WorldWideScience

Sample records for selection filter application

  1. Generalized Selection Weighted Vector Filters

    Directory of Open Access Journals (Sweden)

    Rastislav Lukac

    2004-09-01

    Full Text Available This paper introduces a class of nonlinear multichannel filters capable of removing impulsive noise in color images. The here-proposed generalized selection weighted vector filter class constitutes a powerful filtering framework for multichannel signal processing. Previously defined multichannel filters such as vector median filter, basic vector directional filter, directional-distance filter, weighted vector median filters, and weighted vector directional filters are treated from a global viewpoint using the proposed framework. Robust order-statistic concepts and increased degree of freedom in filter design make the proposed method attractive for a variety of applications. Introduced multichannel sigmoidal adaptation of the filter parameters and its modifications allow to accommodate the filter parameters to varying signal and noise statistics. Simulation studies reported in this paper indicate that the proposed filter class is computationally attractive, yields excellent performance, and is able to preserve fine details and color information while efficiently suppressing impulsive noise. This paper is an extended version of the paper by Lukac et al. presented at the 2003 IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing (NSIP '03 in Grado, Italy.

  2. Selection vector filter framework

    Science.gov (United States)

    Lukac, Rastislav; Plataniotis, Konstantinos N.; Smolka, Bogdan; Venetsanopoulos, Anastasios N.

    2003-10-01

    We provide a unified framework of nonlinear vector techniques outputting the lowest ranked vector. The proposed framework constitutes a generalized filter class for multichannel signal processing. A new class of nonlinear selection filters are based on the robust order-statistic theory and the minimization of the weighted distance function to other input samples. The proposed method can be designed to perform a variety of filtering operations including previously developed filtering techniques such as vector median, basic vector directional filter, directional distance filter, weighted vector median filters and weighted directional filters. A wide range of filtering operations is guaranteed by the filter structure with two independent weight vectors for angular and distance domains of the vector space. In order to adapt the filter parameters to varying signal and noise statistics, we provide also the generalized optimization algorithms taking the advantage of the weighted median filters and the relationship between standard median filter and vector median filter. Thus, we can deal with both statistical and deterministic aspects of the filter design process. It will be shown that the proposed method holds the required properties such as the capability of modelling the underlying system in the application at hand, the robustness with respect to errors in the model of underlying system, the availability of the training procedure and finally, the simplicity of filter representation, analysis, design and implementation. Simulation studies also indicate that the new filters are computationally attractive and have excellent performance in environments corrupted by bit errors and impulsive noise.

  3. CHANGE DETECTION VIA SELECTIVE GUIDED CONTRASTING FILTERS

    Directory of Open Access Journals (Sweden)

    Y. V. Vizilter

    2017-05-01

    Full Text Available Change detection scheme based on guided contrasting was previously proposed. Guided contrasting filter takes two images (test and sample as input and forms the output as filtered version of test image. Such filter preserves the similar details and smooths the non-similar details of test image with respect to sample image. Due to this the difference between test image and its filtered version (difference map could be a basis for robust change detection. Guided contrasting is performed in two steps: at the first step some smoothing operator (SO is applied for elimination of test image details; at the second step all matched details are restored with local contrast proportional to the value of some local similarity coefficient (LSC. The guided contrasting filter was proposed based on local average smoothing as SO and local linear correlation as LSC. In this paper we propose and implement new set of selective guided contrasting filters based on different combinations of various SO and thresholded LSC. Linear average and Gaussian smoothing, nonlinear median filtering, morphological opening and closing are considered as SO. Local linear correlation coefficient, morphological correlation coefficient (MCC, mutual information, mean square MCC and geometrical correlation coefficients are applied as LSC. Thresholding of LSC allows operating with non-normalized LSC and enhancing the selective properties of guided contrasting filters: details are either totally recovered or not recovered at all after the smoothing. These different guided contrasting filters are tested as a part of previously proposed change detection pipeline, which contains following stages: guided contrasting filtering on image pyramid, calculation of difference map, binarization, extraction of change proposals and testing change proposals using local MCC. Experiments on real and simulated image bases demonstrate the applicability of all proposed selective guided contrasting filters. All

  4. Novel Automatic Filter-Class Feature Selection for Machine Learning Regression

    DEFF Research Database (Denmark)

    Wollsen, Morten Gill; Hallam, John; Jørgensen, Bo Nørregaard

    2017-01-01

    With the increased focus on application of Big Data in all sectors of society, the performance of machine learning becomes essential. Efficient machine learning depends on efficient feature selection algorithms. Filter feature selection algorithms are model-free and therefore very fast, but require...... model in the feature selection process. PCA is often used in machine learning litterature and can be considered the default feature selection method. RDESF outperformed PCA in both experiments in both prediction error and computational speed. RDESF is a new step into filter-based automatic feature...

  5. Comparative analysis of the selective resonant LCL and LCL plus trap filters

    DEFF Research Database (Denmark)

    Beres, Remus Narcis; Wang, Xiongfei; Blaabjerg, Frede

    2014-01-01

    In this paper two promising LCL based filter topologies are evaluated against the well-known LCL with a damping resistor. The filters are designed for high power applications where the frequency modulation index is relatively low. The first topology is the selective resonant LCL filter which aim...... is to minimize the damping losses by bypassing the resistor at the fundamental and switching frequencies while preserving high attenuation at higher frequencies. A new design procedure is proposed for the selective resonant LCL filter. The presence of multi-tuned traps in the second topology aims to decrease...... the total size of the filter reactive elements while meeting current harmonic standards. It is found that selective resonant LCL filter provide much lower damping losses compared to the LCL filter with simple resistor topology. Additionally, for the trap topology a minimum switching frequency is determined...

  6. Application of HTSC-thin films in microwave bandpass filters

    International Nuclear Information System (INIS)

    Jha, A.R.

    1993-01-01

    This paper reveals unique performance capabilities of High-Temperature Superconducting Thin-Film (HTSCTFs) for possible applications in microwave bandpass filters (BPFs). Microwave filters fabricated with HTSCTFs have demonstrated lowest insertion loss, highest rejection, and sharpest skirt selectivity. Thin films of Yttrium Barium Copper Oxide (YBCO), Bismuth Strontium Calcium Copper Oxide (BSCCO) and Thallium Calcium Barium Copper Oxide (TCBCO) will be most attractive for filters

  7. Optimal Tuner Selection for Kalman Filter-Based Aircraft Engine Performance Estimation

    Science.gov (United States)

    Simon, Donald L.; Garg, Sanjay

    2010-01-01

    A linear point design methodology for minimizing the error in on-line Kalman filter-based aircraft engine performance estimation applications is presented. This technique specifically addresses the underdetermined estimation problem, where there are more unknown parameters than available sensor measurements. A systematic approach is applied to produce a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. Tuning parameter selection is performed using a multi-variable iterative search routine which seeks to minimize the theoretical mean-squared estimation error. This paper derives theoretical Kalman filter estimation error bias and variance values at steady-state operating conditions, and presents the tuner selection routine applied to minimize these values. Results from the application of the technique to an aircraft engine simulation are presented and compared to the conventional approach of tuner selection. Experimental simulation results are found to be in agreement with theoretical predictions. The new methodology is shown to yield a significant improvement in on-line engine performance estimation accuracy

  8. Optimum filter selection for Dual Energy X-ray Applications through Analytical Modeling

    International Nuclear Information System (INIS)

    Koukou, V; Martini, N; Sotiropoulou, P; Nikiforidis, G; Michail, C; Kalyvas, N; Kandarakis, I; Fountos, G

    2015-01-01

    In this simulation study, an analytical model was used in order to determine the optimal acquisition parameters for a dual energy breast imaging system. The modeled detector system, consisted of a 33.91mg/cm 2 Gd 2 O 2 S:Tb scintillator screen, placed in direct contact with a high resolution CMOS sensor. Tungsten anode X-ray spectra, filtered with various filter materials and filter thicknesses were examined for both the low- and high-energy beams, resulting in 3375 combinations. The selection of these filters was based on their K absorption edge (K-edge filtering). The calcification signal-to-noise ratio (SNR tc ) and the mean glandular dose (MGD) were calculated. The total mean glandular dose was constrained to be within acceptable levels. Optimization was based on the maximization of the SNR tc /MGD ratio. The results showed that the optimum spectral combination was 40kVp with added beam filtration of 100 μm Ag and 70kVp Cu filtered spectrum of 1000 μm for the low- and high-energy, respectively. The minimum detectable calcification size was 150 μm. Simulations demonstrate that this dual energy X-ray technique could enhance breast calcification detection. (paper)

  9. A Compact Band-Pass Filter with High Selectivity and Second Harmonic Suppression.

    Science.gov (United States)

    Hadarig, Ramona Cosmina; de Cos Gomez, Maria Elena; Las-Heras, Fernando

    2013-12-03

    The design of a novel band-pass filter with narrow-band features based on an electromagnetic resonator at 6.4 GHz is presented. A prototype is manufactured and characterized in terms of transmission and reflection coefficient. The selective passband and suppression of the second harmonic make the filter suitable to be used in a C band frequency range for radar systems and satellite/terrestrial applications. To avoid substantial interference for this kind of applications, passive components with narrow band features and small dimensions are required. Between 3.6 GHz and 4.2 GHz the band-pass filter with harmonic suppression should have an attenuation of at least 35 dB, whereas for a passband, less than 10% is sufficient.

  10. Design of Nonuniform Filter Bank Transceivers for Frequency Selective Channels

    Directory of Open Access Journals (Sweden)

    Yuan-Pei Lin

    2007-01-01

    Full Text Available In recent years, there has been considerable interest in the theory and design of filter bank transceivers due to their superior frequency response. In many applications, it is desired to have transceivers that can support multiple services with different incoming data rates and different quality-of-service requirements. To meet these requirements, we can either do resource allocation or design transceivers with a nonuniform bandwidth partition. In this paper, we propose a method for the design of nonuniform filter bank transceivers for frequency selective channels. Both frequency response and signal-to-interference ratio (SIR can be incorporated in the transceiver design. Moreover, the technique can be extended to the case of nonuniform filter bank transceivers with rational sampling factors. Simulation results show that nonuniform filter bank transceivers with good filter responses as well as high SIR can be obtained by the proposed design method.

  11. A 15-pole high temperature superconductor filter for radar applications

    Science.gov (United States)

    Yu, Xiao; Xi, Weibin; Wu, Songtao

    2018-06-01

    This paper presents a compact and high first harmonic frequency resonator. The characteristics of this resonator are theoretically analyzed. A highly selective 15-pole Chebyshev high temperature superconducting ultra-high frequency narrowband filter for radar applications was fabricated by using this resonator. The filter has a center frequency of 495 MHz and a fractional bandwidth of 1%. The first harmonic frequency is more than 3.3 times the fundamental frequency. The measured filter shows excellent selectivity, better than 85 dB/1 MHz skirt slopes, and more than 85 dB of rejection at 497.5 MHz from the band edge. The filter was fabricated on a 2 inch YBCO thin film with a 0.5 mm thick MgO substrate. The experimental results are consistent with the simulations.

  12. Optimal Tuner Selection for Kalman-Filter-Based Aircraft Engine Performance Estimation

    Science.gov (United States)

    Simon, Donald L.; Garg, Sanjay

    2011-01-01

    An emerging approach in the field of aircraft engine controls and system health management is the inclusion of real-time, onboard models for the inflight estimation of engine performance variations. This technology, typically based on Kalman-filter concepts, enables the estimation of unmeasured engine performance parameters that can be directly utilized by controls, prognostics, and health-management applications. A challenge that complicates this practice is the fact that an aircraft engine s performance is affected by its level of degradation, generally described in terms of unmeasurable health parameters such as efficiencies and flow capacities related to each major engine module. Through Kalman-filter-based estimation techniques, the level of engine performance degradation can be estimated, given that there are at least as many sensors as health parameters to be estimated. However, in an aircraft engine, the number of sensors available is typically less than the number of health parameters, presenting an under-determined estimation problem. A common approach to address this shortcoming is to estimate a subset of the health parameters, referred to as model tuning parameters. The problem/objective is to optimally select the model tuning parameters to minimize Kalman-filterbased estimation error. A tuner selection technique has been developed that specifically addresses the under-determined estimation problem, where there are more unknown parameters than available sensor measurements. A systematic approach is applied to produce a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. Tuning parameter selection is performed using a multi-variable iterative search routine that seeks to minimize the theoretical mean-squared estimation error of the Kalman filter. This approach can significantly reduce the error in onboard aircraft engine parameter estimation

  13. Transmissive/Reflective Structural Color Filters: Theory and Applications

    Directory of Open Access Journals (Sweden)

    Yan Yu

    2014-01-01

    Full Text Available Structural color filters, which obtain color selection by varying structures, have attracted extensive research interest in recent years due to the advantages of compactness, stability, multifunctions, and so on. In general, the mechanisms of structural colors are based on the interaction between light and structures, including light diffraction, cavity resonance, and surface plasmon resonance. This paper reviews recent progress of various structural color techniques and the integration applications of structural color filters in CMOS image sensors, solar cells, and display.

  14. Protein structure and ionic selectivity in calcium channels: selectivity filter size, not shape, matters.

    Science.gov (United States)

    Malasics, Attila; Gillespie, Dirk; Nonner, Wolfgang; Henderson, Douglas; Eisenberg, Bob; Boda, Dezso

    2009-12-01

    Calcium channels have highly charged selectivity filters (4 COO(-) groups) that attract cations in to balance this charge and minimize free energy, forcing the cations (Na(+) and Ca(2+)) to compete for space in the filter. A reduced model was developed to better understand the mechanism of ion selectivity in calcium channels. The charge/space competition (CSC) mechanism implies that Ca(2+) is more efficient in balancing the charge of the filter because it provides twice the charge as Na(+) while occupying the same space. The CSC mechanism further implies that the main determinant of Ca(2+) versus Na(+) selectivity is the density of charged particles in the selectivity filter, i.e., the volume of the filter (after fixing the number of charged groups in the filter). In this paper we test this hypothesis by changing filter length and/or radius (shape) of the cylindrical selectivity filter of our reduced model. We show that varying volume and shape together has substantially stronger effects than varying shape alone with volume fixed. Our simulations show the importance of depletion zones of ions in determining channel conductance calculated with the integrated Nernst-Planck equation. We show that confining the protein side chains with soft or hard walls does not influence selectivity.

  15. Increased generalization capability of trainable COSFIRE filters with application to machine vision

    NARCIS (Netherlands)

    Azzopardi, George; Fernandez-Robles, Laura; Alegre, Enrique; Petkov, Nicolai

    2017-01-01

    The recently proposed trainable COSFIRE filters are highly effective in a wide range of computer vision applications, including object recognition, image classification, contour detection and retinal vessel segmentation. A COSFIRE filter is selective for a collection of contour parts in a certain

  16. Performance of high-temperature superconducting band-pass filters with high selectivity for base transceiver applications of digital cellular communication systems

    Science.gov (United States)

    Kwak, J. S.; Lee, J. H.; Kim, C. O.; Hong, J. P.; Han, S. K.; Char, K.

    2002-07-01

    Highly selective high-temperature superconducting band-pass filters based on spiral meander line structures have been developed for base transceiver station applications of digital cellular communication systems. The filter comprised 12-pole microstrip line resonators with a circuit size of 0.5 × 17 × 41 mm3. The filter was designed to have a bandwidth of 25 MHz at a centre frequency of 834 MHz. Particularly, the physical size of each resonator was chosen not only to reduce far-field radiation, but also to have reasonable tunability in the filter. Device characteristics exhibited a low insertion loss of 0.4 dB with a 0.2 dB ripple and a return loss better than 10 dB in the pass-band at 65 K. The out-of-band signals were attenuated better than 60 dB at about 3.5 MHz from the lower band edge, and 3.8 MHz from the higher band edge.

  17. Performance of high-temperature superconducting band-pass filters with high selectivity for base transceiver applications of digital cellular communication systems

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, J.S.; Lee, J.H.; Kim, C.O.; Hong, J.P. [Department of Physics, Hanyang University, Seoul (Korea, Republic of); Han, S.K.; Char, K. [RFtron Inc., Seoul (Korea, Republic of)

    2002-07-01

    Highly selective high-temperature superconducting band-pass filters based on spiral meander line structures have been developed for base transceiver station applications of digital cellular communication systems. The filter comprised 12-pole microstrip line resonators with a circuit size of 0.5x17x41 mm{sup 3}. The filter was designed to have a bandwidth of 25 MHz at a centre frequency of 834 MHz. Particularly, the physical size of each resonator was chosen not only to reduce far-field radiation, but also to have reasonable tunability in the filter. Device characteristics exhibited a low insertion loss of 0.4 dB with a 0.2 dB ripple and a return loss better than 10 dB in the pass-band at 65 K. The out-of-band signals were attenuated better than 60 dB at about 3.5 MHz from the lower band edge, and 3.8 MHz from the higher band edge. (author)

  18. Performance of high-temperature superconducting band-pass filters with high selectivity for base transceiver applications of digital cellular communication systems

    International Nuclear Information System (INIS)

    Kwak, J.S.; Lee, J.H.; Kim, C.O.; Hong, J.P.; Han, S.K.; Char, K.

    2002-01-01

    Highly selective high-temperature superconducting band-pass filters based on spiral meander line structures have been developed for base transceiver station applications of digital cellular communication systems. The filter comprised 12-pole microstrip line resonators with a circuit size of 0.5x17x41 mm 3 . The filter was designed to have a bandwidth of 25 MHz at a centre frequency of 834 MHz. Particularly, the physical size of each resonator was chosen not only to reduce far-field radiation, but also to have reasonable tunability in the filter. Device characteristics exhibited a low insertion loss of 0.4 dB with a 0.2 dB ripple and a return loss better than 10 dB in the pass-band at 65 K. The out-of-band signals were attenuated better than 60 dB at about 3.5 MHz from the lower band edge, and 3.8 MHz from the higher band edge. (author)

  19. Graphene-Based Filters and Supercapacitors for Space and Aeronautical Applications

    Science.gov (United States)

    Calle, Carlos I.

    2015-01-01

    Overview of the capabilities of graphene for selective filters and for energy storage with a general description of the work being done at NASA Kennedy Space Center in collaboration with the University of California Los Angeles for space and aeronautical applications.

  20. VHF/UHF filters and multicouplers application of air resonators

    CERN Document Server

    Piette, Bernard

    2013-01-01

    This book describes the various devices used in radio communication and broadcasting to achieve high selectivity filtering and coupling. After providing a background in the basics of microwave theory and more detailed material - including a special chapter on precision and errors in measurement - the reader will find detailed descriptions, manufacturing processes, and, for the most useful instances, a number of worked-through formulas, which will allow engineers and technicians to design circuits or components for filtering or coupling applications. Content is covered in this format across a b

  1. Cascaded holographic polymer reflection grating filters for optical-code-division multiple-access applications.

    Science.gov (United States)

    Kostuk, Raymond K; Maeda, Wendi; Chen, Chia-Hung; Djordjevic, Ivan; Vasic, Bane

    2005-12-10

    We evaluate the use of edge-illuminated holographic Bragg filters formed in phenanthrenequinone-doped poly(methyl methacrylate) for optical-code-division multiple-access (OCDMA) coding and decoding applications. Experimental cascaded Bragg filters are formed to select two different wavelengths with a fixed distance between the gratings and are directly coupled to a fiber-measurement system. The configuration and tolerances of the cascaded gratings are shown to be practical for time-wavelength OCDMA applications.

  2. Protein structure and ionic selectivity in calcium channels: Selectivity filter size, not shape, matters

    OpenAIRE

    Malasics, Attila; Gillespie, Dirk; Nonner, Wolfgang; Henderson, Douglas; Eisenberg, Bob; Boda, Dezső

    2009-01-01

    Calcium channels have highly charged selectivity filters (4 COO− groups) that attract cations in to balance this charge and minimize free energy, forcing the cations (Na+ and Ca2+) to compete for space in the filter. A reduced model was developed to better understand the mechanism of ion selectivity in calcium channels. The charge/space competition (CSC) mechanism implies that Ca2+ is more efficient in balancing the charge of the filter because it provides twice the charge as Na+ while occupy...

  3. Narrow band wavelength selective filter using grating assisted single ring resonator

    Energy Technology Data Exchange (ETDEWEB)

    Prabhathan, P., E-mail: PPrabhathan@ntu.edu.sg; Murukeshan, V. M. [Centre for Optical and Laser Engineering (COLE), School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2014-09-15

    This paper illustrates a filter configuration which uses a single ring resonator of larger radius connected to a grating resonator at its drop port to achieve single wavelength selectivity and switching property with spectral features suitable for on-chip wavelength selection applications. The proposed configuration is expected to find applications in silicon photonics devices such as, on-chip external cavity lasers and multi analytic label-free biosensors. The grating resonator has been designed for a high Q-factor, high transmittivity, and minimum loss so that the wavelength selectivity of the device is improved. The proof-of-concept device has been demonstrated on a Silicon-on-Insulator (SOI) platform through electron beam lithography and Reactive Ion Etching (RIE) process. The transmission spectrum shows narrow band single wavelength selection and switching property with a high Free Spectral Range (FSR) ∼60 nm and side band rejection ratio >15 dB.

  4. Three phase active power filter with selective harmonics elimination

    Directory of Open Access Journals (Sweden)

    Sozański Krzysztof

    2016-03-01

    Full Text Available This paper describes a three phase shunt active power filter with selective harmonics elimination. The control algorithm is based on a digital filter bank. The moving Discrete Fourier Transformation is used as an analysis filter bank. The correctness of the algorithm has been verified by simulation and experimental research. The paper includes exemplary results of current waveforms and their spectra from a three phase active power filter.

  5. Bowtie filters for dedicated breast CT: Analysis of bowtie filter material selection

    Energy Technology Data Exchange (ETDEWEB)

    Kontson, Kimberly, E-mail: Kimberly.Kontson@fda.hhs.gov; Jennings, Robert J. [Department of Bioengineering, University of Maryland, College Park, Maryland 20742 and Division of Imaging and Applied Mathematics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993 (United States)

    2015-09-15

    Purpose: For a given bowtie filter design, both the selection of material and the physical design control the energy fluence, and consequently the dose distribution, in the object. Using three previously described bowtie filter designs, the goal of this work is to demonstrate the effect that different materials have on the bowtie filter performance measures. Methods: Three bowtie filter designs that compensate for one or more aspects of the beam-modifying effects due to the differences in path length in a projection have been designed. The nature of the designs allows for their realization using a variety of materials. The designs were based on a phantom, 14 cm in diameter, composed of 40% fibroglandular and 60% adipose tissue. Bowtie design #1 is based on single material spectral matching and produces nearly uniform spectral shape for radiation incident upon the detector. Bowtie design #2 uses the idea of basis-material decomposition to produce the same spectral shape and intensity at the detector, using two different materials. With bowtie design #3, it is possible to eliminate the beam hardening effect in the reconstructed image by adjusting the bowtie filter thickness so that the effective attenuation coefficient for every ray is the same. Seven different materials were chosen to represent a range of chemical compositions and densities. After calculation of construction parameters for each bowtie filter design, a bowtie filter was created using each of these materials (assuming reasonable construction parameters were obtained), resulting in a total of 26 bowtie filters modeled analytically and in the PENELOPE Monte Carlo simulation environment. Using the analytical model of each bowtie filter, design profiles were obtained and energy fluence as a function of fan-angle was calculated. Projection images with and without each bowtie filter design were also generated using PENELOPE and reconstructed using FBP. Parameters such as dose distribution, noise uniformity

  6. Bowtie filters for dedicated breast CT: Analysis of bowtie filter material selection

    International Nuclear Information System (INIS)

    Kontson, Kimberly; Jennings, Robert J.

    2015-01-01

    Purpose: For a given bowtie filter design, both the selection of material and the physical design control the energy fluence, and consequently the dose distribution, in the object. Using three previously described bowtie filter designs, the goal of this work is to demonstrate the effect that different materials have on the bowtie filter performance measures. Methods: Three bowtie filter designs that compensate for one or more aspects of the beam-modifying effects due to the differences in path length in a projection have been designed. The nature of the designs allows for their realization using a variety of materials. The designs were based on a phantom, 14 cm in diameter, composed of 40% fibroglandular and 60% adipose tissue. Bowtie design #1 is based on single material spectral matching and produces nearly uniform spectral shape for radiation incident upon the detector. Bowtie design #2 uses the idea of basis-material decomposition to produce the same spectral shape and intensity at the detector, using two different materials. With bowtie design #3, it is possible to eliminate the beam hardening effect in the reconstructed image by adjusting the bowtie filter thickness so that the effective attenuation coefficient for every ray is the same. Seven different materials were chosen to represent a range of chemical compositions and densities. After calculation of construction parameters for each bowtie filter design, a bowtie filter was created using each of these materials (assuming reasonable construction parameters were obtained), resulting in a total of 26 bowtie filters modeled analytically and in the PENELOPE Monte Carlo simulation environment. Using the analytical model of each bowtie filter, design profiles were obtained and energy fluence as a function of fan-angle was calculated. Projection images with and without each bowtie filter design were also generated using PENELOPE and reconstructed using FBP. Parameters such as dose distribution, noise uniformity

  7. THE PHASE REACTOR INDUCTANCE SELECTION TECHNIQUE FOR POWER ACTIVE FILTER

    Directory of Open Access Journals (Sweden)

    D. V. Tugay

    2016-12-01

    Full Text Available Purpose. The goal is to develop technique of the phase inductance power reactors selection for parallel active filter based on the account both low-frequency and high-frequency components of the electromagnetic processes in a power circuit. Methodology. We have applied concepts of the electrical circuits theory, vector analysis, mathematical simulation in Matlab package. Results. We have developed a new technique of the phase reactors inductance selection for parallel power active filter. It allows us to obtain the smallest possible value of THD network current. Originality. We have increased accuracy of methods of the phase reactor inductance selection for power active filter. Practical value. The proposed technique can be used in the design and manufacture of the active power filter for real objects of energy supply.

  8. Applications of the spline filter for areal filtration

    International Nuclear Information System (INIS)

    Tong, Mingsi; Zhang, Hao; Ott, Daniel; Chu, Wei; Song, John

    2015-01-01

    This paper proposes a general use isotropic areal spline filter. This new areal spline filter can achieve isotropy by approximating the transmission characteristic of the Gaussian filter. It can also eliminate the effect of void areas using a weighting factor, and resolve end-effect issues by applying new boundary conditions, which replace the first order finite difference in the traditional spline formulation. These improvements make the spline filter widely applicable to 3D surfaces and extend the applications of the spline filter in areal filtration. (technical note)

  9. Kalman Filtering with Real-Time Applications

    CERN Document Server

    Chui, Charles K

    2009-01-01

    Kalman Filtering with Real-Time Applications presents a thorough discussion of the mathematical theory and computational schemes of Kalman filtering. The filtering algorithms are derived via different approaches, including a direct method consisting of a series of elementary steps, and an indirect method based on innovation projection. Other topics include Kalman filtering for systems with correlated noise or colored noise, limiting Kalman filtering for time-invariant systems, extended Kalman filtering for nonlinear systems, interval Kalman filtering for uncertain systems, and wavelet Kalman filtering for multiresolution analysis of random signals. Most filtering algorithms are illustrated by using simplified radar tracking examples. The style of the book is informal, and the mathematics is elementary but rigorous. The text is self-contained, suitable for self-study, and accessible to all readers with a minimum knowledge of linear algebra, probability theory, and system engineering.

  10. Dual mode operation, highly selective nanohole array-based plasmonic colour filters

    Science.gov (United States)

    Fouladi Mahani, Fatemeh; Mokhtari, Arash; Mehran, Mahdiyeh

    2017-09-01

    Taking advantage of nanostructured metal films as plasmonic colour filters (PCFs) has been evolved remarkably as an alternative to the conventional technologies of chemical colour filtering. However, most of the proposed PCFs depict a poor colour purity focusing on generating either the additive or subtractive colours. In this paper, we present dual mode operation PCFs employing an opaque aluminium film patterned with sub-wavelength holes. Subtractive colours like cyan, magenta, and yellow are the results of reflection mode of these filters yielding optical efficiencies as high as 70%-80% and full width at half maximum of the stop-bands up to 40-50 nm. The colour selectivity of the transmission mode for the additive colours is also significant due to their enhanced performance through the utilization of a relatively thick aluminium film in contact with a modified dielectric environment. These filters provide a simple design with one-step lithography in addition to compatibility with the conventional CMOS processes. Moreover, they are polarization insensitive due to their symmetric geometry. A complete palette of pure subtractive and additive colours has been realized with potential applications, such as multispectral imaging, CMOS image sensors, displays, and colour printing.

  11. Signal filtering algorithm for depth-selective diffuse optical topography

    International Nuclear Information System (INIS)

    Fujii, M; Nakayama, K

    2009-01-01

    A compact filtered backprojection algorithm that suppresses the undesirable effects of skin circulation for near-infrared diffuse optical topography is proposed. Our approach centers around a depth-selective filtering algorithm that uses an inverse problem technique and extracts target signals from observation data contaminated by noise from a shallow region. The filtering algorithm is reduced to a compact matrix and is therefore easily incorporated into a real-time system. To demonstrate the validity of this method, we developed a demonstration prototype for depth-selective diffuse optical topography and performed both computer simulations and phantom experiments. The results show that the proposed method significantly suppresses the noise from the shallow region with a minimal degradation of the target signal.

  12. A Codesigned Compact Dual-Band Filtering Antenna with PIN Loaded for WLAN Applications

    Directory of Open Access Journals (Sweden)

    Shanxiong Chen

    2014-01-01

    Full Text Available A codesigned compact dual-band filtering antenna incorporating a PIN diode for 2.45/5.2 GHz wireless local area network (WLAN applications is proposed in this paper. The integrated filtering antenna system consists of a simple monopole radiator, a microstrip dual-band band-pass filter, and a PIN diode. The performance of the filtering antenna is notably promoted by optimizing the impedance between the antenna and the band-pass filter, with good selectivity and out-of-band rejection. The design process follows the approach of the synthesis of band-pass filter. In addition, the PIN diode is incorporated in the filtering antenna for further size reduction, which also widens the coverage of the bandwidth by about 230% for 2.4 GHz WLAN. With the presence of small size and good filtering performances, the proposed filtering antenna is a good candidate for the wireless communication systems. Prototypes of the proposed filtering antenna incorporating a PIN diode are fabricated and measured. The measured results including return losses and radiation patterns are presented.

  13. Time-Sequential Working Wavelength-Selective Filter for Flat Autostereoscopic Displays

    Directory of Open Access Journals (Sweden)

    René de la Barré

    2017-02-01

    Full Text Available A time-sequential working, spatially-multiplexed autostereoscopic 3D display design consisting of a fast switchable RGB-color filter array and a fast color display is presented. The newly-introduced 3D display design is usable as a multi-user display, as well as a single-user system. The wavelength-selective filter barrier emits the light from a larger aperture than common autostereoscopic barrier displays with similar barrier pitch and ascent. Measurements on a demonstrator with commercial display components, simulations and computational evaluations have been carried out to describe the proposed wavelength-selective display design in static states and to show the weak spots of display filters in commercial displays. An optical modelling of wavelength-selective barriers has been used for instance to calculate the light ray distribution properties of that arrangement. In the time-sequential implementation, it is important to avoid that quick eye or eyelid movement leads to visible color artifacts. Therefore, color filter cells, switching faster than conventional LC display cells, must distribute directed light from different primaries at the same time, to create a 3D presentation. For that, electric tunable liquid crystal Fabry–Pérot color filters are presented. They switch on-off the colors red, green and blue in the millisecond regime. Their active areas consist of a sub-micrometer-thick nematic layer sandwiched between dielectric mirrors and indium tin oxide (ITO-electrodes. These cells shall switch narrowband light of red, green or blue. A barrier filter array for a high resolution, glasses-free 3D display has to be equipped with several thousand switchable filter elements having different color apertures.

  14. Selection of noise parameters for Kalman filter

    Institute of Scientific and Technical Information of China (English)

    Ka-Veng Yuen; Ka-In Hoi; Kai-Meng Mok

    2007-01-01

    The Bayesian probabilistic approach is proposed to estimate the process noise and measurement noise parameters for a Kalman filter. With state vectors and covariance matrices estimated by the Kalman filter, the likehood of the measurements can be constructed as a function of the process noise and measurement noise parameters. By maximizing the likklihood function with respect to these noise parameters, the optimal values can be obtained. Furthermore, the Bayesian probabilistic approach allows the associated uncertainty to be quantified. Examples using a single-degree-of-freedom system and a ten-story building illustrate the proposed method. The effect on the performance of the Kalman filter due to the selection of the process noise and measurement noise parameters was demonstrated. The optimal values of the noise parameters were found to be close to the actual values in the sense that the actual parameters were in the region with significant probability density. Through these examples, the Bayesian approach was shown to have the capability to provide accurate estimates of the noise parameters of the Kalman filter, and hence for state estimation.

  15. Programmable optical processor chips: toward photonic RF filters with DSP-level flexibility and MHz-band selectivity

    Directory of Open Access Journals (Sweden)

    Xie Yiwei

    2017-12-01

    Full Text Available Integrated optical signal processors have been identified as a powerful engine for optical processing of microwave signals. They enable wideband and stable signal processing operations on miniaturized chips with ultimate control precision. As a promising application, such processors enables photonic implementations of reconfigurable radio frequency (RF filters with wide design flexibility, large bandwidth, and high-frequency selectivity. This is a key technology for photonic-assisted RF front ends that opens a path to overcoming the bandwidth limitation of current digital electronics. Here, the recent progress of integrated optical signal processors for implementing such RF filters is reviewed. We highlight the use of a low-loss, high-index-contrast stoichiometric silicon nitride waveguide which promises to serve as a practical material platform for realizing high-performance optical signal processors and points toward photonic RF filters with digital signal processing (DSP-level flexibility, hundreds-GHz bandwidth, MHz-band frequency selectivity, and full system integration on a chip scale.

  16. Removal of PCR inhibitors using dielectrophoresis as a selective filter in a microsystem

    DEFF Research Database (Denmark)

    Perch-Nielsen, Ivan Ryberg; Bang, Dang Duong; Poulsen, Claus Riber

    2003-01-01

    , the removal of PCR inhibitors in sample preparation steps is essential and several methods have been published. The methods are either chemical or based on filtering. Conventional ways of filtering include mechanical filters or washing e. g. by centrifugation. Another way of filtering is the use of electric...... to manipulate cells in many microstructures. In this study, we used DEP as a selective filter for holding cells in a microsystem while the PCR inhibitors were flushed out of the system. Haemoglobin and heparin-natural components of blood-were selected as PCR inhibitors, since the inhibitory effects...

  17. Electron beam selectively seals porous metal filters

    Science.gov (United States)

    Snyder, J. A.; Tulisiak, G.

    1968-01-01

    Electron beam welding selectively seals the outer surfaces of porous metal filters and impedances used in fluid flow systems. The outer surface can be sealed by melting a thin outer layer of the porous material with an electron beam so that the melted material fills all surface pores.

  18. Self-limiting filters for band-selective interferer rejection or cognitive receiver protection

    Science.gov (United States)

    Nordquist, Christopher; Scott, Sean Michael; Custer, Joyce Olsen; Leonhardt, Darin; Jordan, Tyler Scott; Rodenbeck, Christopher T.; Clem, Paul G.; Hunker, Jeff; Wolfley, Steven L.

    2017-03-07

    The present invention related to self-limiting filters, arrays of such filters, and methods thereof. In particular embodiments, the filters include a metal transition film (e.g., a VO.sub.2 film) capable of undergoing a phase transition that modifies the film's resistivity. Arrays of such filters could allow for band-selective interferer rejection, while permitting transmission of non-interferer signals.

  19. Self-limiting filters for band-selective interferer rejection or cognitive receiver protection

    Energy Technology Data Exchange (ETDEWEB)

    Nordquist, Christopher; Scott, Sean Michael; Custer, Joyce Olsen; Leonhardt, Darin; Jordan, Tyler Scott; Rodenbeck, Christopher T.; Clem, Paul G.; Hunker, Jeff; Wolfley, Steven L.

    2017-03-07

    The present invention related to self-limiting filters, arrays of such filters, and methods thereof. In particular embodiments, the filters include a metal transition film (e.g., a VO.sub.2 film) capable of undergoing a phase transition that modifies the film's resistivity. Arrays of such filters could allow for band-selective interferer rejection, while permitting transmission of non-interferer signals.

  20. A Compact Via-free Composite Right/Left Handed Low-pass Filter with Improved Selectivity

    Science.gov (United States)

    Kumar, Ashish; Choudhary, Dilip Kumar; Chaudhary, Raghvendra Kumar

    2017-07-01

    In this paper, a compact via-free low pass filter is designed based on composite right/left handed (CRLH) concept. The structure uses open ended concept. Rectangular slots are etched on signal transmission line (TL) to suppress the spurious band without altering the performance and size of filter. The filter is designed for low pass frequency band with cut-off frequency of 3.5 GHz. The proposed metamaterial structure has several prominent advantages in term of selectivity up to 34 dB/GHz and compactness with average insertion loss less than 0.4 dB. It has multiple applications in wireless communication (such as GSM900, global navigation satellite system (1.559-1.610 GHz), GSM1800, WLAN/WiFi (2.4-2.49 GHz) and WiMAX (2.5-2.69 GHz)). The design parameters have been measured and compared with the simulated results and found excellent agreement. The electrical size of proposed filter is 0.14λ0× 0.11λ0 (where λ0 is free space wavelength at zeroth order resonance (ZOR) frequency 2.7 GHz).

  1. Collaborative filtering for brain-computer interaction using transfer learning and active class selection.

    Science.gov (United States)

    Wu, Dongrui; Lance, Brent J; Parsons, Thomas D

    2013-01-01

    Brain-computer interaction (BCI) and physiological computing are terms that refer to using processed neural or physiological signals to influence human interaction with computers, environment, and each other. A major challenge in developing these systems arises from the large individual differences typically seen in the neural/physiological responses. As a result, many researchers use individually-trained recognition algorithms to process this data. In order to minimize time, cost, and barriers to use, there is a need to minimize the amount of individual training data required, or equivalently, to increase the recognition accuracy without increasing the number of user-specific training samples. One promising method for achieving this is collaborative filtering, which combines training data from the individual subject with additional training data from other, similar subjects. This paper describes a successful application of a collaborative filtering approach intended for a BCI system. This approach is based on transfer learning (TL), active class selection (ACS), and a mean squared difference user-similarity heuristic. The resulting BCI system uses neural and physiological signals for automatic task difficulty recognition. TL improves the learning performance by combining a small number of user-specific training samples with a large number of auxiliary training samples from other similar subjects. ACS optimally selects the classes to generate user-specific training samples. Experimental results on 18 subjects, using both k nearest neighbors and support vector machine classifiers, demonstrate that the proposed approach can significantly reduce the number of user-specific training data samples. This collaborative filtering approach will also be generalizable to handling individual differences in many other applications that involve human neural or physiological data, such as affective computing.

  2. Collaborative filtering for brain-computer interaction using transfer learning and active class selection.

    Directory of Open Access Journals (Sweden)

    Dongrui Wu

    Full Text Available Brain-computer interaction (BCI and physiological computing are terms that refer to using processed neural or physiological signals to influence human interaction with computers, environment, and each other. A major challenge in developing these systems arises from the large individual differences typically seen in the neural/physiological responses. As a result, many researchers use individually-trained recognition algorithms to process this data. In order to minimize time, cost, and barriers to use, there is a need to minimize the amount of individual training data required, or equivalently, to increase the recognition accuracy without increasing the number of user-specific training samples. One promising method for achieving this is collaborative filtering, which combines training data from the individual subject with additional training data from other, similar subjects. This paper describes a successful application of a collaborative filtering approach intended for a BCI system. This approach is based on transfer learning (TL, active class selection (ACS, and a mean squared difference user-similarity heuristic. The resulting BCI system uses neural and physiological signals for automatic task difficulty recognition. TL improves the learning performance by combining a small number of user-specific training samples with a large number of auxiliary training samples from other similar subjects. ACS optimally selects the classes to generate user-specific training samples. Experimental results on 18 subjects, using both k nearest neighbors and support vector machine classifiers, demonstrate that the proposed approach can significantly reduce the number of user-specific training data samples. This collaborative filtering approach will also be generalizable to handling individual differences in many other applications that involve human neural or physiological data, such as affective computing.

  3. Vortex-MEMS filters for wavelength-selective orbital-angular-momentum beam generation

    DEFF Research Database (Denmark)

    Paul, Sujoy; Lyubopytov, Vladimir; Schumann, Martin F.

    2017-01-01

    In this paper an on-chip device capable of wavelength-selective generation of vortex beams is demonstrated. The device is realized by integrating a spiral phase-plate onto a MEMS tunable Fabry-Perot filter. This vortex-MEMS filter, being capable of functioning simultaneously in wavelength...

  4. Performance-Based Technology Selection Filter description report

    International Nuclear Information System (INIS)

    O'Brien, M.C.; Morrison, J.L.; Morneau, R.A.; Rudin, M.J.; Richardson, J.G.

    1992-05-01

    A formal methodology has been developed for identifying technology gaps and assessing innovative or postulated technologies for inclusion in proposed Buried Waste Integrated Demonstration (BWID) remediation systems. Called the Performance-Based Technology Selection Filter, the methodology provides a formalized selection process where technologies and systems are rated and assessments made based on performance measures, and regulatory and technical requirements. The results are auditable, and can be validated with field data. This analysis methodology will be applied to the remedial action of transuranic contaminated waste pits and trenches buried at the Idaho National Engineering Laboratory (INEL)

  5. Performance-Based Technology Selection Filter description report

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, M.C.; Morrison, J.L.; Morneau, R.A.; Rudin, M.J.; Richardson, J.G.

    1992-05-01

    A formal methodology has been developed for identifying technology gaps and assessing innovative or postulated technologies for inclusion in proposed Buried Waste Integrated Demonstration (BWID) remediation systems. Called the Performance-Based Technology Selection Filter, the methodology provides a formalized selection process where technologies and systems are rated and assessments made based on performance measures, and regulatory and technical requirements. The results are auditable, and can be validated with field data. This analysis methodology will be applied to the remedial action of transuranic contaminated waste pits and trenches buried at the Idaho National Engineering Laboratory (INEL).

  6. FIONDA (Filtering Images of Niobium Disks Application): Filter application for Eddy Current Scanner data analysis

    International Nuclear Information System (INIS)

    Boffo, C.; Bauer, P.

    2005-01-01

    As part of the material QC process, each Niobium disk from which a superconducting RF cavity is built must undergo an eddy current scan [1]. This process allows to discover embedded defects in the material that are not visible to the naked eye because too small or under the surface. Moreover, during the production process of SC cavities the outer layer of Nb is removed via chemical or electro-chemical etching, thus it is important to evaluate the quality of the subsurface layer (in the order of 100nm) where superconductivity will happen. The reference eddy current scanning machine is operated at DESY; at Fermilab we are using the SNS eddy current scanner on loan, courtesy of SNS. In the past year, several upgrades were implemented aiming at raising the SNS machine performance to that of the DESY reference machine [2]. As part of this effort an algorithm that enables the filtering of the results of the scans and thus improves the resolution of the process was developed. The description of the algorithm and of the software used to filter the scan results is presented in this note. This filter application is a useful tool when the coupling between the signal associated to the long range probe distance (or sample thickness) variation and that associated to inclusions masks the presence of defects. Moreover instead of using indirect criteria (such as appearance on screen), the filter targets precisely the topology variations of interest. This application is listed in the FermiTools database and is freely available

  7. Multidimensional filter banks and wavelets research developments and applications

    CERN Document Server

    Levy, Bernard

    1997-01-01

    Multidimensional Filter Banks and Wavelets: Reserach Developments and Applications brings together in one place important contributions and up-to-date research results in this important area. Multidimensional Filter Banks and Wavelets: Research Developments and Applications serves as an excellent reference, providing insight into some of the most important research issues in the field.

  8. Brazilian academic search filter: application to the scientific literature on physical activity.

    Science.gov (United States)

    Sanz-Valero, Javier; Ferreira, Marcos Santos; Castiel, Luis David; Wanden-Berghe, Carmina; Guilam, Maria Cristina Rodrigues

    2010-10-01

    To develop a search filter in order to retrieve scientific publications on physical activity from Brazilian academic institutions. The academic search filter consisted of the descriptor "exercise" associated through the term AND, to the names of the respective academic institutions, which were connected by the term OR. The MEDLINE search was performed with PubMed on 11/16/2008. The institutions were selected according to the classification from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for interuniversity agreements. A total of 407 references were retrieved, corresponding to about 0.9% of all articles about physical activity and 0.5% of the Brazilian academic publications indexed in MEDLINE on the search date. When compared with the manual search undertaken, the search filter (descriptor + institutional filter) showed a sensitivity of 99% and a specificity of 100%. The institutional search filter showed high sensitivity and specificity, and is applicable to other areas of knowledge in health sciences. It is desirable that every Brazilian academic institution establish its "standard name/brand" in order to efficiently retrieve their scientific literature.

  9. Balanced microwave filters

    CERN Document Server

    Hong, Jiasheng; Medina, Francisco; Martiacuten, Ferran

    2018-01-01

    This book presents and discusses strategies for the design and implementation of common-mode suppressed balanced microwave filters, including, narrowband, wideband, and ultra-wideband filters This book examines differential-mode, or balanced, microwave filters by discussing several implementations of practical realizations of these passive components. Topics covered include selective mode suppression, designs based on distributed and semi-lumped approaches, multilayer technologies, defect ground structures, coupled resonators, metamaterials, interference techniques, and substrate integrated waveguides, among others. Divided into five parts, Balanced Microwave Filters begins with an introduction that presents the fundamentals of balanced lines, circuits, and networks. Part 2 covers balanced transmission lines with common-mode noise suppression, including several types of common-mode filters and the application of such filters to enhance common-mode suppression in balanced bandpass filters. Next, Part 3 exa...

  10. Spectrally-Selective Photonic Structures for PV Applications

    Directory of Open Access Journals (Sweden)

    Benedikt Bläsi

    2010-01-01

    Full Text Available We review several examples of how spectrally-selective photonic structures may be used to improve solar cell systems. Firstly, we introduce different spectrally-selective structures that are based on interference effects. Examples shown include Rugate filter, edge filter and 3D photonic crystals such as artificial opals. In the second part, we discuss several examples of photovoltaic (PV concepts that utilize spectral selectivity such as fluorescence collectors, upconversion systems, spectrum splitting concepts and the intermediate reflector concept. The potential of spectrally selective filters in the context of solar cells is discussed.

  11. Qualification of box HEPA filters for nuclear applications

    International Nuclear Information System (INIS)

    Bergman, W.; Larsen, G.; Wilson, K.; Rainer, F.

    1995-03-01

    We have successfully completed qualification tests on high efficiency particulate air (HEPA) filters that are encapsulated within a box and manufactured by American Air Filters. The qualification tests are required by the American Society of Mechanical Engineers Standard ASME N509 and the U.S. Military Standard MIL-F-51068 for HEPA filters to be used in nuclear applications. The qualification tests specify minimum filter efficiencies following exposure to heated air, overpressure, and rough handling. Prior to this study, no box HEPA filters from any manufacturer had been qualified despite their wide-spread use in Department of Energy (DOE) facilities. Box HEPA filters are not addressed in any of the existing HEPA standards and only briefly discussed in the Nuclear Air Cleaning Handbook

  12. Filter Selection for Optimizing the Spectral Sensitivity of Broadband Multispectral Cameras Based on Maximum Linear Independence.

    Science.gov (United States)

    Li, Sui-Xian

    2018-05-07

    Previous research has shown that the effectiveness of selecting filter sets from among a large set of commercial broadband filters by a vector analysis method based on maximum linear independence (MLI). However, the traditional MLI approach is suboptimal due to the need to predefine the first filter of the selected filter set to be the maximum ℓ₂ norm among all available filters. An exhaustive imaging simulation with every single filter serving as the first filter is conducted to investigate the features of the most competent filter set. From the simulation, the characteristics of the most competent filter set are discovered. Besides minimization of the condition number, the geometric features of the best-performed filter set comprise a distinct transmittance peak along the wavelength axis of the first filter, a generally uniform distribution for the peaks of the filters and substantial overlaps of the transmittance curves of the adjacent filters. Therefore, the best-performed filter sets can be recognized intuitively by simple vector analysis and just a few experimental verifications. A practical two-step framework for selecting optimal filter set is recommended, which guarantees a significant enhancement of the performance of the systems. This work should be useful for optimizing the spectral sensitivity of broadband multispectral imaging sensors.

  13. Filter Selection for Optimizing the Spectral Sensitivity of Broadband Multispectral Cameras Based on Maximum Linear Independence

    Directory of Open Access Journals (Sweden)

    Sui-Xian Li

    2018-05-01

    Full Text Available Previous research has shown that the effectiveness of selecting filter sets from among a large set of commercial broadband filters by a vector analysis method based on maximum linear independence (MLI. However, the traditional MLI approach is suboptimal due to the need to predefine the first filter of the selected filter set to be the maximum ℓ2 norm among all available filters. An exhaustive imaging simulation with every single filter serving as the first filter is conducted to investigate the features of the most competent filter set. From the simulation, the characteristics of the most competent filter set are discovered. Besides minimization of the condition number, the geometric features of the best-performed filter set comprise a distinct transmittance peak along the wavelength axis of the first filter, a generally uniform distribution for the peaks of the filters and substantial overlaps of the transmittance curves of the adjacent filters. Therefore, the best-performed filter sets can be recognized intuitively by simple vector analysis and just a few experimental verifications. A practical two-step framework for selecting optimal filter set is recommended, which guarantees a significant enhancement of the performance of the systems. This work should be useful for optimizing the spectral sensitivity of broadband multispectral imaging sensors.

  14. Industrial applications of the Kalman filter

    DEFF Research Database (Denmark)

    Auger, François; Hilairet, Mickael; Guerrero, Josep M.

    2013-01-01

    The Kalman filter has received a huge interest from the industrial electronics community and has played a key role in many engineering fields since the 70s, ranging, without being exhaustive, trajectory estimation, state and parameter estimation for control or diagnosis, data merging, signal...... processing and so on. This paper provides a brief overview of the industrial applications and implementation issues of the Kalman filter in six topics of the industrial electronics community, highlighting some relevant reference papers and giving future research trends....

  15. Black-hole ringdown search in TAMA300: matched filtering and event selections

    International Nuclear Information System (INIS)

    Tsunesada, Yoshiki; Kanda, Nobuyuki; Nakano, Hiroyuki; Tatsumi, Daisuke

    2005-01-01

    Detecting gravitational ringdown waves provides a probe for direct observation of astrophysical black holes. The masses and angular momenta of black holes can be determined from the waveforms by using the black-hole perturbation theory. In this paper we present data analysis methods to search for black-hole ringdowns of fundamental quasi-normal modes with interferometric gravitational wave detectors, and report an application to the TAMA300 data. Our method is based upon matched filtering by which we calculate cross-correlations between detector outputs and reference waveforms. In a search for gravitational signals, fake reductions and event identifications are of most importance. We developed two methods to reject spurious triggers in filter outputs in the time domain and examined their reduction powers. It is shown that by using the methods presented here the number of fake triggers can be reduced by an order with a false dismissal probability of 5%. We also discuss the possibility of using the higher order quasi-normal modes for event selection

  16. Language Modelling for Collaborative Filtering: Application to Job Applicant Matching

    OpenAIRE

    Schmitt , Thomas; Gonard , François; Caillou , Philippe; Sebag , Michèle

    2017-01-01

    International audience; This paper addresses a collaborative retrieval problem , the recommendation of job ads to applicants. Specifically, two proprietary databases are considered. The first one focuses on the context of unskilled low-paid jobs/applicants; the second one focuses on highly qualified jobs/applicants. Each database includes the job ads and applicant resumes together with the collaborative filtering data recording the applicant clicks on job ads. The proposed approach, called LA...

  17. Stock selection of high-dose-irradiation-resistant materials for filter press under high-dose irradiation operation

    International Nuclear Information System (INIS)

    Ishiyama, Shintaro; Minami, Mamoru; Hara, Kouji; Yamashita, Manabu

    2015-01-01

    In a volume reduction process for the decontamination of contained soil, the performance degradation of a filter press is expected owing to material deterioration under high-dose irradiation. Eleven-stock selection of candidate materials including polymers, fibers and rubbers for the filter press was conducted to achieve a high performance of volume reduction of contaminated soil and the following results were derived. Crude rubber and nylon were selected as prime candidates for packing, diaphragm and filter plate materials. Polyethylene was also selected as a prime candidate for the filter cloth material. (author)

  18. Application of Consider Covariance to the Extended Kalman Filter

    Science.gov (United States)

    Lundberg, John B.

    1996-01-01

    The extended Kalman filter (EKF) is the basis for many applications of filtering theory to real-time problems where estimates of the state of a dynamical system are to be computed based upon some set of observations. The form of the EKF may vary somewhat from one application to another, but the fundamental principles are typically unchanged among these various applications. As is the case in many filtering applications, models of the dynamical system (differential equations describing the state variables) and models of the relationship between the observations and the state variables are created. These models typically employ a set of constants whose values are established my means of theory or experimental procedure. Since the estimates of the state are formed assuming that the models are perfect, any modeling errors will affect the accuracy of the computed estimates. Note that the modeling errors may be errors of commission (errors in terms included in the model) or omission (errors in terms excluded from the model). Consequently, it becomes imperative when evaluating the performance of real-time filters to evaluate the effect of modeling errors on the estimates of the state.

  19. Multirate Digital Filters Based on FPGA and Its Applications

    International Nuclear Information System (INIS)

    Sharaf El-Din, R.M.A.

    2013-01-01

    Digital Signal Processing (DSP) is one of the fastest growing techniques in the electronics industry. It is used in a wide range of application fields such as, telecommunications, data communications, image enhancement and processing, video signals, digital TV broadcasting, and voice synthesis and recognition. Field Programmable Gate Array (FPGA) offers good solution for addressing the needs of high performance DSP systems. The focus of this thesis is on one of the basic DSP functions, namely filtering signals to remove unwanted frequency bands. Multi rate Digital Filters (MDFs) are the main theme here. Theory and implementation of MDF, as a special class of digital filters, will be discussed. Multi rate digital filters represent a class of digital filters having a number of attractive features like, low requirements for the coefficient word lengths, significant saving in computation and storage requirements results in a significant reduction in its dynamic power consumption. This thesis introduces an efficient FPGA realization of a multi rate decimation filter with narrow pass-band and narrow transition band to reduce the frequency sample rate by factor of 64 for noise thermometer applications. The proposed multi rate decimation filter is composed of three stages; the first stage is a Cascaded Integrator Comb (CIC) decimation filter, the second stage is a two-coefficient Half-Band (HB) filter and the last stage is a sharper transition HB filter. The frequency responses of individual stages as well as the overall filter response have been demonstrated with full simulation using MATLAB. The design and implementation of the proposed MDF on FPGA (XILINX Virtex XCV800 BG432-4), using VHSIC Hardware Description Language (VHDL), has been introduced. The implementation areas of the proposed filter stages are compared. Using CIC-HB technique saves 18% of the design area, compared to using six stages HB decimation filters.

  20. Analysis of the selected mechanical parameters of coating of filters protecting against hazardous infrared radiation.

    Science.gov (United States)

    Gralewicz, Grzegorz; Owczarek, Grzegorz; Kubrak, Janusz

    2017-03-01

    This article presents a comparison of the test results of selected mechanical parameters (hardness, Young's modulus, critical force for delamination) for protective filters intended for eye protection against harmful infrared radiation. Filters with reflective metallic films were studied, as well as interference filters developed at the Central Institute for Labour Protection - National Research Institute (CIOP-PIB). The test results of the selected mechanical parameters were compared with the test results, conducted in accordance with a standardised method, of simulating filter surface destruction that occurs during use.

  1. Quantum model for a periodically driven selectivity filter in a K+ ion channel

    International Nuclear Information System (INIS)

    Cifuentes, A A; Semião, F L

    2014-01-01

    In this work, we present a quantum transport model for the selectivity filter in the KcsA potassium ion channel. This model is fully consistent with the fact that two conduction pathways are involved in the translocation of ions through the filter, and we show that the presence of a second path may actually bring advantages for the filter as a result of quantum interference. To highlight interferences and resonances in the model, we consider the selectivity filter to be driven by a controlled time-dependent external field, which changes the free-energy scenario and consequently the conduction of the ions. In particular, we demonstrate that the two-pathway conduction mechanism is more advantageous for the filter when dephasing in the transient configurations is lower than in the main configurations. As a matter of fact, K + ions in the main configurations are highly coordinated by oxygen atoms of the filter backbone, and this increases noise. Moreover, we also show that for a wide range of dephasing rates and driving frequencies, the two-pathway conduction used by the filter leads to higher ionic currents than the single–path model. (paper)

  2. Numerical simulation of DPF filter for selected regimes with deposited soot particles

    Science.gov (United States)

    Lávička, David; Kovařík, Petr

    2012-04-01

    For the purpose of accumulation of particulate matter from Diesel engine exhaust gas, particle filters are used (referred to as DPF or FAP filters in the automotive industry). However, the cost of these filters is quite high. As the emission limits become stricter, the requirements for PM collection are rising accordingly. Particulate matters are very dangerous for human health and these are not invisible for human eye. They can often cause various diseases of the respiratory tract, even what can cause lung cancer. Performed numerical simulations were used to analyze particle filter behavior under various operating modes. The simulations were especially focused on selected critical states of particle filter, when engine is switched to emergency regime. The aim was to prevent and avoid critical situations due the filter behavior understanding. The numerical simulations were based on experimental analysis of used diesel particle filters.

  3. A Modular Cascaded Multilevel Inverter Based Shunt Hybrid Active Power Filter for Selective Harmonic and Reactive Power Compensation Under Distorted/Unbalanced Grid Voltage Conditions

    Directory of Open Access Journals (Sweden)

    T. Demirdelen

    2016-10-01

    Full Text Available In recent years, shunt hybrid active power filters are being increasingly considered as a viable alternative to both passive filters and active power filters for compensating harmonics. In literature, their applications are restricted to balanced systems and low voltage applications and therefore not for industrial applications. This paper investigates the performance of a modular cascaded multilevel inverter based Shunt Hybrid Active Power Filter (SHAPF for reactive power compensation and selective harmonics elimination under distorted/unbalanced grid voltage conditions in medium voltage levels. In the proposed control method, reactive power compensation is achieved successfully with a perceptible amount and the performance results of harmonic compensation are satisfactory. Theoretical analysis and simulation results are obtained from an actual industrial network model in PSCAD. The simulation results are presented for a proposed system in order to demonstrate that the harmonic compensation performance meets the IEEE-519 standard.

  4. Application of Evolution Strategies to the Design of Tracking Filters with a Large Number of Specifications

    Directory of Open Access Journals (Sweden)

    Jesús García Herrero

    2003-07-01

    Full Text Available This paper describes the application of evolution strategies to the design of interacting multiple model (IMM tracking filters in order to fulfill a large table of performance specifications. These specifications define the desired filter performance in a thorough set of selected test scenarios, for different figures of merit and input conditions, imposing hundreds of performance goals. The design problem is stated as a numeric search in the filter parameters space to attain all specifications or at least minimize, in a compromise, the excess over some specifications as much as possible, applying global optimization techniques coming from evolutionary computation field. Besides, a new methodology is proposed to integrate specifications in a fitness function able to effectively guide the search to suitable solutions. The method has been applied to the design of an IMM tracker for a real-world civil air traffic control application: the accomplishment of specifications defined for the future European ARTAS system.

  5. An iterative ensemble Kalman filter for reservoir engineering applications

    NARCIS (Netherlands)

    Krymskaya, M.V.; Hanea, R.G.; Verlaan, M.

    2009-01-01

    The study has been focused on examining the usage and the applicability of ensemble Kalman filtering techniques to the history matching procedures. The ensemble Kalman filter (EnKF) is often applied nowadays to solving such a problem. Meanwhile, traditional EnKF requires assumption of the

  6. Characteristics of Quoit filter, a digital filter developed for the extraction of circumscribed shadows, and its applications to mammograms

    International Nuclear Information System (INIS)

    Isobe, Yoshiaki; Ohkubo, Natsumi; Yamamoto, Shinji; Toriwaki, Jun-ichiro; Kobatake, Hidefumi.

    1993-01-01

    This paper presents a newly developed filter called Quoit filter, which detects circumscribed shadows (concentric circular isolated image), like typical cancer regions. This Quoit filter is based on the mathematical morphology and is found to have interesting facts as follows. (1) Output of this filter can be analytically expressible when an input image is assumed to be a concentric circular model (output is expectable for typical inputs). (2) This filter has an ability to reconstruct original isolated models mentioned in (1) selectively, when this filter is applied sequentially twice. This filter was tested on the detection of cancer regions in X-ray mammograms, and for 12 cancer mammograms, this filter achieved a true-positive cancer detection rate of 100 %. (author)

  7. Evaluation of harmonic detection methods for active power filter applications

    DEFF Research Database (Denmark)

    Asiminoaei, Lucian; Blaabjerg, Frede; Hansen, Steffan

    2005-01-01

    In the attempt to minimize the harmonic disturbances created by the non-linear loads the choice of the active power filters comes out to improve the filtering efficiency and to solve many issues existing with classical passive filters. One of the key points for a proper implementation of an active...... theories. Then, the work here proposes a simulation setup that decouples the harmonic reference generator from the active filter model and its controller. In this way the selected methods can be equally analyzed and compared with respect to their performance, which helps anticipating possible...

  8. The application of the detection filter to aircraft control surface and actuator failure detection and isolation

    Science.gov (United States)

    Bonnice, W. F.; Wagner, E.; Motyka, P.; Hall, S. R.

    1985-01-01

    The performance of the detection filter in detecting and isolating aircraft control surface and actuator failures is evaluated. The basic detection filter theory assumption of no direct input-output coupling is violated in this application due to the use of acceleration measurements for detecting and isolating failures. With this coupling, residuals produced by control surface failures may only be constrained to a known plane rather than to a single direction. A detection filter design with such planar failure signatures is presented, with the design issues briefly addressed. In addition, a modification to constrain the residual to a single known direction even with direct input-output coupling is also presented. Both the detection filter and the modification are tested using a nonlinear aircraft simulation. While no thresholds were selected, both filters demonstrated an ability to detect control surface and actuator failures. Failure isolation may be a problem if there are several control surfaces which produce similar effects on the aircraft. In addition, the detection filter was sensitive to wind turbulence and modeling errors.

