WorldWideScience

Sample records for selected metal ions

  1. Designer ligands: The search for metal ion selectivity

    Directory of Open Access Journals (Sweden)

    Perry T. Kaye

    2011-03-01

    Full Text Available The paper reviews research conducted at Rhodes University towards the development of metal-selective ligands. The research has focused on the rational design, synthesis and evaluation of novel ligands for use in the formation of copper complexes as biomimetic models of the metalloenzyme, tyrosinase, and for the selective extraction of silver, nickel and platinum group metal ions in the presence of contaminating metal ions. Attention has also been given to the development of efficient, metal-selective molecular imprinted polymers.

  2. Metal Ion Selectivity of Kojate Complexes: A Theoretical Study

    Directory of Open Access Journals (Sweden)

    Sarita Singh

    2013-01-01

    Full Text Available Density functional calculations have been performed on four-coordinate kojate complexes of selected divalent metal ions in order to determine the affinity of the metal ions for the kojate ion. The complexation reactions are characterized by high energies, showing that they are highly exothermic. It is found that Ni(II exhibits the highest affinity for the kojate ion, and this is attributed to the largest amount of charge transfer from the ligand to the metal ion. The Ni(II complex has distorted square planar structure. The HOMOs and LUMOs of the complexes are also discussed. All complexes display a strong band at ~1500 cm−1 corresponding to the stretching frequency of the weakened carbonyl bond. Comparison of the complexation energies for the two steps shows that most of the complexation energy is realized in the first step. The energy released in the second step is about one-third that of the first step.

  3. A Liquid Chromatography Detector for Transition and Rare-Earth Metal Ions Based on a Cupric Ion-Selective Electrode

    Science.gov (United States)

    1981-05-01

    selective Electrode A Transition Metal CuI) Rare Earth Potentiometry Lanthanide Flow-through Electrode 20. ABSTRACT (Continue on reverse side if necessary...Flow Potentiometry with Ion-selective Electrodes ..... . 19 i. Introduction - Ideal Ion-selective Electrodes . ... 19 2. Interferences...detector is less than I pL, creating much less peak broadening than the earlier polarographic detectors (9,10). C. Flow Potentiometry with Ion-Selective

  4. New Proton-Ionizable, Calixarene-Based Ligands for Selective Metal Ion Separations

    Energy Technology Data Exchange (ETDEWEB)

    Bartsch, Richard A.

    2012-06-04

    The project objective was the discovery of new ligands for performing metal ion separations. The research effort entailed the preparation of new metal ion complexing agents and polymers and their evaluation in metal ion separation processes of solvent extraction, synthetic liquid membrane transport, and sorption. Structural variations in acyclic, cyclic, and bicyclic organic ligands were used to probe their influence upon the efficiency and selectivity with which metal ion separations can be performed. A unifying feature of the ligand structures is the presence of one (or more) side arm with a pendent acidic function. When a metal ion is complexed within the central cavity of the ligand, ionization of the side arm(s) produces the requisite anion(s) for formation of an overall electroneutral complex. This markedly enhances extraction/transport efficiency for separations in which movement of aqueous phase anions of chloride, nitrate, or sulfate into an organic medium would be required. Through systematic structural variations, new ligands have been developed for efficient and selective separations of monovalent metal ions (e.g., alkali metal, silver, and thallium cations) and of divalent metal ion species (e.g., alkaline earth metal, lead, and mercury cations). Research results obtained in these fundamental investigations provide important insight for the design and development of ligands suitable for practical metal ion separation applications.

  5. Selective retention of basic compounds by metal aquo-ion affinity chromatography.

    Science.gov (United States)

    Asakawa, Yoshiki; Yamamoto, Eiichi; Asakawa, Naoki

    2014-10-01

    A novel metal aquo-ion affinity chromatography has been developed for the analysis of basic compounds using heat-treated silica gel containing hydrated metal cations (metal aquo-ions) as the packing material. The packing materials of the metal aquo-ion affinity chromatography were prepared by the immobilization of a single metal component such as Fe(III), Al(III), Ag(I), and Ni(II) on silica gel followed by extensive heat treatment. The immobilized metals form aquo-ions to present cation-exchange ability for basic analytes and the cation-exchange ability for basic analytes depends on pKa of the immobilized metal species. In the present study, to evaluate the retention characteristics of metal aquo-ion affinity chromatography, the on-line solid-phase extraction of drugs was investigated. Obtained data clearly evidence the selective retention capability of metal aquo-ion affinity chromatography for basic analytes with sufficient capacity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Bio-functionalized silver nanoparticles for selective colorimetric sensing of toxic metal ions and antimicrobial studies

    Science.gov (United States)

    Vinod Kumar, V.; Anbarasan, S.; Christena, Lawrence Rene; SaiSubramanian, Nagarajan; Philip Anthony, Savarimuthu

    2014-08-01

    Hibiscus Sabdariffa (Gongura) plant extracts (leaves (HL) and stem (HS) were used for the first time in the green synthesis of bio-functionalized silver nanoparticles (AgNPs). The bio-functionality of AgNPs has been successfully utilized for selective colorimetric sensing of potentially health and environmentally hazardous Hg2+, Cd2+ and Pb2+ metal ions at ppm level in aqueous solution. Importantly, clearly distinguishable colour for all three metal ions was observed. The influence of extract preparation condition and pH were also explored on the formation of AgNPs. Both selectivity and sensitivity differed for AgNPs synthesized from different parts of the plant. Direct correlation between the stability of green synthesized AgNPs at different pH and its antibacterial effects has been established. The selective colorimetric sensing of toxic metal ions and antimicrobial effect of green synthesized AgNPs demonstrated the multifunctional applications of green nanotechnology.

  7. Selective fluorescence sensors for detection of nitroaniline and metal Ions based on ligand-based luminescent metal-organic frameworks

    Science.gov (United States)

    Yu, Zongchao; Wang, Fengqin; Lin, Xiangyi; Wang, Chengmiao; Fu, Yiyuan; Wang, Xiaojun; Zhao, Yongnan; Li, Guodong

    2015-12-01

    Metal-organic frameworks (MOFs) are porous crystalline materials with high potential for applications in fluorescence sensors. In this work, two solvent-induced Zn(II)-based metal-organic frameworks, Zn3L3(DMF)2 (1) and Zn3L3(DMA)2(H2O)3 (2) (L=4,4‧-stilbenedicarboxylic acid), were investigated as selective sensing materials for detection of nitroaromatic compounds and metal ions. The sensing experiments show that 1 and 2 both exhibit selective fluorescence quenching toward nitroaniline with a low detection limit. In addition, 1 exhibits high selectivity for detection of Fe3+ and Al3+ by significant fluorescence quenching or enhancement effect. While for 2, it only exhibits significant fluorescence quenching effect for Fe3+. The results indicate that 1 and 2 are both promising fluorescence sensors for detecting and recognizing nitroaniline and metal ions with high sensitivity and selectivity.

  8. Role of metal ion incorporation in ion exchange resin on the selectivity of fluoride

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, Natrayasamy [Department of Chemistry, Gandhigram Rural University, Gandhigram 624302, Tamilnadu (India)], E-mail: natrayasamy_viswanathan@rediffmail.com; Meenakshi, S. [Department of Chemistry, Gandhigram Rural University, Gandhigram 624302, Tamilnadu (India)], E-mail: drs_meena@rediffmail.com

    2009-03-15

    Indion FR 10 resin has sulphonic acid functional group (H{sup +} form) possesses appreciable defluoridation capacity (DC) and its DC has been enhanced by chemical modification into Na{sup +} and Al{sup 3+} forms by loading respective metal ions in H{sup +} form of resin. The DCs of Na{sup +} and Al{sup 3+} forms were found to be 445 and 478 mg F{sup -}/kg, respectively, whereas the DC of H{sup +} form is 265 mg F{sup (}/kg at 10 mg/L initial fluoride concentration. The nature and morphology of sorbents are characterized using FTIR and SEM analysis. The fluoride sorption was explained using the Freundlich, Langmuir and Redlich-Peterson isotherms and kinetic models. The calculated thermodynamic parameters such as {delta}G{sup o}, {delta}H{sup o}, {delta}S{sup o} and sticking probability (S{sup *}) explains the nature of sorption. Comparison was also made by the elution capacity of these resins in order to select a cost effective material. A field trial was carried out to test the suitability of the resins with fluoride water collected from a nearby fluoride-endemic area.

