WorldWideScience

Sample records for selected vegetable crops

  1. Nitrogen accumulation profiles of selected grain and vegetable crops: A bibliography (1940-1992)

    Energy Technology Data Exchange (ETDEWEB)

    Meischen, S.J.; Byrd, K.R.

    1994-10-01

    A bibliography of nitrogen accumulation profile data for 25 vegetable and grain crops reported between 1940 and 1992 is presented. The selected crops are asparagus, broccoli, brussels sprouts, cabbage, carrots, cauliflower, celery, corn, cotton, cucumber, field bean, field pea, garlic, lettuce, onions, and peppers.

  2. Handling Procedures of Vegetable Crops

    Science.gov (United States)

    Perchonok, Michele; French, Stephen J.

    2004-01-01

    The National Aeronautics and Space Administration (NASA) is working towards future long duration manned space flights beyond low earth orbit. The duration of these missions may be as long as 2.5 years and will likely include a stay on a lunar or planetary surface. The primary goal of the Advanced Food System in these long duration exploratory missions is to provide the crew with a palatable, nutritious, and safe food system while minimizing volume, mass, and waste. Vegetable crops can provide the crew with added nutrition and variety. These crops do not require any cooking or food processing prior to consumption. The vegetable crops, unlike prepackaged foods, will provide bright colors, textures (crispy), and fresh aromas. Ten vegetable crops have been identified for possible use in long duration missions. They are lettuce, spinach, carrot, tomato, green onion, radish, bell pepper, strawberries, fresh herbs, and cabbage. Whether these crops are grown on a transit vehicle (e.g., International Space Station) or on the lunar or planetary surface, it will be necessary to determine how to safely handle the vegetables while maintaining acceptability. Since hydrogen peroxide degrades into water and oxygen and is generally recognized as safe (GRAS), hydrogen peroxide has been recommended as the sanitizer. The objective of th is research is to determine the required effective concentration of hydrogen peroxide. In addition, it will be determined whether the use of hydrogen peroxide, although a viable sanitizer, adversely affects the quality of the vegetables. Vegetables will be dipped in 1 % hydrogen peroxide, 3% hydrogen peroxide, or 5% hydrogen peroxide. Treated produce and controls will be stored in plastic bags at 5 C for up to 14 days. Sensory, color, texture, and total plate count will be measured. The effect on several vegetables including lettuce, radish, tomato and strawberries has been completed. Although each vegetable reacts to hydrogen peroxide differently, the

  3. Valuation of vegetable crops produced in the UVI Commercial Aquaponic System

    Directory of Open Access Journals (Sweden)

    Donald S. Bailey

    2017-08-01

    Full Text Available The UVI Commercial Aquaponic System is designed to produce fish and vegetables in a recirculating aquaculture system. The integration of these systems intensifies production in a small land area, conserves water, reduces waste discharged into the environment, and recovers nutrients from fish production into valuable vegetable crops. A standard protocol has been developed for the production of tilapia yielding 5 MT per annum. The production of many vegetable crops has also been studied but, because of specific growth patterns and differences of marketable product, no single protocol can be promoted. Each crop yields different value per unit area and this must be considered when selecting varieties to produce to provide the highest returns to the farmer. Variables influencing the value of a crop are density (plants/m2, yield (unit or kg, production period (weeks and unit value ($. Combining these variables to one unit, $/m2/week, provides a common point for comparison among crops. Farmers can focus production efforts on the most valuable crops or continue to produce a variety of crops meeting market demand with the knowledge that each does not contribute equally to profitability.

  4. A bioenergy feedstock/vegetable double-cropping system

    Science.gov (United States)

    Certain warm-season vegetable crops may lend themselves to bioenergy double-cropping systems, which involve growing a winter annual bioenergy feedstock crop followed by a summer annual crop. The objective of the study was to compare crop productivity and weed communities in different pumpkin product...

  5. Review of Alternative Management Options of Vegetable Crop Residues to Reduce Nitrate Leaching in Intensive Vegetable Rotations

    Directory of Open Access Journals (Sweden)

    Laura Agneessens

    2014-12-01

    Full Text Available Vegetable crop residues take a particular position relative to arable crops due to often large amounts of biomass with a N content up to 200 kg N ha−1 left behind on the field. An important amount of vegetable crops are harvested during late autumn and despite decreasing soil temperatures during autumn, high rates of N mineralization and nitrification still occur. Vegetable crop residues may lead to considerable N losses through leaching during winter and pose a threat to meeting water quality objectives. However, at the same time vegetable crop residues are a vital link in closing the nutrient and organic matter cycle of soils. Appropriate and sustainable management is needed to harness the full potential of vegetable crop residues. Two fundamentally different crop residue management strategies to reduce N losses during winter in intensive vegetable rotations are reviewed, namely (i on-field management options and modifications to crop rotations and (ii removal of crop residues, followed by a useful and profitable application.

  6. Monitoring of nitrate content of vegetable crops in Uzhgorod district

    Directory of Open Access Journals (Sweden)

    I.I. Mykaylo

    2013-09-01

    Full Text Available The aim of our research was to conduct a monitoring study of nitrate content in plant products of Uzhgorod district and to accomplish comparative analysis of the survey results in different periods of crop ripening. Selection of vegetable samples was carried out in Uzhgorod district in the early spring and summer periods. Determination of the nitrate content was performed using an ion-selective method at the Chemical and Toxicological Department of the Regional State Veterinary Medicine Laboratory in the Transcarpathian region of Ukraine. Vegetables were tested for nitrate content using the ion-selective method with the laboratory ion meter AI-123. Core investigation samples were crushed and homogenized. A 10.0 g weight of the investigated product, which was prepared according to MIR № 5048-89, was placed in a flat-bottomed or a conical flask, which was then filled with 50 cm3 potassium alumens solution and shaken in a shaking-machine for 5 minutes and then transferred into a measuring glass. The nitrate weight fraction in milligrams per kilogram was obtained together with the weight concentration value of nitrate ions in solution. For our study we selected vegetables grown in both public and private gardens of Uzhgorod district, namely: common onions, radishes, garden parsley, cucumbers, tomatoes, bell peppers, white cabbages, carrots and table beets. 25 samples were selected for each type of vegetable. Nitrate content was determined in the early spring growing period (from February 9 to May 27, 2011 and in the summer growing period (from June 3 to September 28, 2011, because in these particular periods we recorded the most frequent cases of food poisoning from nitrates among the population of the region. A clear trend has been traced towards increasing the nitrate content in food plant production, at levels which exceed the maximum permissible concentration (MPC. The results of our research demonstrate that the nitrate content exceeded the

  7. Appraisal of venomous metals in selected crops and vegetables from industrial areas of the Punjab Province

    International Nuclear Information System (INIS)

    Husaini, S.N.; Matiullah; Arif, M.

    2011-01-01

    Due to the inadequate water sources, usually sewerage water and industrial effluents are being use for irrigation of the agricultural land around the industrial areas in Pakistan wherein crops and vegetables are cultivated. As untreated effluents contain heavy elements, toxic metals and organic pollutants that may find its way through food chain to general public and may cause health hazards. It is, therefore, mandatory to assess the toxic metals in such crops and vegetables. In this regard, samples of corn, millet, cabbage, spinach and potato were collected within the vicinity of industrial areas of the Faisalabad and Gujranwala regions. The food samples were analyzed using neutron activation analysis (NAA) technique. The highest concentration values of Arsenic (1.9 ± 0.1 μg/g) and Cobalt (0.85 ± 0.01 μg/g) were found in cabbage whereas Manganese (91.6 ± 0.2 μg/g), Antimony (0.15 ± 0.03 μg/g) and Selenium (1.1 ± 0.1 μg/g) were observed in spinach and Chromium (9.63 ± 1.3 μg/g) was found in millet crop. The observed concentrations of all the toxic and heavy metals in crops and vegetables are higher than those reported in the literature. (author)

  8. Biodiversity in vegetable crops, a heritage to save: the case of Puglia region

    Directory of Open Access Journals (Sweden)

    Antonio Elia

    2013-03-01

    Full Text Available The biodiversity in vegetable crops is composed by the genetic diversity, as species diversity (interspecific diversity and as diversity of genes within a species (intraspecific diversity referring to the vegetable grown varieties, and by the diversity of agro-ecosystems (agrobiodiversity. Intraspecific diversity is very ample in vegetable crops and is not reflected, at least not to the same extent, in other groups of crops. The labour operated by farmers over centuries of selection has led to the creation of a plurality of local varieties, following domestication of cultivated forms, and wide agro-biodiversity, a precious heritage both from a genetic and a cultural-historical point of view. The Italian National Statistical Institute (ISTAT takes into account in its annual survey about forty vegetable crops. Intraspecific diversity in vegetables can also be analyzed by examining the information contained in the common catalogue of varieties of vegetable species. The 27 EU Countries as a whole had entered 19,576 varieties of vegetables in the common catalogue as of August 2011. The Netherlands, which represents 8% of total vegetable production in the EU, has registered 7826 varieties. Italy and Spain, which predominate in Europe for the production of vegetables, have registered only 8% (1513 and 9% (1672 of the total varieties, respectively. As a whole 54% of the European varieties entered in the catalogue are hybrids. Puglia, which contributes with about 22% to the Italian vegetable growing area, is among the leading regions for the productions of broccoli raab, celery, parsley, processing tomato, artichoke, endive and escarole, cabbage, fennel, lettuce, cucumber, cauliflower and broccoli, early potato, and asparagus (all with more than 20% of the national area. The region is particularly rich in local vegetable varieties, obtained by farmers themselves after repeated simple selection procedures generation after generation. The local varieties

  9. Multivariate ordination identifies vegetation types associated with spider conservation in brassica crops

    Directory of Open Access Journals (Sweden)

    Hafiz Sohaib Ahmed Saqib

    2017-10-01

    Full Text Available Conservation biological control emphasizes natural and other non-crop vegetation as a source of natural enemies to focal crops. There is an unmet need for better methods to identify the types of vegetation that are optimal to support specific natural enemies that may colonize the crops. Here we explore the commonality of the spider assemblage—considering abundance and diversity (H—in brassica crops with that of adjacent non-crop and non-brassica crop vegetation. We employ spatial-based multivariate ordination approaches, hierarchical clustering and spatial eigenvector analysis. The small-scale mixed cropping and high disturbance frequency of southern Chinese vegetation farming offered a setting to test the role of alternate vegetation for spider conservation. Our findings indicate that spider families differ markedly in occurrence with respect to vegetation type. Grassy field margins, non-crop vegetation, taro and sweetpotato harbour spider morphospecies and functional groups that are also present in brassica crops. In contrast, pumpkin and litchi contain spiders not found in brassicas, and so may have little benefit for conservation biological control services for brassicas. Our findings also illustrate the utility of advanced statistical approaches for identifying spatial relationships between natural enemies and the land uses most likely to offer alternative habitats for conservation biological control efforts that generates testable hypotheses for future studies.

  10. Risk elements in selected types of vegetables

    Directory of Open Access Journals (Sweden)

    Ľuboš Harangozo

    2016-12-01

    Full Text Available Vegetable has an important role in human nutrition. Various parts of the plants have been part of the human diet since the beginning. Vegetables have a number of properties that make its consumption very healthful. It not only is a good source of vitamins, minerals and fiber but also contains protective components so called phytonutrients, has an antioxidant and antimicrobial effects. Daily intake of vegetables offers many health benefits, helps to improve health for example the function of digestive and immune system, reduces the risk of various diseases and so we should take care to its regular consumption. It is widely used, except that it is the basic raw material for the preparation of foods and is also an important raw material for the processing industry. Nowadays has become environmental pollution by heavy metals as a big problem. The contamination of water, soil as well as air pollution by heavy metals negatively affects agricultural production and production of non-harmful to health, safe and quality food, which may be adverse effects on human health. Therefore, it is important that we devote this issue more attention. The aim of this work was to identify and determine content of heavy metals in selected vegetables. Defined objectives have been achieved by analyzing of selected species samples of root from brassica vegetables: carrot (Daucus carota L. ssp. sativus, parsley (Petroselinum hortesne HOFFM conv. radicosum, kohlrabi (Brassica oleracea L. var. gongylodes, celery (Apium graveolens L. var. rapaceum and beetroot (Beta vulgaris L. var. conditiva ssp. vulgaris. The crops were bought in local market. The obtained results were compared with the results obtained from analyzes of vegetables that were grown in home conditions respectively from markets of local growers. All crops were grown in Slovak Republic. By using Varian AA 240FS and AAS method were analyzed the contents of risk metals in selected vegetables. It was confirmed that

  11. Weed Identification and Control in Vegetable Crops.

    Science.gov (United States)

    Ferretti, Peter A., Comp.

    This agriculture extension service publication from Pennsylvania State University examines weed control and identification in vegetable crops. Contents include: (1) Types of weeds; (2) Reducing losses caused by weeds, general control methods and home garden weed control; (3) How herbicides are used; (4) Specific weeds in vegetable plantings; and…

  12. Selection on crop-derived traits and QTL in sunflower (Helianthus annuus) crop-wild hybrids under water stress.

    Science.gov (United States)

    Owart, Birkin R; Corbi, Jonathan; Burke, John M; Dechaine, Jennifer M

    2014-01-01

    Locally relevant conditions, such as water stress in irrigated agricultural regions, should be considered when assessing the risk of crop allele introgression into wild populations following hybridization. Although research in cultivars has suggested that domestication traits may reduce fecundity under water stress as compared to wild-like phenotypes, this has not been investigated in crop-wild hybrids. In this study, we examine phenotypic selection acting on, as well as the genetic architecture of vegetative, reproductive, and physiological characteristics in an experimental population of sunflower crop-wild hybrids grown under wild-like low water conditions. Crop-derived petiole length and head diameter were favored in low and control water environments. The direction of selection differed between environments for leaf size and leaf pressure potential. Interestingly, the additive effect of the crop-derived allele was in the direction favored by selection for approximately half the QTL detected in the low water environment. Selection favoring crop-derived traits and alleles in the low water environment suggests that a subset of these alleles would be likely to spread into wild populations under water stress. Furthermore, differences in selection between environments support the view that risk assessments should be conducted under multiple locally relevant conditions.

  13. The Potential Research of Catch Crop in Decrease Soil Nitrate Under Greenhouse Vegetable Production

    Directory of Open Access Journals (Sweden)

    YIN Xing

    2015-06-01

    Full Text Available In order to clarify the impact of catch crops on greenhouse vegetable soil nitrate, explore the mechanism of barrier and controll soil nitrogen leaching losses in greenhouse, and provide a theoretical basis for control nitrogen leaching and prevention of groundwater pollution, this study selected the traditional greenhouse vegetable rotation system in North China plain as research subjects, using field situ remediation technologies on deep-root planting catch crops in the vegetable fallow period by sweet corn, Achyranthes bidentata and white Chrysanthemum. The results showed that: nitrogen content and nitrogen uptake of sweet corn and sweet corn with Achyranthes bidentata intercropping were the highest, respectively 20.11 t·hm-2, 19.62 t·hm-2 and 240.34 kg·hm-2, 287.56 kg·hm-2, significantly higher than white Chrysanthemum. The density of root length and root dry weight decreased with soil depth in the profiles, root length density was demonstrated in order as: intercropping sweet corn> sweet corn> white Chrysanthemum> intercropping Achyranthes bidentata blume. The reduction of NO3--N of sweet corn reached 907.87 kg·hm-2 in soil profile 0~200 cm, significantly higher than sweet corn and hyssop intercropping and white Chrysanthemums. In the interim period of vegetable crop rotation, planting catch crops could effectively reduce nitrate accumulation in the soil, control the soil profile nitrate leaching down.

  14. Vegetable Crop Pests. MEP 311.

    Science.gov (United States)

    Kantzes, James G.; And Others

    As part of a cooperative extension service series by the University of Maryland, this publication introduces the identification and control of common agricultural pests of vegetable crops. The first of the five sections defines "pest" and "weed" and generally introduces different kinds of pests in the categories of insects,…

  15. Tropical rotation crops influence nematode densities and vegetable yields.

    Science.gov (United States)

    McSorley, R; Dickson, D W; de Brito, J A; Hochmuth, R C

    1994-09-01

    The effects of eight summer rotation crops on nematode densities and yields of subsequent spring vegetable crops were determined in field studies conducted in north Florida from 1991 to 1993. The crop sequence was as follows: (i) rotation crops during summer 1991; (ii) cover crop of rye (Secale cereale) during winter 1991-92; (iii) 'Lemondrop L' squash (Cucurbita pepo) during spring 1992; (iv) rotation crops during summer 1992; (v) rye during winter 1992-93; (vi) 'Classic' eggplant (Solanum melongena) during spring 1993. The eight summer crop rotation treatments were as follows: 'Hale' castor (Ricinus communis), velvetbean (Mucuna deeringiana), sesame (Sesamum indicum), American jointvetch (Aeschynomene americana), weed fallow, 'SX- 17' sorghum-sudangrass (Sorghum bicolor x S. sudanense), 'Kirby' soybean (Glycine max), and 'Clemson Spineless' okra (Hibiscus esculentus) as a control. Rotations with castor, velvetbean, American jointvetch, and sorghum-sudangrass were most effective in maintaining the lowest population densities of Meloidogyne spp. (a mixture of M. incognita race 1 and M. arenaria race 1), but Paratrichodorus minor built up in the sorghum-sudangrass rotation. Yield of squash was lower (P crops evaluated here may be useful for managing nematodes in the field and for improving yields of subsequent vegetable crops.

  16. Assessing potential dietary toxicity of heavy metals in selected vegetables and food crops.

    Science.gov (United States)

    Islam, Ejaz ul; Yang, Xiao-e; He, Zhen-li; Mahmood, Qaisar

    2007-01-01

    Heavy metals, such as cadmium, copper, lead, chromium and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. Their presence in the atmosphere, soil and water, even in traces can cause serious problems to all organisms, and heavy metal bioaccumulation in the food chain especially can be highly dangerous to human health. Heavy metals enter the human body mainly through two routes namely: inhalation and ingestion, ingestion being the main route of exposure to these elements in human population. Heavy metals intake by human populations through food chain has been reported in many countries. Soil threshold for heavy metal toxicity is an important factor affecting soil environmental capacity of heavy metal and determines heavy metal cumulative loading limits. For soil-plant system, heavy metal toxicity threshold is the highest permissible content in the soil (total or bioavailable concentration) that does not pose any phytotoxic effects or heavy metals in the edible parts of the crops does not exceed food hygiene standards. Factors affecting the thresholds of dietary toxicity of heavy metal in soil-crop system include: soil type which includes soil pH, organic matter content, clay mineral and other soil chemical and biochemical properties; and crop species or cultivars regulated by genetic basis for heavy metal transport and accumulation in plants. In addition, the interactions of soil-plant root-microbes play important roles in regulating heavy metal movement from soil to the edible parts of crops. Agronomic practices such as fertilizer and water managements as well as crop rotation system can affect bioavailability and crop accumulation of heavy metals, thus influencing the thresholds for assessing dietary toxicity of heavy metals in the food chain. This paper reviews the phytotoxic effects and bioaccumulation of heavy metals in vegetables and food crops and assesses soil heavy metal thresholds for potential dietary

  17. Heavy metal toxicities in vegetable crops. VI. The effect of potassium and calcium concentration in the nutrient solution on manganese toxicities in vegetable crops

    Energy Technology Data Exchange (ETDEWEB)

    Osawa, T; Ikeda, H

    1977-01-01

    Eight species of vegetable crops were grown in solution culture in order to investigate the effect of potassium and calcium concentration in the nutrient solution on manganese toxicities in vegetable crops. Manganese was supplied at levels of 0.5, 30, and 100 ppm. At each manganese level potassium or calcium was supplied at rates of 2, 6, and 18 me/l. The pH of the nutrient solution was adjusted to 5. Manganese excess induced interveinal chlorosis on upper leaves in bean, eggplant, pepper, and spinach, and marginal chlorosis on lower leaves in cabbage, lettuce, and celery. In Welsh onions chlorosis was induced on lower leaves. Increasing the supply of potassium and calcium reduced the severity of manganese-induced chlorosis. This beneficial effect was generally more marked with calcium than with potassium. Increasing the supply of potassium and calcium was effective in alleviating the growth reduction of vegetable crops due to manganese excess. This effect also was more marked with calcium than with potassium. With increasing manganese level in the nutrient solution the manganese concentration in leaves of vegetable crops increased. Increasing the supply of potassium and calcium inhibited excessive accumulation of manganese in leaves. The influence of calcium was stronger than that of potassium. In any of the vegetable crops tested, regardless of potassium and calcium treatments, manganese concentration in leaves was closely related to manganese toxicities; the more the accumulation of manganese in leaves increased, the more the severity of manganese-induced chlorosis and growth reduction increased.

  18. Mutation breeding in vivo and in vitro in vegetatively propagated crops

    International Nuclear Information System (INIS)

    Tulmann Neto, A.; Latado, R.R.; Tsai, S.M.; Derbyshire, M.T.; Yemma, A.F.; Scarpare Filho, J.A.; Ceravolo, L.; Rossi, A.C.; Namekata, T.; Pompeu, J. Jr.; Figueiredo, J.O.; Pio, R.; Tobias Domingues, E.; Santos, P.C.; Boliani, A.

    2001-01-01

    Mutation breeding in vivo and/or in vitro in vegetatively propagated crops as well as somaclonal variation can be used in Brazil in several crops to increase the genetic variability in characteristics of high importance. This was the objective of this research using ornamentals, citrus and bananas. Somaclonal variants can also be useful in these crops, based on the preliminary results observed in banana (Mycosphaerella musicola); where a short plant variant was selected in Brazil and the mutant resistant to yellow sigatoka, selected in Venezuela, showed resistance also in Brazil. Despite the increase in genetic variability in M 1 V 4 generation obtained after in vitro irradiation of meristems in banana, mutants resistant or tolerant to Fusarium were not selected, perhaps due to the limited number of plants evaluated. In citrus the first results from yield trials showed that following bud irradiation, it was possible to select plants of interest, e.g. mutants with a reduced number of seeds in the fruits. In ornamentals mutants induced by gamma rays in this project were released to the farmers. The results obtained in this research showed that biotechnology is a powerful tool that can be used in several ways in association with mutation breeding. (author)

  19. Root-Knot Nematode Management in Double-Cropped Plasticulture Vegetables

    OpenAIRE

    Desaeger, J. A.; Csinos, A. S.

    2006-01-01

    Combination treatments of chisel-injected fumigants (methyl bromide, 1,3-D, metam sodium, and chloropicrin) on a first crop, followed by drip-applied fumigants (metam sodium and 1,3-D ± chloropicrin) on a second crop, with and without oxamyl drip applications were evaluated for control of Meloidogyne incognita in three different tests (2002 to 2004) in Tifton, GA. First crops were eggplant or tomato, and second crops were cantaloupe, squash, or jalapeno pepper. Double-cropped vegetables suffe...

  20. Soil borne gungi associated with different vegetable crop in sindh, pakistan

    International Nuclear Information System (INIS)

    Usman, F.; Abid, M.; Hussain, F.

    2014-01-01

    Different soil-borne fungi are responsible for reducing the yield of vegetables throughout the world including Pakistan. There are several soil borne fungal pathogens which aggressively infect vegetable crops. Surveys conducted during September 2010 to October 2011, demonstrated that a great diversity of soil borne plant pathogens associated with different vegetables prevail in vegetable growing areas of Sindh such as Tando Allahayar, Mirpurkhas, Ghotaki, Khairpur, Kunri, Umerkot and Karachi, etc. Our study noted in total thirteen different genera of fungi isolated from vegetable crops (cabbage, brinjal, tomato, radish and spinach). Isolated fungi identified included Alternaria solani, Aspergillus flavus, A. fumigatus, A. niger, A. oryzae, A. terrus, Aeromonium fusidiocles, Cladosporium sp., Drechselra hawaiiensis, Eurotium berbanbrum, Fusarium oxysporum, Macrophomina phaseolina, Penicillium commune, Rhizoctonia solani, Trichoderma harzianum, Ulocladium sp., and unidentified black mycelium from the soil and roots of vegetable crops. In addition, it was found that soil is commonly infected by soil-borne fungi and eventually results in heavy losses of vegetable yield in the vegetable growing areas of Sindh province. The infection rapidly increased due to many factors such as, presence of moisture, excess of water and infection may be caused by winds, gales and dust storms as well as by mechanical vectors. (author)

  1. Estimation of Vegetable Crop Parameter by Multi-temporal UAV-Borne Images

    Directory of Open Access Journals (Sweden)

    Thomas Moeckel

    2018-05-01

    Full Text Available 3D point cloud analysis of imagery collected by unmanned aerial vehicles (UAV has been shown to be a valuable tool for estimation of crop phenotypic traits, such as plant height, in several species. Spatial information about these phenotypic traits can be used to derive information about other important crop characteristics, like fresh biomass yield, which could not be derived directly from the point clouds. Previous approaches have often only considered single date measurements using a single point cloud derived metric for the respective trait. Furthermore, most of the studies focused on plant species with a homogenous canopy surface. The aim of this study was to assess the applicability of UAV imagery for capturing crop height information of three vegetables (crops eggplant, tomato, and cabbage with a complex vegetation canopy surface during a complete crop growth cycle to infer biomass. Additionally, the effect of crop development stage on the relationship between estimated crop height and field measured crop height was examined. Our study was conducted in an experimental layout at the University of Agricultural Science in Bengaluru, India. For all the crops, the crop height and the biomass was measured at five dates during one crop growth cycle between February and May 2017 (average crop height was 42.5, 35.5, and 16.0 cm for eggplant, tomato, and cabbage. Using a structure from motion approach, a 3D point cloud was created for each crop and sampling date. In total, 14 crop height metrics were extracted from the point clouds. Machine learning methods were used to create prediction models for vegetable crop height. The study demonstrates that the monitoring of crop height using an UAV during an entire growing period results in detailed and precise estimates of crop height and biomass for all three crops (R2 ranging from 0.87 to 0.97, bias ranging from −0.66 to 0.45 cm. The effect of crop development stage on the predicted crop height was

  2. Remotely sensed vegetation indices for seasonal crop yields predictions in the Czech Republic

    Science.gov (United States)

    Hlavinka, Petr; Semerádová, Daniela; Balek, Jan; Bohovic, Roman; Žalud, Zdeněk; Trnka, Miroslav

    2015-04-01

    Remotely sensed vegetation indices by satellites are valuable tool for vegetation conditions assessment also in the case of field crops. This study is based on the use of NDVI (Normalized Difference Vegetation Index) and EVI (Enhanced Vegetation Index) derived from MODIS (Moderate Resolution Imaging Spectroradiometer) aboard Terra satellite. Data available from the year 2000 were analyzed and tested for seasonal yields predictions within selected districts of the Czech Republic (Central Europe). Namely the yields of spring barley, winter wheat and oilseed winter rape during the period from 2000 to 2014 were assessed. Observed yields from 14 districts (NUTS 4) were collected and thus 210 seasons were included. Selected districts differ considerably in their soil fertility and terrain configuration and represent transect across various agroclimatic conditions (from warm and dry to relative cool and wet regions). Two approaches were tested: 1) using of composite remotely sensed data (available in 16 day time step) provided by the USGS (https://lpdaac.usgs.gov/); 2) using daily remotely sensed data in combination with originally developed smoothing method. The yields were successfully predicted based on established regression models (remotely sensed data used as independent parameter). Besides others the impact of severe drought episodes within vegetation were identified and yield reductions at district level predicted (even before harvest). As a result the periods with the best relationship between remotely sensed data and yields were identified. The impact of drought conditions as well as normal or above normal yields of field crops could be predicted by proposed method within study region up to 30 days prior to the harvest. It could be concluded that remotely sensed vegetation conditions assessment should be important part of early warning systems focused on drought. Such information should be widely available for various users (decision makers, farmers, etc.) in

  3. Induction of Male sterile mutants in vegetable crops

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Nobuhiko [Hokkaido National Agricultural Experiment Station, Sapporo (Japan)

    1982-03-01

    The cultivars of vegetable crops in Japan are almost all F/sub 1/ hybrid lines. These hybrid cultivars are superior in yield, quality and uniformity by heterosis, and play an important role in the protection of breeder's rights. Utilization of male sterile mutants has such advantages as the reduction of cost for F/sub 1/ production by saving labor, production of better seeds, that is, pollination without emasculation and avoidance of contamination caused by self pollination. Male sterility must be used for some species in which seed production is difficult because of tiny flowers and meager seed production by artificial crossing such as carrot and onion, and those in which pollination by bag or emasculation is expensive such as tomato, and sweet pepper. However, for vegetable crop breeeding, the induction and use of genetic male sterility are more difficult than for other crops, considering the economy and efficiency of research because the type of cultivars needed changes rapidly.

  4. Induction of Male sterile mutants in vegetable crops

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Nobuhiko (Hokkaido National Agricultural Experiment Station, Sapporo (Japan))

    1982-03-01

    The cultivars of vegetable crops in Japan are almost all F/sub 1/ hybrid lines. These hybrid cultivars are superior in yield, quality and uniformity by heterosis, and play an important role in the protection of breeder's rights. Utilization of male sterile mutants has such advantages as the reduction of cost for F/sub 1/ production by saving labor, production of better seeds, that is, pollination without emasculation and avoidance of contamination caused by self pollination. Male sterility must be used for some species in which seed production is difficult because of tiny flowers and meager seed production by artificial crossing such as carrot and onion, and those in which pollination by bag or emasculation is expensive such as tomato, and sweet pepper. However, for vegetable crop breeeding, the induction and use of genetic male sterility are more difficult than for other crops, considering the economy and efficiency of research because the type of cultivars needed changes rapidly.

  5. Induction of Male sterile mutants in vegetable crops

    International Nuclear Information System (INIS)

    Nagata, Nobuhiko

    1982-01-01

    The cultivars of vegetable crops in Japan are almost all F 1 hybrid lines. These hybrid cultivars are superior in yield, quality and uniformity by heterosis, and play an important role in the protection of breeder's rights. Utilization of male sterile mutants has such advantages as the reduction of cost for F 1 production by saving labor, production of better seeds, that is, pollination without emasculation and avoidance of contamination caused by self pollination. Male sterility must be used for some species in which seed production is difficult because of tiny flowers and meager seed production by artificial crossing such as carrot and onion, and those in which pollination by bag or emasculation is expensive such as tomato, and sweet pepper. However, for vegetable crop breeeding, the induction and use of genic male sterility are more difficult than for other crops, considering the economy and efficiency of research because the type of cultivars needed changes rapidly. (Kaihara, S.)

  6. Characteristics of nitrogen balance in open-air and greenhouse vegetable cropping systems of China.

    Science.gov (United States)

    Ti, Chaopu; Luo, Yongxia; Yan, Xiaoyuan

    2015-12-01

    Nitrogen (N) loss from vegetable cropping systems has become a significant environmental issue in China. In this study, estimation of N balances in both open-air and greenhouse vegetable cropping systems in China was established. Results showed that the total N input in open-air and greenhouse vegetable cropping systems in 2010 was 5.44 and 2.60 Tg, respectively. Chemical fertilizer N input in the two cropping systems was 201 kg N ha(-1) per season (open-air) and 478 kg N ha(-1) per season (greenhouse). The N use efficiency (NUE) was 25.9 ± 13.3 and 19.7 ± 9.4% for open-air and greenhouse vegetable cropping systems, respectively, significantly lower than that of maize, wheat, and rice. Approximately 30.6% of total N input was accumulated in soils and 0.8% was lost by ammonia volatilization in greenhouse vegetable system, while N accumulation and ammonia volatilization accounted for 19.1 and 11.1%, respectively, of total N input in open-air vegetable systems.

  7. THE USE OF GENETIC RESOURCES IN BREEDING OF VEGETABLE AND MELON CROPS

    Directory of Open Access Journals (Sweden)

    V. I. Burenin

    2013-01-01

    Full Text Available The analysis of the modern homeland assortment of vegetable crops is given. The donors of the most important traits and the accessions  of vegetable and melon crops perspective for breeding from the VIR collection are shown. The short characteristic of the varieties is given.

  8. Crop Type Classification Using Vegetation Indices of RapidEye Imagery

    Science.gov (United States)

    Ustuner, M.; Sanli, F. B.; Abdikan, S.; Esetlili, M. T.; Kurucu, Y.

    2014-09-01

    Cutting-edge remote sensing technology has a significant role for managing the natural resources as well as the any other applications about the earth observation. Crop monitoring is the one of these applications since remote sensing provides us accurate, up-to-date and cost-effective information about the crop types at the different temporal and spatial resolution. In this study, the potential use of three different vegetation indices of RapidEye imagery on crop type classification as well as the effect of each indices on classification accuracy were investigated. The Normalized Difference Vegetation Index (NDVI), the Green Normalized Difference Vegetation Index (GNDVI), and the Normalized Difference Red Edge Index (NDRE) are the three vegetation indices used in this study since all of these incorporated the near-infrared (NIR) band. RapidEye imagery is highly demanded and preferred for agricultural and forestry applications since it has red-edge and NIR bands. The study area is located in Aegean region of Turkey. Radial Basis Function (RBF) kernel was used here for the Support Vector Machines (SVMs) classification. Original bands of RapidEye imagery were excluded and classification was performed with only three vegetation indices. The contribution of each indices on image classification accuracy was also tested with single band classification. Highest classification accuracy of 87, 46 % was obtained using three vegetation indices. This obtained classification accuracy is higher than the classification accuracy of any dual-combination of these vegetation indices. Results demonstrate that NDRE has the highest contribution on classification accuracy compared to the other vegetation indices and the RapidEye imagery can get satisfactory results of classification accuracy without original bands.

  9. Economic significance of Viroids in vegetable and fruit crops (Book Chapter)

    Science.gov (United States)

    Crop losses due to viroid infection occur in vegetable and field crops worldwide. In addition to potato spindle tuber viroid (PSTVd), several viroids in the family Pospiviroidae infect these crops and economic losses range from minimal to severe depending upon the viroid/host combination, the host c...

  10. Modeling Agricultural Crop Production in China using AVHRR-based Vegetation Health Indices

    Science.gov (United States)

    Yang, B.; Kogan, F.; Guo, W.; Zhiyuan, P.; Xianfeng, J.

    Weather related crop losses have always been a concern for farmers On a wider scale it has always influenced decision of Governments traders and other policy makers for the purpose of balanced food supplies trade and distribution of aid to the nations in need Therefore national policy and decision makers are giving increasing importance to early assessment of crop losses in response to weather fluctuations This presentation emphasizes utility of AVHRR-based Vegetation health index VHI for early warning of drought-related losses of agricultural production in China The VHI is a three-channel index characterizing greenness vigor and temperature of land surface which can be used as proxy for estimation of how healthy and potentially productive could be vegetation China is the largest in the world producer of grain including wheat and rice and cotton In the major agricultural areas China s crop production is very dependent on weather The VHI being a proxy indicator of weather impact on vegetation showed some correlation with productivity of agricultural crops during the critical period of their development The periods of the strongest correlation were investigated and used to build regression models where crop yield deviation from technological trend was accepted as a dependent and VHI as independent variables The models were developed for several major crops including wheat corn and soybeans

  11. The Deterioration of Morocco’s Vegetable Crop Genetic Diversity: An Analysis of the Souss-Massa Region

    Directory of Open Access Journals (Sweden)

    Stuart Alan Walters

    2018-03-01

    Full Text Available Crop domestication and breeding efforts during the last half-century in developed countries has significantly reduced the genetic diversity in all major vegetable crops grown throughout the world. This includes developing countries such as Morocco, in which more than 90% of all farms are less than 10 ha in size, which are generally maintained by subsistence farmers who try to maximize crop and animal productivity on a limited land area. Near Agadir, in the remote Anti-Atlas mountain areas of the Souss-Massa region, many small landowner vegetable growers are known to still utilize crop populations (landraces. Thus, an assessment of the current status of vegetable landraces was made in this mountainous region of Southwestern Morocco during 2014. This assessment indicated that a significant loss of vegetable crop landraces has occurred in the last 30 years in this region of Morocco. Although many vegetable crops are still maintained as landrace populations by small subsistence farmers in remote areas in the Souss-Massa region, only 31% of these farmers cultivated landraces and saved seed in the villages assessed, with the average farmer age cultivating landraces being 52 years old. Moreover, the approximated loss of vegetable crop landraces over the last 30 years was an astounding 80 to 90%. Vegetable crops notably lost during this time period included carrot (Daucus carota, fava beans (Vicia faba, melon (Cucumis melo, pea (Pisum sativum, watermelon (Citrullus lanatus, and tomato (Solanum lycopersicon. The most significant loss was tomato as no landraces of this crop were found in this region. The vegetable crop landraces that are still widely grown included carrot, melon, onion (Allium cepa, turnip (Brassica rapa var. rapa, and watermelon, while limited amounts of eggplant (Solanum melongea, fava bean, pea, pepper (Capsicum annuum, and pumpkin (Cucurbita moshata and C. maxima were found. This recent genetic deterioration will have a profound

  12. Root-knot nematode management in double-cropped plasticulture vegetables.

    Science.gov (United States)

    Desaeger, J A; Csinos, A S

    2006-03-01

    Combination treatments of chisel-injected fumigants (methyl bromide, 1,3-D, metam sodium, and chloropicrin) on a first crop, followed by drip-applied fumigants (metam sodium and 1,3-D +/- chloropicrin) on a second crop, with and without oxamyl drip applications were evaluated for control of Meloidogyne incognita in three different tests (2002 to 2004) in Tifton, GA. First crops were eggplant or tomato, and second crops were cantaloupe, squash, or jalapeno pepper. Double-cropped vegetables suffered much greater root-knot nematode (RKN) pressure than first crops, and almost-total yield loss occurred when second crops received no nematicide treatment. On a first crop of eggplant, all fumigants provided good nematode control and average yield increases of 10% to 15 %. On second crops, higher application rates and fumigant combinations (metam sodium and 1,3-D +/- chloropicrin) improved RKN control and increased yields on average by 20% to 35 % compared to the nonfumigated control. Oxamyl increased yields of the first crop in 2003 on average by 10% to 15% but had no effect in 2004 when RKN failed to establish itself. On double-cropped squash in 2003, oxamyl following fumigation provided significant additional reduction in nematode infection and increased squash yields on average by 30% to 75%.

  13. Sustainable irrigation and nitrogen management of fertigated vegetable crops

    NARCIS (Netherlands)

    Thompson, R.B.; Incrocci, L.; Voogt, W.; Pardossi, A.; Magán, J.J.

    2017-01-01

    Fertigation in combination with drip irrigation is being increasingly used in vegetable crop production. From a nutrient management perspective, this combination provides the technical capacity for precise nitrogen (N) nutrition, both spatially and temporally. With these systems, N and other

  14. SO/sub 2/ dose-response sensitivity classification data for crops and natural vegetation species

    Energy Technology Data Exchange (ETDEWEB)

    Irving, P.M.; Ballou, S.W.

    1980-09-01

    Over the past several years studies have been made on the interaction of sulfur dioxide (SO/sub 2/) and vegetation by performing field research and by developing analytical procedures for applying field observation data to energy impact assessments. As a result of this work, numerous reports have been prepared on crop-pollutant interactions, such as dose-response data; on the applications of such data to screening approaches for identifying crops at risk; and on models that predict crop yield reductions from point source emissions of SO/sub 2/. Data that were used for these studies, such as the crop-at-risk screening procedure, are presented in this report. Maps are also presented that show the national distribution of SO/sub 2/-sensitive crops and natural vegetation.

  15. Assessing lead thresholds for phytotoxicity and potential dietary toxicity in selected vegetable crops.

    Science.gov (United States)

    Hong, C L; Jia, Y B; Yang, X E; He, Z L; Stoffella, P J

    2008-04-01

    Lead tolerance and accumulation in shoots and edible parts varied with crop species and soil type. The critical Pb concentrations at 10% yield reduction were 24.71, 28.25, and 0.567 mg kg(-1) for pakchoi, celery, and hot pepper, respectively under hydroponic conditions, whereas were 13.1, 3.83, 0.734 mg kg(-1) grown in the Inceptisol and 31.7, 30.0, 0.854 mg kg(-1) in the Alluvial soil, respectively. Based on the threshold of human dietary toxicity for Pb, the critical levels of soil available Pb for pakchoi, celery, and hot pepper were 5.07, 8.06, and 0.48 mg kg(-1) for the Inceptisol, and 1.38, 1.47, and 0.162 mg kg(-1) for the Alluvial soil, respectively. Similarly, the total soil Pb thresholds were different from vegetable species and soil types.

  16. Potential of in vitro mutation breeding for the improvement of vegetatively propagated crop plants

    International Nuclear Information System (INIS)

    Constantin, M.J.

    1984-01-01

    Significant progress has been realized in a number of technologies (e.g., protoplast cultures), collectively referred to as plant cell and tissue culture, within the last decade. In vitro culture technologies offer great potentials for the improvement of crop plants, both sexually and asexually propagated; however, to realize these potentials plant regeneration from selected cells must be achieved for the species of interest. Where whole plants have been regenerated from selected cells, the mutant trait was expressed in some but not in all cases, and the inheritance patterns included maternal, recessive, semi-dominant and dominant (epigenetic events have also been reported). Improved cultivars of sugarcane have been developed from in vitro culture selections. In vitro mutation breeding can be done using an array of physical and chemical mutagens that has been found to be effective in the treatment of seeds, pollen, vegetative plant parts and growing plants. Selection at the cell level for a range of mutant traits has been demonstrated; however, innovative selection schemes will have to be developed to select for agriculturally important traits such as date of maturity, resistance to lodging, height etc. An interdisciplinary team approach involving the combined use of in vitro culture technology, mutagenesis, and plant breeding/genetics offers the greatest probability for success in crop improvement. (author)

  17. Selection of Hyperspectral Narrowbands (HNBs) and Composition of Hyperspectral Twoband Vegetation Indices (HVIs) for Biophysical Characterization and Discrimination of Crop Types Using Field Reflectance and Hyperion-EO-1 Data

    Science.gov (United States)

    Thenkabail, Prasad S.; Mariotto, Isabella; Gumma, Murali Krishna; Middleton, Elizabeth M.; Landis, David R.; Huemmrich, K. Fred

    2013-01-01

    The overarching goal of this study was to establish optimal hyperspectral vegetation indices (HVIs) and hyperspectral narrowbands (HNBs) that best characterize, classify, model, and map the world's main agricultural crops. The primary objectives were: (1) crop biophysical modeling through HNBs and HVIs, (2) accuracy assessment of crop type discrimination using Wilks' Lambda through a discriminant model, and (3) meta-analysis to select optimal HNBs and HVIs for applications related to agriculture. The study was conducted using two Earth Observing One (EO-1) Hyperion scenes and other surface hyperspectral data for the eight leading worldwide crops (wheat, corn, rice, barley, soybeans, pulses, cotton, and alfalfa) that occupy approx. 70% of all cropland areas globally. This study integrated data collected from multiple study areas in various agroecosystems of Africa, the Middle East, Central Asia, and India. Data were collected for the eight crop types in six distinct growth stages. These included (a) field spectroradiometer measurements (350-2500 nm) sampled at 1-nm discrete bandwidths, and (b) field biophysical variables (e.g., biomass, leaf area index) acquired to correspond with spectroradiometer measurements. The eight crops were described and classified using approx. 20 HNBs. The accuracy of classifying these 8 crops using HNBs was around 95%, which was approx. 25% better than the multi-spectral results possible from Landsat-7's Enhanced Thematic Mapper+ or EO-1's Advanced Land Imager. Further, based on this research and meta-analysis involving over 100 papers, the study established 33 optimal HNBs and an equal number of specific two-band normalized difference HVIs to best model and study specific biophysical and biochemical quantities of major agricultural crops of the world. Redundant bands identified in this study will help overcome the Hughes Phenomenon (or "the curse of high dimensionality") in hyperspectral data for a particular application (e

  18. Assessing Crop Coefficients for Natural Vegetated Areas Using Satellite Data and Eddy Covariance Stations

    Directory of Open Access Journals (Sweden)

    Chiara Corbari

    2017-11-01

    Full Text Available The Food and Agricultural Organization (FAO method for potential evapotranspiration assessment is based on the crop coefficient, which allows one to relate the reference evapotranspiration of well irrigated grass to the potential evapotranspiration of specific crops. The method was originally developed for cultivated species based on lysimeter measurements of potential evapotranspiration. Not many applications to natural vegetated areas exist due to the lack of available data for these species. In this paper we investigate the potential of using evapotranspiration measurements acquired by micrometeorological stations for the definition of crop coefficient functions of natural vegetated areas and extrapolation to ungauged sites through remotely sensed data. Pastures, deciduous and evergreen forests have been considered and lower crop coefficient values are found with respect to FAO data.

  19. Assessing Crop Coefficients for Natural Vegetated Areas Using Satellite Data and Eddy Covariance Stations.

    Science.gov (United States)

    Corbari, Chiara; Ravazzani, Giovanni; Galvagno, Marta; Cremonese, Edoardo; Mancini, Marco

    2017-11-18

    The Food and Agricultural Organization (FAO) method for potential evapotranspiration assessment is based on the crop coefficient, which allows one to relate the reference evapotranspiration of well irrigated grass to the potential evapotranspiration of specific crops. The method was originally developed for cultivated species based on lysimeter measurements of potential evapotranspiration. Not many applications to natural vegetated areas exist due to the lack of available data for these species. In this paper we investigate the potential of using evapotranspiration measurements acquired by micrometeorological stations for the definition of crop coefficient functions of natural vegetated areas and extrapolation to ungauged sites through remotely sensed data. Pastures, deciduous and evergreen forests have been considered and lower crop coefficient values are found with respect to FAO data.

  20. Effects of Tropical Rotation Crops on Meloidogyne arenaria Population Densities and Vegetable Yields in Microplots.

    Science.gov (United States)

    McSorley, R; Dickson, D W; de Brito, J A; Hewlett, T E; Frederick, J J

    1994-06-01

    The effects of 12 summer crop rotation treatments on population densities of Meloidogyne arenaria race 1 and on yields of subsequent spring vegetable crops were determined in microplots. The crop sequence was: (i) rotation crops during summer 1991 ; (ii) cover crop of rye (Secale cereale) during winter 1991-92; (iii) squash (Cucurbita pepo) during spring 1992; (iv) rotation crops during summer 1992; (v) rye during winter 1992-93; (vi) eggplant (Solanum melongena) during spring 1993. The 12 rotation treatments were castor (Ricinus communis), cotton (Gossypium hirsutum), velvetbean (Mucuna deeringiana), crotalaria (Crotalaria spectabilis), fallow, hairy indigo (Indigofera hirsuta), American jointvetch (Aeschynomene americana), sorghum-sudangrass (Sorghum bicolor x S. sudanense), soybean (Glycine max), horsebean (Canavalia ensiformis), sesame (Sesamum indicum), and peanut (Arachis hypogaea). Compared to peanut, the first eight rotation treatments resulted in lower (P crops may provide a means for depressing M. arenaria population densities on a short-term basis to enhance yields in a subsequent susceptible vegetable crop.

  1. Effects of glufosinate-ammonium on off crop vegetation--interim results.

    Science.gov (United States)

    De Snoo, G R; De Jong, F M; Van Der Poll, R J; Van Der Linden, M G

    2001-01-01

    In 2000 a field study was conducted at four different locations concerning the effects of low dosages of glufosinate-ammonium, a leaf acting herbicide, on off crop vegetation. Therefore species rich road verges and ditch banks not adapted to a history of herbicide use were sprayed twice with different dosages of glufosinate-ammonium, simulating drift (0, 2, 4, 16, 32 and 64% of the maximum field dose: 800 g a.i./ha). The parameters studied were short term phytotoxic effects and the effects on biomass, species cover and number of species in autumn (Braun-Blanquêt relevés). The results show significant phytotoxic effects at all dosages of glufosinate-ammonium on the non-target vegetation. The low concentrations (2 and 4%) had most impact when applied early in the season (9% average at the 2% dosage and 22% at 4% dosage, after the first spraying. At high dosages (32 and 64%) a decrease of the biomass of the vegetation was found in August. A comparison between treatments in August shows a small decrease in species number and cover in the 64% compared to the control. In the comparison between the spring and August relevés, the decrease in the mean number of species was significantly stronger in the treated plots than in the untreated ones of 4% and higher. For monocotyledons in all treatments except 16%, a significantly stronger decrease in species number was found compared to the untreated. For dicotyledons only the 64% dosage differed from the untreated. Only at the 64% treatment the total cover of species decreased more than in the untreated plots. Since drift percentages of 2-4% can be expected at 1-2 m from a treated plot it can be concluded that the use of glufosinate-ammonium could result in visible short term phytotoxic effects (max 22%) on off-crop vegetation such as ditch banks and verges. There are also indications that effects on the number and cover of species in autumn can occur. Because in future glufosinate-ammonium could be used on a large scale in

  2. Nutrient Status and Contamination Risks from Digested Pig Slurry Applied on a Vegetable Crops Field

    Directory of Open Access Journals (Sweden)

    Shaohui Zhang

    2016-04-01

    Full Text Available The effects of applied digested pig slurry on a vegetable crops field were studied. The study included a 3-year investigation on nutrient characteristics, heavy metals contamination and hygienic risks of a vegetable crops field in Wuhan, China. The results showed that, after anaerobic digestion, abundant N, P and K remained in the digested pig slurry while fecal coliforms, ascaris eggs, schistosoma eggs and hookworm eggs were highly reduced. High Cr, Zn and Cu contents in the digested pig slurry were found in spring. Digested pig slurry application to the vegetable crops field led to improved soil fertility. Plant-available P in the fertilized soils increased due to considerable increase in total P content and decrease in low-availability P fraction. The As content in the fertilized soils increased slightly but significantly (p = 0.003 compared with control. The Hg, Zn, Cr, Cd, Pb, and Cu contents in the fertilized soils did not exceed the maximum permissible contents for vegetable crops soils in China. However, high Zn accumulation should be of concern due to repeated applications of digested pig slurry. No fecal coliforms, ascaris eggs, schistosoma eggs or hookworm eggs were detected in the fertilized soils.

  3. Transfer factors of radionuclides from Andsols to some selected crops

    International Nuclear Information System (INIS)

    Ban-nai, Tadaaki; Yoshida, Satoshi; Muramatsu, Yasuyuki

    2007-01-01

    In order to obtain the applicable transfer factor for Japanese environment, we performed radiotracer experiments on the uptake of 137 Cs, 85 Sr, 54 Mn, 60 Co and 65 Zn by leaf vegetables (two cabbages, komatsuna, spinach and lettuce), root vegetables (radish and carrot) and other crops (wheat, soy bean sweet potato and tomato) using the Andosol (Kuroboku soil), the most common of Japanese arable soils. The ranges of TFs (on a dry weight basis) of 137 Cs, 85 Sr, 60 Co, 54 Mn and 65 Zn for edible parts of crops (leaf vegetables, root vegetables, wheat and soy bean) were 0.09 - 1.42, 0.24 - 3.7, 0.019 - 1.5, 0.31 - 12 and 0.68 - 14, respectively. TFs were, in most cases in the order Mn, Zn, Sr > Cs > Co. (author)

  4. Life Cycle Assessment of a Highly Diverse Vegetable Multi-Cropping System in Fengqiu County, China

    Directory of Open Access Journals (Sweden)

    Li Li

    2018-03-01

    Full Text Available Agricultural biodiversity usually leads to greater sustainability in production practices. To understand the environmental implications of the development of village-level multi-cropping in rural China, we compared the environmental impact of a highly diverse vegetable multi-cropping system to a conventional wheat/maize rotation system based on the method of life cycle assessment (LCA. Using household level cultivation data, this study examined the gate-to-gate environmental impacts of on-site cultivation practices relating to the production of 10,000 nutrient equivalent units. Results show that vegetable multi-cropping resulted in decreased average land requirement, and diesel, water and electricity usage by 69.8%, 62.2%, 71.7%, and 63.4%, respectively, while average nitrogen (Total N, phosphorus (P2O5, and potassium (K2O usage in vegetable multi-cropping systems decreased by 16.3%, 42.1%, and 75.8%, respectively. Additional corresponding effects led to a decrease in the total global warming, eutrophication, and acidification potentials from external inputs by 21.6%, 16.7%, and 16.2% of the entire system, respectively. Moreover, the midpoint human toxicity potential from pesticide usage of the vegetable multi-cropping system was lower than that of the conventional system. However, the midpoint eco-toxicity potential from pesticide usage was higher due to certain highly toxic substances, and both human and eco-toxicity potentials from heavy metals were all higher by a few orders of magnitudes. Thus, to mitigate these detrimental consequences, some related measures are proposed for sustainable practices in the future implementation of multi-cropping systems.

  5. Profitability and morphological characters of inter-cropping of different vegetables in tea

    International Nuclear Information System (INIS)

    Waheed, A.; Hamid, F.S.; Ahmad, N.; Khan, B.M.

    2007-01-01

    A field experiment was conducted at National Tea Research Institute, Shinkiari, Mansehra, during 2006-07 to find out the most productive and profitable tea-based intercropping system with different vegetable crops. The vegetables included were brinjal solanum melongena , chilies Capsicum annum, okra Ahle moselous, potato Solanum tuberosum, spinach Spinacia oleracea, garlic Allium sativum, onion Allium cepa, peas Pisum sativum and tomato Lycopersicon esculentum, as intercrop combination in newly planted tea. Intercropping of peas showed up poorest among all other treatments, in net income of Rs. 4,800.0, whereas intercrops significantly affected no. of branches, leaves, fresh and dry weight/plant of tea crop respectively. Considering the net return and total expenditure incurred on raising of intercrops, the highest net profit of Rs. 6,669.0/acre was obtained from potato, followed by garlic at Rs. 6,200.0. All treatments combination is more or less similar in net return, except T/sub 5/. Yield and yield-attributes in all treatments were significantly affected. Whereas branches and fresh weight remained significant among each other except sole tea crop. Agronomic data showed that the cropping days were also varies from 45 to 150 days in all treatments. Therefore it might be more economically viable than sole tea crop, upto complete bush formation. (author)

  6. EnviroAtlas - Fruit and vegetable crops for the Conterminous United States

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset includes data on the area, yield, and number of fruit and vegetable crops grown per 12-digit Hydrologic Unit (HUC) in the conterminous USA....

  7. Characteristics important for organic breeding of vegetable crops

    Directory of Open Access Journals (Sweden)

    Zdravković Jasmina

    2010-01-01

    Full Text Available The remarkable development and application of new genetic The Institute for Vegetable Crops possesses a rich germplasm collection of vegetables, utilized as gene resource for breeding specific traits. Onion and garlic breeding programs are based on chemical composition improvement. There are programs for identification and use of genotypes characterized by high tolerance to economically important diseases. Special attention is paid to breeding cucumber and tomato lines tolerant to late blight. As a result, late blight tolerant pickling cucumber line, as well as late blight tolerant tomato lines and hybrids are realized. Research on bean drought stress tolerance is initiated. Lettuce breeding program including research on spontaneous flora is started and interspecies hybrids were observed as possible genetic variability source. It is important to have access to a broad range of vegetable genotypes in order to meet the needs of organic agriculture production. Appreciating the concept of sustainable agriculture, it is important to introduce organic agriculture programs in breeding institutions.

  8. Seed treatments to control seedborne fungal pathogens of vegetable crops.

    Science.gov (United States)

    Mancini, Valeria; Romanazzi, Gianfranco

    2014-06-01

    Vegetable crops are frequently infected by fungal pathogens, which can include seedborne fungi. In such cases, the pathogen is already present within or on the seed surface, and can thus cause seed rot and seedling damping-off. Treatment of vegetable seeds has been shown to prevent plant disease epidemics caused by seedborne fungal pathogens. Furthermore, seed treatments can be useful in reducing the amounts of pesticides required to manage a disease, because effective seed treatments can eliminate the need for foliar application of fungicides later in the season. Although the application of fungicides is almost always effective, their non-target environmental impact and the development of pathogen resistance have led to the search for alternative methods, especially in the past few years. Physical treatments that have already been used in the past and treatments with biopesticides, such as plant extracts, natural compounds and biocontrol agents, have proved to be effective in controlling seedborne pathogens. These have been applied alone or in combination, and they are widely used owing to their broad spectrum in terms of disease control and production yield. In this review, the effectiveness of different seed treatments against the main seedborne pathogens of some important vegetable crops is critically discussed. © 2013 Society of Chemical Industry.

  9. Proximate and nutrient analysis of selected vegetable species: A ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-17

    Jun 17, 2009 ... Karak, an arid region, have limited water and land resources to cultivate various crops specially vegetables. However, a few seasonal vegetable are available to the local communities in meager quantities. The ash, carbohydrate, protein, moisture, fat, fiber contents, energy values and nutrient composition ...

  10. Proximate and nutrient analysis of selected vegetable species: A ...

    African Journals Online (AJOL)

    Karak, an arid region, have limited water and land resources to cultivate various crops specially vegetables. However, a few seasonal vegetable are available to the local communities in meager quantities. The ash, carbohydrate, protein, moisture, fat, fiber contents, energy values and nutrient composition of eight ...

  11. Impact of perennial energy crops income variability on the crop selection of risk averse farmers

    International Nuclear Information System (INIS)

    Alexander, Peter; Moran, Dominic

    2013-01-01

    The UK Government policy is for the area of perennial energy crops in the UK to expand significantly. Farmers need to choose these crops in preference to conventional rotations for this to be achievable. This paper looks at the potential level and variability of perennial energy crop incomes and the relation to incomes from conventional arable crops. Assuming energy crop prices are correlated to oil prices the results suggests that incomes from them are not well correlated to conventional arable crop incomes. A farm scale mathematical programming model is then used to attempt to understand the affect on risk averse farmers crop selection. The inclusion of risk reduces the energy crop price required for the selection of these crops. However yields towards the highest of those predicted in the UK are still required to make them an optimal choice, suggesting only a small area of energy crops within the UK would be expected to be chosen to be grown. This must be regarded as a tentative conclusion, primarily due to high sensitivity found to crop yields, resulting in the proposal for further work to apply the model using spatially disaggregated data. - Highlights: ► Energy crop and conventional crop incomes suggested as uncorrelated. ► Diversification effect of energy crops investigated for a risk averse farmer. ► Energy crops indicated as optimal selection only on highest yielding UK sites. ► Large establishment grant rates to substantially alter crop selections.

  12. Water Footprints of Vegetable Crop Wastage along the Supply Chain in Gauteng, South Africa

    Directory of Open Access Journals (Sweden)

    Betsie le Roux

    2018-04-01

    Full Text Available Food production in water-scarce countries like South Africa will become more challenging in the future because of the growing population and intensifying water shortages. Reducing food wastage is one way of addressing this challenge. The wastage of carrots, cabbage, beetroot, broccoli and lettuce, produced on the Steenkoppies Aquifer in Gauteng, South Africa, was estimated for each step along the supply chain from the farm to the consumer. Water footprints for these vegetables were used to determine the volume of water lost indirectly as a result of this wastage. Highest percentage wastage occurs at the packhouse level, which is consistent with published literature. Some crops like lettuce have higher average wastage percentages (38% compared to other crops like broccoli (13% and cabbage (14%, and wastage varied between seasons. Care should therefore be taken when applying general wastage values reported for vegetables. The classification of “waste” presented a challenge, because “wasted” vegetables are often used for other beneficial purposes, including livestock feed and composting. It was estimated that blue water lost on the Steenkoppies Aquifer due to vegetable crop wastage (4 Mm3 year−1 represented 25% of the estimated blue water volume that exceeded sustainable limits (17 Mm3 year−1.

  13. Biotechnological advancement in genetic improvement of broccoli (Brassica oleracea L. var. italica), an important vegetable crop.

    Science.gov (United States)

    Kumar, Pankaj; Srivastava, Dinesh Kumar

    2016-07-01

    With the advent of molecular biotechnology, plant genetic engineering techniques have opened an avenue for the genetic improvement of important vegetable crops. Vegetable crop productivity and quality are seriously affected by various biotic and abiotic stresses which destabilize rural economies in many countries. Moreover, absence of proper post-harvest storage and processing facilities leads to qualitative and quantitative losses. In the past four decades, conventional breeding has significantly contributed to the improvement of vegetable yields, quality, post-harvest life, and resistance to biotic and abiotic stresses. However, there are many constraints in conventional breeding, which can only be overcome by advancements made in modern biology. Broccoli (Brassica oleracea L. var. italica) is an important vegetable crop, of the family Brassicaceae; however, various biotic and abiotic stresses cause enormous crop yield losses during the commercial cultivation of broccoli. Thus, genetic engineering can be used as a tool to add specific characteristics to existing cultivars. However, a pre-requisite for transferring genes into plants is the availability of efficient regeneration and transformation techniques. Recent advances in plant genetic engineering provide an opportunity to improve broccoli in many aspects. The goal of this review is to summarize genetic transformation studies on broccoli to draw the attention of researchers and scientists for its further genetic advancement.

  14. Development of broomcorn varieties at Institute of Field and Vegetable Crops Novi Sad

    Directory of Open Access Journals (Sweden)

    Sikora Vladimir

    2010-01-01

    Full Text Available Broomcorn breeding program at Institute of Field and Vegetable Crops Novi Sad has been in continuation since 1952. According to the demand of broomcorn and broom producers, in several cycles during this period, five generations of breeders have exploited wealthy genetic collection and created 11 broomcorn cultivars. In the beginning, the primary target was creation of European dwarf type cultivars. This phase has resulted in three cultivars 'Bački biser', 'Neoplanta' and 'Panonija'. Next phase, which was crowned with cultivars 'Sava', 'Tisa', 'Jumak' and 'Jantar', was focused on higher yield and better quality of broomcorn brushes. Contemporary cultivars 'Reform' and 'Neoplanta plus' which preserve good agro-technological traits of former cultivars, are selected to early maturity and fiber fineness. Selection of new cultivars 'Tan Sava' and 'No. 5' was concentrated on elimination of red coloration of panicles and even earlier maturity. Newly selected inbred lines tolerant to plant diseases and with positive panicle exertion are presently tested as parental lines in experimental hybrids. .

  15. Water footprint of crop production for different crop structures in the Hebei southern plain, North China

    Science.gov (United States)

    Chu, Yingmin; Shen, Yanjun; Yuan, Zaijian

    2017-06-01

    The North China Plain (NCP) has a serious shortage of freshwater resources, and crop production consumes approximately 75 % of the region's water. To estimate water consumption of different crops and crop structures in the NCP, the Hebei southern plain (HSP) was selected as a study area, as it is a typical region of groundwater overdraft in the NCP. In this study, the water footprint (WF) of crop production, comprised of green, blue and grey water footprints, and its annual variation were analyzed. The results demonstrated the following: (1) the WF from the production of main crops was 41.8 km3 in 2012. Winter wheat, summer maize and vegetables were the top water-consuming crops in the HSP. The water footprint intensity (WFI) of cotton was the largest, and for vegetables, it was the smallest; (2) the total WF, WFblue, WFgreen and WFgrey for 13 years (2000-2012) of crop production were 604.8, 288.5, 141.3 and 175.0 km3, respectively, with an annual downtrend from 2000 to 2012; (3) winter wheat, summer maize and vegetables consumed the most groundwater, and their blue water footprint (WFblue) accounted for 74.2 % of the total WFblue in the HSP; (4) the crop structure scenarios analysis indicated that, with approximately 20 % of arable land cultivated with winter wheat-summer maize in rotation, 38.99 % spring maize, 10 % vegetables and 10 % fruiters, a sustainable utilization of groundwater resources can be promoted, and a sufficient supply of food, including vegetables and fruits, can be ensured in the HSP.

  16. Artichoke (Cynara scolymus L. as cash-cover crop in an organic vegetable system

    Directory of Open Access Journals (Sweden)

    Anna LENZI

    2015-11-01

    Full Text Available In organic vegetable systems green manure crops play an important role as a nitrogen source, but they cover the soil for several months without producing a direct income. Globe artichoke (Cynara scolymus L. provides both heads to be harvested and particularly abundant plant residues to be possibly incorporated into the soil, so it may play a double role of cash and cover crop. This paper describes an on-farm study in which seed-propagated artichoke, cultivated as an annual crop, preceded zucchini squash and lettuce cultivated in sequence within a vegetable organic system. Artichoke produced about 7 t ha-1 of saleable heads and left, after harvest, 50.3 t ha-1 of fresh biomass usable as green manure. Zucchini squash and lettuce following artichoke showed a significant increase in yield when artichoke residues were incorporated into the soil. Furthermore, a residual positive effect of green manure on soil fertility was detected after lettuce harvest. 

  17. Agricultural Capacity to Increase the Production of Select Fruits and Vegetables in the US: A Geospatial Modeling Analysis.

    Science.gov (United States)

    Conrad, Zach; Peters, Christian J; Chui, Kenneth; Jahns, Lisa; Griffin, Timothy S

    2017-09-23

    The capacity of US agriculture to increase the output of specific foods to accommodate increased demand is not well documented. This research uses geospatial modeling to examine the capacity of the US agricultural landbase to increase the per capita availability of an example set of nutrient-dense fruits and vegetables. These fruits and vegetables were selected based on nutrient content and an increasing trend of domestic production and consumption. Geographic information system models were parameterized to identify agricultural land areas meeting crop-specific growing requirements for monthly precipitation and temperature; soil depth and type; cropland availability; and proximity to existing production centers. The results of these analyses demonstrate that crop production can be expanded by nearly 144,000 ha within existing national production centers, generating an additional 0.05 cup-equivalents of fruits and vegetables per capita per day, representing a 1.7% increase above current total F&V availability. Expanding the size of national crop production centers can further increase the availability of all F&V by 2.5%-5.4%, which is still less than the recommended amount. Challenges to increasing F&V production in the US include lack of labor availability, barriers to adoption among producers, and threats to crop yields from environmental concerns.

  18. Mona F1: New pepper (Capsicum annuum L. hybrid in the Centre for Vegetable Crops

    Directory of Open Access Journals (Sweden)

    Cvikić Dejan

    2007-01-01

    Full Text Available The planted area various ways of pepper consumption (fresh or processed, make pepper one of the most important cultivars in vegetable breeding. In our country, up until now, the producers have usually grown varieties and domestic populations of pepper, while in more developed countries the usage of F1 hybrids is much more popular. The first pepper hybrids have been created in the Centre for Vegetable Crops by crossing new lines with male sterility gene ms-3 and selected genotypes from pepper collection. Created hybrids have higher yield, quality fruits and early ripening. This paper is the result of comparative trial in controlled conditions. Pepper varieties Župska rana, Zlatna medalja, Palanačka kapija and Duga bela, as well as new hybrid Mona F1 were the research matherial in order to observe the most important pepper traits.

  19. Estimating Water Footprints of Vegetable Crops: Influence of Growing Season, Solar Radiation Data and Functional Unit

    Directory of Open Access Journals (Sweden)

    Betsie le Roux

    2016-10-01

    Full Text Available Water footprint (WF accounting as proposed by the Water Footprint Network (WFN can potentially provide important information for water resource management, especially in water scarce countries relying on irrigation to help meet their food requirements. However, calculating accurate WFs of short-season vegetable crops such as carrots, cabbage, beetroot, broccoli and lettuce presented some challenges. Planting dates and inter-annual weather conditions impact WF results. Joining weather datasets of just rainfall, minimum and maximum temperature with ones that include solar radiation and wind-speed affected crop model estimates and WF results. The functional unit selected can also have a major impact on results. For example, WFs according to the WFN approach do not account for crop residues used for other purposes, like composting and animal feed. Using yields in dry matter rather than fresh mass also impacts WF metrics, making comparisons difficult. To overcome this, using the nutritional value of crops as a functional unit can connect water use more directly to potential benefits derived from different crops and allow more straightforward comparisons. Grey WFs based on nitrogen only disregards water pollution caused by phosphates, pesticides and salinization. Poor understanding of the fate of nitrogen complicates estimation of nitrogen loads into the aquifer.

  20. Cover crop frequency and compost effects on a legume-rye cover crop during 8 years of organic vegetables

    Science.gov (United States)

    Organic matter inputs from compost or cover crops (CC) are important to maintain or improve soil quality, but their impact in high-value vegetable production systems are not well understood. Therefore, we evaluated the effects of CC frequency (every winter versus every 4th winter) and yard-waste co...

  1. Detection of crop water status in mature olive orchards using vegetation spectral measurements

    Science.gov (United States)

    Rallo, Giovanni; Ciraolo, Giuseppe; Farina, Giuseppe; Minacapilli, Mario; Provenzano, Giuseppe

    2013-04-01

    Leaf/stem water potentials are generally considered the most accurate indicators of crop water status (CWS) and they are quite often used for irrigation scheduling, even if costly and time-consuming. For this reason, in the last decade vegetation spectral measurements have been proposed, not only for environmental monitoring, but also in precision agriculture, to evaluate crop parameters and consequently for irrigation scheduling. Objective of the study was to assess the potential of hyperspectral reflectance (450-2400 nm) data to predict the crop water status (CWS) of a Mediterranean olive orchard. Different approaches were tested and particularly, (i) several standard broad- and narrow-band vegetation indices (VIs), (ii) specific VIs computed on the basis of some key wavelengths, predetermined by simple correlations and finally, (iii) using partial least squares (PLS) regression technique. To this aim, an intensive experimental campaign was carried out in 2010 and a total of 201 reflectance spectra, at leaf and canopy level, were collected with an ASD FieldSpec Pro (Analytical Spectral Devices, Inc.) handheld field spectroradiometer. CWS was contemporarily determined by measuring leaf and stem water potentials with the Scholander chamber. The results indicated that the considered standard vegetation indices were weakly correlated with CWS. On the other side, the prediction of CWS can be improved using VIs pointed to key-specific wavelengths, predetermined with a correlation analysis. The best prediction accuracy, however, can be achieved with models based on PLS regressions. The results confirmed the dependence of leaf/canopy optical features from CWS so that, for the examined crop, the proposed methodology can be considered a promising tool that could also be extended for operational applications using multispectral aerial sensors.

  2. Significance of in vitro adventitious bud techniques for mutation breeding of vegetatively propagated crops

    International Nuclear Information System (INIS)

    Broertjes, C.

    1982-01-01

    It was investigated whether in vitro propagation techniques are of significance for the production of solid, non-chimeric mutants in mutation breeding programmes of vegetatively propagated crops. Irradiated explants of chrysanthemum, potato, begonia and carnation were used for the production of (adventitious) shoots and plantlets to determine the number and frequency of solid mutants and chimeras respectively. It was demonstrated that by the methods described high numbers of solid, non-chimeric mutants can be obtained and that the percentage of chimeras is comparable to the low figures reported after use of in vivo adventitious bud techniques. Consequently, the micro-propagation techniques seem very promising for the commercial plant breeder of vegetatively propagated crops. (author)

  3. Crop candidates for the bioregenerative life support systems in China

    Science.gov (United States)

    Chunxiao, Xu; Hong, Liu

    The use of plants for life support applications in space is appealing because of the multiple life support functions by the plants. Research on crops that were grown in the life support system to provide food and oxygen, remove carbon dioxide was begun from 1960. To select possible crops for research on the bioregenerative life support systems in China, criteria for the selection of potential crops were made, and selection of crops was carried out based on these criteria. The results showed that 14 crops including 4 food crops (wheat, rice, soybean and peanut) and 7 vegetables (Chinese cabbage, lettuce, radish, carrot, tomato, squash and pepper) won higher scores. Wheat ( Triticum aestivum L.), rice ( Oryza sativa L.), soybean ( Glycine max L.) and peanut ( Arachis hypogaea L.) are main food crops in China. Chinese cabbage ( Brassica campestris L. ssp. chinensis var. communis), lettuce ( Lactuca sativa L. var. longifolia Lam.), radish ( Raphanus sativus L.), carrot ( Daucus carota L. var. sativa DC.), tomato ( Lycopersicon escalentum L.), squash ( Cucurbita moschata Duch.) and pepper ( Capsicum frutescens L. var. longum Bailey) are 7 vegetables preferred by Chinese. Furthermore, coriander ( Coriandum sativum L.), welsh onion ( Allium fistulosum L. var. giganteum Makino) and garlic ( Allium sativum L.) were selected as condiments to improve the taste of space crew. To each crop species, several cultivars were selected for further research according to their agronomic characteristics.