  9. Analysis of the selected optical parameters of filters protecting against hazardous infrared radiation

    OpenAIRE

    Gralewicz, Grzegorz; Owczarek, Grzegorz

    2016-01-01

    The paper analyses the selected optical parameters of protective optic filters used for protection of the eyes against hazardous radiation within the visible (VIS) and near infrared (NIR) spectrum range. The indexes characterizing transmission and reflection of optic radiation incident on the filter are compared. As it follows from the completed analysis, the newly developed interference filters provide more effective blocking of infrared radiation in comparison with the currently used protec...

  10. High Selectivity Dual-Band Bandpass Filter with Tunable Lower Passband

    Directory of Open Access Journals (Sweden)

    Wei-Qiang Pan

    2015-01-01

    Full Text Available This paper presents a novel method to design dual-band bandpass filters with tunable lower passband and fixed upper passband. It utilizes a trimode resonator with three controllable resonant modes. Discriminating coupling is used to suppress the unwanted mode to avoid the interference. Varactors are utilized to realize tunable responses. The bandwidth of the two bands can be controlled individually. Transmission zeros are generated near the passband edges, resulting in high selectivity. For demonstration, a tunable bandpass filter is implemented. Good agreement between the prediction and measurement validates the proposed method.

  11. Band-selective filter in a zigzag graphene nanoribbon.

    Science.gov (United States)

    Nakabayashi, Jun; Yamamoto, Daisuke; Kurihara, Susumu

    2009-02-13

    Electric transport of a zigzag graphene nanoribbon through a steplike potential and a barrier potential is investigated by using the recursive Green's function method. In the case of the steplike potential, we demonstrate numerically that scattering processes obey a selection rule for the band indices when the number of zigzag chains is even; the electrons belonging to the "even" ("odd") bands are scattered only into the even (odd) bands so that the parity of the wave functions is preserved. In the case of the barrier potential, by tuning the barrier height to be an appropriate value, we show that it can work as the "band-selective filter", which transmits electrons selectively with respect to the indices of the bands to which the incident electrons belong. Finally, we suggest that this selection rule can be observed in the conductance by applying two barrier potentials.

  12. Application of a Low Cost Ceramic Filter for Recycling Sand Filter Backwash Water

    Directory of Open Access Journals (Sweden)

    Md Shafiquzzaman

    2018-02-01

    Full Text Available The aim of this study is to examine the application of a low cost ceramic filter for the treatment of sand filter backwash water (SFBW. The treatment process is comprised of pre-coagulation of SFBW with aluminum sulfate (Alum followed by continuous filtration usinga low cost ceramic filter at different trans-membrane pressures (TMPs. Jar test results showed that 20 mg/L of alum is the optimum dose for maximum removal of turbidity, Fe, and Mn from SFBW. The filter can be operated at a TMP between 0.6 and 3 kPa as well as a corresponding flux of 480–2000 L/m2/d without any flux declination. Significant removal, up to 99%, was observed forturbidity, iron (Fe, and manganese (Mn. The flux started to decline at 4.5 kPa TMP (corresponding flux 3280 L/m2/d, thus indicated fouling of the filter. The complete pore blocking model was found as the most appropriate model to explain the insight mechanism of flux decline. The optimum operating pressure and the permeate flux were found to be 3 kPa and 2000 L/m2/d, respectively. Treated SFBW by a low cost ceramic filter was found to be suitable to recycle back to the water treatment plant. The ceramic filtration process would be a low cost and efficient option to recycle the SFBW.

  13. Restricted Kalman Filtering Theory, Methods, and Application

    CERN Document Server

    Pizzinga, Adrian

    2012-01-01

    In statistics, the Kalman filter is a mathematical method whose purpose is to use a series of measurements observed over time, containing random variations and other inaccuracies, and produce estimates that tend to be closer to the true unknown values than those that would be based on a single measurement alone. This Brief offers developments on Kalman filtering subject to general linear constraints. There are essentially three types of contributions: new proofs for results already established; new results within the subject; and applications in investment analysis and macroeconomics, where th

  14. A Data Filter for Identifying Steady-State Operating Points in Engine Flight Data for Condition Monitoring Applications

    Science.gov (United States)

    Simon, Donald L.; Litt, Jonathan S.

    2010-01-01

    This paper presents an algorithm that automatically identifies and extracts steady-state engine operating points from engine flight data. It calculates the mean and standard deviation of select parameters contained in the incoming flight data stream. If the standard deviation of the data falls below defined constraints, the engine is assumed to be at a steady-state operating point, and the mean measurement data at that point are archived for subsequent condition monitoring purposes. The fundamental design of the steady-state data filter is completely generic and applicable for any dynamic system. Additional domain-specific logic constraints are applied to reduce data outliers and variance within the collected steady-state data. The filter is designed for on-line real-time processing of streaming data as opposed to post-processing of the data in batch mode. Results of applying the steady-state data filter to recorded helicopter engine flight data are shown, demonstrating its utility for engine condition monitoring applications.

  15. Design and control of LCL-filter with active damping for Active Power Filter

    DEFF Research Database (Denmark)

    Zeng, Guohong; Rasmussen, Tonny Wederberg; Ma, L

    2010-01-01

    of LCL-filter for APF is introduced, which is aimed for simplified the implementation. To suppress the resonance that may be excited in the system, which brings in stability problems, an active damping control strategy using the current feed-back of the filter capacitor is adopted. By selecting two equal......In the application of shunt Active Power Filter (APF) to compensate nonlinear load's harmonic, reactive and negative sequence current, it is more effective to use a LCL-filter than an L-filter as an interface between the Voltage Source Converter (VSC) and grid. In this paper, a designing procedure...... or similar inductances, the filter designing become more simple and effective, meanwhile the capacitance requirement is minimized. A pole-zero automatic cancellation phenomenon is discussed in this paper, which can be applied to simplify the current regulator designing. The tuning method is presented, based...

  16. Semiconductor cleaning liquid delivery system and its filter; Handotaiyo seijo yakueki kyokyu system to filter

    Energy Technology Data Exchange (ETDEWEB)

    Saito, T. [Kanto Chemical Co. Inc., Tokyo (Japan); Hayama, H.; Sakka, T. [Nitto Denko Corp., Osaka (Japan)

    1994-11-30

    Most of chemicals used for producing semiconductors are supplied automatically by a chemical delivery system to production devices. This paper explains the current status and the trends of the system. This system supplies the chemicals in the order of a tank lorry, a storage tank, a supply tank, a filter and a production device, and the transfer is performed receiving a supply signal from the supply tank and the production device. The transfer may be done through a dilution equipment. Filters currently used have membrane pore sizes of 0.2 to 0.1 microns as prefilters, and 0.1 to 0.05 microns as final filters. Chemicals used are diverse and can be divided into acid-, alkaline-, and solvent-based groups. Fluorine resin filters are used for acid- and alkaline-resistant applications, and SUS/fluorine resin filters for solvent-resistant applications. Use of large-sized filters of element construction with a membrane area of 1 m{sup 2} class is increasing recently in addition to selection from a performance viewpoint, including particle removing performance. 9 figs., 7 tabs.

  17. Application Of Database Program in selecting Sorghum (Sorghum bicolor L) Mutant Lines

    International Nuclear Information System (INIS)

    H, Soeranto

    2000-01-01

    Computer database software namely MSTAT and paradox have been exercised in the field of mutation breeding especially in the process of selecting plant mutant lines of sorghum. In MSTAT, selecting mutant lines can be done by activating the SELECTION function and then followed by entering mathematical formulas for the selection criterion. Another alternative is by defining the desired selection intensity to the analysis results of subprogram SORT. Including the selected plant mutant lines in BRSERIES program, it will make their progenies be easier to be traced in subsequent generations. In paradox, an application program for selecting mutant lines can be made by combining facilities of Table, form and report. Selecting mutant lines with defined selection criterion can easily be done through filtering data. As a relation database, paradox ensures that the application program for selecting mutant lines and progeny trachings, can be made easier, efficient and interactive

  18. High-Selectivity Filter Banks for Spectral Analysis of Music Signals

    Directory of Open Access Journals (Sweden)

    Luiz W. P. Biscainho

    2007-01-01

    Full Text Available This paper approaches, under a unified framework, several algorithms for the spectral analysis of musical signals. Such algorithms include the fast Fourier transform (FFT, the fast filter bank (FFB, the constant-Q transform (CQT, and the bounded-Q transform (BQT, previously known from the associated literature. Two new methods are then introduced, namely, the constant-Q fast filter bank (CQFFB and the bounded-Q fast filter bank (BQFFB, combining the positive characteristics of the previously mentioned algorithms. The provided analyses indicate that the proposed BQFFB achieves an excellent compromise between the reduced computational effort of the FFT, the high selectivity of each output channel of the FFB, and the efficient distribution of frequency channels associated to the CQT and BQT methods. Examples are included to illustrate the performances of these methods in the spectral analysis of music signals.

  19. On Applicability of Tunable Filter Bank Based Feature for Ear Biometrics: A Study from Constrained to Unconstrained.

    Science.gov (United States)

    Chowdhury, Debbrota Paul; Bakshi, Sambit; Guo, Guodong; Sa, Pankaj Kumar

    2017-11-27

    In this paper, an overall framework has been presented for person verification using ear biometric which uses tunable filter bank as local feature extractor. The tunable filter bank, based on a half-band polynomial of 14th order, extracts distinct features from ear images maintaining its frequency selectivity property. To advocate the applicability of tunable filter bank on ear biometrics, recognition test has been performed on available constrained databases like AMI, WPUT, IITD and unconstrained database like UERC. Experiments have been conducted applying tunable filter based feature extractor on subparts of the ear. Empirical experiments have been conducted with four and six subdivisions of the ear image. Analyzing the experimental results, it has been found that tunable filter moderately succeeds to distinguish ear features at par with the state-of-the-art features used for ear recognition. Accuracies of 70.58%, 67.01%, 81.98%, and 57.75% have been achieved on AMI, WPUT, IITD, and UERC databases through considering Canberra Distance as underlying measure of separation. The performances indicate that tunable filter is a candidate for recognizing human from ear images.

  20. Altering spatial priority maps via statistical learning of target selection and distractor filtering.

    Science.gov (United States)

    Ferrante, Oscar; Patacca, Alessia; Di Caro, Valeria; Della Libera, Chiara; Santandrea, Elisa; Chelazzi, Leonardo

    2018-05-01

    The cognitive system has the capacity to learn and make use of environmental regularities - known as statistical learning (SL), including for the implicit guidance of attention. For instance, it is known that attentional selection is biased according to the spatial probability of targets; similarly, changes in distractor filtering can be triggered by the unequal spatial distribution of distractors. Open questions remain regarding the cognitive/neuronal mechanisms underlying SL of target selection and distractor filtering. Crucially, it is unclear whether the two processes rely on shared neuronal machinery, with unavoidable cross-talk, or they are fully independent, an issue that we directly addressed here. In a series of visual search experiments, participants had to discriminate a target stimulus, while ignoring a task-irrelevant salient distractor (when present). We systematically manipulated spatial probabilities of either one or the other stimulus, or both. We then measured performance to evaluate the direct effects of the applied contingent probability distribution (e.g., effects on target selection of the spatial imbalance in target occurrence across locations) as well as its indirect or "transfer" effects (e.g., effects of the same spatial imbalance on distractor filtering across locations). By this approach, we confirmed that SL of both target and distractor location implicitly bias attention. Most importantly, we described substantial indirect effects, with the unequal spatial probability of the target affecting filtering efficiency and, vice versa, the unequal spatial probability of the distractor affecting target selection efficiency across locations. The observed cross-talk demonstrates that SL of target selection and distractor filtering are instantiated via (at least partly) shared neuronal machinery, as further corroborated by strong correlations between direct and indirect effects at the level of individual participants. Our findings are compatible

  1. Interpolation Filter Design for Hearing-Aid Audio Class-D Output Stage Application

    DEFF Research Database (Denmark)

    Pracný, Peter; Bruun, Erik; Llimos Muntal, Pere

    2012-01-01

    This paper deals with a design of a digital interpolation filter for a 3rd order multi-bit ΣΔ modulator with over-sampling ratio OSR = 64. The interpolation filter and the ΣΔ modulator are part of the back-end of an audio signal processing system in a hearing-aid application. The aim in this paper...... is to compare this design to designs presented in other state-of-the-art works ranging from hi-fi audio to hearing-aids. By performing comparison, trends and tradeoffs in interpolation filter design are indentified and hearing-aid specifications are derived. The possibilities for hardware reduction...... in the interpolation filter are investigated. Proposed design simplifications presented here result in the least hardware demanding combination of oversampling ratio, number of stages and number of filter taps among a number of filters reported for audio applications....

  2. Study of Robust H∞ Filtering Application in Loosely Coupled INS/GPS System

    Directory of Open Access Journals (Sweden)

    Lin Zhao

    2014-01-01

    model, unstable model case is considered. We give an explanation for Kalman filter divergence under uncertain dynamic system and simultaneously investigate the relationship between H∞ filter and Kalman filter. A loosely coupled INS/GPS simulation system is given here to verify this application. Result shows that the robust H∞ filter has a better performance when system suffers uncertainty; also it is more robust compared to the conventional Kalman filter.

  3. Wavelength selectivity of on-axis surface plasmon laser filters

    International Nuclear Information System (INIS)

    Harmer, S W; Townsend, P D

    2002-01-01

    Excitation of surface plasmons on a metal substrate, via the attenuated total reflection method can theoretically offer preferential absorption of light at one particular wavelength, whilst reflecting the nearby spectrum. Normally this 'filtering' action is limited to removal of p-polarized light, and the acceptance angle of such a filtering device is very narrow, which limits practical applications, such as separation of fundamental and laser harmonics. The possibility of avoiding this angular precision is explored by considering the complex permittivity of metal composites. By using a two or more layer structure, as opposed to a single metal substrate, the acceptance angle of the device can be broadened, by a factor of about 15 times. An example is discussed for separation of the fundamental and harmonics from a Nd : YAG laser. Variants of the structure allow the design of an in-line transmission filter for the various wavelengths with sufficient angular tolerance to include focusing lenses. Avoidance of laser ablation of the metal is discussed

  4. Fully integrated low-loss band-pass filters for wireless applications

    International Nuclear Information System (INIS)

    Rais-Zadeh, M; Kapoor, A; Lavasani, H M; Ayazi, F

    2009-01-01

    Fully integrated low insertion loss micromachined band-pass filters are designed and fabricated on the silicon substrate (ρ = 10–20 Ω cm, ε r = 11.9) for UHF applications. Filters are made of silver, which has the highest conductivity of all metals, to minimize the ohmic loss. A detailed analysis for realizing low insertion loss and high out-of-band rejection filters using elliptic magnitude characteristics is presented, and a comprehensive model to take into account inductive parasitics of the interconnects is developed. Temperature characteristics of the filters are measured and show stable performance. The presented filters are different from the previously reported lumped element filters in that all filters are fully integrated on silicon substrate and occupy a remarkably smaller die area. Two filters are fabricated using the silver micromachining technique with center frequencies at 1.05 and 1.35 GHz. The filters have a constant 3 dB bandwidth of 300 MHz (28.6% and 22.2%) and an insertion loss of 1.4–1.7 dB. The low insertion loss and CMOS compatibility make the presented filters suitable candidates for radio frequency integrated circuits

  5. Selection of unstable patterns and control of optical turbulence by Fourier plane filtering

    DEFF Research Database (Denmark)

    Mamaev, A.V.; Saffman, M.

    1998-01-01

    We report on selection and stabilization of transverse optical patterns in a feedback mirror experiment. Amplitude filtering in the Fourier plane is used to select otherwise unstable spatial patterns. Optical turbulence observed for nonlinearities far above the pattern formation threshold...

  6. Efficient Implementation of Complex Modulated Filter Banks Using Cosine and Sine Modulated Filter Banks

    Directory of Open Access Journals (Sweden)

    Viholainen Ari

    2006-01-01

    Full Text Available The recently introduced exponentially modulated filter bank (EMFB is a -channel uniform, orthogonal, critically sampled, and frequency-selective complex modulated filter bank that satisfies the perfect reconstruction (PR property if the prototype filter of an -channel PR cosine modulated filter bank (CMFB is used. The purpose of this paper is to present various implementation structures for the EMFBs in a unified framework. The key idea is to use cosine and sine modulated filter banks as building blocks and, therefore, polyphase, lattice, and extended lapped transform (ELT type of implementation solutions are studied. The ELT-based EMFBs are observed to be very competitive with the existing modified discrete Fourier transform filter banks (MDFT-FBs when comparing the number of multiplications/additions and the structural simplicity. In addition, EMFB provides an alternative channel stacking arrangement that could be more natural in certain subband processing applications and data transmission systems.

  7. Application of Self Cleaning Rapid Sand Filter in Water Treatment

    Directory of Open Access Journals (Sweden)

    Ali Reza Rahmani

    2005-08-01

    Full Text Available Rapid sand filter is one of the most important units in the water treatment plants. It has some difficulties in operation such as backwashing. For the solving of this problem a rapid sand filter has designed and built with the self-cleaning backwashing system. This system consist of 3 main constituents; one galvanized siphon and two galvanized steel tanks. One of them is used for filtration and the other used for the storage of filtrated water in elevation for backwashing the system. Water enter from upside of the filter through the inlet pipe, and collected from the under drainage pipe. Then filter water conduct to the storage tank and exit from outlet pipe. In the beginning, the head loss was low, but because of bed clogging by suspended solids, it increases gradually to the designed head loss (1.2m. Then the system is outed of the service automatically and the backwash is began. The main data for the design of system selected from the hydraulic rules of siphons and rapid sand filter criteria. After essential calculations it was constructed and was started operation. For the hydraulic studies a known volume of storage tank was selected and the time needed for the fill (in filtration stage and empty (in backwash stage of water volume with volumetric method were measured. In hydraulic studies the filter surface rate (SOR was selected about 5-7.5m3/m2/hr (1.39-2.08 lit/sec and the flow of water in siphon, during the backwashing was measured 8.7 lit/sec. It can be seen that the siphon passes 4-6 times the inlet raw water thus a negative pressure will created in the siphon which causes the water above the sand bed to be discharged automatically and rinse water from elevated tank flow under the sand bed and back wash it. So according to this study self cleaning rapid sand filter is very useful for water filtration, especially in small population community. The construction of system is rapid, simple and economic.

  8. Application of Micropore Filter Technology: Exploring the Blood Flow Path in Arterial-Line Filters and Its Effect on Bubble Trapping Functions.

    Science.gov (United States)

    Herbst, Daniel P

    2017-03-01

    Conventional arterial-line filters commonly use a large volume circular shaped housing, a wetted micropore screen, and a purge port to trap, separate, and remove gas bubbles from extracorporeal blood flow. Focusing on the bubble trapping function, this work attempts to explore how the filter housing shape and its resulting blood flow path affect the clinical application of arterial-line filters in terms of gross air handling. A video camera was used in a wet-lab setting to record observations made during gross air-bolus injections in three different radially designed filters using a 30-70% glycerol-saline mixture flowing at 4.5 L/min. Two of the filters both had inlet ports attached near the filter-housing top with bottom oriented outlet ports at the bottom, whereas the third filter had its inlet and outlet ports both located at the bottom of the filter housing. The two filters with top-in bottom-out fluid paths were shown to direct the incoming flow downward as it passed through the filter, placing the forces of buoyancy and viscous drag in opposition to each other. This contrasted with the third filter's bottom-in bottom-out fluid path, which was shown to direct the incoming flow upward so that the forces of buoyancy and viscous drag work together. The direction of the blood flow path through a filter may be important to the application of arterial-line filter technology as it helps determine how the forces of buoyancy and flow are aligned with one another.

  9. Application of difference filter to Feynman-α analysis

    International Nuclear Information System (INIS)

    Mouri, Tomoaki; Ohtani, Nobuo

    1997-11-01

    The Feynman-α method has been developed for monitoring sub-criticality in nuclear fuel facilities. It is difficult to apply the Feynman-α method which estimates statistical variation of the number of neutron counts per unit time, to the system in transient condition such that the averaged neutron flux varies with time. In the application of Feynman-α method to such system, it is suggested to remove the averaged variation of neutron flux from neutron count data by the use of the difference filter. In this study, we applied the difference filter to reactor noise data at sub-criticality near to criticality, where the prompt decay constant was difficult to estimate due to the large effect of delayed neutron. With the difference filter, accurate prompt decay constants for effective multiplication factors from 0.999 to 0.994 were obtained by Feynman-α method. It was cleared that the difference filter is effective to estimate accurate prompt decay constant, so that there is the prospect to be able to apply Feynman-α method having the difference filter to the system in the transient condition. (author)

  10. Low Power Systolic Array Based Digital Filter for DSP Applications

    Directory of Open Access Journals (Sweden)

    S. Karthick

    2015-01-01

    Full Text Available Main concepts in DSP include filtering, averaging, modulating, and correlating the signals in digital form to estimate characteristic parameter of a signal into a desirable form. This paper presents a brief concept of low power datapath impact for Digital Signal Processing (DSP based biomedical application. Systolic array based digital filter used in signal processing of electrocardiogram analysis is presented with datapath architectural innovations in low power consumption perspective. Implementation was done with ASIC design methodology using TSMC 65 nm technological library node. The proposed systolic array filter has reduced leakage power up to 8.5% than the existing filter architectures.

  11. A highly linear baseband Gm—C filter for WLAN application

    Science.gov (United States)

    Lijun, Yang; Zheng, Gong; Yin, Shi; Zhiming, Chen

    2011-09-01

    A low voltage, highly linear transconductan—C (Gm—C) low-pass filter for wireless local area network (WLAN) transceiver application is proposed. This transmitter (Tx) filter adopts a 9.8 MHz 3rd-order Chebyshev low pass prototype and achieves 35 dB stop-band attenuation at 30 MHz frequency. By utilizing pseudo-differential linear-region MOS transconductors, the filter IIP3 is measured to be as high as 9.5 dBm. Fabricated in a 0.35 μm standard CMOS technology, the proposed filter chip occupies a 0.41 × 0.17 mm2 die area and consumes 3.36 mA from a 3.3-V power supply.

  12. The efficacy of K-edge filters in diagnostic radiology

    International Nuclear Information System (INIS)

    Williamson, B.D.P.; van Doorn, T.

    1994-01-01

    The application of K-edge filters in diagnostic has been investigated by many workers for over twenty years. These investigations have analysed the effects of such filters on image quality and radiation dose as well as the practicalities of their application. This paper presents a synopsis of the published works and concludes that K-edge filters do not perceptibly improve image quality and make only limited reductions in patient dose. K-edge filters are also costly to purchase and potentially result in a reduction in the cost effectiveness of x-ray examinations by increasing the x-ray tube loading. Equivalent contrast enhancement and dose reductions can be achieved by the assiduous choice of non-selective filters. 51 refs., 2 tab., 6 figs

  13. Visualizing the application of filters

    DEFF Research Database (Denmark)

    Rasmussen, Rasmus; Hertzum, Morten

    2013-01-01

    Through a mixed-design experiment we compare how emergency-department clinicians perform when solving realistic work tasks with an electronic whiteboard where the application of information filters is visualized either by blocking, colour-coding or blurring information. We find that clinicians...... perform significantly faster and with less effort and temporal demand when using the blocking interface. However, we also find that the colour-coding interface provides clinicians with a better overview of the information displayed by the electronic whiteboard. The blurring interface did not perform...

  14. A 3-D miniaturized high selectivity bandpass filter in LTCC technology

    KAUST Repository

    Arabi, Eyad A.

    2014-01-01

    Transmission zeros are used to improve the roll-off factors of filters but as a consequence, the out-of-band rejection decreases. In this work, an LTCC filter design is presented which employs a series inductor (implemented as a via hole) to improve the out-of-band rejection by introducing a third transmission zero. The filter, designed for GPS band (1.57 GHz), has one of the smallest reported foot prints ((0.063×0.048×0.005)λg) and demonstrates the highest roll off factor (16.7 dB/100 MHz) for this band. With only four LTCC layers, the design is cost effective and thus highly suitable for miniaturized, ultra-thin system-on-package applications. © 2001-2012 IEEE.

  15. Despeckle filtering for ultrasound imaging and video II selected applications

    CERN Document Server

    Loizou, Christos P

    2015-01-01

    In ultrasound imaging and video visual perception is hindered by speckle multiplicative noise that degrades the quality. Noise reduction is therefore essential for improving the visual observation quality or as a pre-processing step for further automated analysis, such as image/video segmentation, texture analysis and encoding in ultrasound imaging and video. The goal of the first book (book 1 of 2 books) was to introduce the problem of speckle in ultrasound image and video as well as the theoretical background, algorithmic steps, and the MatlabTM for the following group of despeckle filters:

  16. A highly linear baseband Gm-C filter for WLAN application

    International Nuclear Information System (INIS)

    Yang Lijun; Chen Zhiming; Gong Zheng; Shi Yin

    2011-01-01

    A low voltage, highly linear transconductan-C (G m -C) low-pass filter for wireless local area network (WLAN) transceiver application is proposed. This transmitter (Tx) filter adopts a 9.8 MHz 3rd-order Chebyshev low pass prototype and achieves 35 dB stop-band attenuation at 30 MHz frequency. By utilizing pseudo-differential linear-region MOS transconductors, the filter IIP 3 is measured to be as high as 9.5 dBm. Fabricated in a 0.35 μm standard CMOS technology, the proposed filter chip occupies a 0.41 x 0.17 mm 2 die area and consumes 3.36 mA from a 3.3-V power supply. (semiconductor integrated circuits)

  17. The applicability of micro-filters produced by nuclear methods in the food industry

    International Nuclear Information System (INIS)

    Szabo, S.A.; Ember, G.

    1982-01-01

    Problems of the applicability in the food industry of micro-filters produced by nuclear methods are dealt with. Production methods of the polymeric micro-filters, their main characteristics as well as their most important application fields (breweries, dairies, alcoholic- and soft-drink plants, wine industry) are briefly reviewed. (author)

  18. System on Package (SoP) Millimeter Wave Filters for 5G Applications

    KAUST Repository

    Showail, Jameel

    2018-05-01

    Bandpass filters are an essential component of wireless communication systems that only transmits frequencies corresponding to the communication band and rejects all other frequencies. As the deployment of 5G draws nearer, first deployments are expected in 2020 [1], the need for viable filters at the new frequency bands becomes more imminent. Size and performance are two critical considerations for a filter that will be used in emerging mobile communication applications. The high frequency of 5G communication, 28 GHz as opposed to sub 6 GHz for nearly all previous communication protocols, means that previously utilized lumped component based solutions cannot be implemented since they are ill-suited for mm-wave applications. The focus of this work is the miniaturization of a high-performance filter. The Substrate Integrated Waveguide (SIW) is a high performance and promising structure and Low Temperature Co-Fired Ceramic (LTCC) is a high-performance material that both can operate at higher frequencies than the technologies used for previous telecommunication generations. To miniaturize the structure, a compact folded four-cavity SIW filter is designed, implemented and tested. The feeding structure is integrated into the filter to exploit the System on Package (SoP) attributes of LTCC and further reduce the total area of the filter individually and holistically when looking at the final integrated system. Two unique three dimensional (3D) integrated SoP LTCC two-stage SIW single cavity filters and one unique four-cavity filter all with embedded planar resonators are designed, fabricated and tested. The embedded resonators create a two-stage effect in a single cavity filter. The better single cavity design provides a 15% fractional bandwidth at a center frequency of 28.12 GHz, and with an insertion loss of -0.53 dB. The fabricated four-cavity filter has a 3-dB bandwidth of .98GHz centered at 27.465 GHz, and with an insertion loss of -2.66 dB. The designs presented

  19. Application of velocity filtering to optical-flow passive ranging

    Science.gov (United States)

    Barniv, Yair

    1992-01-01

    The performance of the velocity filtering method as applied to optical-flow passive ranging under real-world conditions is evaluated. The theory of the 3-D Fourier transform as applied to constant-speed moving points is reviewed, and the space-domain shift-and-add algorithm is derived from the general 3-D matched filtering formulation. The constant-speed algorithm is then modified to fit the actual speed encountered in the optical flow application, and the passband of that filter is found in terms of depth (sensor/object distance) so as to cover any given range of depths. Two algorithmic solutions for the problems associated with pixel interpolation and object expansion are developed, and experimental results are presented.

  20. Porous Metal Filters for Gas and Liquid Applications in the Nuclear Industry

    International Nuclear Information System (INIS)

    Kenneth, Rubow

    2009-01-01

    Sintered metal media are ideally suited for use in the most demanding industrial applications where long life is required and often other media are not cost-effective solution. As examples, filtration technology utilizing sintered metal media provides excellent performance in numerous liquid/solids and gas/solid separation applications found in the handling and processing of fluids containing radioactive materials. Many types of filter media, ranging from single use (disposable) to semi-permanent, are utilized today for separation of particulate matter. However, semi-permanent media are usually cleanable, either on or off-line, and are intended for sustainable, often multi-year, operating life in harsh environments. These harsh environments, which may involve corrosive fluids, high temperatures, high pressures or pressure spikes, often requiring continuous filtration service, are ideally suited for all-metal filtration systems employing semi-permanent sintered metal media. Sintered metal media, usually fabricated into tubular metal elements, have proven high particle removal efficiency and demonstrated reliability that uniquely afford excellent performance for demanding liquid/solids and gas/solids separation processes. The filter element and, in certain cases, the entire filter are weldable; therefore, the inherent sealing eliminates the need for potentially problematic seals. These media provide a positive barrier to ensure particulate removal to protect downstream equipment, for product separation, and/or to meet health, safety and environmental regulations. Typical applications for sintered metal media include: 1) gas and liquid filter systems used in various nuclear and radioactive waste processing applications, 2) an all-metal High Efficiency Particulate Air (HEPA) filter developed under Department of Energy (DOE) funding as an alternative to traditional HEPA filters fabricated with conventional glass fibers used on High Level Waste (HLW) tank ventilation

  1. Improving the segmentation for weed recognition applications based on standard RGB cameras using optical filters

    DEFF Research Database (Denmark)

    Stigaard Laursen, Morten; Jørgensen, Rasmus Nyholm; Midtiby, Henrik

    Within precision agriculture we have seen an increase in the utilization of computer vision systems both in academia and in commercial products. Within the agricultural industry computer vision is primarily used for tractor and machine guidance whereas in academia it is commonly used for detecting......-filter following a rectangular function. However the filter in place is selected for best mimicking the spectral sensitivity of the human vision, the cut-off is therefore neither sharp nor blocks completely. In this work we show that by replacing the IR filter with a more carefully selected IR filter matched...

  2. Miniaturized and Ferrite Based Tunable Bandpass Filters in LCP and LTCC Technologies for SoP Applications

    KAUST Repository

    Arabi, Eyad A.

    2015-04-01

    Wireless systems with emerging applications are leaning towards small size, light-weight and low cost. Another trend for these wireless devices is that new applications and functionalities are being added without increasing the size of the device. To accomplish this, individual components must be miniaturized and the system should be designed to maximize the integration of the individual components. The high level of 3D integration feasible in system on package design (SoP) concept can fulfill the latter requirement. Bandpass filters are important components on all wireless systems to reject the unwanted signals and reduce interference. Being mostly implemented with passive and distributed components, bandpass filters take considerable space in a wireless system. Moreover, with emerging bands and multiple applications encompassed in a single device, many bandpass filters are required. The miniaturization related to bandpass filters can be approached by three main ways: (1) at the component level through the miniaturization of individual bandpass filters, (2) at the system level through the use of tunable filters to reduce the overall number of filters, and (3) at the system level through the high level of integration in a 3D SoP platform. In this work we have focused on all three aspects of miniaturization of band pass filters mentioned above. In the first part of this work, a low frequency (1.5 GHz global positioning system (GPS) band) filter implemented through 3D lumped components in two leading SoP technologies, namely low temperature co-fired ceramic (LTCC) and the liquid crystal polymers (LCP) is demonstrated. The miniaturized filter is based on a second order topology, which has been modified to improve the selectivity and out-of-band rejection without increasing the size. Moreover, for the case of LCP, the filter is realized in an ultra-thin stack up comprising four metallization layers with an overall thickness of only 100 _m. Due to its ultra

  3. ADielectric Multilayer Filter for Combining Photovoltaics with a Stirling Engine for Improvement of the Efficiency of Solar Electricity Generation

    Institute of Scientific and Technical Information of China (English)

    寿春晖; 骆仲泱; 王涛; 沈伟东; ROSENGARTEN Gary; 王诚; 倪明江; 岑可法

    2011-01-01

    In this Letter we outline a dielectric multilayer spectrally selective filter designed for solar energy applications. The optical performance of this 78-layer interference filter constructed by TiOx and SiO2 is presented. A hybrid system combining photovoltaic cells with a solar-powered Stirling engine using the designed filter is analyzed. The calculated results show the advantages of this spectrally selective method for solar power generation.%In this Letter we outline a dielectric multilayer spectrally selective filter designed for solar energy applications.The optical performance of this 78-layer interference filter constructed by TiOx and SiO2 is presented.A hybrid system combining photovoltaic cells with a solar-powered Stirling engine using the designed filter is analyzed.The calculated results show the advantages of this spectrally selective method for solar power generation.

  4. Distinct interactions of Na+ and Ca2+ ions with the selectivity filter of the bacterial sodium channel NaVAb

    International Nuclear Information System (INIS)

    Ke, Song; Zangerl, Eva-Maria; Stary-Weinzinger, Anna

    2013-01-01

    Highlights: ► Ca 2+ translocates slowly in the filter, due to lack of “loose” knock-on mechanism. ► Identification of a high affinity binding site in Na V Ab selectivity filter. ► Changes of EEEE locus triggered by electrostatic interactions with Ca 2+ ions. -- Abstract: Rapid and selective ion transport is essential for the generation and regulation of electrical signaling pathways in living organisms. In this study, we use molecular dynamics simulations and free energy calculations to investigate how the bacterial sodium channel Na V Ab (Arcobacter butzleri) differentiates between Na + and Ca 2+ ions. Multiple nanosecond molecular dynamics simulations revealed distinct binding patterns for these two cations in the selectivity filter and suggested a high affinity calcium binding site formed by backbone atoms of residues Leu-176 and Thr-175 (S CEN ) in the sodium channel selectivity filter

  5. Selected annotated bibliographies for adaptive filtering of digital image data

    Science.gov (United States)

    Mayers, Margaret; Wood, Lynnette

    1988-01-01

    is organized in subsections based on application areas. Contrast enhancement, edge enhancement, noise suppression, and smoothing are typically performed in order imaging process, (for example, degradations due to the optics and electronics of the sensor, or to blurring caused by the intervening atmosphere, uniform motion, or defocused optics). Some of the papers listed may apply to more than one of the above categories; when this happens the paper is listed under the category for which the paper's emphasis is greatest. A list of survey articles is also supplied. These articles are general discussions on adaptive filters and reviews of work done. Finally, a short list of miscellaneous articles are listed which were felt to be sufficiently important to be included, but do not fit into any of the above categories. This bibliography, listing items published from 1970 through 1987, is extensive, but by no means complete. It is intended as a guide for scientists and image analysts, listing references for background information as well as areas of significant development in adaptive filtering.

  6. Application of DFT Filter Banks and Cosine Modulated Filter Banks in Filtering

    Science.gov (United States)

    Lin, Yuan-Pei; Vaidyanathan, P. P.

    1994-01-01

    None given. This is a proposal for a paper to be presented at APCCAS '94 in Taipei, Taiwan. (From outline): This work is organized as follows: Sec. II is devoted to the construction of the new 2m channel under-decimated DFT filter bank. Implementation and complexity of this DFT filter bank are discussed therein. IN a similar manner, the new 2m channel cosine modulated filter bank is discussed in Sec. III. Design examples are given in Sec. IV.

  7. A Novel Fixed Low-Rank Constrained EEG Spatial Filter Estimation with Application to Movie-Induced Emotion Recognition

    Directory of Open Access Journals (Sweden)

    Ken Yano

    2016-01-01

    Full Text Available This paper proposes a novel fixed low-rank spatial filter estimation for brain computer interface (BCI systems with an application that recognizes emotions elicited by movies. The proposed approach unifies such tasks as feature extraction, feature selection, and classification, which are often independently tackled in a “bottom-up” manner, under a regularized loss minimization problem. The loss function is explicitly derived from the conventional BCI approach and solves its minimization by optimization with a nonconvex fixed low-rank constraint. For evaluation, an experiment was conducted to induce emotions by movies for dozens of young adult subjects and estimated the emotional states using the proposed method. The advantage of the proposed method is that it combines feature selection, feature extraction, and classification into a monolithic optimization problem with a fixed low-rank regularization, which implicitly estimates optimal spatial filters. The proposed method shows competitive performance against the best CSP-based alternatives.

  8. Development of a HPLC method for determination of four UV filters in sunscreen and its application to skin penetration studies.

    Science.gov (United States)

    Souza, Carla; Maia Campos, Patrícia M B G

    2017-12-01

    This study describes the development, validation and application of a high-performance liquid chromatography (HPLC) method for the simultaneous determination of the in vitro skin penetration profile of four UV filters on porcine skin. Experiments were carried out on a gel-cream formulation containing the following UV filters: diethylamino hydroxybenzoyl hexyl benzoate (DHHB), bis-ethylhexyloxyphenol methoxyphenyl triazine (BEMT), methylene bis-benzotriazolyl tetramethylbutylphenol (MBBT) and ethylhexyl triazone (EHT). The HPLC method demonstrated suitable selectivity, linearity (10.0-50.0 μg/mL), precision, accuracy and recovery from porcine skin and sunscreen formulation. The in vitro skin penetration profile was evaluated using Franz vertical diffusion cells for 24 h after application on porcine ear skin. None of the UV filters penetrated the porcine skin. Most of them stayed on the skin surface (>90%) and only BEMT, EHT and DHHB reached the dermis plus epidermis layer. These results are in agreement with previous results in the literature. Therefore, the analytical method was useful to evaluate the in vitro skin penetration of the UV filters and may help the development of safer and effective sunscreen products. Copyright © 2017 John Wiley & Sons, Ltd.

  9. An Active Power Filter Based on a Three-Level Inverter and 3D-SVPWM for Selective Harmonic and Reactive Compensation

    Directory of Open Access Journals (Sweden)

    José Luis Monroy-Morales

    2017-03-01

    Full Text Available Active Power Filters (APFs have been used for reducing waveform distortion and improving power quality. However, this function can be improved by means of a selective harmonic compensation. Since an APF has rating restrictions, it is convenient to have the option of selecting an individual or a set of particular harmonics in order to compensate and apply the total APF capabilities to eliminate these harmonics, in particular those with a greater impact on the Total Harmonic Distortion (THD. This paper presents the development of a new APF prototype based on a three-phase three-level Neutral Point Clamped (NPC inverter with selective harmonic compensation capabilities and reactive power compensation. The selective harmonic compensation approach uses several Synchronous Rotating Frames (SRF, to detect and control individual or a set of harmonics using d and q variables. The APF includes a Three-Dimensional Space Vector Modulator (3D-SVPWM in order to generate the compensation currents. Because of its multilevel topology, the proposed active power filter can be used in diverse power quality applications at sub-transmission and distribution voltage levels. Simulation and experimental results are shown to validate the proposed solution and assess the prototype performance in different scenarios.

  10. Creation of an iOS and Android Mobile Application for Inferior Vena Cava (IVC) Filters: A Powerful Tool to Optimize Care of Patients with IVC Filters.

    Science.gov (United States)

    Deso, Steven E; Idakoji, Ibrahim A; Muelly, Michael C; Kuo, William T

    2016-06-01

    Owing to a myriad of inferior vena cava (IVC) filter types and their potential complications, rapid and correct identification may be challenging when encountered on routine imaging. The authors aimed to develop an interactive mobile application that allows recognition of all IVC filters and related complications, to optimize the care of patients with indwelling IVC filters. The FDA Premarket Notification Database was queried from 1980 to 2014 to identify all IVC filter types in the United States. An electronic search was then performed on MEDLINE and the FDA MAUDE database to identify all reported complications associated with each device. High-resolution photos were taken of each filter type and corresponding computed tomographic and fluoroscopic images were obtained from an institutional review board-approved IVC filter registry. A wireframe and storyboard were created, and software was developed using HTML5/CSS compliant code. The software was deployed using PhoneGap (Adobe, San Jose, CA), and the prototype was tested and refined. Twenty-three IVC filter types were identified for inclusion. Safety data from FDA MAUDE and 72 relevant peer-reviewed studies were acquired, and complication rates for each filter type were highlighted in the application. Digital photos, fluoroscopic images, and CT DICOM files were seamlessly incorporated. All data were succinctly organized electronically, and the software was successfully deployed into Android (Google, Mountain View, CA) and iOS (Apple, Cupertino, CA) platforms. A powerful electronic mobile application was successfully created to allow rapid identification of all IVC filter types and related complications. This application may be used to optimize the care of patients with IVC filters.

  11. A Microwave Tunable Bandpass Filter for Liquid Crystal Applications

    Science.gov (United States)

    Cao, Weiping; Jiang, Di; Liu, Yupeng; Yang, Yuanwang; Gan, Baichuan

    2017-07-01

    In this paper, a novel microwave continuously tunable band-pass filter, based on nematic liquid crystals (LCs), is proposed. It uses liquid crystal (LC) as the electro-optic material to mainly realize frequency shift at microwave band by changing the dielectric anisotropy, when applying the bias voltage. According to simulation results, it achieves 840 MHz offset. Comparing to the existing tunable filter, it has many advantages, such as continuously tunable, miniaturization, low processing costs, low tuning voltage, etc. Thus, it has shown great potentials in frequency domain and practical applications in modern communication.

  12. Technical Note: Kinect V2 surface filtering during gantry motion for radiotherapy applications.

    Science.gov (United States)

    Nazir, Souha; Rihana, Sandy; Visvikis, Dimitris; Fayad, Hadi

    2018-04-01

    In radiotherapy, the Kinect V2 camera, has recently received a lot of attention concerning many clinical applications including patient positioning, respiratory motion tracking, and collision detection during the radiotherapy delivery phase. However, issues associated with such applications are related to some materials and surfaces reflections generating an offset in depth measurements especially during gantry motion. This phenomenon appears in particular when the collimator surface is observed by the camera; resulting in erroneous depth measurements, not only in Kinect surfaces itself, but also as a large peak when extracting a 1D respiratory signal from these data. In this paper, we proposed filtering techniques to reduce the noise effect in the Kinect-based 1D respiratory signal, using a trend removal filter, and in associated 2D surfaces, using a temporal median filter. Filtering process was validated using a phantom, in order to simulate a patient undergoing radiotherapy treatment while having the ground truth. Our results indicate a better correlation between the reference respiratory signal and its corresponding filtered signal (Correlation coefficient of 0.76) than that of the nonfiltered signal (Correlation coefficient of 0.13). Furthermore, surface filtering results show a decrease in the mean square distance error (85%) between the reference and the measured point clouds. This work shows a significant noise compensation and surface restitution after surface filtering and therefore a potential use of the Kinect V2 camera for different radiotherapy-based applications, such as respiratory tracking and collision detection. © 2018 American Association of Physicists in Medicine.

  13. Feature Subset Selection and Instance Filtering for Cross-project Defect Prediction - Classification and Ranking

    Directory of Open Access Journals (Sweden)

    Faimison Porto

    2016-12-01

    Full Text Available The defect prediction models can be a good tool on organizing the project's test resources. The models can be constructed with two main goals: 1 to classify the software parts - defective or not; or 2 to rank the most defective parts in a decreasing order. However, not all companies maintain an appropriate set of historical defect data. In this case, a company can build an appropriate dataset from known external projects - called Cross-project Defect Prediction (CPDP. The CPDP models, however, present low prediction performances due to the heterogeneity of data. Recently, Instance Filtering methods were proposed in order to reduce this heterogeneity by selecting the most similar instances from the training dataset. Originally, the similarity is calculated based on all the available dataset features (or independent variables. We propose that using only the most relevant features on the similarity calculation can result in more accurate filtered datasets and better prediction performances. In this study we extend our previous work. We analyse both prediction goals - Classification and Ranking. We present an empirical evaluation of 41 different methods by associating Instance Filtering methods with Feature Selection methods. We used 36 versions of 11 open source projects on experiments. The results show similar evidences for both prediction goals. First, the defect prediction performance of CPDP models can be improved by associating Feature Selection and Instance Filtering. Second, no evaluated method presented general better performances. Indeed, the most appropriate method can vary according to the characteristics of the project being predicted.

  14. Software for tomographic analysis: application in ceramic filters

    International Nuclear Information System (INIS)

    Figuerola, W.B.; Assis, J.T.; Oliveira, L.F.; Lopes, R.T.

    2001-01-01

    New methods for acquiring data have been developed with the technological advances. With this, it has been possible to obtain more precise data and, consequently produce results with greater reliability. Among the variety of acquisition methods available, those that have volume description, as CT (Computerized Tomography) and NMR (Nuclear Magnetic Resonance) stand out. The models of volumetric data (group of data that describe a solid object from a three dimensional space) are being greatly used in diversity of areas as a way of inspection, modeling and simulation of objects in a three - dimensional space. Applications of this model are already found in Mechanic Engineering, Geosciences, Medicine and other areas. In the area of engineering it is sometimes necessary to use industrial CT as the only non-invasive form of inspection the interior of pieces without destroying them. The 3D micro focus X-ray tomography is one technique of non destructive testing used in the most different areas of science and technology, given its capacity to generate clean images (practically free of the unhappiness effect) and high resolution reconstructions. The unsharpness effect minimization and space resolution improvement are consequences of the focal spot size reduction in the X-ray micro focus tube to dimensions smaller than 50 mm. The ceramic filters are used in a wide area in the metallurgic industry, particularly in the cast aluminum where they are used to clean the waste coming through the liquid aluminum. The ceramic filters used in this work are manufactured by FUSICO (German company) and they are constructed from foams. They are manufactured at three models: 10, 20 and 30 ppi (porous per inch). In this paper we present the development of software to analyze and characterize ceramic filters, which can be divided in four stages. This software was developed in C++ language, using objects oriented programming. It is also capable of being executed in multiple platforms (Windows

  15. Selection of filter media in alpha air monitors for emergency environmental monitoring

    International Nuclear Information System (INIS)

    Kinouchi, N.; Oishi, T.; Noguchi, H.; Kato, S.

    2000-01-01

    We have developed an alpha air monitor which is possible to measure rapidly and sensitively the concentrations of airborne alpha-emitting particles, such as plutonium, for the environmental monitoring at an accident of nuclear reprocessing plant. The monitor is designed to collect airborne alpha-emitting particles by drawing the ambient air through a filter and to detect the activity by alpha spectroscopy. In order to achieve high-sensitive measurements, selection of a suitable filter used in the monitor is considerably important. The most important requirement for the filter is that it has a high surface collection efficiency to obtain the sharpness of the alpha energy spectrum. This makes it easy to distinguish the alpha-ray peak of plutonium from the alpha spectrum of naturally occurring radon decay products in the environment. And the filter is also desired to have low resistance of the air flow so that particles can be collected at a high flowrate. We have made a comparison of the surface collection efficiency and pressure drop for the various filters. Types of the test filters, most of which are commercially available in Japan, were glass fiber, cellulose-glass fiber, membrane and so on. The surface collection efficiency has been evaluated by the following two indices. One was the sharpness of alpha-ray energy peaks of thoron decay products generated in a laboratory and collected in the fibers. The other was the background counts of radon decay products in a plutonium region by measuring alpha-ray energy spectrum of radon decay products collected in the filters by sampling of dust in the atmosphere. It was found that the PTFE (polytetrafluoroethylene) membrane filter with backing had a high surface collection efficiency and low pressure drop. The results of the test are described in detail in this paper. (author)

  16. Application and Optimization of Kalman Filter for Baseband Signal Processing of GPS Receivers

    Directory of Open Access Journals (Sweden)

    He Yanpin

    2016-01-01

    Full Text Available High sensitivity tracking in GPS receiver is required in many weak signal circumstances. The key of improving sensitivity is the optimization of the loop filter in tracking. As Kalman filter is the most optimized linear filter, it is used in many engineering fields. This article introduced the application of Kalman filter as the loop filter of the carrier tracking loop in GPS receiver, to improve tracking sensitivity. The traditional loop filter is replaced. Simulation results show that the new structure improves the tracking sensitivity by 6dB and can make the tracking loop more robust when the navigation signal is languishing. The optimization of theKalman filter is also analysed, which further improves the sensitivity by 4dB.

  17. Sodium and potassium vapor Faraday filters revisited: theory and applications

    International Nuclear Information System (INIS)

    Harrell, S. D.; She, C.-Y.; Yuan Tao; Krueger, David A.; Chen, H.; Chen, S. S.; Hu, Z. L.

    2009-01-01

    A complete theory describing the transmission of atomic vapor Faraday filters is developed. The dependence of the filter transmission on atomic density and external magnetic field strength, as well as the frequency dependence of transmission, are explained in physical terms. As examples, applications of the computed results to ongoing research to suppress sky background, thus allowing Na lidar operation under sunlit conditions, and to enable measurement of the density of mesospheric oxygen atoms are briefly discussed

  18. Multi-Flight-Phase GPS Navigation Filter Applications to Terrestrial Vehicle Navigation and Positioning

    Science.gov (United States)

    Park, Young W.; Montez, Moises N.

    1994-01-01

    A candidate onboard space navigation filter demonstrated excellent performance (less than 8 meter level RMS semi-major axis accuracy) in performing orbit determination of a low-Earth orbit Explorer satellite using single-frequency real GPS data. This performance is significantly better than predicted by other simulation studies using dual-frequency GPS data. The study results revealed the significance of two new modeling approaches evaluated in the work. One approach introduces a single-frequency ionospheric correction through pseudo-range and phase range averaging implementation. The other approach demonstrates a precise axis-dependent characterization of dynamic sample space uncertainty to compute a more accurate Kalman filter gain. Additionally, this navigation filter demonstrates a flexibility to accommodate both perturbational dynamic and observational biases required for multi-flight phase and inhomogeneous application environments. This paper reviews the potential application of these methods and the filter structure to terrestrial vehicle and positioning applications. Both the single-frequency ionospheric correction method and the axis-dependent state noise modeling approach offer valuable contributions in cost and accuracy improvements for terrestrial GPS receivers. With a modular design approach to either 'plug-in' or 'unplug' various force models, this multi-flight phase navigation filter design structure also provides a versatile GPS navigation software engine for both atmospheric and exo-atmospheric navigation or positioning use, thereby streamlining the flight phase or application-dependent software requirements. Thus, a standardized GPS navigation software engine that can reduce the development and maintenance cost of commercial GPS receivers is now possible.

  19. Protein-Nanocellulose Interactions in Paper Filters for Advanced Separation Applications.

    Science.gov (United States)

    Gustafsson, Simon; Manukyan, Levon; Mihranyan, Albert

    2017-05-16

    Protein-based pharmaceutics are widely explored for healthcare applications, and 6 out of 10 best-selling drugs today are biologicals. The goal of this work was to evaluate the protein nanocellulose interactions in paper filter for advanced separation applications such as virus removal filtration and bioprocessing. The protein recovery was measured for bovine serum albumin (BSA), γ-globulin, and lysozyme using biuret total protein reagent and polyacrylamide gel electrophoresis (PAGE), and the throughput was characterized in terms of flux values from fixed volume filtrations at various protein concentrations and under worst-case experimental conditions. The affinity of cellulose to bind various proteins, such as BSA, lysozyme, γ-globulin, and human IgG was quantified using a quartz crystal microbalance (QCMB) by developing a new method of fixing the cellulose fibers to the electrode surface without cellulose dissolution-precipitation. It was shown that the mille-feuille filter exhibits high protein recovery, that is, ∼99% for both BSA and lysozyme. However, γ-globulin does not pass through the membrane due to its large size (i.e., >180 kDa). The PAGE data show no substantial change in the amount of dimers and trimers before and after filtration. QCMB analysis suggests a low affinity between the nanocellulose surface and proteins. The nanocellulose-based filter exhibits desirable inertness as a filtering material intended for protein purification.

  20. Kalman filtering with real-time applications

    CERN Document Server

    Chui, Charles K

    2017-01-01

    This new edition presents a thorough discussion of the mathematical theory and computational schemes of Kalman filtering. The filtering algorithms are derived via different approaches, including a direct method consisting of a series of elementary steps, and an indirect method based on innovation projection. Other topics include Kalman filtering for systems with correlated noise or colored noise, limiting Kalman filtering for time-invariant systems, extended Kalman filtering for nonlinear systems, interval Kalman filtering for uncertain systems, and wavelet Kalman filtering for multiresolution analysis of random signals. Most filtering algorithms are illustrated by using simplified radar tracking examples. The style of the book is informal, and the mathematics is elementary but rigorous. The text is self-contained, suitable for self-study, and accessible to all readers with a minimum knowledge of linear algebra, probability theory, and system engineering. Over 100 exercises and problems with solutions help de...

  1. On the application of optimal wavelet filter banks for ECG signal classification

    International Nuclear Information System (INIS)

    Hadjiloucas, S; Jannah, N; Hwang, F; Galvão, R K H

    2014-01-01

    This paper discusses ECG signal classification after parametrizing the ECG waveforms in the wavelet domain. Signal decomposition using perfect reconstruction quadrature mirror filter banks can provide a very parsimonious representation of ECG signals. In the current work, the filter parameters are adjusted by a numerical optimization algorithm in order to minimize a cost function associated to the filter cut-off sharpness. The goal consists of achieving a better compromise between frequency selectivity and time resolution at each decomposition level than standard orthogonal filter banks such as those of the Daubechies and Coiflet families. Our aim is to optimally decompose the signals in the wavelet domain so that they can be subsequently used as inputs for training to a neural network classifier

  2. Distributed Systems and Applications of Information Filtering and Retrieval

    CERN Document Server

    Giuliani, Alessandro; Semeraro, Giovanni; DART 2012

    2014-01-01

    This volume focuses on new challenges in distributed Information Filtering and Retrieval. It collects invited chapters and extended research contributions from the special session on Information Filtering and Retrieval: Novel Distributed Systems and Applications (DART) of the 4th International Conference on Knowledge Discovery and Information Retrieval (KDIR 2012), held in Barcelona, Spain, on 4-7 October 2012. The main focus of DART was to discuss and compare suitable novel solutions based on intelligent techniques and applied to real-world applications. The chapters of this book present a comprehensive review of related works and state of the art. Authors, both practitioners and researchers, shared their results in several topics such as "Multi-Agent Systems", "Natural Language Processing", "Automatic Advertisement", "Customer Interaction Analytics", "Opinion Mining". Contributions have been careful reviewed by experts in the area, who also gave useful suggestions to improve the quality of the volume.

  3. Testing of a Rotary Micro-filter for Hanford Applications

    International Nuclear Information System (INIS)

    Poirier, M.R.; Herman, D.T.; Stefanko, D.B.; Fink, S.D.

    2009-01-01

    Savannah River National Laboratory (SRNL) researchers are investigating and developing a rotary micro-filter for solid-liquid separation applications with emphasis on deployment in radioactive services. The Department of Energy (DOE) Office of Waste Processing employed the SRNL team to evaluate the use of this rotary micro-filter for the Hanford Supplemental Pretreatment process. The authors tested a full-scale, 25-disk filter unit containing 0.5 μ filter media using a Hanford Tank AN-105 simulant at solids loadings of 0.06, 0.29, and 1.29 wt %. Based on recommendations from prior tests, the authors modified the filter unit by replacing the primary mechanical seal with an air seal. They also replaced the bushing with alternate materials of construction aimed at extended mean time between maintenance events. The testing provides the following conclusions. - The rotary filter produces a higher flux than the crossflow filter for the Hanford simulant. The gain in performance is less than previously seen for Savannah River Site simulants. - Filtrate clarity proved excellent with turbidity of <4 NTU (nephelometric turbidity units) in all samples. - Inspection of the primary mechanical seal faces after ∼140 hours of operation showed an expected minimal amount of initial wear, no passing of process fluid through the seal faces, and very little change in the air channeling grooves on the stationary face. - Some polishing of surfaces occurred at the bottom of the shaft bushing. The authors recommend improving the shaft bushing by holding it in place with a locking ring and incorporating grooves to provide additional cooling. - The authors recommend that Hanford test other pore size media to determine the optimum pore size for Hanford waste. - During final facility operation, the filter should be rinsed with filtrate or dilute caustic and drained prior to an extended shutdown to prevent the formation of a layer of settled solids on top of the filter disks. (authors)

  4. Tunable Multiband Microwave Photonic Filters

    Directory of Open Access Journals (Sweden)

    Mable P. Fok

    2017-11-01

    Full Text Available The increasing demand for multifunctional devices, the use of cognitive wireless technology to solve the frequency resource shortage problem, as well as the capabilities and operational flexibility necessary to meet ever-changing environment result in an urgent need of multiband wireless communications. Spectral filter is an essential part of any communication systems, and in the case of multiband wireless communications, tunable multiband RF filters are required for channel selection, noise/interference removal, and RF signal processing. Unfortunately, it is difficult for RF electronics to achieve both tunable and multiband spectral filtering. Recent advancements of microwave photonics have proven itself to be a promising candidate to solve various challenges in RF electronics including spectral filtering, however, the development of multiband microwave photonic filtering still faces lots of difficulties, due to the limited scalability and tunability of existing microwave photonic schemes. In this review paper, we first discuss the challenges that were facing by multiband microwave photonic filter, then we review recent techniques that have been developed to tackle the challenge and lead to promising developments of tunable microwave photonic multiband filters. The successful design and implementation of tunable microwave photonic multiband filter facilitate the vision of dynamic multiband wireless communications and radio frequency signal processing for commercial, defense, and civilian applications.

  5. Analysis and Design of Notch Filter-Based PLLs for Grid-Connected Applications Electric Power Systems Research

    DEFF Research Database (Denmark)

    Khazraj, Hesam; Silva, Filipe Miguel Faria da; Bak, Claus Leth

    2017-01-01

    Using multiple notch filters (NFs) inside the control loop of a standard PLL is a basic strategy to improve its filtering capability. Often, adaptive NFs (ANFs) are employed for this purpose as they can block the disturbance components even under off-nominal grid frequencies. This advantage...... is at the cost of a rather considerable increase in the PLL implementation complexity and computational effort, particularly when ANFs have their own frequency estimation mechanism. The non-adaptive NFs (NNFs), contrary to ANFs, are easy to implement. They, however, have received a little attention in PLL...... applications. Therefore, their performance characteristics are rather unclear. To gain insight about the advantages and disadvantages of NNF-based PLLs (NNF-PLLs), analysis and design of these PLLs is conducted in this paper. This procedure includes: (1) selecting the appropriate number of NNFs inside the PLL...

  6. A HYBRID FILTER AND WRAPPER FEATURE SELECTION APPROACH FOR DETECTING CONTAMINATION IN DRINKING WATER MANAGEMENT SYSTEM

    Directory of Open Access Journals (Sweden)

    S. VISALAKSHI

    2017-07-01

    Full Text Available Feature selection is an important task in predictive models which helps to identify the irrelevant features in the high - dimensional dataset. In this case of water contamination detection dataset, the standard wrapper algorithm alone cannot be applied because of the complexity. To overcome this computational complexity problem and making it lighter, filter-wrapper based algorithm has been proposed. In this work, reducing the feature space is a significant component of water contamination. The main findings are as follows: (1 The main goal is speeding up the feature selection process, so the proposed filter - based feature pre-selection is applied and guarantees that useful data are improbable to be detached in the initial stage which discussed briefly in this paper. (2 The resulting features are again filtered by using the Genetic Algorithm coded with Support Vector Machine method, where it facilitates to nutshell the subset of features with high accuracy and decreases the expense. Experimental results show that the proposed methods trim down redundant features effectively and achieved better classification accuracy.

  7. Design of application specific long period waveguide grating filters using adaptive particle swarm optimization algorithms

    International Nuclear Information System (INIS)

    Semwal, Girish; Rastogi, Vipul

    2014-01-01

    We present design optimization of wavelength filters based on long period waveguide gratings (LPWGs) using the adaptive particle swarm optimization (APSO) technique. We demonstrate optimization of the LPWG parameters for single-band, wide-band and dual-band rejection filters for testing the convergence of APSO algorithms. After convergence tests on the algorithms, the optimization technique has been implemented to design more complicated application specific filters such as erbium doped fiber amplifier (EDFA) amplified spontaneous emission (ASE) flattening, erbium doped waveguide amplifier (EDWA) gain flattening and pre-defined broadband rejection filters. The technique is useful for designing and optimizing the parameters of LPWGs to achieve complicated application specific spectra. (paper)

  8. Adaptive Filtering Algorithms and Practical Implementation

    CERN Document Server

    Diniz, Paulo S R

    2013-01-01

    In the fourth edition of Adaptive Filtering: Algorithms and Practical Implementation, author Paulo S.R. Diniz presents the basic concepts of adaptive signal processing and adaptive filtering in a concise and straightforward manner. The main classes of adaptive filtering algorithms are presented in a unified framework, using clear notations that facilitate actual implementation. The main algorithms are described in tables, which are detailed enough to allow the reader to verify the covered concepts. Many examples address problems drawn from actual applications. New material to this edition includes: Analytical and simulation examples in Chapters 4, 5, 6 and 10 Appendix E, which summarizes the analysis of set-membership algorithm Updated problems and references Providing a concise background on adaptive filtering, this book covers the family of LMS, affine projection, RLS and data-selective set-membership algorithms as well as nonlinear, sub-band, blind, IIR adaptive filtering, and more. Several problems are...

  9. A highly linear baseband G{sub m}-C filter for WLAN application

    Energy Technology Data Exchange (ETDEWEB)

    Yang Lijun; Chen Zhiming [Department of Electronic Engineering, Xi' an University of Technology, Xi' an 710048 (China); Gong Zheng; Shi Yin, E-mail: ljyang@sci-inc.com.cn [Suzhou-CAS Semiconductors Integrated Technology Research Center, Suzhou 215021 (China)

    2011-09-15

    A low voltage, highly linear transconductan-C (G{sub m}-C) low-pass filter for wireless local area network (WLAN) transceiver application is proposed. This transmitter (Tx) filter adopts a 9.8 MHz 3rd-order Chebyshev low pass prototype and achieves 35 dB stop-band attenuation at 30 MHz frequency. By utilizing pseudo-differential linear-region MOS transconductors, the filter IIP{sub 3} is measured to be as high as 9.5 dBm. Fabricated in a 0.35 {mu}m standard CMOS technology, the proposed filter chip occupies a 0.41 x 0.17 mm{sup 2} die area and consumes 3.36 mA from a 3.3-V power supply. (semiconductor integrated circuits)

  10. Method and apparatus for selective filtering of ions

    Science.gov (United States)

    Page, Jason S [Kennewick, WA; Tang, Keqi [Richland, WA; Smith, Richard D [Richland, WA

    2009-04-07

    An adjustable, low mass-to-charge (m/z) filter is disclosed employing electrospray ionization to block ions associated with unwanted low m/z species from entering the mass spectrometer and contributing their space charge to down-stream ion accumulation steps. The low-mass filter is made by using an adjustable potential energy barrier from the conductance limiting terminal electrode of an electrodynamic ion funnel, which prohibits species with higher ion mobilities from being transmitted. The filter provides a linear voltage adjustment of low-mass filtering from m/z values from about 50 to about 500. Mass filtering above m/z 500 can also be performed; however, higher m/z species are attenuated. The mass filter was evaluated with a liquid chromatography-mass spectrometry analysis of an albumin tryptic digest and resulted in the ability to block low-mass, "background" ions which account for 40-70% of the total ion current from the ESI source during peak elution.