  9. Selective fluorescence sensors for detection of nitroaniline and metal Ions based on ligand-based luminescent metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Zongchao [College of Environment and Chemical Engineering & Key Lab of Hollow Fiber Membrane Materials & Membrane Process, Tianjin Polytechnic University, Tianjin 300387 (China); Wang, Fengqin, E-mail: wangfengqin@tjpu.edu.cn [College of Environment and Chemical Engineering & Key Lab of Hollow Fiber Membrane Materials & Membrane Process, Tianjin Polytechnic University, Tianjin 300387 (China); Lin, Xiangyi [Suzhou Huihe Pharmaceutical Limited Company, Suzhou 215200 (China); Wang, Chengmiao; Fu, Yiyuan; Wang, Xiaojun [College of Environment and Chemical Engineering & Key Lab of Hollow Fiber Membrane Materials & Membrane Process, Tianjin Polytechnic University, Tianjin 300387 (China); Zhao, Yongnan [College of Materials and Engineering & Key Lab of Hollow Fiber Membrane Materials & Membrane Process, Tianjin Polytechnic University, Tianjin 300387 (China); Li, Guodong [The State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130023 (China)

    2015-12-15

    Metal-organic frameworks (MOFs) are porous crystalline materials with high potential for applications in fluorescence sensors. In this work, two solvent-induced Zn(II)–based metal-organic frameworks, Zn{sub 3}L{sub 3}(DMF){sub 2} (1) and Zn{sub 3}L{sub 3}(DMA){sub 2}(H{sub 2}O){sub 3} (2) (L=4,4′-stilbenedicarboxylic acid), were investigated as selective sensing materials for detection of nitroaromatic compounds and metal ions. The sensing experiments show that 1 and 2 both exhibit selective fluorescence quenching toward nitroaniline with a low detection limit. In addition, 1 exhibits high selectivity for detection of Fe{sup 3+} and Al{sup 3+} by significant fluorescence quenching or enhancement effect. While for 2, it only exhibits significant fluorescence quenching effect for Fe{sup 3+}. The results indicate that 1 and 2 are both promising fluorescence sensors for detecting and recognizing nitroaniline and metal ions with high sensitivity and selectivity. - Graphical abstract: Two MOFs have been selected as the fluorescence sensing materials for selectively sensing mitroaromatic compounds and metal ions. The high selectivity makes them promising fluorescence sensors for detecting and recognizing nitroaniline and Fe{sup 3+} or Al{sup 3+}.

  10. Selectivity and permeation in calcium release channel of cardiac muscle: alkali metal ions.

    Science.gov (United States)

    Chen, D P; Xu, L; Tripathy, A; Meissner, G; Eisenberg, B

    1999-03-01

    Current was measured from single open channels of the calcium release channel (CRC) of cardiac sarcoplasmic reticulum (over the range +/-180 mV) in pure and mixed solutions (e.g., biionic conditions) of the alkali metal ions Li+, K+, Na+, Rb+, Cs+, ranging in concentration from 25 mM to 2 M. The current-voltage (I-V) relations were analyzed by an extension of the Poisson-Nernst-Planck (PNP) formulation of electrodiffusion, which includes local chemical interaction described by an offset in chemical potential, which likely reflects the difference in dehydration/solvation/rehydration energies in the entry/exit steps of permeation. The theory fits all of the data with few adjustable parameters: the diffusion coefficient of each ion species, the average effective charge distribution on the wall of the pore, and an offset in chemical potential for lithium and sodium ions. In particular, the theory explains the discrepancy between "selectivities" defined by conductance sequence and "selectivities" determined by the permeability ratios (i.e., reversal potentials) in biionic conditions. The extended PNP formulation seems to offer a successful combined treatment of selectivity and permeation. Conductance selectivity in this channel arises mostly from friction: different species of ions have different diffusion coefficients in the channel. Permeability selectivity of an ion is determined by its electrochemical potential gradient and local chemical interaction with the channel. Neither selectivity (in CRC) seems to involve different electrostatic interaction of different ions with the channel protein, even though the ions have widely varying diameters.

  11. Efficient and selective adsorption of multi-metal ions using sulfonated cellulose as adsorbent.

    Science.gov (United States)

    Dong, Cuihua; Zhang, Fulong; Pang, Zhiqiang; Yang, Guihua

    2016-10-20

    Contamination of heavy metal in wastewater has caused great concerns on human life and health. Developing an efficient material to eliminate the heavy metal ions has been a popular topic in recent years. In this work, sulfonated cellulose (SC) was explored as efficient adsorbent for metal ions in solution. Thermo gravimetric analyzer (TGA), X-ray diffraction (XRD) and Fourier-transform infrared spectrometer (FTIR) first analyzed the characterizations of SC. Subsequently, effects of solution pH, adsorbent loading, temperature and initial metal ion concentration on adsorption performance were investigated. The results showed that sulfonated modification of cellulose could decrease the crystallinity and thermostability of cellulose. Due to its excellent performance of adsorption to metal ions, SC could reach adsorption equilibrium status within as short as 2min. In multi-component solution, SC can orderly removes Fe(3+), Pb(2+) and Cu(2+) with excellent selectivity and high efficiency. In addition, SC is a kind of green and renewable adsorbent because it can be easily regenerated by treatment with acid or chelating liquors. The mechanism study shows that the sulfonic group play a major role in the adsorption process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. A chiral lanthanide metal-organic framework for selective sensing of Fe(iii) ions.

    Science.gov (United States)

    Zhao, Xiao-Lin; Tian, Dan; Gao, Qiang; Sun, Hong-Wei; Xu, Jian; Bu, Xian-He

    2016-01-21

    A new luminescent lanthanide metal-organic framework was synthesized under hydrothermal conditions by introducing the tetracarboxylic acid ligand (H4bptc) as a chromophore to sensitize the luminescence of the Tb(3+) ion. Interestingly, despite the achiral nature of H4bptc, the resulting framework exhibited rare chiral helical channels. The luminescence studies revealed that this material showed a highly selective fluorescence quenching response to Fe(3+) ions in liquid suspension, which can be conveniently observed by the naked eye under UV light. Thus, this material can be potentially used as a chemosensor for sensing Fe(3+) ions and its selective luminescence quenching response can be explained in terms of the competitive absorption mechanism.

  13. Selective detection of heavy metal ions by self assembled chemical field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Ruan, Hang, E-mail: hruan@nanosonic.com; Kang, Yuhong; Gladwin, Elizabeth; Claus, Richard O. [NanoSonic, Inc., 158 Wheatland Drive, Pembroke, Virginia 24136 (United States)

    2015-04-20

    Multiple layer-by-layer sensor material modifications were designed and implemented to achieve selectivity of semiconductor based chemical field effect transistors (ChemFETs) to particular heavy metal ions. The ChemFET sensors were fabricated and modified in three ways, with the intent to initially target first mercury and lead ions and then chromium ions, respectively. Sensor characterization was performed with the gate regions of the sensor elements exposed to different concentrations of target heavy metal ion solutions. A minimum detection level in the range of 0.1 ppm and a 10%–90% response time of less than 10 s were demonstrated. By combining layer-by-layer gold nanoparticles and lead ionophores, a sensor is produced that is sensitive and selective not only to chromium but also to Cr{sup 3+} and Cr{sup 6+}. This result supports the claim that high selectivity can be achieved by designing self-assembled bonding for lead, arsenic, chromium, cesium, mercury, and cadmium.