  4. Effect of management systems and cover crops on organic matter dynamics of soil under vegetables

    Directory of Open Access Journals (Sweden)

    Rodrigo Fernandes de Souza

    2014-06-01

    Full Text Available Vegetable production in conservation tillage has increased in Brazil, with positive effects on the soil quality. Since management systems alter the quantity and quality of organic matter, this study evaluated the influence of different management systems and cover crops on the organic matter dynamics of a dystrophic Red Latosol under vegetables. The treatments consisted of the combination of three soil tillage systems: no-tillage (NT, reduced tillage (RT and conventional tillage (CT and of two cover crops: maize monoculture and maize-mucuna intercrop. Vegetables were grown in the winter and the cover crops in the summer for straw production. The experiment was arranged in a randomized block design with four replications. Soil samples were collected between the crop rows in three layers (0.0-0.05, 0.05-0.10, and 0.10-0.30 m twice: in October, before planting cover crops for straw, and in July, during vegetable cultivation. The total organic carbon (TOC, microbial biomass carbon (MBC, oxidizable fractions, and the carbon fractions fulvic acid (C FA, humic acid (C HA and humin (C HUM were determined. The main changes in these properties occurred in the upper layers (0.0-0.05 and 0.05-0.10 m where, in general, TOC levels were highest in NT with maize straw. The MBC levels were lowest in CT systems, indicating sensitivity to soil disturbance. Under mucuna, the levels of C HA were lower in RT than NT systems, while the C FA levels were lower in RT than CT. For vegetable production, the C HUM values were lowest in the 0.05-0.10 m layer under CT. With regard to the oxidizable fractions, the tillage systems differed only in the most labile C fractions, with higher levels in NT than CT in the 0.0-0.05 m layer in both summer and winter, with no differences between these systems in the other layers. The cabbage yield was not influenced by the soil management system, but benefited from the mulch production of the preceding maize-mucuna intercrop as cover

  5. Water footprint of crop production for different crop structures in the Hebei southern plain, North China

    Directory of Open Access Journals (Sweden)

    Y. Chu

    2017-06-01

    Full Text Available The North China Plain (NCP has a serious shortage of freshwater resources, and crop production consumes approximately 75 % of the region's water. To estimate water consumption of different crops and crop structures in the NCP, the Hebei southern plain (HSP was selected as a study area, as it is a typical region of groundwater overdraft in the NCP. In this study, the water footprint (WF of crop production, comprised of green, blue and grey water footprints, and its annual variation were analyzed. The results demonstrated the following: (1 the WF from the production of main crops was 41.8 km3 in 2012. Winter wheat, summer maize and vegetables were the top water-consuming crops in the HSP. The water footprint intensity (WFI of cotton was the largest, and for vegetables, it was the smallest; (2 the total WF, WFblue, WFgreen and WFgrey for 13 years (2000–2012 of crop production were 604.8, 288.5, 141.3 and 175.0 km3, respectively, with an annual downtrend from 2000 to 2012; (3 winter wheat, summer maize and vegetables consumed the most groundwater, and their blue water footprint (WFblue accounted for 74.2 % of the total WFblue in the HSP; (4 the crop structure scenarios analysis indicated that, with approximately 20 % of arable land cultivated with winter wheat–summer maize in rotation, 38.99 % spring maize, 10 % vegetables and 10 % fruiters, a sustainable utilization of groundwater resources can be promoted, and a sufficient supply of food, including vegetables and fruits, can be ensured in the HSP.

  6. PRODUCT NEEM AZAL T/S - BROAD-SPECTRUM PHYPOPESTICIDE FOR CONTROL OF PESTS ON VEGETABLE CROPS

    Directory of Open Access Journals (Sweden)

    Vinelina Yankova

    2016-09-01

    Full Text Available Experiments for determination of the effectiveness of product Neem Azal T/S (a. i. azadirachtin were conducted at a concentration of 0,3% against some major pests in vegetable crops grown in greenhouses at the Maritsa Vegetable Crops research Institute, Plovdiv during the period 2010-2016. It was established very good insecticidal and acaricidal action of phytopesticide against: cotton aphid (Aphis gossypii Glov.; green peach aphid (Myzus persicae Sulz.; western flower trips (Frankliniella occidentalis Perg.; cotton bollworm (Helicoverpa armigera Hubn.; tomato borer (Tuta absoluta Meyrick and two-spotted spider mite (Tetranichus urticae Koch.. This product is a successful alternative to using chemical insecticides and acaricides.

  7. Plutonium contents of broadleaf vegetable crops grown near a nuclear fuel chemical separations facility

    Energy Technology Data Exchange (ETDEWEB)

    McLeod, K W; Alberts, J J; Adriano, D C; Pinder, III, J E

    1984-02-01

    Among agricultural crops, broadleaf vegetables are particularly prone to intercept and retain aerially released contaminants. The plutonium concentration of four broadleaf crops (broccoli, cabbage, lettuce and turnip greens) was determined, when grown in close proximity to a nuclear-fuel chemical-separations facility. Concentrations varied among species, apparently influenced by the crop morphology, with Pu concentrations increasing in the sequence: cabbage < broccoli < turnip greens < lettuce. Washing of the crops significantly reduced the Pu concentration of lettuce, but had no effect on Pu concentration of broccoli and cabbage. The vast majority of Pu found in the crops was due to direct deposition of recently released Pu and resuspension of Pu-bearing soil particles, and was not due to root uptake. Resultant doses from consumption are small relative to the annual background dose.

  8. Contamination of crop vegetation with trace elements from a fertilizer plant. An INAA study

    International Nuclear Information System (INIS)

    Pantelica, A.; Oprea, C.; Frontasyeva, M.; Georgescu, I.I.; Pincovschi, E.; Catana, L.

    2004-01-01

    Instrumental neutron activation analysis (INAA) was used to determine various trace elements in crop vegetation (potato, carrot and maize) grown around a phosphate fertilizer plant in Romania. INAA using long-lived radionuclides was applied at NIPNE in Bucharest, and based on short-lived radionuclides at JINR in Dubna. The results for Na, Mg, Cl, K, Ca, Mn, Fe, Zn, As, and Hg were compared with Romanian norms for the alimentary products, as well as with literature data. Concentration ratios to control samples for both soil and crop as well as concentration factors of crop to host soil were assessed. (author)

  9. Selection of hyperspectral narrowbands (HNBs) and composition of hyperspectral twoband vegetation indices (HVIs) for biophysical characterization and discrimination of crop types using field reflectance and Hyperion/EO-1 data

    Science.gov (United States)

    Thenkabail, P.S.; Mariotto, I.; Gumma, M.K.; Middleton, E.M.; Landis, D.R.; Huemmrich, K.F.

    2013-01-01

    The overarching goal of this study was to establish optimal hyperspectral vegetation indices (HVIs) and hyperspectral narrowbands (HNBs) that best characterize, classify, model, and map the world's main agricultural crops. The primary objectives were: (1) crop biophysical modeling through HNBs and HVIs, (2) accuracy assessment of crop type discrimination using Wilks' Lambda through a discriminant model, and (3) meta-analysis to select optimal HNBs and HVIs for applications related to agriculture. The study was conducted using two Earth Observing One (EO-1) Hyperion scenes and other surface hyperspectral data for the eight leading worldwide crops (wheat, corn, rice, barley, soybeans, pulses, cotton, and alfalfa) that occupy ~70% of all cropland areas globally. This study integrated data collected from multiple study areas in various agroecosystems of Africa, the Middle East, Central Asia, and India. Data were collected for the eight crop types in six distinct growth stages. These included (a) field spectroradiometer measurements (350-2500 nm) sampled at 1-nm discrete bandwidths, and (b) field biophysical variables (e.g., biomass, leaf area index) acquired to correspond with spectroradiometer measurements. The eight crops were described and classified using ~20 HNBs. The accuracy of classifying these 8 crops using HNBs was around 95%, which was ~ 25% better than the multi-spectral results possible from Landsat-7's Enhanced Thematic Mapper+ or EO-1's Advanced Land Imager. Further, based on this research and meta-analysis involving over 100 papers, the study established 33 optimal HNBs and an equal number of specific two-band normalized difference HVIs to best model and study specific biophysical and biochemical quantities of major agricultural crops of the world. Redundant bands identified in this study will help overcome the Hughes Phenomenon (or “the curse of high dimensionality”) in hyperspectral data for a particular application (e.g., biophysi- al

  10. Variation and Distribution of Glucosinolates in 42 Cultivars of Brassica oleracea Vegetable Crops

    NARCIS (Netherlands)

    Verkerk, R.; Tebbenhoff, S.; Dekker, M.

    2010-01-01

    Brassica vegetables are known to contain glucosinolates that are precursors for bioactive compounds like isothiocyanates that have been shown to play an important role in human health. This study reports the results of a screening of 11 Brassica oleracea crops consisting of 42 cultivars (6 white

  11. Evaluation and cross-comparison of vegetation indices for crop monitoring from sentinel-2 and worldview-2 images

    Science.gov (United States)

    Psomiadis, Emmanouil; Dercas, Nicholas; Dalezios, Nicolas R.; Spyropoulos, Nikolaos V.

    2017-10-01

    Farmers throughout the world are constantly searching for ways to maximize their returns. Remote Sensing applications are designed to provide farmers with timely crop monitoring and production information. Such information can be used to identify crop vigor problems. Vegetation indices (VIs) derived from satellite data have been widely used to assess variations in the physiological state and biophysical properties of vegetation. However, due to the various sensor characteristics, there are differences among VIs derived from multiple sensors for the same target. Therefore, multi-sensor VI capability and effectiveness are critical but complicated issues in the application of multi-sensor vegetation observations. Various factors such as the atmospheric conditions during acquisition, sensor and geometric characteristics, such as viewing angle, field of view, and sun elevation influence direct comparability of vegetation indicators among different sensors. In the present study, two experimental areas were used which are located near the villages Nea Lefki and Melia of Larissa Prefecture in Thessaly Plain area, containing a wheat and a cotton crop, respectively. Two satellite systems with different spatial resolution, WorldView-2 (W2) and Sentinel-2 (S2) with 2 and 10 meters pixel size, were used. Normalized Difference Vegetation Index (NDVI) and Leaf Area Index (LAI) were calculated and a statistical comparison of the VIs was made to designate their correlation and dependency. Finally, several other innovative indices were calculated and compared to evaluate their effectiveness in the detection of problematic plant growth areas.

  12. EUCLID: Leveraging IPM for sustainable production of fruit and vegetable crops in partnership with China

    OpenAIRE

    Nicot , Philippe C.; Bardin , Marc; Leyronas , Christel; Desneux , Nicolas

    2016-01-01

    EUCLID: Leveraging IPM for sustainable production of fruit and vegetable crops in partnership with China. 13. IOBC-WPRS Meeting of the working group "Biological control of fungal and bacterial plant pathogens. .

  13. Estimating riparian and agricultural evapotranspiration by reference crop evapotranspiration and MODIS Enhanced Vegetation Index

    Science.gov (United States)

    Nagler, Pamela L.; Glenn, Edward P.; Nguyen, Uyen; Scott, Russell; Doody, Tania

    2013-01-01

    Dryland river basins frequently support both irrigated agriculture and riparian vegetation and remote sensing methods are needed to monitor water use by both crops and natural vegetation in irrigation districts. We developed an algorithm for estimating actual evapotranspiration (ETa) based on the Enhanced Vegetation Index (EVI) from the Moderate Resolution Imaging Spectrometer (MODIS) sensor on the EOS-1 Terra satellite and locally-derived measurements of reference crop ET (ETo). The algorithm was calibrated with five years of ETa data from three eddy covariance flux towers set in riparian plant associations on the upper San Pedro River, Arizona, supplemented with ETa data for alfalfa and cotton from the literature. The algorithm was based on an equation of the form ETa = ETo [a(1 − e−bEVI) − c], where the term (1 − e−bEVI) is derived from the Beer-Lambert Law to express light absorption by a canopy, with EVI replacing leaf area index as an estimate of the density of light-absorbing units. The resulting algorithm capably predicted ETa across riparian plants and crops (r2 = 0.73). It was then tested against water balance data for five irrigation districts and flux tower data for two riparian zones for which season-long or multi-year ETa data were available. Predictions were within 10% of measured results in each case, with a non-significant (P = 0.89) difference between mean measured and modeled ETa of 5.4% over all validation sites. Validation and calibration data sets were combined to present a final predictive equation for application across crops and riparian plant associations for monitoring individual irrigation districts or for conducting global water use assessments of mixed agricultural and riparian biomes.

  14. Accumulation of nuclear fission products by vegetable crops and their removal during processing

    International Nuclear Information System (INIS)

    Weaver, C.M.

    1978-01-01

    The accumulation and turn over of 90 Sr and 137 Cs throughout the growth cycle of a vegetable crop was studied as well as the removal of these radionuclides in several vegetables by washing, blanching, freezing, canning, and pickling procedures. The results indicated that radiocontamination of vegetable crops with 137 Cs would result in greatest internal concentrations if exposure occurred early in the growth cycle of the plant, whereas, the greatest contamination by 90 Sr would occur from exposure during the middle of the growing period. Pulse labelling experiments were employed to examine turn over of radionuclides in kale. No net efflux of radionuclides from plants following exposure to either radionuclide was observed. Of the processing treatments employed on several types of vegetables, a combination of pickling and canning of cucumbers resulted in the greatest decontamination - 94% for 137 Cs and 65% for 90 Sr. Canning was highly effective in reducing radionuclide concentrations in beans and kale. However, freezing significantly reduced the radionuclide content of only 137 Cs in kale. Preparatory procedures prior to processing did not significantly reduce radionuclide levels except for 137 Cs in beans. The combination of washing, blanching, and canning sweet potatoes exposed to radionuclides resulted in the removal of 1.4% 137 Cs and 26.5% 90 Sr relative to unprocessed controls. The blanching process resulted in a transfer of radioactivity from the peel to the core, indicating that skins of contaminated potatoes should be removed prior to thermal treatment

  15. 95 YEARS OF SERVICE OF THE NATIONAL VEGETABLE GROWING INDUSTRY

    Directory of Open Access Journals (Sweden)

    S. M. Sirota

    2015-01-01

    Full Text Available Main achievements and progress of VNIISSOK’s scientists in field of vegetable breeding and seed production are presented in the article. More than 900 varieties of vegetable and flower crops were developed, among them 561 varieties were included into the State Register of selection inventions of Russia. The seed production of main vegetable and flower crops is carried out. Presales pretreatment of seeds and its sale are improved.

  16. Some Important Diseases of Tree Fruits - Diseases of Vegetable Crops - Diseases of Grapes - Diseases of Tree Nuts.

    Science.gov (United States)

    Petersen, Donald H.; And Others

    This agriculture extension service publication from Pennsylvania State University consists of four sections on plant disease recognition and control. The titles of these four sections are: (1) Some Important Diseases of Tree Fruits; (2) Diseases of Vegetable Crops; (3) Diseases of Crops; and (4) Diseases of Tree Nuts. The first section discusses…

  17. Vegetation index-based crop coefficients to estimate evapotranspiration by remote sensing in agricultural and natural ecosystems

    Science.gov (United States)

    Glenn, E.P.; Neale, C. M. U.; Hunsaker, D.J.; Nagler, P.L.

    2011-01-01

    Crop coefficients were developed to determine crop water needs based on the evapotranspiration (ET) of a reference crop under a given set of meteorological conditions. Starting in the 1980s, crop coefficients developed through lysimeter studies or set by expert opinion began to be supplemented by remotely sensed vegetation indices (VI) that measured the actual status of the crop on a field-by-field basis. VIs measure the density of green foliage based on the reflectance of visible and near infrared (NIR) light from the canopy, and are highly correlated with plant physiological processes that depend on light absorption by a canopy such as ET and photosynthesis. Reflectance-based crop coefficients have now been developed for numerous individual crops, including corn, wheat, alfalfa, cotton, potato, sugar beet, vegetables, grapes and orchard crops. Other research has shown that VIs can be used to predict ET over fields of mixed crops, allowing them to be used to monitor ET over entire irrigation districts. VI-based crop coefficients can help reduce agricultural water use by matching irrigation rates to the actual water needs of a crop as it grows instead of to a modeled crop growing under optimal conditions. Recently, the concept has been applied to natural ecosystems at the local, regional and continental scales of measurement, using time-series satellite data from the MODIS sensors on the Terra satellite. VIs or other visible-NIR band algorithms are combined with meteorological data to predict ET in numerous biome types, from deserts, to arctic tundra, to tropical rainforests. These methods often closely match ET measured on the ground at the global FluxNet array of eddy covariance moisture and carbon flux towers. The primary advantage of VI methods for estimating ET is that transpiration is closely related to radiation absorbed by the plant canopy, which is closely related to VIs. The primary disadvantage is that they cannot capture stress effects or soil

  18. Selection during crop diversification involves correlated evolution of the circadian clock and ecophysiological traits in Brassica rapa.

    Science.gov (United States)

    Yarkhunova, Yulia; Edwards, Christine E; Ewers, Brent E; Baker, Robert L; Aston, Timothy Llewellyn; McClung, C Robertson; Lou, Ping; Weinig, Cynthia

    2016-04-01

    Crop selection often leads to dramatic morphological diversification, in which allocation to the harvestable component increases. Shifts in allocation are predicted to impact (as well as rely on) physiological traits; yet, little is known about the evolution of gas exchange and related anatomical features during crop diversification. In Brassica rapa, we tested for physiological differentiation among three crop morphotypes (leaf, turnip, and oilseed) and for correlated evolution of circadian, gas exchange, and phenological traits. We also examined internal and surficial leaf anatomical features and biochemical limits to photosynthesis. Crop types differed in gas exchange; oilseed varieties had higher net carbon assimilation and stomatal conductance relative to vegetable types. Phylogenetically independent contrasts indicated correlated evolution between circadian traits and both gas exchange and biomass accumulation; shifts to shorter circadian period (closer to 24 h) between phylogenetic nodes are associated with higher stomatal conductance, lower photosynthetic rate (when CO2 supply is factored out), and lower biomass accumulation. Crop type differences in gas exchange are also associated with stomatal density, epidermal thickness, numbers of palisade layers, and biochemical limits to photosynthesis. Brassica crop diversification involves correlated evolution of circadian and physiological traits, which is potentially relevant to understanding mechanistic targets for crop improvement. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  19. Estimation of Crop Gross Primary Production (GPP): I. Impact of MODIS Observation Footprint and Impact of Vegetation BRDF Characteristics

    Science.gov (United States)

    Zhang, Qingyuan; Cheng, Yen-Ben; Lyapustin, Alexei I.; Wang, Yujie; Xiao, Xiangming; Suyker, Andrew; Verma, Shashi; Tan, Bin; Middleton, Elizabeth M.

    2014-01-01

    Accurate estimation of gross primary production (GPP) is essential for carbon cycle and climate change studies. Three AmeriFlux crop sites of maize and soybean were selected for this study. Two of the sites were irrigated and the other one was rainfed. The normalized difference vegetation index (NDVI), the enhanced vegetation index (EVI), the green band chlorophyll index (CIgreen), and the green band wide dynamic range vegetation index (WDRVIgreen) were computed from the moderate resolution imaging spectroradiometer (MODIS) surface reflectance data. We examined the impacts of the MODIS observation footprint and the vegetation bidirectional reflectance distribution function (BRDF) on crop daily GPP estimation with the four spectral vegetation indices (VIs - NDVI, EVI, WDRVIgreen and CIgreen) where GPP was predicted with two linear models, with and without offset: GPP = a × VI × PAR and GPP = a × VI × PAR + b. Model performance was evaluated with coefficient of determination (R2), root mean square error (RMSE), and coefficient of variation (CV). The MODIS data were filtered into four categories and four experiments were conducted to assess the impacts. The first experiment included all observations. The second experiment only included observations with view zenith angle (VZA) = 35? to constrain growth of the footprint size,which achieved a better grid cell match with the agricultural fields. The third experiment included only forward scatter observations with VZA = 35?. The fourth experiment included only backscatter observations with VZA = 35?. Overall, the EVI yielded the most consistently strong relationships to daily GPP under all examined conditions. The model GPP = a × VI × PAR + b had better performance than the model GPP = a × VI × PAR, and the offset was significant for most cases. Better performance was obtained for the irrigated field than its counterpart rainfed field. Comparison of experiment 2 vs. experiment 1 was used to examine the observation

  20. Effects of atmospheric sulfur dioxide on the incidence of injury symptoms in vegetable crops and on their growth

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, T; Ishikawa, H

    1971-05-01

    Four types of fruit crops (tomato, eggplant, cucumber, and green pepper), two types of root crops (turnip and radish), and four types of leaf crops (Chinese cabbage, cabbage, lettuce, and spinach) were continuously exposed for periods of 14-56 days to gas with a concentration of 0-0.26 ppm in order to study the effects of SO/sub 2/ on vegetable crops. The injury symptoms which were observed included: grayish-white or brown flecks on the leaves, yellowing of the leaves, and morphological changes in the leaves. The green peppers and radishes had the greatest resistance to SO/sub 2/ of all the vegetable crops tested; no injury symptoms appeared at 0.26 ppm; and there was no inhibition of their growth. The spinach was the most sensitive, injury symptoms appearing in one day (during summer and autumn) at 0.26 ppm. The other crops displayed a medium degree of sensitivity. That is, no injury symptoms appeared at a low concentration of 0.065 ppm; inhibition of growth was observed only in turnips, Chinese cabbage, and cabbage; but the others were not inhibited. There were no direct effects on flowering and fruiting within the experimental range of gas concentrations. Injury symptoms tended to appear less readily during the winter season.

  1. A GIS TOOL TO EVALUATE THE SPATIAL EVOLUTION OF HYDRO-THERMIC FEATURES DURING GROWING SEASON OF VEGETABLE CROPS IN ELBE RIVER LOWLAND (POLABI

    Directory of Open Access Journals (Sweden)

    VERA POTOP

    2012-11-01

    Full Text Available A GIS tool to evaluate the spatial evolution of hydro-thermic features during growing season of vegetable crops in Elbe River lowland (Polabi. This article presents the results of the first study on combined mezoclimatological, microclimatological and topographical tools for evaluating precision farming in the growth of vegetable crops in the Elbe River lowland (Polabi region from the Czech Republic. We assess the variability of basically climatological characteristics in relation to topographic characteristics at the regional (Polabi and local (agricultural farm scales. At regional scale, interpolation approach is based on local linear regression and universal kriging interpolation. At local scale, two conventional interpolation methods, spline and local ordinary kriging with a Gaussian model variance across the fields, were applied. The local spline interpolators have been used in developing digital elevation models (DEMs and to determine the slope angle inclination of vegetable fields. The DEMs of the vegetable crops fields was developed at a 10 m x 10 m resolution based on elevation data collected in the field by a hand-held RTK- Global Positioning System receiver. This tool allowed the distinction of microclimatic conditions that produce altitude-slope-related patterns of the spatial-temporal distribution of the basic meteorological elements during growing season of vegetable crops. The effect of slope on diurnal extreme temperatures in the vegetable cropped field conditions was more pronounced than that of elevation. Accordingly to developed maps, the warmest and longest duration of sunshine, and the least precipitation totals during growing season occurred in the middle part of Polabi.

  2. Ownership characteristics and crop selection in California cropland

    Directory of Open Access Journals (Sweden)

    Luke Macaulay

    2017-11-01

    Full Text Available Land ownership is one of the primary determinants of how agricultural land is used, and property size has been shown to drive many land use decisions. Land ownership information is also key to understanding food production systems and land fragmentation, and in targeting outreach materials to improve agricultural production and conservation practices. Using a parcel dataset containing all 58 California counties, we describe the characteristics of cropland ownership across California. The largest 5% of properties — with “property” defined as all parcels owned by a given landowner — account for 50.6% of California cropland, while the smallest 84% of properties account for 25% of cropland. Cropland ownership inequality (few large properties, many small properties was greatest in Kings, Kern and Contra Costa counties and lowest in Mendocino, Napa and Santa Clara counties. Of crop types, rice properties had the largest median size, while properties with orchard trees had the smallest median sizes. Cluster analysis of crop mixes revealed that properties with grapes, rice, almonds and alfalfa/hay tended to be planted to individual crops, while crops such as grains, tomatoes and vegetables were more likely to be mixed within a single property. Analyses of cropland ownership patterns can help researchers prioritize outreach efforts and tailor research to stakeholders' needs.

  3. Irradiation service for the vegetatively propagated crop breeding at the institute of radiation breeding

    International Nuclear Information System (INIS)

    Kukimura, Hisashi

    1984-01-01

    The entrusted irradiation for vegetatively propagating crops reached about 200 cases since 1962. As to the results, 109 cases which were able to be tracked by questionnaire and others were examined. When the number of cases for each crop was investigated, arbor crops and herbaceous crops were half and half, and in the arbor crops, fruit trees were overwhelmingly many, while in the herbaceous crops, potatoes were more than half, and the number of cases for rush also was many. As the rare examples, there were butterbur, medicinal plants and sugarcane. As the registered practical varieties, there were one case of rush and one case of Chinese mat grass, but in the arbor crops, there was none. The purpose has been mostly the breeding of new varieties, but there were the inactivation of viruses and the effect of insecticide. The aims of breeding have been early growth, high yield, disease resistance, dwarfness and so on. As the mutation actually obtained, the skin color of fruits, the flower color of rose and chrysanthemum, the short vines of potatoes, the quality of rush and so on. The clients were mostly public experiment stations. The method of irradiation and the problems for the future are reported. (Kako, I.)

  4. Use of novel DNA fingerprinting techniques for the detection and characterization of genetic variation in vegetatively propagated crops. Proceedings of a final research co-ordination meeting

    International Nuclear Information System (INIS)

    1998-10-01

    Vegetative propagated crops, such as banana and platain, sweet potato, yam, sugarcane and cassava, represent important sources of food in the developing countries. Although some of these crops may produce seeds, they must for practical purposes be propagated vegetatively. As normal plant breeding strategies based on genetic hybridization are of limited value or not applicable to such crops, it is necessary to assess the genetic diversity already existing in these crops and to design breeding strategies accordingly. If the existing genetic variation is shown to be too narrow for breeding purposes, one promising possibility for the introduction of genetic variability is the use of mutations induced by radiation or chemical mutagens. This CRP focused on: the detection of genetic diversity induced by mutagenic treatment or in vitro culture; the development of crop-specific markers; and increasing co-operation between molecular biologists in advanced laboratories and plant breeders and molecular biologists in the developing countries. The success of this CRP is evidenced by the introduction and application of new molecular methods by laboratories in developing countries, specially for the analysis of local crop genetic diversity. These exciting preliminary results show the potential for applications in crop improvement but much work remains to be done. Many of the vegetatively propagated species are ''orphan crops'', under-investigated on the international level. The development of new uses of transgenesis for the development of edible vaccines should not be overlooked. The challenge that remains is in the application of these new tools for practical end-user oriented improvements in vegetatively propagated crops. The present publication summarizes the third and final Research Co-ordination Meeting on the Use of Novel DNA Fingerprinting Techniques for the Detection and Characterization of Genetic Variation in Vegetatively Propagated Crops

  5. Use of novel DNA fingerprinting techniques for the detection and characterization of genetic variation in vegetatively propagated crops. Proceedings of a final research co-ordination meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    Vegetative propagated crops, such as banana and platain, sweet potato, yam, sugarcane and cassava, represent important sources of food in the developing countries. Although some of these crops may produce seeds, they must for practical purposes be propagated vegetatively. As normal plant breeding strategies based on genetic hybridization are of limited value or not applicable to such crops, it is necessary to assess the genetic diversity already existing in these crops and to design breeding strategies accordingly. If the existing genetic variation is shown to be too narrow for breeding purposes, one promising possibility for the introduction of genetic variability is the use of mutations induced by radiation or chemical mutagens. This CRP focused on: the detection of genetic diversity induced by mutagenic treatment or in vitro culture; the development of crop-specific markers; and increasing co-operation between molecular biologists in advanced laboratories and plant breeders and molecular biologists in the developing countries. The success of this CRP is evidenced by the introduction and application of new molecular methods by laboratories in developing countries, specially for the analysis of local crop genetic diversity. These exciting preliminary results show the potential for applications in crop improvement but much work remains to be done. Many of the vegetatively propagated species are ``orphan crops``, under-investigated on the international level. The development of new uses of transgenesis for the development of edible vaccines should not be overlooked. The challenge that remains is in the application of these new tools for practical end-user oriented improvements in vegetatively propagated crops. The present publication summarizes the third and final Research Co-ordination Meeting on the Use of Novel DNA Fingerprinting Techniques for the Detection and Characterization of Genetic Variation in Vegetatively Propagated Crops Refs, figs, tabs

  6. Study of the degradation of mulch materials in vegetable crops for organic farming

    Science.gov (United States)

    María Moreno, Marta; Mancebo, Ignacio; Moreno, Carmen; Villena, Jaime; Meco, Ramón

    2014-05-01

    Mulching is the most common technique used worldwide by vegetable growers in protected cultivation. For this purpose, several plastic materials have been used, with polyethylene (PE) being the most widespread. However, PE is produced from petroleum derivatives, it is not degradable, and thus pollutes the environment for periods much longer than the crop duration (Martín-Closas and Pelacho, 2011), which are very important negative aspects especially for organic farmers. A large portion of plastic films is left on the field or burnt uncontrollably by the farmers, with the associated negative consequences to the environment (Moreno and Moreno, 2008). Therefore, the best solution is to find a material with a lifetime similar to the crop duration time that can be later incorporated by the agricultural system through a biodegradation process (Martín-Closas and Pelacho, 2011). In this context, various biodegradable materials have been considered as alternatives in the last few years, including oxo-biodegradable films, biopolymer mulches, different types of papers, and crop residues (Kasirajan and Ngouajio, 2012). In this work we evaluate the evolution of different properties related to mulch degradation in both the buried and the superficial (exposed) part of mulch materials of different composition (standard black PE, papers and black biodegradable plastics) in summer vegetable crops under organic management in Castilla-La Mancha (Central Spain). As results, it is remarkable the early deterioration suffered by the buried part of the papers, disappearing completely in the soil at the end of the crop cycles and therefore indicating the total incorporation of these materials to the soil once the crop has finished. In the case of the degradation of the exposed mulch, small differences between crops were observed. In general, all the materials were less degraded under the plants than when receiving directly the solar radiation. As conclusion, biodegradable mulches degrade

  7. Sulphate sulphur concentration in vegetable crops, soil and ground water in the region affected by the sulphur dioxide emission from Plock oil refinery (central Poland)

    International Nuclear Information System (INIS)

    Mikula, W.

    1995-01-01

    Research was carried out in 1984-1990 in the region affected by the sulphur dioxide emission from one of the greatest oil refineries in Europe (Plock, central Poland). The sulphate sulphur concentration in the vegetable crops (red beet, carrot, parsley, bean, cabbage and dill), the soil and in ground water was defined in selected allotment gardens of Plock city and in a household garden located in the rural area about 25 km from the town. The highest amount of sulphur was found in the vegetable crops cultivated in the garden situated in the closest vicinity of the refinery. Sulphate sulphur contents harmful for plants (above 0.50 per cent d.m.) were noted in cabbage and carrot leaves in almost all the gardens (except one). The soil in all examined gardens was characterised by high sulphate sulphur concentration, which considerably exceeds the maximum amount admissible for light soil in Poland, i.e. 0.004 per cent d.m. The sulphate sulphur concentration in ground water in all the gardens exceeded the highest permissible content in drinking water in Poland. The sulphate sulphur content in the soil and ground water was not significantly dependent on the garden's distance from the refinery. Generally, the above normal sulphate sulphur concentrations occurred quite universally in the examined region and they concerned all the considered environmental components (vegetable crops, soil, ground water) and all the gardens. 22 refs., 6 tabs

  8. How healthy is urban horticulture in high traffic areas? Trace metal concentrations in vegetable crops from plantings within inner city neighbourhoods in Berlin, Germany

    International Nuclear Information System (INIS)

    Säumel, Ina; Kotsyuk, Iryna; Hölscher, Marie; Lenkereit, Claudia; Weber, Frauke; Kowarik, Ingo

    2012-01-01

    Food production by urban dwellers is of growing importance in developing and developed countries. Urban horticulture is associated with health risks as crops in urban settings are generally exposed to higher levels of pollutants than those in rural areas. We determined the concentration of trace metals in the biomass of different horticultural crops grown in the inner city of Berlin, Germany, and analysed how the local setting shaped the concentration patterns. We revealed significant differences in trace metal concentrations depending on local traffic, crop species, planting style and building structures, but not on vegetable type. Higher overall traffic burden increased trace metal content in the biomass. The presence of buildings and large masses of vegetation as barriers between crops and roads reduced trace metal content in the biomass. Based on this we discuss consequences for urban horticulture, risk assessment, and planting and monitoring guidelines for cultivation and consumption of crops. - Highlights: ► Traffic-related pollutant deposition as important pathway for crop contamination. ► Heavy metal content often over EU standards for lead concentration in food crops. ► ‘Grow your own’ food in inner cities not always ‘healthier’ than supermarket products. ► No support for generalisations of crops as ‘risky high’ or ‘safe low’ accumulators. - Higher overall traffic burden increased, while the presence of buildings and large masses of vegetation as barriers between crops and roads reduced heavy metal content in crop biomass.

  9. Investigating Strategies for Sustainable Vegetable Food Crop System in Three Agro Ecological Zones of the Humid Tropics Area of Cameroon

    OpenAIRE

    TATA NGOME, Precillia Ijang; AFARI-SEFA, Victor; NTSOMBOH-NTSEFONG, Godswill; OKOLLE, Justin; BILLA, Samuel Fru; MOMA, Crescence; ATEMKENG FONJI, Maureen; NGOME, Ajebesone Francis

    2018-01-01

    Vegetable cultivation remains an essential component of local people’s livelihoods. However, marked trend shifts in the varieties of vegetables due to large-scale commercial vegetable farming of exotic varieties in the broader market economy have resulted in the gradual disappearance of biodiversity involving vital species. The present study examined the situation of vegetable crop farming in three agro-ecological zones of Cameroon. Data were collected from a random sample of 235 respondents ...

  10. Performance evaluation of selected crop yield-water use models for wheat crop

    Directory of Open Access Journals (Sweden)

    H. E. Igbadun

    2001-10-01

    Full Text Available Crop yield-water use models that provide useful information about the exact form of crop response to different amounts of water used by the crop throughout its growth stages and those that provide adequate information for decisions on optimal use of water in the farm were evaluated. Three crop yield models: Jensen (1968, Minhas et al., (1974 and Bras and Cordova (1981 additive type models were studied. Wheat (Triticum aestivum was planted at the Institute for Agricultural Research Farm during the 1995/96 and 1996/97 irrigation seasons of November to March. The data collected from the field experiments during the 1995/96 planting season were used to calibrate the models and their stress sensitivity factors estimated for four selected growth stages of the wheat crop. The ability of the model to predict grain yield of wheat with the estimated stress sensitivity factors was evaluated by comparing predicted grain yields by each model with those obtained in the field during the 1996/97 season. The three models performed fairly well in predicting grain yields, as the predicted results were not significantly different from the field measured grain yield at 5% level of significance.

  11. Diversity and abundance of lepidopteran populations from selected crops of district faisalabad, pakistan

    International Nuclear Information System (INIS)

    Maalik, S.; Rana, S.A.; Khan, H.A.; Ashfaq, M.

    2012-01-01

    Lepidopterans are represented by one of the most diverse group of insects. They are phytophagous as well as pollinators at the same time. During present study four crops i.e Wheat, Fodder, Brassica and Vegetables were sampled to assess the diversity and abundance of Lepidopteran populations. A total of 2811 specimens belonging to 14 species and 6 families were recorded. Pieris brassicae (29.46%) was the dominant species followed by Trichoplusia ni (19.28%), Helicoverpa Zea (11.78%), Helicoverpa armigera (11.60%), Spodoptera exigua (6.65%), Psedoplusia includes (5.09%), Spodoptera litura (3.81%), Agrotis ipsilon (4.87%), Plutella xylostella (2.92%), Lymatria dispar (2.24%), Pieris rapae (0.92%), Galleria mellonella (0.71%), Evergestris rimosalis (0.53%) and Menduca sexta (0.14%). Significant differences were observed among different crops by applying Shannon Diversity Index and T- test. CA (Cluster analysis) represented the species association with different crops. Majority of the species showed association with Vegetables and Fodder and least association was observed with Wheat. Such types of studies are necessary to design integrated pest management programs to control these pests. (author)

  12. Vegetative, productive and qualitative performance of grapevine "Cabernet Sauvignon" according to the use of winter cover crops

    OpenAIRE

    Bettoni, Jean Carlos; Feldberg, Nelson Pires; Nava, Gilberto; Veiga, Milton da; Wildner, Leandro do Prado

    2016-01-01

    ABSTRACT To study the effect of winter cover crops on the vegetative, productive and qualitative behavior of "Cabernet Sauvignon" grapevines, an experiment was conducted in two wine harvests by sowing different species of winter cover crops and additional treatments with manual weeding and mechanical mowing in an experimental vineyard located at the Experimental Station of Epagri in Videira, state of Santa Catarina, Brazil. Plant attributes of the grapevine, such as number of rods and weight ...

  13. Application of radiation induced mutations in the improvement of vegetatively propagated crops

    International Nuclear Information System (INIS)

    Mohan Jain, S.

    2009-01-01

    Full text: The NOBEL PEACE PRIZE, 2005, award to the International Atomic Energy Agency (IAEA) is a recognition to the contributions of nuclear technique applications, in a tough face off with plant genetic engineering, in sustainable food production, improvement of nutrition balance, and food security. Nuclear technology is effective in generating genetic variability, selection of useful mutants and multiplication in large numbers. A wide range of mutants of various vegetatively propagated crops have been isolated (www.iaea.org). In vitro plant regeneration is very much genotypic dependent, type of explants; culture medium, plant growth regulators etc. Somatic embryogenesis is an ideal system for the selection and multiplication of mutants and also would save time to dissociate chimeras. The role of molecular tools has become very crucial in understanding the molecular basis of differentiation and genetic variability; gene identification, isolation, and transfer. The new gene discovery with reverse and forward genetics will open the way for developing functional genomic plant breeding. There is no opposition from the consumers to consume food products derived from mutants, unlike strong opposition to the consumption of genetically modified (GM) food. Moreover, bio-safety regulations are not applied to mutants, however, strictly adhere to GM food. Tomorrow's agriculture will be under tremendous pressure for feeding the world's population in the face of climatic changes, salt and drought stresses, and biotic stresses; and mutagenesis would be the answer

  14. Transfer of radionuclides to vegetable and other crops grown on land reclaimed from the sea

    International Nuclear Information System (INIS)

    Green, N.; Wilkins, B.T.

    1995-01-01

    An area of reclaimed land on the Lancashire coast has been used to grow a wide range of crops to provide data on transfer parameters of radionuclides in foodchains when the activity is almost entirely of marine origin. Activity concentrations in the foodstuffs were low and not of radiological significance. However, meaningful results could be obtained if large sample sizes were employed. This paper sets out the methodology applied to a substantial field investigation of transfer to vegetable crops. The large sample sizes could be accommodated adequately with only minor modifications to established analytical procedures. The results of the study are discussed briefly. Since the growing conditions were virtually identical for each crop, comparisons of transfer factors between the different crops should therefore be valid. For some radionuclides, notably 239,240 Pu, 241 Am and 99 Tc, the work has added significantly to the data that are presently available. For most of the radionuclides studied, uptake by crops could be adequately predicted using the parameter values currently used in generic assessments, but for 99 Tc, lower values would be more appropriate

  15. Influence of seasoning on vegetable selection, liking and intent to purchase.

    Science.gov (United States)

    Manero, Joanna; Phillips, Carter; Ellison, Brenna; Lee, Soo-Yeun; Nickols-Richardson, Sharon M; Chapman-Novakofski, Karen M

    2017-09-01

    Low vegetable intake continues to be a health concern, and strategies to increase vegetable intake have resulted in only small increases. One strategy that has received less attention is the use of seasonings. This study's objective was to determine the impact of seasoning on vegetable selection, liking, and intent to purchase. We conducted a 3-week study in a public café on a university campus. Customers buying a main dish could select a vegetable side (seasoned [SS] or steamed [ST]) at no cost. Based on café data and power analysis (alpha 0.05, 80% power), 2 days per vegetable pair were conducted with carrot, broccoli, and green bean pairs randomized 3 days/week 1 and 3, with normal service week 2. Selection was greater for SS vs ST, n = 335 vs. 143 for all 3 vegetables combined; n = 97 vs 47 for carrots; n = 114 vs. 55 for broccoli; n = 124 vs. 41 for green beans (p purchase the vegetable that they selected. More customers chose the 'somewhat likely' and 'very likely' (n = 353) than the 'not likely' and 'definitely would not' (n = 121) purchase responses. Regression showed that people who did not often consume a vegetable with lunch while dining out were 1.59 times more likely to select the SS vegetables over the ST (p = 0.007). Given a choice, consumers were more likely to select a seasoned vegetable. With low vegetable consumption as a predictor of seasoned vegetable choice, offering seasoned vegetables may increase intake in those with poor vegetable intake in a café setting. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. A Genome-Wide Association Study on the Seedless Phenotype in Banana (Musa spp. Reveals the Potential of a Selected Panel to Detect Candidate Genes in a Vegetatively Propagated Crop.

    Directory of Open Access Journals (Sweden)

    Julie Sardos

    Full Text Available Banana (Musa sp. is a vegetatively propagated, low fertility, potentially hybrid and polyploid crop. These qualities make the breeding and targeted genetic improvement of this crop a difficult and long process. The Genome-Wide Association Study (GWAS approach is becoming widely used in crop plants and has proven efficient to detecting candidate genes for traits of interest, especially in cereals. GWAS has not been applied yet to a vegetatively propagated crop. However, successful GWAS in banana would considerably help unravel the genomic basis of traits of interest and therefore speed up this crop improvement. We present here a dedicated panel of 105 accessions of banana, freely available upon request, and their corresponding GBS data. A set of 5,544 highly reliable markers revealed high levels of admixture in most accessions, except for a subset of 33 individuals from Papua. A GWAS on the seedless phenotype was then successfully applied to the panel. By applying the Mixed Linear Model corrected for both kinship and structure as implemented in TASSEL, we detected 13 candidate genomic regions in which we found a number of genes potentially linked with the seedless phenotype (i.e. parthenocarpy combined with female sterility. An additional GWAS performed on the unstructured Papuan subset composed of 33 accessions confirmed six of these regions as candidate. Out of both sets of analyses, one strong candidate gene for female sterility, a putative orthologous gene to Histidine Kinase CKI1, was identified. The results presented here confirmed the feasibility and potential of GWAS when applied to small sets of banana accessions, at least for traits underpinned by a few loci. As phenotyping in banana is extremely space and time-consuming, this latest finding is of particular importance in the context of banana improvement.

  17. A Genome-Wide Association Study on the Seedless Phenotype in Banana (Musa spp.) Reveals the Potential of a Selected Panel to Detect Candidate Genes in a Vegetatively Propagated Crop.

    Science.gov (United States)

    Sardos, Julie; Rouard, Mathieu; Hueber, Yann; Cenci, Alberto; Hyma, Katie E; van den Houwe, Ines; Hribova, Eva; Courtois, Brigitte; Roux, Nicolas

    2016-01-01

    Banana (Musa sp.) is a vegetatively propagated, low fertility, potentially hybrid and polyploid crop. These qualities make the breeding and targeted genetic improvement of this crop a difficult and long process. The Genome-Wide Association Study (GWAS) approach is becoming widely used in crop plants and has proven efficient to detecting candidate genes for traits of interest, especially in cereals. GWAS has not been applied yet to a vegetatively propagated crop. However, successful GWAS in banana would considerably help unravel the genomic basis of traits of interest and therefore speed up this crop improvement. We present here a dedicated panel of 105 accessions of banana, freely available upon request, and their corresponding GBS data. A set of 5,544 highly reliable markers revealed high levels of admixture in most accessions, except for a subset of 33 individuals from Papua. A GWAS on the seedless phenotype was then successfully applied to the panel. By applying the Mixed Linear Model corrected for both kinship and structure as implemented in TASSEL, we detected 13 candidate genomic regions in which we found a number of genes potentially linked with the seedless phenotype (i.e. parthenocarpy combined with female sterility). An additional GWAS performed on the unstructured Papuan subset composed of 33 accessions confirmed six of these regions as candidate. Out of both sets of analyses, one strong candidate gene for female sterility, a putative orthologous gene to Histidine Kinase CKI1, was identified. The results presented here confirmed the feasibility and potential of GWAS when applied to small sets of banana accessions, at least for traits underpinned by a few loci. As phenotyping in banana is extremely space and time-consuming, this latest finding is of particular importance in the context of banana improvement.

  18. Soil, crop and emission responses to seasonal-controlled traffic in organic vegetable farming on loam soil

    NARCIS (Netherlands)

    Vermeulen, G.D.; Mosquera Losada, J.

    2009-01-01

    Some organic arable and vegetable farms in the Netherlands use cm-precise guidance of machinery to restrict wheel traffic to fixed traffic lanes and to achieve non-trafficked cropping zones with optimized soil structure in between the lanes. Contrary to controlled traffic farming (CTF) the traffic

  19. Globally Increased Crop Growth and Cropping Intensity from the Long-Term Satellite-Based Observations

    Science.gov (United States)

    Chen, Bin

    2018-04-01

    Understanding the spatiotemporal change trend of global crop growth and multiple cropping system under climate change scenarios is a critical requirement for supporting the food security issue that maintains the function of human society. Many studies have predicted the effects of climate changes on crop production using a combination of filed studies and models, but there has been limited evidence relating decadal-scale climate change to global crop growth and the spatiotemporal distribution of multiple cropping system. Using long-term satellite-derived Normalized Difference Vegetation Index (NDVI) and observed climate data from 1982 to 2012, we investigated the crop growth trend, spatiotemporal pattern trend of agricultural cropping intensity, and their potential correlations with respect to the climate change drivers at a global scale. Results show that 82.97 % of global cropland maximum NDVI witnesses an increased trend while 17.03 % of that shows a decreased trend over the past three decades. The spatial distribution of multiple cropping system is observed to expand from lower latitude to higher latitude, and the increased cropping intensity is also witnessed globally. In terms of regional major crop zones, results show that all nine selected zones have an obvious upward trend of crop maximum NDVI (p impact on the crop growth trend.

  20. Biotechnological applications in in vitro plant regeneration studies of broccoli (Brassica oleracea L. var. italica), an important vegetable crop.

    Science.gov (United States)

    Kumar, Pankaj; Srivastava, Dinesh Kumar

    2016-04-01

    Biotechnology holds promise for genetic improvement of important vegetable crops. Broccoli (Brassica oleracea L. var. italica) is an important vegetable crop of the family Brassicaceae. However, various biotic and abiotic stresses cause enormous crop yield losses during commercial cultivation of broccoli. Establishment of a reliable, reproducible and efficient in vitro plant regeneration system with cell and tissue culture is a vital prerequisite for biotechnological application of crop improvement programme. An in vitro plant regeneration technique refers to culturing, cell division, cell multiplication, de-differentiation and differentiation of cells, protoplasts, tissues and organs on defined liquid/solid medium under aseptic and controlled environment. Recent progress in the field of plant tissue culture has made this area one of the most dynamic and promising in experimental biology. There are many published reports on in vitro plant regeneration studies in broccoli including direct organogenesis, indirect organogenesis and somatic embryogenesis. This review summarizes those plant regeneration studies in broccoli that could be helpful in drawing the attention of the researchers and scientists to work on it to produce healthy, biotic and abiotic stress resistant plant material and to carry out genetic transformation studies for the production of transgenic plants.

  1. Investigation of NPK in fertilized and unfertilized vegetables

    International Nuclear Information System (INIS)

    Deeba, F.; Butt, M.T.; Iqubal, K.; Shafiq, T.

    2010-01-01

    Contents of selected minerals and moisture in Ridge Gourd, Gourd and Brinjal vegetables, collected from house and market of different localities, were determined. In house vegetables from kitchen garden of PCSIR colony the moisture contents were high (90%) as compared to market vegetables of Taj Bagh, Railway workshop Mandy and Singpura Lahore Mandy was 87%, 86.5% and 87.5% respectively. Regarding nitrogen, nitrate, nitrite, phosphate, sodium and potassium was high in market vegetables as compared to house samples due to the accumulation of nutrients in soil and crop. (author)

  2. Selection of candidate salad vegetables for controlled ecological life support system

    Science.gov (United States)

    Qin, L.; Guo, S.; Ai, W.; Tang, Y.

    Higher plants, as one of the essential biological components of CELSS, can supply food, oxygen and water for human crews during future long-duration space missions and Lunar/Mars habitats. In order to select suitable leaf vegetable varieties for our CELSS Experimental Facility (CEF), five varieties of lettuce (“Nenlvnaiyou”, “Dasusheng”, “Naichoutai”, “Dongfangkaixuan” and “Siji”), two of spinach (“Daye” and “Quanneng”), one of rape (“Jingyou No. 1”) and one of common sowthistle were grown and compared on the basis of edible biomass, and nutrient content. In addition, two series of experiments were conducted to study single leaf photosynthetic rates and transpiration rates at 30 days after planting, one which used various concentrations of CO2 (500, 1000, 1500 and 2000 μmol mol-1) and another which used various light intensities (100, 300, 500 and 700 μmol m-2 s-1). Results showed that lettuce cvs. “Nenlvnaiyou”, “Siji” and “Dasusheng” produced higher yields of edible biomass; common sowthisle would be a good source of β-carotene for the diet. Based on the collective findings, we selected three varieties of lettuce (“Nenlvnaiyou”, “Dasusheng” and “Siji”) and one of common sowthistle as the candidate crops for further research in our CEF. In addition, elevated CO2 concentration increased the rates of photosynthesis and transpiration, and elevated light intensity increased the rate of photosynthesis for these varieties. These results can be useful for determining optimal conditions for controlling CO2 and water fluxes between the crops and the overall CELSS.

  3. Leaf-air transfer of organochlorine pesticides from three selected vegetables

    Energy Technology Data Exchange (ETDEWEB)

    Yang Xinglun [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008 (China); Jiang Xin [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008 (China)]. E-mail: jiangxin@issas.ac.cn; Yu Guifen [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008 (China); Yao Fenxia [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008 (China); Bian Yongrong [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008 (China); Wang Fang [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008 (China)

    2007-07-15

    The leaf-air transfer of organochlorine pesticides (OCPs) in three kinds of vegetables, namely lettuce, romaine and garlic leaves was investigated. It was found that although the uptake of OCPs by the three selected vegetables was similar under controlled conditions, the depuration varied significantly among chemicals and plant species in terms of elimination rate, final residue of each OCPs, as well as the effect of temperature on the residue of OCPs in the vegetables. The results indicated that neither QCB nor HCB could be trapped tightly by any of the three selected vegetables, in contrast, p,p'-DDT could be retained effectively by all of them; the retainment of {alpha}-HCH, {gamma}-HCH, p,p'-DDE, was dependent on the vegetable species, of which the garlic leaf had the biggest ability to trap them. Our work provided insight into the behavior of OCPs in the agroecosystem. - The leaf-air transfer of OCPs varied significantly among chemicals and the three selected vegetables.

  4. Leaf-air transfer of organochlorine pesticides from three selected vegetables

    International Nuclear Information System (INIS)

    Yang Xinglun; Jiang Xin; Yu Guifen; Yao Fenxia; Bian Yongrong; Wang Fang

    2007-01-01

    The leaf-air transfer of organochlorine pesticides (OCPs) in three kinds of vegetables, namely lettuce, romaine and garlic leaves was investigated. It was found that although the uptake of OCPs by the three selected vegetables was similar under controlled conditions, the depuration varied significantly among chemicals and plant species in terms of elimination rate, final residue of each OCPs, as well as the effect of temperature on the residue of OCPs in the vegetables. The results indicated that neither QCB nor HCB could be trapped tightly by any of the three selected vegetables, in contrast, p,p'-DDT could be retained effectively by all of them; the retainment of α-HCH, γ-HCH, p,p'-DDE, was dependent on the vegetable species, of which the garlic leaf had the biggest ability to trap them. Our work provided insight into the behavior of OCPs in the agroecosystem. - The leaf-air transfer of OCPs varied significantly among chemicals and the three selected vegetables

  5. Mutation breeding in vegetable crops

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Takashi

    1984-03-01

    Vegetables breed by seeds and vegetative organs. In main vegetables, the differentiation of clopping types, the adoption of monoculture and year-round production and shipment are carried out, adapting to various socio-economic and cultivation conditions. Protected agriculture has advanced mainly for fruit vegetables, and the seeds for sale have become almost hybrid varieties. Reflecting this situation, the demand for breeding is diversified and characteristic. The present status of mutation breeding of vegetables is not yet well under way, but reports of about 40 raised varieties have been published in the world. The characters introduced by induced mutation and irradiation are compact form, harvesting aptitude, the forms and properties of stems and leaves, anti-lodging property, the size, form and uniformity of fruits, male sterility and so on. The radiation sources used were mostly gamma ray or X-ray, but sometimes, combined irradiation was used. Results obtained in Japan include: burdocks as an example to gamma ray irradiation of seeds; tomatoes as an example of inducing compound resistance against disease injury; and lettuce as an example of internal beta irradiation. (Kako, I.).

  6. 78 FR 44922 - Vegetable and Specialty Crop Marketing Orders; Notice of Request for Extension and Revision of a...

    Science.gov (United States)

    2013-07-25

    ... Approved Information Collection AGENCY: Agricultural Marketing Service, USDA. ACTION: Notice and request... assured of consideration. Additional Information or Comments: Contact Andrew Hatch, Supervisory Marketing....regulations.gov . SUPPLEMENTARY INFORMATION: Title: Vegetable and Specialty Crop Marketing Orders. OMB Number...

  7. Blue and green water use of cultivating selected crops in Malaysia

    Science.gov (United States)

    Harun, Siti Norliyana; Hanafiah, Marlia M.

    2018-04-01

    Sustainability of water resources should be a concern parallel to the fast pace of economic development. This study was conducted to estimate the total water consumption of growing 9 crops in Peninsular Malaysia which divided into two category of crops; fruits and vegetables, i.e. mandarin, banana, mango, pineapple, watermelon, cucumber, eggplant, green bean and lettuce. The water footprint of these crops was estimated based on 9 years data of climate and crop (2005-2013). The crop water use was determined using CROPWAT 8.0 model and Penman-Monteith equation. It was found that the green water footprint for cultivating 9 crops was higher compared to blue water footprint. The blue water footprint ranged from 20.97m3/ton to 197.84m3/ton, whereas the green water footprint ranged from 129.8m3/ton to 1586.2m3/ton. Banana has the highest total water footprint (1717.10m3/ton) and the lowest total water footprint was obtained for cucumber (175.07m3/ton). In conclusion, water consumption for cultivating agricultural crops will accelerate the competition on the consumption of clean water with the other sectors. However, the availability of water resource in Peninsular Malaysia is still sufficient to fulfill the demands for water at the present time. Further study should include grey water as well as an indicator for water quality to help in assessing the sustainable, efficient and equitable use of water resources.

  8. Vegetative, productive and qualitative performance of grapevine "Cabernet Sauvignon" according to the use of winter cover crops

    Directory of Open Access Journals (Sweden)

    Jean Carlos Bettoni

    Full Text Available ABSTRACT To study the effect of winter cover crops on the vegetative, productive and qualitative behavior of "Cabernet Sauvignon" grapevines, an experiment was conducted in two wine harvests by sowing different species of winter cover crops and additional treatments with manual weeding and mechanical mowing in an experimental vineyard located at the Experimental Station of Epagri in Videira, state of Santa Catarina, Brazil. Plant attributes of the grapevine, such as number of rods and weight of pruned material and number of branches per plant. At the time of skin color change, petioles of recently matured leaves were collected for analysis of the levels of N, P, K, Ca, Mg, Fe, Mn, Zn and B. Moments before harvest, 100 grape berries were collected randomly to determine the total soluble solids, titratable acidity and pH. At harvest, the number of bunches per branch, the number and mass of clusters per plant and the average mass of clusters per plot were determined. Fresh and dry matter yields of the cover crop and weed plants were also determined when coverage reached full bloom. The winter cover crops did not alter the yield and quality of "Cabernet Sauvignon" grapes and showed no differences from each other for the management of spontaneous vegetation by hand weeding or mechanical mowing. Rye and ryegrass are effective alternatives for weed control alternatives. The species of white and red clover present difficulty in initial establishment, producing a small amount of biomass.

  9. Cover crops knowledge and implementation willingness by producers of several crops

    Directory of Open Access Journals (Sweden)

    Robin Gómez Gómez

    2017-04-01

    Full Text Available The objective of this study was to assess the knowledge on cover crops and native vegetation mulches and the willingness to implement them by papaya, oil palm, and banana producers in Costa Rica. An evaluation instrument with twenty eight questions to be answered as true or false was developed, and it was used to yield a knowledge indicator. Seven additional questions with responses on a scale from 0 to 5 were included to explore producers’ willingness to implement cover crops or native vegetation mulches on their farms. The evaluation was completed in 2014, and was filled out by 36 papaya producers, 30 oil palm producers, and 57 banana producers. Item analyses to determine reliability produced Cronbach’s alpha values above 90%. For this study a factors analysis was performed in order to determine the measurement of one single variable, knowledge on cover crops and native vegetation mulches. Global knowledge scores varied signi cantly between producer groups. Banana producers assessments yielded the highest mean with the lowest variability, whereas papaya producers had the lower mean and the highest variability. Likewise, answers to each of the questions differed importantly between producer groups. It was also determined that producers of these crops are willing to implement and get training on cover crops and native vegetation mulches.

  10. Mutation breeding in vegetable crops

    International Nuclear Information System (INIS)

    Yamaguchi, Takashi

    1984-01-01

    Vegetables breed by seeds and vegetative organs. In main vegetables, the differentiation of clopping types, the adoption of monoculture and year-round production and shipment are carried out, adapting to various socio-economic and cultivation conditions. Protected agriculture has advanced mainly for fruit vegetables, and the seeds for sale have become almost hybrid varieties. Reflecting the situation like this, the demand for breeding is diversified and characteristic, and the case of applying mutation breeding seems to be many. The present status of the mutation breeding of vegetables is not yet well under way, but about 40 raised varieties have been published in the world. The characters introduced by induced mutation and irradiation were compact form, harvesting aptitude, the forms and properties of stems and leaves, anti-lodging property, the size, form and uniformity of fruits, male sterility and so on. The radiation sources used were mostly gamma ray or X-ray, but sometimes, combined irradiation was used. As the results obtained in Japan, burdocks as an example of gamma ray irradiation to seeds, tomatoes as an example of inducing the compound resistance against disease injury and lettuces as an example of internal beta irradiation are reported. (Kako, I.)

  11. Deriving crop calendar using NDVI time-series

    Science.gov (United States)

    Patel, J. H.; Oza, M. P.

    2014-11-01

    Agricultural intensification is defined in terms as cropping intensity, which is the numbers of crops (single, double and triple) per year in a unit cropland area. Information about crop calendar (i.e. number of crops in a parcel of land and their planting & harvesting dates and date of peak vegetative stage) is essential for proper management of agriculture. Remote sensing sensors provide a regular, consistent and reliable measurement of vegetation response at various growth stages of crop. Therefore it is ideally suited for monitoring purpose. The spectral response of vegetation, as measured by the Normalized Difference Vegetation Index (NDVI) and its profiles, can provide a new dimension for describing vegetation growth cycle. The analysis based on values of NDVI at regular time interval provides useful information about various crop growth stages and performance of crop in a season. However, the NDVI data series has considerable amount of local fluctuation in time domain and needs to be smoothed so that dominant seasonal behavior is enhanced. Based on temporal analysis of smoothed NDVI series, it is possible to extract number of crop cycles per year and their crop calendar. In the present study, a methodology is developed to extract key elements of crop growth cycle (i.e. number of crops per year and their planting - peak - harvesting dates). This is illustrated by analysing MODIS-NDVI data series of one agricultural year (from June 2012 to May 2013) over Gujarat. Such an analysis is very useful for analysing dynamics of kharif and rabi crops.

  12. GLOBALLY INCREASED CROP GROWTH AND CROPPING INTENSITY FROM THE LONG-TERM SATELLITE-BASED OBSERVATIONS

    Directory of Open Access Journals (Sweden)

    B. Chen

    2018-04-01

    Full Text Available Understanding the spatiotemporal change trend of global crop growth and multiple cropping system under climate change scenarios is a critical requirement for supporting the food security issue that maintains the function of human society. Many studies have predicted the effects of climate changes on crop production using a combination of filed studies and models, but there has been limited evidence relating decadal-scale climate change to global crop growth and the spatiotemporal distribution of multiple cropping system. Using long-term satellite-derived Normalized Difference Vegetation Index (NDVI and observed climate data from 1982 to 2012, we investigated the crop growth trend, spatiotemporal pattern trend of agricultural cropping intensity, and their potential correlations with respect to the climate change drivers at a global scale. Results show that 82.97 % of global cropland maximum NDVI witnesses an increased trend while 17.03 % of that shows a decreased trend over the past three decades. The spatial distribution of multiple cropping system is observed to expand from lower latitude to higher latitude, and the increased cropping intensity is also witnessed globally. In terms of regional major crop zones, results show that all nine selected zones have an obvious upward trend of crop maximum NDVI (p < 0.001, and as for climatic drivers, the gradual temperature and precipitation changes have had a measurable impact on the crop growth trend.

  13. Locus-dependent selection in crop-wild hybrids of lettuce under field conditions and its implication for GM crop development

    Science.gov (United States)

    Hooftman, Danny A P; Flavell, Andrew J; Jansen, Hans; den Nijs, Hans C M; Syed, Naeem H; Sørensen, Anker P; Orozco-ter Wengel, Pablo; van de Wiel, Clemens C M

    2011-01-01

    Gene escape from crops has gained much attention in the last two decades, as transgenes introgressing into wild populations could affect the latter's ecological characteristics. However, different genes have different likelihoods of introgression. The mixture of selective forces provided by natural conditions creates an adaptive mosaic of alleles from both parental species. We investigated segregation patterns after hybridization between lettuce (Lactuca sativa) and its wild relative, L. serriola. Three generations of hybrids (S1, BC1, and BC1S1) were grown in habitats mimicking the wild parent's habitat. As control, we harvested S1 seedlings grown under controlled conditions, providing very limited possibility for selection. We used 89 AFLP loci, as well as more recently developed dominant markers, 115 retrotransposon markers (SSAP), and 28 NBS loci linked to resistance genes. For many loci, allele frequencies were biased in plants exposed to natural field conditions, including over-representation of crop alleles for various loci. Furthermore, Linkage disequilibrium was locally changed, allegedly by selection caused by the natural field conditions, providing ample opportunity for genetic hitchhiking. Our study indicates that when developing genetically modified crops, a judicious selection of insertion sites, based on knowledge of selective (dis)advantages of the surrounding crop genome under field conditions, could diminish transgene persistence. PMID:25568012

  14. Locus-dependent selection in crop-wild hybrids of lettuce under field conditions and its implication for GM crop development.

    Science.gov (United States)

    Hooftman, Danny A P; Flavell, Andrew J; Jansen, Hans; den Nijs, Hans C M; Syed, Naeem H; Sørensen, Anker P; Orozco-Ter Wengel, Pablo; van de Wiel, Clemens C M

    2011-09-01

    Gene escape from crops has gained much attention in the last two decades, as transgenes introgressing into wild populations could affect the latter's ecological characteristics. However, different genes have different likelihoods of introgression. The mixture of selective forces provided by natural conditions creates an adaptive mosaic of alleles from both parental species. We investigated segregation patterns after hybridization between lettuce (Lactuca sativa) and its wild relative, L. serriola. Three generations of hybrids (S1, BC1, and BC1S1) were grown in habitats mimicking the wild parent's habitat. As control, we harvested S1 seedlings grown under controlled conditions, providing very limited possibility for selection. We used 89 AFLP loci, as well as more recently developed dominant markers, 115 retrotransposon markers (SSAP), and 28 NBS loci linked to resistance genes. For many loci, allele frequencies were biased in plants exposed to natural field conditions, including over-representation of crop alleles for various loci. Furthermore, Linkage disequilibrium was locally changed, allegedly by selection caused by the natural field conditions, providing ample opportunity for genetic hitchhiking. Our study indicates that when developing genetically modified crops, a judicious selection of insertion sites, based on knowledge of selective (dis)advantages of the surrounding crop genome under field conditions, could diminish transgene persistence.

  15. How healthy is urban horticulture in high traffic areas? Trace metal concentrations in vegetable crops from plantings within inner city neighbourhoods in Berlin, Germany.

    Science.gov (United States)

    Säumel, Ina; Kotsyuk, Iryna; Hölscher, Marie; Lenkereit, Claudia; Weber, Frauke; Kowarik, Ingo

    2012-06-01

    Food production by urban dwellers is of growing importance in developing and developed countries. Urban horticulture is associated with health risks as crops in urban settings are generally exposed to higher levels of pollutants than those in rural areas. We determined the concentration of trace metals in the biomass of different horticultural crops grown in the inner city of Berlin, Germany, and analysed how the local setting shaped the concentration patterns. We revealed significant differences in trace metal concentrations depending on local traffic, crop species, planting style and building structures, but not on vegetable type. Higher overall traffic burden increased trace metal content in the biomass. The presence of buildings and large masses of vegetation as barriers between crops and roads reduced trace metal content in the biomass. Based on this we discuss consequences for urban horticulture, risk assessment, and planting and monitoring guidelines for cultivation and consumption of crops. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Emamectin benzoate (Affirm). a modern insecticide for the control of lepidoptera larvae on fruits, grapes and vegetables crops.

    Science.gov (United States)

    Liguori, R; Correia, R; Thomas, C; Decaudin, B; Cisneros, J; Lopez, A

    2010-01-01

    Emamectin benzoate (Affirm) is a novel insecticide with potent efficacy against many specie of lepidoptera which are damaging fruits and leaves of agricultural crops. The active ingredient belongs to the naturally derived chemical group of avermectine, causing paralysis of lepidoptera larvae due to the activation of chloride channel at nerves level. Affirm is acting mainly through ingestion, due to its mode of action and fast activity, it is effective at very low rates and on all instars stages. It has been developed for the use on pomefruits, stonefruits, grapes and a broda range of vegetables crops at a rate range of 1.5 to 3 g ai/100L. The product shows translaminar activity and rapid degradation on leaf surface; therefore the active ingredient breaks down in a very short time to sublethal doses for most beneficials organisms living on the vegetation. The short rentry time, generally 24 hours for beneficials and impollinators, makes Affirm compatible for IPM programme in orchards and greenhouses. Also the residue profile is very favourable, leading to a very low maximum residue level and short preharvest interval in all edible crops.

  17. Selectivity and stability of vegetation-applied herbicides in cotton (Gossypium hirsutum L.

    Directory of Open Access Journals (Sweden)

    T. Barakova

    2016-06-01

    Full Text Available Abstract. An experiment was carried out during 2013 – 2015 in the experimental field of the Field Crops Institute, Chirpan, with two cotton cultivars − Helius and Darmi (Gossypium hirsutum L.. Herbicides: Goal 2 E, oxyfluorfen (80 ml/da; Linuron 45 SC, linuron (200 ml/da; Wing-P, pendimethalin + dimethenamid (400 ml/da; Merlin 750 WG, isoxaflutol (5 g/da; Bazagran 480 SL, bentazone (150 ml/da were investigated. They were treated separately or combined with growth regulator Amalgerol (500 ml/da or foliar fertilizer Lactofol O (500 ml/da in the budding stage of the cotton. It was established that selectivity is the lowest in the two cotton cultivars with herbicides Linuron 45 CK and Merlin 750 WG. The purpose of this investigation was to establish the selectivity and stability of some herbicides and their tank mixtures on the cotton by influence of different meteorological conditions. It has been found that the highest phytotoxicity on cotton is given the vegetation-applied herbicides Merlin and Linuron. Foliar fertilizer Laktofol O reduces phytotoxicity of herbicides Goal, Wing, Merlin and Bazagran in two cotton cultivars. Herbicides Wing and Bazagran have excellent selectivity for the two cotton cultivars – Helius and Darmi. The highest yield was obtained by vegetation treatment with herbicide Bazagran, followed by herbicides Wing and Goal. Tank mixtures of Goal, Bazagran and Wing with Laktofol, followed by those with Amalgerol are technologically the most valuable. They combine high yield with high stability over the years. Аlone application of herbicides Linuron and Merlin and their tank mixtures with Amalgerol and Laktofol have low estimate.

  18. Team-up Crop Diversification and Weed Management: PRODIVA

    DEFF Research Database (Denmark)

    Gerowitt, B.; Melander, B.; Krawczyk, R.

    2015-01-01

    The research-network PRODIVA focuses on a better utilization of crop diversification for weed management in North European arable cropping systems. The goal is to maintain diverse arable weed vegetation that is manageable in the long-term and could fulfil other necessary systemfunctions including...... support of beneficial organisms. The partners in PRODIVA will synthesize knowledge from terminated and running research projects and set-up selected new experiments on cover crops and variety resp. crop mixtures. Moreover, we will interact with partners from farming practice and extension services...... in organic agriculture. Regional fields will be surveyed for weeds to safeguard the relevance of the experimental research. Current cropping practices and their influence on weed pressure and weed diversity will be identified. The project will involve relevant stakeholders from the participating countries...

  19. Disaggregating and mapping crop statistics using hypertemporal remote sensing

    Science.gov (United States)

    Khan, M. R.; de Bie, C. A. J. M.; van Keulen, H.; Smaling, E. M. A.; Real, R.

    2010-02-01

    Governments compile their agricultural statistics in tabular form by administrative area, which gives no clue to the exact locations where specific crops are actually grown. Such data are poorly suited for early warning and assessment of crop production. 10-Daily satellite image time series of Andalucia, Spain, acquired since 1998 by the SPOT Vegetation Instrument in combination with reported crop area statistics were used to produce the required crop maps. Firstly, the 10-daily (1998-2006) 1-km resolution SPOT-Vegetation NDVI-images were used to stratify the study area in 45 map units through an iterative unsupervised classification process. Each unit represents an NDVI-profile showing changes in vegetation greenness over time which is assumed to relate to the types of land cover and land use present. Secondly, the areas of NDVI-units and the reported cropped areas by municipality were used to disaggregate the crop statistics. Adjusted R-squares were 98.8% for rainfed wheat, 97.5% for rainfed sunflower, and 76.5% for barley. Relating statistical data on areas cropped by municipality with the NDVI-based unit map showed that the selected crops were significantly related to specific NDVI-based map units. Other NDVI-profiles did not relate to the studied crops and represented other types of land use or land cover. The results were validated by using primary field data. These data were collected by the Spanish government from 2001 to 2005 through grid sampling within agricultural areas; each grid (block) contains three 700 m × 700 m segments. The validation showed 68%, 31% and 23% variability explained (adjusted R-squares) between the three produced maps and the thousands of segment data. Mainly variability within the delineated NDVI-units caused relatively low values; the units are internally heterogeneous. Variability between units is properly captured. The maps must accordingly be considered "small scale maps". These maps can be used to monitor crop performance of

  20. TO 135TH ANNIVERSARY FROM THE DATE OF BIRTH OF ZHEGALOV S.I. – AN ESTABLISHER OF NATIONAL SCHOOL FOR BREEDING AND SEED INDUSTRY OF VEGETABLE CROPS

    Directory of Open Access Journals (Sweden)

    V. F. Pivovarov

    2016-01-01

    Full Text Available On the second of October, in 1881, Sergey Ivanovich Zhegalov, an establisher of national breeding and seed production of vegetable crops was born in a little village Vasilkovo of Vyazemskogo uezda. He was a founder and a first director of Gribovskaya Vegetable Breeding Station. This year marked by 135th anniversary from the date of birth of the outstanding scientist. All the time at All-Russian Research Institute of Vegetable Breeding and Seed Production (VNIISSOK, its scientific leader and mastermind is honored and remembered for his heritage that is still preserved andaugmented. This scientist was at the beginning of plant breeding science and became the first who brought scientifically proved methods into agricultural plant science. The process of newplant- form-producing and development of new more qualified breeding forms through distant crossing, hybridization, heterosis effect, are the problems which interested the mind of Zhegalov and always were the sense of his life. These problems still remain in these days, where his ideas are embodied in scientific program of the institute covering theoretical researches for development of innovation method needed for creation of new highly qualified breeding plant material regarded as a source for nearest breeding practice and seed production. At VNIISSOK the richest plant collection with important genes and donor genotypes of productivity, fast ripening, high quality, resistance to biotic and abiotic stresses is created in Cucurbitaceae, Solanaceae,Alliaceae, Fabaceae, root vegetables, Brassicas, leafy crops, aromatic and medicinal crops and ornamental crops. Core plant collection is substantially extending by means of introduction of new crops and non-traditional ones as well. The specialist-breeders of VNIISSOK have developed over 800 cultivars and hybrids F1 of vegetables, melons and gourds, aromatic plants, ornamental plants, non-traditional. 546 accessions out of 118 crops have been included

  1. The Strength and Drivers of Bird-Mediated Selection on Fruit Crop Size: A Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Facundo X. Palacio

    2018-02-01

    Full Text Available In seed-dispersal mutualisms, the number of fruit a plant displays is a key trait, as it acts as a signal for seed dispersers that entails fruit removal and exportation of reproductive units (fruit crop size hypothesis. Although this hypothesis has gained general acceptance, forces driving the shape and strength of natural selection exerted by birds on fruit crop size remains an unresolved matter. Here, we propose that ecological filters promoting high functional equivalence of interacting partners (similar functional roles translate into similar selection pressures on fruit crop size, enhancing selection strength on this trait. We performed a meta-analysis on 50 seed-dispersal systems to test the hypothesis that frugivorous birds exert positive selection pressure on fruit crop size, and to assess whether different factors expected to act as filters (fruit diameter, fruit type, fruiting season length, bird functional groups, and latitude influence phenotypic selection regimes on this trait. Birds promote larger fruit crop sizes as a general pattern in nature. Short fruiting seasons and a high proportion of species belonging to the same functional group showed higher selection strength on fruit crop size. Also, selection strength on fruit crop size increased for large-fruited species and toward the tropics. Our results support the hypothesis that fruit crop size represents a conspicuous signal advertising the amount of reward to visually driven interacting partners, and that both plant and bird traits, as well as environmental factors, drive selection strength on fruit display traits. Furthermore, our results suggest that the relationship among forces impinged by phenology and frugivore functional roles may be key to understand their evolutionary stability.