  11. Selection of Inhibitor-Resistant Viral Potassium Channels Identifies a Selectivity Filter Site that Affects Barium and Amantadine Block

    Science.gov (United States)

    Fujiwara, Yuichiro; Arrigoni, Cristina; Domigan, Courtney; Ferrara, Giuseppina; Pantoja, Carlos; Thiel, Gerhard; Moroni, Anna; Minor, Daniel L.

    2009-01-01

    Background Understanding the interactions between ion channels and blockers remains an important goal that has implications for delineating the basic mechanisms of ion channel function and for the discovery and development of ion channel directed drugs. Methodology/Principal Findings We used genetic selection methods to probe the interaction of two ion channel blockers, barium and amantadine, with the miniature viral potassium channel Kcv. Selection for Kcv mutants that were resistant to either blocker identified a mutant bearing multiple changes that was resistant to both. Implementation of a PCR shuffling and backcrossing procedure uncovered that the blocker resistance could be attributed to a single change, T63S, at a position that is likely to form the binding site for the inner ion in the selectivity filter (site 4). A combination of electrophysiological and biochemical assays revealed a distinct difference in the ability of the mutant channel to interact with the blockers. Studies of the analogous mutation in the mammalian inward rectifier Kir2.1 show that the T→S mutation affects barium block as well as the stability of the conductive state. Comparison of the effects of similar barium resistant mutations in Kcv and Kir2.1 shows that neighboring amino acids in the Kcv selectivity filter affect blocker binding. Conclusions/Significance The data support the idea that permeant ions have an integral role in stabilizing potassium channel structure, suggest that both barium and amantadine act at a similar site, and demonstrate how genetic selections can be used to map blocker binding sites and reveal mechanistic features. PMID:19834614

  12. Sampling strong tracking nonlinear unscented Kalman filter and its application in eye tracking

    International Nuclear Information System (INIS)

    Zu-Tao, Zhang; Jia-Shu, Zhang

    2010-01-01

    The unscented Kalman filter is a developed well-known method for nonlinear motion estimation and tracking. However, the standard unscented Kalman filter has the inherent drawbacks, such as numerical instability and much more time spent on calculation in practical applications. In this paper, we present a novel sampling strong tracking nonlinear unscented Kalman filter, aiming to overcome the difficulty in nonlinear eye tracking. In the above proposed filter, the simplified unscented transform sampling strategy with n + 2 sigma points leads to the computational efficiency, and suboptimal fading factor of strong tracking filtering is introduced to improve robustness and accuracy of eye tracking. Compared with the related unscented Kalman filter for eye tracking, the proposed filter has potential advantages in robustness, convergence speed, and tracking accuracy. The final experimental results show the validity of our method for eye tracking under realistic conditions. (classical areas of phenomenology)

  13. Fast SPT-Term Allocation and Efficient FPGA Implementation of FIR Filters for Software Defined Radio Applications

    OpenAIRE

    Bae, Choonghoon; Moteki, Takayuki; Kim, Minseok; Ichige, Koichi; Arai, Hiroyuki

    2009-01-01

    This paper presents a fast SPT-term allocation scheme and an efficient FPGA implementation of FIR filters for Software Defined Radio (SDR) applications. Direct conversion method based on RF direct sampling is nowadays widely used in SDR applications. Fast and accurate digital filters are required for RF direct sampling and processing in direct conversion, however such filters often require large digital circuit area. Signed-Power-of-Two (SPT) terms will be suitable for fast processing and eff...

  14. A Tentative Application Of Morphological Filters To Time-Varying Images

    Science.gov (United States)

    Billard, D.; Poquillon, B.

    1989-03-01

    In this paper, morphological filters, which are commonly used to process either 2D or multidimensional static images, are generalized to the analysis of time-varying image sequence. The introduction of the time dimension induces then interesting prop-erties when designing such spatio-temporal morphological filters. In particular, the specification of spatio-temporal structuring ele-ments (equivalent to time-varying spatial structuring elements) can be adjusted according to the temporal variations of the image sequences to be processed : this allows to derive specific morphological transforms to perform noise filtering or moving objects discrimination on dynamic images viewed by a non-stationary sensor. First, a brief introduction to the basic principles underlying morphological filters will be given. Then, a straightforward gener-alization of these principles to time-varying images will be pro-posed. This will lead us to define spatio-temporal opening and closing and to introduce some of their possible applications to process dynamic images. At last, preliminary results obtained us-ing a natural forward looking infrared (FUR) image sequence are presented.

  15. Application of adaptive Kalman filter in vehicle laser Doppler velocimetry

    Science.gov (United States)

    Fan, Zhe; Sun, Qiao; Du, Lei; Bai, Jie; Liu, Jingyun

    2018-03-01

    Due to the variation of road conditions and motor characteristics of vehicle, great root-mean-square (rms) error and outliers would be caused. Application of Kalman filter in laser Doppler velocimetry(LDV) is important to improve the velocity measurement accuracy. In this paper, the state-space model is built by using current statistical model. A strategy containing two steps is adopted to make the filter adaptive and robust. First, the acceleration variance is adaptively adjusted by using the difference of predictive observation and measured observation. Second, the outliers would be identified and the measured noise variance would be adjusted according to the orthogonal property of innovation to reduce the impaction of outliers. The laboratory rotating table experiments show that adaptive Kalman filter greatly reduces the rms error from 0.59 cm/s to 0.22 cm/s and has eliminated all the outliers. Road experiments compared with a microwave radar show that the rms error of LDV is 0.0218 m/s, and it proves that the adaptive Kalman filtering is suitable for vehicle speed signal processing.

  16. An improved discriminative filter bank selection approach for motor imagery EEG signal classification using mutual information.

    Science.gov (United States)

    Kumar, Shiu; Sharma, Alok; Tsunoda, Tatsuhiko

    2017-12-28

    Common spatial pattern (CSP) has been an effective technique for feature extraction in electroencephalography (EEG) based brain computer interfaces (BCIs). However, motor imagery EEG signal feature extraction using CSP generally depends on the selection of the frequency bands to a great extent. In this study, we propose a mutual information based frequency band selection approach. The idea of the proposed method is to utilize the information from all the available channels for effectively selecting the most discriminative filter banks. CSP features are extracted from multiple overlapping sub-bands. An additional sub-band has been introduced that cover the wide frequency band (7-30 Hz) and two different types of features are extracted using CSP and common spatio-spectral pattern techniques, respectively. Mutual information is then computed from the extracted features of each of these bands and the top filter banks are selected for further processing. Linear discriminant analysis is applied to the features extracted from each of the filter banks. The scores are fused together, and classification is done using support vector machine. The proposed method is evaluated using BCI Competition III dataset IVa, BCI Competition IV dataset I and BCI Competition IV dataset IIb, and it outperformed all other competing methods achieving the lowest misclassification rate and the highest kappa coefficient on all three datasets. Introducing a wide sub-band and using mutual information for selecting the most discriminative sub-bands, the proposed method shows improvement in motor imagery EEG signal classification.

  17. Human attention filters for single colors

    Science.gov (United States)

    Sun, Peng; Chubb, Charles; Wright, Charles E.; Sperling, George

    2016-01-01

    The visual images in the eyes contain much more information than the brain can process. An important selection mechanism is feature-based attention (FBA). FBA is best described by attention filters that specify precisely the extent to which items containing attended features are selectively processed and the extent to which items that do not contain the attended features are attenuated. The centroid-judgment paradigm enables quick, precise measurements of such human perceptual attention filters, analogous to transmission measurements of photographic color filters. Subjects use a mouse to locate the centroid—the center of gravity—of a briefly displayed cloud of dots and receive precise feedback. A subset of dots is distinguished by some characteristic, such as a different color, and subjects judge the centroid of only the distinguished subset (e.g., dots of a particular color). The analysis efficiently determines the precise weight in the judged centroid of dots of every color in the display (i.e., the attention filter for the particular attended color in that context). We report 32 attention filters for single colors. Attention filters that discriminate one saturated hue from among seven other equiluminant distractor hues are extraordinarily selective, achieving attended/unattended weight ratios >20:1. Attention filters for selecting a color that differs in saturation or lightness from distractors are much less selective than attention filters for hue (given equal discriminability of the colors), and their filter selectivities are proportional to the discriminability distance of neighboring colors, whereas in the same range hue attention-filter selectivity is virtually independent of discriminabilty. PMID:27791040

  18. Rectifier Filters

    Directory of Open Access Journals (Sweden)

    Y. A. Bladyko

    2010-01-01

    Full Text Available The paper contains definition of a smoothing factor which is suitable for any rectifier filter. The formulae of complex smoothing factors have been developed for simple and complex passive filters. The paper shows conditions for application of calculation formulae and filters

  19. Arbitrary-step randomly delayed robust filter with application to boost phase tracking

    Science.gov (United States)

    Qin, Wutao; Wang, Xiaogang; Bai, Yuliang; Cui, Naigang

    2018-04-01

    The conventional filters such as extended Kalman filter, unscented Kalman filter and cubature Kalman filter assume that the measurement is available in real-time and the measurement noise is Gaussian white noise. But in practice, both two assumptions are invalid. To solve this problem, a novel algorithm is proposed by taking the following four steps. At first, the measurement model is modified by the Bernoulli random variables to describe the random delay. Then, the expression of predicted measurement and covariance are reformulated, which could get rid of the restriction that the maximum number of delay must be one or two and the assumption that probabilities of Bernoulli random variables taking the value one are equal. Next, the arbitrary-step randomly delayed high-degree cubature Kalman filter is derived based on the 5th-degree spherical-radial rule and the reformulated expressions. Finally, the arbitrary-step randomly delayed high-degree cubature Kalman filter is modified to the arbitrary-step randomly delayed high-degree cubature Huber-based filter based on the Huber technique, which is essentially an M-estimator. Therefore, the proposed filter is not only robust to the randomly delayed measurements, but robust to the glint noise. The application to the boost phase tracking example demonstrate the superiority of the proposed algorithms.

  20. On simplified application of multidimensional Savitzky-Golay filters and differentiators

    Science.gov (United States)

    Shekhar, Chandra

    2016-02-01

    I propose a simplified approach for multidimensional Savitzky-Golay filtering, to enable its fast and easy implementation in scientific and engineering applications. The proposed method, which is derived from a generalized framework laid out by Thornley (D. J. Thornley, "Novel anisotropic multidimensional convolution filters for derivative estimation and reconstruction" in Proceedings of International Conference on Signal Processing and Communications, November 2007), first transforms any given multidimensional problem into a unique one, by transforming coordinates of the sampled data nodes to unity-spaced, uniform data nodes, and then performs filtering and calculates partial derivatives on the unity-spaced nodes. It is followed by transporting the calculated derivatives back onto the original data nodes by using the chain rule of differentiation. The burden to performing the most cumbersome task, which is to carry out the filtering and to obtain derivatives on the unity-spaced nodes, is almost eliminated by providing convolution coefficients for a number of convolution kernel sizes and polynomial orders, up to four spatial dimensions. With the availability of the convolution coefficients, the task of filtering at a data node reduces merely to multiplication of two known matrices. Simplified strategies to adequately address near-boundary data nodes and to calculate partial derivatives there are also proposed. Finally, the proposed methodologies are applied to a three-dimensional experimentally obtained data set, which shows that multidimensional Savitzky-Golay filters and differentiators perform well in both the internal and the near-boundary regions of the domain.

  1. Implementational Aspects of the Contourlet Filter Bank and Application in Image Coding

    Directory of Open Access Journals (Sweden)

    Truong T. Nguyen

    2009-02-01

    Full Text Available This paper analyzed the implementational aspects of the contourlet filter bank (or the pyramidal directional filter bank (PDFB, and considered its application in image coding. First, details of the binary tree-structured directional filter bank (DFB are presented, including a modification to minimize the phase delay factor and necessary steps for handling rectangular images. The PDFB is viewed as an overcomplete filter bank, and the directional filters are expressed in terms of polyphase components of the pyramidal filter bank and the conventional DFB. The aliasing effect of the conventional DFB and the Laplacian pyramid to the directional filters is then considered, and the conditions for reducing this effect are presented. The new filters obtained by redesigning the PDFBs satisfying these requirements have much better frequency responses. A hybrid multiscale filter bank consisting of the PDFB at higher scales and the traditional maximally decimated wavelet filter bank at lower scales is constructed to provide a sparse image representation. A novel embedded image coding system based on the image decomposition and a morphological dilation algorithm is then presented. The coding algorithm efficiently clusters the significant coefficients using progressive morphological operations. Context models for arithmetic coding are designed to exploit the intraband dependency and the correlation existing among the neighboring directional subbands. Experimental results show that the proposed coding algorithm outperforms the current state-of-the-art wavelet-based coders, such as JPEG2000, for images with directional features.

  2. An Improved Filtering Method for Quantum Color Image in Frequency Domain

    Science.gov (United States)

    Li, Panchi; Xiao, Hong

    2018-01-01

    In this paper we investigate the use of quantum Fourier transform (QFT) in the field of image processing. We consider QFT-based color image filtering operations and their applications in image smoothing, sharpening, and selective filtering using quantum frequency domain filters. The underlying principle used for constructing the proposed quantum filters is to use the principle of the quantum Oracle to implement the filter function. Compared with the existing methods, our method is not only suitable for color images, but also can flexibly design the notch filters. We provide the quantum circuit that implements the filtering task and present the results of several simulation experiments on color images. The major advantages of the quantum frequency filtering lies in the exploitation of the efficient implementation of the quantum Fourier transform.

  3. Implementation and Performance of the Event Filter Muon Selection for the ATLAS experiment at LHC

    CERN Document Server

    Ventura, A; Assamagan, Ketevi A; Baines, J T M; Bee, C P; Bellomo, M; Biglietti, M; Bogaerts, J A C; Boisvert, V; Bosman, M; Carlino, G; Caron, B; Casado, M P; Cataldi, G; Cavalli, D; Cervetto, M; Comune, G; Conde-Muíño, P; Conventi, F; De Santo, A; De Seixas, J M; Díaz-Gómez, M; Di Mattia, A; Dos Anjos, A; Dosil, M; Ellis, Nick; Emeliyanov, D; Epp, B; Falciano, S; Farilla, A; George, S; Ghete, V M; González, S; Grothe, M; Kabana, S; Khomich, A; Kilvington, G; Konstantinidis, N P; Kootzw, A; Lowe, A; Luminari, L; Maeno, T; Masik, J; Meessen, C; Mello, A G; Merino, G; Moore, R; Morettini, P; Negri, A; Nikitin, N V; Nisati, A; Padilla, C; Panikashvili, N; Parodi, F; Pérez-Réale, V; Pinfold, J L; Pinto, P; Primavera, M; Qian, Z; Resconi, S; Rosati, S; Sánchez, C; Santamarina-Rios, C; Scannicchio, D A; Schiavi, C; Segura, E; Sivoklokov, S Yu; Soluk, R A; Stefanidis, E; Sushkov, S; Sutton, M; Tapprogge, Stefan; Thomas, E; Touchard, F; Venda-Pinto, B; Vercesi, V; Werner, P; 2004 IEEE Nuclear Science Symposium And Medical Imaging Conference

    2005-01-01

    The ATLAS Trigger system is composed of three levels: an initial hardware trigger level (LVL1) followed by two software-based stages (LVL2 trigger and Event Filter) included in the High Level Trigger (HLT) and implemented on processor farms. The LVL2 trigger starts from LVL1 information concerning pointers to restricted so-called Regions of Interest (ROI) and performs event selection by means of optimized algorithms. If the LVL2 is passed, the full event is built and sent to the Event Filter (EF) algorithms for further selection and classification. After that, events are finally collected and put into mass storage for subsequent physics analysis. Even if many differences arise in the requirements and in the interfaces between the two HLT stages, they have a coherent approach to event selection. Therefore, the design of a common core software framework has been implemented in order to allow the HLT architecture to be flexible to changes (background conditions, luminosity, description of the detector, etc.). Al...

  4. Neutron Beam Filters

    International Nuclear Information System (INIS)

    Adib, M.

    2011-01-01

    The purpose of filters is to transmit neutrons with selected energy, while remove unwanted ones from the incident neutron beam. This reduces the background, and the number of spurious. The types of commonly used now-a-day neutron filters and their properties are discussed in the present work. There are three major types of neutron filters. The first type is filter of selective thermal neutron. It transmits the main reflected neutrons from a crystal monochromate, while reject the higher order contaminations accompanying the main one. Beams coming from the moderator always contain unwanted radiation like fast neutrons and gamma-rays which contribute to experimental background and to the biological hazard potential. Such filter type is called filter of whole thermal neutron spectrum. The third filter type is it transmits neutrons with energies in the resonance energy range (En . 1 KeV). The main idea of such neutron filter technique is the use of large quantities of a certain material which have the deep interference minima in its total neutron cross-section. By transmitting reactor neutrons through bulk layer of such material, one can obtain the quasimonochromatic neutron lines instead of white reactor spectrum.

  5. Applications of Kalman filters based on non-linear functions to numerical weather predictions

    Directory of Open Access Journals (Sweden)

    G. Galanis

    2006-10-01

    Full Text Available This paper investigates the use of non-linear functions in classical Kalman filter algorithms on the improvement of regional weather forecasts. The main aim is the implementation of non linear polynomial mappings in a usual linear Kalman filter in order to simulate better non linear problems in numerical weather prediction. In addition, the optimal order of the polynomials applied for such a filter is identified. This work is based on observations and corresponding numerical weather predictions of two meteorological parameters characterized by essential differences in their evolution in time, namely, air temperature and wind speed. It is shown that in both cases, a polynomial of low order is adequate for eliminating any systematic error, while higher order functions lead to instabilities in the filtered results having, at the same time, trivial contribution to the sensitivity of the filter. It is further demonstrated that the filter is independent of the time period and the geographic location of application.

  6. Applications of Kalman filters based on non-linear functions to numerical weather predictions

    Directory of Open Access Journals (Sweden)

    G. Galanis

    2006-10-01

    Full Text Available This paper investigates the use of non-linear functions in classical Kalman filter algorithms on the improvement of regional weather forecasts. The main aim is the implementation of non linear polynomial mappings in a usual linear Kalman filter in order to simulate better non linear problems in numerical weather prediction. In addition, the optimal order of the polynomials applied for such a filter is identified. This work is based on observations and corresponding numerical weather predictions of two meteorological parameters characterized by essential differences in their evolution in time, namely, air temperature and wind speed. It is shown that in both cases, a polynomial of low order is adequate for eliminating any systematic error, while higher order functions lead to instabilities in the filtered results having, at the same time, trivial contribution to the sensitivity of the filter. It is further demonstrated that the filter is independent of the time period and the geographic location of application.

  7. A mobile and web application-based recommendation system using color quantization and collaborative filtering

    OpenAIRE

    KAYA, FİDAN; YILDIZ, GÜREL; KAVAK, ADNAN

    2015-01-01

    In this paper, a recommendation system based on a mobile and web application is proposed for indoor decoration. The main contribution of this work is to apply two-stage filtering using linear matching and collaborative filtering to make recommendations. In the mobile application part, the image of the medium captured by a mobile phone is analyzed using color quantization methods, and these color analysis results along with other user-defined parameters such as height, width, and type of the p...

  8. Optimizing spatial patterns with sparse filter bands for motor-imagery based brain-computer interface.

    Science.gov (United States)

    Zhang, Yu; Zhou, Guoxu; Jin, Jing; Wang, Xingyu; Cichocki, Andrzej

    2015-11-30

    Common spatial pattern (CSP) has been most popularly applied to motor-imagery (MI) feature extraction for classification in brain-computer interface (BCI) application. Successful application of CSP depends on the filter band selection to a large degree. However, the most proper band is typically subject-specific and can hardly be determined manually. This study proposes a sparse filter band common spatial pattern (SFBCSP) for optimizing the spatial patterns. SFBCSP estimates CSP features on multiple signals that are filtered from raw EEG data at a set of overlapping bands. The filter bands that result in significant CSP features are then selected in a supervised way by exploiting sparse regression. A support vector machine (SVM) is implemented on the selected features for MI classification. Two public EEG datasets (BCI Competition III dataset IVa and BCI Competition IV IIb) are used to validate the proposed SFBCSP method. Experimental results demonstrate that SFBCSP help improve the classification performance of MI. The optimized spatial patterns by SFBCSP give overall better MI classification accuracy in comparison with several competing methods. The proposed SFBCSP is a potential method for improving the performance of MI-based BCI. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Passband switchable microwave photonic multiband filter

    Science.gov (United States)

    Ge, Jia; Fok, Mable P.

    2015-01-01

    A reconfigurable microwave photonic (MWP) multiband filter with selectable and switchable passbands is proposed and experimentally demonstrated, with a maximum of 12 simultaneous passbands evenly distributed from 0 to 10 GHz. The scheme is based on the generation of tunable optical comb lines using a two-stage Lyot loop filter, such that various filter tap spacings and spectral combinations are obtained for the configuration of the MWP filter. Through polarization state adjustment inside the Lyot loop filter, an optical frequency comb with 12 different comb spacings is achieved, which corresponds to a MWP filter with 12 selectable passbands. Center frequencies of the filter passbands are switchable, while the number of simultaneous passbands is tunable from 1 to 12. Furthermore, the MWP multiband filter can either work as an all-block, single-band or multiband filter with various passband combinations, which provide exceptional operation flexibility. All the passbands have over 30 dB sidelobe suppression and 3-dB bandwidth of 200 MHz, providing good filter selectivity. PMID:26521693

  10. Automatic vibration mode selection and excitation; combining modal filtering with autoresonance

    Science.gov (United States)

    Davis, Solomon; Bucher, Izhak

    2018-02-01

    Autoresonance is a well-known nonlinear feedback method used for automatically exciting a system at its natural frequency. Though highly effective in exciting single degree of freedom systems, in its simplest form it lacks a mechanism for choosing the mode of excitation when more than one is present. In this case a single mode will be automatically excited, but this mode cannot be chosen or changed. In this paper a new method for automatically exciting a general second-order system at any desired natural frequency using Autoresonance is proposed. The article begins by deriving a concise expression for the frequency of the limit cycle induced by an Autoresonance feedback loop enclosed on the system. The expression is based on modal decomposition, and provides valuable insight into the behavior of a system controlled in this way. With this expression, a method for selecting and exciting a desired mode naturally follows by combining Autoresonance with Modal Filtering. By taking various linear combinations of the sensor signals, by orthogonality one can "filter out" all the unwanted modes effectively. The desired mode's natural frequency is then automatically reflected in the limit cycle. In experiment the technique has proven extremely robust, even if the amplitude of the desired mode is significantly smaller than the others and the modal filters are greatly inaccurate.

  11. The clinical application of inferior vena cava filters: the essential point is to use it appropriately

    International Nuclear Information System (INIS)

    Yang Zhengqiang; Li Linsun

    2011-01-01

    This paper aims to describe the history and current situation of the clinical application of inferior venal cava (IVC) filters. As there is a possible tendency for physicians to abuse the IVC filters in clinical practice, the authors think that it is necessary now to judge the advantages and disadvantages of the use of IVC filters again and to conscientiously reconsider what kind of patients are suitable for IVC filter implantation. In this article, the proper characteristics that an ideal IVC filter should possess are introduced, the indications for IVC filter implantation are discussed and the complications occurred after IVC filter implantation are analyzed. The authors believe that the retrievable filters will gradually substitute for permanent filters, for this reason, studies concerning IVC retrievable filters will become the hot spots of research in the near future. (authors)

  12. Polarization-Insensitive Tunable Optical Filters based on Liquid Crystal Polarization Gratings

    Science.gov (United States)

    Nicolescu, Elena

    Tunable optical filters are widely used for a variety of applications including spectroscopy, optical communication networks, remote sensing, and biomedical imaging and diagnostics. All of these application areas can greatly benefit from improvements in the key characteristics of the tunable optical filters embedded in them. Some of these key parameters include peak transmittance, bandwidth, tuning range, and transition width. In recent years research efforts have also focused on miniaturizing tunable optical filters into physically small packages for compact portable spectroscopy and hyperspectral imaging applications such as real-time medical diagnostics and defense applications. However, it is important that miniaturization not have a detrimental effect on filter performance. The overarching theme of this dissertation is to explore novel configurations of Polarization Gratings (PGs) as simple, low-cost, polarization-insensitive alternatives to conventional optical filtering technologies for applications including hyperspectral imaging and telecommunications. We approach this goal from several directions with a combination of theory and experimental demonstration leading to, in our opinion, a significant contribution to the field. We present three classes of tunable optical filters, the first of which is an angle-filtering scheme where the stop-band wavelengths are redirected off axis and the passband is transmitted on-axis. This is achieved using a stacked configuration of polarization gratings of various thicknesses. To improve this class of filter, we also introduce a novel optical element, the Bilayer Polarization Grating, exhibiting unique optical properties and demonstrating complex anchoring conditions with high quality. The second class of optical filter is analogous to a Lyot filter, utilizing stacks of static or tunable waveplates sandwiched with polarizing elements. However, we introduce a new configuration using PGs and static waveplates to replace

  13. Smart Mirrors for Photorefractive Control of Light with Tim Bunning, RX - Agile Filters Application

    Science.gov (United States)

    2016-11-08

    AFRL-AFOSR-UK-TR-2017-0008 Smart Mirrors for photorefractive control of light with Tim Bunning, RX-- Agile filters application Luciano De Sio...DATE (DD-MM-YYYY)      10-02-2017 2. REPORT TYPE Final 3. DATES COVERED (From - To) 01 Feb 2014 to 31 Jan 2016 4. TITLE AND SUBTITLE Smart Mirrors for...photorefractive control of light with Tim Bunning, RX-- Agile filters application 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-14-1-0050 5c.  PROGRAM

  14. Application Of Kalman Filter In Navigation Process Of Automated Guided Vehicles

    Directory of Open Access Journals (Sweden)

    Śmieszek Mirosław

    2015-09-01

    Full Text Available In the paper an example of application of the Kalman filtering in the navigation process of automatically guided vehicles was presented. The basis for determining the position of automatically guided vehicles is odometry – the navigation calculation. This method of determining the position of a vehicle is affected by many errors. In order to eliminate these errors, in modern vehicles additional systems to increase accuracy in determining the position of a vehicle are used. In the latest navigation systems during route and position adjustments the probabilistic methods are used. The most frequently applied are Kalman filters.

  15. Application of Kalman Filter for Estimating a Process Disturbance in a Building Space

    Directory of Open Access Journals (Sweden)

    Deuk-Woo Kim

    2017-10-01

    Full Text Available This paper addresses an application of the Kalman filter for estimating a time-varying process disturbance in a building space. The process disturbance means a synthetic composite of heat gains and losses caused by internal heat sources e.g., people, lights, equipment, and airflows. It is difficult to measure and quantify the internal heat sources and airflows due to their dynamic nature and time-lag impact on indoor environment. To address this issue, a Kalman filter estimation method was used in this study. The Kalman filtering is well suited for situations when state variables of interest cannot be measured. Based on virtual and real experiments conducted in this study, it was found that the Kalman filter can be used to estimate the time-varying process disturbance in a building space.

  16. Helical CT for lung-cancer screening. 3. Fundamental study for ultra-low-dose CT by application of small tube current and filter

    International Nuclear Information System (INIS)

    Itoh, Shigeki; Koyama, Shuji; Tusaka, Masatoshi; Maekoshi, Hisashi; Satake, Hiroko; Ishigaki, Takeo.

    1996-01-01

    In order to develop ultra-low-dose helical CT for lung cancer screening, the effect of reduction of the tube current to 20 mA and application of a 10 mm thick aluminium filter upon radiation dose and image quality was evaluated with a phantom. Exposure dose at the center of a gantry and absorbed dose at the center of an acrylic phantom at 20 mA with the filter were 15% and 29% of the dose at 50 mA without the filter, respectively. For reduction of absorbed dose, reduction of the tube current was more useful than application of the filter. Image noise at 20 mA with the filter was double that at 50 mA without the filter. Neither reduction of the tube current nor application of the filter changed full width at half maximum on section sensitivity of the Z-axis. Although reduction of the tube current did not affect the difference in CT values between an acrylic sphere and styroform, application of the filter caused a reduction of 4.5% in the difference in CT values. Neither reduction of the tube current nor application of the filter affected the contrast resolution of the high-contrast phantom; however, that of the low-contrast phantom deteriorated. Although improvement of the filter and evaluation of clinical images are necessary, reduction of the tube current to 20 mA and application of the aluminium filter appear to be a promising method for ultra-low-dose helical CT of the lung. (author)

  17. Depth Filters Containing Diatomite Achieve More Efficient Particle Retention than Filters Solely Containing Cellulose Fibers.

    Science.gov (United States)

    Buyel, Johannes F; Gruchow, Hannah M; Fischer, Rainer

    2015-01-01

    The clarification of biological feed stocks during the production of biopharmaceutical proteins is challenging when large quantities of particles must be removed, e.g., when processing crude plant extracts. Single-use depth filters are often preferred for clarification because they are simple to integrate and have a good safety profile. However, the combination of filter layers must be optimized in terms of nominal retention ratings to account for the unique particle size distribution in each feed stock. We have recently shown that predictive models can facilitate filter screening and the selection of appropriate filter layers. Here we expand our previous study by testing several filters with different retention ratings. The filters typically contain diatomite to facilitate the removal of fine particles. However, diatomite can interfere with the recovery of large biopharmaceutical molecules such as virus-like particles and aggregated proteins. Therefore, we also tested filtration devices composed solely of cellulose fibers and cohesive resin. The capacities of both filter types varied from 10 to 50 L m(-2) when challenged with tobacco leaf extracts, but the filtrate turbidity was ~500-fold lower (~3.5 NTU) when diatomite filters were used. We also tested pre-coat filtration with dispersed diatomite, which achieved capacities of up to 120 L m(-2) with turbidities of ~100 NTU using bulk plant extracts, and in contrast to the other depth filters did not require an upstream bag filter. Single pre-coat filtration devices can thus replace combinations of bag and depth filters to simplify the processing of plant extracts, potentially saving on time, labor and consumables. The protein concentrations of TSP, DsRed and antibody 2G12 were not affected by pre-coat filtration, indicating its general applicability during the manufacture of plant-derived biopharmaceutical proteins.

  18. Depth filters containing diatomite achieve more efficient particle retention than filters solely containing cellulose fibers

    Directory of Open Access Journals (Sweden)

    Johannes Felix Buyel

    2015-12-01

    Full Text Available The clarification of biological feed stocks during the production of biopharmaceutical proteins is challenging when large quantities of particles must be removed, e.g. when processing crude plant extracts. Single-use depth filters are often preferred for clarification because they are simple to integrate and have a good safety profile. However, the combination of filter layers must be optimized in terms of nominal retention ratings to account for the unique particle size distribution in each feed stock. We have recently shown that predictive models can facilitate filter screening and the selection of appropriate filter layers. Here we expand our previous study by testing several filters with different retention ratings. The filters typically contain diatomite to facilitate the removal of fine particles. However, diatomite can interfere with the recovery of large biopharmaceutical molecules such as virus-like particles and aggregated proteins. Therefore, we also tested filtration devices composed solely of cellulose fibers and cohesive resin. The capacities of both filter types varied from 10 to 50 L m-2 when challenged with tobacco leaf extracts, but the filtrate turbidity was ~500-fold lower (~3.5 NTU when diatomite filters were used. We also tested pre coat filtration with dispersed diatomite, which achieved capacities of up to 120 L m-2 with turbidities of ~100 NTU using bulk plant extracts, and in contrast to the other depth filters did not require an upstream bag filter. Single pre-coat filtration devices can thus replace combinations of bag and depth filters to simplify the processing of plant extracts, potentially saving on time, labor and consumables. The protein concentrations of TSP, DsRed and antibody 2G12 were not affected by pre-coat filtration, indicating its general applicability during the manufacture of plant-derived biopharmaceutical proteins.

  19. Non-specific filtering of beta-distributed data.

    Science.gov (United States)

    Wang, Xinhui; Laird, Peter W; Hinoue, Toshinori; Groshen, Susan; Siegmund, Kimberly D

    2014-06-19

    Non-specific feature selection is a dimension reduction procedure performed prior to cluster analysis of high dimensional molecular data. Not all measured features are expected to show biological variation, so only the most varying are selected for analysis. In DNA methylation studies, DNA methylation is measured as a proportion, bounded between 0 and 1, with variance a function of the mean. Filtering on standard deviation biases the selection of probes to those with mean values near 0.5. We explore the effect this has on clustering, and develop alternate filter methods that utilize a variance stabilizing transformation for Beta distributed data and do not share this bias. We compared results for 11 different non-specific filters on eight Infinium HumanMethylation data sets, selected to span a variety of biological conditions. We found that for data sets having a small fraction of samples showing abnormal methylation of a subset of normally unmethylated CpGs, a characteristic of the CpG island methylator phenotype in cancer, a novel filter statistic that utilized a variance-stabilizing transformation for Beta distributed data outperformed the common filter of using standard deviation of the DNA methylation proportion, or its log-transformed M-value, in its ability to detect the cancer subtype in a cluster analysis. However, the standard deviation filter always performed among the best for distinguishing subgroups of normal tissue. The novel filter and standard deviation filter tended to favour features in different genome contexts; for the same data set, the novel filter always selected more features from CpG island promoters and the standard deviation filter always selected more features from non-CpG island intergenic regions. Interestingly, despite selecting largely non-overlapping sets of features, the two filters did find sample subsets that overlapped for some real data sets. We found two different filter statistics that tended to prioritize features with

  20. Reduced size dual band pass filters for RFID applications with excellent bandpass/bandstop characteristics

    Science.gov (United States)

    Abdalla, M. A.; Choudhary, D. Kumar; Chaudhary, R. Kumar

    2018-02-01

    This paper presents the design of two reduced size dual-band metamaterial bandpass filters and its simulation followed by measurements of proposed filters. These filters are supporting different frequency bands and primarily could be utilize in radio frequency identification (RFID) application. The filter includes three cells in which two are symmetrical and both inductively coupled with the third cell which is present in between them. In the proposed designs, three different metamaterial composite right/left handed (CRLH) cell resonators have been analysed for compactness. The CRLH cell consists of an interdigital capacitor, a stub/meander line/spiral inductor and a via to connect the top of the structure and ground plane. Finally, the proposed dual band bandpass filters (using meander line and spiral inductor) are showing size reduction by 65% and 50% (with 25% operating frequency reduction), respectively, in comparison with reference filter using stub inductor. More than 30 dB attenuation has been achieved between the two passbands.

  1. Application of the Trend Filtering Algorithm for Photometric Time Series Data

    Science.gov (United States)

    Gopalan, Giri; Plavchan, Peter; van Eyken, Julian; Ciardi, David; von Braun, Kaspar; Kane, Stephen R.

    2016-08-01

    Detecting transient light curves (e.g., transiting planets) requires high-precision data, and thus it is important to effectively filter systematic trends affecting ground-based wide-field surveys. We apply an implementation of the Trend Filtering Algorithm (TFA) to the 2MASS calibration catalog and select Palomar Transient Factory (PTF) photometric time series data. TFA is successful at reducing the overall dispersion of light curves, however, it may over-filter intrinsic variables and increase “instantaneous” dispersion when a template set is not judiciously chosen. In an attempt to rectify these issues we modify the original TFA from the literature by including measurement uncertainties in its computation, including ancillary data correlated with noise, and algorithmically selecting a template set using clustering algorithms as suggested by various authors. This approach may be particularly useful for appropriately accounting for variable photometric precision surveys and/or combined data sets. In summary, our contributions are to provide a MATLAB software implementation of TFA and a number of modifications tested on synthetics and real data, summarize the performance of TFA and various modifications on real ground-based data sets (2MASS and PTF), and assess the efficacy of TFA and modifications using synthetic light curve tests consisting of transiting and sinusoidal variables. While the transiting variables test indicates that these modifications confer no advantage to transit detection, the sinusoidal variables test indicates potential improvements in detection accuracy.

  2. Metamaterial based embedded acoustic filters for structural applications

    Directory of Open Access Journals (Sweden)

    Hongfei Zhu

    2013-09-01

    Full Text Available We investigate the use of acoustic metamaterials to design structural materials with frequency selective characteristics. By exploiting the properties of acoustic metamaterials, we tailor the propagation characteristics of the host structure to effectively filter the constitutive harmonics of an incoming broadband excitation. The design approach exploits the characteristics of acoustic waveguides coupled by cavity modes. By properly designing the cavity we can tune the corresponding resonant mode and, therefore, coupling the waveguide at a prescribed frequency. This structural design can open new directions to develop broadband passive vibrations and noise control systems fully integrated in structural components.

  3. Research and Application on Fractional-Order Darwinian PSO Based Adaptive Extended Kalman Filtering Algorithm

    Directory of Open Access Journals (Sweden)

    Qiguang Zhu

    2014-05-01

    Full Text Available To resolve the difficulty in establishing accurate priori noise model for the extended Kalman filtering algorithm, propose the fractional-order Darwinian particle swarm optimization (PSO algorithm has been proposed and introduced into the fuzzy adaptive extended Kalman filtering algorithm. The natural selection method has been adopted to improve the standard particle swarm optimization algorithm, which enhanced the diversity of particles and avoided the premature. In addition, the fractional calculus has been used to improve the evolution speed of particles. The PSO algorithm after improved has been applied to train fuzzy adaptive extended Kalman filter and achieve the simultaneous localization and mapping. The simulation results have shown that compared with the geese particle swarm optimization training of fuzzy adaptive extended Kalman filter localization and mapping algorithm, has been greatly improved in terms of localization and mapping.

  4. Radiant zone heated particulate filter

    Science.gov (United States)

    Gonze, Eugene V [Pinckney, MI

    2011-12-27

    A system includes a particulate matter (PM) filter including an upstream end for receiving exhaust gas and a downstream end. A radiant zoned heater includes N zones, where N is an integer greater than one, wherein each of the N zones includes M sub-zones, where M is an integer greater than or equal to one. A control module selectively activates at least a selected one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones, restricts exhaust gas flow in a portion of the PM filter that corresponds to the selected one of the N zones, and deactivates non-selected ones of the N zones.

  5. The spectrotemporal filter mechanism of auditory selective attention

    Science.gov (United States)

    Lakatos, Peter; Musacchia, Gabriella; O’Connell, Monica N.; Falchier, Arnaud Y.; Javitt, Daniel C.; Schroeder, Charles E.

    2013-01-01

    SUMMARY While we have convincing evidence that attention to auditory stimuli modulates neuronal responses at or before the level of primary auditory cortex (A1), the underlying physiological mechanisms are unknown. We found that attending to rhythmic auditory streams resulted in the entrainment of ongoing oscillatory activity reflecting rhythmic excitability fluctuations in A1. Strikingly, while the rhythm of the entrained oscillations in A1 neuronal ensembles reflected the temporal structure of the attended stream, the phase depended on the attended frequency content. Counter-phase entrainment across differently tuned A1 regions resulted in both the amplification and sharpening of responses at attended time points, in essence acting as a spectrotemporal filter mechanism. Our data suggest that selective attention generates a dynamically evolving model of attended auditory stimulus streams in the form of modulatory subthreshold oscillations across tonotopically organized neuronal ensembles in A1 that enhances the representation of attended stimuli. PMID:23439126

  6. Selected solutions and design features from the design of remotely handled filters and the technology of remote filter handling. Previous operating experience with these components in the PASSAT facility

    International Nuclear Information System (INIS)

    Jannakos, K.; Lange, W.; Potgeter, G.; Furrer, J.; Wilhelm, J.G.

    1981-01-01

    In a prototype filter offgas cleaning system for reprocessing plants (PASSAT) built at the Karlsruhe Nuclear Research Center a fullscale filter cell with remotely handled filters for aerosol and iodine removal and the corresponding remote handling systems for exchange, bagging out, packaging and disposal of spent filter elements has been installed and run in trial operation since July 1978. The filters and the replacement techniques have been tested for the past two years or so and so far have always worked satisfactory over the test period involving some 150 replacement events. Neither wear nor corrosion phenomena were found in the filter housings and the replacement systems. The seals and clamping devices were selected so that during operation the prescribed leak rates of -3 Torr l/s were always maintained on the filter lid, the seat of the filter element and the cell lock. The total clamping loads for the filter element and the filter lid amount to approx. 20 kN. The force necessary to separate the filter element from the filter housing is approx. 3.5 kN. No ruptures of seals or gaskets were to be detected. The design of the filters and of the handling systems has been found satisfactorily in the cold test operation so far and can be recommended for use in nuclear facilities. In all experiments conducted until now PASSAT has worked without any failure. All operating data required in the specifications were met in the test period. The maximum pressure loss in the system with loaded filter elements amounts to some 3000 mm of water. After operation with iodine and NO/sub x/, plant components exposed to 100% relative humidity and condensate showed corrosion

  7. Application of design for six sigma methodology on portable water filter that uses membrane filtration system: A preliminary study

    Science.gov (United States)

    Fahrul Hassan, Mohd; Jusoh, Suhada; Zaini Yunos, Muhamad; Arifin, A. M. T.; Ismail, A. E.; Rasidi Ibrahim, M.; Zulafif Rahim, M.

    2017-09-01

    Portable water filter has grown significantly in recent years. The use of water bottles as a water drink stuff using hand pump water filtration unit has been suggested to replace water bottled during outdoor recreational activities and for emergency supplies. However, quality of water still the issue related to contaminated water due to the residual waste plants, bacteria, and so on. Based on these issues, the study was carried out to design a portable water filter that uses membrane filtration system by applying Design for Six Sigma. Design for Six Sigma methodology consists of five stages which is Define, Measure, Analyze, Design and Verify. There were several tools have been used in each stage in order to come out with a specific objective. In the Define stage, questionnaire approach was used to identify the needs of portable water filter in the future from potential users. Next, Quality Function Deployment (QFD) tool was used in the Measure stage to measure the users’ needs into engineering characteristics. Based on the information in the Measure stage, morphological chart and weighted decision matrix tools were used in the Analyze stage. This stage performed several activities including concept generation and selection. Once the selection of the final concept completed, detail drawing was made in the Design stage. Then, prototype was developed in the Verify stage to conduct proof-of-concept testing. The results that obtained from each stage have been reported in this paper. From this study, it can be concluded that the application of Design for Six Sigma in designing a future portable water filter that uses membrane filtration system is a good start in looking for a new alternative concept with a completed supporting document.

  8. Design and application of finite impulse response digital filters

    International Nuclear Information System (INIS)

    Miller, T.R.; Sampathkumaran, K.S.

    1982-01-01

    The finite impulse response (FIR) digital filter is a spatial domain filter with a frequency domain representation. The theory of the FIR filter is presented and techniques are described for designing FIR filters with known frequency response characteristics. Rational design principles are emphasized based on characterization of the imaging system using the modulation transfer function and physical properties of the imaged objects. Bandpass, Wiener, and low-pass filters were designed and applied to 201 Tl myocardial images. The bandpass filter eliminates low-frequency image components that represent background activity and high-frequency components due to noise. The Wiener, or minimum mean square error filter 'sharpens' the image while also reducing noise. The Wiener filter illustrates the power of the FIR technique to design filters with any desired frequency reponse. The low-pass filter, while of relative limited use, is presented to compare it with a popular elementary 'smoothing' filter. (orig.)

  9. Waste to wealth concept: Disposable RGO filter paper for flexible temperature sensor applications

    Science.gov (United States)

    Neella, Nagarjuna; Kedambaimoole, Vaishakh; Gaddam, Venkateswarlu; Nayak, M. M.; Rajanna, K.

    2018-04-01

    We have developed a flexible reduced graphene oxide (RGO) temperature sensor on filter paper based cellulose substrate using vacuum filtration method. One of the most commonly used synthesized methods for RGO thin films is vacuum filtration process. It has several advantages such as simple operation and good controllability. The structural analysis was carried out by FE-SEM, in which the surface morphology images confirm the formation of RGO nanostructures on the filter paper substrate. It was observed that the pores of the filter paper were completely filled with the RGO material during the filtration process, subsequently the formation of continuous RGO thin films. As a results, the RGO films exhibits a piezoresistive property. The resulted RGO based films on the filter paper reveals the semiconducting behavior having sensitivity of 0.278 Ω /°C and negative temperature coefficient (NTC) about -0.00254 Ω/ Ω / °C. Thus, we demonstrate a simplified way for the fabrication of RGO films on filter paper that possesses better and easier measurable macroscopic electrical properties. Our approach is for easy way of electronics, cost-effective and environment friendly fabrication route for flexible conducting graphene films on filter paper. This will enable for the potential applications in flexible electronics in various fields including biomedical, automobile and aerospace engineering.

  10. Gating transitions in the selectivity filter region of a sodium channel are coupled to the domain IV voltage sensor.

    Science.gov (United States)

    Capes, Deborah L; Arcisio-Miranda, Manoel; Jarecki, Brian W; French, Robert J; Chanda, Baron

    2012-02-14

    Voltage-dependent ion channels are crucial for generation and propagation of electrical activity in biological systems. The primary mechanism for voltage transduction in these proteins involves the movement of a voltage-sensing domain (D), which opens a gate located on the cytoplasmic side. A distinct conformational change in the selectivity filter near the extracellular side has been implicated in slow inactivation gating, which is important for spike frequency adaptation in neural circuits. However, it remains an open question whether gating transitions in the selectivity filter region are also actuated by voltage sensors. Here, we examine conformational coupling between each of the four voltage sensors and the outer pore of a eukaryotic voltage-dependent sodium channel. The voltage sensors of these sodium channels are not structurally symmetric and exhibit functional specialization. To track the conformational rearrangements of individual voltage-sensing domains, we recorded domain-specific gating pore currents. Our data show that, of the four voltage sensors, only the domain IV voltage sensor is coupled to the conformation of the selectivity filter region of the sodium channel. Trapping the outer pore in a particular conformation with a high-affinity toxin or disulphide crossbridge impedes the return of this voltage sensor to its resting conformation. Our findings directly establish that, in addition to the canonical electromechanical coupling between voltage sensor and inner pore gates of a sodium channel, gating transitions in the selectivity filter region are also coupled to the movement of a voltage sensor. Furthermore, our results also imply that the voltage sensor of domain IV is unique in this linkage and in the ability to initiate slow inactivation in sodium channels.

  11. A Novel Characterization And Application Of PZT Ceramic As A Frequency Filter

    International Nuclear Information System (INIS)

    Fawzy, Y.H.A.; Ashry, H.A.; Soliman, F.A.S.; Swidan, A.M.; Abdelmagid, A.

    2008-01-01

    Nowadays, ceramic filters have become indispensable components in numerous electronic equipment for military and space applications, as well as, commercial ones. So, the present paper is devoted in a trial to shed further light on such new devices. In this concern, a wide frequency range samples, extends from 400 kHz up to 6.5 MHz, were chosen for studying the frequency response and related terminologies, dynamic characteristics, and equivalent circuits and their relation with the elemental composition of the different samples. Also, the filter circuit elements effect on the operation of such devices was investigated

  12. Filter and Filter Bank Design for Image Texture Recognition

    Energy Technology Data Exchange (ETDEWEB)

    Randen, Trygve

    1997-12-31

    The relevance of this thesis to energy and environment lies in its application to remote sensing such as for instance sea floor mapping and seismic pattern recognition. The focus is on the design of two-dimensional filters for feature extraction, segmentation, and classification of digital images with textural content. The features are extracted by filtering with a linear filter and estimating the local energy in the filter response. The thesis gives a review covering broadly most previous approaches to texture feature extraction and continues with proposals of some new techniques. 143 refs., 59 figs., 7 tabs.

  13. Selective Harmonic Virtual Impedance for Voltage Source Inverters with LCL filter in Microgrids

    DEFF Research Database (Denmark)

    Savaghebi, Mehdi; Vasquez, Juan Carlos; Jalilian, Alireza Jalilian

    2012-01-01

    This paper presents a new control approach for voltage source inverters ended with LCL filters for microgrid applications. The control approach consists of voltage and current inner control loops in order to fix the filter capacitor voltage and a virtual impedance loop. The virtual impedance...... is added in order to mitigate the voltage distortion after the output inductor and improve the load sharing among parallel inverters. A general case with a combined voltage harmonic and unbalance distortion is considered. In such a case, voltage distortion is mitigated by inserting capacitive virtual...... impedance for negative sequence of fundamental component as well as positive and negative sequences of main harmonic components. Furthermore, resistive virtual impedances are added at these components in order to provide a proper load sharing and make the overall system more damped. Simulation results...

  14. New Gain Controllable Resistor-less Current-mode First Order Allpass Filter and its Application

    Directory of Open Access Journals (Sweden)

    W. Jaikla

    2012-04-01

    Full Text Available New first order allpass filter (APF in current mode, constructed from 2 CCCCTAs and grounded capacitor, is presented. The current gain and phase shift can be electronically /orthogonally controlled. Low input and high output impedances are achieved which make the circuit to be easily cascaded to the current-mode circuit without additional current buffers. The operation of the proposed filter has been verified through simulation results which confirm the theoretical analysis. The application example as current-mode quadrature oscillator with non-interactive current control for both of oscillation condition and oscillation frequency is included to show the usability of the proposed filter.

  15. Designing an Inverter-based Operational Transconductance Amplifier-capacitor Filter with Low Power Consumption for Biomedical Applications.

    Science.gov (United States)

    Yousefinezhad, Sajad; Kermani, Saeed; Hosseinnia, Saeed

    2018-01-01

    The operational transconductance amplifier-capacitor (OTA-C) filter is one of the best structures for implementing continuous-time filters. It is particularly important to design a universal OTA-C filter capable of generating the desired filter response via a single structure, thus reducing the filter circuit power consumption as well as noise and the occupied space on the electronic chip. In this study, an inverter-based universal OTA-C filter with very low power consumption and acceptable noise was designed with applications in bioelectric and biomedical equipment for recording biomedical signals. The very low power consumption of the proposed filter was achieved through introducing bias in subthreshold MOSFET transistors. The proposed filter is also capable of simultaneously receiving favorable low-, band-, and high-pass filter responses. The performance of the proposed filter was simulated and analyzed via HSPICE software (level 49) and 180 nm complementary metal-oxide-semiconductor technology. The rate of power consumption and noise obtained from simulations are 7.1 nW and 10.18 nA, respectively, so this filter has reduced noise as well as power consumption. The proposed universal OTA-C filter was designed based on the minimum number of transconductance blocks and an inverter circuit by three transconductance blocks (OTA).

  16. The optimal digital filters of sine and cosine transforms for geophysical transient electromagnetic method

    Science.gov (United States)

    Zhao, Yun-wei; Zhu, Zi-qiang; Lu, Guang-yin; Han, Bo

    2018-03-01

    The sine and cosine transforms implemented with digital filters have been used in the Transient electromagnetic methods for a few decades. Kong (2007) proposed a method of obtaining filter coefficients, which are computed in the sample domain by Hankel transform pair. However, the curve shape of Hankel transform pair changes with a parameter, which usually is set to be 1 or 3 in the process of obtaining the digital filter coefficients of sine and cosine transforms. First, this study investigates the influence of the parameter on the digital filter algorithm of sine and cosine transforms based on the digital filter algorithm of Hankel transform and the relationship between the sine, cosine function and the ±1/2 order Bessel function of the first kind. The results show that the selection of the parameter highly influences the precision of digital filter algorithm. Second, upon the optimal selection of the parameter, it is found that an optimal sampling interval s also exists to achieve the best precision of digital filter algorithm. Finally, this study proposes four groups of sine and cosine transform digital filter coefficients with different length, which may help to develop the digital filter algorithm of sine and cosine transforms, and promote its application.

  17. Application Filters for TCP/IP Industrial Automation Protocols

    Science.gov (United States)

    Batista, Aguinaldo B.; Kobayashi, Tiago H.; Medeiros, João Paulo S.; Brito, Agostinho M.; Motta Pires, Paulo S.

    The use of firewalls is a common approach usually meant to secure Automation Technology (AT) from Information Technology (TI) networks. This work proposes a filtering system for TCP/IP-based automation networks in which only certain kind of industrial traffic is permitted. All network traffic which does not conform with a proper industrial protocol pattern or with specific rules for its actions is supposed to be abnormal and must be blocked. As a case study, we developed a seventh layer firewall application with the ability of blocking spurious traffic, using an IP packet queueing engine and a regular expression library.

  18. Nonlinear filtering for LIDAR signal processing

    Directory of Open Access Journals (Sweden)

    D. G. Lainiotis

    1996-01-01

    Full Text Available LIDAR (Laser Integrated Radar is an engineering problem of great practical importance in environmental monitoring sciences. Signal processing for LIDAR applications involves highly nonlinear models and consequently nonlinear filtering. Optimal nonlinear filters, however, are practically unrealizable. In this paper, the Lainiotis's multi-model partitioning methodology and the related approximate but effective nonlinear filtering algorithms are reviewed and applied to LIDAR signal processing. Extensive simulation and performance evaluation of the multi-model partitioning approach and its application to LIDAR signal processing shows that the nonlinear partitioning methods are very effective and significantly superior to the nonlinear extended Kalman filter (EKF, which has been the standard nonlinear filter in past engineering applications.

  19. Application of wavelet-based multi-model Kalman filters to real-time flood forecasting

    Science.gov (United States)

    Chou, Chien-Ming; Wang, Ru-Yih

    2004-04-01

    This paper presents the application of a multimodel method using a wavelet-based Kalman filter (WKF) bank to simultaneously estimate decomposed state variables and unknown parameters for real-time flood forecasting. Applying the Haar wavelet transform alters the state vector and input vector of the state space. In this way, an overall detail plus approximation describes each new state vector and input vector, which allows the WKF to simultaneously estimate and decompose state variables. The wavelet-based multimodel Kalman filter (WMKF) is a multimodel Kalman filter (MKF), in which the Kalman filter has been substituted for a WKF. The WMKF then obtains M estimated state vectors. Next, the M state-estimates, each of which is weighted by its possibility that is also determined on-line, are combined to form an optimal estimate. Validations conducted for the Wu-Tu watershed, a small watershed in Taiwan, have demonstrated that the method is effective because of the decomposition of wavelet transform, the adaptation of the time-varying Kalman filter and the characteristics of the multimodel method. Validation results also reveal that the resulting method enhances the accuracy of the runoff prediction of the rainfall-runoff process in the Wu-Tu watershed.

  20. Superconducting Magnetometry for Cardiovascular Studies and AN Application of Adaptive Filtering.

    Science.gov (United States)

    Leifer, Mark Curtis

    Sensitive magnetic detectors utilizing Superconducting Quantum Interference Devices (SQUID's) have been developed and used for studying the cardiovascular system. The theory of magnetic detection of cardiac currents is discussed, and new experimental data supporting the validity of the theory is presented. Measurements on both humans and dogs, in both healthy and diseased states, are presented using the new technique, which is termed vector magnetocardiography. In the next section, a new type of superconducting magnetometer with a room temperature pickup is analyzed, and techniques for optimizing its sensitivity to low-frequency sub-microamp currents are presented. Performance of the actual device displays significantly improved sensitivity in this frequency range, and the ability to measure currents in intact, in vivo biological fibers. The final section reviews the theoretical operation of a digital self-optimizing filter, and presents a four-channel software implementation of the system. The application of the adaptive filter to enhancement of geomagnetic signals for earthquake forecasting is discussed, and the adaptive filter is shown to outperform existing techniques in suppressing noise from geomagnetic records.

  1. Linear Regression Based Real-Time Filtering

    Directory of Open Access Journals (Sweden)

    Misel Batmend

    2013-01-01

    Full Text Available This paper introduces real time filtering method based on linear least squares fitted line. Method can be used in case that a filtered signal is linear. This constraint narrows a band of potential applications. Advantage over Kalman filter is that it is computationally less expensive. The paper further deals with application of introduced method on filtering data used to evaluate a position of engraved material with respect to engraving machine. The filter was implemented to the CNC engraving machine control system. Experiments showing its performance are included.

  2. Performance-Based Technology Selection Filter description report. INEL Buried Waste Integrated Demonstration System Analysis project

    Energy Technology Data Exchange (ETDEWEB)

    O`Brien, M.C.; Morrison, J.L.; Morneau, R.A.; Rudin, M.J.; Richardson, J.G.

    1992-05-01

    A formal methodology has been developed for identifying technology gaps and assessing innovative or postulated technologies for inclusion in proposed Buried Waste Integrated Demonstration (BWID) remediation systems. Called the Performance-Based Technology Selection Filter, the methodology provides a formalized selection process where technologies and systems are rated and assessments made based on performance measures, and regulatory and technical requirements. The results are auditable, and can be validated with field data. This analysis methodology will be applied to the remedial action of transuranic contaminated waste pits and trenches buried at the Idaho National Engineering Laboratory (INEL).

  3. Modeling the hyperfine state selectivity of a short lamb-shift spin-filter polarimeter

    International Nuclear Information System (INIS)

    Mendez, A.J.; Roper, C.D.; Clegg, T.B.

    1995-01-01

    An rf cavity, previously used as a spin filter in a Lamb-shift polarized ion source, is being adapted for use as a polarimeter in an atomic beam polarized hydrogen and deuterium ion source. Paramount among the design criteria is maintaining the current source performance while providing on-line beam polarization monitoring. This requires minimizing both the polarimeter system length and the coupling with the magnetic fields of the other ion source systems. Detailed computer calculations have modeled the four-level interaction involving the 2S 1/2 -2P 1/2 states of the atomic beam. These indicate that a significantly shorter spin-filter cavity and uniform axial magnetic field than used in the Lamb-shift source do not compromise the spin-state selectivity. The calculations also predict the axial magnetic field uniformity needed as well as the gains achieved from proper shaping of the cavity rf and dc fields. copyright 1995 American Institute of Physics

  4. Optimal spatio-temporal filter for the reduction of crosstalk in surface electromyogram

    Science.gov (United States)

    Mesin, Luca

    2018-02-01

    Objective. Crosstalk can pose limitations to the applications of surface electromyogram (EMG). Its reduction can help in the identification of the activity of specific muscles. The selectivity of different spatial filters was tested in the literature both in simulations and experiments: their performances are affected by many factors (e.g. anatomy, conduction properties of the tissues and dimension/location of the electrodes); moreover, they reduce crosstalk by decreasing the detection volume, recording data that represent only the activity of a small portion of the muscle of interest. In this study, an alternative idea is proposed, based on a spatio-temporal filter. Approach. An adaptive method is applied, which filters both in time and among different channels, providing a signal that maximally preserves the energy of the EMG of interest and discards that of nearby muscles (increasing the signal to crosstalk ratio, SCR). Main results. Tests with simulations and experimental data show an average increase of the SCR of about 2 dB with respect to the single or double differential data processed by the filter. This allows to reduce the bias induced by crosstalk in conduction velocity and force estimation. Significance. The method can be applied to few channels, so that it is useful in applicative studies (e.g. clinics, gate analysis, rehabilitation protocols with EMG biofeedback and prosthesis control) where limited and not selective information is usually available.

  5. Dual and tri-band bandpass filters based on novel Π-shaped resonator

    Science.gov (United States)

    Xiao, Jian-Kang; Zhu, Wen-Jun; Zhao, Wei

    2014-05-01

    A novel Π-shaped resonator is proposed, and compact dual-band and tri-band bandpass filters that meet IEEE 802.11 application requirements by using the new resonator are designed. The dual-band bandpass filter centres at 2.45 and 5.6 GHz with a simulated passband insertion loss of no more than 0.8 dB, and the tri-band bandpass filter which is got by two-path coupling achieves simulated passband insertion loss of no more than 1.1 dB. The new designs are demonstrated by experiment. The new filters have advantages of simple and compact structures, low passband insertion losses, good frequency selectivity and miniature circuit sizes. All these have prospect to be applied in future wireless communication systems.

  6. Performance of water filters towards the removal of selected ...

    African Journals Online (AJOL)

    Organic matter removal was found to be 47%, 43%, 53%, 43.4% for bio-sand, slow sand, ceramic and membrane purifier respectively, while, fluoride removal was found to be 95.5% for bone char filter. Furthermore, filters were also assessed in terms of media availability, buying costs, operation, benefits/ effectiveness ...

  7. Dynamics of ions in the selectivity filter of the KcsA channel: Towards a coupled Brownian particle description

    OpenAIRE

    Cosseddu, Salvatore M.; Khovanov, Igor A.; Allen, Michael P.; Rodger, P. M.; Luchinsky, Dmitry G.; McClintock, Peter V. E.

    2013-01-01

    The statistical and dynamical properties of ions in the selectivity filter of the KcsA ion channel are considered on the basis of molecular dynamics (MD) simulations of the KcsA protein embedded in a lipid membrane surrounded by an ionic solution. A new approach to the derivation of a Brownian dynamics (BD) model of ion permeation through the filter is discussed, based on unbiased MD simulations. It is shown that depending on additional assumptions, ion’s dynamics can be described either by u...

  8. Application of Unscented Kalman Filter in Satellite Orbit Simulation

    Institute of Scientific and Technical Information of China (English)

    ZHAO Dongming; CAI Zhiwu

    2006-01-01

    A new estimate method is proposed, which takes advantage of the unscented transform method, thus the true mean and covariance are approximated more accurately. The new method can be applied to non-linear systems without the linearization process necessary for the EKF, and it does not demand a Gaussian distribution of noise and what's more, its ease of implementation and more accurate estimation features enables it to demonstrate its good performance in the experiment of satellite orbit simulation. Numerical experiments show that the application of the unscented Kalman filter is more effective than the EKF.