  14. Selective recovery of valuable metals from spent Li-ion batteries using solvent-impregnated resins.

    Science.gov (United States)

    Guo, Fuqiang; Nishihama, Syouhei; Yoshizuka, Kazuharu

    2013-01-01

    Selective recovery of valuable metals (Cu(2+), Co(2+) and Li(+)) from leachate of spent lithium-ion (Li-ion) batteries was investigated in acidic chloride media using solvent impregnated resins (SIRs). An SIR containing bis(2-ethylhexyl) phosphoric acid (D2EHPA) had high selectivity for Fe(3+) and Al(3+), with an order of selectivity Fe(3+) > Al(3+) > Cu(2+) > Co(2+). Fe(3+) and Al(3+) could be removed from synthetic leachate by precipitation, followed by column adsorption with the SIR containing D2EHPA. The synthetic leachate was then applied to chromatography for selective recovery of Cu(2+), Co(2+) and Li(+). The solution was first fed upward to a column packed with an SIR containing 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (PC-88A) for selective separation of Cu(2+), followed by upward feed to another column packed with an SIR comprising PC-88A and bis(2,4,4-trimethylpentyl) phosphinic acid (Cyanex 272) for selective recovery of Co(2+). Finally, a column packed with a synergistic SIR containing both 1-phenyl-1,3-tetradecanedione (C11phbetaDK) and tri-n-octylphosphine oxide (TOPO) was used for selective recovery of Li(+). A process flowsheet is proposed for selective recovery of Cu(2+), Co(2+) and Li(+) using several SIRs. This process was found to be simple and efficient for selective recovery of valuable metals from leachate of spent Li-ion batteries. Pure copper, cobalt and lithium products were obtained, with high elution yields.

  15. Ion-selective electrodes with solid contact for heavy metals determination

    Directory of Open Access Journals (Sweden)

    Wardak C.

    2013-04-01

    Full Text Available Potentiometric properties of ion-selective electrodes with solid contact for lead, cadmium and zinc determination were investigated. The ionic liquids (ILs alkyl methyl imidazolium chlorides are used as lipophilic ionic additive to the membrane phase and as transducer media. The basic analytical parameters of the studied electrodes, such as the slope characteristic, the detection limit, response time, lifetime, selectivity coefficients against various inorganic cations as well as the dependence of the electrodes potential on pH were determined. The obtained electrode are characterized by good analytical parameters: theoretical characteristic slope, low detection limit, short response time and very long lifetime. The electrodes was successfully applied to the direct determination of lead, cadmium and zinc ions in waste water samples. The results obtained indicate that the electrodes provide a good alternative for the determination of these heavy metals in real samples.

  16. Selective removal of heavy metal ions by disulfide linked polymer networks

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Dongah [Department of Environmental Engineering, Technical University of Denmark, Miljøvej 113, 2800 Kgs. Lyngby (Denmark); Lee, Joo Sung [Graduate School of EEWS, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141 (Korea, Republic of); Patel, Hasmukh A. [Department of Chemistry, Northwestern University, Evanston, IL 60208 (United States); Jakobsen, Mogens H. [Department of Micro and Nano technology, Technical University of Denmark, Ørsteds Plads, 345B, 2800 Kgs. Lyngby (Denmark); Hwang, Yuhoon [Department of Environmental Engineering, Seoul National University of Science and Technology, 232 Gongreung-ro, Nowon-gu, Seoul 01811 (Korea, Republic of); Yavuz, Cafer T. [Graduate School of EEWS, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141 (Korea, Republic of); Hansen, Hans Chr. Bruun [Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Thorvaldsensvej 40, 1871 Frederiksberg C (Denmark); Andersen, Henrik R., E-mail: henrik@ndersen.net [Department of Environmental Engineering, Technical University of Denmark, Miljøvej 113, 2800 Kgs. Lyngby (Denmark)

    2017-06-15

    Highlights: • Disulfide/thiol polymer networks are promising as sorbent for heavy metals. • Rapid sorption and high Langmuir affinity constant (a{sub L}) for stormwater treatment. • Selective sorption for copper, cadmium, and zinc in the presence of calcium. • Reusability likely due to structure stability of disulfide linked polymer networks. - Abstract: Heavy metal contaminated surface water is one of the oldest pollution problems, which is critical to ecosystems and human health. We devised disulfide linked polymer networks and employed as a sorbent for removing heavy metal ions from contaminated water. Although the polymer network material has a moderate surface area, it demonstrated cadmium removal efficiency equivalent to highly porous activated carbon while it showed 16 times faster sorption kinetics compared to activated carbon, owing to the high affinity of cadmium towards disulfide and thiol functionality in the polymer network. The metal sorption mechanism on polymer network was studied by sorption kinetics, effect of pH, and metal complexation. We observed that the metal ions–copper, cadmium, and zinc showed high binding affinity in polymer network, even in the presence of competing cations like calcium in water.

  17. [Thermodynamic approach to the selection of polyuronide sequestrants for protection of the human body from toxic metal ions. Interactions of polyuronides with lead ions].

    Science.gov (United States)

    Braudo, E E; Danilova, I V; Dianova, V T; Kobak, V V; Plashchina, I G

    2001-01-01

    Binding isotherms of Pb2+ ions with potassium pectate and potassium alginate with relatively low content of blocks of L-guluronic residues (20%) have been determined. Interactions of Pb2+ ions with polyuronides studied is cooperative. Maximum values of binding constants are an order of magnitude higher than previously determined ones for Ca2+ and Sr2+ ions. Along with ion-coordination ("stoichiometric") interactions, alginate is typified by so-called extra-stoichiometric binding of Pb2+ ions, which presumably proceeds by a coprecipitation mechanism. Limitations of the thermodynamic approach to the selection of sequestrants for human body protection from toxic metal ions are discussed.

  18. Mechanism study of selective heavy metal ion removal with polypyrrole-functionalized polyacrylonitrile nanofiber mats

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jianqiang; Luo, Chao [Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China); Qi, Genggeng [Department of Materials Science and Engineering, Cornell University, Ithaca, NY (United States); Pan, Kai, E-mail: pankai@mail.buct.edu.cn [Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China); Department of Materials Science and Engineering, Cornell University, Ithaca, NY (United States); Cao, Bing, E-mail: bcao@mail.buct.edu.cn [Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China)

    2014-10-15

    Graphical abstract: - Highlights: • PAN/PPy core/shell nanofiber used for Cr(VI) removal. • Adsorption mechanisms were investigated. • Selective adsorption performances were investigated. - Abstract: Polyacrylonitrile/polypyrrole (PAN/PPy) core/shell nanofiber mat was prepared through electrospinning followed by a simple chemical oxidation method. The polypyrrole-functionalized nanofiber mats showed selective adsorption performance for anions. The interaction between heavy metal anions and polypyrrole (especially the interaction between Cr{sub 2}O{sub 7}{sup 2−} and polypyrrole) during the adsorption process was studied. The results showed that the adsorption process included two steps: one was the anion exchange process between the Cl{sup −} and Cr(VI), and the other was the redox process for the Cr(VI) ions. The adsorption amount was related to the protonation time of the PAN/PPy nanofiber mat and increased as protonation time increased. Meanwhile, the Cr(VI) ions were reduced to Cr(III) through the reaction with amino groups of polypyrrole (from secondary amines to tertiary amines). PAN/PPy nanofiber mat showed high selectivity for Cr(VI), and the adsorption performance was nearly unaffected by other co-existing anions (Cl{sup −}, NO{sub 3}{sup −}, and SO{sub 4}{sup 2−}) except for PO{sub 4}{sup 3−} for the pH change.

  19. Construction of three lanthanide metal-organic frameworks: Synthesis, structure, magnetic properties and highly selective sensing of metal ions

    Science.gov (United States)

    Zhang, Xiu-Mei; Li, Peng; Gao, Wei; Liu, Feng; Liu, Jie-Ping

    2016-12-01

    Three lanthanide metal-organic frameworks (Ln-MOFs), [Ln(TZI)(H2O)4]·3H2O (Ln=Gd (1) and Tb (2) and Dy (3), H3TZI=5-(1H-tetrazol-5-yl)isophthalic acid), have been synthesized under hydrothermal conditions. Single crystal X-ray diffraction reveals that 1-3 are isostructural and display a 1D double chain based on dinuclear motifs with (μ-COO)2 double bridges. Magnetic studies indicate antiferromagnetic interactions in 1, ferromagnetic interactions in 2 and 3. Furthermore, compound 3 displays a slow relaxation behavior. Compound 2 exhibits intense characteristic green emission of Tb(III) ions in the solid state, which can be observed by the naked eye under UV light. Interestingly, 2 can selectively sense Pb2+ and Fe3+ ions through luminescence enhancement and quenching, respectively. The luminescence quenching mechanisms have been investigated in detail. The study on luminescence Ln-MOFs as a probe for sensing Pb2+ and Fe3+ ions is exceedingly rare example.