  2. Assessment of agricultural crops and natural vegetation in Scotland for energy production by anaerobic digestion and hydrothermal liquefaction

    DEFF Research Database (Denmark)

    Biller, Patrick; Lawson, David; Madsen, René Bjerregaard

    2017-01-01

    The current paper investigates the use of natural vegetation and agricultural crops commonly found in Scotland as a source of bioenergy. Such biomass is shown to have a high moisture content upon harvest (∼80%) which renders them suitable for wet conversion technologies such as anaerobic digestion...

  3. Response of nutrients, minerals, antioxidant leaf pigments, vitamins, polyphenol, flavonoid and antioxidant activity in selected vegetable amaranth under four soil water content.

    Science.gov (United States)

    Sarker, Umakanta; Oba, Shinya

    2018-06-30

    Four selected vegetable amaranths were grown under four soil water content to evaluate their response in nutrients, minerals, antioxidant leaf pigments, vitamins, polyphenol, flavonoid and total antioxidant activity (TAC). Vegetable amaranth was significantly affected by variety, soil water content and variety × soil water content interactions for all the traits studied. Increase in water stress, resulted in significant changes in proximate compositions, minerals (macro and micro), leaf pigments, vitamin, total polyphenol content (TPC), and total flavonoid content (TFC) of vegetable amaranth. Accessions VA14 and VA16 performed better for all the traits studied. Correlation study revealed a strong antioxidant scavenging activity of leaf pigments, ascorbic acid, TPC and TFC. Vegetable amaranth can tolerate soil water stress without compromising the high quality of the final product in terms of nutrients and antioxidant profiles. Therefore, it could be a promising alternative crop in semi-arid and dry areas and also during dry seasons. Copyright © 2018. Published by Elsevier Ltd.

  4. Analysis of Selected Environmental Indicators in the Cultivation System of Energy Crops

    Directory of Open Access Journals (Sweden)

    Šoltysová Božena Š

    2017-11-01

    Full Text Available The changes of selected chemical parameters were observed in Gleyic Fluvisols. The field experiment was established as a twofactor experiment with four energy crops (Arundo donax L., Miscanthus × giganteus, Elymus elongatus Gaertner, Sida hermafrodita and two variants of fertilization (nitrogen fertilization in rate 60 kg ha-1, without nitrogen fertilization. Soil samples were taken from the depth of 0 to 0.3 m at the beginning of the experiment in the autumn 2012 and at the end of reference period in the autumn 2015. Land management conversion from market crops to perennial energy crops cultivation has influenced changes of selected soil chemical parameters. The contents of soil organic carbon were affected by cultivated energy crops differently. It was found out that Arundo increased the organic carbon content and Miscanthus, Elymus and Sida decreased its content. At the same time, the same impact of the crops on content of available phosphorus and potassium and soil reaction was found. It was recorded that each cultivated crop decreased the soil reaction and available phosphorus content and increased the content of available potassium.

  5. Compositional Changes in Selected Minimally Processed Vegetables

    OpenAIRE

    O'Reilly, Emer, (Thesis)

    2000-01-01

    Compositional, physiological and microbiological changes in selected minimally processed vegetables packaged under a modified atmosphere of 2% oxygen and 5% carbon dioxide were monitored over a ten day storage period at 40 C and 80 C. The analysis targeted specific changes in the nutritional, chemical and physiological make up of the vegetables as well as the changes in the microbial levels. In addition the changes in the gas atmospheres within the packs were monitored. It has been widely acc...

  6. Use of Plastic Mulch for Vegetable Production

    OpenAIRE

    Maughan, Tiffany; Drost, Dan

    2016-01-01

    Plastic mulches are used commercially for both vegetables and small fruit crops. Vegetable crops well suited for production with plastic mulch are typically high value row crops. This fact sheet describes the advantages, disadvantages, installation, and planting considerations. It includes sources for plastic and equipment.

  7. Comparing Broad-Band and Red Edge-Based Spectral Vegetation Indices to Estimate Nitrogen Concentration of Crops Using Casi Data

    Science.gov (United States)

    Wang, Yanjie; Liao, Qinhong; Yang, Guijun; Feng, Haikuan; Yang, Xiaodong; Yue, Jibo

    2016-06-01

    In recent decades, many spectral vegetation indices (SVIs) have been proposed to estimate the leaf nitrogen concentration (LNC) of crops. However, most of these indices were based on the field hyperspectral reflectance. To test whether they can be used in aerial remote platform effectively, in this work a comparison of the sensitivity between several broad-band and red edge-based SVIs to LNC is investigated over different crop types. By using data from experimental LNC values over 4 different crop types and image data acquired using the Compact Airborne Spectrographic Imager (CASI) sensor, the extensive dataset allowed us to evaluate broad-band and red edge-based SVIs. The result indicated that NDVI performed the best among the selected SVIs while red edge-based SVIs didn't show the potential for estimating the LNC based on the CASI data due to the spectral resolution. In order to search for the optimal SVIs, the band combination algorithm has been used in this work. The best linear correlation against the experimental LNC dataset was obtained by combining the 626.20nm and 569.00nm wavebands. These wavelengths correspond to the maximal chlorophyll absorption and reflection position region, respectively, and are known to be sensitive to the physiological status of the plant. Then this linear relationship was applied to the CASI image for generating an LNC map, which can guide farmers in the accurate application of their N fertilization strategies.

  8. Determination of pesticide residue in selected fruits and vegetable

    International Nuclear Information System (INIS)

    Tabbasum, R.; Aman, A.

    2005-01-01

    Food contamination due to indiscriminate use of pesticides has become a serious problem. Fruits samples of tomato, grapes, musk melon, parsimen and vegetable samples of potato, pea, spinach, cabbage and pumpkin ere collected from local market of Peshawar, coming from different regions. All samples were extracted, purified and analyzed for the commonly used pesticides. Dichlorovas, BHC, Atrazine, Daizinon, Methadiathion and Cypermethrin were detected by Gas Chromatography. These pesticides were detected in vegetable samples Id Atrazine were found in potato sample and not detected in other samples. Large concentration of Cypermethrin (44.6) was detected in the pea sample. All the vegetables samples have maximum concentration of pesticides, which is higher than their MRLs, but in pumpkin no one of the above pesticides were detected. In fruits samples, dichlorovas, atrazine, diazinon, methadiathion. Cypermethrin were detected. BHC was not present in fruits samples. All these pesticides were above the MRLs. The study concluded that agriculture crops are highly contaminated due to the uncontrolled use of pesticides in project area and suggested that pesticides should be applied in calculated dose to avoid resistance and persistence due to over and under dose application. (author)

  9. Rural Women\\'s Response To Selected Crop Production ...

    African Journals Online (AJOL)

    The study centered on rural women's response to selected crop production technologies in Imo State with a view to making policy recommendations. Structured questionnaire and interview schedule were administered through the assistance of extension agents to 258 randomly sampled rural women farmers from the three ...

  10. VegScape: U.S. Crop Condition Monitoring Service

    Science.gov (United States)

    mueller, R.; Yang, Z.; Di, L.

    2013-12-01

    Since 1995, the US Department of Agriculture (USDA)/National Agricultural Statistics Service (NASS) has provided qualitative biweekly vegetation condition indices to USDA policymakers and the public on a weekly basis during the growing season. Vegetation indices have proven useful for assessing crop condition and identifying the areal extent of floods, drought, major weather anomalies, and vulnerabilities of early/late season crops. With growing emphasis on more extreme weather events and food security issues rising to the forefront of national interest, a new vegetation condition monitoring system was developed. The new vegetation condition portal named VegScape was initiated at the start of the 2013 growing season. VegScape delivers web mapping service based interactive vegetation indices. Users can use an interactive map to explore, query and disseminate current crop conditions. Vegetation indices like Normal Difference Vegetation Index (NDVI), Vegetation Condition Index (VCI), and mean, median, and ratio comparisons to prior years can be constructed for analytical purposes and on-demand crop statistics. The NASA MODIS satellite with 250 meter (15 acres) resolution and thirteen years of data history provides improved spatial and temporal resolutions and delivers improved detailed timely (i.e., daily) crop specific condition and dynamics. VegScape thus provides supplemental information to support NASS' weekly crop reports. VegScape delivers an agricultural cultivated crop mask and the most recent Cropland Data Layer (CDL) product to exploit the agricultural domain and visualize prior years' planted crops. Additionally, the data can be directly exported to Google Earth for web mashups or delivered via web mapping services for uses in other applications. VegScape supports the ethos of data democracy by providing free and open access to digital geospatial data layers using open geospatial standards, thereby supporting transparent and collaborative government

  11. The Application and Evaluation of Modified Atmosphere Packaging in Selected Minimally Processed Vegetables

    OpenAIRE

    Greene, Aine, (Thesis)

    2003-01-01

    The central aim of this study was to optimise the processing and storage of selected vegetable within the parameters of extended shelf life, time/temperature relationships and sensory quality. The vegetables were selected on the basis of the results of a survey of the Irish vegetable industry. The current literature in the field of modified atmosphere packaging (MAP) and the Irish vegetable industry was reviewed. The current state and future requirements of the Irish vegetable industry was in...

  12. Quantitative proteomics by 2DE and MALDI MS/MS uncover the effects of organic and conventional cropping methods on vegetable products

    DEFF Research Database (Denmark)

    Nawrocki, Arkadiusz; Thorup-Kristensen, Kristian; Jensen, Ole Nørregaard

    2011-01-01

    overexpressed in conventionally grown cabbage. Proteins involved in metabolism of carbohydrates, polypeptides and secondary metabolites were affected by different cropping regimes in carrots. The proteomes of conventionally grown vegetables varied from organically grown vegetables to a larger extent than...... of slurry, in accordance to regulations of organic farming and O2, in which nutrient supply was based mainly on autumn green manures. Proteins were extracted from lyophilized plant tissues into a buffer containing high concentrations of urea/thiourea, two detergents and reducing agent. This approach allowed...... short handling times of fresh plant materials. In the case of cabbage samples, the abundance levels of 58 out of more than 1300 quantified protein spots varied significantly between conventional farming and any of the organic cropping systems. Proteome profiles were also very similar between carrot root...

  13. Anaerobic Soil Disinfestation (ASD) Combined with Soil Solarization for Root-Knot Nematode Control in Vegetable and Ornamental Crops in Florida

    Science.gov (United States)

    Anaerobic soil disinfestation (ASD) combined with soil solarization continues to be evaluated for management of plant-parasitic nematodes in vegetable and ornamental crops in Florida. ASD combines organic amendments and soil saturation to stimulate microbial activity and create anaerobic conditions...

  14. Identifying obstacles and ranking common biological control research priorities for Europe to manage most economically important pests in arable, vegetable and perennial crops.

    Science.gov (United States)

    Lamichhane, Jay Ram; Bischoff-Schaefer, Monika; Bluemel, Sylvia; Dachbrodt-Saaydeh, Silke; Dreux, Laure; Jansen, Jean-Pierre; Kiss, Jozsef; Köhl, Jürgen; Kudsk, Per; Malausa, Thibaut; Messéan, Antoine; Nicot, Philippe C; Ricci, Pierre; Thibierge, Jérôme; Villeneuve, François

    2017-01-01

    EU agriculture is currently in transition from conventional crop protection to integrated pest management (IPM). Because biocontrol is a key component of IPM, many European countries recently have intensified their national efforts on biocontrol research and innovation (R&I), although such initiatives are often fragmented. The operational outputs of national efforts would benefit from closer collaboration among stakeholders via transnationally coordinated approaches, as most economically important pests are similar across Europe. This paper proposes a common European framework on biocontrol R&I. It identifies generic R&I bottlenecks and needs as well as priorities for three crop types (arable, vegetable and perennial crops). The existing gap between the market offers of biocontrol solutions and the demand of growers, the lengthy and expensive registration process for biocontrol solutions and their varying effectiveness due to variable climatic conditions and site-specific factors across Europe are key obstacles hindering the development and adoption of biocontrol solutions in Europe. Considering arable, vegetable and perennial crops, a dozen common target pests are identified for each type of crop and ranked by order of importance at European level. Such a ranked list indicates numerous topics on which future joint transnational efforts would be justified. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  15. Back to the Origin: In Situ Studies Are Needed to Understand Selection during Crop Diversification

    Directory of Open Access Journals (Sweden)

    Yolanda H. Chen

    2017-10-01

    Full Text Available Crop domestication has been embraced as a model system to study the genetics of plant evolution. Yet, the role of the environment, including biotic forces such as microbial and insect communities, in contributing to crop phenotypes under domestication and diversification has been poorly explored. In particular, there has been limited progress in understanding how human selection, agricultural cultivation (soil disturbance, fertilization, and irrigation, and biotic forces act as selective pressures on crop phenotypes. For example, geographically-structured pathogenic, pestiferous, and mutualistic interactions with crop plants have likely given rise to landraces that interact differently with local microbial and insect communities. In order to understand the adaptive role of crop traits, we argue that more studies should be conducted in the geographic centers of origin to test hypotheses on how abiotic, biotic, and human selective forces have shaped the phenotypes of domesticated plants during crop domestication and subsequent diversification into landraces. In these centers of origin, locally endemic species associated with wild ancestors have likely contributed to the selection on plant phenotypes. We address a range of questions that can only be studied in the geographic center of crop origin, placing emphasis on Mesoamerican polyculture systems, and highlight the significance of in situ studies for increasing the sustainability of modern agricultural systems.

  16. Cloud decision model for selecting sustainable energy crop based on linguistic intuitionistic information

    Science.gov (United States)

    Peng, Hong-Gang; Wang, Jian-Qiang

    2017-11-01

    In recent years, sustainable energy crop has become an important energy development strategy topic in many countries. Selecting the most sustainable energy crop is a significant problem that must be addressed during any biofuel production process. The focus of this study is the development of an innovative multi-criteria decision-making (MCDM) method to handle sustainable energy crop selection problems. Given that various uncertain data are encountered in the evaluation of sustainable energy crops, linguistic intuitionistic fuzzy numbers (LIFNs) are introduced to present the information necessary to the evaluation process. Processing qualitative concepts requires the effective support of reliable tools; then, a cloud model can be used to deal with linguistic intuitionistic information. First, LIFNs are converted and a novel concept of linguistic intuitionistic cloud (LIC) is proposed. The operations, score function and similarity measurement of the LICs are defined. Subsequently, the linguistic intuitionistic cloud density-prioritised weighted Heronian mean operator is developed, which served as the basis for the construction of an applicable MCDM model for sustainable energy crop selection. Finally, an illustrative example is provided to demonstrate the proposed method, and its feasibility and validity are further verified by comparing it with other existing methods.

  17. Dynamics of world oil crops market

    Directory of Open Access Journals (Sweden)

    Knežević Marija

    2012-01-01

    Full Text Available According to the harvested area, oil crops are the second most important crops after cereals. Soybean is the most important oil crop in terms of production and trade of oilseeds and meals, and second most important in terms of production and trade of vegetable oils after palm oil. Dynamics of prices of derived oil crop products in the international market is conditioned by the relationship between supply and demand in the overall market of oil crops. The substitution of animal fats with vegetable oils in human nutrition, the expansion of biodiesel industry and intensification of livestock production have led to increased demand for oil crops. The objective of this paper was to identify trends in production, consumption and trade of soybeans, rapeseed and sunflower and their derived products.

  18. Genomic regions under selection in crop-wild hybrids of lettuce: implications for crop breeding and environmental risk assessment

    NARCIS (Netherlands)

    Hartman, Y.

    2012-01-01

    The results of this thesis show that the probability of introgression of a putative transgene to wild relatives indeed depends strongly on the insertion location of the transgene. The study of genomic selection patterns can identify crop genomic regions under negative selection in multiple

  19. The feasibility of crop diversification in rice based cropping systems in haor ecosystem

    OpenAIRE

    Shopan, J.; Bhuiya, M.S.U.; Kader, M.A.; Hasan, M.K.

    2012-01-01

    An experiment was conducted in five farmers’ field in Dingaputa haor of Purba Tetulia village, Mohangonj Upazila in Netrakona district during the period from 20 July 2010 to 15 May 2011. The objective of the study was to determine the feasibility of growing short duration vegetable and oil crops in seasonal fallow of Boro rice-Fallow-Fallow cropping patterns in terms of both combined yields and economic performance. Six short duration vegetables such as potato, red amaranth, stem amaranth, sp...

  20. Arsenic in garden soils and vegetable crops in Cornwall, England: Implications for human health.

    Science.gov (United States)

    Xu, J; Thornton, I

    1985-12-01

    Total concentrations of arsenic in surface (0-15cm) garden soils in the historical mining area of Hayle-Camborne-Godolphin, Cornwall, England are large and range widely (144-892 μg/g). Amounts of water soluble and acid-fluoride extractable soil arsenic are significantly correlated with total content.Examination of 6 salad and vegetable crops grown in 32 gardens has shown arsenic concentrations in the edible tissues to be only slightly elevated. There were strong correlations between arsenic in beetroot, lettuce, onion and peas and soil arsenic (total, water soluble and acid extractable). Regression equations have been calculated. Ridge regression analysis applied to test the importance of other soil variables has shown both iron and phosphorus to influence the uptake of arsenic.Arsenic in all the vegetables sampled was below the statutory limit in the U.K. of 1 mg/kg fresh weight. Implications for health should be assessed in relation to other exposure routesvia water, air and directly ingested dust and soil.

  1. Quantifying effects of oxidant air pollutants on agricultural crops

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, W H; Moskowitz, P D

    1983-01-01

    Estimating risks of air pollution damage to agricultural crops requires identifying crop location and size, likely doses, models for translating dose to response, and measures of response appropriate for economic analysis. Assessment of risk requires compatible data sets for each of these variables. Analysis of air pollution mixtures suggests that oxidant crop damage is caused by three compounds: ozone, nitrogen oxides, and peroxyacetylnitrates. The phytotoxicity of ozone, the most prevalent photochemical oxidant, has been studied more extensively than the other two oxidants, and its effects on vegetation are best understood. Response of vegetation to air pollutants was first characterized by foliar or visible injury. Subsequent research indicated that foliar injury did not translate directly into reduced plant growth or yield, which can be measured. Response to air pollutants may be influenced by physical, biological, and environmental factors. Inherent genetic resistance is probably the most important single factor affecting plant response, although environmental factors influencing stomatal aperture may also be important. For several crops open-top chamber studies and cross sectional analyses of field data provide adequate information to develop dose-response functions. All of these studies have both strengths and weaknesses. Although a number of different models exist for selected crops, there is no single biological or statistical criterion which identifies the best or most accurate model.

  2. Combined amplification and hybridization techniques for genome scanning in vegetatively propagated crops

    International Nuclear Information System (INIS)

    Kahl, G.; Ramser, J.; Terauchi, R.; Lopez-Peralta, C.; Asemota, H.N.; Weising, K.

    1998-01-01

    A combination of PCR- and hybridization-based genome scanning techniques and sequence comparisons between non-coding chloroplast DNA flanking tRNA genes has been employed to screen Dioscorea species for intra- and interspecific genetic diversity. This methodology detected extensive polymorphisms within Dioscorea bulbifera L., and revealed taxonomic and phylogenetic relationships among cultivated Guinea yams varieties and their potential wild progenitors. Finally, screening of yam germplasm grown in Jamaica permitted reliable discrimination between all major cultivars. Genome scanning by micro satellite-primed PCR (MP-PCR) and random amplified polymorphic DNA (RAPD) analysis in combination with the novel random amplified micro satellite polymorphisms (RAMPO) hybridization technique has shown high potential for the genetic analysis of yams, and holds promise for other vegetatively propagated orphan crops. (author)

  3. Vegetable Grafting: The Implications of a Growing Agronomic Imperative for Vegetable Fruit Quality and Nutritive Value

    Directory of Open Access Journals (Sweden)

    Marios C. Kyriacou

    2017-05-01

    Full Text Available Grafting has become an imperative for intensive vegetable production since chlorofluorocarbon-based soil fumigants were banned from use on grounds of environmental protection. Compelled by this development, research into rootstock–scion interaction has broadened the potential applications of grafting in the vegetable industry beyond aspects of soil phytopathology. Grafting has been increasingly tapped for cultivation under adverse environs posing abiotic and biotic stresses to vegetable crops, thus enabling expansion of commercial production onto otherwise under-exploited land. Vigorous rootstocks have been employed not only in the open field but also under protected cultivation where increase in productivity improves distribution of infrastructural and energy costs. Applications of grafting have expanded mainly in two families: the Cucurbitaceae and the Solanaceae, both of which comprise major vegetable crops. As the main drives behind the expansion of vegetable grafting have been the resistance to soilborne pathogens, tolerance to abiotic stresses and increase in yields, rootstock selection and breeding have accordingly conformed to the prevailing demand for improving productivity, arguably at the expense of fruit quality. It is, however, compelling to assess the qualitative implications of this growing agronomic practice for human nutrition. Problems of impaired vegetable fruit quality have not infrequently been associated with the practice of grafting. Accordingly, the aim of the current review is to reassess how the practice of grafting and the prevalence of particular types of commercial rootstocks influence vegetable fruit quality and, partly, storability. Physical, sensorial and bioactive aspects of quality are examined with respect to grafting for watermelon, melon, cucumber, tomato, eggplant, and pepper. The physiological mechanisms at play which mediate rootstock effects on scion performance are discussed in interpreting the

  4. Environmental impact of almond crop in strong slope with two vegetable covers: bush and leguminous

    International Nuclear Information System (INIS)

    Carceles Rodriguez, B.; Francia Martinez, J. R.; Martinez Raya, A.

    2009-01-01

    Soil erosion is one of the main physical processes of land degradation in Spain. Several studies in the Mediterranean environment have demonstrated the positive effect of vegetation covers on the reduction of water erosion and their indirect improvement of the soil physical and chemical properties, essentially by the incorporation of organic matter. Sol loss and surface runoff patterns over a four-year period were monitors in erosion plots from hill slope with two different cover-crop strips: (1) non-tillage with leguminous (Lens esculenta Moench) and (2) non-tillage with and a mixture of autochthonous thymes (Thymus baeticus Boiss. ex Lacaita, Thymus capitatus (L) Hoffmanns and Link., Thymus vulgaris L.) of 3 m with, in Lanjaron (Granada) on the south flank of the Sierra Nevada of southeast Spain. The erosion plots were located on the hill slope at 35% incline, at 580 m in altitude and with 144 m 2 (24 m x 6 m) in area. the area selected for the experiment is the part of the rainfed orchard given entirely with almond (Prunus amygdalus Basch cv. Desmayo Largueta) trees, the planting gird were 6 x 7 m. (Author) 10 refs.

  5. Angolan vegetable crops have unique genotypes of potential value for future breeding programmes

    Directory of Open Access Journals (Sweden)

    José P. Domingos

    2016-03-01

    Full Text Available A survey was carried out in Angola with the aim of collecting vegetable crops. Collecting expeditions were conducted in Kwanza-Sul, Benguela, Huíla and Namibe Provinces and a total of 80 accessions belonging to 22 species was collected from farmers and local markets. Species belonging to the Solanaceae (37 accessions and Cucurbitaceae (36 accessions families were the most frequently found with pepper and eggplant being the predominant solanaceous crops collected. Peppers were sold in local markets as a mixture of different types, even different species: Capsicum chinense, C. baccatum, C. frutescens and C. pubescens. Most of the eggplant accessions collected belonged to Solanum aethiopicum L. Gilo Group, the so-called ‘scarlet eggplant’. Cucurbita genus was better represented than the other cucurbit crops. A high morphological variation was present in the Cucurbita maxima and C. moschata accessions. A set of 22 Cucurbita accessions from Angola, along with 32 Cucurbita controls from a wide range of origins, was cultivated in Valencia, Spain and characterised based on morphology and molecularity using a set of 15 microsatellite markers. A strong dependence on latitude was found in most of the accessions and as a result, many accessions did not set fruit. The molecular analysis showed high molecular variability and uniqueness in the collected accessions, as shown by their segregation from the set of global controls. In summary, the material collected is quite valuable because of its uniqueness and the potential of the breeding characteristics it possesses.

  6. Genome-editing technologies and their potential application in horticultural crop breeding

    Science.gov (United States)

    Xiong, Jin-Song; Ding, Jing; Li, Yi

    2015-01-01

    Plant breeding, one of the oldest agricultural activities, parallels human civilization. Many crops have been domesticated to satisfy human's food and aesthetical needs, including numerous specialty horticultural crops such as fruits, vegetables, ornamental flowers, shrubs, and trees. Crop varieties originated through selection during early human civilization. Other technologies, such as various forms of hybridization, mutation, and transgenics, have also been invented and applied to crop breeding over the past centuries. The progress made in these breeding technologies, especially the modern biotechnology-based breeding technologies, has had a great impact on crop breeding as well as on our lives. Here, we first review the developmental process and applications of these technologies in horticultural crop breeding. Then, we mainly describe the principles of the latest genome-editing technologies and discuss their potential applications in the genetic improvement of horticultural crops. The advantages and challenges of genome-editing technologies in horticultural crop breeding are also discussed. PMID:26504570

  7. Genomic and environmental selection patterns in two distinct lettuce crop-wild hybrid crosses.

    Science.gov (United States)

    Hartman, Yorike; Uwimana, Brigitte; Hooftman, Danny A P; Schranz, Michael E; van de Wiel, Clemens C M; Smulders, Marinus J M; Visser, Richard G F; van Tienderen, Peter H

    2013-06-01

    Genomic selection patterns and hybrid performance influence the chance that crop (trans)genes can spread to wild relatives. We measured fitness(-related) traits in two different field environments employing two different crop-wild crosses of lettuce. We performed quantitative trait loci (QTL) analyses and estimated the fitness distribution of early- and late-generation hybrids. We detected consistent results across field sites and crosses for a fitness QTL at linkage group 7, where a selective advantage was conferred by the wild allele. Two fitness QTL were detected on linkage group 5 and 6, which were unique to one of the crop-wild crosses. Average hybrid fitness was lower than the fitness of the wild parent, but several hybrid lineages outperformed the wild parent, especially in a novel habitat for the wild type. In early-generation hybrids, this may partly be due to heterosis effects, whereas in late-generation hybrids transgressive segregation played a major role. The study of genomic selection patterns can identify crop genomic regions under negative selection across multiple environments and cultivar-wild crosses that might be applicable in transgene mitigation strategies. At the same time, results were cultivar-specific, so that a case-by-case environmental risk assessment is still necessary, decreasing its general applicability.

  8. Molecular detection of salmonella species from selected vegetables ...

    African Journals Online (AJOL)

    Molecular detection of salmonella species from selected vegetables sold in a north-central ... African Journal of Clinical and Experimental Microbiology ... of the pure isolates testing positive as being pathogenic after biochemical analysis.

  9. ROOT VEGETABLES, BREEDING TRENDS, RESULTS

    Directory of Open Access Journals (Sweden)

    M. I. Fedorova

    2017-01-01

    Full Text Available The main advantage of root vegetables is their unique specificity and high economic importance. The benefits and medicinal properties of root vegetables being highly demanded by the market requirements to the commodity are highlighted in the article. The main directions of breeding program for root vegetable crops, including species of Apiaceae family with carrot, parsnips; Chenopodioideae family with red beet; Brassicaceae family with radish, Daikon, Raphanus sativus L. var. lobo Sazonova & Stank, turnip and rutabaga. Initial breeding accessions of carrot, red beet, radish, Daikon, Raphanus sativus L. var. lobo Sazonova & Stank, turnip and rutabaga have been selected out to be used for breeding program for heterosis. The mf and ms breeding lines were developed, and with the use of them the new gene pool was created. Variety supporting breeding program and methods were also proposed. 

  10. New Approaches to Irrigation Scheduling of Vegetables

    Directory of Open Access Journals (Sweden)

    Michael D. Cahn

    2017-04-01

    Full Text Available Using evapotranspiration (ET data for scheduling irrigations on vegetable farms is challenging due to imprecise crop coefficients, time consuming computations, and the need to simultaneously manage many fields. Meanwhile, the adoption of soil moisture monitoring in vegetables has historically been limited by sensor accuracy and cost, as well as labor required for installation, removal, and collection of readings. With recent improvements in sensor technology, public weather-station networks, satellite and aerial imaging, wireless communications, and cloud computing, many of the difficulties in using ET data and soil moisture sensors for irrigation scheduling of vegetables can now be addressed. Web and smartphone applications have been developed that automate many of the calculations involved in ET-based irrigation scheduling. Soil moisture sensor data can be collected through wireless networks and accessed using web browser or smartphone apps. Energy balance methods of crop ET estimation, such as eddy covariance and Bowen ratio, provide research options for further developing and evaluating crop coefficient guidelines of vegetables, while recent advancements in surface renewal instrumentation have led to a relatively low-cost tool for monitoring crop water requirement in commercial farms. Remote sensing of crops using satellite, manned aircraft, and UAV platforms may also provide useful tools for vegetable growers to evaluate crop development, plant stress, water consumption, and irrigation system performance.

  11. Genomic and environmental selection patterns in two distinct lettuce crop-wild hybrid crosses

    NARCIS (Netherlands)

    Hartman, Y.; Uwimana, B; Hooftman, D.A.P.; Schranz, M.E.; van de Wiel, C.C.M.; Smulders, M.J.M.; Visser, R.G.F.; van Tienderen, P.H.

    2013-01-01

    Genomic selection patterns and hybrid performance influence the chance that crop (trans)genes can spread to wild relatives. We measured fitness(-related) traits in two different field environments employing two different crop-wild crosses of lettuce. We performed quantitative trait loci (QTL)

  12. A simple algorithm to retrieve soil moisture and vegetation biomass using passive microwave measurements over crop fields

    International Nuclear Information System (INIS)

    Wigneron, J.P.; Chanzy, A.; Calvet, J.C.; Bruguier, N.

    1995-01-01

    A simple algorithm to retrieve sail moisture and vegetation water content from passive microwave measurements is analyzed in this study. The approach is based on a zeroth-order solution of the radiative transfer equations in a vegetation layer. In this study, the single scattering albedo accounts for scattering effects and two parameters account for the dependence of the optical thickness on polarization, incidence angle, and frequency. The algorithm requires only ancillary information about crop type and surface temperature. Retrievals of the surface parameters from two radiometric data sets acquired over a soybean and a wheat crop have been attempted. The model parameters have been fitted in order to achieve best match between measured and retrieved surface data. The results of the inversion are analyzed for different configurations of the radiometric observations: one or several look angles, L-band, C-band or (L-band and C-band). Sensitivity of the retrievals to the best fit values of the model parameters has also been investigated. The best configurations, requiring simultaneous measurements at L- and C-band, produce retrievals of soil moisture and biomass with a 15% estimated precision (about 0.06 m 3 /m 3 for soil moisture and 0.3 kg/m 2 for biomass) and exhibit a limited sensitivity to the best fit parameters. (author)

  13. Cryopreservation techniques and their application in vegetatively propagated crop plants in Finland

    Directory of Open Access Journals (Sweden)

    A. NUKARI

    2008-12-01

    Full Text Available Cryopreservation protocols have been introduced as techniques for germplasm preservation of vegetatively propagated horticultural and staple food crops. In Finland, cryopreservation has been studied since 1990’s, beginning with cryopreservation of forest tree breeding material and since 2004 on cryopreservation of genetic resources of horticultural plants and potato. Priority was given to cryopreservation of raspberry (Rubus ideaus L., strawberry (Fragaria x ananassa Duch. and potato (Solanum tuberosum L. and the possibility to use cryotherapy in eradication of raspberry bushy dwarf virus (RBDV from in vitro cultures were studied on raspberry. Modified droplet vitrification cryopreservation protocols were designed for raspberry and strawberry and cryotherapy combined with thermotherapy was proven to be a successful application to eliminate RBDV from infected raspberries. Cryotherapy method can be applied for a large scale elimination of viruses from plant germplasm and from candidate nuclear stock in a certified plant production scheme. Routine use of cryotechniques in germplasm preservation of vegetatively propagated horticultural plants was started. Besides for long term germplasm preservation, cryopreservation techniques can be applied also for maintenance of mother stocks in certified plant production schemes and in commercial plant production. Cryopreservation of potato shoot tips needs additional detailed research to obtain sufficient recovery and regrowth rates.;

  14. Spectral data based vegetation indices to characterise crop growth parameters and radiation interception in brassica

    International Nuclear Information System (INIS)

    Kar, G.; Chakravarty, N.V.K.

    2001-01-01

    Four spectral data based vegetation indices viz., infra-red/red (IR/R) ratio, normalized difference (N.D.), greenness index (GNI) and brightness index (BNI) were derived to characterise leaf area index, above ground biomass production and intercepted photosynthetically active radiation in Brassica oilseed crop. It was found from correlation study among different spectral indices, plant growth parameters and radiation interception that there was strong relationship between infrared/red and normalized difference with green area index for all the three Brassica cultivars whereas these spectral were not significantly correlated with above ground biomass. On the other hand, the brightness and greenness indices were closely correlated with above groundry biomass as compared to infrared/red ratio and normalized difference. All the four spectral indices were correlated with intercepted photosynthetically active radiation (IP AR). The best fit equations relating them were derived, which can be incorporated in the algorithms of crop growth simulation model to estimate plant growth parameters and radiation interception using spectral indices

  15. Antioxidant activity in selected Slovenian organic and conventional crops

    Directory of Open Access Journals (Sweden)

    Manca KNAP

    2015-12-01

    Full Text Available The demand for organically produced food is increasing. There is widespread belief that organic food is substantially healthier and safer than conventional food. According to literature organic food is free of phytopharmaceutical residues, contain less nitrates and more antioxidants. The aim of the present study was to verify if there are any differences in the antioxidant activity between selected Slovenian organic and conventional crops. Method of DPPH (2,2-diphenyl-1-picryhydrazyl was used to determine the antioxidant activity of 16 samples from organic and conventional farms. The same varieties of crops were analysed. DPPH method was employed to measure the antioxidant activity of polar antioxidants (AAp and antioxidant activity of fraction in ethyl acetate soluble antioxidants (EA AA. Descriptive statistics and variance analysis were used to describe differences between farming systems. Estimated differences between interactions for the same crop and different farming practice were mostly not statistically significant except for the AAp for basil and beetroot. Higher statistically significant values were estimated for conventional crops. For the EA AA in broccoli, cucumber, rocket and cherry statistically significant higher values were estimated for organic production.

  16. Plant prebiotics and human health: Biotechnology to breed prebiotic-rich nutritious food crops

    OpenAIRE

    Dwivedi,Sangam; Sahrawat,Kanwar; Puppala,Naveen; Ortiz,Rodomiro

    2014-01-01

    Microbiota in the gut play essential roles in human health. Prebiotics are non-digestible complex carbohydrates 19 that are fermented in the colon, yielding energy and short chain fatty acids, and selectively promote the growth of 20 Bifidobacteria and Lactobacillae in the gastro-intestinal tract. Fructans and inulin are the best-characterized plant prebiotics. Many vegetable, root and tuber crops as well as some fruit crops are the best-known sources of prebiotic carbohydrates, while the pre...

  17. Combined amplification and hybridization techniques for genome scanning in vegetatively propagated crops

    Energy Technology Data Exchange (ETDEWEB)

    Kahl, G; Ramser, J; Terauchi, R [Biocentre, University of Frankfurt, Frankfurt am Main (Germany); Lopez-Peralta, C [IRGP, Colegio de Postgraduados, Montecillo, Edo. de Mexico, Texcoco (Mexico); Asemota, H N [Biotechnology Centre, University of the West Indies, Mona, Kingston (Jamaica); Weising, K [School of Biological Sciences, University of Auckland, Auckland (New Zealand)

    1998-10-01

    A combination of PCR- and hybridization-based genome scanning techniques and sequence comparisons between non-coding chloroplast DNA flanking tRNA genes has been employed to screen Dioscorea species for intra- and interspecific genetic diversity. This methodology detected extensive polymorphisms within Dioscorea bulbifera L., and revealed taxonomic and phylogenetic relationships among cultivated Guinea yams varieties and their potential wild progenitors. Finally, screening of yam germplasm grown in Jamaica permitted reliable discrimination between all major cultivars. Genome scanning by micro satellite-primed PCR (MP-PCR) and random amplified polymorphic DNA (RAPD) analysis in combination with the novel random amplified micro satellite polymorphisms (RAMPO) hybridization technique has shown high potential for the genetic analysis of yams, and holds promise for other vegetatively propagated orphan crops. (author) 46 refs, 3 figs, 3 tabs

  18. Vegetation barrier and tillage effects on runoff and sediment in an alley crop system on a Luvisol in Burkina Faso

    NARCIS (Netherlands)

    Spaan, W.P.; Sikking, A.F.S.; Hoogmoed, W.B.

    2005-01-01

    The effects of vegetation barriers and tillage on runoff and soil loss were evaluated in an alley crop system at a research station in central Burkina Faso. On a 2% slope of a sandy loam various local species (grasses, woody species and a succulent) were planted as conservation barriers in order to

  19. 蔬菜连作改为蓝莓种植后土壤细菌群落多样性变化的分析%Changes in Soil Bacterial Community Diversity Caused by Cropping System Alteration from Vegetable Continuous Cropping to Blueberry Planting

    Institute of Scientific and Technical Information of China (English)

    祁石刚; 田畅; 却枫; 徐志胜; 王枫; 熊爱生

    2016-01-01

    基于第二代Illumina Miseq高通量测序平台,利用16S rDNA技术分析了江苏省宿迁市蔬菜连作改为蓝莓种植后土壤细菌多样性的分布和细菌群落多样性的变化。结果表明:Kaistobacter、假交替单胞菌属( Pseud oaltre omno as)、硫杆状菌属( Thiobacillus)、Rubritalea、浮霉菌属( Planctomyces)、Lysobacter、纤维弧菌属( Cellvibrio)、噬氢菌属( Hdy roeg nohp a-ga )、鞘脂单胞菌属( Sphingomona s)和热单胞菌属( Thermomonas)为蔬菜连作改为蓝莓种植后土壤细菌的主要类群; Spo-rosarcina、Alicyclobacillus、氨氧化古细菌( Candidatus nitrososphaera)和P ontibatc er是蔬菜连作土壤细菌的主要类群;蔬菜连作改为种植蓝莓后,土壤细菌多样性和丰度降低,优势菌群也出现了显著的变化。%Based on the second-generation high-throughput sequencing platform Illumina Miseq , using the 16S rDNA gene sequencing technology, the author analyzed the changes in soil bacterial community diversity caused by the cropping system altera-tion from vegetable continuous cropping to blueberry planting in Suqian city of Jiangsu province .The results showed that:Kaisto-bacter, Pseudoalteromonas, Thiobacillus, Rubrti alea, Planctomyces, Lysobacter, Cellvibrio, Hydrogenophaga, Sphingomonas and Thermomonas were the dominant bacterial populations in the soil after cropping system alteration from vegetable continuous crop-ping to blueberry planting;Sporosarcina, Alicyclobacillus, Cand idatus nitrososphaera and Pontbi acter were the dominant bacterial populations in the soil of continuous-cropping vegetable field;after the alteration from vegetable continuous cropping to blueberry planting, the diversity and abundance of soil bacteria were reduced , and the dominant bacterial community also changed obvious-ly.

  20. Crop improvement by using radiation mutation breeding in Korea

    International Nuclear Information System (INIS)

    Lee, Young IL

    1998-01-01

    For crop improvement by the application of radiation technology, induction of mutants by in vivo and in vitro mutagenesis were developed in various crop plants in Korea. Several mutants have been released as recommended cultivars to farmers in rice, soybean, sesame and barley since 1970. Induced mutations were widely used for the introduction of genetic transformation and extending plant genetic resources. High yield, short plant, earliness, resistance to diseases, high protein and oil contents were obtained in the advanced generation of mutation by radiation application to several crops of in vivo and in vitro cultured materials. For induction and selection of promising mutants by in vivo and in vitro mutagenesis, various crops were successively irradiated with radiation to investigate the radiosensitivities, the mutation spectrum and mutation rate for selection of useful mutants. Plant tissue culture methods were developed for in vitro mutagenesis in the seed and the vegetatively propagating crops. Embryogenic callus was obtained from shoot tip culture of sweet potato, and micro propagation was developed from nodal stem culture of potato. The radiosensitivities were investigated in cell, callus, and in vitro plant lets. About 800 lines of mutants were evaluated for the agro-genetic resources. (author). 19 refs., 5 tabs

  1. Assessment of pesticide residues on selected vegetables of Pakistan

    International Nuclear Information System (INIS)

    Khan, M.S.; Shah, M.M.

    2011-01-01

    The present study was conducted to determine the pesticide residues on selected summer vegetables. Five vegetables were grown with three replicates in a split plot randomized complete block design. Pesticides were sprayed on vegetables thrice at regular intervals each after 15 days. At maturity the pesticides residues were extracted from edible and leaf portions using anhydrous sodium sulfate and ethyl acetate while adsorption chromatography technique was used for cleanup. The extracts were subjected to high performance liquid chromatography (HPLC) for separation and analysis of the compounds. Significant differences (p<0.05) were found in the pesticides residues on edible portions whereas highly significant differences (p<0.001) were observed for the leafy portions. The residual level of cypermethrin was highest (16.2 mg kg/sup -1/) in edible portion of bitter gourd, while Lambdacyhalothrin and Mancozeb residues were detected high (4.50 mg kg/sup -1/, 6.26 mg kg/sup -1/) in edible portion of bitter gourd and Cucumber respectively. Cypermethrin residues were high (1.86 mg kg/sup -1/) in Okra leaves. Mancozeb and Lambdacyhalothrin residual level was high (1.23 mg kg/sup -1/, and 0.0002 mg kg/sup -1/) in chili and tomato leaves. Cypermethrin residues were readily detected in edible and leaf portion of the selected vegetables. (author)

  2. Advantage of hyperspectral EO-1 Hyperion over multispectral IKONOS, GeoEye-1, WorldView-2, Landsat ETM+, and MODIS vegetation indices in crop biomass estimation

    Science.gov (United States)

    Marshall, Michael T.; Thenkabail, Prasad S.

    2015-01-01

    Crop biomass is increasingly being measured with surface reflectance data derived from multispectral broadband (MSBB) and hyperspectral narrowband (HNB) space-borne remotely sensed data to increase the accuracy and efficiency of crop yield models used in a wide array of agricultural applications. However, few studies compare the ability of MSBBs versus HNBs to capture crop biomass variability. Therefore, we used standard data mining techniques to identify a set of MSBB data from the IKONOS, GeoEye-1, Landsat ETM+, MODIS, WorldView-2 sensors and compared their performance with HNB data from the EO-1 Hyperion sensor in explaining crop biomass variability of four important field crops (rice, alfalfa, cotton, maize). The analysis employed two-band (ratio) vegetation indices (TBVIs) and multiband (additive) vegetation indices (MBVIs) derived from Singular Value Decomposition (SVD) and stepwise regression. Results demonstrated that HNB-derived TBVIs and MBVIs performed better than MSBB-derived TBVIs and MBVIs on a per crop basis and for the pooled data: overall, HNB TBVIs explained 5–31% greater variability when compared with various MSBB TBVIs; and HNB MBVIs explained 3–33% greater variability when compared with various MSBB MBVIs. The performance of MSBB MBVIs and TBVIs improved mildly, by combining spectral information across multiple sensors involving IKONOS, GeoEye-1, Landsat ETM+, MODIS, and WorldView-2. A number of HNBs that advance crop biomass modeling were determined. Based on the highest factor loadings on the first component of the SVD, the “red-edge” spectral range (700–740 nm) centered at 722 nm (bandwidth = 10 nm) stood out prominently, while five additional and distinct portions of the recorded spectral range (400–2500 nm) centered at 539 nm, 758 nm, 914 nm, 1130 nm, 1320 nm (bandwidth = 10 nm) were also important. The best HNB vegetation indices for crop biomass estimation involved 549 and 752 nm for rice (R2 = 0.91); 925 and 1104 nm for

  3. Global Crop Monitoring: A Satellite-Based Hierarchical Approach

    Directory of Open Access Journals (Sweden)

    Bingfang Wu

    2015-04-01

    Full Text Available Taking advantage of multiple new remote sensing data sources, especially from Chinese satellites, the CropWatch system has expanded the scope of its international analyses through the development of new indicators and an upgraded operational methodology. The approach adopts a hierarchical system covering four spatial levels of detail: global, regional, national (thirty-one key countries including China and “sub-countries” (for the nine largest countries. The thirty-one countries encompass more that 80% of both production and exports of maize, rice, soybean and wheat. The methodology resorts to climatic and remote sensing indicators at different scales. The global patterns of crop environmental growing conditions are first analyzed with indicators for rainfall, temperature, photosynthetically active radiation (PAR as well as potential biomass. At the regional scale, the indicators pay more attention to crops and include Vegetation Health Index (VHI, Vegetation Condition Index (VCI, Cropped Arable Land Fraction (CALF as well as Cropping Intensity (CI. Together, they characterize crop situation, farming intensity and stress. CropWatch carries out detailed crop condition analyses at the national scale with a comprehensive array of variables and indicators. The Normalized Difference Vegetation Index (NDVI, cropped areas and crop conditions are integrated to derive food production estimates. For the nine largest countries, CropWatch zooms into the sub-national units to acquire detailed information on crop condition and production by including new indicators (e.g., Crop type proportion. Based on trend analysis, CropWatch also issues crop production supply outlooks, covering both long-term variations and short-term dynamic changes in key food exporters and importers. The hierarchical approach adopted by CropWatch is the basis of the analyses of climatic and crop conditions assessments published in the quarterly “CropWatch bulletin” which

  4. Photosynthetically supplemental lighting for vegetable crop production with super-bright laser diode

    Science.gov (United States)

    Hu, Yongguang; Li, Pingping; Shi, Jintong

    2007-02-01

    Although many artificial light sources like high-pressure sodium lamp, metal halide lamp, fluorescent lamp and so on are commonly used in horticulture, they are not widely applied because of the disadvantages of unreasonable spectra, high cost and complex control. Recently new light sources of light-emitting diode (LED) and laser diode (LD) are becoming more and more popular in the field of display and illumination with the improvement of material and manufacturing, long life-span and increasingly low cost. A new type of super-bright red LD (BL650, central wavelength is 650 nm) was selected to make up of the supplemental lighting panel, on which LDs were distributed with regular hexagon array. Drive circuit was designed to power it and adjust light intensity. System performance including temperature rise and light intensity distribution under different vertical/horizontal distances were tested. Photosynthesis of sweet pepper and eggplant leaf under LD was measured with LI-6400 to show the supplemental lighting effects. The results show that LD system can supply the maximum light intensity of 180 μmol/m2 •s at the distance of 50 mm below the panel and the temperature rise is little within 1 °C. Net photosynthetic rate became faster when LD system increased light intensity. Compared with sunlight and LED supplemental lighting system, LD's promotion on photosynthesis is in the middle. Thus it is feasible for LD light source to supplement light for vegetable crops. Further study would focus on the integration of LD and other artificial light sources.

  5. Catch the Best: Novel Screening Strategy to Select Stress Protecting Agents for Crop Plants

    Directory of Open Access Journals (Sweden)

    Christin Zachow

    2013-11-01

    Full Text Available Climate change increases stress levels for crops and affects the economic and environmental aspects of agricultural management systems. The application of stress tolerance-mediating microorganisms is an auspicious strategy for improving crop protection, and as such, we developed a direct selection strategy to obtain cultivable microorganisms from promising bioresources using the bait plants, maize, oilseed rape, sorghum and sugar beet. Alpine mosses, lichens and primrose were selected as bioresources, as each is adapted to adverse environmental conditions. A 10% crop-specific selection was found for bait plant rhizosphere communities using cultivation-independent fingerprints, and their potential role as stress protecting agents (SPA was evaluated following the cultivation of captured bacteria. In addition to assays identifying phytopathogen antagonism and plant growth promotion capacities, our evaluation included those that test the ability to allocate nutrients. Moreover, we developed new assays to measure tolerance in diverse stress conditions. A score scheme was applied to select SPAs with desired properties, and three Pseudomonas species with pronounced antagonistic activity that showed elevated tolerance to desiccation and an improved seed germination rate were subsequently chosen. Screening for environmentally-conditioned and host-adapted microorganisms provides a novel tool for target-oriented exploitation of microbial bioresources for the management of ecofriendly crops facing biotic and abiotic stresses.

  6. Crop Biometric Maps: The Key to Prediction

    Directory of Open Access Journals (Sweden)

    Francisco Rovira-Más

    2013-09-01

    Full Text Available The sustainability of agricultural production in the twenty-first century, both in industrialized and developing countries, benefits from the integration of farm management with information technology such that individual plants, rows, or subfields may be endowed with a singular “identity.” This approach approximates the nature of agricultural processes to the engineering of industrial processes. In order to cope with the vast variability of nature and the uncertainties of agricultural production, the concept of crop biometrics is defined as the scientific analysis of agricultural observations confined to spaces of reduced dimensions and known position with the purpose of building prediction models. This article develops the idea of crop biometrics by setting its principles, discussing the selection and quantization of biometric traits, and analyzing the mathematical relationships among measured and predicted traits. Crop biometric maps were applied to the case of a wine-production vineyard, in which vegetation amount, relative altitude in the field, soil compaction, berry size, grape yield, juice pH, and grape sugar content were selected as biometric traits. The enological potential of grapes was assessed with a quality-index map defined as a combination of titratable acidity, sugar content, and must pH. Prediction models for yield and quality were developed for high and low resolution maps, showing the great potential of crop biometric maps as a strategic tool for vineyard growers as well as for crop managers in general, due to the wide versatility of the methodology proposed.

  7. Crop biometric maps: the key to prediction.

    Science.gov (United States)

    Rovira-Más, Francisco; Sáiz-Rubio, Verónica

    2013-09-23

    The sustainability of agricultural production in the twenty-first century, both in industrialized and developing countries, benefits from the integration of farm management with information technology such that individual plants, rows, or subfields may be endowed with a singular "identity." This approach approximates the nature of agricultural processes to the engineering of industrial processes. In order to cope with the vast variability of nature and the uncertainties of agricultural production, the concept of crop biometrics is defined as the scientific analysis of agricultural observations confined to spaces of reduced dimensions and known position with the purpose of building prediction models. This article develops the idea of crop biometrics by setting its principles, discussing the selection and quantization of biometric traits, and analyzing the mathematical relationships among measured and predicted traits. Crop biometric maps were applied to the case of a wine-production vineyard, in which vegetation amount, relative altitude in the field, soil compaction, berry size, grape yield, juice pH, and grape sugar content were selected as biometric traits. The enological potential of grapes was assessed with a quality-index map defined as a combination of titratable acidity, sugar content, and must pH. Prediction models for yield and quality were developed for high and low resolution maps, showing the great potential of crop biometric maps as a strategic tool for vineyard growers as well as for crop managers in general, due to the wide versatility of the methodology proposed.

  8. Island-Model Genomic Selection for Long-Term Genetic Improvement of Autogamous Crops.

    Science.gov (United States)

    Yabe, Shiori; Yamasaki, Masanori; Ebana, Kaworu; Hayashi, Takeshi; Iwata, Hiroyoshi

    2016-01-01

    Acceleration of genetic improvement of autogamous crops such as wheat and rice is necessary to increase cereal production in response to the global food crisis. Population and pedigree methods of breeding, which are based on inbred line selection, are used commonly in the genetic improvement of autogamous crops. These methods, however, produce a few novel combinations of genes in a breeding population. Recurrent selection promotes recombination among genes and produces novel combinations of genes in a breeding population, but it requires inaccurate single-plant evaluation for selection. Genomic selection (GS), which can predict genetic potential of individuals based on their marker genotype, might have high reliability of single-plant evaluation and might be effective in recurrent selection. To evaluate the efficiency of recurrent selection with GS, we conducted simulations using real marker genotype data of rice cultivars. Additionally, we introduced the concept of an "island model" inspired by evolutionary algorithms that might be useful to maintain genetic variation through the breeding process. We conducted GS simulations using real marker genotype data of rice cultivars to evaluate the efficiency of recurrent selection and the island model in an autogamous species. Results demonstrated the importance of producing novel combinations of genes through recurrent selection. An initial population derived from admixture of multiple bi-parental crosses showed larger genetic gains than a population derived from a single bi-parental cross in whole cycles, suggesting the importance of genetic variation in an initial population. The island-model GS better maintained genetic improvement in later generations than the other GS methods, suggesting that the island-model GS can utilize genetic variation in breeding and can retain alleles with small effects in the breeding population. The island-model GS will become a new breeding method that enhances the potential of genomic

  9. Island-Model Genomic Selection for Long-Term Genetic Improvement of Autogamous Crops.

    Directory of Open Access Journals (Sweden)

    Shiori Yabe

    Full Text Available Acceleration of genetic improvement of autogamous crops such as wheat and rice is necessary to increase cereal production in response to the global food crisis. Population and pedigree methods of breeding, which are based on inbred line selection, are used commonly in the genetic improvement of autogamous crops. These methods, however, produce a few novel combinations of genes in a breeding population. Recurrent selection promotes recombination among genes and produces novel combinations of genes in a breeding population, but it requires inaccurate single-plant evaluation for selection. Genomic selection (GS, which can predict genetic potential of individuals based on their marker genotype, might have high reliability of single-plant evaluation and might be effective in recurrent selection. To evaluate the efficiency of recurrent selection with GS, we conducted simulations using real marker genotype data of rice cultivars. Additionally, we introduced the concept of an "island model" inspired by evolutionary algorithms that might be useful to maintain genetic variation through the breeding process. We conducted GS simulations using real marker genotype data of rice cultivars to evaluate the efficiency of recurrent selection and the island model in an autogamous species. Results demonstrated the importance of producing novel combinations of genes through recurrent selection. An initial population derived from admixture of multiple bi-parental crosses showed larger genetic gains than a population derived from a single bi-parental cross in whole cycles, suggesting the importance of genetic variation in an initial population. The island-model GS better maintained genetic improvement in later generations than the other GS methods, suggesting that the island-model GS can utilize genetic variation in breeding and can retain alleles with small effects in the breeding population. The island-model GS will become a new breeding method that enhances the

  10. Automatic crop row detection from UAV images

    DEFF Research Database (Denmark)

    Midtiby, Henrik; Rasmussen, Jesper

    are considered weeds. We have used a Sugar beet field as a case for evaluating the proposed crop detection method. The suggested image processing consists of: 1) locating vegetation regions in the image by thresholding the excess green image derived from the orig- inal image, 2) calculate the Hough transform......Images from Unmanned Aerial Vehicles can provide information about the weed distribution in fields. A direct way is to quantify the amount of vegetation present in different areas of the field. The limitation of this approach is that it includes both crops and weeds in the reported num- bers. To get...... of the segmented image 3) determine the dominating crop row direction by analysing output from the Hough transform and 4) use the found crop row direction to locate crop rows....

  11. Transfer factors of radionuclides from Andosols to crops

    International Nuclear Information System (INIS)

    Ban-nai, Tadaaki; Muramatsu Yasuyuki

    2004-01-01

    Transfer factors (TFs) of some selected radionuclides from Andosols, a typical soil type in Japan, to several crops (leaf vegetables and root vegetables) have been studied by radiotracer experiments. Cabbages, komatsuna, spinach and lettuce were used as leaf vegetables and radish, carrot and turnip were used as root vegetables. The mean values of TFs (on a wet weight basis) of radionuclides such as 137 Cs, 85 Sr, 60 Co, 54 Mn, 65 Zn and 125 I for edible parts of leaf vegetables were 0.11, 0.24, 0.046, 0.60, 0.51 and 0.0054, respectively. Respective values for edible parts of root vegetables were 0.02, 0.14, 0.004. 0.09, 0.13 and 0.0022. The obtained TFs were, in most cases in the order Mn, Zn, Sr>Cs>Co>I. The TFs of 125 I were much lower than the other nuclides. The transfer factors obtained for the edible part of root vegetables were markedly lower than those for leaf vegetables. The transfer factors of Sr and Mn for leaf vegetables were generally higher for older (outer) leaves than younger (inner) ones. In the root vegetables, TFs for leaf parts were typically higher than those for tubers. (author)

  12. IPM of specialty crops and community gardens in north Florida

    Science.gov (United States)

    Insect pests post serious challenges to specialty crops (vegetables, fruits and nut crops) and community gardens in North Florida. The major vegetable pests include silverleaf whitefly, Bemisia argentifolii; the green peach aphid, Myzus persicae; southeastern green stinkbug, Nezara viridula; brown s...

  13. Manual herbicide application methods for managing vegetation in Appalachian hardwood forests

    Science.gov (United States)

    Jeffrey D. Kochenderfer; James N. Kochenderfer; Gary W. Miller

    2012-01-01

    Four manual herbicide application methods are described for use in Appalachian hardwood forests. Stem injection, basal spray, cut-stump, and foliar spray techniques can be used to control interfering vegetation and promote the development of desirable reproduction and valuable crop trees in hardwood forests. Guidelines are presented to help the user select the...

  14. Analysis of MODIS 250 m Time Series Product for LULC Classification and Retrieval of Crop Biophysical Parameter

    Science.gov (United States)

    Verma, A. K.; Garg, P. K.; Prasad, K. S. H.; Dadhwal, V. K.

    2016-12-01

    Agriculture is a backbone of Indian economy, providing livelihood to about 70% of the population. The primary objective of this research is to investigate the general applicability of time-series MODIS 250m Normalized difference vegetation index (NDVI) and Enhanced vegetation index (EVI) data for various Land use/Land cover (LULC) classification. The other objective is the retrieval of crop biophysical parameter using MODIS 250m resolution data. The Uttar Pradesh state of India is selected for this research work. A field study of 38 farms was conducted during entire crop season of the year 2015 to evaluate the applicability of MODIS 8-day, 250m resolution composite images for assessment of crop condition. The spectroradiometer is used for ground reflectance and the AccuPAR LP-80 Ceptometer is used to measure the agricultural crops Leaf Area Index (LAI). The AccuPAR measures Photosynthetically Active Radiation (PAR) and can invert these readings to give LAI for plant canopy. Ground-based canopy reflectance and LAI were used to calibrate a radiative transfer model to create look-up table (LUT) that was used to simulate LAI. The seasonal trend of MODIS-derived LAI was used to find crop parameter by adjusting the LAI simulated from climate-based crop yield model. Cloud free MODIS images of 250m resolution (16 day composite period) were downloaded using LP-DAAC website over a period of 12 months (Jan to Dec 2015). MODIS both the VI products were found to have sufficient spectral, spatial and temporal resolution to detect unique signatures for each class (water, fallow land, urban, dense vegetation, orchard, sugarcane and other crops). Ground truth data were collected using JUNO GPS. Multi-temporal VI signatures for vegetation classes were consistent with its general phenological characteristic and were spectrally separable at some point during the growing season. The MODIS NDVI and EVI multi-temporal images tracked similar seasonal responses for all croplands and were

  15. Cereal Crop Proteomics: Systemic Analysis of Crop Drought Stress Responses Towards Marker-Assisted Selection Breeding

    Directory of Open Access Journals (Sweden)

    Arindam Ghatak

    2017-06-01

    Full Text Available Sustainable crop production is the major challenge in the current global climate change scenario. Drought stress is one of the most critical abiotic factors which negatively impact crop productivity. In recent years, knowledge about molecular regulation has been generated to understand drought stress responses. For example, information obtained by transcriptome analysis has enhanced our knowledge and facilitated the identification of candidate genes which can be utilized for plant breeding. On the other hand, it becomes more and more evident that the translational and post-translational machinery plays a major role in stress adaptation, especially for immediate molecular processes during stress adaptation. Therefore, it is essential to measure protein levels and post-translational protein modifications to reveal information about stress inducible signal perception and transduction, translational activity and induced protein levels. This information cannot be revealed by genomic or transcriptomic analysis. Eventually, these processes will provide more direct insight into stress perception then genetic markers and might build a complementary basis for future marker-assisted selection of drought resistance. In this review, we survey the role of proteomic studies to illustrate their applications in crop stress adaptation analysis with respect to productivity. Cereal crops such as wheat, rice, maize, barley, sorghum and pearl millet are discussed in detail. We provide a comprehensive and comparative overview of all detected protein changes involved in drought stress in these crops and have summarized existing knowledge into a proposed scheme of drought response. Based on a recent proteome study of pearl millet under drought stress we compare our findings with wheat proteomes and another recent study which defined genetic marker in pearl millet.

  16. Remote-Sensing Time Series Analysis, a Vegetation Monitoring Tool

    Science.gov (United States)

    McKellip, Rodney; Prados, Donald; Ryan, Robert; Ross, Kenton; Spruce, Joseph; Gasser, Gerald; Greer, Randall

    2008-01-01

    The Time Series Product Tool (TSPT) is software, developed in MATLAB , which creates and displays high signal-to- noise Vegetation Indices imagery and other higher-level products derived from remotely sensed data. This tool enables automated, rapid, large-scale regional surveillance of crops, forests, and other vegetation. TSPT temporally processes high-revisit-rate satellite imagery produced by the Moderate Resolution Imaging Spectroradiometer (MODIS) and by other remote-sensing systems. Although MODIS imagery is acquired daily, cloudiness and other sources of noise can greatly reduce the effective temporal resolution. To improve cloud statistics, the TSPT combines MODIS data from multiple satellites (Aqua and Terra). The TSPT produces MODIS products as single time-frame and multitemporal change images, as time-series plots at a selected location, or as temporally processed image videos. Using the TSPT program, MODIS metadata is used to remove and/or correct bad and suspect data. Bad pixel removal, multiple satellite data fusion, and temporal processing techniques create high-quality plots and animated image video sequences that depict changes in vegetation greenness. This tool provides several temporal processing options not found in other comparable imaging software tools. Because the framework to generate and use other algorithms is established, small modifications to this tool will enable the use of a large range of remotely sensed data types. An effective remote-sensing crop monitoring system must be able to detect subtle changes in plant health in the earliest stages, before the effects of a disease outbreak or other adverse environmental conditions can become widespread and devastating. The integration of the time series analysis tool with ground-based information, soil types, crop types, meteorological data, and crop growth models in a Geographic Information System, could provide the foundation for a large-area crop-surveillance system that could identify

  17. Modeling of genetic gain for single traits from marker-assisted seedling selection in clonally propagated crops

    Science.gov (United States)

    Ru, Sushan; Hardner, Craig; Carter, Patrick A; Evans, Kate; Main, Dorrie; Peace, Cameron

    2016-01-01

    Seedling selection identifies superior seedlings as candidate cultivars based on predicted genetic potential for traits of interest. Traditionally, genetic potential is determined by phenotypic evaluation. With the availability of DNA tests for some agronomically important traits, breeders have the opportunity to include DNA information in their seedling selection operations—known as marker-assisted seedling selection. A major challenge in deploying marker-assisted seedling selection in clonally propagated crops is a lack of knowledge in genetic gain achievable from alternative strategies. Existing models based on additive effects considering seed-propagated crops are not directly relevant for seedling selection of clonally propagated crops, as clonal propagation captures all genetic effects, not just additive. This study modeled genetic gain from traditional and various marker-based seedling selection strategies on a single trait basis through analytical derivation and stochastic simulation, based on a generalized seedling selection scheme of clonally propagated crops. Various trait-test scenarios with a range of broad-sense heritability and proportion of genotypic variance explained by DNA markers were simulated for two populations with different segregation patterns. Both derived and simulated results indicated that marker-based strategies tended to achieve higher genetic gain than phenotypic seedling selection for a trait where the proportion of genotypic variance explained by marker information was greater than the broad-sense heritability. Results from this study provides guidance in optimizing genetic gain from seedling selection for single traits where DNA tests providing marker information are available. PMID:27148453

  18. High-throughput phenotyping and genomic selection: the frontiers of crop breeding converge.

    Science.gov (United States)

    Cabrera-Bosquet, Llorenç; Crossa, José; von Zitzewitz, Jarislav; Serret, María Dolors; Araus, José Luis

    2012-05-01

    Genomic selection (GS) and high-throughput phenotyping have recently been captivating the interest of the crop breeding community from both the public and private sectors world-wide. Both approaches promise to revolutionize the prediction of complex traits, including growth, yield and adaptation to stress. Whereas high-throughput phenotyping may help to improve understanding of crop physiology, most powerful techniques for high-throughput field phenotyping are empirical rather than analytical and comparable to genomic selection. Despite the fact that the two methodological approaches represent the extremes of what is understood as the breeding process (phenotype versus genome), they both consider the targeted traits (e.g. grain yield, growth, phenology, plant adaptation to stress) as a black box instead of dissecting them as a set of secondary traits (i.e. physiological) putatively related to the target trait. Both GS and high-throughput phenotyping have in common their empirical approach enabling breeders to use genome profile or phenotype without understanding the underlying biology. This short review discusses the main aspects of both approaches and focuses on the case of genomic selection of maize flowering traits and near-infrared spectroscopy (NIRS) and plant spectral reflectance as high-throughput field phenotyping methods for complex traits such as crop growth and yield. © 2012 Institute of Botany, Chinese Academy of Sciences.

  19. Selected Vegetables/Sun's Soup (PDQ®)—Health Professional Version

    Science.gov (United States)

    Expert-reviewed information summary about the use of selected vegetables/Sun's soup as a treatment for people with cancer. Note: The information in this summary is no longer being updated and is provided for reference purposes only.

  20. Modelling crop yield in Iberia under drought conditions

    Science.gov (United States)

    Ribeiro, Andreia; Páscoa, Patrícia; Russo, Ana; Gouveia, Célia

    2017-04-01

    The improved assessment of the cereal yield and crop loss under drought conditions are essential to meet the increasing economy demands. The growing frequency and severity of the extreme drought conditions in the Iberian Peninsula (IP) has been likely responsible for negative impacts on agriculture, namely on crop yield losses. Therefore, a continuous monitoring of vegetation activity and a reliable estimation of drought impacts is crucial to contribute for the agricultural drought management and development of suitable information tools. This works aims to assess the influence of drought conditions in agricultural yields over the IP, considering cereal yields from mainly rainfed agriculture for the provinces with higher productivity. The main target is to develop a strategy to model drought risk on agriculture for wheat yield at a province level. In order to achieve this goal a combined assessment was made using a drought indicator (Standardized Precipitation Evapotranspiration Index, SPEI) to evaluate drought conditions together with a widely used vegetation index (Normalized Difference Vegetation Index, NDVI) to monitor vegetation activity. A correlation analysis between detrended wheat yield and SPEI was performed in order to assess the vegetation response to each time scale of drought occurrence and also identify the moment of the vegetative cycle when the crop yields are more vulnerable to drought conditions. The time scales and months of SPEI, together with the months of NDVI, better related with wheat yield were chosen to perform a multivariate regression analysis to simulate crop yield. Model results are satisfactory and highlighted the usefulness of such analysis in the framework of developing a drought risk model for crop yields. In terms of an operational point of view, the results aim to contribute to an improved understanding of crop yield management under dry conditions, particularly adding substantial information on the advantages of combining

  1. Estimation of paddy water temperature during crop development

    International Nuclear Information System (INIS)

    Centeno, H.G.S.; Horie, T.

    1996-01-01

    The crop meristem is in direct contact with paddy water during crop's vegetative stage. Ambient air temperature becomes an important factor in crop development only when internodes elongate sufficiently for the meristem to rise above the water surface. This does not occur until after panicle initiation. Crop growth at vegetative stage is affected more by water temperature than the most commonly measured air temperature. During transplanting in 1992 dry season, the maximum paddy water temperature was 10 deg C higher than the maximum air temperature. For rice crop models, the development of a submodel to estimate water temperature is important to account the effect of paddy water temperature on plant growth. Paddy water temperature is estimated from mean air temperature, solar radiation, and crop canopy. The parameters of the model were derived using the simplex method on data from the 1993 wet- and dry-season field experiments at IRRI

  2. Constraints to obtaining consistent annual yields in perennial tree crops. I: Heavy fruit load dominates over vegetative growth.

    Science.gov (United States)

    Smith, Harley M; Samach, Alon

    2013-06-01

    Farmers lack effective methods to achieve and maintain stable production from year to year in many commercial fruit crops. Annual fruit yield within a region often alternates between high and low fruit load and is termed alternate bearing. The underlying cause of alternate bearing is the negative impact of high fruit load on vegetative growth and next year's flowering. In this review, we emphasize common responses of diverse perennials to heavy crop load. We present botanical, ecological and horticultural perspectives on irregular bearing. The later part of this review focuses on understanding how high fruit load dominates over vegetative growth. We discuss sink strengths and putative mobile signals (hormones), perhaps seed-derived. We highlight gaps in current understanding of alternate bearing, and discuss new approaches to better understand fruit load dominance. Assuming the effect of high fruit load may be related to other mechanisms of sink partitioning, other forms of dominance are presented such as apical, first fruit and king fruit dominance. Dominance seems to be enforced, in independent cases through the establishment of a polar auxin transport system from the stronger sink. Once established this somehow perturbs the transport of auxin out of weaker sinks. Possibly, fruit derived auxin may alter the polar auxin transport system of the shoot to inhibit shoot growth. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. Uptake and distribution of bisphenol A and nonylphenol in vegetable crops irrigated with reclaimed water.

    Science.gov (United States)

    Lu, Jian; Wu, Jun; Stoffella, Peter J; Wilson, P Chris

    2015-01-01

    The potential uptake and distribution of bisphenol A (BPA) and nonylphenol (NP) (from reclaimed irrigation water) in edible crops was investigated. BPA and NP were spiked into simulated reclaimed water at environmentally relevant concentrations. Two crops (lettuce, Lactuca sativa and tomato, Lycopersicon esculentum) were grown hydroponically in a greenhouse using the spiked irrigation water under two irrigation exposure scenarios (overhead foliar exposure and subsurface root exposure). BPA concentrations in tomato fruit were 26.6 ± 5.8 (root exposure) and 18.3 ± 3.5 (foliar exposure) μg kg(-1), while concentrations in lettuce leaves were 80.6 ± 23.1 (root exposure) and 128.9 ± 17.4 (foliar exposure) μg kg(-1). NP concentrations in tomato fruit were 46.1 ± 6.6 (root exposure) and 24.6 ± 6.4 (foliar exposure) μg kg(-1), while concentrations in lettuce leaves were 144.1 ± 9.2 (root exposure) and 195.0 ± 16.9 (foliar exposure) μg kg(-1). BPA was relatively mobile in lettuce plants regardless of exposure route. Limited mobility was observed for NP in both crops and BPA in tomatoes. The estimated daily intake of BPA and NP through consumption of vegetables irrigated with reclaimed water ranged from 8.9-62.9 to 11.9-95.1 μg, respectively, depending on the exposure route. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Assessment of pest and pesticide trends in vegetable crops in united arab emirates and sultanate of oman

    International Nuclear Information System (INIS)

    Waakeh, W.; Aldahmani, J.H.; Deadman, M.L.; Saadi, A.A.

    2007-01-01

    A preliminary survey on pesticide uses in 40 vegetable-growing farms representing different agricultural areas in Oman and the UAE, twenty farms from each country, revealed that all the vegetable farms used pesticides for crop protection. Among the major insect-pests, white flies (Bemisia tabaci), leafminers (Liriomyza trifolii), melon fruit flies (Bactrocera ciliatus), aphids (Aphis spp.) and tobacco leafworm (Spodoptera litteralis) were recorded in Omani farms. In the UAE, white flies, leafminers, cutworms (Agrotis ypsilan), tomato fruitworms (Helicoverpa armigera) and eggplant fruitworms (Leucinodes orbonalis) were the 5 top insect-pests. Among the plant diseases, powdery mildew (Erysiphe spp.), blight (Alternaria spp.), damping off (Pythium spp.), leafspot (Alternaria spp.) and mosaic (CMV) Were major cause of vegetable diseases in Omani farms; whereas, damping off (Pythium aphanidermatum), downy mildew (Pseudoperonspora cubensis), early blight (Alternaria solani), septoria leaf spot (Septoria lycopersici) and anthracnose rip rot (colletotrichum spp.) were the most predominant diseases encountered in most UAE farms. Among the most commonly used pesticides, 29 insecticides, 16 fungicides and 3 herbicides were used by the vegetable farmers. Around 55% of Omani farms used routine application of pesticides, irrespective of the pest presence. Whereas, in the UAE, most farmers started to spray pesticides at 6-20% pest (insect, disease and weeds) infection. Over 65 of the farms, in both the countries, received chemical pest management information from the sales representatives. (author)

  5. Crop classification based on multi-temporal satellite remote sensing data for agro-advisory services

    Science.gov (United States)

    Karale, Yogita; Mohite, Jayant; Jagyasi, Bhushan

    2014-11-01

    In this paper, we envision the use of satellite images coupled with GIS to obtain location specific crop type information in order to disseminate crop specific advises to the farmers. In our ongoing mKRISHI R project, the accurate information about the field level crop type and acreage will help in the agro-advisory services and supply chain planning and management. The key contribution of this paper is the field level crop classification using multi temporal images of Landsat-8 acquired during November 2013 to April 2014. The study area chosen is Vani, Maharashtra, India, from where the field level ground truth information for various crops such as grape, wheat, onion, soybean, tomato, along with fodder and fallow fields has been collected using the mobile application. The ground truth information includes crop type, crop stage and GPS location for 104 farms in the study area with approximate area of 42 hectares. The seven multi-temporal images of the Landsat-8 were used to compute the vegetation indices namely: Normalized Difference Vegetation Index (NDVI), Simple Ratio (SR) and Difference Vegetation Index (DVI) for the study area. The vegetation indices values of the pixels within a field were then averaged to obtain the field level vegetation indices. For each crop, binary classification has been carried out using the feed forward neural network operating on the field level vegetation indices. The classification accuracy for the individual crop was in the range of 74.5% to 97.5% and the overall classification accuracy was found to be 88.49%.