  9. Implicit particle filtering for models with partial noise, and an application to geomagnetic data assimilation

    Directory of Open Access Journals (Sweden)

    M. Morzfeld

    2012-06-01

    Full Text Available Implicit particle filtering is a sequential Monte Carlo method for data assimilation, designed to keep the number of particles manageable by focussing attention on regions of large probability. These regions are found by minimizing, for each particle, a scalar function F of the state variables. Some previous implementations of the implicit filter rely on finding the Hessians of these functions. The calculation of the Hessians can be cumbersome if the state dimension is large or if the underlying physics are such that derivatives of F are difficult to calculate, as happens in many geophysical applications, in particular in models with partial noise, i.e. with a singular state covariance matrix. Examples of models with partial noise include models where uncertain dynamic equations are supplemented by conservation laws with zero uncertainty, or with higher order (in time stochastic partial differential equations (PDE or with PDEs driven by spatially smooth noise processes. We make the implicit particle filter applicable to such situations by combining gradient descent minimization with random maps and show that the filter is efficient, accurate and reliable because it operates in a subspace of the state space. As an example, we consider a system of nonlinear stochastic PDEs that is of importance in geomagnetic data assimilation.

  10. EMI filter design

    CERN Document Server

    Ozenbaugh, Richard Lee

    2011-01-01

    With today's electrical and electronics systems requiring increased levels of performance and reliability, the design of robust EMI filters plays a critical role in EMC compliance. Using a mix of practical methods and theoretical analysis, EMI Filter Design, Third Edition presents both a hands-on and academic approach to the design of EMI filters and the selection of components values. The design approaches covered include matrix methods using table data and the use of Fourier analysis, Laplace transforms, and transfer function realization of LC structures. This edition has been fully revised

  11. Feature selection using angle modulated simulated Kalman filter for peak classification of EEG signals.

    Science.gov (United States)

    Adam, Asrul; Ibrahim, Zuwairie; Mokhtar, Norrima; Shapiai, Mohd Ibrahim; Mubin, Marizan; Saad, Ismail

    2016-01-01

    In the existing electroencephalogram (EEG) signals peak classification research, the existing models, such as Dumpala, Acir, Liu, and Dingle peak models, employ different set of features. However, all these models may not be able to offer good performance for various applications and it is found to be problem dependent. Therefore, the objective of this study is to combine all the associated features from the existing models before selecting the best combination of features. A new optimization algorithm, namely as angle modulated simulated Kalman filter (AMSKF) will be employed as feature selector. Also, the neural network random weight method is utilized in the proposed AMSKF technique as a classifier. In the conducted experiment, 11,781 samples of peak candidate are employed in this study for the validation purpose. The samples are collected from three different peak event-related EEG signals of 30 healthy subjects; (1) single eye blink, (2) double eye blink, and (3) eye movement signals. The experimental results have shown that the proposed AMSKF feature selector is able to find the best combination of features and performs at par with the existing related studies of epileptic EEG events classification.

  12. Construction of flexible metal-organic framework (MOF) papers through MOF growth on filter paper and their selective dye capture.

    Science.gov (United States)

    Park, Jeehyun; Oh, Moonhyun

    2017-09-14

    The conjugation of metal-organic frameworks (MOFs) with other materials is an excellent strategy for the production of advanced materials having desired properties and so appropriate applicability. In particular, the integration of MOFs with a flexible paper is expected to form valuable materials in separation technology. Here we report a simple method for the generation of MOF papers through the compact and uniform growth of MOF nanoparticles on the cellulose surface of a carboxymethylated filter paper. The resulting MOF papers show a selective capture ability for negatively charged organic dyes and they can be used for dye separation through simple filtration of a dye solution on the MOF papers. In addition, MOF papers can be reused after a simple washing process without losing their effective dye capture ability.

  13. A reconfigurable frequency-selective surface for dual-mode multi-band filtering applications

    Science.gov (United States)

    Majidzadeh, Maryam; Ghobadi, Changiz; Nourinia, Javad

    2017-03-01

    A reconfigurable single-layer frequency-selective surface (FSS) with dual-mode multi-band modes of operation is presented. The proposed structure is printed on a compact 10 × 10 mm2 FR4 substrate with the thickness of 1.6 mm. A simple square loop is printed on the front side while another one along with two defected vertical arms is deployed on the backside. To realise the reconfiguration, two pin diodes are embedded on the backside square loop. Suitable insertion of conductive elements along with pin diodes yields in dual-mode multi-band rejection of applicable in service frequency ranges. The first operating mode due to diodes' 'ON' state provides rejection of 2.4 GHz WLAN in 2-3 GHz, 5.2/5.8 GHz WLAN and X band in 5-12 GHz, and a part of Ku band in 13.9-16 GHz. In diodes 'OFF' state, the FSS blocks WLAN in 4-7.3 GHz, X band in 8-12.7 GHz as well as part of Ku band in 13.7-16.7 GHz. As well, high attenuation of incident waves is observed by a high shielding effectiveness (SE) in the blocked frequency bands. Also, a stable behaviour against different polarisations and angles of incidence is obtained. Comprehensive studies are conducted on a fabricated prototype to assess its performance from which encouraging results are obtained.

  14. Biological filters: their applications and yields; Filtros biologicos: sus aplicaciones y rendimientos

    Energy Technology Data Exchange (ETDEWEB)

    Barcelon, S.; Terrasa Diaz, M.; Frau Gene, C. [Empresa Municipal de Aguas Alcantarillado, S.A., Mallorca (Spain)

    1995-06-01

    The system of filtering gases resulting from the treatment of urban residual waters, by the compost substrate and obtaining more than acceptable yields, is presented in this article from the point of view of getting to know certain possible application, as well as the evolution of the substrate condition over time. (Author) 6 refs.

  15. Assessing filtering of mountaintop CO2 mole fractions for application to inverse models of biosphere-atmosphere carbon exchange

    Directory of Open Access Journals (Sweden)

    S. L. Heck

    2012-02-01

    Full Text Available There is a widely recognized need to improve our understanding of biosphere-atmosphere carbon exchanges in areas of complex terrain including the United States Mountain West. CO2 fluxes over mountainous terrain are often difficult to measure due to unusual and complicated influences associated with atmospheric transport. Consequently, deriving regional fluxes in mountain regions with carbon cycle inversion of atmospheric CO2 mole fraction is sensitive to filtering of observations to those that can be represented at the transport model resolution. Using five years of CO2 mole fraction observations from the Regional Atmospheric Continuous CO2 Network in the Rocky Mountains (Rocky RACCOON, five statistical filters are used to investigate a range of approaches for identifying regionally representative CO2 mole fractions. Test results from three filters indicate that subsets based on short-term variance and local CO2 gradients across tower inlet heights retain nine-tenths of the total observations and are able to define representative diel variability and seasonal cycles even for difficult-to-model sites where the influence of local fluxes is much larger than regional mole fraction variations. Test results from two other filters that consider measurements from previous and following days using spline fitting or sliding windows are overly selective. Case study examples showed that these windowing-filters rejected measurements representing synoptic changes in CO2, which suggests that they are not well suited to filtering continental CO2 measurements. We present a novel CO2 lapse rate filter that uses CO2 differences between levels in the model atmosphere to select subsets of site measurements that are representative on model scales. Our new filtering techniques provide guidance for novel approaches to assimilating mountain-top CO2 mole fractions in carbon cycle inverse models.

  16. Backflushable filter experience at the N Reactor

    International Nuclear Information System (INIS)

    Ball, B.; Best, W.T.; Keith, R.C.

    1987-01-01

    The N Reactor is an 4000 MWt, light-water cooled, graphite-moderated reactor located on the Hanford Site in Washington State. A radwaste pilot plant to process plant effluent was constructed in order to maximize future efficiency when a full size radioactive processing facility is built. The pilot plant's purpose is to vary operational parameters such as filtration and ion exchange on a smaller scale to gather as much data as possible. The input to the pilot plant is radioactive drain lines from the N Reactor. The effluent passes through a backflushable filter and a series of ion exchange columns all scaled down from the future proposed facility. A backflushable filter was selected for this application because of the specific characteristics of the plant effluent and the potential reduced operating costs. The filter performance has been excellent in terms of filtration of the effluent. Typical total suspended solids in the plant effluent range from 1 to 6.1 ppm; the filter reduces this value to less than 0.1 ppm. In addition to outstanding filtration efficiency, the use of a precoat material on the filter has resulted in impressive decontamination factors. The filter has been successful in removing up to 50% of the influent activity. An improved performance of several nuclides over other filtration systems has also been achieved. By varying the composition and amount of precoat material on the filter, substantial reductions in waste volumes (and associated operating and disposal costs) have been demonstrated while maintaining a high degree of removal of both activity and total suspended solids

  17. Soliton filtering from a supercontinuum: a tunable femtosecond pulse source

    Energy Technology Data Exchange (ETDEWEB)

    Licea-Rodriguez, Jacob; Rangel-Rojo, Raul [Centro de Investigacion CientIfica y de Educacion Superior de Ensenada, Apartado Postal 2732, Ensenada B.C., 22860 (Mexico); Garay-Palmett, Karina, E-mail: rrangel@cicese.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, Mexico DF. 04510 (Mexico)

    2011-01-01

    In this article we report experimental results related with the generation of a supercontinuum in a microstructured fiber, from which the soliton with the longest wavelength is filtered out of the continuum and is used to construct a tunable ultrashort pulses source by varying the pump power. Pulses of an 80 fs duration (FWHM) from a Ti:sapphire oscillator were input into a 2 m long fiber to generate the continuum. The duration of the solitons at the fiber output was preserved by using a zero dispersion filtering system, which selected the longest wavelength soliton, while avoiding temporal spreading of the solitons. We present a complete characterization of the filtered pulses that are continuously tunable in the 850-1100 nm range. We also show that the experimental results have a qualitative agreement with theory. An important property of the proposed near-infrared pulsed source is that the soliton pulse energies obtained after filtering are large enough for applications in nonlinear microscopy.

  18. A square root ensemble Kalman filter application to a motor-imagery brain-computer interface.

    Science.gov (United States)

    Kamrunnahar, M; Schiff, S J

    2011-01-01

    We here investigated a non-linear ensemble Kalman filter (SPKF) application to a motor imagery brain computer interface (BCI). A square root central difference Kalman filter (SR-CDKF) was used as an approach for brain state estimation in motor imagery task performance, using scalp electroencephalography (EEG) signals. Healthy human subjects imagined left vs. right hand movements and tongue vs. bilateral toe movements while scalp EEG signals were recorded. Offline data analysis was conducted for training the model as well as for decoding the imagery movements. Preliminary results indicate the feasibility of this approach with a decoding accuracy of 78%-90% for the hand movements and 70%-90% for the tongue-toes movements. Ongoing research includes online BCI applications of this approach as well as combined state and parameter estimation using this algorithm with different system dynamic models.

  19. Development of the code for filter calculation

    International Nuclear Information System (INIS)

    Gritzay, O.O.; Vakulenko, M.M.

    2012-01-01

    This paper describes a calculation method, which commonly used in the Neutron Physics Department to develop a new neutron filter or to improve the existing neutron filter. This calculation is the first step of the traditional filter development procedure. It allows easy selection of the qualitative and quantitative contents of a composite filter in order to receive the filtered neutron beam with given parameters

  20. An Application of Filtered Renewal Processes in Hydrology

    Directory of Open Access Journals (Sweden)

    Mario Lefebvre

    2014-01-01

    Full Text Available Filtered renewal processes are used to forecast daily river flows. For these processes, contrary to filtered Poisson processes, the time between consecutive events is not necessarily exponentially distributed, which is more realistic. The model is applied to obtain one- and two-day-ahead forecasts of the flows of the Delaware and Hudson Rivers, both located in the United States. Better results are obtained than with filtered Poisson processes, which are often used to model river flows.

  1. Vectorization of linear discrete filtering algorithms

    Science.gov (United States)

    Schiess, J. R.

    1977-01-01

    Linear filters, including the conventional Kalman filter and versions of square root filters devised by Potter and Carlson, are studied for potential application on streaming computers. The square root filters are known to maintain a positive definite covariance matrix in cases in which the Kalman filter diverges due to ill-conditioning of the matrix. Vectorization of the filters is discussed, and comparisons are made of the number of operations and storage locations required by each filter. The Carlson filter is shown to be the most efficient of the filters on the Control Data STAR-100 computer.

  2. Flow and fouling in membrane filters: Effects of membrane morphology

    Science.gov (United States)

    Sanaei, Pejman; Cummings, Linda J.

    2015-11-01

    Membrane filters are widely-used in microfiltration applications. Many types of filter membranes are produced commercially, for different filtration applications, but broadly speaking the requirements are to achieve fine control of separation, with low power consumption. The answer to this problem might seem obvious: select the membrane with the largest pore size and void fraction consistent with the separation requirements. However, membrane fouling (an inevitable consequence of successful filtration) is a complicated process, which depends on many parameters other than membrane pore size and void fraction; and which itself greatly affects the filtration process and membrane functionality. In this work we formulate mathematical models that can (i) account for the membrane internal morphology (internal structure, pore size & shape, etc.); (ii) fouling of membranes with specific morphology; and (iii) make some predictions as to what type of membrane morphology might offer optimum filtration performance.

  3. Complete filter-based cerebral embolic protection with transcatheter aortic valve replacement.

    Science.gov (United States)

    Van Gils, Lennart; Kroon, Herbert; Daemen, Joost; Ren, Claire; Maugenest, Anne-Marie; Schipper, Marguerite; De Jaegere, Peter P; Van Mieghem, Nicolas M

    2018-03-01

    To evaluate the value of left vertebral artery filter protection in addition to the current filter-based embolic protection technology to achieve complete cerebral protection during TAVR. The occurrence of cerebrovascular events after transcatheter aortic valve replacement (TAVR) has fueled concern for its potential application in younger patients with longer life expectancy. Transcatheter cerebral embolic protection (TCEP) devices may limit periprocedural cerebrovascular events by preventing macro and micro-embolization to the brain. Conventional filter-based TCEP devices cover three extracranial contributories to the brain, yet leave the left vertebral artery unprotected. Patients underwent TAVR with complete TCEP. A dual-filter system was deployed in the brachiocephalic trunk and left common carotid artery with an additional single filter in the left vertebral artery. After TAVR all filters were retrieved and sent for histopathological evaluation by an experienced pathologist. Eleven patients received a dual-filter system and nine of them received an additional left vertebral filter. In the remaining two patients, the left vertebral filter could not be deployed. No periprocedural strokes occurred. We found debris in all filters, consisting of thrombus, tissue derived debris, and foreign body material. The left vertebral filter contained debris in an equal amount of patients as the Sentinel filters. The size of the captured particles was similar between all filters. The left vertebral artery is an important entry route for embolic material to the brain during TAVR. Selective filter protection of the left vertebral artery revealed embolic debris in all patients. The clinical value of complete filter-based TCEP during TAVR warrants further research. © 2017 Wiley Periodicals, Inc.

  4. Filter indexing for spectrophotometer system

    International Nuclear Information System (INIS)

    Chamran, M.M.; Scott, L.B.; Williams, P.B.

    1982-01-01

    A spectrophotometer system has an optical system for transmitting a beam from a source at select wavelengths onto a detector. A plurality of filters are positioned in a tray. A stepper mechanism indexes the tray along a path. A microcomputer controls the stepper mechanism and the optical system. The wavelength is successively changed over a range, the tray is indexed to move a select filter into the beam at a predetermined wavelength and the changing is discontinued during indexing

  5. Development of nuclear safety class filter elements with long life and high quality

    International Nuclear Information System (INIS)

    Zhang Jinghua

    2009-04-01

    This paper describes the development on nuclear safety class filter elements with long life and high quality used for collecting radioactive contaminants, fragments of resin and impurities in primary systems of NPPs. The filter elements made of glass fibre elements are used for PWR, and of paper elements are used for PHWR. During the research, a series of tests for optimization were performed for selection of filter material and the improvement of binder. The flow rate and comprehensive performance have been measured in simulated conditions. The result shows that the application requirements for operational NPPs can be met, and the reliability and safety of the frame are also be verified. The comprehensive performance of the filter elements is equivalent to that of oversea similar products. The products have been used in NPPs in operation. (authors)

  6. Perspectives on Nonlinear Filtering

    KAUST Repository

    Law, Kody

    2015-01-01

    The solution to the problem of nonlinear filtering may be given either as an estimate of the signal (and ideally some measure of concentration), or as a full posterior distribution. Similarly, one may evaluate the fidelity of the filter either by its ability to track the signal or its proximity to the posterior filtering distribution. Hence, the field enjoys a lively symbiosis between probability and control theory, and there are plenty of applications which benefit from algorithmic advances, from signal processing, to econometrics, to large-scale ocean, atmosphere, and climate modeling. This talk will survey some recent theoretical results involving accurate signal tracking with noise-free (degenerate) dynamics in high-dimensions (infinite, in principle, but say d between 103 and 108 , depending on the size of your application and your computer), and high-fidelity approximations of the filtering distribution in low dimensions (say d between 1 and several 10s).

  7. Perspectives on Nonlinear Filtering

    KAUST Repository

    Law, Kody

    2015-01-07

    The solution to the problem of nonlinear filtering may be given either as an estimate of the signal (and ideally some measure of concentration), or as a full posterior distribution. Similarly, one may evaluate the fidelity of the filter either by its ability to track the signal or its proximity to the posterior filtering distribution. Hence, the field enjoys a lively symbiosis between probability and control theory, and there are plenty of applications which benefit from algorithmic advances, from signal processing, to econometrics, to large-scale ocean, atmosphere, and climate modeling. This talk will survey some recent theoretical results involving accurate signal tracking with noise-free (degenerate) dynamics in high-dimensions (infinite, in principle, but say d between 103 and 108 , depending on the size of your application and your computer), and high-fidelity approximations of the filtering distribution in low dimensions (say d between 1 and several 10s).

  8. Retina-Inspired Filter.

    Science.gov (United States)

    Doutsi, Effrosyni; Fillatre, Lionel; Antonini, Marc; Gaulmin, Julien

    2018-07-01

    This paper introduces a novel filter, which is inspired by the human retina. The human retina consists of three different layers: the Outer Plexiform Layer (OPL), the inner plexiform layer, and the ganglionic layer. Our inspiration is the linear transform which takes place in the OPL and has been mathematically described by the neuroscientific model "virtual retina." This model is the cornerstone to derive the non-separable spatio-temporal OPL retina-inspired filter, briefly renamed retina-inspired filter, studied in this paper. This filter is connected to the dynamic behavior of the retina, which enables the retina to increase the sharpness of the visual stimulus during filtering before its transmission to the brain. We establish that this retina-inspired transform forms a group of spatio-temporal Weighted Difference of Gaussian (WDoG) filters when it is applied to a still image visible for a given time. We analyze the spatial frequency bandwidth of the retina-inspired filter with respect to time. It is shown that the WDoG spectrum varies from a lowpass filter to a bandpass filter. Therefore, while time increases, the retina-inspired filter enables to extract different kinds of information from the input image. Finally, we discuss the benefits of using the retina-inspired filter in image processing applications such as edge detection and compression.

  9. Filter and window behavior for the Advanced Photon Source beamline front end

    International Nuclear Information System (INIS)

    Wang, Zhibi; Kuzay, T.M.; Shu, Deming; Dejus, R.

    1993-01-01

    Synchrotron x-ray windows are vacuum separators and are usually made of thin beryllium metal. Filters are provided upstream to absorb the soft x-rays so that the window is protected from overheating, which could result in failure. The filters are made of thin carbon products or sometimes beryllium, the same material as the window. Because the window is a vacuum separator, understanding its potential structural failure under thermal load is of utmost importance. The planned insertion devices and bending magnets for the Advanced Photon Source (APS) generate very high heat fluxes. To guarantee the integrity of the filter and window, extensive investigations have been carried out on both components. The material selection for filters and windows from among the possible candidate materials was investigated first. Then a series of thermal and structural analyses were performed on the filter and window. Results are presented from power absorption, analytical results from thermal, and structural analyses as well as application of the failure criteria suggested by Wang and Kuzay to the filters and windows

  10. Design of Active N-path Filters

    NARCIS (Netherlands)

    Darvishi, M.; van der Zee, Ronan A.R.; Nauta, Bram

    2013-01-01

    A design methodology for synthesis of active N-path bandpass filters is introduced. Based on this methodology, a 0.1-to-1.2 GHz tunable 6th-order N-path channel-select filter in 65 nm LP CMOS is introduced. It is based on coupling N-path filters with gyrators, achieving a “flat‿ passband shape and

  11. Filters involving derivatives with application to reconstruction from scanned halftone images

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Jensen, Kim S.

    1995-01-01

    This paper presents a method for designing finite impulse response (FIR) filters for samples of a 2-D signal, e.g., an image, and its gradient. The filters, which are called blended filters, are decomposable in three filters, each separable in 1-D filters on subsets of the data set. Optimality...... in the minimum mean square error sense (MMSE) of blended filtering is shown for signals with separable autocorrelation function. Relations between correlation functions for signals and their gradients are derived. Blended filters may be composed from FIR Wiener filters using these relations. Simple blended...... is achievable with blended filters...

  12. The history of ceramic filters.

    Science.gov (United States)

    Fujishima, S

    2000-01-01

    The history of ceramic filters is surveyed. Included is the history of piezoelectric ceramics. Ceramic filters were developed using technology similar to that of quartz crystal and electro-mechanical filters. However, the key to this development involved the theoretical analysis of vibration modes and material improvements of piezoelectric ceramics. The primary application of ceramic filters has been for consumer-market use. Accordingly, a major emphasis has involved mass production technology, leading to low-priced devices. A typical ceramic filter includes monolithic resonators and capacitors packaged in unique configurations.

  13. Formulation of nano-ceramic filters used in separation of heavy metals . Part II: Zirconia ceramic filters

    International Nuclear Information System (INIS)

    Khalil, T.; Labib, Sh.; Abou EI-Nour, F.H.; Abdel-Kbalik, M.

    2007-01-01

    Zirconia ceramic filters are prepared using polymeric sol-gel process. An optimization of synthesis parameters was studied to give cracked free coated nano porous film with high performance quality. Zirconia ceramic filters are characterized to select tbe optimized conditions that give tbe suitable zirconia filter used in heavy metal separation. The ceramic filters were characterized using BET method for surface measurements, mercury porosimeter for pore size distribution analysis and coating thickness measurements, SEM for microstructural studies and atomic absorption spectrophotometer (AAS) for metal analysis. The results indicated that zirconia ceramic filters. show high separation performance for cadmium, cupper, iron, manganese and lead

  14. Scaled unscented transform Gaussian sum filter: Theory and application

    KAUST Repository

    Luo, Xiaodong

    2010-05-01

    In this work we consider the state estimation problem in nonlinear/non-Gaussian systems. We introduce a framework, called the scaled unscented transform Gaussian sum filter (SUT-GSF), which combines two ideas: the scaled unscented Kalman filter (SUKF) based on the concept of scaled unscented transform (SUT) (Julier and Uhlmann (2004) [16]), and the Gaussian mixture model (GMM). The SUT is used to approximate the mean and covariance of a Gaussian random variable which is transformed by a nonlinear function, while the GMM is adopted to approximate the probability density function (pdf) of a random variable through a set of Gaussian distributions. With these two tools, a framework can be set up to assimilate nonlinear systems in a recursive way. Within this framework, one can treat a nonlinear stochastic system as a mixture model of a set of sub-systems, each of which takes the form of a nonlinear system driven by a known Gaussian random process. Then, for each sub-system, one applies the SUKF to estimate the mean and covariance of the underlying Gaussian random variable transformed by the nonlinear governing equations of the sub-system. Incorporating the estimations of the sub-systems into the GMM gives an explicit (approximate) form of the pdf, which can be regarded as a "complete" solution to the state estimation problem, as all of the statistical information of interest can be obtained from the explicit form of the pdf (Arulampalam et al. (2002) [7]). In applications, a potential problem of a Gaussian sum filter is that the number of Gaussian distributions may increase very rapidly. To this end, we also propose an auxiliary algorithm to conduct pdf re-approximation so that the number of Gaussian distributions can be reduced. With the auxiliary algorithm, in principle the SUT-GSF can achieve almost the same computational speed as the SUKF if the SUT-GSF is implemented in parallel. As an example, we will use the SUT-GSF to assimilate a 40-dimensional system due to

  15. Reduction of delayed-neutron contribution to variance-to-mean ratio by application of difference filter technique

    International Nuclear Information System (INIS)

    Hashimoto, Kengo; Mouri, Tomoaki; Ohtani, Nobuo

    1999-01-01

    The difference-filtering correlation analysis was applied to time-sequence neutron count data measured in a slightly subcritical assembly, where the Feynman-α analysis suffered from large contribution of delayed neutron to the variance-to-mean ratio of counts. The prompt-neutron decay constant inferred from the present filtering analysis agreed very closely with that by pulsed neutron experiment, and no dependence on the gate-time range specified could be observed. The 1st-order filtering was sufficient for the reduction of the delayed-neutron contribution. While the conventional method requires a choice of analysis formula appropriate to a gate-time range, the present method is applicable to a wide variety of gate-time ranges. (author)

  16. Miniaturized and Ferrite Based Tunable Bandpass Filters in LCP and LTCC Technologies for SoP Applications

    KAUST Repository

    Arabi, Eyad A.

    2015-01-01

    , namely low temperature co-fired ceramic (LTCC) and the liquid crystal polymers (LCP) is demonstrated. The miniaturized filter is based on a second order topology, which has been modified to improve the selectivity and out-of-band rejection without

  17. Micro-particle filter made in SU-8 for biomedical applications

    DEFF Research Database (Denmark)

    Noeth, Nadine-Nicole; Keller, Stephan Urs; Fetz, Stefanie

    2009-01-01

    We have integrated a micro-particle filter in a polymer cantilever to filter micro-particles from a fluid while simultaneously measuring the amount of filtered particles. In a 3,8 mum thick SU-8 cantilever a filter was integrated with pore sizes between 3 and 30 mum. The chip was inserted in a mi...

  18. Particle Kalman Filtering: A Nonlinear Framework for Ensemble Kalman Filters

    KAUST Repository

    Hoteit, Ibrahim

    2010-09-19

    Optimal nonlinear filtering consists of sequentially determining the conditional probability distribution functions (pdf) of the system state, given the information of the dynamical and measurement processes and the previous measurements. Once the pdfs are obtained, one can determine different estimates, for instance, the minimum variance estimate, or the maximum a posteriori estimate, of the system state. It can be shown that, many filters, including the Kalman filter (KF) and the particle filter (PF), can be derived based on this sequential Bayesian estimation framework. In this contribution, we present a Gaussian mixture‐based framework, called the particle Kalman filter (PKF), and discuss how the different EnKF methods can be derived as simplified variants of the PKF. We also discuss approaches to reducing the computational burden of the PKF in order to make it suitable for complex geosciences applications. We use the strongly nonlinear Lorenz‐96 model to illustrate the performance of the PKF.

  19. Application of phantom type compensating filter in tomography

    Energy Technology Data Exchange (ETDEWEB)

    Okayama, A.; Mukae, H.; Itoh, M. (Yamaguchi Univ., Ube (Japan). School of Medicine)

    1981-01-01

    We reported a new device of phantom type compensating filters for pulmonary hilar tomography with polytome U at the 35th annual meeting of the Japanese Society of Radiological Technology. This report is to show application of this compensated method to the head, the hip joint and the lower thoracic spine in tomography. Using the filters optimal density can be obtained in all area of aim part on a X-ray film, and thus makes to get more information. 1) In the head clear shadow of pars nasalis, sinus paranasales and sella turcica is obtained. Destruction or defect of bone contour is easily detected. It is also useful to differentiate the disorders and to determine the expansivity of the lesion. 2) In the hip joint this method has advantages over the ordinary method. There is a few misdiagnosis in trochanteric lesions such as tuberculosis or bone tumor, because of high density at the trochanteric region in ordinary method, but in this method optimal density can be obtained, and misdiagnosis is improved. Soft tissue is sharply visualized, indicating usefulness in diagnosis of existence of hematoma or abscess. 3) In the lower thoracic vertebra it is useful to diagnosis of the thoracic spondylosis, tuberculous spondylitis and compression fracture of the vertebral body, since optimal density of the spine can be obtained. It is also quite useful to detect small ossifications in the vertebral foraman in ossification of the flavum ligament.

  20. Application of phantom type compensating filter in tomography

    International Nuclear Information System (INIS)

    Okayama, Akio; Mukae, Hideki; Itoh, Mitsuo

    1981-01-01

    We reported a new device of phantom type compensating filters for pulmonary hilar tomography with polytome U at the 35th annual meeting of the Japanese Society of Radiological Technology. This report is to show application of this compensated method to the head, the hip joint and the lower thoracic spine in tomography. Using the filters optimal density can be obtained in all area of aim part on a X-ray film, and thus makes to get more information. 1) In the head clear shadow of pars nasalis, sinus paranasales and sella turcica is obtained. Destruction or defect of bone contour is easily detected. It is also useful to differentiate the disorders and to determine the expansivity of the lesion. 2) In the hip joint this method has advantages over the ordinary method. There is a few misdiagnosis in trochanteric lesions such as tuberculosis or bone tumor, because of high density at the trochanteric region in ordinary method, but in this method optimal density can be obtained, and misdiagnosis is improved. Soft tissue is sharply visualized, indicating usefulness in diagnosis of existence of hematoma or abscess. 3) In the lower thoracic vertebra it is useful to diagnosis of the thoracic spondylosis, tuberculous spondylitis and compression fracture of the vertebral body, since optimal density of the spine can be obtained. It is also quite useful to detect small ossifications in the vertebral foraman in ossification of the flavum ligament. (author)

  1. Interspike Interval Based Filtering of Directional Selective Retinal Ganglion Cells Spike Trains

    Directory of Open Access Journals (Sweden)

    Aurel Vasile Martiniuc

    2012-01-01

    Full Text Available The information regarding visual stimulus is encoded in spike trains at the output of retina by retinal ganglion cells (RGCs. Among these, the directional selective cells (DSRGC are signaling the direction of stimulus motion. DSRGCs' spike trains show accentuated periods of short interspike intervals (ISIs framed by periods of isolated spikes. Here we use two types of visual stimulus, white noise and drifting bars, and show that short ISI spikes of DSRGCs spike trains are more often correlated to their preferred stimulus feature (that is, the direction of stimulus motion and carry more information than longer ISI spikes. Firstly, our results show that correlation between stimulus and recorded neuronal response is best at short ISI spiking activity and decrease as ISI becomes larger. We then used grating bars stimulus and found that as ISI becomes shorter the directional selectivity is better and information rates are higher. Interestingly, for the less encountered type of DSRGC, known as ON-DSRGC, short ISI distribution and information rates revealed consistent differences when compared with the other directional selective cell type, the ON-OFF DSRGC. However, these findings suggest that ISI-based temporal filtering integrates a mechanism for visual information processing at the output of retina toward higher stages within early visual system.

  2. 5 CFR 330.708 - Application and selection.

    Science.gov (United States)

    2010-01-01

    ... RECRUITMENT, SELECTION, AND PLACEMENT (GENERAL) Interagency Career Transition Assistance Plan for Displaced Employees § 330.708 Application and selection. (a) Application. (1) To receive this special selection priority, eligible employees must apply directly to agencies for specific vacancies in the local commuting...

  3. Figures of merit for self-beating filtered microwave photonic systems.

    Science.gov (United States)

    Pérez, Daniel; Gasulla, Ivana; Capmany, José; Fandiño, Javier S; Muñoz, Pascual; Alavi, Hossein

    2016-05-02

    We present a model to compute the figures of merit of self-beating Microwave Photonic systems, a novel class of systems that work on a self-homodyne fashion by sharing the same laser source for information bearing and local oscillator tasks. General and simplified expressions are given and, as an example, we have considered their application to the design of a tunable RF MWP BS/UE front end for band selection, based on a Chebyshev Type-II optical filter. The applicability and usefulness of the model are also discussed.

  4. Aerosol filtration with metallic fibrous filters

    International Nuclear Information System (INIS)

    Klein, M.; Goossens, W.R.A.

    1983-01-01

    The filtration efficiency of stainless steel fibrous filters (BEKIPOR porous mats and sintered webs) is determined using submicronic monodisperse polystyrene aerosols. Lasers spectrometers are used for the aerosol measurements. The parameters varied are the fiber diameter, the number of layers, the aerosol diameter and the superficial velocity. Two selected types of filters are tested with polydisperse methylene blue aerosols to determine the effect of bed loading on the filter performance and to test washing techniques for the regeneration of the filter

  5. Adaptive oriented PDEs filtering methods based on new controlling speed function for discontinuous optical fringe patterns

    Science.gov (United States)

    Zhou, Qiuling; Tang, Chen; Li, Biyuan; Wang, Linlin; Lei, Zhenkun; Tang, Shuwei

    2018-01-01

    The filtering of discontinuous optical fringe patterns is a challenging problem faced in this area. This paper is concerned with oriented partial differential equations (OPDEs)-based image filtering methods for discontinuous optical fringe patterns. We redefine a new controlling speed function to depend on the orientation coherence. The orientation coherence can be used to distinguish the continuous regions and the discontinuous regions, and can be calculated by utilizing fringe orientation. We introduce the new controlling speed function to the previous OPDEs and propose adaptive OPDEs filtering models. According to our proposed adaptive OPDEs filtering models, the filtering in the continuous and discontinuous regions can be selectively carried out. We demonstrate the performance of the proposed adaptive OPDEs via application to the simulated and experimental fringe patterns, and compare our methods with the previous OPDEs.

  6. First application of hollow fiber filter for PWR condensate polishing

    International Nuclear Information System (INIS)

    Tsuda, S.; Otoha, K.; Takiguchi, H.

    2002-01-01

    In Tsuruga Unit-2 (PWR 1160 MWe commenced commercial operation in 1987), current procedure for secondary system clean-up before start-up had prolonged outage time and had consumed a huge amount of de-ionized (DI) water. In addition, iron oxide in condensate had accelerated the degradation of condensate demineralizer (CD) resin. The corrosion product of iron could also influence the secondary side corrosion of steam generator (SG) tubing if it intruded into SG through CD. To solve these problems, Japan Atomic Power Company (JAPC) decided to introduce hollow fiber filter (HFF) type condensate filter into Tsuruga-2, as the first application to PWR in the world. Because of retro-fitted HFF in Tsuruga Unit-2, limitations for installation space and flow resistance in condensate system and cost reduction required new design for compact and low differential pressure system and for long life filter module. JAPC and ORGANO assessed methodologies to achieve these goals. An advanced HFF system, including a newly developed compact HFF module design, was installed at Tsuruga Unit-2 in 1997 based on the assessment. During the 5 years since the installation, the HFF system has provided excellent crud removal that enables to shorten the outage period and to reduce DI water consumption drastically. Stable differential pressure (dP) trend of the HFF system indicates an expected module life of more than 7 years, with backwash cleaning required only 2 or 3 times per year. In addition to providing the expected operating cost reduction and improved SG tube integrity, numerous additional benefits have resulted from the retrofit. (authors)

  7. Applications of adaptive filters in active noise control

    Science.gov (United States)

    Darlington, Paul

    The active reduction of acoustic noise is achieved by the addition of a cancelling acoustic signal to the unwanted sound. Successful definition of the cancelling signal amounts to a system identification problem. Recent advances in adaptive signal processing have allowed this problem to be tackled using adaptive filters, which offer significant advantages over conventional solutions. The extension of adaptive noise cancelling techniques, which were developed in the electrical signal conditioning context, to the control of acoustic systems is studied. An analysis is presented of the behavior of the Widrow-Hoff LMS adaptive noise canceller with a linear filter in its control loop. The active control of plane waves propagating axially in a hardwalled duct is used as a motivating model problem. The model problem also motivates the study of the effects of feedback around an LMS adaptive filter. An alternative stochastic gradient algorithm for controlling adaptive filters in the presence of feedback is presented.

  8. Sequential Markov chain Monte Carlo filter with simultaneous model selection for electrocardiogram signal modeling.

    Science.gov (United States)

    Edla, Shwetha; Kovvali, Narayan; Papandreou-Suppappola, Antonia

    2012-01-01

    Constructing statistical models of electrocardiogram (ECG) signals, whose parameters can be used for automated disease classification, is of great importance in precluding manual annotation and providing prompt diagnosis of cardiac diseases. ECG signals consist of several segments with different morphologies (namely the P wave, QRS complex and the T wave) in a single heart beat, which can vary across individuals and diseases. Also, existing statistical ECG models exhibit a reliance upon obtaining a priori information from the ECG data by using preprocessing algorithms to initialize the filter parameters, or to define the user-specified model parameters. In this paper, we propose an ECG modeling technique using the sequential Markov chain Monte Carlo (SMCMC) filter that can perform simultaneous model selection, by adaptively choosing from different representations depending upon the nature of the data. Our results demonstrate the ability of the algorithm to track various types of ECG morphologies, including intermittently occurring ECG beats. In addition, we use the estimated model parameters as the feature set to classify between ECG signals with normal sinus rhythm and four different types of arrhythmia.

  9. Tunable electro-optic filter stack

    Science.gov (United States)

    Fontecchio, Adam K.; Shriyan, Sameet K.; Bellingham, Alyssa

    2017-09-05

    A holographic polymer dispersed liquid crystal (HPDLC) tunable filter exhibits switching times of no more than 20 microseconds. The HPDLC tunable filter can be utilized in a variety of applications. An HPDLC tunable filter stack can be utilized in a hyperspectral imaging system capable of spectrally multiplexing hyperspectral imaging data acquired while the hyperspectral imaging system is airborne. HPDLC tunable filter stacks can be utilized in high speed switchable optical shielding systems, for example as a coating for a visor or an aircraft canopy. These HPDLC tunable filter stacks can be fabricated using a spin coating apparatus and associated fabrication methods.

  10. Application Of Decision Tree Approach To Student Selection Model- A Case Study

    Science.gov (United States)

    Harwati; Sudiya, Amby

    2016-01-01

    The main purpose of the institution is to provide quality education to the students and to improve the quality of managerial decisions. One of the ways to improve the quality of students is to arrange the selection of new students with a more selective. This research takes the case in the selection of new students at Islamic University of Indonesia, Yogyakarta, Indonesia. One of the university's selection is through filtering administrative selection based on the records of prospective students at the high school without paper testing. Currently, that kind of selection does not yet has a standard model and criteria. Selection is only done by comparing candidate application file, so the subjectivity of assessment is very possible to happen because of the lack standard criteria that can differentiate the quality of students from one another. By applying data mining techniques classification, can be built a model selection for new students which includes criteria to certain standards such as the area of origin, the status of the school, the average value and so on. These criteria are determined by using rules that appear based on the classification of the academic achievement (GPA) of the students in previous years who entered the university through the same way. The decision tree method with C4.5 algorithm is used here. The results show that students are given priority for admission is that meet the following criteria: came from the island of Java, public school, majoring in science, an average value above 75, and have at least one achievement during their study in high school.

  11. APPLYING OF COLLABORATIVE FILTERING ALGORITHM FOR PROCESSING OF MEDICAL DATA

    Directory of Open Access Journals (Sweden)

    Карина Владимировна МЕЛЬНИК

    2015-05-01

    Full Text Available The problem of improving of effectiveness of medical facility for implementation of social project is considered. There are different approaches to solve this problem, some of which require additional funding, which is usually absent. Therefore, it was proposed to use the approach of processing and application of patients’ data from medical records. The selection of a representative sample of patients was carried out using the technique of collaborative filtering. Review of the methods of collaborative filtering is performed, which showed that there are three main groups of methods. The first group calculates various measures of similarity between the object. The second group is data mining techniques. The third group of methods is a hybrid approach. The Gower coefficient for calculation of similarity measure of medical records of patients is considered in the article. A model of risk assessment of diseases based on collaborative filtering techniques is developed.

  12. Generalised Filtering

    Directory of Open Access Journals (Sweden)

    Karl Friston

    2010-01-01

    Full Text Available We describe a Bayesian filtering scheme for nonlinear state-space models in continuous time. This scheme is called Generalised Filtering and furnishes posterior (conditional densities on hidden states and unknown parameters generating observed data. Crucially, the scheme operates online, assimilating data to optimize the conditional density on time-varying states and time-invariant parameters. In contrast to Kalman and Particle smoothing, Generalised Filtering does not require a backwards pass. In contrast to variational schemes, it does not assume conditional independence between the states and parameters. Generalised Filtering optimises the conditional density with respect to a free-energy bound on the model's log-evidence. This optimisation uses the generalised motion of hidden states and parameters, under the prior assumption that the motion of the parameters is small. We describe the scheme, present comparative evaluations with a fixed-form variational version, and conclude with an illustrative application to a nonlinear state-space model of brain imaging time-series.

  13. Tunable bandpass filter based on partially magnetized ferrite LTCC with embedded windings for SoP applications

    KAUST Repository

    Arabi, Eyad A.

    2015-01-01

    Tunable filters that are based on ferrite materials often require large and bulky electromagnets. In this work, we present a tunable filter in the Ku-band, which is realized in multilayer ferrite LTCC substrate with embedded bias windings, thus negating the need of a large electromagnet. Also, because of the embedded windings, the bias fields are not lost at the air-substrate interface and therefore the field and current requirements are reduced by an order of magnitude as compared to the previously reported filters. A simulation strategy that uses full permeability tensor with arbitrarily directed magnetic fields has been used to model the filter on a partially magnetized ferrite substrate. Special attention has also been paid to approximate the non-uniform magneto-static fields produced by the embedded windings. The complete design is implemented in 10 layers of ferrite LTCC, making it the first magnetically tunable filter with embedded windings and extremely small size [(5 × 5 × 1.1)mm3]. The filter demonstrates a measured tunability of 4% and an insertion loss of 2.3 dB. With the small form factor, embedded windings, and low bias requirements, the design is highly suitable for compact and tunable SoP applications.

  14. MEMS Coupled Resonator for Filter Application in Air

    KAUST Repository

    Ilyas, Saad; Jaber, Nizar; Younis, Mohammad I.

    2017-01-01

    We present a mechanically coupled MEMS H resonator capable of performing simultaneous amplification and filter operation in air. The device comprises of two doubly clamped polyimide microbeams joined through the middle by a coupling beam of the same size. The resonator is fabricated via a multilayer surface micromachining process. A special fabrication process and device design is employed to enable the device's operation in air and to achieve mechanical amplification of the output response. Moreover, mixed-frequency excitation is used to demonstrate a tunable wide band filter. The device design combined with the mixed-frequency excitation is used to demonstrate simultaneous amplification and filtering in air.

  15. MEMS Coupled Resonator for Filter Application in Air

    KAUST Repository

    Ilyas, Saad

    2017-11-03

    We present a mechanically coupled MEMS H resonator capable of performing simultaneous amplification and filter operation in air. The device comprises of two doubly clamped polyimide microbeams joined through the middle by a coupling beam of the same size. The resonator is fabricated via a multilayer surface micromachining process. A special fabrication process and device design is employed to enable the device\\'s operation in air and to achieve mechanical amplification of the output response. Moreover, mixed-frequency excitation is used to demonstrate a tunable wide band filter. The device design combined with the mixed-frequency excitation is used to demonstrate simultaneous amplification and filtering in air.

  16. Application of a Barrier Filter at a High Purity Synthetic Graphite Plant, CRADA 99-F035, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2000-08-31

    Superior Graphite Company and the US Department of Energy have entered into a Cooperative Research and Development Agreement (CRADA) to study the application of ceramic barrier filters at its Hopkinsville, Kentucky graphite plant. Superior Graphite Company is a worldwide leader in the application of advanced thermal processing technology to produce high purity graphite and carbons. The objective of the CRADA is to determine the technical and economic feasibility of incorporating the use of high-temperature filters to improve the performance of the offgas treatment system. A conceptual design was developed incorporating the ceramic filters into the offgas treatment system to be used for the development of a capital cost estimate and economic feasibility assessment of this technology for improving particulate removal. This CRADA is a joint effort of Superior Graphite Company, Parsons Infrastructure and Technology Group, and the National Energy Technology Laboratory (NETL) of the US Department of Energy (DOE).

  17. The application of expandable polystyrene pellets as filter media to controlled filter in a uranium mill

    International Nuclear Information System (INIS)

    Mao Ruiguo; Liu Mingde; Li Chunhua

    1987-11-01

    Expandable polystyrene pellets as filter media are used for controlled filter of uranium ore processing. Results from bench scale tests, pilot plant tests and full scale tests are satisfactory. The filter used in the full scale tests is 4 m in diameter, and the capacity is from 75 to 100 m 3 per hour. The soild content in the pregnant solution which overflowing the first thichener contains about 250 ppm of suspended solid can be reduced to 5 ∼ 10 ppm. The filter bed is backflushed with the feed liquors and the backflush returns to the countercurrent decantation circuit. The entrainment loss of the organic phase in the raffinate from solvnet extraction can be decreased by about 60% with treating the filtrated solution

  18. 5 CFR 330.608 - Application and selection.

    Science.gov (United States)

    2010-01-01

    ... Surplus and Displaced Employees § 330.608 Application and selection. (a) Application. (1) To receive this special selection priority, an eligible employee must apply for a specific agency vacancy in the same... identifying the employee as being in a surplus organization or occupation. (b) Selection. An agency may decide...

  19. Mixtures of skewed Kalman filters

    KAUST Repository

    Kim, Hyoungmoon; Ryu, Duchwan; Mallick, Bani K.; Genton, Marc G.

    2014-01-01

    Normal state-space models are prevalent, but to increase the applicability of the Kalman filter, we propose mixtures of skewed, and extended skewed, Kalman filters. To do so, the closed skew-normal distribution is extended to a scale mixture class

  20. Tuning In to Sound: Frequency-Selective Attentional Filter in Human Primary Auditory Cortex

    Science.gov (United States)

    Da Costa, Sandra; van der Zwaag, Wietske; Miller, Lee M.; Clarke, Stephanie

    2013-01-01

    Cocktail parties, busy streets, and other noisy environments pose a difficult challenge to the auditory system: how to focus attention on selected sounds while ignoring others? Neurons of primary auditory cortex, many of which are sharply tuned to sound frequency, could help solve this problem by filtering selected sound information based on frequency-content. To investigate whether this occurs, we used high-resolution fMRI at 7 tesla to map the fine-scale frequency-tuning (1.5 mm isotropic resolution) of primary auditory areas A1 and R in six human participants. Then, in a selective attention experiment, participants heard low (250 Hz)- and high (4000 Hz)-frequency streams of tones presented at the same time (dual-stream) and were instructed to focus attention onto one stream versus the other, switching back and forth every 30 s. Attention to low-frequency tones enhanced neural responses within low-frequency-tuned voxels relative to high, and when attention switched the pattern quickly reversed. Thus, like a radio, human primary auditory cortex is able to tune into attended frequency channels and can switch channels on demand. PMID:23365225

  1. The Development of a Microbial Challenge Test with Acholeplasma laidlawii To Rate Mycoplasma-Retentive Filters by Filter Manufacturers.

    Science.gov (United States)

    Folmsbee, Martha; Lentine, Kerry Roche; Wright, Christine; Haake, Gerhard; Mcburnie, Leesa; Ashtekar, Dilip; Beck, Brian; Hutchison, Nick; Okhio-Seaman, Laura; Potts, Barbara; Pawar, Vinayak; Windsor, Helena

    2014-01-01

    Mycoplasma are bacteria that can penetrate 0.2 and 0.22 μm rated sterilizing-grade filters and even some 0.1 μm rated filters. Primary applications for mycoplasma filtration include large scale mammalian and bacterial cell culture media and serum filtration. The Parenteral Drug Association recognized the absence of standard industry test parameters for testing and classifying 0.1 μm rated filters for mycoplasma clearance and formed a task force to formulate consensus test parameters. The task force established some test parameters by common agreement, based upon general industry practices, without the need for additional testing. However, the culture medium and incubation conditions, for generating test mycoplasma cells, varied from filter company to filter company and was recognized as a serious gap by the task force. Standardization of the culture medium and incubation conditions required collaborative testing in both commercial filter company laboratories and in an Independent laboratory (Table I). The use of consensus test parameters will facilitate the ultimate cross-industry goal of standardization of 0.1 μm filter claims for mycoplasma clearance. However, it is still important to recognize filter performance will depend on the actual conditions of use. Therefore end users should consider, using a risk-based approach, whether process-specific evaluation of filter performance may be warranted for their application. Mycoplasma are small bacteria that have the ability to penetrate sterilizing-grade filters. Filtration of large-scale mammalian and bacterial cell culture media is an example of an industry process where effective filtration of mycoplasma is required. The Parenteral Drug Association recognized the absence of industry standard test parameters for evaluating mycoplasma clearance filters by filter manufacturers and formed a task force to formulate such a consensus among manufacturers. The use of standardized test parameters by filter manufacturers

  2. Quick-change filter cartridge

    Science.gov (United States)

    Rodgers, John C.; McFarland, Andrew R.; Ortiz, Carlos A.

    1995-01-01

    A quick-change filter cartridge. In sampling systems for measurement of airborne materials, a filter element is introduced into the sampled airstream such that the aerosol constituents are removed and deposited on the filter. Fragile sampling media often require support in order to prevent rupture during sampling, and careful mounting and sealing to prevent misalignment, tearing, or creasing which would allow the sampled air to bypass the filter. Additionally, handling of filter elements may introduce cross-contamination or exposure of operators to toxic materials. Moreover, it is desirable to enable the preloading of filter media into quick-change cartridges in clean laboratory environments, thereby simplifying and expediting the filter-changing process in the field. The quick-change filter cartridge of the present invention permits the application of a variety of filter media in many types of instruments and may also be used in automated systems. The cartridge includes a base through which a vacuum can be applied to draw air through the filter medium which is located on a porous filter support and held there by means of a cap which forms an airtight seal with the base. The base is also adapted for receiving absorbing media so that both particulates and gas-phase samples may be trapped for investigation, the latter downstream of the aerosol filter.

  3. Pyrolytic Graphite as a Selective Neutron Filter

    International Nuclear Information System (INIS)

    Adib, M.; Habib, N.; Fathalla, M.

    2006-01-01

    The transmission of neutrons through pyrolytic graphite (PG) crystals, set at different angles with respect to incident beam, were calculated using an additive formula. A computer program HOPG was developed to provide the required calculation. An overall agreement between the calculated neutron transmissions through a slab of 1,85 mm thick PG crystal with an angular spread of c-axes of 0,4 degree, set at different angles to the incident beam, and the available experimental ones in the wavelength range from (0,02 to 1,4) nm were obtained. A feasibility study for use of PG crystal as an efficient second-order neutron filter is detailed in terms of crystal thickness, angular spread of c-axes and its operation with respect to the neutron beam. It was shown that a PG crystal with an angular spread of c-axes and its orientation with respect to the neutron beam. It was shown that a PG crystal with an angular spread of 0,8 degree is sufficient for optimum scattering of second-order neutrons in the wavelength band (0,384-0,183) nm, by adjusting the filter in an appropriate orientation

  4. Cat Swarm Optimization Based Functional Link Artificial Neural Network Filter for Gaussian Noise Removal from Computed Tomography Images

    Directory of Open Access Journals (Sweden)

    M. Kumar

    2016-01-01

    Full Text Available Gaussian noise is one of the dominant noises, which degrades the quality of acquired Computed Tomography (CT image data. It creates difficulties in pathological identification or diagnosis of any disease. Gaussian noise elimination is desirable to improve the clarity of a CT image for clinical, diagnostic, and postprocessing applications. This paper proposes an evolutionary nonlinear adaptive filter approach, using Cat Swarm Functional Link Artificial Neural Network (CS-FLANN to remove the unwanted noise. The structure of the proposed filter is based on the Functional Link Artificial Neural Network (FLANN and the Cat Swarm Optimization (CSO is utilized for the selection of optimum weight of the neural network filter. The applied filter has been compared with the existing linear filters, like the mean filter and the adaptive Wiener filter. The performance indices, such as peak signal to noise ratio (PSNR, have been computed for the quantitative analysis of the proposed filter. The experimental evaluation established the superiority of the proposed filtering technique over existing methods.

  5. UV filters for lighting of plants

    Energy Technology Data Exchange (ETDEWEB)

    Doehring, T.; Koefferlein, M.; Thiel, S.; Seidlitz, H.K.; Payer, H.D. [GSF-Forschungszentrum fuer Umwelt und Gesundheit GmbH, Oberschleissheim (Germany)

    1994-12-31

    Different filter glasses are available which provide absorption properties suitable for gradual changes of the spectral UV-B illumination of artificial lighting. Using a distinct set of lamps and filter glasses an acceptable simulation of the UV-B part of natural global radiation can be achieved. The ageing of these and other filter materials under the extreme UV radiation in the lamphouse of a solar simulator is presently unavoidable. This instability can be dealt with only by a precise spectral monitoring and by replacing the filters accordingly. For this reason attempts would be useful to develop real ozone filters which can replace glass filters. In any case chamber experiments require a careful selection of the filter material used and must be accompanied by a continuous UV-B monitoring.

  6. Improving Filtered Backprojection Reconstruction by Data-Dependent Filtering

    NARCIS (Netherlands)

    D.M. Pelt (Daniël); K.J. Batenburg (Joost)

    2014-01-01

    htmlabstractFiltered backprojection, one of the most widely used reconstruction methods in tomography, requires a large number of low-noise projections to yield accurate reconstructions. In many applications of tomography, complete projection data of high quality cannot be obtained, because of

  7. Translational database selection and multiplexed sequence capture for up front filtering of reliable breast cancer biomarker candidates.

    Directory of Open Access Journals (Sweden)

    Patrik L Ståhl

    Full Text Available Biomarker identification is of utmost importance for the development of novel diagnostics and therapeutics. Here we make use of a translational database selection strategy, utilizing data from the Human Protein Atlas (HPA on differentially expressed protein patterns in healthy and breast cancer tissues as a means to filter out potential biomarkers for underlying genetic causatives of the disease. DNA was isolated from ten breast cancer biopsies, and the protein coding and flanking non-coding genomic regions corresponding to the selected proteins were extracted in a multiplexed format from the samples using a single DNA sequence capture array. Deep sequencing revealed an even enrichment of the multiplexed samples and a great variation of genetic alterations in the tumors of the sampled individuals. Benefiting from the upstream filtering method, the final set of biomarker candidates could be completely verified through bidirectional Sanger sequencing, revealing a 40 percent false positive rate despite high read coverage. Of the variants encountered in translated regions, nine novel non-synonymous variations were identified and verified, two of which were present in more than one of the ten tumor samples.

  8. Particle filters for random set models

    CERN Document Server

    Ristic, Branko

    2013-01-01

    “Particle Filters for Random Set Models” presents coverage of state estimation of stochastic dynamic systems from noisy measurements, specifically sequential Bayesian estimation and nonlinear or stochastic filtering. The class of solutions presented in this book is based  on the Monte Carlo statistical method. The resulting  algorithms, known as particle filters, in the last decade have become one of the essential tools for stochastic filtering, with applications ranging from  navigation and autonomous vehicles to bio-informatics and finance. While particle filters have been around for more than a decade, the recent theoretical developments of sequential Bayesian estimation in the framework of random set theory have provided new opportunities which are not widely known and are covered in this book. These recent developments have dramatically widened the scope of applications, from single to multiple appearing/disappearing objects, from precise to imprecise measurements and measurement models. This book...

  9. E.I. DuPont De Nemours & Company/Oberlin Filter Company Microfiltration Technology. Applications Analysis Report

    Science.gov (United States)

    This report evaluates the DuPont/Oberlin microfiltration technology’s ability to remove metals (present in soluble or insoluble form) and particulates from liquid wastes while producing a dry filter cake and a filtrate that meet applicable disposal requirements. This report also ...

  10. A Low Cost Structurally Optimized Design for Diverse Filter Types

    Science.gov (United States)

    Kazmi, Majida; Aziz, Arshad; Akhtar, Pervez; Ikram, Nassar

    2016-01-01

    A wide range of image processing applications deploys two dimensional (2D)-filters for performing diversified tasks such as image enhancement, edge detection, noise suppression, multi scale decomposition and compression etc. All of these tasks require multiple type of 2D-filters simultaneously to acquire the desired results. The resource hungry conventional approach is not a viable option for implementing these computationally intensive 2D-filters especially in a resource constraint environment. Thus it calls for optimized solutions. Mostly the optimization of these filters are based on exploiting structural properties. A common shortcoming of all previously reported optimized approaches is their restricted applicability only for a specific filter type. These narrow scoped solutions completely disregard the versatility attribute of advanced image processing applications and in turn offset their effectiveness while implementing a complete application. This paper presents an efficient framework which exploits the structural properties of 2D-filters for effectually reducing its computational cost along with an added advantage of versatility for supporting diverse filter types. A composite symmetric filter structure is introduced which exploits the identities of quadrant and circular T-symmetries in two distinct filter regions simultaneously. These T-symmetries effectually reduce the number of filter coefficients and consequently its multipliers count. The proposed framework at the same time empowers this composite filter structure with additional capabilities of realizing all of its Ψ-symmetry based subtypes and also its special asymmetric filters case. The two-fold optimized framework thus reduces filter computational cost up to 75% as compared to the conventional approach as well as its versatility attribute not only supports diverse filter types but also offers further cost reduction via resource sharing for sequential implementation of diversified image

  11. New approaches for the design and the fabrication of pixelated filters

    Science.gov (United States)

    Lumeau, J.; Lemarquis, F.; Begou, T.; Mathieu, K.; Savin De Larclause, I.; Berthon, J.

    2017-09-01

    Multispectral or hyperspectral images allow acquiring new information that could not be acquired using colored images and, for example, identifying chemical species on an observed scene using specific highly selective thin film filters. Those images are commonly used in numerous fields, e.g. in agriculture or homeland security and are of prime interest for imaging systems for onboard scientific applications (e.g. for planetology).

  12. A class of orthogonal nonrecursive binomial filters.

    Science.gov (United States)

    Haddad, R. A.

    1971-01-01

    The time- and frequency-domain properties of the orthogonal binomial sequences are presented. It is shown that these sequences, or digital filters based on them, can be generated using adders and delay elements only. The frequency-domain behavior of these nonrecursive binomial filters suggests a number of applications as low-pass Gaussian filters or as inexpensive bandpass filters.

  13. Ceramic fiber reinforced filter

    Science.gov (United States)

    Stinton, David P.; McLaughlin, Jerry C.; Lowden, Richard A.

    1991-01-01

    A filter for removing particulate matter from high temperature flowing fluids, and in particular gases, that is reinforced with ceramic fibers. The filter has a ceramic base fiber material in the form of a fabric, felt, paper of the like, with the refractory fibers thereof coated with a thin layer of a protective and bonding refractory applied by chemical vapor deposition techniques. This coating causes each fiber to be physically joined to adjoining fibers so as to prevent movement of the fibers during use and to increase the strength and toughness of the composite filter. Further, the coating can be selected to minimize any reactions between the constituents of the fluids and the fibers. A description is given of the formation of a composite filter using a felt preform of commercial silicon carbide fibers together with the coating of these fibers with pure silicon carbide. Filter efficiency approaching 100% has been demonstrated with these filters. The fiber base material is alternately made from aluminosilicate fibers, zirconia fibers and alumina fibers. Coating with Al.sub.2 O.sub.3 is also described. Advanced configurations for the composite filter are suggested.

  14. Filtering Methods for Error Reduction in Spacecraft Attitude Estimation Using Quaternion Star Trackers

    Science.gov (United States)

    Calhoun, Philip C.; Sedlak, Joseph E.; Superfin, Emil

    2011-01-01

    Precision attitude determination for recent and planned space missions typically includes quaternion star trackers (ST) and a three-axis inertial reference unit (IRU). Sensor selection is based on estimates of knowledge accuracy attainable from a Kalman filter (KF), which provides the optimal solution for the case of linear dynamics with measurement and process errors characterized by random Gaussian noise with white spectrum. Non-Gaussian systematic errors in quaternion STs are often quite large and have an unpredictable time-varying nature, particularly when used in non-inertial pointing applications. Two filtering methods are proposed to reduce the attitude estimation error resulting from ST systematic errors, 1) extended Kalman filter (EKF) augmented with Markov states, 2) Unscented Kalman filter (UKF) with a periodic measurement model. Realistic assessments of the attitude estimation performance gains are demonstrated with both simulation and flight telemetry data from the Lunar Reconnaissance Orbiter.

  15. Updating the OMERACT filter

    DEFF Research Database (Denmark)

    Kirwan, John R; Boers, Maarten; Hewlett, Sarah

    2014-01-01

    OBJECTIVE: The Outcome Measures in Rheumatology (OMERACT) Filter provides guidelines for the development and validation of outcome measures for use in clinical research. The "Truth" section of the OMERACT Filter presupposes an explicit framework for identifying the relevant core outcomes...... for defining core areas of measurement ("Filter 2.0 Core Areas of Measurement") was presented at OMERACT 11 to explore areas of consensus and to consider whether already endorsed core outcome sets fit into this newly proposed framework. METHODS: Discussion groups critically reviewed the extent to which case......, presentation, and clarity of the framework were questioned. The discussion groups and subsequent feedback highlighted 20 such issues. CONCLUSION: These issues will require resolution to reach consensus on accepting the proposed Filter 2.0 framework of Core Areas as the basis for the selection of Core Outcome...

  16. Correlation of Spatially Filtered Dynamic Speckles in Distance Measurement Application

    International Nuclear Information System (INIS)

    Semenov, Dmitry V.; Nippolainen, Ervin; Kamshilin, Alexei A.; Miridonov, Serguei V.

    2008-01-01

    In this paper statistical properties of spatially filtered dynamic speckles are considered. This phenomenon was not sufficiently studied yet while spatial filtering is an important instrument for speckles velocity measurements. In case of spatial filtering speckle velocity information is derived from the modulation frequency of filtered light power which is measured by photodetector. Typical photodetector output is represented by a narrow-band random noise signal which includes non-informative intervals. Therefore more or less precious frequency measurement requires averaging. In its turn averaging implies uncorrelated samples. However, conducting research we found that correlation is typical property not only of dynamic speckle patterns but also of spatially filtered speckles. Using spatial filtering the correlation is observed as a response of measurements provided to the same part of the object surface or in case of simultaneously using several adjacent photodetectors. Found correlations can not be explained using just properties of unfiltered dynamic speckles. As we demonstrate the subject of this paper is important not only from pure theoretical point but also from the point of applied speckle metrology. E.g. using single spatial filter and an array of photodetector can greatly improve accuracy of speckle velocity measurements

  17. A Simple Analytical Method Using HPLC with Fluorescence Detection to Determine Selected Polycyclic Aromatic Compounds in Filter Samples

    International Nuclear Information System (INIS)

    Garcia, S.; Perez, R. M.

    2014-01-01

    A study on the comparison and evaluation of a miniaturized extraction method for the determination of selected PACs in sample filters is presented. The main objective was the optimization and development of simple, rapid and low cost methods, minimizing the use of extracting solvent volume. The work also includes a study on the intermediate precision. (Author)

  18. Kalman Filter Application to Symmetrical Fault Detection during Power Swing

    DEFF Research Database (Denmark)

    Khodaparast, Jalal; Silva, Filipe Miguel Faria da; Khederzadeh, M.