  20. How simple is too simple? Computational perspective on importance of second-shell environment for metal-ion selectivity.

    Science.gov (United States)

    Gutten, Ondrej; Rulíšek, Lubomír

    2015-06-14

    The metal-ion selectivity in biomolecules represents one of the most important phenomena in bioinorganic chemistry. The open question to what extent is the selectivity in the complex bioinorganic structures such as metallopeptides determined by the first-shell ligands of the metal ion is answered herein using six model peptides complexed with the set of divalent metal ions (Mn(2+), Fe(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), and Hg(2+)) and their various first-shell representations. By calculating the differences among the free energies of complexation of metal ions in these peptides and their model (truncated) systems it is quantitatively shown that the definition of the first shell is paramount to this discussion and revolves around the chemical nature of the binding site. Despite the vast conceivable diversity of peptidic structures, that suggest certain fluidity of this definition, major contributing factors are identified and assessed based on their importance for capturing metal-ion selectivity. These factors include soft/hard character of ligands and various non-covalent interactions in the vicinity of the binding site. The relative importance of these factors is considered and specific suggestions for effective construction of the models are made. The relationship of first-shell models and their corresponding parent peptides is discussed thoroughly, both with respect to their chemical similarity and potential disparity introduced by generally "non-alignable" conformational flexibility of the two systems. It is concluded that, in special cases, this disparity can be negligible and that heeding the chemical factors contributing to selectivity during construction of the model can successfully result in models that retain the affinity profile for various metal ions with high fidelity.

  1. A Selective Bioreduction of Toxic Heavy Metal Ions from Aquatic Environment by Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    A. M. Rahatgaonkar

    2008-01-01

    Full Text Available The need to remove or recover metal ions from industrial wastewater has been established in financial as well as environmental terms. This need has been proved financially in terms of cost saving through metal reuse or sale and environmentally as heavy metal toxicity can affect organisms throughout the food chain, including humans. Bioremediation of heavy metal pollution remains a major challenge in environmental biotechnology. Current removal strategies are mainly based on bioreduction of Co++, Ni++, Cu++ and Cd++ to their metallic forms by Saccharomyces cerevisiae in buffered aqueous solution. The rate of biotransformation was significantly influenced by pH of aqueous solution, concentration of biomass and hardness of water. All reaction conditions were optimized and maximum reduction of Co++, Cd++, Ni++ and Cu++ were observed as 80%, 63%, 50%, and 44% respectively. Unreacted Co++, Cd++, Ni++metal ions were extracted by 8-hydroxyquinoline and Cu++ by diethylthio carbamate in CHCl3 at different pH. Furthermore, the concentrations of unreacted metal ions were established spectrophotometrically.

  2. Ion-Selective Ionic Polymer Metal Composite (IPMC) Actuator Based on Crown Ether Containing Sulfonated Poly(Arylene Ether Ketone)

    NARCIS (Netherlands)

    Tas, Sinem; Zoetebier, Bram; Sardan Sukas, Ö.; Bayraktar, Muharrem; Hempenius, Mark A.; Vancso, Gyula J.; Nijmeijer, Dorothea C.

    This study introduces the concept of ion selective actuation in polymer metal composite actuators, employing crown ether bearing aromatic polyether materials. For this purpose, sulfonated poly(arylene ether ketone) (SPAEK) and crown ether containing SPAEK with molar masses suitable for membrane

  3. Ion dynamics in laser ablation plumes from selected metals at 355 nm

    DEFF Research Database (Denmark)

    Thestrup Nielsen, Birgitte; Christensen, Bo Toftmann; Schou, Jørgen

    2002-01-01

    The dynamics of ions in a laser ablation plume from a number of metals irradiated by a ns-second pulse at 355 nm has been studied. The time-of-flight signals peak at flight times corresponding to velocities between 30 and 10 km/s with decreasing values for increasing atomic masses. The angular...

  4. C-H functionalization: thoroughly tuning ligands at a metal ion, a chemist can greatly enhance catalyst's activity and selectivity.

    Science.gov (United States)

    Shul'pin, Georgiy B

    2013-09-28

    This brief essay consists of a few "exciting stories" devoted to relations within a metal-complex catalyst between a metal ion and a coordinated ligand. When, as in the case of a human couple, the rapport of the partners is cordial and a love cements these relations, a chemist finds an ideal married couple, in other words he obtains a catalyst of choice which allows him to functionalize C-H bonds very efficiently and selectively. Examples of such lucky marriages in the catalytic world of ions and ligands are discussed here. Activity of the catalyst is characterized by turnover number (TON) or turnover frequency (TOF) as well as by yield of a target product. Introducing a chelating N,N- or N,O-ligand to the catalyst molecule (this can be an iron or manganese derivative) sharply enhances its activity. However, the activity of vanadium derivatives (with additionally added to the solution pyrazinecarboxylic acid, PCA) as well as of various osmium complexes does not dramatically depend on the nature of ligands surrounding metal ions. Complexes of these metals are very efficient catalysts in oxidations with H2O2. Osmium derivatives are record-holders exhibiting extremely high TONs whereas vanadium complexes are on the second position. Finally, elegant examples of alkane functionalization on the ions of non-transition metals (aluminium, gallium etc.) are described when one ligand within the metal complex (namely, hydroperoxyl ligand HOO(-)) helps other ligand of this complex (H2O2 molecule coordinated to the metal) to disintegrate into two species, generating very reactive hydroxyl radical. Hydrogen peroxide molecule, even ligated to the metal ion, is perfectly stable without the assistance of the neighboring HOO(-) ligand. This ligand can be easily oxidized donating an electron to its partner ligand (H2O2). In an analogous case, when the central ion in the catalyst is a transition metal, this ion changing its oxidation state can donate an electron to the coordinated H2O2

  5. A metal ion charged mixed matrix membrane for selective adsorption of hemoglobin

    NARCIS (Netherlands)

    Tetala, K.K.R.; Skrzypek, Katarzyna; Levisson, M.; Stamatialis, Dimitrios

    2013-01-01

    In this work, we developed a mixed matrix membrane by incorporating 20–40 μm size iminodiacetic acid modified immobeads within porous Ethylene vinyl alcohol (EVAL) polymer matrix. The MMM were charged with copper ions for selective adsorption of bovine hemoglobin in presence of bovine serum albumin.

  6. A metal ion charged mixed matrix membrane for selective adsorption of hemoglobin

    NARCIS (Netherlands)

    Tetala, K.K.R.; Skrzypek, K.; Levisson, M.; Stamatialis, D.F.

    2013-01-01

    In this work, we developed a mixed matrix membrane by incorporating 20–40 µm size iminodiacetic acid modified immobeads within porous Ethylene vinyl alcohol (EVAL) polymer matrix. The MMM were charged with copper ions for selective adsorption of bovine hemoglobin in presence of bovine serum albumin.

  7. Tunable catalytic activities and selectivities of metal ion doped TiO2 nanoparticles--oxidation of organic compounds.

    Science.gov (United States)

    Wang, Anqi; Jing, Huanwang

    2014-01-21

    A series of metal ion doped TiO2 nanoparticles (M-TiO2, M = Cr(3+), Mn(2+), Fe(3+), V(5+), Zn(2+), Ni(2+), Ag(+), Cu(2+) and Co(2+)) were prepared by a facile co-precipitation approach and characterized by means of ICP-AES, N2 adsorption-desorption isotherms, XRD, TEM and HRTEM. Their catalytic performance was investigated via the oxidation of organic compounds. The variation of metal ion species and doping contents allowed tuning the catalytic properties of the M-TiO2. Among them, the catalyst Cu-10 displayed excellent activity (97.5%) in the oxidation of styrene and the selectivity of benzaldehyde was as high as 99.4%. Surprisingly, the product distribution of styrene oxidation experienced a reverse trend over the Co-TiO2 catalysts with different doping amounts of cobalt ions: Co-10 was in favor of forming benzaldehyde (80.2% selectivity), in contrast with Co-15, which produced styrene oxide as the dominant product (84.7% selectivity). The M-TiO2 catalysts also showed catalytic activities for the oxidation of benzyl alcohol and toluene to generate chlorine-free benzaldehyde in excellent selectivities (>99%).

