issue for observing higher catalytic activity. Interestingly, we have also presented template-free nanoforest-like structure formation within the context of one-step alloying and dealloying used in this study. Last but not least, the long-time hydrogen generation performances of the catalysts system have also been evaluated along 3600 min. During the first 600 min, the catalytic activity was quite stable, while about 24% of the catalytic activity decayed after 3000 min, which still makes these systems available for the development of robust catalyst systems in the area of hydrogen generation.

  5. Fe(III)-functionalized carbon dots—Highly efficient photoluminescence redox catalyst for hydrogenations of olefins and decomposition of hydrogen peroxide

    KAUST Repository

    Bourlinos, Athanasios B.

    2017-03-21

    We present the first bottom-up approach to synthesize Fe(III)-functionalized carbon dots (CDs) from molecular precursors without the need of conventional thermal or microwave treatment and additional reagents. Specifically, sonication of xylene in the presence of anhydrous FeCl3 results in oxidative coupling of the aromatic substrate towards Fe(III)-functionalized CDs. The as-prepared CDs are spherical in shape with a size of 3–8 nm, highly dispersible in organic solvents and display wavelength-dependent photoluminescence (PL). The iron ions attached to the surface endow the CDs with superior catalytic activity for olefin hydrogenation with excellent conversion and selectivity (up to 100%). The Fe(III)-CDs are more effective in the hydrogenation of a series of electron donating or withdrawing olefin substrates compared to conventional homogeneous or heterogeneous Fe(III)-based catalysts. The as-prepared heterogeneous nanocatalyst can be used repeatedly without any loss of catalytic activity. Importantly, the stability of the new catalysts can be easily monitored by PL intensity or quantum yield measurements, which certainly opens the doors for real time monitoring in a range of applications. Additionally, to the best of our knowledge, for the first time, the oxidative property of Fe-CDs was also explored in decomposition of hydrogen peroxide in water with the first order rate constant of 0.7 × 10−2 min−1, proving the versatile catalytic properties of such hybrid systems.

  6. Fe(III)-functionalized carbon dots—Highly efficient photoluminescence redox catalyst for hydrogenations of olefins and decomposition of hydrogen peroxide

    KAUST Repository

    Bourlinos, Athanasios B.; Rathi, Anuj K.; Gawande, Manoj B.; Hola, Katerina; Goswami, Anandarup; Kalytchuk, Sergii; Karakassides, Michael A.; Kouloumpis, Antonios; Gournis, Dimitrios; Deligiannakis, Yannis; Giannelis, Emmanuel P.; Zboril, Radek

    2017-01-01

    We present the first bottom-up approach to synthesize Fe(III)-functionalized carbon dots (CDs) from molecular precursors without the need of conventional thermal or microwave treatment and additional reagents. Specifically, sonication of xylene in the presence of anhydrous FeCl3 results in oxidative coupling of the aromatic substrate towards Fe(III)-functionalized CDs. The as-prepared CDs are spherical in shape with a size of 3–8 nm, highly dispersible in organic solvents and display wavelength-dependent photoluminescence (PL). The iron ions attached to the surface endow the CDs with superior catalytic activity for olefin hydrogenation with excellent conversion and selectivity (up to 100%). The Fe(III)-CDs are more effective in the hydrogenation of a series of electron donating or withdrawing olefin substrates compared to conventional homogeneous or heterogeneous Fe(III)-based catalysts. The as-prepared heterogeneous nanocatalyst can be used repeatedly without any loss of catalytic activity. Importantly, the stability of the new catalysts can be easily monitored by PL intensity or quantum yield measurements, which certainly opens the doors for real time monitoring in a range of applications. Additionally, to the best of our knowledge, for the first time, the oxidative property of Fe-CDs was also explored in decomposition of hydrogen peroxide in water with the first order rate constant of 0.7 × 10−2 min−1, proving the versatile catalytic properties of such hybrid systems.

  7. Single-site catalyst promoters accelerate metal-catalyzed nitroarene hydrogenation

    KAUST Repository

    Wang, Liang

    2018-04-04

    Atomically dispersed supported metal catalysts are drawing wide attention because of the opportunities they offer for new catalytic properties combined with efficient use of the metals. We extend this class of materials to catalysts that incorporate atomically dispersed metal atoms as promoters. The catalysts are used for the challenging nitroarene hydrogenation and found to have both high activity and selectivity. The promoters are single-site Sn on TiO2 supports that incorporate metal nanoparticle catalysts. Represented as M/Sn-TiO2 (M = Au, Ru, Pt, Ni), these catalysts decidedly outperform the unpromoted supported metals, even for hydrogenation of nitroarenes substituted with various reducible groups. The high activity and selectivity of these catalysts result from the creation of oxygen vacancies on the TiO2 surface by single-site Sn, which leads to efficient, selective activation of the nitro group coupled with a reaction involving hydrogen atoms activated on metal nanoparticles.

  8. Single-site catalyst promoters accelerate metal-catalyzed nitroarene hydrogenation

    KAUST Repository

    Wang, Liang; Guan, Erjia; Zhang, Jian; Yang, Junhao; Zhu, Yihan; Han, Yu; Yang, Ming; Cen, Cheng; Fu, Gang; Gates, Bruce C.; Xiao, Feng-Shou

    2018-01-01

    Atomically dispersed supported metal catalysts are drawing wide attention because of the opportunities they offer for new catalytic properties combined with efficient use of the metals. We extend this class of materials to catalysts that incorporate atomically dispersed metal atoms as promoters. The catalysts are used for the challenging nitroarene hydrogenation and found to have both high activity and selectivity. The promoters are single-site Sn on TiO2 supports that incorporate metal nanoparticle catalysts. Represented as M/Sn-TiO2 (M = Au, Ru, Pt, Ni), these catalysts decidedly outperform the unpromoted supported metals, even for hydrogenation of nitroarenes substituted with various reducible groups. The high activity and selectivity of these catalysts result from the creation of oxygen vacancies on the TiO2 surface by single-site Sn, which leads to efficient, selective activation of the nitro group coupled with a reaction involving hydrogen atoms activated on metal nanoparticles.

  9. Catalytic applications of bio-inspired nanomaterials

    Science.gov (United States)

    Pacardo, Dennis Kien Balaong

    The biomimetic synthesis of Pd nanoparticles was presented using the Pd4 peptide, TSNAVHPTLRHL, isolated from combinatorial phage display library. Using this approach, nearly monodisperse and spherical Pd nanoparticles were generated with an average diameter of 1.9 +/- 0.4 nm. The peptide-based nanocatalyst were employed in the Stille coupling reaction under energy-efficient and environmentally friendly reaction conditions of aqueous solvent, room temperature and very low catalyst loading. To this end, the Pd nanocatalyst generated high turnover frequency (TOF) value and quantitative yields using ≥ 0.005 mol% Pd as well as catalytic activities with different aryl halides containing electron-withdrawing and electron-donating groups. The Pd4-capped Pd nanoparticles followed the atom-leaching mechanism and were found to be selective with respect to substrate identity. On the other hand, the naturally-occurring R5 peptide (SSKKSGSYSGSKGSKRRIL) was employed in the synthesis of biotemplated Pd nanomaterials which showed morphological changes as a function of Pd:peptide ratio. TOF analysis for hydrogenation of olefinic alcohols showed similar catalytic activity regardless of nanomorphology. Determination of catalytic properties of these bio-inspired nanomaterials are important as they serve as model system for alternative green catalyst with applications in industrially important transformations.

  10. Experimental studies on hydrogen isotopic deuterium from gas to liquid phase by catalytic exchange

    International Nuclear Information System (INIS)

    Luo Yangming; Wang Heyi; Liu Jun; Fu Zhonghua; Wang Changbin; Han Jun; Xia Xiulong; Tang Lei

    2005-01-01

    The experimental studies on hydrogen isotopic deuterium from gas to liquid phase were completed by mixed ratio 1:4 of Pt-SDB hydrophobic catalyst and hydrophilic packing. The influencing factors on number of transfer units (NTU) and transformation efficiencies of deuterium were researched. The results show that preferable NTU can be obtained by choosing suitable operational temperature and flux of exchange gas. The transformation rate increases with increasing liquid flux, but it cannot obviously be improved when liquid flux attains some level. The length of catalytic column has an obvious influence on transformation rate and 90% of transformation rate is obtained by 4 m column length at gas flux with 2 m 3 /h, liquid flux with 1-2 kg/h and 45 degree C. (author)

  11. The influence of reaction time on hydrogen sulphide removal from air by means of Fe(III)-EDTA/Fiban catalysts

    Science.gov (United States)

    Wasag, H.; Cel, W.; Chomczynska, M.; Kujawska, J.

    2018-05-01

    The paper deals with a new method of hydrogen sulphide removal from air by its filtration and selective catalytic oxidation with the use of fibrous carriers of Fe(III)-EDTA complex. The basis of these filtering materials includes fibrous ion exchangers with the complex immobilized on their functional groups. It has been established that the degree of catalytic hydrogen sulphide decomposition depends on the reaction time. Thus, the required degree of hydrogen sulphide removal from air could be easily controlled by applying appropriate thickness of the filtering layer under a given filtering velocity. It allows applying very thin filtering layers of the Fe(III)-EDTA/Fiban AK-22 or Fiban A-6 catalysts. The obtained results of the research confirm the applicability of these materials for deep air purification from hydrogen sulphide.

  12. Hydrogen production from catalytic decomposition of methane; Produccion de hidrogeno a partir de la descomposicion termica catalitica del biogas de digestion anaerobia

    Energy Technology Data Exchange (ETDEWEB)

    Belsue Echevarria, M.; Etxebeste Juarez, O.; Perez Gil, S.

    2002-07-01

    The need of substitution of part of the energy obtained from fossil fuels instead of energy from renewable sources, together with the minimal emissions of CO{sub ''} and CO that are expected with these technologies, make renewable sources a very attractive predecessor for the production of hydrogen. In this situation, a usable source for hydrogen production is the biogas achieved by means of technologies like the anaerobic digestion of different kinds of biomass (MSW, sewage sludge, stc.). In this article we suggest the Thermal Catalytic Decomposition of the methane contained in this biogas, after separation of pollutants like CO{sub ''}, H{sub 2}S. steam. This technology will give hydrogen, usable in fuel cells, and nanoestructured carbon as products. (Author) 7 refs.

  13. Effect of Co crystallinity on Co/CNT catalytic activity in CO/CO{sub 2} hydrogenation and CO disproportionation

    Energy Technology Data Exchange (ETDEWEB)

    Chernyak, Sergei A., E-mail: chernyak.msu@gmail.com [Lomonosov Moscow State University, Department of Chemistry, Leninskiye Gory 1-3, Moscow 119991 (Russian Federation); Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Department of Physical Chemistry, Leninsky Avenue 31, Moscow 119991 (Russian Federation); Suslova, Evgeniya V.; Egorov, Alexander V.; Maslakov, Konstantin I. [Lomonosov Moscow State University, Department of Chemistry, Leninskiye Gory 1-3, Moscow 119991 (Russian Federation); Savilov, Serguei V.; Lunin, Valery V. [Lomonosov Moscow State University, Department of Chemistry, Leninskiye Gory 1-3, Moscow 119991 (Russian Federation); Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Department of Physical Chemistry, Leninsky Avenue 31, Moscow 119991 (Russian Federation)

    2016-05-30

    Highlights: • Amorphous and crystalline Co supported on CNTs were obtained by tuning of CNT surface. • CO and CO{sub 2} hydrogenation does not occur on amorphous Co particles. • Thermal activation of amorphous Co led to crystallization of metal. • Amorphous Co promotes CO disproportionation. • Carbon shells around the amorphous metal particles after the CO hydrogenation. - Abstract: Carbon nanotubes (CNTs) with different degree of surface oxidation were used as supports for 5 wt.% Co catalysts. CNTs and Co/CNT catalysts were analyzed by XPS, nitrogen adsorption, TEM and electron diffraction to reveal their structure. High oxidation degree of CNT surface (8.6 at.% of O) and low Co loading led to predominantly amorphous Co species. This resulted in the absence of catalytic activity in both CO and CO{sub 2} hydrogenation in opposite to the catalyst supported on less oxidized CNTs (5.4 at.% of O) where Co species were found to be crystalline. Thermal treatment of inactive catalyst in H{sub 2} and He led to the formation of Co crystal phase which was active in catalysis. Co particle size in catalyst supported on strongly oxidized CNTs was unchanged during CO hydrogenation in opposite to Co supported on less oxidized CNTs. Carbon shell formation on the surface of amorphous Co particles during CO hydrogenation was revealed, which testified CO disproportionation. Qualitative mechanism of CO hydrogenation on small Co particles was proposed.

  14. Low Temperature Selective Catalytic Reduction of Nitrogen Oxides in Production of Nitric Acid by the Use of Liquid

    Directory of Open Access Journals (Sweden)

    Kabljanac, Ž.

    2011-11-01

    Full Text Available This paper presents the application of low-temperature selective catalytic reduction of nitrous oxides in the tail gas of the dual-pressure process of nitric acid production. The process of selective catalytic reduction is carried out using the TiO2/WO3 heterogeneous catalyst applied on a ceramic honeycomb structure with a high geometric surface area per volume. The process design parameters for nitric acid production by the dual-pressure procedure in a capacity range from 75 to 100 % in comparison with designed capacity for one production line is shown in the Table 1. Shown is the effectiveness of selective catalytic reduction in the temperature range of the tail gas from 180 to 230 °C with direct application of liquid ammonia, without prior evaporation to gaseous state. The results of inlet and outlet concentrations of nitrous oxides in the tail gas of the nitric acid production process are shown in Figures 1 and 2. Figure 3 shows the temperature dependence of the selective catalytic reduction of nitrous oxides expressed as NO2in the tail gas of nitric acid production with the application of a constant mass flow of liquid ammonia of 13,0 kg h-1 and average inlet mass concentration of the nitrous oxides expressed as NO2of 800,0 mgm-3 during 100 % production capacity. The specially designed liquid-ammonia direct-dosing system along with the effective homogenization of the tail gas resulted in emission levels of nitrous oxides expressed as NO2 in tail gas ranging from 100,0 to 185,0 mg m-3. The applied low-temperature selective catalytic reduction of the nitrous oxides in the tail gases by direct use of liquid ammonia is shown in Figure 4. It is shown that low-temperature selective catalytic reduction with direct application of liquid ammonia opens a new opportunity in the reduction of nitrous oxide emissions during nitric acid production without the risk of dangerous ammonium nitrate occurring in the process of subsequent energy utilization of

  15. Catalytic membrane in reduction of aqueous nitrates: operational principles and catalytic performance

    NARCIS (Netherlands)

    Ilinitch, O.M.; Cuperus, F.P.; Nosova, L.V.; Gribov, E.N.

    2000-01-01

    The catalytic membrane with palladium-copper active component supported over the macroporous ceramic membrane, and a series of γ-Al 2O 3 supported Pd-Cu catalysts were prepared and investigated. In reduction of nitrate ions by hydrogen in water at ambient temperature, pronounced internal diffusion

  16. Direct catalytic hydrothermal liquefaction of spirulina to biofuels with hydrogen

    Science.gov (United States)

    Zeng, Qin; Liao, Hansheng; Zhou, Shiqin; Li, Qiuping; Wang, Lu; Yu, Zhihao; Jing, Li

    2018-01-01

    We report herein on acquiring biofuels from direct catalytic hydrothermal liquefaction of spirulina. The component of bio-oil from direct catalytic hydrothermal liquefaction was similar to that from two independent processes (including liquefaction and upgrading of biocrude). However, one step process has higher carbon recovery, due to the less loss of carbons. It was demonstrated that the yield and HHV of bio-oil from direct catalytic algae with hydrothermal condition is higher than that from two independent processes.

  17. Simulation of hydrogen and hydrogen-assisted propane ignition in Pt catalyzed microchannel

    Energy Technology Data Exchange (ETDEWEB)

    Seshadri, Vikram; Kaisare, Niket S. [Department of Chemical Engineering, Indian Institute of Technology - Madras, Chennai 600 036 (India)

    2010-11-15

    This paper deals with self-ignition of catalytic microburners from ambient cold-start conditions. First, reaction kinetics for hydrogen combustion is validated with experimental results from the literature, followed by validation of a simplified pseudo-2D microburner model. The model is then used to study the self-ignition behavior of lean hydrogen/air mixtures in a Platinum-catalyzed microburner. Hydrogen combustion on Pt is a very fast reaction. During cold start ignition, hydrogen conversion reaches 100% within the first few seconds and the reactor dynamics are governed by the ''thermal inertia'' of the microburner wall structure. The self-ignition property of hydrogen can be used to provide the energy required for propane ignition. Two different modes of hydrogen-assisted propane ignition are considered: co-feed mode, where the microburner inlet consists of premixed hydrogen/propane/air mixtures; and sequential feed mode, where the inlet feed is switched from hydrogen/air to propane/air mixtures after the microburner reaches propane ignition temperature. We show that hydrogen-assisted ignition is equivalent to selectively preheating the inlet section of the microburner. The time to reach steady state is lower at higher equivalence ratio, lower wall thermal conductivity, and higher inlet velocity for both the ignition modes. The ignition times and propane emissions are compared. Although the sequential feed mode requires slightly higher amount of hydrogen, the propane emissions are at least an order of magnitude lower than the other ignition modes. (author)

  18. Radical species involved in hotwire (catalytic) deposition of hydrogenated amorphous silicon

    International Nuclear Information System (INIS)

    Zheng Wengang; Gallagher, Alan

    2008-01-01

    Threshold ionization mass spectroscopy is used to measure the radicals that cause deposition of hydrogenated amorphous silicon by 'hotwire' (HW), or 'catalytic,' chemical vapor deposition. We provide the probability of silane (SiH 4 ) decomposition on the HW, and of Si and H release from the HW. The depositing radicals, and H atoms, are measured versus conditions to obtain their radical-silane reaction rates and contributions to film growth. A 0.01-3 Pa range of silane pressures and 1400-2400 K range of HW temperatures were studied, encompassing optimum device production conditions. Si 2 H 2 is the primary depositing radical under optimum conditions, accompanied by a few percent of Si atoms and a lot of H-atom reactions. Negligible SiH n radical production is observed and only a small flux of disilane is produced, but at the higher pressures some Si 3 H n is observed. A Si-SiH 4 reaction rate coefficient of 1.65 * 10 -11 cm 3 /s and a H + SiH 4 reaction rate coefficient of 5 * 10 -14 cm 3 /s are measured

  19. Adaptive Model Predictive Control of Diesel Engine Selective Catalytic Reduction (SCR) Systems

    Science.gov (United States)

    McKinley, Thomas L.

    2009-01-01

    Selective catalytic reduction or SCR is coming into worldwide use for diesel engine emissions reduction for on- and off-highway vehicles. These applications are characterized by broad operating range as well as rapid and unpredictable changes in operating conditions. Significant nonlinearity, input and output constraints, and stringent performance…

  20. Catalytic activity of Pd-doped Cu nanoparticles for hydrogenation as a single-atom-alloy catalyst.

    Science.gov (United States)

    Cao, Xinrui; Fu, Qiang; Luo, Yi

    2014-05-14

    The single atom alloy of extended surfaces is known to provide remarkably enhanced catalytic performance toward heterogeneous hydrogenation. Here we demonstrate from first principles calculations that this approach can be extended to nanostructures, such as bimetallic nanoparticles. The catalytic properties of the single-Pd-doped Cu55 nanoparticles have been systemically examined for H2 dissociation as well as H atom adsorption and diffusion, following the concept of single atom alloy. It is found that doping a single Pd atom at the edge site of the Cu55 shell can considerably reduce the activation energy of H2 dissociation, while the single Pd atom doped at the top site or in the inner layers is much less effective. The H atom adsorption on Cu55 is slightly stronger than that on the Cu(111) surface; however, a larger nanoparticle that contains 147 atoms could effectively recover the weak binding of the H atoms. We have also investigated the H atom diffusion on the 55-atom nanoparticle and found that spillover of the produced H atoms could be a feasible process due to the low diffusion barriers. Our results have demonstrated that facile H2 dissociation and weak H atom adsorption could be combined at the nanoscale. Moreover, the effects of doping one more Pd atom on the H2 dissociation and H atom adsorption have also been investigated. We have found that both the doping Pd atoms in the most stable configuration could independently exhibit their catalytic activity, behaving as two single-atom-alloy catalysts.

  1. Selective catalytic reduction of nitric oxide by ammonia over Cu-exchanged Cuban natural zeolites

    International Nuclear Information System (INIS)

    Moreno-Tost, Ramon; Santamaria-Gonzalez, Jose; Rodriguez-Castellon, Enrique; Jimenez-Lopez, Antonio; Autie, Miguel A.; Glacial, Marisol Carreras; Gonzalez, Edel; Pozas, Carlos De las

    2004-01-01

    The catalytic selective reduction of NO over Cu-exchanged natural zeolites (mordenite (MP) and clinoptilolite (HC)) from Cuba using NH 3 as reducing agent and in the presence of excess oxygen was studied. Cu(II)-exchanged zeolites are very active catalysts, with conversions of NO of 95%, a high selectivity to N 2 at low temperatures, and exhibiting good water tolerance. The chemical state of the Cu(II) in exchanged zeolites was characterized by H 2 -TPR and XPS. Cu(II)-exchanged clinoptilolite underwent a severe deactivation in the presence of SO 2 . However, Cu(II)-exchanged mordenite not only maintained its catalytic activity, but even showed a slight improvement after 20h of reaction in the presence of 100ppm of SO 2

  2. Activating basal-plane catalytic activity of two-dimensional MoS2 monolayer with remote hydrogen plasma

    KAUST Repository

    Cheng, Chia-Chin

    2016-09-10

    Two-dimensional layered transition metal dichalcogenide (TMD) materials such as Molybdenum disufide (MoS2) have been recognized as one of the low-cost and efficient electrocatalysts for hydrogen evolution reaction (HER). The crystal edges that account for a small percentage of the surface area, rather than the basal planes, of MoS2 monolayer have been confirmed as their active catalytic sites. As a result, extensive efforts have been developing in activating the basal planes of MoS2 for enhancing their HER activity. Here, we report a simple and efficient approach-using a remote hydrogen-plasma process-to creating S-vacancies on the basal plane of monolayer crystalline MoS2; this process can generate high density of S-vacancies while mainly maintaining the morphology and structure of MoS2 monolayer. The density of S-vacancies (defects) on MoS2 monolayers resulted from the remote hydrogen-plasma process can be tuned and play a critical role in HER, as evidenced in the results of our spectroscopic and electrical measurements. The H2-plasma treated MoS2 also provides an excellent platform for systematic and fundamental study of defect-property relationships in TMDs, which provides insights for future applications including electrical, optical and magnetic devices. © 2016 Elsevier Ltd.

  3. Negative Effect of Calcination to Catalytic Performance of Coal Char-loaded TiO2 Catalyst in Styrene Oxidation with Hydrogen Peroxide as Oxidant

    Directory of Open Access Journals (Sweden)

    Mukhamad Nurhadi

    2018-01-01

    How to Cite: Nurhadi, M., Kusumawardani, R., Nur, H. (2018. Negative Effect of Calcination to Catalytic Performance of Coal Char-loaded TiO2 Catalyst in Styrene Oxidation with Hydrogen Peroxide as Oxidant. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (1: 113-118 (doi:10.9767/bcrec.13.1.1171.113-118

  4. Catalytic methanol dissociation

    International Nuclear Information System (INIS)

    Alcinikov, Y.; Fainberg, V.; Garbar, A.; Gutman, M.; Hetsroni, G.; Shindler, Y.; Tatrtakovsky, L.; Zvirin, Y.

    1998-01-01

    Results of the methanol dissociation study on copper/potassium catalyst with alumina support at various temperatures are presented. The following gaseous and liquid products at. The catalytic methanol dissociation is obtained: hydrogen, carbon monoxide, carbon dioxide, methane, and dimethyl ether. Formation rates of these products are discussed. Activation energies of corresponding reactions are calculated

  5. Tritium-tracer study of catalytic hydrogenation reaction of ethylene on Ni, Pt and Ni-Pt

    International Nuclear Information System (INIS)

    Matsuyama, M.; Yasuda, Y.; Takeuchi, T.

    1978-01-01

    The influence of the pressure of tritiated hydrogen on the rate of the formation of tritiated ethylene, X, and that of tritiated ethane, Z, in the hydrogenation reaction of ethylene on Ni, Pt and Ni-Pt (1:1) alloy catalysts was investigated. The ratio of the rate of the exchange to that of the hydrogenation, selectivity X/Z, decreased markedly with the increase in the pressure of the tritiated hydrogen and the order of X/Z was Ni>Ni-Pt>Pt. These results were interpreted in terms of the difference in the amount of chemisorbed tritium on each metal catalyst. (orig.) [de

  6. Hydrogenation of citral into its derivatives using heterogeneous catalyst

    Science.gov (United States)

    Sudiyarmanto, Hidayati, Luthfiana Nurul; Kristiani, Anis; Aulia, Fauzan

    2017-11-01

    Citral as known as a monoterpene can be found in plants and citrus fruits. The hydrogenation of citral into its derivatives become interesting area for scientist. This compound and its derivatives can be used for many application in pharmaceuticals and food areas. The development of heterogeneous catalysts become an important aspect in catalytic hydrogenation citral process. Nickel supported catalysts are well known as hydrogenation catalyst. These heterogeneous catalysts were tested their catalytic activity in hydrogenation of citral. The effect of various operation conditions, in term of feed concentration, catalyst loading, temperature, and reaction time were also studied. The liquid products produced were analyzed by using Gas Chromatography-Mass Spectroscopy (GC-MS). The result of catalytic activity tests showed nickel skeletal catalyst exhibits best catalytic activity in hydrogenation of citral. The optimum of operation condition was achieved in citral concentration 0.1 M with nickel skeletal catalyst loading of 10% (w/w) at 80 °C and 20 bar for 2 hours produced the highest conversion as of 64.20% and the dominant product resulted was citronellal as of 56.48%.

  7. Catalytic nanoporous membranes

    Science.gov (United States)

    Pellin, Michael J; Hryn, John N; Elam, Jeffrey W

    2013-08-27

    A nanoporous catalytic membrane which displays several unique features Including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity. Also provided is a method for producing a catalytic membrane having flow-through pores and discreet catalytic clusters adhering to the inside surfaces of the pores.

  8. Catalytic hydrogenation of alkyne and alkadiene impurities from alkenes. Practical and theoretical aspects

    International Nuclear Information System (INIS)

    Nikolaev, S A; Smirnov, V V; Zanaveskin, Leonid N; Zanaveskin, K L; Averyanov, Vyacheslav A

    2009-01-01

    The review is devoted to heterogeneous catalysts for selective hydrogenation of highly unsaturated impurities (dienes and acetylenes) in hydrocarbonic streams. The most promising systems are nanocomposites on the basis of palladium or gold.

  9. Theoretical investigation of the selective dehydration and dehydrogenation of ethanol catalyzed by small molecules.

    Science.gov (United States)

    Wang, Yanqun; Tang, Yizhen; Shao, Youxiang

    2017-09-01

    Catalytic dehydration and dehydrogenation reactions of ethanol have been investigated systematically using the ab initio quantum chemistry methods The catalysts include water, hydrogen peroxide, formic acid, phosphoric acid, hydrogen fluoride, ammonia, and ethanol itself. Moreover, a few clusters of water and ethanol were considered to simulate the catalytic mechanisms in supercritical water and supercritical ethanol. The barriers for both dehydration and dehydrogenation can be reduced significantly in the presence of the catalysts. It is revealed that the selectivity of the catalytic dehydration and dehydrogenation depends on the acidity and basicity of the catalysts and the sizes of the clusters. The acidic catalyst prefers dehydration while the basic catalysts tend to promote dehydrogenation more effectively. The calculated water-dimer catalysis mechanism supports the experimental results of the selective oxidation of ethanol in the supercritical water. It is suggested that the solvent- and catalyst-free self-oxidation of the supercritical ethanol could be an important mechanism for the selective dehydrogenation of ethanol on the theoretical point of view. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Catalytic Conversion of Biofuels

    DEFF Research Database (Denmark)

    Jørgensen, Betina

    This thesis describes the catalytic conversion of bioethanol into higher value chemicals. The motivation has been the unavoidable coming depletion of the fossil resources. The thesis is focused on two ways of utilising ethanol; the steam reforming of ethanol to form hydrogen and the partial oxida...

  11. SNCR technology for NO sub x reduction in the cement industry. [Selective non-catalytic reduction

    Energy Technology Data Exchange (ETDEWEB)

    Kupper, D; Brentrup, L [Krupp Polysius AG, Beckum (Germany)

    1992-03-01

    This article discusses the selective non-catalytic (SNCR) process for reducing nitrogen oxides in exhaust gases from cement plants. Topics covered include operating experience, injection of additives, selection of the additive, operating costs, reduction efficiency of SNCR, capital expenditure, secondary emissions and cycles of ammonium. (UK).

  12. Single Pot Selective Hydrogenation of Furfural to 2-Methylfuran Over Carbon Supported Iridium Catalysts

    KAUST Repository

    Date, Nandan S; Hengne, Amol Mahalingappa; Huang, Kuo-Wei; Chikate, Rajeev C.; Rode, C. V.

    2018-01-01

    Various iridium supported carbon catalysts were prepared and screened for direct hydrogenation of furfural (FFR) to 2-methyl furan (2-MF). Amongest these, 5% Ir/C showed excellent results with complete FFR conversion and highest selectivity of 95% to 2-MF at very low H2 pressure of 100 psig. Metallic (Iro) and oxide ( IrO2) phases of Ir catalyzed first step hydrogenation involving FFR to FAL and subsequent hydrogenation to 2-MF,respecively. This was confirmed by XPS analysis and some controlled experiments. At low temperature of 140 oC, almost equal selectivities of FAL (42%) and 2-MF (43%) were observed, while higher temperature (220oC) favored selective hydrodeoxygenation. At optimized temperature, 2-MF formed selectively while higher pressure and higher catalyst loading favored ring hydrogenation of furfural rather than side chain hydrogenation. With combination of several control experimental results and detailed catalyst characterization, a plausible reaction pathway has been proposed for selective formation of 2-MF. The selectivity to various other products in FFR hydrogenation can be manipulated by tailoring the reaction conditions over the same catalyst.

  13. Single Pot Selective Hydrogenation of Furfural to 2-Methylfuran Over Carbon Supported Iridium Catalysts

    KAUST Repository

    Date, Nandan S

    2018-03-20

    Various iridium supported carbon catalysts were prepared and screened for direct hydrogenation of furfural (FFR) to 2-methyl furan (2-MF). Amongest these, 5% Ir/C showed excellent results with complete FFR conversion and highest selectivity of 95% to 2-MF at very low H2 pressure of 100 psig. Metallic (Iro) and oxide ( IrO2) phases of Ir catalyzed first step hydrogenation involving FFR to FAL and subsequent hydrogenation to 2-MF,respecively. This was confirmed by XPS analysis and some controlled experiments. At low temperature of 140 oC, almost equal selectivities of FAL (42%) and 2-MF (43%) were observed, while higher temperature (220oC) favored selective hydrodeoxygenation. At optimized temperature, 2-MF formed selectively while higher pressure and higher catalyst loading favored ring hydrogenation of furfural rather than side chain hydrogenation. With combination of several control experimental results and detailed catalyst characterization, a plausible reaction pathway has been proposed for selective formation of 2-MF. The selectivity to various other products in FFR hydrogenation can be manipulated by tailoring the reaction conditions over the same catalyst.

  14. Hydrogenation of Phenol over Pt/CNTs: The Effects of Pt Loading and Reaction Solvents

    OpenAIRE

    Feng Li; Bo Cao; Wenxi Zhu; Hua Song; Keliang Wang; Cuiqin Li

    2017-01-01

    Carbon nanotubes (CNTs)-supported Pt nanoparticles were prepared with selective deposition of Pt nanoparticles inside and outside CNTs (Pt–in/CNTs and Pt–out/CNTs). The effects of Pt loading and reaction solvents on phenol hydrogenation were investigated. The Pt nanoparticles in Pt–in/CNTs versus Pt–out/CNTs are smaller and better dispersed. The catalytic activity and reuse stability toward phenol hydrogenation both improved markedly. The dichloromethane–water mixture as the reaction solvent,...

  15. Discovery of a selective catalytic p300/CBP inhibitor that targets lineage-specific tumours

    Energy Technology Data Exchange (ETDEWEB)

    Lasko, Loren M.; Jakob, Clarissa G.; Edalji, Rohinton P.; Qiu, Wei; Montgomery, Debra; Digiammarino, Enrico L.; Hansen, T. Matt; Risi, Roberto M.; Frey, Robin; Manaves, Vlasios; Shaw, Bailin; Algire, Mikkel; Hessler, Paul; Lam, Lloyd T.; Uziel, Tamar; Faivre, Emily; Ferguson, Debra; Buchanan, Fritz G.; Martin, Ruth L.; Torrent, Maricel; Chiang, Gary G.; Karukurichi, Kannan; Langston, J. William; Weinert, Brian T.; Choudhary, Chunaram; de Vries, Peter; Van Drie, John H.; McElligott, David; Kesicki, Ed; Marmorstein, Ronen; Sun, Chaohong; Cole, Philip A.; Rosenberg, Saul H.; Michaelides, Michael R.; Lai, Albert; Bromberg, Kenneth D. (AbbVie); (UCopenhagen); (Petra Pharma); (UPENN); (JHU); (Van Drie); (Faraday)

    2017-09-27

    The dynamic and reversible acetylation of proteins, catalysed by histone acetyltransferases (HATs) and histone deacetylases (HDACs), is a major epigenetic regulatory mechanism of gene transcription1 and is associated with multiple diseases. Histone deacetylase inhibitors are currently approved to treat certain cancers, but progress on the development of drug-like histone actyltransferase inhibitors has lagged behind2. The histone acetyltransferase paralogues p300 and CREB-binding protein (CBP) are key transcriptional co-activators that are essential for a multitude of cellular processes, and have also been implicated in human pathological conditions (including cancer3). Current inhibitors of the p300 and CBP histone acetyltransferase domains, including natural products4, bi-substrate analogues5 and the widely used small molecule C6466,7, lack potency or selectivity. Here, we describe A-485, a potent, selective and drug-like catalytic inhibitor of p300 and CBP. We present a high resolution (1.95 Å) co-crystal structure of a small molecule bound to the catalytic active site of p300 and demonstrate that A-485 competes with acetyl coenzyme A (acetyl-CoA). A-485 selectively inhibited proliferation in lineage-specific tumour types, including several haematological malignancies and androgen receptor-positive prostate cancer. A-485 inhibited the androgen receptor transcriptional program in both androgen-sensitive and castration-resistant prostate cancer and inhibited tumour growth in a castration-resistant xenograft model. These results demonstrate the feasibility of using small molecule inhibitors to selectively target the catalytic activity of histone acetyltransferases, which may provide effective treatments for transcriptional activator-driven malignancies and diseases.

  16. Chemoselective hydrogenation of arenes by PVP supported Rh nanoparticles

    DEFF Research Database (Denmark)

    Ibrahim, Mahmoud; Poreddy, Raju; Philippot, Karine

    2016-01-01

    Polyvinylpyrrolidone-stabilized Rh nanoparticles (RhNPs/PVP) of ca. 2.2 nm in size were prepared by the hydrogenation of the organometallic complex [Rh(η3-C3H5)3] in the presence of PVP and evaluated as a catalyst in the hydrogenation of a series of arene substrates as well as levulinic acid...... for the hydrogenation of levulinic acid and methyl levulinate in water leading to quantitative formation of the fuel additive γ-valerolactone under moderate reaction conditions compared to previously reported catalytic systems....... and methyl levulinate. The catalyst showed excellent activity and selectivity towards aromatic ring hydrogenation compared to other reported transition metal-based catalysts under mild reaction conditions (room temperature and 1 bar H2). Furthermore, it was shown to be a highly promising catalyst...

  17. Biomass transition metal hydrogen-evolution electrocatalysts and electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wei-Fu; Iyer, Shweta; Iyer, Shilpa; Sasaki, Kotaro; Muckerman, James T.; Fujita, Etsuko

    2017-02-28

    A catalytic composition from earth-abundant transition metal salts and biomass is disclosed. A calcined catalytic composition formed from soybean powder and ammonium molybdate is specifically exemplified herein. Methods for making the catalytic composition are disclosed as are electrodes for hydrogen evolution reactions comprising the catalytic composition.

  18. In-Situ Liquid Hydrogenation of m-Chloronitrobenzene over Fe-Modified Pt/Carbon Nanotubes Catalysts

    Directory of Open Access Journals (Sweden)

    Feng Li

    2018-02-01

    Full Text Available In-situ liquid-phase hydrogenation of m-chloronitrobenzene (m-CNB based on aqueous-phase reforming (APR of ethanol and catalytic hydrogenation was carried out over Fe-modified Pt/carbon nanotubes (CNTs catalysts. The effects of Pt loading over CNTs and Fe modification on the catalytic performance of Pt/CNTs catalysts were studied. In-tube loading of Pt particles, compared with out-tube loading, considerably improved the catalytic activity. With in-tube loading, Fe-modified Pt/CNTs catalysts further improved the m-CNB in-situ hydrogenation performance. After Fe modification, Pt–Fe/CNTs catalysts formed, inside CNTs, a Pt–Fe alloy and iron oxides, which both improved catalytic hydrogenation performance and significantly enhanced ethanol APR hydrogen producing performance, thereby increasing the m-CNB in-situ hydrogenation reactivity.