    2016-01-01

    capability of Kalman Filter. The proposed index is calculated by assessing the difference between predicted and actual samples of impedance. The predicted impedance samples are obtained using Kalman filter and Taylor expansion, which is used in this paper to track the phasor precisely. Second order of Taylor...... expansion is used to decrease corrugation effect of impedance estimation and increase the reliability of proposed method. The instantaneous estimation and prediction capability of Kalman filter are two reasons for proposing utilizing Kalman filter....

  19. The application of sheet filters in treatment of fruit brandy after cold stabilization

    Directory of Open Access Journals (Sweden)

    Miljić Uroš D.

    2013-01-01

    Full Text Available Considering the common use of sheet filtration for clarification of fruit brandies, the aim of this study was to evaluate the influence of its application on the stability and composition of volatile compounds of apricot brandy after cold stabilisation. Cold stabilisation treatment involved holding of the brandy at -1°C during 24 hours. Five depth filter sheets with the nominal retention rate of 0.3 μm, 0.5-0.7 μm, 0.7-1.0 μm, 1.0-2.0 μm and 2.5-4.0 μm, were tested in the study. It was shown that all assessed filter sheets were efficient in removing chill haze by significantly reducing the content of fatty acid esters (primarily ethyl palmitate and ethyl laurate. Other volatile and aromatic compounds were not significantly influenced by the applied treatments. However, the filter sheets with higher nominal retention rate (> 0.7 μm, had a smaller impact on the sensory characteristics of the apricot brandy. The re-exposure to lower temperatures did not lead to chill haze formation in any sample obtained after sheet filtration. [Projekat Ministarstva nauke Republike Srbije, br. TR-31002

  20. A generalized adaptive mathematical morphological filter for LIDAR data

    Science.gov (United States)

    Cui, Zheng

    Airborne Light Detection and Ranging (LIDAR) technology has become the primary method to derive high-resolution Digital Terrain Models (DTMs), which are essential for studying Earth's surface processes, such as flooding and landslides. The critical step in generating a DTM is to separate ground and non-ground measurements in a voluminous point LIDAR dataset, using a filter, because the DTM is created by interpolating ground points. As one of widely used filtering methods, the progressive morphological (PM) filter has the advantages of classifying the LIDAR data at the point level, a linear computational complexity, and preserving the geometric shapes of terrain features. The filter works well in an urban setting with a gentle slope and a mixture of vegetation and buildings. However, the PM filter often removes ground measurements incorrectly at the topographic high area, along with large sizes of non-ground objects, because it uses a constant threshold slope, resulting in "cut-off" errors. A novel cluster analysis method was developed in this study and incorporated into the PM filter to prevent the removal of the ground measurements at topographic highs. Furthermore, to obtain the optimal filtering results for an area with undulating terrain, a trend analysis method was developed to adaptively estimate the slope-related thresholds of the PM filter based on changes of topographic slopes and the characteristics of non-terrain objects. The comparison of the PM and generalized adaptive PM (GAPM) filters for selected study areas indicates that the GAPM filter preserves the most "cut-off" points removed incorrectly by the PM filter. The application of the GAPM filter to seven ISPRS benchmark datasets shows that the GAPM filter reduces the filtering error by 20% on average, compared with the method used by the popular commercial software TerraScan. The combination of the cluster method, adaptive trend analysis, and the PM filter allows users without much experience in

  1. Filtering Photogrammetric Point Clouds Using Standard LIDAR Filters Towards DTM Generation

    Science.gov (United States)

    Zhang, Z.; Gerke, M.; Vosselman, G.; Yang, M. Y.

    2018-05-01

    Digital Terrain Models (DTMs) can be generated from point clouds acquired by laser scanning or photogrammetric dense matching. During the last two decades, much effort has been paid to developing robust filtering algorithms for the airborne laser scanning (ALS) data. With the point cloud quality from dense image matching (DIM) getting better and better, the research question that arises is whether those standard Lidar filters can be used to filter photogrammetric point clouds as well. Experiments are implemented to filter two dense matching point clouds with different noise levels. Results show that the standard Lidar filter is robust to random noise. However, artefacts and blunders in the DIM points often appear due to low contrast or poor texture in the images. Filtering will be erroneous in these locations. Filtering the DIM points pre-processed by a ranking filter will bring higher Type II error (i.e. non-ground points actually labelled as ground points) but much lower Type I error (i.e. bare ground points labelled as non-ground points). Finally, the potential DTM accuracy that can be achieved by DIM points is evaluated. Two DIM point clouds derived by Pix4Dmapper and SURE are compared. On grassland dense matching generates points higher than the true terrain surface, which will result in incorrectly elevated DTMs. The application of the ranking filter leads to a reduced bias in the DTM height, but a slightly increased noise level.

  2. Digital filtering in nuclear medicine

    International Nuclear Information System (INIS)

    Miller, T.R.; Sampathkumaran, S.

    1982-01-01

    Digital filtering is a powerful mathematical technique in computer analysis of nuclear medicine studies. The basic concepts of object-domain and frequency-domain filtering are presented in simple, largely nonmathemaical terms. Computational methods are described using both the Fourier transform and convolution techniques. The frequency response is described and used to represent the behavior of several classes of filters. These concepts are illustrated with examples drawn from a variety of important applications in nuclear medicine

  3. Analog filters in nanometer CMOS

    CERN Document Server

    Uhrmann, Heimo; Zimmermann, Horst

    2014-01-01

    Starting from the basics of analog filters and the poor transistor characteristics in nanometer CMOS 10 high-performance analog filters developed by the authors in 120 nm and 65 nm CMOS are described extensively. Among them are gm-C filters, current-mode filters, and active filters for system-on-chip realization for Bluetooth, WCDMA, UWB, DVB-H, and LTE applications. For the active filters several operational amplifier designs are described. The book, furthermore, contains a review of the newest state of research on low-voltage low-power analog filters. To cover the topic of the book comprehensively, linearization issues and measurement methods for the characterization of advanced analog filters are introduced in addition. Numerous elaborate illustrations promote an easy comprehension. This book will be of value to engineers and researchers in industry as well as scientists and Ph.D students at universities. The book is also recommendable to graduate students specializing on nanoelectronics, microelectronics ...

  4. Digital high-pass filter deconvolution by means of an infinite impulse response filter

    Energy Technology Data Exchange (ETDEWEB)

    Födisch, P., E-mail: p.foedisch@hzdr.de [Helmholtz-Zentrum Dresden - Rossendorf, Department of Research Technology, Bautzner Landstr. 400, 01328 Dresden (Germany); Wohsmann, J. [Helmholtz-Zentrum Dresden - Rossendorf, Department of Research Technology, Bautzner Landstr. 400, 01328 Dresden (Germany); Dresden University of Applied Sciences, Faculty of Electrical Engineering, Friedrich-List-Platz 1, 01069 Dresden (Germany); Lange, B. [Helmholtz-Zentrum Dresden - Rossendorf, Department of Research Technology, Bautzner Landstr. 400, 01328 Dresden (Germany); Schönherr, J. [Dresden University of Applied Sciences, Faculty of Electrical Engineering, Friedrich-List-Platz 1, 01069 Dresden (Germany); Enghardt, W. [OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, PF 41, 01307 Dresden (Germany); Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology, Bautzner Landstr. 400, 01328 Dresden (Germany); German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Kaever, P. [Helmholtz-Zentrum Dresden - Rossendorf, Department of Research Technology, Bautzner Landstr. 400, 01328 Dresden (Germany); Dresden University of Applied Sciences, Faculty of Electrical Engineering, Friedrich-List-Platz 1, 01069 Dresden (Germany)

    2016-09-11

    In the application of semiconductor detectors, the charge-sensitive amplifier is widely used in front-end electronics. The output signal is shaped by a typical exponential decay. Depending on the feedback network, this type of front-end electronics suffers from the ballistic deficit problem, or an increased rate of pulse pile-ups. Moreover, spectroscopy applications require a correction of the pulse-height, while a shortened pulse-width is desirable for high-throughput applications. For both objectives, digital deconvolution of the exponential decay is convenient. With a general method and the signals of our custom charge-sensitive amplifier for cadmium zinc telluride detectors, we show how the transfer function of an amplifier is adapted to an infinite impulse response (IIR) filter. This paper investigates different design methods for an IIR filter in the discrete-time domain and verifies the obtained filter coefficients with respect to the equivalent continuous-time frequency response. Finally, the exponential decay is shaped to a step-like output signal that is exploited by a forward-looking pulse processing.

  5. Application of peat filters for treating milkhouse wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Fahie, C.R.; Gagnon, G.A. [Dalhousie Univ., Dept. of Civil Engineering, Halifax, Nova Scotia (Canada); Gordon, R.J. [Nova Scotia Agricultural College, Dept. of Engineering, Bible Hill, Nova Scotia (Canada)

    2002-06-15

    This study investigates the suitability of using peat as a filtering media for the treatment of agricultural wastewater. A full-scale experimental filter system was used to evaluate the ability of the filter system to treat milkhouse wastewater. The full-size modular peat filtration system was installed and monitored on a dairy farm located in Hilden, NS. The peat filter models used in the study were constructed from pre-cast concrete, which are approximately 3.2 m long by 1.8 m wide and 1.0 m high and filled are packed with sphagnum peat moss compacted to a density of 0.15 g cm{sup -3} . Parameters that were monitored include BOD, pH, NO{sub 3}-N, SO{sub 4}, TSS, SRP, and TP. The milkhouse wastewater was characterized by having a BOD{sub 5} of approximately 1500 mg L{sup -1} , an average TSS concentration of 510 mg L{sup -1} and an average SRP concentration of 100 mg L{sup -1} . Removal efficiencies of BOD{sub 5} and TSS were observed to be 59% and 82% respectively. In general, phosphorus removal was poor and subsequent research will examine mechanisms of improving phosphorus removal. (author)

  6. Application of peat filters for treating milkhouse wastewater

    International Nuclear Information System (INIS)

    Fahie, C.R.; Gagnon, G.A.; Gordon, R.J.

    2002-01-01

    This study investigates the suitability of using peat as a filtering media for the treatment of agricultural wastewater. A full-scale experimental filter system was used to evaluate the ability of the filter system to treat milkhouse wastewater. The full-size modular peat filtration system was installed and monitored on a dairy farm located in Hilden, NS. The peat filter models used in the study were constructed from pre-cast concrete, which are approximately 3.2 m long by 1.8 m wide and 1.0 m high and filled are packed with sphagnum peat moss compacted to a density of 0.15 g cm -3 . Parameters that were monitored include BOD, pH, NO 3 -N, SO 4 , TSS, SRP, and TP. The milkhouse wastewater was characterized by having a BOD 5 of approximately 1500 mg L -1 , an average TSS concentration of 510 mg L -1 and an average SRP concentration of 100 mg L -1 . Removal efficiencies of BOD 5 and TSS were observed to be 59% and 82% respectively. In general, phosphorus removal was poor and subsequent research will examine mechanisms of improving phosphorus removal. (author)

  7. Bacteria and virus removal effectiveness of ceramic pot filters with different silver applications in a long term experiment.

    Science.gov (United States)

    van der Laan, H; van Halem, D; Smeets, P W M H; Soppe, A I A; Kroesbergen, J; Wubbels, G; Nederstigt, J; Gensburger, I; Heijman, S G J

    2014-03-15

    In 2012 more than 4 million people used a ceramic pot filter (CPF) as household water treatment system for their daily drinking water needs. In the normal production protocol most low cost filters are impregnated with a silver solution to enhance the microbial removal efficiency. The aim of this study was to determine the role of silver during the filtration and subsequent storage. Twenty-two CPFs with three different silver applications (non, only outside and both sides) were compared in a long-term loading experiment with Escherichia coli (K12 and WR1) and MS2 bacteriophages in natural challenge water under highly controlled laboratory circumstances. No significant difference in Log Removal Values were found between the filters with different silver applications. The results show that the storage time in the receptacle is the dominant parameter to reach E. coli inactivation by silver, and not the contact time during the filtration phase. The hypothesis that the absence of silver would enhance the virus removal, due to biofilm formation on the ceramic filter element, could not be confirmed. The removal effectiveness for viruses is still of major concern for the CPF. This study suggests that the ceramic pot filter characteristics, such as burnt material content, do not determine E. coli removal efficacies, but rather the contact time with silver during storage is the dominant parameter to reach E. coli inactivation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Application of digital tomosynthesis (DTS) of optimal deblurring filters for dental X-ray imaging

    International Nuclear Information System (INIS)

    Oh, J. E.; Cho, H. S.; Kim, D. S.; Choi, S. I.; Je, U. K.

    2012-01-01

    Digital tomosynthesis (DTS) is a limited-angle tomographic technique that provides some of the tomographic benefits of computed tomography (CT) but at reduced dose and cost. Thus, the potential for application of DTS to dental X-ray imaging seems promising. As a continuation of our dental radiography R and D, we developed an effective DTS reconstruction algorithm and implemented it in conjunction with a commercial dental CT system for potential use in dental implant placement. The reconstruction algorithm employed a backprojection filtering (BPF) method based upon optimal deblurring filters to suppress effectively both the blur artifacts originating from the out-focus planes and the high-frequency noise. To verify the usefulness of the reconstruction algorithm, we performed systematic simulation works and evaluated the image characteristics. We also performed experimental works in which DTS images of enhanced anatomical resolution were successfully obtained by using the algorithm and were promising to our ongoing applications to dental X-ray imaging. In this paper, our approach to the development of the DTS reconstruction algorithm and the results are described in detail.

  9. Heterogeneous counting on filter support media

    International Nuclear Information System (INIS)

    Long, E.; Kohler, V.; Kelly, M.J.

    1976-01-01

    Many investigators in the biomedical research area have used filter paper as the support for radioactive samples. This means that a heterogeneous counting of sample sometimes results. The count rate of a sample on a filter will be affected by positioning, degree of dryness, sample application procedure, the type of filter, and the type of cocktail used. Positioning of the filter (up or down) in the counting vial can cause a variation of 35% or more when counting tritiated samples on filter paper. Samples of varying degrees of dryness when added to the counting cocktail can cause nonreproducible counts if handled improperly. Count rates starting at 2400 CPM initially can become 10,000 CPM in 24 hours for 3 H-DNA (deoxyribonucleic acid) samples dried on standard cellulose acetate membrane filters. Data on cellulose nitrate filters show a similar trend. Sample application procedures in which the sample is applied to the filter in a small spot or on a large amount of the surface area can cause nonreproducible or very low counting rates. A tritiated DNA sample, when applied topically, gives a count rate of 4,000 CPM. When the sample is spread over the whole filter, 13,400 CPM are obtained with a much better coefficient of variation (5% versus 20%). Adding protein carrier (bovine serum albumin-BSA) to the sample to trap more of the tritiated DNA on the filter during the filtration process causes a serious beta absorption problem. Count rates which are one-fourth the count rate applied to the filter are obtained on calibrated runs. Many of the problems encountered can be alleviated by a proper choice of filter and the use of a liquid scintillation cocktail which dissolves the filter. Filter-Solv has been used to dissolve cellulose nitrate filters and filters which are a combination of cellulose nitrate and cellulose acetate. Count rates obtained for these dissolved samples are very reproducible and highly efficient

  10. Evaluation of self-contained HEPA filter

    Energy Technology Data Exchange (ETDEWEB)

    Arndt, T.E. [Westinghouse Hanford Company, Richland, WA (United States)

    1995-02-01

    This paper presents the results of an evaluation of a self-contained high-efficiency particulate air filter (SHEPA) used in nuclear applications. A SCHEPA consists of filter medium encapsulated in a casing that is part of the system boundary. The SCHEPA filter serves as a combination of filter housing and filter. The filter medium is attached directly to the casing using adhesive as a bonding agent. A cylindrical connection in the middle of the end caps connects the filter assembly to adjoining ductwork. The SCHEPA must perform the functions of a filter housing, filter frame, and filter. It was recognized that the codes and standards do not address the SCHEPA specifically. Therefore, the investigation evaluated the SCHEPA against current codes and standards related to the functional requirements of an air-cleaning system. The specific standards used are required by DOE Order 6430.1A{sup 1} and include ASME N509{sup 3}, ASME N510{sup 4}, ERDA 76-21{sup 5}, MIL-F-51068F{sup 6}, NFPA 90A, {sup 7} and NFPA 91{sup 8}. The evaluation does not address whether the SCHEPA as a standard (off-the-shelf) filter could be upgraded to meet the current code requirements for an air-cleaning unit. The evaluation also did not consider how the SCHEPA was used in a system (e.g., whether it was under positive or negative pressure or whether it served as an air inlet filter to prevent contamination releases under system pressurization). The results of the evaluation show that, the SCHEPA filter does not meet design, fabrication, testing, and documentation requirements of ASME N509{sup 3} and ASME N510{sup 4}. The paper will identify these deficiencies. Specific exhaust system requirements and application should be considered when an evaluation of the SCHEPA filter is being performed in existing systems. When new designs are being comtemplated, other types of HEPA filter housings can be used in lieu of the SCHEPA filter.

  11. Design Optimization of Vena Cava Filters: An application to dual filtration devices

    Energy Technology Data Exchange (ETDEWEB)

    Singer, M A; Wang, S L; Diachin, D P

    2009-12-03

    Pulmonary embolism (PE) is a significant medical problem that results in over 300,000 fatalities per year. A common preventative treatment for PE is the insertion of a metallic filter into the inferior vena cava that traps thrombi before they reach the lungs. The goal of this work is to use methods of mathematical modeling and design optimization to determine the configuration of trapped thrombi that minimizes the hemodynamic disruption. The resulting configuration has implications for constructing an optimally designed vena cava filter. Computational fluid dynamics is coupled with a nonlinear optimization algorithm to determine the optimal configuration of trapped model thrombus in the inferior vena cava. The location and shape of the thrombus are parameterized, and an objective function, based on wall shear stresses, determines the worthiness of a given configuration. The methods are fully automated and demonstrate the capabilities of a design optimization framework that is broadly applicable. Changes to thrombus location and shape alter the velocity contours and wall shear stress profiles significantly. For vena cava filters that trap two thrombi simultaneously, the undesirable flow dynamics past one thrombus can be mitigated by leveraging the flow past the other thrombus. Streamlining the shape of thrombus trapped along the cava wall reduces the disruption to the flow, but increases the area exposed to abnormal wall shear stress. Computer-based design optimization is a useful tool for developing vena cava filters. Characterizing and parameterizing the design requirements and constraints is essential for constructing devices that address clinical complications. In addition, formulating a well-defined objective function that quantifies clinical risks and benefits is needed for designing devices that are clinically viable.

  12. Survey of HEPA filter applications and experience at Department of Energy sites

    International Nuclear Information System (INIS)

    Carbaugh, E.H.

    1981-11-01

    Results indicated that approximately 58% of the filters surveyed were changed out in the 1977 to 1979 study period and some 18% of all filters were changed out more than once. Most changeouts (60%) were due to the existence of a high pressure drop across the filter, indicative of filter plugging. The next most recurrent reasons for changeout and their percentage changeouts were leak test failure (15%) and preventive maintenance service life limit (12%). An average filter service life was calculated to be 3.0 years with a 2.0-year standard deviation. The labor required for filter changeout was calculated as 1.5 manhours per filter changed. Filter failures occurred with approximately 12% of all installed filters. Most failures (60%) occurred for unknown reasons and handling or installation damage accounted for an additional 20% of all failures. Media ruptures, filter frame failures and seal failures occurred with approximately equal frequency at 5 to 6% each. Subjective responses to the questionnaire indicate problems are: need for improved acid and moisture resistant filters; filters more readily disposable as radioactive waste; improved personnel training in filter handling and installation; and need for pretreatment of air prior to HEPA filtration

  13. Development of circular filters for active facilities

    International Nuclear Information System (INIS)

    Pratt, R.P.

    1986-01-01

    An assessment of problems associated with remote handling, changing and disposal of filters suggested that significant improvements to filtration systems could be made if circular geometries were adopted in place of conventional systems. Improved systems have been developed and are now available for a range of applications and air flow rates. Where primary filters are installed within the active cell or cave, circular filters incorporating a lip seal have been developed which enable the filters to be sealed into the facility without recourse to clamping. For smaller cells, a range of push-through filter change systems have been developed, the principal feature being that the filter is passed into the housing from the clean side, but transferred from the housing directly into the cell for subsequent disposal. For plant room applications, circular bag change canister systems have been developed which ease the sealing and bag change operation. Such systems have a rated air flow of up to 3000 m 3 /h whilst still allowing ultimate disposal via the 200 litre waste drum route without prior volume reduction of the filter inserts. (author)

  14. Noise reduction with complex bilateral filter.

    Science.gov (United States)

    Matsumoto, Mitsuharu

    2017-12-01

    This study introduces a noise reduction technique that uses a complex bilateral filter. A bilateral filter is a nonlinear filter originally developed for images that can reduce noise while preserving edge information. It is an attractive filter and has been used in many applications in image processing. When it is applied to an acoustical signal, small-amplitude noise is reduced while the speech signal is preserved. However, a bilateral filter cannot handle noise with relatively large amplitudes owing to its innate characteristics. In this study, the noisy signal is transformed into the time-frequency domain and the filter is improved to handle complex spectra. The high-amplitude noise is reduced in the time-frequency domain via the proposed filter. The features and the potential of the proposed filter are also confirmed through experiments.

  15. Filter and slice thickness selection in SPECT image reconstruction

    International Nuclear Information System (INIS)

    Ivanovic, M.; Weber, D.A.; Wilson, G.A.; O'Mara, R.E.

    1985-01-01

    The choice of filter and slice thickness in SPECT image reconstruction as function of activity and linear and angular sampling were investigated in phantom and patient imaging studies. Reconstructed transverse and longitudinal spatial resolution of the system were measured using a line source in a water filled phantom. Phantom studies included measurements of the Data Spectrum phantom; clinical studies included tomographic procedures in 40 patients undergoing imaging of the temporomandibular joint. Slices of the phantom and patient images were evaluated for spatial of the phantom and patient images were evaluated for spatial resolution, noise, and image quality. Major findings include; spatial resolution and image quality improve with increasing linear sampling frequencies over the range of 4-8 mm/p in the phantom images, best spatial resolution and image quality in clinical images were observed at a linear sampling frequency of 6mm/p, Shepp and Logan filter gives the best spatial resolution for phantom studies at the lowest linear sampling frequency; smoothed Shepp and Logan filter provides best quality images without loss of resolution at higher frequencies and, spatial resolution and image quality improve with increased angular sampling frequency in the phantom at 40 c/p but appear to be independent of angular sampling frequency at 400 c/p

  16. Application of a Barrier Filter at a High Purity Synthetic Graphite Plant, CRADA 99-F035, Final Report; FINAL

    International Nuclear Information System (INIS)

    National Energy Technology Laboratory

    2000-01-01

    Superior Graphite Company and the US Department of Energy have entered into a Cooperative Research and Development Agreement (CRADA) to study the application of ceramic barrier filters at its Hopkinsville, Kentucky graphite plant. Superior Graphite Company is a worldwide leader in the application of advanced thermal processing technology to produce high purity graphite and carbons. The objective of the CRADA is to determine the technical and economic feasibility of incorporating the use of high-temperature filters to improve the performance of the offgas treatment system. A conceptual design was developed incorporating the ceramic filters into the offgas treatment system to be used for the development of a capital cost estimate and economic feasibility assessment of this technology for improving particulate removal. This CRADA is a joint effort of Superior Graphite Company, Parsons Infrastructure and Technology Group, and the National Energy Technology Laboratory (NETL) of the US Department of Energy (DOE)

  17. Passive wide spectrum harmonic filter for adjustable speed drives in oil and gas industry

    Science.gov (United States)

    Al Jaafari, Khaled Ali

    single-stage passive filter plus input and output inductors. The work proposed gives a complete analysis of wide spectrum harmonic passive filters, the methodology to choose its parameters according to the operational condition, effect of load and source inductance on its characteristics. Also, comparison of the performance of the wide band passive filter with tuned filter is given. The analyses are supported with the simulation results and were verified experimentally. The analysis given in this thesis will be useful for the selection of proper wide spectrum harmonic filters for harmonic mitigation applications in oil and gas industry.

  18. Utilization of plastics as transparent x-ray filter

    International Nuclear Information System (INIS)

    Masuda, Yathuhiko; Inui, Saburo; Kooda, Kazunao; Takiguchi, Kiyomi; Abe, Yoshinobu.

    1980-01-01

    An attempt has been made to develop heavy atom containing transparent plastic filters which are identical with conventional aluminum or copper filters in X-ray attenuating property. These transparent filters can be used as fixed at the front of a conventional multilayer collimator without obstructing the optical detection of the field size of X-ray exposure. It has become a serious problem that recent increasing use of X-ray in diagnostics, namely increasing patient exposure, may cause baneful influence upon the patients. To reduce such patient exposure, the I.C.R.P. has recommended the proper use of metal filters made of aluminum or copper with regards to the applied tube potential. These filters are generally used as fixed at the X-ray tube window or used at the front of a multilayer collimator as added filters. In the former case, and exchange of filters to select the best one with regards to the applied tube potential needs complicated works, and in the latter, the use of the added filters also needs complicated works to confirm field size before each radiography. These troublesome works have at time resulted in improper uses of the filters although the effective selection of filters is known to be useful to the reduction of patient exposure. Therefore, the problem of reduction of patient exposure by means of filtration still remains practically unsolved. To offer practical added filters which do not possess above mentioned disadvantages of metal filters, we tried to develop transparent added filters. Transparent plastics as the material of the filters were loaded with heavy atoms to equalize X-ray attenuating property with aluminum or copper. (author)

  19. The second order extended Kalman filter and Markov nonlinear filter for data processing in interferometric systems

    International Nuclear Information System (INIS)

    Ermolaev, P; Volynsky, M

    2014-01-01

    Recurrent stochastic data processing algorithms using representation of interferometric signal as output of a dynamic system, which state is described by vector of parameters, in some cases are more effective, compared with conventional algorithms. Interferometric signals depend on phase nonlinearly. Consequently it is expedient to apply algorithms of nonlinear stochastic filtering, such as Kalman type filters. An application of the second order extended Kalman filter and Markov nonlinear filter that allows to minimize estimation error is described. Experimental results of signals processing are illustrated. Comparison of the algorithms is presented and discussed.

  20. Design considerations for a suboptimal Kalman filter

    Science.gov (United States)

    Difilippo, D. J.

    1995-06-01

    In designing a suboptimal Kalman filter, the designer must decide how to simplify the system error model without causing the filter estimation errors to increase to unacceptable levels. Deletion of certain error states and decoupling of error state dynamics are the two principal model simplifications that are commonly used in suboptimal filter design. For the most part, the decisions as to which error states can be deleted or decoupled are based on the designer's understanding of the physics of the particular system. Consequently, the details of a suboptimal design are usually unique to the specific application. In this paper, the process of designing a suboptimal Kalman filter is illustrated for the case of an airborne transfer-of-alignment (TOA) system used for synthetic aperture radar (SAR) motion compensation. In this application, the filter must continuously transfer the alignment of an onboard Doppler-damped master inertial navigation system (INS) to a strapdown navigator that processes information from a less accurate inertial measurement unit (IMU) mounted on the radar antenna. The IMU is used to measure spurious antenna motion during the SAR imaging interval, so that compensating phase corrections can be computed and applied to the radar returns, thereby presenting image degradation that would otherwise result from such motions. The principles of SAR are described in many references, for instance. The primary function of the TOA Kalman filter in a SAR motion compensation system is to control strapdown navigator attitude errors, and to a less degree, velocity and heading errors. Unlike a classical navigation application, absolute positional accuracy is not important. The motion compensation requirements for SAR imaging are discussed in some detail. This TOA application is particularly appropriate as a vehicle for discussing suboptimal filter design, because the system contains features that can be exploited to allow both deletion and decoupling of error

  1. Performance Studies for Electron and Photon Selection at the Event Filter

    CERN Document Server

    Mommsen, R K; Wielers, M

    2000-01-01

    In this note the electron and photon selection potential of the event filter is studied. The offline software suite ATRECON is used to investigate the rejection power achievable within the stringent constraints in an online environment. We used the electro-magnetic calorimeter reconstruction, the xKalman and iPatRec pattern recognition packages, and for photon conversion finding xConver/xHouRec. The interplay between efficiency/rejection and the execution time of the algorithms is investigated for electrons and photons both at low and high luminosity. A total efficiency of about 75(73)% for single electrons with Pt=20(30)GeV at a dijet rate of ~40(130)Hz at low (high) luminosity can be retained while reducing the median reconstruction time by a factor of ~3(10) with simple reconfigurations of ATRECON.Additional, the long tails seen in the reconstruction time distribution at the default settings are reduced significantly.

  2. Conduction properties of KcsA measured using brownian dynamics with flexible carbonyl groups in the selectivity filter.

    Science.gov (United States)

    Chung, Shin-Ho; Corry, Ben

    2007-07-01

    In the narrow segment of an ion conducting pathway, it is likely that a permeating ion influences the positions of the nearby atoms that carry partial or full electronic charges. Here we introduce a method of incorporating the motion of charged atoms lining the pore into Brownian dynamics simulations of ion conduction. The movements of the carbonyl groups in the selectivity filter of the KcsA channel are calculated explicitly, allowing their bond lengths, bond angles, and dihedral angels to change in response to the forces acting upon them. By systematically changing the coefficients of bond stretching and of angle bending, the carbon and oxygen atoms can be made to fluctuate from their fixed positions by varying mean distances. We show that incorporating carbonyl motion in this way does not alter the mechanism of ion conduction and only has a small influence on the computed current. The slope conductance of the channel increases by approximately 25% when the root mean-square fluctuations of the carbonyl groups are increased from 0.01 to 0.61 A. The energy profiles and the number of resident ions in the channel remain unchanged. The method we utilized here can be extended to allow the movement of glutamate or aspartate side chains lining the selectivity filters of other ionic channels.

  3. Efficient multichannel acoustic echo cancellation using constrained tap selection schemes in the subband domain

    Science.gov (United States)

    Desiraju, Naveen Kumar; Doclo, Simon; Wolff, Tobias

    2017-12-01

    Acoustic echo cancellation (AEC) is a key speech enhancement technology in speech communication and voice-enabled devices. AEC systems employ adaptive filters to estimate the acoustic echo paths between the loudspeakers and the microphone(s). In applications involving surround sound, the computational complexity of an AEC system may become demanding due to the multiple loudspeaker channels and the necessity of using long filters in reverberant environments. In order to reduce the computational complexity, the approach of partially updating the AEC filters is considered in this paper. In particular, we investigate tap selection schemes which exploit the sparsity present in the loudspeaker channels for partially updating subband AEC filters. The potential for exploiting signal sparsity across three dimensions, namely time, frequency, and channels, is analyzed. A thorough analysis of different state-of-the-art tap selection schemes is performed and insights about their limitations are gained. A novel tap selection scheme is proposed which overcomes these limitations by exploiting signal sparsity while not ignoring any filters for update in the different subbands and channels. Extensive simulation results using both artificial as well as real-world multichannel signals show that the proposed tap selection scheme outperforms state-of-the-art tap selection schemes in terms of echo cancellation performance. In addition, it yields almost identical echo cancellation performance as compared to updating all filter taps at a significantly reduced computational cost.

  4. Extension of the maintenance cycle of HEPA filters by optimization of the technical characteristics of filters and their construction

    International Nuclear Information System (INIS)

    Bella, H.; Stiehl, H.H.; Sinhuber, D.

    1977-01-01

    The knowledge of the parameters of HEPA filters used at present in nuclear plants allows optimization of such filters with respect to flow rate, pressure drop and service life. The application of optimizing new types of HEPA filters of improved performance is reported. The calculated results were checked experimentally. The use of HEPA filters optimized with respect to dust capacity and service life, and the effects of this new type of filter on the reduction of operating and maintenance costs are discussed

  5. Assay of hybrid ribonuclease using a membrane filter-immobilized synthetic hybrid: application to the human leukemic cell

    International Nuclear Information System (INIS)

    Papaphilis, A.D.; Kamper, E.F.

    1985-01-01

    A method for assaying hybrid ribonuclease has been devised which utilizes as substrate the synthetic hybrid [ 3 H]polyriboadenylic acid [poly(rA)]:polydeoxythymidylic acid [poly(dT)] immobilized on the solid matrix of nitrocellulose filters. The hybridization on filter of [ 3 H]poly(rA) to poly(dT) has been explored in terms of efficacy of the process and the response of the product to RNase H. A pulse of uv irradiation of poly(dT) while in dry state on the filter increased its firm binding to the filter in a concentration-dependent manner, resulting in a concomitant increase of the yield of hybrid formation. The filter-immobilized hybrid was 95% resistant to RNase A but sensitive to RNase H. When stored in toluene in the cold the hybrid maintained its stability for over 6 months, as judged by its resistance to RNase A. The method offers a number of advantages over assays that use solution hybrids as substrates and was readily applicable in the screening of leukemic patients, in the leukocytes of which it has demonstrated increased RNase H levels

  6. Deep learning architecture for iris recognition based on optimal Gabor filters and deep belief network

    Science.gov (United States)

    He, Fei; Han, Ye; Wang, Han; Ji, Jinchao; Liu, Yuanning; Ma, Zhiqiang

    2017-03-01

    Gabor filters are widely utilized to detect iris texture information in several state-of-the-art iris recognition systems. However, the proper Gabor kernels and the generative pattern of iris Gabor features need to be predetermined in application. The traditional empirical Gabor filters and shallow iris encoding ways are incapable of dealing with such complex variations in iris imaging including illumination, aging, deformation, and device variations. Thereby, an adaptive Gabor filter selection strategy and deep learning architecture are presented. We first employ particle swarm optimization approach and its binary version to define a set of data-driven Gabor kernels for fitting the most informative filtering bands, and then capture complex pattern from the optimal Gabor filtered coefficients by a trained deep belief network. A succession of comparative experiments validate that our optimal Gabor filters may produce more distinctive Gabor coefficients and our iris deep representations be more robust and stable than traditional iris Gabor codes. Furthermore, the depth and scales of the deep learning architecture are also discussed.

  7. High-Q Variable Bandwidth Passive Filters for Software Defined Radio

    NARCIS (Netherlands)

    Arkesteijn, V.J.; Klumperink, Eric A.M.; Nauta, Bram

    2001-01-01

    An important aspect of Software Defined Radio is the ability to define the bandwidth of the filter that selects the desired channel. This paper describes a technique for channel filtering, in which two passive filters are combined to obtain a variable bandwidth. Passive filters have the advantage of

  8. High-Q variable bandwidth passive filters for Software Defined Radio

    NARCIS (Netherlands)

    Arkesteijn, V.J.; Klumperink, Eric A.M.; Nauta, Bram

    An important aspect of Software Defined Radio is the ability to define the bandwidth of the filter that selects the desired channel. This paper describes a technique for channel filtering, in which two passive filters are combined to obtain a variable bandwidth. Passive filters have the advantage of

  9. Optimal hydrograph separation using a recursive digital filter constrained by chemical mass balance, with application to selected Chesapeake Bay watersheds

    Science.gov (United States)

    Raffensperger, Jeff P.; Baker, Anna C.; Blomquist, Joel D.; Hopple, Jessica A.

    2017-06-26

    Quantitative estimates of base flow are necessary to address questions concerning the vulnerability and response of the Nation’s water supply to natural and human-induced change in environmental conditions. An objective of the U.S. Geological Survey National Water-Quality Assessment Project is to determine how hydrologic systems are affected by watershed characteristics, including land use, land cover, water use, climate, and natural characteristics (geology, soil type, and topography). An important component of any hydrologic system is base flow, generally described as the part of streamflow that is sustained between precipitation events, fed to stream channels by delayed (usually subsurface) pathways, and more specifically as the volumetric discharge of water, estimated at a measurement site or gage at the watershed scale, which represents groundwater that discharges directly or indirectly to stream reaches and is then routed to the measurement point.Hydrograph separation using a recursive digital filter was applied to 225 sites in the Chesapeake Bay watershed. The recursive digital filter was chosen for the following reasons: it is based in part on the assumption that groundwater acts as a linear reservoir, and so has a physical basis; it has only two adjustable parameters (alpha, obtained directly from recession analysis, and beta, the maximum value of the base-flow index that can be modeled by the filter), which can be determined objectively and with the same physical basis of groundwater reservoir linearity, or that can be optimized by applying a chemical-mass-balance constraint. Base-flow estimates from the recursive digital filter were compared with those from five other hydrograph-separation methods with respect to two metrics: the long-term average fraction of streamflow that is base flow, or base-flow index, and the fraction of days where streamflow is entirely base flow. There was generally good correlation between the methods, with some biased

  10. Determination of permeability of ultra-fine cupric oxide aerosol through military filters and protective filters

    Science.gov (United States)

    Kellnerová, E.; Večeřa, Z.; Kellner, J.; Zeman, T.; Navrátil, J.

    2018-03-01

    The paper evaluates the filtration and sorption efficiency of selected types of military combined filters and protective filters. The testing was carried out with the use of ultra-fine aerosol containing cupric oxide nanoparticles ranging in size from 7.6 nm to 299.6 nm. The measurements of nanoparticles were carried out using a scanning mobility particle sizer before and after the passage through the filter and a developed sampling device at the level of particle number concentration approximately 750000 particles·cm-3. The basic parameters of permeability of ultra-fine aerosol passing through the tested material were evaluated, in particular particle size, efficiency of nanoparticle capture by filter, permeability coefficient and overall filtration efficiency. Results indicate that the military filter and particle filters exhibited the highest aerosol permeability especially in the nanoparticle size range between 100–200 nm, while the MOF filters had the highest permeability in the range of 200 to 300 nm. The Filter Nuclear and the Health and Safety filter had 100% nanoparticle capture efficiency and were therefore the most effective. The obtained measurement results have shown that the filtration efficiency over the entire measured range of nanoparticles was sufficient; however, it was different for particular particle sizes.

  11. A novel 2nd-order bandpass MFSS filter with miniaturized structure

    Directory of Open Access Journals (Sweden)

    C. Y. Fang

    2015-08-01

    Full Text Available In order to effectively obtain a miniaturized structure and good filtering properties, we propose a novel 2nd-order bandpass metamaterial frequency selective surface (MFSS filter which contains two capacitive layers and one inductive layer, where there are multi-loop metallic patches as shunt capacitor C and planar wire grids as series inductor L respectively. Unlike the traditional operation way—the tuned elements used in resonant surface approximately equal to one wavelength in circumference and the structure thickness with a spacing of a quarter wavelength apart, by changing the value of L and C and matching multilayer dielectric to adjust the LC coupling resonance and the resonance impedance respectively, the proposed MFSS filter can achieves a miniatured structure with ideal bandpass properties. Measurement results of the fabricated prototype of the bandpass filter (BPF indicate that the dimension of the tuned element on resonant surface is approximately 0.025 wavelength, i.e., 0.025λ. At the same time, the filter has the stable center frequency of f0 = 1.53GHz and the transmittance of T ⩾ 96.3% and high Q-value for the TE/TM wave polarization at various incidence angles. The novel 2nd-order bandpass MFSS filter with miniaturized structure not only can decrease structure dimension, but also has a wide range of applications to microwave and infrared band.

  12. ASIC and ENaC type sodium channels: conformational states and the structures of the ion selectivity filters.

    Science.gov (United States)

    Hanukoglu, Israel

    2017-02-01

    The acid-sensing ion channels (ASICs) and epithelial sodium channels (ENaC) are members of a superfamily of channels that play critical roles in mechanosensation, chemosensation, nociception, and regulation of blood volume and pressure. These channels look and function like a tripartite funnel that directs the flow of Na + ions into the cytoplasm via the channel pore in the membrane. The subunits that form these channels share a common structure with two transmembrane segments (TM1 and TM2) and a large extracellular part. In most vertebrates, there are five paralogous genes that code for ASICs (ASIC1-ASIC5), and four for ENaC subunits alpha, beta, gamma, and delta (α, β, γ, and δ). While ASICs can form functional channels as a homo- or heterotrimer, ENaC functions as an obligate heterotrimer composed of α-β-γ or β-γ-δ subunits. The structure of ASIC has been determined in several conformations, including desensitized and open states. This review presents a comparison of the structures of these states using easy-to-understand molecular models of the full complex, the central tunnel that includes an outer vestibule, the channel pore, and ion selectivity filter. The differences in the secondary, tertiary, and quaternary structures of the states are summarized to pinpoint the conformational changes responsible for channel opening. Results of site-directed mutagenesis studies of ENaC subunits are examined in light of ASIC1 models. Based on these comparisons, a molecular model for the selectivity filter of ENaC is built by in silico mutagenesis of an ASIC1 structure. These models suggest that Na + ions pass through the filter in a hydrated state. © 2016 Federation of European Biochemical Societies.

  13. Estimating auditory filter bandwidth using distortion product otoacoustic emissions

    DEFF Research Database (Denmark)

    Hauen, Sigurd van; Rukjær, Andreas Harbo; Ordoñez Pizarro, Rodrigo Eduardo

    2017-01-01

    The basic frequency selectivity in the listener’s hearing is often characterized by auditory filters. These filters are determined through listening tests, which determine the masking threshold as a function of frequency of the tone and the bandwidth of the masking sound. The auditory filters hav...

  14. LHCb Kalman Filter cross architecture studies

    Science.gov (United States)

    Hugo, Daniel; Pérez, Cámpora

    2017-10-01

    The 2020 upgrade of the LHCb detector will vastly increase the rate of collisions the Online system needs to process in software, in order to filter events in real time. 30 million collisions per second will pass through a selection chain, where each step is executed conditional to its prior acceptance. The Kalman Filter is a fit applied to all reconstructed tracks which, due to its time characteristics and early execution in the selection chain, consumes 40% of the whole reconstruction time in the current trigger software. This makes the Kalman Filter a time-critical component as the LHCb trigger evolves into a full software trigger in the Upgrade. I present a new Kalman Filter algorithm for LHCb that can efficiently make use of any kind of SIMD processor, and its design is explained in depth. Performance benchmarks are compared between a variety of hardware architectures, including x86_64 and Power8, and the Intel Xeon Phi accelerator, and the suitability of said architectures to efficiently perform the LHCb Reconstruction process is determined.

  15. A Generic Current Mode Design for Multifunction Grounded Capacitor Filters Employing Log-Domain Technique

    Directory of Open Access Journals (Sweden)

    N. A. Shah

    2011-01-01

    Full Text Available A generic design (GD for realizing an nth order log-domain multifunction filter (MFF, which can yield four possible stable filter configurations, each offering simultaneously lowpass (LP, highpass (HP, and bandpass (BP frequency responses, is presented. The features of these filters are very simple, consisting of merely a few exponential transconductor cells and capacitors; all grounded elements, capable of absorbing the shunt parasitic capacitances, responses are electronically tuneable, and suitable for monolithic integration. Furthermore, being designed using log-domain technique, it offers all its advantages. As an example, 5th-order MFFs are designed in each case and their performances are evaluated through simulation. Lastly, a comparative study of the MFFs is also carried, which helps in selecting better high-order MFF for a given application.

  16. Discrete stochastic processes and optimal filtering

    CERN Document Server

    Bertein, Jean-Claude

    2012-01-01

    Optimal filtering applied to stationary and non-stationary signals provides the most efficient means of dealing with problems arising from the extraction of noise signals. Moreover, it is a fundamental feature in a range of applications, such as in navigation in aerospace and aeronautics, filter processing in the telecommunications industry, etc. This book provides a comprehensive overview of this area, discussing random and Gaussian vectors, outlining the results necessary for the creation of Wiener and adaptive filters used for stationary signals, as well as examining Kalman filters which ar

  17. A compact, higher order, high temperature superconductor microstrip bandpass filter on a two-inch lanthanum aluminate substrate for personal communication service applications

    International Nuclear Information System (INIS)

    Pal, Srikanta; Stevens, Chris; Edwards, David

    2005-01-01

    A practical design methodology for a compact parallel-coupled microstrip bandpass filter structure with steep attenuation is introduced using a computer-aided full wave electromagnetic simulation based on the method of moments. The structure consists of an array of fully aligned half-wavelength spiral meander line resonators. Aimed at application in the front-end receiver of digital cellular communication service, a 12-pole high temperature superconductor filter with 2.27% fractional bandwidth at 883.0 MHz was designed. The filter is fabricated using thallium-barium-calcium-copper oxide (TBCCO) thin films on a two-inch lanthanum aluminate (LaAlO 3 ) wafer. The S-parameter measurements show a good agreement with the simulated results. At 70 K, the 12-pole filter shows less than 0.4 dB insertion loss, 0.3 dB passband ripple, better than 12 dB return loss. The out of band rejection at 3 MHz below the passband edges is more than 60.0 dB. In order to estimate the power handling capability of the filter, the third-order intermodulation distortion was measured. A sensitivity analysis for the observed frequency shift in the filter is reported. Also from this analysis an approach for using the same design in 0.5% FBW applications is discussed

  18. Simplified design of filter circuits

    CERN Document Server

    Lenk, John

    1999-01-01

    Simplified Design of Filter Circuits, the eighth book in this popular series, is a step-by-step guide to designing filters using off-the-shelf ICs. The book starts with the basic operating principles of filters and common applications, then moves on to describe how to design circuits by using and modifying chips available on the market today. Lenk's emphasis is on practical, simplified approaches to solving design problems.Contains practical designs using off-the-shelf ICsStraightforward, no-nonsense approachHighly illustrated with manufacturer's data sheets

  19. Variable Bandwidth Analog Channel Filters for Software Defined Radio

    NARCIS (Netherlands)

    Arkesteijn, V.J.; Klumperink, Eric A.M.; Nauta, Bram

    2001-01-01

    An important aspect of Software Defined Radio is the ability to define the bandwidth of the filter that selects the desired channel. This paper first explains the importance of channel filtering. Then the advantage of analog channel filtering with a variable bandwidth in a Software Defined Radio is

  20. Model selection for convolutive ICA with an application to spatiotemporal analysis of EEG

    DEFF Research Database (Denmark)

    Dyrholm, Mads; Makeig, S.; Hansen, Lars Kai

    2007-01-01

    We present a new algorithm for maximum likelihood convolutive independent component analysis (ICA) in which components are unmixed using stable autoregressive filters determined implicitly by estimating a convolutive model of the mixing process. By introducing a convolutive mixing model...... for the components, we show how the order of the filters in the model can be correctly detected using Bayesian model selection. We demonstrate a framework for deconvolving a subspace of independent components in electroencephalography (EEG). Initial results suggest that in some cases, convolutive mixing may...

  1. Winery wastewater treatment using the land filter technique.

    Science.gov (United States)

    Christen, E W; Quayle, W C; Marcoux, M A; Arienzo, M; Jayawardane, N S

    2010-08-01

    This study outlines a new approach to the treatment of winery wastewater by application to a land FILTER (Filtration and Irrigated cropping for Land Treatment and Effluent Reuse) system. The land FILTER system was tested at a medium size rural winery crushing approximately 20,000 tonnes of grapes. The approach consisted of a preliminary treatment through a coarse screening and settling in treatment ponds, followed by application to the land FILTER planted to pasture. The land FILTER system efficiently dealt with variable volumes and nutrient loads in the wastewater. It was operated to minimize pollutant loads in the treated water (subsurface drainage) and provide adequate leaching to manage salt in the soil profile. The land FILTER system was effective in neutralizing the pH of the wastewater and removing nutrient pollutants to meet EPA discharge limits. However, suspended solids (SS) and biological oxygen demand (BOD) levels in the subsurface drainage waters slightly exceeded EPA limits for discharge. The high organic content in the wastewater initially caused some soil blockage and impeded drainage in the land FILTER site. This was addressed by reducing the hydraulic loading rate to allow increased soil drying between wastewater irrigations. The analysis of soil characteristics after the application of wastewater found that there was some potassium accumulation in the profile but sodium and nutrients decreased after wastewater application. Thus, the wastewater application and provision of subsurface drainage ensured adequate leaching, and so was adequate to avoid the risk of soil salinisation. Crown Copyright 2010. Published by Elsevier Ltd. All rights reserved.

  2. Development of filters and housings for use on active plant

    International Nuclear Information System (INIS)

    Hackney, S.; Pratt, R.P.

    1983-01-01

    New designs of housings for conventional HEPA filters have been developed and are now in use. A further design is planned for future use. The main features to be developed are the engineering of double door systems to replace bag posting and other methods of filter changing which expose personnel to hazardous environments and the addition of a secondary containment to reduce the role of the gasket seal in the filtration efficiency. Also under development are circular geometry filters of HEPA standard which offer significant advantages over rectangular filters for applications requiring remote shielded change facilities. Two types of filter construction are being evaluated, conventional radial flow cartridge filters and spiral-wound, axial-flow filters. The application of circular filters for primary filter systems on active plant is in hand. A push-through change system has been developed for a new cell facility under construction at Harwell. Existing rectangular filters on a high activity cell are being replaced with clusters of small cartridge filters to overcome changing and disposal problems. A similar system but using 1700 m 3 /h filters for large volume off-gas treatment is also being studied. A remote change shielded filter installation is being developed for use in high alpha, beta, gamma extract systems. The design incorporates large cartridge filters in sealed drums with remote transfer and connection to duct work in the facility. A novel application of the use of double-lid technology removes the need for separate shut off dampers and enables the drums to be sealed for all transfer operations

  3. FULL SCALE REGENERABLE HEPA FILTER DESIGN USING SINTERED METAL FILTER ELEMENTS

    International Nuclear Information System (INIS)

    Gil Ramos; Kenneth Rubow; Ronald Sekellick

    2002-01-01

    A Department of Energy funded contract involved the development of porous metal as a HEPA filter, and the subsequent design of a full-scale regenerable HEPA filtration system (RHFS). This RHFS could replace the glass fiber HEPA filters currently being used on the high level waste (HLW) tank ventilation system with a system that would be moisture tolerant, durable, and cleanable in place. The origins of the contract are a 1996 investigation at the Savannah River Technology Center (SRTC) regarding the use of porous metal as a HEPA filter material. This contract was divided into Phases I, IIA and IIB. Phase I of the contract evaluated simple filter cylinders in a simulated High Level Waste (HLW) environment and the ability to clean and regenerate the filter media after fouling. Upon the successful completion of Phase I, Phase IIA was conducted, which included lab scale prototype testing and design of a full-scale system. The work completed under Phase IIA included development of a full-scale system design, development of a filter media meeting the HEPA filtration efficiency that would also be regenerable using prescribed cleaning procedures, and the testing of a single element system prototype at Savannah River. All contract objectives were met. The filter media selected was a nickel material already under development at Mott, which met the HEPA filtration efficiency standard. The Mott nickel media met and exceeded the HEPA requirement, providing 99.99% removal against a requirement of 99.97%. Double open-ended elements of this media were provided to the Savannah River Test Center for HLW simulation testing in the single element prototype filter. These elements performed well and further demonstrated the practicality of a metallic media regenerable HEPA filter system. An evaluation of the manufacturing method on many elements demonstrated the reproducibility to meet the HEPA filtration requirement. The full-scale design of the Mott RHFS incorporated several important

  4. FIR Filter Sharpening by Frequency Masking and Pipelining-Interleaving Technique

    Directory of Open Access Journals (Sweden)

    CIRIC, M. P.

    2014-11-01

    Full Text Available This paper focuses on the improvements of digital filters with a highly sharp transition zone on the Xilinx FPGA chips by combining a sharpening method based on the amplitude change function and frequency masking and PI (Pipelining-Interleaving techniques. A linear phase requires digital filter realizations with Finite Impulse Response (FIR filters. On the other hand, a drawback of FIR filters applications is a low computational efficiency, especially in applications such as filter sharpening techniques, because this technique uses processing the data by repeated passes through the same filter. Computational efficiency of FIR filters can be significantly improved by using some of the multirate techniques, and such a degree of computation savings cannot be achieved in multirate implementations of IIR (Infinite Impulse Response filters. This paper shows the realization of a filter sharpening method with FIR filters combined with frequency masking and PI (Pipelining-Interleaving technique in order to effectively realize the filter with improved characteristic. This realization at the same time keeps the good features of FIR filters such as the linear phase characteristic.

  5. Some arithmetically symmetrical bandpass filters

    Science.gov (United States)

    Paranasi, P.; Roy, S. C. D.

    1981-01-01

    A combination of the conventional and Matthaei lowpass-bandpass transformations is shown to result in some bandpass filters having very good arithmetic symmetry. The technique presented is applicable to the Butterworth and inverse Chebyshev types of magnitude approximations and the Bessel type of delay approximations. It is not valid, however, for the Chebyshev and elliptic varieties of filters.

  6. Economical Implementation of a Filter Engine in an FPGA

    Science.gov (United States)

    Kowalski, James E.

    2009-01-01

    A logic design has been conceived for a field-programmable gate array (FPGA) that would implement a complex system of multiple digital state-space filters. The main innovative aspect of this design lies in providing for reuse of parts of the FPGA hardware to perform different parts of the filter computations at different times, in such a manner as to enable the timely performance of all required computations in the face of limitations on available FPGA hardware resources. The implementation of the digital state-space filter involves matrix vector multiplications, which, in the absence of the present innovation, would ordinarily necessitate some multiplexing of vector elements and/or routing of data flows along multiple paths. The design concept calls for implementing vector registers as shift registers to simplify operand access to multipliers and accumulators, obviating both multiplexing and routing of data along multiple paths. Each vector register would be reused for different parts of a calculation. Outputs would always be drawn from the same register, and inputs would always be loaded into the same register. A simple state machine would control each filter. The output of a given filter would be passed to the next filter, accompanied by a "valid" signal, which would start the state machine of the next filter. Multiple filter modules would share a multiplication/accumulation arithmetic unit. The filter computations would be timed by use of a clock having a frequency high enough, relative to the input and output data rate, to provide enough cycles for matrix and vector arithmetic operations. This design concept could prove beneficial in numerous applications in which digital filters are used and/or vectors are multiplied by coefficient matrices. Examples of such applications include general signal processing, filtering of signals in control systems, processing of geophysical measurements, and medical imaging. For these and other applications, it could be

  7. Magnetic filtered plasma deposition and implantation technique

    CERN Document Server

    Zhang Hui Xing; Wu Xian Ying

    2002-01-01

    A high dense metal plasma can be produced by using cathodic vacuum arc discharge technique. The microparticles emitted from the cathode in the metal plasma can be removed when the metal plasma passes through the magnetic filter. It is a new technique for making high quality, fine and close thin films which have very widespread applications. The authors describe the applications of cathodic vacuum arc technique, and then a filtered plasma deposition and ion implantation system as well as its applications

  8. Two-dimensional filtering of SPECT images using the Metz and Wiener filters

    International Nuclear Information System (INIS)

    King, M.A.; Schwinger, R.B.; Penney, B.C.; Doherty, P.W.

    1984-01-01

    Presently, single photon emission computed tomographic (SPECT) images are usually reconstructed by arbitrarily selecting a one-dimensional ''window'' function for use in reconstruction. A better method would be to automatically choose among a family of two-dimensional image restoration filters in such a way as to produce ''optimum'' image quality. Two-dimensional image processing techniques offer the advantages of a larger statistical sampling of the data for better noise reduction, and two-dimensional image deconvolution to correct for blurring during acquisition. An investigation of two such ''optimal'' digital image restoration techniques (the count-dependent Metz filter and the Wiener filter) was made. They were applied both as two-dimensional ''window'' functions for preprocessing SPECT images, and for filtering reconstructed images. Their performance was compared by measuring image contrast and per cent fractional standard deviation (% FSD) in multiple-acquisitions of the Jaszczak SPECT phantom at two different count levels. A statistically significant increase in image contrast and decrease in % FSD was observed with these techniques when compared to the results of reconstruction with a ramp filter. The adaptability of the techniques was manifested in a lesser % reduction in % FSD at the high count level coupled with a greater enhancement in image contrast. Using an array processor, processing time was 0.2 sec per image for the Metz filter and 3 sec for the Wiener filter. It is concluded that two-dimensional digital image restoration with these techniques can produce a significant increase in SPECT image quality

  9. Spatial filtering velocimetry for real-time out-of-plane displacement measurements

    DEFF Research Database (Denmark)

    Olesen, Anders Sig; Yura, H.T.; Jakobsen, Michael Linde

    2016-01-01

    power spectrum of the photocurrent produced by this filter. This main contribution of this paper is a model, which describe the selectivity of the sensor, applied to speckle dynamics generated by an object moving out-of-plane. To motivate our interest in these filters we also present an all optical......We probe the dynamics of objective laser speckles as the axial distance between the object and the observation plane changes. With the purpose of measuring out-of-plane motion in real time, we apply optical spatial filtering velocimetry to the speckle dynamics. To achieve this, a rotationally...... symmetric spatial filter is designed. The spatial filter converts the speckle dynamics into a photocurrent with a quasi-sinusoidal response to the out-of-plane motion. The selectivity of the sensor relates directly to the uncertainty on sensor measurements. The selectivity most be derived from a temporal...

  10. Microwave Resonators and Filters

    Science.gov (United States)

    2015-12-22

    1 Microwave Resonators and Filters Daniel E. Oates MIT Lincoln Laboratory 244 Wood St. Lexington, MA 02478 USA Email: oates@ll.mit.edu...explained in other chapters, the surface resistance of superconductors at microwave frequencies can be as much as three orders of magnitude lower than the...resonators and filters in the first edition of this handbook (Z.-Y. Shen 2003) discussed the then state of the art of microwave frequency applications

  11. A simple procedure to estimate reactivity with good noise filtering characteristics

    International Nuclear Information System (INIS)

    Shimazu, Yoichiro

    2014-01-01

    Highlights: • A new and simple on-line reactivity estimation method is proposed. • The estimator has robust noise filtering characteristics. • The noise filtering is equivalent to those of conventional reactivity meters. • The new estimator eliminates the burden of selecting optimum filter constants. • The new estimation performance is assessed without and with measurement noise. - Abstract: A new and simple on-line reactivity estimation method is proposed. The estimator has robust noise filtering characteristics without the use of complex filters. The noise filtering capability is equivalent to or better than that of a conventional estimator based on Inverse Point Kinetics (IPK). The new estimator can also eliminate the burden of selecting optimum filter time constants, such as would be required for the IPK-based estimator, or noise covariance matrices, which are needed if the extended Kalman filter (EKF) technique is used. In this paper, the new estimation method is introduced and its performance assessed without and with measurement noise

  12. Reversible wavelet filter banks with side informationless spatially adaptive low-pass filters

    Science.gov (United States)

    Abhayaratne, Charith

    2011-07-01

    Wavelet transforms that have an adaptive low-pass filter are useful in applications that require the signal singularities, sharp transitions, and image edges to be left intact in the low-pass signal. In scalable image coding, the spatial resolution scalability is achieved by reconstructing the low-pass signal subband, which corresponds to the desired resolution level, and discarding other high-frequency wavelet subbands. In such applications, it is vital to have low-pass subbands that are not affected by smoothing artifacts associated with low-pass filtering. We present the mathematical framework for achieving 1-D wavelet transforms that have a spatially adaptive low-pass filter (SALP) using the prediction-first lifting scheme. The adaptivity decisions are computed using the wavelet coefficients, and no bookkeeping is required for the perfect reconstruction. Then, 2-D wavelet transforms that have a spatially adaptive low-pass filter are designed by extending the 1-D SALP framework. Because the 2-D polyphase decompositions are used in this case, the 2-D adaptivity decisions are made nonseparable as opposed to the separable 2-D realization using 1-D transforms. We present examples using the 2-D 5/3 wavelet transform and their lossless image coding and scalable decoding performances in terms of quality and resolution scalability. The proposed 2-D-SALP scheme results in better performance compared to the existing adaptive update lifting schemes.

  13. Two-stage nonrecursive filter/decimator

    International Nuclear Information System (INIS)

    Yoder, J.R.; Richard, B.D.

    1980-08-01

    A two-stage digital filter/decimator has been designed and implemented to reduce the sampling rate associated with the long-term computer storage of certain digital waveforms. This report describes the design selection and implementation process and serves as documentation for the system actually installed. A filter design with finite-impulse response (nonrecursive) was chosen for implementation via direct convolution. A newly-developed system-test statistic validates the system under different computer-operating environments

  14. MEDOF - MINIMUM EUCLIDEAN DISTANCE OPTIMAL FILTER

    Science.gov (United States)

    Barton, R. S.

    1994-01-01

    The Minimum Euclidean Distance Optimal Filter program, MEDOF, generates filters for use in optical correlators. The algorithm implemented in MEDOF follows theory put forth by Richard D. Juday of NASA/JSC. This program analytically optimizes filters on arbitrary spatial light modulators such as coupled, binary, full complex, and fractional 2pi phase. MEDOF optimizes these modulators on a number of metrics including: correlation peak intensity at the origin for the centered appearance of the reference image in the input plane, signal to noise ratio including the correlation detector noise as well as the colored additive input noise, peak to correlation energy defined as the fraction of the signal energy passed by the filter that shows up in the correlation spot, and the peak to total energy which is a generalization of PCE that adds the passed colored input noise to the input image's passed energy. The user of MEDOF supplies the functions that describe the following quantities: 1) the reference signal, 2) the realizable complex encodings of both the input and filter SLM, 3) the noise model, possibly colored, as it adds at the reference image and at the correlation detection plane, and 4) the metric to analyze, here taken to be one of the analytical ones like SNR (signal to noise ratio) or PCE (peak to correlation energy) rather than peak to secondary ratio. MEDOF calculates filters for arbitrary modulators and a wide range of metrics as described above. MEDOF examines the statistics of the encoded input image's noise (if SNR or PCE is selected) and the filter SLM's (Spatial Light Modulator) available values. These statistics are used as the basis of a range for searching for the magnitude and phase of k, a pragmatically based complex constant for computing the filter transmittance from the electric field. The filter is produced for the mesh points in those ranges and the value of the metric that results from these points is computed. When the search is concluded, the

  15. Joint fundamental frequency and order estimation using optimal filtering

    Directory of Open Access Journals (Sweden)

    Jakobsson Andreas

    2011-01-01

    Full Text Available Abstract In this paper, the problem of jointly estimating the number of harmonics and the fundamental frequency of periodic signals is considered. We show how this problem can be solved using a number of methods that either are or can be interpreted as filtering methods in combination with a statistical model selection criterion. The methods in question are the classical comb filtering method, a maximum likelihood method, and some filtering methods based on optimal filtering that have recently been proposed, while the model selection criterion is derived herein from the maximum a posteriori principle. The asymptotic properties of the optimal filtering methods are analyzed and an order-recursive efficient implementation is derived. Finally, the estimators have been compared in computer simulations that show that the optimal filtering methods perform well under various conditions. It has previously been demonstrated that the optimal filtering methods perform extremely well with respect to fundamental frequency estimation under adverse conditions, and this fact, combined with the new results on model order estimation and efficient implementation, suggests that these methods form an appealing alternative to classical methods for analyzing multi-pitch signals.