  6. Evidence for the role of an invasive weed in widespread occurrence of phytoplasmal diseases in diverse vegetable crops: implications from lineage-specific molecular markers

    Science.gov (United States)

    During the period from 2011 to 2013, several plant diseases repeatedly occurred in vegetable crops grown in Yuanmou County, Yunnan Province, China. Affected plants included cowpea, sword bean, string bean, tomato, lettuce, and water spinach. The diseased plants exhibited symptoms of witches’-broom...

  7. Winery wastewater inhibits seed germination and vegetative growth of common crop species.

    Science.gov (United States)

    Mosse, Kim P M; Patti, Antonio F; Christen, Evan W; Cavagnaro, Timothy R

    2010-08-15

    The ability to reuse winery wastewater would be of significant benefit to the wine industry, as it could potentially be a cost-effective method of wastewater management, whilst at the same time providing a valuable water resource. This study investigated the effects of different dilutions of a semi-synthetic winery wastewater on the growth and germination of four common crop species in a glasshouse study; barley (Hordeum vulgare), millet (Pennisetum glaucum), lucerne (Medicago sativa) and phalaris (Phalaris aquatica). The wastewater caused a significant delay in the germination of lucerne, millet and phalaris, although overall germination percentage of all species was not affected. Vegetative growth was significantly reduced in all species, with millet being the most severely affected. The germination index of barley correlated very highly (r(2)=0.99) with barley biomass, indicating that barley seed germination bioassays are highly relevant to plant growth, and therefore may be of use as a bioassay for winery wastewater toxicity. Copyright 2010 Elsevier B.V. All rights reserved.

  8. Vegetable soybean: seed composition and production research

    Directory of Open Access Journals (Sweden)

    Qiuying Zhang

    2017-10-01

    Full Text Available Vegetable soybean (edamame [Glycine max (L. Merr.] is a low input, high nutritional value, short crop cycle and soil-enriching profitable crop. It offers quick economic return and provides health benefits to the consumers. The market demand for edamame has begun to flourish and expand dramatically in recent decades due to increased awareness of nutritional properties, and the change in life styles towards healthier food. This article highlighted the importance of edamame as a nutraceutical and functional food-grade produce, summarised the research advances in seed composition and their roles, cultivar selection and crop establishment, planting date and fertilisation, weed management and harvesting. Current production problem of extensive labor at harvest and future research challenges in improving crop establishment, developing cultivars competitive to weed and resistant to pest insects/diseases, assessing biological activities of edamame elemental and phytochemical properties on cancer cell inhibition, and developing organic production system were also proposed with aims of enhancing farm profitability and expanding opportunities for extensive use of edamame.

  9. Selectivity of pesticides used in rice crop on Telenomus podisi and Trichogramma pretiosum

    OpenAIRE

    Pazini,Juliano de Bastos; Grützmacher,Anderson Dionei; Martins,José Francisco da Silva; Pasini,Rafael Antônio; Rakes,Matheus

    2016-01-01

    ABSTRACT Telenomus and Trichogramma species stand out as agents for the biological control in rice crops, and the main strategy for preserving them is the use of selective pesticides. This study aimed at evaluating the toxicity of pesticides used in irrigated rice crop on Telenomus podisi Ashmead (Hymenoptera: Platygastridae) and Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae). Adults of these parasitoids were exposed to dry residues of pesticides, in a completely randomized exp...

  10. Production of Pharmaceutical Proteins in Solanaceae Food Crops

    Directory of Open Access Journals (Sweden)

    Giorgio De Guzman

    2013-01-01

    Full Text Available The benefits of increased safety and cost-effectiveness make vegetable crops appropriate systems for the production and delivery of pharmaceutical proteins. In particular, Solanaceae edible crops could be inexpensive biofactories for oral vaccines and other pharmaceutical proteins that can be ingested as minimally processed extracts or as partially purified products. The field of crop plant biotechnology is advancing rapidly due to novel developments in genetic and genomic tools being made available today for the scientific community. In this review, we briefly summarize data now available regarding genomic resources for the Solanaceae family. In addition, we describe novel strategies developed for the expression of foreign proteins in vegetable crops and the utilization of these techniques to manufacture pharmaceutical proteins.

  11. Vegetation in group selection openings: ecology and manipulation

    Science.gov (United States)

    Philip M. McDonald; Gary O. Fiddler

    1991-01-01

    Group selection openings ranging from 0.1 to 2.0 acres in mixed conifer stands in northern and central California were evaluated for effect of site preparation, opening size, kind and amount of vegetation, and release treatment. Small openings, in general, are characterized by less sunlight and lower temperature extremes than clearcuttings. Roots from border trees...

  12. Locus-dependent selection in crop-wild hybrids of lettuce under field conditions and its implication for GM crop development

    NARCIS (Netherlands)

    Hooftman, D.A.P.; Flavell, A.J.; Jansen, H.; den Nijs, H.C.M.; Syed, N.H.; Sørensen, A.P.; Orozco-ter Wengel, P.; van de Wiel, C.C.M.

    2011-01-01

    Gene escape from crops has gained much attention in the last two decades, as transgenes introgressing into wild populations could affect the latter’s ecological characteristics. However, different genes have different likelihoods of introgression. The mixture of selective forces provided by natural

  13. Large Area Crop Inventory Experiment (LACIE). Detecting and monitoring agricultural vegetative water stress over large areas using LANDSAT digital data. [Great Plains

    Science.gov (United States)

    Thompson, D. R.; Wehmanen, O. A. (Principal Investigator)

    1978-01-01

    The author has identified the following significant results. The Green Number Index technique which uses LANDSAT digital data from 5X6 nautical mile sampling frames was expanded to evaluate its usefulness in detecting and monitoring vegetative water stress over the Great Plains. At known growth stages for wheat, segments were classified as drought or non drought. Good agreement was found between the 18 day remotely sensed data and a weekly ground-based crop moisture index. Operational monitoring of the 1977 U.S.S.R. and Australian wheat crops indicated drought conditions. Drought isoline maps produced by the Green Number Index technique were in good agreement with conventional sources.

  14. Genomic and environmental selection patterns in two distinct lettuce crop-wild hybrid crosses

    OpenAIRE

    Hartman, Y.; Uwimana, B.; Hooftman, D.A.P.; Schranz, M.E.; Wiel, van de, C.C.M.; Smulders, M.J.M.; Visser, R.G.F.; Tienderen, van, P.H.

    2013-01-01

    Genomic selection patterns and hybrid performance influence the chance that crop (trans)genes can spread to wild relatives. We measured fitness(-related) traits in two different field environments employing two different crop?wild crosses of lettuce. We performed quantitative trait loci (QTL) analyses and estimated the fitness distribution of early- and late-generation hybrids. We detected consistent results across field sites and crosses for a fitness QTL at linkage group 7, where a selectiv...

  15. Heavy metal content of selected African leafy vegetables planted in ...

    African Journals Online (AJOL)

    Heavy metal content of selected African leafy vegetables planted in urban and peri-urban Nairobi, Kenya. ... African Journal of Environmental Science and Technology ... Government clean-up activities and monitoring of waste disposal is ...

  16. Studies on the injuries of crops by harmful gases under covering. I. Injuries of vegetables by gaseous nitrogen dioxide and the conditions affecting crop susceptibility. [Eggplant

    Energy Technology Data Exchange (ETDEWEB)

    Kato, T; Tachibana, S; Inden, T

    1974-09-01

    The effects of environmental conditions such as soil-moisture humidity, and light on injuries to crops such as kidney bean, cucumber, tomato, and egg plant as well as the relationships between injury occurrence and plant nutrition, age of seedlings, and leaf position were investigated when the crops were exposed to gaseous nitrogen dioxide under a covering. The injury was severer when the soil moisture was richer and the humidity was higher. Injury was greater under dark conditions as opposed to light conditions before, during, and after NO/sub 2/ exposure. The first leaves of kidney bean plants were more susceptible to the gas when they were younger. Leaves with active metabolism (in the middle position) were the most susceptible to NO/sub 2/. Vegetables grown in fields or cultures poor in nitrogen were apparently susceptible to the gas, and those grown in ammonia-nitrogen rich cultures were more severely injured than those grown on nitrate-nitrogen rich cultures. Those grown in iron-deficient cultures were more susceptible to NO/sub 2/ than controls.

  17. Hyperspectral remote sensing of vegetation and agricultural crops: knowledge gain and knowledge gap after 40 years of research

    Science.gov (United States)

    Thenkabail, Prasad S.; Lyon, John G.; Huete, Alfredo; Edited by Thenkabail, Prasad S.; Lyon, John G.; Huete, Alfredo

    2011-01-01

    The focus of this chapter was to summarize the advances made over last 40+ years, as reported in various chapters of this book, in understanding, modeling, and mapping terrestrial vegetation using hyperspectral remote sensing (or imaging spectroscopy) using sensors that are ground-based, truck-mounted, airborne, and spaceborne. As we have seen in various chapters of this book and synthesized in this chapter, the advances made include: (a) significantly improved characterization and modeling of a wide array of biophysical and biochemical properties of vegetation, (b) ability to discriminate plant species and vegetation types with high degree of accuracies (c) reducing uncertainties in determining net primary productivity or carbon assessments from terrestrial vegetation, (d) improved crop productivity and water productivity models, (b), (e) ability to access stress resulting from causes such as management practices, pests and disease, water deficit or excess; , and (f) establishing more sensitive wavebands and indices to detect plant water\\moisture content. The advent of spaceborne hyperspectral sensors (e.g., NASA’s Hyperion, ESA’s PROBA, and upcoming NASA’s HyspIRI) and numerous methods and techniques espoused in this book to overcome Hughes phenomenon or data redundancy when handling large volumes of hyperspectral data have generated tremendous interest in advancing our hyperspectral applications knowledge base over larger spatial extent such as region, nation, continent, and globe.

  18. Allelopathic relations of selected cereal and vegetable species during seed germination and seedling growth

    Directory of Open Access Journals (Sweden)

    Bojović Biljana M.

    2015-01-01

    Full Text Available Allelopathy is the direct or indirect harmful effect which one plant produces on another through the production of chemical compounds that escape into the environment. In the presence paper allelopathic relationships were determined in three cereals - wheat (Triticum aestivum L., barley (Hordeum vulgare L., oat (Avena sativa L. and vegetable crops - spinach (Spinacia oleracea L., radish (Raphanus sativus L., pepper (Capsicum annum L.. In addition to the percentage of germination, allelopathic potential was tested measuring root and stem length of tested plant species germinated either alone or in combination with others. The obtained results showed that seed germination and plant growth of cereals and vegetables are depended on the presence of other plants in all tested combinations. In this study has proven largely inhibitory allelopathic effect on germination and plant growth.

  19. Marker-assisted selection for improving quantitative traits of forage crops

    International Nuclear Information System (INIS)

    Dolstra, O.; Denneboom, C.; Vos, Ab L.F. de; Loo, E.N. van

    2007-01-01

    This chapter provides an example of using marker-assisted selection (MAS) for breeding perennial ryegrass (Lolium perenne), a pasture species. A mapping study had shown the presence of quantitative trait loci (QTL) for seven component traits of nitrogen use efficiency (NUE). The NUE-related QTL clustered in five chromosomal regions. These QTL were validated through divergent marker selection in an F 2 population. The criterion used for plant selection was a summation index based on the number of positive QTL alleles. The evaluation studies showed a strong indirect response of marker selection on NUE. Marker selection using a summation index such as applied here proved to be very effective for difficult and complex quantitative traits such as NUE. The strategy is easily applicable in outbreeding crops to raise the frequency of several desirable alleles simultaneously. (author)

  20. Survey of crop losses in response to phytoparasitic nematodes in the United States for 1994.

    Science.gov (United States)

    Koenning, S R; Overstreet, C; Noling, J W; Donald, P A; Becker, J O; Fortnum, B A

    1999-12-01

    Previous reports of crop losses to plant-parasitic nematodes have relied on published results of survey data based on certain commodities, including tobacco, peanuts, cotton, and soybean. Reports on crop-loss assessment by land-grant universities and many commodity groups generally are no longer available, with the exception of the University of Georgia, the Beltwide Cotton Conference, and selected groups concerned with soybean. The Society of Nematologists Extension Committee contacted extension personnel in 49 U.S. states for information on estimated crop losses caused by plant-parasitic nematodes in major crops for the year 1994. Included in this paper are survey results from 35 states on various crops including corn, cotton, soybean, peanut, wheat, rice, sugarcane, sorghum, tobacco, numerous vegetable crops, fruit and nut crops, and golf greens. The data are reported systematically by state and include the estimated loss, hectarage of production, source of information, nematode species or taxon when available, and crop value. The major genera of phytoparasitic nematodes reported to cause crop losses were Heterodera, Hoplolaimus, Meloidogyne, Pratylenchus, Rotylenchulus, and Xiphinema.

  1. Chinantec shifting cultivation : InTERAcTIVE landuse : a case-study in the Chinantla, Mexico, on secondary vegetation, soils and crop performance under indigenous shifting cultivation

    NARCIS (Netherlands)

    Wal, van der H.

    1999-01-01

    The development of secondary vegetation, soils and crop performance was studied in local variants of shifting cultivation in two villages in the Chinantla, Mexico. In Chapter 1, the institutional, social and political context of the research are presented and the reader is advertised that

  2. The effect of catch crop species on selenium availability for succeeding crops

    DEFF Research Database (Denmark)

    Stavridou, Eleftheria; Young, Scott D.; Thorup-Kristensen, Kristian

    2012-01-01

    2007–10 investigated the ability of catch crops (Italian ryegrass, fodder radish and hairy vetch) under different fertiliser regimes to reduce soil Se content in the autumn and to increase its availability in spring to the succeeding crop. Results and Conclusions The catch crops (Italian ryegrass...... and fodder radish) increased water-extractable Se content in the 0.25–0.75msoil layer in only one of the experiments. Selenium uptake by the catch crops varied between 65 and 3263 mg ha−1, depending on species, year and fertilisation treatment; this corresponded to 0.1–3.0% of the water-extractable soil Se......Background and Aims Selenium (Se) is an essential nutrient for humans and animals. In order to ensure an optimal concentration of Se in crops, Se fertilisers are applied. Catch crops may be an alternative way to increase Se concentrations in vegetables. Methods Three experiments in Denmark between...

  3. Use of mutagenous factors in the breeding of vegetatively propagated plants

    International Nuclear Information System (INIS)

    Dryagina, I.V.; Fomenko, N.N.

    1978-01-01

    Given is a review of the literature and authors data on using mutagenous factors with different nature to breed some new and useful forms of plants reproduced vegetatively. The problem history and prospects of the practical application of the method are stated. In particular the data on ionizing radiation use in fruit crop selection to breed mutation forms (effect on buds, pollen, seeds etc.) are presented

  4. Responses of selected biota after biostimulation of a vegetable oil ...

    African Journals Online (AJOL)

    Responses of selected biota after biostimulation of a vegetable oil spill in the Con Joubert Bird Sanctuary wetland: A pilot study. Mapurunyane C Selala, Paul J Oberholster, Karen AK Surridge, Arno R de Klerk, Anna-Maria Botha ...

  5. Plutonium contents of field crops in the southeastern US

    International Nuclear Information System (INIS)

    Adriano, D.C.; Corey, J.C.; Dahlman, R.C.

    1980-01-01

    Agricultural crops were grown at the US Department of Energy Savannah River Plant (SRP) and at Oak Ridge National Laboratory (ORNL) on soils at field sites containing plutonium concentrations above background levels from nuclear weapon tests. Major US grain crops were grown adjacent to a reprocessing facility at SRP, which releases low chronic levels of plutonium through an emission stack. Major vegetable crops were grown at the ORNL White Oak Creek floodplain, which received plutonium effluent wastes in 1944 from the Manhattan Project weapon development. In general, the concentration ratios of vegetative parts of crops at SRP were approximately one order of magnitude higher than those at ORNL, which indicates the influence of aerial deposition of plutonium at the SRP site

  6. Selective weed suppression by cover crop residues: effects of seed mass and timing of species’sensitivity

    NARCIS (Netherlands)

    Kruidhof, H.M.; Gallandt, E.R.; Haramoto, E.R.; Bastiaans, L.

    2011-01-01

    Laboratory bioassays have shown that large-seeded species better tolerate cover crop residue–mediated stress than small-seeded species. This provides the potential for selective suppression of small-seeded weeds in large-seeded crops. We conducted two field experiments in which seedling emergence of

  7. Weed supression by smother crops and selective herbicides

    Directory of Open Access Journals (Sweden)

    Severino Francisco José

    2004-01-01

    Full Text Available Using a smother crop is thought to suppress weed density and to add other beneficial effects in sustainable agricultural systems. Weed suppression ought to be considered an essential component of integrated weed management. However, very little is known about the effects of green manure plants on weeds. This study evaluated the influence of three green manure species on weed suppression and selectivity of herbicides. A field experiment was designed to determine the effect of the green manure species Crotalaria juncea, Arachis pintoi and pigeon pea on the weeds Brachiaria decumbens, guineagrass and hairy beggarticks, and on the natural weed infestation in the inter rows area of an avocado orchard. The weed species were suppressed differently by each green manure species. Soil samples collected from the field experiment presented a residual effect, of at least 30 d, in suppressing weed seed bank recruitment; this residual effect was caused by the residues of the green manure present in the soil. When the green manure was incorporated into the top 5 cm of soil or left on the surface, in a greenhouse experiment, the emergence of weed seeds was significantly inhibited, depending on the species, and on the amount and depth of green manure incorporation. Greenhouse experiments indicate that pre-emergence herbicides cause lower phytotoxicity than post-emergence Arachis pintoi. Smother crops using green manure species, when well established in an area, provide additional weed control to the cropping system and are effective and valuable tools in integrated weed management.

  8. Demand Analysis of Selected Fruits and Vegetables in Oman

    Directory of Open Access Journals (Sweden)

    A. Omezzine

    1998-01-01

    Full Text Available Consumer behavior and prospective changes in demand of food product have a significant impact on production and distribution decisions. Consumer responsiveness to changes in prices, income and other demand determinants is very important to production and market decision-makers. The present study estimates demand responses for selected fruits and vegetables in Oman using consumer aggregated national data. The main objective is to generate information needed for making public as well as private decisions. Results indicate that most fruit and vegetable consumers respond to price, and income changes in the expected manner. Responses are different from one commodity to another depending on its nature and importance in the consumer's diet habits. In a few cases income is not a significant determinant of the demand. Moreover, many fruits and vegetables have shown a relationship of substitution and complementary consistent with Omani diet. These results are useful in farmers and distributers to allow them to adjust their production and marketing services according to the consumer’s response.

  9. Consideration in selecting crops for the human-rated life support system: a Linear Programming model

    Science.gov (United States)

    Wheeler, E. F.; Kossowski, J.; Goto, E.; Langhans, R. W.; White, G.; Albright, L. D.; Wilcox, D.; Henninger, D. L. (Principal Investigator)

    1996-01-01

    A Linear Programming model has been constructed which aids in selecting appropriate crops for CELSS (Controlled Environment Life Support System) food production. A team of Controlled Environment Agriculture (CEA) faculty, staff, graduate students and invited experts representing more than a dozen disciplines, provided a wide range of expertise in developing the model and the crop production program. The model incorporates nutritional content and controlled-environment based production yields of carefully chosen crops into a framework where a crop mix can be constructed to suit the astronauts' needs. The crew's nutritional requirements can be adequately satisfied with only a few crops (assuming vitamin mineral supplements are provided) but this will not be satisfactory from a culinary standpoint. This model is flexible enough that taste and variety driven food choices can be built into the model.

  10. COMPLEX OF PATHOGENES ON VEGETABLE CROPS IN CONDITION OF CENTRAL REGION OF RUSSIA

    Directory of Open Access Journals (Sweden)

    L. T. Timina

    2015-01-01

    Full Text Available As a result of monitoring of causative agents of diseases of vegetable crops and studying of its species specification, the genus and species of fungi and bacteria, were found. Previously unknown in the Central region of Russia pathogens of carrot were identified: Sclerotinia nevales, Gleocladium roseum, Verticillium spp, Trichotecium roseum, Streptomyces scabies, F. nivale, F. chlamidosporum, F. equiseti, F. proliferatum, Chaetomium spp., Erysiphe umbelliferum, Erwinia carotovora. Main causative agents of diseases  of carrot during storage were also described: Alternaria infectoria, A. alternatа, A. arborescens, A. radicina, A. cheiranthi, A. corotiincultae, A. cinerariae, Embellisia spp., Nimbia spp., Cladosporium spp. It was found new pathogen for onion (Aspergillus niger, garlic (Fusarium semitectum, F. subglutinans, F. proliferatum, F.avenacium, red beet (Typhula ishikariensis, and radish (Drechslera Bondartseva.

  11. Using a dynamic vegetation model for future projections of crop yields: application to Belgium in the framework of the VOTES and MASC projects

    Science.gov (United States)

    Jacquemin, Ingrid; Henrot, Alexandra-Jane; Fontaine, Corentin M.; Dendoncker, Nicolas; Beckers, Veronique; Debusscher, Bos; Tychon, Bernard; Hambuckers, Alain; François, Louis

    2016-04-01

    Dynamic vegetation models (DVM) were initially designed to describe the dynamics of natural ecosystems as a function of climate and soil, to study the role of the vegetation in the carbon cycle. These models are now directly coupled with climate models in order to evaluate feedbacks between vegetation and climate. But DVM characteristics allow numerous other applications, leading to amelioration of some of their modules (e.g., evaluating sensitivity of the hydrological module to land surface changes) and developments (e.g., coupling with other models like agent-based models), to be used in ecosystem management and land use planning studies. It is in this dynamic context about DVMs that we have adapted the CARAIB (CARbon Assimilation In the Biosphere) model. One of the main improvements is the implementation of a crop module, allowing the assessment of climate change impacts on crop yields. We try to validate this module at different scales: - from the plot level, with the use of eddy-covariance data from agricultural sites in the FLUXNET network, such as Lonzée (Belgium) or other Western European sites (Grignon, Dijkgraaf,…), - to the country level, for which we compare the crop yield calculated by CARAIB to the crop yield statistics for Belgium and for different agricultural regions of the country. Another challenge for the CARAIB DVM was to deal with the landscape dynamics, which is not directly possible due to the lack of consideration of anthropogenic factors in the system. In the framework of the VOTES and the MASC projects, CARAIB is coupled with an agent-based model (ABM), representing the societal component of the system. This coupled module allows the use of climate and socio-economic scenarios, particularly interesting for studies which aim at ensuring a sustainable approach. This module has particularly been exploited in the VOTES project, where the objective was to provide a social, biophysical and economic assessment of the ecosystem services in

  12. The relationship between extreme weather events and crop losses in central Taiwan

    Science.gov (United States)

    Lai, Li-Wei

    2017-09-01

    The frequency of extreme weather events, which cause severe crop losses, is increasing. This study investigates the relationship between crop losses and extreme weather events in central Taiwan from 2003 to 2015 and determines the main factors influencing crop losses. Data regarding the crop loss area and meteorological information were obtained from government agencies. The crops were categorised into the following five groups: `grains', `vegetables', `fruits', `flowers' and `other crops'. The extreme weather events and their synoptic weather patterns were categorised into six and five groups, respectively. The data were analysed using the z score, correlation coefficient and stepwise regression model. The results show that typhoons had the highest frequency of all extreme weather events (58.3%). The largest crop loss area (4.09%) was caused by two typhoons and foehn wind in succession. Extreme wind speed coupled with heavy rainfall is an important factor affecting the losses in the grain and vegetable groups. Extreme wind speed is a common variable that affects the loss of `grains', `vegetables', `fruits' and `flowers'. Consecutive extreme weather events caused greater crop losses than individual events. Crops with long production times suffered greater losses than those with short production times. This suggests that crops with physical structures that can be easily damaged and long production times would benefit from protected cultivation to maintain food security.

  13. NEW MICROWAVE-BASED MISSIONS APPLICATIONS FOR RAINFED CROPS CHARACTERIZATION

    Directory of Open Access Journals (Sweden)

    N. Sánchez

    2016-06-01

    Full Text Available A multi-temporal/multi-sensor field experiment was conducted within the Soil Moisture Measurement Stations Network of the University of Salamanca (REMEDHUS in Spain, in order to retrieve useful information from satellite Synthetic Aperture Radar (SAR and upcoming Global Navigation Satellite Systems Reflectometry (GNSS-R missions. The objective of the experiment was first to identify which radar observables are most sensitive to the development of crops, and then to define which crop parameters the most affect the radar signal. A wide set of radar variables (backscattering coefficients and polarimetric indicators acquired by Radarsat-2 were analyzed and then exploited to determine variables characterizing the crops. Field measurements were fortnightly taken at seven cereals plots between February and July, 2015. This work also tried to optimize the crop characterization through Landsat-8 estimations, testing and validating parameters such as the leaf area index, the fraction of vegetation cover and the vegetation water content, among others. Some of these parameters showed significant and relevant correlation with the Landsat-derived Normalized Difference Vegetation Index (R>0.60. Regarding the radar observables, the parameters the best characterized were biomass and height, which may be explored for inversion using SAR data as an input. Moreover, the differences in the correlations found for the different crops under study types suggested a way to a feasible classification of crops.

  14. Hyperspectral remote sensing of vegetation

    Science.gov (United States)

    Thenkabail, Prasad S.; Lyon, John G.; Huete, Alfredo

    2011-01-01

    Hyperspectral narrow-band (or imaging spectroscopy) spectral data are fast emerging as practical solutions in modeling and mapping vegetation. Recent research has demonstrated the advances in and merit of hyperspectral data in a range of applications including quantifying agricultural crops, modeling forest canopy biochemical properties, detecting crop stress and disease, mapping leaf chlorophyll content as it influences crop production, identifying plants affected by contaminants such as arsenic, demonstrating sensitivity to plant nitrogen content, classifying vegetation species and type, characterizing wetlands, and mapping invasive species. The need for significant improvements in quantifying, modeling, and mapping plant chemical, physical, and water properties is more critical than ever before to reduce uncertainties in our understanding of the Earth and to better sustain it. There is also a need for a synthesis of the vast knowledge spread throughout the literature from more than 40 years of research.

  15. Vegetation Water Content Mapping for Agricultural Regions in SMAPVEX16

    Science.gov (United States)

    White, W. A.; Cosh, M. H.; McKee, L.; Berg, A. A.; McNairn, H.; Hornbuckle, B. K.; Colliander, A.; Jackson, T. J.

    2017-12-01

    Vegetation water content impacts the ability of L-band radiometers to measure surface soil moisture. Therefore it is necessary to quantify the amount of water held in surface vegetation for an accurate soil moisture remote sensing retrieval. A methodology is presented for generating agricultural vegetation water content maps using Landsat 8 scenes for agricultural fields of Iowa and Manitoba for the Soil Moisture Active Passive Validation Experiments in 2016 (SMAPVEX16). Manitoba has a variety of row crops across the region, and the study period encompasses the time frame from emergence to reproduction, as well as a forested region. The Iowa study site is dominated by corn and soybeans, presenting an easier challenge. Ground collection of vegetation biomass and water content were also collected to provide a ground truth data source. Errors for the resulting vegetation water content maps ranged depending upon crop type, but generally were less than 15% of the total plant water content per crop type. Interpolation is done between Landsat overpasses to produce daily vegetation water content maps for the summer of 2016 at a 30 meter resolution.

  16. Soil salinity assessment through satellite thermography for different irrigated and rainfed crops

    Science.gov (United States)

    Ivushkin, Konstantin; Bartholomeus, Harm; Bregt, Arnold K.; Pulatov, Alim; Bui, Elisabeth N.; Wilford, John

    2018-06-01

    The use of canopy thermography is an innovative approach for salinity stress detection in plants. But its applicability for landscape scale studies using satellite sensors is still not well investigated. The aim of this research is to test the satellite thermography soil salinity assessment approach on a study area with different crops, grown both in irrigated and rainfed conditions, to evaluate whether the approach has general applicability. Four study areas in four different states of Australia were selected to give broad representation of different crops cultivated under irrigated and rainfed conditions. The soil salinity map was prepared by the staff of Geoscience Australia and CSIRO Land and Water and it is based on thorough soil sampling together with environmental modelling. Remote sensing data was captured by the Landsat 5 TM satellite. In the analysis we used vegetation indices and brightness temperature as an indicator for canopy temperature. Applying analysis of variance and time series we have investigated the applicability of satellite remote sensing of canopy temperature as an approach of soil salinity assessment for different crops grown under irrigated and rainfed conditions. We concluded that in all cases average canopy temperatures were significantly correlated with soil salinity of the area. This relation is valid for all investigated crops, grown both irrigated and rainfed. Nevertheless, crop type does influence the strength of the relations. In our case cotton shows only minor temperature difference compared to other vegetation classes. The strongest relations between canopy temperature and soil salinity were observed at the moment of a maximum green biomass of the crops which is thus considered to be the best time for application of the approach.

  17. Bacteriological quality of crops irrigated with wastewater in the Xochimilco plots, Mexico City, Mexico.

    Science.gov (United States)

    Rosas, I; Báez, A; Coutiño, M

    1984-05-01

    Xochimilco county plots (Mexico City), one of the most fertile agricultural areas in the Valley of Mexico, produce a large portion of the fresh vegetables consumed in the city. These plots are generally irrigated with domestic wastewater, and for this reason, it was deemed important to examine and evaluate the bacteriological quality of the water, soil, and vegetables from these plots that are harvested and marketed. The soils were also examined for the classical parameters such as nitrates, ammonia, etc., and organic matter and texture. The crops selected for this study were radishes, spinach, lettuce, parsley, and celery because they are usually consumed raw. The highest bacterial counts were encountered in leafy vegetables, i.e., spinach (8,700 for total coliform and 2,400 for fecal coliform) and lettuce (37,000 for total coliform and 3,600 for fecal coliform). Statistically significant differences in bacterial counts between rinsed and unrinsed edible portions of the crops were observed even in rinsed vegetables, and high densities of fecal coliform were detected, indicating that their consumption represents a potential health hazard. The total coliform values found in irrigation water ranged from 4 X 10(4) to 29 X 10(4), and for fecal coliform the values ranged from 5 X 10(2) to 30 X 10(2).

  18. Use of reflected GNSS SNR data to retrieve either soil moisture or vegetation height from a wheat crop

    Directory of Open Access Journals (Sweden)

    S. Zhang

    2017-09-01

    Full Text Available This work aims to estimate soil moisture and vegetation height from Global Navigation Satellite System (GNSS Signal to Noise Ratio (SNR data using direct and reflected signals by the land surface surrounding a ground-based antenna. Observations are collected from a rainfed wheat field in southwestern France. Surface soil moisture is retrieved based on SNR phases estimated by the Least Square Estimation method, assuming the relative antenna height is constant. It is found that vegetation growth breaks up the constant relative antenna height assumption. A vegetation-height retrieval algorithm is proposed using the SNR-dominant period (the peak period in the average power spectrum derived from a wavelet analysis of SNR. Soil moisture and vegetation height are retrieved at different time periods (before and after vegetation's significant growth in March. The retrievals are compared with two independent reference data sets: in situ observations of soil moisture and vegetation height, and numerical simulations of soil moisture, vegetation height and above-ground dry biomass from the ISBA (interactions between soil, biosphere and atmosphere land surface model. Results show that changes in soil moisture mainly affect the multipath phase of the SNR data (assuming the relative antenna height is constant with little change in the dominant period of the SNR data, whereas changes in vegetation height are more likely to modulate the SNR-dominant period. Surface volumetric soil moisture can be estimated (R2  =  0.74, RMSE  =  0.009 m3 m−3 when the wheat is smaller than one wavelength (∼ 19 cm. The quality of the estimates markedly decreases when the vegetation height increases. This is because the reflected GNSS signal is less affected by the soil. When vegetation replaces soil as the dominant reflecting surface, a wavelet analysis provides an accurate estimation of the wheat crop height (R2  =  0.98, RMSE  =  6

  19. Evolution of the vegetation system in the Heihe River basin in the last 2000 years

    Directory of Open Access Journals (Sweden)

    S. Li

    2017-08-01

    Full Text Available The response of vegetation systems to the long-term changes in climate, hydrology, and social–economic conditions in river basins is critical for sustainable river basin management. This study aims to investigate the evolution of natural and crop vegetation systems in the Heihe River basin (HRB over the past 2000 years. Archived Landsat images, historical land use maps and hydrological records were introduced to derive the long-term spatial distribution of natural and crop vegetation and the corresponding biomass levels. The major findings are that (1 both natural and crop vegetation experienced three development stages: a pre-development stage (before the Republic of China, a rapid development stage (Republic of China – 2000, and a post-development stage (after 2000. Climate and hydrological conditions did not show significant impacts over crop vegetation, while streamflow presented synchronous changes with natural vegetation in the first stage. For the second stage, warmer temperature and increasing streamflow were found to be important factors for the increase in both natural and crop vegetation in the middle reaches of the HRB. For the third stage, positive climate and hydrological conditions, together with policy interventions, supported the overall vegetation increase in both the middle and lower HRB; (2 there was a significantly faster increase in crop biomass than that of native vegetation since 1949, which could be explained by the technological development; and (3 the ratio of natural vegetation to crop vegetation decreased from 16 during the Yuan Dynasty to about 2.2 since 2005. This ratio reflects the reaction of land and water development to a changing climate and altering social–economic conditions at the river basin level; therefore, it could be used as an indicator of water and land management at river basins.

  20. Critical silvics of selected crop and competitor species in northwestern Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Buse, L.J.

    1992-12-31

    This guide contains information on 25 plant species which may compete with conifer crop species and on six commercially important conifer species. The guide summarizes information on the autoecology of each species in the context of the Northwestern Ontario Forest Ecosystem Classification. In addition, it evaluates each of the potential competitors with respect to their competitive effects and mechanisms, their response to disturbance and silvicultural treatments (including their adaptation to forest canopy removal, cutting, mechanical site preparation, fire, and herbicides), and their potential value for wildlife. The guide similarly evaluates the six conifer species with respect to their response to competition and ability to respond to release. Summary tables enable quick comparison between species. This guide will assist forest resource managers in developing site-specific vegetation management strategies.

  1. Heat-induced formation of mepiquat by decarboxylation of pipecolic acid and its betaine derivative. Part 2: Natural formation in cooked vegetables and selected food products.

    Science.gov (United States)

    Yuan, Yuan; Tarres, Adrienne; Bessaire, Thomas; Rademacher, Wilhelm; Stadler, Richard H; Delatour, Thierry

    2017-08-01

    Mepiquat (N,N-dimethylpiperidinium) is a plant growth regulator registered for use as its chloride salt in many countries on cereals and other crops. Recent model system studies have shown that natural chemicals present in crop plants, such as pipecolic acid and pipecolic acid betaine, may furnish mepiquat through different chemical pathways, when subjected to temperatures in the range of 200°C. In this study, we cooked raw vegetables that did not contain mepiquat to a palatable state using different traditional cooking methods, and detected mepiquat in 9 out of 11 oven-cooked vegetables, reaching up to 189μg/kg dry wt in oven-cooked broccoli. Commercial oven potato fries generated mepiquat during cooking, typically in the range of 20-60μg/kg. Only traces of mepiquat (cooked vegetables, including potatoes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Evolution of antioxidant capacity during storage of selected fruits and vegetables.

    Science.gov (United States)

    Kevers, Claire; Falkowski, Michael; Tabart, Jessica; Defraigne, Jean-Olivier; Dommes, Jacques; Pincemail, Joël

    2007-10-17

    Interest in the consumption of fresh fruits and vegetables is, to a large extent, due to its content of bioactive nutrients and their importance as dietary antioxidants. Among all of the selected fruits and vegetables, strawberries and black grapes have relatively high antioxidant capacities associated with high contents of total phenolic compounds, ascorbic acid, and flavonols. More interesting, the results of this study indicated that in most fruits and vegetables storage did not affect negatively the antioxidant capacity. Better, in some cases, an increase of the antioxidant capacity was observed in the days following their purchase, accompanied by an increase in phenolic compounds. In general, fruits and vegetables visually spoil before any significant antioxidant capacity loss occurs except in banana and broccoli. When ascorbic acid or flavonoids (aglycons of flavonols and anthocyanins) were concerned, the conclusions were similar. Their content was generally stable during storage.

  3. Observing Crop-Height Dynamics Using a UAV

    Science.gov (United States)

    Ziliani, M. G.; Parkes, S. D.; McCabe, M.

    2017-12-01

    Retrieval of vegetation height during a growing season is a key indicator for monitoring crop status, offering insight to the forecast yield relative to previous planting cycles. Improvement in Unmanned Aerial Vehicle (UAV) technologies, supported by advances in computer vision and photogrammetry software, has enabled retrieval of crop heights with much higher spatial resolution and coverage. These methodologies retrieve a Digital Surface Map (DSM), which combine terrain and crop elements to obtain a Crop Surface Map (CSM). Here we describe an automated method for deriving high resolution CSMs from a DSM, using RGB imagery from a UAV platform. Importantly, the approach does not require the need for a digital terrain map (DTM). The method involves distinguishing between vegetation and bare-ground cover pixels, using vegetation index maps from the RGB orthomosaic derived from the same flight as the DSM. We show that the absolute crop height can be extracted to within several centimeters, exploiting the data captured from a single UAV flight. In addition, the method is applied across five surveys during a maize growing cycle and compared against a terrain map constructed from a baseline UAV survey undertaken prior to crop growth. Results show that the approach is able to reproduce the observed spatial variability of the crop height within the maize field throughout the duration of the growing season. This is particularly valuable since it may be employed to detect intra-field problems (i.e. fertilizer variability, inefficiency in the irrigation system, salinity etc.) at different stages of the season, from which remedial action can be initiated to mitigate against yield loss. The method also demonstrates that UAV imagery combined with commercial photogrammetry software can determine a CSM from a single flight without the requirement of a prior DTM. This, together with the dynamic crop height estimation, provide useful information with which to inform precision

  4. A study for the development of a vegetable planter for Optimum stand establishment

    International Nuclear Information System (INIS)

    Zaidi, M.A.; Amjad, N.; Shah, S.U.S

    2013-01-01

    Seed placement and establishment is probably the most crucial phase in the life of a vegetable crop, therefore, the role of the planter or seeder is of vital importance. The objective of this study was to assess the demand of a vegetable planter/seeder and to collect information from farmers, machinery manufacturers and stakeholders to design a new planter for vegetables, initially for pea crop. To achieve the objective of this study, a survey was conducted in three provinces (Punjab, Sindh and Baluchistan) of the country and 34 farmers, 21 officers from the concerned institutions and 14 manufactures were interviewed. Furthermore, three existing planters/drills used for sowing different crops were picked from different sources for evaluating their comparative performance for planting pea. The status of vegetable planting or sowing as a whole was not found encouraging in the country and most vegetables are grown manually that are time consuming and labour intensive practices. Farmers are vigorously demanding a planter or seeder for vegetables. From the evaluation of existing machines, it was concluded that a pneumatic planter for sowing vegetables on beds is the most precise method that drops 10 to 20 seeds per meter length at recommended forward speed with single seed placement per hill. This ensures not only the optimum seed rate, but also eliminates the need for thinning after germination. Using this machine farmers may be able to save two third of the seed quantity for pea crop together with achieving additional benefits of vegetables mechanisation. Therefore, a vegetable planter, initially for pea, should be developed locally to enhance productivity of vegetables, because root establishment of vegetable crops is very critical factor that affects ultimate yield. (author)

  5. Impact of climate, vegetation, soil and crop management variables on multi-year ISBA-A-gs simulations of evapotranspiration over a Mediterranean crop site

    Science.gov (United States)

    Garrigues, S.; Olioso, A.; Carrer, D.; Decharme, B.; Calvet, J.-C.; Martin, E.; Moulin, S.; Marloie, O.

    2015-10-01

    Generic land surface models are generally driven by large-scale data sets to describe the climate, the soil properties, the vegetation dynamic and the cropland management (irrigation). This paper investigates the uncertainties in these drivers and their impacts on the evapotranspiration (ET) simulated from the Interactions between Soil, Biosphere, and Atmosphere (ISBA-A-gs) land surface model over a 12-year Mediterranean crop succession. We evaluate the forcing data sets used in the standard implementation of ISBA over France where the model is driven by the SAFRAN (Système d'Analyse Fournissant des Renseignements Adaptés à la Nivologie) high spatial resolution atmospheric reanalysis, the leaf area index (LAI) time courses derived from the ECOCLIMAP-II land surface parameter database and the soil texture derived from the French soil database. For climate, we focus on the radiations and rainfall variables and we test additional data sets which include the ERA-Interim (ERA-I) low spatial resolution reanalysis, the Global Precipitation Climatology Centre data set (GPCC) and the MeteoSat Second Generation (MSG) satellite estimate of downwelling shortwave radiations. The evaluation of the drivers indicates very low bias in daily downwelling shortwave radiation for ERA-I (2.5 W m-2) compared to the negative biases found for SAFRAN (-10 W m-2) and the MSG satellite (-12 W m-2). Both SAFRAN and ERA-I underestimate downwelling longwave radiations by -12 and -16 W m-2, respectively. The SAFRAN and ERA-I/GPCC rainfall are slightly biased at daily and longer timescales (1 and 0.5 % of the mean rainfall measurement). The SAFRAN rainfall is more precise than the ERA-I/GPCC estimate which shows larger inter-annual variability in yearly rainfall error (up to 100 mm). The ECOCLIMAP-II LAI climatology does not properly resolve Mediterranean crop phenology and underestimates the bare soil period which leads to an overall overestimation of LAI over the crop succession. The

  6. Goals and hurdles for a successful implementation of genomic selection in breeding programme for selected annual and perennial crops.

    Science.gov (United States)

    Jonas, Elisabeth; de Koning, Dirk Jan

    Genomic Selection is an important topic in quantitative genetics and breeding. Not only does it allow the full use of current molecular genetic technologies, it stimulates also the development of new methods and models. Genomic selection, if fully implemented in commercial farming, should have a major impact on the productivity of various agricultural systems. But suggested approaches need to be applicable in commercial breeding populations. Many of the published research studies focus on methodologies. We conclude from the reviewed publications, that a stronger focus on strategies for the implementation of genomic selection in advanced breeding lines, introduction of new varieties, hybrids or multi-line crosses is needed. Efforts to find solutions for a better prediction and integration of environmental influences need to continue within applied breeding schemes. Goals of the implementation of genomic selection into crop breeding should be carefully defined and crop breeders in the private sector will play a substantial part in the decision-making process. However, the lack of published results from studies within, or in collaboration with, private companies diminishes the knowledge on the status of genomic selection within applied breeding programmes. Studies on the implementation of genomic selection in plant breeding need to evaluate models and methods with an enhanced emphasis on population-specific requirements and production environments. Adaptation of methods to breeding schemes or changes to breeding programmes for a better integration of genomic selection strategies are needed across species. More openness with a continuous exchange will contribute to successes.

  7. Yields of Selected Catch Crops in Dry Conditions

    Directory of Open Access Journals (Sweden)

    Martina Handlířová

    2016-01-01

    Full Text Available Catch crops mainly reduce soil erosion and leaching of nutrients as well as enrich the soil organic matter. The aim of this research is to evaluate the yields of catch crops of Sinapis alba, Phacelia tanacetifolia, Fagopyrum esculentum, Carthamus tinctorius and Secale cereale v. multicaule, and thus determine the possible applicability of catch crops in areas with high average annual temperature and low precipitation totals. The small-plot field experiment was performed on clay-loam gleyic fluvisol at the Field Experimental Station in Žabčice, Southern Moravia, Czech Republic, within the period of 2006-2014. The catch crops were set up after winter wheat in mid-August. The results have shown a statistically significant difference among different catch crops in yield of dry matter and even among years. The yield of catch crops is mainly dependent on a sufficient supply of water in the soil and the appropriate amount and distribution of rainfall over the growing season. Sinapis alba and Phacelia tanacetifolia regularly reached the highest yields. High yields were also achieved with Fagopyrum esculentum. Due to the method of crop rotation in the Czech Republic, with a predominance of Brassica napus var. napus, it is inappropriate to include Sinapis alba. It is the best to grow Phacelia tanacetifolia and even Fagopyrum esculentum, or a mixture thereof, depending on the use of catch crops.

  8. Genomic Selection in Multi-environment Crop Trials.

    Science.gov (United States)

    Oakey, Helena; Cullis, Brian; Thompson, Robin; Comadran, Jordi; Halpin, Claire; Waugh, Robbie

    2016-05-03

    Genomic selection in crop breeding introduces modeling challenges not found in animal studies. These include the need to accommodate replicate plants for each line, consider spatial variation in field trials, address line by environment interactions, and capture nonadditive effects. Here, we propose a flexible single-stage genomic selection approach that resolves these issues. Our linear mixed model incorporates spatial variation through environment-specific terms, and also randomization-based design terms. It considers marker, and marker by environment interactions using ridge regression best linear unbiased prediction to extend genomic selection to multiple environments. Since the approach uses the raw data from line replicates, the line genetic variation is partitioned into marker and nonmarker residual genetic variation (i.e., additive and nonadditive effects). This results in a more precise estimate of marker genetic effects. Using barley height data from trials, in 2 different years, of up to 477 cultivars, we demonstrate that our new genomic selection model improves predictions compared to current models. Analyzing single trials revealed improvements in predictive ability of up to 5.7%. For the multiple environment trial (MET) model, combining both year trials improved predictive ability up to 11.4% compared to a single environment analysis. Benefits were significant even when fewer markers were used. Compared to a single-year standard model run with 3490 markers, our partitioned MET model achieved the same predictive ability using between 500 and 1000 markers depending on the trial. Our approach can be used to increase accuracy and confidence in the selection of the best lines for breeding and/or, to reduce costs by using fewer markers. Copyright © 2016 Oakey et al.

  9. Hortaliças como alimentos funcionais Vegetable crops as functional food

    Directory of Open Access Journals (Sweden)

    Patrícia G B de Carvalho

    2006-12-01

    in association with a more sedentary lifestyle, are responsible for an increase in diet-related diseases such as obesity, diabetes, cardiovascular problems, hypertension, osteoporosis, and cancer. It is believed that the ingestion of fruits and vegetables helps in the prevention of these diseases. Vegetables are an important component of the diet, usually in association with protein- and starch-rich foods. They are responsible not only for adding variety of color and texture to meals, but also for providing important nutrients. Vegetables are low fat and low calorie foods, with relatively small amounts of protein, but they are rich in carbohydrates and fibers and add significant amounts of micronutrients to the human diet. They are also a source of functional substances, which might benefit one or more physiological functions in the body, besides adequate nutritional effects. Functional elements might play a role in improving health and well-being, as well as reducing the risk of the onset of diet-related diseases. The development of vegetable cultivars with greater amounts of these substances is one of the main goals of modern breeding programs. Many of these programs, working on different vegetables, are currently underway in Brazil and other countries, aiming to improve the amount and variety of carotenoids present in the diet. In the present paper, the main aspects of vegetable crops as functional foods are discussed. The most important achievements of tomato and carrot breeding programs in Brazil aiming to improve the amount and types of functional compounds are also presented.

  10. Impact of vegetable crop agriculture on anopheline agressivity and malaria transmission in urban and less urbanized settings of the South region of Cameroon.

    Science.gov (United States)

    Akono, Patrick Ntonga; Mbida, Jean Arthur Mbida; Tonga, Calvin; Belong, Philippe; Ngo Hondt, Odette Etoile; Magne, Gaëlle Tamdem; Peka, Marie Florence; Lehman, Leopold Gustave

    2015-05-28

    The use of inland valley swamps for vegetable crop agriculture contributes to food security in urban and less urbanized settings in Africa. The impact of this agriculture on aggressive mosquitoes' diversity and malaria transmission in central Africa is poorly documented. This study is aimed at assessing the impact of vegetable crop agriculture on these entomological parameters in urban and less urbanized settings of the forest area, south of Cameroon. The human bait technique was used for the capture of aggressive mosquitoes from January to December 2012. For three consecutive days each month, captures were performed on volunteers in hydro-agricultural and river bank sites of Akonolinga and Yaoundé. Physico-chemical characteristics of mosquito breeding sites were recorded. Molecular alongside morpho-taxonomic techniques were used for the identification of mosquito species; ELISA test was used to reveal Plasmodium falciparum infected mosquitoes through the detection of CSP. Mosquito diversity, aggressivity and malaria transmission in sites and settings were determined and compared. Biting rates were higher in hydro-agricultural sites of less urbanized and urban settings (31.8 b/p/n and 28.6 b/p/n respectively) than in river banks sites (6.83 b/p/n and 3.64 b/p/n respectively; p agricultural sites 2 species were captured in the urban setting versus 4 in the less urbanized setting, meanwhile in river bank sites, 3 species were captured in the urban setting versus 4 species in the less urbanized setting. An. nili s.s. was found in river banks only. An. hancocki was not found to insure Plasmodium falciparum Welch transmission. EIR in hydro-agricultural sites varied from 1.86 ib/p/n (urban area) to 2.13 ib/p/n (less urbanized area) with higher rates in April/May and August. Overall, EIR was higher in less urbanized areas (p agriculture (p = 0.2). These results highlight the need for specific preventive measures that take into account the ecological peculiarities

  11. Modelling the fate of sulphur-35 in crops. 2. Development and validation of the CROPS-35 model

    International Nuclear Information System (INIS)

    Collins, Chris; Cunningham, Nathan

    2005-01-01

    Gas-cooled nuclear power plants in the UK release sulphur-35 during their routine operation, which can be readily assimilated by vegetation. It is therefore necessary to be able to model the uptake of such releases in order to quantify any potential contamination of the food chain. A model is described which predicts the concentration of 35 S in crop components following an aerial gaseous release. Following deposition the allocation to crop components is determined by an export function from a labile pool, the leaves, to those components growing most actively post exposure. The growth rates are determined by crop growth data, which is also used to determine the concentration. The loss of activity is controlled by radioactive decay only. The paper describes the calibration and the validation of the model. To improve the model, further experimental work is required particularly on the export kinetics of 35 S. It may be possible to adapt such a modelling approach to the prediction of crop content for gaseous releases of 3 H and 14 C from nuclear facilities. - The calibration and validation of a model for the prediction of the fate of 35 S in vegetation is described

  12. Selection for earlier flowering crop associated with climatic variations in the Sahel.

    Directory of Open Access Journals (Sweden)

    Yves Vigouroux

    Full Text Available Climate changes will have an impact on food production and will require costly adaptive responses. Adapting to a changing environment will be particularly challenging in sub-Saharan Africa where climate change is expected to have a major impact. However, one important phenomenon that is often overlooked and is poorly documented is the ability of agro-systems to rapidly adapt to environmental variations. Such an adaptation could proceed by the adoption of new varieties or by the adaptation of varieties to a changing environment. In this study, we analyzed these two processes in one of the driest agro-ecosystems in Africa, the Sahel. We performed a detailed study in Niger where pearl millet is the main crop and covers 65% of the cultivated area. To assess how the agro-system is responding to recent recurrent drought, we analyzed samples of pearl millet landraces collected in the same villages in 1976 and 2003 throughout the entire cultivated area of Niger. We studied phenological and morphological differences in the 1976 and 2003 collections by comparing them over three cropping seasons in a common garden experiment. We found no major changes in the main cultivated varieties or in their genetic diversity. However, we observed a significant shift in adaptive traits. Compared to the 1976 samples, samples collected in 2003 displayed a shorter lifecycle, and a reduction in plant and spike size. We also found that an early flowering allele at the PHYC locus increased in frequency between 1976 and 2003. The increase exceeded the effect of drift and sampling, suggesting a direct effect of selection for earliness on this gene. We conclude that recurrent drought can lead to selection for earlier flowering in a major Sahelian crop. Surprisingly, these results suggest that diffusion of crop varieties is not the main driver of short term adaptation to climatic variation.

  13. Mapping Cropping Practices of a Sugarcane-Based Cropping System in Kenya Using Remote Sensing

    Directory of Open Access Journals (Sweden)

    Betty Mulianga

    2015-10-01

    Full Text Available Over the recent past, there has been a growing concern on the need for mapping cropping practices in order to improve decision-making in the agricultural sector. We developed an original method for mapping cropping practices: crop type and harvest mode, in a sugarcane landscape of western Kenya using remote sensing data. At local scale, a temporal series of 15-m resolution Landsat 8 images was obtained for Kibos sugar management zone over 20 dates (April 2013 to March 2014 to characterize cropping practices. To map the crop type and harvest mode we used ground survey and factory data over 1280 fields, digitized field boundaries, and spectral indices (the Normalized Difference Vegetation Index (NDVI and the Normalized Difference Water Index (NDWI were computed for all Landsat images. The results showed NDVI classified crop type at 83.3% accuracy, while NDWI classified harvest mode at 90% accuracy. The crop map will inform better planning decisions for the sugar industry operations, while the harvest mode map will be used to plan for sensitizations forums on best management and environmental practices.

  14. Pick-and-Eat Salad-Crop Productivity, Nutritional Value, and Acceptability to Supplement the ISS Food System

    Science.gov (United States)

    Massa, G. D.; Wheeler, R. M.; Hummerick, M. E.; Morrow, R. C.; Mitchell, C. A.; Whitmire, A. M.; Ploutz-Snyder, R. J.; Douglas, G. L.

    2016-01-01

    The capability to grow nutritious, palatable food for crew consumption during spaceflight has the potential to provide health-promoting, bioavailable nutrients, enhance the dietary experience, and reduce launch mass as we move toward longer-duration missions. However, studies of edible produce during spaceflight have been limited, leaving a significant knowledge gap in the methods required to grow safe, acceptable, nutritious crops for consumption in space. Researchers from Kennedy Space Center, Johnson Space Center, Purdue University and ORBITEC have teamed up to explore the potential for plant growth and food production on the International Space Station (ISS) and future exploration missions. KSC, Purdue, and ORBITEC bring a history of plant and plant-microbial interaction research for ISS and for future bioregenerative life support systems. JSC brings expertise in Advanced Food Technology (AFT), Behavioral Health and Performance (BHP), and statistics. The Veggie vegetable-production system on the ISS offers an opportunity to develop a pick-and-eat fresh vegetable component to the ISS food system as a first step to bioregenerative supplemental food production. We propose growing salad plants in the Veggie unit during spaceflight, focusing on the impact of light quality and fertilizer formulation on crop morphology, edible biomass yield, microbial food safety, organoleptic acceptability, nutritional value, and behavioral health benefits of the fresh produce. The first phase of the project will involve flight tests using leafy greens, with a small Chinese cabbage variety, Tokyo bekana, previously down selected through a series of research tests as a suitable candidate. The second phase will focus on dwarf tomato. Down selection of candidate varieties have been performed, and the dwarf cultivar Red Robin has been selected as the test crop. Four light treatments and three fertilizer treatments will be tested for each crop on the ground, to down select to two light

  15. Genomic and environmental selection patterns in two distinct lettuce crop-wild hybrid crosses

    NARCIS (Netherlands)

    Hartman, Y.; Uwimana, B.; Hooftman, D.A.P.; Schranz, M.E.; Wiel, van de C.C.M.; Smulders, M.J.M.; Visser, R.G.F.; Tienderen, van P.H.

    2013-01-01

    Genomic selection patterns and hybrid performance influence the chance that crop (trans)genes can spread to wild relatives. We measured fitness(-related) traits in two different field environments employing two different crop–wild crosses of lettuce. We performed quantitative trait loci (QTL)

  16. Combining Remote Sensing imagery of both fine and coarse spatial resolution to Estimate Crop Evapotranspiration and quantifying its Influence on Crop Growth Monitoring.

    Science.gov (United States)

    Sepulcre-Cantó, Guadalupe; Gellens-Meulenberghs, Françoise; Arboleda, Alirio; Duveiller, Gregory; Piccard, Isabelle; de Wit, Allard; Tychon, Bernard; Bakary, Djaby; Defourny, Pierre

    2010-05-01

    This study has been carried out in the framework of the GLOBAM -Global Agricultural Monitoring system by integration of earth observation and modeling techniques- project whose objective is to fill the methodological gap between the state of the art of local crop monitoring and the operational requirements of the global monitoring system programs. To achieve this goal, the research aims to develop an integrated approach using remote sensing and crop growth modeling. Evapotranspiration (ET) is a valuable parameter in the crop monitoring context since it provides information on the plant water stress status, which strongly influences crop development and, by extension, crop yield. To assess crop evapotranspiration over the GLOBAM study areas (300x300 km sites in Northern Europe and Central Ethiopia), a Soil-Vegetation-Atmosphere Transfer (SVAT) model forced with remote sensing and numerical weather prediction data has been used. This model runs at pre-operational level in the framework of the EUMETSAT LSA-SAF (Land Surface Analysis Satellite Application Facility) using SEVIRI and ECMWF data, as well as the ECOCLIMAP database to characterize the vegetation. The model generates ET images at the Meteosat Second Generation (MSG) spatial resolution (3 km at subsatellite point),with a temporal resolution of 30 min and monitors the entire MSG disk which covers Europe, Africa and part of Sud America . The SVAT model was run for 2007 using two approaches. The first approach is at the standard pre-operational mode. The second incorporates remote sensing information at various spatial resolutions going from LANDSAT (30m) to SEVIRI (3-5 km) passing by AWIFS (56m) and MODIS (250m). Fine spatial resolution data consists of crop type classification which enable to identify areas where pure crop specific MODIS time series can be compiled and used to derive Leaf Area Index estimations for the most important crops (wheat and maize). The use of this information allowed to characterize

  17. Efeito da cobertura vegetal sobre a pérola-da-terra (Hemiptera: Margarodidae na cultura da videira = Effect of cover crops on brazilian ground pearl (Hemiptera: Margarodidae in vineyards

    Directory of Open Access Journals (Sweden)

    Marcos Botton

    2010-10-01

    Full Text Available O uso da cobertura vegetal em vinhedos é uma prática empregada paraminimizar a erosão e melhorar as qualidades químicas e físicas do solo. Neste trabalho, foi avaliado o efeito de coberturas vegetais sobre a população da pérola-da-terra Eurhizococcus brasiliensis (Hemiptera: Margarodidae na cultura da videira. No primeiro experimento, o vinhedo foi mantido sem cobertura vegetal por meio da aplicação trimestral do herbicida glifosato comparado com o uso de vegetação espontânea, durante o ano, de vegetação espontânea, no verão, e de aveia preta no inverno. No segundo experimento foi avaliado o efeito da mucuna-preta (Stizolobium aterrimum cultivada no vinhedo durante o verão comparado com a vegetação espontânea. No primeiro experimento, a população da pérolada-terra nas raízes de plantas de videira foi maior em áreas mantidas sem cobertura vegetal emostrou-se semelhante em áreas onde se manteve a vegetação espontânea, ao longo do ano, e com aveia preta no inverno e vegetação espontânea no verão. A infestação das plantas de videira em áreas onde foi empregada a mucuna-preta durante o verão foi equivalente à da vegetação espontânea. S. aterrimum foi registrada pela primeira vez como hospedeira de E. brasiliensis. The use of cover crops is an important strategy to reduce erosion and improve chemical and physical soil properties. In this work, we evaluate the effect of cover crops to reduce Brazilian ground pearl Eurhizococcus brasiliensis (Hemiptera: Margarodidae infestation in vineyards. In the first experiment, glyphosate was sprayed each three months to avoid cover crops. This treatment was compared with naturally occurring vegetation during the year and the use of Avena sativa in the winter. In a second experiment, Stizolobium aterrimum was cultivated during the summer compared with naturally occurringvegetation. Brazilian ground pearl population was higher in glyphosate sprayed areas than where cover

  18. Assessment of the phenology impact on SVAT modelling through a crop growth model over a Mediterranean crop site : Consequences on the water balance under climate change conditions.

    Science.gov (United States)

    Moulin, S.; Garrigues, S.; Olioso, A.; Ruget, F.; Desfonds, V.; Bertrand, N.; Lecharpentier, P.; Ripoche, D.; Launay, M.; Brisson, N.

    2012-04-01

    In the coming years, water resources and vegetation production of Mediterranean areas will be drastically affected by climate changes as well as intense and rapid changes in the land use. The impact of climate and land-use changes on water balance and vegetation production can be analysed and predicted through land surface models, provided that the uncertainties associated to these models and to the data used to run them are evaluated. Vegetation phenology is generally poorly taken into account in land surface models and may be a substantial source of uncertainties for global change scenario studies. In this paper, we discuss the improvement obtained in Soil Vegetation Atmosphere Transfer (SVAT) modelling by taking into account the phenology using a crop growth model, focusing on the water budget, over a Mediterranean crop site. The STICS model (Brisson et al, 1998) is used to simulate crop processes (growth and development, taking into account water and nitrogen exchanges between the environment and the crop). STICS describes the vegetation phenology very accurately and was validated for many types of crop and various pedoclimatic conditions. The SVAT model being analyzed is the a-gs version (Calvet et al., 1998) of the ISBA model (Noilhan et al, 1989), which simulates the photosynthesis and calculates the plant biomass and the Leaf Area Index (LAI) using a simple growth model. In STICS, the phenology is driven by the sum of daily air temperatures, which is quite realistic, while in ISBA, the phenology is driven by the plant carbon assimilation. Measurements (vegetation characteristics, soil properties, agricultural practises, energy and water balance) performed in the lower Rhone valley experimental area (Avignon, France) are used as well as long series of climatic data (past records and future simulations). In a first step, by running STICS and ISBA for maize and wheat crops with long series of climatic data, including future scenarios of climate (CLIMATOR

  19. Space Data for Crop Management

    Science.gov (United States)

    1990-01-01

    CROPIX, Inc., formed in 1984 by Frank Lamb, president of the Eastern Oregon Farming Company, monitors primarily potato crops in a 20,000 square mile area of northern Oregon and central Washington. Potatoes are a high value specialty crop that can be more profitable to the farmer if he has advance knowledge of market conditions, knows when to harvest, and when to take it to market. By processing and collecting data collected by the NASA-developed Landsat Earth Resources survey satellites, Lamb is able to provide accurate information on crop acreage and conditions on a more timely basis than the routine estimates by the USDA. CROPIX uses Landsat data to make acreage estimates of crops, and to calculate a field-by-field vegetative index number. CROPIX then distributes to its customers a booklet containing color-coded maps, an inventory of crops, plus data and graphs on crop conditions and other valuable information.

  20. Iodine transfer from agricultural soils to edible part of crops

    International Nuclear Information System (INIS)

    Uchida, S.; Tagami, K.

    2011-01-01

    Information about the distribution and cycling of stable iodine (I) in the environment is useful for dose estimation from its long-lived radioiodisotope, 129 I, which is one of the most critical radionuclides to be managed for the safe disposal of nuclear fuel waste. The soil-to-plant transfer factor (TF) is an important parameter to predict internal radiation exposure pathways through the food chains using mathematical models. Therefore, we have measured stable I and bromine (Br) for comparison, in 142 crop samples and associated agricultural field soil samples collected throughout Japan. The crops were classified into eight groups, i.e. leafy vegetables, white part of leeks, fruit vegetables, tubers, root crops, legumes, wheat and barley (WB), and rice. The results showed that Br and I concentrations were higher in upland field soil samples than in paddy field soil samples. However, when we compared TF values of WB and brown rice, no statistical difference was observed. The highest geometric mean of TF for I, 1.4 x 10 -2 , was obtained for leafy vegetables and fruit vegetables and that for Br, 1.5, was for fruit vegetables. TF for I was much lower than Br, as reported previously, maybe due to their different chemical forms in soil and uptake behaviors by plant roots. (orig.)

  1. Regional pest suppression associated with widespread Bt maize adoption benefits vegetable growers.

    Science.gov (United States)

    Dively, Galen P; Venugopal, P Dilip; Bean, Dick; Whalen, Joanne; Holmstrom, Kristian; Kuhar, Thomas P; Doughty, Hélène B; Patton, Terry; Cissel, William; Hutchison, William D

    2018-03-27

    Transgenic crops containing the bacterium Bacillus thuringiensis (Bt) genes reduce pests and insecticide usage, promote biocontrol services, and economically benefit growers. Area-wide Bt adoption suppresses pests regionally, with declines expanding beyond the planted Bt crops into other non-Bt crop fields. However, the offsite benefits to growers of other crops from such regional suppression remain uncertain. With data spanning 1976-2016, we demonstrate that vegetable growers benefit via decreased crop damage and insecticide applications in relation to pest suppression in the Mid-Atlantic United States. We provide evidence for the regional suppression of Ostrinia nubilalis (Hübner), European corn borer, and Helicoverpa zea (Boddie), corn earworm, populations in association with widespread Bt maize adoption (1996-2016) and decreased economic levels for injury in vegetable crops [peppers ( Capsicum annuum L.), green beans ( Phaseolus vulgaris L.), and sweet corn ( Zea mays L., convar. saccharata )] compared with the pre-Bt period (1976-1995). Moth populations of both species significantly declined in association with widespread Bt maize (field corn) adoption, even as increased temperatures buffered the population reduction. We show marked decreases in the number of recommended insecticidal applications, insecticides applied, and O. nubilalis damage in vegetable crops in association with widespread Bt maize adoption. These offsite benefits to vegetable growers in the agricultural landscape have not been previously documented, and the positive impacts identified here expand on the reported ecological effects of Bt adoption. Our results also underscore the need to account for offsite economic benefits of pest suppression, in addition to the direct economic benefits of Bt crops.

  2. Yoghurts with addition of selected vegetables: acidity, antioxidant properties and sensory quality.

    Science.gov (United States)

    Najgebauer-Lejko, Dorota; Grega, Tadeusz; Tabaszewska, Małgorzata

    2014-01-01

    Yoghurt is a fermented milk of unique sensory, nutritive and dietetic value offered in a variety of types and in different flavours. Vegetables belong to the group of food products rich in antioxidant substances (e.g., vitamin C, carotenoids, tocopherols, polyphenols) which regular consumption lowers the risk of many diseases including cancers and cardiovascular disorders. The aim of the present work was to manufacture and assess the acidity, sensory quality and antioxidant capacity of yoghurts with addition of selected vegetables during 2-week refrigerated storage. The vegetable preparations (carrot, pumpkin, broccoli and red sweet pepper) were added to the cow's milk fermented using DVS type yoghurt culture after initial cooling to 15-20°C in the amount of 10% (w/w). The following analyses were performed: determination of pH, titratable acidity, antioxidant activity by ferric reducing antioxidant power (FRAP) and 2,2'-diphenyl-1-picrylhydrazyl (DPPH) method as well as sensory evaluation and were conducted after 1, 7 and 14 days of cold storage. The yoghurt supplementation with selected vegetables had no significant effect on the pH and titratable acidity level. The highest ability to scavenge DPPH radicals was stated for yoghurts with broccoli and red sweet pepper. The latter treatment gained the highest notes in sensory evaluation. All vegetable yoghurts were characterised by higher than the natural yoghurt FRAP values measured directly after production. However, the level of this parameter significantly decreased after storage. The red sweet pepper additive was the most beneficial regarding antioxidant properties and organoleptic acceptance of the studied yoghurts.

  3. Errors in measuring absorbed radiation and computing crop radiation use efficiency

    International Nuclear Information System (INIS)

    Gallo, K.P.; Daughtry, C.S.T.; Wiegand, C.L.

    1993-01-01

    Radiation use efficiency (RUE) is often a crucial component of crop growth models that relate dry matter production to energy received by the crop. RUE is a ratio that has units g J -1 , if defined as phytomass per unit of energy received, and units J J -1 , if defined as the energy content of phytomass per unit of energy received. Both the numerator and denominator in computation of RUE can vary with experimental assumptions and methodologies. The objectives of this study were to examine the effect that different methods of measuring the numerator and denominator have on the RUE of corn (Zea mays L.) and to illustrate this variation with experimental data. Computational methods examined included (i) direct measurements of the fraction of photosynthetically active radiation absorbed (f A ), (ii) estimates of f A derived from leaf area index (LAI), and (iii) estimates of f A derived from spectral vegetation indices. Direct measurements of absorbed PAR from planting to physiological maturity of corn were consistently greater than the indirect estimates based on green LAI or the spectral vegetation indices. Consequently, the RUE calculated using directly measured absorbed PAR was lower than the RUE calculated using the indirect measures of absorbed PAR. For crops that contain senesced vegetation, green LAI and the spectral vegetation indices provide appropriate estimates of the fraction of PAR absorbed by a crop canopy and, thus, accurate estimates of crop radiation use efficiency

  4. Impacts of vegetation change on groundwater recharge

    Science.gov (United States)

    Bond, W. J.; Verburg, K.; Smith, C. J.

    2003-12-01

    Vegetation change is the accepted cause of increasing river salt concentrations and the salinisation of millions of hectares of farm land in Australia. Replacement of perennial native vegetation by annual crops and pastures following European settlement has altered the water balance causing increased groundwater recharge and mobilising the naturally saline groundwater. The Redesigning Agriculture for Australian Landscapes Program, of which the work described here is a part, was established to develop agricultural practices that are more attuned to the delicate water balance described above. Results of field measurements will be presented that contrast the water balance characteristics of native vegetation with those of conventional agricultural plants, and indicate the functional characteristics required of new agricultural practices to reduce recharge. New agricultural practices may comprise different management of current crops and pastures, or may involve introducing totally new species. In either case, long-term testing is required to examine their impact on recharge over a long enough climate record to encompass the natural variability of rainfall that is characteristic of most Australian farming regions. Field experimentation therefore needs to be complemented and extended by computer simulation. This requires a modelling approach that is more robust than conventional crop modelling because (a) it needs to be sensitive enough to predict small changes in the residual recharge term, (b) it needs to be able to simulate a variety of vegetation in different sequences, (c) it needs to be able to simulate continuously for several decades of input data, and (d) it therefore needs to be able to simulate the period between crops, which often has a critical impact on recharge. The APSIM simulation framework will be used to illustrate these issues and to explore the effect of different vegetation combinations on recharge.

  5. A database for coconut crop improvement.

    Science.gov (United States)

    Rajagopal, Velamoor; Manimekalai, Ramaswamy; Devakumar, Krishnamurthy; Rajesh; Karun, Anitha; Niral, Vittal; Gopal, Murali; Aziz, Shamina; Gunasekaran, Marimuthu; Kumar, Mundappurathe Ramesh; Chandrasekar, Arumugam

    2005-12-08

    Coconut crop improvement requires a number of biotechnology and bioinformatics tools. A database containing information on CG (coconut germplasm), CCI (coconut cultivar identification), CD (coconut disease), MIFSPC (microbial information systems in plantation crops) and VO (vegetable oils) is described. The database was developed using MySQL and PostgreSQL running in Linux operating system. The database interface is developed in PHP, HTML and JAVA. http://www.bioinfcpcri.org.

  6. Advances in Remote Sensing for Vegetation Dynamics and Agricultural Management

    Science.gov (United States)

    Tucker, Compton; Puma, Michael

    2015-01-01

    Spaceborne remote sensing has led to great advances in the global monitoring of vegetation. For example, the NASA Global Inventory Modeling and Mapping Studies (GIMMS) group has developed widely used datasets from the Advanced Very High Resolution Radiometer (AVHRR) sensors as well as the Moderate Resolution Imaging Spectroradiometer (MODIS) map imagery and normalized difference vegetation index datasets. These data are valuable for analyzing vegetation trends and variability at the regional and global levels. Numerous studies have investigated such trends and variability for both natural vegetation (e.g., re-greening of the Sahel, shifts in the Eurasian boreal forest, Amazonian drought sensitivity) and crops (e.g., impacts of extremes on agricultural production). Here, a critical overview is presented on recent developments and opportunities in the use of remote sensing for monitoring vegetation and crop dynamics.

  7. Impacts of ozone-vegetation coupling and feedbacks on global air quality, ecosystems and food security

    Science.gov (United States)

    Tai, A. P. K.

    2016-12-01

    Surface ozone is an air pollutant of significant concerns due to its harmful effects on human health, vegetation and crop productivity. Chronic ozone exposure is shown to reduce photosynthesis and interfere with gas exchange in plants, thereby influencing surface energy balance and biogeochemical fluxes with important ramifications for climate and atmospheric composition, including possible feedbacks onto ozone itself that are not well understood. Ozone damage on crops has been well documented, but a mechanistic understanding is not well established. Here we present several results pertaining to the effects of ozone-vegetation coupling on air quality, ecosystems and agriculture. Using the Community Earth System Model (CESM), we find that inclusion of ozone damage on plants reduces the global land carbon sink by up to 5%, while simulated ozone is enhanced by up to 6 ppbv North America, Europe and East Asia. This strong positive feedback on ozone air quality via ozone-vegetation coupling arises mainly from reduced stomatal conductance, which induces two feedback pathways: 1) reduced dry deposition and ozone uptake; and 2) reduced evapotranspiration that enhances vegetation temperature and thus isoprene emission. Using the same ozone-vegetation scheme in a crop model within CESM, we further examine the impacts of historical ozone exposure on global crop production. We contrast our model results with a separate statistical analysis designed to characterize the spatial variability of crop-ozone-temperature relationships and account for the confounding effect of ozone-temperature covariation, using multidecadal global datasets of crop yields, agroclimatic variables and ozone exposures. We find that several crops (especially C4 crops such as maize) exhibit stronger sensitivities to ozone than found by field studies or in CESM simulations. We also find a strong anticorrelation between crop sensitivities and average ozone levels, reflecting biological adaptive ozone

  8. Crop sensors for automation of in-season nitrogen application

    Science.gov (United States)

    Crop canopy reflectance sensing can be used to assess in-season crop nitrogen (N) health for automatic control of N fertilization. Typically, sensor data are processed to an established index, such as the Normalized Difference Vegetative Index (NDVI) and differences in that index from a well-fertili...