  19. A novel core–shell nanocomposite Ni–Ca@mSiO_2 for benzophenone selective hydrogenation

    International Nuclear Information System (INIS)

    Han, Xue; Feng, Wenhui; Chu, Xiaoning; Chu, Hailong; Niu, Libo; Bai, Guoyi

    2017-01-01

    A novel core–shell nanocomposite Ni–Ca@mSiO_2 was first prepared by a modified Stöber method in this paper. It has a core–shell structure with Ni (about 8 nm in diameter) and Ca as the cores and mesoporous silica as the outer shell, as proven by the transmission electron microscopy. This nanocomposite exhibited good catalytic performance in the selective hydrogenation of benzophenone, with 96.1% conversion and 94.9% selectivity for benzhydrol under relatively mild reaction conditions. It was demonstrated that addition of small amounts of alkaline Ca can not only markedly improve the dispersion of the active species but also tune the acid–base property of this nanocomposite, resulting in the efficient suppression of benzhydrol dehydration to achieve a high selectivity. Furthermore, the core–shell nanocomposite Ni–Ca@mSiO_2 can be recycled four runs without appreciable loss of its initial activity, more stable than the traditional supported nanocatalyst Ni–Ca/mSiO_2. It was suggested that the outer mesoporous silica shell of Ni–Ca@mSiO_2 can prevent both the aggregation and the leaching of the active Ni species, accounting for its relatively good stability.

  20. Catalytic conversion of light alkanes

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, J.E.

    1992-06-30

    The second Quarterly Report of 1992 on the Catalytic Conversion of Light Alkanes reviews the work done between April 1, 1992 and June 31, 1992 on the Cooperative Agreement. The mission of this work is to devise a new catalyst which can be used in a simple economic process to convert the light alkanes in natural gas to oxygenate products that can either be used as clean-burning, high octane liquid fuels, as fuel components or as precursors to liquid hydrocarbon uwspomdon fuel. During the past quarter we have continued to design, prepare, characterize and test novel catalysts for the mild selective reaction of light hydrocarbons with air or oxygen to produce alcohols directly. These catalysts are designed to form active metal oxo (MO) species and to be uniquely active for the homolytic cleavage of the carbon-hydrogen bonds in light alkanes producing intermediates which can form alcohols. We continue to investigate three molecular environments for the active catalytic species that we are trying to generate: electron-deficient macrocycles (PHASE I), polyoxometallates (PHASE II), and regular oxidic lattices including zeolites and related structures as well as other molecular surface structures having metal oxo groups (PHASE I).

  1. Hydrogen generation from decomposition of hydrous hydrazine over Ni-Ir/CeO2 catalyst

    Directory of Open Access Journals (Sweden)

    Hongbin Dai

    2017-02-01

    Full Text Available The synthesis of highly active and selective catalysts is the central issue in the development of hydrous hydrazine (N2H4·H2O as a viable hydrogen carrier. Herein, we report the synthesis of bimetallic Ni-Ir nanocatalyts supported on CeO2 using a one-pot coprecipitation method. A combination of XRD, HRTEM and XPS analyses indicate that the Ni-Ir/CeO2 catalyst is composed of tiny Ni-Ir alloy nanoparticles with an average size of around 4 nm and crystalline CeO2 matrix. The Ni-Ir/CeO2 catalyst exhibits high catalytic activity and excellent selectivity towards hydrogen generation from N2H4·H2O at mild temperatures. Furthermore, in contrast to previously reported Ni-Pt catalysts, the Ni-Ir/CeO2 catalyst shows an alleviated requirement on alkali promoter to achieve its optimal catalytic performance.

  2. Influence of hydrogen treatment on SCR catalysts

    DEFF Research Database (Denmark)

    Due-Hansen, Johannes

    stream, i.e. by in situ treatment of the Pt-catalyst by reductive H2-gas. However, the introduction of H2 gas in the gas stream could also affect other units in the tail pipe gas cleaning system. Of special interest in this study is the effect of hydrogen gas on the performance of the selective catalytic...... reduction (SCR) process, i.e. the catalytic removal of NOx from the flue gas. A series of experiments was conducted to reveal the impact on the NO SCR activity of a industrial DeNOX catalyst (3%V2O5-7%WO3/TiO2) by treatment of H2. Standard conditions were treatment of the SCR catalyst for 60 min with three...... different concentrations of H2 (0-2%) in a 8% O2/N2 mixture, where the SCR activity was measured before and after the hydrogen treatment. The results show that the activity of the SCR catalyst is only negligible affected during exposure to the H2/O2 gas and in all cases it returned reversibly to the initial...

  3. Advances in ethanol reforming for the production of hydrogen

    Directory of Open Access Journals (Sweden)

    Laura Guerrero

    2014-06-01

    Full Text Available Catalytic steam reforming of ethanol (SRE is a promising route for the production of renewable hydrogen (H2. This article reviews the influence of doping supported-catalysts used in SRE on the conversion of ethanol, selectivity for H2, and stability during long reaction periods. In addition, promising new technologies such as membrane reactors and electrochemical reforming for performing SRE are presented.

  4. Multi-criteria analysis on how to select solar radiation hydrogen production system

    Energy Technology Data Exchange (ETDEWEB)

    Badea, G.; Naghiu, G. S., E-mail: naghiu.george@gmail.com; Felseghi, R.-A.; Giurca, I., E-mail: giurca-ioan@yahoo.com [Technical University of Cluj-Napoca, Faculty of Building Services Engineering, Boulevard December 21, no. 128-130, Cluj-Napoca, 400604 (Romania); Răboacă, S. [National R& D Institute for Cryogenic and Isotopic Technologies, str. Uzinei, no. 4, Rm. Vălcea, 240050 (Romania); Aşchilean, I. [SC ACI Cluj SA, Avenue Dorobanţilor, no. 70, Cluj-Napoca, 400609 (Romania)

    2015-12-23

    The purpose of this article is to present a method of selecting hydrogen-production systems using the electric power obtained in photovoltaic systems, and as a selecting method, we suggest the use of the Advanced Multi-Criteria Analysis based on the FRISCO formula. According to the case study on how to select the solar radiation hydrogen production system, the most convenient alternative is the alternative A4, namely the technical solution involving a hydrogen production system based on the electrolysis of water vapor obtained with concentrated solar thermal systems and electrical power obtained using concentrating photovoltaic systems.

  5. Hydrogenation of imines catalysed by ruthenium(II) complexes based on lutidine-derived CNC pincer ligands.

    Science.gov (United States)

    Hernández-Juárez, Martín; Vaquero, Mónica; Álvarez, Eleuterio; Salazar, Verónica; Suárez, Andrés

    2013-01-14

    The preparation of new Ru(II) complexes incorporating fac-coordinated lutidine-derived CNC ligands is reported. These derivatives are selectively deprotonated by (t)BuOK at one of the methylene arms of the pincer, leading to catalytically active species in the hydrogenation of imines.

  6. Improvement of catalytic activity in selective oxidation of styrene with H{sub 2}O{sub 2} over spinel Mg–Cu ferrite hollow spheres in water

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Jinhui, E-mail: jinhuitong@126.com [Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, Lanzhou 730070 (China); Key Laboratory of Gansu Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China); Cai, Xiaodong; Wang, Haiyan; Zhang, Qianping [Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, Lanzhou 730070 (China); Key Laboratory of Gansu Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China)

    2014-07-01

    Graphical abstract: Uniform spinel Mg–Cu ferrite hollow spheres were prepared using carbon spheres as templates. Solid spinel Mg{sub 0.5}Cu{sub 0.5}Fe{sub 2}O{sub 4} ferrite nanocrystals were also prepared by sol–gel auto-combustion, hydrothermal and coprecipitation methods for comparison. The samples were found to be efficient catalysts for oxidation of styrene using hydrogen peroxide as oxidant. Especially, in the case of Mg{sub 0.5}Cu{sub 0.5}Fe{sub 2}O{sub 4} hollow spheres, obvious improvement on catalytic activity was observed and 21.2% of styrene conversion and 75.2% of selectivity for benzaldehyde were obtained at 80 °C for 6 h reaction in water. The catalyst can be magnetically separated easily for reuse and no obvious loss of activity was observed when reused in six consecutive runs. - Highlights: • Uniform spinel ferrite hollow spheres were prepared by a simple method. • The catalyst has been proved much more efficient for styrene oxidation than the reported analogues. • The catalyst can be easily separated by external magnetic field and has exhibited excellent reusability. • The catalytic system is environmentally friendly. - Abstract: Uniform spinel Mg–Cu ferrite hollow spheres were prepared using carbon spheres as templates. For comparison, solid Mg–Cu ferrite nanocrystals were also prepared by sol–gel auto-combustion, hydrothermal and coprecipitation methods. All the samples were characterized by Fourier transform infrared spectrophotometry (FT-IR), X-ray diffractometry (XRD), transmission electron microscopy (TEM) and N{sub 2} physisorption. The samples were found to be efficient catalysts for oxidation of styrene using hydrogen peroxide as oxidant. Especially, in the case of Mg{sub 0.5}Cu{sub 0.5}Fe{sub 2}O{sub 4} hollow spheres, obvious improvement on catalytic activity was observed, and 21.2% of styrene conversion and 75.2% of selectivity for benzaldehyde were obtained at 80 °C for 6 h reaction in water. The catalyst can be

  7. Enzyme catalytic resonance scattering spectral detection of trace hydrogen peroxide using guaiacol as substrate

    Directory of Open Access Journals (Sweden)

    Shiwen Huang

    2011-08-01

    Full Text Available Hydrogen peroxide oxidized guaiacol to form tetramer particles that exhibited a strong resonance scattering (RS peak at 530 nm in the presence of horseradish peroxidase (HRP in citric acid-Na2HPO4 buffer solution of pH 4.4. The RS peak increased when the concentration of hydrogen peroxide increased. The increased RS intensity (ΔI530 nm was linear to the hydrogen peroxide concentration in the range of 0.55-27.6 μM, with a linear regression equation of ΔI530 nm = 17.1C + 1.6, a relative coefficient of 0.9996 and a detection limit of 0.03 μM H2O2. This proposed method was applied to detect hydrogen peroxide in rain water, with sensitivity, selectivity, rapidity, and recovery of 98.0-104 %.

  8. Graphene oxide as a catalyst for the diastereoselective transfer hydrogenation in the synthesis of prostaglandin derivatives.

    Science.gov (United States)

    Coman, Simona M; Podolean, Iunia; Tudorache, Madalina; Cojocaru, Bogdan; Parvulescu, Vasile I; Puche, Marta; Garcia, Hermenegildo

    2017-09-14

    Modification of GO by organic molecules changes its catalytic activity in the hydrogen transfer from i-propanol to enones, affecting the selectivity to allyl alcohol and diastereoselectivity to the resulting stereoisomers. It is noteworthy the system does not contain metals and is recyclable.

  9. Tritium removal by hydrogen isotopic exchange between hydrogen gas and water on hydrophobic catalyst

    International Nuclear Information System (INIS)

    Morishita, T.; Isomura, S.; Izawa, H.; Nakane, R.

    1980-01-01

    Many kinds of the hydrophobic catalysts for hydrogen isotopic exchange between hydrogen gas and water have been prepared. The carriers are the hydrophobic organic materials such as polytetrafluoroethylene(PTFE), monofluorocarbon-PTFE mixture(PTFE-FC), and styrene-divinylbenzene copolymer(SDB). 0.1 to 2 wt % Pt is deposited on the carriers. The Pt/SDB catalyst has much higher activity than the Pt/PTFE catalyst and the Pt/PTFE-FC catalyst shows the intermediate value of catalytic activity. The observation of electron microscope shows that the degrees of dispersion of Pt particles on the hydrophobic carriers result in the difference of catalytic activities. A gas-liquid separated type column containing ten stages is constructed. Each stage is composed of both the hydrophobic catalyst bed for the hydrogen gas/water vapor isotopic exchange and the packed column type bed for the water vapor/liquid water isotopic exchange. In the column hydrogen gas and water flow countercurrently and hydrogen isotopes are separated

  10. A comparative parametric study of a catalytic plate methane reformer coated with segmented and continuous layers of combustion catalyst for hydrogen production

    Science.gov (United States)

    Mundhwa, Mayur; Parmar, Rajesh D.; Thurgood, Christopher P.

    2017-03-01

    A parametric comparison study is carried out between segmented and conventional continuous layer configurations of the coated combustion-catalyst to investigate their influence on the performance of methane steam reforming (MSR) for hydrogen production in a catalytic plate reactor (CPR). MSR is simulated on one side of a thin plate over a continuous layer of nickel-alumina catalyst by implementing an experimentally validated surface microkinetic model. Required thermal energy for the MSR reaction is supplied by simulating catalytic methane combustion (CMC) on the opposite side of the plate over segmented and continuous layer of a platinum-alumina catalyst by implementing power law rate model. The simulation results of both coating configurations of the combustion-catalyst are compared using the following parameters: (1) co-flow and counter-flow modes between CMC and MSR, (2) gas hourly space velocity and (3) reforming-catalyst thickness. The study explains why CPR designed with the segmented combustion-catalyst and co-flow mode shows superior performance not only in terms of high hydrogen production but also in terms of minimizing the maximum reactor plate temperature and thermal hot-spots. The study shows that the segmented coating requires 7% to 8% less combustion-side feed flow and 70% less combustion-catalyst to produce the required flow of hydrogen (29.80 mol/h) on the reforming-side to feed a 1 kW fuel-cell compared to the conventional continuous coating of the combustion-catalyst.

  11. Selective Hydrogenation of Biomass-derived Furfural over Supported Ni3Sn2 Alloy: Role of Supports

    Directory of Open Access Journals (Sweden)

    Rodiansono Rodiansono

    2016-03-01

    Full Text Available A highly active and selective hydrogenation of biomass-derived furfural into furfuryl alcohol was achieved using supported single phase Ni3Sn2 alloy catalysts. Various supports such as active carbon (AC, g-Al2O3, Al(OH3, ZnO, TiO2, ZrO2, MgO, Li-TN, and SiO2 have been employed in order to understand the role of the support on the formation of Ni3Sn2 alloy phase and its catalytic performance. Supported Ni3Sn2 alloy catalysts were synthesised via a simple hydrothermal treatment of the mixture of aqueous solution of nickel chloride hexahydrate and ethanol solution of tin(II chloride dihydrate in presence of ethylene glycol at 423 K for 24 h followed by H2 treatment at 673 K for 1.5 h, then characterised by using ICP-AES, XRD, H2- and N2-adsorption. XRD profiles of samples showed that the Ni3Sn2 alloy phases are readily formed during hydrothermal processes and become clearly observed at 2θ = 43-44o after H2 treatment. The presence of Ni3Sn2 alloy species that dispersed on the supports is believed to play a key role in highly active and selective hydrogenation of biomass-derived furfural towards furfuryl alcohol. Ni3Sn2 on TiO2 and ZnO supports exhibited much lower reaction temperature to achieved >99% yield of furfuryl alcohol product compared with other supports. The effects of loading amount of Ni-Sn, reaction conditions (temperature and time profile on the activity and selectivity towards the desired product are systematically discussed. Copyright © 2016 BCREC GROUP. All rights reserved Received: 10th November 2015; Revised: 31st December 2015; Accepted: 5th January 2016 How to Cite: Rodiansono, R., Astuti, M.D., Khairi, S., Shimazu, S. (2016. Selective Hydrogenation of Biomass-derived Furfural over Supported Ni3Sn2 Alloy: Role of Supports. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (1: 1-9. (doi:10.9767/bcrec.11.1.393.1-9 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.11.1.393.1-9

  12. Measurements of H-atom density by a catalytic probe

    International Nuclear Information System (INIS)

    Vesel, A.; Drenik, A.; Mozetic, M.

    2006-01-01

    One of the important plasma parameters in tokamaks is the density of neutral hydrogen atoms which can be measured by catalytic probes. The method is based on the catalytic recombination of H atoms on the metal surface. In order to prevent a substantial drain of atoms by the probe, it should be made as small as possible. But still this effect can not be neglected. Therefore a study of the influence of a catalytic probe on the H-atom density was performed. The source of neutral H-atoms was inductively coupled RF hydrogen plasma. The gas from the discharge vessel was leaked to an experimental chamber through a narrow tube with the diameter of 5 mm and the length of 6 cm. Charged particles created in the discharge vessel were recombined on the walls of the narrow tube, so that the gas entering the experimental chamber was a mixture of hydrogen atoms and molecules only. The density of H-atoms in the experimental chamber was measured with two nickel catalytic probes. One probe was at fixed position and the other one was made movable. A change in the probe signal of the fixed probe was measured versus the position of the movable probe. The measurements were performed at the pressures between 10 Pa and 200 Pa and at two different RF powers 200 W and 300 W. It was found that the density of neutral hydrogen atoms was reduced for about 20% due to the presence of the probe. This result was independent from the pressure in the experimental chamber. (author)

  13. Selective hydrogen atom abstraction by hydrogen atoms in photolysis and radiolysis of alkane mixtures at 770 K

    International Nuclear Information System (INIS)

    Miyazaki, T.; Kinugawa, K.; Eguchi, M.; Guedes, S.M.L.

    1977-01-01

    Selective hydrogen atom abstraction reaction by H atoms, has been found in Isobutane, 2,2,3,3-tetramethylbutane(TMB), cyclopropane matrices besides neopentane matrix. The selective hydrogen atom abstraction reaction in neopentane-isobutane mixture is affected by the difference of kinetic energies of H atoms. The reaction occurs more favorably with decreasing the kinetic energy of H atoms. Competitive reaction between c-C 6 H 12 and Hi for H atoms has been studied in the radiolysis and photolysis of neo-C 5 H 12 HI mixture at 77 K. The rate constants of these reactions in neopentane matrix are quite different from these of thermal H atom reaction, but similar to those of hot H atom reaction. Importance of the selective hydrogen atom abstraction reaction by H atoms is pointed out in the radical formation in the radiolysis of pure TMB at 77 K [pt

  14. COST OF SELECTIVE CATALYTIC REDUCTION (SCR) APPLICATION FOR NOX CONTROL ON COAL-FIRED BOILERS

    Science.gov (United States)

    The report provides a methodology for estimating budgetary costs associated with retrofit applications of selective catalytic reduction (SCR) technology on coal-fired boilers. SCR is a postcombustion nitrogen oxides (NOx) control technology capable of providing NOx reductions >90...

  15. Efficient hydrogenation of biomass-derived furfural and levulinic acid on the facilely synthesized noble-metal-free Cu–Cr catalyst

    International Nuclear Information System (INIS)

    Yan, Kai; Chen, Aicheng

    2013-01-01

    Biomass-derived platform intermediate furfural and levulinic acid were efficiently hydrogenated to the value-added furfuryl alcohol and promising biofuel γ-valerolactone, respectively, using a noble-metal-free Cu–Cr catalyst, which was facilely and successfully synthesized by a modified co-precipitation method using the cheap metal nitrates. In the first hydrogenation of furfural, 95% yield of furfuryl alcohol was highly selectively produced at 99% conversion of furfural under the mild conditions. For the hydrogenation of levulinic acid, 90% yield of γ-valerolactone was highly selectively produced at 97.8% conversion. Besides, the physical properties of the resulting Cu–Cr catalysts were studied by XRD (X-ray diffraction), EDX (Energy-dispersive X-ray), TEM (Transmission electron microscopy) and XPS (X-ray photoelectron spectroscopy) to reveal their influence on the catalytic performance. Subsequently, different reaction parameters were studied and it was found that Cu 2+ /Cr 3+ ratios (0.5, 1 and 2), reaction temperature (120–220 °C) and hydrogen pressure (35–70 bar) presented important influence on the catalytic activities. In the end, the stability of the Cu–Cr catalysts was also studied. - Highlights: • A noble-metal-free Cu–Cr catalyst was successfully synthesized using metal nitrates. • Cu–Cr catalysts were highly selective hydrogenation of biomass-derived furfural to FA. • Cu–Cr catalysts were efficient for hydrogenation of biomass-derived LA to biofuel GVL. • The physical properties of the resulting Cu–Cr catalysts were systematically studied. • Reaction parameters and stability in the hydrogenation of furfural were studied in details

  16. Characterisation of hydrocarbonaceous overlayers important in metal-catalysed selective hydrogenation reactions

    Energy Technology Data Exchange (ETDEWEB)

    Lennon, David; Warringham, Robbie [School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Guidi, Tatiana [ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Parker, Stewart F., E-mail: stewart.parker@stfc.ac.uk [ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom)

    2013-12-12

    Highlights: • Inelastic neutron scattering spectroscopy of a commercial dehydrogenation catalyst. • The overlayer present on the catalyst is predominantly aliphatic. • A population of strongly hydrogen bonded hydroxyls is also present. - Abstract: The hydrogenation of alkynes to alkenes over supported metal catalysts is an important industrial process and it has been shown that hydrocarbonaceous overlayers are important in controlling selectivity profiles of metal-catalysed hydrogenation reactions. As a model system, we have selected propyne hydrogenation over a commercial Pd(5%)/Al{sub 2}O{sub 3} catalyst. Inelastic neutron scattering studies show that the C–H stretching mode ranges from 2850 to 3063 cm{sup −1}, indicating the mostly aliphatic nature of the overlayer and this is supported by the quantification of the carbon and hydrogen on the surface. There is also a population of strongly hydrogen-bonded hydroxyls, their presence would indicate that the overlayer probably contains some oxygen functionality. There is little evidence for any olefinic or aromatic species. This is distinctly different from the hydrogen-poor overlayers that are deposited on Ni/Al{sub 2}O{sub 3} catalysts during methane reforming.

  17. A compact process for the treatment of olive mill wastewater by combining wet hydrogen peroxide catalytic oxidation and biological techniques

    International Nuclear Information System (INIS)

    Azabou, Samia; Najjar, Wahiba; Bouaziz, Mohamed; Ghorbel, Abdelhamid; Sayadi, Sami

    2010-01-01

    A system based on combined actions of catalytic wet oxidation and microbial technologies for the treatment of highly polluted OMW containing polyphenols was studied. The wet hydrogen peroxide catalytic oxidation (WHPCO) process has been investigated in the semi-batch mode at atmospheric pressure, using aluminium-iron-pillared inter layer clay ((Al-Fe)PILC), under two different catalytic processes: ((Al-Fe)PILC/H 2 O 2 /ultraviolet radiations) at 25 deg. C and ((Al-Fe)PILC/H 2 O 2 ) at 50 deg. C. The results show that raw OMW was resistant to the photocatalytic process. However ((Al-Fe)PILC/H 2 O 2 ), system operating at 50 deg. C reduced considerably the COD, colour and total phenolic contents, and thus decreased the inhibition of the marine photobacteria Vibrio fischeri luminescence by 70%. This study also examined the feasibility of coupling WHPCO and anaerobic digestion treatment. Biomethanisation experiments performed with raw OMW or pre-treated OMW proved that pre-treatments with ((Al-Fe)PILC/H 2 O 2 ) system, for more than 2 h, resulted in higher methane production. Both untreated OMW as well as 2-h pre-treated OMW revealed as toxic to anaerobic bacteria.

  18. Chemiluminescence analyzer of NOx as a high-throughput screening tool in selective catalytic reduction of NO

    International Nuclear Information System (INIS)

    Oh, Kwang Seok; Woo, Seong Ihl

    2011-01-01

    A chemiluminescence-based analyzer of NO x gas species has been applied for high-throughput screening of a library of catalytic materials. The applicability of the commercial NO x analyzer as a rapid screening tool was evaluated using selective catalytic reduction of NO gas. A library of 60 binary alloys composed of Pt and Co, Zr, La, Ce, Fe or W on Al 2 O 3 substrate was tested for the efficiency of NO x removal using a home-built 64-channel parallel and sequential tubular reactor. The NO x concentrations measured by the NO x analyzer agreed well with the results obtained using micro gas chromatography for a reference catalyst consisting of 1 wt% Pt on γ-Al 2 O 3 . Most alloys showed high efficiency at 275 °C, which is typical of Pt-based catalysts for selective catalytic reduction of NO. The screening with NO x analyzer allowed to select Pt-Ce (X) (X=1–3) and Pt–Fe (2) as the optimal catalysts for NO x removal: 73% NO x conversion was achieved with the Pt–Fe (2) alloy, which was much better than the results for the reference catalyst and the other library alloys. This study demonstrates a sequential high-throughput method of practical evaluation of catalysts for the selective reduction of NO.

  19. Carbon Dioxide Hydrogenation into Higher Hydrocarbons and Oxygenates: Thermodynamic and Kinetic Bounds and Progress with Heterogeneous and Homogeneous Catalysis.

    Science.gov (United States)

    Prieto, Gonzalo

    2017-03-22

    Under specific scenarios, the catalytic hydrogenation of CO 2 with renewable hydrogen is considered a suitable route for the chemical recycling of this environmentally harmful and chemically refractory molecule into added-value energy carriers and chemicals. The hydrogenation of CO 2 into C 1 products, such as methane and methanol, can be achieved with high selectivities towards the corresponding hydrogenation product. More challenging, however, is the selective production of high (C 2+ ) hydrocarbons and oxygenates. These products are desired as energy vectors, owing to their higher volumetric energy density and compatibility with the current fuel infrastructure than C 1 compounds, and as entry platform chemicals for existing value chains. The major challenge is the optimal integration of catalytic functionalities for both reductive and chain-growth steps. This Minireview summarizes the progress achieved towards the hydrogenation of CO 2 to C 2+ hydrocarbons and oxygenates, covering both solid and molecular catalysts and processes in the gas and liquid phases. Mechanistic aspects are discussed with emphasis on intrinsic kinetic limitations, in some cases inevitably linked to thermodynamic bounds through the concomitant reverse water-gas-shift reaction, which should be considered in the development of advanced catalysts and processes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Substrate-Directed Catalytic Selective Chemical Reactions.

    Science.gov (United States)

    Sawano, Takahiro; Yamamoto, Hisashi

    2018-05-04

    The development of highly efficient reactions at only the desired position is one of the most important subjects in organic chemistry. Most of the reactions in current organic chemistry are reagent- or catalyst-controlled reactions, and the regio- and stereoselectivity of the reactions are determined by the inherent nature of the reagent or catalyst. In sharp contrast, substrate-directed reaction determines the selectivity of the reactions by the functional group on the substrate and can strictly distinguish sterically and electronically similar multiple reaction sites in the substrate. In this Perspective, three topics of substrate-directed reaction are mainly reviewed: (1) directing group-assisted epoxidation of alkenes, (2) ring-opening reactions of epoxides by various nucleophiles, and (3) catalytic peptide synthesis. Our newly developed synthetic methods with new ligands including hydroxamic acid derived ligands realized not only highly efficient reactions but also pinpointed reactions at the expected position, demonstrating the substrate-directed reaction as a powerful method to achieve the desired regio- and stereoselective functionalization of molecules from different viewpoints of reagent- or catalyst-controlled reactions.

  1. Determination of molybdenum (VI) by its catalytic effect on the oxidation of nile blue by hydrogen peroxide

    International Nuclear Information System (INIS)

    Ensafi, Ali A.; Sadeghie, Majid M.; Alaie-Yazdie, F.

    1998-01-01

    A spectrophotometric reaction rate method for the determination of molybdenum is described, based on its catalytic effect on the oxidation of nile blue by hydrogen peroxide. The decrease in absorbance of nile blue with time from 0.5 to 4 min at 590 nm is proportional to the concentration of Mo(VI) over the range 0.022-1000 μg/ml. The limit of detection of molybdenum(VI) is 0.008 μg/ml. The precision and the effect of more than forty ions are reported. The procedure has been successfully applied for the determination of molybdenum (VI) in plant materials and steel samples. (author)

  2. Amorphous saturated Cerium-Tungsten-Titanium oxide nanofibers catalysts for NOx selective catalytic reaction

    DEFF Research Database (Denmark)

    Dankeaw, Apiwat; Gualandris, Fabrizio; Silva, Rafael Hubert

    2018-01-01

    experiments at the best working conditions (dry and in absence of SO2) are performed to characterize the intrinsic catalytic behavior of the new catalysts. At temeprature lower than 300 °C, superior NOx conversion properties of the amorphous TiOx nanofibers over the crystallized TiO2 (anatase) nanofibers......Herein for the first time, Ce0.184W0.07Ti0.748O2-δ nanofibers are prepared by electrospinning to serve as catalyst in the selective catalytic reduction (SCR) process. The addition of cerium is proven to inhibit crystallization of TiO2, yielding an amorphous TiOx-based solid solution stable up...... temperatures (catalysts in a wide range...

  3. Influence of Pt nanoparticles modified by La and Ce oxides on catalytic dehydrocyclization of n-alkanes

    Directory of Open Access Journals (Sweden)

    A.H. Samia

    2015-06-01

    Full Text Available Catalytic reforming accounts for a large share of the world’s gasoline production, it is the most important source of aromatics for the petrochemical industry. In addition, reforming of hydrocarbon on the dual-function catalysts has been found to form fundamentally different products in hydrogen diluents. Typical catalysts employed for this reforming process are Pt/Al2O3 and Pt-M/Al2O3, M being the promoter. These solids are characterized by both acid and metal functions which catalyze dehydrocyclization, dehydrogenation, isomerization and cracking processes. In this regard, information about cerium and lanthanum, as promoters, is hardly revealed. The present work aims to study the performance of Pt/Al2O3 catalysts modified by lanthanum or cerium during the conversion of cyclohexane, n-hexane and n-heptane. Catalytic activities of the prepared catalysts were tested using a micro catalytic pulse technique. Physicochemical characterization of the solid catalysts such as, surface area (SBET, Fourier transform infrared (FTIR, differential scanning calorimetry (DSC, thermogravimetric analysis (TGA, hydrogen-temperature programed reduction (H2-TPR, hydrogen-temperature-programed desorption (H2-TPD, CO2-TPD, NH3-TPD, high resolution transmission electron microscopy (HRTEM and X-ray diffraction (XRD were depicted. Results indicated clearly that Pt/Al2O3 catalyst is selective toward dehydrogenation to benzene which could be explained as due to the decrease in the active acid sites and the comparative segregation of the alumina support especially at 3% load of CeO. The presence of La2O3 in the Pt/Al2O3 catalyst promotes aromatization of n-hexane and n-heptane, also the dehydrocyclization of n-hexane is more difficult than that of n-heptane. Thus, modification of the Pt/Al2O3 catalyst by La, resulted in a more active and selective reforming catalyst.

  4. Hydrogen gas detector

    International Nuclear Information System (INIS)

    Bohl, T.L.

    1982-01-01

    A differential thermocouple hydrogen gas detector has one thermocouple junction coated with an activated palladium or palladium-silver alloy catalytic material to allow heated hydrogen gas to react with the catalyst and raise the temperature of that junction. The other juction is covered with inert glass or epoxy resin, and does not experience a rise in temperature in the presence of hydrogen gas. A coil heater may be mounted around the thermocouple junctions to heat the hydrogen, or the gas may be passed through a heated block prior to exposing it to the thermocouples

  5. A novel core–shell nanocomposite Ni–Ca@mSiO{sub 2} for benzophenone selective hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Han, Xue; Feng, Wenhui; Chu, Xiaoning; Chu, Hailong; Niu, Libo; Bai, Guoyi, E-mail: baiguoyi@hotmail.com [Hebei University, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science (China)

    2017-02-15

    A novel core–shell nanocomposite Ni–Ca@mSiO{sub 2} was first prepared by a modified Stöber method in this paper. It has a core–shell structure with Ni (about 8 nm in diameter) and Ca as the cores and mesoporous silica as the outer shell, as proven by the transmission electron microscopy. This nanocomposite exhibited good catalytic performance in the selective hydrogenation of benzophenone, with 96.1% conversion and 94.9% selectivity for benzhydrol under relatively mild reaction conditions. It was demonstrated that addition of small amounts of alkaline Ca can not only markedly improve the dispersion of the active species but also tune the acid–base property of this nanocomposite, resulting in the efficient suppression of benzhydrol dehydration to achieve a high selectivity. Furthermore, the core–shell nanocomposite Ni–Ca@mSiO{sub 2} can be recycled four runs without appreciable loss of its initial activity, more stable than the traditional supported nanocatalyst Ni–Ca/mSiO{sub 2}. It was suggested that the outer mesoporous silica shell of Ni–Ca@mSiO{sub 2} can prevent both the aggregation and the leaching of the active Ni species, accounting for its relatively good stability.

  6. Tuning the synthesis of platinum-copper nanoparticles with a hollow core and porous shell for the selective hydrogenation of furfural to furfuryl alcohol.

    Science.gov (United States)

    Huang, Shuangshuang; Yang, Nating; Wang, Shibin; Sun, Yuhan; Zhu, Yan

    2016-08-07

    Pt-Cu nanoparticles constructed with a hollow core and porous shell have been synthesized in which Pt-Cu cages with multiporous outermost shells are formed at the initial stage and then the Pt and Cu atoms in solution continuously fed these hollow-core of cages by passing through the porous tunnels of the outermost shells, finally leading to the formation of hollow structures with different sizes. Furthermore, these hollow-core Pt-Cu nanoparticles are more effective than the solid-core Pt-Cu nanoparticles for the catalytic hydrogenation of furfural toward furfuryl alcohol. The former can achieve almost 100% conversion of furfural with 100% selectivity toward the alcohol.

  7. Contribution to the study of catalytic hydrogen-deuterium exchange between hydrogen and hydrocarbons

    International Nuclear Information System (INIS)

    Ravoire, J.

    1958-01-01

    The hydrogen-deuterium exchange between molecular hydrogen and hydrocarbons over a platinum and charcoal catalyst was studied in a static system. The change in isotopic composition of molecular hydrogen was followed by a thermal conductivity method. Cyclo-pentane and cyclohexane were chosen because of their stability. A reversible inactivation of the catalyst was observed with both hydrocarbons. The reasons for this inactivation are unknown but it was shown that reactivation led to satisfactory reproducibility. A kinetic study was done with cyclohexane in the range 30 to 160 deg. C, and 40 to 360 mm for the pressure of hydrogen, and 10 to 70 mm for the pressure of cyclohexane. The order of the reaction with respect to cyclohexane pressure is always close to zero; the order with respect to that of hydrogen is 0.5 above 100 deg. C. It decreases with increasing temperature and becomes negative (-0.5 at 30 deg. C), characterizing an inhibition by hydrogen. At the same time, the apparent activation energy goes from 6 to 13 kcal/mole. (author) [fr

  8. Green technology for conversion of renewable hydrocarbon based on plasma-catalytic approach

    Science.gov (United States)

    Fedirchyk, Igor; Nedybaliuk, Oleg; Chernyak, Valeriy; Demchina, Valentina

    2016-09-01

    The ability to convert renewable biomass into fuels and chemicals is one of the most important steps on our path to green technology and sustainable development. However, the complex composition of biomass poses a major problem for established conversion technologies. The high temperature of thermochemical biomass conversion often leads to the appearance of undesirable byproducts and waste. The catalytic conversion has reduced yield and feedstock range. Plasma-catalytic reforming technology opens a new path for biomass conversion by replacing feedstock-specific catalysts with free radicals generated in the plasma. We studied the plasma-catalytic conversion of several renewable hydrocarbons using the air plasma created by rotating gliding discharge. We found that plasma-catalytic hydrocarbon conversion can be conducted at significantly lower temperatures (500 K) than during the thermochemical ( 1000 K) and catalytic (800 K) conversion. By using gas chromatography, we determined conversion products and found that conversion efficiency of plasma-catalytic conversion reaches over 85%. We used obtained data to determine the energy yield of hydrogen in case of plasma-catalytic reforming of ethanol and compared it with other plasma-based hydrogen-generating systems.

  9. Modeling and Simulation of the Hydrogenation of α-Methylstyrene on Catalytically Active Metal Foams as Tubular Reactor Packing

    Directory of Open Access Journals (Sweden)

    Farzad Lali

    2016-01-01

    Full Text Available This work presents a one-dimensional reactor model for a tubular reactor packed with a catalytically active foam packing with a pore density of 30 PPI in cocurrent upward flow in the example of hydrogenation reaction of α-methylstyrene to cumene. This model includes material, enthalpy, and momentum balances as well as continuity equations. The model was solved within the parameter space applied for experimental studies under assumption of a bubbly flow. The method of orthogonal collocation on finite elements was applied. For isothermal and polytropic processes and steady state conditions, axial profiles for concentration, temperature, fluid velocities, pressure, and liquid holdup were computed and the conversions for various gas and liquid flow rates were validated with experimental results. The obtained results were also compared in terms of space time yield and catalytic activity with experimental results and stirred tank and also with random packed bed reactor. The comparison shows that the application of solid foams as reactor packing is advantageous compared to the monolithic honeycombs and random packed beds.