  16. A linear 180 nm SOI CMOS antenna switch module using integrated passive device filters for cellular applications

    Science.gov (United States)

    Jie, Cui; Lei, Chen; Peng, Zhao; Xu, Niu; Yi, Liu

    2014-06-01

    A broadband monolithic linear single pole, eight throw (SP8T) switch has been fabricated in 180 nm thin film silicon-on-insulator (SOI) CMOS technology with a quad-band GSM harmonic filter in integrated passive devices (IPD) technology, which is developed for cellular applications. The antenna switch module (ASM) features 1.2 dB insertion loss with filter on 2G bands and 0.4 dB insertion loss in 3G bands, less than -45 dB isolation and maximum -103 dB intermodulation distortion for mobile front ends by applying distributed architecture and adaptive supply voltage generator.

  17. Method for filtering radon from a gas system

    International Nuclear Information System (INIS)

    Sowinski, R.F.

    1992-01-01

    This patent describes a method of filtering, adjacent to an end user-customer's residence, or business in which at least a single gas appliance is located, a natural gas stream in which benz-a-anthracene has been concentrated at sufficient levels to be a health threat in a natural gas gathering and distributing network. It comprises introducing the natural gas stream to a filter selected from a group that includes impingement, passing the filtered natural gas stream to the customer's gas appliance wherein safe use of the energy associated with the stream occurs, periodically and safely removing the filter for disposing of captured benz-a-anthracene, inserting a new filter in place of the removed filter of step

  18. Quasi-periodic photonic crystal Fabry–Perot optical filter based on Si/SiO2 for visible-laser spectral selectivity

    Science.gov (United States)

    Qi, Dong; Wang, Xian; Cheng, Yongzhi; Chen, Fu; Liu, Lei; Gong, Rongzhou

    2018-06-01

    We report on a 1D quasi-periodic photonic crystal Fabry–Perot optical filter Cs(Si/SiO2)3(SiO2/Si)3 for spectral selectivity of visible light and 1.55 µm laser. A material transparency interval of 1.03–2.06 µm makes Si a unique choice of high refractive index material. Owing to the CIE 1931 standard and equal inclination interference, the designed structure can be successfully fabricated with a certain color (brown, khaki, or blue) corresponding to the different Cs physical thickness d and response R(λ). In addition, the peak transmittance T max of the proposed structure can reach as high as 92.56% (Cs  =  20 nm), 90.83% (Cs  =  40 nm), and 88.85% (Cs  =  60 nm) with a relatively narrow full width at half maximum of 4.4, 4.6, and 4.8 nm at 1.55 µm. The as-prepared structure indicates that it is feasible for a photonic crystal Fabry–Perot optical filter to achieve visible-laser (1.55 µm) spectral selectivity.

  19. Nonlinear Kalman filtering in affine term structure models

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Dorion, Christian; Jacobs, Kris

    2014-01-01

    The extended Kalman filter, which linearizes the relationship between security prices and state variables, is widely used in fixed-income applications. We investigate whether the unscented Kalman filter should be used to capture nonlinearities and compare the performance of the Kalman filter...... with that of the particle filter. We analyze the cross section of swap rates, which are mildly nonlinear in the states, and cap prices, which are highly nonlinear. When caps are used to filter the states, the unscented Kalman filter significantly outperforms its extended counterpart. The unscented Kalman filter also...... performs well when compared with the much more computationally intensive particle filter. These findings suggest that the unscented Kalman filter may be a good approach for a variety of problems in fixed-income pricing....

  20. Multirate Filter Bank Representations of RS and BCH Codes

    Directory of Open Access Journals (Sweden)

    Van Meerbergen Geert

    2008-01-01

    Full Text Available Abstract This paper addresses the use of multirate filter banks in the context of error-correction coding. An in-depth study of these filter banks is presented, motivated by earlier results and applications based on the filter bank representation of Reed-Solomon (RS codes, such as Soft-In Soft-Out RS-decoding or RS-OFDM. The specific structure of the filter banks (critical subsampling is an important aspect in these applications. The goal of the paper is twofold. First, the filter bank representation of RS codes is now explained based on polynomial descriptions. This approach allows us to gain new insight in the correspondence between RS codes and filter banks. More specifically, it allows us to show that the inherent periodically time-varying character of a critically subsampled filter bank matches remarkably well with the cyclic properties of RS codes. Secondly, an extension of these techniques toward the more general class of BCH codes is presented. It is demonstrated that a BCH code can be decomposed into a sum of critically subsampled filter banks.

  1. Multirate Filter Bank Representations of RS and BCH Codes

    Directory of Open Access Journals (Sweden)

    Marc Moonen

    2009-01-01

    Full Text Available This paper addresses the use of multirate filter banks in the context of error-correction coding. An in-depth study of these filter banks is presented, motivated by earlier results and applications based on the filter bank representation of Reed-Solomon (RS codes, such as Soft-In Soft-Out RS-decoding or RS-OFDM. The specific structure of the filter banks (critical subsampling is an important aspect in these applications. The goal of the paper is twofold. First, the filter bank representation of RS codes is now explained based on polynomial descriptions. This approach allows us to gain new insight in the correspondence between RS codes and filter banks. More specifically, it allows us to show that the inherent periodically time-varying character of a critically subsampled filter bank matches remarkably well with the cyclic properties of RS codes. Secondly, an extension of these techniques toward the more general class of BCH codes is presented. It is demonstrated that a BCH code can be decomposed into a sum of critically subsampled filter banks.

  2. Staging with spatial filters

    International Nuclear Information System (INIS)

    Glaze, J.

    1974-01-01

    It is known that small scale beam instabilities limit the focusable energy that can be achieved from a terawatt laser chain. Spatial filters are currently being used on CYCLOPS to ameliorate this problem. Realizing the full advantage of such a filter, however, may require certain staging modifications. A staging methodology is discussed that should be applicable to the CYCLOPS, 381, and SHIVA systems. Experiments are in progress on CYCLOPS that will address directly the utility of the proposed approach

  3. Smart wave filtering method of a rectangular panel using Hilbert transformers and its application to an adaptive control system

    International Nuclear Information System (INIS)

    Iwamoto, Hiroyuki; Tanaka, Nobuo; Hill, Simon G

    2010-01-01

    This paper concerns the active vibration control of a rectangular panel using smart sensors from the viewpoint of an active wave control theory. The objective of this paper is to present a new type of filter which enables the measurement of the wave amplitude of a rectangular panel in real time for the application of an adaptive feedforward control system which inactivates vibration modes. Firstly, a novel wave filtering method using smart PVDF sensors is proposed. It is found that the shaping function of smart sensors is a complex function. To realize the smart sensor in a practical situation, a Hilbert transformer is utilized to implement a phase shifter of 90° for broadband frequencies. Then, from the viewpoint of a numerical analysis, the characteristics of the proposed wave filter and the performance of the adaptive feedforward control system using the wave filter are discussed. Finally, experiments implementing the active wave control theory which uses the proposed wave filter are conducted, demonstrating the validity of the proposed method in suppressing the vibration of a rectangular panel

  4. 3D lumped components and miniaturized bandpass filter in an ultra-thin M-LCP for SOP applications

    KAUST Repository

    Arabi, Eyad A.

    2013-01-01

    In this work, a library of 3D lumped components completely embedded in the thinnest, multilayer LCP (M-LCP) stack- up with four metallization layers and 100 μm of total thickness, is reported for the first time. A vertically and horizontally interdigitated capacitor, realized in this stack-up, provides higher self resonant frequency as compared to a similarly sized conventional parallel plate capacitor. Based on the above mentioned library, a miniaturized bandpass filter is presented for the GPS application. It utilizes mutually coupled inductors and is the smallest reported in the literature with a size of (0.035×0.028×0.00089)λg. Finally, the same filter realized in a competing ceramic technology (LTCC) is compared in performance with the ultra-thin M-LCP design. The M-LCP module presented in this work is inherently exible and offers great potential for wearable and conformal applications.

  5. A simple approach to enhance the performance of complex-coefficient filter-based PLL in grid-connected applications

    DEFF Research Database (Denmark)

    Ramezani, Malek; Golestan, Saeed; Li, Shuhui

    2018-01-01

    In recent years, a large number of three-phase phase-locked loops (PLLs) have been developed. One of the most popular ones is the complex coefficient filterbased PLL (CCF-PLL). The CCFs benefit from a sequence selective filtering ability and, hence, enable the CCF-PLL to selectively reject/extract...... disturbances before the PLL control loop while maintaining an acceptable dynamic behavior. The aim of this paper is presenting a simple yet effective approach to enhance the standard CCF-PLL performance without requiring any additional computational load....

  6. Contributions of depth filter components to protein adsorption in bioprocessing.

    Science.gov (United States)

    Khanal, Ohnmar; Singh, Nripen; Traylor, Steven J; Xu, Xuankuo; Ghose, Sanchayita; Li, Zheng J; Lenhoff, Abraham M

    2018-04-16

    Depth filtration is widely used in downstream bioprocessing to remove particulate contaminants via depth straining and is therefore applied to harvest clarification and other processing steps. However, depth filtration also removes proteins via adsorption, which can contribute variously to impurity clearance and to reduction in product yield. The adsorption may occur on the different components of the depth filter, that is, filter aid, binder, and cellulose filter. We measured adsorption of several model proteins and therapeutic proteins onto filter aids, cellulose, and commercial depth filters at pH 5-8 and ionic strengths filter component in the adsorption of proteins with different net charges, using confocal microscopy. Our findings show that a complete depth filter's maximum adsorptive capacity for proteins can be estimated by its protein monolayer coverage values, which are of order mg/m 2 , depending on the protein size. Furthermore, the extent of adsorption of different proteins appears to depend on the nature of the resin binder and its extent of coating over the depth filter surface, particularly in masking the cation-exchanger-like capacity of the siliceous filter aids. In addition to guiding improved depth filter selection, the findings can be leveraged in inspiring a more intentional selection of components and design of depth filter construction for particular impurity removal targets. © 2018 Wiley Periodicals, Inc.

  7. FLOWING BILATERAL FILTER: DEFINITION AND IMPLEMENTATIONS

    Directory of Open Access Journals (Sweden)

    Maxime Moreaud

    2015-06-01

    Full Text Available The bilateral filter plays a key role in image processing applications due to its intuitive parameterization and its high quality filter result, smoothing homogeneous regions while preserving the edges of the objects. Considering the image as a topological relief, seeing pixel intensities as peaks and valleys, we introduce a way to control the tonal weighting coefficients, the flowing bilateral filter, reducing "halo" artifacts typically produced by the regular bilateral filter around a large peak surrounded by two valleys of lower values. In this paper we propose to investigate exact and approximated versions of CPU and parallel GPU (Graphical Processing Unit based implementations of the regular and flowing bilateral filter using the NVidia CUDA API. Fast implementations of these filters are important for the processing of large 3D volumes up to several GB acquired by x-ray or electron tomography.

  8. Photon energy readings in OSL dosimeter filters: an application to retrospective dose estimation for nuclear medicine workers.

    Science.gov (United States)

    Villoing, Daphnée; Kitahara, Cari M; Passmore, Christopher; Simon, Steven L; Yoder, R Craig

    2018-06-19

    This work investigates the applicability of using data from personal monitoring dosimeters to assess photon energies to which medical workers were exposed. Such determinations would be important for retrospective assessments of organ doses to be used in occupational radiation epidemiology studies, particularly in the absence of work history or other information regarding the energy of the radiation source. Monthly personal dose equivalents and filter ratios under two different metallic filters contained in the Luxel+® dosimeter were collected from Landauer, Inc. from 19 nuclear medicine (NM) technologists employed by three medical institutions, the institution A only performing traditional NM imaging (primarily using 99mTc) and institutions B and C also performing positron emission tomography (PET, using 18F). Calibration data of the Luxel+® dosimeter for various X-ray spectra were used to establish ranges of filter ratios from 1.1 to 1.6 for 99mTc and below 1.1 for 18F. Median filter ratios were 1.33 (Interquartile range (IQR), 0.15) for institution A, 1.08 (IQR, 0.16) for institution B, and 1.08 (IQR, 0.14) for institution C. The distributions of these filter ratios were statistically-significantly different between the institution A only performing traditional NM imaging and institutions B and C also performing PET imaging. In this proof-of-concept study, filter ratios from personal dosimeters were used to assess differences in photon energies to which NM technologists were exposed. Dosimeters from technologists only performing traditional NM procedures mostly showed Al/Cu filter ratios above 1.2, those likely performing only PET in a particular month had filter ratios below 1.1, and those which showed filter ratios between 1.1 and 1.2 likely came from technologists rotating between traditional NM and PET imaging in the same month. These results suggest that it is possible to distinguish technologists who

  9. FiGS: a filter-based gene selection workbench for microarray data

    Directory of Open Access Journals (Sweden)

    Yun Taegyun

    2010-01-01

    Full Text Available Abstract Background The selection of genes that discriminate disease classes from microarray data is widely used for the identification of diagnostic biomarkers. Although various gene selection methods are currently available and some of them have shown excellent performance, no single method can retain the best performance for all types of microarray datasets. It is desirable to use a comparative approach to find the best gene selection result after rigorous test of different methodological strategies for a given microarray dataset. Results FiGS is a web-based workbench that automatically compares various gene selection procedures and provides the optimal gene selection result for an input microarray dataset. FiGS builds up diverse gene selection procedures by aligning different feature selection techniques and classifiers. In addition to the highly reputed techniques, FiGS diversifies the gene selection procedures by incorporating gene clustering options in the feature selection step and different data pre-processing options in classifier training step. All candidate gene selection procedures are evaluated by the .632+ bootstrap errors and listed with their classification accuracies and selected gene sets. FiGS runs on parallelized computing nodes that capacitate heavy computations. FiGS is freely accessible at http://gexp.kaist.ac.kr/figs. Conclusion FiGS is an web-based application that automates an extensive search for the optimized gene selection analysis for a microarray dataset in a parallel computing environment. FiGS will provide both an efficient and comprehensive means of acquiring optimal gene sets that discriminate disease states from microarray datasets.

  10. Flat microwave photonic filter based on hybrid of two filters

    International Nuclear Information System (INIS)

    Qi, Chunhui; Pei, Li; Ning, Tigang; Li, Jing; Gao, Song

    2010-01-01

    A new microwave photonic filter (MPF) hybrid of two filters that can realize both multiple taps and a flat bandpass or bandstop response is presented. Based on the phase character of a Mach–Zehnder modulator (MZM), a two taps finite impulse response (FIR) filter is obtained as the first part. The second part is obtained by taking full advantage of the wavelength selectivity of the fiber Bragg grating (FBG) and the gain of a erbium-doped fiber (EDF). Combining the two filters, the flat bandpass or bandstop response is realized by changing the coupler's factor k, the reflectivity of FBG1 R 1 or the gain of the EDF g. Optimizing the system parameters, a flat bandpass response with amplitude depth of more than 45 dB is obtained at k = 0.5, R 1 = 0.33, g = 10, and a flat bandstop response is also obtained at k = 0.4, R 1 = 0.5, g = 2. In addition, the free-spectral range (FSR) can be controlled by changing the length of the EDF and the length difference between two MZMs. The method is proved feasible by some experiments. Such a method offers realistic solutions to support future radio-frequency (RF) optical communication systems

  11. Ion exchange nonwoven fabric chemical filter. 2

    International Nuclear Information System (INIS)

    Sekiguchi, Hideaki

    2000-01-01

    This report outlined the characteristics of EPIX filter and its complex with activated carbon to eliminate organic compounds from solvent. Elimination performance of this filter was determined using an ion chromatographic analyzer. EPIX filter showed high performance to eliminate trace amount of ionic compounds. The rate of elimination was both 99% or more for NH 3 and SO 2 in an early phase of filtration. Release of dust as well as impurities was significantly reduced by the use of EPIX filter. Gases once adsorbed on the filter were not released even at an elevated temperature of atmosphere. Combined use of non-woven fabrics was possible. For EPIX filter, there are three kinds; strong acid cation exchange filter and strong/weak basic anion filters. The weak basic anion filter has been applied to the conventional apparatus in wafer makers because the filter was very effective for selective boron trapping. When polyethyleneterephthalate was used as the base polymer, radical groups produced on the polymer were co-polymerized with monomer substances. The lifetime of filter was estimated on a base of gas concentration and wind velocity to determine the time to replace with a new one. Furthermore, the loss of pressure became less than a half when EPIX filter was used. (M.N.)

  12. An information filtering system prototype for world wide web; Prototipo di sistema di information filtering per world wide web

    Energy Technology Data Exchange (ETDEWEB)

    Bordoni, L [ENEA Centro Ricerche Casaccia, S. Maria di Galeria, RM (Italy). Funzione Centrale Studi

    1999-07-01

    In this report the architecture of an information filtering system for world wide web, developed by the Rome Third University (Italy) for ENEA (National Agency for New Technology, Energy and the Environment), is described. This prototype allows for selecting documents in text/HTML format from the web according to the interests of users. A user modeling shell allows ro build a model of user's interests, obtained during the interaction. The experimental results support the choice of embedding methods for this kind of application. [Italian] In questo rapporto viene descritta l'architettura di un sistema adattivo di information filtering su world wide web, sviluppato dall'universita' di Roma III in collaborazione con l'ENEA. Il prototipo descritto e' in grado di selezionare documenti in formato testo/html, raccolti dal web, in accordo con le caratteristiche e gli interessi degli utenti. Una shell di modellazione utente consente di costruire un modello degli interessi dell'utente, ottenuto nel corso dell'interazione. I risultati sperimentali rafforzano la scelta di usare metodi di modellazione utente per questo genere di applicazioni.

  13. Application of high Tc superconductors as frequency selective surfaces: Experiment and theory

    International Nuclear Information System (INIS)

    Dawei Zhang; Yahya Rahmat-Samii; Fetterman, H.R.

    1993-01-01

    YBa 2 Cu 3 O 7-x and Tl 2 CaBa 2 Cu 2 O 8 high temperature superconducting thin films were utilized to fabricate frequency selective surfaces (FSS) at millimeter-wave frequencies (75--110 GHz). An analytical/numerical model was applied, using a Floquet expansion and the Method of Moments, to analyze bandstop superconducting frequency selective surfaces. Experimental results were compared with the model, and showed a good agreement with resonant frequency prediction with an accuracy of better than 1%. The use of the superconducting frequency selective surfaces as quasi-optical millimeter-wave bandpass filters was also demonstrated

  14. Exploiting nonlinearities of micro-machined resonators for filtering applications

    KAUST Repository

    Ilyas, Saad

    2017-06-21

    We demonstrate the exploitation of the nonlinear behavior of two electrically coupled microbeam resonators to realize a band-pass filter. More specifically, we combine their nonlinear hardening and softening responses to realize a near flat pass band filter with sharp roll-off characteristics. The device is composed of two near identical doubly clamped and electrostatically actuated microbeams made of silicon. One of the resonators is buckled via thermal loading to produce a softening frequency response. It is then further tuned to create the desired overlap with the second resonator response of hardening behavior. This overlapping improves the pass band flatness. Also, the sudden jumps due to the softening and hardening behaviors create sharp roll-off characteristics. This approach can be promising for the future generation of filters with superior characteristics.

  15. Exploiting nonlinearities of micro-machined resonators for filtering applications

    KAUST Repository

    Ilyas, Saad; Chappanda, K. N.; Younis, Mohammad I.

    2017-01-01

    We demonstrate the exploitation of the nonlinear behavior of two electrically coupled microbeam resonators to realize a band-pass filter. More specifically, we combine their nonlinear hardening and softening responses to realize a near flat pass band filter with sharp roll-off characteristics. The device is composed of two near identical doubly clamped and electrostatically actuated microbeams made of silicon. One of the resonators is buckled via thermal loading to produce a softening frequency response. It is then further tuned to create the desired overlap with the second resonator response of hardening behavior. This overlapping improves the pass band flatness. Also, the sudden jumps due to the softening and hardening behaviors create sharp roll-off characteristics. This approach can be promising for the future generation of filters with superior characteristics.

  16. Morphological representation of order-statistics filters.

    Science.gov (United States)

    Charif-Chefchaouni, M; Schonfeld, D

    1995-01-01

    We propose a comprehensive theory for the morphological bounds on order-statistics filters (and their repeated iterations). Conditions are derived for morphological openings and closings to serve as bounds (lower and upper, respectively) on order-statistics filters (and their repeated iterations). Under various assumptions, morphological open-closings and close-openings are also shown to serve as (tighter) bounds (lower and upper, respectively) on iterations of order-statistics filters. Simulations of the application of the results presented to image restoration are finally provided.

  17. A Tool for Kalman Filter Tuning

    DEFF Research Database (Denmark)

    Åkesson, Bernt Magnus; Jørgensen, John Bagterp; Poulsen, Niels Kjølstad

    2007-01-01

    The Kalman filter requires knowledge about the noise statistics. In practical applications, however, the noise covariances are generally not known. A method for estimating noise covariances from process data has been investigated. The method gives a least-squares estimate of the noise covariances......, which can be used to compute the Kalman filter gain....

  18. Time-frequency analysis of band-limited EEG with BMFLC and Kalman filter for BCI applications

    Science.gov (United States)

    2013-01-01

    Background Time-Frequency analysis of electroencephalogram (EEG) during different mental tasks received significant attention. As EEG is non-stationary, time-frequency analysis is essential to analyze brain states during different mental tasks. Further, the time-frequency information of EEG signal can be used as a feature for classification in brain-computer interface (BCI) applications. Methods To accurately model the EEG, band-limited multiple Fourier linear combiner (BMFLC), a linear combination of truncated multiple Fourier series models is employed. A state-space model for BMFLC in combination with Kalman filter/smoother is developed to obtain accurate adaptive estimation. By virtue of construction, BMFLC with Kalman filter/smoother provides accurate time-frequency decomposition of the bandlimited signal. Results The proposed method is computationally fast and is suitable for real-time BCI applications. To evaluate the proposed algorithm, a comparison with short-time Fourier transform (STFT) and continuous wavelet transform (CWT) for both synthesized and real EEG data is performed in this paper. The proposed method is applied to BCI Competition data IV for ERD detection in comparison with existing methods. Conclusions Results show that the proposed algorithm can provide optimal time-frequency resolution as compared to STFT and CWT. For ERD detection, BMFLC-KF outperforms STFT and BMFLC-KS in real-time applicability with low computational requirement. PMID:24274109

  19. The 2D Hotelling filter - a quantitative noise-reducing principal-component filter for dynamic PET data, with applications in patient dose reduction

    International Nuclear Information System (INIS)

    Axelsson, Jan; Sörensen, Jens

    2013-01-01

    In this paper we apply the principal-component analysis filter (Hotelling filter) to reduce noise from dynamic positron-emission tomography (PET) patient data, for a number of different radio-tracer molecules. We furthermore show how preprocessing images with this filter improves parametric images created from such dynamic sequence. We use zero-mean unit variance normalization, prior to performing a Hotelling filter on the slices of a dynamic time-series. The Scree-plot technique was used to determine which principal components to be rejected in the filter process. This filter was applied to [ 11 C]-acetate on heart and head-neck tumors, [ 18 F]-FDG on liver tumors and brain, and [ 11 C]-Raclopride on brain. Simulations of blood and tissue regions with noise properties matched to real PET data, was used to analyze how quantitation and resolution is affected by the Hotelling filter. Summing varying parts of a 90-frame [ 18 F]-FDG brain scan, we created 9-frame dynamic scans with image statistics comparable to 20 MBq, 60 MBq and 200 MBq injected activity. Hotelling filter performed on slices (2D) and on volumes (3D) were compared. The 2D Hotelling filter reduces noise in the tissue uptake drastically, so that it becomes simple to manually pick out regions-of-interest from noisy data. 2D Hotelling filter introduces less bias than 3D Hotelling filter in focal Raclopride uptake. Simulations show that the Hotelling filter is sensitive to typical blood peak in PET prior to tissue uptake have commenced, introducing a negative bias in early tissue uptake. Quantitation on real dynamic data is reliable. Two examples clearly show that pre-filtering the dynamic sequence with the Hotelling filter prior to Patlak-slope calculations gives clearly improved parametric image quality. We also show that a dramatic dose reduction can be achieved for Patlak slope images without changing image quality or quantitation. The 2D Hotelling-filtering of dynamic PET data is a computer

  20. Adaptable Iterative and Recursive Kalman Filter Schemes

    Science.gov (United States)

    Zanetti, Renato

    2014-01-01

    Nonlinear filters are often very computationally expensive and usually not suitable for real-time applications. Real-time navigation algorithms are typically based on linear estimators, such as the extended Kalman filter (EKF) and, to a much lesser extent, the unscented Kalman filter. The Iterated Kalman filter (IKF) and the Recursive Update Filter (RUF) are two algorithms that reduce the consequences of the linearization assumption of the EKF by performing N updates for each new measurement, where N is the number of recursions, a tuning parameter. This paper introduces an adaptable RUF algorithm to calculate N on the go, a similar technique can be used for the IKF as well.

  1. Kalman滤波在导航中的应用研究%Applications of Kalman Filter in the Navigation

    Institute of Scientific and Technical Information of China (English)

    洪腾腾; 胡绍林

    2016-01-01

    随着导航技术日新月异的发展,Kalman滤波技术在导航领域中的应用也随处可见。本文围绕Kalman滤波技术在导航过程中的应用问题,从技术途径的几个方面进行系统分析,简要综述Kalman滤波技术在惯性导航、卫星导航和组合导航等方面应用的发展现状,并指出在导航领域应用Kalman滤波技术存在的若干技术难点,为改进和完善Kalman滤波技术在导航领域的应用提供了潜在的研究方向。%With the rapid development of science and technology, the Kalman filtering technology is widely used in navigation. In this paper, the application of the Kalman filteringtechnology in the navigation filed were analyzed. The research achievements in recent years were introduced. The application of Kalman filter in the inertial navigation systems, satellite navigation system and integrated navigation system were mainly introduced. At the same time, point out several technical difficulties. Finally, we provide the potential research direction to improve the application of the Kalman filter in navigation.

  2. The Application of Paired Parallel Filters for Ultra-Wideband Signal Processing

    Directory of Open Access Journals (Sweden)

    S. L. Chernyshev

    2015-01-01

    Full Text Available The paper considers a unit in which the parallel filters on regular lines are pair-attached. This connection allows to reduce a side line impedance at the point of connection. At the same time these lines become narrow, and the possibility to excite higher modes in the joint reduces.Consider the scattering matrix of four identical lines connection. Then find the scattering matrix of connection in which two side lines are connected with filters. Particular cases of the reflection coefficients of different filters are considered. It is shown that only in the case of identical filters there remained a linear relationship between the input filter coefficients of reflection and transmission coefficient of the unit. It facilitates the solution of the problem of synthesis. Restrictions on the transfer coefficient are found. In transition to the time domain impulse response of connection under consideration and the expression for the synthesis were defined. The paper considers an example of implementation of the matched filtering in this connection. In this case, the output signal is a half-sum of the input signal and their autocorrelation function.

  3. Linear filtering of systems with memory and application to finance

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available We study the linear filtering problem for systems driven by continuous Gaussian processes V ( 1 and V ( 2 with memory described by two parameters. The processes V ( j have the virtue that they possess stationary increments and simple semimartingale representations simultaneously. They allow for straightforward parameter estimations. After giving the semimartingale representations of V ( j by innovation theory, we derive Kalman-Bucy-type filtering equations for the systems. We apply the result to the optimal portfolio problem for an investor with partial observations. We illustrate the tractability of the filtering algorithm by numerical implementations.

  4. Fertilization with filter cake and micronutrients in plant cane

    Directory of Open Access Journals (Sweden)

    Jaqueline Cristiane Adorna

    2013-06-01

    Full Text Available The response of sugarcane to application of micronutrients is still not very well known. In view of the need for this information, the aim of this study was to evaluate the application of the micronutrients Zn, Cu, Mn, Fe, B, and Mo to plant cane in three soils, with and without application of filter cake. This study consisted of three experiments performed in the State of São Paulo, Brazil, (in Igaraçu do Tiete, on an Oxisol; in Santa Maria da Serra, on an Entisol, both in the 2008/2009 growing season; and in Mirassol, on an Ultisol, in the 2009/2010 growing season in a randomized block design with four replications with a 8 x 2 factorial combination of micronutrients (1 - no application/control, 2 - addition of Zn, 3 - addition of Cu, 4 - addition of Mn 5 - addition of Fe, 6 - addition of B, 7 - addition of Mo, 8 - Addition of Zn, Cu, Mn, Fe, B, and Mo and filter cake (0 and 30 t ha-1 of filter cake in the furrow at planting. The application of filter cake was more efficient than of Borax in raising leaf B concentration to sufficiency levels for sugarcane in the Entisol, and it increased mean stalk yield in the Oxisol. In areas without filter cake application, leaf concentrations were not affected by the application of Zn, Cu, Mn, Fe, B, and Mo in the furrow at planting; however, Zn and B induced an increase in stalk and sugar yield in micronutrient-poor sandy soil.

  5. 3D lumped components and miniaturized bandpass filter in an ultra-thin M-LCP for SOP applications

    KAUST Repository

    Arabi, Eyad A.; Shamim, Atif

    2013-01-01

    application. It utilizes mutually coupled inductors and is the smallest reported in the literature with a size of (0.035×0.028×0.00089)λg. Finally, the same filter realized in a competing ceramic technology (LTCC) is compared in performance with the ultra

  6. Tunable thin-film optical filters for hyperspectral microscopy

    Science.gov (United States)

    Favreau, Peter F.; Rich, Thomas C.; Prabhat, Prashant; Leavesley, Silas J.

    2013-02-01

    Hyperspectral imaging was originally developed for use in remote sensing applications. More recently, it has been applied to biological imaging systems, such as fluorescence microscopes. The ability to distinguish molecules based on spectral differences has been especially advantageous for identifying fluorophores in highly autofluorescent tissues. A key component of hyperspectral imaging systems is wavelength filtering. Each filtering technology used for hyperspectral imaging has corresponding advantages and disadvantages. Recently, a new optical filtering technology has been developed that uses multi-layered thin-film optical filters that can be rotated, with respect to incident light, to control the center wavelength of the pass-band. Compared to the majority of tunable filter technologies, these filters have superior optical performance including greater than 90% transmission, steep spectral edges and high out-of-band blocking. Hence, tunable thin-film optical filters present optical characteristics that may make them well-suited for many biological spectral imaging applications. An array of tunable thin-film filters was implemented on an inverted fluorescence microscope (TE 2000, Nikon Instruments) to cover the full visible wavelength range. Images of a previously published model, GFP-expressing endothelial cells in the lung, were acquired using a charge-coupled device camera (Rolera EM-C2, Q-Imaging). This model sample presents fluorescently-labeled cells in a highly autofluorescent environment. Linear unmixing of hyperspectral images indicates that thin-film tunable filters provide equivalent spectral discrimination to our previous acousto-optic tunable filter-based approach, with increased signal-to-noise characteristics. Hence, tunable multi-layered thin film optical filters may provide greatly improved spectral filtering characteristics and therefore enable wider acceptance of hyperspectral widefield microscopy.

  7. Development of a liquid filter testing technique using radioisotope

    International Nuclear Information System (INIS)

    Kumar, Surender; Ramarathinam, K.; Khan, A.A.

    1979-01-01

    Efficient removal of suspended matter from liquids was always in demand in industries as a process requirement for the recovery of suspended materials. In nuclear industry the filters are required to remove fine suspended matter from water in reactors, effluent treatment plants, fuel reprocessing plants etc. The filters are used to maintain clarity and to limit the activity level to a minimum. In effluent treatment plants low level liquid waste is discharged to the environment after removing active suspended matter by filters. Various type of liquid filters are available in the market to meet the demands of different industries. These filters must be evaluated for their removal effectiveness for particulate matter from liquids. The filters are evaluated using several techniques like gravimetric analysis, turbidity measurement, direct counting of particles using optical and electronic instruments etc. All the techniques have their own advantages and disadvantages. Counting of radioactive particles using radiation counters is a simple and sensitive technique. It involves the neutron activation of selected test powders which are dispersed in the liquid and led through the test filter; the up-stream and down-stream concentrations are measured using GM counter. This technique was found to be consistent and reproducible in the low, middle and high ranges of efficiency. Selection of a test powder, its activation and use for evaluating liquid filters are dealt with. (auth.)

  8. Effect of exposure dose reduction using a compensating filter

    International Nuclear Information System (INIS)

    Katsuda, Toshizo; Nakajima, Tadashi; Kuwano, Tadao; Ueda, Kouki; Sasaki, Yasuhiro; Yoshida, Jiro

    1993-01-01

    It is empirically said that the application of the compensating filter leads to a decrease in the exposure dose of the filter-inserted area and an increase in that of the otherwise area. Using the area-dosimeter, comparison was made of exposure doses by the application of the above filter and the otherwise filter in head simple X-P, abdominal angiography and lower extremity X-P. Using the filter for head simple X-P and Mix-Dp phantom, measurement was made of the absorbed dose at the 5 cm-depth to compare the rate of decrease in absorbed dose between the above both areas. Head simple X-P gained a decrease in area dose of 29%. The absorbed dose at the 5 cm-depth in the phantom experiment showed a decrease of over 26% at the filter-inserted area, but little increase at the otherwise area. The above results indicated the interposition of the filter between the X-ray tube and the object to lead to decreases not only in the area dose but also in the patient's exposure dose. (author)

  9. A linear 180 nm SOI CMOS antenna switch module using integrated passive device filters for cellular applications

    International Nuclear Information System (INIS)

    Cui Jie; Chen Lei; Liu Yi; Zhao Peng; Niu Xu

    2014-01-01

    A broadband monolithic linear single pole, eight throw (SP8T) switch has been fabricated in 180 nm thin film silicon-on-insulator (SOI) CMOS technology with a quad-band GSM harmonic filter in integrated passive devices (IPD) technology, which is developed for cellular applications. The antenna switch module (ASM) features 1.2 dB insertion loss with filter on 2G bands and 0.4 dB insertion loss in 3G bands, less than −45 dB isolation and maximum −103 dB intermodulation distortion for mobile front ends by applying distributed architecture and adaptive supply voltage generator. (semiconductor integrated circuits)

  10. Electrical diesel particulate filter (DPF) regeneration

    Science.gov (United States)

    Gonze, Eugene V; Ament, Frank

    2013-12-31

    An exhaust system that processes exhaust generated by an engine includes a diesel particulate filter (DPF) that is disposed downstream of the engine and that filters particulates from the exhaust. An electrical heater is disposed upstream of the DPF and selectively heats the exhaust to initiate combustion of the particulates within the exhaust as it passes therethrough. Heat generated by combustion of the particulates induces combustion of particulates within the DPF.

  11. The application of magnetic self-filter to optimization of AIN film growth process during the impulse plasma deposition synthesis

    Directory of Open Access Journals (Sweden)

    Chodun Rafal

    2016-03-01

    Full Text Available This work presents the very first results of the application of plasma magnetic filtering achieved by a coil coupled with an electrical circuit of a coaxial accelerator during the synthesis of A1N thin films by use of Impulse Plasma Deposition method (IPD. The uniqueness of this technical solution lies in the fact that the filter is not supplied, controlled and synchronized from any external device. Our solution uses the energy from the electrical circuit of plasma accelerator. The plasma state was described on the basis of OES studies. Estimation of the effects of plasma filtering on the film quality was carried out on the basis of characterization of structure morphology (SEM, phase and chemical composition (vibrational spectroscopy. Our work has shown that the use of the developed magnetic self-filter improved the structure of the AlN coatings synthesized under the condition of impulse plasma, especially by the minimization of the tendency to deposit metallic aluminum droplets and columnar growth.

  12. Decoupled deblurring filter and its application to elastic migration and inversion

    KAUST Repository

    Feng, Zongcai

    2017-08-17

    We present a decoupled deblurring filter that approximates the multiparameter Hessian inverse by using local filters to approximate its submatrices for the same and different parameter classes. Numerical tests show that the filter not only reduces the footprint noise, balances the amplitudes and increases the resolution of the elastic migration images, but also mitigates the crosstalk artifacts. When used as a preconditioner, it accelerates the convergence rate for elastic inversion.

  13. Characterization of filters and filtration process using X-ray computerized tomography

    International Nuclear Information System (INIS)

    Maschio, Celio; Arruda, Antonio Celso Fonseca de

    1999-01-01

    The objective of this work is to present the potential of X-Ray computerized tomography as a tool for internal characterization of filters used in the solid-liquid separation, mainly the water filters. Cartridge filters (for industrial and domestic applications) contaminated with glass beads were used. The scanning process was carried out both with and without contaminant in the filter to compare the attenuation coefficient of the clean filter and the contaminated filter. The images showed that is possible the mapping the internal structure of the filters and the distribution of the contaminant, permitting a local analysis, that is not possible through the standard tests used by the manufactures. These standard tests reveal only global characteristics of the filter media. The possibility of application for manufacturing process control was also shown, because the non invasive nature is a important advantage of the technique, which also permitted damage detection in filters submitted to severe operational conditions. (author)

  14. Development of GPS Receiver Kalman Filter Algorithms for Stationary, Low-Dynamics, and High-Dynamics Applications

    Science.gov (United States)

    2016-06-01

    Filter Algorithms for Stationary, Low-Dynamics, and High-Dynamics Applications Executive Summary The Global Positioning system ( GPS ) is the primary...software that may need to be developed for performance prediction of current or future systems that incorporate GPS . The ultimate aim is to help inform...Defence Science and Technology Organisation in 1986. His major areas of work were adaptive tracking , sig- nal processing, and radar systems engineering

  15. Adaptive digital filters

    CERN Document Server

    Kovačević, Branko; Milosavljević, Milan

    2013-01-01

    “Adaptive Digital Filters” presents an important discipline applied to the domain of speech processing. The book first makes the reader acquainted with the basic terms of filtering and adaptive filtering, before introducing the field of advanced modern algorithms, some of which are contributed by the authors themselves. Working in the field of adaptive signal processing requires the use of complex mathematical tools. The book offers a detailed presentation of the mathematical models that is clear and consistent, an approach that allows everyone with a college level of mathematics knowledge to successfully follow the mathematical derivations and descriptions of algorithms.   The algorithms are presented in flow charts, which facilitates their practical implementation. The book presents many experimental results and treats the aspects of practical application of adaptive filtering in real systems, making it a valuable resource for both undergraduate and graduate students, and for all others interested in m...

  16. High efficiency steel filters for nuclear air cleaning

    International Nuclear Information System (INIS)

    Bergman, W.; Conner, J.; Larsen, G.; Lopez, R.; Turner, C.; Vahla, G.; Violet, C.; Williams, K.

    1991-01-01

    The authors have, in cooperation with industry, developed high-efficiency filters made from sintered stainless-steel fibers for use in several air-cleaning applications in the nuclear industry. These filters were developed to overcome the failure modes in present high-efficiently particulate air (HEPA) filters. HEPA filters are made from glass paper and glue, and they may fail when they get hot or wet and when they are overpressured. In developing steel filters, they first evaluated the commercially available stainless-steel filter media made from sintered powder and sintered fiber. The sintered-fiber media performed much better than sintered-powder media, and the best media had the smallest fiber diameter. Using the best media, prototype filters were then built for venting compressed gases and evaluated in their automated filter tester

  17. A Retina-Like Dual Band Organic Photosensor Array for Filter-Free Near-Infrared-to-Memory Operations.

    Science.gov (United States)

    Wang, Hanlin; Liu, Hongtao; Zhao, Qiang; Ni, Zhenjie; Zou, Ye; Yang, Jie; Wang, Lifeng; Sun, Yanqiu; Guo, Yunlong; Hu, Wenping; Liu, Yunqi

    2017-08-01

    Human eyes use retina photoreceptor cells to absorb and distinguish photons from different wavelengths to construct an image. Mimicry of such a process and extension of its spectral response into the near-infrared (NIR) is indispensable for night surveillance, retinal prosthetics, and medical imaging applications. Currently, NIR organic photosensors demand optical filters to reduce visible interference, thus making filter-free and anti-visible NIR imaging a challenging task. To solve this limitation, a filter-free and conformal, retina-inspired NIR organic photosensor is presented. Featuring an integration of photosensing and floating-gate memory modules, the device possesses an acute color distinguishing capability. In general, the retina-like photosensor transduces NIR (850 nm) into nonvolatile memory and acts as a dynamic photoswitch under green light (550 nm). In doing this, a filter-free but color-distinguishing photosensor is demonstrated that selectively converts NIR optical signals into nonvolatile memory. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Evaluating low pass filters on SPECT reconstructed cardiac orientation estimation

    Science.gov (United States)

    Dwivedi, Shekhar

    2009-02-01

    Low pass filters can affect the quality of clinical SPECT images by smoothing. Appropriate filter and parameter selection leads to optimum smoothing that leads to a better quantification followed by correct diagnosis and accurate interpretation by the physician. This study aims at evaluating the low pass filters on SPECT reconstruction algorithms. Criteria for evaluating the filters are estimating the SPECT reconstructed cardiac azimuth and elevation angle. Low pass filters studied are butterworth, gaussian, hamming, hanning and parzen. Experiments are conducted using three reconstruction algorithms, FBP (filtered back projection), MLEM (maximum likelihood expectation maximization) and OSEM (ordered subsets expectation maximization), on four gated cardiac patient projections (two patients with stress and rest projections). Each filter is applied with varying cutoff and order for each reconstruction algorithm (only butterworth used for MLEM and OSEM). The azimuth and elevation angles are calculated from the reconstructed volume and the variation observed in the angles with varying filter parameters is reported. Our results demonstrate that behavior of hamming, hanning and parzen filter (used with FBP) with varying cutoff is similar for all the datasets. Butterworth filter (cutoff > 0.4) behaves in a similar fashion for all the datasets using all the algorithms whereas with OSEM for a cutoff < 0.4, it fails to generate cardiac orientation due to oversmoothing, and gives an unstable response with FBP and MLEM. This study on evaluating effect of low pass filter cutoff and order on cardiac orientation using three different reconstruction algorithms provides an interesting insight into optimal selection of filter parameters.

  19. Filters on Co-Inductive streams: an application to Eratosthenes' sieve

    OpenAIRE

    Bertot , Yves

    2004-01-01

    We show how to model filter functions on the co-inductive types of infinite streams in type theory. These functions are partial but the theory imposes total functions. Our solution relies on describing a predicate characterizing the definition domain of filter functions, with a combination inductive and co-inductive aspects.

  20. Real-time Java simulations of multiple interference dielectric filters

    Science.gov (United States)

    Kireev, Alexandre N.; Martin, Olivier J. F.

    2008-12-01

    An interactive Java applet for real-time simulation and visualization of the transmittance properties of multiple interference dielectric filters is presented. The most commonly used interference filters as well as the state-of-the-art ones are embedded in this platform-independent applet which can serve research and education purposes. The Transmittance applet can be freely downloaded from the site http://cpc.cs.qub.ac.uk. Program summaryProgram title: Transmittance Catalogue identifier: AEBQ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEBQ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 5778 No. of bytes in distributed program, including test data, etc.: 90 474 Distribution format: tar.gz Programming language: Java Computer: Developed on PC-Pentium platform Operating system: Any Java-enabled OS. Applet was tested on Windows ME, XP, Sun Solaris, Mac OS RAM: Variable Classification: 18 Nature of problem: Sophisticated wavelength selective multiple interference filters can include some tens or even hundreds of dielectric layers. The spectral response of such a stack is not obvious. On the other hand, there is a strong demand from application designers and students to get a quick insight into the properties of a given filter. Solution method: A Java applet was developed for the computation and the visualization of the transmittance of multilayer interference filters. It is simple to use and the embedded filter library can serve educational purposes. Also, its ability to handle complex structures will be appreciated as a useful research and development tool. Running time: Real-time simulations

  1. Reservoir History Matching Using Ensemble Kalman Filters with Anamorphosis Transforms

    KAUST Repository

    Aman, Beshir M.

    2012-01-01

    Some History matching methods such as Kalman filter, particle filter and the ensemble Kalman filter are reviewed and applied to a test case in the reservoir application. The key idea is to apply the transformation before the update step

  2. Digital filters

    CERN Document Server

    Hamming, Richard W

    1997-01-01

    Digital signals occur in an increasing number of applications: in telephone communications; in radio, television, and stereo sound systems; and in spacecraft transmissions, to name just a few. This introductory text examines digital filtering, the processes of smoothing, predicting, differentiating, integrating, and separating signals, as well as the removal of noise from a signal. The processes bear particular relevance to computer applications, one of the focuses of this book.Readers will find Hamming's analysis accessible and engaging, in recognition of the fact that many people with the s

  3. Optimal Design of High-Order Passive-Damped Filters for Grid-Connected Applications

    DEFF Research Database (Denmark)

    Beres, Remus Narcis; Wang, Xiongfei; Blaabjerg, Frede

    2016-01-01

    Harmonic stability problems caused by the resonance of high-order filters in power electronic systems are ever increasing. The use of passive damping does provide a robust solution to address these issues, but at the price of reduced efficiency due to the presence of additional passive components....... Hence, a new method is proposed in this paper to optimally design the passive damping circuit for the LCL filters and LCL with multi-tuned LC traps. In short, the optimization problem reduces to the proper choice of the multi-split capacitors or inductors in the high-order filter. Compared to existing...... filter resonance. The passive filters are designed, built and validated both analytically and experimentally for verification....

  4. Gating of a pH-sensitive K(2P potassium channel by an electrostatic effect of basic sensor residues on the selectivity filter.

    Directory of Open Access Journals (Sweden)

    Leandro Zúñiga

    2011-01-01

    Full Text Available K(+ channels share common selectivity characteristics but exhibit a wide diversity in how they are gated open. Leak K(2P K(+ channels TASK-2, TALK-1 and TALK-2 are gated open by extracellular alkalinization. The mechanism for this alkalinization-dependent gating has been proposed to be the neutralization of the side chain of a single arginine (lysine in TALK-2 residue near the pore of TASK-2, which occurs with the unusual pK(a of 8.0. We now corroborate this hypothesis by transplanting the TASK-2 extracellular pH (pH(o sensor in the background of a pH(o-insensitive TASK-3 channel, which leads to the restitution of pH(o-gating. Using a concatenated channel approach, we also demonstrate that for TASK-2 to open, pH(o sensors must be neutralized in each of the two subunits forming these dimeric channels with no apparent cross-talk between the sensors. These results are consistent with adaptive biasing force analysis of K(+ permeation using a model selectivity filter in wild-type and mutated channels. The underlying free-energy profiles confirm that either a doubly or a singly charged pH(o sensor is sufficient to abolish ion flow. Atomic detail of the associated mechanism reveals that, rather than a collapse of the pore, as proposed for other K(2P channels gated at the selectivity filter, an increased height of the energetic barriers for ion translocation accounts for channel blockade at acid pH(o. Our data, therefore, strongly suggest that a cycle of protonation/deprotonation of pH(o-sensing arginine 224 side chain gates the TASK-2 channel by electrostatically tuning the conformational stability of its selectivity filter.

  5. Gating of a pH-sensitive K(2P) potassium channel by an electrostatic effect of basic sensor residues on the selectivity filter.

    Science.gov (United States)

    Zúñiga, Leandro; Márquez, Valeria; González-Nilo, Fernando D; Chipot, Christophe; Cid, L Pablo; Sepúlveda, Francisco V; Niemeyer, María Isabel

    2011-01-25

    K(+) channels share common selectivity characteristics but exhibit a wide diversity in how they are gated open. Leak K(2P) K(+) channels TASK-2, TALK-1 and TALK-2 are gated open by extracellular alkalinization. The mechanism for this alkalinization-dependent gating has been proposed to be the neutralization of the side chain of a single arginine (lysine in TALK-2) residue near the pore of TASK-2, which occurs with the unusual pK(a) of 8.0. We now corroborate this hypothesis by transplanting the TASK-2 extracellular pH (pH(o)) sensor in the background of a pH(o)-insensitive TASK-3 channel, which leads to the restitution of pH(o)-gating. Using a concatenated channel approach, we also demonstrate that for TASK-2 to open, pH(o) sensors must be neutralized in each of the two subunits forming these dimeric channels with no apparent cross-talk between the sensors. These results are consistent with adaptive biasing force analysis of K(+) permeation using a model selectivity filter in wild-type and mutated channels. The underlying free-energy profiles confirm that either a doubly or a singly charged pH(o) sensor is sufficient to abolish ion flow. Atomic detail of the associated mechanism reveals that, rather than a collapse of the pore, as proposed for other K(2P) channels gated at the selectivity filter, an increased height of the energetic barriers for ion translocation accounts for channel blockade at acid pH(o). Our data, therefore, strongly suggest that a cycle of protonation/deprotonation of pH(o)-sensing arginine 224 side chain gates the TASK-2 channel by electrostatically tuning the conformational stability of its selectivity filter.

  6. Dose reduction using non lineal diffusion and smoothing filters in computed radiography

    International Nuclear Information System (INIS)

    Sánchez, M.G.; Juste, B.; Vidal, V.; Verdú, G.; Mayo, P.; Rodenas, F.

    2014-01-01

    The use of Computed Radiography (CR) into clinical practice has been followed by a high increase in the number of examinations performed and overdose cases in patients, especially children in pediatric applications. Computed radiographic images are corrupted by noise because either data acquisition or data transmission. The level of this inherent noise is related with the X-ray dose exposure: lower radiation exposure involves higher noise level. The main aim of this work is to reduce the noise present in a low radiation dose CR image in order to the get a CR image of the same quality as a higher radiation exposure image. In this work, we use a non lineal diffusion filtering method to reduce the noise level in a CR, this means that we are able to reduce the exposure, milliampere-second (mAs), and the dose absorbed by the patients. In order to get an optimal result, the diffusive filter is complemented with a smoothing filter with edge detection in order to preserve edges. Therefore, the proposed method consists in obtaining a good quality CR image for diagnostic purposes by selection of lower X-ray exposure jointly with a reduction of the noise. We conclude that a good solution to minimize the dose to patients, especially children in pediatric applications, in X-ray computed radiography consists in decreasing the mAs of the X-ray exposure and then processing the image with the proposed method. - Highlights: • We have investigated the techniques to obtain the image quality to make a confident diagnosis. • We have used diffusion and smoothing filter in order to reduce the exposure. • Reducing CR doses, especially in pediatric applications. • The new CR images allow medical researchers to analyze how low dose affects the patient diagnosis

  7. Comparison of cryogenic low-pass filters

    Science.gov (United States)

    Thalmann, M.; Pernau, H.-F.; Strunk, C.; Scheer, E.; Pietsch, T.

    2017-11-01

    Low-temperature electronic transport measurements with high energy resolution require both effective low-pass filtering of high-frequency input noise and an optimized thermalization of the electronic system of the experiment. In recent years, elaborate filter designs have been developed for cryogenic low-level measurements, driven by the growing interest in fundamental quantum-physical phenomena at energy scales corresponding to temperatures in the few millikelvin regime. However, a single filter concept is often insufficient to thermalize the electronic system to the cryogenic bath and eliminate spurious high frequency noise. Moreover, the available concepts often provide inadequate filtering to operate at temperatures below 10 mK, which are routinely available now in dilution cryogenic systems. Herein we provide a comprehensive analysis of commonly used filter types, introduce a novel compact filter type based on ferrite compounds optimized for the frequency range above 20 GHz, and develop an improved filtering scheme providing adaptable broad-band low-pass characteristic for cryogenic low-level and quantum measurement applications at temperatures down to few millikelvin.

  8. Comparison of cryogenic low-pass filters.

    Science.gov (United States)

    Thalmann, M; Pernau, H-F; Strunk, C; Scheer, E; Pietsch, T

    2017-11-01

    Low-temperature electronic transport measurements with high energy resolution require both effective low-pass filtering of high-frequency input noise and an optimized thermalization of the electronic system of the experiment. In recent years, elaborate filter designs have been developed for cryogenic low-level measurements, driven by the growing interest in fundamental quantum-physical phenomena at energy scales corresponding to temperatures in the few millikelvin regime. However, a single filter concept is often insufficient to thermalize the electronic system to the cryogenic bath and eliminate spurious high frequency noise. Moreover, the available concepts often provide inadequate filtering to operate at temperatures below 10 mK, which are routinely available now in dilution cryogenic systems. Herein we provide a comprehensive analysis of commonly used filter types, introduce a novel compact filter type based on ferrite compounds optimized for the frequency range above 20 GHz, and develop an improved filtering scheme providing adaptable broad-band low-pass characteristic for cryogenic low-level and quantum measurement applications at temperatures down to few millikelvin.

  9. Adaptive probabilistic collocation based Kalman filter for unsaturated flow problem

    Science.gov (United States)

    Man, J.; Li, W.; Zeng, L.; Wu, L.

    2015-12-01

    The ensemble Kalman filter (EnKF) has gained popularity in hydrological data assimilation problems. As a Monte Carlo based method, a relatively large ensemble size is usually required to guarantee the accuracy. As an alternative approach, the probabilistic collocation based Kalman filter (PCKF) employs the Polynomial Chaos to approximate the original system. In this way, the sampling error can be reduced. However, PCKF suffers from the so called "cure of dimensionality". When the system nonlinearity is strong and number of parameters is large, PCKF is even more computationally expensive than EnKF. Motivated by recent developments in uncertainty quantification, we propose a restart adaptive probabilistic collocation based Kalman filter (RAPCKF) for data assimilation in unsaturated flow problem. During the implementation of RAPCKF, the important parameters are identified and active PCE basis functions are adaptively selected. The "restart" technology is used to alleviate the inconsistency between model parameters and states. The performance of RAPCKF is tested by unsaturated flow numerical cases. It is shown that RAPCKF is more efficient than EnKF with the same computational cost. Compared with the traditional PCKF, the RAPCKF is more applicable in strongly nonlinear and high dimensional problems.

  10. Application of activated carbon fiber to a filter used for airborne radioiodine sampling

    International Nuclear Information System (INIS)

    Kato, Shohei; Murata, Mikio; Yoshikazu, Yoshida

    1988-01-01

    An airborne radioiodine sampling filter is required to have low pressure drop, mechanical strength enough to a practical use and high collection efficiency under high relative humidity(RH). To develop a filter to meet the requirements, the influences of impregnation amount of triethylenediamin(TEDA) on the collection efficiencies for methyl iodide and the reaction rates were investigated for several kinds of activated carbon fiber varied in specific surface area, pore diameter, etc. Silver silica gel(Sut Chemi, AC6120), silver zeolite(CTI Nuc., AgX Type III), silver alumina(Hitachi Co.) and granular activated charcoal were also examined for comparison. A new type filter made of activated carbon fiber (ACF filter) was developed based on the above experimental results. The ACF filter was examined for the pressure drop by the filter and collection efficiency for methyl iodide being compared with other types of filters such as an activated charcoal cartridge (ACC) and an activated charcoal filter paper (ACP)

  11. Analog Electronic Filters Theory, Design and Synthesis

    CERN Document Server

    Dimopoulos, Hercules G

    2012-01-01

    Filters are essential subsystems in a huge variety of electronic systems. Filter applications are innumerable; they are used for noise reduction, demodulation, signal detection, multiplexing, sampling, sound and speech processing, transmission line equalization and image processing, to name just a few. In practice, no electronic system can exist without filters. They can be found in everything from power supplies to mobile phones and hard disk drives and from loudspeakers and MP3 players to home cinema systems and broadband Internet connections. This textbook introduces basic concepts and methods and the associated mathematical and computational tools employed in electronic filter theory, synthesis and design.  This book can be used as an integral part of undergraduate courses on analog electronic filters. Includes numerous, solved examples, applied examples and exercises for each chapter. Includes detailed coverage of active and passive filters in an independent but correlated manner. Emphasizes real filter...

  12. Multiple-Complex Coefficient-Filter-Based Phase-Locked Loop and Synchronization Technique for Three-phase Grid-Interfaced Converters in Distributed Utility Networks

    DEFF Research Database (Denmark)

    Guo, Xiaoqiang; Wu, Weiyang; Chen, Zhe

    2011-01-01

    and rapid extraction of the positive and negative sequence components from the polluted grid voltage, and the harmonic components can also be estimated precisely, which has the potential use for selective compensation in active filter applications. Another advantage of the proposed method is its flexibility...

  13. Compact microstrip bandpass filter with tunable notch

    DEFF Research Database (Denmark)

    Christensen, Silas; Zhurbenko, Vitaliy; Johansen, Tom Keinicke

    2014-01-01

    Two different designs combining a bandpass and a notch filter are developed to operate in the receiving band from 350–470 MHz. The bandpass filter is designed from a simple structure, by use of only four short circuited stubs and a half wavelength transmission line connecting the stubs. The tunable...... notch filter ensures an attenuation level of 19.3 dB to 27.3 dB in the frequency range from 360–480 MHz. The measured passband ripple of the combined filter is less than 0.5 dB, while the insertion loss for the simplest design is less than 1.7 dB only 10 MHz from the notch frequency. Even though...... the wavelength on the selected substrate (εr = 3.55) is approximately 45 cm, the outer dimensions of the final filter only measure 10×10 cm2....

  14. Optimization of nonlinear, non-Gaussian Bayesian filtering for diagnosis and prognosis of monotonic degradation processes

    Science.gov (United States)

    Corbetta, Matteo; Sbarufatti, Claudio; Giglio, Marco; Todd, Michael D.

    2018-05-01

    The present work critically analyzes the probabilistic definition of dynamic state-space models subject to Bayesian filters used for monitoring and predicting monotonic degradation processes. The study focuses on the selection of the random process, often called process noise, which is a key perturbation source in the evolution equation of particle filtering. Despite the large number of applications of particle filtering predicting structural degradation, the adequacy of the picked process noise has not been investigated. This paper reviews existing process noise models that are typically embedded in particle filters dedicated to monitoring and predicting structural damage caused by fatigue, which is monotonic in nature. The analysis emphasizes that existing formulations of the process noise can jeopardize the performance of the filter in terms of state estimation and remaining life prediction (i.e., damage prognosis). This paper subsequently proposes an optimal and unbiased process noise model and a list of requirements that the stochastic model must satisfy to guarantee high prognostic performance. These requirements are useful for future and further implementations of particle filtering for monotonic system dynamics. The validity of the new process noise formulation is assessed against experimental fatigue crack growth data from a full-scale aeronautical structure using dedicated performance metrics.

  15. Chained function filters - theory and applications.

    OpenAIRE

    Chrisostomidis, Christos E.

    2003-01-01

    For the first time, the new class of filter transfer functions, called Chained Functions is described, in detail. With Chained functions, one may define a new polynomial generating function that is given by the product of a combination of low order functions, called seed functions. The chained function concept provides with a variety of transfer functions, having the same order but different frequency-domain, time-domain and implementation characteristics. When compared to the conventional Ch...

  16. Convergence Performance of Adaptive Algorithms of L-Filters

    Directory of Open Access Journals (Sweden)

    Robert Hudec

    2003-01-01

    Full Text Available This paper deals with convergence parameters determination of adaptive algorithms, which are used in adaptive L-filters design. Firstly the stability of adaptation process, convergence rate or adaptation time, and behaviour of convergence curve belong among basic properties of adaptive algorithms. L-filters with variety of adaptive algorithms were used to their determination. Convergence performances finding of adaptive filters is important mainly for their hardware applications, where filtration in real time or adaptation of coefficient filter with low capacity of input data are required.

  17. Disposition of the iron, influenced by the application of humic acid, extracted of filter cake of sugar cane

    International Nuclear Information System (INIS)

    Morales L, Carmen Soledad; Garcia Ocampo, Alvaro

    1995-01-01

    Two extracting (NaOH and KOH) and several acidifying solutions were used to get humic acids from filter cake of sugar cane, composted coffee beans and hen manure. The humic acids obtained were characterized and applied to evaluate their effect on the iron availability to tomato plants (Lycopersicon esculentum) grown in nutrient solutions. The amount of humic acids extracted from filter cake is between hen manure and composted coffee beans. The nuclear magnetic resonance characterization of the different humic materials indicated that the ones extracted from filter cake have a carboxylic chain larger than the other two materials and an aliphatic chain lower than the leonardite humic acids and also are younger. Application of 40 to 80 mg/L of humic acids to nutrient solutions promote physiological responses on tomato plants due to greater assimilation of N, K, Ca, Mg, Zn, Cu and Mn

  18. Building America Top Innovations 2014 Profile: California Energy Standards Recognize the Importance of Filter Selection

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-11-01

    This 2014 Top Innovation profile describes Building America research on HVAC air filter sizing that prompted a change in the California “Title 24” Energy Code requiring filter manufacturers, HVAC designers, and HERS raters to make changes that will encourage the use of higher MERV filters without degrading HVAC performance.

  19. Study of LCL filter performance for inverter fed grid connected system

    Science.gov (United States)

    Thamizh Thentral, T. M.; Geetha, A.; Subramani, C.

    2018-04-01

    The abandoned use of power electronic converters in the application of grid connected system paves a way for critical injected harmonics. Hence the use of filter becomes a significant play among the present scenario. Higher order passive filter is mostly preferred in this application because of its reduced cost and size. This paper focuses on the design of LCL filter for the reduction of injected harmonics. The reason behind choosing LCL filter is inductor sizing and good ripple component attenuation over the other conventional filters. This work is simulated in MATLAB platform and the results are prominent to the objectives mentioned above. Also, the simulation results are verified with the implemented hardware model.

  20. Observation of phase noise reduction in photonically synthesized sub-THz signals using a passively mode-locked laser diode and highly selective optical filtering

    DEFF Research Database (Denmark)

    Criado, A. R.; Acedo, P.; Carpintero, G.

    2012-01-01

    A Continuous Wave (CW) sub-THz photonic synthesis setup based on a single Passively Mode-Locked Laser Diode (PMLLD) acting as a monolithic Optical Frequency Comb Generator (OFCG) and highly selective optical filtering has been implemented to evaluate the phase noise performance of the generated sub...

  1. Implicit particle filtering for equations with partial noise and application to geomagnetic data assimilation

    Science.gov (United States)

    Morzfeld, M.; Atkins, E.; Chorin, A. J.

    2011-12-01

    covariance matrix Σ is assumed to be non-singular. In the present work we consider the case where the covariance Σ is singular. This happens in particular when the noise is spatially smooth and can be represented by a small number of Fourier coefficients, as is often the case in geophysical applications. We derive an implicit filter for this problem and show that it is very efficient, because the filter operates in a space whose dimension is the rank of Σ, rather than the full model dimension. We compare the implicit filter to SIR, to the Ensemble Kalman Filter and to variational methods, and also study how information from data is propagated from observed to unobserved variables. We illustrate the theory on two coupled nonlinear PDE's in one space dimension that have been used as a test-bed for geomagnetic data assimilation. We observe that the implicit filter gives good results with few (2-10) particles, while SIR requires thousands of particles for similar accuracy. We also find lower limits to the accuracy of the filter's reconstruction as a function of data availability.