  9. Locus-dependent selection in crop-wild hybrids of lettuce under field conditions and its implication for GM crop development

    OpenAIRE

    Hooftman, D.A.P.; Flavell, A.J.; Jansen, J.; Nijs, den, J.C.M.; Syed, N.H.; Sorensen, A.P.; Wengel, ter, P.O.; Wiel, van de, C.C.M.

    2011-01-01

    Gene escape from crops has gained much attention in the last two decades, as transgenes introgressing into wild populations could affect the latter's ecological characteristics. However, different genes have different likelihoods of introgression. The mixture of selective forces provided by natural conditions creates an adaptive mosaic of alleles from both parental species. We investigated segregation patterns after hybridization between lettuce (Lactuca sativa) and its wild relative, L. serr...

  10. Historical Perspective on How and Why Switchgrass was Selected as a "Model" High-Potential Energy Crop

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Lynn L [ORNL

    2007-11-01

    A review of several publications of the Biofuels Feedstock Development Program, and final reports from the herbaceous crop screening trials suggests that there were several technical and non-technical factors that influenced the decision to focus on one herbaceous "model" crop species. The screening trials funded by the U.S. Department of Energy in the late 1980's to early 1990's assessed a wide range of about 34 species with trials being conducted on a wide range of soil types in 31 different sites spread over seven states in crop producing regions of the U.S. While several species, including sorghums, reed canarygrass and other crops, were identified as having merit for further development, the majority of institutions involved in the herbaceous species screening studies identified switchgrass as having high priority for further development. Six of the seven institutions included switchgrass among the species recommended for further development in their region and all institutions recommended that perennial grasses be given high research priority. Reasons for the selection of switchgrass included the demonstration of relatively high, reliable productivity across a wide geographical range, suitability for marginal quality land, low water and nutrient requirements, and positive environmental attributes. Economic and environmental assessments by Oak Ridge National Laboratory's Biofuels Feedstock Development Program staff together with the screening project results, and funding limitations lead to making the decision to further develop only switchgrass as a "model" or "prototype" species in about 1990. This paper describes the conditions under which the herbaceous species were screened, summarizes results from those trials, discusses the various factors which influenced the selection of switchgrass, and provides a brief evaluation of switchgrass with respect to criteria that should be considered when selecting and developing a crop for biofuels and

  11. Profitability of groundnut-based cropping systems among farmers in ...

    African Journals Online (AJOL)

    Groundnut is an important cash crop and a good source of vegetable oil to resource-poor farmers. The study examined the Profitability of Groundnut–based Cropping Systems among farmers in Hong Local Government Area of Adamawa State, Nigeria. Specifically, the socio-economic characteristics of the farmers were ...

  12. Crop yield estimation in 2014 for Vojvodina using methods of remote sensing

    Directory of Open Access Journals (Sweden)

    Jovanović Dušan

    2014-01-01

    Full Text Available Monitoring phenology of crops and yield estimate based on vegetation indices as well as other parameters such as temperature or amount of rainfall were largely reported in literature. In this research, MODIS Normalized Difference Vegetation Index (NDVI was used as an indicator of specific crop condition; the other parameter was Land Surface Temperature (LST which can indicate the amount of crop moisture. Trial years were 2011, 2012, and 2013. For those years sowing structure was acquired from agricultural organizations Nova Budućnost from Žarkovac and Sava Kovačević from Vrbas, both in Serbia. Also, satellite images with high and medium resolution for these areas and years were available. Multiple linear regression was used for crop yield estimate for Vojvodina Province, Serbia where the NDVI and LST were independent variables and the average yield for specific crop was the dependent variable. The results of crop yield estimate two months before harvest are presented (excluding wheat.

  13. Persistence of antibiotic resistance and plasmid-associated genes in soil following application of sewage sludge and abundance on vegetables at harvest.

    Science.gov (United States)

    Rahube, Teddie O; Marti, Romain; Scott, Andrew; Tien, Yuan-Ching; Murray, Roger; Sabourin, Lyne; Duenk, Peter; Lapen, David R; Topp, Edward

    2016-07-01

    Sewage sludge recovered from wastewater treatment plants contains antibiotic residues and is rich in antibiotic resistance genes, selected for and enriched in the digestive tracts of human using antibiotics. The use of sewage sludge as a crop fertilizer constitutes a potential route of human exposure to antibiotic resistance genes through consumption of contaminated crops. Several gene targets associated with antibiotic resistance (catA1, catB3, ereA, ereB, erm(B), str(A), str(B), qnrD, sul1, and mphA), mobile genetic elements (int1, mobA, IncW repA, IncP1 groups -α, -β, -δ, -γ, -ε), and bacterial 16S rRNA (rrnS) were quantified by qPCR from soil and vegetable samples obtained from unamended and sludge-amended plots at an experimental field in London, Ontario. The qPCR data reveals an increase in abundance of gene targets in the soil and vegetables samples, indicating that there is potential for additional crop exposure to antibiotic resistance genes carried within sewage sludge following field application. It is therefore advisable to allow an appropriate delay period before harvesting of vegetables for human consumption.

  14. Status of Agricultural Production and Crop Variety Improvement in Thailand

    Institute of Scientific and Technical Information of China (English)

    JIAO Chun-hai; GUO Ying; YAO Ming-hua; WAN Zheng-huang

    2012-01-01

    We introduced basic conditions of agricultural production in Thailand, and variety improvement of major crops, including rice, cassava, rubber, and vegetable, in the hope of providing reference for agricultural production and crop variety improvement in Hubei Province and even in the whole country.

  15. Hierarchical Satellite-based Approach to Global Monitoring of Crop Condition and Food Production

    Science.gov (United States)

    Zheng, Y.; Wu, B.; Gommes, R.; Zhang, M.; Zhang, N.; Zeng, H.; Zou, W.; Yan, N.

    2014-12-01

    The assessment of global food security goes beyond the mere estimate of crop production: It needs to take into account the spatial and temporal patterns of food availability, as well as physical and economic access. Accurate and timely information is essential to both food producers and consumers. Taking advantage of multiple new remote sensing data sources, especially from Chinese satellites, such as FY-2/3A, HJ-1 CCD, CropWatch has expanded the scope of its international analyses through the development of new indicators and an upgraded operational methodology. The new monitoring approach adopts a hierarchical system covering four spatial levels of detail: global (sixty-five Monitoring and Reporting Units, MRU), seven major production zones (MPZ), thirty-one key countries (including China) and "sub- countries." The thirty-one countries encompass more that 80% of both global exports and production of four major crops (maize, rice, soybean and wheat). The methodology resorts to climatic and remote sensing indicators at different scales, using the integrated information to assess global, regional, and national (as well as sub-national) crop environmental condition, crop condition, drought, production, and agricultural trends. The climatic indicators for rainfall, temperature, photosynthetically active radiation (PAR) as well as potential biomass are first analysed at global scale to describe overall crop growing conditions. At MPZ scale, the key indicators pay more attention to crops and include Vegetation health index (VHI), Vegetation condition index (VCI), Cropped arable land fraction (CALF) as well as Cropping intensity (CI). Together, they characterise agricultural patterns, farming intensity and stress. CropWatch carries out detailed crop condition analyses for thirty one individual countries at the national scale with a comprehensive array of variables and indicators. The Normalized difference vegetation index (NDVI), cropped areas and crop condition are

  16. Effect of the food production chain from farm practices to vegetable processing on outbreak incidence.

    Science.gov (United States)

    Jung, Yangjin; Jang, Hyein; Matthews, Karl R

    2014-11-01

    The popularity in the consumption of fresh and fresh-cut vegetables continues to increase globally. Fresh vegetables are an integral part of a healthy diet, providing vitamins, minerals, antioxidants and other health-promoting compounds. The diversity of fresh vegetables and packaging formats (spring mix in clamshell container, bagged heads of lettuce) support increased consumption. Unfortunately, vegetable production and processing practices are not sufficient to ensure complete microbial safety. This review highlights a few specific areas that require greater attention and research. Selected outbreaks are presented to emphasize the need for science-based 'best practices'. Laboratory and field studies have focused on inactivation of pathogens associated with manure in liquid, slurry or solid forms. As production practices change, other forms and types of soil amendments are being used more prevalently. Information regarding the microbial safety of fish emulsion and pellet form of manure is limited. The topic of global climate change is controversial, but the potential effect on agriculture cannot be ignored. Changes in temperature, precipitation, humidity and wind can impact crops and the microorganisms that are associated with production environments. Climate change could potentially enhance the ability of pathogens to survive and persist in soil, water and crops, increasing human health risks. Limited research has focused on the prevalence and behaviour of viruses in pre and post-harvest environments and on vegetable commodities. Globally, viruses are a major cause of foodborne illnesses, but are seldom tested for in soil, soil amendments, manure and crops. Greater attention must also be given to the improvement in the microbial quality of seeds used in sprout production. Human pathogens associated with seeds can result in contamination of sprouts intended for human consumption, even when all appropriate 'best practices' are used by sprout growers. © 2014 The

  17. Global impacts of surface ozone changes on crop yields and land use

    NARCIS (Netherlands)

    Chuwah, Clifford; van Noije, Twan; van Vuuren, Detlef P.; Stehfest, Elke; Hazeleger, Wilco

    2015-01-01

    Exposure to surface ozone has detrimental impacts on vegetation and crop yields. In this study, we estimate ozone impacts on crop production and subsequent impacts on land use in the 2005-2050 period using results of the TM5 atmospheric chemistry and IMAGE integrated assessment model. For the crops

  18. Molecular breeding for virus resistance : an applied approach in vegetable crops

    NARCIS (Netherlands)

    Gielen, J.J.L.

    1995-01-01

    Viral diseases cause significant economic losses in most, if not all, crop species throughout the world. Total cost is not only restricted to reduction in crop yield and quality, but also include the development and application of a wide array of disease control measures. Routinely employed

  19. Crop yield, root growth, and nutrient dynamics in a conventional and three organic cropping systems with different levels of external inputs and N re-cycling through fertility building crops

    DEFF Research Database (Denmark)

    Thorup-Kristensen, Kristian; Dresbøll, Dorte Bodin; Kristensen, Hanne Lakkenborg

    2012-01-01

    systems based on fertility building crops (green manures and catch crops). In short, the main distinctions were not observed between organic and conventional systems (i.e. C vs. O1, O2 and O3), but between systems based mainly on nutrient import vs. systems based mainly on fertility building crops (C...... of the organic rotation, both relying on green manures and catch crops grown during the autumn after the main crop as their main source of soil fertility, and the O3 system further leaving rows of the green manures to grow as intercrops between vegetable rows to improve the conditions for biodiversity...... were found. Root growth of all crops was studied in the C and O2 system, but only few effects of cropping system on root growth was observed. However, the addition of green manures to the systems almost doubled the average soil exploration by active root systems during the rotation from only 21% in C...

  20. Reproducibility of crop surface maps extracted from Unmanned Aerial Vehicle (UAV) derived digital surface maps

    KAUST Repository

    Parkes, Stephen

    2016-10-25

    Crop height measured from UAVs fitted with commercially available RGB cameras provide an affordable alternative to retrieve field scale high resolution estimates. The study presents an assessment of between flight reproducibility of Crop Surface Maps (CSM) extracted from Digital Surface Maps (DSM) generated by Structure from Motion (SfM) algorithms. Flights were conducted over a centre pivot irrigation system covered with an alfalfa crop. An important step in calculating the absolute crop height from the UAV derived DSM is determining the height of the underlying terrain. Here we use automatic thresholding techniques applied to RGB vegetation index maps to classify vegetated and soil pixels. From interpolation of classified soil pixels, a terrain map is calculated and subtracted from the DSM. The influence of three different thresholding techniques on CSMs are investigated. Median Alfalfa crop heights determined with the different thresholding methods varied from 18cm for K means thresholding to 13cm for Otsu thresholding methods. Otsu thresholding also gave the smallest range of crop heights and K means thresholding the largest. Reproducibility of median crop heights between flight surveys was 4-6cm for all thresholding techniques. For the flight conducted later in the afternoon shadowing caused soil pixels to be classified as vegetation in key locations around the domain, leading to lower crop height estimates. The range of crop heights was similar for both flights using K means thresholding (35-36cm), local minimum thresholding depended on whether raw or normalised RGB intensities were used to calculate vegetation indices (30-35cm), while Otsu thresholding had a smaller range of heights and varied most between flights (26-30cm). This study showed that crop heights from multiple survey flights are comparable, however, they were dependent on the thresholding method applied to classify soil pixels and the time of day the flight was conducted.

  1. Reproducibility of crop surface maps extracted from Unmanned Aerial Vehicle (UAV) derived digital surface maps

    KAUST Repository

    Parkes, Stephen; McCabe, Matthew; Al-Mashhawari, Samir K.; Rosas, Jorge

    2016-01-01

    Crop height measured from UAVs fitted with commercially available RGB cameras provide an affordable alternative to retrieve field scale high resolution estimates. The study presents an assessment of between flight reproducibility of Crop Surface Maps (CSM) extracted from Digital Surface Maps (DSM) generated by Structure from Motion (SfM) algorithms. Flights were conducted over a centre pivot irrigation system covered with an alfalfa crop. An important step in calculating the absolute crop height from the UAV derived DSM is determining the height of the underlying terrain. Here we use automatic thresholding techniques applied to RGB vegetation index maps to classify vegetated and soil pixels. From interpolation of classified soil pixels, a terrain map is calculated and subtracted from the DSM. The influence of three different thresholding techniques on CSMs are investigated. Median Alfalfa crop heights determined with the different thresholding methods varied from 18cm for K means thresholding to 13cm for Otsu thresholding methods. Otsu thresholding also gave the smallest range of crop heights and K means thresholding the largest. Reproducibility of median crop heights between flight surveys was 4-6cm for all thresholding techniques. For the flight conducted later in the afternoon shadowing caused soil pixels to be classified as vegetation in key locations around the domain, leading to lower crop height estimates. The range of crop heights was similar for both flights using K means thresholding (35-36cm), local minimum thresholding depended on whether raw or normalised RGB intensities were used to calculate vegetation indices (30-35cm), while Otsu thresholding had a smaller range of heights and varied most between flights (26-30cm). This study showed that crop heights from multiple survey flights are comparable, however, they were dependent on the thresholding method applied to classify soil pixels and the time of day the flight was conducted.

  2. Potential of Genomic Selection in Mass Selection Breeding of an Allogamous Crop: An Empirical Study to Increase Yield of Common Buckwheat.

    Science.gov (United States)

    Yabe, Shiori; Hara, Takashi; Ueno, Mariko; Enoki, Hiroyuki; Kimura, Tatsuro; Nishimura, Satoru; Yasui, Yasuo; Ohsawa, Ryo; Iwata, Hiroyoshi

    2018-01-01

    To evaluate the potential of genomic selection (GS), a selection experiment with GS and phenotypic selection (PS) was performed in an allogamous crop, common buckwheat ( Fagopyrum esculentum Moench). To indirectly select for seed yield per unit area, which cannot be measured on a single-plant basis, a selection index was constructed from seven agro-morphological traits measurable on a single plant basis. Over 3 years, we performed two GS and one PS cycles per year for improvement in the selection index. In GS, a prediction model was updated every year on the basis of genotypes of 14,598-50,000 markers and phenotypes. Plants grown from seeds derived from a series of generations of GS and PS populations were evaluated for the traits in the selection index and other yield-related traits. GS resulted in a 20.9% increase and PS in a 15.0% increase in the selection index in comparison with the initial population. Although the level of linkage disequilibrium in the breeding population was low, the target trait was improved with GS. Traits with higher weights in the selection index were improved more than those with lower weights, especially when prediction accuracy was high. No trait changed in an unintended direction in either GS or PS. The accuracy of genomic prediction models built in the first cycle decreased in the later cycles because the genetic bottleneck through the selection cycles changed linkage disequilibrium patterns in the breeding population. The present study emphasizes the importance of updating models in GS and demonstrates the potential of GS in mass selection of allogamous crop species, and provided a pilot example of successful application of GS to plant breeding.

  3. Water footprint of growing vegetables in selected smallholder ...

    African Journals Online (AJOL)

    Crop water footprint (WF) is the volume of fresh water used to produce a certain crop in all the steps in the production line. The CROPWAT model was used to calculate crop evapotranspiration, differentiating green and blue water in Zanyokwe (ZIS), Thabina (TIS) and Tugela Ferry (TFIS) Irrigation Schemes. Green beans ...

  4. Improving the efficiency of spatially selective operations for agricultural robotics in cropping field

    Directory of Open Access Journals (Sweden)

    Y. L. Li

    2013-01-01

    Full Text Available Cropping fields often have well-defined poor-performing patches due to spatial and temporal variability. In an attempt to increase crop performance on poor patches, spatially selective field operations may be performed by agricultural robotics to apply additional inputs with targeted requirements. This paper addresses the route planning problem for an agricultural robot that has to treat some poor-patches in a field with row crops, with respect to the minimization of the total non-working distance travelled during headland turnings and in-field travel distance. The traversal of patches in the field is expressed as the traversal of a mixed weighted graph, and then the problem of finding an optimal patch sequence is formulated as an asymmetric traveling salesman problem and solved by the partheno-genetic algorithm. The proposed method is applied on a cropping field located in Northwestern China. Research results show that by using optimum patch sequences, the total non-working distance travelled during headland turnings and in-field travel distance can be reduced. But the savings on the non-working distance inside the field interior depend on the size and location of patches in the field, and the introduction of agricultural robotics is beneficial to increase field efficiency.

  5. Improving the efficiency of spatially selective operations for agricultural robotics in cropping field

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y. L.; Yi, S. P.

    2013-05-01

    Cropping fields often have well-defined poor-performing patches due to spatial and temporal variability. In an attempt to increase crop performance on poor patches, spatially selective field operations may be performed by agricultural robotics to apply additional inputs with targeted requirements. This paper addresses the route planning problem for an agricultural robot that has to treat some poor-patches in a field with row crops, with respect to the minimization of the total non-working distance travelled during headland turnings and in-field travel distance. The traversal of patches in the field is expressed as the traversal of a mixed weighted graph, and then the problem of finding an optimal patch sequence is formulated as an asymmetric traveling salesman problem and solved by the parthenogenetic algorithm. The proposed method is applied on a cropping field located in Northwestern China. Research results show that by using optimum patch sequences, the total non-working distance travelled during headland turnings and in-field travel distance can be reduced. But the savings on the non-working distance inside the field interior depend on the size and location of patches in the field, and the introduction of agricultural robotics is beneficial to increase field efficiency. (Author) 21 refs.

  6. Agricultural terminology in Russian language on the Institute of field and vegetable crops example

    Directory of Open Access Journals (Sweden)

    Savin Dragana

    2014-01-01

    Full Text Available Contemporary science demands that scientists are following domestic and foreign scientific and technical achievements through conference attendances and scientific and professional literature. Agricultural science is based on practical data, field experiments, but nevertheless it is essential to be up to date with the work of foreign researchers, scientific centers and institutions through their publications. The aim of this paper was to present a part of the agricultural lexicon (with the accent on the plant species names, as well as the general scientific and organizational terms with the equivalents in Russian - Serbian and Serbian - Russian, which is of the great importance in activities of Institute of Field and Vegetable Crops, presented through perennial practices of translation. Those terms are recognized as important and frequent, without wishing to go into professional divisions in agriculture as science. This paper is dedicated to the scientists who posses basic linguistic knowledge of Russian language and are starting to use Russian scientific and professional literature in agriculture, as well as students of Russian language for the purpose of establishing and widening linguistic fund.

  7. Augmentation of Water Resources Potential and Cropping Intensification Through Watershed Programs.

    Science.gov (United States)

    Mondal, Biswajit; Singh, Alka; Singh, S D; Kalra, B S; Samal, P; Sinha, M K; Ramajayam, D; Kumar, Suresh

    2018-02-01

      This paper presents the biophysical impact of various interventions made under watershed development programs, in terms of the creation of additional water resources, and resultant changes in land use and cropping patterns in the Bundelkhand region of Madhya Pradesh State, India. Both primary and secondary data gathered from randomly selected watersheds and their corresponding control villages were used in this study. Analysis revealed that emphasis was given primarily to the creation of water resources potential during implementation of the programs, which led to augmentation of surface and groundwater availability for both irrigation and non-agricultural purposes. In addition, other land based interventions for soil and moisture conservation, plantation activities, and so forth, were taken up on both arable and nonarable land, which helped to improve land slope and land use, cropping pattern, agricultural productivity, and vegetation cover.

  8. Plant prebiotics and human health: Biotechnology to breed prebiotic-rich nutritious food crops

    Directory of Open Access Journals (Sweden)

    Sangam Dwivedi

    2014-09-01

    Full Text Available Microbiota in the gut play essential roles in human health. Prebiotics are non-digestible complex carbohydrates that are fermented in the colon, yielding energy and short chain fatty acids, and selectively promote the growth of Bifidobacteria and Lactobacillae in the gastro-intestinal tract. Fructans and inulin are the best-characterized plant prebiotics. Many vegetable, root and tuber crops as well as some fruit crops are the best-known sources of prebiotic carbohydrates, while the prebiotic-rich grain crops include barley, chickpea, lentil, lupin, and wheat. Some prebiotic-rich crop germplasm have been reported in barley, chickpea, lentil, wheat, yacon, and Jerusalem artichoke. A few major quantitative trait loci and gene-based markers associated with high fructan are known in wheat. More targeted search in genebanks using reduced subsets (representing diversity in germplasm is needed to identify accessions with prebiotic carbohydrates. Transgenic maize, potato and sugarcane with high fructan, with no adverse effects on plant development, have been bred, which suggests that it is feasible to introduce fructan biosynthesis pathways in crops to produce health-imparting prebiotics. Developing prebiotic-rich and super nutritious crops will alleviate the widespread malnutrition and promote human health. A paradigm shift in breeding program is needed to achieve this goal and to ensure that newly-bred crop cultivars are nutritious, safe and health promoting.

  9. Energy use pattern analyses of greenhouse vegetable production

    Energy Technology Data Exchange (ETDEWEB)

    Canakci, M.; Akinci, I. [Department of Agricultural Machinery, Faculty of Agriculture, Akdeniz University, 07070 Antalya (Turkey)

    2006-07-15

    Greenhouse farming is a growing industry in many states. It is a very expensive way to produce greenhouse crops and there are many variables to consider before the farmer decides to take this route. A good location is essential for crop planning and growing. However, current studies related to energy use patterns and resources present in vegetable production are very limited. This research attempts to investigate the energy use patterns in greenhouse vegetable production, to determine the energy output-input ratio and their relationships. Antalya province, which has greenhouse area of about 13,337ha (30.2%), is the center of greenhouse farming in Turkey. A questionnaire was distributed to 101 greenhouse farms from 11 villages in order to obtain the available data for vegetable production. Power requirement of the machines used in greenhouse operations were measured by using a computer based data acquisition system. Energy and economical variables (i.e. output-input ratio, specific energy, production cost, net return, etc.) were calculated by using the standard equations. As a result, the operational energy and energy source requirements of the greenhouse vegetable production were found between the ranges of 23,883.5-28,034.7 and 45,763.3-49,978.8MJ/1000m{sup 2}, respectively. The energy ratio of four major greenhouse vegetables-tomato, pepper, cucumber and eggplant-was 0.32, 0.19, 0.31, 0.23, respectively. The crop yields increased as a function of the total energy inputs with the best form being second-degree polynomial. The net return of the vegetable production was found in the 595.6-2775.3$/1000m{sup 2} ranges. Among the greenhouse vegetables, tomato cultivation resulted in being the most profitable. (author)

  10. EFFECT OF POLYETHYLENE BLACK PLASTIC MULCH ON GROWTH AND YIELD OF TWO SUMMER VEGETABLE CROPS UNDER RAIN-FED CONDITIONS UNDER SEMI-ARID REGION CONDITIONS

    OpenAIRE

    Atif Y. Mahadeen

    2014-01-01

    Water use efficiency in agriculture can be enhanced by several strategies mainly by reducing evaporation from the soil surface. The mulching techniques were being used widely in irrigated crop production worldwide. The mulching techniques can be also implemented in summer vegetables production under rain-fed conditions. The current study aimed at evaluating the effect of polyethylene black plastic mulch on growth and yield of okra, Abelmoschus esculentus and summer squash, ...

  11. Selenium Enrichment of Horticultural Crops.

    Science.gov (United States)

    Puccinelli, Martina; Malorgio, Fernando; Pezzarossa, Beatrice

    2017-06-04

    The ability of some crops to accumulate selenium (Se) is crucial for human nutrition and health. Selenium has been identified as a cofactor of the enzyme glutathione peroxidase, which is a catalyzer in the reduction of peroxides that can damage cells and tissues, and can act as an antioxidant. Plants are the first link in the food chain, which ends with humans. Increasing the Se quantity in plant products, including leafy and fruity vegetables, and fruit crops, without exceeding the toxic threshold, is thus a good way to increase animal and human Se intake, with positive effects on long-term health. In many Se-enriched plants, most Se is in its major organic form. Given that this form is more available to humans and more efficient in increasing the selenium content than inorganic forms, the consumption of Se-enriched plants appears to be beneficial. An antioxidant effect of Se has been detected in Se-enriched vegetables and fruit crops due to an improved antioxidative status and to a reduced biosynthesis of ethylene, which is the hormone with a primary role in plant senescence and fruit ripening. This thus highlights the possible positive effect of Se in preserving a longer shelf-life and longer-lasting quality.

  12. Selenium Enrichment of Horticultural Crops

    Directory of Open Access Journals (Sweden)

    Martina Puccinelli

    2017-06-01

    Full Text Available The ability of some crops to accumulate selenium (Se is crucial for human nutrition and health. Selenium has been identified as a cofactor of the enzyme glutathione peroxidase, which is a catalyzer in the reduction of peroxides that can damage cells and tissues, and can act as an antioxidant. Plants are the first link in the food chain, which ends with humans. Increasing the Se quantity in plant products, including leafy and fruity vegetables, and fruit crops, without exceeding the toxic threshold, is thus a good way to increase animal and human Se intake, with positive effects on long-term health. In many Se-enriched plants, most Se is in its major organic form. Given that this form is more available to humans and more efficient in increasing the selenium content than inorganic forms, the consumption of Se-enriched plants appears to be beneficial. An antioxidant effect of Se has been detected in Se-enriched vegetables and fruit crops due to an improved antioxidative status and to a reduced biosynthesis of ethylene, which is the hormone with a primary role in plant senescence and fruit ripening. This thus highlights the possible positive effect of Se in preserving a longer shelf-life and longer-lasting quality.

  13. Impacts of ozone on trees and crops

    International Nuclear Information System (INIS)

    Felzer, B.S.; Cronina, T.; Melillo, J.M.; Reilly, J.M.; Xiaodong, Wang

    2007-01-01

    In this review article, we explore how surface-level ozone affects trees and crops with special emphasis on consequences for productivity and carbon sequestration. Vegetation exposure to ozone reduces photosynthesis, growth, and other plant functions. Ozone formation in the atmosphere is a product of NO x , which are also a source of nitrogen deposition. Reduced carbon sequestration of temperate forests resulting from ozone is likely offset by increased carbon sequestration from nitrogen fertilization. However, since fertilized crop-lands are generally not nitrogen-limited, capping ozone-polluting substances in the USA, Europe, and China can reduce future crop yield loss substantially. (authors)

  14. Vegetation selection by Angus crossbred vs. Raramuri Criollo nursing cows grazing Chihuauan Desert rangeland in summer

    Science.gov (United States)

    We examined vegetation selection patterns of nursing Angus X Hereford crossbred (AH) and Raramuri Criollo (RC) cows grazing Chihuahuan Desert vegetation during the growing season. Eleven cows of each group grazed separately in two large pastures (1190ha, 1165ha) from mid-July until mid-August 2015 (...

  15. Potential of Genomic Selection in Mass Selection Breeding of an Allogamous Crop: An Empirical Study to Increase Yield of Common Buckwheat

    Directory of Open Access Journals (Sweden)

    Shiori Yabe

    2018-03-01

    Full Text Available To evaluate the potential of genomic selection (GS, a selection experiment with GS and phenotypic selection (PS was performed in an allogamous crop, common buckwheat (Fagopyrum esculentum Moench. To indirectly select for seed yield per unit area, which cannot be measured on a single-plant basis, a selection index was constructed from seven agro-morphological traits measurable on a single plant basis. Over 3 years, we performed two GS and one PS cycles per year for improvement in the selection index. In GS, a prediction model was updated every year on the basis of genotypes of 14,598–50,000 markers and phenotypes. Plants grown from seeds derived from a series of generations of GS and PS populations were evaluated for the traits in the selection index and other yield-related traits. GS resulted in a 20.9% increase and PS in a 15.0% increase in the selection index in comparison with the initial population. Although the level of linkage disequilibrium in the breeding population was low, the target trait was improved with GS. Traits with higher weights in the selection index were improved more than those with lower weights, especially when prediction accuracy was high. No trait changed in an unintended direction in either GS or PS. The accuracy of genomic prediction models built in the first cycle decreased in the later cycles because the genetic bottleneck through the selection cycles changed linkage disequilibrium patterns in the breeding population. The present study emphasizes the importance of updating models in GS and demonstrates the potential of GS in mass selection of allogamous crop species, and provided a pilot example of successful application of GS to plant breeding.

  16. Potential of irradiation technology in horticultural crops

    International Nuclear Information System (INIS)

    Thomas, P.

    1994-01-01

    Fresh fruits and vegetables are living tissues which are subject to continuous change after harvest leading to senescence, cellular break-down and death. Post harvest losses in quality and quantity of horticultural crops result from physiological, pathological and physical processes, acting separately or in combination. Temperature management, maintenance of proper relative humidity of air, manipulation of storage temperature and exposing to ionizing radiation such as gamma rays enhance the shelf-life of horticultural crops

  17. Integrated crop protection as a system approach

    OpenAIRE

    Haan, de, J.J.; Wijnands, F.G.; Sukkel, W.

    2005-01-01

    New farming systems in vegetable production are required as demands for high quality products that do not pollute the environment are rising, and production risks are large and incomes low. The methodology of prototyping new systems is described, especially the themes, parameters and target values connected to integrated crop protection. The role of integrated crop protection in prototyping new systems is discussed. The results of twenty years working with this prototyping methodology are pre...

  18. Fertilizer use efficiency under enhanced crop intensity of vegetables due to inter-cropping using 15N and 32P labelled fertilizers

    International Nuclear Information System (INIS)

    Kotur, S.C.; Anjaneyulu, K.; Ramesh, P.R.; Ramachandran, V.

    2007-01-01

    Nitrogen use efficiency of all the crop combinations: capsicum (onion) - watermelon (radish) - okra (French bean) was drastically reduced to 6.44-19.21% from 10.85-37.16% compared to the either of the solo (main) crops. In the case of P also similar trend was seen but the utilization of P by crop combination was intermediate (6.18-9.31%) between those of the respective solo crops (in the range of 4.89% for watermelon and 11.90% for capsicum). A higher reduction of fertilizer use efficiency of N fertilizer than of P fertilizer under crop combinations appeared to be related to the differential mobility of these nutrients in the soil. (author)

  19. [Active crop canopy sensor-based nitrogen diagnosis for potato].

    Science.gov (United States)

    Yu, Jing; Li, Fei; Qin, Yong-Lin; Fan, Ming-Shou

    2013-11-01

    In the present study, two potato experiments involving different N rates in 2011 were conducted in Wuchuan County and Linxi County, Inner Mongolia. Normalized difference vegetation index (NDVI) was collected by an active GreenSeeker crop canopy sensor to estimate N status of potato. The results show that the NDVI readings were poorly correlated with N nutrient indicators of potato at vegetative Growth stage due to the influence of soil background. With the advance of growth stages, NDVI values were exponentially related to plant N uptake (R2 = 0.665) before tuber bulking stage and were linearly related to plant N concentration (R2 = 0.699) when plant fully covered soil. In conclusion, GreenSeeker active crop sensor is a promising tool to estimate N status for potato plants. The findings from this study may be useful for developing N recommendation method based on active crop canopy sensor.

  20. Identification of technology options for reducing nitrogen pollution in cropping systems of Pujiang.

    Science.gov (United States)

    Fang, Bin; Wang, Guang-Huo; Van, Den Berg Marrit; Roetter, Reimund

    2005-10-01

    This work analyses the potential role of nitrogen pollution technology of crop systems of Pujiang, County in Eastern China's Zhejiang Province, rice and vegetables are important cropping systems. We used a case study approach involving comparison of farmer practices and improved technologies. This approach allows assessing the impact of technology on pollution, is forward looking, and can yield information on the potential of on-the-shelf technology and provide opportunities for technology development. The approach particularly suits newly developed rice technologies with large potential of reducing nitrogen pollution and for future rice and vegetables technologies. The results showed that substantial reductions in nitrogen pollution are feasible for both types of crops.

  1. Importance of pollinators in changing landscapes for world crops

    OpenAIRE

    Klein, Alexandra-Maria; Vaissière, Bernard E; Cane, James H; Steffan-Dewenter, Ingolf; Cunningham, Saul A; Kremen, Claire; Tscharntke, Teja

    2006-01-01

    The extent of our reliance on animal pollination for world crop production for human food has not previously been evaluated and the previous estimates for countries or continents have seldom used primary data. In this review, we expand the previous estimates using novel primary data from 200 countries and found that fruit, vegetable or seed production from 87 of the leading global food crops is dependent upon animal pollination, while 28 crops do not rely upon animal pollination. However, glo...

  2. Contribution of multitemporal polarimetric synthetic aperture radar data for monitoring winter wheat and rapeseed crops

    Science.gov (United States)

    Betbeder, Julie; Fieuzal, Remy; Philippets, Yannick; Ferro-Famil, Laurent; Baup, Frederic

    2016-04-01

    This paper aims to evaluate the contribution of multitemporal polarimetric synthetic aperture radar (SAR) data for winter wheat and rapeseed crops parameters [height, leaf area index, and dry biomass (DB)] estimation, during their whole vegetation cycles in comparison to backscattering coefficients and optical data. Angular sensitivities and dynamics of polarimetric indicators were also analyzed following the growth stages of these two common crop types using, in total, 14 radar images (Radarsat-2), 16 optical images (Formosat-2, Spot-4/5), and numerous ground data. The results of this study show the importance of correcting the angular effect on SAR signals especially for copolarized signals and polarimetric indicators associated to single-bounce scattering mechanisms. The analysis of the temporal dynamic of polarimetric indicators has shown their high potential to detect crop growth changes. Moreover, this study shows the high interest of using SAR parameters (backscattering coefficients and polarimetric indicators) for crop parameters estimation during the whole vegetation cycle instead of optical vegetation index. They particularly revealed their high potential for rapeseed height and DB monitoring [i.e., Shannon entropy polarimetry (r2=0.70) and radar vegetation index (r2=0.80), respectively].

  3. Preliminary investigations to assess the usefulness of Be-7 as a radiotracer in soil covered by vegetation [Activities of the Soil and Water Management and Crop Nutrition Laboratory, Seibersdorf

    Energy Technology Data Exchange (ETDEWEB)

    Iurian, Andra-Rada [Faculty of Environmental Science and Engineering, Babes-Bolyai University, Cluj-Napoca (Romania); Dercon, Gerd; Adu-Gyamfi, Joseph; Mabit, Lionel [Soil and Water Management and Crop Nutrition Laboratory, Joint FAO/IAEA Division for Nuclear Techniques in Food and Agriculture, Seibersdorf (Austria); Kis-Benedek, Gyula; Ceccatelli, Alessia; Tarjan, Sandor [3Terrestrial Environment Laboratory, IAEA Environment Laboratories, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Seibersdorf (Austria); Blake, William [School of Geography, University of Plymouth, Plymouth (United Kingdom); others, and

    2014-07-15

    Different factors may affect the extent of radionuclides’ interception by plants and therewith their inventories in soil covered areas. In particular, there is interest in assessing the impact of the vegetation factor for different soil coverage conditions, when using {sup 7}Be as radiotracer of soil redistribution in cropped farmland. Our results suggest that {sup 7}Be foliar interception of bean plants is likely to affect the radionuclide inventories and their spatial uniformity in covered soil. Reliable results on short-term erosion using {sup 7}Be can be obtained in cropped farmland with limited cover, but only when taking into account the interception factor. The impact of the interception factor is highly dependent on rainfall intensity and duration, crop species and the growing stage of the plants. Further investigations into these variables are required.

  4. Preliminary investigations to assess the usefulness of Be-7 as a radiotracer in soil covered by vegetation [Activities of the Soil and Water Management and Crop Nutrition Laboratory, Seibersdorf

    International Nuclear Information System (INIS)

    Iurian, Andra-Rada; Dercon, Gerd; Adu-Gyamfi, Joseph; Mabit, Lionel; Kis-Benedek, Gyula; Ceccatelli, Alessia; Tarjan, Sandor; Blake, William

    2014-01-01

    Different factors may affect the extent of radionuclides’ interception by plants and therewith their inventories in soil covered areas. In particular, there is interest in assessing the impact of the vegetation factor for different soil coverage conditions, when using 7 Be as radiotracer of soil redistribution in cropped farmland. Our results suggest that 7 Be foliar interception of bean plants is likely to affect the radionuclide inventories and their spatial uniformity in covered soil. Reliable results on short-term erosion using 7 Be can be obtained in cropped farmland with limited cover, but only when taking into account the interception factor. The impact of the interception factor is highly dependent on rainfall intensity and duration, crop species and the growing stage of the plants. Further investigations into these variables are required

  5. Sustainability assessment of greenhouse vegetable farming practices from environmental, economic, and socio-institutional perspectives in China.

    Science.gov (United States)

    Yang, Lanqin; Huang, Biao; Mao, Mingcui; Yao, Lipeng; Niedermann, Silvana; Hu, Wenyou; Chen, Yong

    2016-09-01

    To provide growing population with sufficient food, greenhouse vegetable production has expanded rapidly in recent years in China and sustainability of its farming practices is a major concern. Therefore, this study assessed the sustainability of greenhouse vegetable farming practices from environmental, economic, and socio-institutional perspectives in China based on selected indicators. The empirical data were collected through a survey of 91 farm households from six typical greenhouse vegetable production bases and analysis of environmental material samples. The results showed that heavy fertilization in greenhouse vegetable bases of China resulted in an accumulation of N, P, Cd, Cu, Pb, and Zn in soil, nutrient eutrophication in irrigation water, and high Cd in some leaf vegetables cultivated in acidic soil. Economic factors including decreased crop yield in conventional farming bases, limited and site-dependent farmers' income, and lack of complete implementation of subsidy policies contributed a lot to adoption of heavy fertilization by farmers. Also, socio-institutional factors such as lack of unified management of agricultural supplies in the bases operated in cooperative and small family business models and low agricultural extension service efficiency intensified the unreasonable fertilization. The selection of cultivated vegetables was mainly based on farmers' own experience rather than site-dependent soil conditions. Thus, for sustainable development of greenhouse vegetable production systems in China, there are two key aspects. First, it is imperative to reduce environmental pollution and subsequent health risks through integrated nutrient management and the planting strategy of selected low metal accumulation vegetable species especially in acidic soil. Second, a conversion of cooperative and small family business models of greenhouse vegetable bases to enterprises should be extensively advocated in future for the unified agricultural supplies

  6. Relations between zero-inflated variables in trials with horticultural crops

    Directory of Open Access Journals (Sweden)

    Alessandro D. Lúcio

    2016-06-01

    Full Text Available Certain characteristics of some vegetable crops allow multiple harvests during the production cycle; however, to our knowledge, no study has described the behavior of fruit production with progression of the production cycle in vegetable crops with multiple harvests that present data overdispersion. We aimed to characterize the data overdispersion of zero-inflated variables and identify the behavior of these variables during the production cycle of several vegetable crops with multiple harvests. Data from 11 uniformity trials were used without applying treatments; these comprise the database from the Experimental Plants Group at the Federal University of Santa Maria, Brazil. The trials were conducted using four horticultural species grown during different cultivation seasons, cultivation environments, and experimental structures. Although at each harvest, a larger number of basic units with harvest fruit was observed than units without harvest fruit, the basic unit percentage without fruit was high, generating an overdispersion within each individual harvest. The variability within each harvest was high and increased with the evolution of the production cycle of Capsicum annuum, Solanum lycopersicum var. cerasiforme, Phaseolus vulgaris, and Cucurbita pepo species. However, the correlation coefficient between the mean weight and number of harvest fruits tended to remain constant during the crop production cycle. These behaviors show that harvest management should be done individually, at each harvest, such that data overdispersion is reduced.

  7. Relations between zero-inflated variables in trials with horticultural crops

    Energy Technology Data Exchange (ETDEWEB)

    Lúcio, A.D.; Nunes, L.F.; Rego, F.; Pasini, M.P.B.

    2016-11-01

    Certain characteristics of some vegetable crops allow multiple harvests during the production cycle; however, to our knowledge, no study has described the behavior of fruit production with progression of the production cycle in vegetable crops with multiple harvests that present data overdispersion. We aimed to characterize the data overdispersion of zero-inflated variables and identify the behavior of these variables during the production cycle of several vegetable crops with multiple harvests. Data from 11 uniformity trials were used without applying treatments; these comprise the database from the Experimental Plants Group at the Federal University of Santa Maria, Brazil. The trials were conducted using four horticultural species grown during different cultivation seasons, cultivation environments, and experimental structures. Although at each harvest, a larger number of basic units with harvest fruit was observed than units without harvest fruit, the basic unit percentage without fruit was high, generating an overdispersion within each individual harvest. The variability within each harvest was high and increased with the evolution of the production cycle of Capsicum annuum, Solanum lycopersicum var. cerasiforme, Phaseolus vulgaris, and Cucurbita pepo species. However, the correlation coefficient between the mean weight and number of harvest fruits tended to remain constant during the crop production cycle. These behaviors show that harvest management should be done individually, at each harvest, such that data overdispersion is reduced. (Author)

  8. CHANGE DETECTION OF CROPPING PATTERN IN PADDY FIELD USING MULTI SPECTRAL SATELLITE DATA FOR ESTIMATING IRRIGATION WATER NEEDS

    Directory of Open Access Journals (Sweden)

    Rizatus Shofiyati1

    2012-10-01

    Full Text Available This paper investigates the use of multi spectral satellite data for cropping pattern monitoring in paddy field. The southern coastal of Citarum watershed, West Java Province was selected as study sites. The analysis used in this study is identifying crop pattern based on growth stages of wetland paddy and other crops by investi-gating the characteristic of Normalized Differen-ce Vegetation Indices (NDVI and Wetness of Tasseled Cap Transformation (TCT derived from 14 scenes of Landsat TM date 1988 to 2001. In general, the phenological of growth stages of wetland paddy can be used to distinguish with other seasonal crops. The research results indicate that multi spectral satellite data has a great potential for identi-fication and monitoring cropping pattern in paddy field. Specific character of NDVI and Wetness can also produce a map of cropping pattern in paddy field that is useful to monitor agricultural land condition. The cropping pattern can also be used to estimate irrigation water needed of paddy field in the area. Expected implication of the information obtained from this analysis is useful for guiding more appropriate planning and better agricultural management.

  9. Improving the Yield and Nutritional Quality of Forage Crops

    Directory of Open Access Journals (Sweden)

    Nicola M. Capstaff

    2018-04-01

    Full Text Available Despite being some of the most important crops globally, there has been limited research on forages when compared with cereals, fruits, and vegetables. This review summarizes the literature highlighting the significance of forage crops, the current improvements and some of future directions for improving yield and nutritional quality. We make the point that the knowledge obtained from model plant and grain crops can be applied to forage crops. The timely development of genomics and bioinformatics together with genome editing techniques offer great scope to improve forage crops. Given the social, environmental and economic importance of forage across the globe and especially in poorer countries, this opportunity has enormous potential to improve food security and political stability.

  10. Estimation of leaf area index in cereal crops using red–green images

    DEFF Research Database (Denmark)

    Nielsen, Kristian Kirk; Andersen, Hans Jørgen; Thomsen, Anton

    2009-01-01

    A new method for estimating the leaf area index (LAI) in cereal crops based on red–green images taken from above the crop canopy is introduced. The proposed method labels pixels into vegetation and soil classes using a combination of greenness and intensity derived from the red and green colour b....... Conclusions Acknowledgements Appendix. Modelling the correlation between greenness and brightness References   Fig. 1. Simulated image of a vegetation canopy (left), with distribution of pixel greenness and brightness (right). View Within Article...

  11. The Influence of Selected Companion Crops on Diamond Black Moth (Plutella Xylostella): Development and Investation on Cabbage

    International Nuclear Information System (INIS)

    Raini, R.K

    2002-01-01

    Diamond black moth (DBM) Plutella xylostella L. (Lepidoptera: Plutellidae) is the most serious pest of brassica in Kenya. Resistance to chemicals has been reported from various parts of the country. This research investigated brassica and non-brassica crops potential in 'push-pull' strategy toward developing an Integrated Pest Management (IPM) program for DBM in Kenya. The study focused on evaluating the potential influence of selected crops on DBM oviposition, development and infestation on cabbage. Results indicate that DBM preferred to oviposition on brassica crops. No significant differences were observed on DBM development on host plants that supported full development. Minimum development was recorded on non-brassica crop Cleome gynandra, L. In field trials, the mustard, cloeme and coriander intercrops recorded significantly low infestation compared to other intercrops and demonstrated qulities which could be utilized in the development of IPM-option for the DBM

  12. The Potential to Reduce Nitrogen Loss Through Rotating Different Sorghum Varieties in Greenhouse Vegetable Field

    Directory of Open Access Journals (Sweden)

    KANG Ling-yun

    2015-06-01

    Full Text Available In North China plain, excessive fertilization in vegetable greenhouse always results in nitrate accumulation in soil and possible nitrogen leaching with potential environmental risk. It is necessary to rotate appropriate catch crop to absorb surplus nitrogen in fallow season and reduce rootzone nitrate level. An experiment was carried out to select suitable sorghum variety as catch crop to reduce nitrogen loss in Beijing suburb. Six common varieties were used in the experiment as conventional catch crop, sweet corn as the control. The results indicated that the biomass, root growth and nitrogen accumulation in shoots of sorghum Jinza 12 were highest in the catch crops. It demonstrated that the variety Jinza 12 was an appropriate catch crop for reducing nitrogen accumulation in surface soil layer compared with sweet corn. Meanwhile, variety Jiliang 2 maintained highest proportion of soil NH4+-N content after urea application, which might be related to the biological nitrification inhibitors (BNI released by the root system of sorghum. It implied that sorghum could be used as catch crop to reduce nitrogen loss through plant extraction i.e. nitrogen uptake and stabilization i.e. BNI inhibition, in comparison with sweet corn.

  13. Optimization of multi-environment trials for genomic selection based on crop models.

    Science.gov (United States)

    Rincent, R; Kuhn, E; Monod, H; Oury, F-X; Rousset, M; Allard, V; Le Gouis, J

    2017-08-01

    We propose a statistical criterion to optimize multi-environment trials to predict genotype × environment interactions more efficiently, by combining crop growth models and genomic selection models. Genotype × environment interactions (GEI) are common in plant multi-environment trials (METs). In this context, models developed for genomic selection (GS) that refers to the use of genome-wide information for predicting breeding values of selection candidates need to be adapted. One promising way to increase prediction accuracy in various environments is to combine ecophysiological and genetic modelling thanks to crop growth models (CGM) incorporating genetic parameters. The efficiency of this approach relies on the quality of the parameter estimates, which depends on the environments composing this MET used for calibration. The objective of this study was to determine a method to optimize the set of environments composing the MET for estimating genetic parameters in this context. A criterion called OptiMET was defined to this aim, and was evaluated on simulated and real data, with the example of wheat phenology. The MET defined with OptiMET allowed estimating the genetic parameters with lower error, leading to higher QTL detection power and higher prediction accuracies. MET defined with OptiMET was on average more efficient than random MET composed of twice as many environments, in terms of quality of the parameter estimates. OptiMET is thus a valuable tool to determine optimal experimental conditions to best exploit MET and the phenotyping tools that are currently developed.

  14. Multi-year assessment of soil-vegetation-atmosphere transfer (SVAT) modeling uncertainties over a Mediterranean agricultural site

    Science.gov (United States)

    Garrigues, S.; Olioso, A.; Calvet, J.-C.; Lafont, S.; Martin, E.; Chanzy, A.; Marloie, O.; Bertrand, N.; Desfonds, V.; Renard, D.

    2012-04-01

    conductance, as well as the time course of the plant biomass and the Leaf Area Index (LAI). The experiment was conducted at the INRA-Avignon (France) crop site (ICOS associated site), for which 10 years of energy and water eddy fluxes, soil moisture profiles, vegetation measurements, agricultural practises are available for distinct crop types. The uncertainties in evapotranspiration and energy flux estimates are quantified from both 10-year trend analysis and selected daily cycles spanning a range of atmospheric conditions and phenological stages. While the net radiation flux is correctly simulated, the cumulated latent heat flux is under-estimated. Daily plots indicate i) an overestimation of evapotranspiration over bare soil probably due to an overestimation of the soil water reservoir available for evaporation and ii) an under-estimation of transpiration for developed canopy. Uncertainties attached to the re-analysis atmospheric data show little influence on the cumulated values of evapotranspiration. Better performances are reached using in situ soil depths and site-calibrated photosynthesis parameters compared to the simulations based on the ECOCLIMAP standard values. Finally, this paper highlights the impact of the temporal succession of vegetation cover and bare soil on the simulation of soil moisture and evapotranspiration over a long period of time. Thus, solutions to account for crop rotation in the implementation of SVAT models are discussed.

  15. Induced mutations in connection with biotechnology for crop improvement in Latin America. Proceedings of a final research co-ordination meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-05-01

    This publication results from the second Co-ordinated Research Project (CRP) on Plant Breeding and Genetics organized on a regional basis in Latin America. The present CRP and the previous one were initiated and implemented in response to the pressing need to enhance the productivity of economic plants, viz. food crops, fruits and ornamentals. Improvement of crop production has become the highest priority in most countries of Latin America, as in other regions. Breeding superior varieties is often the only feasible solution where inputs are limited; well adapted varieties are required to meet specific agro-environmental conditions. Such varieties provide yield stability on an economically required level. The most important and common factors limiting crop production are abiotic, e.g. cold, salinity, soil aluminium toxicity and drought; as well as biotic, e.g. diseases and pests. Modern biotechnology and induced mutations offer new means and significant potential to breed desired varieties in a relatively short time. Additionally, both approaches facilitate the breeding of some vegetatively propagated crops which until now were improved mainly through selection of rare spontaneous mutants in natural or cultivated populations. Using some of these techniques it recently became possible to produce, in some crops, true-to-type mutated lines or clones within a few months. Biotechnology can also facilitate selection, description and molecular characterization of promising mutants. Currently used DNA markers, such as restriction fragment length polymorphism (RFLP), random amplified polymorphic DNA (RAPD) as well as other polymerase chain reaction (PCR)-based techniques, were included in this CRP to benefit the important crops of this region. Also included in this CRP were doubled haploids (DH), which are obtained from anther or microspore cultures and are very suitable biotechnology methods. In connection with radiation-induced mutations, they can speed up conventional

  16. Induced mutations in connection with biotechnology for crop improvement in Latin America. Proceedings of a final research co-ordination meeting

    International Nuclear Information System (INIS)

    2001-05-01

    This publication results from the second Co-ordinated Research Project (CRP) on Plant Breeding and Genetics organized on a regional basis in Latin America. The present CRP and the previous one were initiated and implemented in response to the pressing need to enhance the productivity of economic plants, viz. food crops, fruits and ornamentals. Improvement of crop production has become the highest priority in most countries of Latin America, as in other regions. Breeding superior varieties is often the only feasible solution where inputs are limited; well adapted varieties are required to meet specific agro-environmental conditions. Such varieties provide yield stability on an economically required level. The most important and common factors limiting crop production are abiotic, e.g. cold, salinity, soil aluminium toxicity and drought; as well as biotic, e.g. diseases and pests. Modern biotechnology and induced mutations offer new means and significant potential to breed desired varieties in a relatively short time. Additionally, both approaches facilitate the breeding of some vegetatively propagated crops which until now were improved mainly through selection of rare spontaneous mutants in natural or cultivated populations. Using some of these techniques it recently became possible to produce, in some crops, true-to-type mutated lines or clones within a few months. Biotechnology can also facilitate selection, description and molecular characterization of promising mutants. Currently used DNA markers, such as restriction fragment length polymorphism (RFLP), random amplified polymorphic DNA (RAPD) as well as other polymerase chain reaction (PCR)-based techniques, were included in this CRP to benefit the important crops of this region. Also included in this CRP were doubled haploids (DH), which are obtained from anther or microspore cultures and are very suitable biotechnology methods. In connection with radiation-induced mutations, they can speed up conventional

  17. EFFECT OF FARMERS FIELD SCHOOL ON VEGETABLES PRODUCTION IN DISTRICT PESHAWAR KHYBER PAKHTUNKHWA

    Directory of Open Access Journals (Sweden)

    Muhammad Zafarullah KHAN

    2013-01-01

    Full Text Available The Farmers Field School (FFS aims at benefiting poor farmers by improving their knowledge of existing agricultural technologies and integrated crop management to become independent and confident in their decision. The study on effect of farmer’s field school on vegetables production before and after FFS implementation in district Peshawar in four selected villages on each crop in 2011 was conducted from 80 farmers. The results were compared by using paired t-test. It was observed that 80% of the respondents were satisfied with FFS approach as there was a significant increase in vegetable production. The seed rate of tomato and cucumber decreased from 0.185kg/kanal to 0.1 kg/ kanal and 0.120kg/kanal to 0.01kg/kanal while production of tomato and cucumber were increased from 8158.75kgs/kanal to 1030.25kgs/kanal and 3230kgs/kanal to 5340kgs/kanal, respectively after the activities of FFS. FFS brought a positive effect on vegetable production and technology adoption improving their income, skills and knowledge ultimately lead farmers towards empowerment. The input cost including seed, crop management, FYM, and weedicides for tomato were reduced by Rs.28, Rs. 3170 and Rs.658 and cucumber reduced by Rs.35, Rs.570 and Rs.430. Only fertilizers cost was increased by Rs. 2200 in case of tomato and 465 in case of cucumber. FFS facilitator and coordinator should be more skilled and practical oriented to facilitate poor farmers. In light of the above study, more FFS should be planned so that the more farmers should be benefited.

  18. Development of ELISA for the detection of transgenic vegetative insecticidal protein in GM crops/produce.

    Science.gov (United States)

    Kumar, R

    2012-01-11

    In the process of the development of insect-resistant genetically modified (GM) crops and also to evaluate the consistency in the expression of toxin under field conditions, immunological assays are commonly being used. An immunoassay was developed to support the labelling of vegetative insecticidal protein (Vip3A)-based GM produce. The developed ELISA for the measurement of Vip3A is a triple antibody sandwich procedure utilising a polyclonal capture antibody (mouse anti-Vip3A) and a polyclonal detection antibody (rabbit anti-Vip3A) followed by use of a third HRP-conjugated anti-species antibody (goat anti-rabbit IgG). The limit of detection limit of the ELISA assay was 16 ng ml(-1) with a linear quantification range from approximately 31 to 500 ng ml(-1) of Vip3A protein. Furthermore, the assay was in-house validated with GM brinjal samples. The assay was specific, sensitive and reproducible, which can be helpful to detect and track down the spread of unapproved and intentionally/unintentionally released GM produce harbouring Vip protein.

  19. Multiresidue Analysis of 86 Pesticides Using Gas Chromatography Mass Spectrometry: II-Nonleafy Vegetables

    Directory of Open Access Journals (Sweden)

    M. H. EL-Saeid

    2013-01-01

    Full Text Available A total of 1057 samples of fresh vegetables from import and domestic production were analyzed (cold pepper, egg plant, carrot, cucumber, potato, hot pepper, cultivation tomato, squash, beans, okra, onions, cauliflower, and green house tomato. The aim of this study was to investigate pesticide residues in market foods in Riyadh, which have been collected from Riyadh Development Company (Al-Tamer Vegetables Market. Pesticide residues were determined by gas chromatography with mass selective detector (GC-MSD. A multiresidue method was developed and described for simultaneous determination of 86 pesticides commonly used in crop protection. This method used to determine 86 pesticide residues with a broad range of physicochemical properties in fresh vegetables related to organophosphorus (OPP, organochlorines (OCP, pyrethroids, and carbamates mainly used in agriculture. Sample extract was cleaned up by using AOAC method. Pesticide residues above the maximum residue limits (MRL were detected in 15.89% of the total samples (168 from 1057 samples, but 83.90% of the total samples (887 from 1057 samples has no residues or contained pesticide residues at or below MRL. The detected and most frequently found pesticide residues were permethrin (45 times and endosulfan (34 times followed by deltamethrin (27 times. The findings of this study pointed to the following recommendations: the need for a monitoring program for pesticide residues in imported food crops.

  20. Influence of cover crop treatments on the performance of a vineyard in a humid region

    Energy Technology Data Exchange (ETDEWEB)

    Trigo-Córdoba, E.; Bouzas-Cid, Y.; Orriols-Fernández, I.; Díaz-Losada, E.; Mirás-Avalos, J.M.

    2015-07-01

    Vineyards are usually managed by tilling the inter-rows to avoid competition from other plants for soil water and nutrients. However, in humid and sub-humid climates, such as that of NW Spain, cover crops may be an advantage for controlling vine vegetative growth and improving berry composition, while reducing management costs. The current study was conducted over three consecutive growing seasons (2012-2014) to assess the effects of establishing three permanent cover crop treatments on water relations, vine physiology, yield and berry composition of a vineyard of the red cultivar ‘Mencía’ (Vitis vinifera L.) located in Leiro, Ourense. Treatments consisted of four different soil management systems: ST, soil tillage; NV, native vegetation; ER, English ryegrass (Lolium perenne L.); and SC, subterranean clover (Trifolium subterraneum L.). Midday stem water potential was more negative in the native vegetation treatment, causing significant reductions in leaf stomatal conductance on certain dates. Total vine leaf area and pruning weight was reduced in the cover crop treatments in the last year of the experiment. Yield was unaffected by the presence of a cover crop. No significant differences among treatments were observed for berry composition; however, wines were positively affected by the SC treatment (higher tannin content and colour intensity and lower malic acid concentration when compared with ST). Wines from the cover crop treatments were preferred by taste panelists. These results indicate that in humid climates cover crop treatments can be useful for reducing vine vegetative growth without compromising yield and berry quality. (Author)

  1. Reducing the negative human-health impacts of bioenergy crop emissions through region-specific crop selection

    International Nuclear Information System (INIS)

    Porter, William C; Rosenstiel, Todd N; Barsanti, Kelley; Guenther, Alex; Lamarque, Jean-Francois

    2015-01-01

    An expected global increase in bioenergy-crop cultivation as an alternative to fossil fuels will have consequences on both global climate and local air quality through changes in biogenic emissions of volatile organic compounds (VOCs). While greenhouse gas emissions may be reduced through the substitution of next-generation bioenergy crops such as eucalyptus, giant reed, and switchgrass for fossil fuels, the choice of species has important ramifications for human health, potentially reducing the benefits of conversion due to increases in ozone (O 3 ) and fine particulate matter (PM 2.5 ) levels as a result of large changes in biogenic emissions. Using the Community Earth System Model we simulate the conversion of marginal and underutilized croplands worldwide to bioenergy crops under varying future anthropogenic emissions scenarios. A conservative global replacement using high VOC-emitting crop profiles leads to modeled population-weighted O 3 increases of 5–27 ppb in India, 1–9 ppb in China, and 1–6 ppb in the United States, with peak PM 2.5 increases of up to 2 μg m −3 . We present a metric for the regional evaluation of candidate bioenergy crops, as well as results for the application of this metric to four representative emissions profiles using four replacement scales (10–100% maximum estimated available land). Finally, we assess the total health and climate impacts of biogenic emissions, finding that the negative consequences of using high-emitting crops could exceed 50% of the positive benefits of reduced fossil fuel emissions in value. (letter)

  2. Performance and cross-crop resistance of Cry1F-maize selected Spodoptera frugiperda on transgenic Bt cotton: implications for resistance management.

    Science.gov (United States)

    Yang, Fei; Kerns, David L; Brown, Sebe; Kurtz, Ryan; Dennehy, Tim; Braxton, Bo; Head, Graham; Huang, Fangneng

    2016-06-15

    Transgenic crops producing Bacillus thuringiensis (Bt) proteins have become a primary tool in pest management. Due to the intensive use of Bt crops, resistance of the fall armyworm, Spodoptera frugiperda, to Cry1F maize has occurred in Puerto Rico, Brazil, and some areas of the southeastern U.S. The sustainability of Bt crops faces a great challenge because the Cry1F-maize resistant S. frugiperda may also infest other Bt crops in multiple cropping ecosystems. Here we examined the survival and plant injury of a S. frugiperda population selected with Cry1F maize on three single-gene and five pyramided Bt cotton products. Larvae of Cry1F-susceptible (SS), -heterozygous (RS), and -resistant (RR) genotypes of S. frugiperda were all susceptible to the pyramided cotton containing Cry1Ac/Cry2Ab, Cry1Ac/Cry1F/Vip3A, Cry1Ab/Cry2Ae, or Cry1Ab/Cry2Ae/Vip3A, and the single-gene Cry2Ae cotton. Pyramided cotton containing Cry1Ac/Cry1F was effective against SS and RS, but not for RR. These findings show that the Cry1F-maize selected S. frugiperda can cause cross-crop resistance to other Bt crops expressing similar insecticidal proteins. Resistance management and pest management programs that utilize diversify mortality factors must be implemented to ensure the sustainability of Bt crops. This is especially important in areas where resistance to single-gene Bt crops is already widespread.

  3. Identification of technology options for reducing nitrogen pollution in cropping systems of Pujiang*

    Science.gov (United States)

    Fang, Bin; Wang, Guang-huo; Van den berg, Marrit; Roetter, Reimund

    2005-01-01

    This work analyses the potential role of nitrogen pollution technology of crop systems of Pujiang, County in Eastern China’s Zhejiang Province, rice and vegetables are important cropping systems. We used a case study approach involving comparison of farmer practices and improved technologies. This approach allows assessing the impact of technology on pollution, is forward looking, and can yield information on the potential of on-the-shelf technology and provide opportunities for technology development. The approach particularly suits newly developed rice technologies with large potential of reducing nitrogen pollution and for future rice and vegetables technologies. The results showed that substantial reductions in nitrogen pollution are feasible for both types of crops. PMID:16187411

  4. Prevalence of plant beneficial and human pathogenic bacteria isolated from salad vegetables in India.

    Science.gov (United States)

    Nithya, Angamuthu; Babu, Subramanian

    2017-03-14

    The study aimed at enumerating, identifying and categorizing the endophytic cultivable bacterial community in selected salad vegetables (carrot, cucumber, tomato and onion). Vegetable samples were collected from markets of two vegetable hot spot growing areas, during two different crop harvest seasons. Crude and diluted vegetable extracts were plated and the population of endophytic bacteria was assessed based on morphologically distinguishable colonies. The bacterial isolates were identified by growth in selective media, biochemical tests and 16S rRNA gene sequencing. The endophytic population was found to be comparably higher in cucumber and tomato in both of the sampling locations, whereas lower in carrot and onion. Bacterial isolates belonged to 5 classes covering 46 distinct species belonging to 19 genera. Human opportunistic pathogens were predominant in carrot and onion, whereas plant beneficial bacteria dominated in cucumber and tomato. Out of the 104 isolates, 16.25% are human pathogens and 26.5% are human opportunistic pathogens. Existence of a high population of plant beneficial bacteria was found to have suppressed the population of plant and human pathogens. There is a greater potential to study the native endophytic plant beneficial bacteria for developing them as biocontrol agents against human pathogens that are harboured by plants.

  5. Trade Performance of Fruit and Vegetable Industry in Selected ASEAN Countries

    OpenAIRE

    Emmy, F.A.; Mohd Mansor, Ismail

    2009-01-01

    This paper examines the trade performance for thirteen commodities in the fruit and vegetable industry in relation to that of selected ASEAN countries (Philippines, Indonesia, Singapore and Thailand), based on Revealed Comparative Advantage (RCA) indicator. The analysis shows that Singapore has comparative advantage in 5 commodities (ground-nuts, hazelnuts, plums, apricots and walnuts), Philippines has comparative advantage in 3 commodities (tomatoes nes prepared or preserved, tomatoes whole ...

  6. Wheat Yield Forecasting for Punjab Province from Vegetation Index Time Series and Historic Crop Statistics

    Directory of Open Access Journals (Sweden)

    Jan Dempewolf

    2014-10-01

    Full Text Available Policy makers, government planners and agricultural market participants in Pakistan require accurate and timely information about wheat yield and production. Punjab Province is by far the most important wheat producing region in the country. The manual collection of field data and data processing for crop forecasting by the provincial government requires significant amounts of time before official reports can be released. Several studies have shown that wheat yield can be effectively forecast using satellite remote sensing data. In this study, we developed a methodology for estimating wheat yield and area for Punjab Province from freely available Landsat and MODIS satellite imagery approximately six weeks before harvest. Wheat yield was derived by regressing reported yield values against time series of four different peak-season MODIS-derived vegetation indices. We also tested deriving wheat area from the same MODIS time series using a regression-tree approach. Among the four evaluated indices, WDRVI provided more consistent and accurate yield forecasts compared to NDVI, EVI2 and saturation-adjusted normalized difference vegetation index (SANDVI. The lowest RMSE values at the district level for forecast versus reported yield were found when using six or more years of training data. Forecast yield for the 2007/2008 to 2012/2013 growing seasons were within 0.2% and 11.5% of final reported values. Absolute deviations of wheat area and production forecasts from reported values were slightly greater compared to using the previous year's or the three- or six-year moving average values, implying that 250-m MODIS data does not provide sufficient spatial resolution for providing improved wheat area and production forecasts.

  7. Greenhouse design for vegetable production in subtropical climate in Taiwan

    NARCIS (Netherlands)

    Hemming, S.; Speetjens, S.L.; Wang, D.; Tsay, J.R.

    2014-01-01

    In Taiwan open field vegetable production is threatened by subtropical climatic disasters, such as high wind speeds and heavy rainfall, which can cause the destruction of whole crops. Next to that vegetable production is threatened by pests and diseases resulting a high need for pesticides.

  8. Tropical crops as a basic source of food

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, J.E.G.

    1979-01-01

    A study is made of the potential that exists for food production in the Latin American tropics, and ways in which this could improve and diversify nutritional patterns in other ecological regions. Crops which could become more important include roots and tubers, varieties of beans, fruits, nuts and vegetables. Tropical crops such as sugar cane and cassava could also be used as renewable sources of energy, to replace conventional non-renewable fuels.

  9. Pattern Analysis of Vegetation and Structure Mapping of Yard Plant in Gatak District, Sukoharjo

    Directory of Open Access Journals (Sweden)

    Sofyan Anif

    2004-01-01

    Full Text Available Target of research is to know 1 level of type variety (diversitas and mount the closeness (densitas of lawn crop which conducting in region of District of Gatak of Sub Province Sukoharjo; 2 pattern of mapping of lawn crop which conducting in region District of Gatak of Sub Province Sukoharjo of pursuant to variety level and its closeness. This research is field survey done with the method of multi stage that is stratified purposive of sampling and random sampling. Focus the survey is does the stocktaking of lawn crop which conducting in house lawn. To know the structure of vegetate data processed by using formula Cox (1989 to know the closeness level, while to know the level of species variety, data analyzed to use the index of diversities Simpson. Pursuant to result of inferential solution and research 1 result analyze the structure of vegetate of lawn crop indicate that (a District Gatak have the level of high diversities lawn crop, with the index diversities of equal to 0,84159 and index predominate equal to 0,15841, and also highest PIE 0,20657 and PIE lowerest of equal to 0,00032. Species of lawn crop having high domination that is melinjo (Gnetum gnemon, (b closeness of lawn crop at every countryside in District Gatak of included in category very meeting of because  relied on by a closeness value of every countryside more than 75%. Crop found in research are having high closeness level for example: melinjo, banana, mango, rambutan, papaya, tapioca, and coconut, while crop having low closeness level for example: jambu mete, tapak doro, flower pukul empat; and 2 mapping of lawn crop cover the function value and amount of lawn crop found by a number of 57 type of lawn crop found in researh area, can be grouped to become 5 faction that is drug crop, vegetable faction, fruit crop, decorative crop, and protector crop.

  10. African Leafy Vegetables: A Review of Status, Production and Utilization in South Africa

    Directory of Open Access Journals (Sweden)

    Innocent Maseko

    2017-12-01

    Full Text Available African leafy vegetables (ALVs are mostly gathered from the wild, with few selected species being cultivated, usually as part of a mixed cropping system in home gardens or smallholder plots. They have important advantages over exotic vegetable species, because of their adaptability to marginal agricultural production areas and their ability to provide dietary diversity in poor rural communities. Despite their significance in food and nutrition security, there is limited availability or access to these crops leading to underutilisation. The objective of this review was to document the state of utilisation and production of ALVs in South Africa. A qualitative systematic approach review of online sources, peer reviewed papers published in journals, books and other publications was conducted. There is lack of suitable production systems, innovative processing, and value-adding techniques that promote utilisation of ALVs. Furthermore, there is a perception that ALVs are food for the poor among the youth and urban folks, while, among the affluent, they are highly regarded as being nutritious. To promote ALVs from household consumption and commercialisation, further research on agronomy, post-harvest handling, storage and processing is required in South Africa.

  11. Assessment of Total Phenolic and Flavonoid Content, Antioxidant Properties, and Yield of Aeroponically and Conventionally Grown Leafy Vegetables and Fruit Crops: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Suman Chandra

    2014-01-01

    Full Text Available A comparison of the product yield, total phenolics, total flavonoids, and antioxidant properties was done in different leafy vegetables/herbs (basil, chard, parsley, and red kale and fruit crops (bell pepper, cherry tomatoes, cucumber, and squash grown in aeroponic growing systems (AG and in the field (FG. An average increase of about 19%, 8%, 65%, 21%, 53%, 35%, 7%, and 50% in the yield was recorded for basil, chard, red kale, parsley, bell pepper, cherry tomatoes, cucumber, and squash, respectively, when grown in aeroponic systems, compared to that grown in the soil. Antioxidant properties of AG and FG crops were evaluated using 2,2-diphenyl-1-picrylhydrazyl (DDPH and cellular antioxidant (CAA assays. In general, the study shows that the plants grown in the aeroponic system had a higher yield and comparable phenolics, flavonoids, and antioxidant properties as compared to those grown in the soil.

  12. Cloning crops in a CELSS via tissue culture: Prospects and problems

    Science.gov (United States)

    Carman, John G.; Hess, J. Richard

    1990-01-01

    Micropropagation is currently used to clone fruits, nuts, and vegetables and involves controlling the outgrowth in vitro of basal, axillary, or adventitious buds. Following clonal multiplication, shoots are divided and rooted. This process has greatly reduced space and energy requirements in greenhouses and field nurseries and has increased multiplication rates by greater than 20 fold for some vegetatively propagated crops and breeding lines. Cereal and legume crops can also be cloned by tissue culture through somatic embryogenesis. Somatic embryos can be used to produce 'synthetic seed', which can tolerate desiccation and germinate upon rehydration. Synthetic seed of hybrid wheat, rice, soybean and other crops could be produced in a controlled ecological life support system. Thus, yield advantages of hybreds over inbreds (10 to 20 percent) could be exploited without having to provide additional facilities and energy for parental-line and hybrid seed nurseries.

  13. Fruit and vegetable availability and selection: federal food package revisions, 2009.

    Science.gov (United States)

    Zenk, Shannon N; Odoms-Young, Angela; Powell, Lisa M; Campbell, Richard T; Block, Daniel; Chavez, Noel; Krauss, Ramona C; Strode, Steven; Armbruster, James

    2012-10-01

    With nearly 49,000 authorized retailers nationwide, a policy change that added fruits and vegetables (FV) to the U.S. Department of Agriculture's Special Supplemental Nutrition Program for Women, Infants, and Children (WIC) food packages in 2009 had the potential to expand neighborhood FV availability. This study examined changes in availability and selection of commonly consumed and culturally specific FV at authorized retailers (WIC vendors) before and after implementation of the revised WIC food packages. Quasi-experimental, one-group design with two pre-policy observations and one post-policy observation. Trained observers assessed a list of fresh, frozen, and canned FV at each vendor in seven northern Illinois counties. Eight indices of FV availability and selection were derived. Multiple regression estimated relationships. Data were collected in 2008-2010 and analyzed in 2011. Overall, availability and selection of commonly consumed fresh FV and availability of African-American culturally specific fresh FV improved after implementation of the new policy. Modest improvements in the overall availability of canned low-sodium vegetables and frozen FV were observed. Changes differed by vendor type (large vendor, small vendor, and pharmacy). Changes in availability or selection did not differ by neighborhood characteristics (population density, median household income, racial/ethnic composition). Expansion of WIC foods was associated with small positive externalities on the food environment. Larger subsidies to create more demand and more-substantial stocking requirements for retailers may yield significantly larger improvements and thus warrant further investigation. Approaches targeting rural, low-income, and racial/ethnic minority neighborhoods also may be needed. Copyright © 2012 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  14. Forecast of strontium 90 accumulation in the crop of agricultural cultures

    International Nuclear Information System (INIS)

    Dergunov, I.D.; Moroz, V.D.