  10. Effect of hydrogen on the growth and morphology of single wall carbon nanotubes synthesized on a Fe-Mo/MgO catalytic system

    Energy Technology Data Exchange (ETDEWEB)

    Biris, Alexandru R. [National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj Napoca, RO-3400 (Romania)], E-mail: biris@oc1.itim-cj.ro; Li Zhongrui; Dervishi, Enkeleda [Applied Science Department, University of Arkansas at Little Rock, 2801 S. University Ave, Little Rock, AR 72204 (United States); Nanotechnology Center, University of Arkansas at Little Rock, 2801 S. University Ave, Little Rock, AR 72204 (United States); Lupu, Dan [National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj Napoca, RO-3400 (Romania); Xu Yang; Saini, Viney [Applied Science Department, University of Arkansas at Little Rock, 2801 S. University Ave, Little Rock, AR 72204 (United States); Nanotechnology Center, University of Arkansas at Little Rock, 2801 S. University Ave, Little Rock, AR 72204 (United States); Watanabe, Fumiya [Nanotechnology Center, University of Arkansas at Little Rock, 2801 S. University Ave, Little Rock, AR 72204 (United States); Biris, Alexandru S. [Applied Science Department, University of Arkansas at Little Rock, 2801 S. University Ave, Little Rock, AR 72204 (United States); Nanotechnology Center, University of Arkansas at Little Rock, 2801 S. University Ave, Little Rock, AR 72204 (United States)], E-mail: asbiris@ualr.edu

    2008-04-21

    Single wall carbon nanotubes were synthesized from thermal pyrolysis of methane on a Fe-Mo/MgO catalyst by radio frequency catalytic chemical vapor deposition (RF-CVD) using argon as a carrier gas. Controlled amounts of hydrogen (H{sub 2}/CH{sub 4}=0-1 v/v) were introduced in separate experiments along with the carbon source. The properties and morphology of the synthesized single wall carbon nanotubes were monitored by transmission electron microscopy, Raman scattering, and thermogravimetric analysis. The nanotubes with the highest crystallinity were obtained with H{sub 2}/CH{sub 4}=0.6. By monitoring the Radial Breathing Modes present in the Raman spectra of the single-wall carbon nanotube samples, the variation of the structural and morphological properties of the carbon nanotubes with the flow level of hydrogen, reflect changes of the catalyst systems induced by the presence of hydrogen.

  11. Catalytic fast pyrolysis of durian rind using silica-alumina catalyst: Effects of pyrolysis parameters.

    Science.gov (United States)

    Tan, Y L; Abdullah, A Z; Hameed, B H

    2018-05-18

    Silica-alumina catalyst was prepared and used in the catalytic fast pyrolysis of durian rind in a drop-type two-stage reactor. The effects of catalytic temperature (400 °C-600 °C) and catalyst-to-durian rind ratio (1:30-3:30) were evaluated. Bio-oil yield was increased with increased catalytic temperature due to considerable dehydration process, but it was reduced with high catalyst loading due to the overcracking of organics into light gases. Silica-alumina catalyst possessed good selectivity and the products changed according to the temperature. The major components in bio-oil were hydrocarbons, furan derivatives, and aromatic compounds at 400 °C, 500 °C, and 600 °C, respectively. The hydrogen and carbon contents of bio-oil were reduced with high catalyst loading due to the overcracking of organics, and the deoxygenation process became unfavorable. The silica-alumina catalyst worked well in catalytic fast pyrolysis of durian rind, and the condition may be adjusted based on the desired products. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Catalytic ozonation not relying on hydroxyl radical oxidation: A selective and competitive reaction process related to metal-carboxylate complexes

    KAUST Repository

    Zhang, Tao

    2014-01-01

    Catalytic ozonation following non-hydroxyl radical pathway is an important technique not only to degrade refractory carboxylic-containing organic compounds/matter but also to avoid catalyst deactivation caused by metal-carboxylate complexation. It is unknown whether this process is effective for all carboxylates or selective to special molecule structures. In this work, the selectivity was confirmed using O3/(CuO/CeO2) and six distinct ozone-resistant probe carboxylates (i.e., acetate, citrate, malonate, oxalate, pyruvate and succinate). Among these probe compounds, pyruvate, oxalate, and citrate were readily degraded following the rate order of oxalate>citrate>pyruvate, while the degradation of acetate, malonate, and succinate was not promoted. The selectivity was independent on carboxylate group number of the probe compounds and solution pH. Competitive degradation was observed for carboxylate mixtures following the preference order of citrate, oxalate, and finally pyruvate. The competitive degradation was ascribed to competitive adsorption on the catalyst surface. It was revealed that the catalytically degradable compounds formed bidentate chelating or bridging complexes with surface copper sites of the catalyst, i.e., the active sites. The catalytically undegradable carboxylates formed monodentate complexes with surface copper sites or just electrostatically adsorbed on the catalyst surface. The selectivity, relying on the structure of surface metal-carboxylate complex, should be considered in the design of catalytic ozonation process. © 2013 Elsevier B.V.

  13. Electroless Nickel-Based Catalyst for Diffusion Limited Hydrogen Generation through Hydrolysis of Borohydride

    Directory of Open Access Journals (Sweden)

    Shannon P. Anderson

    2013-07-01

    Full Text Available Catalysts based on electroless nickel and bi-metallic nickel-molybdenum nanoparticles were synthesized for the hydrolysis of sodium borohydride for hydrogen generation. The catalysts were synthesized by polymer-stabilized Pd nanoparticle-catalyzation and activation of Al2O3 substrate and electroless Ni or Ni-Mo plating of the substrate for selected time lengths. Catalytic activity of the synthesized catalysts was tested for the hydrolyzation of alkaline-stabilized NaBH4 solution for hydrogen generation. The effects of electroless plating time lengths, temperature and NaBH4 concentration on hydrogen generation rates were analyzed and discussed. Compositional analysis and surface morphology were carried out for nano-metallized Al2O3 using Scanning Electron Micrographs (SEM and Energy Dispersive X-Ray Microanalysis (EDAX. The as-plated polymer-stabilized electroless nickel catalyst plated for 10 min and unstirred in the hydrolysis reaction exhibited appreciable catalytic activity for hydrolysis of NaBH4. For a zero-order reaction assumption, activation energy of hydrogen generation using the catalyst was estimated at 104.6 kJ/mol. Suggestions are provided for further work needed prior to using the catalyst for portable hydrogen generation from aqueous alkaline-stabilized NaBH4 solution for fuel cells.

  14. Selective production of hydrogen peroxide and oxidation of hydrogen sulfide in an unbiased solar photoelectrochemical cell

    DEFF Research Database (Denmark)

    Zong, Xu; Chen, Hongjun; Seger, Brian

    2014-01-01

    A solar-to-chemical conversion process is demonstrated using a photoelectrochemical cell without external bias for selective oxidation of hydrogen sulfide (H2S) to produce hydrogen peroxide (H2O2) and sulfur (S). The process integrates two redox couples anthraquinone/anthrahydroquinone and I−/I3......−, and conceptually illustrates the remediation of a waste product for producing valuable chemicals....

  15. Construction of Polarized Carbon-Nickel Catalytic Surfaces for Potent, Durable, and Economic Hydrogen Evolution Reactions.

    Science.gov (United States)

    Zhou, Min; Weng, Qunhong; Popov, Zakhar I; Yang, Yijun; Antipina, Liubov Yu; Sorokin, Pavel B; Wang, Xi; Bando, Yoshio; Golberg, Dmitri

    2018-05-22

    Electrocatalytic hydrogen evolution reaction (HER) in alkaline solution is hindered by its sluggish kinetics toward water dissociation. Nickel-based catalysts, as low-cost and effective candidates, show great potentials to replace platinum (Pt)-based materials in the alkaline media. The main challenge regarding this type of catalysts is their relatively poor durability. In this work, we conceive and construct a charge-polarized carbon layer derived from carbon quantum dots (CQDs) on Ni 3 N nanostructure (Ni 3 N@CQDs) surfaces, which simultaneously exhibit durable and enhanced catalytic activity. The Ni 3 N@CQDs shows an overpotential of 69 mV at a current density of 10 mA cm -2 in a 1 M KOH aqueous solution, lower than that of Pt electrode (116 mV) at the same conditions. Density functional theory (DFT) simulations reveal that Ni 3 N and interfacial oxygen polarize charge distributions between originally equal C-C bonds in CQDs. The partially negatively charged C sites become effective catalytic centers for the key water dissociation step via the formation of new C-H bond (Volmer step) and thus boost the HER activity. Furthermore, the coated carbon is also found to protect interior Ni 3 N from oxidization/hydroxylation and therefore guarantees its durability. This work provides a practical design of robust and durable HER electrocatalysts based on nonprecious metals.

  16. Validation of the catalytic properties of Cu-Os/13X using single fixed bed reactor in selective catalytic reduction of NO

    International Nuclear Information System (INIS)

    Oh, Kwang Seok; Woo, Seong Ihl

    2007-01-01

    Catalytic decomposition of NO over Cu-Os/13X has been carried out in a tubular fixed bed reactor at atmospheric pressure and the results were compared with literature data performed by high-throughput screening (HTS). The activity and durability of Cu-Os/13X prepared by conventional ion-exchange method have been investigated in the presence of H 2 O and SO 2 . It was found that Cu-Os/13X prepared by ion-exchange shows a high activity in a wide temperature range in selective catalytic reduction (SCR) of NO with C 3 H 6 compared to Cu/13X, proving the existence of more NO adsorption site on Cu-Os/13X. However, Cu-Os/13X exhibited low activity in the presence of water, and was quite different from the result reported in literature. SO 2 resistance is also low and does not recover its original activity when the SO 2 was blocked in the feed gas stream. This result suggested that catalytic activity between combinatorial screening and conventional testing should be compared to confirm the validity of high-throughput screening

  17. Palladium nanoparticles supported on fibrous-structured silica nanospheres (KCC-1): An efficient and selective catalyst for the transfer hydrogenation of alkenes

    KAUST Repository

    Qureshi, Ziyauddin; Sarawade, Pradip; Albert, Matthias; D'Elia, Valerio; Hedhili, Mohamed Nejib; Kö hler, Klaus; Basset, Jean-Marie

    2015-01-01

    An efficient palladium catalyst supported on fibrous silica nanospheres (KCC-1) has been developed for the hydrogenation of alkenes and α,β-unsaturated carbonyl compounds, providing excellent yields of the corresponding products with remarkable chemoselectivity. Comparison (high-resolution TEM, chemisorption) with analogous mesoporous (MCM-41, SBA-15) silica-supported Pd nanocatalysts prepared under identical conditions, demonstrates the advantage of employing the fibrous KCC-1 morphology versus traditional supports because it ensures superior accessibility of the catalytically active cores along with excellent Pd dispersion at high metal loading. This morphology ultimately leads to higher catalytic activity for the KCC-1-supported nanoparticles. The protocol developed for hydrogenation is advantageous and environmentally benign owing to the use of HCOOH as a source of hydrogen, water as a solvent, and because of efficient catalyst recyclability and durability. The recycled catalyst has been analyzed by XPS spectroscopy and TEM showing only minor changes in the oxidation state of Pd and in the morphology after the reaction, thus confirming the robustness of the catalyst.

  18. Palladium nanoparticles supported on fibrous-structured silica nanospheres (KCC-1): An efficient and selective catalyst for the transfer hydrogenation of alkenes

    KAUST Repository

    Qureshi, Ziyauddin

    2015-01-09

    An efficient palladium catalyst supported on fibrous silica nanospheres (KCC-1) has been developed for the hydrogenation of alkenes and α,β-unsaturated carbonyl compounds, providing excellent yields of the corresponding products with remarkable chemoselectivity. Comparison (high-resolution TEM, chemisorption) with analogous mesoporous (MCM-41, SBA-15) silica-supported Pd nanocatalysts prepared under identical conditions, demonstrates the advantage of employing the fibrous KCC-1 morphology versus traditional supports because it ensures superior accessibility of the catalytically active cores along with excellent Pd dispersion at high metal loading. This morphology ultimately leads to higher catalytic activity for the KCC-1-supported nanoparticles. The protocol developed for hydrogenation is advantageous and environmentally benign owing to the use of HCOOH as a source of hydrogen, water as a solvent, and because of efficient catalyst recyclability and durability. The recycled catalyst has been analyzed by XPS spectroscopy and TEM showing only minor changes in the oxidation state of Pd and in the morphology after the reaction, thus confirming the robustness of the catalyst.

  19. Development and Improvement of Devices for Hydrogen Generation and Oxidation in Water Detritiation Facility Based on CECE Technology

    International Nuclear Information System (INIS)

    Rozenkevich, M.; Andreev, B.; Magomedbekov, E.; Park, Yu.; Sakharovsky, Yu.; Perevezentsev, A.

    2005-01-01

    Water detritiation facility based on CECE (Combined Electrolysis and Catalytic Exchange) technology needs an electrolyser for water conversion to hydrogen. Use of a conventional alkali electrolyser requires a very deep purification of hydrogen stream from alkali prior to injection to LPCE (Liquid Phase Catalytic Exchange) column. In some applications conversion of detritiated hydrogen back into water is required. This is usually performed via hydrogen catalytic oxidation in a recombiner. This paper presents results of study to improve hydrogen and oxygen purification for alkali electrolysers and develop a hydrogen recombiner based on use of hydrophobic catalyst

  20. Fluid phase equilibria of the reaction mixture during the selective hydrogenation of 2-butenal in dense carbon dioxide

    DEFF Research Database (Denmark)

    Musko, Nikolai; Jensen, Anker Degn; Baiker, Alfons

    2012-01-01

    Knowledge of the phase behaviour and composition is of paramount importance for understanding multiphase reactions. We have investigated the effect of the phase behaviour in the palladium-catalysed selective hydrogenation of 2-butenal to saturated butanal in dense carbon dioxide. The reactions were...... cell. The results of the catalytic experiments showed that small amounts of carbon dioxide added to the system significantly decrease the conversion, whereas at higher loadings of CO2 the reaction rate gradually increases reaching a maximum. The CPA calculations revealed that this maximum is achieved...... performed using a 5wt% Pd on activated carbon in custom-designed high pressure autoclaves at 323K. The Cubic-Plus-Association (CPA) equation of state was employed to model the phase behaviour of the experimentally studied systems. CPA binary interaction parameters were estimated based on the experimental...

  1. Catalytic gasification of oil-shales

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, A.; Avakyan, T. [I.M. Gubkin Russian State Univ. of Oil and Gas, Moscow (Russian Federation); Strizhakova, Yu. [Samara State Univ. (Russian Federation)

    2012-07-01

    Nowadays, the problem of complex usage of solid fossil fuels as raw materials for obtaining of motor fuels and chemical products is becoming increasingly important. A one of possible solutions of the problem is their gasification with further processing of gaseous and liquid products. In this work we have investigated the process of thermal and catalytic gasification of Baltic and Kashpir oil-shales. We have shown that, as compared with non-catalytic process, using of nickel catalyst in the reaction increases the yield of gas, as well as hydrogen content in it, and decreases the amount of liquid products. (orig.)

  2. Selective Reduction of Nitrite to Nitrogen with Carbon-Supported Pd-AOT Nanoparticles

    NARCIS (Netherlands)

    Perez-Coronado, A. M.; Calvo, L.; Baeza, J.A.; Palomar, J.; Lefferts, L.; Rodriguez, J-C.; Gilarranz, M.A.

    2017-01-01

    The catalytic reduction of nitrite in water with hydrogen has been studied using a new strategy to control selectivity. The catalysts used are based on size-controlled Pd-AOT nanoparticles, synthesized via sodium bis[2-ethylhexyl] sulfosuccinate (AOT)/isooctane reverse microemulsion, supported on

  3. A study on the hydrogen recombination rates of catalytic recombiners and deliberate ignition

    International Nuclear Information System (INIS)

    Fineschi, F.; Bazzichi, M.; Carcassi, M.

    1994-01-01

    A study is being carried out by the Department of Nuclear and Mechanical Constructions (DCMN) at the University of Pisa on catalytic recombiners and on deliberately induced weak deflagration. The recombination rates of different types of catalytic devices were obtained from a thorough analysis of published experimental data. The main parameter that affects the effectiveness of these devices seems to be the molar density of the deficiency reactant rather than its volumetric concentration. The recombination rate of weak deflagrations in vented compartments has been assessed with experimental tests carried out in a small scale glass vessel. Through a computerized system of analysis of video recordings of the deflagrations, the flame surface and the burned gas volume were obtained as functions of time. Although approximations are inevitable, the method adopted to identify the position of the flame during propagation is more reliable than other non-visual methods (thermocouples and ion-probes). It can only easily be applied to vented weak deflagrations, i.e. when the hydrogen concentration is far from stoichiometric conditions and near to flammability limits, because the pressurization has to be limited due to the low mechanical resistance of the glass. The values of flame surface and burned gas volume were used as inputs for a computer code to calculate the recombining rate, the burning velocity and the pressure transient in the experimental test. The code is being validated with a methodology principally based on a comparison of the measurements of pressure with the calculated values. The research gave some very interesting results on a small scale which should in the future be compared with large scale data

  4. Metal–Organic Frameworks Stabilize Mono(phosphine)–Metal Complexes for Broad-Scope Catalytic Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Sawano, Takahiro; Lin, Zekai; Boures, Dean; An, Bing; Wang, Cheng; Lin, Wenbin (UC); (Xiamen)

    2016-08-10

    Mono(phosphine)–M (M–PR3; M = Rh and Ir) complexes selectively prepared by postsynthetic metalation of a porous triarylphosphine-based metal–organic framework (MOF) exhibited excellent activity in the hydrosilylation of ketones and alkenes, the hydrogenation of alkenes, and the C–H borylation of arenes. The recyclable and reusable MOF catalysts significantly outperformed their homogeneous counterparts, presumably via stabilizing M–PR3 intermediates by preventing deleterious disproportionation reactions/ligand exchanges in the catalytic cycles.

  5. Numerical simulation of hydrogen-air reacting flows in rectangular channels with catalytic surface reactions

    Science.gov (United States)

    Amano, Ryoichi S.; Abou-Ellail, Mohsen M.; Elhaw, Samer; Saeed Ibrahim, Mohamed

    2013-09-01

    In this work a prediction was numerically modeled for a catalytically stabilized thermal combustion of a lean homogeneous mixture of air and hydrogen. The mixture flows in a narrow rectangular channel lined with a thin coating of platinum catalyst. The solution using an in-house code is based on the steady state partial differential continuity, momentum and energy conservation equations for the mixture and species involved in the reactions. A marching technique is used along the streamwise direction to solve the 2-D plane-symmetric laminar flow of the gas. Two chemical kinetic reaction mechanisms were included; one for the gas phase reactions consisting of 17 elementary reactions; of which 7 are forward-backward reactions while the other mechanism is for the surface reactions—which are the prime mover of the combustion under a lean mixture condition—consisting of 16 elementary reactions. The results were compared with a former congruent experimental work where temperature was measured using thermocouples, while using PLIF laser for measuring water and hydrogen mole fractions. The comparison showed good agreement. More results for the velocities, mole fractions of other species were carried out across the transverse and along the streamwise directions providing a complete picture of overall mechanism—gas and surface—and on the production, consumptions and travel of the different species. The variations of the average OH mole fraction with the streamwise direction showed a sudden increase in the region where the ignition occurred. Also the rate of reactions of the entire surface species were calculated along the streamwise direction and a surface water production flux equation was derived by calculating the law of mass action's constants from the concentrations of hydrogen, oxygen and the rate of formation of water near the surface.

  6. Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide

    KAUST Repository

    Cabán-Acevedo, Miguel

    2015-09-14

    The scalable and sustainable production of hydrogen fuel through water splitting demands efficient and robust Earth-abundant catalysts for the hydrogen evolution reaction (HER). Building on promising metal compounds with high HER catalytic activity, such as pyrite structure cobalt disulphide (CoS 2), and substituting non-metal elements to tune the hydrogen adsorption free energy could lead to further improvements in catalytic activity. Here we present a combined theoretical and experimental study to establish ternary pyrite-type cobalt phosphosulphide (CoPS) as a high-performance Earth-abundant catalyst for electrochemical and photoelectrochemical hydrogen production. Nanostructured CoPS electrodes achieved a geometrical catalytic current density of 10 mA cm at overpotentials as low as 48mV, with outstanding long-term operational stability. Integrated photocathodes of CoPS on n -p-p silicon micropyramids achieved photocurrents up to 35 mA cm at 0 V versus the reversible hydrogen electrode (RHE), onset photovoltages as high as 450 mV versus RHE, and the most efficient solar-driven hydrogen generation from Earth-abundant systems.

  7. Catalytic detritiation of water

    International Nuclear Information System (INIS)

    Rogers, M.L.; Lamberger, P.H.; Ellis, R.E.; Mills, T.K.

    1977-01-01

    A pilot-scale system has been used at Mound Laboratory to investigate the catalytic detritiation of water. A hydrophobic, precious metal catalyst is used to promote the exchange of tritium between liquid water and gaseous hydrogen at 60 0 C. Two columns are used, each 7.5 m long by 2.5 cm ID and packed with catalyst. Water flow is 5-10 cm 3 /min and countercurrent hydrogen flow is 9,000-12,000 cm 3 /min. The equipment, except for the columns, is housed in an inert atmosphere glovebox and is computer controlled. The hydrogen is obtained by electrolysis of a portion of the water stream. Enriched gaseous tritium is withdrawn for further enrichment. A description of the system is included along with an outline of its operation. Recent experimental data are discussed

  8. Hydrogen Bonds and Life in the Universe

    Directory of Open Access Journals (Sweden)

    Giovanni Vladilo

    2018-01-01

    Full Text Available The scientific community is allocating more and more resources to space missions and astronomical observations dedicated to the search for life beyond Earth. This experimental endeavor needs to be backed by a theoretical framework aimed at defining universal criteria for the existence of life. With this aim in mind, we have explored which chemical and physical properties should be expected for life possibly different from the terrestrial one, but similarly sustained by genetic and catalytic molecules. We show that functional molecules performing genetic and catalytic tasks must feature a hierarchy of chemical interactions operating in distinct energy bands. Of all known chemical bonds and forces, only hydrogen bonds are able to mediate the directional interactions of lower energy that are needed for the operation of genetic and catalytic tasks. For this reason and because of the unique quantum properties of hydrogen bonding, the functional molecules involved in life processes are predicted to have extensive hydrogen-bonding capabilities. A molecular medium generating a hydrogen-bond network is probably essential to support the activity of the functional molecules. These hydrogen-bond requirements constrain the viability of hypothetical biochemistries alternative to the terrestrial one, provide thermal limits to life molecular processes, and offer a conceptual framework to define a transition from a “covalent-bond stage” to a “hydrogen-bond stage” in prebiotic chemistry.

  9. Hydrogen Bonds and Life in the Universe

    Science.gov (United States)

    2018-01-01

    The scientific community is allocating more and more resources to space missions and astronomical observations dedicated to the search for life beyond Earth. This experimental endeavor needs to be backed by a theoretical framework aimed at defining universal criteria for the existence of life. With this aim in mind, we have explored which chemical and physical properties should be expected for life possibly different from the terrestrial one, but similarly sustained by genetic and catalytic molecules. We show that functional molecules performing genetic and catalytic tasks must feature a hierarchy of chemical interactions operating in distinct energy bands. Of all known chemical bonds and forces, only hydrogen bonds are able to mediate the directional interactions of lower energy that are needed for the operation of genetic and catalytic tasks. For this reason and because of the unique quantum properties of hydrogen bonding, the functional molecules involved in life processes are predicted to have extensive hydrogen-bonding capabilities. A molecular medium generating a hydrogen-bond network is probably essential to support the activity of the functional molecules. These hydrogen-bond requirements constrain the viability of hypothetical biochemistries alternative to the terrestrial one, provide thermal limits to life molecular processes, and offer a conceptual framework to define a transition from a “covalent-bond stage” to a “hydrogen-bond stage” in prebiotic chemistry. PMID:29301382

  10. Hydrogen Bonds and Life in the Universe.

    Science.gov (United States)

    Vladilo, Giovanni; Hassanali, Ali

    2018-01-03

    The scientific community is allocating more and more resources to space missions and astronomical observations dedicated to the search for life beyond Earth. This experimental endeavor needs to be backed by a theoretical framework aimed at defining universal criteria for the existence of life. With this aim in mind, we have explored which chemical and physical properties should be expected for life possibly different from the terrestrial one, but similarly sustained by genetic and catalytic molecules. We show that functional molecules performing genetic and catalytic tasks must feature a hierarchy of chemical interactions operating in distinct energy bands. Of all known chemical bonds and forces, only hydrogen bonds are able to mediate the directional interactions of lower energy that are needed for the operation of genetic and catalytic tasks. For this reason and because of the unique quantum properties of hydrogen bonding, the functional molecules involved in life processes are predicted to have extensive hydrogen-bonding capabilities. A molecular medium generating a hydrogen-bond network is probably essential to support the activity of the functional molecules. These hydrogen-bond requirements constrain the viability of hypothetical biochemistries alternative to the terrestrial one, provide thermal limits to life molecular processes, and offer a conceptual framework to define a transition from a "covalent-bond stage" to a "hydrogen-bond stage" in prebiotic chemistry.

  11. Improving catalytic selectivity through control of adsorption orientation

    Science.gov (United States)

    Pang, Simon H.

    In this thesis, we present an investigation, starting from surface science experiments, leading to design of supported catalysts, of how adsorption orientation can be used to affect reaction selectivity of highly functional molecules. The surface chemistry of furfuryl alcohol and benzyl alcohol and their respective aldehydes was studied on a Pd(111) single-crystal surface under ultra-high vacuum conditions. Temperature-programmed desorption experiments showed that synergistic chemistry existed between the aromatic ring and the oxygen-containing functional group, each allowing the other to participate in reaction pathways that a monofunctional molecule could not. Most important of these was a deoxygenation reaction that occurred more readily when the surface was crowded by the highest exposures. High-resolution electron energy loss spectroscopy revealed that at these high exposures, molecules were oriented upright on the surface, with the aromatic function extending into vacuum. In contrast, at low exposures, molecules were oriented flat on the surface. The upright adsorption geometry was correlated with deoxygenation, whereas the flat-lying geometry was correlated with decarbonylation. The insight gained from surface science experiments was utilized in catalyst design. Self-assembled monolayers of alkanethiolates were used to systematically reduce the average surface ensemble size, and the reaction selectivity was tracked. When a sparsely-packed monolayer was used, such as one formed by 1-adamantanethiol, the reactant furfural was still able to lie flat on the surface and the reaction selectivity was similar to that of the uncoated catalyst. However, when a densely-packed monolayer, formed by 1-octadecanethiol, was used, furfural was not able to adsorb flat on the surface and instead adopted an upright conformation, leading to a drastic increase in aldehyde hydrogenation and hydrodeoxygenation reaction selectivity. Using an even higher sulfur coverage from a

  12. Mechanical alloying of a hydrogenation catalyst used for the remediation of contaminated compounds

    Science.gov (United States)

    Quinn, Jacqueline W. (Inventor); Clausen, Christian A. (Inventor); Geiger, Cherie L. (Inventor); Aitken, Brian S. (Inventor)

    2012-01-01

    A hydrogenation catalyst including a base material coated with a catalytic metal is made using mechanical milling techniques. The hydrogenation catalysts are used as an excellent catalyst for the dehalogenation of contaminated compounds and the remediation of other industrial compounds. Preferably, the hydrogenation catalyst is a bimetallic particle including zero-valent metal particles coated with a catalytic material. The mechanical milling technique is simpler and cheaper than previously used methods for producing hydrogenation catalysts.

  13. Metal-Free Catalytic Asymmetric Fluorination of Keto Esters Using a Combination of Hydrogen Fluoride (HF) and Oxidant: Experiment and Computation

    KAUST Repository

    Pluta, Roman

    2018-02-09

    A chiral iodoarene organocatalyst for the catalytic asymmetric fluorination has been developed. The catalyst was used in the asymmetric fluorination of carbonyl compounds, providing the products with a quaternary stereocenter with high enantioselectivities. Chiral hypervalent iodine difluoride intermediates were generated in situ by treatment of the catalyst with an oxidant and hydrogen fluoride as fluoride source. As such, the α-fluorination of a carbonyl compound was achieved with a nucleophilic fluorine source. A combined computational and experimental approach provided insight into the reaction mechanism and the origin of enantioselectivity.

  14. Metal-Free Catalytic Asymmetric Fluorination of Keto Esters Using a Combination of Hydrogen Fluoride (HF) and Oxidant: Experiment and Computation

    KAUST Repository

    Pluta, Roman; Krach, Patricia E.; Cavallo, Luigi; Falivene, Laura; Rueping, Magnus

    2018-01-01

    A chiral iodoarene organocatalyst for the catalytic asymmetric fluorination has been developed. The catalyst was used in the asymmetric fluorination of carbonyl compounds, providing the products with a quaternary stereocenter with high enantioselectivities. Chiral hypervalent iodine difluoride intermediates were generated in situ by treatment of the catalyst with an oxidant and hydrogen fluoride as fluoride source. As such, the α-fluorination of a carbonyl compound was achieved with a nucleophilic fluorine source. A combined computational and experimental approach provided insight into the reaction mechanism and the origin of enantioselectivity.

  15. Catalytic polarographic currents of platinum metal complexes and their application to determination of trace concentrations of the elements

    International Nuclear Information System (INIS)

    Ezerskaya, N.A.; Kiseleva, I.N.

    1984-01-01

    Several types of catalytic electrode processes with the participation of platinum metal complexes and used for the determination of the element microconcentrations have been considered in the review. It is pointed out that to measure catalytic currents of hydrogen solutions nitroso compounds, which are prepared by heating chloride complexes of Ru(3) and (4) with NaNO 2 are used. The method is applicable for ruthenium determination in commercial nitric acid solutions. Ru determination in solution of ruthenium (4) dimeric chloride complex on graphite electrode, using catalytic currents of hydrogen, surpasses in sensitivity the determination of the element, using the method of inversion voltammetry. Certain other complexes of Ru and determination methods of ruthenium in them are considered. Hydrogen catalytic currents in the complexes solutions with organic ligands are the most perspective for analysis

  16. Carbon nanofibers: a versatile catalytic support

    Directory of Open Access Journals (Sweden)

    Nelize Maria de Almeida Coelho

    2008-09-01

    Full Text Available The aim of this article is present an overview of the promising results obtained while using carbon nanofibers based composites as catalyst support for different practical applications: hydrazine decomposition, styrene synthesis, direct oxidation of H2S into elementary sulfur and as fuel-cell electrodes. We have also discussed some prospects of the use of these new materials in total combustion of methane and in ammonia decomposition. The macroscopic carbon nanofibers based composites were prepared by the CVD method (Carbon Vapor Deposition employing a gaseous mixture of hydrogen and ethane. The results showed a high catalytic activity and selectivity in comparison to the traditional catalysts employed in these reactions. The fact was attributed, mainly, to the morphology and the high external surface of the catalyst support.

  17. HYBRID SELECTIVE NON-CATALYTIC REDUCTION (SNCR)/SELECTIVE CATALYTIC REDUCTION (SCR) DEMONSTRATION FOR THE REMOVAL OF NOx FROM BOILER FLUE GASES

    Energy Technology Data Exchange (ETDEWEB)

    Jerry B. Urbas

    1999-05-01

    The U. S. Department of Energy (DOE), Electric Power Research Institute (EPRI), Pennsylvania Electric Energy Research Council, (PEERC), New York State Electric and Gas and GPU Generation, Inc. jointly funded a demonstration to determine the capabilities for Hybrid SNCR/SCR (Selective Non-Catalytic Reduction/Selective Catalytic Reduction) technology. The demonstration site was GPU Generation's Seward Unit No.5 (147MW) located in Seward Pennsylvania. The demonstration began in October of 1997 and ended in December 1998. DOE funding was provided through Grant No. DE-FG22-96PC96256 with T. J. Feeley as the Project Manager. EPRI funding was provided through agreements TC4599-001-26999 and TC4599-002-26999 with E. Hughes as the Project Manager. This project demonstrated the operation of the Hybrid SNCR/SCR NO{sub x} control process on a full-scale coal fired utility boiler. The hybrid technology was expected to provide a cost-effective method of reducing NO{sub x} while balancing capital and operation costs. An existing urea based SNCR system was modified with an expanded-duct catalyst to provide increased NO{sub x} reduction efficiency from the SNCR while producing increased ammonia slip levels to the catalyst. The catalyst was sized to reduce the ammonia slip to the air heaters to less than 2 ppm while providing equivalent NO{sub x} reductions. The project goals were to demonstrate hybrid technology is capable of achieving at least a 55% reduction in NO{sub x} emissions while maintaining less than 2ppm ammonia slip to the air heaters, maintain flyash marketability, verify the cost benefit and applicability of Hybrid post combustion technology, and reduce forced outages due to ammonium bisulfate (ABS) fouling of the air heaters. Early system limitations, due to gas temperature stratification, restricted the Hybrid NO{sub x} reduction capabilities to 48% with an ammonia slip of 6.1 mg/Nm{sup 3} (8 ppm) at the catalyst inlet. After resolving the stratification

  18. Fullerene hydride - A potential hydrogen storage material

    International Nuclear Information System (INIS)

    Nai Xing Wang; Jun Ping Zhang; An Guang Yu; Yun Xu Yang; Wu Wei Wang; Rui long Sheng; Jia Zhao

    2005-01-01

    Hydrogen, as a clean, convenient, versatile fuel source, is considered to be an ideal energy carrier in the foreseeable future. Hydrogen storage must be solved in using of hydrogen energy. To date, much effort has been put into storage of hydrogen including physical storage via compression or liquefaction, chemical storage in hydrogen carriers, metal hydrides and gas-on-solid adsorption. But no one satisfies all of the efficiency, size, weight, cost and safety requirements for transportation or utility use. C 60 H 36 , firstly synthesized by the method of the Birch reduction, was loaded with 4.8 wt% hydrogen indicating [60]fullerene might be as a potential hydrogen storage material. If a 100% conversion of C 60 H 36 is achieved, 18 moles of H 2 gas would be liberated from each mole of fullerene hydride. Pure C 60 H 36 is very stable below 500 C under nitrogen atmosphere and it releases hydrogen accompanying by other hydrocarbons under high temperature. But C 60 H 36 can be decomposed to generate H 2 under effective catalyst. We have reported that hydrogen can be produced catalytically from C 60 H 36 by Vasks's compound (IrCl(CO)(PPh 3 ) 2 ) under mild conditions. (RhCl(CO)(PPh 3 ) 2 ) having similar structure to (IrCl(CO)(PPh 3 ) 2 ), was also examined for thermal dehydrogenation of C 60 H 36 ; but it showed low catalytic activity. To search better catalyst, palladium carbon (Pd/C) and platinum carbon (Pt/C) catalysts, which were known for catalytic hydrogenation of aromatic compounds, were tried and good results were obtained. A very big peak of hydrogen appeared at δ=5.2 ppm in 1 H NMR spectrum based on Evans'work (fig 1) at 100 C over a Pd/C catalyst for 16 hours. It is shown that hydrogen can be produced from C 60 H 36 using a catalytic amount of Pd/C. Comparing with Pd/C, Pt/C catalyst showed lower activity. The high cost and limited availability of Vaska's compounds, Pd and Pt make it advantageous to develop less expensive catalysts for our process based on

  19. Enhanced catalytic activity over MIL-100(Fe) loaded ceria catalysts for the selective catalytic reduction of NOx with NH₃ at low temperature.

    Science.gov (United States)

    Wang, Peng; Sun, Hong; Quan, Xie; Chen, Shuo

    2016-01-15

    The development of catalysts for selective catalytic reduction (SCR) reactions that are highly active at low temperatures and show good resistance to SO2 and H2O is still a challenge. In this study, we have designed and developed a high-performance SCR catalyst based on nano-sized ceria encapsulated inside the pores of MIL-100(Fe) that combines excellent catalytic power with a metal organic framework architecture synthesized by the impregnation method (IM). Transmission electron microscopy (TEM) revealed the encapsulation of ceria in the cavities of MIL-100(Fe). The prepared IM-CeO2/MIL-100(Fe) catalyst shows improved catalytic activity both at low temperatures and throughout a wide temperature window. The temperature window for 90% NOx conversion ranges from 196 to 300°C. X-ray photoelectron spectroscopy (XPS) and in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFT) analysis indicated that the nano-sized ceria encapsulated inside MIL-100(Fe) promotes the production of chemisorbed oxygen on the catalyst surface, which greatly enhances the formation of the NO2 species responsible for fast SCR reactions. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Catalytic steam gasification of biomass in fluidized bed at low temperature: Conversion from livestock manure compost to hydrogen-rich syngas

    International Nuclear Information System (INIS)

    Xiao, Xianbin; Le, Duc Dung; Li, Liuyun; Meng, Xianliang; Cao, Jingpei; Morishita, Kayoko; Takarada, Takayuki

    2010-01-01

    Utilizing large amounts of animal waste as a source of renewable energy has the potential to reduce its disposal problems and associated pollution issues. Gasification characteristics of the manure compost make it possible for low temperature gasification. In this paper, an energy efficient approach to hydrogen-rich syngas from manure compost is represented at relatively low temperature, around 600 o C, in a continuous-feeding fluidized bed reactor. The effects of catalyst performance, reactor temperature, steam, and reaction type on gas yield, gas composition, and carbon conversion efficiency are discussed. The Ni-Al 2 O 3 catalyst simultaneously promotes tar cracking and steam reforming. Higher temperature contributes to higher gas yield and carbon conversion. The steam introduction increases hydrogen yield, by steam reforming and water-gas shift reaction. Two-stage gasification is also tried, showing the advantage of better catalyst utilization and enhancing the catalytic reactions to some extent.

  1. Catalytic Destruction of a Surrogate Organic Hazardous Air Pollutant as a Potential Co-benefit for Coal-fired Selective Catalyst Reduction Systems

    Science.gov (United States)

    Catalytic destruction of benzene (C6H6), a surrogate for organic hazardous air pollutants (HAPs) produced from coal combustion, was investigated using a commercial selective catalytic reduction (SCR) catalyst for evaluating the potential co-benefit of the SCR technology for reduc...