  2. Phase unwrapping algorithm using polynomial phase approximation and linear Kalman filter.

    Science.gov (United States)

    Kulkarni, Rishikesh; Rastogi, Pramod

    2018-02-01

    A noise-robust phase unwrapping algorithm is proposed based on state space analysis and polynomial phase approximation using wrapped phase measurement. The true phase is approximated as a two-dimensional first order polynomial function within a small sized window around each pixel. The estimates of polynomial coefficients provide the measurement of phase and local fringe frequencies. A state space representation of spatial phase evolution and the wrapped phase measurement is considered with the state vector consisting of polynomial coefficients as its elements. Instead of using the traditional nonlinear Kalman filter for the purpose of state estimation, we propose to use the linear Kalman filter operating directly with the wrapped phase measurement. The adaptive window width is selected at each pixel based on the local fringe density to strike a balance between the computation time and the noise robustness. In order to retrieve the unwrapped phase, either a line-scanning approach or a quality guided strategy of pixel selection is used depending on the underlying continuous or discontinuous phase distribution, respectively. Simulation and experimental results are provided to demonstrate the applicability of the proposed method.

  3. Nonlinear spatio-temporal filtering of dynamic PET data using a four-dimensional Gaussian filter and expectation-maximization deconvolution

    International Nuclear Information System (INIS)

    Floberg, J M; Holden, J E

    2013-01-01

    We introduce a method for denoising dynamic PET data, spatio-temporal expectation-maximization (STEM) filtering, that combines four-dimensional Gaussian filtering with EM deconvolution. The initial Gaussian filter suppresses noise at a broad range of spatial and temporal frequencies and EM deconvolution quickly restores the frequencies most important to the signal. We aim to demonstrate that STEM filtering can improve variance in both individual time frames and in parametric images without introducing significant bias. We evaluate STEM filtering with a dynamic phantom study, and with simulated and human dynamic PET studies of a tracer with reversible binding behaviour, [C-11]raclopride, and a tracer with irreversible binding behaviour, [F-18]FDOPA. STEM filtering is compared to a number of established three and four-dimensional denoising methods. STEM filtering provides substantial improvements in variance in both individual time frames and in parametric images generated with a number of kinetic analysis techniques while introducing little bias. STEM filtering does bias early frames, but this does not affect quantitative parameter estimates. STEM filtering is shown to be superior to the other simple denoising methods studied. STEM filtering is a simple and effective denoising method that could be valuable for a wide range of dynamic PET applications. (paper)

  4. Design of filtered epithermal neutron beams for BNC

    International Nuclear Information System (INIS)

    Greenwood, R.C.

    1986-01-01

    The design principles of filters (installed in nuclear reactors) to provide epithermal neutron beams suitable for use in 10 B Neutron Capture Therapy (BNCT) are reviewed. The goal of such filters is to provide epithermal neutron beams within an energy range of 1 keV to 30 keV with fluxes in excess of 5 x 10 8 neutrons/cm 2 .s, and having acceptably low contaminant fast neutron (> 30 keV) and gamma components. Filters considered for this application include 238 U, Sc, Fe/Al and Al/S. It is shown that in order to achieve a goal epithermal neutron flux of > 5 x 10 8 neutrons/cm 2 .s, such filters must be located in radial beam channels which view essentially the complete reactor core. Based on considerations of estimated epithermal fluxes, cost and availability of materials, and transmitted neutron energy spectrum, it is suggested that a filter consisting of elements of Al, S, Ti and V might prove to be an optimum design for BNCT applications. 13 references, 3 figures, 8 tables

  5. Cleaning metal filters by pulse-jet

    International Nuclear Information System (INIS)

    Pickard, P.; Perry, R.A.

    1986-01-01

    Cleanable metal filters have an established use in the Nuclear Industry. The filters that have been installed in the past have not proved to be sufficiently cleanable. A series of tests were undertaken to study the application of pulse-jet cleaning to metal fibre filter elements. The efficiency of dust removal was examined under various operating conditions. A very high degree of particulate removal was achieved, with a return to almost clean pressure drop. The effectiveness of cleaning was found to vary inversely with blowback pressure. The position of the blowback nozzle with respect to the filter element throat was also found to be important to cleaning efficiency. Under the test conditions the effect of re-entrainment when cleaning on line was found to be minimal. (author)

  6. Optimal design of active EMC filters

    Science.gov (United States)

    Chand, B.; Kut, T.; Dickmann, S.

    2013-07-01

    A recent trend in automotive industry is adding electrical drive systems to conventional drives. The electrification allows an expansion of energy sources and provides great opportunities for environmental friendly mobility. The electrical powertrain and its components can also cause disturbances which couple into nearby electronic control units and communication cables. Therefore the communication can be degraded or even permanently disrupted. To minimize these interferences, different approaches are possible. One possibility is to use EMC filters. However, the diversity of filters is very large and the determination of an appropriate filter for each application is time-consuming. Therefore, the filter design is determined by using a simulation tool including an effective optimization algorithm. This method leads to improvements in terms of weight, volume and cost.

  7. Method of manufacturing Ross differential filters for selection of characteristic radiation of element to be determined

    Energy Technology Data Exchange (ETDEWEB)

    Havranek, E; Bumbalova, A

    1978-02-15

    The method of filter manufacturing described consists in that an element in powder form, e.g., cadmium or tin, or oxides, e.g., cadmium oxide or tin oxide are compacted at a pressure of 500 to 2000 kg/cm/sup 2/ with powder fillers, such as lactose, glucose, calcium phosphates, cellulose or starch. The filter surface is finished with fixation agents, e.g., polystyrene chloroform solutions. Thus, the need for filter balancing is eliminated. Accurate proportioning of the filtering element of the compacted mixture and accurate balancing are achieved by reducing the filtering element content.

  8. Applicability of the Filter Paper Technique for Detection of AntifilarialIgG4 Antibodies Using the Bm14 Filariasis CELISA

    Directory of Open Access Journals (Sweden)

    Hayley M. Joseph

    2010-01-01

    Full Text Available Demonstration of successful elimination of lymphatic filariasis (LF in endemic countries requires sensitive diagnostics for accurate definitions of endpoints and future surveillance. There has been interest in complementing available diagnostics with antibody serology testing in children, since negative serology would correspond with cessation of LF transmission. The Filariasis CELISA detects antifilarial IgG4 and has favourable results with serum samples but field application requires an easier sampling method. Ninety-four paired plasma and filter paper samples were assayed with promising results. The filter paper method resulted in a sensitivity of 92% and a specificity of 77% when compared to the paired plasma. One hundred and one filter paper samples were assessed for storage effects. Following 10-month storage at −20∘C there was a significant reduction in reactivity (<.001. Overall the results indicated that filter paper sampling would be a favourable sensitive and specific alternative for blood collection in surveys.

  9. Filtering Redundant Data from RFID Data Streams

    Directory of Open Access Journals (Sweden)

    Hazalila Kamaludin

    2016-01-01

    Full Text Available Radio Frequency Identification (RFID enabled systems are evolving in many applications that need to know the physical location of objects such as supply chain management. Naturally, RFID systems create large volumes of duplicate data. As the duplicate data wastes communication, processing, and storage resources as well as delaying decision-making, filtering duplicate data from RFID data stream is an important and challenging problem. Existing Bloom Filter-based approaches for filtering duplicate RFID data streams are complex and slow as they use multiple hash functions. In this paper, we propose an approach for filtering duplicate data from RFID data streams. The proposed approach is based on modified Bloom Filter and uses only a single hash function. We performed extensive empirical study of the proposed approach and compared it against the Bloom Filter, d-Left Time Bloom Filter, and the Count Bloom Filter approaches. The results show that the proposed approach outperforms the baseline approaches in terms of false positive rate, execution time, and true positive rate.

  10. Gas Selectivity Control in Co3O4 Sensor via Concurrent Tuning of Gas Reforming and Gas Filtering using Nanoscale Hetero-Overlayer of Catalytic Oxides.

    Science.gov (United States)

    Jeong, Hyun-Mook; Jeong, Seong-Yong; Kim, Jae-Hyeok; Kim, Bo-Young; Kim, Jun-Sik; Abdel-Hady, Faissal; Wazzan, Abdulaziz A; Al-Turaif, Hamad Ali; Jang, Ho Won; Lee, Jong-Heun

    2017-11-29

    Co 3 O 4 sensors with a nanoscale TiO 2 or SnO 2 catalytic overlayer were prepared by screen-printing of Co 3 O 4 yolk-shell spheres and subsequent e-beam evaporation of TiO 2 and SnO 2 . The Co 3 O 4 sensors with 5 nm thick TiO 2 and SnO 2 overlayers showed high responses (resistance ratios) to 5 ppm xylene (14.5 and 28.8) and toluene (11.7 and 16.2) at 250 °C with negligible responses to interference gases such as ethanol, HCHO, CO, and benzene. In contrast, the pure Co 3 O 4 sensor did not show remarkable selectivity toward any specific gas. The response and selectivity to methylbenzenes and ethanol could be systematically controlled by selecting the catalytic overlayer material, varying the overlayer thickness, and tuning the sensing temperature. The significant enhancement of the selectivity for xylene and toluene was attributed to the reforming of less reactive methylbenzenes into more reactive and smaller species and oxidative filtering of other interference gases, including ubiquitous ethanol. The concurrent control of the gas reforming and oxidative filtering processes using a nanoscale overlayer of catalytic oxides provides a new, general, and powerful tool for designing highly selective and sensitive oxide semiconductor gas sensors.

  11. Pencil Beam Spectral Measurements of Ce, Ho, Yb, and Ba Powders for Potential Use in Medical Applications

    Directory of Open Access Journals (Sweden)

    N. Martini

    2015-01-01

    Full Text Available The aim of the present study was to obtain modified X-ray spectra, by using appropriate filter materials for use in applications such as dual energy X-ray imaging. K-edge filtering technique was implemented in order to obtain narrow energy bands for both dual- and single-kVp techniques. Three lanthanide filters (cerium, holmium, and ytterbium and a filter outside lanthanides (barium, with low K-edge, were used to modify the X-ray spectra. The X-ray energies that were used in this work ranged from 60 to 100 kVp. Relative root mean square error (RMSE and the coefficient of variation were used for filter selection. The increasing filter thicknesses led to narrower energy bands. For the dual-kVp technique, 0.7916 g/cm2 Ho, 0.9422 g/cm2 Yb, and 1.0095 g/cm2 Yb were selected for 70, 80, and 90 kVp, respectively. For the single-kVp technique 0.5991 g/cm2 Ce, 0.8750 g/cm2 Ba, and 0.8654 g/cm2 Ce were selected for 80, 90, and 100 kVp, respectively. The filtered X-ray spectra of this work, after appropriate modification, could be used in various X-ray applications, such as dual-energy mammography, bone absorptiometry, and digital tomosynthesis.

  12. RSSI based indoor tracking in sensor networks using Kalman filters

    DEFF Research Database (Denmark)

    Tøgersen, Frede Aakmann; Skjøth, Flemming; Munksgaard, Lene

    2010-01-01

    We propose an algorithm for estimating positions of devices in a sensor network using Kalman filtering techniques. The specific area of application is monitoring the movements of cows in a barn. The algorithm consists of two filters. The first filter enhances the signal-to-noise ratio...

  13. Gravitation search algorithm: Application to the optimal IIR filter design

    Directory of Open Access Journals (Sweden)

    Suman Kumar Saha

    2014-01-01

    Full Text Available This paper presents a global heuristic search optimization technique known as Gravitation Search Algorithm (GSA for the design of 8th order Infinite Impulse Response (IIR, low pass (LP, high pass (HP, band pass (BP and band stop (BS filters considering various non-linear characteristics of the filter design problems. This paper also adopts a novel fitness function in order to improve the stop band attenuation to a great extent. In GSA, law of gravity and mass interactions among different particles are adopted for handling the non-linear IIR filter design optimization problem. In this optimization technique, searcher agents are the collection of masses and interactions among them are governed by the Newtonian gravity and the laws of motion. The performances of the GSA based IIR filter designs have proven to be superior as compared to those obtained by real coded genetic algorithm (RGA and standard Particle Swarm Optimization (PSO. Extensive simulation results affirm that the proposed approach using GSA outperforms over its counterparts not only in terms of quality output, i.e., sharpness at cut-off, smaller pass band ripple, higher stop band attenuation, but also the fastest convergence speed with assured stability.

  14. The Design of Polymer Planar Optical Triplexer with MMI Filter and Directional Coupler

    Directory of Open Access Journals (Sweden)

    V. Jerabek

    2013-12-01

    Full Text Available Optical bidirectional WDM transceiver is a key component of the Passive Optical Network of the Fiber to the Home topology. Essential parts of such transceivers are filters that combine multiplexing and demultiplexing function of optical signal (triplexing filters. In this paper we report about a design of a new planar optical multi-wavelength selective system triplexing filter, which combines a multimode interference filter with directional coupler based on the epoxy polymer SU-8 on Si/SiO2 substrate. The optical triplexing filter was designed using the Beam Propagation Method. The aim of this project was to optimize the triplexing filter optical parameters and to minimize the planar optical wavelength selective system dimensions. The multimode interference filter was used for separation of downstream optical signal in designed optoelectronic integrated WDM transceiver. The directional coupler was used for adding of upstream optical signal.

  15. An information filtering system prototype for world wide web; Prototipo di sistema di information filtering per world wide web

    Energy Technology Data Exchange (ETDEWEB)

    Bordoni, L. [ENEA Centro Ricerche Casaccia, S. Maria di Galeria, RM (Italy). Funzione Centrale Studi

    1999-07-01

    In this report the architecture of an information filtering system for world wide web, developed by the Rome Third University (Italy) for ENEA (National Agency for New Technology, Energy and the Environment), is described. This prototype allows for selecting documents in text/HTML format from the web according to the interests of users. A user modeling shell allows ro build a model of user's interests, obtained during the interaction. The experimental results support the choice of embedding methods for this kind of application. [Italian] In questo rapporto viene descritta l'architettura di un sistema adattivo di information filtering su world wide web, sviluppato dall'universita' di Roma III in collaborazione con l'ENEA. Il prototipo descritto e' in grado di selezionare documenti in formato testo/html, raccolti dal web, in accordo con le caratteristiche e gli interessi degli utenti. Una shell di modellazione utente consente di costruire un modello degli interessi dell'utente, ottenuto nel corso dell'interazione. I risultati sperimentali rafforzano la scelta di usare metodi di modellazione utente per questo genere di applicazioni.

  16. Collaborative QoS Prediction for Mobile Service with Data Filtering and SlopeOne Model

    Directory of Open Access Journals (Sweden)

    Yuyu Yin

    2017-01-01

    Full Text Available The mobile service is a widely used carrier for mobile applications. With the increase of the number of mobile services, for service recommendation and selection, the nonfunctional properties (also known as quality of service, QoS become increasingly important. However, in many cases, the number of mobile services invoked by a user is quite limited, which leads to the large number of missing QoS values. In recent years, many prediction algorithms, such as algorithms extended from collaborative filtering (CF, are proposed to predict QoS values. However, the ideas of most existing algorithms are borrowed from the recommender system community, not specific for mobile service. In this paper, we first propose a data filtering-extended SlopeOne model (filtering-based CF, which is based on the characteristics of a mobile service and considers the relation with location. Also, using the data filtering technique in FB-CF and matrix factorization (MF, this paper proposes another model FB-MF (filtering-based MF. We also build an ensemble model, which combines the prediction results of FB-CF model and FB-MF model. We conduct sufficient experiments, and the experimental results demonstrate that our models outperform all compared methods and achieve good results in high data sparsity scenario.

  17. HEPA Filter Performance under Adverse Conditions

    International Nuclear Information System (INIS)

    Parsons, Michael; Hogancamp, Kristina; Alderman, Steven; Waggoner, Charles

    2007-01-01

    This study involved challenging nuclear grade high-efficiency particulate air (HEPA) filters under a variety of conditions that can arise in Department of Energy (DOE) applications such as: low or high RH, controlled and uncontrolled challenge, and filters with physically damaged media or seals (i.e., leaks). Reported findings correlate filter function as measured by traditional differential pressure techniques in comparison with simultaneous instrumental determination of up and down stream PM concentrations. Additionally, emission rates and failure signatures will be discussed for filters that have either failed or exceeded their usable lifetime. Significant findings from this effort include the use of thermocouples up and down stream of the filter housing to detect the presence of moisture. Also demonstrated in the moisture challenge series of tests is the effect of repeated wetting of the filter. This produces a phenomenon referred to as transient failure before the tensile strength of the media weakens to the point of physical failure. An evaluation of the effect of particle size distribution of the challenge aerosol on loading capacity of filters is also included. Results for soot and two size distributions of KCl are reported. Loading capacities for filters ranged from approximately 70 g of soot to nearly 900 g for the larger particle size distribution of KCl. (authors)

  18. Applications of Kalman Filtering to nuclear material control

    International Nuclear Information System (INIS)

    Pike, D.H.; Morrison, G.W.; Westley, G.W.

    1977-10-01

    The feasibility of using modern state estimation techniques (specifically Kalman Filtering and Linear Smoothing) to detect losses of material from material balance areas is evaluated. It is shown that state estimation techniques are not only feasible but in most situations are superior to existing methods of analysis. The various techniques compared include Kalman Filtering, linear smoothing, standard control charts, and average cumulative summation (CUSUM) charts. Analysis results indicated that the standard control chart is the least effective method for detecting regularly occurring losses. An improvement in the detection capability over the standard control chart can be realized by use of the CUSUM chart. Even more sensitivity in the ability to detect losses can be realized by use of the Kalman Filter and the linear smoother. It was found that the error-covariance matrix can be used to establish limits of error for state estimates. It is shown that state estimation techniques represent a feasible and desirable method of theft detection. The technique is usually more sensitive than the CUSUM chart in detecting losses. One kind of loss which is difficult to detect using state estimation techniques is a single isolated loss. State estimation procedures are predicated on dynamic models and are well-suited for detecting losses which occur regularly over several accounting periods. A single isolated loss does not conform to this basic assumption and is more difficult to detect

  19. Electron microscope studies on nuclear track filters

    International Nuclear Information System (INIS)

    Roell, I.; Siegmon, W.

    1982-01-01

    Nuclear track filters became more and more important in various fields of application. The filtration process can be described by a set of suitable parameters. For some applications it may be necessary to know the structure of the surface and the pores themselves. In most cases the etching process yields surfaces and pore geometries that are quite different from ideal planes and cylinders. In the presented work the production of different filter types will be described. The resulting surfaces and pore structures have been investigated by means of a scanning electron microscope. (author)

  20. Filtering and control of wireless networked systems

    CERN Document Server

    Zhang, Dan; Yu, Li

    2017-01-01

    This self-contained book, written by leading experts, offers a cutting-edge, in-depth overview of the filtering and control of wireless networked systems. It addresses the energy constraint and filter/controller gain variation problems, and presents both the centralized and the distributed solutions. The first two chapters provide an introduction to networked control systems and basic information on system analysis. Chapters (3–6) then discuss the centralized filtering of wireless networked systems, presenting different approaches to deal with energy efficiency and filter/controller gain variation problems. The next part (chapters 7–10) explores the distributed filtering of wireless networked systems, addressing the main problems of energy constraint and filter gain variation. The final part (chapters 11–14) focuses on the distributed control of wireless networked systems. applications, the bo...

  1. Hybrid Active-Passive Microwave Photonic Filter with High Quality Factor

    International Nuclear Information System (INIS)

    En-Ming, Xu; Xin-Liang, Zhang; Li-Na, Zhou; Yu, Zhang; De-Xiu, Huang

    2009-01-01

    A hybrid high quality factor (Q-factor) microwave photonic filter with a cascaded active filter and a passive filter is presented and experimentally demonstrated. The active infinite impulse response filter is realized by a recirculating delay line loop with a semiconductor optical amplifier, and a much narrower 3 dB bandwidth of response peaks can be achieved. A passive finite impulse response filter is realized by an unbalance Mach–Zehnder interferometer, and it is cascaded to select the desired filter frequencies and to suppress the intermediate peaks. Compared with the purely active filter scheme, the free spectrum range and the Q-factor of the hybrid structure can be doubled. Stable operation and a high Q-factor of 362 are experimentally demonstrated

  2. Improved selectivity towards NO₂ of phthalocyanine-based chemosensors by means of original indigo/nanocarbons hybrid material.

    Science.gov (United States)

    Brunet, J; Pauly, A; Dubois, M; Rodriguez-Mendez, M L; Ndiaye, A L; Varenne, C; Guérin, K

    2014-09-01

    A new and original gas sensor-system dedicated to the selective monitoring of nitrogen dioxide in air and in the presence of ozone, has been successfully achieved. Because of its high sensitivity and its partial selectivity towards oxidizing pollutants (nitrogen dioxide and ozone), copper phthalocyanine-based chemoresistors are relevant. The selectivity towards nitrogen dioxide results from the implementation of a high efficient and selective ozone filter upstream the sensing device. Thus, a powdered indigo/nanocarbons hybrid material has been developed and investigated for such an application. If nanocarbonaceous material acts as a highly permeable matrix with a high specific surface area, immobilized indigo nanoparticles are involved into an ozonolysis reaction with ozone leading to the selective removal of this analytes from air sample. The filtering yields towards each gas have been experimentally quantified and establish the complete removal of ozone while having the concentration of nitrogen dioxide unchanged. Long-term gas exposures reveal the higher durability of hybrid material as compared to nanocarbons and indigo separately. Synthesis, characterizations by many complementary techniques and tests of hybrid filters are detailed. Results on sensor-system including CuPc-based chemoresistors and indigo/carbon nanotubes hybrid material as in-line filter are illustrated. Sensing performances will be especially discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Adaptive Filtering Queueing for Improving Fairness

    Directory of Open Access Journals (Sweden)

    Jui-Pin Yang

    2015-06-01

    Full Text Available In this paper, we propose a scalable and efficient Active Queue Management (AQM scheme to provide fair bandwidth sharing when traffic is congested dubbed Adaptive Filtering Queueing (AFQ. First, AFQ identifies the filtering level of an arriving packet by comparing it with a flow label selected at random from the first level to an estimated level in the filtering level table. Based on the accepted traffic estimation and the previous fair filtering level, AFQ updates the fair filtering level. Next, AFQ uses a simple packet-dropping algorithm to determine whether arriving packets are accepted or discarded. To enhance AFQ’s feasibility in high-speed networks, we propose a two-layer mapping mechanism to effectively simplify the packet comparison operations. Simulation results demonstrate that AFQ achieves optimal fairness when compared with Rotating Preference Queues (RPQ, Core-Stateless Fair Queueing (CSFQ, CHOose and Keep for responsive flows, CHOose and Kill for unresponsive flows (CHOKe and First-In First-Out (FIFO schemes under a variety of traffic conditions.

  4. CF4CF: Recommending Collaborative Filtering algorithms using Collaborative Filtering

    OpenAIRE

    Cunha, Tiago; Soares, Carlos; de Carvalho, André C. P. L. F.

    2018-01-01

    Automatic solutions which enable the selection of the best algorithms for a new problem are commonly found in the literature. One research area which has recently received considerable efforts is Collaborative Filtering. Existing work includes several approaches using Metalearning, which relate the characteristics of datasets with the performance of the algorithms. This work explores an alternative approach to tackle this problem. Since, in essence, both are recommendation problems, this work...

  5. Virtual RC Damping of LCL-Filtered Voltage Source Converters with Extended Selective Harmonic Compensation

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Blaabjerg, Frede; Loh, Poh Chiang

    2015-01-01

    Active damping and harmonic compensation are two common challenges faced by LCL-filtered voltage source converters. To manage them holistically, this paper begins by proposing a virtual RC damper in parallel with the passive filter capacitor. The virtual damper is actively inserted by feeding back...... the passive capacitor current through a high-pass filter, which indirectly, furnishes two superior features. They are the mitigation of phase lag experienced by a conventional damper and the avoidance of instability caused by the negative resistance inserted unintentionally. Moreover, with the virtual RC...

  6. The high efficiency steel filters for nuclear air cleaning

    International Nuclear Information System (INIS)

    Bergman, W.; Larsen, G.; Lopez, R.; Williams, K.; Violet, C.

    1990-08-01

    We have, in cooperation with industry, developed high-efficiency filters made from sintered stainless-steel fibers for use in several air-cleaning applications in the nuclear industry. These filters were developed to overcome the failure modes in present high-efficiency particulate air (HEPA) filters. HEPA filters are made from glass paper and glue, and they may fail when they get hot or wet and when they are overpressured. In developing our steel filters, we first evaluated the commercially available stainless-steel filter media made from sintered powder and sintered fiber. The sintered-fiber media performed much better than sintered-powder media, and the best media had the smallest fiber diameter. Using the best media, we then built prototype filters for venting compressed gases and evaluated them in our automated filter tester. 12 refs., 20 figs

  7. Stochastic processes and filtering theory

    CERN Document Server

    Jazwinski, Andrew H

    1970-01-01

    This unified treatment of linear and nonlinear filtering theory presents material previously available only in journals, and in terms accessible to engineering students. Its sole prerequisites are advanced calculus, the theory of ordinary differential equations, and matrix analysis. Although theory is emphasized, the text discusses numerous practical applications as well.Taking the state-space approach to filtering, this text models dynamical systems by finite-dimensional Markov processes, outputs of stochastic difference, and differential equations. Starting with background material on probab

  8. Applicant Personality and Procedural Justice Perceptions of Group Selection Interviews.

    Science.gov (United States)

    Bye, Hege H; Sandal, Gro M

    2016-01-01

    We investigated how job applicants' personalities influence perceptions of the structural and social procedural justice of group selection interviews (i.e., a group of several applicants being evaluated simultaneously). We especially addressed trait interactions between neuroticism and extraversion (the affective plane) and extraversion and agreeableness (the interpersonal plane). Data on personality (pre-interview) and justice perceptions (post-interview) were collected in a field study among job applicants ( N  = 97) attending group selection interviews for positions as teachers in a Norwegian high school. Interaction effects in hierarchical regression analyses showed that perceptions of social and structural justice increased with levels of extraversion among high scorers on neuroticism. Among emotionally stable applicants, however, being introverted or extraverted did not matter to justice perceptions. Extraversion did not impact on the perception of social justice for applicants low in agreeableness. Agreeable applicants, however, experienced the group interview as more socially fair when they were also extraverted. The impact of applicant personality on justice perceptions may be underestimated if traits interactions are not considered. Procedural fairness ratings for the group selection interview were high, contrary to the negative reactions predicted by other researchers. There was no indication that applicants with desirable traits (i.e., traits predictive of job performance) reacted negatively to this selection tool. Despite the widespread use of interviews in selection, previous studies of applicant personality and fairness reactions have not included interviews. The study demonstrates the importance of previously ignored trait interactions in understanding applicant reactions.

  9. The clinical application of the implantation of retrievable filters in superior vena cava

    International Nuclear Information System (INIS)

    Tian Yulong; Zhang Xitong; Hong Duo

    2011-01-01

    Objective: To investigate the safety of the placement of Tulip retrievable filter in superior vena cava and to discuss the prevention of pulmonary embolism (PE). Methods: Implantation of Tulip retrievable filter in superior vena cava was performed in ten patients (6 males and 4 females, aged 42-60 years) with acute or subacute deep venous thrombosis in upper extremity or cephalo-cervical region. After the placement of filter, the local via-catheter thrombolysis was conducted. The clinical results, such as the improvement of venous obstructed symptoms at upper extremity or cephalo-cervical region, were recorded. The filter's shape and location were checked. The possible occurrence of pulmonary embolism was observed. Results: The filter was successfully implanted in supper vena cava in all patients, and the deep venous thrombosis at upper extremity and cephalo-cervical region responded well to the local via-catheter thrombolysis. The filters showed no displacement or tilting. The swelling at upper extremity and cephalo-cervical region was markedly faded away. No symptomatic pulmonary embolism occurred. the filter was successfully retrieved via the femoral vein in four patients. Conclusion: Tulip filter can be safety implanted in superior vena cava and can be smoothly retrieved. The occurrence of pulmonary embolism can be effectively prevented if corresponding local via-catheter thrombolysis is carried out. (authors)

  10. Real time microcontroller implementation of an adaptive myoelectric filter.

    Science.gov (United States)

    Bagwell, P J; Chappell, P H

    1995-03-01

    This paper describes a real time digital adaptive filter for processing myoelectric signals. The filter time constant is automatically selected by the adaptation algorithm, giving a significant improvement over linear filters for estimating the muscle force and controlling a prosthetic device. Interference from mains sources often produces problems for myoelectric processing, and so 50 Hz and all harmonic frequencies are reduced by an averaging filter and differential process. This makes practical electrode placement and contact less critical and time consuming. An economic real time implementation is essential for a prosthetic controller, and this is achieved using an Intel 80C196KC microcontroller.

  11. Poisson filtering of laser ranging data

    Science.gov (United States)

    Ricklefs, Randall L.; Shelus, Peter J.

    1993-01-01

    The filtering of data in a high noise, low signal strength environment is a situation encountered routinely in lunar laser ranging (LLR) and, to a lesser extent, in artificial satellite laser ranging (SLR). The use of Poisson statistics as one of the tools for filtering LLR data is described first in a historical context. The more recent application of this statistical technique to noisy SLR data is also described.

  12. Description of an identification method of thermocouple time constant based on application of recursive numerical filtering to temperature fluctuation

    International Nuclear Information System (INIS)

    Bernardin, B.; Le Guillou, G.; Parcy, JP.

    1981-04-01

    Usual spectral methods, based on temperature fluctuation analysis, aiming at thermocouple time constant identification are using an equipment too much sophisticated for on-line application. It is shown that numerical filtering is optimal for this application, the equipment is simpler than for spectral methods and less samples of signals are needed for the same accuracy. The method is described and a parametric study was performed using a temperature noise simulator [fr

  13. Rapid measurement of auditory filter shape in mice using the auditory brainstem response and notched noise.

    Science.gov (United States)

    Lina, Ioan A; Lauer, Amanda M

    2013-04-01

    The notched noise method is an effective procedure for measuring frequency resolution and auditory filter shapes in both human and animal models of hearing. Briefly, auditory filter shape and bandwidth estimates are derived from masked thresholds for tones presented in noise containing widening spectral notches. As the spectral notch widens, increasingly less of the noise falls within the auditory filter and the tone becomes more detectible until the notch width exceeds the filter bandwidth. Behavioral procedures have been used for the derivation of notched noise auditory filter shapes in mice; however, the time and effort needed to train and test animals on these tasks renders a constraint on the widespread application of this testing method. As an alternative procedure, we combined relatively non-invasive auditory brainstem response (ABR) measurements and the notched noise method to estimate auditory filters in normal-hearing mice at center frequencies of 8, 11.2, and 16 kHz. A complete set of simultaneous masked thresholds for a particular tone frequency were obtained in about an hour. ABR-derived filter bandwidths broadened with increasing frequency, consistent with previous studies. The ABR notched noise procedure provides a fast alternative to estimating frequency selectivity in mice that is well-suited to high through-put or time-sensitive screening. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Noise Reduction of Measurement Data using Linear Digital Filters

    Directory of Open Access Journals (Sweden)

    Hitzmann B.

    2007-12-01

    Full Text Available In this paper Butterworth, Chebyshev (Type I and II and Elliptic digital filters are designed for signal noise reduction. On-line data measurements of substrate concentration from E. coli fed-batch cultivation process are used. Application of the designed filters leads to a successful noise reduction of on-line glucose measurements. The digital filters presented here are simple, easy to implement and effective - the used filters allow for a smart compromise between signal information and noise corruption.

  15. Printed Graphene Derivative Circuits as Passive Electrical Filters.

    Science.gov (United States)

    Sinar, Dogan; Knopf, George K

    2018-02-23

    The objective of this study is to inkjet print resistor-capacitor ( RC ) low pass electrical filters, using a novel water-based cellulose graphene ink, and compare the voltage-frequency and transient behavior to equivalent circuits constructed from discrete passive components. The synthesized non-toxic graphene-carboxymethyl cellulose (G-CMC) ink is deposited on mechanically flexible polyimide substrates using a customized printer that dispenses functionalized aqueous solutions. The design of the printed first-order and second-order low-pass RC filters incorporate resistive traces and interdigitated capacitors. Low pass filter characteristics, such as time constant, cut-off frequency and roll-off rate, are determined for comparative analysis. Experiments demonstrate that for low frequency applications (graphene derivative circuits performed as well as the circuits constructed from discrete resistors and capacitors for both low pass filter and RC integrator applications. The impact of mechanical stress due to bending on the electrical performance of the flexible printed circuits is also investigated.

  16. Printed Graphene Derivative Circuits as Passive Electrical Filters

    Directory of Open Access Journals (Sweden)

    Dogan Sinar

    2018-02-01

    Full Text Available The objective of this study is to inkjet print resistor-capacitor (RC low pass electrical filters, using a novel water-based cellulose graphene ink, and compare the voltage-frequency and transient behavior to equivalent circuits constructed from discrete passive components. The synthesized non-toxic graphene-carboxymethyl cellulose (G-CMC ink is deposited on mechanically flexible polyimide substrates using a customized printer that dispenses functionalized aqueous solutions. The design of the printed first-order and second-order low-pass RC filters incorporate resistive traces and interdigitated capacitors. Low pass filter characteristics, such as time constant, cut-off frequency and roll-off rate, are determined for comparative analysis. Experiments demonstrate that for low frequency applications (<100 kHz the printed graphene derivative circuits performed as well as the circuits constructed from discrete resistors and capacitors for both low pass filter and RC integrator applications. The impact of mechanical stress due to bending on the electrical performance of the flexible printed circuits is also investigated.

  17. Mechanical design and qualification of IR filter mounts and filter wheel of INSAT-3D sounder for low temperature

    Science.gov (United States)

    Vora, A. P.; Rami, J. B.; Hait, A. K.; Dewan, C. P.; Subrahmanyam, D.; Kirankumar, A. S.

    2017-11-01

    Next generation Indian Meteorological Satellite will carry Sounder instrument having subsystem of filter wheel measuring Ø260mm and carrying 18 filters arranged in three concentric rings. These filters made from Germanium, are used to separate spectral channels in IR band. Filter wheel is required to be cooled to 214K and rotated at 600 rpm. This Paper discusses the challenges faced in mechanical design of the filter wheel, mainly filter mount design to protect brittle germanium filters from failure under stresses due to very low temperature, compactness of the wheel and casings for improved thermal efficiency, survival under vibration loads and material selection to keep it lighter in weight. Properties of Titanium, Kovar, Invar and Aluminium materials are considered for design. The mount has been designed to accommodate both thermal and dynamic loadings without introducing significant aberrations into the optics or incurring permanent alignment shifts. Detailed finite element analysis of mounts was carried out for stress verification. Results of the qualification tests are discussed for given temperature range of 100K and vibration loads of 12g in Sine and 11.8grms in Random at mount level. Results of the filter wheel qualification as mounted in Electro Optics Module (EOM) are also presented.

  18. Percutaneous Retrieval of Permanent Inferior Vena Cava Filters

    Energy Technology Data Exchange (ETDEWEB)

    Tamrazi, Anobel, E-mail: atamraz1@jhmi.edu; Wadhwa, Vibhor, E-mail: vwadhwa1@jhmi.edu; Holly, Brian, E-mail: bholly3@jhmi.edu [Johns Hopkins University School of Medicine, Division of Vascular & Interventional Radiology (United States); Bhagat, Nikhil, E-mail: nikhibhagat@gmail.com [Kaiser Permanente, Division of Vascular & Interventional Radiology (United States); Marx, Jonathan K., E-mail: jmarx9@jhmi.edu [Johns Hopkins University School of Medicine, Division of Vascular & Interventional Radiology (United States); Streiff, Michael, E-mail: mstreif@jhmi.edu [Johns Hopkins University School of Medicine, Department of Hematology (United States); Lessne, Mark L., E-mail: mlessne@gmail.com [Johns Hopkins University School of Medicine, Division of Vascular & Interventional Radiology (United States)

    2016-04-15

    PurposeTo evaluate the feasibility, risks, and techniques of percutaneous removal of permanent TrapEase and Simon Nitinol IVC filters.Materials and MethodsBetween August 2011 and August 2015, 12 patients (5 women, 7 men; age range, 26–75 years) underwent an attempt at percutaneous removal of permanent TrapEase (10) and Simon Nitinol (2) IVC filters due to a history of IVC filter complications or need for lifelong anticoagulation due to the filter. Medical records were reviewed for filter dwell time, presence of iliocaval deep venous thrombosis, procedural technique, and complications.ResultsFilter dwell times ranged from 7 days to 15 years (mean 5.1 years). Successful removal of permanent IVC filters was possible in 11 of 12 patients (91.6 %). In 1 patient, a chronically thrombosed IVC filter could not be removed despite laser sheath assistance, but was successfully recanalized with the PowerWire RF guidewire. In the failed retrieval attempt, a stent was placed through the chronically thrombosed IVC filter with restoration of in-line flow. One major complication of large venous groin hematoma was encountered.ConclusionsIn carefully selected patients, percutaneous removal of permanent IVC filters can be performed safely despite prolonged filter dwell times. Extraction of chronically embedded permanent IVC filters may be facilitated by jugular and femoral approaches, often with laser sheath assistance. Chronic filter thrombosis and caval scarring may increase the risk of retrieval failure.

  19. Percutaneous Retrieval of Permanent Inferior Vena Cava Filters

    International Nuclear Information System (INIS)

    Tamrazi, Anobel; Wadhwa, Vibhor; Holly, Brian; Bhagat, Nikhil; Marx, Jonathan K.; Streiff, Michael; Lessne, Mark L.

    2016-01-01

    PurposeTo evaluate the feasibility, risks, and techniques of percutaneous removal of permanent TrapEase and Simon Nitinol IVC filters.Materials and MethodsBetween August 2011 and August 2015, 12 patients (5 women, 7 men; age range, 26–75 years) underwent an attempt at percutaneous removal of permanent TrapEase (10) and Simon Nitinol (2) IVC filters due to a history of IVC filter complications or need for lifelong anticoagulation due to the filter. Medical records were reviewed for filter dwell time, presence of iliocaval deep venous thrombosis, procedural technique, and complications.ResultsFilter dwell times ranged from 7 days to 15 years (mean 5.1 years). Successful removal of permanent IVC filters was possible in 11 of 12 patients (91.6 %). In 1 patient, a chronically thrombosed IVC filter could not be removed despite laser sheath assistance, but was successfully recanalized with the PowerWire RF guidewire. In the failed retrieval attempt, a stent was placed through the chronically thrombosed IVC filter with restoration of in-line flow. One major complication of large venous groin hematoma was encountered.ConclusionsIn carefully selected patients, percutaneous removal of permanent IVC filters can be performed safely despite prolonged filter dwell times. Extraction of chronically embedded permanent IVC filters may be facilitated by jugular and femoral approaches, often with laser sheath assistance. Chronic filter thrombosis and caval scarring may increase the risk of retrieval failure.

  20. Real-Time Tracking of Selective Auditory Attention From M/EEG: A Bayesian Filtering Approach

    Science.gov (United States)

    Miran, Sina; Akram, Sahar; Sheikhattar, Alireza; Simon, Jonathan Z.; Zhang, Tao; Babadi, Behtash

    2018-01-01

    Humans are able to identify and track a target speaker amid a cacophony of acoustic interference, an ability which is often referred to as the cocktail party phenomenon. Results from several decades of studying this phenomenon have culminated in recent years in various promising attempts to decode the attentional state of a listener in a competing-speaker environment from non-invasive neuroimaging recordings such as magnetoencephalography (MEG) and electroencephalography (EEG). To this end, most existing approaches compute correlation-based measures by either regressing the features of each speech stream to the M/EEG channels (the decoding approach) or vice versa (the encoding approach). To produce robust results, these procedures require multiple trials for training purposes. Also, their decoding accuracy drops significantly when operating at high temporal resolutions. Thus, they are not well-suited for emerging real-time applications such as smart hearing aid devices or brain-computer interface systems, where training data might be limited and high temporal resolutions are desired. In this paper, we close this gap by developing an algorithmic pipeline for real-time decoding of the attentional state. Our proposed framework consists of three main modules: (1) Real-time and robust estimation of encoding or decoding coefficients, achieved by sparse adaptive filtering, (2) Extracting reliable markers of the attentional state, and thereby generalizing the widely-used correlation-based measures thereof, and (3) Devising a near real-time state-space estimator that translates the noisy and variable attention markers to robust and statistically interpretable estimates of the attentional state with minimal delay. Our proposed algorithms integrate various techniques including forgetting factor-based adaptive filtering, ℓ1-regularization, forward-backward splitting algorithms, fixed-lag smoothing, and Expectation Maximization. We validate the performance of our proposed

  1. Real-Time Tracking of Selective Auditory Attention From M/EEG: A Bayesian Filtering Approach

    Directory of Open Access Journals (Sweden)

    Sina Miran

    2018-05-01

    Full Text Available Humans are able to identify and track a target speaker amid a cacophony of acoustic interference, an ability which is often referred to as the cocktail party phenomenon. Results from several decades of studying this phenomenon have culminated in recent years in various promising attempts to decode the attentional state of a listener in a competing-speaker environment from non-invasive neuroimaging recordings such as magnetoencephalography (MEG and electroencephalography (EEG. To this end, most existing approaches compute correlation-based measures by either regressing the features of each speech stream to the M/EEG channels (the decoding approach or vice versa (the encoding approach. To produce robust results, these procedures require multiple trials for training purposes. Also, their decoding accuracy drops significantly when operating at high temporal resolutions. Thus, they are not well-suited for emerging real-time applications such as smart hearing aid devices or brain-computer interface systems, where training data might be limited and high temporal resolutions are desired. In this paper, we close this gap by developing an algorithmic pipeline for real-time decoding of the attentional state. Our proposed framework consists of three main modules: (1 Real-time and robust estimation of encoding or decoding coefficients, achieved by sparse adaptive filtering, (2 Extracting reliable markers of the attentional state, and thereby generalizing the widely-used correlation-based measures thereof, and (3 Devising a near real-time state-space estimator that translates the noisy and variable attention markers to robust and statistically interpretable estimates of the attentional state with minimal delay. Our proposed algorithms integrate various techniques including forgetting factor-based adaptive filtering, ℓ1-regularization, forward-backward splitting algorithms, fixed-lag smoothing, and Expectation Maximization. We validate the performance of our

  2. Matched-Filter Thermography

    Directory of Open Access Journals (Sweden)

    Nima Tabatabaei

    2018-04-01

    Full Text Available Conventional infrared thermography techniques, including pulsed and lock-in thermography, have shown great potential for non-destructive evaluation of broad spectrum of materials, spanning from metals to polymers to biological tissues. However, performance of these techniques is often limited due to the diffuse nature of thermal wave fields, resulting in an inherent compromise between inspection depth and depth resolution. Recently, matched-filter thermography has been introduced as a means for overcoming this classic limitation to enable depth-resolved subsurface thermal imaging and improving axial/depth resolution. This paper reviews the basic principles and experimental results of matched-filter thermography: first, mathematical and signal processing concepts related to matched-fileting and pulse compression are discussed. Next, theoretical modeling of thermal-wave responses to matched-filter thermography using two categories of pulse compression techniques (linear frequency modulation and binary phase coding are reviewed. Key experimental results from literature demonstrating the maintenance of axial resolution while inspecting deep into opaque and turbid media are also presented and discussed. Finally, the concept of thermal coherence tomography for deconvolution of thermal responses of axially superposed sources and creation of depth-selective images in a diffusion-wave field is reviewed.

  3. Heavy metal removal mechanisms of sorptive filter materials for road runoff treatment and remobilization under de-icing salt applications.

    Science.gov (United States)

    Huber, Maximilian; Hilbig, Harald; Badenberg, Sophia C; Fassnacht, Julius; Drewes, Jörg E; Helmreich, Brigitte

    2016-10-01

    The objective of this research study was to elucidate the removal and remobilization behaviors of five heavy metals (i.e., Cd, Cu, Ni, Pb, and Zn) that had been fixed onto sorptive filter materials used in decentralized stormwater treatment systems receiving traffic area runoff. Six filter materials (i.e., granular activated carbon, a mixture of granular activated alumina and porous concrete, granular activated lignite, half-burnt dolomite, and two granular ferric hydroxides) were evaluated in column experiments. First, a simultaneous preloading with the heavy metals was performed for each filter material. Subsequently, the remobilization effect was tested by three de-icing salt experiments in duplicate using pure NaCl, a mixture of NaCl and CaCl2, and a mixture of NaCl and MgCl2. Three layers of each column were separated to specify the attenuation of heavy metals as a function of depth. Cu and Pb were retained best by most of the selected filter materials, and Cu was often released the least of all metals by the three de-icing salts. The mixture of NaCl and CaCl2 resulted in a stronger effect upon remobilization than the other two de-icing salts. For the material with the highest retention, the effect of the preloading level upon remobilization was measured. The removal mechanisms of all filter materials were determined by advanced laboratory methods. For example, the different intrusions of heavy metals into the particles were determined. Findings of this study can result in improved filter materials used in decentralized stormwater treatment systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Particle filter based MAP state estimation: A comparison

    NARCIS (Netherlands)

    Saha, S.; Boers, Y.; Driessen, J.N.; Mandal, Pranab K.; Bagchi, Arunabha

    2009-01-01

    MAP estimation is a good alternative to MMSE for certain applications involving nonlinear non Gaussian systems. Recently a new particle filter based MAP estimator has been derived. This new method extracts the MAP directly from the output of a running particle filter. In the recent past, a Viterbi

  5. Sensory Pollution from Bag Filters, Carbon Filters and Combinations

    DEFF Research Database (Denmark)

    Bekö, Gabriel; Clausen, Geo; Weschler, Charles J.

    2008-01-01

    by an upstream pre-filter (changed monthly), an EU7 filter protected by an upstream activated carbon (AC) filter, and EU7 filters with an AC filter either downstream or both upstream and downstream. In addition, two types of stand-alone combination filters were evaluated: a bag-type fiberglass filter...... that contained AC and a synthetic fiber cartridge filter that contained AC. Air that had passed through used filters was most acceptable for those sets in which an AC filter was used downstream of the particle filter. Comparable air quality was achieved with the stand-alone bag filter that contained AC...

  6. A 10.7 MHz CMOS SC radio IF filter using orthogonal hardware modulation

    NARCIS (Netherlands)

    Quinn, P.J.; Hartingsveldt, van K.; Roermund, van A.H.M.

    2000-01-01

    FM radio receivers require an IF filter for channel selection, customarily set at an IF center frequency of 10.7 MHz. Up until now, the limitations of integrated radio selectivity filters in terms of power dissipation, dynamic range, and cost are such that it is still required to use an external

  7. Optimal design of monitoring networks for multiple groundwater quality parameters using a Kalman filter: application to the Irapuato-Valle aquifer.

    Science.gov (United States)

    Júnez-Ferreira, H E; Herrera, G S; González-Hita, L; Cardona, A; Mora-Rodríguez, J

    2016-01-01

    A new method for the optimal design of groundwater quality monitoring networks is introduced in this paper. Various indicator parameters were considered simultaneously and tested for the Irapuato-Valle aquifer in Mexico. The steps followed in the design were (1) establishment of the monitoring network objectives, (2) definition of a groundwater quality conceptual model for the study area, (3) selection of the parameters to be sampled, and (4) selection of a monitoring network by choosing the well positions that minimize the estimate error variance of the selected indicator parameters. Equal weight for each parameter was given to most of the aquifer positions and a higher weight to priority zones. The objective for the monitoring network in the specific application was to obtain a general reconnaissance of the water quality, including water types, water origin, and first indications of contamination. Water quality indicator parameters were chosen in accordance with this objective, and for the selection of the optimal monitoring sites, it was sought to obtain a low-uncertainty estimate of these parameters for the entire aquifer and with more certainty in priority zones. The optimal monitoring network was selected using a combination of geostatistical methods, a Kalman filter and a heuristic optimization method. Results show that when monitoring the 69 locations with higher priority order (the optimal monitoring network), the joint average standard error in the study area for all the groundwater quality parameters was approximately 90 % of the obtained with the 140 available sampling locations (the set of pilot wells). This demonstrates that an optimal design can help to reduce monitoring costs, by avoiding redundancy in data acquisition.

  8. Design and Implementation of Direct Form FIR Filter

    OpenAIRE

    Kumar, Hanny; Kumar, Kamal

    2016-01-01

    The research article presents the design of the direct form of the Finite Impulse Response (FIR) filter using VHDL programming language. Multimedia technology and broadband communication demand the low power and high performance design applications in Digital Signal Processing (DSP). The digital filters are most important element of the communication system and DSP. In the paper, 7 tap FIR filter is implemented in Xilinx 14.2 software and functionally simulated in Modelsim 10.1 b software. Th...

  9. Role of IVC Filters in Endovenous Therapy for Deep Venous Thrombosis: The FILTER-PEVI (Filter Implantation to Lower Thromboembolic Risk in Percutaneous Endovenous Intervention) Trial

    International Nuclear Information System (INIS)

    Sharifi, Mohsen; Bay, Curt; Skrocki, Laura; Lawson, David; Mazdeh, Shahnaz

    2012-01-01

    Objectives: The purpose of this study was to evaluate the necessity of and recommend indications for inferior vena cava (IVC) filter implantation during percutaneous endovenous intervention (PEVI) for deep venous thrombosis (DVT).BackgroundPEVI has emerged as a powerful tool in the management of acute proximal DVT. Instrumentation of extensive fresh thrombus is potentially associated with iatrogenic pulmonary embolism (PE). The true frequency of this complication has not been studied in a randomized fashion. We evaluated IVC filter implantation during PEVI for DVT. Methods: A total of 141 patients with symptomatic proximal DVT undergoing PEVI for symptomatic DVT were randomized to receive an IVC filter (70 patients) or no filter (71 patients; control group). The anticoagulation and PEVI regimen were similar between the two groups. Patients with development of symptoms suggestive of PE underwent objective testing for PE. Results: PE developed in 1 of the 14 symptomatic patients in the filter group and 8 of the 22 patients in the control group (P = 0.048). There was no mortality in any group. Three patients (4.2%) in the control group had transient hemodynamic instability necessitating resuscitory efforts. Predictors of iatrogenic PE were found to be PE at admission; involvement of two or more adjacent venous segments with acute thrombus; inflammatory form of DVT (severe erythema, edema, pain, and induration); and vein diameter of ≥7 mm with preserved architecture. Conclusions: IVC filter implantation during PEVI reduces the risk of iatrogenic PE by eightfold without a mortality benefit. A selective approach may be exercised in filter implantation during PEVI.

  10. Role of IVC Filters in Endovenous Therapy for Deep Venous Thrombosis: The FILTER-PEVI (Filter Implantation to Lower Thromboembolic Risk in Percutaneous Endovenous Intervention) Trial

    Energy Technology Data Exchange (ETDEWEB)

    Sharifi, Mohsen, E-mail: seyedmohsensharifi@yahoo.com [Arizona Cardiovascular Consultants (United States); Bay, Curt [A.T. Still University, Arizona School of Health Sciences (United States); Skrocki, Laura; Lawson, David; Mazdeh, Shahnaz [Arizona Cardiovascular Consultants (United States)

    2012-12-15

    Objectives: The purpose of this study was to evaluate the necessity of and recommend indications for inferior vena cava (IVC) filter implantation during percutaneous endovenous intervention (PEVI) for deep venous thrombosis (DVT).BackgroundPEVI has emerged as a powerful tool in the management of acute proximal DVT. Instrumentation of extensive fresh thrombus is potentially associated with iatrogenic pulmonary embolism (PE). The true frequency of this complication has not been studied in a randomized fashion. We evaluated IVC filter implantation during PEVI for DVT. Methods: A total of 141 patients with symptomatic proximal DVT undergoing PEVI for symptomatic DVT were randomized to receive an IVC filter (70 patients) or no filter (71 patients; control group). The anticoagulation and PEVI regimen were similar between the two groups. Patients with development of symptoms suggestive of PE underwent objective testing for PE. Results: PE developed in 1 of the 14 symptomatic patients in the filter group and 8 of the 22 patients in the control group (P = 0.048). There was no mortality in any group. Three patients (4.2%) in the control group had transient hemodynamic instability necessitating resuscitory efforts. Predictors of iatrogenic PE were found to be PE at admission; involvement of two or more adjacent venous segments with acute thrombus; inflammatory form of DVT (severe erythema, edema, pain, and induration); and vein diameter of {>=}7 mm with preserved architecture. Conclusions: IVC filter implantation during PEVI reduces the risk of iatrogenic PE by eightfold without a mortality benefit. A selective approach may be exercised in filter implantation during PEVI.

  11. Photonic filtering of microwave signals in the frequency range of 0.01-20 GHz using a Fabry-Perot filter

    Energy Technology Data Exchange (ETDEWEB)

    Aguayo-Rodriguez, G; Zaldivar-Huerta, I E [Instituto Nacional de Astrofisica, Optica y Electronica (INAOE). Sta. Maria Tonantzintla, Pue. Mexico (Mexico); GarcIa-Juarez, A [Depto. de Investigacion en Fisica, Universidad de Sonora (UNISON) Hermosillo, Son. Mexico (Mexico); Rodriguez-Asomoza, J [Depto. de Ingenieria Electronica, Universidad de las Americas-Puebla (UDLA). San Andres Cholula, Pue. Mexico (Mexico); Larger, L; Courjal, N [Laboratoire d' Optique P. M. Duffieux, UMR 6603 CNRS, Institut des Microtechiques de Franche-Comte, FRW 0067, UFR Sciences et Techniques, Universite de Franche-Comte (UFC), Besancon cedex (France)

    2011-01-01

    We demonstrate experimentally the efficiency of tuning of a photonic filter in the frequency range of 0.01 to 20 GHz. The presented work combines the use of a multimode optical source associated with a dispersive optical fiber to obtain the filtering effect. Tunability effect is achieved by the use of a Fabry-Perot filter that allows altering the spectral characteristics of the optical source. Experimental results are validated by means of numerical simulations. The scheme here proposed has a potential application in the field of optical telecommunications.

  12. Narrowband spectral filter based on biconical tapered fiber

    Science.gov (United States)

    Celaschi, Sergio; Malheiros-Silveira, Gilliard N.

    2018-02-01

    The ease of fabrication and compactness of devices based on tapered optical fibers contribute to its potential using in several applications ranging from telecommunication components to sensing devices. In this work, we proposed, fabricated, and characterized a spectral filter made of biconical taper from a coaxial optical fiber. This filter is defined by adiabatically tapering a depressed-cladding fiber. The adiabatic taper profile obtained during fabrication prevents the interference of other modes than HE11 and HE12 ones, which play the main role for the beating phenomenon and the filter response. The evolution of the fiber shapes during the pulling was modeled by two coupled partial differential equations, which relate the normalized cross-section area, and the axial velocity of the fiber elongation. These equations govern the mass and axial momentum conservation. The numerical results of the filter characteristics are in good accordance with the experimental ones. The filter was packaged in order to let it ready for using in optical communication bands. The characteristics are: free spectral range (FSR) of 6.19 nm, insertion loss bellow 0.5 dB, and isolation > 20 dB at C-band. Its transmission spectrum extends from 1200 to 1600 nm where the optical fiber core supports monomode transmission. Such characteristics may also be interesting to be applied in sensing applications. We show preliminary numerical results assuming a biconic taper embedded into a dielectric media, showing promising results for electro-optic sensing applications.

  13. Risk-aware multi-armed bandit problem with application to portfolio selection.

    Science.gov (United States)

    Huo, Xiaoguang; Fu, Feng

    2017-11-01

    Sequential portfolio selection has attracted increasing interest in the machine learning and quantitative finance communities in recent years. As a mathematical framework for reinforcement learning policies, the stochastic multi-armed bandit problem addresses the primary difficulty in sequential decision-making under uncertainty, namely the exploration versus exploitation dilemma, and therefore provides a natural connection to portfolio selection. In this paper, we incorporate risk awareness into the classic multi-armed bandit setting and introduce an algorithm to construct portfolio. Through filtering assets based on the topological structure of the financial market and combining the optimal multi-armed bandit policy with the minimization of a coherent risk measure, we achieve a balance between risk and return.

  14. Adaptive multiresolution Hermite-Binomial filters for image edge and texture analysis

    NARCIS (Netherlands)

    Gu, Y.H.; Katsaggelos, A.K.

    1994-01-01

    A new multiresolution image analysis approach using adaptive Hermite-Binomial filters is presented in this paper. According to the local image structural and textural properties, the analysis filter kernels are made adaptive both in their scales and orders. Applications of such an adaptive filtering

  15. Investigation of Alternative Approaches for Cleaning Mott Porous Metal Filters

    International Nuclear Information System (INIS)

    Poirier, M.R.

    2003-01-01

    The Department of Energy selected Caustic Side Solvent Extraction (CSSX) as the preferred cesium removal technology for Savannah River Site (SRS) waste. As a pretreatment step for the CSSX flowsheet, the incoming salt solution that contains entrained sludge is contacted with monosodium titanate (MST) to adsorb strontium and select actinides. The resulting slurry is filtered to remove the sludge and MST. Filter fouling occurs during this process. At times, personnel can increase the filtrate rate by backpulsing or scouring. At other times, the filtrate rate drops significantly and only chemical cleaning will restore filter performance. The current baseline technology for filter cleaning uses 0.5 M oxalic acid. The Salt Processing Project (SPP) at SRS, through the Tanks Focus Area, requested an evaluation of other cleaning agents to determine their effectiveness at removing trapped sludge and MST solids compared with the baseline oxalic acid method. A review of the technical literature identified compounds that appear effective at dissolving solid compounds. Consultation with the SPP management team, engineering personnel, and researchers led to a selection of oxalic acid, nitric acid, citric acid, and ascorbic acid for testing. Tests used simulated waste and actual waste as follows. Personnel placed simulated or actual SRS High Level Waste sludge and MST in a beaker. They added the selected cleaning agents, stirred the beakers, and collected supernate samples periodically analyzing for dissolved metals

  16. APPLICABILITY ANALYSIS OF CLOTH SIMULATION FILTERING ALGORITHM FOR MOBILE LIDAR POINT CLOUD

    Directory of Open Access Journals (Sweden)

    S. Cai

    2018-04-01

    Full Text Available Classifying the original point clouds into ground and non-ground points is a key step in LiDAR (light detection and ranging data post-processing. Cloth simulation filtering (CSF algorithm, which based on a physical process, has been validated to be an accurate, automatic and easy-to-use algorithm for airborne LiDAR point cloud. As a new technique of three-dimensional data collection, the mobile laser scanning (MLS has been gradually applied in various fields, such as reconstruction of digital terrain models (DTM, 3D building modeling and forest inventory and management. Compared with airborne LiDAR point cloud, there are some different features (such as point density feature, distribution feature and complexity feature for mobile LiDAR point cloud. Some filtering algorithms for airborne LiDAR data were directly used in mobile LiDAR point cloud, but it did not give satisfactory results. In this paper, we explore the ability of the CSF algorithm for mobile LiDAR point cloud. Three samples with different shape of the terrain are selected to test the performance of this algorithm, which respectively yields total errors of 0.44 %, 0.77 % and1.20 %. Additionally, large area dataset is also tested to further validate the effectiveness of this algorithm, and results show that it can quickly and accurately separate point clouds into ground and non-ground points. In summary, this algorithm is efficient and reliable for mobile LiDAR point cloud.

  17. Electrospun Magnetic Nanoparticle-Decorated Nanofiber Filter and Its Applications to High-Efficiency Air Filtration.

    Science.gov (United States)

    Kim, Juyoung; Chan Hong, Seung; Bae, Gwi Nam; Jung, Jae Hee

    2017-10-17

    Filtration technology has been widely studied due to concerns about exposure to airborne dust, including metal oxide nanoparticles, which cause serious health problems. The aim of these studies has been to develop mechanisms for the continuous and efficient removal of metal oxide dusts. In this study, we introduce a novel air filtration system based on the magnetic attraction force. The filtration system is composed of a magnetic nanoparticle (MNP)-decorated nanofiber (MNP-NF) filter. Using a simple electrospinning system, we fabricated continuous and smooth electrospun nanofibers with evenly distributed Fe 3 O 4 MNPs. Our electrospun MNP-NF filter exhibited high particle collection efficiency (∼97% at 300 nm particle size) compared to the control filter (w/o MNPs, ∼ 68%), with a ∼ 64% lower pressure drop (∼17 Pa) than the control filter (∼27 Pa). Finally, the filter quality factors of the MNP-NF filter were 4.7 and 11.9 times larger than those of the control filter and the conventional high-efficiency particulate air filters (>99% and ∼269 Pa), respectively. Furthermore, we successfully performed a field test of our MNP-NF filter using dust from a subway station tunnel. This work suggests that our novel MNP-NF filter can be used to facilitate effective protection against hazardous metal oxide dust in real environments.

  18. Simultaneous learning and filtering without delusions: a Bayes-optimal combination of Predictive Inference and Adaptive Filtering.

    Science.gov (United States)

    Kneissler, Jan; Drugowitsch, Jan; Friston, Karl; Butz, Martin V

    2015-01-01

    Predictive coding appears to be one of the fundamental working principles of brain processing. Amongst other aspects, brains often predict the sensory consequences of their own actions. Predictive coding resembles Kalman filtering, where incoming sensory information is filtered to produce prediction errors for subsequent adaptation and learning. However, to generate prediction errors given motor commands, a suitable temporal forward model is required to generate predictions. While in engineering applications, it is usually assumed that this forward model is known, the brain has to learn it. When filtering sensory input and learning from the residual signal in parallel, a fundamental problem arises: the system can enter a delusional loop when filtering the sensory information using an overly trusted forward model. In this case, learning stalls before accurate convergence because uncertainty about the forward model is not properly accommodated. We present a Bayes-optimal solution to this generic and pernicious problem for the case of linear forward models, which we call Predictive Inference and Adaptive Filtering (PIAF). PIAF filters incoming sensory information and learns the forward model simultaneously. We show that PIAF is formally related to Kalman filtering and to the Recursive Least Squares linear approximation method, but combines these procedures in a Bayes optimal fashion. Numerical evaluations confirm that the delusional loop is precluded and that the learning of the forward model is more than 10-times faster when compared to a naive combination of Kalman filtering and Recursive Least Squares.