    1980-01-01

    A possibility to determine the level of contamination with strontium-90 of agricultural crops according to its content in young plants as studied. The investigations have been carried out under conditions of vegetational experiment with cotton on light, typical, dark grey soils and meadow spoils. The samples in the phase of 20 day old plants and in the period of ripening have been selected for radiometric analysis. Activity has been measured according to β-irradiation of nuclide. Tbe measurement results point to the existence of certain connection between radiostrontium content in young plants and in the fibre crops. Close connection is also found between strontium-90 content in young plants and in the cotton seeds. Direct proportional dependence between strontium-90 content in young and grown-up plants is established. Linear coefficients for cotton are obtained which can be used for forecasting the level of cotton fibre contamination with radiostrontium according to its content in 20 day old plants

  15. Profitability Analysis of Selected Farms in the Batinah Region of Oman

    Directory of Open Access Journals (Sweden)

    Slim Zekri

    2007-01-01

    Full Text Available The agricultural sector of Oman represents less than 2% of the total GDP and uses 88% of the fresh water. Several decision makers are questioning whether the agricultural activity in the Sultanate of Oman can be sustained and if so what type of crops should be encouraged. More than 53% of the agricultural cropped area is situated in the Batinah coastal area where farming is exclusively based on groundwater pumping. A sample of 49 market-oriented farms from the Batinah region was surveyed during 2006. Four types of farms were considered. Results showed that the most profitable farms are mixing fodder crops and vegetables with a net margin of 1,412 RO/ha/year. The less profitable farms are based on tree crops and vegetables with a net margin of 847 RO/ha/year. For vegetables the most profitable crop is tomato with an average net margin of 2,580 RO/ha/year with a standard deviation of 2,043 RO/ha/year and the least profitable crop is cabbage with 113 RO/ha/ year with a standard deviation of 182 RO/ha/year. The net margin of crops grown under drip irrigation is higher than that for crops under furrow irrigation, with a difference of 548 RO/ha/year. Farms equipped with such modern irrigation systems tend to irrigate almost the same area in winter as in summer, while farms under furrow irrigation crop less than one percent of their cropped area during summer compared to winter. Consequently and contrary to expectations, modern irrigation systems tend to increase, rather than reduce, groundwater pumping given the financial incentives for farmers to grow summer vegetables instead of only winter vegetables. Even so, the net water use efficiency is greater for vegetable production under drip irrigation than it is for fodder production. The figures show that, on average, farming in the Batinah is financially profitable for the types of farm considered in this study. However, profitability varies widely between different farms and crops. The reasons for

  16. Nitrates and nitrites in selected vegetables purchased at supermarkets in Siedlce, Poland.

    Science.gov (United States)

    Raczuk, Jolanta; Wadas, Wanda; Głozak, Katarzyna

    2014-01-01

    Vegetables constitute a vital part of the human diet, being the main source of minerals, vitamins, dietary fibre and phytochemicals. They however, also contain nitrates and nitrites, which adversely affect human health. To determine nitrate and nitrite content in selected vegetables purchased at supermarket chains in Siedlce and to assess their impact on consumer health. Vegetable samples were purchased from local supermarkets in Siedlce, town situated in the Mazovian province (Voivodeship) of Poland. These consisted of 116 samples of nine vegetables types including butterhead and iceberg lettuce, beetroot, white cabbage, carrot, cucumber, radish, tomato and potato collected between April and September 2011. Concentrations of nitrate and nitrite were determined by standard colorimetric methods used in Poland, with results expressed as mg per kg fresh weight of vegetables. Nitrate concentrations varied between 10 mg x kg(-1) to 4800 mg x kg(-1). The highest mean nitrate concentrations were found in radishes (2132 mgkg(-1)), butterhead lettuce (1725 mg x kg(-1)), beetroots (1306 mg x kg(-1)) and iceberg lettuce (890 mg x kg(-1)), whereas the lowest were found in cucumber (32 mg x kg(-1)) and tomato (35 mg x kg(-1)). Nitrite levels were also variable; the highest concentrations measured were in beetroot (mean 9.19 mg x kg(-1)) whilst much smaller amounts were present in carrot, cucumbers, iceberg lettuce, white cabbage, tomatoes and potatoes. The daily adult consumption of 100 g amounts of the studied vegetables were found not exceed the ADI for both nitrates and nitrites. Findings indicated the need for monitoring nitrate and nitrite content in radishes, butterhead lettuce and beetroot due to consumer health concerns.

  17. Trace elements analysis of crops and vegetables grown around industrial areas of Faisalabad and Gujranwala cities using INAA and AAS

    International Nuclear Information System (INIS)

    Husaini, S.N.; Zaidi, J.H.; Matiullah; Akram, M.; Subhan, K.

    2010-01-01

    Industrial effluents pollution is a source of risk to the health of people living in industrial cities of Pakistan. Most of the untreated effluents are discharged to the nearby agricultural fields that pollutes the vegetation grown in such soil. A majority of the industries are not equipped with suitable recycling and effluent treatment plants. Consequently, toxic metals enter our food chain and results in significant health risks and serious diseases. In order to evaluate the concentration of toxic metals (namely As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sb and Se), in crops and vegetable samples collected from the irrigated areas of Faisalabad and Gujranwala regions. Neutron activation analysis (NAA) and atomic absorption spectrometric (AAS) techniques have been used. All the observed metal concentrations were higher than the reported literature values. Moreover, the highest values of toxic metals of As (0.44 +- .03 mu g/g) and Co (0.5 +- 0.01 mu g/g), Mn (45.3 +- 2.0 mu g/g) and Sb (0.1 +- 0.01 mu g/g), Se (1.28 +- 0.06 mug/g) and Pb (3.84 +- 0.27 mu g/g) were found in tomato, bitter gourd and rice samples respectively. (author)

  18. Assessing the MODIS crop detection algorithm for soybean crop area mapping and expansion in the Mato Grosso state, Brazil.

    Science.gov (United States)

    Gusso, Anibal; Arvor, Damien; Ducati, Jorge Ricardo; Veronez, Mauricio Roberto; da Silveira, Luiz Gonzaga

    2014-01-01

    Estimations of crop area were made based on the temporal profiles of the Enhanced Vegetation Index (EVI) obtained from moderate resolution imaging spectroradiometer (MODIS) images. Evaluation of the ability of the MODIS crop detection algorithm (MCDA) to estimate soybean crop areas was performed for fields in the Mato Grosso state, Brazil. Using the MCDA approach, soybean crop area estimations can be provided for December (first forecast) using images from the sowing period and for February (second forecast) using images from the sowing period and the maximum crop development period. The area estimates were compared to official agricultural statistics from the Brazilian Institute of Geography and Statistics (IBGE) and from the National Company of Food Supply (CONAB) at different crop levels from 2000/2001 to 2010/2011. At the municipality level, the estimates were highly correlated, with R (2) = 0.97 and RMSD = 13,142 ha. The MCDA was validated using field campaign data from the 2006/2007 crop year. The overall map accuracy was 88.25%, and the Kappa Index of Agreement was 0.765. By using pre-defined parameters, MCDA is able to provide the evolution of annual soybean maps, forecast of soybean cropping areas, and the crop area expansion in the Mato Grosso state.

  19. Global impacts of surface ozone changes on crop yields and land use

    NARCIS (Netherlands)

    Chuwah, C.D.; Noije, van Twan; Vuuren, van Detlef P.; Stehfest, Elke; Hazeleger, Wilco

    2015-01-01

    Exposure to surface ozone has detrimental impacts on vegetation and crop yields. In this study, we estimate ozone impacts on crop production and subsequent impacts on land use in the 2005-2050 period using results of the TM5 atmospheric chemistry and IMAGE integrated assessment model. For the

  20. Improved vegetation segmentation with ground shadow removal using an HDR camera

    NARCIS (Netherlands)

    Suh, Hyun K.; Hofstee, Jan W.; Henten, van Eldert J.

    2018-01-01

    A vision-based weed control robot for agricultural field application requires robust vegetation segmentation. The output of vegetation segmentation is the fundamental element in the subsequent process of weed and crop discrimination as well as weed control. There are two challenging issues for

  1. iPot: Improved potato monitoring in Belgium using remote sensing and crop growth modelling

    Science.gov (United States)

    Piccard, Isabelle; Gobin, Anne; Curnel, Yannick; Goffart, Jean-Pierre; Planchon, Viviane; Wellens, Joost; Tychon, Bernard; Cattoor, Nele; Cools, Romain

    2016-04-01

    Potato processors, traders and packers largely work with potato contracts. The close follow up of contracted parcels is important to improve the quantity and quality of the crop and reduce risks related to storage, packaging or processing. The use of geo-information by the sector is limited, notwithstanding the great benefits that this type of information may offer. At the same time, new sensor-based technologies continue to gain importance and farmers increasingly invest in these. The combination of geo-information and crop modelling might strengthen the competitiveness of the Belgian potato chain in a global market. The iPot project, financed by the Belgian Science Policy Office (Belspo), aims at providing the Belgian potato processing sector, represented by Belgapom, with near real time information on field condition (weather-soil), crop development and yield estimates, derived from a combination of satellite images and crop growth models. During the cropping season regular UAV flights (RGB, 3x3 cm) and high resolution satellite images (DMC/Deimos, 22m pixel size) were combined to elucidate crop phenology and performance at variety trials. UAV images were processed using a K-means clustering algorithm to classify the crop according to its greenness at 5m resolution. Vegetation indices such as %Cover and LAI were calculated with the Cyclopes algorithm (INRA-EMMAH) on the DMC images. Both DMC and UAV-based cover maps showed similar patterns, and helped detect different crop stages during the season. A wide spread field monitoring campaign with crop observations and measurements allowed for further calibration of the satellite image derived vegetation indices. Curve fitting techniques and phenological models were developed and compared with the vegetation indices during the season, both at trials and farmers' fields. Understanding and predicting crop phenology and canopy development is important for timely crop management and ultimately for yield estimates. An

  2. Soil eukaryotic microorganism succession as affected by continuous cropping of peanut--pathogenic and beneficial fungi were selected.

    Directory of Open Access Journals (Sweden)

    Mingna Chen

    Full Text Available Peanut is an important oil crop worldwide and shows considerable adaptability but growth and yield are negatively affected by continuous cropping. Soil micro-organisms are efficient bio-indicators of soil quality and plant health and are critical to the sustainability of soil-based ecosystem function and to successful plant growth. In this study, 18S rRNA gene clone library analyses were employed to study the succession progress of soil eukaryotic micro-organisms under continuous peanut cultivation. Eight libraries were constructed for peanut over three continuous cropping cycles and its representative growth stages. Cluster analyses indicated that soil micro-eukaryotic assemblages obtained from the same peanut cropping cycle were similar, regardless of growth period. Six eukaryotic groups were found and fungi predominated in all libraries. The fungal populations showed significant dynamic change and overall diversity increased over time under continuous peanut cropping. The abundance and/or diversity of clones affiliated with Eurotiales, Hypocreales, Glomerales, Orbiliales, Mucorales and Tremellales showed an increasing trend with continuous cropping but clones affiliated with Agaricales, Cantharellales, Pezizales and Pyxidiophorales decreased in abundance and/or diversity over time. The current data, along with data from previous studies, demonstrated that the soil microbial community was affected by continuous cropping, in particular, the pathogenic and beneficial fungi that were positively selected over time, which is commonplace in agro-ecosystems. The trend towards an increase in fungal pathogens and simplification of the beneficial fungal community could be important factors contributing to the decline in peanut growth and yield over many years of continuous cropping.

  3. A scheme for the uniform mapping and monitoring of earth resources and environmental complexes: An assessment of natural vegetation, environmental, and crop analogs. [Sierra-Lahontan and Colorado Plateaus, Northern Great Valley (CA), and Louisiana Coastal Plain

    Science.gov (United States)

    Poulton, C. E.; Welch, R. I. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. A study was performed to develop and test a procedure for the uniform mapping and monitoring of natural ecosystems in the semi-arid and wood regions of the Sierra-Lahontan and Colorado Plateau areas, and for the estimating of rice crop production in the Northern Great Valley (Ca.) and the Louisiana Coastal Plain. ERTS-1 and high flight and low flight aerial photos were used in a visual photointerpretation scheme to identify vegetation complexes, map acreages, and evaluate crop vigor and stress. Results indicated that the vegetation analog concept is valid; that depending on the kind of vegetation and its density, analogs are interpretable at different levels in the hierarchical classification from second to the fourth level. The second level uses physiognomic growth form-structural criteria, and the fourth level uses floristic or taxonomic criteria, usually at generic level. It is recommended that analog comparisons should be made in relatively small test areas where large homogeneous examples can be found of each analog.

  4. Quantification of the growth response of light quantity of greenhouse grown crops

    NARCIS (Netherlands)

    Marcelis, L.F.M.; Broekhuijsen, A.G.M.; Nijs, E.M.F.M.; Raaphorst, M.G.M.

    2006-01-01

    Growers have often assumed that a 1% increment in light results in a 1% yield increase. In this study, this rule of thumb has been evaluated for a number of greenhouse grown crops: fruit vegetables (cucumber, tomato, sweet pepper), soil grown vegetables (lettuce, radish), cut flowers (rose,

  5. Radiation techniques in crop and plant breeding. Multiplying the benefits

    International Nuclear Information System (INIS)

    Ahloowalia, B.S.

    1998-01-01

    World food production is based on growing a wide variety of fruits, vegetables, and crops developed through advances in science. Plant breeders have produced multiple varieties that grow well in various types of soils and under diverse climates in different regions of the world. Conventionally, this is done by sexual hybridization. This involves transferring pollen from one parent plant to another to obtain hybrids. The subsequent generations of these hybrids are grown to select plants which combine the desired characters of the parents. However, another method exists by which the genetic make-up of a given plant variety can be changed without crossing with another variety. With this method, a variety retains all its original attributes but is upgraded in one or two changed characteristics. This method is based on radiation-induced genetic changes, and its referred to as ''induced mutations''. During the past thirty years, more than 1800 mutant varieties of plants have been released, many, of which were induced with radiation. Plant tissue and cell culture (also called in vitro culture) in combination with radiation is a powerful technique to induce mutations, particularly for the improvement of vegetatively propagated crops. These crops include cassava, garlic, potato, sweet potato, yams, sugarcane, ornamentals such as chrysanthemum, carnation, roses, tulips, daffodil, and many fruits (e.g. apple, banana, plantain, citrus, date palm, grape, papaya, passion fruit, and kiwi fruit). In some of these plants, either there is no seed set (e.g. banana) or the seed progeny produces plants which do not have the right combination of the desired characteristics. These techniques are also useful in the improvement of forest trees having a long lifespan before they produce fruit and seed. This article briefly reviews advances in plant breeding techniques, with a view towards improving the transfer of technologies to more countries

  6. Nitrogen use efficiency in organic and conventional vegetable rotations.: Measured and model simulated results

    OpenAIRE

    Thorup-Kristensen, Kristian

    2008-01-01

    Vegetable cropping systems are prone to high nitrogen (N) leaching losses. Optimizing the management of each crop can reduce this problem, but not solve it. Important improvements in cropping system N efficiency can be obtained by improving the rotation, to make sure that N left by some crops are to a large extent used by the succeeding crops. However, this includes rotation and fertilization planning based on a complex set of information on many crop species, on catch crops and green manure ...

  7. Analysis of agricultural drought using vegetation temperature condition index (VTCI) from Terra/MODIS satellite data.

    Science.gov (United States)

    Patel, N R; Parida, B R; Venus, V; Saha, S K; Dadhwal, V K

    2012-12-01

    The most commonly used normalized difference vegetation index (NDVI) from remote sensing often fall short in real-time drought monitoring due to a lagged vegetation response to drought. Therefore, research recently emphasized on the use of combination of surface temperature and NDVI which provides vegetation and moisture conditions simultaneously. Since drought stress effects on agriculture are closely linked to actual evapotranspiration, we used a vegetation temperature condition index (VTCI) which is more closely related to crop water status and holds a key place in real-time drought monitoring and assessment. In this study, NDVI and land surface temperature (T (s)) from MODIS 8-day composite data during cloud-free period (September-October) were adopted to construct an NDVI-T (s) space, from which the VTCI was computed. The crop moisture index (based on estimates of potential evapotranspiration and soil moisture depletion) was calculated to represent soil moisture stress on weekly basis for 20 weather monitoring stations. Correlation and regression analysis were attempted to relate VTCI with crop moisture status and crop performance. VTCI was found to accurately access the degree and spatial extent of drought stress in all years (2000, 2002, and 2004). The temporal variation of VTCI also provides drought pattern changes over space and time. Results showed significant and positive relations between CMI (crop moisture index) and VTCI observed particularly during prominent drought periods which proved VTCI as an ideal index to monitor terminal drought at regional scale. VTCI had significant positive relationship with yield but weakly related to crop anomalies. Duration of terminal drought stress derived from VTCI has a significant negative relationship with yields of major grain and oilseeds crops, particularly, groundnut.

  8. Selectivity of pesticides used in rice crop on Telenomus podisi and Trichogramma pretiosum

    Directory of Open Access Journals (Sweden)

    Juliano de Bastos Pazini

    2016-09-01

    Full Text Available Telenomus and Trichogramma species stand out as agents for the biological control in rice crops, and the main strategy for preserving them is the use of selective pesticides. This study aimed at evaluating the toxicity of pesticides used in irrigated rice crop on Telenomus podisi Ashmead (Hymenoptera: Platygastridae and Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae. Adults of these parasitoids were exposed to dry residues of pesticides, in a completely randomized experiment, with 25 treatments (24 pesticides + control and four replications. The insecticides clorantraniliprole, flubendiamide and diflubenzuron and the biological insecticides based on Beauveria bassiana and Metarhizium anisopliae were harmless to T. podisi and T. pretiosum. The harmless herbicides were: 2.4-D amine, profoxydim, quinclorac, ethoxysulfuron and saflufenacil. The fungicide epoxiconazole + kresoxim-methyl was also harmless to these two biological control agents. Therefore, these pesticides are indicated for the integrated pest management, in flooded rice areas.

  9. Management of soil-borne diseases of organic vegetables

    Directory of Open Access Journals (Sweden)

    Shafique Hafiza Asma

    2016-07-01

    Full Text Available With the rising awareness of the adverse effects of chemical pesticides, people are looking for organically grown vegetables. Consumers are increasingly choosing organic foods due to the perception that they are healthier than those conventionally grown. Vegetable crops are vulnerable to a range of pathogenic organisms that reduce yield by killing the plant or damaging the product, thus making it unmarketable. Soil-borne diseases are among the major factors contributing to low yields of organic produce. Apart from chemical pesticides there are several methods that can be used to protect crops from soil-borne pathogens. These include the introduction of biocontrol agents against soil-borne plant pathogens, plants with therapeutic effects and organic soil amendments that stimulate antagonistic activities of microorganisms to soil-borne diseases. The decomposition of organic matter in soil also results in the accumulation of specific compounds that may be antifungal or nematicidal. With the growing interest in organic vegetables, it is necessary to find non chemical means of plant disease control. This review describes the impact of soil-borne diseases on organic vegetables and methods used for their control.

  10. Identification of technology options for reducing nitrogen pollution in cropping systems of Pujiang

    NARCIS (Netherlands)

    Fang, B.; Wang, G.; Berg, van den M.M.; Roetter, R.P.

    2005-01-01

    This work analyses the potential role of nitrogen pollution technology of crop systems of Pujiang, County in Eastern China¿s Zhejiang Province, rice and vegetables are important cropping systems. We used a case study approach involving comparison of farmer practices and improved technologies. This

  11. Concentrations of lead, cadmium and barium in urban garden-grown vegetables: the impact of soil variables.

    Science.gov (United States)

    McBride, Murray B; Shayler, Hannah A; Spliethoff, Henry M; Mitchell, Rebecca G; Marquez-Bravo, Lydia G; Ferenz, Gretchen S; Russell-Anelli, Jonathan M; Casey, Linda; Bachman, Sharon

    2014-11-01

    Paired vegetable/soil samples from New York City and Buffalo, NY, gardens were analyzed for lead (Pb), cadmium (Cd) and barium (Ba). Vegetable aluminum (Al) was measured to assess soil adherence. Soil and vegetable metal concentrations did not correlate; vegetable concentrations varied by crop type. Pb was below health-based guidance values (EU standards) in virtually all fruits. 47% of root crops and 9% of leafy greens exceeded guidance values; over half the vegetables exceeded the 95th percentile of market-basket concentrations for Pb. Vegetable Pb correlated with Al; soil particle adherence/incorporation was more important than Pb uptake via roots. Cd was similar to market-basket concentrations and below guidance values in nearly all samples. Vegetable Ba was much higher than Pb or Cd, although soil Ba was lower than soil Pb. The poor relationship between vegetable and soil metal concentrations is attributable to particulate contamination of vegetables and soil characteristics that influence phytoavailability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Estimation of leaf area index in cereal crops using red-green images

    DEFF Research Database (Denmark)

    Kirk, Kristian; Andersen, Hans Jørgen; Thomsen, Anton G

    2009-01-01

    A new method for estimating the leaf area index (LAI) in cereal crops based on red-green images taken from above the crop canopy is introduced. The proposed method labels pixels into vegetation and soil classes using a combination of greenness and intensity derived from the red and green colour b...

  13. NEW TRENDS IN AGRICULTURE - CROP SYSTEMS WITHOUT SOIL

    Directory of Open Access Journals (Sweden)

    Ioan GRAD

    2014-04-01

    Full Text Available The paper studied new system of agriculture - crop systems without soil. The culture systems without soil can be called also the hydroponic systems and now in Romania are not used only sporadically. In other countries (USA, Japan, the Netherlands, France, UK, Denmark, Israel, Australia, etc.. they represent the modern crop technology, widely applied to vegetables, fruits, fodder, medicinal plants and flowers by the experts in this area. In the world, today there are millions of hectares hydroponics, most of the vegetables, herbs, fruits of hypermarkets are coming from the culture systems without soil. The process consists of growing plants in nutrient solutions (not in the ground, resorting to an complex equipment, depending on the specifics of each crop, so that the system can be applied only in the large farms, in the greenhouses, and not in the individual households. These types of culture systems have a number of advantages and disadvantages also. Even if today's culture systems without soil seem to be the most modern and surprising technology applied in plant growth, the principle is very old. Based on him were built The Suspended Gardens of the Semiramis from Babylon, in the seventh century BC, thanks to him, the population from the Peru”s highlands cultivates vegetables on surfaces covered with water or mud. The peasant households in China, even today use the millenary techniques of the crops on gravel. .This hydroponic agriculture system is a way of followed for Romanian agriculture too, despite its high cost, because it is very productive, ecological, can cover, by products, all market demands and it answer, increasingly, constraints of urban life. The concept of hydroponics agriculture is known and appreciated in Romania also, but more at the theory level.

  14. Field accumulation risks of heavy metals in soil and vegetable crop irrigated with sewage water in western region of Saudi Arabia

    Science.gov (United States)

    Balkhair, Khaled S.; Ashraf, Muhammad Aqeel

    2015-01-01

    Wastewater irrigated fields can cause potential contamination with heavy metals to soil and groundwater, thus pose a threat to human beings . The current study was designed to investigate the potential human health risks associated with the consumption of okra vegetable crop contaminated with toxic heavy metals. The crop was grown on a soil irrigated with treated wastewater in the western region of Saudi Arabia during 2010 and 2011. The monitored heavy metals included Cd, Cr, Cu, Pb and Zn for their bioaccumulation factors to provide baseline data regarding environmental safety and the suitability of sewage irrigation in the future. The pollution load index (PLI), enrichment factor (EF) and contamination factor (CF) of these metals were calculated. The pollution load index of the studied soils indicated their level of metal contamination. The concentrations of Ni, Pb, Cd and Cr in the edible portions were above the safe limit in 90%, 28%, 83% and 63% of the samples, respectively. The heavy metals in the edible portions were as follows: Cr > Zn > Ni > Cd > Mn > Pb > Cu > Fe. The Health Risk Index (HRI) was >1 indicating a potential health risk. The EF values designated an enhanced bio-contamination compared to other reports from Saudi Arabia and other countries around the world. The results indicated a potential pathway of human exposure to slow poisoning by heavy metals due to the indirect utilization of vegetables grown on heavy metal-contaminated soil that was irrigated by contaminated water sources. The okra tested was not safe for human use, especially for direct consumption by human beings. The irrigation source was identified as the source of the soil pollution in this study. PMID:26858563

  15. Impact of cover crops and tillage on porosity of podzolic soil

    Science.gov (United States)

    Błażewicz-Woźniak, M.; Konopiñski, M.

    2013-09-01

    The aim of the study was to determine the influence of cover crops biomass, mixed with the soil on different dates and with the use of different tools in field conditions. The cover crop biomass had a beneficial influence on the total porosity of the 0-20 cm layer of the soil after winter. The highest porosity was achievedwith cover crops of buckwheat, phacelia and mustard, the lowest with rye. During the vegetation period the highest porosity of soil was observed in the ridges. Among the remaining non-ploughing cultivations, pre-winter use of stubble cultivator proved to have a beneficial influence on the soil porosity, providing results comparable to those achieved in conventional tillage. The differential porosity of the soil was modified not only by the catch crops and the cultivation methods applied, but also by the sample collection dates, and it did change during the vegetation period. The highest content of macropores after winter was observed for the phacelia cover crop, and the lowest in the case of cultivation without any cover crops. Pre-winter tillage with the use of a stubble cultivator increased the amount of macropores in soil in spring, and caused the biggest participation of mesopores as compared with other non-ploughing cultivation treatments of the soil. The smallest amount of mesopores was found in the ridges.

  16. 40 CFR 180.41 - Crop group tables.

    Science.gov (United States)

    2010-07-01

    ... intentionally not included in any group include asparagus, avocado, banana, fig, globe artichoke, hops, mango... Artichoke, Chinese (Stachys affinis) 1C, 1D Artichoke, Jerusalem (Helianthus tuberosus) 1C, 1D Beet, garden...; turnip. Crop Subgroup 1C. Tuberous and corm vegetables subgroup. Potato. Arracacha; arrowroot; artichoke...

  17. Selection of antibiotics in detection procedure of Escherichia coli O157:H7 in vegetables

    Science.gov (United States)

    Hoang, Hoang A.; Nhung, Nguyen T. T.

    2017-09-01

    Detection of Escherichia coli O157:H7 in ready-to-eat fresh vegetables is important since this bacteria is considered as one of the most important pathogens in relation to public health. However, it could be a big challenge for detection of initial low concentrations of E. coli O157:H7 in the samples. In this study, selection of antibiotics that suppress growth of background bacteria to enable detection of E. coli O157:H7 in ready-to-eat fresh vegetables was investigated. Firstly, different combinations of two antibiotics, i.e. novobiocin (N) and vancomycin (V), in BHI broth were conducted. The three antibiotic combinations were preliminary examined their effect on the growth of E. coli O157:H7 and Bacillus spp. in broth based on OD600nm measurement. The combination of both the antibiotics was selected to examine their possibility to support detection of E. coli O157:H7 in vegetables. It was successful when two antibiotics showed their support in detection of E. coli O157:H7 at very low concentration of 2 CFU per one gram of lettuce. Usage of these antibiotics is simple and cheap in the detection procedure and could be applied to other types of ready-to-eat fresh vegetables popular in Vietnam.

  18. Using deficit irrigation with treated wastewater to improve crop water productivity of sweet corn, chickpea, faba bean and quinoa

    Directory of Open Access Journals (Sweden)

    Abdelaziz HIRICH

    2014-07-01

    Full Text Available Several experiments were conducted in the south of Morocco (IAV-CHA, Agadir during two seasons 2010 and 2011 in order to evaluate the effect of deficit irrigation with treated wastewater on several crops (quinoa, sweet corn, faba bean and chickpeas. During the first season (2010 three crops were tested, quinoa, chickpeas and sweet corn applying 6 deficit irrigation treatments during all crop stages alternating 100% of full irrigation as non-stress condition and 50% of full irrigation as water deficit condition applied during vegetative growth, flowering and grain filling stage. For all crops, the highest water productivity and yield were obtained when deficit irrigation was applied during the vegetative growth stage. During the second season (2011 two cultivars of quinoa, faba bean and sweet corn have been cultivated applying 6 deficit irrigation treatments (rainfed, 0, 25, 50, 75 and 100% of full irrigation only during the vegetative growth stage, while in the rest of crop cycle full irrigation was provided except for rainfed treatment. For quinoa and faba bean, treatment receiving 50% of full irrigation during vegetative growth stage recorded the highest yield and water productivity, while for sweet corn applying 75% of full irrigation was the optimal treatment in terms of yield and water productivity.

  19. Occurrence and potential crop uptake of emerging contaminants and related compounds in an agricultural irrigation network

    International Nuclear Information System (INIS)

    Calderón-Preciado, Diana; Matamoros, Víctor; Bayona, Josep M.

    2011-01-01

    Emerging contaminants have received much attention in recent years due to their presence in surface waters, but little attention has been paid to their occurrence in agricultural irrigation waters. This study investigated the occurrence of these compounds in an agricultural irrigation network in northeastern Spain and, for the first time, using two plant uptake models, estimated the concentration of selected micropollutants in crops. The concentration of micropollutants in agricultural irrigation waters ranged from 10 to 5130 ng L −1 and exhibited some attenuation over the course of the irrigation network. Bromoform, chloroform, diclofenac, caffeine, ibuprofen, naproxen, methyl dihydrojasmonate, galaxolide, butylated hydroxytoluene, and butylated hydroxyanisole were the most abundant contaminants (> 200 ng L −1 , on average). The estimated concentration of micropollutants in crops ranged from −1 , with the neutral compounds being the most abundant. Moreover, the predicted data obtained by fate models generally agreed with experimental data. Finally, human exposure to micropollutants through fruit and vegetable consumption was estimated to be 9.8 μg per person and week (Σ 27 contaminants detected). Further studies are needed to determine the health implications that the presence of these compounds in fruit and vegetables may have for consumers.

  20. Spoilage of vegetable crops by bacteria and fungi and related health hazards.

    Science.gov (United States)

    Tournas, V H

    2005-01-01

    After harvest, vegetables are often spoiled by a wide variety of microorganisms including many bacterial and fungal species. The most common bacterial agents are Erwinia carotovora, Pseudomonas spp., Corynebacterium, Xanthomonas campestris, and lactic acid bacteria with E. carotovora being the most common, attacking virtually every vegetable type. Fungi commonly causing spoilage of fresh vegetables are Botrytis cinerea, various species of the genera Alternaria, Aspergillus, Cladosporium, Colletotrichum, Phomopsis, Fusarium, Penicillium, Phoma, Phytophthora, Pythium and Rhizopus spp., Botrytis cinerea, Ceratocystis fimbriata, Rhizoctonia solani, Sclerotinia sclerotiorum, and some mildews. A few of these organisms show a substrate preference whereas others such as Botrytis cinerea, Colletotrichum, Alternaria, Cladosporium, Phytophthora, and Rhizopus spp., affect a wide variety of vegetables causing devastating losses. Many of these agents enter the plant tissue through mechanical or chilling injuries, or after the skin barrier has been broken down by other organisms. Besides causing huge economic losses, some fungal species could produce toxic metabolites in the affected sites, constituting a potential health hazard for humans. Additionally, vegetables have often served as vehicles for pathogenic bacteria, viruses, and parasites and were implicated in many food borne illness outbreaks. In order to slow down vegetable spoilage and minimize the associated adverse health effects, great caution should be taken to follow strict hygiene, good agricultural practices (GAPs) and good manufacturing practices (GMPs) during cultivation, harvest, storage, transport, and marketing.

  1. The development of (new) in vivo and in vitro techniques of significance for mutation breeding of vegetatively propagated crops

    International Nuclear Information System (INIS)

    Broertjes, C.

    1975-01-01

    Mutation breeding in vegetatively propagated plants is of great potential value 1) to improve the leading results of cross-breeding by altering one or a few important characters, without the rest of the genotype, 2) to induce variability where none is existing or difficult to be introduced in highly developed species and 3) to induce variability in sterile crops or in apomicts. One of the main stumbling-blocks is the chimera formation following the irradiation of the multicellular apices in buds and the subsequent prolonged time and increased labour needed before a mutation can be detected, recovered and compared with the existing cultivars. This problem can be solved by producing plants, ultimately originating from one mutated cell, resulting in solid mutants. The in vivo adventitious bud technique, using detached leaves, has proven its value for mutation breeding. It has been demonstrated in several species that commercial results can be obtained in a relatively short time. Experiments are underway to study the factors which control the process of adventitious bud formation and to make more crops accessible to this method. So far, however, with little success. Many and increasingly more crops can be propagated clonally by in vitro methods, using plant parts (explants of leaves, flowers, flower stalk), callus or other plant material. In some cases it is expected that adventitious plantlets also will originate from one cell. In other cases it is to be investigated which method is of potential value for being used in a mutation breeding programme. In a cooperative project (C. Broertjes, S. Roest and Miss G.S. Bokelmann) it is under investigation which plant part (young flowerheads, flower stalks and leaves) is to be preferred in Chrysanthemum morifolium. Preliminary results will be presented at the meeting. (author)

  2. Heavy metal pollution of vegetable crops irrigated with wastewater ...

    African Journals Online (AJOL)

    144) and edible parts of both exotic and traditional vegetables (samples = 240) irrigated with wastewater from some parts of Accra were studied. The concentrations of heavy metals in mg/l were quantified in wastewater from Accra and ...

  3. Tropospheric Ozone: a Menace for Crops and Natural Vegetation in Greece

    Directory of Open Access Journals (Sweden)

    Costas Saitanis

    Full Text Available Based on instrumental monitoring (AOT40s and phytodetection (with Bel-W3 and KK6/5 tobacco cultivars data we evaluated ambient ozone phytotoxicity in Greece. In the greater region of Mesogia-Attica, during the summer of 2000, the year before the new airport Eleftherios Venizelos (March 2001 began operating in this region, the AOT40s (ppb*h were 16,325 over 110 days at Spata; 18,646 over 113 days at Markopoulo; 8,093 over 22 days at Artemis and 16,679 over 121 days in Athens. The Bel- W3 and KK6/5 plants were extensively injured at all places with the greatest injury occurring at Artemis. During the same summer, ozone was also monitored in three rural areas of Corinth, at the Astronomical Observatory of Krionerion, Bogdani Hill and Kiato; The highest average daily AOT40 (192 ppb*h was observed in Krionerio, and it was almost equal to that occurred in Athens (193 ppb*h. Bel-W3 and KK6/5 plants placed at 11 rural areas in Corinth showed extended injury. The following year (2001, high injury was observed on other sets of bioindicator plants exposed in a network of 28 locations throughout the greater area of Volos and Pelion Mountain. Symptoms were more severe at Mortias, Xinovrisi, Tsagarada, Makrinitsa and Chania. The AOT40 (May-July was 11,391 and 10,351 ppb*hours for 2001 and 2002 respectively. Severe ozone-like symptoms have also been observed on field-cultivated grape vines, onion and watermelon plants. Synoptically, our investigations suggest that ozone occurs in the Greek mainland at levels that are potentially phytotoxic for sensitive crop species and for sensitive natural vegetation species including forest trees.

  4. Canola Oil Fuel Cell Demonstration: Volume 2 - Market Availability of Agricultural Crops for Fuel Cell Applications

    National Research Council Canada - National Science Library

    Adams, John W; Cassarino, Craig; Spangler, Lee; Johnson, Duane; Lindstrom, Joel; Binder, Michael J; Holcomb, Franklin H; Lux, Scott M

    2006-01-01

    .... The reformation of vegetable oil crops for fuel cell uses is not well known; yet vegetable oils such as canola oil represent a viable alternative and complement to traditional fuel cell feedstocks...

  5. Development of an unmanned agricultural robotics system for measuring crop conditions for precision aerial application

    Science.gov (United States)

    An Unmanned Agricultural Robotics System (UARS) is acquired, rebuilt with desired hardware, and operated in both classrooms and field. The UARS includes crop height sensor, crop canopy analyzer, normalized difference vegetative index (NDVI) sensor, multispectral camera, and hyperspectral radiometer...

  6. GENETIC RESOURCES OF ROOT VEGETABLES CROPS IN CENTRAL REGION OF RUSSIA

    Directory of Open Access Journals (Sweden)

    V. E. Yudaeva

    2017-01-01

    Full Text Available As a result of the research carried out in 2013-2016, the viability and originality of 1157 accessions of root vegetables have been preserved. 250 breeding accessions of carrot, beetroot and radish have been assessed for different economically valuable traits in open field and laboratory tests. Out of them, 65 accessions were selected out as sources of economically valuable traits. The early-maturing accessions of radish, such as ‘Korsar’, ‘Francuzsky Zavtrak’, ‘Mikhnevsky 1’, ‘18 Dney’, ‘Koroleva Margo’, ‘Polyna’, ‘Rozovo-Krasny s Belym Konchikom’, ‘Sofit’, ‘Kvarta’, ‘Saksa’, ‘Variant’ were regarded. The carrot accessions, such as ‘Scarlet’, ‘Koroleva Oseni’, ‘Dlinnaya Krasnaya’ were distinguished as sources of high yield capacity. The sources of high root yield in beetroot were varieties: ‘Valenta’, ‘Mestnaya iz Madagaskara’, Goldiers Super Black Beet, Zwaans Early Red Chief. The long shelf-life during wintertime was observed in beetroot varieties: ‘Slowiblot’, ‘Valenta’, ‘Lomarina’. The varieties: ‘Nevezhes’, ‘Neger Schwarz Halblange’, ‘Goldiers Super Black Beet’ were distinguished by high root marketability. With the use of world plant collection at VIR, the following varieties of root vegetables: ‘Dar Podmoskovya’ in carrot; ‘Osennya Princessa’ in beetroot; ‘Mikhnevskiy 1 ‘in garden radish; ‘Osenniy Krasavets’ in daikon; ‘Albina’ in root parsley; ‘Atlant’ in parsnip; Moscowskiy Krasavets in celery, and ‘Oseniya Udacha’ in wild radish were developed. It was also shown those varieties that had high yield capacity and root marketability were distinguished by small epidermal cell structure and large number of stomata per unit of leaf surface. It may be supposed that the large number of stomata per unit of leaf surface and small epidermal cell structure was the evidence of adaptive capacity of accessions taken for the study. 

  7. 8518 CONSUMPTION OF LEAFY VEGETABLES IN RURAL ...

    African Journals Online (AJOL)

    Michael

    2014-03-01

    Mar 1, 2014 ... The head of the household was interviewed and question items ... crops which include alfalfa, wheat and barley with edible leaves are known [5]. .... vegetables for minimum loss of water-soluble nutrients, in spite of the high ...

  8. A roadmap for breeding orphan leafy vegetable species

    OpenAIRE

    Sogbohossou, E.O.D.; Achigan-Dako, Enoch G.; Maundu, Patrick; Solberg, Svein; Deguenon, Edgar M.S.; Mumm, Rita H.; Hale, Iago; Deynze, van, Allen; Schranz, M.E.

    2018-01-01

    Despite an increasing awareness of the potential of "orphan" or unimproved crops to contribute to food security and enhanced livelihoods for farmers, coordinated research agendas to facilitate production and use of orphan crops by local communities are generally lacking. We provide an overview of the current knowledge on leafy vegetables with a focus on Gynandropsis gynandra, a highly nutritious species used in Africa and Asia, and highlight general and species-specific guidelines for partici...

  9. Resistance of Newly Introduced Vegetables to Meloidogyne arenaria and M. incognita in Korea

    Directory of Open Access Journals (Sweden)

    Donggeun Kim

    2013-12-01

    Full Text Available To select resistant vegetables against two species of root-knot nematodes, M. incognita and M. arenaria, 39 vegetables belongs to 7 families, 13 genera, 25 species were screened in greenhouse pot test. Susceptible vegetables to both nematodes were amarath and leaf beet in Amaranthaceae, Malabar spinach in Basellaceae, Moroheiya in Tiliaceae, and Water-convolvulus in Convolvulaceae, Pak-choi in Brassica campestris var. chinensis, Tah tasai in B. campestris var. narinosa, B. campestris var. chinensis x narinosa, Leaf mustard, Mustard green in B. juncea, Kyona in B. juncea var. laciniate, Choy sum in B. rapa subsp. arachinenesis, Kairan in B. oleracea var. alboglabra, Arugula in Eruca sativa, Garland chrysanthemum in Chrysanthemum coronarium, Endive in Cichorium endivia, Artichoke in Cynara cardunculus var. scolymus, Lettuce in Lactuca sativa. Resistant to M. arenaria but susceptible to M. incognita were B. oleracea cv. Matjjang kale, B. oleracea var. gongyloides cv. Jeok kohlrabi, and C. intybus cv. Radicchio. Resistant vegetables to both nematodes were C. intybus cv. Sugar loaf, Grumoro, Radichio treviso, B. oleracea cv. Manchu collard, Super matjjang, B. oleracea italica, B. oleracea var. botrytis italiana, and Perilla in Lamiaceae. Vegetables resistant to both species of root-knot nematodes could be used as high-valued rotation crops in greenhouses where root-knot nematodes are problem.

  10. Recent progress in the use of 'omics technologies in brassicaceous vegetables

    Directory of Open Access Journals (Sweden)

    Katja eWitzel

    2015-04-01

    Full Text Available Continuing advances in 'omics methodologies and instrumentation is enhancing the under-standing of how plants cope with the dynamic nature of their growing environment. 'Omics platforms have been only recently extended to cover horticultural crop species. Many of the most widely cultivated vegetable crops belong to the genus Brassica: these include plants grown for their root (turnip, rutabaga/swede, their swollen stem base (kohlrabi, their leaves (cabbage, kale, pak choi and their inflorescence (cauliflower, broccoli.Characterization at the genome, transcript, protein and metabolite levels has illustrated the complexity of the cellular response to a whole series of environmental stresses, including nutrient deficiency, pathogen attack, heavy metal toxicity, cold acclimation, and excessive and sub-optimal irradiation. This review covers recent applications of 'omics technologies to the brassicaceous vegetables, and discusses future scenarios in achieving improvements in crop end-use quality.

  11. The 2005 and 2012 major drought events in Iberia: monitoring vegetation dynamics and crop yields using satellite data.

    Science.gov (United States)

    Gouveia, Célia M.; Trigo, Ricardo M.

    2014-05-01

    large sectors of Iberia for up to seven months (out of eleven) of the vegetative cycle. While in the case of the drought episode of 2005 the impact on vegetation covered roughly 2/3 of the Iberian Peninsula (Gouveia et al., 2012), whereas in the recent episode of 2012 the deficit in greenness affected a more restrictive area located in central Iberia. The vegetation response to water stress was also analysed and compared for different land cover types. Results revealed a stronger vulnerability to drought events for arable land with severe impacts on cereals crop productions and yield (namely wheat), for Portugal and Spain in both years, however slightly less severe for 2012. In conclusion, and from an operational point of view, our results reveal the ability of the developed methodology to monitor vegetation stress and droughts in Iberia. Acknowledgments: This work was partially supported by national funds through FCT (Fundação para a Ciência e a Tecnologia, Portugal) under project QSECA (PTDC/AAG-GLO/4155/2012) Garcia-Herrera R., Paredes D., Trigo R. M., Trigo I. F., Hernandez E., Barriopedro D. and Mendes M. A., 2007: The Outstanding 2004/05 Drought in the Iberian Peninsula: Associated Atmospheric Circulation, J. Hydrometeorol., 8, 483-498. Gouveia C., Trigo R. M., and DaCamara C. C., 2009: Drought and vegetation stress monitoring in Portugal using satellite data, Nat. Hazards Earth Syst. Sci., 9, 185-195, doi:10.5194/nhess-9-185- 2009. Gouveia C.M., Bastos A., Trigo R.M., DaCamara C.C., 2012: Drought impacts on vegetation in the pre and post-fire events over Iberian Peninsula". Natural Hazards Earth System Sciences, 12, 3123-3137, 2012, doi:10.5194/nhess-12-3123-2012. Hoerling M., Eischeid J., Perlwitz J., Quan X., Zhang T., Pegion P., 2012: On the Increased Frequency of Mediterranean Drought. J. Climate, 25, 2146-2161. doi: http://dx.doi.org/10.1175/JCLI-D-11-00296.1 Trigo R.M., Añel J., Barriopedro D., García-Herrera R., Gimeno L., Nieto R., Castillo R., Allen

  12. An improved micropropagation system, ex vitro rooting and validation of genetic homogeneity in wild female Momordica dioica: an underutilized nutraceutical vegetable crop.

    Science.gov (United States)

    Choudhary, Sumitra Kumari; Patel, Ashok Kumar; Harish; Shekhawat, Smita; Shekhawat, Narpat S

    2017-07-01

    Momordica dioica Roxb. ex Willd., is a perennial and dioecious (2n = 28) plant of family Cucurbitaceae. Conventional methods of propagation through seeds, stem cuttings and rhizomatous/tuberous roots are inadequate for its mass cultivation as a vegetable crop. This paper reports an improved and efficient micropropagation method for wild female M. dioica using nodal explants. Shoot amplification was achieved using subculturing of in vitro raised shoots on MS medium supplemented with various concentrations of 6-benzylaminopurine (BAP) alone or in combination with indole-3-acetic acid (IAA). The maximum number of shoots (45.30 ± 3.83) with an average length 6.52 ± 0.89 cm were differentiated on MS medium containing 0.5 mg L -1 BAP, 0.1 mg L -1 IAA and additives (50 mg L -1 ascorbic acid, 25 mg L -1 each of adenine sulphate, citric acid and l-arginine). The cloned shoots were rooted ex vitro. Each shoot treated with 250 mg L -1 IBA for 5 min produced 12.3 ± 1.33 with a mean length 5.4 ± 0.73 cm. More than 85% (46 plants) of ex vitro rooted plantlets were successfully hardened in a greenhouse with normal growth characteristics. In order to evaluate the genetic stability of micropropagated plants, the two PCR-based techniques, Random Amplified Polymorphic DNA (RAPD) and Inter Simple Sequence Repeats (ISSR) were used. The amplification patterns of the micropropagated and mother plant were monomorphic thus depicting genetic stability of the micropropagation system. This protocol could be effectively employed for the mass multiplication of wild female M. dioica , a popular summer vegetable crop.

  13. A Hidden Markov Models Approach for Crop Classification: Linking Crop Phenology to Time Series of Multi-Sensor Remote Sensing Data

    Directory of Open Access Journals (Sweden)

    Sofia Siachalou

    2015-03-01

    Full Text Available Vegetation monitoring and mapping based on multi-temporal imagery has recently received much attention due to the plethora of medium-high spatial resolution satellites and the improved classification accuracies attained compared to uni-temporal approaches. Efficient image processing strategies are needed to exploit the phenological information present in temporal image sequences and to limit data redundancy and computational complexity. Within this framework, we implement the theory of Hidden Markov Models in crop classification, based on the time-series analysis of phenological states, inferred by a sequence of remote sensing observations. More specifically, we model the dynamics of vegetation over an agricultural area of Greece, characterized by spatio-temporal heterogeneity and small-sized fields, using RapidEye and Landsat ETM+ imagery. In addition, the classification performance of image sequences with variable spatial and temporal characteristics is evaluated and compared. The classification model considering one RapidEye and four pan-sharpened Landsat ETM+ images was found superior, resulting in a conditional kappa from 0.77 to 0.94 per class and an overall accuracy of 89.7%. The results highlight the potential of the method for operational crop mapping in Euro-Mediterranean areas and provide some hints for optimal image acquisition windows regarding major crop types in Greece.

  14. Pre-sowing irradiation of vegetable seeds

    Energy Technology Data Exchange (ETDEWEB)

    Stoyanov, S

    1975-01-01

    Results are reported of trials with radiation stimulation of vegetable crops conducted under farm conditions in different regions. They were based on exact tests accomplished at the IGHB. Pre-sowing irradiation of seed increased the greenhouse yield of Extase tomato variety by 15%; it increased the yield of Triumph tomato variety under field conditions as well. The pepper variety Kourtovska Kapiya and eggplant variety Bulgarski 12, both grown from irradiated seed in open field produced 18% and 5.5% higher yields, respectively. Irradiation of vegetable seeds finds a large application in the farm practice.

  15. Pre-sowing irradiation of vegetable seeds

    International Nuclear Information System (INIS)

    Stoyanov, S.

    1975-01-01

    Results are reported of trials with radiation stimulation of vegetable crops conducted under farm conditions in different regions. They were based on exact tests accomplished at the IGHB. Pre-sowing irradiation of seed increased the greenhouse yield of Extase tomato variety by 15%; it increased the yield of Triumph tomato variety under field conditions as well. The pepper variety Kourtovska Kapiya and eggplant variety Bulgarski 12, both grown from irradiated seed in open field produced 18% and 5.5% higher yields, respectively. Irradiation of vegetable seeds finds a large application in the farm practice. (author)

  16. Successive monitoring surveys of selected banned and restricted pesticide residues in vegetables from the northwest region of China from 2011 to 2013.

    Science.gov (United States)

    Yu, Yan; Hu, Senke; Yang, Yuxuan; Zhao, Xiaodan; Xue, Jianjun; Zhang, Jinghua; Gao, Song; Yang, Aimin

    2017-08-02

    A wide range of pesticides is applied for crop protection in vegetable cultivation in China. Regulation of pesticide maximum residue limits (MRLs) in vegetables is established but not fully enforced. And pesticide residues in vegetables were not well monitored. This study conducted the monitoring surveys from 2011 to 2013 to investigate the pesticides in vegetables in the northwest region of China. A multi-residue gas chromatography/mass spectrometry method (GC/MS) was used in determination of pesticides in vegetable samples. The χ 2 test was used to compare the concentration of pesticide residues. A total of 32 pesticide residues were detected in 518 samples from 20 types of vegetables in this study. 7.7% of the detected pesticide residues exceeded the MRLs. The percentages of residues that exceeded the MRLs for leafy, melon and fruit, and root vegetables were 11.2%, 5.1%, and 1.6%, respectively. There was no seasonal difference in the proportion of samples that exceeded the MRLs in different vegetables. A total of 84.3% (27/32) pesticides were detected at concentrations that exceeded MRLs. And of the 27 pesticides that exceeded the MRLs, 11 (40.7%) were banned for use in agriculture. The most frequently detected pesticides were Malathion (9.4%), Dichlorvos (8.7%), and Dimethoate (8.1%). The observed high rate of pesticides detected and high incidence of pesticide detection exceeding their MRLs in the commonly consumed vegetables indicated that the Good Agricultural Practices (GAP) may not be well followed. The management of pesticide use and control should be improved. Well-developed training programs should be initiated to improve pesticide application knowledge for farmers.

  17. The bromine content of some Dutch crops and fruits

    International Nuclear Information System (INIS)

    Admiraal, P.; Kok, H.A.; Das, H.A.; Hoede, D.; Zonderhuis, J.

    1975-09-01

    The natural bromine-content of Dutch potatoes, vegetables and fruits was determined by instrumental neutron activation analysis. Results are given for 348 samples divided over 20 crops and fruits. The data are compared to values published in the literature

  18. Evaluation of vegetation cover using the normalized difference vegetation index (NDVI

    Directory of Open Access Journals (Sweden)

    Gabriela Camargos Lima

    2013-08-01

    Full Text Available Soil loss by water erosion is the main cause of soil degradation in Brazil. However, erosion can be reduced by the presence of vegetation. The Normalized Difference Vegetation Index (NDVI makes it possible to identify the vegetative vigor of crops or natural vegetation which facilities the identification of areas with vegetation covers. This information is very important in identifying the phenomena which might be occurring in a particular area, especially those related to soil degradation by water erosion. Thus, the aim of this work was to assess the canopy cover by using NDVI, checking the image accuracy using the Coverage Index (CI based on the Stocking method, in the Sub-basin of Posses, which belongs to the Cantareira System, located in the Extrema municipality, Minas Gerais, Brazil. Landsat-5 TM images were used. The sub-basin of Posses was very altered in comparison to the surrounding areas. The NDVI technique proved to be a suitable tool to assess the uses that occur in the sub-basin of Posses, as validated by the Stocking methodology. The map derived from NDVI allowed the geographic distribution of different land uses to be observed and allowed for the identification of critical areas in relation to vegetation cover as well. This finding can be used to optimize efforts to recover and protect soil in areas with bare soil and degraded pasture, in order to reduce environmental degradation. The CI has not exceeded 40% for land use classes that occur in the majority of the sub-basin (91%, except in areas of woody vegetation.

  19. Using NDVI and guided sampling to develop yield prediction maps of processing tomato crop

    Energy Technology Data Exchange (ETDEWEB)

    Fortes, A.; Henar Prieto, M. del; García-Martín, A.; Córdoba, A.; Martínez, L.; Campillo, C.

    2015-07-01

    The use of yield prediction maps is an important tool for the delineation of within-field management zones. Vegetation indices based on crop reflectance are of potential use in the attainment of this objective. There are different types of vegetation indices based on crop reflectance, the most commonly used of which is the NDVI (normalized difference vegetation index). NDVI values are reported to have good correlation with several vegetation parameters including the ability to predict yield. The field research was conducted in two commercial farms of processing tomato crop, Cantillana and Enviciados. An NDVI prediction map developed through ordinary kriging technique was used for guided sampling of processing tomato yield. Yield was studied and related with NDVI, and finally a prediction map of crop yield for the entire plot was generated using two geostatistical methodologies (ordinary and regression kriging). Finally, a comparison was made between the yield obtained at validation points and the yield values according to the prediction maps. The most precise yield maps were obtained with the regression kriging methodology with RRMSE values of 14% and 17% in Cantillana and Enviciados, respectively, using the NDVI as predictor. The coefficient of correlation between NDVI and yield was correlated in the point samples taken in the two locations, with values of 0.71 and 0.67 in Cantillana and Enviciados, respectively. The results suggest that the use of a massive sampling parameter such as NDVI is a good indicator of the distribution of within-field yield variation. (Author)

  20. An Analysis of the Impact of Heat Waves in Labor and Crop Productivity in the Agricultural Sector in California

    Science.gov (United States)

    Castillo, F.; Wehner, M. F.; Gilless, J. K.

    2017-12-01

    California agriculture is an important economic activity for the state. California leads the nation in farms sales since 1950. In addition, agricultural employment in California reached approximately 410,000. Production of many fruits and vegetables is labor intensive and labor costs represent anywhere from 20% to 40% of total production costs. In additon, agricutlural production growth has been the highest for labor intensive crops such as berries (all types) and nuts. Given the importance of the agricultural sector and the labor component whithin it, the analysis of the impact of climate change on the agricultural sector of California becomes imperative. Heat waves are a weather related extreme that impact labor productivity, specially outdoor labor producitivity. We use crop production function analysis that incorporates socio economic variables such as crop prices, total acreage, production levels and harvest timiline with climate related variables such as an estimated Heat Index (HI) to analize the impact of heat waves on crop production via an impact on labor productivity for selected crops in the Central and Imperial Valleys in California. The analysis finds that the impact of heat waves varies by the degree of labor intensity of the crop and the relative intensity of the heat wave.

  1. Different techniques of multispectral data analysis for vegetation fraction retrieval

    Science.gov (United States)

    Kancheva, Rumiana; Georgiev, Georgi

    2012-07-01

    Vegetation monitoring is one of the most important applications of remote sensing technologies. In respect to farmlands, the assessment of crop condition constitutes the basis of growth, development, and yield processes monitoring. Plant condition is defined by a set of biometric variables, such as density, height, biomass amount, leaf area index, and etc. The canopy cover fraction is closely related to these variables, and is state-indicative of the growth process. At the same time it is a defining factor of the soil-vegetation system spectral signatures. That is why spectral mixtures decomposition is a primary objective in remotely sensed data processing and interpretation, specifically in agricultural applications. The actual usefulness of the applied methods depends on their prediction reliability. The goal of this paper is to present and compare different techniques for quantitative endmember extraction from soil-crop patterns reflectance. These techniques include: linear spectral unmixing, two-dimensional spectra analysis, spectral ratio analysis (vegetation indices), spectral derivative analysis (red edge position), colorimetric analysis (tristimulus values sum, chromaticity coordinates and dominant wavelength). The objective is to reveal their potential, accuracy and robustness for plant fraction estimation from multispectral data. Regression relationships have been established between crop canopy cover and various spectral estimators.

  2. Gamma-ray induced mutation breeding in tree fruit crops

    International Nuclear Information System (INIS)

    Ito, Yuji

    1998-01-01

    In many vegetatively propagated crops and tree fruit crops, spontaneous mutations have played an important role in the development of cultivars. Thus, induced mutation breeding has been thought to be a promising way to improve commercially important cultivars. At the Institute of Radiation Breeding (IRB), studies on induced mutation breeding of temperate zone fruit trees using gamma-rays have been performed since 1962. Black spot disease, caused by Alternaria alternata Japanese pear pathotype, is one of the most serious diseases of Japanese pear (Pyrus pyrifolia NAKAI var. culta NAKAI) in Japan. It is known that some Japanese pear cultivars are completely resistant to the disease. The pathogenic fungi produces host-specific toxins (named AK-toxin) (Tanaka 1993, Otani et al. 1973). The susceptibility of Japanese pear is controlled by a single dominant gene (Kozaki 1973). To improve the Japanese pear cultivar 'Nijisseiki', which is highly susceptible to black spot disease, young grafted plants of 'Nijisseiki' have been irradiated chronically in the Gamma Field of the IRB since 1962. In 1981, one twig of a tree planted at a distance of 53 m from the 60 Co source with an exposure rate of 0.138 Gy/day (20hr-irradiation) was selected as the first resistant mutant. It was designated as cultivar 'Gold Nijisseiki' and released in 1990. A selection method for mutants resistant to black spot disease using the pathogen produced toxin and pear leaf disks was established. It is a simple and stable selection method. Up to the present, three mutant cultivars resistant to black spot disease have been bred at the IRB by chronic and acute gamma-ray irradiation. They showed intermediate resistance compared with the completely resitan cultivar 'Choujuurou' and highly susceptible cultivar 'Nijisseiki'. We obtained some apple mutants resistant to alternaria leaf blotch disease using toxin and leaf disks and are also attempting to obtain mutant resistant to some disease in other temperate

  3. Perennial Grass Bioenergy Cropping on Wet Marginal Land

    NARCIS (Netherlands)

    Das, Srabani; Teuffer, Karin; Stoof, Cathelijne R.; Walter, Michael F.; Walter, M.T.; Steenhuis, Tammo S.; Richards, Brian K.

    2018-01-01

    The control of soil moisture, vegetation type, and prior land use on soil health parameters of perennial grass cropping systems on marginal lands is not well known. A fallow wetness-prone marginal site in New York (USA) was converted to perennial grass bioenergy feedstock production. Quadruplicate

  4. Clustering Module in OLAP for Horticultural Crops using SpagoBI

    Science.gov (United States)

    Putri, D.; Sitanggang, I. S.

    2017-03-01

    Horticultural crops data are organized by the Ministry of Agriculture, Republic of Indonesia. The data are presented annually in a tabular form and result a large data set. This situation makes users difficult to obtain summaries of horticultural crops data. This study aims to develop a clustering module in the SOLAP system for the distribution of horticultural crops in Indonesia and to visualize the results of clustering in a map using SpagoBI. The algorithm used for clustering is K-Means. Horticultural crops data include vegetables, ornamental plants, medicinal plants, and fruits from 2000 to 2013. The clustering module displays clustering results of horticultural crops in the form of text and table on SpagoBI. This module can also visualize the distribution of horticultural crops in the form of map on the HTML page. The application is expected to be useful for users in order to easily obtain summaries of the horticultural crops distribution data and its clusters. The summaries and clusters can be beneficial for the stakeholders to determine potential areas in Indonesia for horticultural crops.

  5. Investigation and Analysis of Crop Germplasm Resources in Coastal Areas of Shandong Province

    Institute of Scientific and Technical Information of China (English)

    Dong WANG; Shoujin FAN; Libin ZHANG; Hui ZHANG; Yingjie LIN; Hanfeng DING; Xiaodong ZHANG; Runfang LI; Zhan LI; Yumin MA; Yu ZHANG; Nana LI; Weijing CHEN; Zhongxue FAN

    2017-01-01

    This study focused on the investigation of crop germplasm resources in coastal areas of Shandong Province, including 132 villages in 82 towns of 34 counties. The survey collected local varieties and wild resources of grain crops, economic crops, vegetables and fruit trees, and a total of 848 samples were collected, belonging to 54 species of 39 genera in 15 families. In this study, the current situation and growth and decline conditions of crop germplasm resources were investigated, and their botanical classification and utilization importance were analyzed. Furthermore, the conservation, development and utilization of crop germplasm resources in coastal areas of Shandong Province were also discussed in this paper.

  6. Calibration and testing of AquaCrop for selected sorghum genotypes

    African Journals Online (AJOL)

    2017-04-02

    Apr 2, 2017 ... sorghum production highly susceptible to rainfall amount and distribution. Examining yield .... explained in the materials and methods section. MATERIALS AND ... crop and soil characteristics, and management practices that define the ...... Reference Manual, Annex I – AquaCrop, Version 4.0. FAO, Rome.

  7. Genomic selection prediction accuracy in a perennial crop: case study of oil palm (Elaeis guineensis Jacq.).

    Science.gov (United States)

    Cros, David; Denis, Marie; Sánchez, Leopoldo; Cochard, Benoit; Flori, Albert; Durand-Gasselin, Tristan; Nouy, Bruno; Omoré, Alphonse; Pomiès, Virginie; Riou, Virginie; Suryana, Edyana; Bouvet, Jean-Marc

    2015-03-01

    Genomic selection empirically appeared valuable for reciprocal recurrent selection in oil palm as it could account for family effects and Mendelian sampling terms, despite small populations and low marker density. Genomic selection (GS) can increase the genetic gain in plants. In perennial crops, this is expected mainly through shortened breeding cycles and increased selection intensity, which requires sufficient GS accuracy in selection candidates, despite often small training populations. Our objective was to obtain the first empirical estimate of GS accuracy in oil palm (Elaeis guineensis), the major world oil crop. We used two parental populations involved in conventional reciprocal recurrent selection (Deli and Group B) with 131 individuals each, genotyped with 265 SSR. We estimated within-population GS accuracies when predicting breeding values of non-progeny-tested individuals for eight yield traits. We used three methods to sample training sets and five statistical methods to estimate genomic breeding values. The results showed that GS could account for family effects and Mendelian sampling terms in Group B but only for family effects in Deli. Presumably, this difference between populations originated from their contrasting breeding history. The GS accuracy ranged from -0.41 to 0.94 and was positively correlated with the relationship between training and test sets. Training sets optimized with the so-called CDmean criterion gave the highest accuracies, ranging from 0.49 (pulp to fruit ratio in Group B) to 0.94 (fruit weight in Group B). The statistical methods did not affect the accuracy. Finally, Group B could be preselected for progeny tests by applying GS to key yield traits, therefore increasing the selection intensity. Our results should be valuable for breeding programs with small populations, long breeding cycles, or reduced effective size.

  8. Arsenic and Lead Uptake by Vegetable Crops Grown on Historically Contaminated Orchard Soils

    Directory of Open Access Journals (Sweden)

    M. B. McBride

    2013-01-01

    Full Text Available Transfer of Pb and As into vegetables grown on orchard soils historically contaminated by Pb arsenate pesticides was measured in the greenhouse. Lettuce, carrots, green beans, and tomatoes were grown on soils containing a range of total Pb (16.5–915 mg/kg and As (6.9–211 mg/kg concentrations. The vegetables were acid-digested and analyzed for total Pb and As using ICP-mass spectrometry. Vegetable contamination was dependent on soil total Pb and As concentrations, pH, and vegetable species. Arsenic concentrations were the highest in lettuce and green beans, lower in carrots, and much lower in tomato fruit. Transfer of Pb into lettuce and beans was generally lower than that of As, and Pb and As were strongly excluded from tomato fruit. Soil metal concentrations as high as 400 mg/kg Pb and 100 mg/kg As produced vegetables with concentrations of Pb and As below the limits of international health standards.

  9. Populations of predators and parasitoids of Bemisia tabaci (Hemiptera: Aleyrodidae) after the application of eight biorational insecticides in vegetable crops.

    Science.gov (United States)

    Simmons, Alvin M; Shaaban, Abd-Rabou

    2011-08-01

    The sweetpotato whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), is an important pest of vegetables and many other crops worldwide. Eight biorational insecticides (based on oil, plant derivatives, insect growth regulator and fungus) were evaluated in the field for their influence on populations of six natural enemies of B. tabaci. Natural populations of two predators [Chrysoperla carnea Stephen (Neuroptera: Chrysopidae) and Orius spp. (Hemiptera: Anthocoridae)] and two genera of parasitoids [Encarsia spp. and Eretmocerus spp. (Hymenoptera: Aphelinidae)] were evaluated in eggplant (Solanum melongena L.). Also, augmented field populations of three predators [C. carnea, Coccinella undecimpunctata L. (Coleoptera: Coccinellidae) and Macrolophus caliginosus (Wagner) (Hemiptera: Miridae)] were evaluated in cabbage (Brassica oleracea var. capitata L.), cucumber (Cucumis sativus L.) and squash (Cucurbita pepo L.). Regardless of natural enemy or crop, jojoba oil, Biovar and Neemix had the least effect on abundance of the natural enemies in comparison with the other insecticides during a 14 day evaluation period. Conversely, Admiral, KZ oil, Mesrona oil, Mesrona oil + sulfur and natural oil had a high detrimental effect on abundance of the natural enemies. These results demonstrate the differential effects of biorational insecticides for whitefly control on predators and parasitoids in the field. This article is a US Government work and is in the public domain in the USA. Published 2011 by John Wiley & Sons, Ltd.

  10. Habitat eradication and cropland intensification may reduce parasitoid diversity and natural pest control services in annual crop fields

    Directory of Open Access Journals (Sweden)

    Deborah K. Letourneau

    2015-10-01

    Full Text Available Abstract California’s central coast differs from many agricultural areas in the U.S., which feature large tracts of monoculture production fields and relatively simple landscapes. Known as the nations salad bowl, and producing up to 90% of U.S. production of lettuces, broccoli and Brussels sprouts, this region is a mosaic of fresh vegetable fields, coastal meadow, chaparral shrubs, riparian and woodland habitat. We tested for relationships between the percent cover of crops, riparian and other natural landscape vegetation and the species richness of parasitic wasps and flies foraging in crops, such as broccoli, kale and cauliflower, and interpreted our results with respect to the decrease in natural habitat and increase in cropland cover prompted by a local microbial contamination event in 2006. Our key results are that: (1 as cropland cover in the landscape increased, fewer species of parasitoids were captured in the crop field, (2 parasitoid richness overall was positively associated with the amount of riparian and other natural vegetation in the surrounding 500m, (3 different groups of parasitoids were associated with unique types of natural vegetation, and (4 parasitism rates of sentinel cabbage aphid and cabbage looper pests were correlated with landscape vegetation features according to which parasitoids caused the mortality. Although individual species of parasitoids may thrive in landscapes that are predominantly short season crops, the robust associations found in this study across specialist and generalist parasitoids and different taxa (tachinid flies, ichneumon wasps, braconid wasps shows that recent food safety practices targeting removal of natural vegetation around vegetable fields in an attempt to eliminate wildlife may harm natural enemy communities and reduce ecosystem services. We argue that enhancing biological diversity is a key goal for transforming agroecosystems for future productivity, sustainability and public health.

  11. Analysis of organic farming practices amongst crop farmers in Delta ...

    African Journals Online (AJOL)

    Dr. atoma & Family

    but not limited to sensitization of consumers on the benefit of organic foods, ... Organic farming is an agricultural technique of naturally producing quality crops, vegetables or animals ... This goal cannot be achieved by the conventional farming.

  12. Comunidades de malezas en cultivos hortícolas en la Provincia de Neuquén (Argentina Weed's communities in vegetable crops in Neuquen Province, (Argentina

    Directory of Open Access Journals (Sweden)

    María Beatriz Cerazo

    2008-07-01

    Full Text Available La gran mayoría de los cultivos hortícolas son muy sensibles a la competencia de malezas, las cuales inciden en los rendimientos y calidad de los mismos y en ocasiones determinan la pérdida total del cultivo. El presente trabajo tuvo como objetivo conocer la composición florística de las comunidades de malezas y su análisis sintaxonómico, ya que ambos constituyen un buen parámetro para medir el estado de los cultivos. La vegetación fue muestreada siguiendo la metodología de Braun Blanquet, en explotaciones de seis localidades de la provincia. A partir de esta información se determinaron ocho asociaciones, de las cuales seis están comprendidas en la clase Stellarietea mediae (Br. Bl. 1931 Tx., Prsg. et Lohm, 1950 y las dos restantes en Artemisietea vulgaris Lohm, Prsg et Tüxen 1950. El deficiente estado del cultivo está señalado por el desarrollo de malezas perennes de difícil control, incluidas en su mayoría en la clase Artemisietea vulgaris. Se inventariaron ochenta y nueve especies, para los periodos otoño- invierno y primavera - verano. Existe un claro predominio de Dicotiledóneas (79 % sobre Monocotiledóneas y de malezas anuales (66 % sobre perennes.Most vegetable crops are very sensitive to the weed competition, which affects the yields and quality and sometimes the total lost of the crop. The objective of this study was to evaluate the floristic composition of the weed communities and to analyse its sintaxonomy, because both are effective parameters for measuring the state of the crop. The vegetation was sampled following the Braun-Blanquet methodology on farms in six localities in the province. We determined eight associations from this information: six are included in the class Stellarietea mediae (Br. Bl. 1931 Tx., Prsg. et Lohm, 1950 and the other two in Artemisietea vulgaris Lohm, Prsg and Tüxen 1950. The deficient state of the crop resulted from the development of perennial and difficult to control weeds, most of

  13. Regional crop gross primary production and yield estimation using fused Landsat-MODIS data

    Science.gov (United States)

    He, M.; Kimball, J. S.; Maneta, M. P.; Maxwell, B. D.; Moreno, A.

    2017-12-01

    Accurate crop yield assessments using satellite-based remote sensing are of interest for the design of regional policies that promote agricultural resiliency and food security. However, the application of current vegetation productivity algorithms derived from global satellite observations are generally too coarse to capture cropland heterogeneity. Merging information from sensors with reciprocal spatial and temporal resolution can improve the accuracy of these retrievals. In this study, we estimate annual crop yields for seven important crop types -alfalfa, barley, corn, durum wheat, peas, spring wheat and winter wheat over Montana, United States (U.S.) from 2008 to 2015. Yields are estimated as the product of gross primary production (GPP) and a crop-specific harvest index (HI) at 30 m spatial resolution. To calculate GPP we used a modified form of the MOD17 LUE algorithm driven by a 30 m 8-day fused NDVI dataset constructed by blending Landsat (5 or 7) and MODIS Terra reflectance data. The fused 30-m NDVI record shows good consistency with the original Landsat and MODIS data, but provides better spatiotemporal information on cropland vegetation growth. The resulting GPP estimates capture characteristic cropland patterns and seasonal variations, while the estimated annual 30 m crop yield results correspond favorably with county-level crop yield data (r=0.96, pcrop yield performance was generally lower, but still favorable in relation to field-scale crop yield surveys (r=0.42, p<0.01). Our methods and results are suitable for operational applications at regional scales.

  14. The selective uptake of uranium and thorium from the environment by some vegetables

    International Nuclear Information System (INIS)

    Yusof, A.M.; Ghazali, Z.; Abdul-Rahman, S.; Sharif, J.