  2. Hydrogen production and purification for fuel cell applications

    Science.gov (United States)

    Chin, Soo Yin

    The increased utilization of proton-exchange membrane (PEM) fuel cells as an alternative to internal combustion engines is expected to increase the demand for hydrogen, which is used as the energy source in these systems. Currently, production of hydrogen for fuel cells is primarily achieved via steam reforming, partial oxidation or autothermal reforming of natural gas, or steam reforming of methanol. However, in all of these processes CO is a by-product that must be subsequently removed due to its adverse effects on the Pt-based electrocatalysts of the PEM fuel cell. Our efforts have focused on production of CO-free hydrogen via catalytic decomposition of hydrocarbons and purification of H2 via the preferential oxidation of CO. The catalytic decomposition of hydrocarbons is an attractive alternative for the production of H2. Previous studies utilizing methane have shown that this approach can indeed produce CO-free hydrogen, with filamentous carbon formed as the by-product and deposited on the catalyst. We have further extended this approach to the decomposition of ethane. In addition to hydrogen and filamentous carbon however, methane is also formed in this case as a by-product. Studies conducted at different temperatures and space velocities suggest that hydrogen is the primary product while methane is formed in a secondary step. Ni/SiO2 catalysts are active for ethane decomposition at temperatures above 500°C. Although the yield of hydrogen increases with temperature, the catalyst deactivation rate also accelerates at higher temperatures. The preferential oxidation of CO is currently used for the purification of CO-contaminated hydrogen streams due to its efficiency and simplicity. Conventional Pt catalysts used for this reaction have been shown to effectively remove CO, but have limited selectivity (i.e., substantial amounts of H 2 also react with O2). Our work focused on alternative catalytic materials, such as Ru and bimetallic Ru-based catalysts (Pt-Ru, Ru

  3. Co/Zr substitution in a cerium-zirconium oxide by catalytic steam reforming of bio-ethanol

    International Nuclear Information System (INIS)

    Vargas, J.C.; Thomas, S.; Roger, A.C.; Kiennemann, A.; Vargas, J.C.

    2006-01-01

    This work deals with the production of hydrogen by bio-ethanol catalytic steam reforming. The aim is to develop a catalyst active in ethanol conversion, selective in hydrogen and resistant to deactivation, particularly those induced by the formation of carbon deposition. The metal-support interaction being one of the keys of this challenge, catalysts in which a transition metal is inserted into an oxide by a liquid synthesis method (by the precursor method) have been developed. The initial insertion of cobalt into a cerium oxide-zirconia structure presents the advantages to increase the redox properties of the host oxide and to allow a stable reduction of a cobalt part while favoring the metal-support interaction. (O.M.)

  4. Hydrogen isotope separation in hydrophobic catalysts between hydrogen and liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Linsen, E-mail: yls2005@mail.ustc.edu.cn [China Academy of Engineering Physics, Mianyang 621900 (China); Luo, Deli [Science and Technology on Surface Physics and Chemistry Laboratory, Jiangyou 621907 (China); Tang, Tao; Yang, Wan; Yang, Yong [China Academy of Engineering Physics, Mianyang 621900 (China)

    2015-11-15

    Hydrogen isotope catalytic exchange between hydrogen and liquid water is a very effective process for deuterium-depleted potable water production and heavy water detritiation. To improve the characteristics of hydrophobic catalysts for this type of reaction, foamed and cellular structures of hydrophobic carbon-supported platinum catalysts were successfully prepared. Separation of deuterium or tritium from liquid water was carried out by liquid-phase catalytic exchange. At a gas–liquid ratio of 1.53 and exchange temperature of 70 °C, the theoretical plate height of the hydrophobic catalyst (HETP = 34.2 cm) was slightly lower than previously reported values. Changing the concentration of the exchange column outlet water yielded nonlinear changes in the height of the packing layer. Configurations of deuterium-depleted potable water and detritiation of heavy water provide references for practical applications.

  5. Solar hydrogen production: renewable hydrogen production by dry fuel reforming

    Science.gov (United States)

    Bakos, Jamie; Miyamoto, Henry K.

    2006-09-01

    SHEC LABS - Solar Hydrogen Energy Corporation constructed a pilot-plant to demonstrate a Dry Fuel Reforming (DFR) system that is heated primarily by sunlight focusing-mirrors. The pilot-plant consists of: 1) a solar mirror array and solar concentrator and shutter system; and 2) two thermo-catalytic reactors to convert Methane, Carbon Dioxide, and Water into Hydrogen. Results from the pilot study show that solar Hydrogen generation is feasible and cost-competitive with traditional Hydrogen production. More than 95% of Hydrogen commercially produced today is by the Steam Methane Reformation (SMR) of natural gas, a process that liberates Carbon Dioxide to the atmosphere. The SMR process provides a net energy loss of 30 to 35% when converting from Methane to Hydrogen. Solar Hydrogen production provides a 14% net energy gain when converting Methane into Hydrogen since the energy used to drive the process is from the sun. The environmental benefits of generating Hydrogen using renewable energy include significant greenhouse gas and criteria air contaminant reductions.

  6. Process for the exchange of hydrogen isotopes using a catalyst packed bed assembly

    International Nuclear Information System (INIS)

    Butler, J.P.; den Hartog, J.; Molson, F.W.R.

    1978-01-01

    A process for the exchange of hydrogen isotopes between streams of gaseous hydrogen and liquid water is described, wherein the streams of liquid water and gaseous hydrogen are simultaneously brought into contact with one another and a catalyst packed bed assembly while at a temperature in the range 273 0 to 573 0 K. The catalyst packed bed assembly may be composed of discrete carrier bodies of e.g. ceramics, metals, fibrous materials or synthetic plastics with catalytically active metal crystallites selected from Group VIII of the Periodic Table, partially enclosed in and bonded to the carrier bodies by a water repellent, water vapor and hydrogen gas permeable, porous, polymeric material, and discrete packing bodies having an exterior surface which is substantially hydrophilic and relatively noncatalytically active with regard to hydrogen isotope exchange between hydrogen gas and water vapor to that of the catalyst bodies

  7. Development of composite metallic membranes for hydrogen purification

    International Nuclear Information System (INIS)

    Gaillard, F.

    2003-12-01

    Fuel cells are able to convert chemical energy into electric power. There are different types of cells; the best for automotive applications are Proton Exchange Membrane Fuel Cells. But, these systems need hydrogen of high purity. However, fuel reforming generates a mixture of gases, from which hydrogen has to be extracted before supplying the electrochemical cell. The best way for the purification of hydrogen is the membrane separation technology. Palladium is selectively permeable to hydrogen and this is the reason why this metal is largely used for the membrane development. This work deals with the development of hydrogen-selective membranes by deposition of a thin film of palladium onto a porous mechanical support. For this, we have used the electroless plating technique: a palladium salt and a reducing agent are mixed and the deposition takes place onto the catalytic surface of the substrate. After bibliographic investigations, experimental studies have been performed first with a dense metallic substrate in order to better understand the different parameters controlling the deposition. First of all, potentiometric measurements have been carried out to follow the electrochemical reactions in the bath. Then, kinetic measurements of the coating thickness have been recorded to understand the effect of the bath conditions on the yield and the adhesion of the film. Finally, the electroless plating method has been applied to deposit palladium membranes onto porous stainless steel substrates. After optimisation, the resulting membranes were tested for their hydrogen permeation properties. (author)

  8. Carbon Dioxide-Free Hydrogen Production with Integrated Hydrogen Separation and Storage.

    Science.gov (United States)

    Dürr, Stefan; Müller, Michael; Jorschick, Holger; Helmin, Marta; Bösmann, Andreas; Palkovits, Regina; Wasserscheid, Peter

    2017-01-10

    An integration of CO 2 -free hydrogen generation through methane decomposition coupled with hydrogen/methane separation and chemical hydrogen storage through liquid organic hydrogen carrier (LOHC) systems is demonstrated. A potential, very interesting application is the upgrading of stranded gas, for example, gas from a remote gas field or associated gas from off-shore oil drilling. Stranded gas can be effectively converted in a catalytic process by methane decomposition into solid carbon and a hydrogen/methane mixture that can be directly fed to a hydrogenation unit to load a LOHC with hydrogen. This allows for a straight-forward separation of hydrogen from CH 4 and conversion of hydrogen to a hydrogen-rich LOHC material. Both, the hydrogen-rich LOHC material and the generated carbon on metal can easily be transported to destinations of further industrial use by established transport systems, like ships or trucks. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Hydrogen Doping into MoO3 Supports toward Modulated Metal-Support Interactions and Efficient Furfural Hydrogenation on Iridium Nanocatalysts.

    Science.gov (United States)

    Xie, Lifang; Chen, Ting; Chan, Hang Cheong; Shu, Yijin; Gao, Qingsheng

    2018-03-16

    As promising supports, reducible metal oxides afford strong metal-support interactions to achieve efficient catalysis, which relies on their band states and surface stoichiometry. In this study, in situ and controlled hydrogen doping (H doping) by means of H 2 spillover was employed to engineer the metal-support interactions in hydrogenated MoO x -supported Ir (Ir/H-MoO x ) catalysts and thus promote furfural hydrogenation to furfuryl alcohol. By easily varying the reduction temperature, the resulting H doping in a controlled manner tailors low-valence Mo species (Mo 5+ and Mo 4+ ) on H-MoO x supports, thereby promoting charge redistribution on Ir and H-MoO x interfaces. This further leads to clear differences in H 2 chemisorption on Ir, which illustrates its potential for catalytic hydrogenation. As expected, the optimal Ir/H-MoO x with controlled H doping afforded high activity (turnover frequency: 4.62 min -1 ) and selectivity (>99 %) in furfural hydrogenation under mild conditions (T=30 °C, PH2 =2 MPa), which means it performs among the best of current catalysts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Computational Study of Pincer Iridium Catalytic Systems: C-H, N-H, and C-C Bond Activation and C-C Coupling Reactions

    Science.gov (United States)

    Zhou, Tian

    Computational chemistry has achieved vast progress in the last decades in the field, which was considered to be only experimental before. DFT (density functional theory) calculations have been proven to be able to be applied to large systems, while maintaining high accuracy. One of the most important achievements of DFT calculations is in exploring the mechanism of bond activation reactions catalyzed by organometallic complexes. In this dissertation, we discuss DFT studies of several catalytic systems explored in the lab of Professor Alan S. Goldman. Headlines in the work are: (1) (R4PCP)Ir alkane dehydrogenation catalysts are highly selective and different from ( R4POCOP)Ir catalysts, predicting different rate-/selectivity-determining steps; (2) The study of the mechanism for double C-H addition/cyclometalation of phenanthrene or biphenyl by (tBu4PCP)Ir(I) and ( iPr4PCP)Ir illustrates that neutral Ir(III) C-H addition products can undergo a very facile second C-H addition, particularly in the case of sterically less-crowded Ir(I) complexes; (3) (iPr4PCP)Ir pure solid phase catalyst is highly effective in producing high yields of alpha-olefin products, since the activation enthalpy for dehydrogenation is higher than that for isomerization via an allyl pathway; higher temperatures favor the dehydrogenation/isomerization ratio; (4) (PCP)Ir(H)2(N2H4) complex follows a hydrogen transfer mechanism to undergo both dehydrogenation to form N 2 and H2, as well as hydrogen transfer followed by N-N bond cleavage to form NH3, N2, and H2; (5) The key for the catalytic effect of solvent molecule in CO insertion reaction for RMn(CO)5 is hydrogen bond assisted interaction. The basicity of the solvent determines the strength of the hydrogen bond interaction during the catalytic path and determines the catalytic power of the solvent; and (6) Dehydrogenative coupling of unactivated C-H bonds (intermolecular vinyl-vinyl, intramolecular vinyl-benzyl) is catalyzed by precursors of the

  11. Partial catalytic oxidation of CH{sub 4} to synthesis gas for power generation - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mantzaras, I.; Schneider, A.

    2006-03-15

    The partial oxidation of methane to synthesis gas over rhodium catalysts has been investigated experimentally and numerically in the pressure range of 4 to 10 bar. The methane/oxidizer feed has been diluted with large amounts of H{sub 2}O and CO{sub 2} (up to 70% vol.) in order to simulate new power generation cycles with large exhaust gas recycle. Experiments were carried out in an optically accessible channel-flow reactor that facilitated laser-based in situ measurements, and also in a subscale gas-turbine catalytic reactor. Full-elliptic steady and transient two-dimensional numerical codes were used, which included elementary hetero-/homogeneous chemical reaction schemes. The following are the key conclusions: a) Heterogeneous (catalytic) and homogeneous (gas-phase) schemes have been validated for the partial catalytic oxidation of methane with large exhaust gas recycle. b) The impact of added H{sub 2}O and CO{sub 2} has been elucidated. The added H{sub 2}O increased the methane conversion and hydrogen selectivity, while it decreased the CO selectivity. The chemical impact of CO{sub 2} (dry reforming) was minimal. c) The numerical model reproduced the measured catalytic ignition times. It was further shown that the chemical impact of H{sub 2}O and CO{sub 2} on the catalytic ignition delay times was minimal. d) The noble metal dispersion increased with different support materials, in the order Rh/{alpha}-Al{sub 2}O{sub 3}, Rh/ZrO{sub 2}, and Rh/Ce-ZrO{sub 2}. An evident relationship was established between the noble metal dispersion and the catalytic behavior. (authors)

  12. Compact PEM fuel cell system combined with all-in-one hydrogen generator using chemical hydride as a hydrogen source

    International Nuclear Information System (INIS)

    Kim, Jincheol; Kim, Taegyu

    2015-01-01

    Highlights: • Compact fuel cell system was developed for a portable power generator. • Novel concept using an all-in-one reactor for hydrogen generation was proposed. • Catalytic reactor, hydrogen chamber and separator were combined in a volume. • The system can be used to drive fuel cell-powered unmanned autonomous systems. - Abstract: Compact fuel cell system was developed for a portable power generator. The power generator features a polymer electrolyte membrane fuel cell (PEMFC) using a chemical hydride as a hydrogen source. The hydrogen generator extracted hydrogen using a catalytic hydrolysis from a sodium borohydride alkaline solution. A novel concept using an all-in-one reactor was proposed in which a catalyst, hydrogen chamber and byproduct separator were combined in a volume. In addition, the reactor as well as a pump, cooling fans, valves and controller was integrated in a single module. A 100 W PEMFC stack was connected with the hydrogen generator and was evaluated at various load conditions. It was verified that the stable hydrogen supply was achieved and the developed system can be used to drive fuel cell-powered unmanned autonomous systems.

  13. Catalytic performance of advanced titanosilicate selective oxidation catalysts – a review

    Czech Academy of Sciences Publication Activity Database

    Přech, Jan

    2017-01-01

    Roč. 60, č. 1 (2017), s. 71-131 ISSN 0161-4940 R&D Projects: GA ČR GBP106/12/G015 Institutional support: RVO:61388955 Keywords : Epoxidation * hydrogen peroxide * selective oxidation * titanosilicate * zeolite Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 6.143, year: 2016

  14. COMPARISON OF WEST GERMAN AND U.S. FLUE GAS DESULFURIZATION AND SELECTIVE CATALYTIC REDUCTION COSTS

    Science.gov (United States)

    The report documents a comparison of the actual cost retrofitting flue gas desulfurization (FGD) and selective catalytic reduction (SCR) on Federal Republic of German (FRG) boilers to cost estimating procedures used in the U.S. to estimate the retrofit of these controls on U.S. b...

  15. Contributions to reversed-phase column selectivity: III. Column hydrogen-bond basicity.

    Science.gov (United States)

    Carr, P W; Dolan, J W; Dorsey, J G; Snyder, L R; Kirkland, J J

    2015-05-22

    Column selectivity in reversed-phase chromatography (RPC) can be described in terms of the hydrophobic-subtraction model, which recognizes five solute-column interactions that together determine solute retention and column selectivity: hydrophobic, steric, hydrogen bonding of an acceptor solute (i.e., a hydrogen-bond base) by a stationary-phase donor group (i.e., a silanol), hydrogen bonding of a donor solute (e.g., a carboxylic acid) by a stationary-phase acceptor group, and ionic. Of these five interactions, hydrogen bonding between donor solutes (acids) and stationary-phase acceptor groups is the least well understood; the present study aims at resolving this uncertainty, so far as possible. Previous work suggests that there are three distinct stationary-phase sites for hydrogen-bond interaction with carboxylic acids, which we will refer to as column basicity I, II, and III. All RPC columns exhibit a selective retention of carboxylic acids (column basicity I) in varying degree. This now appears to involve an interaction of the solute with a pair of vicinal silanols in the stationary phase. For some type-A columns, an additional basic site (column basicity II) is similar to that for column basicity I in primarily affecting the retention of carboxylic acids. The latter site appears to be associated with metal contamination of the silica. Finally, for embedded-polar-group (EPG) columns, the polar group can serve as a proton acceptor (column basicity III) for acids, phenols, and other donor solutes. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Catalytic Wastewater Treatment Using Pillared Clays

    Science.gov (United States)

    Perathoner, Siglinda; Centi, Gabriele

    After introduction on the use of solid catalysts in wastewater treatment technologies, particularly advanced oxidation processes (AOPs), this review discussed the use of pillared clay (PILC) materials in three applications: (i) wet air catalytic oxidation (WACO), (ii) wet hydrogen peroxide catalytic oxidation (WHPCO) on Cu-PILC and Fe-PILC, and (iii) behavior of Ti-PILC and Fe-PILC in the photocatalytic or photo-Fenton conversion of pollutants. Literature data are critically analyzed to evidence the main direction to further investigate, in particularly with reference to the possible practical application of these technologies to treat industrial, municipal, or agro-food production wastewater.

  17. Hydrogen management in the MiRO refinery

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, G. [Mineraloelraffinerie Oberrhein GmbH und Co. KG, Karlsruhe (Germany)

    2010-12-30

    The importance of hydrogen in refineries has increased over the last 20 years as new regulations affecting gasoline and diesel composition have been implemented throughout Europe and in an environment of increasingly stringent clean fuel regulations, decreasing heavy fuel oil demand and increasing heavy more sour crude supply. In Germany, the introduction of sulphur free gasoline and diesel with less than 10ppm sulphur(Auto Oil Program) and light home fuel oil with less than 50ppm this year were the last link in a long chain of environmental regulations, which had a considerable effect on the hydrogen demand in refineries. In the complex MiRO-refinery with a large FCC- and Coker-Unit for atmospheric residue conversion and a total throughput of more than 15 Mio.T/ a and more than 14 Mio.T/a crude oils of different origin from high sulphur, bituminous crudes to medium, low sulphur crudes for calcinate-production from green coke the only source of hydrogen for a long time was catalytic reforming. The only chance of balancing the hydrogen production and consumption was to improve the existing catalytic reforming and the optimisation of hydrogen recovery from waste or purge streams and the hydrogen network of the refinery. In 2007 a new hydrogen plant via steam reforming of natural gas went on stream. The main reason for this step was the shrinking market for gasoline in the last ten years and the blending of bio-ethanol into the gasoline pool, which released reforming capacities and the demand for octane. Another important issue is the production planning taking into account the potentials of hydrogen production via catalytic and steam reforming and the hydrogen consumption via desulphurisation and the saturation of olefins and (poly-)aromatics of the main product streams, gasoline, diesel and light home fuel oil. (orig.)

  18. Finding furfural hydrogenation catalysts via predictive modelling

    NARCIS (Netherlands)

    Strassberger, Z.; Mooijman, M.; Ruijter, E.; Alberts, A.H.; Maldonado, A.G.; Orru, R.V.A.; Rothenberg, G.

    2010-01-01

    We combine multicomponent reactions, catalytic performance studies and predictive modelling to find transfer hydrogenation catalysts. An initial set of 18 ruthenium-carbene complexes were synthesized and screened in the transfer hydrogenation of furfural to furfurol with isopropyl alcohol complexes

  19. Selective hydrogenation of furfural to cyclopentanone over Cu-Ni-Al hydrotalcite-based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hongyan; Zhou, Minghao; Zeng, Zuo; Xiao, Guomin; Xiao, Rui [Southeast University, Nanjing (China)

    2014-04-15

    A series of Cu-Ni-Al hydrotalcites derived oxides with a (Cu+Ni)/Al mole ratio of 3 with varied Cu/Ni mole ratio (from 0.017 to 0.5, with a Cu ratio of 0.0125 to 0.25) were prepared by co-precipitation method, then applied to the hydrogenation of furfural in aqueous. Their catalytic performance for liquid phase hydrogenation of furfural to prepare cyclopentanone was described in detail, considering reaction temperature, catalyst composition, reaction time and so on. The yield of cyclopentanone was influenced by the mole ratio of Cu-Ni-Al based heterogeneous catalyst and depended on the reaction conditions. The yield of cyclopentanone was up to 95.8% when the reaction was carried out under 413 K with H{sub 2} pressure of 40 bar for 8 h. The catalysts were characterized by X-ray powder diffraction (XRD), scanning electron microscope (SEM) and H{sub 2} temperature-programmed reduction (H{sub 2}-TPR)

  20. Hydrogen production by aqueous phase catalytic reforming of glycerine

    International Nuclear Information System (INIS)

    Ozguer, Derya Oncel; Uysal, Bekir Zuehtue

    2011-01-01

    Hydrogen is believed to be the one of the main energy carriers in the near future. In this research glycerine, which is produced in large quantities as a by-product of biodiesel process, was converted to hydrogen aiming to contribute to clean energy initiative. Conversion of glycerol to hydrogen was achieved via aqueous-phase reforming (APR) with Pt/Al 2 O 3 catalyst. The experiments were carried out in an autoclave reactor and a continuous fixed-bed reactor. The effects of reaction temperature (160-280 o C), feed flow rate (0.05-0.5 mL/dak) and feed concentration (5-85 wt-% glycerine) on product distribution were investigated. Optimum temperature for hydrogen production with APR was determined as 230 o C. Maximum gas production rate was found at the feed flow rates around 0.1 mL/min. It was also found that hydrogen concentration in the gas product increased with decreasing glycerol concentration in the feed.

  1. Synthesis of tremella-like CoS and its application in sensing of hydrogen peroxide and glucose

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wenqin; Yu, Beibei [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education, College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062 (China); Wu, Huimin, E-mail: whm267@hubu.edu.cn [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education, College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062 (China); Wang, Shengfu; Xia, Qinghua [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education, College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062 (China); Ding, Yu [College of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000 (China)

    2017-01-01

    Different phases of cobalt sulfides have been fabricated by one-pot hydrothermal method. Comparing all of the prepared materials, and the results revealed that CoS was the most conductive and could accelerate electron transfer. The CoS presented tremella-like and excellent catalytic activities towards hydrogen peroxide and glucose. The sensor based on CoS performed amperometric sensing of hydrogen peroxide in a linear range between 5.00 μM and 14.82 mM. Meanwhile, sensing of glucose with double-linear range, one is between 5.00 μM and 1.10 mM, the other is between 1.20 mM and 10.20 mM. These due to the fact that more and more intermediate species absorb onto electrode surface with increasing the concentration of glucose, which limit the following glucose oxidation. Furthermore, the hydrogen peroxide and glucose sensors based on tremella-like CoS also exhibited excellent selectivity, stability, and reproducibility. Thus, the sensor showed potential utilities in hydrogen peroxide and glucose detection. - Highlights: • Tremella-like CoS was prepared by an environmentally friendly hydrothermal method. • The CoS exhibited excellent catalytic activity towards hydrogen peroxide and glucose. • The sensors based on CoS can be applied to detect real samples.

  2. HYBRID SELECTIVE NON-CATALYTIC REDUCTION (SNCR)/SELECTIVE CATALYTIC REDUCTION (SCR) DEMONSTRATION FOR THE REMOVAL OF NOx FROM BOILER FLUE GASES; FINAL

    International Nuclear Information System (INIS)

    Jerry B. Urbas

    1999-01-01

    The U. S. Department of Energy (DOE), Electric Power Research Institute (EPRI), Pennsylvania Electric Energy Research Council, (PEERC), New York State Electric and Gas and GPU Generation, Inc. jointly funded a demonstration to determine the capabilities for Hybrid SNCR/SCR (Selective Non-Catalytic Reduction/Selective Catalytic Reduction) technology. The demonstration site was GPU Generation's Seward Unit No.5 (147MW) located in Seward Pennsylvania. The demonstration began in October of 1997 and ended in December 1998. DOE funding was provided through Grant No. DE-FG22-96PC96256 with T. J. Feeley as the Project Manager. EPRI funding was provided through agreements TC4599-001-26999 and TC4599-002-26999 with E. Hughes as the Project Manager. This project demonstrated the operation of the Hybrid SNCR/SCR NO(sub x) control process on a full-scale coal fired utility boiler. The hybrid technology was expected to provide a cost-effective method of reducing NO(sub x) while balancing capital and operation costs. An existing urea based SNCR system was modified with an expanded-duct catalyst to provide increased NO(sub x) reduction efficiency from the SNCR while producing increased ammonia slip levels to the catalyst. The catalyst was sized to reduce the ammonia slip to the air heaters to less than 2 ppm while providing equivalent NO(sub x) reductions. The project goals were to demonstrate hybrid technology is capable of achieving at least a 55% reduction in NO(sub x) emissions while maintaining less than 2ppm ammonia slip to the air heaters, maintain flyash marketability, verify the cost benefit and applicability of Hybrid post combustion technology, and reduce forced outages due to ammonium bisulfate (ABS) fouling of the air heaters. Early system limitations, due to gas temperature stratification, restricted the Hybrid NO(sub x) reduction capabilities to 48% with an ammonia slip of 6.1 mg/Nm(sup 3) (8 ppm) at the catalyst inlet. After resolving the stratification problem

  3. A nano-engineered graphene/carbon nitride hybrid for photocatalytic hydrogen evolution

    Institute of Scientific and Technical Information of China (English)

    Xiaobo Li; Yao Zheng; Anthony F.Masters; Thomas Maschmeyer

    2016-01-01

    A metal-free photocatalytic hydrogen evolution system was successfully fabricated using heteroatom doped graphene materials as electron-transfer co-catalysts and carbon nitride as a semiconductor.The catalytic role of graphene is significantly dependent on the heteroatom dopant of the graphene,such as O,S,B,N doped/undoped graphene co-catalysts,and N-graphene shows the best catalytic hydrogen evolution rate.

  4. Nuclear power plant equipped with hydrogen removing system

    International Nuclear Information System (INIS)

    Ezawa, Shin-ichi; Yamanari, Shozo; Okura, Minoru; Kamizuma, Nobuaki.

    1998-01-01

    A γ-shield and container spray pipelines are disposed to an upper dry well in a reactor container incorporating a reactor pressure vessel. A plurality of catalytic hydrogen removing devices are disposed close to a wall on the side of the pressure vessel in the dry well and a wall on the side of the outer wall of the reactor container. The plurality of catalytic hydrogen removing devices are disposed substantially equally in horizontal direction and circumferential direction of the side walls. If container spray water is sprayed, the atmospheric gases in the reactor are compulsory circulated. In addition, since the temperature of the γ-shield is higher than the atmospheric temperature, spontaneous circulation is caused. As a result, rising currents of gases are formed at regions in the vicinity of the γ-shield. The catalytic hydrogen removing devices are disposed to the places where the rising currents are formed. (I.N.)

  5. Efficient selective catalytic reduction of NO by novel carbon-doped metal catalysts made from electroplating sludge.

    Science.gov (United States)

    Zhang, Jia; Zhang, Jingyi; Xu, Yunfeng; Su, Huimin; Li, Xiaoman; Zhou, Ji Zhi; Qian, Guangren; Li, Li; Xu, Zhi Ping

    2014-10-07

    Electroplating sludges, once regarded as industrial wastes, are precious resources of various transition metals. This research has thus investigated the recycling of an electroplating sludge as a novel carbon-doped metal (Fe, Ni, Mg, Cu, and Zn) catalyst, which was different from a traditional carbon-supported metal catalyst, for effective NO selective catalytic reduction (SCR). This catalyst removed >99.7% NO at a temperature as low as 300 °C. It also removed NO steadily (>99%) with a maximum specific accumulative reduced amount (MSARA) of 3.4 mmol/g. Gas species analyses showed that NO removal was accompanied by evolving N2 and CO2. Moreover, in a wide temperature window, the sludge catalyst showed a higher CO2 selectivity (>99%) than an activated carbon-supported metal catalyst. Structure characterizations revealed that carbon-doped metal was transformed to metal oxide in the sludge catalyst after the catalytic test, with most carbon (2.33 wt %) being consumed. These observations suggest that NO removal over the sludge catalyst is a typical SCR where metals/metal oxides act as the catalytic center and carbon as the reducing reagent. Therefore, our report probably provides an opportunity for high value-added utilizations of heavy-metal wastes in mitigating atmospheric pollutions.

  6. Effect of catalytic cylinders on autothermal reforming of methane for hydrogen production in a microchamber reactor.

    Science.gov (United States)

    Yan, Yunfei; Guo, Hongliang; Zhang, Li; Zhu, Junchen; Yang, Zhongqing; Tang, Qiang; Ji, Xin

    2014-01-01

    A new multicylinder microchamber reactor is designed on autothermal reforming of methane for hydrogen production, and its performance and thermal behavior, that is, based on the reaction mechanism, is numerically investigated by varying the cylinder radius, cylinder spacing, and cylinder layout. The results show that larger cylinder radius can promote reforming reaction; the mass fraction of methane decreased from 26% to 21% with cylinder radius from 0.25 mm to 0.75 mm; compact cylinder spacing corresponds to more catalytic surface and the time to steady state is decreased from 40 s to 20 s; alteration of staggered and aligned cylinder layout at constant inlet flow rates does not result in significant difference in reactor performance and it can be neglected. The results provide an indication and optimize performance of reactor; it achieves higher conversion compared with other reforming reactors.

  7. Pt3Co concave nanocubes: synthesis, formation understanding, and enhanced catalytic activity toward hydrogenation of styrene.

    Science.gov (United States)

    Wang, Chenyu; Lin, Cuikun; Zhang, Lihua; Quan, Zewei; Sun, Kai; Zhao, Bo; Wang, Feng; Porter, Nathan; Wang, Yuxuan; Fang, Jiye

    2014-02-03

    We report a facile synthesis route to prepare high-quality Pt3Co nanocubes with a concave structure, and further demonstrate that these concave Pt3Co nanocubes are terminated with high-index crystal facets. The success of this preparation is highly dependent on an appropriate nucleation process with a successively anisotropic overgrowth and a preservation of the resultant high-index planes by control binding of oleyl-amine/oleic acid with a fine-tuned composition. Using a hydrogenation of styrene as a model reaction, these Pt3Co concave nanocubes as a new class of nanocatalysts with more open structure and active atomic sites located on their high-index crystallographic planes exhibit an enhanced catalytic activity in comparison with low-indexed surface terminated Pt3Co nanocubes in similar size. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Synthesis, structural characterization and selectively catalytic properties of metal-organic frameworks with nano-sized channels: A modular design strategy

    International Nuclear Information System (INIS)

    Qiu Lingguang; Gu Lina; Hu Gang; Zhang Lide

    2009-01-01

    Modular design method for designing and synthesizing microporous metal-organic frameworks (MOFs) with selective catalytical activity was described. MOFs with both nano-sized channels and potential catalytic activities could be obtained through self-assembly of a framework unit and a catalyst unit. By selecting hexaaquo metal complexes and the ligand BTC (BTC=1,3,5-benzenetricarboxylate) as framework-building blocks and using the metal complex [M(phen) 2 (H 2 O) 2 ] 2+ (phen=1,10-phenanthroline) as a catalyst unit, a series of supramolecular MOFs 1-7 with three-dimensional nano-sized channels, i.e. [M 1 (H 2 O) 6 ].[M 2 (phen) 2 (H 2 O) 2 ] 2 .2(BTC).xH 2 O (M 1 , M 2 =Co(II), Ni(II), Cu(II), Zn(II), or Mn(II), phen=1,10-phenanthroline, BTC=1,3,5-benzenetricarboxylate, x=22-24), were synthesized through self-assembly, and their structures were characterized by IR, elemental analysis, and single-crystal X-ray diffraction. These supramolecular microporous MOFs showed significant size and shape selectivity in the catalyzed oxidation of phenols, which is due to catalytic reactions taking place in the channels of the framework. Design strategy, synthesis, and self-assembly mechanism for the construction of these porous MOFs were discussed. - Grapical abstract: A modular design strategy has been developed to synthesize microporous metal-organic frameworks with potential catalytic activity by self-assembly of the framework-building blocks and the catalyst unit

  9. Catalytic hydrolysis of ammonia borane via cobalt palladium nanoparticles.

    Science.gov (United States)

    Sun, Daohua; Mazumder, Vismadeb; Metin, Önder; Sun, Shouheng

    2011-08-23

    Monodisperse 8 nm CoPd nanoparticles (NPs) with controlled compositions were synthesized by the reduction of cobalt acetylacetonate and palladium bromide in the presence of oleylamine and trioctylphosphine. These NPs were active catalysts for hydrogen generation from the hydrolysis of ammonia borane (AB), and their activities were composition dependent. Among the 8 nm CoPd catalysts tested for the hydrolysis of AB, the Co(35)Pd(65) NPs exhibited the highest catalytic activity and durability. Their hydrolysis completion time and activation energy were 5.5 min and 27.5 kJ mol(-1), respectively, which were comparable to the best Pt-based catalyst reported. The catalytic performance of the CoPd/C could be further enhanced by a preannealing treatment at 300 °C under air for 15 h with the hydrolysis completion time reduced to 3.5 min. This high catalytic performance of Co(35)Pd(65) NP catalyst makes it an exciting alternative in pursuit of practical implementation of AB as a hydrogen storage material for fuel cell applications. © 2011 American Chemical Society

  10. Selective Hydrogenation of Acrolein Over Pd Model Catalysts: Temperature and Particle-Size Effects.

    Science.gov (United States)

    O'Brien, Casey P; Dostert, Karl-Heinz; Schauermann, Swetlana; Freund, Hans-Joachim

    2016-10-24

    The selectivity in the hydrogenation of acrolein over Fe 3 O 4 -supported Pd nanoparticles has been investigated as a function of nanoparticle size in the 220-270 K temperature range. While Pd(111) shows nearly 100 % selectivity towards the desired hydrogenation of the C=O bond to produce propenol, Pd nanoparticles were found to be much less selective towards this product. In situ detection of surface species by using IR-reflection absorption spectroscopy shows that the selectivity towards propenol critically depends on the formation of an oxopropyl spectator species. While an overlayer of oxopropyl species is effectively formed on Pd(111) turning the surface highly selective for propenol formation, this process is strongly hindered on Pd nanoparticles by acrolein decomposition resulting in CO formation. We show that the extent of acrolein decomposition can be tuned by varying the particle size and the reaction temperature. As a result, significant production of propenol is observed over 12 nm Pd nanoparticles at 250 K, while smaller (4 and 7 nm) nanoparticles did not produce propenol at any of the temperatures investigated. The possible origin of particle-size dependence of propenol formation is discussed. This work demonstrates that the selectivity in the hydrogenation of acrolein is controlled by the relative rates of acrolein partial hydrogenation to oxopropyl surface species and of acrolein decomposition, which has significant implications for rational catalyst design. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Palladium mixed-metal surface-modified AB5-type intermetallides enhance hydrogen sorption kinetics

    Directory of Open Access Journals (Sweden)

    Roman V. Denys

    2010-09-01

    Full Text Available Surface engineering approaches were adopted in the preparation of advanced hydrogen sorption materials, based on ‘low-temperature’, AB5-type intermetallides. The approaches investigated included micro-encapsulation with palladium and mixed-metal mantles using electroless plating. The influence of micro-encapsulation on the surface morphology and kinetics of hydrogen charging were investigated. It was found that palladium-nickel (Pd-Ni co-deposition by electroless plating significantly improved the kinetics of hydrogen charging of the AB5-type intermetallides at low hydrogen pressure and temperature, after long-term pre-exposure to air. The improvement in the kinetics of hydrogen charging was credited to a synergistic effect between the palladium and nickel atoms in the catalytic mantle and the formation of an ‘interfacial bridge’ for hydrogen diffusion by the nickel atoms in the deposited layer. The developed surface-modified materials may find application in highly selective hydrogen extraction, purification, and storage from impure hydrogen feeds.

  12. Investigations for the implementation of catalytic recombiners in large dry containments in Germany

    International Nuclear Information System (INIS)

    Rohde, J.; Tiltmann, M.; Froehmel, T.

    1997-01-01

    During the past few years, several concepts of mitigation have been developed and tested to limit the hydrogen concentrations in the containment atmosphere during the course of a severe accident. Extensive efforts have been given, especially in Germany and Canada, to investigate the use of catalytic recombiners. Based on the outcome of these research efforts in Germany it was recommended by the Reactor Safety Commission (RSK) in June 1994 to implement a hydrogen mitigation system, based on catalytic recombiners in large dry containments of PWR plants. Investigations are carried out at GRS, sponsored by the German Ministry of Environment, Nature Conservation and Nuclear Safety (BMU), to develop basic requirements for the implementation of a catalytic recombiner system in large dry containments. Severe accidents scenarios were calculated with the system code MELCOR to determine the mass- and energy release rates from the primary system into the containment, necessary to prepare the input data for the containment code calculations. A detailed nodalisation of the containment system of a German PWR plant (Konvoi-type) was developed for the code RA-LOC MOD4 to investigate the effectiveness of a catalytic recombiner system which consists of 53 of such devices, being distributed in the complex room arrangement. The effectiveness of such a system is demonstrated by comparing a representative severe accident sequence without and with the catalytic recombination of hydrogen. The results showed, that only in some limited areas in the containment combustible gas mixtures were formed for a limited time span and that at the end of the first day after the onset of the accident the catalytic reaction is limited due to oxygen depletion. The work is still in progress while additional severe accident sequences have to be analyzed to develop some generic guidelines for the implementation of a catalytic recombiner system in large dry containments. (author)

  13. Controlling selectivities in CO2 reduction through mechanistic understanding

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiang; Shi, Hui; Szanyi, János

    2017-09-11

    Catalytic CO2 conversion to energy carriers and intermediates is of utmost importance to energy and environmental goals. However, the lack of fundamental understanding of the reaction mechanism renders designing a selective catalyst inefficient. We performed operando FTIR/SSITKA experiments to understand the correlation between the kinetics of product formation and that of surface species conversion during CO2 reduction over Pd/Al2O3 catalysts. We found that the rate-determining step for CO formation is the conversion of adsorbed formate, while that for CH4 formation is the hydrogenation of adsorbed carbonyl. The balance of the hydrogenation kinetics between adsorbed formates and carbonyls governs the selectivities to CH4 and CO. We demonstrated how this knowledge can be used to design catalysts to achieve high selectivities to desired products.