  19. High-Performance Monitoring Architecture for Large-Scale Distributed Systems Using Event Filtering

    Science.gov (United States)

    Maly, K.

    1998-01-01

    Monitoring is an essential process to observe and improve the reliability and the performance of large-scale distributed (LSD) systems. In an LSD environment, a large number of events is generated by the system components during its execution or interaction with external objects (e.g. users or processes). Monitoring such events is necessary for observing the run-time behavior of LSD systems and providing status information required for debugging, tuning and managing such applications. However, correlated events are generated concurrently and could be distributed in various locations in the applications environment which complicates the management decisions process and thereby makes monitoring LSD systems an intricate task. We propose a scalable high-performance monitoring architecture for LSD systems to detect and classify interesting local and global events and disseminate the monitoring information to the corresponding end- points management applications such as debugging and reactive control tools to improve the application performance and reliability. A large volume of events may be generated due to the extensive demands of the monitoring applications and the high interaction of LSD systems. The monitoring architecture employs a high-performance event filtering mechanism to efficiently process the large volume of event traffic generated by LSD systems and minimize the intrusiveness of the monitoring process by reducing the event traffic flow in the system and distributing the monitoring computation. Our architecture also supports dynamic and flexible reconfiguration of the monitoring mechanism via its Instrumentation and subscription components. As a case study, we show how our monitoring architecture can be utilized to improve the reliability and the performance of the Interactive Remote Instruction (IRI) system which is a large-scale distributed system for collaborative distance learning. The filtering mechanism represents an Intrinsic component integrated

  20. Area efficient decimation filter based on merged delay transformation for wireless applications

    International Nuclear Information System (INIS)

    Rashid, U.; Siddiq, F.; Muhammad, T.; Jamal, H.

    2013-01-01

    Expected by 2014 is the 4G standard for cellular wireless communications, which will improve bandwidth, connectivity and roaming for mobile and stationary devices, 4G and other wireless systems are currently hot topics of research and development in the communication field. In wireless technologies like Global System for Mobile (GSM), Digital Enhanced Cordless Telecommunications (DECT) and Wi-Fi, decimation filters are essential part of transceivers being used. This paper describes a decimation filter which is efficient in terms of both the power consumption and the area used. The architecture is based upon Merged Delay Transformation (MDT). The existing Merged Delay Transformed Infinite Impulse Response (IIR) architecture is power efficient but requires larger area. The proposed and existing filters were implemented on Field-Programmable Gate Array (FPGA). The computational cost of the proposed filter is reduced to (3N/2 + 1) and M-1 times reduction in the number of multipliers in comparison to the existing FIR filter is achieved. The power consumption and speed remain nearly the same. (author)

  1. Design of efficient circularly symmetric two-dimensional variable digital FIR filters.

    Science.gov (United States)

    Bindima, Thayyil; Elias, Elizabeth

    2016-05-01

    Circularly symmetric two-dimensional (2D) finite impulse response (FIR) filters find extensive use in image and medical applications, especially for isotropic filtering. Moreover, the design and implementation of 2D digital filters with variable fractional delay and variable magnitude responses without redesigning the filter has become a crucial topic of interest due to its significance in low-cost applications. Recently the design using fixed word length coefficients has gained importance due to the replacement of multipliers by shifters and adders, which reduces the hardware complexity. Among the various approaches to 2D design, transforming a one-dimensional (1D) filter to 2D by transformation, is reported to be an efficient technique. In this paper, 1D variable digital filters (VDFs) with tunable cut-off frequencies are designed using Farrow structure based interpolation approach, and the sub-filter coefficients in the Farrow structure are made multiplier-less using canonic signed digit (CSD) representation. The resulting performance degradation in the filters is overcome by using artificial bee colony (ABC) optimization. Finally, the optimized 1D VDFs are mapped to 2D using generalized McClellan transformation resulting in low complexity, circularly symmetric 2D VDFs with real-time tunability.

  2. Investigation on filter method for smoothing spiral phase plate

    Science.gov (United States)

    Zhang, Yuanhang; Wen, Shenglin; Luo, Zijian; Tang, Caixue; Yan, Hao; Yang, Chunlin; Liu, Mincai; Zhang, Qinghua; Wang, Jian

    2018-03-01

    Spiral phase plate (SPP) for generating vortex hollow beams has high efficiency in various applications. However, it is difficult to obtain an ideal spiral phase plate because of its continuous-varying helical phase and discontinued phase step. This paper describes the demonstration of continuous spiral phase plate using filter methods. The numerical simulations indicate that different filter method including spatial domain filter, frequency domain filter has unique impact on surface topography of SPP and optical vortex characteristics. The experimental results reveal that the spatial Gaussian filter method for smoothing SPP is suitable for Computer Controlled Optical Surfacing (CCOS) technique and obtains good optical properties.

  3. Microplastic in a macro filter feeder: humpback whale Megaptera novaeangliae

    NARCIS (Netherlands)

    Besseling, E.; Foekema, E.M.; Franeker, van J.A.; Leopold, M.F.; Bravo Rebolledo, E.; Kuehn, S.; Mielke, L.; Heberle-Bors, E.; Ijzer, J.; Kamminga, P.; Koelmans, A.A.

    2015-01-01

    Marine filter feeders are exposed to microplastic because of their selection of small particles as food source. Baleen whales feed by filtering small particles from large water volumes. Macroplastic was found in baleen whales before. This study is the first to show the presence of microplastic in

  4. Microplastic in a macro filter feeder: Humpback whale Megaptera novaeangliae.

    NARCIS (Netherlands)

    E., Besseling,; E.M., Foekema,; J.A. van, Franeker; Leopold, Mardik F; Kuhn, S.; Bravo Rebolledo, E.L.; Hese, E.; Mielke, L.; IJzer, J.|info:eu-repo/dai/nl/304839663; Kamminga, P.; Koelmans, A.A.

    2015-01-01

    Marine filter feeders are exposed to microplastic because of their selection of small particles as food source. Baleen whales feed by filtering small particles from large water volumes. Macroplastic was found in baleen whales before. This study is the first to show the presence of microplastic in

  5. Factors Influencing HEPA Filter Performance

    International Nuclear Information System (INIS)

    Parsons, M.S.; Waggoner, Ch.A.

    2009-01-01

    Properly functioning HEPA air filtration systems depend on a variety of factors that start with the use of fully characterized challenge conditions for system design and then process control during operation. This paper addresses factors that should be considered during the design phase as well as operating parameters that can be monitored to ensure filter function and lifetime. HEPA filters used in nuclear applications are expected to meet design, fabrication, and performance requirements set forth in the ASME AG-1 standard. The DOE publication Nuclear Air Cleaning Handbook (NACH) is an additional guidance document for design and operation HEPA filter systems in DOE facilities. These two guidelines establish basic maximum operating parameters for temperature, maximum aerosol particle size, maximum particulate matter mass concentration, acceptable differential pressure range, and filter media velocity. Each of these parameters is discussed along with data linking variability of each parameter with filter function and lifetime. Temporal uncertainty associated with gas composition, temperature, and absolute pressure of the air flow can have a direct impact on the volumetric flow rate of the system with a corresponding impact on filter media velocity. Correlations between standard units of flow rate (standard meters per minute or cubic feet per minute) versus actual units of volumetric flow rate are shown for variations in relative humidity for a 70 deg. C to 200 deg. C temperature range as an example of gas composition that, uncorrected, will influence media velocity. The AG-1 standard establishes a 2.5 cm/s (5 feet per minute) ceiling for media velocities of nuclear grade HEPA filters. Data are presented that show the impact of media velocities from 2.0 to 4.0 cm/s media velocities (4 to 8 fpm) on differential pressure, filter efficiency, and filter lifetime. Data will also be presented correlating media velocity effects with two different particle size

  6. Detection of irradiated foods with the photo-stimulated luminescence technique. Selection of a glass fiber filter for evaluating the performance of the PSL detectors

    International Nuclear Information System (INIS)

    Sekiguchi, Masayuki; Yamazaki, Masao; Goto, Michiko

    2008-01-01

    The PSL method is useful as a screening technique of irradiated foods to support efficient uses of TL analysis. Recently, there has been the growing need for the system check or calibration using the standard materials with spread of domestically -produced PSL detector. In this research, we characterized the PSL of several types of glass fiber filters and compared the cumulate photon counts of a selected filter of them (GA-100) with those of the SUERC paprika standard for PSL measurements. GA-100 filter showed a linear relationship between cumulate photon counts and irradiation doses, and the cumulate photon counts in the first 2 months after gamma rays irradiation (261Gy) were markedly decreased and reduced to about 5000 counts (the upper threshold of PSL) after 4 months. However, further long-term storage and dose increase was necessary to produce the filter with more adequate PSI property as a standard material. Light exposure (630Lux) within 3 minutes to GA-100 had little effect on the cumulate photon counts. GA-100 showed relatively less variation in cumulate photon counts compared with the paprika standard in a series of studies. (author)

  7. Measuring user similarity using electric circuit analysis: application to collaborative filtering.

    Science.gov (United States)

    Yang, Joonhyuk; Kim, Jinwook; Kim, Wonjoon; Kim, Young Hwan

    2012-01-01

    We propose a new technique of measuring user similarity in collaborative filtering using electric circuit analysis. Electric circuit analysis is used to measure the potential differences between nodes on an electric circuit. In this paper, by applying this method to transaction networks comprising users and items, i.e., user-item matrix, and by using the full information about the relationship structure of users in the perspective of item adoption, we overcome the limitations of one-to-one similarity calculation approach, such as the Pearson correlation, Tanimoto coefficient, and Hamming distance, in collaborative filtering. We found that electric circuit analysis can be successfully incorporated into recommender systems and has the potential to significantly enhance predictability, especially when combined with user-based collaborative filtering. We also propose four types of hybrid algorithms that combine the Pearson correlation method and electric circuit analysis. One of the algorithms exceeds the performance of the traditional collaborative filtering by 37.5% at most. This work opens new opportunities for interdisciplinary research between physics and computer science and the development of new recommendation systems.

  8. Measuring user similarity using electric circuit analysis: application to collaborative filtering.

    Directory of Open Access Journals (Sweden)

    Joonhyuk Yang

    Full Text Available We propose a new technique of measuring user similarity in collaborative filtering using electric circuit analysis. Electric circuit analysis is used to measure the potential differences between nodes on an electric circuit. In this paper, by applying this method to transaction networks comprising users and items, i.e., user-item matrix, and by using the full information about the relationship structure of users in the perspective of item adoption, we overcome the limitations of one-to-one similarity calculation approach, such as the Pearson correlation, Tanimoto coefficient, and Hamming distance, in collaborative filtering. We found that electric circuit analysis can be successfully incorporated into recommender systems and has the potential to significantly enhance predictability, especially when combined with user-based collaborative filtering. We also propose four types of hybrid algorithms that combine the Pearson correlation method and electric circuit analysis. One of the algorithms exceeds the performance of the traditional collaborative filtering by 37.5% at most. This work opens new opportunities for interdisciplinary research between physics and computer science and the development of new recommendation systems.

  9. Substrate Integrated Waveguide Cavity Filters: Miniaturization and New Materials for IoT Applications

    Directory of Open Access Journals (Sweden)

    C. Tomassoni

    2017-09-01

    Full Text Available This paper presents an overview of the current research trends in the field of substrate integrated waveguide (SIW technology, with particular emphasis on the issues related to the emerging applications in the framework of the Internet of Things (IoT and the fifth generation of mobile communication (5G. More specifically, different techniques adopted to miniaturize SIW cavities are described, with the aim of reducing the footprint of SIW components and filters. Moreover, the use of innovative materials, like paper, textile and 3D printed dielectric substrates, is presented and discussed, and the implementation of ecofriendly, wearable, and fully 3D structures is illustrated.

  10. Modern analog filter analysis and design a practical approach

    CERN Document Server

    Raut, R

    2011-01-01

    Starting from the fundamentals, the present book describes methods of designing analog electronic filters and illustrates these methods by providing numerical and circuit simulation programs. The subject matters comprise many concepts and techniques that are not available in other text books on the market. To name a few - principle of transposition and its application in directly realizing current mode filters from well known voltage mode filters; an insight into the technological aspect of integrated circuit components used to implement an integrated circuit filter; a careful blending of basi

  11. Model for optimising the execution of anti-spam filters

    Directory of Open Access Journals (Sweden)

    David Ruano-Ordás

    2016-12-01

    Full Text Available During last years, the combination of several filtering techniques for the development of anti-spam systems has gained a enormous popularity. However, although the accuracy achieved by these models has increased considerably, its use has entailed the emergence of new challenges such as the need to reduce the excessive use of computational resources, the increase of filtering speed and the adjustment of the weights used for the combination of several filtering techniques. In order to achieve this goal we have been refined several aspects including: (i the design and development of small technical improvements to increase the overall performance of the filter, (ii application of genetic algorithms to increase filtering accuracy and (iii the use of scheduling algorithms to improve filtering throughput.

  12. Active Comb Filter Using Operational Transconductance Amplifier

    Directory of Open Access Journals (Sweden)

    Rajeev Kumar Ranjan

    2014-01-01

    Full Text Available A new approach for the design of an active comb filter is proposed to remove the selected frequencies of various signals. The proposed filter is based on only OTAs and capacitors, hence suitable for monolithic integrated circuit implementation. The workability of the circuit is tested using PSPICE for test signals of 60, 180, 300, and 420 Hz as in ECG signal. The results are given in the paper and found to agree well with theory.

  13. Neural network training by Kalman filtering in process system monitoring

    International Nuclear Information System (INIS)

    Ciftcioglu, Oe.

    1996-03-01

    Kalman filtering approach for neural network training is described. Its extended form is used as an adaptive filter in a nonlinear environment of the form a feedforward neural network. Kalman filtering approach generally provides fast training as well as avoiding excessive learning which results in enhanced generalization capability. The network is used in a process monitoring application where the inputs are measurement signals. Since the measurement errors are also modelled in Kalman filter the approach yields accurate training with the implication of accurate neural network model representing the input and output relationships in the application. As the process of concern is a dynamic system, the input source of information to neural network is time dependent so that the training algorithm presents an adaptive form for real-time operation for the monitoring task. (orig.)

  14. [Filtering facepieces: effect of oily aerosol load on penetration through the filtering material].

    Science.gov (United States)

    Plebani, Carmela; Listrani, S; Di Luigi, M

    2010-01-01

    Electrostatic filters are widely used in applications requiring high filtration efficiency and low pressure drop. However various studies showed that the penetration through electrostatic filters increases during exposure to an aerosol flow. This study investigates the effects of prolonged exposure to an oily aerosol on the penetration through filtering facepieces available on the market. Some samples of FFP1, FFP2 and FFP3 filtering facepieces were exposed for 8 hours consecutively to a paraffin oil polydisperse aerosol. At the end of the exposure about 830 mg of paraffin oil were deposited in the facepiece. All the examined facepieces showed penetration values that increased with paraffin oil load while pressure drop values were substantially the same before and after exposure. The measured maximum penetration values did not exceed the maximum penetration values allowed by the European technical standards, except in one case. According to the literature, 830 mg of oil load in a facepiece is not feasible in workplaces over an eight- hour shift. However, the trend of the penetration versus exposure mass suggests that if the load increases, the penetration may exceed the maximum allowed values. For comparison a mechanical filter was also studied. This showed an initial pressure drop higher than FFP2 filtering facepieces characterized by comparable penetration values. During exposure the pressure drop virtually doubled while penetration did not change. The increase in penetration with no increase in pressure drop in the analyzed facepieces indicates that it is necessary to comply with the information supplied by the manufacturer that restricts their use to a single shift.

  15. Optimization of modal filters based on arrays of piezoelectric sensors

    International Nuclear Information System (INIS)

    Pagani, Carlos C Jr; Trindade, Marcelo A

    2009-01-01

    Modal filters may be obtained by a properly designed weighted sum of the output signals of an array of sensors distributed on the host structure. Although several research groups have been interested in techniques for designing and implementing modal filters based on a given array of sensors, the effect of the array topology on the effectiveness of the modal filter has received much less attention. In particular, it is known that some parameters, such as size, shape and location of a sensor, are very important in determining the observability of a vibration mode. Hence, this paper presents a methodology for the topological optimization of an array of sensors in order to maximize the effectiveness of a set of selected modal filters. This is done using a genetic algorithm optimization technique for the selection of 12 piezoceramic sensors from an array of 36 piezoceramic sensors regularly distributed on an aluminum plate, which maximize the filtering performance, over a given frequency range, of a set of modal filters, each one aiming to isolate one of the first vibration modes. The vectors of the weighting coefficients for each modal filter are evaluated using QR decomposition of the complex frequency response function matrix. Results show that the array topology is not very important for lower frequencies but it greatly affects the filter effectiveness for higher frequencies. Therefore, it is possible to improve the effectiveness and frequency range of a set of modal filters by optimizing the topology of an array of sensors. Indeed, using 12 properly located piezoceramic sensors bonded on an aluminum plate it is shown that the frequency range of a set of modal filters may be enlarged by 25–50%

  16. Artificial neural network (ANN)-based prediction of depth filter loading capacity for filter sizing.

    Science.gov (United States)

    Agarwal, Harshit; Rathore, Anurag S; Hadpe, Sandeep Ramesh; Alva, Solomon J

    2016-11-01

    This article presents an application of artificial neural network (ANN) modelling towards prediction of depth filter loading capacity for clarification of a monoclonal antibody (mAb) product during commercial manufacturing. The effect of operating parameters on filter loading capacity was evaluated based on the analysis of change in the differential pressure (DP) as a function of time. The proposed ANN model uses inlet stream properties (feed turbidity, feed cell count, feed cell viability), flux, and time to predict the corresponding DP. The ANN contained a single output layer with ten neurons in hidden layer and employed a sigmoidal activation function. This network was trained with 174 training points, 37 validation points, and 37 test points. Further, a pressure cut-off of 1.1 bar was used for sizing the filter area required under each operating condition. The modelling results showed that there was excellent agreement between the predicted and experimental data with a regression coefficient (R 2 ) of 0.98. The developed ANN model was used for performing variable depth filter sizing for different clarification lots. Monte-Carlo simulation was performed to estimate the cost savings by using different filter areas for different clarification lots rather than using the same filter area. A 10% saving in cost of goods was obtained for this operation. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1436-1443, 2016. © 2016 American Institute of Chemical Engineers.

  17. Directional Joint Bilateral Filter for Depth Images

    Directory of Open Access Journals (Sweden)

    Anh Vu Le

    2014-06-01

    Full Text Available Depth maps taken by the low cost Kinect sensor are often noisy and incomplete. Thus, post-processing for obtaining reliable depth maps is necessary for advanced image and video applications such as object recognition and multi-view rendering. In this paper, we propose adaptive directional filters that fill the holes and suppress the noise in depth maps. Specifically, novel filters whose window shapes are adaptively adjusted based on the edge direction of the color image are presented. Experimental results show that our method yields higher quality filtered depth maps than other existing methods, especially at the edge boundaries.

  18. Theory of Alike Selectivity in Biological Channels

    Science.gov (United States)

    Luchinsky, Dmitry G.; Gibby, Will A. T.; Kaufman, Igor Kh.; Eisenberg, Robert S.; McClintock, Peter V. E.

    2016-01-01

    We introduce a statistical mechanical model of the selectivity filter that accounts for the interaction between ions within the channel and derive Eisenman equation of the filter selectivity directly from the condition of barrier-less conduction.

  19. Filtering observations without the initial guess

    Science.gov (United States)

    Chin, T. M.; Abbondanza, C.; Gross, R. S.; Heflin, M. B.; Parker, J. W.; Soja, B.; Wu, X.

    2017-12-01

    Noisy geophysical observations sampled irregularly over space and time are often numerically "analyzed" or "filtered" before scientific usage. The standard analysis and filtering techniques based on the Bayesian principle requires "a priori" joint distribution of all the geophysical parameters of interest. However, such prior distributions are seldom known fully in practice, and best-guess mean values (e.g., "climatology" or "background" data if available) accompanied by some arbitrarily set covariance values are often used in lieu. It is therefore desirable to be able to exploit efficient (time sequential) Bayesian algorithms like the Kalman filter while not forced to provide a prior distribution (i.e., initial mean and covariance). An example of this is the estimation of the terrestrial reference frame (TRF) where requirement for numerical precision is such that any use of a priori constraints on the observation data needs to be minimized. We will present the Information Filter algorithm, a variant of the Kalman filter that does not require an initial distribution, and apply the algorithm (and an accompanying smoothing algorithm) to the TRF estimation problem. We show that the information filter allows temporal propagation of partial information on the distribution (marginal distribution of a transformed version of the state vector), instead of the full distribution (mean and covariance) required by the standard Kalman filter. The information filter appears to be a natural choice for the task of filtering observational data in general cases where prior assumption on the initial estimate is not available and/or desirable. For application to data assimilation problems, reduced-order approximations of both the information filter and square-root information filter (SRIF) have been published, and the former has previously been applied to a regional configuration of the HYCOM ocean general circulation model. Such approximation approaches are also briefed in the

  20. Bessel smoothing filter for spectral-element mesh

    Science.gov (United States)

    Trinh, P. T.; Brossier, R.; Métivier, L.; Virieux, J.; Wellington, P.

    2017-06-01

    Smoothing filters are extremely important tools in seismic imaging and inversion, such as for traveltime tomography, migration and waveform inversion. For efficiency, and as they can be used a number of times during inversion, it is important that these filters can easily incorporate prior information on the geological structure of the investigated medium, through variable coherent lengths and orientation. In this study, we promote the use of the Bessel filter to achieve these purposes. Instead of considering the direct application of the filter, we demonstrate that we can rely on the equation associated with its inverse filter, which amounts to the solution of an elliptic partial differential equation. This enhances the efficiency of the filter application, and also its flexibility. We apply this strategy within a spectral-element-based elastic full waveform inversion framework. Taking advantage of this formulation, we apply the Bessel filter by solving the associated partial differential equation directly on the spectral-element mesh through the standard weak formulation. This avoids cumbersome projection operators between the spectral-element mesh and a regular Cartesian grid, or expensive explicit windowed convolution on the finite-element mesh, which is often used for applying smoothing operators. The associated linear system is solved efficiently through a parallel conjugate gradient algorithm, in which the matrix vector product is factorized and highly optimized with vectorized computation. Significant scaling behaviour is obtained when comparing this strategy with the explicit convolution method. The theoretical numerical complexity of this approach increases linearly with the coherent length, whereas a sublinear relationship is observed practically. Numerical illustrations are provided here for schematic examples, and for a more realistic elastic full waveform inversion gradient smoothing on the SEAM II benchmark model. These examples illustrate well the

  1. Improving Artificial eural etwork Forecasts with Kalman Filtering

    African Journals Online (AJOL)

    Nafiisah

    technique in financial time series and the application of a Kalman filter ... networks (ANN) model using a Kalman filter leads to significant improvements in .... 3-rd order polynomial (Galanis et al. (2006)): 1 t p. 2 t p. 3 t p. 4 t p. 1 t h. 2 t h tr t r ...

  2. Particle Filter Tracking without Dynamics

    Directory of Open Access Journals (Sweden)

    Jaime Ortegon-Aguilar

    2007-01-01

    Full Text Available People tracking is an interesting topic in computer vision. It has applications in industrial areas such as surveillance or human-machine interaction. Particle Filters is a common algorithm for people tracking; challenging situations occur when the target's motion is poorly modelled or with unexpected motions. In this paper, an alternative to address people tracking is presented. The proposed algorithm is based in particle filters, but instead of using a dynamical model, it uses background subtraction to predict future locations of particles. The algorithm is able to track people in omnidirectional sequences with a low frame rate (one or two frames per second. Our approach can tackle unexpected discontinuities and changes in the direction of the motion. The main goal of the paper is to track people from laboratories, but it has applications in surveillance, mainly in controlled environments.

  3. Filter arrays

    Science.gov (United States)

    Page, Ralph H.; Doty, Patrick F.

    2017-08-01

    The various technologies presented herein relate to a tiled filter array that can be used in connection with performance of spatial sampling of optical signals. The filter array comprises filter tiles, wherein a first plurality of filter tiles are formed from a first material, the first material being configured such that only photons having wavelengths in a first wavelength band pass therethrough. A second plurality of filter tiles is formed from a second material, the second material being configured such that only photons having wavelengths in a second wavelength band pass therethrough. The first plurality of filter tiles and the second plurality of filter tiles can be interspersed to form the filter array comprising an alternating arrangement of first filter tiles and second filter tiles.

  4. Field test of radioactive high efficiency filter and filter exchange techniques of fuel cycle examination facility

    International Nuclear Information System (INIS)

    Hwang, Yong Hwa; Lee, Hyung Kwon; Chun, Young Bum; Park, Dae Gyu; Ahn, Sang Bok; Chu, Yong Sun; Kim, Eun Ka.

    1997-12-01

    The development of high efficiency filter was started to protect human beings from the contamination of radioactive particles, toxic gases and bacillus, and its gradual performance increment led to the fabrication of Ultra Low Penetration Air Filter (ULPA) today. The application field of ULPA has been spread not only to the air conditioning of nuclear power facilities, semiconductor industries, life science, optics, medical care and general facilities but also to the core of ultra-precision facilities. Periodic performance test on the filters is essential to extend its life-time through effective maintenance. Especially, the bank test on HEPA filter of nuclear facilities handling radioactive materials is required for environmental safety. Nowadays, the bank test technology has been reached to the utilization of a minimized portable detecting instruments and the evaluation techniques can provide high confidence in the area of particle distribution and leakage test efficiency. (author). 16 refs., 13 tabs., 14 figs

  5. Application of asymmetric mapping and selective filtering (AM and SF) method to Cosmo/SkyMed images by implementation of a selective blocks approach for ship detection optimization in SEASAFE framework

    Science.gov (United States)

    Loreggia, D.; Tataranni, F.; Trivero, P.; Biamino, W.; Di Matteo, L.

    2017-10-01

    We present the implementation of a procedure to adapt an Asymmetric Wiener Filtering (AWF) methodology aimed to detect and discard ghost signal due to azimuth ambiguities in SAR images to the case for X-band Cosmo Sky Med (CSK) images in the framework of SEASAFE (Slick Emissions And Ship Automatic Features Extraction) project, developed at the Department of Science and Technology Innovation of the University of Piemonte Orientale, Alessandria, Italy. SAR is a useful tool to daily and nightly monitoring of the sea surface in all weather conditions. SEASAFE project is a software platform developed in IDL language able to process data in C- Land X-band SAR images with enhanced algorithm modules for land masking, sea pollution (oil spills) and ship detection; wind and wave evaluation are also available. In this contest, the need to individuate and discard false alarms is a critical requirement. The azimuth ambiguity is one of the main causes that generate false alarm in the ship detection procedure. Many methods to face with this problem were proposed and presented in recent literature. After a review of different approach to this problem, we describe the procedure to adapt the AWF approach presented in [1,2] to the case of X-band CSK images by implementing a selective blocks approach.

  6. Optical Protection Filters for Harmful Laser Beams and UV Radiation

    Science.gov (United States)

    Azim M., Osama A.

    2007-02-01

    Due to the rapid growth of radiation protection applications in various devices and instruments, it is essential to use suitable filters for eye protection of the personal working in the radiation field. Different protection filters were produced to protect from four laser beam wavelengths (at 532nm, 632.8nm, 694nm and 1064nm) and block three UV bands (UVA, UVB, and UVC). The design structure of the required dielectric multilayer filters used optical thin film technology. The computer analyses of the multilayer filter formulas were prepared using Macleod Software for the production filter processes. The deposition technique was achieved on optical substrates (Glass BK-7 and Infrasil 301) by dielectric material combinations including Dralo (mixture of oxides TiO2/Al2O3), and Lima (mixture of oxides SiO2/Al2O3); deposition by an electron beam gun. The output transmittance curves for both theoretical and experimental values of all filters are presented. To validate the suitability for use in a `real world', rather than laboratory test application, full environmental assessment was also carried out. These filters exhibited high endurance after exposing them to the durability tests (adhesion, abrasion resistance and humidity) according to military standards MIL-C-675C and MIL-C-48497A.

  7. Optical Protection Filters for Harmful Laser Beams and UV Radiation

    International Nuclear Information System (INIS)

    Azim M, Osama A.

    2007-01-01

    Due to the rapid growth of radiation protection applications in various devices and instruments, it is essential to use suitable filters for eye protection of the personal working in the radiation field. Different protection filters were produced to protect from four laser beam wavelengths (at 532nm, 632.8nm, 694nm and 1064nm) and block three UV bands (UVA, UVB, and UVC). The design structure of the required dielectric multilayer filters used optical thin film technology. The computer analyses of the multilayer filter formulas were prepared using Macleod Software for the production filter processes. The deposition technique was achieved on optical substrates (Glass BK-7 and Infrasil 301) by dielectric material combinations including Dralo (mixture of oxides TiO2/Al2O3), and Lima (mixture of oxides SiO2/Al2O3); deposition by an electron beam gun. The output transmittance curves for both theoretical and experimental values of all filters are presented. To validate the suitability for use in a 'real world', rather than laboratory test application, full environmental assessment was also carried out. These filters exhibited high endurance after exposing them to the durability tests (adhesion, abrasion resistance and humidity) according to military standards MIL-C-675C and MIL-C-48497A

  8. Development of off-gas filters for reprocessing plants. Development and construction of an off-gas filter system for large reprocessing plants. Off-gas section of the resolver test stand of the IHCh

    International Nuclear Information System (INIS)

    Furrer, J.; Kaempffer, R.; Wilhelm, J.G.; Pfauter, C.; Jannakos, K.; Apenberg, W.; Lange, W.; Mendel, W.; Potgeter, G.; Zabel, G.

    1976-01-01

    The test of the highly impregnated iodine sorption material AC 6,120 was continued in the laboratory under simulated conditions of a 1,500 t/a uranium reprocessing plant. The influence of NO in nitrogen as the carrier gas on the removal efficiency of the sorption material has been especially examined. Several experiments on the removal efficiency of iodine sorption by the material AC 6,120 were carried out in the original off-gas of the French processing plant SAP Marcoule while the filter system was installed on the one side directly behind the dissolver and on the other side behind the iodine desorption columm. The first iodine filter developed at LAF II was installed in the off-gas line of the dissolver in the Karlsruhe reprocessing plant. The filter system for the dissolver off-gas handling test rig of the IHCh was specified and ordered with an engineering firm. The conception of the prototype off-gas filter system was selected and a lock and transport system allowing to replace filters was designed and subjected for testing. Five alternative solutions were set up in order to find the appropriate filter concept. The method of selection based on the evaluation of performance criteria. According to the selected solution a filter drum was designed and constructed. The lock of the filter system has been designed and realized. Preliminary tests have been made. (orig.) [de

  9. Application of preprocessing filtering on Decision Tree C4.5 and rough set theory

    Science.gov (United States)

    Chan, Joseph C. C.; Lin, Tsau Y.

    2001-03-01

    This paper compares two artificial intelligence methods: the Decision Tree C4.5 and Rough Set Theory on the stock market data. The Decision Tree C4.5 is reviewed with the Rough Set Theory. An enhanced window application is developed to facilitate the pre-processing filtering by introducing the feature (attribute) transformations, which allows users to input formulas and create new attributes. Also, the application produces three varieties of data set with delaying, averaging, and summation. The results prove the improvement of pre-processing by applying feature (attribute) transformations on Decision Tree C4.5. Moreover, the comparison between Decision Tree C4.5 and Rough Set Theory is based on the clarity, automation, accuracy, dimensionality, raw data, and speed, which is supported by the rules sets generated by both algorithms on three different sets of data.

  10. Thermal and structural behavior of filters and windows for synchrotron x-ray sources

    International Nuclear Information System (INIS)

    Wang, Z.; Hahn, U.; Dejus, R.; Kuzay, T.

    1993-01-01

    This report contains the following discussions: Introduction: Use of filters and windows in the front end designs; An interactive code for 3D graphic viewing of absorbed power in filters/windows and a new heat load generation algorithm for the finite element analysis; Failure criteria and analysis methods for the filter and window assembly; Comparison with test data and existing devices in HASYLAB; Cooling the filter: Radiation cooling or conduction cooling?; Consideration of window and filter thickness: Thicker or thinner?; Material selection criteria for filters/windows; Photon transmission through filters/windows; Window and filter design for APS undulators; Window and filter design for APS wigglers; and Window design for APS bending magnet front ends

  11. High Efficiency Particulate Air (HEPA) Filter Generation, Characterization, and Disposal Experiences at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Coffey, D. E.

    2002-01-01

    High Efficiency Particulate Air filtration is an essential component of the containment and ventilation systems supporting the research and development activities at the Oak Ridge National Laboratory. High Efficiency Particulate Air filters range in size from 7.6cm (3 inch) by 10.2 cm (4 inch) cylindrical shape filters to filter array assemblies up to 2.1 m (7 feet) high by 1.5 m (5 feet) wide. Spent filters are grouped by contaminates trapped in the filter media and become one of the components in the respective waste stream. Waste minimization and pollution prevention efforts are applied for both radiological and non-radiological applications. Radiological applications include laboratory hoods, glove boxes, and hot cells. High Efficiency Particulate Air filters also are generated from intake or pre-filtering applications, decontamination activities, and asbestos abatement applications. The disposal avenues include sanitary/industrial waste, Resource Conservation and Recovery Act and Toxic Substance Control Act, regulated waste, solid low-level waste, contact handled transuranic, and remote handled transuranic waste. This paper discusses characterization and operational experiences associated with the disposal of the spent filters across multiple applications

  12. Application of a Reduced Order Kalman Filter to Initialize a Coupled Atmosphere-Ocean Model: Impact on the Prediction of El Nino

    Science.gov (United States)

    Ballabrera-Poy, Joaquim; Busalacchi, Antonio J.; Murtugudde, Ragu

    2000-01-01

    A reduced order Kalman Filter, based on a simplification of the Singular Evolutive Extended Kalman (SEEK) filter equations, is used to assimilate observed fields of the surface wind stress, sea surface temperature and sea level into the nonlinear coupled ocean-atmosphere model. The SEEK filter projects the Kalman Filter equations onto a subspace defined by the eigenvalue decomposition of the error forecast matrix, allowing its application to high dimensional systems. The Zebiak and Cane model couples a linear reduced gravity ocean model with a single vertical mode atmospheric model of Zebiak. The compatibility between the simplified physics of the model and each observed variable is studied separately and together. The results show the ability of the model to represent the simultaneous value of the wind stress, SST and sea level, when the fields are limited to the latitude band 10 deg S - 10 deg N. In this first application of the Kalman Filter to a coupled ocean-atmosphere prediction model, the sea level fields are assimilated in terms of the Kelvin and Rossby modes of the thermocline depth anomaly. An estimation of the error of these modes is derived from the projection of an estimation of the sea level error over such modes. This method gives a value of 12 for the error of the Kelvin amplitude, and 6 m of error for the Rossby component of the thermocline depth. The ability of the method to reconstruct the state of the equatorial Pacific and predict its time evolution is demonstrated. The method is shown to be quite robust for predictions I up to six months, and able to predict the onset of the 1997 warm event fifteen months before its occurrence.

  13. Filter forensics: microbiota recovery from residential HVAC filters.

    Science.gov (United States)

    Maestre, Juan P; Jennings, Wiley; Wylie, Dennis; Horner, Sharon D; Siegel, Jeffrey; Kinney, Kerry A

    2018-01-30

    Establishing reliable methods for assessing the microbiome within the built environment is critical for understanding the impact of biological exposures on human health. High-throughput DNA sequencing of dust samples provides valuable insights into the microbiome present in human-occupied spaces. However, the effect that different sampling methods have on the microbial community recovered from dust samples is not well understood across sample types. Heating, ventilation, and air conditioning (HVAC) filters hold promise as long-term, spatially integrated, high volume samplers to characterize the airborne microbiome in homes and other climate-controlled spaces. In this study, the effect that dust recovery method (i.e., cut and elution, swabbing, or vacuuming) has on the microbial community structure, membership, and repeatability inferred by Illumina sequencing was evaluated. The results indicate that vacuum samples captured higher quantities of total, bacterial, and fungal DNA than swab or cut samples. Repeated swab and vacuum samples collected from the same filter were less variable than cut samples with respect to both quantitative DNA recovery and bacterial community structure. Vacuum samples captured substantially greater bacterial diversity than the other methods, whereas fungal diversity was similar across all three methods. Vacuum and swab samples of HVAC filter dust were repeatable and generally superior to cut samples. Nevertheless, the contribution of environmental and human sources to the bacterial and fungal communities recovered via each sampling method was generally consistent across the methods investigated. Dust recovery methodologies have been shown to affect the recovery, repeatability, structure, and membership of microbial communities recovered from dust samples in the built environment. The results of this study are directly applicable to indoor microbiota studies utilizing the filter forensics approach. More broadly, this study provides a

  14. Liquid Metal Droplet and Micro Corrugated Diaphragm RF-MEMS for reconfigurable RF filters

    Science.gov (United States)

    Irshad, Wasim

    Widely Tunable RF Filters that are small, cost-effective and offer ultra low power consumption are extremely desirable. Indeed, such filters would allow drastic simplification of RF front-ends in countless applications from cell phones to satellites in space by replacing switched-array of static acoustic filters and YIG filters respectively. Switched array of acoustic filters are de facto means of channel selection in mobile applications such as cell phones. SAW and BAW filters satisfy most criteria needed by mobile applications such as low cost, size and power consumption. However, the trade-off is a significant loss of 3-4 dB in modern cell phone RF front-end. This leads to need for power-hungry amplifiers and short battery life. It is a necessary trade-off since there are no better alternatives. These devices are in mm scale and consume mW. YIG filters dominate applications where size or power is not a constraint but demand excellent RF performance like low loss and high tuning ratio. These devices are measured in inches and require several watts to operate. Clearly, a tunable RF filter technology that would combine the cost, size and power consumption benefits of acoustic filters with excellent RF performance of YIG filters would be extremely desirable and imminently useful. The objective of this dissertation is to develop such a technology based upon RF-MEMS Evanescent-mode cavity filter. Two highly novel RF-MEMS devices have been developed over the course of this PhD to address the unique MEMS needs of this technology. The first part of the dissertation is dedicated to introducing the fundamental concepts of tunable cavity resonators and filters. This includes the physics behind it, key performance metrics and what they depend on and requirements of the MEMS tuners. Initial gap control and MEMS attachment method are identified as potential hurdles towards achieving very high RF performance. Simple and elegant solutions to both these issues are discussed in

  15. Detail-enhanced multimodality medical image fusion based on gradient minimization smoothing filter and shearing filter.

    Science.gov (United States)

    Liu, Xingbin; Mei, Wenbo; Du, Huiqian

    2018-02-13

    In this paper, a detail-enhanced multimodality medical image fusion algorithm is proposed by using proposed multi-scale joint decomposition framework (MJDF) and shearing filter (SF). The MJDF constructed with gradient minimization smoothing filter (GMSF) and Gaussian low-pass filter (GLF) is used to decompose source images into low-pass layers, edge layers, and detail layers at multiple scales. In order to highlight the detail information in the fused image, the edge layer and the detail layer in each scale are weighted combined into a detail-enhanced layer. As directional filter is effective in capturing salient information, so SF is applied to the detail-enhanced layer to extract geometrical features and obtain directional coefficients. Visual saliency map-based fusion rule is designed for fusing low-pass layers, and the sum of standard deviation is used as activity level measurement for directional coefficients fusion. The final fusion result is obtained by synthesizing the fused low-pass layers and directional coefficients. Experimental results show that the proposed method with shift-invariance, directional selectivity, and detail-enhanced property is efficient in preserving and enhancing detail information of multimodality medical images. Graphical abstract The detailed implementation of the proposed medical image fusion algorithm.

  16. Bag filters

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, M; Komeda, I; Takizaki, K

    1982-01-01

    Bag filters are widely used throughout the cement industry for recovering raw materials and products and for improving the environment. Their general mechanism, performance and advantages are shown in a classification table, and there are comparisons and explanations. The outer and inner sectional construction of the Shinto ultra-jet collector for pulverized coal is illustrated and there are detailed descriptions of dust cloud prevention, of measures used against possible sources of ignition, of oxygen supply and of other topics. Finally, explanations are given of matters that require careful and comprehensive study when selecting equipment.

  17. Elevated exhaust temperature, zoned, electrically-heated particulate matter filter

    Science.gov (United States)

    Gonze, Eugene V [Pinckney, MI; Bhatia, Garima [Bangalore, IN

    2012-04-17

    A system includes an electrical heater and a particulate matter (PM) filter that is arranged one of adjacent to and in contact with the electrical heater. A control module selectively increases an exhaust gas temperature of an engine to a first temperature and that initiates regeneration of the PM filter using the electrical heater while the exhaust gas temperature is above the first temperature. The first temperature is greater than a maximum exhaust gas temperature at the PM filter during non-regeneration operation and is less than an oxidation temperature of the PM.

  18. Simultaneous Learning and Filtering without Delusions: A Bayes-Optimal Derivation of Combining Predictive Inference and AdaptiveFiltering

    Directory of Open Access Journals (Sweden)

    Jan eKneissler

    2015-04-01

    Full Text Available Predictive coding appears to be one of the fundamental working principles of brain processing. Amongst other aspects, brains often predict the sensory consequences of their own actions. Predictive coding resembles Kalman filtering, where incoming sensory information is filtered to produce prediction errors for subsequent adaptation and learning. However, to generate prediction errors given motor commands, a suitable temporal forward model is required to generate predictions. While in engineering applications, it is usually assumed that this forward model is known, the brain has to learn it. When filtering sensory input and learning from the residual signal in parallel, a fundamental problem arises: the system can enter a delusional loop when filtering the sensory information using an overly trusted forward model. In this case, learning stalls before accurate convergence because uncertainty about the forward model is not properly accommodated. We present a Bayes-optimal solution to this generic and pernicious problem for the case of linear forward models, which we call Predictive Inference and Adaptive Filtering (PIAF. PIAF filters incoming sensory information and learns the forward model simultaneously. We show that PIAF is formally related to Kalman filtering and to the Recursive Least Squares linear approximation method, but combines these procedures in a Bayes optimal fashion. Numerical evaluations confirm that the delusional loop is precluded and that the learning of the forward model is more than ten-times faster when compared to a naive combination of Kalman filtering and Recursive Least Squares.

  19. A Framework of Finite-model Kalman Filter with Case Study: MVDP-FMKF Algorithm%A Framework of Finite-model Kalman Filter with Case Study:MVDP-FMKF Algorithm

    Institute of Scientific and Technical Information of China (English)

    FENG Bo; MA Hong-Bin; FU Meng-Yin; WANG Shun-Ting

    2013-01-01

    Kalman filtering techniques have been widely used in many applications,however,standard Kalman filters for linear Gaussian systems usually cannot work well or even diverge in the presence of large model uncertainty.In practical applications,it is expensive to have large number of high-cost experiments or even impossible to obtain an exact system model.Motivated by our previous pioneering work on finite-model adaptive control,a framework of finite-model Kalman filtering is introduced in this paper.This framework presumes that large model uncertainty may be restricted by a finite set of known models which can be very different from each other.Moreover,the number of known models in the set can be flexibly chosen so that the uncertain model may always be approximated by one of the known models,in other words,the large model uncertainty is "covered" by the "convex hull" of the known models.Within the presented framework according to the idea of adaptive switching via the minimizing vector distance principle,a simple finite-model Kalman filter,MVDP-FMKF,is mathematically formulated and illustrated by extensive simulations.An experiment of MEMS gyroscope drift has verified the effectiveness of the proposed algorithm,indicating that the mechanism of finite-model Kalman filter is useful and efficient in practical applications of Kalman filters,especially in inertial navigation systems.

  20. Filtering Non-Linear Transfer Functions on Surfaces.

    Science.gov (United States)

    Heitz, Eric; Nowrouzezahrai, Derek; Poulin, Pierre; Neyret, Fabrice

    2014-07-01

    Applying non-linear transfer functions and look-up tables to procedural functions (such as noise), surface attributes, or even surface geometry are common strategies used to enhance visual detail. Their simplicity and ability to mimic a wide range of realistic appearances have led to their adoption in many rendering problems. As with any textured or geometric detail, proper filtering is needed to reduce aliasing when viewed across a range of distances, but accurate and efficient transfer function filtering remains an open problem for several reasons: transfer functions are complex and non-linear, especially when mapped through procedural noise and/or geometry-dependent functions, and the effects of perspective and masking further complicate the filtering over a pixel's footprint. We accurately solve this problem by computing and sampling from specialized filtering distributions on the fly, yielding very fast performance. We investigate the case where the transfer function to filter is a color map applied to (macroscale) surface textures (like noise), as well as color maps applied according to (microscale) geometric details. We introduce a novel representation of a (potentially modulated) color map's distribution over pixel footprints using Gaussian statistics and, in the more complex case of high-resolution color mapped microsurface details, our filtering is view- and light-dependent, and capable of correctly handling masking and occlusion effects. Our approach can be generalized to filter other physical-based rendering quantities. We propose an application to shading with irradiance environment maps over large terrains. Our framework is also compatible with the case of transfer functions used to warp surface geometry, as long as the transformations can be represented with Gaussian statistics, leading to proper view- and light-dependent filtering results. Our results match ground truth and our solution is well suited to real-time applications, requires only a few

  1. In Situ Cleanable Alternative HEPA Filter Media

    International Nuclear Information System (INIS)

    Adamson, D. J.; Terry, M. T.

    2002-01-01

    Energy's Hazardous Facilities'', found that conventional glass fiber HEPA filters are structurally weak and easily damaged by water or fire. The structurally stronger sintered metal and ceramic filters would reduce the potential of a catastrophic HEPA filter failure due to filter media breakthrough in the process ventilation system. An in situ regenerable system may also find application in recovering nuclear materials, such as plutonium, collected on glove box exhaust HEPA filters. This innovative approach of the in situ regenerative filtration system may be a significant improvement upon the shortfalls of conventional disposable HEPA filters

  2. Bayesian signal processing classical, modern, and particle filtering methods

    CERN Document Server

    Candy, James V

    2016-01-01

    This book aims to give readers a unified Bayesian treatment starting from the basics (Baye's rule) to the more advanced (Monte Carlo sampling), evolving to the next-generation model-based techniques (sequential Monte Carlo sampling). This next edition incorporates a new chapter on "Sequential Bayesian Detection," a new section on "Ensemble Kalman Filters" as well as an expansion of Case Studies that detail Bayesian solutions for a variety of applications. These studies illustrate Bayesian approaches to real-world problems incorporating detailed particle filter designs, adaptive particle filters and sequential Bayesian detectors. In addition to these major developments a variety of sections are expanded to "fill-in-the gaps" of the first edition. Here metrics for particle filter (PF) designs with emphasis on classical "sanity testing" lead to ensemble techniques as a basic requirement for performance analysis. The expansion of information theory metrics and their application to PF designs is fully developed an...

  3. Analysis of low-pass filters for approximate deconvolution closure modelling in one-dimensional decaying Burgers turbulence

    Science.gov (United States)

    San, O.

    2016-01-01

    The idea of spatial filtering is central in approximate deconvolution large-eddy simulation (AD-LES) of turbulent flows. The need for low-pass filters naturally arises in the approximate deconvolution approach which is based solely on mathematical approximations by employing repeated filtering operators. Two families of low-pass spatial filters are studied in this paper: the Butterworth filters and the Padé filters. With a selection of various filtering parameters, variants of the AD-LES are systematically applied to the decaying Burgers turbulence problem, which is a standard prototype for more complex turbulent flows. Comparing with the direct numerical simulations, it is shown that all forms of the AD-LES approaches predict significantly better results than the under-resolved simulations at the same grid resolution. However, the results highly depend on the selection of the filtering procedure and the filter design. It is concluded that a complete attenuation for the smallest scales is crucial to prevent energy accumulation at the grid cut-off.

  4. Application of a Kalman filter to UF6 gaseous diffusion plant freezer/sublimer systems

    International Nuclear Information System (INIS)

    Ruppel, F.R.

    1992-03-01

    A signal is required to control the flow of UF 6 in gaseous diffusion plant freezer/sublimer systems. The original strategy envisioned for deriving a flow signal was to take the derivative of the freezer/sublimer weigh cell signal. However, the derivative of the digitized weight signal is noisy, preventing good control. In addition, a bias is introduced into the weight derivative signal because a refrigerant is circulated through a shell-and-tube heat exchanger inside the freezer/sublimer. The weight of the refrigerant is included in the weight measured by the weigh cell. If the circulation rate of the refrigerent is not steady state, a bias exists. Measurements of upstream pressure, vessel pressure, and output to the system control valve are available to the control system. Thus, if the flow through the control valve is characterized properly by the measurements, a Kalman filter can be used in conjunction with these auxiliary inputs and the weigh cell input to overcome the noise and bias problem and provide an improve estimate of flow rate. A discussion of the development and the current status of a Kalman filter used for this application is given. 5 refs

  5. An Unbiased Unscented Transform Based Kalman Filter for 3D Radar

    Institute of Scientific and Technical Information of China (English)

    WANGGuohong; XIUJianjuan; HEYou

    2004-01-01

    As a derivative-free alternative to the Extended Kalman filter (EKF) in the framework of state estimation, the Unscented Kalman filter (UKF) has potential applications in nonlinear filtering. By noting the fact that the unscented transform is generally biased when converting the radar measurements from spherical coordinates into Cartesian coordinates, a new filtering algorithm for 3D radar, called Unbiased unscented Kalman filter (UUKF), is proposed. The new algorithm is validated by Monte Carlo simulation runs. Simulation results show that the UUKF is more effective than the UKF, EKF and the Converted measurement Kalman filter (CMKF).

  6. Partial update least-square adaptive filtering

    CERN Document Server

    Xie, Bei

    2014-01-01

    Adaptive filters play an important role in the fields related to digital signal processing and communication, such as system identification, noise cancellation, channel equalization, and beamforming. In practical applications, the computational complexity of an adaptive filter is an important consideration. The Least Mean Square (LMS) algorithm is widely used because of its low computational complexity (O(N)) and simplicity in implementation. The least squares algorithms, such as Recursive Least Squares (RLS), Conjugate Gradient (CG), and Euclidean Direction Search (EDS), can converge faster a

  7. Particle Kalman Filtering: A Nonlinear Framework for Ensemble Kalman Filters

    KAUST Repository

    Hoteit, Ibrahim; Luo, Xiaodong; Pham, Dinh-Tuan; Moroz, Irene M.

    2010-01-01

    In this contribution, we present a Gaussian mixture‐based framework, called the particle Kalman filter (PKF), and discuss how the different EnKF methods can be derived as simplified variants of the PKF. We also discuss approaches to reducing the computational burden of the PKF in order to make it suitable for complex geosciences applications. We use the strongly nonlinear Lorenz‐96 model to illustrate the performance of the PKF.

  8. Carbon nanotube filters

    Science.gov (United States)

    Srivastava, A.; Srivastava, O. N.; Talapatra, S.; Vajtai, R.; Ajayan, P. M.

    2004-09-01

    Over the past decade of nanotube research, a variety of organized nanotube architectures have been fabricated using chemical vapour deposition. The idea of using nanotube structures in separation technology has been proposed, but building macroscopic structures that have controlled geometric shapes, density and dimensions for specific applications still remains a challenge. Here we report the fabrication of freestanding monolithic uniform macroscopic hollow cylinders having radially aligned carbon nanotube walls, with diameters and lengths up to several centimetres. These cylindrical membranes are used as filters to demonstrate their utility in two important settings: the elimination of multiple components of heavy hydrocarbons from petroleum-a crucial step in post-distillation of crude oil-with a single-step filtering process, and the filtration of bacterial contaminants such as Escherichia coli or the nanometre-sized poliovirus (~25 nm) from water. These macro filters can be cleaned for repeated filtration through ultrasonication and autoclaving. The exceptional thermal and mechanical stability of nanotubes, and the high surface area, ease and cost-effective fabrication of the nanotube membranes may allow them to compete with ceramic- and polymer-based separation membranes used commercially.

  9. Graphic filter library implemented in CUDA language

    OpenAIRE

    Peroutková, Hedvika

    2009-01-01

    This thesis deals with the problem of reducing computation time of raster image processing by parallel computing on graphics processing unit. Raster image processing thereby refers to the application of graphic filters, which can be applied in sequence with different settings. This thesis evaluates the suitability of using parallelization on graphic card for raster image adjustments based on multicriterial choice. Filters are implemented for graphics processing unit in CUDA language. Opacity ...

  10. Review of containment vent filter technology

    International Nuclear Information System (INIS)

    Kovach, J.L.

    1989-01-01

    The technology applied for the design and construction of containment vent filters is compiled and reviewed. The national positions leading to the selection of venting or method of filtration are extracted from position papers. Several areas of further information needs are identified

  11. Nonlinear control and filtering using differential flatness approaches applications to electromechanical systems

    CERN Document Server

    Rigatos, Gerasimos G

    2015-01-01

    This monograph presents recent advances in differential flatness theory and analyzes its use for nonlinear control and estimation. It shows how differential flatness theory can provide solutions to complicated control problems, such as those appearing in highly nonlinear multivariable systems and distributed-parameter systems. Furthermore, it shows that differential flatness theory makes it possible to perform filtering and state estimation for a wide class of nonlinear dynamical systems and provides several descriptive test cases. The book focuses on the design of nonlinear adaptive controllers and nonlinear filters, using exact linearization based on differential flatness theory. The adaptive controllers obtained can be applied to a wide class of nonlinear systems with unknown dynamics, and assure reliable functioning of the control loop under uncertainty and varying operating conditions. The filters obtained outperform other nonlinear filters in terms of accuracy of estimation and computation speed. The bo...

  12. Qualitative performance comparison of reactivity estimation between the extended Kalman filter technique and the inverse point kinetic method

    International Nuclear Information System (INIS)

    Shimazu, Y.; Rooijen, W.F.G. van

    2014-01-01

    Highlights: • Estimation of the reactivity of nuclear reactor based on neutron flux measurements. • Comparison of the traditional method, and the new approach based on Extended Kalman Filtering (EKF). • Estimation accuracy depends on filter parameters, the selection of which is described in this paper. • The EKF algorithm is preferred if the signal to noise ratio is low (low flux situation). • The accuracy of the EKF depends on the ratio of the filter coefficients. - Abstract: The Extended Kalman Filtering (EKF) technique has been applied for estimation of subcriticality with a good noise filtering and accuracy. The Inverse Point Kinetic (IPK) method has also been widely used for reactivity estimation. The important parameters for the EKF estimation are the process noise covariance, and the measurement noise covariance. However the optimal selection is quite difficult. On the other hand, there is only one parameter in the IPK method, namely the time constant for the first order delay filter. Thus, the selection of this parameter is quite easy. Thus, it is required to give certain idea for the selection of which method should be selected and how to select the required parameters. From this point of view, a qualitative performance comparison is carried out

  13. Digital Simulation of a Hybrid Active Filter - An Active Filter in Series with a Shunt Passive Filter

    OpenAIRE

    Sitaram, Mahesh I; Padiyar, KR; Ramanarayanan, V

    1998-01-01

    Active filters have long been in use for the filtering of power system load harmonics. In this paper, the digital simulation results of a hybrid active power filter system for a rectifier load are presented. The active filter is used for filtering higher order harmonics as the dominant harmonics are filtered by the passive filter. This reduces the rating of the active filter significantly. The DC capacitor voltage of the active filter is controlled using a PI controller.

  14. Application of high-pass filtering techniques on gravity and magnetic data of the eastern Qattara Depression area, Western Desert, Egypt

    Directory of Open Access Journals (Sweden)

    Hesham Shaker Zahra

    2016-06-01

    Full Text Available In this work, a reconnaissance study is presented to delineate the subsurface tectonics and lithological inferences of the eastern area of Qattara Depression using the Bouguer gravity and aeromagnetic data. To achieve this goal, several transformation techniques and filtering processes are accomplished on these maps. At first, the total intensity aeromagnetic map is processed through the application of reduction to the magnetic north pole technique. The fast Fourier transform is carried out on the gravity and RTP magnetic data for establishing and defining the residual (shallow sources. The frequency high-pass filtering is used to enhance the anomaly wavelengths associated with the shallow sources. The used processing techniques are the polynomial surface fitting enhancement, Laplacian, Strike Filtering, Enhancement Utilization, Suppression Utilization, Butterworth Filtering Utilization, Butterworth high-pass filter, Euler’s deconvolution and forward modeling. The equivalent depths of the isolated short wavelength anomalies are 0.759 and 0.340 km below the flight surface, and the depths of the intermediate wavelength anomalies are 1.28 and 2.00 km for the gravity and magnetic data, respectively. Finally, the quantitative interpretations of the Bouguer gravity and RTP magnetic maps of the study area, reflect the occurrence of the various types of structures and their components. The main tectonic deformations of the study area have NNW–SSE, NNE–SSW, NE–SW, NW–SE and E–W trends.

  15. Bonded carbon or ceramic fiber composite filter vent for radioactive waste

    Science.gov (United States)

    Brassell, Gilbert W.; Brugger, Ronald P.

    1985-02-19

    Carbon bonded carbon fiber composites as well as ceramic or carbon bonded ceramic fiber composites are very useful as filters which can separate particulate matter from gas streams entraining the same. These filters have particular application to the filtering of radioactive particles, e.g., they can act as vents for containers of radioactive waste material.

  16. A nowcasting technique based on application of the particle filter blending algorithm

    Science.gov (United States)

    Chen, Yuanzhao; Lan, Hongping; Chen, Xunlai; Zhang, Wenhai

    2017-10-01

    To improve the accuracy of nowcasting, a new extrapolation technique called particle filter blending was configured in this study and applied to experimental nowcasting. Radar echo extrapolation was performed by using the radar mosaic at an altitude of 2.5 km obtained from the radar images of 12 S-band radars in Guangdong Province, China. The first bilateral filter was applied in the quality control of the radar data; an optical flow method based on the Lucas-Kanade algorithm and the Harris corner detection algorithm were used to track radar echoes and retrieve the echo motion vectors; then, the motion vectors were blended with the particle filter blending algorithm to estimate the optimal motion vector of the true echo motions; finally, semi-Lagrangian extrapolation was used for radar echo extrapolation based on the obtained motion vector field. A comparative study of the extrapolated forecasts of four precipitation events in 2016 in Guangdong was conducted. The results indicate that the particle filter blending algorithm could realistically reproduce the spatial pattern, echo intensity, and echo location at 30- and 60-min forecast lead times. The forecasts agreed well with observations, and the results were of operational significance. Quantitative evaluation of the forecasts indicates that the particle filter blending algorithm performed better than the cross-correlation method and the optical flow method. Therefore, the particle filter blending method is proved to be superior to the traditional forecasting methods and it can be used to enhance the ability of nowcasting in operational weather forecasts.

  17. A tool for filtering information in complex systems

    Science.gov (United States)

    Tumminello, M.; Aste, T.; Di Matteo, T.; Mantegna, R. N.

    2005-07-01

    We introduce a technique to filter out complex data sets by extracting a subgraph of representative links. Such a filtering can be tuned up to any desired level by controlling the genus of the resulting graph. We show that this technique is especially suitable for correlation-based graphs, giving filtered graphs that preserve the hierarchical organization of the minimum spanning tree but containing a larger amount of information in their internal structure. In particular in the case of planar filtered graphs (genus equal to 0), triangular loops and four-element cliques are formed. The application of this filtering procedure to 100 stocks in the U.S. equity markets shows that such loops and cliques have important and significant relationships with the market structure and properties. This paper was submitted directly (Track II) to the PNAS office.Abbreviations: MST, minimum spanning tree; PMFG, Planar Maximally Filtered Graph; r-clique, clique of r elements.

  18. Detection of pulmonary nodules on lung X-ray images. Studies on multi-resolutional filter and energy subtraction images

    International Nuclear Information System (INIS)

    Sawada, Akira; Sato, Yoshinobu; Kido, Shoji; Tamura, Shinichi

    1999-01-01

    The purpose of this work is to prove the effectiveness of an energy subtraction image for the detection of pulmonary nodules and the effectiveness of multi-resolutional filter on an energy subtraction image to detect pulmonary nodules. Also we study influential factors to the accuracy of detection of pulmonary nodules from viewpoints of types of images, types of digital filters and types of evaluation methods. As one type of images, we select an energy subtraction image, which removes bones such as ribs from the conventional X-ray image by utilizing the difference of X-ray absorption ratios at different energy between bones and soft tissue. Ribs and vessels are major causes of CAD errors in detection of pulmonary nodules and many researches have tried to solve this problem. So we select conventional X-ray images and energy subtraction X-ray images as types of images, and at the same time select ∇ 2 G (Laplacian of Guassian) filter, Min-DD (Minimum Directional Difference) filter and our multi-resolutional filter as types of digital filters. Also we select two evaluation methods and prove the effectiveness of an energy subtraction image, the effectiveness of Min-DD filter on a conventional X-ray image and the effectiveness of multi-resolutional filter on an energy subtraction image. (author)

  19. Unified Digital Periodic Signal Filters for Power Converter Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Xin, Zhen; Zhou, Keliang

    2017-01-01

    Periodic signal controllers like repetitive and resonant controllers have demonstrated much potential in the control of power electronic converters, where periodic signals (e.g., ac voltages and currents) can be precisely regulated to follow references. Beyond the control of periodic signals, ac...... signal processing (e.g., in synchronization and pre-filtering) is also very important for power converter systems. Hence, this paper serves to unify digital periodic signal filters so as to maximize their roles in power converter systems (e.g., enhance the control of ac signals). The unified digital...... periodic signal filters behave like a comb filter, but it can also be configured to selectively filter out the harmonics of interest (e.g., the odd-order harmonics in single-phase power converter systems). Moreover, a virtual variable-sampling-frequency unit delay that enables frequency adaptive periodic...

  20. Applicability study on a ceramic filter with hot-test conducted in a BWR plant

    International Nuclear Information System (INIS)

    Yamada, K.; Shirai, T.; Wada, M.; Nakamizo, H.

    1991-01-01

    Radioactive crud removal and filtration performance recovery by backwashing were examined with a BWR plant pool water using a ceramic filter element, 0.1 micron in nominal pore size and 0.2m 2 in filtration area. Totally 1114 hours filter operation were accumulated. Ten backwashings were accomplished during the test period. The following results were obtained. (1) Radioactive crud concentration in the filter effluent remained below 10 5 Bq/m 3 . (2) Both pressure loss through the filter and dose rate at the filter vessel surface were recovered to the initial level by each backwashing. The surface dose rate after backwashing was approximately 0.01mSv/h. According to these test results, it is confirmed that the ceramic filter is appropriate for the treatment of highly crud concentrated radioactive liquid, which is generated in nuclear facilities, such as spent fuel reprocessing plants. (author)