    1991-01-01

    An attempt was made to establish baseline information on environmental pollution in locally-grown vegetables by uranium and thorium. Lowland and highland species together with soil and fertilizer samples were collected and analyzed using fluorimetry, spectrophotometry and delayed neutron counting techniques. All leafy vegetables observed showed high uranium and thorium uptake especially those grown in the lowlands. Those grown in the highlands reflected no direct relationship in uranium and thorium contents. Several species common in both sampling areas exhibited direct relationship between these two elements making them as potential bio-indicators. Figures calculated for fruit-type and leafy vegetables were not only comparatively low but bore no direct correlation between the two elements. The use of phosphate-based fertilizers on some of the leafy species in the lowlands did not enhance the uptake of these elements in spite of the higher uranium and thorium contents in soil samples from the lowlands, between 20-85 μg/g for uranium and 43-226 μg/g thorium compared to about 13-20 μg/g and 35-55 μg/g respectively for soil samples in the highlands. Statistical analysis was done to substantiate these findings. Climatic conditions were also taken into account as one of the factors affecting selective uptake of these elements in the vegetables

  15. Winter wheat yield estimation of remote sensing research based on WOFOST crop model and leaf area index assimilation

    Science.gov (United States)

    Chen, Yanling; Gong, Adu; Li, Jing; Wang, Jingmei

    2017-04-01

    Accurate crop growth monitoring and yield predictive information are significant to improve the sustainable development of agriculture and ensure the security of national food. Remote sensing observation and crop growth simulation models are two new technologies, which have highly potential applications in crop growth monitoring and yield forecasting in recent years. However, both of them have limitations in mechanism or regional application respectively. Remote sensing information can not reveal crop growth and development, inner mechanism of yield formation and the affection of environmental meteorological conditions. Crop growth simulation models have difficulties in obtaining data and parameterization from single-point to regional application. In order to make good use of the advantages of these two technologies, the coupling technique of remote sensing information and crop growth simulation models has been studied. Filtering and optimizing model parameters are key to yield estimation by remote sensing and crop model based on regional crop assimilation. Winter wheat of GaoCheng was selected as the experiment object in this paper. And then the essential data was collected, such as biochemical data and farmland environmental data and meteorological data about several critical growing periods. Meanwhile, the image of environmental mitigation small satellite HJ-CCD was obtained. In this paper, research work and major conclusions are as follows. (1) Seven vegetation indexes were selected to retrieve LAI, and then linear regression model was built up between each of these indexes and the measured LAI. The result shows that the accuracy of EVI model was the highest (R2=0.964 at anthesis stage and R2=0.920 at filling stage). Thus, EVI as the most optimal vegetation index to predict LAI in this paper. (2) EFAST method was adopted in this paper to conduct the sensitive analysis to the 26 initial parameters of the WOFOST model and then a sensitivity index was constructed

  16. Occurrence of Intestinal Parasitic Contamination in Select Consumed Local Raw Vegetables and Fruits in Kuantan, Pahang

    Science.gov (United States)

    Yusof, Afzan Mat; Mohammad, Mardhiah; Abdullahi, Muna Abshir; Mohamed, Zeehaida; Zakaria, Robaiza; Wahab, Ridhwan Abdul

    2017-01-01

    Intestinal parasitic infections are one of the most common causes of human diseases that result in serious health and economic issues in many developing and developed countries. Raw vegetables and fruits play an important role in transmitting parasites to humans. Hence, the aim of this study was to investigate the parasitological contamination of select commonly consumed local leafy vegetables and fruits in Kuantan, Malaysia. One kilogram of locally consumed raw vegetables and fruits were collected randomly from the Kuantan wet market (Pasar Tani) during the monsoon season (November 2014–January 2015) and the dry season (February 2015–April 2015). A standard wet mount procedure and modified Ziehl-Neelsen staining were used for the detection of parasites. In the present study, the examination of vegetables revealed five different parasite species. The vegetable samples collected from Kuantan’s wet market were positive for both helminthes and protozoa. However, the fruits samples were negative for parasitic contamination. Pegaga was the most contaminated leafy vegetable in this study, and Strongyloides was the parasite found most frequently. Furthermore, there was a high diversity in the type of parasites observed during the dry season compared to the monsoon season. Therefore, further action should be taken to reduce the occurrence of parasitic contamination in vegetables by implementing the principles of good agricultural practice and improving water treatment efficacy. PMID:28228914

  17. Phenolic composition, antioxidant capacity and antibacterial activity of selected Irish Brassica vegetables.

    Science.gov (United States)

    Jaiswal, Amit Kumar; Rajauria, Gaurav; Abu-Ghannam, Nissreen; Gupta, Shilpi

    2011-09-01

    Vegetables belonging to the Brassicaceae family are rich in polyphenols, flavonoids and glucosinolates, and their hydrolysis products, which may have antibacterial, antioxidant and anticancer properties. In the present study, phenolic composition, antibacterial activity and antioxidant capacity of selected Brassica vegetables, including York cabbage, Brussels sprouts, broccoli and white cabbage were evaluated after extraction with aqueous methanol. Results obtained showed that York cabbage extract had the highest total phenolic content, which was 33.5, followed by 23.6, 20.4 and 18.4 mg GAE/g of dried weight (dw) of the extracts for broccoli, Brussels sprouts and white cabbage, respectively. All the vegetable extracts had high flavonoid contents in the order of 21.7, 17.5, 15.4 and 8.75 mg QE/g of extract (dw) for York cabbage, broccoli, Brussels sprouts and white cabbage, respectively. HPLC-DAD analysis showed that different vegetables contain a mixture of distinct groups of phenolic compounds. All the extracts studied showed a rapid and concentration dependent antioxidant capacity in diverse antioxidant systems. The antibacterial activity was determined against Gram-positive and Gram-negative bacteria. York cabbage extract exhibited significantly higher antibacterial activity against Listeria monocytogenes (100%) and Salmonella abony (94.3%), being the most susceptible at a concentration of 2.8%, whereas broccoli, Brussels sprouts and white cabbage had moderate to weak activity against all the test organisms. Good correlation (r2 0.97) was found between total phenolic content obtained by spectrophotometric analysis and the sum of the individual polyphenols monitored by HPLC-DAD.

  18. Control of enteric pathogens in ready-to-eat vegetable crops in organic and 'low input' production systems: a HACCP-based approach.

    Science.gov (United States)

    Leifert, C; Ball, K; Volakakis, N; Cooper, J M

    2008-10-01

    Risks from pathogens such as Salmonella, Yersinia, Campylobacter and Escherichia coli O157 have been identified as a particular concern for organic and 'low input' food production systems that rely on livestock manure as a nutrient source. Current data do not allow any solid conclusions to be drawn about the level of this risk, relative to conventional production systems. This review describes six Risk Reduction Points (RRPs) where risks from enteric pathogens can be reduced in ready-to-eat vegetables. Changes can be made to animal husbandry practices (RRP1) to reduce inoculum levels in manure. Outdoor livestock management (RRP2) can be optimized to eliminate the risk of faecal material entering irrigation water. Manure storage and processing (RRP3), soil management practices (RRP4) and timing of manure application (RRP5), can be adjusted to reduce the survival of pathogens originating from manure. During irrigation (RRP6), pathogen risks can be reduced by choosing a clean water source and minimizing the chances of faecal material splashing on to the crop. Although preventive measures at these RRPs can minimize enteric pathogen risk, zero risk can never be obtained for raw ready-to-eat vegetables. Good food hygiene practices at home are essential to reduce the incidence of food-borne illnesses.

  19. Occurrence and potential crop uptake of emerging contaminants and related compounds in an agricultural irrigation network

    Energy Technology Data Exchange (ETDEWEB)

    Calderon-Preciado, Diana [IDAEA-CSIC, Jordi Girona, 18, E-08034 Barcelona (Spain); Matamoros, Victor, E-mail: victor.matamoros@udg.edu [Department of Chemistry, University of Girona, Campus Montilivi, 17071 Girona (Spain); Bayona, Josep M. [IDAEA-CSIC, Jordi Girona, 18, E-08034 Barcelona (Spain)

    2011-12-15

    Emerging contaminants have received much attention in recent years due to their presence in surface waters, but little attention has been paid to their occurrence in agricultural irrigation waters. This study investigated the occurrence of these compounds in an agricultural irrigation network in northeastern Spain and, for the first time, using two plant uptake models, estimated the concentration of selected micropollutants in crops. The concentration of micropollutants in agricultural irrigation waters ranged from 10 to 5130 ng L{sup -1} and exhibited some attenuation over the course of the irrigation network. Bromoform, chloroform, diclofenac, caffeine, ibuprofen, naproxen, methyl dihydrojasmonate, galaxolide, butylated hydroxytoluene, and butylated hydroxyanisole were the most abundant contaminants (> 200 ng L{sup -1}, on average). The estimated concentration of micropollutants in crops ranged from < 1 to 7677 ng kg{sup -1}, with the neutral compounds being the most abundant. Moreover, the predicted data obtained by fate models generally agreed with experimental data. Finally, human exposure to micropollutants through fruit and vegetable consumption was estimated to be 9.8 {mu}g per person and week ({Sigma} 27 contaminants detected). Further studies are needed to determine the health implications that the presence of these compounds in fruit and vegetables may have for consumers.

  20. Validation of crop weather models for crop assessment arid yield ...

    African Journals Online (AJOL)

    IRSIS and CRPSM models were used in this study to see how closely they could predict grain yields for selected stations in Tanzania. Input for the models comprised of weather, crop and soil data collected from five selected stations. Simulation results show that IRSIS model tends to over predict grain yields of maize, ...

  1. GHG AND AEROSOL EMISSION FROM FIRE PIXEL DURING CROP RESIDUE BURNING UNDER RICE AND WHEAT CROPPING SYSTEMS IN NORTH-WEST INDIA

    Directory of Open Access Journals (Sweden)

    P. Acharya

    2016-10-01

    Full Text Available Emission of smoke and aerosol from open field burning of crop residue is a long-standing subject matter of atmospheric pollution. In this study, we proposed a new approach of estimating fuel load in the fire pixels and corresponding emissions of selected GHGs and aerosols i.e. CO2, CO, NO2, SO2, and total particulate matter (TPM due to burning of crop residue under rice and wheat cropping systems in Punjab in north-west India from 2002 to 2012. In contrasts to the conventional method that uses RPR ratio to estimate the biomass, fuel load in the fire pixels was estimated as a function of enhanced vegetation index (EVI. MODIS fire products were used to detect the fire pixels during harvesting seasons of rice and wheat. Based on the field measurements, fuel load in the fire pixels were modelled as a function of average EVI using second order polynomial regression. Average EVI for rice and wheat crops that were extracted through Fourier transformation were computed from MODIS time series 16 day EVI composites. About 23 % of net shown area (NSA during rice and 11 % during wheat harvesting seasons are affected by field burning. The computed average fuel loads are 11.32 t/ha (±17.4 during rice and 10.89 t/ha (±8.7 during wheat harvesting seasons. Calculated average total emissions of CO2, CO, NO2, SO2 and TPM were 8108.41, 657.85, 8.10, 4.10, and 133.21 Gg during rice straw burning and 6896.85, 625.09, 1.42, 1.77, and 57.55 Gg during wheat burning. Comparison of estimated values shows better agreement with the previous concurrent estimations. The method, however, shows its efficiency parallel to the conventional method of estimation of fuel load and related pollutant emissions.

  2. Quantifying the Impact of Tropospheric Ozone on Crops Productivity at regional scale using JULES-crop

    Science.gov (United States)

    Leung, F.

    2016-12-01

    Tropospheric ozone (O3) is the third most important anthropogenic greenhouse gas. It is causing significant crop production losses. Currently, O3 concentrations are projected to increase globally, which could have a significant impact on food security. The Joint UK Land Environment Simulator modified to include crops (JULES-crop) is used here to quantify the impacts of tropospheric O3 on crop production at the regional scale until 2100. We evaluate JULES-crop against the Soybean Free-Air-Concentration-Enrichment (SoyFACE) experiment in Illinois, USA. Experimental data from SoyFACE and various literature sources is used to calibrate the parameters for soybean and ozone damage parameters in soybean in JULES-crop. The calibrated model is then applied for a transient factorial set of JULES-crop simulations over 1960-2005. Simulated yield changes are attributed to individual environmental drivers, CO2, O3 and climate change, across regions and for different crops. A mixed scenario of RCP 2.6 and RCP 8.5 climatology and ozone are simulated to explore the implication of policy. The overall findings are that regions with high ozone concentration such as China and India suffer the most from ozone damage, soybean is more sensitive to O3 than other crops. JULES-crop predicts CO2 fertilisation would increase the productivity of vegetation. This effect, however, is masked by the negative impacts of tropospheric O3. Using data from FAO and JULES-crop estimated that ozone damage cost around 55.4 Billion USD per year on soybean. Irrigation improves the simulation of rice only, and it increases the relative ozone damage because drought can reduce the ozone from entering the plant stomata. RCP 8.5 scenario results in a high yield for all crops mainly due to the CO2 fertilisation effect. Mixed climate scenarios simulations suggest that RCP 8.5 CO2 concentration and RCP 2.6 O3 concentration result in the highest yield. Further works such as more crop FACE-O3 experiments and more Crop

  3. Comparison of NDVIs from GOCI and MODIS Data towards Improved Assessment of Crop Temporal Dynamics in the Case of Paddy Rice

    Directory of Open Access Journals (Sweden)

    Jong-Min Yeom

    2015-09-01

    Full Text Available The monitoring of crop development can benefit from the increased frequency of observation provided by modern geostationary satellites. This paper describes a four-year testing period from 2010 to 2014, during which satellite images from the world's first Geostationary Ocean Color Imager (GOCI were used for spectral analyses of paddy rice in South Korea. A vegetation index was calculated from GOCI data based on the bidirectional reflectance distribution function (BRDF-adjusted reflectance, which was then used to visually analyze the seasonal crop dynamics. These vegetation indices were then compared with those calculated using the Moderate-resolution Imaging Spectroradiometer (MODIS-normalized difference vegetation index (NDVI based on Nadir BRDF-adjusted reflectance. The results show clear advantages of GOCI, which provided four times better temporal resolution than the combined MODIS sensors, interpreting subtle characteristics of the vegetation development. Particularly in the rainy season, when data acquisition under clear weather conditions was very limited, it was possible to find cloudless pixels within the study sites by compiling GOCI images obtained from eight acquisition periods per day, from which the vegetation index could be calculated. In this study, ground spectral measurements from CROPSCAN were also compared with satellite-based vegetation products, despite their different index magnitude, according to systematic discrepancy, showing a similar crop development pattern to the GOCI products. Consequently, we conclude that the very high temporal resolution of GOCI is very beneficial for monitoring crop development, and has potential for providing improved information on phenology.

  4. Can Flowering Greencover Crops Promote Biological Control in German Vineyards?

    Directory of Open Access Journals (Sweden)

    Christoph Hoffmann

    2017-11-01

    Full Text Available Greencover crops are widely recommended to provide predators and parasitoids with floral resources for improved pest control. We studied parasitism and predation of European grapevine moth (Lobesia botrana eggs and pupae as well as predatory mite abundances in an experimental vineyard with either one or two sowings of greencover crops compared to spontaneous vegetation. The co-occurrence between greencover flowering time and parasitoid activity differed greatly between the two study years. Parasitism was much higher when flowering and parasitoid activity coincided. While egg predation was enhanced by greencover crops, there were no significant benefits of greencover crops on parasitism of L. botrana eggs or pupae. Predatory mites did not show an as strong increase on grapevines in greencover crop plots as egg predation. Overall, our study demonstrates only limited pest control benefits of greencover crops. Given the strong within- and between year variation in natural enemy activity, studies across multiple years will be necessary to adequately describe the role of greencover crops for pest management and to identify the main predators of L. botrana eggs.

  5. The vegetation in the Biotest basin, Forsmark nuclear power plant, 1984-1986

    International Nuclear Information System (INIS)

    Renstroem, S.; Svensson, Roger; Wigren-Svensson, M.

    1990-01-01

    In order to investigate if and how the vegetation has changed in consequence of the raised temperature in the biotest lake (which is the discharge area for the cooling water from the power plant), investigations of the distribution and production of macroscopic algae and higher vegetation have been carried out since 1974. This report presents the results from the period 1984-1986. The investigations have shown that not only the temperature, but also the absence of ice cover, the water stream through the biotest lake and the reduced exposition caused by the embankment, are of importance for the vegetation in the lake. The vegetation has changed in the following aspects: The area of the shore vegetation has been continuously increasing. In 1982 it was c. 6200 m 2 , 1984 it was c. 9850 m 2 and 1985 c. 11000 m 2 , mainly consisting of Phragmites communis. Most of the shore line is now occupied by vegetation. The standing crop was found to have decreased since the power plants started. 1980 there was 74 g/m 2 dry weight and in 1986 28 g/m 2 . Among the most important species of macroscopic underwater vegetation Chara spp and Potamogeton pectinatus show a decrease of standing crop while Cladophora glomerata and Vaucheria sp have increased since the investigation started. (authors)

  6. Increased occurrence of pesticide residues on crops grown in protected environments compared to crops grown in open field conditions.

    Science.gov (United States)

    Allen, Gina; Halsall, Crispin J; Ukpebor, Justina; Paul, Nigel D; Ridall, Gareth; Wargent, Jason J

    2015-01-01

    Crops grown under plastic-clad structures or in greenhouses may be prone to an increased frequency of pesticide residue detections and higher concentrations of pesticides relative to equivalent crops grown in the open field. To test this we examined pesticide data for crops selected from the quarterly reports (2004-2009) of the UK's Pesticide Residue Committee. Five comparison crop pairs were identified whereby one crop of each pair was assumed to have been grown primarily under some form of physical protection ('protected') and the other grown primarily in open field conditions ('open'). For each pair, the number of detectable pesticide residues and the proportion of crop samples containing pesticides were statistically compared (n=100 s samples for each crop). The mean concentrations of selected photolabile pesticides were also compared. For the crop pairings of cabbage ('open') vs. lettuce ('protected') and 'berries' ('open') vs. strawberries ('protected') there was a significantly higher number of pesticides and proportion of samples with multiple residues for the protected crops. Statistically higher concentrations of pesticides, including cypermethrin, cyprodinil, fenhexamid, boscalid and iprodione were also found in the protected crops compared to the open crops. The evidence here demonstrates that, in general, the protected crops possess a higher number of detectable pesticides compared to analogous crops grown in the open. This may be due to different pesticide-use regimes, but also due to slower rates of pesticide removal in protected systems. The findings of this study raise implications for pesticide management in protected-crop systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Testing an Irrigation Decision Support Tool for California Specialty Crops

    Science.gov (United States)

    Johnson, L.; Cahn, M.; Benzen, S.; Zaragoza, I.; Murphy, L.; Melton, F. S.; Martin, F.; Quackenbush, A.; Lockhart, T.

    2015-12-01

    Estimation of crop evapotranspiration supports efficiency of irrigation water management, which in turn can mitigate nitrate leaching, groundwater depletion, and provide energy savings. Past research in California and elsewhere has revealed strong relationships between photosynthetically active vegetation fraction (Fc) and crop evapotranspiration (ETc). Additional research has shown the potential of monitoring Fc by satellite remote sensing. The U.C. Cooperative Extension developed and operates CropManage (CM) as on-line database irrigation (and nitrogen) scheduling tool. CM accounts for the rapid growth and typically brief cycle of cool-season vegetables, where Fc and fraction of reference ET can change daily during canopy development. The model automates crop water requirement calculations based on reference ET data collected by California Dept. Water Resources. Empirically-derived equations are used to estimate daily Fc time-series for a given crop type primarily as a function of planting date and expected harvest date. An application programming interface (API) is under development to provide a check on modeled Fc of current crops and facilitate CM expansion to new crops. The API will enable CM to extract field scale Fc observations from NASA's Satellite Irrigation Management Support (SIMS). SIMS is mainly Landsat based and currently monitors Fc over about 8 million irrigation acres statewide, with potential for adding data from ESA/Sentinel for improved temporal resolution. In the current study, a replicated irrigation trial was performed on romaine lettuce at the USDA Agricultural Research Station in Salinas, CA. CropManage recommendations were used to guide water treatments by drip irrigation at 50%, 75%, 100% ETc replacement levels, with an added treatment at 150% ET representing grower standard practice. Experimental results indicate that yields from the 100% and 150% treatments were not significantly different and were in-line with industry average, while

  8. Early prediction of 90Sr and 137Cs content in edible parts of crops and selection of plants with high uptake ability

    International Nuclear Information System (INIS)

    Zhao Wenhu; Xu Shiming; Hou Lanxin; Shang Zhaorong

    1995-10-01

    The uptake characteristics to 90 Sr and 137 Cs of nine kinds of crops, including spring wheat, rice, soybean, vegetables etc., were studied from seedling to maturity. The change of 90 Sr content per unit of dry weight can be classified into two types--the 90 Sr content kept in the same level during the whole growing season and kept increasing with the growing period until it came to the maximum point at the time of maturity. 90 Sr and 137 Cs in the aerial part of plants were mainly distributed in leaves, but the amounts in seeds and fruits were less. The content of 90 Sr decreased but the content of 137 Cs increased from young to old leaves. So it could be concluded that early prediction of the radioactive content of edible parts according to the content of young leaves was possible. Selection of 169 species in 18 families of plants with high uptake ability of 90 Sr and 137 Cs, which grow in Qinshan region near a nuclear power plant and in Beijing region, is also reported. (8 refs., 6 figs., 16 tabs.)

  9. An invasive plant alters phenotypic selection on the vegetative growth of a native congener.

    Science.gov (United States)

    Beans, Carolyn M; Roach, Deborah A

    2015-02-01

    The ecological consequences of plant competition have frequently been tested, but the evolutionary outcomes of these interactions have gone largely unexplored. The study of species invasions can make an important contribution to this field of research by allowing us to watch ecological and evolutionary processes unfold as a novel species is integrated into a plant community. We explored the ecological and evolutionary impact of an invasive jewelweed, Impatiens glandulifera, on a closely related native congener, I. capensis and asked: (1) Does the presence of the invasive jewelweed alter the fitness of native jewelweed populations? (2) Does the invasive jewelweed affect the vegetative growth of the native congener? and (3) Does the invasive jewelweed alter phenotypic selection on the vegetative traits of the native congener? We used a greenhouse competition experiment, an invasive species removal field experiment, and a survey of natural populations. We show that when the invasive jewelweed is present, phenotypic selection favors native jewelweed individuals investing less in rapid upward growth and more in branching and fruiting potential through the production of nodes. This research demonstrates that invasive plants have the potential to greatly alter natural selection on native competitors. Studies investigating altered selection in invaded communities can reveal the potential evolutionary impact of invasive competitors, while deepening our understanding of the more general role of competition in driving plant evolution and permitting species coexistence. © 2015 Botanical Society of America, Inc.

  10. Stalking Antibiotic-Resistant Bacteria in Common Vegetables

    Science.gov (United States)

    Brock, David; Boeke, Caroline; Josowitz, Rebecca; Loya, Katherine

    2004-01-01

    The study developed a simple experimental protocol for studying antibiotic resistant bacteria that will allow students to determine the proportion of such bacteria found on common fruit and vegetable crops. This protocol can open up the world of environmental science and show how human behavior can dramatically alter ecosystems.

  11. Preference for Well-Balanced Saliency in Details Cropped from Photographs

    Science.gov (United States)

    Abeln, Jonas; Fresz, Leonie; Amirshahi, Seyed Ali; McManus, I. Chris; Koch, Michael; Kreysa, Helene; Redies, Christoph

    2016-01-01

    Photographic cropping is the act of selecting part of a photograph to enhance its aesthetic appearance or visual impact. It is common practice with both professional (expert) and amateur (non-expert) photographers. In a psychometric study, McManus et al. (2011b) showed that participants cropped photographs confidently and reliably. Experts tended to select details from a wider range of positions than non-experts, but other croppers did not generally prefer details that were selected by experts. It remained unclear, however, on what grounds participants selected particular details from a photograph while avoiding other details. One of the factors contributing to cropping decision may be visual saliency. Indeed, various saliency-based computer algorithms are available for the automatic cropping of photographs. However, careful experimental studies on the relation between saliency and cropping are lacking to date. In the present study, we re-analyzed the data from the studies by McManus et al. (2011a,b), focusing on statistical image properties. We calculated saliency-based measures for details selected and details avoided during cropping. As expected, we found that selected details contain regions of higher saliency than avoided details on average. Moreover, the saliency center-of-mass was closer to the geometrical center in selected details than in avoided details. Results were confirmed in an eye tracking study with the same dataset of images. Interestingly, the observed regularities in cropping behavior were less pronounced for experts than for non-experts. In summary, our results suggest that, during cropping, participants tend to select salient regions and place them in an image composition that is well-balanced with respect to the distribution of saliency. Our study contributes to the knowledge of perceptual bottom-up features that are germane to aesthetic decisions in photography and their variability in non-experts and experts. PMID:26793086

  12. Characterization of the southwest United States for the production of biomass energy crops

    Energy Technology Data Exchange (ETDEWEB)

    Salk, M.S.; Folger, A.G.

    1987-03-01

    The southwest United States, an area of diverse climate, topography, terrain, soils, and vegetation, is characterized to determine the feasibility of growing terrestrial energy crops there. The emphasis in the study is on delineating general zones of relative resource and environmental suitability, which are then evaluated to estimate the potential of the region for energy crop production. 100 refs., 25 figs., 24 tabs.

  13. Weed management strategies for castor bean crops

    Directory of Open Access Journals (Sweden)

    Augusto Guerreiro Fontoura Costa

    2014-04-01

    Full Text Available Castor bean crops are agriculturally relevant due to the quality and versatility of their oil, both for the chemical industry and for biodiesel production. Proper weed management is important for both the cultivation and the yield of castor bean crops; therefore, the intention of the present work is to review pertinent information regarding weed management, including the studies regarding weed interference periods, chemical controls for use in different crop production systems and herbicide selectivity, for castor bean crops. Weed science research for castor bean crops is scarce. One of the main weed management challenges for castor bean crops is the absence of herbicides registered with the Ministry of Agriculture, Livestock and Food Supply (MALFS. Research for viable herbicides for weed control in castor bean crops should be directed by research and/or rural extension institutions, associations and farmers cooperatives, as well as by manufactures, for the registration of these selective herbicides, which would be primarily used to control eudicotyledons in castor bean crops. New studies involving the integration of weed control methods in castor bean also may increase the efficiency of weed management, for both small farmers using traditional crop methods in the Brazilian Northeast region, as well as for areas with the potential for large scale production, using conservation tillage systems, such as the no-tillage crop production system.

  14. CROP SPECIES RECOGNITION AND DISCRIMINATION PADDY-RICE-GROWINGFIELDS FROM REAPED-FIELDS BY THE RADAR VEGETATION INDEX (RVI OF ALOS-2/PALSAR2

    Directory of Open Access Journals (Sweden)

    Y. Yamada

    2016-06-01

    Full Text Available The Japanese ALOS-2 satellite was launched on May 24th, 2014. It has the L-band SAR, PALSAR-2. Kim,Y. and van Zyl, J.J. proposed a kind of Radar Vegetation Index (RVI as RVI = 8 * σ0hv / (σ0hh + σ0vv + 2* σ0hv by L-band full-polarimetric radar data. Kim, Y. and Jackson, T.J., et al. applied the equation into rice and soybean by multi-frequency polarimetric scatterometer above 4.16 meters from the ground. Their report showed the L-band was the most promising wave length for estimating LAI and NDVI from RVI. The author tried to apply the analysis to the actual paddy field areas, both Inashiki region and Miyagi region in the eastern main island, “Honshu”, areas of Japan by ALOS-2/PALSAR-2 full-polarimetry data in the summer season, the main crop growing time, of 2015. Judging from conventional methods, it will be possible to discriminate paddy rice growing fields from reaped fields or the other crops growing fields by the PALSAR-2 data. But the RVI value is vaguely related to such land use or biomass at the present preliminary experiment. The continuous research by the additional PALSAR-2 full-polarimetry data should be desired.

  15. 40 CFR 265.276 - Food chain crops.

    Science.gov (United States)

    2010-07-01

    ... of crop and soil characteristics, sample selection criteria, sample size determination, analytical... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Food chain crops. 265.276 Section 265... FACILITIES Land Treatment § 265.276 Food chain crops. (a) An owner or operator of a hazardous waste land...

  16. Selection of Almond Vegetative Rootstocks for Water Stress Tolerance Based on the Morphological Markers

    Directory of Open Access Journals (Sweden)

    A.A. Shokouhian

    2016-02-01

    Full Text Available Introduction: One of the microbiological preparations used for this study was Effective Microorganisms (EM, being a commercial mixture of photosynthesizing bacteria, Actinomycetes, lactic acid bacteria, yeasts and fermenting fungi. The microbiological composition of the EM concentrateincludesStreptomyces albus, Propioni bacterium freudenreichil, Streptococcus lactis, Aspergillus oryzae, Mucor hiemalis, Saccharomycescerevisiae and Candida utilis. Moreover, EM also contains an unspecified amount of Lactobacillus sp. Rhodo pseudomonas sp. and Streptomyces griseus. Effective Microorganisms have a positive effect on the decomposition of organic matter, limiting putrefaction, increasing nitrogen content in the root medium of plants, phosphorus, improving soil fertility and as a result contributing to the growth and development of the root systems of plants. Selection of almond vegetative rootstocks for water stress tolerance is important for almond crop production in arid and semi-arid regions. The study of the eco-morphological characteristics that determine the success of a rootstock in a particular environment is a powerful tool for both agricultural management and breeding purposes. The aim of this work was to select the new rootstocks for water shortage tolerance, impact of water stress as well as Effective Microorganism (EM on morphological characteristics of almond rootstocks. Materials and Methods: In order to select the new rootstocks for water shortage tolerance, impact of water stress as well as EMonmorphologicalcharacteristics of almondrootstocks were studiedin thedepartment ofHorticulture, Ferdowsi University of Mashhad, in 2011-2012. The experiment was carried out with four replications in a completely random blockdesign to study the effects of two concentrations of EM (0 and 1%, three irrigation levels (normal irrigation 100%-control-and irrigation after depletion of 33 and 66% of available water, and four almond rootstocks including GF

  17. Ecophysiology of horticultural crops: an overview

    Directory of Open Access Journals (Sweden)

    Restrepo-Díaz Hermann

    2010-04-01

    Full Text Available

    Horticultural crops include a wide range of commodities, such as fruits and vegetables that are highly valuable for humanity. They are extensively grown worldwide, and their production can be described as an open and highly complex system affected by many factors, among which we can count weather, soil and cropping system, as well as the interaction between these factors. The aim of environmental physiology is to characterize the interaction between environmental stress and crop response, in order to maximize both yield quantity and quality. This review presents the most recent findings about the effects of the main abiotic environmental factors (light, temperature, and water on whole plant physiology of horticultural crops. Environmental stresses can cause morpho-anatomical, physiological and biochemical changes in crops, resulting in a strong profit reduction. A clear understanding of environmental factors and their interaction with physiological processes is extremely important for improving horticultural practices (irrigation, light management, mineral nutrition, greenhouse design, etc., optimizing photosynthetic carbon assimilation and increasing fruit productivity and crop quality. In addition, the information obtained by ecophysiological studies can be incorporated into breeding programs or agricultural zoning strategies.

  18. bacteriological quality of some ready to eat vegetables as retailed ...

    African Journals Online (AJOL)

    DR. AMINU

    Key words: Quality, Vegetable, Aerobic plate count, coliform index. INTRODUCTION ... before consumption (Okigbo, 1990). ... peptone water from which 1ml was transferred to the first test .... Crops for Human Consumption 1996; FDA 1998).

  19. Importance of pollinators in changing landscapes for world crops.

    Science.gov (United States)

    Klein, Alexandra-Maria; Vaissière, Bernard E; Cane, James H; Steffan-Dewenter, Ingolf; Cunningham, Saul A; Kremen, Claire; Tscharntke, Teja

    2007-02-07

    The extent of our reliance on animal pollination for world crop production for human food has not previously been evaluated and the previous estimates for countries or continents have seldom used primary data. In this review, we expand the previous estimates using novel primary data from 200 countries and found that fruit, vegetable or seed production from 87 of the leading global food crops is dependent upon animal pollination, while 28 crops do not rely upon animal pollination. However, global production volumes give a contrasting perspective, since 60% of global production comes from crops that do not depend on animal pollination, 35% from crops that depend on pollinators, and 5% are unevaluated. Using all crops traded on the world market and setting aside crops that are solely passively self-pollinated, wind-pollinated or parthenocarpic, we then evaluated the level of dependence on animal-mediated pollination for crops that are directly consumed by humans. We found that pollinators are essential for 13 crops, production is highly pollinator dependent for 30, moderately for 27, slightly for 21, unimportant for 7, and is of unknown significance for the remaining 9. We further evaluated whether local and landscape-wide management for natural pollination services could help to sustain crop diversity and production. Case studies for nine crops on four continents revealed that agricultural intensification jeopardizes wild bee communities and their stabilizing effect on pollination services at the landscape scale.

  20. The impact of mineral fertilization and atmospheric precipitation on yield of field crops on family farms

    Directory of Open Access Journals (Sweden)

    Munćan Mihajlo

    2016-01-01

    Full Text Available The field crop production, as the most important branch of plant production of the Republic of Serbia, in the period 2002-2011, was carried out on an average of over 2.7 million hectares, 82.7% of which took place on the individual farms/family holdings. Hence, the subject of research in this paper covers yields of major field crops realized on family farms in the region of Vojvodina in the period 1972-2011. The main objective of the research is to study the interdependence of utilization of mineral fertilizers and atmospheric precipitation during the vegetation period and realized yields of major field crops on family farms in the observed period. The regression analysis was applied in order to verify dependencies and determine the form of dependence of achieved yields from examined variables. The results showed that the main limiting factors for obtaining high and stable yields of field crops is inadequate use of fertilizers and the lack of precipitation during the vegetation period.

  1. EFFECTIVENESS OF SELECTION OF WHEAT TO MODERN REQUIREMENTS FOR SUSTAINABLE DEVELOPMENT OF AGRICULTURE III. ENERGY PRODUCTIVITY OF CROPS

    Directory of Open Access Journals (Sweden)

    Elisaveta Vasileva

    2014-03-01

    Full Text Available Aim of the study was to conclude on adaptation of modern varieties to the requirements of sustainable agriculture and hence the effectiveness of their methods of selection with respect to these requirements. The comparison between genotypes in two directions - by the selection methods by which they were established and according to the time of their creation. Energy assessment shows that the gross energy yield of grain is higher ( in average 5% over standard for varieties produced by the methods of the Intervarietal hybridization and during the period 1995 to 1999. While absolute maximum values of the energy productivity of grain (at N18 and maximum average total gross energy productivity of crops (4% above standard were detected in genotypes generated by the methods of mutagenesis by irradiation with gamma rays. Absolute maximum value of the energy productivity of crops were reported in cultivar Zdravko (at N18, which was established by the method of plant biotechnology by combining and somaclonal variation.

  2. Use of Vegetation Health Data for Estimation of Aus Rice Yield in Bangladesh

    OpenAIRE

    Rahman, Atiqur; Roytman, Leonid; Krakauer, Nir Y.; Nizamuddin, Mohammad; Goldberg, Mitch

    2009-01-01

    Rice is a vital staple crop for Bangladesh and surrounding countries, with interannual variation in yields depending on climatic conditions. We compared Bangladesh yield of aus rice, one of the main varieties grown, from official agricultural statistics with Vegetation Health (VH) Indices [Vegetation Condition Index (VCI), Temperature Condition Index (TCI) and Vegetation Health Index (VHI)] computed from Advanced Very High Resolution Radiometer (AVHRR) data covering a period of 15 years (1991...

  3. Scientific Verification Test of Orbitec Deployable Vegetable Production System for Salad Crop Growth on ISS- Gas Exchange System design and function

    Science.gov (United States)

    Eldemire, Ashleigh

    2007-01-01

    The ability to produce and maintain salad crops during long term missions would be a great benefit to NASA; the renewable food supply would save cargo space, weight and money. The ambient conditions of previous ground controlled crop plant experiments do not reflect the microgravity and high CO2 concentrations present during orbit. It has been established that microgravity does not considerably alter plant growth. (Monje, Stutte, Chapman, 2005). To support plants in a space-craft environment efficient and effective lighting and containment units are necessary. Three lighting systems were previously evaluated for radish growth in ambient air; fluorescent lamps in an Orbitec Biomass Production System Educational (BPSE), a combination of red, blue, and green LED's in a Deployable Vegetable Production System (Veggie), and a combination of red and blue LED's in a Veggie. When mass measurements compared the entire possible growing area vs. power consumed by the respective units, the Veggies clearly exceeded the BPSE indicating that the LED units were a more resource efficient means of growing radishes under ambient conditions in comparison with fluorescent lighting. To evaluate the most productive light treatment system for a long term space mission a more closely simulated ISS environment is necessary. To induce a CO2 dense atmosphere inside the Veggie's and BPSE a gas exchange system has been developed to maintain a range of 1000-1200 ppm CO2 during a 21-day light treatment experiment. This report details the design and function of the gas exchange system. The rehabilitation, trouble shooting, maintenance and testing of the gas exchange system have been my major assignments. I have also contributed to the planting, daily measurements and harvesting of the radish crops 21-day light treatment verification test.

  4. 40 CFR 264.276 - Food-chain crops.

    Science.gov (United States)

    2010-07-01

    ...) Describe the procedures used in conducting any tests, including the sample selection criteria, sample size... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Food-chain crops. 264.276 Section 264... Treatment § 264.276 Food-chain crops. The Regional Administrator may allow the growth of food-chain crops in...

  5. Design and validation of portable optical instrument for crop diagnose

    Science.gov (United States)

    Sun, Gang; Zheng, Wengang; Huang, Wengjiang; Wan, Huawei; Liu, Liangyun

    2005-12-01

    In this paper, a portable diagnostic instrument was designed and tested, which can measure the normalized difference vegetation index (NDVI) and structure insensitive pigment index (SIPI) of crop canopy in field. The instrument have a valid survey area of 1 m*1 m when the height between instrument and the ground was fixed to 1.3 meter The crop growth condition can be assessed based on their NDVI and SIPI values, so it will be very important for crop management to get these values. The instrument uses sunlight as its light source. There are six special different photoelectrical detectors within red, blue and near infrared bands, which are used for detecting incidence sunlight and reflex light from the canopy of crop. This optical instrument includes photoelectric detector module, signal process and A/D convert module, the data storing and transmission module and human-machine interface module. The detector is the core of the instrument which measures the spectrums at special bands. The microprocessor calculates the NDVI and SIPI value based on the A/D value. And the value can be displayed on the instrument's LCD, stored in the flash memory of instrument and can also be uploaded to PC through the PC's RS232 serial interface. The prototype was tested in the crop field at different view directions. This paper also provided the method of calibration, the results showed that the average measurement error to SIPI value of instrument was 5.25% and the average measurement error to NDVI value in vegetation-covered region is 6.40%. It reveals the on-site and non-sampling mode of crop growth monitoring by fixed on the agricultural machine traveling in the field.

  6. The Potential Role of Neglected and Underutilised Crop Species as Future Crops under Water Scarce Conditions in Sub-Saharan Africa

    Science.gov (United States)

    Chivenge, Pauline; Mabhaudhi, Tafadzwanashe; Modi, Albert T.; Mafongoya, Paramu

    2015-01-01

    Modern agricultural systems that promote cultivation of a very limited number of crop species have relegated indigenous crops to the status of neglected and underutilised crop species (NUCS). The complex interactions of water scarcity associated with climate change and variability in sub-Saharan Africa (SSA), and population pressure require innovative strategies to address food insecurity and undernourishment. Current research efforts have identified NUCS as having potential to reduce food and nutrition insecurity, particularly for resource poor households in SSA. This is because of their adaptability to low input agricultural systems and nutritional composition. However, what is required to promote NUCS is scientific research including agronomy, breeding, post-harvest handling and value addition, and linking farmers to markets. Among the essential knowledge base is reliable information about water utilisation by NUCS with potential for commercialisation. This commentary identifies and characterises NUCS with agronomic potential in SSA, especially in the semi-arid areas taking into consideration inter alia: (i) what can grow under water-scarce conditions, (ii) water requirements, and (iii) water productivity. Several representative leafy vegetables, tuber crops, cereal crops and grain legumes were identified as fitting the NUCS category. Agro-biodiversity remains essential for sustainable agriculture. PMID:26016431

  7. The Potential Role of Neglected and Underutilised Crop Species as Future Crops under Water Scarce Conditions in Sub-Saharan Africa

    Directory of Open Access Journals (Sweden)

    Pauline Chivenge

    2015-05-01

    Full Text Available Modern agricultural systems that promote cultivation of a very limited number of crop species have relegated indigenous crops to the status of neglected and underutilised crop species (NUCS. The complex interactions of water scarcity associated with climate change and variability in sub-Saharan Africa (SSA, and population pressure require innovative strategies to address food insecurity and undernourishment. Current research efforts have identified NUCS as having potential to reduce food and nutrition insecurity, particularly for resource poor households in SSA. This is because of their adaptability to low input agricultural systems and nutritional composition. However, what is required to promote NUCS is scientific research including agronomy, breeding, post-harvest handling and value addition, and linking farmers to markets. Among the essential knowledge base is reliable information about water utilisation by NUCS with potential for commercialisation. This commentary identifies and characterises NUCS with agronomic potential in SSA, especially in the semi-arid areas taking into consideration inter alia: (i what can grow under water-scarce conditions, (ii water requirements, and (iii water productivity. Several representative leafy vegetables, tuber crops, cereal crops and grain legumes were identified as fitting the NUCS category. Agro-biodiversity remains essential for sustainable agriculture.

  8. Ground Field-Based Hyperspectral Imaging: A Preliminary Study to Assess the Potential of Established Vegetation Indices to Infer Variation in Water-Use Efficiency.

    Science.gov (United States)

    Pelech, E. A.; McGrath, J.; Pederson, T.; Bernacchi, C.

    2017-12-01

    select ideal genotypes for an increasing water-limited environment and to help parameterize and validate terrestrial vegetation models that require a better representation of genetic variation within crop species.

  9. Preservation of food of the vegetable origin in the way of the radiation The selected technological aspects

    International Nuclear Information System (INIS)

    Taczanowski, M.

    1997-01-01

    The review of the selected applications of the radiation of the food of vegetable origin and targets which may be achieved dependently on the amount of energy absorbed by the radiated product. (author)

  10. Pest and disease management of soilless culture [vegetable and ornamental crops

    International Nuclear Information System (INIS)

    Wilfried Schnitzler, H.

    2005-01-01

    Any soilless cropping system requires a continuous supply of water and nutrient solution in open or closed circulation. Technical set-up of open systems is simple and spread of root infesting pathogens is limited, but excessive nutrient solution run-off causes environmental hazards. Recirculating nutrient solution has ecological benefits but asks for exact crop management. Under certain conditions, pathogens can spread to endanger the crop. Nevertheless, today only closed systems should be considered. There are quite a number of different technologies available with more or less risks of plant root system damage due to pathogens. The choice of substrates for soilless cultivation is extensive, but they have always to be free of pathogens when applied first. When reused, they must be disinfected. Most destructive are phytopathogenic fungi, such as Pythium, Phytophthora and Olpidium, followed by viruses, bacteria and nematodes. Early on, the grower should take care to transplant healthy seedlings to avoid problems from the start. Also greenhouse structures can serve as infection sources as well as surface water for irrigation. Soilless cultivation has the huge advantage to optimize growing factors like temperature, water, pH and nutrients according to the plant need to reduce stress. Large operations with monocrops may choose sterilization of irrigation water. A number of practical options is available, chemicals (ozone, hydrogen peroxide, chlorine, iodine), UV irradiation, heating, membrane and slow- or bio-filtration. Biological control of root infesting pathogens offers very interesting new approaches, e.g. Bacillus subtilis strains, Streptomyces, Trichoderma, non-pathogenic Fusarium and V-micorrhiza strains besides fluorescent pseudomonads [it

  11. Native prairie filter strips reduce runoff from hillslopes under annual row-crop systems in Iowa, USA

    Science.gov (United States)

    V. Hernandez-Santana; X. Zhou; M.J. Helmers; H. Asbjornsen; R. Kolka; M. Tomer

    2013-01-01

    Intensively managed annual cropping systems have produced high crop yields but have often produced significant ecosystem services alteration, in particular hydrologic regulation loss. Reconversion of annual agricultural systems to perennial vegetation can lead to hydrologic function restoration, but its effect is still not well understood. Therefore, our objective was...

  12. Total Dietary Fiber, and Selected Vegetable, Fruit, Legume and Cereal Fiber Intake and Risk of Heart Attack in Periodontitis Subjects

    Directory of Open Access Journals (Sweden)

    Nelson Wood

    2011-10-01

    Full Text Available Background: Epidemiological studies have found an association between periodontal disease and coronary artery disease(Arbes, Slade et al. 1999; Beck, Elter et al. 2001; Genco, Offenbacher et al. 2002, and have even implicated periodontal disease as a risk factor(Arbes, Slade et al. 1999; Beck, Elter et al. 2001, however have not proven causality(Hujoel, Drangholt et al. 2000. Although dietary amounts, sources, and types (soluble versus insoluble of fiber have been shown to reduce the risk of heart attack (Liu, Buring et al. 2002; Negri, Vecchia et al. 2003, this author is unaware of studies that have examined the association between food sources of dietary fiber and heart attack risk in subjects with periodontitis.This study was designed to determine whether total dietary fiber and fiber from different plant sources (vegetables, fruits, legumes, or cereals modified self-reported HA risk, as well as acute-phase inflammatory responses in subjects with periodontitis using NHANES III data.Objectives: The objective of this study was to investigate the association between total dietary fiber intake levels, and selected vegetables, fruits, legumes, and cereal fiber intake and the risk of self-reported history of heart attack (HA in periodontitis subjects using data available in the Third National Health and Nutrition Examination Survey (NHANES III.Materials and Methods: Adult participants in NHANES III were used in this study. Zero to thirty three (0-33 percent of sites with periodontal attachment loss > 3 mm was considered a healthy periodontium, while greater than thirty three percent (>33 of sites with periodontal attachment loss of > 3 mm as periodontitis. The outcome variable was the self-reported history of HA. Total dietary fiber, and monthly selected vegetable, fruit, legume and cereal consumption were divided into low and adequate levels. Data was analyzed by Kruskal-Wallis, ANOVA and multivariate analyses using SPSS ®. P<0.05 was used to

  13. CHANGES IN CLIMATIC CHARACTERISTICS AND CROP YIELD IN KWARA STATE (NIGERIA

    Directory of Open Access Journals (Sweden)

    O. Oriola

    2017-01-01

    Full Text Available This paper assessed the vagaries of climatic elements on crop yield in Kwara State with a view to predicting the future climatic suitability level for selected crops in the state. Descriptive and infrential statistics analytical methods were used to examine the pattern of climatic elements for a period of 30 years. Analysis of variance was used to examine the variations in crop yield and also to determine whether or not significant differences in the harvests of the period under investigation. Correlation analysis was used to determine the relationship between climatic elements and crop yield while multiple regression analysis was used to determine the contribution of each climatic elements to crop yield. Time series analysis was used to project crop yield from 2014 to 2025. GAEZ model was adopted to determine the climatic suitability for the selected crops over time 1960 - 2050 and ArcGIS 10.3 software was used to produce the crop suitability maps. The result revealed that cassava, yam, maize and cowpea would be less suitable for production with the rate at which the climate is changing. The result also revealed that the climatic suitability level for cassava, yam, maize and cowpea would reduce drastically with time. The prediction shows severe impacts of changes in the selected climatic elements on both overall climatic suitability and crop the selected crops yield for by 2050.

  14. Heavy Metals in the Vegetables Collected from Production Sites

    Directory of Open Access Journals (Sweden)

    Hassan Taghipour

    2013-12-01

    Full Text Available Background: Contamination of vegetable crops (as an important part of people's diet with heavy metals is a health concern. Therefore, monitoring levels of heavy metals in vegetables can provide useful information for promoting food safety. The present study was carried out in north-west of Iran (Tabriz on the content of heavy metals in vegetable crops. Methods: Samples of vegetables including kurrat (n=20 (Allium ampeloprasumssp. Persicum, onion (n=20 (Allium cepa and tomato (n=18 (Lycopersiconesculentum var. esculentum, were collected from production sites in west of Tabriz and analyzed for presence of Cd, Cr, Cu, Ni, Pb and Zn by atomic absorption spectroscopy (AAS after extraction by aqua regia method (drying, grounding and acid digestion. Results: Mean ± SD (mg/kg DW concentrations of Cd, Cu, Cr, Ni and Zn were 0.32 ± 0.58, 28.86 ± 28.79, 1.75 ± 2.05, 6.37± 5.61 and 58.01 ± 27.45, respectively. Cr, Cu and Zn were present in all the samples and the highest concentrations were observed in kurrat (leek. Levels of Cd, Cr and Cu were higher than the acceptable limits. There was significant difference in levels of Cr (P<0.05 and Zn (P<0.001 among the studied vegetables. Positive correlation was observed between Cd:Cu (R=0.659, P<0.001 Cr:Ni (R=0.326, P<0.05 and Cr:Zn (R=0.308, P<0.05. Conclusion: Level of heavy metals in some of the analyzed vegetables, especially kurrat samples, was higher than the standard levels. Considering the possible health outcomes due to the consumption of contaminated vegetables, it is required to take proper actions for avoiding people's chronic exposure.

  15. Growth and Yield Responses of Vegetable Cowpea ( Vigna ...

    African Journals Online (AJOL)

    The amendment of acidic soil with lime application enhances nutrient availability for optimum vegetable cowpea production. Field experiments were conducted in the teaching and research farm of Michael Okpara University of Agriculture, Umudike during 2006 and 2007 cropping seasons to determine the growth and yield ...

  16. Trace metal contents of selected seeds and vegetables from oil producing areas of Nigeria.

    Science.gov (United States)

    Wegwu, Matthew O; Omeodu, Stephen I

    2010-07-01

    The concentrations of accumulated trace metals in selected seeds and vegetables collected in the oil producing Rivers State of Nigeria were investigated. The values were compared with those of seeds and vegetables cultivated in Owerri, a less industrialized area in Nigeria. The lead (Pb) and cadmium (Cd) contents of the seeds obtained from Rivers State ranged between 0.10 and 0.23 microg/g dry weight, while those of the seeds cultivated in Owerri fell below the detection limit of 0.01 microg/g dry weight. The highest manganese (Mn) level (902 microg/g dry weight) was found in Irvingia garbonesis seeds cultivated in Rivers State. Similarly, the highest nickel (Ni) value (199 microg/g dry weight) was also obtained in I. garbonesis, however, in the seeds sampled in Owerri. The highest copper (Cu), zinc (Zn), and iron (Fe) levels (16.8, 5.27, and 26.2 microg/g dry weight, resp.) were detected in seeds collected in Rivers State. With the exception of Talinum triangulae, Ocinum gratissimum, and Piper guineese, with Pb levels of 0.09, 0.10, and 0.11 microg/g dry weight, respectively, the Pb and Cd levels in the vegetables grown in Owerri fell below the detection limit of 0.01 microg/g dry weight. The trace metal with the highest levels in all the vegetables studied was Mn, followed by Fe. The highest concentrations of Ni and Cu occurred in vegetables collected from Rivers State, while the highest level of Zn was observed in Piper guineese collected in Owerri, with a value of 21.4 microg/g dry weight. Although the trace metal concentrations of the seeds and vegetables collected in Rivers State tended to be higher than those of the seeds and vegetables grown in Owerri, the average levels of trace metals obtained in this study fell far below the WHO specifications for metals in foods.

  17. Introduction of Alley Cropping

    Directory of Open Access Journals (Sweden)

    Sugeng Parmadi

    2004-01-01

    Full Text Available One of the efforts to preserve the sources of vegetarian, soil, and water is to rehabilitate the land and soil conservation. The aim of this rehabilitation is increasing and maintaining the produtivity of the land, so it can be preserved and used optimally. Therefore, it is necessary to a  develop a variety of good soil conservation, such as vegetative method and civil engineering. To find an appropriate technology, so it is necessary to develop some alternatives of soil conservation technique that are mainly implemented at dry land with its slope of more than 15% in the upstream area of discharge. One of the most suitable soil conservation technique today is Alley Cropping. Based on the research (trial and error in some areas, Alley Cropping could really provide a positive result in terms of erotion controlling and running off and maintain the land productivity. In addition, the technique is more easly operated and spends a cheaper cost than making a bench terrace.

  18. Mobile Robot Based on the Selection of Fuzzy Behaviours for following Trajectories in Crops

    Directory of Open Access Journals (Sweden)

    Claudio Urrea

    2016-06-01

    Full Text Available This article addresses the problem of trajectory tracking in crops by a weed sprayer mobile robot (WSMR. This problem arises because to fumigate, the robot must follow a predefined path and avoid any obstacles it may encounter. To achieve both trajectory tracking and obstacle avoidance, a control scheme based on different behaviours is proposed, which consists essentially of an adaptive controller with a reference model for trajectory tracking and a fuzzy reactive for obstacle avoidance. Each of these controllers is executed according to the selection of the fuzzy behaviour controller, which uses information delivered by anti-collision sensors located on the robot. As a result of the implementation of this behaviour-based architecture and by means of computer simulations and experimental laboratory tests, the WSMR demonstrates the capability of autonomously following a desired trajectory between the rows of a crop in the presence of obstacles. The results are evaluated by taking into account trajectory tracking curves and the operating requirements of each controller, as well as the application of different errors indices for quantitatively evaluating the proposed control scheme.

  19. Soil organic carbon and physical properties in vegetable farms in South Uruguay

    International Nuclear Information System (INIS)

    Garcia de Souza, M.; Dogliotti, S.; Alliaume, F.; Mancassola, V.

    2011-01-01

    The South of Uruguay is the area of the country most severely affected by soil erosion and where the most important vegetable production area is located. Soil degradation has been aggravated by a process of intensification and specialization of the vegetable production due to an unfavorable socio-economic context and lack of adequate planning of the production systems. The objectives of this work were the description of current soil quality (Typic Hapluderts, Paquic (vertic) Argiudolls, and Abruptic Argiudolls) in 16 vegetable farms in the region, and the evaluation of the impact of improved management techniques on soil quality. We evaluated soil organic carbon (SOC), soil structure stability and the evolution of SOC in time. We found a degradation of soil quality under vegetable cropping compared to the reference sites, given by an average loss of SOC of 31 to 44% and 0.4 mm in structure stability. A linear regression model was fitted to explain the change in SOC content observed in fields under vegetable cultivation during the period under study. The change in SOC content was explained by the organic matter inputs by green manures and chicken bed, the initial SOC content and length of the period in years. This model is a simple tool to estimate the effect of soil organic amendments on SOC balance in soils under vegetable cropping in this region

  20. [Distribution of virtual water of crops in Beijing].

    Science.gov (United States)

    Wang, Hong-Rui; Dong, Yan-Yan; Wang, Jun-Hong; Wang, Yan; Han, Zhao-Xing

    2007-11-01

    Virtual water content of grains and vegetables in Beijing's districts is calculated and analyzed for many years by irrigating water quota method, which is compared with the distribution and exploitation of groundwater in Beijing. The results indicate the virtual water content of grains shows a downward trend in all the districts, but the grain production in Yanqing district brings great pressure to the local groundwater. Secondly, the virtual water content of vegetables shows an upward trend in Shunyi District, Daxing district and Pinggu District and is accounting for more and more gradually. Thirdly, the total virtual water volume of grains is decreasing, and the total virtual water volume of vegetables is increasing and the total virtual water volume of crops in Beijing is reducing in recent years, which corresponds with the structural adjustment of policies.

  1. Improved regional-scale Brazilian cropping systems' mapping based on a semi-automatic object-based clustering approach

    Science.gov (United States)

    Bellón, Beatriz; Bégué, Agnès; Lo Seen, Danny; Lebourgeois, Valentine; Evangelista, Balbino Antônio; Simões, Margareth; Demonte Ferraz, Rodrigo Peçanha

    2018-06-01

    Cropping systems' maps at fine scale over large areas provide key information for further agricultural production and environmental impact assessments, and thus represent a valuable tool for effective land-use planning. There is, therefore, a growing interest in mapping cropping systems in an operational manner over large areas, and remote sensing approaches based on vegetation index time series analysis have proven to be an efficient tool. However, supervised pixel-based approaches are commonly adopted, requiring resource consuming field campaigns to gather training data. In this paper, we present a new object-based unsupervised classification approach tested on an annual MODIS 16-day composite Normalized Difference Vegetation Index time series and a Landsat 8 mosaic of the State of Tocantins, Brazil, for the 2014-2015 growing season. Two variants of the approach are compared: an hyperclustering approach, and a landscape-clustering approach involving a previous stratification of the study area into landscape units on which the clustering is then performed. The main cropping systems of Tocantins, characterized by the crop types and cropping patterns, were efficiently mapped with the landscape-clustering approach. Results show that stratification prior to clustering significantly improves the classification accuracies for underrepresented and sparsely distributed cropping systems. This study illustrates the potential of unsupervised classification for large area cropping systems' mapping and contributes to the development of generic tools for supporting large-scale agricultural monitoring across regions.

  2. Genetically modified crops: the fastest adopted crop technology in the history of modern agriculture

    Directory of Open Access Journals (Sweden)

    Khush Gurdev S

    2012-09-01

    Full Text Available Abstract The major scientific advances of the last century featured the identification of the structure of DNA, the development of molecular biology and the technology to exploit these advances. These breakthroughs gave us new tools for crop improvement, including molecular marker-aided selection (MAS and genetic modification (GM. MAS improves the efficiency of breeding programs, and GM allows us to accomplish breeding objectives not possible through conventional breeding approaches. MAS is not controversial and is now routinely used in crop improvement programs. However, the international debate about the application of genetic manipulation to crop improvement has slowed the adoption of GM crops in developing as well as in European countries. Since GM crops were first introduced to global agriculture in 1996, Clive James has published annual reports on the global status of commercialized GM crops as well as special reports on individual GM crops for The International Service for the Acquisition of Agri-biotech Applications (ISAAA. His 34th report, Global Status of Commercialized Biotech/ GM crops: 2011 [1] is essential reading for those who are concerned about world food security.

  3. Sesame: the Underexploited Organic Oilseed Crop | Olowe | Journal ...

    African Journals Online (AJOL)

    Sesame (Sesamum indicum L.) is an important oilseed crop that ranks sixth among vegetable oils worldwide. Asia and Africa respectively account for 2.55 and 0.95 of the 3.66 million tons produced worldwide. However, Africa's net export of the commodity is just 38% of its production, despite the fact that the Continent has ...

  4. PRODUCTION OF HYBRID SEEDS OF THE VEGETABLE MARROW AT FREE POLLINATION

    Directory of Open Access Journals (Sweden)

    S. V. Kuzmin

    2018-01-01

    Full Text Available The purpose of this work performed in 2015-2017 on seedgrowing crops of the Crimean OSS VIR was receiving hybrid seeds of a vegetable marrow at free pollination and check of their quality by method of soil control. At laying of seed-growing crops, carrying out variety cleanings,, inspections and approbation were guided by the Instruction for approbation of seedgrowing crops of vegetable, melon cultures, fodder root crops and fodder cabbage (2008. The vegetable marrow with a high saturation pistillate flowers of Bl12, Su4 and Ar3 were used as maternal lines. Double processing by solution of an etrel was carried out to early phases of development of plants them. Use of this growth regulator has influenced blossoming of plants - in the lower knots men's flowers weren't formed, purely women's blossoming for the term of 14-17 days, sufficient for setting of seed fruits was observed. Control of blossoming of maternal forms was exercised by systematic inspections of plants on a floor. We have conducted three multiple examination. The first - before blossoming of maternal plants, in a budding phase when it is already possible to distinguish a sex of flowers, the second – in a phase of the beginning of blossoming. The third examination was conducted for definition of the beginning of blossoming of male flowers on plants of the maternal line. Timely carrying out inspections and variety cleanings, promotes receiving qualitative hybrid material. When carrying out soil control the high hybridism of seed material is revealed: F1 Bl12 x D1 - 95,3 %; F1 Su4 x D1 - 95,7 %; F1 Ar3 x D1 - 96,0 %. The results indicate that of the carried-out work, at free pollination of maternal and fatherly forms, vegetable marrow seeds with a high hybridism are received. Conducting the trial testing of new hybrids showed their high economic value. In comparison with the standard of Belogor F1, their total yield is higher by 16.7-25.7%, and the early yield by 10.5-27.7%. The

  5. Determinants of crop diversity and composition in Enset-coffee agroforestry homegardens of Southern Ethiopia

    Directory of Open Access Journals (Sweden)

    Tesfaye Abebe

    2013-08-01

    Full Text Available Households in much of the tropics depend for their livelihoods on the variety and continued production of food and other products that are provided by their own farms. In such systems, maintenance of agrobiodiversity and ensuring food security are important for the well being of the population. The enset-coffee agroforestry homegardens of Southern Ethiopia that are dominated by two native perennial crops, Coffee (Coffea arabica L. and Enset (Enset ventricosum Welw. Cheesman, are examples of such agricultural systems. This study was conducted in Sidama administrative zone of Southern Ethiopia to determine the factors that influence the diversity and composition of crops in the systems. Data were collected from 144 sample homegardens selected from four districts. Stepwise multiple regression analysis was used to relate indices of crop diversity and area share of major crops with the physical and socioeconomic factors. The study revealed that socioeconomic factors, mainly proximity to markets, affected negatively crop species richness. The production area of the main crops enset and coffee decreased with increasing proximity to market and road while that of maize and khat increased. At household level, farm size had a significant effect on area share of enset and coffee. As farm size increased the share of the cash crop, coffee increased but that of the staple, enset declined. Enset, which is the backbone of the system in terms of food security, is declining on small farms and the share of monoculture maize system is increasing. The trend towards declining agrobiodiversity, and reduction in the production area of the main perennial crops and their gradual replacement with monoculture fields could make the systems liable to instability and collapse. As these sites are high potential agricultural areas, intensification can be achieved by integrating high-value and more productive crops, such as fruits, spices and vegetables, while maintaining the

  6. The Response and Repairing of Three Kinds of Crops on Xi’an’s Sewage Irrigation Area Soil

    Science.gov (United States)

    Xin, H.; Zhimei, Z.; Lei, H.; Huan, L.; Tian, Z.

    2017-10-01

    This paper focuses on the XiChaZhai village’s vegetable soil which is located in the northern suburbs of Xi’an and on its vegetables, thus analyzes the quality of sewage irrigation region soil and its influence on vegetables through the measurement of Cu, Zn, Pb, Cd’s content in samples. The results show that the research area soil contains apparently excessive heavy metals, and there exists significant differences of different elements’ integrated intensity in soil, the content declines in sequence from Cd, Zn, Pb to Cu. The four heavy metals’ contents in sewage irrigation region soil vary greatly from that in non-sewage irrigation region soil(Prepairing effects on Xi’an sewage irrigation region soil are Raphanus sativus, Ottelia acuminate and Brassica chinensis, in that order. Different crop tissues differ in the accumulation of heavy metal, the order according as roots, stem and leaves, fruits. Therefore, based on differences of various crops on heavy metals’ absorption and translocation, appropriate crops should be scientifically planted in heavy metal contaminated area soil.

  7. Post-fire vegetation recovery in Portugal based on spot/vegetation data

    Science.gov (United States)

    Gouveia, C.; Dacamara, C. C.; Trigo, R. M.

    2010-04-01

    A procedure is presented that allows identifying large burned scars and the monitoring of vegetation recovery in the years following major fire episodes. The procedure relies on 10-day fields of Maximum Value Composites of Normalized Difference Vegetation Index (MVC-NDVI), with a 1 km×1 km spatial resolution obtained from the VEGETATION instrument. The identification of fire scars during the extremely severe 2003 fire season is performed based on cluster analysis of NDVI anomalies that persist during the vegetative cycle of the year following the fire event. Two regions containing very large burned scars were selected, located in Central and Southwestern Portugal, respectively, and time series of MVC-NDVI analysed before the fire events took place and throughout the post-fire period. It is shown that post-fire vegetation dynamics in the two selected regions may be characterised based on maps of recovery rates as estimated by fitting a monoparametric model of vegetation recovery to MVC-NDVI data over each burned scar. Results indicated that the recovery process in the region located in Central Portugal is mostly related to fire damage rather than to vegetation density before 2003, whereas the latter seems to have a more prominent role than vegetation conditions after the fire episode, e.g. in the case of the region in Southwestern Portugal. These differences are consistent with the respective predominant types of vegetation. The burned area located in Central Portugal is dominated by Pinus Pinaster whose natural regeneration crucially depends on the destruction of seeds present on the soil surface during the fire, whereas the burned scar in Southwestern Portugal was populated by Eucalyptus that may quickly re-sprout from buds after fire. Besides its simplicity, the monoparametric model of vegetation recovery has the advantage of being easily adapted to other low-resolution satellite data, as well as to other types of vegetation indices.

  8. SPOT-Based Sub-Field Level Monitoring of Vegetation Cover Dynamics: A Case of Irrigated Croplands

    Directory of Open Access Journals (Sweden)

    Olena Dubovyk

    2015-05-01

    Full Text Available Acquiring multi-temporal spatial information on vegetation condition at scales appropriate for site-specific agricultural management is often complicated by the need for meticulous field measurements. Understanding spatial/temporal crop cover heterogeneity within irrigated croplands may support sustainable land use, specifically in areas affected by land degradation due to secondary soil salinization. This study demonstrates the use of multi-temporal, high spatial resolution (10 m SPOT-4/5 image data in an integrated change vector analysis and spectral mixture analysis (CVA-SMA procedure. This procedure was implemented with the principal objective of mapping sub-field vegetation cover dynamics in irrigated lowland areas within the lowerlands of the Amu Darya River. CVA intensity and direction were calculated separately for the periods of 1998–2006 and 2006–2010. Cumulative change intensity and the overall directional trend were also derived for the entire observation period of 1998–2010. Results show that most of the vector changes were observed between 1998 and 2006; persistent conditions were seen within the study region during the 2006–2010 period. A decreasing vegetation cover trend was identified within 38% of arable land. Areas of decreasing vegetation cover were located principally in the irrigation system periphery where deficient water supply and low soil quality lead to substandard crop development. During the 2006–2010 timeframe, degraded crop cover conditions persisted in 37% of arable land. Vegetation cover increased in 25% of the arable land where irrigation water supply was adequate. This high sub-field crop performance spatial heterogeneity clearly indicates that current land management practices are inefficient. Such information can provide the basis for implementing and adapting irrigation applications and salt leaching techniques to site-specific conditions and thereby make a significant contribution to sustainable

  9. A Review of the Role of Vegetal Ecosystems in CO2 Capture

    Directory of Open Access Journals (Sweden)

    Giuseppe Di Vita

    2017-10-01

    Full Text Available The reduction of carbon emissions is a worldwide global challenge and represents the objective of many scientists that are trying to modify the role of carbon, turning a problem into an opportunity. The potential of CO2 capture and storage by vegetal species is significant because of their capacity to absorb exceeding carbon emission. The purpose of the present paper is to draw a picture of the role of vegetal ecosystems on carbon fixation by identifying the most significant scientific contributions related to the absorption by vegetal species. In particular the aim of this paper is to examine different forms of CO2 sequestration made by plants and crops involved in reducing greenhouse gas (GHG emission. Results highlight the important role played by agricultural soils, forests, perennial plants, and algae, looking at the overall reduction of carbon emissions. In addition, results show that some bioenergy crops allow substantial storage of carbon dioxide, providing a significant contribution to climate change mitigation.

  10. Cropping management using color and color infrared aerial photographs

    Science.gov (United States)

    Morgan, K. M.; Morris-Jones, D. R.; Lee, G. B.; Kiefer, R. W.

    1979-01-01

    The Universal Soil Loss Equation (USLE) is a widely accepted tool for erosion prediction and conservation planning. Solving this equation yields the long-term average annual soil loss that can be expected from rill and inter-rill erosion. In this study, manual interpretation of color and color infrared 70 mm photography at the scale of 1:60,000 is used to determine the cropping management factor in the USLE. Accurate information was collected about plowing practices and crop residue cover (unharvested vegetation) for the winter season on agricultural land in Pheasant Branch Creek watershed in Dane County, Wisconsin.

  11. Changes in soil quality and plant available water capacity following systems re-design on commercial vegetable farms

    NARCIS (Netherlands)

    Alliaume, F.; Rossing, W.A.H.; Garcia, M.; Giller, K.E.; Dogliotti Moro, S.

    2013-01-01

    Loss of ecological functions due to soil degradation impacts viability of crop production systems world-wide, particularly in vegetable cropping systems commonly located in the most productive areas and characterized by intensive soil cultivation. This paper reports soil degradation caused by

  12. Drought impacts and resilience on crops via evapotranspiration estimations

    Science.gov (United States)

    Timmermans, Joris; Asadollahi Dolatabad, Saeid

    2015-04-01

    Currently, the global needs for food and water is at a critical level. It has been estimated that 12.5 % of the global population suffers from malnutrition and 768 million people still do not have access to clean drinking water. This need is increasing because of population growth but also by climate change. Changes in precipitation patterns will result either in flooding or droughts. Consequently availability, usability and affordability of water is becoming challenge and efficient use of water and water management is becoming more important, particularly during severe drought events. Drought monitoring for agricultural purposes is very hard. While meteorological drought can accurately be monitored using precipitation only, estimating agricultural drought is more difficult. This is because agricultural drought is dependent on the meteorological drought, the impacts on the vegetation, and the resilience of the crops. As such not only precipitation estimates are required but also evapotranspiration at plant/plot scale. Evapotranspiration (ET) describes the amount of water evaporated from soil and vegetation. As 65% of precipitation is lost by ET, drought severity is highly linked with this variable. In drought research, the precise quantification of ET and its spatio-temporal variability is therefore essential. In this view, remote sensing based models to estimate ET, such as SEBAL and SEBS, are of high value. However the resolution of current evapotranspiration products are not good enough for monitoring the impact of the droughts on the specific crops. This limitation originates because plot scales are in general smaller than the resolution of the available satellite ET products. As such remote sensing estimates of evapotranspiration are always a combination of different land surface types and cannot be used for plant health and drought resilience studies. The goal of this research is therefore to enable adequate resolutions of daily evapotranspiration estimates

  13. Structure of Corrective Feedback for Selection of Ineffective Vegetable Parenting Practices for Use in a Simulation Videogame.

    Science.gov (United States)

    Baranowski, Tom; Beltran, Alicia; Chen, Tzu-An; O'Connor, Teresia; Hughes, Sheryl; Buday, Richard; Baranowski, Janice

    2013-02-01

    A serious videogame is being developed to train parents of preschool children in selecting and using parenting practices that are likely to encourage their child to eat more vegetables. The structure of feedback to the parents on their selection may influence what they learn from the game. Feedback Intervention Theory provides some guidance on the design of such messages. The structure of preferred performance feedback statements has not been investigated within serious videogames. Two feedback formats were tested for a player's preferences within the context of this videogame. Based on Feedback Intervention Theory, which proposes that threat to self-concept impairs feedback response, three-statement (a nonaffirming comment sandwiched between two affirming comments, called "Oreo" feedback, which should minimize threat to self-concept) and two-statement (a nonaffirming comment followed by an affirming comment) performance feedbacks were tailored to respondents. Tailoring was based on participants' report of frequency of use of effective and ineffective vegetable parenting practices and the reasons for use of the ineffective practices. Participants selected their preference between the two forms of feedback for each of eight ineffective vegetable parenting practices. In general, mothers ( n =81) (no male respondents) slightly preferred the "Oreo" feedback, but the pattern of preferences varied by demographic characteristics. Stronger relationships by income suggest the feedback structure should be tailored to family income. Future research with larger and more diverse samples needs to test whether perceived threat to self-concept mediates the response to feedback and otherwise verify these findings.

  14. Increased nutritional value in food crops.

    Science.gov (United States)

    Goicoechea, Nieves; Antolín, M Carmen

    2017-09-01

    Modern agriculture and horticulture must combine two objectives that seem to be almost mutually exclusive: to satisfy the nutritional needs of an increasing human population and to minimize the negative impact on the environment. These two objectives are included in the Goal 2 of the 2030 Agenda for Sustainable Development of the United Nations: 'End hunger, achieve food security and improved nutrition and promote sustainable agriculture'. Enhancing the nutritional levels of vegetables would improve nutrient intake without requiring an increase in consumption. In this context, the use of beneficial rhizospheric microorganisms for improving, not only growth and yield, but also the nutrient quality of crops represents a promising tool that may respond to the challenges for modern agriculture and horticulture and represents an alternative to the genetic engineering of crops. This paper summarizes the state of the art, the current difficulties associated to the use of rhizospheric microorganisms as enhancers of the nutritional quality of food crops as well as the future prospects. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  15. Energy Crop-Based Biogas as Vehicle Fuel—The Impact of Crop Selection on Energy Efficiency and Greenhouse Gas Performance

    Directory of Open Access Journals (Sweden)

    Pål Börjesson

    2015-06-01

    Full Text Available The production of biogas from six agricultural crops was analysed regarding energy efficiency and greenhouse gas (GHG performance for vehicle fuel from a field-to-tank perspective, with focus on critical parameters and on calculation methods. The energy efficiency varied from 35% to 44%, expressed as primary energy input per energy unit vehicle gas produced. The GHG reduction varied from 70% to 120%, compared with fossil liquid fuels, when the GHG credit of the digestate produced was included through system expansion according to the calculation methodology in the ISO 14044 standard of life cycle assessment. Ley crop-based biogas systems led to the highest GHG reduction, due to the significant soil carbon accumulation, followed by maize, wheat, hemp, triticale and sugar beet. Critical parameters are biogenic nitrous oxide emissions from crop cultivation, for which specific emission factors for digestate are missing today, and methane leakage from biogas production. The GHG benefits were reduced and the interrelation between the crops changed, when the GHG calculations were instead based on the methodology stated in the EU Renewable Energy Directive, where crop contribution to soil carbon accumulation is disregarded. All systems could still reach a 60% GHG reduction, due to the improved agricultural management when digestate replaces mineral fertilisers.

  16. Occurrence and potential crop uptake of emerging contaminants and related compounds in an agricultural irrigation network.

    Science.gov (United States)

    Calderón-Preciado, Diana; Matamoros, Víctor; Bayona, Josep M

    2011-12-15

    Emerging contaminants have received much attention in recent years due to their presence in surface waters, but little attention has been paid to their occurrence in agricultural irrigation waters. This study investigated the occurrence of these compounds in an agricultural irrigation network in northeastern Spain and, for the first time, using two plant uptake models, estimated the concentration of selected micropollutants in crops. The concentration of micropollutants in agricultural irrigation waters ranged from 10 to 5130 ng L(-1) and exhibited some attenuation over the course of the irrigation network. Bromoform, chloroform, diclofenac, caffeine, ibuprofen, naproxen, methyl dihydrojasmonate, galaxolide, butylated hydroxytoluene, and butylated hydroxyanisole were the most abundant contaminants (>200 ng L(-1), on average). The estimated concentration of micropollutants in crops ranged from contaminants detected). Further studies are needed to determine the health implications that the presence of these compounds in fruit and vegetables may have for consumers. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Water as contamination source of Salmonella and Escherichia coli in vegetable production in Mexico: A review

    Directory of Open Access Journals (Sweden)

    González-Mendoza, D.