  14. Catalytic hydrogenation of carbonyl group for deuterated compound production

    International Nuclear Information System (INIS)

    Gluhoi, C. Andreea; Marginean, P.; Lazar, Diana; Almasan, V.

    1999-01-01

    The total deuterated isopropyl alcohol can be produced starting from acetone. The developed technology comprises two steps: Deuteration of acetone by H/D isotopic exchange between acetone and heavy water in homogeneous catalysis. Reduction of the deuterated acetone with deuterium in presence of a metal/support catalyst. H/D isotopic exchange reaction of the H atoms from CH 3 groups is easy to occur because carbonyl group weakens C-H bond (ceto-enolyc tautomery). The big difference between boiling points of acetone and water permits an easy separation of acetone by distillation method. The reduction of acetone with deuterium was performed in a dynamic reactor by passing a deuterium flow saturated with acetone vapour through a supported nickel catalyst bed. The reaction products were analysed on-line using a flame ionisation detector. The supported nickel catalysts were checked for this reaction. By using nickel over different supports the selectivity for isopropyl alcohol was about 100%. The propane was detected only as traces. The catalytic activity depends strongly on the support nature: the Ni/SiO 2 is less active, while the Ni/TiO 2 presents the larger value for the intrinsic activity. (authors)

  15. High selectivity and stability of Mg-doped Al-MCM-41 for in-situ catalytic upgrading fast pyrolysis bio-oil

    International Nuclear Information System (INIS)

    Karnjanakom, Surachai; Suriya-umporn, Thanyamai; Bayu, Asep; Kongparakul, Suwadee; Samart, Chanatip; Fushimi, Chihiro; Abudula, Abuliti; Guan, Guoqing

    2017-01-01

    Highlights: • Mg-doped Al-MCM-41 was developed for in-situ catalytic upgrading of bio-oils. • Mg/Al-MCM-41 exhibited high selectivity to aromatic hydrocarbons. • The ratio of produced hydrocarbon reached up to 80% in upgraded bio-oil. • 1 wt.% Mg/Al-MCM-41 showed the highest catalytic activity. • Mg/Al-MCM-41 had stable reusability due to its coking inhabitation ability. - Abstract: In-situ catalytic upgrading of bio-oils derived from the fast pyrolysis of cellulose, lignin or sunflower stalk over Mg-doped Al-MCM-41 was investigated in details. It is found that Mg species with doping amounts ranged between 0.25 and 10 wt.% was well dispersed on Al-MCM-41, and that doping Mg on Al-MCM-41 effectively adjusted the acidity and basicity of the catalysts, resulting in significant improvement of bio-oil quality. Mg/Al-MCM-41 exhibited high selective conversion of bio-oils derived from cellulose, lignin or sunflower stalk to high value-added aromatic hydrocarbons via catalytic cracking, deoxygenation and aromatization. In the upgraded bio-oil, the relative total hydrocarbon amount reached up to approximately ≥80%, which consisted of aromatic hydrocarbon approximately 76% and aliphatic hydrocarbon approximately 4% for all feedstocks. The selectivity to the monocyclic aromatic hydrocarbons (MAHs) such as benzene, toluene and xylenes (BTXs) increased while the coke formed on the catalyst decreased with the increase in Mg doping amount. 1 wt.% Mg/Al-MCM-41 resulted in the highest relative total hydrocarbon amount in the upgraded bio-oil at lower catalytic deoxygenation temperature, and showed stable reusability for at least 5 cycles. It is expected that Mg/Al-MCM-41 can be widely applied for bio-oil upgrading in a practical process.

  16. Enhanced Activity of Nanocrystalline Zeolites for Selective Catalytic Reduction of NOx

    International Nuclear Information System (INIS)

    Sarah C. Larson; Vicki H. Grassian

    2006-01-01

    Nanocrystalline zeolites with discrete crystal sizes of less than 100 nm have different properties relative to zeolites with larger crystal sizes. Nanocrystalline zeolites have improved mass transfer properties and very large internal and external surface areas that can be exploited for many different applications. The additional external surface active sites and the improved mass transfer properties of nanocrystalline zeolites offer significant advantages for selective catalytic reduction (SCR) catalysis with ammonia as a reductant in coal-fired power plants relative to current zeolite based SCR catalysts. Nanocrystalline NaY was synthesized with a crystal size of 15-20 nm and was thoroughly characterized using x-ray diffraction, electron paramagnetic resonance spectroscopy, nitrogen adsorption isotherms and Fourier Transform Infrared (FT-IR) spectroscopy. Copper ions were exchanged into nanocrystalline NaY to increase the catalytic activity. The reactions of nitrogen dioxides (NO x ) and ammonia (NH 3 ) on nanocrystalline NaY and CuY were investigated using FT-IR spectroscopy. Significant conversion of NO 2 was observed at room temperature in the presence of NH 3 as monitored by FT-IR spectroscopy. Copper-exchanged nanocrystalline NaY was more active for NO 2 reduction with NH 3 relative to nanocrystalline NaY

  17. Thermally stable single atom Pt/m-Al2O3 for selective hydrogenation and CO oxidation

    KAUST Repository

    Zhang, Zailei

    2017-07-27

    Single-atom metal catalysts offer a promising way to utilize precious noble metal elements more effectively, provided that they are catalytically active and sufficiently stable. Herein, we report a synthetic strategy for Pt single-atom catalysts with outstanding stability in several reactions under demanding conditions. The Pt atoms are firmly anchored in the internal surface of mesoporous Al2O3, likely stabilized by coordinatively unsaturated pentahedral Al3+ centres. The catalyst keeps its structural integrity and excellent performance for the selective hydrogenation of 1,3-butadiene after exposure to a reductive atmosphere at 200 °C for 24 h. Compared to commercial Pt nanoparticle catalyst on Al2O3 and control samples, this system exhibits significantly enhanced stability and performance for n-hexane hydro-reforming at 550 °C for 48 h, although agglomeration of Pt single-atoms into clusters is observed after reaction. In CO oxidation, the Pt single-atom identity was fully maintained after 60 cycles between 100 and 400 °C over a one-month period.

  18. Session 6: Catalytic hydro-dehalogenation of halon 1211 (CBrClF{sub 2}) over carbon supported Pd-Fe, Pd-Co and Pd-Ni bimetallic catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Hai, Yu; Kennedy, E.M.; Md Azhar, Uddin; Dlugogorski, B.Z. [Newcastle Univ., Process Safety and Environment Protection Group, School of Engineering, Callaghan, NSW (Australia)

    2004-07-01

    In the current study, we present the result of our investigation on the hydro-dehalogenation of halon 1211 with hydrogen over carbon supported Pd-Fe, Pd-Co and Pd-Ni bimetallic catalysts. In addition to dissociatively adsorbing hydrogen, Fe, Co and Ni themselves can facilitate cleavage of C-halogen bonds. The effect of the interaction of a second metal (Fe, Co and Ni) with Pd on the conversion of halon 1211 and selectivity to CH{sub 2}F{sub 2} for the catalytic hydro-dehalogenation of halon 1211 is discussed. Activated carbon is chosen as support in order to minimize the interaction of support with the metals. The obtained experimental results show that the introduction of Fe, Co and Ni to Pd catalysts has a significant influence on the catalytic hydro-dehalogenation of halon 1211, especially with respect to the selectivity to CH{sub 2}F{sub 2}. The presence of Fe increases the amount of halon 1211 adsorbed on the surface of catalysts and enhances the cleavage of C-halogen bonds in halon 1211, resulting in a higher halon 1211 conversion level and selectivity to hydrocarbons. Higher selectivity to CHBrF{sub 2} is ascribed to the secondary reaction: CF{sub 2} + HBr {yields} CHBrF{sub 2}. (authors)

  19. Extremophile mediated hydrogen production for hydrogenation of substrates in aqueous media

    Science.gov (United States)

    Anjom, Mouzhgun

    Catalytic hydrogenation reactions are pervasive throughout our economy, from production of margarine as food, liquid fuels for transportation and chiral drugs such as L-DOPA. H2 production from non-fossil fuel feedstocks is highly desirable for transition to the "Hydrogen Economy". Also, the rates of hydrogenation reactions that involve a substrate, H 2 gas and a catalyst are often limited by the solubility of H2 in solvent. The present research thus envisioned designing water-soluble catalysts that could effectively utilize biologically produced H2 in a coupled system to hydrogenate substrates in homogeneous mode (two-phase system). Biological production of H2 as an end product or byproduct of the metabolism of organisms that operate under strict anaerobic conditions has been proposed. However, contrary to what was previously observed, Thermotoga neapolitana, belonging to the order of Thermotogales efficiently produces H2 gas under microaerobic conditions (Van Ooteghem et al. 2004). For H2 production by T. neapolitana in the bacterial growth medium (DSM 5068) at an optimum temperature of 70 C, our results in batch mode show that: (1) H2 was produced from glucose though with 16% efficiency, the rest goes to biomass production, (2) H2 gas was produced even when the cultures were inoculated under microaerobic conditions (up to 8% (v/v) O2) suggesting a protective mechanism for one or more [Fe-Fe] hydrogenases in T. neapolitana, (3) H2 production was pH dependent but addition of simple, non-toxic physiological buffering additives such as Methylene succinic acid increased H2 production and (4) H2 production rate varied linearly in the 100--6800 kPa pressure range. We then screened various water-soluble metal catalysts in batch mode and selected the RhCl3.3H2O/TPPTS (TPPTS is a water-soluble ligand) system that achieved 86% hydrogenation of Methylene succinic acid (an olefin) in an aqueous medium pressurized with preformed H2. When water was replaced with the DSM 5068

  20. Uniformity index measurement technology using thermocouples to improve performance in urea-selective catalytic reduction systems

    Science.gov (United States)

    Park, Sangki; Oh, Jungmo

    2018-05-01

    The current commonly used nitrogen oxides (NOx) emission reduction techniques employ hydrocarbons (HCs), urea solutions, and exhaust gas emissions as the reductants. Two of the primary denitrification NOx (DeNOx) catalyst systems are the HC-lean NOx trap (HC-LNT) catalyst and urea-selective catalytic reduction (urea-SCR) catalyst. The secondary injection method depends on the type of injector, injection pressure, atomization, and spraying technique. In addition, the catalyst reaction efficiency is directly affected by the distribution of injectors; hence, the uniformity index (UI) of the reductant is very important and is the basis for system optimization. The UI of the reductant is an indicator of the NOx conversion efficiency (NCE), and good UI values can reduce the need for a catalyst. Therefore, improving the UI can reduce the cost of producing a catalytic converter, which are expensive due to the high prices of the precious metals contained therein. Accordingly, measurement of the UI is an important process in the development of catalytic systems. Two of the commonly used methods for measuring the reductant UI are (i) measuring the exhaust emissions at many points located upstream/downstream of the catalytic converter and (ii) acquisition of a reductant distribution image on a section of the exhaust pipe upstream of the catalytic converter. The purpose of this study is to develop a system and measurement algorithms to measure the exothermic response distribution in the exhaust gas as the reductant passes through the catalytic converter of the SCR catalyst system using a set of thermocouples downstream of the SCR catalyst. The system is used to measure the reductant UI, which is applied in real-time to the actual SCR system, and the results are compared for various types of mixtures for various engine operating conditions and mixer types in terms of NCE.

  1. Numerical study of methanol–steam reforming and methanol–air catalytic combustion in annulus reactors for hydrogen production

    International Nuclear Information System (INIS)

    Chein, Reiyu; Chen, Yen-Cho; Chung, J.N.

    2013-01-01

    Highlights: ► Performance of mini-scale integrated annulus reactors for hydrogen production. ► Flow rates fed to combustor and reformer control the reactor performance. ► Optimum performance is found from balance of flow rates to combustor and reformer. ► Better performance can be found when shell side is designed as combustor. -- Abstract: This study presents the numerical simulation on the performance of mini-scale reactors for hydrogen production coupled with liquid methanol/water vaporizer, methanol/steam reformer, and methanol/air catalytic combustor. These reactors are designed similar to tube-and-shell heat exchangers. The combustor for heat supply is arranged as the tube or shell side. Based on the obtained results, the methanol/air flow rate through the combustor (in terms of gas hourly space velocity of combustor, GHSV-C) and the methanol/water feed rate to the reformer (in terms of gas hourly space velocity of reformer, GHSV-R) control the reactor performance. With higher GHSV-C and lower GHSV-R, higher methanol conversion can be achieved because of higher reaction temperature. However, hydrogen yield is reduced and the carbon monoxide concentration is increased due to the reversed water gas shift reaction. Optimum reactor performance is found using the balance between GHSV-C and GHSV-R. Because of more effective heat transfer characteristics in the vaporizer, it is found that the reactor with combustor arranged as the shell side has better performance compared with the reactor design having the combustor as the tube side under the same operating conditions.

  2. A catalyst for hydrogenating medium-distilled petroleum fractions

    Energy Technology Data Exchange (ETDEWEB)

    Mordanov, M A; Gasanova, Zh I; Isaev, A Ia; Khavkin, V A; Kurganov, V M; Musaeva, S K

    1982-01-01

    The catalyst for hydrogenating medium-distilled petroleum fractions, which contain Cr/sub 2/O/sub 3/ and Ni-concentrate components in the gamma-A1/sub 2/O/sub 3/ transfer agent, also contains, as a Ni-concentrate component, NiO and Re in the following component ratios (by percentage): Cr/sub 2/O/sub 3/ 25-44, NiO 4-25, Re 1-2 and the transfer agent the remainder, in order to improve catalytic resistance to catalyst toxins--nitrous and sulfurous compounds. The resistance of the proposed catalyst to toxins makes it possible to hydrogenate in less stringent conditions (280 degrees, 30 atmospheres) without first hydropurifying the raw material. Here, the catalyst's selectivity reaches 100 percent (aromatic hydrocarbons are absent); the yield of the target fraction is 99 percent.

  3. Mixed diphosphine/diamine ruthenium (II) isomers: Synthesis, structural characterization and catalytic hydrogenation of ketones

    Science.gov (United States)

    Nascimento, Rebecca D.; Silva, Andressa K.; Lião, Luciano M.; Deflon, Victor M.; Ueno, Leonardo T.; Dinelli, Luis R.; Bogado, André L.

    2018-01-01

    The complexes trans-[RuCl2(dppb)(cydn)] (1), trans-[RuCl2(dppb)(opda)] (2) and cis-[RuCl2(dppb)(cydn)] (3) were synthesized from [{RuCl2(dppb)}2-μ-(dppb)] {where: dppb = 1,4-bis(diphenylphosphino)butane; cydn = cis and trans (±) 1,2-diaminocyclohexane, and opda = o-phenylenediamine}. The complexes were characterized by nuclear magnetic resonance of phosphorus (31P{1H} NMR), cyclic voltammetry (CV), infrared and ultraviolet/visible spectra (IR and UV/vis) as well as elemental analyses (CHN). The X-ray structures of (1) and (3) were determined and they are presented here. DFT calculations and experimental data showed that the trans isomers are obtained as thermodynamic products while the cis isomers are kinetic products. This behavior is different than described in the literature for similar complexes, where the cis isomer is obtained from the trans isomer. Additionally, the catalytic activity of the complexes (1), (2) and (3) was investigated, as pre-catalysts, in the reduction of the acetophenone and 4-methylacetophenone by transfer-hydrogenation.

  4. Catalytic effect of KF-846 on the reforming of the primary intermediates from the co-pyrolysis of pubescens and LDPE

    International Nuclear Information System (INIS)

    Liu, Wen-wu; Hu, Chang-wei; Tong, Dong-mei; Yang, Yu; Li, Gui-ying; Zhu, Liang-fang; Tang, Jin-Qiang

    2014-01-01

    Highlights: • Reforming reactions were inhibited by H 2 , decrease of acidity and low temperature. • There was a synergistic effect on producing hydrogen between Ni and Mo. • The lattice oxygen over catalyst employed might transfer into the intermediates. • Co-pyrolysis, low temperature and N 2 could restrain oxygen transfer to some extent. - Abstract: Co-pyrolysis is regarded as an effective approach to upgrade the quality of pyrolysis products. In this work the activity of KF-846 was evaluated by co-pyrolysis of pubescens and low density polyethylene under different experimental conditions including catalytic mode, pyrolytic atmosphere and temperature, etc. The results showed that the fresh KF-846 exerted strong effects of cyclization, aromatization, hydrogen transfer and vapor-catalytic reforming reactions on the primary intermediates from the co-pyrolysis. The hydrogen-rich gases indicated a synergistic effect between Ni and Mo over KF-846 on producing hydrogen. More importantly, the reforming reactions might be inhibited to some extent by H 2 atmosphere, the low temperature and the decrease of acidity over catalyst. Furthermore, it was deduced that the oxygen over the lattice of catalyst or some intermediates might transfer into other intermediates, possibly resulting in more products with high oxygen content, but it was presumed that the low temperature, co-pyrolysis process and N 2 atmosphere could repress the trend to a certain degree. The mass and energy balance of co-pyrolysis were analyzed, and the main reaction pathways were also proposed. The interference in pyrolysis by regulating the catalytic mode, pyrolytic atmosphere and temperature, acidity over catalyst might posses a certain guiding significance for the pyrolytic technology and the design/selection of catalysts employed

  5. High-Pressure Catalytic Reactions of C6 Hydrocarbons on PlatinumSingle-Crystals and nanoparticles: A Sum Frequency Generation VibrationalSpectroscopic and Kinetic Study

    Energy Technology Data Exchange (ETDEWEB)

    Bratlie, Kaitlin [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    Catalytic reactions of cyclohexene, benzene, n-hexane, 2-methylpentane, 3-methylpentane, and 1-hexene on platinum catalysts were monitored in situ via sum frequency generation (SFG) vibrational spectroscopy and gas chromatography (GC). SFG is a surface specific vibrational spectroscopic tool capable of monitoring submonolayer coverages under reaction conditions without gas-phase interference. SFG was used to identify the surface intermediates present during catalytic processes on Pt(111) and Pt(100) single-crystals and on cubic and cuboctahedra Pt nanoparticles in the Torr pressure regime and at high temperatures (300K-450K). At low pressures (<10-6 Torr), cyclohexene hydrogenated and dehydrogenates to form cyclohexyl (C6H11) and π-allyl C6H9, respectively, on Pt(100). Increasing pressures to 1.5 Torr form cyclohexyl, π-allyl C6H9, and 1,4-cyclohexadiene, illustrating the necessity to investigate catalytic reactions at high-pressures. Simultaneously, GC was used to acquire turnover rates that were correlated to reactive intermediates observed spectroscopically. Benzene hydrogenation on Pt(111) and Pt(100) illustrated structure sensitivity via both vibrational spectroscopy and kinetics. Both cyclohexane and cyclohexene were produced on Pt(111), while only cyclohexane was formed on Pt(100). Additionally, π-allyl c-C6H9 was found only on Pt(100), indicating that cyclohexene rapidly dehydrogenates on the (100) surface. The structure insensitive production of cyclohexane was found to exhibit a compensation effect and was analyzed using the selective energy transfer (SET) model. The SET model suggests that the Pt-H system donates energy to the E2u mode of free benzene, which leads to catalysis. Linear C6 (n-hexane, 2-methylpentane, 3-methylpentane, and 1-hexene) hydrocarbons were also investigated in the presence and absence of excess hydrogen on Pt

  6. Purdue Hydrogen Systems Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

    2011-12-28

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up

  7. Purdue Hydrogen Systems Laboratory

    International Nuclear Information System (INIS)

    Gore, Jay P.; Kramer, Robert; Pourpoint, Timothee L.; Ramachandran, P.V.; Varma, Arvind; Zheng, Yuan

    2011-01-01

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up. Efforts

  8. Synthesis of Alkanethiolate-Capped Metal Nanoparticles Using Alkyl Thiosulfate Ligand Precursors: A Method to Generate Promising Reagents for Selective Catalysis

    Directory of Open Access Journals (Sweden)

    Khin Aye San

    2018-05-01

    Full Text Available Evaluation of metal nanoparticle catalysts functionalized with well-defined thiolate ligands can be potentially important because such systems can provide a spatial control in the reactivity and selectivity of catalysts. A synthetic method utilizing Bunte salts (sodium S-alkylthiosulfates allows the formation of metal nanoparticles (Au, Ag, Pd, Pt, and Ir capped with alkanethiolate ligands. The catalysis studies on Pd nanoparticles show a strong correlation between the surface ligand structure/composition and the catalytic activity and selectivity for the hydrogenation/isomerization of alkenes, dienes, trienes, and allylic alcohols. The high selectivity of Pd nanoparticles is driven by the controlled electronic properties of the Pd surface limiting the formation of Pd–alkene adducts (or intermediates necessary for (additional hydrogenation. The synthesis of water soluble Pd nanoparticles using ω-carboxylate-S-alkanethiosulfate salts is successfully achieved and these Pd nanoparticles are examined for the hydrogenation of various unsaturated compounds in both homogeneous and heterogeneous environments. Alkanethiolate-capped Pt nanoparticles are also successfully synthesized and further investigated for the hydrogenation of various alkynes to understand their geometric and electronic surface properties. The high catalytic activity of activated terminal alkynes, but the significantly low activity of internal alkynes and unactivated terminal alkynes, are observed for Pt nanoparticles.

  9. Vacuum-insulated catalytic converter

    Science.gov (United States)

    Benson, David K.

    2001-01-01

    A catalytic converter has an inner canister that contains catalyst-coated substrates and an outer canister that encloses an annular, variable vacuum insulation chamber surrounding the inner canister. An annular tank containing phase-change material for heat storage and release is positioned in the variable vacuum insulation chamber a distance spaced part from the inner canister. A reversible hydrogen getter in the variable vacuum insulation chamber, preferably on a surface of the heat storage tank, releases hydrogen into the variable vacuum insulation chamber to conduct heat when the phase-change material is hot and absorbs the hydrogen to limit heat transfer to radiation when the phase-change material is cool. A porous zeolite trap in the inner canister absorbs and retains hydrocarbons from the exhaust gases when the catalyst-coated substrates and zeolite trap are cold and releases the hydrocarbons for reaction on the catalyst-coated substrate when the zeolite trap and catalyst-coated substrate get hot.

  10. Catalytic hydrogenation using complexes of base metals with tridentate ligands

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Susan K.; Zhang, Guoqi; Vasudevan, Kalyan V.

    2017-02-14

    Complexes of cobalt and nickel with tridentate ligand PNHP.sup.R are effective for hydrogenation of unsaturated compounds. Cobalt complex [(PNHP.sup.Cy)Co(CH.sub.2SiMe.sub.3)]BAr.sup.F.sub.4 (PNHP.sup.Cy=bis[2-(dicyclohexylphosphino)ethyl]amine, BAr.sup.F.sub.4=B(3,5-(CF.sub.3).sub.2C.sub.6H.sub.3).sub.4)) was prepared and used with hydrogen for hydrogenation of alkenes, aldehydes, ketones, and imines under mild conditions (25-60.degree. C., 1-4 atm H.sub.2). Nickel complex [(PNHP.sup.Cy)Ni(H)]BPh.sub.4 was used for hydrogenation of styrene and 1-octene under mild conditions. (PNP.sup.Cy)Ni(H) was used for hydrogenating alkenes.

  11. Catalytic hydrogenation using complexes of base metals with tridentate ligands

    Energy Technology Data Exchange (ETDEWEB)

    Vasudevan, Kalyan V.; Zhang, Guoqi; Hanson, Susan K.

    2016-09-06

    Complexes of cobalt and nickel with tridentate ligand PNHP.sup.R are effective for hydrogenation of unsaturated compounds. Cobalt complex [(PNHP.sup.Cy)Co(CH.sub.2SiMe.sub.3)]BAr.sup.F.sub.4 (PNHP.sup.Cy=bis[2-(dicyclohexylphosphino)ethyl]amine, BAr.sup.F.sub.4=B(3,5-(CF.sub.3).sub.2C.sub.6H.sub.3).sub.4)) was prepared and used with hydrogen for hydrogenation of alkenes, aldehydes, ketones, and imines under mild conditions (25-60.degree. C., 1-4 atm H.sub.2). Nickel complex [(PNHP.sup.Cy)Ni(H)]BPh.sub.4 was used for hydrogenation of styrene and 1-octene under mild conditions. (PNP.sup.Cy)Ni(H) was used for hydrogenating alkenes.

  12. Processing and structural characterization of porous reforming catalytic films

    International Nuclear Information System (INIS)

    Hou Xianghui; Williams, Jey; Choy, Kwang-Leong

    2006-01-01

    Nickel-based catalysts are often used to reform methanol into hydrogen. The preparation and installation of these catalysts are costly and laborious. As an alternative, directly applying catalytic films onto the separator components can improve the manufacturing efficiency. This paper reports the successful deposition of adherent porous NiO-Al 2 O 3 -based catalytic films with well-controlled stoichiometry, using a single-step Aerosol Assisted Chemical Vapour Deposition (AACVD) method. The microstructure, composition and crystalline phase of the as-deposited catalytic films are characterized using a combination of X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and Fourier Transform Infrared (FTIR) Spectrometer. The results have demonstrated the capability of AACVD to produce porous NiO-Al 2 O 3 -based catalytic films

  13. Effect of Catalytic Cylinders on Autothermal Reforming of Methane for Hydrogen Production in a Microchamber Reactor

    Directory of Open Access Journals (Sweden)

    Yunfei Yan

    2014-01-01

    Full Text Available A new multicylinder microchamber reactor is designed on autothermal reforming of methane for hydrogen production, and its performance and thermal behavior, that is, based on the reaction mechanism, is numerically investigated by varying the cylinder radius, cylinder spacing, and cylinder layout. The results show that larger cylinder radius can promote reforming reaction; the mass fraction of methane decreased from 26% to 21% with cylinder radius from 0.25 mm to 0.75 mm; compact cylinder spacing corresponds to more catalytic surface and the time to steady state is decreased from 40 s to 20 s; alteration of staggered and aligned cylinder layout at constant inlet flow rates does not result in significant difference in reactor performance and it can be neglected. The results provide an indication and optimize performance of reactor; it achieves higher conversion compared with other reforming reactors.

  14. The hydrogen market in refining and petrochemicals in France

    International Nuclear Information System (INIS)

    Lutz, P.; Borel, P.

    1991-11-01

    The french hydrogen market on industrial sites can be divided into three main parts. Captive hydrogen is produced by thermofor catalytic reforming, catalytic cracking and hydrotreating of vacuum distillates, and is consumed in hydrotreating of petrol, hydrodesulfurization of gasoil and domestic fuel oil, hydrocracking and hydrofining of lubricants. By-product hydrogen is burnt in boilers and flare stacks. Merchant hydrogen is sold to users on the open market. Currently, thirteen refineries belonging to six companies produce 73 million tonnes of petroleum products each year in France and release annually a surplus of some 100,000 tonnes of hydrogen. The future of refining industry in France depends on the quality of the crude oil, the specific characteristics of the end products, and the developments in user markets. The refining process is likely to become more complex by 2005 with an increase in hydrogen requirements. Refineries could then undergo an annual deficit between 140,000 and 230,000 tonnes of hydrogen. The choice of the appropriate process to cover this shortfall depends mostly on oil companies strategy. (author). 1 fig., 3 tabs., 3 diagrams

  15. Catalytic co-pyrolysis of paper biomass and plastic mixtures (HDPE (high density polyethylene), PP (polypropylene) and PET (polyethylene terephthalate)) and product analysis

    International Nuclear Information System (INIS)

    Chattopadhyay, Jayeeta; Pathak, T.S.; Srivastava, R.; Singh, A.C.

    2016-01-01

    Catalytic co-pyrolysis of biomass and plastics (HDPE (high density polyethylene), PP (polypropylene) and PET (polyethylene terephthalate)) has been performed in a fixed-bed reactor in presence of cobalt based alumina, ceria and ceria-alumina catalysts to analyze the product distribution and selectivity. Catalysts are synthesized using co-precipitation method and characterized by BET (Brunauer–Emmett–Teller) surface area and XRD analysis. The effect of catalytic co-pyrolysis at different temperature with product distribution has been evaluated. The results have clearly shown the synergistic effect between biomass and plastics, the liquid products gradually increases forming with rise in the plastic content in the blend. Gaseous products have yielded most during pyrolysis of blend having biomass/plastics ratio of 5:1 with the presence of 40% Co/30% CeO_2/30% Al_2O_3 catalyst with hydrogen gas production touched its peak of 47 vol%. Catalytic performance enhanced with increase with the cobalt loading, with best performance attributing to 40% Co/30% CeO_2/30% Al_2O_3 catalyst. - Highlights: • Catalytic co-pyrolysis of biomass and plastics (HDPE, PP & PET) blends in fixed-bed reactor. • Strong synergistic effect evident between biomass and plastics. • Solid residue diminished with application of catalysts. • Aromatics and olefins production increases with higher plastic content. • More hydrogen production with application of catalysts with higher cobalt content.

  16. A Hydrogen Ion-Selective Sensor Based on Non-Plasticised Methacrylic-acrylic Membranes

    Directory of Open Access Journals (Sweden)

    Musa Ahmad

    2002-08-01

    Full Text Available A methacrylic-acrylic polymer was synthesised for use as a non-plasticised membrane for hydrogen ion-selective sensor incorporating tridodecylamine as an ionophore. The copolymer consisted of methyl methacrylate and n-butyl acrylate monomers in a ratio of 2:8. Characterisation of the copolymer using FTNMR demonstrated that the amount of each monomer incorporated during solution polymerisation was found to be similar to the amount used in the feed before polymerisation. The glass transition temperature of the copolymer determined by differential scanning calorimetry was -30.9 ºC. Potentiometric measurements conducted showed a linear pH response range of 4.3 – 9.6 with the response slope of 56.7 mV/decade. The selectivity of the sensors towards hydrogen ions was similar to other plasticiser based membrane electrodes and the logarithmic selectivity coefficients for discrimination against interference cations is close to –9.7. However, the incorporation of a lipophilic anion as membrane additive is essential in ensuring optimum performance of the hydrogen ion sensor.

  17. Solar chemistry / hydrogen - Summary report on the research programme 2002; Forschungsprogramm Solarchemie / Wasserstoff

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This summary report for the Swiss Federal Office of Energy (SFOE) on the solar chemistry / hydrogen research programme presents an overview of work done in these fields in Switzerland in 2002. It includes an overview of work done on 12 research and development projects and 9 pilot and demonstration projects. The volume is completed with a selection of 13 annual reports on particular topics, including transformation and storage of energy by photo-chemical, photo-electrochemical and photovoltaic means, generation of hydrogen using water splitting, solar production of zinc and calcium, catalytic synthesis, redox processes for the production of hydrogen and compressed air as a means of storing energy. Also covered are the topics of how solar chemistry can help reduce CO{sub 2} emissions and the management of the International Energy Agency's hydrogen annex 14. Further reports look at the destabilisation of metal hydride compounds, materials for sustainable energy technologies and diffusion barriers for high-pressure hydrogen tanks.

  18. Catalytic pyrolysis of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Vail' eva, N A; Buyanov, R A

    1979-01-01

    Catalytic pyrolysis of petroleum fractions (undecane) was performed with the object of clarifying such questions as the mechanism of action of the catalyst, the concepts of activity and selectivity of the catalyst, the role of transport processes, the temperature ranges and limitations of the catalytic process, the effect of the catalyst on secondary processes, and others. Catalysts such as quartz, MgO, Al/sub 2/O/sub 3/, were used. Analysis of the experimental findings and the fact that the distribution of products is independent of the nature of the surface, demonstrate that the pyrolysis of hydrocarbons in the presence of catalysts is based on the heterogeneous-homogeneous radical-chain mechanism of action, and that the role of the catalysts reduces to increasing the concentration of free radicals. The concept of selectivity cannot be applied to catalysts here, since they do not affect the mechanism of the unfolding of the process of pyrolysis and their role consists solely in initiating the process. In catalytic pyrolysis the concepts of kinetic and diffusive domains of unfolding of the catalytic reaction do not apply, and only the outer surface of the catalyst is engaged, whereas the inner surface merely promotes deletorious secondary processes reducing the selectivity of the process and the activity of the catalyst. 6 references, 2 figures.

  19. Finding Furfural Hydrogenation Catalysts via Predictive Modelling.

    Science.gov (United States)

    Strassberger, Zea; Mooijman, Maurice; Ruijter, Eelco; Alberts, Albert H; Maldonado, Ana G; Orru, Romano V A; Rothenberg, Gadi

    2010-09-10

    We combine multicomponent reactions, catalytic performance studies and predictive modelling to find transfer hydrogenation catalysts. An initial set of 18 ruthenium-carbene complexes were synthesized and screened in the transfer hydrogenation of furfural to furfurol with isopropyl alcohol complexes gave varied yields, from 62% up to >99.9%, with no obvious structure/activity correlations. Control experiments proved that the carbene ligand remains coordinated to the ruthenium centre throughout the reaction. Deuterium-labelling studies showed a secondary isotope effect (k(H):k(D)=1.5). Further mechanistic studies showed that this transfer hydrogenation follows the so-called monohydride pathway. Using these data, we built a predictive model for 13 of the catalysts, based on 2D and 3D molecular descriptors. We tested and validated the model using the remaining five catalysts (cross-validation, R(2)=0.913). Then, with this model, the conversion and selectivity were predicted for four completely new ruthenium-carbene complexes. These four catalysts were then synthesized and tested. The results were within 3% of the model's predictions, demonstrating the validity and value of predictive modelling in catalyst optimization.

  20. Selective hydrogenation of 4-isobutylacetophenone over a sodium-promoted Pd/C catalyst

    International Nuclear Information System (INIS)

    Cho, Hong-Baek; Lee, Bae Uk; Nakayama, Tadachika; Park, Yeung-Ho; Ryu, Chung-Han

    2013-01-01

    The effect of sodium promotion on the selective hydrogenation of 4-isobutylacetophenone, 4-IBAP, was investigated over a Pd/C catalyst. A precipitation and deposition method was used to prepare the catalyst, and sodium was promoted on the Pd/C catalyst via post-impregnation while varying the sodium content. The sodium-promoted Pd/C catalyst resulted in a significantly improved yield greater than 96% of the desired product, 1-(4-isobutylphenyl) ethanol (4-IBPE), compared with the non-patented literature results under a mild hydrogenation condition. A detailed hydrogenation network over the Pd/C catalyst was suggested. The reaction mechanism for the yield and selectivity enhancement of 4-IBPE induced-by the promoted Pd/C was elucidated in relation to the geometric and electronic effects of reactant molecules in the microporous support depending on the reaction steps

  1. Electrocatalytic Activity and Selectivity - a Density Functional Theory Study

    DEFF Research Database (Denmark)

    Karamad, Mohammadreza

    -catalysts towards two appealing electrochemical reactions: 1)electroreduction of CO2 to hydrocarbons and alcohols, and 2) electrochemical production of hydrogen peroxide, i.e. H2O2, from its elements i.e. H2 and O2. The thesis is divided into three parts: In the first part, electro-catalytic activity of different...... metallic and functionalized graphene catalysts. Secondly, we considered CO2 reduction on RuO2, which has a distinctive catalytic activity and selectivity compared to Cu to get insight into mechanistic pathway of the CO2 reduction. Finally, in the last part, we have taken advantage of the isolated active...

  2. Catalytic Oxidation of Phenol over Zeolite Based Cu/Y-5 Catalyst: Part 1: Catalyst Preparation and Characterization

    Directory of Open Access Journals (Sweden)

    K. Maduna Valkaj

    2015-01-01

    Full Text Available The necessity to remove organic pollutants from the industrial wastewater streams has forced the development of new technologies that can produce better results in terms of pollutant removal and process efficiency in combination with low investment and operating costs. One of the new emerging processes with a potential to fulfil these demands is catalytic wet peroxide oxidation, commonly known as the CWPO process. The oxidative effect of the hydrogen peroxide is intensified by the addition of a heterogeneous catalyst that can reduce the operating conditions to atmospheric pressure and temperatures below 383 K. Zeolites, among others, are especially appealing as catalysts for selective oxidation processes due to their unique characteristics such as shape selectivity, thermal and chemical stability, and benign effect on nature and the living world. In this work, catalytic activity, selectivity and stability of Cu/Y-5 zeolite in phenol oxidation with hydrogen peroxide was examined. Catalyst samples were prepared by ion exchange method of the protonic form of commercial zeolite. The catalysts were characterized with powder X-ray diffraction (XRD, scanning electron microscopy (SEM, and AAS elemental analysis, while the adsorption techniques were used for the measurement of the specific surface area. The catalytic tests were carried out in a stainless steel Parr reactor in batch operation mode at the atmospheric pressure and in the temperature range from 323 to 353 K. The catalyst was prepared in powdered form and the mass fraction of the active metal component on the zeolite was 3.46 %. The initial concentration of phenol solution was equal to 0.01 mol dm−3 and the concentration of hydrogen peroxide ranged from 0.01 to 0.10 mol dm−3. The obtained experimental data was tested to a proposed kinetic model for phenol oxidation r = k1 cF cVP and hydrogen peroxide decomposition rHP = k2 cHP. The kinetic parameters were estimated using the Nelder

  3. Plasma-assisted catalytic ionization using porous nickel plate

    International Nuclear Information System (INIS)

    Oohara, W.; Maeda, T.; Higuchi, T.