  8. Tuning of the selectivity of fluorescent peptidyl bioprobe using aggregation induced emission for heavy metal ions by buffering agents in 100% aqueous solutions.

    Science.gov (United States)

    Neupane, Lok Nath; Hwang, Gi Won; Lee, Keun-Hyeung

    2017-06-15

    Smart fluorescent probes of which the detection of specific target molecules can be controlled are attracting remarkable interest. A fluorescent peptidyl bioprobe (1) was rationally synthesized by conjugating tetraphenylethylene, an aggregation-induced emission (AIE) fluorophore with a peptide receptor (AspHis) that acted as hard and intermediate bases. The selective detection of 1 for specific metal ion in 100% aqueous solutions was controlled by the buffering agents with the chelate effect without the change of pH. In distilled water and phosphate buffered aqueous solution at neutral pH, 1 exhibited a selective Off-On response to a soft metal ion, Hg 2+ among test metal ions by 100-fold enhancement of the emission at 470nm. 1 showed a selective Off-On response (180-fold enhancement) to a hard metal ion, Al 3+ ions among test metal ions in Tris buffered aqueous solution at neutral pH and Hexamine (hexamethylenetetramine) buffered aqueous solution at acidic pH. The detection limit of 0.46 ppb for Hg 2+ and 2.26 ppb for Al 3+ in each condition was lower than the maximum allowable level of the metal ions in drinking water by EPA. This research helps to understand how buffering agents participate in the complex formation and aggregation of fluorescent probes using an AIE process for the selective detection of specific metal ions in aqueous solutions. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Multi-signaling thiocarbohydrazide based colorimetric sensors for the selective recognition of heavy metal ions in an aqueous medium

    Science.gov (United States)

    Momidi, Bharath Kumar; Tekuri, Venkatadri; Trivedi, Darshak R.

    2017-06-01

    A series of colorimetric chemosensors R1-R6 have been developed from thiocarbohydrazide derivatives, for the selective detection of heavy metal ions. The structures of the receptors R1-R6 were well characterized by standard spectroscopic techniques like FT-IR, 1H NMR, and ESI-MS. The solid structure of receptor R1 and R2 were derived by single crystal X-ray diffraction (SC-XRD). The cation reorganization abilities of receptors R1-R6 were studied by UV-Vis spectroscopy. The receptors R1, R3 and R4 acts as a tremendous sensitive probe for heavy metal ions (Hg2 +, Cd2 + and Pb2 +) with the μM detection (R1 for Hg2 +, 2.72, R3 for Cd2 +, 3.22, R4 for Hg2 +, Cd2 + & Pb2 +, 0.70, 0.20 & 0.30 μM) and the receptors R2, R5 &R6 are sensitive towards Cu2 + ions with the μM detection (3.34, 0.90 & 1.20 μM) in an aqueous medium among all other tested cations. The receptor R4 shows a multi-color response towards Hg2 +, Cu2 +, Cd2 + and Pb2 + ions. The recognition mechanism, stoichiometric binding ratio and detection limit (DL) have been examined by UV-Visible spectroscopic titration experiments and Benesi-Hildebrand (B-H) plot, receptor R1-R6 sowed 1:1 binding ratio with good binding constant range of 103 to 105 M- 1 with Hg2 +, Cu2 +, Cd2 + and Pb2 + ions metal ions.

  10. A Terbium Metal-Organic Framework for Highly Selective and Sensitive Luminescence Sensing of Hg2+Ions in Aqueous Solution.

    Science.gov (United States)

    Xia, Tifeng; Song, Tao; Zhang, Gege; Cui, Yuanjing; Yang, Yu; Wang, Zhiyu; Qian, Guodong

    2016-12-19

    A series of isomorphic lanthanide metal-organic frameworks (MOFs) Ln(TATAB)⋅(DMF) 4 (H 2 O)(MeOH) 0.5 (LnTATAB, Ln=Eu, Tb, Sm, Dy, Gd; H 3 TATAB=4,4',4''-s-triazine-1,3,5-triyltri-p-aminobenzoic acid) have been solvothermally synthesized and structurally characterized. Among these MOFs, TbTATAB exhibits good water stability and a high fluorescence quantum yield. Because mercury ions (Hg 2+ ) have a high affinity to nitrogen atoms, and the space between multiple nitrogen atoms from triazine and imino groups is suitable for interacting with Hg 2+ ions, TbTATAB shows highly selective and sensitive detection of Hg 2+ in aqueous solution with a detection limit of 4.4 nm. Furthermore, it was successfully applied to detect Hg 2+ ions in natural water samples. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. MODIFICATION OF KELUD VOLCANIC ASH 2014 AS SELECTIVE ADSORBENT MATERIAL FOR COPPER(II METAL ION

    Directory of Open Access Journals (Sweden)

    Susila Kristianingrum

    2017-01-01

      This research aims to prepare an adsorbent from Kelud volcanic ash for better Cu(II adsorption efficiency than Kiesel gel 60G E'Merck. Adsorbent synthesis was done by dissolving 6 grams of volcanic ash activated 700oC 4 hours and washed with HCl 0.1 M into 200 ml of 3M sodium hydroxide with stirring and heating of 100 °C for 1 hour. The filtrate sodium silicate was then neutralized using sulfuric acid. The mixture was allowed to stand for 24 hours then filtered and washed with aquaDM, then dried and crushed. The procedure is repeated for nitric acid, acetic acid and formic acid with a contact time of 24 hours. The products were then characterized using FTIR and XRD, subsequently determined acidity, moisture content, and tested for its adsorption of the ion Cu (II with AAS. The results showed that the type of acid that produced highest rendemen is AK-H2SO4-3M ie 36.93%, acidity of the adsorbent silica gel synthesized similar to Kiesel gel 60G E'Merck ie adsorbent AK-CH3COOH-3M and the water content of the silica gel adsorbent synthesized similar to Kiesel gel 60G E'Merck ie adsorbent AK-H2SO4-2 M. The character of the functional groups of silica gel synthesized all have similarities with Kiesel gel 60G E'Merck as a comparison. Qualitative analysis by XRD for all modified adsorbent showed a dominant peak of SiO2 except adsorbent AK-H2SO4 amorphous and chemical bonds with FTIR indicates that it has formed a bond of Si-O-Si and Si-OH. The optimum adsorption efficiency of the metal ions Cu(II obtained from AK-H2SO4-5M adsorbent that is equal to 93.2617% and the optimum adsorption capacity of the Cu(II metal ions was obtained from the adsorbent AK-CH3COOH-3M is equal to 2.4919 mg/ g.   Keywords: adsorbents, silica gel, adsorption, kelud volcanic ash

  12. Metal ion selectivities of the highly preorganized tetradentate ligand 1,10-phenanthroline-2,9-dicarboxamide with lanthanide(III) ions and some actinide ions

    Energy Technology Data Exchange (ETDEWEB)

    Merill, D.; Hancock, R.D. [North Carolina Univ., Wilmington, NC (United States). Dept. of Chemistry and Biochemistry