    2015-07-01

    Full Text Available Mexico has an extensive infrastructure that has positioned it as a power vegetable producer exporter. However, the use of wastewater represents a potential risk to agriculture, economy and human health, since they are used without due precautions as applied in crop irrigation. In this sense, potential methods for diagnosis have been developed, such as microbiological and molecular methods, which are used for the rapid detection of Samonella and E. coli in minimally processed vegetables. Further studies are needed to determine a threshold dose of pathogens in the water and to correlate the risk that tends to cause pollution of a crop and the specified edible parts of the vegetables marketed in the interior and outside of Mexico.

  18. Plant-based fertilizers for organic vegetable production

    DEFF Research Database (Denmark)

    Sørensen, Jørn Nygaard; Thorup-Kristensen, Kristian

    2011-01-01

    To ensure high yield and quality in organic vegetable production, crops often require additional fertilizer applied during the season. Due to the risk of contamination of edible plant products from slurry, plant-based fertilizers may be used as an alternative. The purpose of our work was to develop...... fertility, the term “mobile green manures” is used for green-manure crops that are harvested in one field and then moved as a whole and used as fertilizer in other fields. To further investigate mobile-green-manure crops for use as efficient fertilizers, pot and field experiments were conducted...... with cauliflower (Brassica oleracea botrytis) and kale (Brassica oleracea sabellica) supplied with organic matter consisting of a wide range of plant species with varying nutrient concentrations. Further, field experiments were conducted with leek (Allium porrum) and celery (Apium graveolens dulce) supplied...

  19. Farming of Vegetables in Space-Limited Environments

    Science.gov (United States)

    He, Jie

    2015-10-01

    Vegetables that contain most of the essential components of human nutrition are perishable and cannot be stocked. To secure vegetable supply in space limited cities such as Singapore, there are different farming methods to produce vegetables. These include low-cost urban community gardening and innovative rooftop and vertical farms integrated with various technologies such as hydroponics, aquaponics and aeroponics. However, for large-scale vegetable production in space-limited Singapore, we need to develop farming systems that not only increase productivity many-fold per unit of land but also produce all types of vegetable, all year-round for today and the future. This could be resolved through integrated vertical aeroponic farming system. Manipulation of root-zone (RZ) environments such as cooling the RZ, modifying mineral nutrients and introducing elevated RZ CO2 using aeroponics can further boost crop productivity beyond what can be achieved from more efficient use of land area. We could also adopt energy saving light emitting diodes (LEDs) for vertical aeroponic farming system to promote uniform growth and to improve the utilisation of limited space via shortening the growth cycle, thus improving vegetable production in a cost-effective manner.

  20. The effect of addition of selected vegetables on the microbiological, textural and flavour profile properties of yoghurts.

    Science.gov (United States)

    Najgebauer-Lejko, Dorota; Tabaszewska, Małgorzata; Grega, Tadeusz

    2015-01-01

    Vegetables, apart from having high nutritional value, also contain considerable amounts of dietary fibre and other components, which may affect physico-chemical properties of fermented milks, e.g. viscosity, texture, susceptibility to syneresis, flavour profile etc. The present work was established to study the effect of selected vegetables addition on the rheological, textural, microbiological and flavour profile parameters of yoghurts. The vegetable preparations (carrot, pumpkin, broccoli and red sweet pepper) were added (10% w/w) to the processed cow's milk fermented with DVS yoghurt culture. Texture profile analysis, determination of viscosity, susceptibility to syneresis and descriptive flavour evaluation were conducted at the 1st, 7th and 14th day after production. Additionally, microbiological studies were performed for 28 days, at 7-day intervals. The highest apparent viscosity and adhesiveness were obtained for the carrot yoghurt, whereas yoghurt with pumpkin was the least susceptible to syneresis. The other texture parameters were not affected by the addition of vegetables. Broccoli and red sweet pepper flavours were dominating in the fermented milks fortified with these vegetables, whereas carrot and pumpkin flavours were less distinctive. Yoghurt supplemented with red sweet pepper got the highest sensoric acceptability. The number of starter bacteria was not influenced by the vegetable additives, except for pumpkin yoghurt, which contained lower population of lactobacilli. Among all tested vegetables, carrot additive had the greatest potential to improve yoghurt structure, whereas red sweet pepper imparted the most acceptable flavour.

  1. Assessment of pesticide residues in vegetables from the Western Usambara and Uruguru Mountains in Tanzania.

    Science.gov (United States)

    Mtashobya, Lewis A

    2017-09-25

    Assessment of levels of pesticide residues in vegetables was carried out in some villages in the Western Usambara and Uluguru Mountains of Tanzania where varieties of vegetables are grown. Tomatoes and cabbages were the most popular enterprise grown all year round and therefore were selected as the model crops for this study. Analysis of the cleaned sample extracts on a gas chromatography with electron capture detector (GC-ECD) and confirmation on the Gas chromatography-mass spectrometry (GC-MS) revealed dominance of organochlorine pesticides. Organophosphorous pesticides (parathion and marathion) were only detected in some samples, however, in most cases with higher concentrations compared to organochlorine pesticides. Levels of pesticide residues detected in vegetables were up to: parathion 5.07 μg/Kg, marathion 3.73 μg/Kg, α-endosulfan 0.32 μg/Kg, β-endosulfan 0.53 μg/Kg, dieldrin 1.36 μg/Kg, γ-HCH 0.25 μg/Kg, α-HCH 0.09 μg/Kg, and p, p'-DDT 0.64 μg/Kg. These results clearly show that vegetables are contaminated with different pesticide residues. However, the total levels of pesticide residues in both tomatoes and cabbages are lower than their respective codex alimentarius maximum residue levels (MRLs). This means that the vegetables produced in the area are suitable for human consumption.

  2. Vineyard floor management and cluster thinning inconsistently affect ‘Pinot noir’ crop load, berry composition, and wine quality

    Science.gov (United States)

    A 3-year field study was developed to determine relationships between crop load metrics and berry composition for ‘Pinot noir’ in a cool-climate through the manipulation of vegetative growth and fruit yield using competitive cover cropping and cluster thinning, respectively. To alter vine vigor, per...

  3. REMOTE SENSING AND SURFACE ENERGY FLUX MODELS TO DERIVE EVAPOTRANSPIRATION AND CROP COEFFICIENT

    Directory of Open Access Journals (Sweden)

    Salvatore Barbagallo

    2008-06-01

    Full Text Available Remote sensing techniques using high resolution satellite images provide opportunities to evaluate daily crop water use and its spatial and temporal distribution on a field by field basis. Mapping this indicator with pixels of few meters of size on extend areas allows to characterize different processes and parameters. Satellite data on vegetation reflectance, integrated with in field measurements of canopy coverage features and the monitoring of energy fluxes through the soil-plant-atmosphere system, allow to estimate conventional irrigation components (ET, Kc thus improving irrigation strategies. In the study, satellite potential evapotranspiration (ETp and crop coefficient (Kc maps of orange orchards are derived using semi-empirical approaches between reflectance data from IKONOS imagery and ground measurements of vegetation features. The monitoring of energy fluxes through the orchard allows to estimate actual crop evapotranspiration (ETa using energy balance and the Surface Renewal theory. The approach indicates substantial promise as an efficient, accurate and relatively inexpensive procedure to predict actual ET fluxes and Kc from irrigated lands.

  4. Vegetation structure of plantain-based agrosystems determines numerical dominance in community of ground-dwelling ants.

    Science.gov (United States)

    Dassou, Anicet Gbéblonoudo; Tixier, Philippe; Dépigny, Sylvain; Carval, Dominique

    2017-01-01

    In tropics, ants can represent an important part of animal biomass and are known to be involved in ecosystem services, such as pest regulation. Understanding the mechanisms underlying the structuring of local ant communities is therefore important in agroecology. In the humid tropics of Africa, plantains are cropped in association with many other annual and perennial crops. Such agrosystems differ greatly in vegetation diversity and structure and are well-suited for studying how habitat-related factors affect the ant community. We analysed abundance data for the six numerically dominant ant taxa in 500 subplots located in 20 diversified, plantain-based fields. We found that the density of crops with foliage at intermediate and high canopy strata determined the numerical dominance of species. We found no relationship between the numerical dominance of each ant taxon with the crop diversity. Our results indicate that the manipulation of the densities of crops with leaves in the intermediate and high strata may help maintain the coexistence of ant species by providing different habitat patches. Further research in such agrosystems should be performed to assess if the effect of vegetation structure on ant abundance could result in efficient pest regulation.

  5. Selection of High Oil Yielding Trees of Millettia pinnata (L.) Panigrahi, Vegetative Propagation and Growth in the Field

    OpenAIRE

    Ni Luh Arpiwi; I Made Sutha Negara; I Nengah Simpen

    2017-01-01

    Millettia pinnata (L.) Panigrahi is a potential legume tree that produces seed oil for biodiesel feedstock. The initial step for raising a large-scale plantation of the species is selection of high oil yielding trees from the natural habitat. This is followed by vegetative propagation of the selected trees and then testing the growth of the clone in the field. The aim of the present study was to select high-oil yielding trees of M. pinnata, to propagate the selected trees by budding and to e...

  6. A Robust Inversion Algorithm for Surface Leaf and Soil Temperatures Using the Vegetation Clumping Index

    Directory of Open Access Journals (Sweden)

    Zunjian Bian

    2017-07-01

    Full Text Available The inversion of land surface component temperatures is an essential source of information for mapping heat fluxes and the angular normalization of thermal infrared (TIR observations. Leaf and soil temperatures can be retrieved using multiple-view-angle TIR observations. In a satellite-scale pixel, the clumping effect of vegetation is usually present, but it is not completely considered during the inversion process. Therefore, we introduced a simple inversion procedure that uses gap frequency with a clumping index (GCI for leaf and soil temperatures over both crop and forest canopies. Simulated datasets corresponding to turbid vegetation, regularly planted crops and randomly distributed forest were generated using a radiosity model and were used to test the proposed inversion algorithm. The results indicated that the GCI algorithm performed well for both crop and forest canopies, with root mean squared errors of less than 1.0 °C against simulated values. The proposed inversion algorithm was also validated using measured datasets over orchard, maize and wheat canopies. Similar results were achieved, demonstrating that using the clumping index can improve inversion results. In all evaluations, we recommend using the GCI algorithm as a foundation for future satellite-based applications due to its straightforward form and robust performance for both crop and forest canopies using the vegetation clumping index.

  7. Modeled Impacts of Cover Crops and Vegetative Barriers on Corn Stover Availability and Soil Quality

    Energy Technology Data Exchange (ETDEWEB)

    Ian J. Bonner; David J. Muth Jr.; Joshua B. Koch; Douglas L. Karlen

    2014-06-01

    Environmentally benign, economically viable, and socially acceptable agronomic strategies are needed to launch a sustainable lignocellulosic biofuel industry. Our objective was to demonstrate a landscape planning process that can ensure adequate supplies of corn (Zea mays L.) stover feedstock while protecting and improving soil quality. The Landscape Environmental Assessment Framework (LEAF) was used to develop land use strategies that were then scaled up for five U.S. Corn Belt states (Nebraska, Iowa, Illinois, Indiana, and Minnesota) to illustrate the impact that could be achieved. Our results show an annual sustainable stover supply of 194 million Mg without exceeding soil erosion T values or depleting soil organic carbon [i.e., soil conditioning index (SCI)?>?0] when no-till, winter cover crop, and vegetative barriers were incorporated into the landscape. A second, more rigorous conservation target was set to enhance soil quality while sustainably harvesting stover. By requiring erosion to be <1/2 T and the SCI-organic matter (OM) subfactor to be >?0, the annual sustainable quantity of harvestable stover dropped to148 million Mg. Examining removal rates by state and soil resource showed that soil capability class and slope generally determined the effectiveness of the three conservation practices and the resulting sustainable harvest rate. This emphasizes that sustainable biomass harvest must be based on subfield management decisions to ensure soil resources are conserved or enhanced, while providing sufficient biomass feedstock to support the economic growth of bioenergy enterprises.

  8. Marker-assisted selection. Current status and future perspectives in crops, livestock, forestry and fish

    International Nuclear Information System (INIS)

    Guimaraes, E.P.; Ruane, J.; Scherf, B.D.; Sonnino, A.; Dargie, J.D.

    2007-01-01

    This book provides a comprehensive description and assessment of the use of marker-assisted selection for increasing the rate of genetic gain in crops, livestock, forestry and farmed fish, including the related policy, organizational and resource considerations. It continues FAO's tradition of dealing with issues of importance to agricultural and economic development in a multidisciplinary and cross-sectoral manner. As such it is hoped that the information and options presented and the suggestions made will provide valuable guidance to scientists and breeders in both the public and private sectors, as well as to government and institutional policy and decision-makers

  9. Identification of technology options for reducing nitrogen pollution in cropping systems of Pujiang*

    OpenAIRE

    Fang, Bin; Wang, Guang-huo; Van den berg, Marrit; Roetter, Reimund

    2005-01-01

    This work analyses the potential role of nitrogen pollution technology of crop systems of Pujiang, County in Eastern China’s Zhejiang Province, rice and vegetables are important cropping systems. We used a case study approach involving comparison of farmer practices and improved technologies. This approach allows assessing the impact of technology on pollution, is forward looking, and can yield information on the potential of on-the-shelf technology and provide opportunities for technology de...

  10. COMPETITIVE PRESSURE AND PRODUCTIVITY GROWTH: THE CASE OF THE FLORIDA VEGETABLE INDUSTRY

    OpenAIRE

    Kalaitzandonakes, Nicholas G.; Taylor, Timothy G.

    1990-01-01

    The relationship between the degree of competitive market pressure and the rate of productivity growth is empirically investigated with a case study of the Florida fresh winter vegetable industry. The results indicate that crops which faced considerable competitive pressure exhibited significant productivity growth while the crops that faced minimal competitive pressure generally exhibited little growth in productivity. Thus, the hypothesis that competitive pressure is positively related to p...

  11. The green, blue and grey water footprint of crops and derived crop products

    Science.gov (United States)

    Mekonnen, M. M.; Hoekstra, A. Y.

    2011-05-01

    This study quantifies the green, blue and grey water footprint of global crop production in a spatially-explicit way for the period 1996-2005. The assessment improves upon earlier research by taking a high-resolution approach, estimating the water footprint of 126 crops at a 5 by 5 arc minute grid. We have used a grid-based dynamic water balance model to calculate crop water use over time, with a time step of one day. The model takes into account the daily soil water balance and climatic conditions for each grid cell. In addition, the water pollution associated with the use of nitrogen fertilizer in crop production is estimated for each grid cell. The crop evapotranspiration of additional 20 minor crops is calculated with the CROPWAT model. In addition, we have calculated the water footprint of more than two hundred derived crop products, including various flours, beverages, fibres and biofuels. We have used the water footprint assessment framework as in the guideline of the Water Footprint Network. Considering the water footprints of primary crops, we see that the global average water footprint per ton of crop increases from sugar crops (roughly 200 m3 ton-1), vegetables (300 m3 ton-1), roots and tubers (400 m3 ton-1), fruits (1000 m3 ton-1), cereals (1600 m3 ton-1), oil crops (2400 m3 ton-1) to pulses (4000 m3 ton-1). The water footprint varies, however, across different crops per crop category and per production region as well. Besides, if one considers the water footprint per kcal, the picture changes as well. When considered per ton of product, commodities with relatively large water footprints are: coffee, tea, cocoa, tobacco, spices, nuts, rubber and fibres. The analysis of water footprints of different biofuels shows that bio-ethanol has a lower water footprint (in m3 GJ-1) than biodiesel, which supports earlier analyses. The crop used matters significantly as well: the global average water footprint of bio-ethanol based on sugar beet amounts to 51 m3 GJ-1

  12. Virtual Crop Water Export Analysis: The Case of Greece at River Basin District Level

    Directory of Open Access Journals (Sweden)

    Nikolaos Mellios

    2018-05-01

    Full Text Available An analysis of virtual crop water export through international trade is conducted for Greece, downscaled to the River Basin District (RBD level, in order to identify critical “hotspots” of localized water shortage in the country. A computable general equilibrium model (MAGNET was used to obtain the export shares of crops and associated irrigation water was calculated for all major crops in Greece. A distinction between virtual crop water locally consumed and traded internationally was made for all Greek RBDs. Cotton was identified as a large water consumer and virtual water exporter, while GR08 and GR10 were identified as the RBDs mostly impacted. The value of virtual water exported was calculated for all crop types and fruits and vegetables were identified as the crop most beneficial, since they consume the least water for the obtained value.

  13. Integrated crop management of hot pepper (Capsicum spp.) in tropical lowlands

    NARCIS (Netherlands)

    Vos, J.G.M.

    1994-01-01

    Hot pepper ( Capsicum spp.) is the most important low elevation vegetable commodity in Indonesia. Yields are low, in part due to crop health problems. Farmers' practices were surveyed by means of exploratory surveys. Hot pepper pests and diseases were identified and

  14. Evaluating the relationship between biomass, percent groundcover and remote sensing indices across six winter cover crop fields in Maryland, United States

    Science.gov (United States)

    Prabhakara, Kusuma; Hively, W. Dean; McCarty, Gregory W.

    2015-07-01

    Winter cover crops are an essential part of managing nutrient and sediment losses from agricultural lands. Cover crops lessen sedimentation by reducing erosion, and the accumulation of nitrogen in aboveground biomass results in reduced nutrient runoff. Winter cover crops are planted in the fall and are usually terminated in early spring, making them susceptible to senescence, frost burn, and leaf yellowing due to wintertime conditions. This study sought to determine to what extent remote sensing indices are capable of accurately estimating the percent groundcover and biomass of winter cover crops, and to analyze under what critical ranges these relationships are strong and under which conditions they break down. Cover crop growth on six fields planted to barley, rye, ryegrass, triticale or wheat was measured over the 2012-2013 winter growing season. Data collection included spectral reflectance measurements, aboveground biomass, and percent groundcover. Ten vegetation indices were evaluated using surface reflectance data from a 16-band CROPSCAN sensor. Restricting analysis to sampling dates before the onset of prolonged freezing temperatures and leaf yellowing resulted in increased estimation accuracy. There was a strong relationship between the normalized difference vegetation index (NDVI) and percent groundcover (r2 = 0.93) suggesting that date restrictions effectively eliminate yellowing vegetation from analysis. The triangular vegetation index (TVI) was most accurate in estimating high ranges of biomass (r2 = 0.86), while NDVI did not experience a clustering of values in the low and medium biomass ranges but saturated in the higher range (>1500 kg/ha). The results of this study show that accounting for index saturation, senescence, and frost burn on leaves can greatly increase the accuracy of estimates of percent groundcover and biomass for winter cover crops.

  15. Improved Vegetation Profiles with GOCI Imagery Using Optimized BRDF Composite

    Directory of Open Access Journals (Sweden)

    Sang-il Kim

    2016-01-01

    Full Text Available The purpose of this study was to optimize a composite method for the Geostationary Ocean Color Imager (GOCI, which is the first geostationary ocean color sensor in the world. Before interpreting the sensitivity of each composite with ground measurements, we evaluated the accuracy of bidirectional reflectance distribution function (BRDF performance by comparing modeled surface reflectance from BRDF simulation with GOCI-measured surface reflectance according to composite period. The root mean square error values for modeled and measured surface reflectance showed reasonable accuracy for all of composite days since each BRDF composite period includes at least seven cloud-free angular sampling for all BRDF performances. Also, GOCI-BRDF-adjusted NDVIs with four different composite periods were compared with field-observation NDVI and we interpreted the sensitivity of temporal crop dynamics of GOCI-BRDF-adjusted NDVIs. The results showed that vegetation index seasonal profiles appeared similar to vegetation growth curves in both field observations from crop scans and GOCI normalized difference vegetation index (NDVI data. Finally, we showed that a 12-day composite period was optimal in terms of BRDF simulation accuracy, surface coverage, and real-time sensitivity.

  16. Climate protection and energy crops. Potential for greenhouse gas emission reduction through crop rotation and crop planning

    International Nuclear Information System (INIS)

    Eckner, Jens; Peter, Christiane; Vetter, Armin

    2015-01-01

    The EVA project compares nationwide energy crops and crop rotations on site-specific productivity. In addition to agronomic suitability for cultivation economic and environmental benefits and consequences are analyzed and evaluated. As part of sustainability assessment of the tested cultivation options LCAs are established. The model MiLA developed in the project uses empirical test data and site parameters to prepare the inventory balances. At selected locations different cultivation and fertilization regimes are examined comparatively. In the comparison of individual crops and crop rotation combinations cultivation of W.Triticale-GPS at the cereals favor location Dornburg causes the lowest productrelated GHG-emissions. Due to the efficient implementation of nitrogen and the substrate properties of maize is the cultivation despite high area-related emissions and N-expenses at a low level of emissions. Because of the intensity the two culture systems offer lower emissions savings potentials with high area efficiency. Extensification with perennial alfalfagrass at low nitrogen effort and adequate yield performance show low product-related emissions. Closing the nutrient cycles through a recirculation of digestates instead of using mineral fertilization has a climate-friendly effect. Adapted intensifies of processing or reduced tillage decrease diesel consumption and their related emissions.

  17. Structure of Corrective Feedback for Selection of Ineffective Vegetable Parenting Practices for Use in a Simulation Videogame

    Science.gov (United States)

    Beltran, Alicia; Chen, Tzu-An; O'Connor, Teresia; Hughes, Sheryl; Buday, Richard; Baranowski, Janice

    2013-01-01

    Abstract A serious videogame is being developed to train parents of preschool children in selecting and using parenting practices that are likely to encourage their child to eat more vegetables. The structure of feedback to the parents on their selection may influence what they learn from the game. Feedback Intervention Theory provides some guidance on the design of such messages. The structure of preferred performance feedback statements has not been investigated within serious videogames. Two feedback formats were tested for a player's preferences within the context of this videogame. Based on Feedback Intervention Theory, which proposes that threat to self-concept impairs feedback response, three-statement (a nonaffirming comment sandwiched between two affirming comments, called “Oreo” feedback, which should minimize threat to self-concept) and two-statement (a nonaffirming comment followed by an affirming comment) performance feedbacks were tailored to respondents. Tailoring was based on participants' report of frequency of use of effective and ineffective vegetable parenting practices and the reasons for use of the ineffective practices. Participants selected their preference between the two forms of feedback for each of eight ineffective vegetable parenting practices. In general, mothers (n=81) (no male respondents) slightly preferred the “Oreo” feedback, but the pattern of preferences varied by demographic characteristics. Stronger relationships by income suggest the feedback structure should be tailored to family income. Future research with larger and more diverse samples needs to test whether perceived threat to self-concept mediates the response to feedback and otherwise verify these findings. PMID:24761320

  18. Integrated modelling of crop production and nitrate leaching with the Daisy model

    DEFF Research Database (Denmark)

    Manevski, Kiril; Børgesen, Christen Duus; Li, Xiaoxin

    2016-01-01

    An integrated modelling strategy was designed and applied to the Soil-Vegetation-Atmosphere Transfer model Daisy for simulation of crop production and nitrate leaching under pedo-climatic and agronomic environment different than that of model original parameterisation. The points of significance...

  19. Normalized difference vegetation index (NDVI) variation among cultivars and environments

    Science.gov (United States)

    Although Nitrogen (N) is an essential nutrient for crop production, large preplant applications of fertilizer N can result in off-field loss that causes environmental concerns. Canopy reflectance is being investigated for use in variable rate (VR) N management. Normalized difference vegetation index...

  20. Selection for chlorpyrifos resistance in Liriomyza sativae Blanchard: Cross-resistance patterns, stability and biochemical mechanisms.

    Science.gov (United States)

    Askari-Saryazdi, Ghasem; Hejazi, Mir Jalil; Ferguson, J Scott; Rashidi, Mohammad-Reza

    2015-10-01

    The vegetable leafminer (VLM), Liriomyza sativae (Diptera: Agromyzidae) is a serious pest of vegetable crops and ornamentals worldwide. In cropping systems with inappropriate management strategies, development of resistance to insecticides in leafminers is probable. Chlorpyrifos is a commonly used pesticide for controlling leafminers in Iran, but resistance to this insecticide in leafminers has not been characterized. In order to develop strategies to minimize resistance in the field and greenhouse, a laboratory selected chlorpyrifos resistant strain of L. sativae was used to characterize resistance and determine the rate of development and stability of resistance. Selecting for resistance in the laboratory after 23 generations yielded a chlorpyrifos resistant selected strain (CRSS) with a resistance ratio of 40.34, determined on the larval stage. CRSS exhibited no cross-resistance to other tested insecticides except for diazinon. Synergism and biochemical assays indicated that esterases (EST) had a key role in metabolic resistance to chlorpyrifos, but glutathione S-transferase (GST) and mixed function oxidase (MFO) were not mediators in this resistance. In CRSS acetylcholinesterase (AChE) was more active than the susceptible strain, Sharif (SH). AChE in CRSS was also less sensitive to inhibition by propoxur. The kinetics parameters (Km and Vmax) of AChE indicated that affinities and hydrolyzing efficiencies of this enzyme in CRSS were higher than SH. Susceptibility to chlorpyrifos in L. sativae was re-gained in the absence of insecticide pressure. Synergism, biochemical and cross-resistance assays revealed that overactivity of metabolic enzymes and reduction in target site sensitivity are probably joint factors in chlorpyrifos resistance. An effective insecticide resistance management program is necessary to prevent fast resistance development in crop systems. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. An improved UHPLC-UV method for separation and quantification of carotenoids in vegetable crops.

    Science.gov (United States)

    Maurer, Megan M; Mein, Jonathan R; Chaudhuri, Swapan K; Constant, Howard L

    2014-12-15

    Carotenoid identification and quantitation is critical for the development of improved nutrition plant varieties. Industrial analysis of carotenoids is typically carried out on multiple crops with potentially thousands of samples per crop, placing critical needs on speed and broad utility of the analytical methods. Current chromatographic methods for carotenoid analysis have had limited industrial application due to their low throughput, requiring up to 60 min for complete separation of all compounds. We have developed an improved UHPLC-UV method that resolves all major carotenoids found in broccoli (Brassica oleracea L. var. italica), carrot (Daucus carota), corn (Zea mays), and tomato (Solanum lycopersicum). The chromatographic method is completed in 13.5 min allowing for the resolution of the 11 carotenoids of interest, including the structural isomers lutein/zeaxanthin and α-/β-carotene. Additional minor carotenoids have also been separated and identified with this method, demonstrating the utility of this method across major commercial food crops. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Radiation induced mutations for plant selection

    International Nuclear Information System (INIS)

    Brunner, H.

    1994-01-01

    The successful use of plant breeding for improving crops requires the existence of genetic variation of useful traits. Unfortunately, the desired variation is often lacking. However, radiation can be used to induce mutations and thereby generate genetic variation from which desired mutants may be selected. Mutation induction has become a proven way of creating variation within a crop variety. It offers the possibility of inducing desired attributes that either cannot be expressed in nature or have been lost during evolution. More than 1700 mutant cultivars of crop plants with significantly improved attributes such as increased yield, improved quality, disease and stress resistance, have been released worldwide in the last thirty years. The Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture has contributed to these achievements through the promotion of research and development in mutation breeding techniques using nuclear and related biotechnological methods and the provision of in plant breeding is then transferred to Member States of the IAEA and the FAO through training in mutation breeding methods and the provision of technical advice. Moreover, radiation treatment services are provided to foster applications of nuclear techniques in crop improvement programmes of member states and more specifically to render direct support to plant breeders by efficient generation of mutations. Plant materials are standardized prior to radiation exposure to warrant reproducibility of the induced effects within practical limits and a radiosensitivity test is implemented to affirm useful doses for applied objectives of a request. This review deals with irradiation methods applied at the IAEA laboratories for the efficient induction of mutations in seeds, vegetative propagules and tissue and cell cultures and the establishment of genetically variable populations upon which selection of desired traits can be based. 3 tabs., 18 refs. (author)

  3. A roadmap for breeding orphan leafy vegetable species: a case study of Gynandropsis gynandra (Cleomaceae).

    Science.gov (United States)

    Sogbohossou, E O Deedi; Achigan-Dako, Enoch G; Maundu, Patrick; Solberg, Svein; Deguenon, Edgar M S; Mumm, Rita H; Hale, Iago; Van Deynze, Allen; Schranz, M Eric

    2018-01-01

    Despite an increasing awareness of the potential of "orphan" or unimproved crops to contribute to food security and enhanced livelihoods for farmers, coordinated research agendas to facilitate production and use of orphan crops by local communities are generally lacking. We provide an overview of the current knowledge on leafy vegetables with a focus on Gynandropsis gynandra , a highly nutritious species used in Africa and Asia, and highlight general and species-specific guidelines for participatory, genomics-assisted breeding of orphan crops. Key steps in genome-enabled orphan leafy vegetables improvement are identified and discussed in the context of Gynandropsis gynandra breeding, including: (1) germplasm collection and management; (2) product target definition and refinement; (3) characterization of the genetic control of key traits; (4) design of the 'process' for cultivar development; (5) integration of genomic data to optimize that 'process'; (6) multi-environmental participatory testing and end-user evaluation; and (7) crop value chain development. The review discusses each step in detail, with emphasis on improving leaf yield, phytonutrient content, organoleptic quality, resistance to biotic and abiotic stresses and post-harvest management.

  4. Concentration of radiocesium in rice, vegetables, and fruits cultivated in evacuation area at Okuma town, Fukushima

    International Nuclear Information System (INIS)

    Ohse, Kenji; Kitayama, Kyo; Kanno, Akira; Suzuki, Chika; Kawatsu, Kencho; Tsukada, Hirofumi; Suenaga, Seiichi; Matsumoto, Kiyoyuki

    2013-01-01

    Rice, vegetables, and fruits were cultivated in the evacuation area at Okuma town, and the radiocesium concentration of the crop samples cultivated in contaminated and decontaminated soil was compared. Decrease of the concentration in every crop by decontamination was observed. The TF of brown rice was higher than previous reports. (author)

  5. The practical and economic benefits of ionising radiation for the postharvest treatment of fruit and vegetables: an evaluation

    International Nuclear Information System (INIS)

    Morris, S.C.

    1987-01-01

    It can be concluded validly from the literature examined that all irradiated fruit and vegetables are safe for human consumption and suffer no major reduction in nutritional quality for doses of 2 kGy and below. However, the majority of crops are adversely affected at treatment doses with appearance and quality being reduced significantly. This is because the sensitivity of the crop to irradiation is greater than the sensitivity of the pathogen to physiological process which irradiation is attempting to control. Of the nine commodities in Australia that have potential for treatment with irradiation, only the banana, citrus, mushroom, onion and potato industries have production areas with sufficient concentration of growers. However, irradiation as a treatment for these five crops does not appear to be economically viable, as there is either insufficient demand or insufficient advantages in using irradiation when compared to existing industry practice. It is apparent that no single fruit or vegetable crop in Australia has either the volume of product or potential demand to justify full scale commercialisation. Thus the only possible route for commercialisation of fruit and vegetable irradiation is by using the facilities of a multi-purpose irradiation plant. Whether such a system would ever be commercially viable for fruits and vegetables has yet to be demonstrated; to date only low volume specialty items or research scale quantities have been processed in multi-purpose plants at highly subsidised rates

  6. Allelopathic cover crop prior to seeding is more important than subsequent grazing/mowing in grassland establishment

    Science.gov (United States)

    Milchunas, Daniel G.; Vandever, Mark W.; Ball, Leonard O.; Hyberg, Skip

    2011-01-01

    The effects of grazing, mowing, and type of cover crop were evaluated in a previous winter wheat–fallow cropland seeded to grassland under the Conservation Reserve Program in eastern Colorado. Prior to seeding, the fallow strips were planted to forage sorghum or wheat in alternating strips (cover crops), with no grazing, moderate to heavy grazing, and mowing (grazing treatments) superimposed 4 yr after planting and studied for 3 yr. Plots previously in wheat had more annual and exotic species than sorghum plots. Concomitantly, there were much greater abundances of perennial native grass and all native species in sorghum than wheat cropped areas. The competitive advantage gained by seeded species in sorghum plots resulted in large increases in rhizomatous western wheatgrass. Sorghum is known to be allelopathic and is used in crop agriculture rotations to suppress weeds and increase crop yields, consistent with the responses of weed and desired native species in this study. Grazing treatment had relatively minor effects on basal and canopy cover composition of annual or exotic species versus perennial native grass or native species. Although grazing treatment never was a significant main effect, it occasionally modified cover crop or year effects. Opportunistic grazing reduced exotic cheatgrass by year 3 but also decreased the native palatable western wheatgrass. Mowing was a less effective weed control practice than grazing. Vegetative basal cover and aboveground primary production varied primarily with year. Common management practices for revegetation/restoration currently use herbicides and mowing as weed control practices and restrict grazing in all stages of development. Results suggest that allelopathic cover crop selection and opportunistic grazing can be effective alternative grass establishment and weed control practices. Susceptibility, resistance, and interactions of weed and seeded species to allelopathic cover species/cultivars may be a fruitful area

  7. Measurements of nitrous oxide emissions from vegetable production in China

    Science.gov (United States)

    Xiong, Zhengqin; Xie, Yingxin; Xing, Guangxi; Zhu, Zhaoliang; Butenhoff, Chris

    Nitrous oxide (N 2O) emissions resulting from Chinese vegetable production were measured. A site in suburban Nanjing (East coast; Jiangsu Province) was monitored from November 2001 to January 2003, in which five consecutive vegetable crops were sown. The crops consisted of radish, baby bok choy, lettuce, second planting of baby bok choy, and finally celery. Results suggested that N 2O emission events occur in pulses. The average N 2O-N flux for all five crops was 148±9 μg N m -2 h -1 and the average emission rate was 12±0.7 kg N ha -1. The average seasonal emission fluxes ranged from 37 μg N m -2 h -1 in the radish plot to 300 μg N m -2 h -1 in the celery plot. The celery field produced the greatest cumulative emission of 5.8 kg N ha -1 while the baby bok choy field had the lowest rate of 0.96-1.0 kg N ha -1. In total, 0.73% of applied fertilizer N was emitted as N 2O-N as a whole. The lettuce field had the largest emission factor of 2.2%. Results indicate that emissions from vegetable field are a potential source of national N 2O inventory. Temporal variation is much greater than spatial variation and the corresponding CV averaged 115% and 22%, respectively. Under the same total sampling quantity, increasing sampling frequency is more important than increasing spatial replicates.

  8. Estimation of Surface Soil Moisture in Irrigated Lands by Assimilation of Landsat Vegetation Indices, Surface Energy Balance Products, and Relevance Vector Machines

    Directory of Open Access Journals (Sweden)

    Alfonso F. Torres-Rua

    2016-04-01

    Full Text Available Spatial surface soil moisture can be an important indicator of crop conditions on farmland, but its continuous estimation remains challenging due to coarse spatial and temporal resolution of existing remotely-sensed products. Furthermore, while preceding research on soil moisture using remote sensing (surface energy balance, weather parameters, and vegetation indices has demonstrated a relationship between these factors and soil moisture, practical continuous spatial quantification of the latter is still unavailable for use in water and agricultural management. In this study, a methodology is presented to estimate volumetric surface soil moisture by statistical selection from potential predictors that include vegetation indices and energy balance products derived from satellite (Landsat imagery and weather data as identified in scientific literature. This methodology employs a statistical learning machine called a Relevance Vector Machine (RVM to identify and relate the potential predictors to soil moisture by means of stratified cross-validation and forward variable selection. Surface soil moisture measurements from irrigated agricultural fields in Central Utah in the 2012 irrigation season were used, along with weather data, Landsat vegetation indices, and energy balance products. The methodology, data collection, processing, and estimation accuracy are presented and discussed.

  9. Geophysical Global Modeling for Extreme Crop Production Using Photosynthesis Models Coupled to Ocean SST Dipoles

    Science.gov (United States)

    Kaneko, D.

    2016-12-01

    Climate change appears to have manifested itself along with abnormal meteorological disasters. Instability caused by drought and flood disasters is producing poor harvests because of poor photosynthesis and pollination. Fluctuations of extreme phenomena are increasing rapidly because amplitudes of change are much greater than average trends. A fundamental cause of these phenomena derives from increased stored energy inside ocean waters. Geophysical and biochemical modeling of crop production can elucidate complex mechanisms under seasonal climate anomalies. The models have progressed through their combination with global climate reanalysis, environmental satellite data, and harvest data on the ground. This study examined adaptation of crop production to advancing abnormal phenomena related to global climate change. Global environmental surface conditions, i.e., vegetation, surface air temperature, and sea surface temperature observed by satellites, enable global modeling of crop production and monitoring. Basic streams of the concepts of modeling rely upon continental energy flow and carbon circulation among crop vegetation, land surface atmosphere combining energy advection from ocean surface anomalies. Global environmental surface conditions, e.g., vegetation, surface air temperature, and sea surface temperature observed by satellites, enable global modeling of crop production and monitoring. The method of validating the modeling relies upon carbon partitioning in biomass and grains through carbon flow by photosynthesis using carbon dioxide unit in photosynthesis. Results of computations done for this study show global distributions of actual evaporation, stomata opening, and photosynthesis, presenting mechanisms related to advection effects from SST anomalies in the Pacific, Atlantic, and Indian oceans on global and continental croplands. For North America, climate effects appear clearly in severe atmospheric phenomena, which have caused drought and forest fires

  10. Introduction of novel legume crops in Serbia: White lupin (Lupinus albus

    Directory of Open Access Journals (Sweden)

    Mikić Aleksandar

    2010-01-01

    Full Text Available The renewed interest in introducing white lupin in Serbia is its high crude protein content in grain dry matter of nearly 400 g kg-1, which makes it a potential supplement for soybean meal in animal feeding. The only collection of white and other lupins in Serbia is maintained at Institute of Field and Vegetable Crops in Novi Sad, with about 200 accessions of 10 species, containing about 70 accessions of white lupin. The accessions with high tolerance to alkaline soil reaction of about pH=8 in a carbonated chernozem in Novi Sad regularly formed two orders of pods and grains and produced grain yields of more than 5 t ha-1, 45 t ha-1 of green forage and 8 t ha-1 of forage dry matter. The first Serbian white lupin breeding programme carried out at Institute of Field and Vegetable Crops in Novi Sad has resulted in developing cultivars Vesna and Panorama, registered in 2008. .

  11. The eff ect of addition of selected vegetables on the microbiological, textural and fl avour profi le properties of yoghurts

    OpenAIRE

    Dorota Najgebauer-Lejko; Małgorzata Tabaszewska; Tadeusz Grega

    2015-01-01

    Background. Vegetables, apart from having high nutritional value, also contain considerable amounts of dietary fi bre and other components, which may affect physico-chemical properties of fermented milks, e.g. viscosity, texture, susceptibility to syneresis, fl avour profi le etc. The present work was established to study the effect of selected vegetables addition on the rheological, textural, microbiological and fl avour profi le parameters of yoghurts. Material and methods. The vegetabl...

  12. Plant senescence and crop productivity

    DEFF Research Database (Denmark)

    Gregersen, Per L.; Culetic, Andrea; Boschian, Luca

    2013-01-01

    Senescence is a developmental process which in annual crop plants overlaps with the reproductive phase. Senescence might reduce crop yield when it is induced prematurely under adverse environmental conditions. This review covers the role of senescence for the productivity of crop plants....... With the aim to enhance productivity, a number of functional stay-green cultivars have been selected by conventional breeding, in particular of sorghum and maize. In many cases, a positive correlation between leaf area duration and yield has been observed, although in a number of other cases, stay...... plants, the expression of the IPT gene under control of senescence-associated promoters has been the most successful. The promoters employed for senescence-regulated expression contain cis-elements for binding of WRKY transcription factors and factors controlled by abscisic acid. In most crops...

  13. A field study of the uptake of 35S and 14C into crops characteristic of the UK diet

    International Nuclear Information System (INIS)

    Kluczewski, S.M.; Bell, J.N.B.; Nair, S.

    1986-02-01

    The uptake of 35 S and 14 C into crops characteristic of the UK diet was studied. Four common types of green vegetable, six common types of root vegetable and perennial ryegrass were grown in a garden plot in the environs of Hinkley Point Nuclear Power Station and the 35 S and 14 C contents of the crops were measured. Also measured were the corresponding air concentrations over the plot averaged over a range of time periods between sowing and harvesting. The results were analysed in terms of air to crop transfer factors for 35 S and 14 C and the implications of these for dose calculations were assessed for both collective dose and for a hypothetical critical group consuming a range of foods produced in situ. (author)

  14. Effect of pea intercropping on biological efficiencies and economics of some non-legume winter vegetables

    International Nuclear Information System (INIS)

    Qasim, S.A.; Anjum, M.A.; Hussain, S.; Ahmad, S.

    2013-01-01

    Intercropping with legumes makes effective use of land and other resources and results in reduced cost of production. Increased agricultural production through intercropping with minimal cost is need of time to feed increasing population. The reported work evaluates the biological efficiencies and economics of pea, garlic, turnip and cauliflower grown as sole crops and when pea intercropped in garlic, turnip and cauliflower during 2010-12. All the vegetables generally yielded more when grown as single crop compared with when pea was intercropped in these vegetables. In peas in garlic intercropping, pea yield was not significantly affected; however, garlic yield was significantly reduced (65.8%). Pea intercropping in turnip or cauliflower resulted in significantly lower yields of both crops (29.1 and 28.0%, respectively) as compared with their sole cropping. All other characteristics (plant growth and yield components) of all the four crops which indicate biological efficiency generally were greater when grown as single crops and decreased in intercropping combinations. Analysis of intercropping treatments revealed that pea intercropping in turnip resulted in the highest marginal rate of return (8,875%), followed by pea intercropping in cauliflower (6,977%), due to lower input costs incurred per hectare. However, net benefit to the growers was higher (Rs. 327,925) in case of pea intercropping in cauliflower, followed by pea intercropping in garlic (Rs. 213,425). (author)

  15. CROP YIELD AND CO2 FIXATION MONITORING IN ASIA USING A PHOTOSYNTHETICSTERILITY MODEL WITH SATELLITES AND METEOROLOGICAL DATA

    Energy Technology Data Exchange (ETDEWEB)

    Daijiro Kaneko [Department of Civil and Environmental Engineering, Matsue National College of Technology, Matsue (Japan); Toshiro Kumakura [Department of Civil and Environmental Engineering, Nagaoka University of Technology, Nagaoka (Japan); Peng Yang [Laboratory of Resources Remote Sensing and Digital Agriculture, Ministry of Agriculture, Beijing (China)

    2008-09-30

    This study is intended to develop a model for estimating carbon dioxide (CO{sub 2}) fixation in the carbon cycle and for monitoring grain yields using a photosynthetic-sterility model, which integrates solar radiation and air temperature effects on photosynthesis, along with grain-filling from heading to ripening. Grain production monitoring would support orderly crisis management to maintain food security in Asia, which is facing climate fluctuation through this century of global warming. The author improved a photosynthesis-and-sterility model to compute both the crop yield and crop situation index CSI, which gives a percentage of rice yields compared to normal annual production. The model calculates photosynthesis rates including biomass effects, lowtemperature sterility, and high-temperature injury by incorporating solar radiation, effective air temperature, the normalized difference vegetation index NDVI, and the effect of temperature on photosynthesis by grain plant leaves. A decision-tree method classifies the distribution of crop fields in Asia using MODIS fundamental landcover and SPOT VEGETATION data, which include the Normalized Vegetation index (NDVI) and Land Surface Water Index (LSWI). This study provides daily distributions of the photosynthesis rate, which is the CO2 fixation in Asian areas combined with the land-cover distribution, the Japanese geostationary meteorological satellite (GMS), and meteorological re-analysis data by National Centers for Environmental Prediction (NCEP). The method is based on routine observation data, enabling automated monitoring of crop yields.

  16. Evaluation of land surface model simulations of evapotranspiration over a 12-year crop succession: impact of soil hydraulic and vegetation properties

    Science.gov (United States)

    Garrigues, S.; Olioso, A.; Calvet, J. C.; Martin, E.; Lafont, S.; Moulin, S.; Chanzy, A.; Marloie, O.; Buis, S.; Desfonds, V.; Bertrand, N.; Renard, D.

    2015-07-01

    influencing parameter on the simulation of evapotranspiration over the crop succession. The evapotranspiration simulated with the standard surface and soil parameters of the model is largely underestimated. The deficit in cumulative evapotranspiration amounts to 24 % over 12 years. The bias in daily daytime evapotranspiration is -0.24 mm day-1. The ISBA pedotransfer estimates of the soil moisture at saturation and at wilting point are overestimated, which explains most of the evapotranspiration underestimation. The use of field capacity values retrieved from laboratory methods leads to inaccurate simulation of ET due to the lack of representativeness of the soil structure variability at the field scale. The most accurate simulation is achieved with the average values of the soil properties derived from the analysis of field measurements of soil moisture vertical profiles over each crop cycle. The representation of the variations in time of the wilting point and the maximum rooting depth over the crop succession has little impact on the simulation performances. Finally, we show that the uncertainties in the soil parameters can generate substantial uncertainties in ET simulated over 12 years (the 95 % confidence interval represents 23 % of cumulative ET over 12 years). Uncertainties in the mesophyll conductance have lower impact on ET. Measurement random errors explain a large part of the scattering between simulations and measurements at half-hourly timescale. The deficits in simulated ET reported in this work are probably larger due to likely underestimation of ET by eddy-covariance measurements. Other possible model shortcomings include the lack of representation of soil vertical heterogeneity and root profile along with inaccurate energy balance partitioning between the soil and the vegetation at low leaf area index.

  17. Modelling the fate of sulphur-35 in crops. 1. Calibration data

    International Nuclear Information System (INIS)

    Collins, Chris; Cunningham, Nathan

    2005-01-01

    Gas-cooled nuclear power plants in the UK release sulphur-35 during their routine operation. The gas is in the form of COS which can be readily assimilated by vegetation. It is therefore necessary to be able to model the uptake of such releases in order to quantify any potential contamination of the food chain. To develop such models experimental data are required. A series of experiments was undertaken to determine the rate of deposition, the partition and subsequent loss of sulphur-35 in crops exposed to CO 35 S. The mass normalised deposition rate was similar for the range of crops tested, while the partition of the 35 S paralleled the growth of crop components. There was no significant loss of radioactivity other than that expected from radioactive decay. - The deposition, fate and loss of 35 S in crops were quantified following exposure to COS

  18. Laser Sensing of Vegetation Based on Dual Spectrum Measurements of Reflection Coefficients

    Directory of Open Access Journals (Sweden)

    M. L. Belov

    2017-01-01

    Full Text Available Currently, a promising trend in remote sensing of environment is to monitor the vegetative cover: evaluate the productivity of agricultural crops; evaluate the moisture content of soils and the state of ecosystems; provide mapping the sites of bogging, desertification, drought, etc.; control the phases of vegetation of crops, etc.Development of monitoring systems for remote detection of vegetation sites being under unfavorable conditions (low or high temperature, excess or lack of water, soil salinity, disease, etc. is of relevance. Optical methods are the most effective for this task. These methods are based on the physical features of reflection spectra in the visible and near infrared spectral range for vegetation under unfavorable conditions and vegetation under normal conditions.One of the options of optoelectronic equipment for monitoring vegetation condition is laser equipment that allows remote sensing of vegetation from the aircraft and mapping of vegetation sites with abnormal (inactive periods of vegetation reflection spectra with a high degree of spatial resolution.The paper deals with development of a promising dual-spectrum method for laser remote sensing of vegetation. Using the experimentally measured reflection spectra of different vegetation types, mathematical modeling of probability for appropriate detection and false alarms to solve a problem of detecting the vegetation under unfavorable conditions (with abnormal reflection spectra is performed based on the results of dual-spectrum measurements of the reflection coefficient.In mathematical modeling, the lidar system was supposed to provide sensing at wavelengths of 0.532 μm and 0.85 μm. The noise of the measurement was supposed to be normal with zero mean value and mean-square value of 1% -10%.It is shown that the method of laser sensing of vegetation condition based on the results of dual-spectrum measurement of the reflection coefficient at wavelengths of 0.532 μm and 0

  19. Development of reflectance-based crop coefficients for corn

    International Nuclear Information System (INIS)

    Neale, C.M.U.; Bausch, W.C.; Heermann, D.F.

    1989-01-01

    Concurrent measurements of reflected canopy radiation and the basal crop coefficient (K^b) for corn were conducted throughout a season in order to develop a reflectance-based crop coefficient model. Reflectance was measured in Landsat Thematic Mapper bands TM3 (0.63 - 0.69 um) and TM4 (0.76 - 0.90 um) and used in the calculation of a vegetation index called the normalized difference (ND). A linear transformation of the ND was used as the reflectance-based crop coefficient (Kcr). The transformation equates the ND for dry bare soil and the ND at effective cover, to the basal crop coefficient for dry soil evaporation and at effective cover, respectively. Basal crop coefficient values for com were obtained from daily evapotranspiration measurements of corn and alfalfa, using hydraulic weighing lysimeters. The Richards growth curve function was fitted to both sets of data. The K^b values were determined to be within -2.6% and 4.7% of the K^^ values. The date of effective cover obtained from the K^b data was within four days of the date on which the ND curve reached its maxima according to the Richards function. A comparison of the Kcr with basal crop curves from the literature for several years of data indicated good agreement. Reflectance-based crop coefficients are sensitive to periods of slow and fast growth induced by weather conditions, resulting in a real time coefficient, independent from the traditional time base parameters based on the day of planting and effective cover

  20. Early-season movement dynamics of phytophagous pest and natural enemies across a native vegetation-crop ecotone

    NARCIS (Netherlands)

    Macfadyen, S.; Hopkinson, J.; Parry, H.; Neave, M.J.; Bianchi, F.J.J.A.; Zalucki, M.P.; Schellhorn, N.A.

    2015-01-01

    There is limited understanding about how insect movement patterns are influenced by landscape features, and how landscapes can be managed to suppress pest phytophage populations in crops. Theory suggests that the relative timing of pest and natural enemy arrival in crops may influence pest

  1. AUTOMATIC TRAINING SITE SELECTION FOR AGRICULTURAL CROP CLASSIFICATION: A CASE STUDY ON KARACABEY PLAIN, TURKEY

    Directory of Open Access Journals (Sweden)

    A. Ozdarici Ok

    2012-09-01

    Full Text Available This study implements a traditional supervised classification method to an optical image composed of agricultural crops by means of a unique way, selecting the training samples automatically. Panchromatic (1m and multispectral (4m Kompsat-2 images (July 2008 of Karacabey Plain (~100km2, located in Marmara region, are used to evaluate the proposed approach. Due to the characteristic of rich, loamy soils combined with reasonable weather conditions, the Karacabey Plain is one of the most valuable agricultural regions of Turkey. Analyses start with applying an image fusion algorithm on the panchromatic and multispectral image. As a result of this process, 1m spatial resolution colour image is produced. In the next step, the four-band fused (1m image and multispectral (4m image are orthorectified. Next, the fused image (1m is segmented using a popular segmentation method, Mean- Shift. The Mean-Shift is originally a method based on kernel density estimation and it shifts each pixel to the mode of clusters. In the segmentation procedure, three parameters must be defined: (i spatial domain (hs, (ii range domain (hr, and (iii minimum region (MR. In this study, in total, 176 parameter combinations (hs, hr, and MR are tested on a small part of the area (~10km2 to find an optimum segmentation result, and a final parameter combination (hs=18, hr=20, and MR=1000 is determined after evaluating multiple goodness measures. The final segmentation output is then utilized to the classification framework. The classification operation is applied on the four-band multispectral image (4m to minimize the mixed pixel effect. Before the image classification, each segment is overlaid with the bands of the image fused, and several descriptive statistics of each segment are computed for each band. To select the potential homogeneous regions that are eligible for the selection of training samples, a user-defined threshold is applied. After finding those potential regions, the

  2. Satellite Leaf Area Index: Global Scale Analysis of the Tendencies Per Vegetation Type Over the Last 17 Years

    Directory of Open Access Journals (Sweden)

    Simon Munier

    2018-03-01

    Full Text Available The main objective of this study is to detect and quantify changes in the vegetation dynamics of each vegetation type at the global scale over the last 17 years. With recent advances in remote sensing techniques, it is now possible to study the Leaf Area Index (LAI seasonal and interannual variability at the global scale and in a consistent way over the last decades. However, the coarse spatial resolution of these satellite-derived products does not permit distinguishing vegetation types within mixed pixels. Considering only the dominant type per pixel has two main drawbacks: the LAI of the dominant vegetation type is contaminated by spurious signal from other vegetation types and at the global scale, significant areas of individual vegetation types are neglected. In this study, we first developed a Kalman Filtering (KF approach to disaggregate the satellite-derived LAI from GEOV1 over nine main vegetation types, including grasslands and crops as well as evergreen, broadleaf and coniferous forests. The KF approach permits the separation of distinct LAI values for individual vegetation types that coexist within a pixel. The disaggregated LAI product, called LAI-MC (Multi-Cover, consists of world-wide LAI maps provided every 10 days for each vegetation type over the 1999–2015 period. A trend analysis of the original GEOV1 LAI product and of the disaggregated LAI time series was conducted using the Mann-Kendall test. Resulting trends of the GEOV1 LAI (which accounts for all vegetation types compare well with previous regional or global studies, showing a greening over a large part of the globe. When considering each vegetation type individually, the largest global trend from LAI-MC is found for coniferous forests (0.0419 m 2 m − 2 yr − 1 followed by summer crops (0.0394 m 2 m − 2 yr − 1 , while winter crops and grasslands show the smallest global trends (0.0261 m 2 m − 2 yr − 1 and 0.0279 m 2 m − 2 yr − 1 , respectively. The LAI

  3. Biomass for energy from field crops

    Energy Technology Data Exchange (ETDEWEB)

    Zubr, J.

    1988-01-01

    On the basis of a field experiment, selected crops were evaluated for feasibility in producing biomass applicable as raw material for fuels. Both the main products and byproducts of the crops were investigated in the laboratory for qualitative characteristics and were subjected to methanogenic fermentation under mesophilic conditions. The biogas energy potential and gross energy potential were determined. Under the climatic conditions of Northern Europe, sugar beet (Beta vulgaris) was found to be a superior energy crop. White cabbage (Brassica oleracea var. Capitata), rhubarb (Rheum rhaponticum) and comfrey (Symphytum asperum) can be considered as potential crops for biomass. The agrotechnical and the economic aspects of the biomass production are being subjected to further investigation.

  4. Estimating effectiveness of crop management for reduction of soil erosion and runoff

    Science.gov (United States)

    Hlavcova, K.; Studvova, Z.; Kohnova, S.; Szolgay, J.

    2017-10-01

    The paper focuses on erosion processes in the Svacenický Creek catchment which is a small sub-catchment of the Myjava River basin. To simulate soil loss and sediment transport the USLE/SDR and WaTEM/SEDEM models were applied. The models were validated by comparing the simulated results with the actual bathymetry of a polder at the catchment outlet. Methods of crop management based on rotation and strip cropping were applied for the reduction of soil loss and sediment transport. The comparison shows that the greatest intensities of soil loss were achieved by the bare soil without vegetation and from the planting of maize for corn. The lowest values were achieved from the planting of winter wheat. At the end the effectiveness of row crops and strip cropping for decreasing design floods from the catchment was estimated.

  5. Effects of Land Use Change for Crops on Water and Carbon Budgets in the Midwest USA

    Directory of Open Access Journals (Sweden)

    Jian Sun

    2017-02-01

    Full Text Available Increasing demand for food and bioenergy has altered the global landscape dramatically in recent years. Land use and land cover change affects the environmental system in many ways through biophysical and biogeochemical mechanisms. In this study, we evaluate the impacts of land use and land cover change driven by recent crop expansion and conversion on the water budget, carbon exchange, and carbon storage in the Midwest USA. A dynamic global vegetation model was used to simulate and examine the impacts of landscape change in a historical case based on crop distribution data from the United States Department of Agriculture National Agricultural Statistics Services. The simulation results indicate that recent crop expansion not only decreased soil carbon sequestration (60 Tg less of soil organic carbon and net carbon flux into ecosystems (3.7 Tg·year−1 less of net biome productivity, but also lessened water consumption through evapotranspiration (1.04 × 1010 m3·year−1 less over 12 states in the Midwest. More water yield at the land surface does not necessarily make more water available for vegetation. Crop residue removal might also exacerbate the soil carbon loss.

  6. Modeling osmotic salinity effects on yield characteristics of substrate-grown greenhouse crops

    NARCIS (Netherlands)

    Sonneveld, C.; Bos, van den A.L.; Voogt, W.

    2004-01-01

    In a series of experiments with different osmotic potentials in the root environment, various vegetables, and ornamentals were grown in a substrate system. The osmotic potential was varied by addition of nutrients. Yield characteristics of the crop were related to the osmotic potential of the

  7. Post-fire vegetation recovery in Portugal based ewline on spot/vegetation data

    Directory of Open Access Journals (Sweden)

    C. Gouveia

    2010-04-01

    Full Text Available A procedure is presented that allows identifying large burned scars and the monitoring of vegetation recovery in the years following major fire episodes. The procedure relies on 10-day fields of Maximum Value Composites of Normalized Difference Vegetation Index (MVC-NDVI, with a 1 km×1 km spatial resolution obtained from the VEGETATION instrument. The identification of fire scars during the extremely severe 2003 fire season is performed based on cluster analysis of NDVI anomalies that persist during the vegetative cycle of the year following the fire event. Two regions containing very large burned scars were selected, located in Central and Southwestern Portugal, respectively, and time series of MVC-NDVI analysed before the fire events took place and throughout the post-fire period. It is shown that post-fire vegetation dynamics in the two selected regions may be characterised based on maps of recovery rates as estimated by fitting a monoparametric model of vegetation recovery to MVC-NDVI data over each burned scar. Results indicated that the recovery process in the region located in Central Portugal is mostly related to fire damage rather than to vegetation density before 2003, whereas the latter seems to have a more prominent role than vegetation conditions after the fire episode, e.g. in the case of the region in Southwestern Portugal. These differences are consistent with the respective predominant types of vegetation. The burned area located in Central Portugal is dominated by Pinus Pinaster whose natural regeneration crucially depends on the destruction of seeds present on the soil surface during the fire, whereas the burned scar in Southwestern Portugal was populated by Eucalyptus that may quickly re-sprout from buds after fire. Besides its simplicity, the monoparametric model of vegetation recovery has the advantage of being easily adapted to other low-resolution satellite data, as well as to other types of vegetation

  8. US/Canada wheat and barley crop calender exploratory experiment implementation plan

    Science.gov (United States)

    1980-01-01

    A plan is detailed for a supplemental experiment to evaluate several crop growth stage models and crop starter models. The objective of this experiment is to provide timely information to aid in understanding crop calendars and to provide data that will allow a selection between current crop calendar models.

  9. Nitrogen and phosphorus effluent loads from a paddy-field district adopting collective crop rotation.

    Science.gov (United States)

    Hama, T; Aoki, T; Osuga, K; Sugiyama, S; Iwasaki, D

    2012-01-01

    Japanese paddy rice systems commonly adopt the rotation of vegetables, wheat and soybeans with paddy rice. Crop rotation may, however, increase the nutrient load in effluent discharged from the district because more fertilizer is applied to the rotation crops than is applied to paddy crops. We investigated a paddy-field district subject to collective crop rotation and quantified the annual nutrient load of effluent from the district in three consecutive years. The total annual exports of nitrogen and phosphorus over the investigation period ranged from 30.3 to 40.6 kg N ha(-1) and 2.62 to 3.13 kg P ha(-1). The results suggest that rotation cropping increases the effluent nutrient load because applied fertilizer is converted to nitrate, and surface runoff is increased due to the absence of shuttering boards at the field outlets.

  10. Nitrogen balance and groundwater nitrate contamination: Comparison among three intensive cropping systems on the North China Plain

    Energy Technology Data Exchange (ETDEWEB)

    Ju, X.T. [Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Agricultural Resources and Environmental Sciences, China Agricultural University, Beijing 100094 (China); Kou, C.L. [Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Agricultural Resources and Environmental Sciences, China Agricultural University, Beijing 100094 (China); Institute of Soils and Fertilizers, Henan Academy of Agricultural Sciences, Zhengzhou 450002 (China); Zhang, F.S. [Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Agricultural Resources and Environmental Sciences, China Agricultural University, Beijing 100094 (China)]. E-mail: zfs@cau.edu.cn; Christie, P. [Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Agricultural Resources and Environmental Sciences, China Agricultural University, Beijing 100094 (China); Agricultural and Environmental Science Department, Queen' s University Belfast, Belfast BT9 5PX (United Kingdom)

    2006-09-15

    The annual nitrogen (N) budget and groundwater nitrate-N concentrations were studied in the field in three major intensive cropping systems in Shandong province, north China. In the greenhouse vegetable systems the annual N inputs from fertilizers, manures and irrigation water were 1358, 1881 and 402 kg N ha{sup -1} on average, representing 2.5, 37.5 and 83.8 times the corresponding values in wheat (Triticum aestivum L.)-maize (Zea mays L.) rotations and 2.1, 10.4 and 68.2 times the values in apple (Malus pumila Mill.) orchards. The N surplus values were 349, 3327 and 746 kg N ha{sup -1}, with residual soil nitrate-N after harvest amounting to 221-275, 1173 and 613 kg N ha{sup -1} in the top 90 cm of the soil profile and 213-242, 1032 and 976 kg N ha{sup -1} at 90-180 cm depth in wheat-maize, greenhouse vegetable and orchard systems, respectively. Nitrate leaching was evident in all three cropping systems and the groundwater in shallow wells (<15 m depth) was heavily contaminated in the greenhouse vegetable production area, where total N inputs were much higher than crop requirements and the excessive fertilizer N inputs were only about 40% of total N inputs. - Intensive greenhouse vegetable production systems may pose a greater nitrogen pollution threat than apple orchards or cereal rotations to soil and water quality in north China.

  11. Nitrogen balance and groundwater nitrate contamination: Comparison among three intensive cropping systems on the North China Plain

    International Nuclear Information System (INIS)

    Ju, X.T.; Kou, C.L.; Zhang, F.S.; Christie, P.

    2006-01-01

    The annual nitrogen (N) budget and groundwater nitrate-N concentrations were studied in the field in three major intensive cropping systems in Shandong province, north China. In the greenhouse vegetable systems the annual N inputs from fertilizers, manures and irrigation water were 1358, 1881 and 402 kg N ha -1 on average, representing 2.5, 37.5 and 83.8 times the corresponding values in wheat (Triticum aestivum L.)-maize (Zea mays L.) rotations and 2.1, 10.4 and 68.2 times the values in apple (Malus pumila Mill.) orchards. The N surplus values were 349, 3327 and 746 kg N ha -1 , with residual soil nitrate-N after harvest amounting to 221-275, 1173 and 613 kg N ha -1 in the top 90 cm of the soil profile and 213-242, 1032 and 976 kg N ha -1 at 90-180 cm depth in wheat-maize, greenhouse vegetable and orchard systems, respectively. Nitrate leaching was evident in all three cropping systems and the groundwater in shallow wells (<15 m depth) was heavily contaminated in the greenhouse vegetable production area, where total N inputs were much higher than crop requirements and the excessive fertilizer N inputs were only about 40% of total N inputs. - Intensive greenhouse vegetable production systems may pose a greater nitrogen pollution threat than apple orchards or cereal rotations to soil and water quality in north China

  12. Drought stress impact on vegetable crop yields in the Elbe River lowland between 1961 and 2014

    Czech Academy of Sciences Publication Activity Database

    Potopová, V.; Štěpánek, Petr; Farda, Aleš; Türkott, L.; Zahradníček, Pavel; Soukup, J.

    2016-01-01

    Roč. 42, č. 1 (2016), s. 127-143 ISSN 0211-6820 R&D Projects: GA MŠk(CZ) LD14043; GA ČR GA13-19831S Institutional support: RVO:67179843 Keywords : standardized precipitation evapotranspiration index * drought stress * reference evapotranspiration * crop evapotranspiration * crop coefficient * Czech Republic Subject RIV: EH - Ecology, Behaviour

  13. Utilization of radiations in mutation breeding of tuber crops

    International Nuclear Information System (INIS)

    Kukimura, H.

    1981-01-01

    Most of the tuber crops are vegetatively propagated and their spontaneous mutations have been constructively utilized to practical farming. Significance of utilization of mutations to breeding should not be overlooked, since mutation can be articially induced by various mutagenic agents. In tuber crops, ionizing radiations are mostly applied to induce mutations. Radiosensitivity varies with species, genotypes and organs. For the purpose of mutation induction, 10-20 kR of gamma-rays is given to tubers and/or shoots in sweet potato and 2-10 kR in potato. It should be noted that radiation damage is more or less transmissible to later vegetative generations. A useful characters in practical agriculture, following mutations have been obtained so far: skin colour, short stemmed, changes in dry matter content, total sugars content and tuber yield, earlier maturity and sculf resistance in sweet potato. And, skin colour, changes in starch content and stolon length, day-neutral tuberization and cyst-nematode resistance in potato. Apart from mutations, radiation can be utilized for breaking down the incompatibility in sweet potato. Promising mutant clones with probable release in Japan are Kyushu 78 of sweet potato and Koniku 16 and Konkei 55 of potato. (author)

  14. Fortifying Horticultural Crops with Essential Amino Acids: A Review.

    Science.gov (United States)

    Wang, Guoping; Xu, Mengyun; Wang, Wenyi; Galili, Gad

    2017-06-19

    To feed the world's growing population, increasing the yield of crops is not the only important factor, improving crop quality is also important, and it presents a significant challenge. Among the important crops, horticultural crops (particularly fruits and vegetables) provide numerous health compounds, such as vitamins, antioxidants, and amino acids. Essential amino acids are those that cannot be produced by the organism and, therefore, must be obtained from diet, particularly from meat, eggs, and milk, as well as a variety of plants. Extensive efforts have been devoted to increasing the levels of essential amino acids in plants. Yet, these efforts have been met with very little success due to the limited genetic resources for plant breeding and because high essential amino acid content is generally accompanied by limited plant growth. With a deep understanding of the biosynthetic pathways of essential amino acids and their interactions with the regulatory networks in plants, it should be possible to use genetic engineering to improve the essential amino acid content of horticultural plants, rendering these plants more nutritionally favorable crops. In the present report, we describe the recent advances in the enhancement of essential amino acids in horticultural plants and possible future directions towards their bio-fortification.

  15. Effects of physical form and stage of maturity at harvest of whole-crop barley silage on intake, chewing activity, diet selection and faecal particle size of dairy steers

    DEFF Research Database (Denmark)

    Rustas, B.-O.; Nørgaard, Peder; Jalali, Alireza

    2010-01-01

    This study examined the effects of physical form and stage of maturity at harvest of whole-crop barley silage (WCBS) on feed intake, eating and rumination activity, diet selection and faecal particle size in dairy steers. Whole-crop barley was harvested and ensiled in round bales. Eight dairy ste...

  16. Soils under conservation agriculture with vegetables in Siem Reap, Cambodia

    Science.gov (United States)

    Smallholder vegetable farmers in Siem Reap, Cambodia experienced declining crop productivity. It could be a result of a mixture of factors such as nutrient and pest problems and extreme weather events such as droughts and/or heavy rains. The no-till, continuous mulch and diverse species principles o...

  17. A Moveable Feast: Insects Moving at the Forest-Crop Interface Are Affected by Crop Phenology and the Amount of Forest in the Landscape.

    Science.gov (United States)

    González, Ezequiel; Salvo, Adriana; Defagó, María Teresa; Valladares, Graciela

    2016-01-01

    Edges have become prevailing habitats, mainly as a result of habitat fragmentation and agricultural expansion. The interchange of functionally relevant organisms like insects occurs through these edges and can influence ecosystem functioning in both crop and non-crop habitats. However, very few studies have focused on the directionality of insect movement through edges, and the role of crop and non-crop amount has been ignored. Using bi-directional flight interception traps we investigated interchange of herbivore, natural enemy, pollinator and detritivore insects between native forest fragments and soybean crops, simultaneously considering movement direction, forest cover in the landscape and crop phenology. In total, 52,173 specimens and 877 morphospecies were collected. We found that, within most functional and taxonomic groups, movement intensity was similar (richness and/or abundance) between directions, whereas a predominantly forest-to-crop movement characterized natural enemies. Insect movement was extensively affected by crop phenology, decreasing during crop senescence, and was enhanced by forest cover particularly at senescence. Mainly the same herbivore species moved to and from the forest, but different natural enemy species predominated in each direction. Finally, our analyses revealed greater forest contribution to natural enemy than to herbivore communities in the crop, fading with distance to the forest in both groups. By showing that larger amounts of forest lead to richer insect interchange, in both directions and in four functional groups, our study suggests that allocation to natural and cultivated habitats at landscape level could influence functioning of both systems. Moreover, natural enemies seemed to benefit more than pests from natural vegetation, with natural enemy spillover from forests likely contributing to pest control in soybean fields. Thus consequences of insect interchange seem to be mostly positive for the agroecosystem

  18. The green, blue and grey water footprint of crops and derived crop products

    Directory of Open Access Journals (Sweden)

    M. M. Mekonnen

    2011-05-01

    Full Text Available This study quantifies the green, blue and grey water footprint of global crop production in a spatially-explicit way for the period 1996–2005. The assessment improves upon earlier research by taking a high-resolution approach, estimating the water footprint of 126 crops at a 5 by 5 arc minute grid. We have used a grid-based dynamic water balance model to calculate crop water use over time, with a time step of one day. The model takes into account the daily soil water balance and climatic conditions for each grid cell. In addition, the water pollution associated with the use of nitrogen fertilizer in crop production is estimated for each grid cell. The crop evapotranspiration of additional 20 minor crops is calculated with the CROPWAT model. In addition, we have calculated the water footprint of more than two hundred derived crop products, including various flours, beverages, fibres and biofuels. We have used the water footprint assessment framework as in the guideline of the Water Footprint Network.

    Considering the water footprints of primary crops, we see that the global average water footprint per ton of crop increases from sugar crops (roughly 200 m3 ton−1, vegetables (300 m3 ton−1, roots and tubers (400 m3 ton−1, fruits (1000 m3 ton−1, cereals (1600 m3 ton−1, oil crops (2400 m3 ton−1 to pulses (4000 m3 ton−1. The water footprint varies, however, across different crops per crop category and per production region as well. Besides, if one considers the water footprint per kcal, the picture changes as well. When considered per ton of product, commodities with relatively large water footprints are: coffee, tea, cocoa, tobacco, spices, nuts, rubber and fibres. The analysis of water footprints of different biofuels shows that bio-ethanol has a lower water footprint (in m

  19. Polyphenols from Root, Tubercles and Grains Cropped in Brazil: Chemical and Nutritional Characterization and Their Effects on Human Health and Diseases

    Directory of Open Access Journals (Sweden)

    Diego dos Santos Baião

    2017-09-01

    Full Text Available Throughout evolution, plants have developed the ability to produce secondary phenolic metabolites, which are important for their interactions with the environment, reproductive strategies and defense mechanisms. These (polyphenolic compounds are a heterogeneous group of natural antioxidants found in vegetables, cereals and leguminous that exert beneficial and protective actions on human health, playing roles such as enzymatic reaction inhibitors and cofactors, toxic chemicals scavengers and biochemical reaction substrates, increasing the absorption of essential nutrients and selectively inhibiting deleterious intestinal bacteria. Polyphenols present in some commodity grains, such as soy and cocoa beans, as well as in other vegetables considered security foods for developing countries, including cassava, taro and beetroot, all of them cropped in Brazil, have been identified and quantified in order to point out their bioavailability and the adequate dietary intake to promote health. The effects of the flavonoid and non-flavonoid compounds present in these vegetables, their metabolism and their effects on preventing chronic and degenerative disorders like cancers, diabetes, osteoporosis, cardiovascular and neurological diseases are herein discussed based on recent epidemiological studies.

  20. Polyphenols from Root, Tubercles and Grains Cropped in Brazil: Chemical and Nutritional Characterization and Their Effects on Human Health and Diseases

    Science.gov (United States)

    dos Santos Baião, Diego; Silva de Freitas, Cyntia; da Silva, Davi; Ribeiro Pereira, Patricia

    2017-01-01

    Throughout evolution, plants have developed the ability to produce secondary phenolic metabolites, which are important for their interactions with the environment, reproductive strategies and defense mechanisms. These (poly)phenolic compounds are a heterogeneous group of natural antioxidants found in vegetables, cereals and leguminous that exert beneficial and protective actions on human health, playing roles such as enzymatic reaction inhibitors and cofactors, toxic chemicals scavengers and biochemical reaction substrates, increasing the absorption of essential nutrients and selectively inhibiting deleterious intestinal bacteria. Polyphenols present in some commodity grains, such as soy and cocoa beans, as well as in other vegetables considered security foods for developing countries, including cassava, taro and beetroot, all of them cropped in Brazil, have been identified and quantified in order to point out their bioavailability and the adequate dietary intake to promote health. The effects of the flavonoid and non-flavonoid compounds present in these vegetables, their metabolism and their effects on preventing chronic and degenerative disorders like cancers, diabetes, osteoporosis, cardiovascular and neurological diseases are herein discussed based on recent epidemiological studies. PMID:28930173