    2011-01-01

    Hydrogen atomic pair ions, i.e., H + and H - ions, are produced by plasma-assisted catalytic ionization using a porous nickel plate. Positive ions in a hydrogen plasma generated by dc arc discharge are irradiated to the porous plate, and pair ions are produced from the back of the irradiation plane. It becomes clear that the production quantity of pair ions mainly depends on the irradiation current of positive ions and the irradiation energy affects the production efficiency of H - ions.

  4. Selective catalytic reduction of sulfur dioxide to elemental sulfur. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.; Flytzani-Stephanopoulos, M.; Sarofim, A.F.

    1995-06-01

    This project has investigated new metal oxide catalysts for the single stage selective reduction of SO{sub 2} to elemental sulfur by a reductant, such as CO. Significant progress in catalyst development has been made during the course of the project. We have found that fluorite oxides, CeO{sub 2} and ZrO{sub 2}, and rare earth zirconates such as Gd{sub 2}Zr{sub 2}O{sub 7} are active and stable catalysts for reduction Of SO{sub 2} by CO. More than 95% sulfur yield was achieved at reaction temperatures about 450{degrees}C or higher with the feed gas of stoichiometric composition. Reaction of SO{sub 2} and CO over these catalysts demonstrated a strong correlation of catalytic activity with the catalyst oxygen mobility. Furthermore, the catalytic activity and resistance to H{sub 2}O and CO{sub 2} poisoning of these catalysts were significantly enhanced by adding small amounts of transition metals, such as Co, Ni, Co, etc. The resulting transition metal-fluorite oxide composite catalyst has superior activity and stability, and shows promise in long use for the development of a greatly simplified single-step sulfur recovery process to treat variable and dilute SO{sub 2} concentration gas streams. Among various active composite catalyst systems the Cu-CeO{sub 2} system has been extensively studied. XRD, XPS, and STEM analyses of the used Cu-CeO{sub 2} catalyst found that the fluorite crystal structure of ceria was stable at the present reaction conditions, small amounts of copper was dispersed and stabilized on the ceria matrix, and excess copper oxide particles formed copper sulfide crystals of little contribution to catalytic activity. A working catalyst consisted of partially sulfated cerium oxide surface and partially sulfided copper clusters. The overall reaction kinetics were approximately represented by a first order equation.

  5. Determination of organic bases in non-aqueous solvents by catalytic thermometric titration.

    Science.gov (United States)

    Vajgand, V J; Kiss, T A; Gaál, F F; Zsigrai, I J

    1968-07-01

    Catalytic thermometric titrations have been developed for bases (brucine, diethylaniline, potassium acetate and triethylamine) in acetic acid by continuous and discontinuous addition of the standard solution and automatic temperature recording. The determination of weak bases, e.g., antipyrine, unsuccessful in acetic acid by catalytic thermometric titration, has been achieved by using nitromethane or acetic anhydride as solvent. Catalytic thermometric titrations were also performed by coulometric generation of hydrogen ions for the determination of micro amounts of weak bases in a mixture of acetic anhyride and acetic acid.

  6. Multi-Stage Selective Catalytic Reduction of NOx in Lean-Burn Engine Exhaust

    National Research Council Canada - National Science Library

    Penetrante, B

    1997-01-01

    .... A plasma can also be used to oxidize NO to NO2. This paper compares the multi-stage catalytic scheme with the plasma-assisted catalytic scheme for reduction of NOx in lean-burn engine exhausts. The advantages of plasma oxidation over catalytic oxidation are presented.

  7. A recyclable Au(I) catalyst for selective homocoupling of arylboronic acids: significant enhancement of nano-surface binding for stability and catalytic activity.

    Science.gov (United States)

    Zhang, Xin; Zhao, Haitao; Wang, Jianhui

    2010-08-01

    Au nanoparticles stabilized by polystyrene-co-polymethacrylic acid microspheres (PS-co-PMAA) were prepared and characterized via X-ray diffraction (XRD), and transmission electron microscope (TEM). The Au nanoparticles supported on the microspheres showed highly selective catalytic activity for homo-coupling reactions of arylboronic acids in a system of aryl-halides and arylboronic acids. X-ray photoelectron spectroscopy (XPS) spectra of the catalyst shows large amounts of Au(I) complexes band to the surface of the Au nanoparticles, which contributes to the selective homocoupling of the arylboronic acids. More importantly, this supported Au complex is a highly recyclable catalyst. The supported Au catalyst can be recycled and reused at least 6 times for a phenylboronic acid reactant, whereas the parent complex shows very low catalytic activity for this compound. The high catalytic activity of this material is attributed to: (1) the high surface to volume ratio which leads to more active sites being exposed to reactants; (2) the strong surface binding of the Au nanoparticle to the Au(I) complexes, which enhances both the stability and the catalytic activity of these complexes.

  8. Heavy-water extraction from non-electrolytic hydrogen streams

    International Nuclear Information System (INIS)

    LeRoy, R.L.; Hammerli, M.; Butler, J.P.

    1981-01-01

    Heavy water may be produced from non-electrolytic hydrogen streams using a combined electrolysis and catalytic exchange process. The method comprises contacting feed water in a catalyst column with hydrogen gas originating partly from a non-electrolytic hydrogen stream and partly from an electrolytic hydrogen stream, so as to enrich the feed water with the deuterium extracted from both the non-electrolytic and electrolytic hydrogen gas, and passing the deuterium water to an electrolyser wherein the electrolytic hydrogen gas is generated and then fed through the catalyst column. (L.L.)

  9. Continuous synthesis of methanol: heterogeneous hydrogenation of ethylene carbonate over Cu/HMS catalysts in a fixed bed reactor system.

    Science.gov (United States)

    Chen, Xi; Cui, Yuanyuan; Wen, Chao; Wang, Bin; Dai, Wei-Lin

    2015-09-18

    Continuous fixed-bed catalytic hydrogenation of ethylene carbonate (EC) to methanol and ethylene glycol (EG), an emerging synthetic process of methanol via indirect conversion of CO2, was successfully performed over Cu/HMS catalysts prepared by the ammonia evaporation (AE) method. The catalysts possessed superb performance with a conversion of 100% and a selectivity to methanol of 74%.

  10. A versatile, steam reforming based small-scale hydrogen production process

    International Nuclear Information System (INIS)

    P C Hulteberg; F A Silversand; B Porter; R Woods

    2006-01-01

    In this paper, a new design methodology and process is proposed for small scale pure hydrogen production capable of serving energy markets ranging from distributed generation to vehicular refuelling. The system was designed for producing 7 Nm 3 /hr pure hydrogen (purity of ≤ 1 ppm CO dry), yielding 10 kWe net power from a fuel cell system with an overall parasitic power loss ≤ 10 %. The discussion of this process includes a detailed description of the design methodology and operational results of the catalytic converter, the hydrogen purification system and the fuel cell system. This paper will discuss the design methodology of the overall system, as well as the specific design of the catalytic converter, the catalysts used within, and the hydrogen purification system. It will also report the system performance including gas purity, recovery rate, overall hydrogen production efficiencies, and electrical efficiencies during fuel cell operation. (authors)

  11. Production of Hydrogen from Bio-ethanol

    International Nuclear Information System (INIS)

    Fabrice Giroudiere; Christophe Boyer; Stephane His; Robert Sanger; Kishore Doshi; Jijun Xu

    2006-01-01

    IFP and HyRadix are collaborating in the development of a new hydrogen production system from liquid feedstock such as bio-ethanol. Reducing greenhouse gas (GHG) emissions along with high hydrogen yield are the key objectives. Market application of the system will be hydrogen refueling stations as well as medium scale hydrogen consumers including the electronics, metals processing, and oils hydrogenation industries. The conversion of bio-ethanol to hydrogen will be performed within a co-developed process including an auto-thermal reformer working under pressure. The technology will produce high-purity hydrogen with ultralow CO content. The catalytic auto-thermal reforming technology combines the exothermic and endothermic reaction and leads to a highly efficient heat integration. The development strategy to reach a high hydrogen yield target with the bio-ethanol hydrogen generator is presented. (authors)

  12. Catalytic performance and characterization of cobalt-nickel nano catalysts for CO hydrogenation

    International Nuclear Information System (INIS)

    Feyzi, Mostafa; Gholivand, Mohammad Bagher; Babakhanian, Arash

    2014-01-01

    A series of Co-Ni nano catalysts were prepared by co-precipitation method. We investigated the effect of Co/Ni molar ratios precipitate and calcination conditions on the catalytic performance of cobalt nickel catalysts for Fisher-Tropsch synthesis (FTS). The catalyst containing 90%Co/10%Ni was found to be optimal for the conversion of synthesis gas to light olefins. The activity and selectivity of the optimal catalyst were studied in different operational conditions. The results show that the best operational conditions are the H 2 /CO=2/1 molar feed ratio at 310 .deg. C and GHSV=1,200 h - 1 under 5 bar of pressure. The prepared catalysts were characterized by powder X-ray diffraction (XRD), N 2 adsorption-desorption measurements such as BET and BJH methods, transmission electron microscopy (TEM) and thermal gravimetric analysis (TGA)

  13. Microstructured reactors for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Aartun, Ingrid

    2005-07-01

    Small scale hydrogen production by partial oxidation (POX) and oxidative steam reforming (OSR) have been studied over Rh-impregnated microchannel Fecralloy reactors and alumina foams. Trying to establish whether metallic microchannel reactors have special advantages for hydrogen production via catalytic POX or OSR with respect to activity, selectivity and stability was of special interest. The microchannel Fecralloy reactors were oxidised at 1000 deg C to form a {alpha}-Al2O3 layer in the channels in order to enhance the surface area prior to impregnation. Kr-BET measurements showed that the specific surface area after oxidation was approximately 10 times higher than the calculated geometric surface area. Approximately 1 mg Rh was deposited in the channels by impregnation with an aqueous solution of RhCl3. Annular pieces (15 mm o.d.,4 mm i.d., 14 mm length) of extruded {alpha}-Al2O3 foams were impregnated with aqueous solutions of Rh(NO3)3 to obtain 0.01, 0.05 and 0.1 wt.% loadings, as predicted by solution uptake. ICP-AES analyses showed that the actual Rh loadings probably were higher, 0.025, 0.077 and 0.169 wt.% respectively. One of the microchannel Fecralloy reactors and all Al2O3 foams were equipped with a channel to allow for temperature measurement inside the catalytic system. Temperature profiles obtained along the reactor axes show that the metallic microchannel reactor is able to minimize temperature gradients as compared to the alumina foams. At sufficiently high furnace temperature, the gas phase in front of the Rh/Al2O3/Frecralloy microchannel reactor and the 0.025 wt.% Rh/Al2O3 foams ignites. Gas phase ignition leads to lower syngas selectivity and higher selectivity to total oxidation products and hydrocarbon by-products. Before ignition of the gas phase the hydrogen selectivity is increased in OSR as compared to POX, the main contribution being the water-gas shift reaction. After gas phase ignition, increased formation of hydrocarbon by

  14. Hydrogen bonds between the alpha and beta subunits of the F1-ATPase allow communication between the catalytic site and the interface of the beta catch loop and the gamma subunit.

    Science.gov (United States)

    Boltz, Kathryn W; Frasch, Wayne D

    2006-09-19

    F(1)-ATPase mutations in Escherichia coli that changed the strength of hydrogen bonds between the alpha and beta subunits in a location that links the catalytic site to the interface between the beta catch loop and the gamma subunit were examined. Loss of the ability to form the hydrogen bonds involving alphaS337, betaD301, and alphaD335 lowered the k(cat) of ATPase and decreased its susceptibility to Mg(2+)-ADP-AlF(n) inhibition, while mutations that maintain or strengthen these bonds increased the susceptibility to Mg(2+)-ADP-AlF(n) inhibition and lowered the k(cat) of ATPase. These data suggest that hydrogen bonds connecting alphaS337 to betaD301 and betaR323 and connecting alphaD335 to alphaS337 are important to transition state stabilization and catalytic function that may result from the proper alignment of catalytic site residues betaR182 and alphaR376 through the VISIT sequence (alpha344-348). Mutations betaD301E, betaR323K, and alphaR282Q changed the rate-limiting step of the reaction as determined by an isokinetic plot. Hydrophobic mutations of betaR323 decreased the susceptibility to Mg(2+)-ADP-AlF(n)() inhibition and lowered the number of interactions required in the rate-limiting step yet did not affect the k(cat) of ATPase, suggesting that betaR323 is important to transition state formation. The decreased rate of ATP synthase-dependent growth and decreased level of lactate-dependent quenching observed with alphaD335, betaD301, and alphaE283 mutations suggest that these residues may be important to the formation of an alternative set of hydrogen bonds at the interface of the alpha and beta subunits that permits the release of intersubunit bonds upon the binding of ATP, allowing gamma rotation in the escapement mechanism.

  15. Catalytic dehydroaromatization of n-alkanes by pincer-ligated iridium complexes

    Science.gov (United States)

    Ahuja, Ritu; Punji, Benudhar; Findlater, Michael; Supplee, Carolyn; Schinski, William; Brookhart, Maurice; Goldman, Alan S.

    2011-02-01

    Aromatic hydrocarbons are among the most important building blocks in the chemical industry. Benzene, toluene and xylenes are obtained from the high temperature thermolysis of alkanes. Higher alkylaromatics are generally derived from arene-olefin coupling, which gives branched products—that is, secondary alkyl arenes—with olefins higher than ethylene. The dehydrogenation of acyclic alkanes to give alkylaromatics can be achieved using heterogeneous catalysts at high temperatures, but with low yields and low selectivity. We present here the first catalytic conversion of n-alkanes to alkylaromatics using homogeneous or molecular catalysts—specifically ‘pincer’-ligated iridium complexes—and olefinic hydrogen acceptors. For example, the reaction of n-octane affords up to 86% yield of aromatic product, primarily o-xylene and secondarily ethylbenzene. In the case of n-decane and n-dodecane, the resulting alkylarenes are exclusively unbranched (that is, n-alkyl-substituted), with selectivity for the corresponding o-(n-alkyl)toluene.

  16. Combustion of hydrogen-air in micro combustors with catalytic Pt layer

    Energy Technology Data Exchange (ETDEWEB)

    Yang Wang; Zhijun Zhou; Weijuan Yang; Junhu Zhou; Jianzhong Liu; Zhihua Wang; Cen, Kefa [State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, Zhejiang (China)

    2010-06-15

    Micro power generators have high power density. However, their key components micro combustors have low stability. In this experiment, catalyst is applied to improve the stability. The catalytic micro combustor is made from an alumina ceramic tube. It has inner diameter of 1 mm, outer diameter of 2.02 mm and length of 24.5 mm. It is prepared through impregnation of aqueous solution of H{sub 2}PtCl{sub 6}. The flammability limits and surface temperatures under different operation conditions are measured. The flow rates range from 0.08 to 0.4 L/min. According to the experimental results, catalyst is effective to inhibit extinction. For example, At 0.8 L/min, the stability limit is 0.193-14.9 in the non-catalytic combustor. After applying catalyst, the lean limit is near 0, and the rich limit is 29.3. But catalyst is less effective to inhibit blow out. Increasing flow rates also inhibits extinction. In the non-catalytic combustor, while the flow rates increase from 0.08 to 0.2 L/min, the lean stability limit decreases from 0.193 to 0.125. The experimental results indicate that catalyst induces shift downstream in the stoichiometric and rich cases. The numeric simulation verifies that the heterogeneous reaction weakens the homogeneous reaction through consuming fuels. Thus, the insufficient heat recirculation makes the reaction region shift downstream. However, lean mixture has intense reaction in the catalytic combustor. It is attributed to the high mass diffusion and low thermal diffusion of lean mixture. (author)

  17. Combustion of hydrogen-air in micro combustors with catalytic Pt layer

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yang; Zhou Zhijun [State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, Zhejiang (China); Yang Weijuan, E-mail: 10508107@zju.edu.c [State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, Zhejiang (China); Zhou Junhu; Liu Jianzhong; Wang Zhihua; Cen Kefa [State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, Zhejiang (China)

    2010-06-15

    Micro power generators have high power density. However, their key components micro combustors have low stability. In this experiment, catalyst is applied to improve the stability. The catalytic micro combustor is made from an alumina ceramic tube. It has inner diameter of 1 mm, outer diameter of 2.02 mm and length of 24.5 mm. It is prepared through impregnation of aqueous solution of H{sub 2}PtCl{sub 6}. The flammability limits and surface temperatures under different operation conditions are measured. The flow rates range from 0.08 to 0.4 L/min. According to the experimental results, catalyst is effective to inhibit extinction. For example, At 0.8 L/min, the stability limit is 0.193-14.9 in the non-catalytic combustor. After applying catalyst, the lean limit is near 0, and the rich limit is 29.3. But catalyst is less effective to inhibit blow out. Increasing flow rates also inhibits extinction. In the non-catalytic combustor, while the flow rates increase from 0.08 to 0.2 L/min, the lean stability limit decreases from 0.193 to 0.125. The experimental results indicate that catalyst induces shift downstream in the stoichiometric and rich cases. The numeric simulation verifies that the heterogeneous reaction weakens the homogeneous reaction through consuming fuels. Thus, the insufficient heat recirculation makes the reaction region shift downstream. However, lean mixture has intense reaction in the catalytic combustor. It is attributed to the high mass diffusion and low thermal diffusion of lean mixture.

  18. Combustion of hydrogen-air in micro combustors with catalytic Pt layer

    International Nuclear Information System (INIS)

    Wang Yang; Zhou Zhijun; Yang Weijuan; Zhou Junhu; Liu Jianzhong; Wang Zhihua; Cen Kefa

    2010-01-01

    Micro power generators have high power density. However, their key components micro combustors have low stability. In this experiment, catalyst is applied to improve the stability. The catalytic micro combustor is made from an alumina ceramic tube. It has inner diameter of 1 mm, outer diameter of 2.02 mm and length of 24.5 mm. It is prepared through impregnation of aqueous solution of H 2 PtCl 6 . The flammability limits and surface temperatures under different operation conditions are measured. The flow rates range from 0.08 to 0.4 L/min. According to the experimental results, catalyst is effective to inhibit extinction. For example, At 0.8 L/min, the stability limit is 0.193-14.9 in the non-catalytic combustor. After applying catalyst, the lean limit is near 0, and the rich limit is 29.3. But catalyst is less effective to inhibit blow out. Increasing flow rates also inhibits extinction. In the non-catalytic combustor, while the flow rates increase from 0.08 to 0.2 L/min, the lean stability limit decreases from 0.193 to 0.125. The experimental results indicate that catalyst induces shift downstream in the stoichiometric and rich cases. The numeric simulation verifies that the heterogeneous reaction weakens the homogeneous reaction through consuming fuels. Thus, the insufficient heat recirculation makes the reaction region shift downstream. However, lean mixture has intense reaction in the catalytic combustor. It is attributed to the high mass diffusion and low thermal diffusion of lean mixture.

  19. Ni–Sn-Supported ZrO2 Catalysts Modified by Indium for Selective CO2 Hydrogenation to Methanol

    KAUST Repository

    Hengne, Amol Mahalingappa

    2018-04-02

    Ni and NiSn supported on zirconia (ZrO2) and on indium (In)-incorporated zirconia (InZrO2) catalysts were prepared by a wet chemical reduction route and tested for hydrogenation of CO2 to methanol in a fixed-bed isothermal flow reactor at 250 °C. The mono-metallic Ni (5%Ni/ZrO2) catalysts showed a very high selectivity for methane (99%) during CO2 hydrogenation. Introduction of Sn to this material with the following formulation 5Ni5Sn/ZrO2 (5% Ni-5% Sn/ZrO2) showed the rate of methanol formation to be 0.0417 μmol/(gcat·s) with 54% selectivity. Furthermore, the combination NiSn supported on InZrO2 (5Ni5Sn/10InZrO2) exhibited a rate of methanol formation 10 times higher than that on 5Ni/ZrO2 (0.1043 μmol/(gcat·s)) with 99% selectivity for methanol. All of these catalysts were characterized by X-ray diffraction, high-resolution transmission electron microscopy (HRTEM), scanning transmission electron microscopy (STEM), X-ray photoelectron spectroscopy, CO2-temperature-programmed desorption, and density functional theory (DFT) studies. Addition of Sn to Ni catalysts resulted in the formation of a NiSn alloy. The NiSn alloy particle size was kept in the range of 10–15 nm, which was evidenced by HRTEM study. DFT analysis was carried out to identify the surface composition as well as the structural location of each element on the surface in three compositions investigated, namely, Ni28Sn27, Ni18Sn37, and Ni37Sn18 bimetallic nanoclusters, and results were in agreement with the STEM and electron energy-loss spectroscopy results. Also, the introduction of “Sn” and “In” helped improve the reducibility of Ni oxide and the basic strength of catalysts. Considerable details of the catalytic and structural properties of the Ni, NiSn, and NiSnIn catalyst systems were elucidated. These observations were decisive for achieving a highly efficient formation rate of methanol via CO2 by the H2 reduction process with high methanol selectivity.

  20. Hydrogen generation at ambient conditions: application in fuel cells.

    Science.gov (United States)

    Boddien, Albert; Loges, Björn; Junge, Henrik; Beller, Matthias

    2008-01-01

    The efficient generation of hydrogen from formic acid/amine adducts at ambient temperature is demonstrated. The highest catalytic activity (TOF up to 3630 h(-1) after 20 min) was observed in the presence of in situ generated ruthenium phosphine catalysts. Compared to the previously known methods to generate hydrogen from liquid feedstocks, the systems presented here can be operated at room temperature without the need for any high-temperature reforming processes, and the hydrogen produced can then be directly used in fuel cells. A variety of Ru precursors and phosphine ligands were investigated for the decomposition of formic acid/amine adducts. These catalytic systems are particularly interesting for the generation of H2 for new applications in portable electric devices.

  1. Modeling of Unidirectional-Overloaded Transition in Catalytic Tubular Microjets

    NARCIS (Netherlands)

    Klingner, Anke; Khalil, Islam S. M.; Magdanz, Veronika; Fomin, Vladimir M.; Schmidt, Oliver G.; Misra, Sarthak

    2017-01-01

    A numerical time-resolved model is presented for predicting the transition between unidirectional and overloaded motion of catalytic tubular microjets (Ti/Fe/Pt rolled-up microtubes) in an aqueous solution of hydrogen peroxide. Unidirectional movement is achieved by periodic ejection of gas bubbles

  2. LASER INDUCED SELECTIVE ACTIVATION UTILIZING AUTO-CATALYTIC ELECTROLESS PLATING ON POLYMER SURFACE

    DEFF Research Database (Denmark)

    Zhang, Yang; Nielsen, Jakob Skov; Tang, Peter Torben

    2009-01-01

    . Characterization of the deposited copper layer was used to select and improve laser parameters. Several types of polymers with different melting points were used as substrate. Using the above mentioned laser treatment, standard grades of thermoplastic materials such as ABS, SAN, PE, PC and others have been......This paper presents a new method for selective micro metallization of polymers induced by laser. An Nd: YAG laser was employed to draw patterns on polymer surfaces using a special set-up. After subsequent activation and auto-catalytic electroless plating, copper only deposited on the laser tracks....... Induced by the laser, porous and rough structures are formed on the surface, which favours the palladium attachment during the activation step prior to the metallization. Laser focus detection, scanning electron microscopy (SEM) and other instruments were used to analyze the topography of the laser track...

  3. Confinement dependence of electro-catalysts for hydrogen evolution from water splitting

    Directory of Open Access Journals (Sweden)

    Mikaela Lindgren

    2014-02-01

    Full Text Available Density functional theory is utilized to articulate a particular generic deconstruction of the electrode/electro-catalyst assembly for the cathode process during water splitting. A computational model was designed to determine how alloying elements control the fraction of H2 released during zirconium oxidation by water relative to the amount of hydrogen picked up by the corroding alloy. This model is utilized to determine the efficiencies of transition metals decorated with hydroxide interfaces in facilitating the electro-catalytic hydrogen evolution reaction. A computational strategy is developed to select an electro-catalyst for hydrogen evolution (HE, where the choice of a transition metal catalyst is guided by the confining environment. The latter may be recast into a nominal pressure experienced by the evolving H2 molecule. We arrived at a novel perspective on the uniqueness of oxide supported atomic Pt as a HE catalyst under ambient conditions.

  4. Hydrogenation upgrading of heavy oil residues

    Energy Technology Data Exchange (ETDEWEB)

    Krichko, A.A.; Maloletnev, A.S.; Mazneva, O.A.; Galkina, N.I. [Fossil Fuel Inst., Moscow (Russian Federation). Hydrogenation and Gasification Dept.; Suvorov, U.P.; Khadjiev, S.N. [Inst. Oil and Chemical Synthesis, Moscow (Russian Federation). Hydrogenation of Heavy Residues Dept.

    1997-12-31

    At present time in the world there is no simple and effective technology at low pressure (<15-20 MPa) which could give the opportunity to use oil residues for distillate fractions production. In Russia a process for hydrogenation (up 6 MPa hydrogen pressure) of high boiling point (b.p. >520 C) oil products, including high S, V and Ni contents ones, into distillates, feedstock for catalytic cracking (b.p. 360-520 C) and metal concentrates. The main point of the new process is as follows: the water solution of catalytic additive, for which purpose water soluble metal salts of VI-VIII groups are used, is mixed with heavy oil residues, dispersed and then subjected to additional supercavitation in a special apparatus. (orig.)

  5. Texaco, carbide form hydrogen plant venture

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper reports that Texaco Inc. and Union Carbide Industrial Gases Inc. (UCIG) have formed a joint venture to develop and operate hydrogen plants. The venture, named HydroGEN Supply Co., is owned by Texaco Hydrogen Inc., a wholly owned subsidiary of Texaco, and UCIG Hydrogen Services Inc., a wholly owned subsidiary of UCIG. Plants built by HydroGEN will combine Texaco's HyTEX technology for hydrogen production with UCIG's position in cryogenic and advanced air separation technology. Texaco the U.S. demand for hydrogen is expected to increase sharply during the next decade, while refinery hydrogen supply is expected to drop. The Clean Air Act amendments of 1990 require U.S. refiners to lower aromatics in gasoline, resulting in less hydrogen recovered by refiners from catalytic reforming units. Meanwhile, requirements to reduce sulfur in diesel fuel will require more hydrogen capacity

  6. Hydrogen-based power generation from bioethanol steam reforming

    Energy Technology Data Exchange (ETDEWEB)

    Tasnadi-Asztalos, Zs., E-mail: tazsolt@chem.ubbcluj.ro; Cormos, C. C., E-mail: cormos@chem.ubbcluj.ro; Agachi, P. S. [Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos, Postal code: 400028, Cluj-Napoca (Romania)

    2015-12-23

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO{sub 2} emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.

  7. Hydrogen-based power generation from bioethanol steam reforming

    International Nuclear Information System (INIS)

    Tasnadi-Asztalos, Zs.; Cormos, C. C.; Agachi, P. S.

    2015-01-01

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO 2 emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint

  8. Hydrogen-based power generation from bioethanol steam reforming

    Science.gov (United States)

    Tasnadi-Asztalos, Zs.; Cormos, C. C.; Agachi, P. S.

    2015-12-01

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO2 emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.

  9. Hydrogenation of ethyl acetate on Re/γ-A12O3 catalyst

    International Nuclear Information System (INIS)

    Minachev, K.M.; Avaev, V.I.; Ryashentseva, M.A.

    1986-01-01

    This paper presents a study of the catalytic properties of 5% Re/gamma-A1 2 O 3 contact in the hydrogenation reaction of ethyl acetate (EA). To clarify the paths of formation of the by products, experiments were also carried out with ethanol under the conditions of hydrogenation of EA. It is shown that the main product of the hydrogenation of EA is ethanol. In addition, Et 2 O, water, and traces of acetaldehyde were found in the catalyzate. In the range of conditions studied, the maximal conversion of ethyl acetate into ethanol is 49%. Increase in the temperature and molar ratio, and also decrease in pressure leads to a decrease in the selectivity of hydrogenation of ethyl acetate into ethanol. Byproducts of the hydrogenation of ethyl acetate - diethyl ether and hydrocarbons - are formed not only as a result of dehydration of ethanol on gamma-A1 2 O 3 , but also directly from ethyl acetate (diethyl ether) and also by the hydrogenolysis of the C-O bond in ethanol on rhenium (hydrocarbons)

  10. Hydrogen management strategy for the Loviisa NPP

    International Nuclear Information System (INIS)

    Lundstrom, P.; Routamo, T.; Tuomisto, H.; Theofanous, T.G.

    1997-01-01

    A new hydrogen management scheme has been developed for the Loviisa ice condenser containment as a part of a comprehensive severe accident management (SAM) strategy. The scheme is based on providing sufficient mixing of the containment atmosphere, effective energy removal from the containment, and controlled removal of hydrogen through passive catalytic recombination. The objective of the paper is to demonstrate how this hydrogen management scheme works for a range of relevant severe accident scenarios. (author)

  11. Catalysis at the nanoscale may change selectivity.

    Science.gov (United States)

    Costentin, Cyrille; Savéant, Jean-Michel

    2016-10-18

    Among the many virtues ascribed to catalytic nanoparticles, the prospect that the passage from the macro- to the nanoscale may change product selectivity attracts increasing attention. To date, why such effects may exist lacks explanation. Guided by recent experimental reports, we propose that the effects may result from the coupling between the chemical steps in which the reactant, intermediates, and products are involved and transport of these species toward the catalytic surface. Considering as a thought experiment the competitive formation of hydrogen and formate upon reduction of hydrogenocarbonate ions on metals like palladium or platinum, a model is developed that allows one to identify the governing parameters and predict the effect of nanoscaling on selectivity. The model leads to a master equation relating product selectivity and thickness of the diffusion layer. The latter parameter varies considerably upon passing from the macro- to the nanoscale, thus predicting considerable variations of product selectivity. These are subtle effects in the sense that the same mechanism might exhibit a reverse variation of the selectivity if the set of parameter values were different. An expression is given that allows one to predict the direction of the effect. There has been a tendency to assign the catalytic effects of nanoscaling to chemical reactivity changes of the active surface. Such factors might be important in some circumstances. We, however, insist on the likely role of short-distance transport on product selectivity, which could have been thought, at first sight, as the exclusive domain of chemical factors.

  12. Materials Down Select Decisions Made Within the Department of Energy Hydrogen Sorption Center of Excellence

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Lin [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2009-11-30

    Technical report describing DOE's Hydrogen Sorption Center of Excellence investigation into various adsorbent and chemisorption materials and progress towards meeting DOE's hydrogen storage targets. The report presents a review of the material status as related to DOE hydrogen storage targets and explains the basis for the down select decisions.

  13. Hydrogen peroxide safety issues

    International Nuclear Information System (INIS)

    Conner, W.V.

    1993-01-01

    A literature survey was conducted to review the safety issues involved in handling hydrogen peroxide solutions. Most of the information found in the literature is not directly applicable to conditions at the Rocky Flats Plant, but one report describes experimental work conducted previously at Rocky Flats to determine decomposition reaction-rate constants for hydrogen peroxide solutions. Data from this report were used to calculate decomposition half-life times for hydrogen peroxide in solutions containing several decomposition catalysts. The information developed from this survey indicates that hydrogen peroxide will undergo both homogeneous and heterogeneous decomposition. The rate of decomposition is affected by temperature and the presence of catalytic agents. Decomposition of hydrogen peroxide is catalyzed by alkalies, strong acids, platinum group and transition metals, and dissolved salts of transition metals. Depending upon conditions, the consequence of a hydrogen peroxide decomposition can range from slow evolution of oxygen gas to a vapor, phase detonation of hydrogen peroxide vapors

  14. Effect of catalyst contact mode and gas atmosphere during catalytic pyrolysis of waste plastics

    International Nuclear Information System (INIS)

    Xue, Yuan; Johnston, Patrick; Bai, Xianglan

    2017-01-01

    Highlights: • PE, PP, PS and PET were catalytically pyrolyzed in a tandem micro-pyrolyzer. • Product distribution and composition were varied at in-situ and ex-situ pyrolysis. • Hydrogen carrier gas suppressed coke formation and reduced polyaromatic content. • Positive synergies between PE and PS, or PE and PET were found. - Abstract: In the present study, polyethylene (PE), polypropylene (PP), polystyrene (PS) and polyethylene terephthalate (PET) were pyrolyzed using HZSM-5 zeolite in a tandem micro-pyrolyzer to investigate the effects of plastic type, catalyst and feedstock contact mode, as well as the type of carrier gas on product distribution. Among the four plastics, PS produced highest aromatic yields up to 85% whereas PE and PP mainly produced aliphatic hydrocarbons. In comparison to ex-situ pyrolysis, in-situ pyrolysis of the plastics produced more solid residue but also promoted the formation of aromatic hydrocarbons, except PS. For PS, ex-situ pyrolysis produced a higher yield of aromatics than in-situ pyrolysis, mostly contributed by high styrene yield. During in-situ pyrolysis, the catalyst reduced the decomposition temperatures of the plastics in the order of PE, PP, PS and PET from high to low. Hydrogen carrier gas reduced solid residue and also increased the selectivity of single ring aromatics in comparison to inert pyrolysis. Hydrogen was more beneficial to PS and PET than PE and PP in terms of reducing coke yield and increasing hydrocarbon yield. The present study also showed that catalytically co-pyrolyzing PS and PE, or PET and PE increases the yield of aromatics and reduces the yield of solid residue due to hydrogen transfer from PE to PS or PET and alkylation reactions among the plastic-derivatives.

  15. Activity of bimetallic catalysts (Pt + Me)/A12030 in butane hydrogenolysis and benzene hydrogenation

    International Nuclear Information System (INIS)

    Zharkov, B.B.; Rubinov, A.Z.

    1986-01-01

    The authors evaluate the decomposing and hydrogenating activity of some Me/Al 2 0 3 0 and (Pt + Me)/Al 203 catalysis for the reactions of butane hydrogenolysis and conversion of benzene to cyclohexane. The temperature was 180-300 C for butane transformation and 150 C for benzene hydrogenation. During both reactions some initial decrease of catalytic activity which stabilized over 2-3 h was observed. The results show that roasting Re-containing reforming catalysts at fairly high temperatures (500-550 C) balances maximum hydrogenating and average splitting activities, thus guaranteeing high resistance to coke deposition while preserving the necessary selectivity. The decreased hydrogenating capacity of Ir/A1 2 0 3 0 and (Pt + Ir)/A1 23 0 catalysts after roasting at 500 C indicates insufficient thermal stability, which can be why renewing the initial activity of iridium containing forming catalysts by oxidating regeneration is difficult

  16. STUDY OF HYDROGEN SULFIDE REMOVAL FROM GROUNDWATER

    Directory of Open Access Journals (Sweden)

    T. Lupascu

    2013-06-01

    Full Text Available The process of the hydrogen sulfide removal from the underground water of the Hancesti town has been investigated. By oxygen bubbling through the water containing hydrogen sulfide, from the Hancesti well tube, sulfur is deposited in the porous structure of studied catalysts, which decreases their catalytic activity. Concomitantly, the process of adsorption / oxidation of hydrogen sulfide to sulfate take place. The kinetic research of the hydrogen sulfide removal from the Hancesti underground water, after its treatment by hydrogen peroxide, proves greater efficiency than in the case of modified carbonic adsorbents. As a result of used treatment, hydrogen sulfide is completely oxidized to sulfates

  17. A consistent reaction scheme for the selective catalytic reduction of nitrogen oxides with ammonia

    DEFF Research Database (Denmark)

    Janssens, Ton V.W.; Falsig, Hanne; Lundegaard, Lars Fahl

    2015-01-01

    For the first time, the standard and fast selective catalytic reduction of NO by NH3 are described in a complete catalytic cycle, that is able to produce the correct stoichiometry, while only allowing adsorption and desorption of stable molecules. The standard SCR reaction is a coupling of the ac...... for standard SCR. Finally, the role of a nitrate/nitrite equilibrium and the possible in uence of Cu dimers and Brønsted sites are discussed, and an explanation is offered as to how a catalyst can be effective for SCR, while being a poor catalyst for NO oxidation to NO2....... spectroscopy (FTIR). A consequence of the reaction scheme is that all intermediates in fast SCR are also part of the standard SCR cycle. The calculated activation energy by density functional theory (DFT) indicates that the oxidation of an NO molecule by O2 to a bidentate nitrate ligand is rate determining...

  18. Mean field approximation for the kinetics of the selective catalytic reduction of NO by ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Santos, M.; Bodanese, J.P. [Centro de Ensino Sao Jose, Universidade do Vale do Itajai (Brazil); S. Grandi, B.C. da [Departamento de Fisica, Universidade Federal de Santa Catarina, Florianopolis (Brazil)

    2007-04-15

    In this work we study a catalytic reaction model among three monomers in order to understand the chemical kinetics of the selective catalytic reduction of nitrogen oxide by ammonia (4NO+4NH{sub 3}+O{sub 2}{yields}4N{sub 2}+6H{sub 2}O). Our model takes into account the formation of the intermediate species in the global scheme of the reaction. In order to determine the dynamical behaviour of the model we used single site approximation method. In this approach we have observed that, depending on the values of the control parameters, the model presents an active or an inactive phase. In fact, the dynamical phase diagram of the model exhibits a first order line separating these two phases. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Selective hydrogenation of halogenated arenes using porous manganese oxide (OMS-2) and platinum supported OMS-2 catalysts.