    2011-07-01

    Metal ion complexing properties of the ligand PDAM (1,10-phenanthroline-2,9-dicarboxamide) are reported in relation to its possible use as a functional group for solvent extractants in the separation of Am(III) from Ln(III) (lanthanide) ions. PDAM is only slightly water soluble, but variation of the intense {pi}-{pi}{sup *} transitions in the UV spectrum of 2 x 10{sup -5} M PDAM solutions as a function of pH or metal ion concentration allowed for the determination of the protonation constant (pK) and logK{sub 1} values with metal ions. The pK of PDAM is 0.6 {+-} 0.1 in 1.0 M NaClO{sub 4}, the lowest for any 1,10-phenanthroline (phen) derivative (in contrast, pK phen=5.1), which is attributed to the electron-withdrawing properties of the amide substituents of PDAM. The weak proton basicity of PDAM may be an important factor in its use as the functional group of a solvent extractant from acidic solutions. The formation constants are determined by UV-Visible spectroscopy for the Ln(III) ions from La(III) to Lu(III) (excluding Pm(III)), as well as for Y(III), Sc(III), Th(IV), and the UO{sub 2}{sup 2+} cation in 0.1 M NaClO{sub 4} at 25 C. The log K{sub 1} values for the Ln(III) ions show only small changes from La(III) to Lu(III) (both have log K{sub 1} = 3.80). The amide O-donors (oxygen donors) of the amide groups of PDAM appear to cause considerable stabilization of the complexes of PDAM as compared to those of phen, consistent with the idea that the neutral O-donor is a strong Lewis base towards large metal ions such as the Ln(III) ions. A reviewer has pointed out that the amide groups would also stabilize the complexes of PDAM by virtue of the chelate effect, in that PDAM is tetradentate, while phen is only bidentate. The small change in complex stability for PDAM complexes in passing from La(III) to Lu(III) is rationalized in terms of the idea that neutral O-donors stabilize the complexes of the large La(III) ion more than the smaller Lu(III) ion, offsetting the

  13. Polystyrene Sulfonate Threaded through a Metal-Organic Framework Membrane for Fast and Selective Lithium-Ion Separation.

    Science.gov (United States)

    Guo, Yi; Ying, Yulong; Mao, Yiyin; Peng, Xinsheng; Chen, Banglin

    2016-11-21

    Extraction of lithium ions from salt-lake brines is very important to produce lithium compounds. Herein, we report a new approach to construct polystyrene sulfonate (PSS) threaded HKUST-1 metal-organic framework (MOF) membranes through an in situ confinement conversion process. The resulting membrane PSS@HKUST-1-6.7, with unique anchored three-dimensional sulfonate networks, shows a very high Li(+) conductivity of 5.53×10(-4)  S cm(-1) at 25 °C, 1.89×10(-3)  S cm(-1) at 70 °C, and Li(+) flux of 6.75 mol m(-2)  h(-1) , which are five orders higher than that of the pristine HKUST-1 membrane. Attributed to the different size sieving effects and the affinity differences of the Li(+) , Na(+) , K(+) , and Mg(2+) ions to the sulfonate groups, the PSS@HKUST-1-6.7 membrane exhibits ideal selectivities of 78, 99, and 10296 for Li(+) /Na(+) , Li(+) /K(+) , Li(+) /Mg(2+) and real binary ion selectivities of 35, 67, and 1815, respectively, the highest ever reported among ionic conductors and Li(+) extraction membranes. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Selective alkaline stripping of metal ions after solvent extraction by base-stable 1,2,3-triazolium ionic liquids.

    Science.gov (United States)

    Raiguel, Stijn; Depuydt, Daphne; Vander Hoogerstraete, Tom; Thomas, Joice; Dehaen, Wim; Binnemans, Koen

    2017-04-19

    Novel 1,2,3-triazolium ionic liquids with a high base stability were synthesized for use in solvent extraction of first-row transition elements and rare earths from chloride media. The synthesis of these ionic liquids makes use of a recently reported, metal-free multicomponent reaction that allows full substitution of the 1,2,3-triazolium skeleton. The physical and chemical properties of these ionic liquids are compared with those of a trisubstituted analog. Peralkylation of the 1,2,3-triazolium skeleton leads to ionic liquids with superior properties, such as low viscosity, low solubility in water and higher thermal and base stability. Iodide and thiocyanate ionic liquids with peralkylated cations were applied to the solvent extraction of metal ions, and their stability in alkaline media was exploited in the selective stripping of the metals from the loaded ionic liquid phase by alkaline solutions. EXAFS and Raman spectroscopy were performed to gain insight into the extraction mechanism. The applicability of these extraction systems was demonstrated in separations relevant for the recovery of metals from ores and end-of-life products: Fe(iii)/Cu(ii)/Zn(ii) (copper ores, brass scraps) and Fe(iii)/Nd(iii) (rare earth magnets).

  15. Selective removal of heavy metal ions by disulfide linked polymer networks

    DEFF Research Database (Denmark)

    Ko, Dongah; Sung Lee, Joo; Patel, Hasmukh A.

    2017-01-01

    a moderate surface area, it demonstrated cadmium removal efficiency equivalent to highly porous activated carbon while it showed 16 times faster sorption kinetics compared to activated carbon, owing to the high affinity of cadmium towards disulfide and thiol functionality in the polymer network. The metal...... sorption mechanism on polymer network was studied by sorption kinetics, effect of pH, and metal complexation. We observed that the metal ions―copper, cadmium, and zinc showed high binding affinity in polymer network, even in the presence of competing cations like calcium in water....

  16. A robust microporous metal-organic framework as a highly selective and sensitive, instantaneous and colorimetric sensor for Eu³⁺ ions.

    Science.gov (United States)

    Gao, Yanfei; Zhang, Xueqiong; Sun, Wei; Liu, Zhiliang

    2015-01-28

    An extremely thermostable magnesium metal-organic framework (Mg-MOF) is reported for use as a highly selective and sensitive, instantaneous and colorimetric sensor for Eu(3+) ions. There has been extensive interest in the recognition and sensing of ions because of their important roles in biological and environmental systems. However, only a few of these systems have been explored for specific rare earth ion detection. A robust microporous Mg-MOF for the recognition and sensing of Eu(3+) ions with high selectivity at low concentrations in aqueous solutions has been synthesized. This stable metal-organic framework (MOF) contains nanoscale holes and non-coordinating nitrogen atoms inside the walls of the holes, which makes it a potential host for foreign metal ions. Based on the energy level matching and efficient energy transfer between the host and the guest, the Mg-MOF sensor is both highly selective and sensitive as well as instantaneous; thus, it is a promising approach for the development of luminescent probing materials with unprecedented applications and its use as an Eu(3+) ion sensor.

  17. Catalytic potential of selected metal ions for bioleaching, and potential techno-economic and environmental issues: A critical review.

    Science.gov (United States)

    Pathak, Ashish; Morrison, Liam; Healy, Mark Gerard

    2017-04-01

    Bioleaching is considered to be a low-cost, eco-friendly technique for leaching valuable metals from a variety of matrixes. However, the inherent slow dissolution kinetics and low metal leaching yields have restricted its wider commercial applicability. Recent advancements in bio-hydrometallurgy have suggested that these critical issues can be successfully alleviated through the addition of a catalyst. The catalyzing properties of a variety of metals ions (Ag + , Hg ++ , Bi +++ , Cu ++ , Co ++ etc.) during bioleaching have been successfully demonstrated. In this article, the role and mechanisms of these metal species in catalyzing bioleaching from different minerals (chalcopyrite, complex sulfides, etc.) and waste materials (spent batteries) are reviewed, techno-economic and environmental challenges associated with the use of metals ions as catalysts are identified, and future prospectives are discussed. Based on the analysis, it is suggested that metal ion-catalyzed bioleaching will play a key role in the development of future industrial bio-hydrometallurgical processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Ion-selective electrodes

    CERN Document Server

    Mikhelson, Konstantin N

    2013-01-01

    Ion-selective electrodes (ISEs) have a wide range of applications in clinical, environmental, food and pharmaceutical analysis as well as further uses in chemistry and life sciences. Based on his profound experience as a researcher in ISEs and a course instructor, the author summarizes current knowledge for advanced teaching and training purposes with a particular focus on ionophore-based ISEs. Coverage includes the basics of measuring with ISEs, essential membrane potential theory and a comprehensive overview of the various classes of ion-selective electrodes. The principles of constructing I

  19. Dissecting Local Atomic and Intermolecular Interactions of Transition-Metal Ions in Solution with Selective X-ray Spectroscopy

    NARCIS (Netherlands)

    Wernet, Philippe; Kunnus, Kristjan; Schreck, Simon; Quevedo, Wilson; Kurian, Reshmi|info:eu-repo/dai/nl/331322056; Techert, Simone; de Groot, Frank M. F.|info:eu-repo/dai/nl/08747610X; Odelius, Michael; Foehlisch, Alexander

    2012-01-01

    Determining covalent and charge-transfer contributions to bonding in solution has remained an experimental challenge. Here, the quenching of fluorescence decay channels as expressed in dips in the L-edge X-ray spectra of solvated 3d transition-metal ions and complexes was reported as a probe. With a

  20. Effective and selective recovery of gold and palladium ions from metal wastewater using a sulfothermophilic red alga, Galdieria sulphuraria.