    Science.gov (United States)

    McManus, Iain J; Daly, Helen; Manyar, Haresh G; Taylor, S F Rebecca; Thompson, Jillian M; Hardacre, Christopher

    2016-07-04

    Porous manganese oxide (OMS-2) and platinum supported on OMS-2 catalysts have been shown to facilitate the hydrogenation of the nitro group in chloronitrobenzene to give chloroaniline with no dehalogenation. Complete conversion was obtained within 2 h at 25 °C and, although the rate of reaction increased with increasing temperature up to 100 °C, the selectivity to chloroaniline remained at 99.0%. Use of Pd/OMS-2 or Pt/Al2O3 resulted in significant dechlorination even at 25 °C and 2 bar hydrogen pressure giving a selectivity to chloroaniline of 34.5% and 77.8%, respectively, at complete conversion. This demonstrates the potential of using platinum group metal free catalysts for the selective hydrogenation of halogenated aromatics. Two pathways were observed for the analogous nitrobenzene hydrogenation depending on the catalyst used. The hydrogenation of nitrobenzene was found to follow a direct pathway to aniline and nitrosobenzene over Pd/OMS-2 in contrast to the OMS and Pt/OMS-2 catalysts which resulted in formation of nitrosobenzene, azoxybenzene and azobenzene/hydrazobenzene intermediates before complete conversion to aniline. These results indicate that for Pt/OMS-2 the hydrogenation proceeds predominantly over the support with the metal acting to dissociate hydrogen. In the case of Pd/OMS-2 both the hydrogenation and hydrogen adsorption occur on the metal sites.

  20. Catalytic Hydrogenation and Hydrodeoxygenation of Furfural over Pt(111): A Model System for the Rational Design and Operation of Practical Biomass Conversion Catalysts.

    Science.gov (United States)

    Taylor, Martin J; Jiang, Li; Reichert, Joachim; Papageorgiou, Anthoula C; Beaumont, Simon K; Wilson, Karen; Lee, Adam F; Barth, Johannes V; Kyriakou, Georgios

    2017-04-20

    Furfural is a key bioderived platform chemical whose reactivity under hydrogen atmospheres affords diverse chemical intermediates. Here, temperature-programmed reaction spectrometry and complementary scanning tunneling microscopy (STM) are employed to investigate furfural adsorption and reactivity over a Pt(111) model catalyst. Furfural decarbonylation to furan is highly sensitive to reaction conditions, in particular, surface crowding and associated changes in the adsorption geometry: furfural adopts a planar geometry on clean Pt(111) at low coverage, tilting at higher coverage to form a densely packed furfural adlayer. This switch in adsorption geometry strongly influences product selectivity. STM reveals the formation of hydrogen-bonded networks for planar furfural, which favor decarbonylation on clean Pt(111) and hydrogenolysis in the presence of coadsorbed hydrogen. Preadsorbed hydrogen promotes furfural hydrogenation to furfuryl alcohol and its subsequent hydrogenolysis to methyl furan, while suppressing residual surface carbon. Furfural chemistry over Pt is markedly different from that over Pd, with weaker adsorption over the former affording a simpler product distribution than the latter; Pd catalyzes a wider range of chemistry, including ring-opening to form propene. Insight into the role of molecular orientation in controlling product selectivity will guide the design and operation of more selective and stable Pt catalysts for furfural hydrogenation.

  1. A peroxotungstate-ionic liquid brush assembly: an efficient and reusable catalyst for selectively oxidizing sulfides with aqueous H{sub 2}O{sub 2} solution in neat water

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xianying; Ma, Wenjuan; Ou, Hui; Han, Xiaoyan; Lu, Congmin; Chen, Yan; Wei, Junfa, E-mail: shixy@snnu.edu.cn, E-mail: weijf@snnu.edu.cn [School of Chemistry and Chemical Engineering, Shaanxi Normal University and Key Laboratory for Macromolecular Science of Shaanxi Province, Xian (China)

    2012-08-15

    An efficient and reusable heterogeneous catalytic assembly of peroxotungstate held in a ionic liquid (IL) brush was synthesized and an environmentally-friendly procedure was developed for selective oxidation of sulfides at room temperature using 30 wt.% hydrogen peroxide as the terminal oxidant and water as a sole solvent. No organic co-solvent or other additive was needed. A 1.5-2.0 mol% (based on W atom) loading catalyst was found to be sufficient for a smooth and clean reaction. Both aliphatic and aromatic sulfides were efficiently and selectively transformed into their respective sulfoxides or sulfones by simply controlling of equivalents of hydrogen peroxide. In addition to the high catalytic activity, the catalyst exhibits excellent chemoselectivity. Sensitive functional groups, such as double bond and hydroxyl, remained under the oxidation conditions the reaction even with an excess hydrogen peroxide. The catalyst was easily recovered (via simple filtration) and reused at least eight times without a noticeable loss of activity. (author)

  2. Hydrogenation of Lactic Acid to 1,2-propanediol over Ru-based catalysts

    NARCIS (Netherlands)

    Liu, K.; Huang, X.; Pidko, E.A.; Hensen, E.J.M.

    2018-01-01

    The catalytic hydrogenation of lactic acid to 1,2-propanediol with supported Ru catalysts in water was investigated. The influence of catalyst support (activated carbon, γ-Al2O3, SiO2, TiO2, and CeO2) and promoters (Pd, Au, Mo, Re, Sn) on the catalytic performance was evaluated. Catalytic tests

  3. Selective catalytic reduction system and process for control of NO.sub.x emissions in a sulfur-containing gas stream

    Science.gov (United States)

    Sobolevskiy, Anatoly

    2015-08-11

    An exhaust gas treatment process, apparatus, and system for reducing the concentration of NOx, CO and hydrocarbons in a gas stream, such as an exhaust stream (29), via selective catalytic reduction with ammonia is provided. The process, apparatus and system include a catalytic bed (32) having a reducing only catalyst portion (34) and a downstream reducing-plus-oxidizing portion (36). Each portion (34, 36) includes an amount of tungsten. The reducing-plus-oxidizing catalyst portion (36) advantageously includes a greater amount of tungsten than the reducing catalyst portion (36) to markedly limit ammonia salt formation.

  4. Selecting appropriate technology for hydrogen production

    International Nuclear Information System (INIS)

    Tamhankar, S.S.

    2004-01-01

    'Full text:' Technologies for the production of synthesis gas (H2 + CO), a precursor to hydrogen, from a variety of fossil fuels are well known in industrial applications at relatively large scale. These include Steam Reforming (SR), Auto-Thermal Reforming (ATR) and Partial Oxidation (POX). A particular technology is selected based on the feed type and the desired products. Steam reforming is a mature technology, and is most prevalent for hydrogen production because of its high efficiency. However, at the smaller scale, the capital cost becomes a more significant factor, and a substantial reduction in this cost is necessary to meet the overall H2 gas cost targets, such as that stated by DOE ($1.50/kg). In developing small-scale H2 technologies, often, incremental improvements are incorporated. While useful, these are not adequate for the desired cost reduction. Also, for effective cost reduction, the whole system, including production, purification and associated equipment needs to be evaluated; cost reduction in just one of the units is not sufficient. This paper provides a critical assessment of the existing as well as novel technology options, specifically targeted at small scale H2 production. The technology options are evaluated to clearly point out which may or may not work and why. (author)

  5. Heterogeneous catalytic materials solid state chemistry, surface chemistry and catalytic behaviour

    CERN Document Server

    Busca, Guido

    2014-01-01

    Heterogeneous Catalytic Materials discusses experimental methods and the latest developments in three areas of research: heterogeneous catalysis; surface chemistry; and the chemistry of catalysts. Catalytic materials are those solids that allow the chemical reaction to occur efficiently and cost-effectively. This book provides you with all necessary information to synthesize, characterize, and relate the properties of a catalyst to its behavior, enabling you to select the appropriate catalyst for the process and reactor system. Oxides (used both as catalysts and as supports for cata

  6. High efficient conversion of furfural to 2-methylfuran over Ni-Cu/Al2O3 catalyst with formic acid as a hydrogen donor

    DEFF Research Database (Denmark)

    Fu, Zhaolin; Wang, Ze; Lin, Weigang

    2017-01-01

    Conversion of furfural to 2-methylfuran over Cu/Al2O3, Ni/Al2O3 and Ni-Cu/Al2O3 catalysts were investigated with formic acid as a hydrogen donor. Ni/Al2O3 showed a high catalytic activity but a moderate selectivity to 2-methylfuran. Contrarily, Cu/Al2O3 showed a low catalytic activity but a high...... selectivity for carbonyl reduction. Over the bimetallic catalysts Ni-10%Cu/Al2O3, by increasing Ni content, more furfural was converted with the reduction of carbonyl primarily. The effect of reaction solvent and the fraction of formic acid were also studied. The result showed that isopropanol solvent could...

  7. Selective hydrogenation of maleic anhydride over Pd/Al2O3 ...

    Indian Academy of Sciences (India)

    Keywords. Pd/Al2O3 catalyst; maleic anhydride; selective hydrogenation; succinic anhydride. 1. Introduction ... attracted a significant amount of attention because the majority of its ... added, and the colour of the resulting mixture turned brown.

  8. Tritium labelling of testosteron by selective hydrogenation of dihydrotestosteron

    International Nuclear Information System (INIS)

    Postolache, Cristian; Matei, Lidia; Simion, Elena; Barna, Catalina; Condac, Eduard

    2002-01-01

    Elemental tritium is obtained during the decontamination process of the moderator from Cernavoda Nuclear Power Plant. It might be stocked for use in controlled fusion, in a relatively far future, or, it might be immediately used as raw material in the synthesis of labelled compounds with important economic value. Labelling of testosteron with tritium was necessary for the carrying out of radiometric and molecular biology studies concerning androgen dependent diseases. Testosteron was labelled by selective hydrogenation of 1,2 dihydrotestosteron acetate. The forerunner was synthesized in two steps: 1) esterification of testosteron using acetic anhydride, and 2) selective dehydrogenation with 2,6-dichloro-3,5-dicyan-1,4 quinone (DDQ) of the ester formed in the first step. Testosteron acetate was synthesized and purified with yields of 73%, and 80%, respectively. The dehydrogenation process was characterized by yields of 82% for synthesis and 33% for purification. The tritium labelled hormone was obtained in two steps: 1) selective hydrogenation of Δ 1 - testosteron acetate in the presence of T 2 gas, at low pressure, and 2) hydrolysis of the ester at basic pH. The raw product obtained was purified by preparative thin layer chromatography. The physical and chemical characterization of labelled testosteron reveals a radiochemical purity higher than 98% and a specific activity of 53.4 Ci/mmol. (authors)

  9. Hydrogen production from glucose in ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Assenbaum, D.W.; Taccardi, N.; Berger, M.E.M.; Boesmann, A.; Enzenberger, F.; Woelfel, R.; Wasserscheid, P. [Erlangen-Nuernberg Univ. (Germany). Lehrstuhl fuer chemische Reaktionstechnik

    2010-07-01

    technologies suffer from the fact that the overall reaction rates are often restricted by mass and heat transport problems. Lastly, there are severe limitations concerning the feedstock selection as for some important substrates, such as e.g. glucose, the process can only be operated in very diluted systems to avoid rapid tar formation [22,23,24]. In this contribution we describe for the first time a catalytic reaction system producing hydrogen from glucose in astonishingly high selectivities using a single reaction step under very mild conditions. The catalytic reaction system is characterized by its homogeneous nature and comprises a Ru-complex catalyst dissolved and stabilized in an ionic liquid medium. Ionic liquids are salts of melting points below 100 C [25]. These liquid materials have attracted much interest in the last decade as solvents for catalytic reactions [26] and separation technologies (extraction, distillation) [27,28,29,30,31,32]. Besides, these liquids have found industrial applications as process fluids for mechanic [33] and electrochemical applications [34]. Finally, from the pioneering work of Rogers and co-workers, it is known that ionic liquids are able to dissolve significant amounts of water-insoluble biopolymers (such as e.g. cellulose and chitin)[35] and even complex biopolymer mixtures, such as e.g. wood, have been completely dissolved in some ionic liquids [36]. In our specific application, the role of the ionic liquid is threefold: a) the ionic liquid dissolves the carbohydrate starting material thus expanding the range of applicable carbohydrate to water insoluble polymers; b) the ionic liquid provides a medium to dissolve and stabilize the catalyst; c) the ionic liquid dissolves hydrogen at a very low level, so inhibiting any possible collateral hydrogen-consuming process (detailed investigation of the hydrogen solubility in ionic liquids have been reported by e.g. Brennecke and coworkers [37]). (orig.)

  10. Partial hydrogenation of alkynes on highly selective nano-structured mesoporous silica MCM-41 composite catalyst

    International Nuclear Information System (INIS)

    Kojoori, R.K.

    2016-01-01

    In this research, we have developed a silica MCM-41/Metformin/Pd (II) nano composite catalyst for the selective hydrogenation of alkynes to the corresponding (Z)-alkenes under a mild condition of atmospheric pressure and room temperature. Firstly, functionalized Si-MCM-41 metformin catalyst with the optimum performance was prepared. Then, the synthesized catalyst was elucidated by X-ray powder diffraction, BET surface area, FT-IR spectrophotometer, Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM) and applied in partial hydrogenation of different alkynes, with high selectivity and high yield. The products were characterized by 1H-NMR, 13C-NMR, FT-IR, and Mass Spectrometry (MS) that strongly approved the (Z)-double bond configuration of produced alkenes. This prepared catalyst is competitive with the best palladium catalysts known for the selective liquid phase hydrogenation of alkynes and can be easily recovered and regenerated with keeping high activity and selectivity over at least three cycles with a simple regeneration procedure. (author)

  11. Iron piano-stool complexes containing NHC ligands outfitted with pendent arms: synthesis, characterization, and screening for catalytic transfer hydrogenation

    Science.gov (United States)

    Parthapratim Das; Thomas Elder; William W. Brennessel; Stephen C. Chmely

    2016-01-01

    Catalysis is a fundamental technology that is widely used in the food, petrochemical, pharmaceutical, and agricultural sectors to produce chemical products on an industrial scale. Well-defined molecular organometallic species are a cornerstone of catalytic methodology, and the activity and selectivity of these complexes can be modulated by judicious choice of metal and...

  12. Model studies of secondary hydrogenation in Fischer-Tropsch synthesis studied by cobalt catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Aaserud, Christian

    2003-07-01

    Mass transfer effects are very important in Fischer-Tropsch (FT) synthesis. In order to study the FT synthesis without the influence of any transport limitations, cobalt foils have been used as model catalysts. The effect of pretreatment (number of calcinations and different reduction times) for cobalt foil catalysts at 220 {sup o}C, 1 bar and H{sub 2}/CO = 3 has been studied in a microreactor. The foils were examined by Scanning electron microscopy (SEM). It was found that the catalytic activity of the cobalt foil increases with the number of pretreatments possibly due to an increase in the surface area of the cobalt foil. The SEM results support the assumption that the surface area of the cobalt foil increases with the number of pretreatments. The reduction time was also found to influence the catalytic activity of the cobalt foil. Highest activity was obtained using a reduction time of only five min (compared to one and thirty min). The decrease in activity after reduction for thirty min compared to five min was suggested to be due to restructuring of the surface of the cobalt foil and a reduction time of only 1 min was not enough to reduce the cobalt foil sufficiently. Time of reduction did also influence the product distribution. Increased reduction time resulted in a lower selectivity to light products and increased selectivity to heavier components. The paraffin/olefin ratio increased with increasing CO-conversion also for cobalt foils. The paraffin/olefin ratio also increased when the reduction period of the cobalt foil was increased at a given CO-conversion. Hydrogenation of propene to propane has been studied as a model reaction for secondary hydrogenation of olefins in the FT synthesis. The study has involved promoted and unpromoted cobalt FT catalysts supported on different types of supports and also unsupported cobalt. Hydrogenation of propene was carried out at 120 {sup o}C, 1.8 bar and H{sub 2}/C{sub 3}H{sub 6} 6 in a fixed bed microreactor. The rate

  13. Insight into the mechanism revealing the peroxidase mimetic catalytic activity of quaternary CuZnFeS nanocrystals: colorimetric biosensing of hydrogen peroxide and glucose

    Science.gov (United States)

    Dalui, Amit; Pradhan, Bapi; Thupakula, Umamahesh; Khan, Ali Hossain; Kumar, Gundam Sandeep; Ghosh, Tanmay; Satpati, Biswarup; Acharya, Somobrata

    2015-05-01

    Artificial enzyme mimetics have attracted immense interest recently because natural enzymes undergo easy denaturation under environmental conditions restricting practical usefulness. We report for the first time chalcopyrite CuZnFeS (CZIS) alloyed nanocrystals (NCs) as novel biomimetic catalysts with efficient intrinsic peroxidase-like activity. Novel peroxidase activities of CZIS NCs have been evaluated by catalytic oxidation of the peroxidase substrate 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide (H2O2). CZIS NCs demonstrate the synergistic effect of elemental composition and photoactivity towards peroxidase-like activity. The quaternary CZIS NCs show enhanced intrinsic peroxidase-like activity compared to the binary NCs with the same constituent elements. Intrinsic peroxidase-like activity has been correlated with the energy band position of CZIS NCs extracted using scanning tunneling spectroscopy and ultraviolet photoelectron spectroscopy. Kinetic analyses indicate Michaelis-Menten enzyme kinetic model catalytic behavior describing the rate of the enzymatic reaction by correlating the reaction rate with substrate concentration. Typical color reactions arising from the catalytic oxidation of TMB over CZIS NCs with H2O2 have been utilized to establish a simple and sensitive colorimetric assay for detection of H2O2 and glucose. CZIS NCs are recyclable catalysts showing high efficiency in multiple uses. Our study may open up the possibility of designing new photoactive multi-component alloyed NCs as enzyme mimetics in biotechnology applications.Artificial enzyme mimetics have attracted immense interest recently because natural enzymes undergo easy denaturation under environmental conditions restricting practical usefulness. We report for the first time chalcopyrite CuZnFeS (CZIS) alloyed nanocrystals (NCs) as novel biomimetic catalysts with efficient intrinsic peroxidase-like activity. Novel peroxidase activities of CZIS NCs have been

  14. Hydrogenation of diesel aromatic compounds in supercritical solvent environment

    Directory of Open Access Journals (Sweden)

    E.P. Martins

    2000-09-01

    Full Text Available Reactions under supercritical conditions have been employed in many processes. Furthermore, an increasing number of commercial reactions have been conducted under supercritical or near critical conditions. These reaction conditions offer several advantages when compared to conditions in conventional catalytic processes in liquid-phase, gas-liquid interface, or even some gas-phase reactions. Basically, a supercritical solvent can diminish the reactant’s transport resistance from the bulk region to the catalyst surface due to enhancement of liquid diffusivity values and better solubility than those in different phases. Another advantage is that supercritical solvents permit prompt and easy changes in intermolecular properties in order to modify reaction parameters, such as conversion or selectivity, or even proceed with the separation of reaction products. Diesel fractions from petroleum frequently have larger than desirable quantities of aromatic compounds. Diesel hydrogenation is intended to decrease these quantities, i.e., to increase the quantity of paraffin present in this petroleum fraction. In this work, the hydrogenation of tetralin was studied as a model reaction for the aromatic hydrogenation process. A conventional gas-liquid-solid catalytic process was compared with that of supercritical carbon dioxide substrate under similar conditions. Additionally, an equilibrium conversion diagram was calculated for this reaction in a wide range of temperature and reactant ratios, so as to optimize the operational conditions and improve the results of subsequent experiments. An increase in the rate of reaction at 493 K in supercritical fluid, as compared to that in the conventional process, was observed.

  15. Catalytic Hydrogenation of the Sweet Principles of Stevia rebaudiana, Rebaudioside B, Rebaudioside C, and Rebaudioside D and Sensory Evaluation of Their Reduced Derivatives

    Science.gov (United States)

    Prakash, Indra; Campbell, Mary; Chaturvedula, Venkata Sai Prakash

    2012-01-01

    Catalytic hydrogenation of rebaudioside B, rebaudioside C, and rebaudioside D; the three ent-kaurane diterpene glycosides isolated from Stevia rebaudiana was carried out using Pd(OH)2. Reduction of steviol glycosides was performed using straightforward synthetic chemistry with the catalyst Pd(OH)2 and structures of the corresponding dihydro derivatives were characterized on the basis of 1D and 2D nuclear magnetic resonance (NMR) spectral data indicating that all are novel compounds being reported for the first time. Also, the taste properties of all reduced compounds were evaluated against their corresponding original steviol glycosides and sucrose. PMID:23203115

  16. Catalytic Hydrogenation of the Sweet Principles of Stevia rebaudiana, Rebaudioside B, Rebaudioside C, and Rebaudioside D and Sensory Evaluation of Their Reduced Derivatives

    Directory of Open Access Journals (Sweden)

    Mary Campbell

    2012-11-01

    Full Text Available Catalytic hydrogenation of rebaudioside B, rebaudioside C, and rebaudioside D; the three ent-kaurane diterpene glycosides isolated from Stevia rebaudiana was carried out using Pd(OH2. Reduction of steviol glycosides was performed using straightforward synthetic chemistry with the catalyst Pd(OH2 and structures of the corresponding dihydro derivatives were characterized on the basis of 1D and 2D nuclear magnetic resonance (NMR spectral data indicating that all are novel compounds being reported for the first time. Also, the taste properties of all reduced compounds were evaluated against their corresponding original steviol glycosides and sucrose.

  17. Hydrogen gas getters: Susceptibility to poisoning

    International Nuclear Information System (INIS)

    Mroz, E.J.; Dye, R.C.; Duke, J.R.; Weinrach, J.

    1998-01-01

    About 40% (∼9,000) of the ∼23,000 transuranic (TRU) waste drums at Los Alamos National Laboratory (LANL) are presently unshippable because conservative calculations suggest that the hydrogen concentration may exceed the lower explosive limit for hydrogen. This situation extends across nearly all DOE sites holding and generating TRU waste. The incorporation of a hydrogen getter such as DEB into the waste drums (or the TRUPACT II shipping containers) could substantially mitigate the explosion risk. The result would be to increase the number of drums that qualify for transportation to the Waste Isolation Pilot Plant (WIPP) without having to resort to expensive re-packaging or waste treatment technologies. However, before this approach can be implemented, key technical questions must be answered. Foremost among these is the question of whether the presence of other chemical vapors and gases in the drum might poison the catalytic reaction between hydrogen and DEB. This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project was to obtain fundamental information on the chemical mechanism of the catalytic reaction of hydrogen with one commonly used hydrogen getter, DEB. Experiments with these materials showed that the method of exposure affects the nature of the reaction products. The results of this work contributed to the development of a mechanistic model of the reaction

  18. Electro-catalysts for hydrogen production from ethanol for use in SOFC anodes

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Marcos Aurelio da; Paz Fiuza, Raigenis da; Guedes, Bruna C.; Pontes, Luiz A.; Boaventura, Jaime Soares [UFBA, Salvador, Bahia (Brazil). Energy and Materials Science Group

    2010-07-01

    Nickel and cobalt catalysts, supported on YSZ, were prepared by wet impregnation, with and without citric acid; the metal load was 10 and 35% by weight. The catalyst composition was studied by XRF, XPS and SEM-EDS. At low metal concentration, the results of these techniques presented comparables figures; at high concentration, SEM-EDS suggested a non-uniform distribution. The analysis showed that the solids were mixed oxides and formed an alloy after reduction. The surface passivation was possible under controlled conditions. The catalytic test with the steam reforming of ethanol indicated that the metal load had almost no effect on the catalytic activity, but decreased its selectivity. Afterwards, a unitary SOFC was prepared with deposition of the cathode layer. AFM and EIS were used for the characterization of SOFC components. They showed that the electro-catalyst surface was almost all covered with the metal phase, including the large pore walls of the anode. The YSZ phase dominates the material conductance of the complete SOFC assembly (anode/electrolyte/cathode). The unitary SOFC was tested with hydrogen, gaseous ethanol or natural gas; the SOFC operating with ethanol and hydrogen fuel presented virtually no over-potential. (orig.)

  19. Determination of the level of DNA modification with cisplatin by catalytic hydrogen evolution at mercury-based electrodes.

    Science.gov (United States)

    Horáková, Petra; Tesnohlídková, Lucie; Havran, Ludek; Vidláková, Pavlína; Pivonková, Hana; Fojta, Miroslav

    2010-04-01

    Electrochemical methods proved useful as simple and inexpensive tools for the analysis of natural as well as chemically modified nucleic acids. In particular, covalently attached metal-containing groups usually render the DNA well-pronounced electrochemical activity related to redox processes of the metal moieties, which can in some cases be coupled to catalytic hydrogen evolution at mercury or some types of amalgam electrodes. In this paper we used voltammetry at the mercury-based electrodes for the monitoring of DNA modification with cis-diamminedichloroplatinum (cisplatin), a representative of metallodrugs used in the treatment of various types of cancer or being developed for such purpose. In cyclic voltammetry at the mercury electrode, the cisplatin-modified DNA yielded catalytic currents the intensity of which reflected DNA modification extent. In square-wave voltammetry, during anodic polarization after prereduction of the cisplatinated DNA, a well-developed, symmetrical signal (peak P) was obtained. Intensity of the peak P linearly responded to the extent of DNA modification at levels relevant for biochemical studies (rb = 0.01-0.10, where rb is the number of platinum atoms bound per DNA nucleotide). We demonstrate a correlation between the peak P intensity and a loss of sequence-specific DNA binding by tumor suppressor protein p53, as well as blockage of DNA digestion by a restriction endonuclease Msp I (both caused by the DNA cisplatination). Application of the electrochemical technique in studies of DNA reactivity with various anticancer platinum compounds, as well as for an easy determination of the extent of DNA platination in studies of its biochemical effects, is discussed.

  20. Preparation of Pt-PTFE hydrophobic catalyst for hydrogen-water isotope exchange

    International Nuclear Information System (INIS)

    Li Junhua; Kang Yi; Han Yande; Ruan Hao; Dou Qincheng; Hu Shilin

    2001-01-01

    The hydrophobic catalyst used in the hydrogen-water isotope exchange is prepared with Pt as the active metal, PTFE as the hydrophobic material, active carbon or silicon dioxide as the support. The isotope catalytic exchange reaction between hydrogen and water is carried out in the trickle bed and the effects of different carriers, mass fraction of Pt and PTFE on the catalytic activity are discussed. The experimental results show that the activity of Pt-C-PTFE hydrophobic catalyst with the ratio between PTFE and Pt-C from 1 to 2 is higher than other kinds of catalysts and the overall volume transfer coefficient is increased with the increasing of the hydrogen flow rate and reaction temperature

  1. Finding Furfural Hydrogenation Catalysts via Predictive Modelling

    Science.gov (United States)

    Strassberger, Zea; Mooijman, Maurice; Ruijter, Eelco; Alberts, Albert H; Maldonado, Ana G; Orru, Romano V A; Rothenberg, Gadi

    2010-01-01

    Abstract We combine multicomponent reactions, catalytic performance studies and predictive modelling to find transfer hydrogenation catalysts. An initial set of 18 ruthenium-carbene complexes were synthesized and screened in the transfer hydrogenation of furfural to furfurol with isopropyl alcohol complexes gave varied yields, from 62% up to >99.9%, with no obvious structure/activity correlations. Control experiments proved that the carbene ligand remains coordinated to the ruthenium centre throughout the reaction. Deuterium-labelling studies showed a secondary isotope effect (kH:kD=1.5). Further mechanistic studies showed that this transfer hydrogenation follows the so-called monohydride pathway. Using these data, we built a predictive model for 13 of the catalysts, based on 2D and 3D molecular descriptors. We tested and validated the model using the remaining five catalysts (cross-validation, R2=0.913). Then, with this model, the conversion and selectivity were predicted for four completely new ruthenium-carbene complexes. These four catalysts were then synthesized and tested. The results were within 3% of the model’s predictions, demonstrating the validity and value of predictive modelling in catalyst optimization. PMID:23193388

  2. Hydrogen production by steam reforming methanol for polymer electrolyte fuel cells

    International Nuclear Information System (INIS)

    Amphlett, J.C.; Creber, K.A.M.; Davis, J.M.; Mann, R.F.; Peppley, B.A.; Stokes, D.M.

    1993-01-01

    Catalytic steam reforming of methanol has been studied as a means of generating hydrogen for a polymer electrolyte membrane fuel cell. A semi-empirical model of the kinetics of the catalytic steam reforming of methanol over Cu O/Zn O/Al 2 O 3 catalyst has been developed. This model is able to predict the performance of the reformer with respect to the various parameters important in developing an integrated reformer-polymer fuel cell system. A set of sample calculations of reformer temperature and CO production are given. The impact of the performance of the reformer catalyst on the design of the overall fuel cell power system is discussed. The selectivity of the catalyst to minimize CO content in the fuel gas is shown to be more critical than was previously believed. 4 figs., 4 tabs., 11 refs

  3. Experimental investigation on emission reduction in neem oil biodiesel using selective catalytic reduction and catalytic converter techniques.

    Science.gov (United States)

    Viswanathan, Karthickeyan

    2018-05-01

    In the present study, non-edible seed oil namely raw neem oil was converted into biodiesel using transesterification process. In the experimentation, two biodiesel blends were prepared namely B25 (25% neem oil methyl ester with 75% of diesel) and B50 (50% neem oil methyl ester with 50% diesel). Urea-based selective catalytic reduction (SCR) technique with catalytic converter (CC) was fixed in the exhaust tail pipe of the engine for the reduction of engine exhaust emissions. Initially, the engine was operated with diesel as a working fluid and followed by refilling of biodiesel blends B25 and B50 to obtain the baseline readings without SCR and CC. Then, the same procedure was repeated with SCR and CC technique for emission reduction measurement in diesel, B25 and B50 sample. The experimental results revealed that the B25 blend showed higher break thermal efficiency (BTE) and exhaust gas temperature (EGT) with lower break-specific fuel consumption (BSFC) than B50 blend at all loads. On comparing with biodiesel blends, diesel experiences increased BTE of 31.9% with reduced BSFC of 0.29 kg/kWh at full load. A notable emission reduction was noticed for all test fuels in SCR and CC setup. At full load, B25 showed lower carbon monoxide (CO) of 0.09% volume, hydrocarbon (HC) of 24 ppm, and smoke of 14 HSU and oxides of nitrogen (NOx) of 735 ppm than diesel and B50 in SCR and CC setup. On the whole, the engine with SCR and CC setup showed better performance and emission characteristics than standard engine operation.

  4. Ionic Liquids: The Synergistic Catalytic Effect in the Synthesis of Cyclic Carbonates

    Directory of Open Access Journals (Sweden)

    Flora T.T. Ng

    2013-10-01

    Full Text Available This review presents the synergistic effect in the catalytic system of ionic liquids (ILs for the synthesis of cyclic carbonate from carbon dioxide and epoxide. The emphasis of this review is on three aspects: the catalytic system of metal-based ionic liquids, the catalytic system of hydrogen bond-promoted ionic liquids and supported ionic liquids. Metal and ionic liquids show a synergistic effect on the cycloaddition reactions of epoxides. The cations and anions of ionic liquids show a synergistic effect on the cycloaddition reactions. The functional groups in cations or supports combined with the anions have a synergistic effect on the cycloaddition reactions. Synergistic catalytic effects of ILs play an important role of promoting the cycloaddition reactions of epoxides. The design of catalytic system of ionic liquids will be possible if the synergistic effect on a molecular level is understood.

  5. Hydrocarbon composition products of the catalytic recycling plastics waste

    Directory of Open Access Journals (Sweden)

    Zhaksyntay Kairbekov

    2013-09-01

    Full Text Available The paper represents the IR spectroscopy results of the hydrocarbon composition of products, which is obtained from catalytic processing of plastic wastes. The optimal conditions for the hydrogenation with to producny liquid of products are identified.  These liquid products are enriched with aromatics, paraffinic- naphthenic and unsaturated hydrocarbons. The main characteristics of the distillates received by hydrogenation of plastics (as density, refractive index, iodine number, pour point, cloud point, filtering, sulfur content,  fractional and composition of the hydrocarbon group.

  6. Surface kinetics for catalytic combustion of hydrogen-air mixtures on platinum at atmospheric pressure in stagnation flows

    Science.gov (United States)

    Ikeda, H.; Sato, J.; Williams, F. A.

    1995-03-01

    Experimental studies of the combustion of premixed hydrogen-air mixtures impinging on the surface of a heated platinum plate at normal atmospheric pressure were performed and employed to draw inferences concerning surface reaction mechanisms and rate parameters applicable under practical conditions of catalytic combustion. Plate and gas temperatures were measured by thermocouples, and concentration profiles of major stable species in the gas were measured by gas-chromatographic analyses of samples withdrawn by quartz probes. In addition, ignition and extinction phenomena were recorded and interpreted with the aid of a heat balance at the surface and a previous flow-field analysis of the stagnation-point boundary layer. From the experimental and theoretical results, conclusions were drawn concerning the surface chemical-kinetic mechanisms and values of the elementary rate parameters that are consistent with the observations. In particular, the activation energy for the surface oxidation step H + OH → H 2O is found to be appreciably less at these high surface coverages than in the low-coverage limit.

  7. Adsorbent catalytic nanoparticles and methods of using the same

    Energy Technology Data Exchange (ETDEWEB)

    Slowing, Igor Ivan; Kandel, Kapil

    2017-01-31

    The present invention provides an adsorbent catalytic nanoparticle including a mesoporous silica nanoparticle having at least one adsorbent functional group bound thereto. The adsorbent catalytic nanoparticle also includes at least one catalytic material. In various embodiments, the present invention provides methods of using and making the adsorbent catalytic nanoparticles. In some examples, the adsorbent catalytic nanoparticles can be used to selectively remove fatty acids from feedstocks for biodiesel, and to hydrotreat the separated fatty acids.

  8. Reaction Current Phenomenon in Bifunctional Catalytic Metal-Semiconductor Nanostructures

    Science.gov (United States)

    Hashemian, Mohammad Amin

    Pt/TiO2(por) transducers were unusual in many regards. Addition of various H2 amounts to the initial 160 Torr O2 atmosphere over the sample led to well repeatable chemicurrents of both transient and steady-state characters, depending on a specific H2 addition procedure. It is suggested that adsorption of hydrogen on Pt/TiO2 structures leads to dissociation of hydrogen molecules on Pt surface followed by "spillover" of hydrogen atoms from Pt toward TiO2 support. In contrast to oxygen, hydrogen manifests donor properties by giving electrons to the TiO2 conductance band and adsorbing as H+ ions. This effect is well illustrated with the I-V curves, showing highly conductive Ohmic characteristics of the samples in H2 atmosphere. Two versions of the spillover process leading eventually to H+ ion adsorption on TiO2 will be considered: H-atom and proton (pre-ionized H-atom) spillover. This research work is a pioneering effort to challenge the direct utility of the non-adiabatic electronic processes in catalytic nanomaterial systems, paving the road toward novel energy conversion devices, solid-state chemical sensors and signal transducers.

  9. Dynamics of catalytic tubular microjet engines: dependence on geometry and chemical environment.

    Science.gov (United States)

    Li, Jinxing; Huang, Gaoshan; Ye, Mengmeng; Li, Menglin; Liu, Ran; Mei, Yongfeng

    2011-12-01

    Strain-engineered tubular microjet engines with various geometric dimensions hold interesting autonomous motions in an aqueous fuel solution when propelled by catalytic decomposition of hydrogen peroxide to oxygen and water. The catalytically-generated oxygen bubbles expelled from microtubular cavities propel the microjet step by step in discrete increments. We focus on the dynamics of our tubular microjets in one step and build up a body deformation model to elucidate the interaction between tubular microjets and the bubbles they produce. The average microjet velocity is calculated analytically based on our model and the obtained results demonstrate that the velocity of the microjet increases linearly with the concentration of hydrogen peroxide. The geometric dimensions of the microjet, such as length and radius, also influence its dynamic characteristics significantly. A close consistency between experimental and calculated results is achieved despite a small deviation due to the existence of an approximation in the model. The results presented in this work improve our understanding regarding catalytic motions of tubular microjets and demonstrate the controllability of the microjet which may have potential applications in drug delivery and biology.

  10. Study on influencing factors for hydrogen isotopic exchange

    International Nuclear Information System (INIS)

    Gu Mei; Liu Jun; Luo Yangming

    2013-01-01

    Background: Hydrogen-water catalytic exchange reaction offers an approach to hydrogen isotope separation, which can be applied in heavy water detritiation. Purpose: To optimize the operating condition for hydrogen-water catalytic exchange reaction, we analysed the influence of different factors on the transfer coefficient. Methods: In detail, the isotope exchange experiments of H-D system were carried out in a self-designed catalytic bed loaded with hydrophobic catalyst and hydrophilic packing with certain volume ratio. The experiments showed the changes of both the transfer coefficient and the pressure drop of column with the changing of the operational temperatures (29℃, 45℃, 60℃ and 75℃), the ratios of gas to liquid (0.58, 1.17, 2.65, 3.54) and the deuterium concentrations (5.05×10 -3 , 1.0144×10 -2 , 2.01×10 -2 ). Results: Results showed that 45℃ is the optimal temperature for operating. The transfer coefficient increases with the increasing of the ratio of gas to liquid in the ranges of 0.58 to 1.17 and 2.65 to 3.56, while decreases with the deuterium concentration increases from 5.05×10 -3 to 2.01×10 -2 . The pressure drop of column increases with increasing of gas flow rate. Conclusions: The experiment proves that the ratio of gas to liquid, the reaction temperature and the deuterium concentration are all important factors, which influence the transfer coefficient of deuterium obviously. The optimal operating condition for hydrogen-water catalytic exchange reaction are as follows: the temperature is 45℃, the ratio of gas to liquid is 3.56, and the deuterium concentration is 2.01×10 -2 . (authors)

  11. Improved Hydrogen Gas Getters for TRU Waste -- Final Report

    International Nuclear Information System (INIS)

    Mark Stone; Michael Benson; Christopher Orme; Thomas Luther; Eric Peterson

    2005-01-01

    Alpha radiolysis of hydrogenous waste and packaging materials generates hydrogen gas in radioactive storage containers. For that reason, the Nuclear Regulatory Commission limits the flammable gas (hydrogen) concentration in the Transuranic Package Transporter-II (TRUPACT-II) containers to 5 vol% of hydrogen in air, which is the lower explosion limit. Consequently, a method is needed to prevent the build up of hydrogen to 5 vol% during the storage and transport of the TRUPACT-II containers (up to 60 days). One promising option is the use of hydrogen getters. These materials scavenge hydrogen from the gas phase and irreversibly bind it in the solid phase. One proven getter is a material called 1,4-bis (phenylethynyl) benzene, or DEB, characterized by the presence of carbon-carbon triple bonds. Carbon may, in the presence of suitable precious metal catalysts such as palladium, irreversibly react with and bind hydrogen. In the presence of oxygen, the precious metal may also eliminate hydrogen by catalyzing the formation of water. This reaction is called catalytic recombination. DEB has the needed binding rate and capacity for hydrogen that potentially could be generated in the TRUPACT II. Phases 1 and 2 of this project showed that uncoated DEB performed satisfactorily in lab scale tests. Based upon these results, Phase 3, the final project phase, included larger scale testing. Test vessels were scaled to replicate the ratio between void space in the inner containment vessel of a TRUPACT-II container and a payload of seven 55-gallon drums. The tests were run with an atmosphere of air for 63.9 days at ambient temperature (15-27 C) and a scaled hydrogen generation rate of 2.60E-07 moles per second (0.35 cc/min). A second type of getter known as VEI, a proprietary polymer hydrogen getter characterized by carbon-carbon double bonds, was also tested in Phase 3. Hydrogen was successfully ''gettered'' by both getter systems. Hydrogen concentrations remained below 5 vol% (in

  12. Improved Hydrogen Gas Getters for TRU Waste -- Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mark Stone; Michael Benson; Christopher Orme; Thomas Luther; Eric Peterson

    2005-09-01

    Alpha radiolysis of hydrogenous waste and packaging materials generates hydrogen gas in radioactive storage containers. For that reason, the Nuclear Regulatory Commission limits the flammable gas (hydrogen) concentration in the Transuranic Package Transporter-II (TRUPACT-II) containers to 5 vol% of hydrogen in air, which is the lower explosion limit. Consequently, a method is needed to prevent the build up of hydrogen to 5 vol% during the storage and transport of the TRUPACT-II containers (up to 60 days). One promising option is the use of hydrogen getters. These materials scavenge hydrogen from the gas phase and irreversibly bind it in the solid phase. One proven getter is a material called 1,4-bis (phenylethynyl) benzene, or DEB, characterized by the presence of carbon-carbon triple bonds. Carbon may, in the presence of suitable precious metal catalysts such as palladium, irreversibly react with and bind hydrogen. In the presence of oxygen, the precious metal may also eliminate hydrogen by catalyzing the formation of water. This reaction is called catalytic recombination. DEB has the needed binding rate and capacity for hydrogen that potentially could be generated in the TRUPACT II. Phases 1 and 2 of this project showed that uncoated DEB performed satisfactorily in lab scale tests. Based upon these results, Phase 3, the final project phase, included larger scale testing. Test vessels were scaled to replicate the ratio between void space in the inner containment vessel of a TRUPACT-II container and a payload of seven 55-gallon drums. The tests were run with an atmosphere of air for 63.9 days at ambient temperature (15-27°C) and a scaled hydrogen generation rate of 2.60E-07 moles per second (0.35 cc/min). A second type of getter known as VEI, a proprietary polymer hydrogen getter characterized by carbon-carbon double bonds, was also tested in Phase 3. Hydrogen was successfully “gettered” by both getter systems. Hydrogen concentrations remained below 5 vol% (in

  13. Homogeneous Catalysis for Sustainable Hydrogen Storage in Formic Acid and Alcohols.

    Science.gov (United States)

    Sordakis, Katerina; Tang, Conghui; Vogt, Lydia K; Junge, Henrik; Dyson, Paul J; Beller, Matthias; Laurenczy, Gábor

    2018-01-24

    Hydrogen gas is a storable form of chemical energy that could complement intermittent renewable energy conversion. One of the main disadvantages of hydrogen gas arises from its low density, and therefore, efficient handling and storage methods are key factors that need to be addressed to realize a hydrogen-based economy. Storage systems based on liquids, in particular, formic acid and alcohols, are highly attractive hydrogen carriers as they can be made from CO 2 or other renewable materials, they can be used in stationary power storage units such as hydrogen filling stations, and they can be used directly as transportation fuels. However, to bring about a paradigm change in our energy infrastructure, efficient catalytic processes that release the hydrogen from these molecules, as well as catalysts that regenerate these molecules from CO 2 and hydrogen, are required. In this review, we describe the considerable progress that has been made in homogeneous catalysis for these critical reactions, namely, the hydrogenation of CO 2 to formic acid and methanol and the reverse dehydrogenation reactions. The dehydrogenation of higher alcohols available from renewable feedstocks is also described. Key structural features of the catalysts are analyzed, as is the role of additives, which are required in many systems. Particular attention is paid to advances in sustainable catalytic processes, especially to additive-free processes and catalysts based on Earth-abundant metal ions. Mechanistic information is also presented, and it is hoped that this review not only provides an account of the state of the art in the field but also offers insights into how superior catalytic systems can be obtained in the future.

  14. On the role of metal particle size and surface coverage for photo-catalytic hydrogen production; a case study of the Au/CdS system

    KAUST Repository

    Majeed, I.

    2015-09-25

    Photo-catalytic hydrogen production has been studied on Au supported CdS catalysts under visible light irradiation in order to understand the effect of Au particle size as well as the reaction medium properties. Au nanoparticles of size about 2-5 nm were deposited over hexagonal CdS particles using a new simple method involving reduction of Au3+ ions with iodide ions. Within the investigated range of Au (between 1 and 5 wt. %) fresh particles with mean size of 4 nm and XPS Au4f/Cd3d surface ratio of 0.07 showed the highest performance (ca. 1 molecule of H2 / Auatom s−1) under visible light irradiation (>420 nm and a flux of 35 mW/cm2). The highest hydrogen production rate was obtained from water (92%)-ethanol (8%) in an electrolyte medium (Na2S-Na2SO3). TEM studies of fresh and used catalysts showed that Au particle size increases (almost 5 fold) with increasing photo-irradiation time due to photo-agglomeration effect yet no sign of deactivation was observed. A mechanism for hydrogen production from ethanol-water electrolyte mixture is presented and discussed.

  15. Hydrogen-bond-driven electrophilic activation for selectivity control: scope and limitations of fluorous alcohol-promoted selective formation of 1,2-disubstituted benzimidazoles and mechanistic insight for rationale of selectivity.

    Science.gov (United States)

    Chebolu, Rajesh; Kommi, Damodara N; Kumar, Dinesh; Bollineni, Narendra; Chakraborti, Asit K

    2012-11-16

    Hydrogen-bond-driven electrophilic activation for selectivity control during competitive formation of 1,2-disubstituted and 2-substituted benzimidazoles from o-phenylenediamine and aldehydes is reported. The fluorous alcohols trifluoroethanol and hexafluoro-2-propanol efficiently promote the cyclocondensation of o-phenylenediamine with aldehydes to afford selectively the 1,2-disubstituted benzimidazoles at rt in short times. A mechanistic insight is invoked by NMR, mass spectrometry, and chemical studies to rationalize the selectivity. The ability of the fluorous alcohols in promoting the reaction and controlling the selectivity can be envisaged from their better hydrogen bond donor (HBD) abilities compared to that of the other organic solvents as well as of water. Due to the better HBD values, the fluorous alcohols efficiently promote the initial bisimine formation by electrophilic activation of the aldehyde carbonyl. Subsequently the hydrogen-bond-mediated activation of the in situ-formed bisimine triggers the rearrangement via 1,3-hydride shift to form the 1,2-disubstituted benzimidazoles.

  16. Photoelectrochemical hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Rocheleau, R.E.; Miller, E.; Misra, A. [Univ. of Hawaii, Honolulu, HI (United States)

    1996-10-01

    The large-scale production of hydrogen utilizing energy provided by a renewable source to split water is one of the most ambitious long-term goals of the U.S. Department of Energy`s Hydrogen Program. One promising option to meet this goal is direct photoelectrolysis in which light absorbed by semiconductor-based photoelectrodes produces electrical power internally to split water into hydrogen and oxygen. Under this program, direct solar-to-chemical conversion efficiencies as high as 7.8 % have been demonstrated using low-cost, amorphous-silicon-based photoelectrodes. Detailed loss analysis models indicate that solar-to-chemical conversion greater than 10% can be achieved with amorphous-silicon-based structures optimized for hydrogen production. In this report, the authors describe the continuing progress in the development of thin-film catalytic/protective coatings, results of outdoor testing, and efforts to develop high efficiency, stable prototype systems.

  17. Catalytic Activity of Urchin-like Ni nanoparticles Prepared by Solvothermal Method for Hydrogen Evolution Reaction in Alkaline Solution

    International Nuclear Information System (INIS)

    Abbas, Syed Asad; Iqbal, Muhammad Ibrahim; Kim, Seong-Hoon; Jung, Kwang-Deog

    2017-01-01

    Highlights: • Urchin-like Ni is prepared in solvothermal reaction. • Urchin-like Ni is formed via Ni(OH) 2 aggregates in ethanol and oleylamine. • Exchange current density of urchin-like Ni is 0.191 mA cm −2 . • Urchin-like Ni exceeds the catalytic performance of commercial Pt/C in HER. - Abstract: Ni nanoparticles with different morphologies were synthesized for hydrogen evolution reaction (HER) in alkaline solution. Here, Ni(acac) 2 was converted into Ni metal nanoparticles in solvothermal reactions with simple alcohols and oleylamine (OAm). The morphology of the resulting Ni nanoparticles was dependent mainly on the OAm/Ni molar ratio in alcohol solvent. Aggregates of spherical Ni nanoparticles (NiEt-OAm1) were observed at the OAm/Ni molar ratio of 1.0, whereas two echinoid Ni nanoparticles (NiEt-OAm4 and NiEt-OAm6) could be prepared in ethanol at the OAm/Ni molar ratios of 4.0 and 6.0. Ni(OH) 2 formed in ethanol during a reaction time of 5 h was then reduced into echinoid Ni nanoparticles after 8 h. Echinoid Ni nanoparticles were formed by atomic addition on the tops of the multipod Ni particles formed via Ni(OH) 2 /NiO aggregates. Webbed feet-like particles (NiIPA-OAm4) with plate edges were also observed in isopropanol under the same reaction conditions. The catalytic activities of the prepared Ni nanoparticles for the hydrogen evolution reaction were evaluated in alkaline solution. The NiEt-OAm4 with urchin-like morphology was much more active than the NiIPA-OAm4 with webbed feet-like morphology. The exchange current density of Ni catalysts was increased with increasing the OAm/Ni molar ratio. The NiEt-OAm6 exhibited an exchange current of 0.191 mA cm −2 and the NiEt-OAm4 exceeded electrocatalytic performance of a commercial Pt catalysts (40% Pt on Vulcan XC 72) in a stability test for 100 kiloseconds at −1.5 V (vs. Hg/HgO) in 1.0 M NaOH due to its high stability.

  18. Thermodynamic analysis on the CO2 conversion processes of methane dry reforming for hydrogen production and CO2 hydrogenation to dimethyl ether

    Science.gov (United States)

    He, Xinyi; Liu, Liping

    2017-12-01

    Based on the principle of Gibbs free energy minimization, the thermodynamic analysis on the CO2 conversion processes of dry reforming of methane for H2 and CO2 hydrogenation to dimethyl ether was carried out. The composition of the reaction system was determined on the basis of reaction mechanism. The effects of reaction temperature, pressure and raw material composition on the equilibrium conversion and the selectivity of products were analyzed. The results show that high temperature, low pressure, CO2/CH4 molar ratio of 1.0-1.5 and appropriate amount of oxygen are beneficial to the dry reforming of methane. For CO2 hydrogenation to dimethyl ether, low temperature, high pressure, the appropriate H2/CO2 and the proper CO addition in feed are favorable. The calculated results are compared with the relevant studies, indicating that industrial catalytic technology needs further improvement.

  19. Combined electrolysis catalytic exchange (CECE) process for hydrogen isotope separation

    International Nuclear Information System (INIS)

    Hammerli, M.; Stevens, W.H.; Butler, J.P.

    1978-01-01

    Hydrogen isotopes can be separated efficiently by a process which combines an electrolysis cell with a trickle bed column packed with a hydrophobic platinum catalyst. The column effects isotopic exchange between countercurrent streams of electrolytic hydrogen and liquid water while the electrolysis cell contributes to isotope separation by virtue of the kinetic isotope effect inherent in the hydrogen evolution reaction. The main features of the CECE process for heavy water production are presented as well as a discussion of the inherent positive synergistic effects, and other advantages and disadvantages of the process. Several potential applications of the process in the nuclear power industry are discussed. 3 figures, 2 tables

  20. Asymmetric transfer hydrogenation by synthetic catalysts in cancer cells

    Science.gov (United States)

    Coverdale, James P. C.; Romero-Canelón, Isolda; Sanchez-Cano, Carlos; Clarkson, Guy J.; Habtemariam, Abraha; Wills, Martin; Sadler, Peter J.

    2018-03-01

    Catalytic anticancer metallodrugs active at low doses could minimize side-effects, introduce novel mechanisms of action that combat resistance and widen the spectrum of anticancer-drug activity. Here we use highly stable chiral half-sandwich organometallic Os(II) arene sulfonyl diamine complexes, [Os(arene)(TsDPEN)] (TsDPEN, N-(p-toluenesulfonyl)-1,2-diphenylethylenediamine), to achieve a highly enantioselective reduction of pyruvate, a key intermediate in metabolic pathways. Reduction is shown both in aqueous model systems and in human cancer cells, with non-toxic concentrations of sodium formate used as a hydride source. The catalytic mechanism generates selectivity towards ovarian cancer cells versus non-cancerous fibroblasts (both ovarian and lung), which are commonly used as models of healthy proliferating cells. The formate precursor N-formylmethionine was explored as an alternative to formate in PC3 prostate cancer cells, which are known to overexpress a deformylase enzyme. Transfer-hydrogenation catalysts that generate reductive stress in cancer cells offer a new approach to cancer therapy.

  1. Low temperature catalytic reforming of heptane to hydrogen and syngas

    Directory of Open Access Journals (Sweden)

    M.E.E. Abashar

    2016-09-01

    Full Text Available The production of hydrogen and syngas from heptane at a low temperature is studied in a circulating fast fluidized bed membrane reactor (CFFBMR. A thin film of palladium-based membrane is employed to the displacement of the thermodynamic equilibrium for high conversion and yield. A mathematical model is developed to simulate the reformer. A substantial improvement of the CFFBMR is achieved by implementing the thin hydrogen membrane. The results showed that almost complete conversion of heptane and 46.25% increase of exit hydrogen yield over the value without membrane are achieved. Also a wide range of the H2/CO ratio within the recommended industrial range is obtained. The phenomena of high spikes of maximum nature at the beginning of the CFFBMR are observed and explanation offered. The sensitivity analysis results have shown that the increase of the steam to carbon feed ratio can increase the exit hydrogen yield up to 108.29%. It was found that the increase of reaction side pressure at a high steam to carbon feed ratio can increase further the exit hydrogen yield by 49.36% at a shorter reactor length. Moreover, the increase of reaction side pressure has an important impact in a significant decrease of the carbon dioxide and this is a positive sign for clean environment.

  2. Incorporation of catalytic dehydrogenation into Fischer-Tropsch synthesis to lower carbon dioxide emissions

    Science.gov (United States)

    Huffman, Gerald P

    2012-09-18

    A method for producing liquid fuels includes the steps of gasifying a starting material selected from a group consisting of coal, biomass, carbon nanotubes and mixtures thereof to produce a syngas, subjecting that syngas to Fischer-Tropsch synthesis (FTS) to produce a hyrdrocarbon product stream, separating that hydrocarbon product stream into C1-C4 hydrocarbons and C5+ hydrocarbons to be used as liquid fuels and subjecting the C1-C4 hydrocarbons to catalytic dehydrogenation (CDH) to produce hydrogen and carbon nanotubes. The hydrogen produced by CDH is recycled to be mixed with the syngas incident to the FTS reactor in order to raise the hydrogen to carbon monoxide ratio of the syngas to values of 2 or higher, which is required to produce liquid hydrocarbon fuels. This is accomplished with little or no production of carbon dioxide, a greenhouse gas. The carbon is captured in the form of a potentially valuable by-product, multi-walled carbon nanotubes (MWNT), while huge emissions of carbon dioxide are avoided and very large quantities of water employed for the water-gas shift in traditional FTS systems are saved.

  3. Catalytic micromotor generating self-propelled regular motion through random fluctuation

    Science.gov (United States)

    Yamamoto, Daigo; Mukai, Atsushi; Okita, Naoaki; Yoshikawa, Kenichi; Shioi, Akihisa

    2013-07-01

    Most of the current studies on nano/microscale motors to generate regular motion have adapted the strategy to fabricate a composite with different materials. In this paper, we report that a simple object solely made of platinum generates regular motion driven by a catalytic chemical reaction with hydrogen peroxide. Depending on the morphological symmetry of the catalytic particles, a rich variety of random and regular motions are observed. The experimental trend is well reproduced by a simple theoretical model by taking into account of the anisotropic viscous effect on the self-propelled active Brownian fluctuation.

  4. Promotion of hydrogen-rich gas and phenolic-rich bio-oil production from green macroalgae Cladophora glomerata via pyrolysis over its bio-char.

    Science.gov (United States)

    Norouzi, Omid; Jafarian, Sajedeh; Safari, Farid; Tavasoli, Ahmad; Nejati, Behnam

    2016-11-01

    Conversion of Cladophora glomerata (C. glomerata) as a Caspian Sea's green macroalgae into gaseous, liquid and solid products was carried out via pyrolysis at different temperatures to determine its potential for bio-oil and hydrogen-rich gas production for further industrial utilization. Non-catalytic tests were performed to determine the optimum condition for bio-oil production. The highest portion of bio-oil was retrieved at 500°C. The catalytic test was performed using the bio-char derived at 500°C as a catalyst. Effect of the addition of the algal bio-char on the composition of the bio-oil and also gaseous products was investigated. Pyrolysis derived bio-char was characterized by BET, FESEM and ICP method to show its surface area, porosity, and presence of inorganic metals on its surface, respectively. Phenols were increased from 8.5 to 20.76area% by the addition of bio-char. Moreover, the hydrogen concentration and hydrogen selectivity were also enhanced by the factors of 1.37, 1.59 respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Mesoporous Fe-containing ZSM-5 zeolite single crystal catalysts for selective catalytic reduction of nitric oxide by ammonia

    DEFF Research Database (Denmark)

    Kustov, Arkadii; Egeblad, Kresten; Kustova, Marina

    2007-01-01

    Mesoporous and conventional Fe-containing ZSM-5 catalysts (0.5–8 wt% Fe) were prepared using a simple impregnationmethod and tested in NO selective catalytic reduction (SCR) with NH3. It was found that mesoporous Fe-ZSM-5 catalysts exhibit higher SCR activities than comparable conventional cataly...

  6. Safety Standard for Hydrogen and Hydrogen Systems: Guidelines for Hydrogen System Design, Materials Selection, Operations, Storage and Transportation. Revision

    Science.gov (United States)

    1997-01-01

    The NASA Safety Standard, which establishes a uniform process for hydrogen system design, materials selection, operation, storage, and transportation, is presented. The guidelines include suggestions for safely storing, handling, and using hydrogen in gaseous (GH2), liquid (LH2), or slush (SLH2) form whether used as a propellant or non-propellant. The handbook contains 9 chapters detailing properties and hazards, facility design, design of components, materials compatibility, detection, and transportation. Chapter 10 serves as a reference and the appendices contained therein include: assessment examples; scaling laws, explosions, blast effects, and fragmentation; codes, standards, and NASA directives; and relief devices along with a list of tables and figures, abbreviations, a glossary and an index for ease of use. The intent of the handbook is to provide enough information that it can be used alone, but at the same time, reference data sources that can provide much more detail if required.

  7. Methods of using structures including catalytic materials disposed within porous zeolite materials to synthesize hydrocarbons

    Science.gov (United States)

    Rollins, Harry W [Idaho Falls, ID; Petkovic, Lucia M [Idaho Falls, ID; Ginosar, Daniel M [Idaho Falls, ID

    2011-02-01

    Catalytic structures include a catalytic material disposed within a zeolite material. The catalytic material may be capable of catalyzing a formation of methanol from carbon monoxide and/or carbon dioxide, and the zeolite material may be capable of catalyzing a formation of hydrocarbon molecules from methanol. The catalytic material may include copper and zinc oxide. The zeolite material may include a first plurality of pores substantially defined by a crystal structure of the zeolite material and a second plurality of pores dispersed throughout the zeolite material. Systems for synthesizing hydrocarbon molecules also include catalytic structures. Methods for synthesizing hydrocarbon molecules include contacting hydrogen and at least one of carbon monoxide and carbon dioxide with such catalytic structures. Catalytic structures are fabricated by forming a zeolite material at least partially around a template structure, removing the template structure, and introducing a catalytic material into the zeolite material.

  8. Production of hydrogen, liquid fuels, and chemicals from catalytic processing of bio-oils

    Science.gov (United States)

    Huber, George W; Vispute, Tushar P; Routray, Kamalakanta

    2014-06-03

    Disclosed herein is a method of generating hydrogen from a bio-oil, comprising hydrogenating a water-soluble fraction of the bio-oil with hydrogen in the presence of a hydrogenation catalyst, and reforming the water-soluble fraction by aqueous-phase reforming in the presence of a reforming catalyst, wherein hydrogen is generated by the reforming, and the amount of hydrogen generated is greater than that consumed by the hydrogenating. The method can further comprise hydrocracking or hydrotreating a lignin fraction of the bio-oil with hydrogen in the presence of a hydrocracking catalyst wherein the lignin fraction of bio-oil is obtained as a water-insoluble fraction from aqueous extraction of bio-oil. The hydrogen used in the hydrogenating and in the hydrocracking or hydrotreating can be generated by reforming the water-soluble fraction of bio-oil.

  9. Metal and hydrogen catalysis in isotopic hydrogen exchange in some biologically important heterocyclic compounds

    International Nuclear Information System (INIS)

    Buncel, E.; Joly, H.A.; Jones, J.R.; Onyido, I.

    1989-01-01

    This study reports on the catalytic roles of metal and hydrogen ions in tritium exchange in some heterocyclic substrates which occur as residues in many biologically important molecules. We have found that detritiation of 1-methyl[2- 3 H]imidazole is inhibited by a number of metal ions. As well, inhibition of exchange rates was noted with Ag(I) and Cu(II) for [2- 3 H]thiazole and 1-methyl[8- 3 H]inosine, with Ag(I) for [2- 3 H]benzothiazole, and with Cu(II) for 1-methyl[8- 3 H]guanosine. A complete mechanistic description, which includes the various metal ion-coordinated species generated under the experimental conditions, is presented. The results demonstrate the reactivity order: protonated >> metal-coordinated >> neutral substrates. The differential catalytic effects of metal and hydrogen ions in these processes are discussed in terms of the extent of charge developed on the ligating heteroatom in the reaction intermediate. (author). 13 refs.; 1 fig

  10. Local Environment and Nature of Cu Active Sites in Zeolite-Based Catalysts for the Selective Catalytic Reduction of NOx

    NARCIS (Netherlands)

    Deka, U.|info:eu-repo/dai/nl/325811202; Lezcano-Gonzalez, I.; Weckhuysen, B.M.|info:eu-repo/dai/nl/285484397; Beale, A.M.|info:eu-repo/dai/nl/325802068

    2013-01-01

    Cu-exchanged zeolites have demonstrated widespread use as catalyst materials in the abatement of NOx, especially from mobile sources. Recent studies focusing on Cu-exchanged zeolites with the CHA structure have demonstrated them to be excellent catalysts in the ammonia-assisted selective catalytic

  11. Efficient catalytic combustion in integrated micropellistors

    International Nuclear Information System (INIS)

    Bársony, I; Ádám, M; Fürjes, P; Dücső, Cs; Lucklum, R; Hirschfelder, M; Kulinyi, S

    2009-01-01

    This paper analyses two of the key issues of the development of catalytic combustion-type sensors: the selection and production of active catalytic particles on the micropellistor surface as well as the realization of a reliable thermal conduction between heater element and catalytic surface, for the sensing of temperature increase produced by the combustion. The report also demonstrates that chemical sensor product development by a MEMS process is a continuous struggle for elimination of all uncertainties influencing reliability and sensitivity of the final product

  12. Final Report: Investigation of Catalytic Pathways for Lignin Breakdown into Monomers and Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Gluckstein, Jeffrey A [ORNL; Hu, Michael Z. [ORNL; Kidder, Michelle [ORNL; McFarlane, Joanna [ORNL; Narula, Chaitanya Kumar [ORNL; Sturgeon, Matthew R [ORNL

    2010-12-01

    Lignin is a biopolymer that comprises up to 35% of woody biomass by dry weight. It is currently underutilized compared to cellulose and hemicellulose, the other two primary components of woody biomass. Lignin has an irregular structure of methoxylated aromatic groups linked by a suite of ether and alkyl bonds which makes it difficult to degrade selectively. However, the aromatic components of lignin also make it promising as a base material for the production of aromatic fuel additives and cyclic chemical feed stocks such as styrene, benzene, and cyclohexanol. Our laboratory research focused on three methods to selectively cleave and deoxygenate purified lignin under mild conditions: acidolysis, hydrogenation and electrocatalysis. (1) Acidolysis was undertaken in CH2Cl2 at room temperature. (2) Hydrogenation was carried out by dissolving lignin and a rhodium catalyst in 1:1 water:methoxyethanol under a 1 atm H2 environment. (3) Electrocatalysis of lignin involved reacting electrically generated hydrogen atoms at a catalytic palladium cathode with lignin dissolved in a solution of aqueous methanol. In all of the experiments, the lignin degradation products were identified and quantified by gas chromatography mass spectroscopy and flame ionization detection. Yields were low, but this may have reflected the difficulty in recovering the various fractions after conversion. The homogeneous hydrogenation of lignin showed fragmentation into monomers, while the electrocatalytic hydrogenation showed production of polyaromatic hydrocarbons and substituted benzenes. In addition to the experiments, promising pathways for the conversion of lignin were assessed. Three conversion methods were compared based on their material and energy inputs and proposed improvements using better catalyst and process technology. A variety of areas were noted as needing further experimental and theoretical effort to increase the feasibility of lignin conversion to fuels.

  13. Alkali resistivity of Cu based selective catalytic reduction catalysts

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Jensen, Anker Degn; Riisager, Anders

    2012-01-01

    The deactivation of V2O5–WO3–TiO2, Cu–HZSM5 and Cu–HMOR plate type monolithic catalysts was investigated when exposed to KCl aerosols in a bench-scale reactor. Fresh and exposed catalysts were characterized by selective catalytic reduction (SCR) activity measurements, scanning electron microscope......–energy dispersive X-ray spectroscopy (SEM–EDX) and NH3-temperature programmed desorption (NH3-TPD). 95% deactivation was observed for the V2O5–WO3–TiO2 catalyst, while the Cu–HZSM5 and Cu–HMOR catalysts deactivated only 58% and 48%, respectively, after 1200 h KCl exposure. SEM analysis of the KCl aerosol exposed...... catalysts revealed that the potassium salt not only deposited on the catalyst surface, but also penetrated into the catalyst wall. Thus, the K/M ratio (M = V or Cu) was high on V2O5–WO3–TiO2 catalyst and comparatively less on Cu–HZSM5 and Cu–HMOR catalysts. NH3-TPD revealed that the KCl exposed Cu–HZSM5...

  14. Removal of distal protein-water hydrogen bonds in a plant epoxide hydrolase increases catalytic turnover but decreases thermostability.

    Science.gov (United States)

    Thomaeus, Ann; Naworyta, Agata; Mowbray, Sherry L; Widersten, Mikael

    2008-07-01

    A putative proton wire in potato soluble epoxide hydrolase 1, StEH1, was identified and investigated by means of site-directed mutagenesis, steady-state kinetic measurements, temperature inactivation studies, and X-ray crystallography. The chain of hydrogen bonds includes five water molecules coordinated through backbone carbonyl oxygens of Pro(186), Leu(266), His(269), and the His(153) imidazole. The hydroxyl of Tyr(149) is also an integrated component of the chain, which leads to the hydroxyl of Tyr(154). Available data suggest that Tyr(154) functions as a final proton donor to the anionic alkylenzyme intermediate formed during catalysis. To investigate the role of the putative proton wire, mutants Y149F, H153F, and Y149F/H153F were constructed and purified. The structure of the Y149F mutant was solved by molecular replacement and refined to 2.0 A resolution. Comparison with the structure of wild-type StEH1 revealed only subtle structural differences. The hydroxyl group lost as a result of the mutation was replaced by a water molecule, thus maintaining a functioning hydrogen bond network in the proton wire. All mutants showed decreased catalytic efficiencies with the R,R-enantiomer of trans-stilbene oxide, whereas with the S,S-enantiomer, k (cat)/K (M) was similar or slightly increased compared with the wild-type reactions. k (cat) for the Y149F mutant with either TSO enantiomer was increased; thus the lowered enzyme efficiencies were due to increases in K (M). Thermal inactivation studies revealed that the mutated enzymes were more sensitive to elevated temperatures than the wild-type enzyme. Hence, structural alterations affecting the hydrogen bond chain caused increases in k (cat) but lowered thermostability.

  15. CATALYTICALLY ENHANCED SYSTEMS FOR HYDROGEN STORAGE. Final report

    International Nuclear Information System (INIS)

    Craig M. Jensen

    2007-01-01

    Previous U.S. DOE sponsored research at the University of Hawaii resulted in the development of methods of doping of sodium aluminum hydride, NaAlH4 with titanium, zirconium and other catalysts such that: dehydriding occurs at temperatures as low as 100 C; rehydriding requires less than 1 h; and >4 weight percent hydrogen can be repeatedly cycled through dehydriding/rehydriding. These materials appeared to be on the threshold of practical viability as hydrogen carriers for onboard fuel cells. However, it was apparent that further kinetic enhancement was required to achieve commercial viability. Thus, one of the primary goals of this project was to develop the requisite improved catalysts. Over the course of this project, a variety of titanium and zirconium dopant precursors were investigated. Moreover, the approach was to conduct guided search for improved catalysts by obtaining a fundamental understanding of the chemical nature of the titanium dopants and their mechanism of action. Therefore, the projected also aimed to determined the chemical nature of the titanium species that are formed upon mechanical milling of NaAlH4 with the dopant precursors through synchrotron X-ray and neutron diffraction as well as transmission electron microscopy, scanning electron microscopy, and electron paramagnetic resonance (EPR) spectroscopy. In addition to kinetic studies, insight into the mechanism of action of the dopants was gained through studies of the destabilization of hydrogen in NaAlH4 by the dopants through infrared, NMR, and anelastic spectroscopy

  16. Enhanced Hydrogen Production Integrated with CO2 Separation in a Single-Stage Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shwetha Ramkumar; Mahesh Iyer; Danny Wong; Himanshu Gupta; Bartev Sakadjian; Liang-Lhih Fan

    2008-09-30

    High purity hydrogen is commercially produced from syngas by the Water Gas Shift Reaction (WGSR) in high and low temperature shift reactors using iron oxide and copper catalysts respectively. However, the WGSR is thermodynamically limited at high temperatures towards hydrogen production necessitating excess steam addition and catalytic operation. In the calcium looping process, the equilibrium limited WGSR is driven forward by the incessant removal of CO{sub 2} by-product through the carbonation of calcium oxide. At high pressures, this process obviates the need for a catalyst and excess steam requirement, thereby removing the costs related to the procurement and deactivation of the catalyst and steam generation. Thermodynamic analysis for the combined WGS and carbonation reaction was conducted. The combined WGS and carbonation reaction was investigated at varying pressures, temperatures and S/C ratios using a bench scale reactor system. It was found that the purity of hydrogen increases with the increase in pressure and at a pressure of 300 psig, almost 100% hydrogen is produced. It was also found that at high pressures, high purity hydrogen can be produced using stoichiometric quantities of steam. On comparing the catalytic and non catalytic modes of operation in the presence of calcium oxide, it was found that there was no difference in the purity of hydrogen produced at elevated pressures. Multicyclic reaction and regeneration experiments were also conducted and it was found that the purity of hydrogen remains almost constant after a few cycles.

  17. Formation and nitrile hydrogenation performance of Ru nanoparticles on a K-doped Al2O3 surface.

    Science.gov (United States)

    Muratsugu, Satoshi; Kityakarn, Sutasinee; Wang, Fei; Ishiguro, Nozomu; Kamachi, Takashi; Yoshizawa, Kazunari; Sekizawa, Oki; Uruga, Tomoya; Tada, Mizuki

    2015-10-14

    Decarbonylation-promoted Ru nanoparticle formation from Ru3(CO)12 on a basic K-doped Al2O3 surface was investigated by in situ FT-IR and in situ XAFS. Supported Ru3(CO)12 clusters on K-doped Al2O3 were converted stepwise to Ru nanoparticles, which catalyzed the selective hydrogenation of nitriles to the corresponding primary amines via initial decarbonylation, the nucleation of the Ru cluster core, and the growth of metallic Ru nanoparticles on the surface. As a result, small Ru nanoparticles, with an average diameter of less than 2 nm, were formed on the support and acted as efficient catalysts for nitrile hydrogenation at 343 K under hydrogen at atmospheric pressure. The structure and catalytic performance of Ru catalysts depended strongly on the type of oxide support, and the K-doped Al2O3 support acted as a good oxide for the selective nitrile hydrogenation without basic additives like ammonia. The activation of nitriles on the modelled Ru catalyst was also investigated by DFT calculations, and the adsorption structure of a nitrene-like intermediate, which was favourable for high primary amine selectivity, was the most stable structure on Ru compared with other intermediate structures.

  18. Highly sensitive hydrogen detection of catalyst-free ZnO nanorod networks suspended by lithography-assisted growth

    International Nuclear Information System (INIS)

    Huh, Junghwan; Kim, Gyu Tae; Park, Jonghyurk; Park, Jeong Young

    2011-01-01

    We have successfully demonstrated a ZnO nanorod-based 3D nanostructure to show a high sensitivity and very fast response/recovery to hydrogen gas. ZnO nanorods have been synthesized selectively over the pre-defined area at relatively low temperature using a simple self-catalytic solution process assisted by a lithographic method. The conductance of the ZnO nanorod device varies significantly as the concentration of the hydrogen is changed without any additive metal catalyst, revealing a high sensitivity to hydrogen gas. Its superior performance can be explained by the porous structure of its three-dimensional network and the enhanced surface reaction of the hydrogen molecules with the oxygen defects resulting from a high surface-to-volume ratio. It was found that the change of conductance follows a power law depending on the hydrogen concentration. A Langmuir isotherm following an ideal power law and a cross-over behavior of the activation energy with respect to hydrogen concentration were observed. This is a very novel and intriguing phenomenon on nanostructured materials, which suggests competitive surface reactions in ZnO nanorod gas sensors.

  19. Highly sensitive hydrogen detection of catalyst-free ZnO nanorod networks suspended by lithography-assisted growth.

    Science.gov (United States)

    Huh, Junghwan; Park, Jonghyurk; Kim, Gyu Tae; Park, Jeong Young

    2011-02-25

    We have successfully demonstrated a ZnO nanorod-based 3D nanostructure to show a high sensitivity and very fast response/recovery to hydrogen gas. ZnO nanorods have been synthesized selectively over the pre-defined area at relatively low temperature using a simple self-catalytic solution process assisted by a lithographic method. The conductance of the ZnO nanorod device varies significantly as the concentration of the hydrogen is changed without any additive metal catalyst, revealing a high sensitivity to hydrogen gas. Its superior performance can be explained by the porous structure of its three-dimensional network and the enhanced surface reaction of the hydrogen molecules with the oxygen defects resulting from a high surface-to-volume ratio. It was found that the change of conductance follows a power law depending on the hydrogen concentration. A Langmuir isotherm following an ideal power law and a cross-over behavior of the activation energy with respect to hydrogen concentration were observed. This is a very novel and intriguing phenomenon on nanostructured materials, which suggests competitive surface reactions in ZnO nanorod gas sensors.

  20. Ammonia for hydrogen storage: challenges and opportunities

    DEFF Research Database (Denmark)

    Klerke, Asbjørn; Christensen, Claus H.; Nørskov, Jens Kehlet

    2008-01-01

    The possibility of using ammonia as a hydrogen carrier is discussed. Compared to other hydrogen storage materials, ammonia has the advantages of a high hydrogen density, a well-developed technology for synthesis and distribution, and easy catalytic decomposition. Compared to hydrocarbons...... and alcohols, it has the advantage that there is no CO2 emission at the end user. The drawbacks are mainly the toxicity of liquid ammonia and the problems related to trace amounts of ammonia in the hydrogen after decomposition. Storage of ammonia in metal ammine salts is discussed, and it is shown...... that this maintains the high volumetric hydrogen density while alleviating the problems of handling the ammonia. Some of the remaining challenges for research in ammonia as a hydrogen carrier are outlined....