    Science.gov (United States)

    Ju, Xiaohui; Igarashi, Kensuke; Miyashita, Shin-Ichi; Mitsuhashi, Hiroaki; Inagaki, Kazumi; Fujii, Shin-Ichiro; Sawada, Hitomi; Kuwabara, Tomohiko; Minoda, Ayumi

    2016-07-01

    The demand for precious metals has increased in recent years. However, low concentrations of precious metals dissolved in wastewater are yet to be recovered because of high operation costs and technical problems. The unicellular red alga, Galdieria sulphuraria, efficiently absorbs precious metals through biosorption. In this study, over 90% of gold and palladium could be selectively recovered from aqua regia-based metal wastewater by using G. sulphuraria. These metals were eluted from the cells into ammonium solutions containing 0.2M ammonium salts without other contaminating metals. The use of G. sulphuraria is an eco-friendly and cost-effective way of recovering low concentrations of gold and palladium discarded in metal wastewater. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Ion-selective electrode reviews

    CERN Document Server

    Thomas, J D R

    1983-01-01

    Ion-Selective Electrode Reviews, Volume 5 is a collection of articles that covers ion-speciation. The book aims to present the advancements of the range and capabilities of selective ion-sensors. The topics covered in the selection are neutral carrier based ion-selective electrodes; reference electrodes and liquid junction effects in ion-selective electrode potentiometry; ion transfer across water/organic phase boundaries and analytical; and carbon substrate ion-selective electrodes. The text will be of great use to chemists and chemical engineers.

  2. Bimolecular two-dimensional organization of porphyrins on Au(111): site selective, metal ion-dependent adsorption of tetraphenylporphyrin.

    Science.gov (United States)

    Suto, Koji; Yoshimoto, Soichiro; Itaya, Kingo

    2009-01-01

    Adlayers consisting of two components selected from the group of cobalt(II) tetraphenylporphyrin (CoTPP), copper(II) tetraphenylporphyrin (CuTPP), and zinc(II) tetraphenylporphyrin (ZnTPP) were prepared by immersing Au(111) substrate in a benzene solution containing those molecules. The bimolecular adlayers thus prepared were investigated in 0.1 M HClO4 by electrochemical scanning tunneling microscopy (EC-STM). The mixed adlayers consisting of CoTPP and CuTPP formed structurally ordered but compositionally disordered arrays on Au(111). The ratio of CoTPP to CuTPP molecules in the mixed adlayer was proportional to the ratio of CoTPP to CuTPP molecules in the solution phase. Accordingly, the composition of CoTPP and CuTPP in the adlayer on the Au(111) surface was independent of absolute concentrations of these species in the solution and immersion time. In contrast, the structural feature of the mixed adlayer consisting of CoTPP and ZnTPP was similar to that of the mixed adlayer of CoTPP and CuTPP when these adlayers were prepared in solutions containing those mixtures at a total concentration of 100 microM, whereas when the total concentration was lower, adsorption was site-selective depending on the coordinated metal ion. This finding indicates that the herringbone structure of reconstructed Au(111) served as a template for the bimolecular assembly of CoTPP and ZnTPP. The characteristic phase separation of CoTPP and ZnTPP molecules assisted by reconstructed Au(111) surface can be controlled by the subtle balance between kinetics and thermodynamics.

  3. Selective and Sensitive Detection of Heavy Metal Ions in 100% Aqueous Solution and Cells with a Fluorescence Chemosensor Based on Peptide Using Aggregation-Induced Emission.

    Science.gov (United States)

    Neupane, Lok Nath; Oh, Eun-Taex; Park, Heon Joo; Lee, Keun-Hyeung

    2016-03-15

    A fluorescent peptidyl chemosensor for the detection of heavy metal ions in aqueous solution as well as in cells was synthesized on the basis of the peptide receptor for the metal ions using an aggregation-induced emission fluorophore. The peptidyl chemosensor (1) bearing tetraphenylethylene fluorophore showed an exclusively selective turn-on response to Hg(2+) among 16 metal ions in aqueous buffered solution containing NaCl. The peptidyl chemosensor complexed Hg(2+) ions and then aggregated in aqueous buffered solution, resulting in the significant enhancement (OFF-On) of emissions at around 470 nm. The fluorescent sensor showed a highly sensitive response to Hg(2+), and about 1.0 equiv of Hg(2+) was enough for the saturation of the emission intensity change. The detection limit (5.3 nM, R(2) = 0.99) of 1 for Hg(2+) ions was lower than the maximum allowable level of Hg(2+) in drinking water by EPA. Moreover, the peptidyl chemosensor penetrated live cells and detected intracellular Hg(2+) ions by the turn-on response.

  4. Binding selectivity of vitamin K3 based chemosensors towards nickel(II) and copper(II) metal ions

    Science.gov (United States)

    Patil, Amit; Lande, Dipali N.; Nalkar, Archana; Gejji, Shridhar P.; Chakrovorty, Debamitra; Gonnade, Rajesh; Moniz, Tânia; Rangel, Maria; Pereira, Eulália; Salunke-Gawali, Sunita

    2017-09-01

    The vitamin K3 derivatives 2-methyl-3-[(pyridin-2-ylmethyl)-amino]-1,4-naphthoquinone (M-1), 2-methyl-3-[(pyridin-2-ylethyl)-amino]-1,4-naphthoquinone (M-2), 2-methyl-3-((2-(thiophen-2-yl)methyl)amino)naphthalene-1,4-dione (M-3) and 2-methyl-3-((2-(thiophen-2-yl)ethyl)amino)naphthalene-1,4-dione (M-4) have been synthesized, characterized and studied for their chemosensor abilities towards transition metal ions. Crystal structures of M-1 to M-4 revealed a variety of Nsbnd H⋯O, Csbnd H⋯O, Csbnd H⋯π and π⋯π interactions. Minor variations in such interactions by chemical stimuli such as metal ions, results in change in color that can be visualized by naked eyes. It has been shown that electronic structure and 1H NMR, vibrational as well as electronic spectra from the density functional theory agree well with the experiments. The metal ion binding in ethanol, ethanol-water and in mild base triethylamine brings forth recognizing ability of M-1 toward Ni2+ whereas M-2 exhibits large sensing ability for Cu2+ ion. Interestingly M-1 display varying metal ion binding specificity in different solvents with the association constant in ethanol being 11,786 M-1 for Ni2+ compared to 9462 M-1 for the Cu2+. A reversal in preferential binding of M-2 with the respective association constants being 4190 M-1 and 6370 M-1 is discernible.

  5. Heavy metal ion uptake properties of polystyrene-supported ...

    Indian Academy of Sciences (India)

    Unknown

    at pH 6 they are found to be Cd(II) and Cr(VI) selective. Metal ion uptake properties of resins follow Freundlich's equation. The resins are recyclable and are therefore employed for the removal of heavy metal pollutants from industrial waste water. Keywords. Uptake properties; heavy metal ion; selectivity; recyclability. 1.

  6. [Thermodynamic approach to the selection of polyuronide sequestrants for the protection of the human body from toxic metal ions. Interactions of polyuronides with strontium and calcium ions].

    Science.gov (United States)

    Braudo, E E; Danilova, I V; Dianova, V T; Kobak, V V; Plashchina, I G

    2001-01-01

    Selectivity of polyuronide sequestrants (pectate, alginates of various uronide composition) in respect to Sr2+ and Ca2+ ions has been evaluated in terms of thermodynamic affinity. It is suggested that there is no point in the use of pectate as a Sr(2+)-binding agent because at initial stages of reaction it reveals higher affinity to Ca2+ ions in comparison to Sr2+ ions. Contrary to pectate, alginates under similar conditions have higher affinity to Sr2+ ions. It is shown that these ions are bound only by blocks of L-guluronic acid residues in alginate macromolecules. The results obtained lend support to the advisability of the use of alginate preparations with the high content of L-guluronic acid residues for the excretion of Sr2+ ions from human body.

  7. Ion-selective electrode reviews

    CERN Document Server

    Thomas, J D R

    1985-01-01

    Ion-Selective Electrode Reviews, Volume 7 is a collection of papers that covers the applications of electrochemical sensors, along with the versatility of ion-selective electrodes. The coverage of the text includes solid contact in membrane ion-selective electrodes; immobilized enzyme probes for determining inhibitors; potentiometric titrations based on ion-pair formation; and application of ion-selective electrodes in soil science, kinetics, and kinetic analysis. The text will be of great use to chemists and chemical engineers.

  8. Computational Design of Metal Ion Sequestering Agents

    Energy Technology Data Exchange (ETDEWEB)

    Hay, Benjamin P.; Rapko, Brian M.

    2006-06-01

    Organic ligands that exhibit a high degree of metal ion recognition are essential precursors for developing separation processes and sensors for metal ions. Since the beginning of the nuclear era, much research has focused on discovering ligands that target specific radionuclides. Members of the Group 1A and 2A cations (e.g., Cs, Sr, Ra) and the f-block metals (actinides and lanthanides) are of primary concern to DOE. Although there has been some success in identifying ligand architectures that exhibit a degree of metal ion recognition, the ability to control binding affinity and selectivity remains a significant challenge. The traditional approach for discovering such ligands has involved lengthy programs of organic synthesis and testing that, in the absence of reliable methods for screening compounds before synthesis, have resulted in much wasted research effort.

  9. Computational Design of Metal Ion Sequestering Agents

    Energy Technology Data Exchange (ETDEWEB)

    Hay, Benjamin P.; Rapko, Brian M.

    2005-06-15

    Organic ligands that exhibit a high degree of metal ion recognition are essential precursors for developing separation processes and sensors for metal ions. Since the beginning of the nuclear era, much research has focused on discovering ligands that target specific radionuclides. Members of the Group 1A and 2A cations (e.g., Cs, Sr, Ra) and the f-block metals (actinides and lanthanides) are of primary concern to DOE. Although there has been some success in identifying ligand architectures that exhibit a degree of metal ion recognition, the ability to control binding affinity and selectivity remains a significant challenge. The traditional approach for discovering such ligands has involved lengthy programs of organic synthesis and testing that, in the absence of reliable methods for screening compounds before synthesis, have resulted in much wasted research effort.

  10. Ion-selective electrode reviews

    CERN Document Server

    Thomas, J D R

    1982-01-01

    Ion-Selective Electrode Reviews, Volume 3, provides a review of articles on ion-selective electrodes (ISEs). The volume begins with an article on methods based on titration procedures for surfactant analysis, which have been developed for discrete batch operation and for continuous AutoAnalyser use. Separate chapters deal with detection limits of ion-selective electrodes; the possibility of using inorganic ion-exchange materials as ion-sensors; and the effect of solvent on potentials of cells with ion-selective electrodes. Also included is a chapter on advances in calibration procedures, the d

  11. Computational Design of Metal Ion Sequestering Agents

    Energy Technology Data Exchange (ETDEWEB)

    Hay, Benjamin P.; Rapko, Brian M.

    2005-06-15

    Organic ligands that exhibit a high degree of metal ion recognition are essential precursors for developing separation processes and sensors for metal ions. Since the beginning of the nuclear era, much research has focused on discovering ligands that target specific radionuclides. Members of the Group 1A and 2A cations (e.g., Cs, Sr, Ra) and the f-block metals (actinides and lanthanides) are of primary concern to DOE. Although there has been some success in identifying ligand architectures that exhibit a degree of metal ion recognition, the ability to control binding affinity and selectivity remains a significant challenge. The traditional approach for discovering such ligands has involved lengthy programs of organic synthesis and testing that, in the absence of reliable methods for screening compounds before synthesis, have resulted in much wasted research effort. This project seeks to enhance and strengthen the traditional approach through computer-aided design of new and improved host molecules. Accurate electronic structure calculations are coupled with experimental data to provide fundamental information about ligand structure and the nature of metal-donor group interactions (design criteria). This fundamental information then is used in a molecular mechanics model (MM) that helps us rapidly screen proposed ligand architectures and select the best members from a set of potential candidates. By using combinatorial methods, molecule building software has been developed that generates large numbers of candidate architectures for a given set of donor groups. The specific goals of this project are: • further understand the structural and energetic aspects of individual donor group- metal ion interactions and incorporate this information within the MM framework • further develop and evaluate approaches for correlating ligand structure with reactivity toward metal ions, in other words, screening capability • use molecule structure building software to generate

  12. Studies on the surface modification of TiN coatings using MEVVA ion implantation with selected metallic species

    Energy Technology Data Exchange (ETDEWEB)

    Ward, L.P., E-mail: liam.ward@rmit.edu.au [School of Civil, Environmental and Chemical Engineering, RMIT University, GPO Box 2476, Melbourne 3001 (Australia); Purushotham, K.P. [Nanometrology Group, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899 (United States); Manory, R.R. [M& H Materials Pty Ltd, PO Box 1033, Elsternwick, Vic 3185 (Australia)

    2016-02-01

    Highlights: • Reduced surface roughness was observed after ion implantation. • W implantation increased residual stress. • Reduced friction and wear accompanied Mo implantation. • Mo implanted layer was more resistant to breakdown during wear testing. • Ion implantation effects can be complex on various implanting species properties. - Abstract: Improvement in the performance of TiN coatings can be achieved using surface modification techniques such as ion implantation. In the present study, physical vapor deposited (PVD) TiN coatings were implanted with Cr, Zr, Nb, Mo and W using the metal evaporation vacuum arc (MEVVA) technique at a constant nominal dose of 4 × 10{sup 16} ions cm{sup −2} for all species. The samples were characterized before and after implantation, using Rutherford backscattering (RBS), glancing incident angle X-ray diffraction (GIXRD), atomic force microscopy (AFM) and optical microscopy. Friction and wear studies were performed under dry sliding conditions using a pin-on-disc CSEM Tribometer at 1 N load and 450 m sliding distance. A reduction in the grain size and surface roughness was observed after implantation with all five species. Little variation was observed in the residual stress values for all implanted TiN coatings, except for W implanted TiN which showed a pronounced increase in compressive residual stress. Mo-implanted samples showed a lower coefficient of friction and higher resistance to breakdown during the initial stages of testing than as-received samples. Significant reduction in wear rate was observed after implanting with Zr and Mo ions compared with unimplanted TiN. The presence of the Ti{sub 2}N phase was observed with Cr implantation.

  13. Zinc Metal-Organic Framework for Selective Detection and Differentiation of Fe(III) and Cr(VI) Ions in Aqueous Solution.

    Science.gov (United States)

    Lv, Rui; Li, Hui; Su, Jian; Fu, Xin; Yang, Boyi; Gu, Wen; Liu, Xin

    2017-10-16

    A new luminescent Zn(II)-based metal-organic framework (MOF), [Zn 2 (TPOM)(NDC) 2 ]·3.5H 2 O (Zn-MOF; TPOM = tetrakis(4-pyridyloxymethylene)methane and H 2 ndc = 2,6-naphthalenedicarboxylic acid), was successfully synthesized by a hydrothermal reaction. The MOF exhibits excellent luminescence emission, and it can detect Fe(III) and Cr(VI) ions with high selectivity, well antiinterference performance, and short response time. In addition, Zn-MOF was selected as a parent coordination compound to encapsulate Eu 3+ cations to obtain a Eu 3+ -incorporated sample (Eu 3+ @Zn-MOF). Subsequently, we explored the potential application of Eu 3+ @Zn-MOF as a probe for the selective sensing of Fe(III) and Cr(VI) ions, and it revealed that we could differentiate Fe(III) and Cr(VI) ions by the combination Zn-MOF and Eu 3+ @Zn-MOF. More importantly, it represents the first example of MOF-based luminescent sensors which can detect and differentiate Fe(III) and Cr(VI) ions selectively. And the possible sensing mechanism was discussed in detail.

  14. [Metal-tag labeling coupled with high performance liquid chromatography-selected ion monitoring mass spectrometry for absolute quantitation of proteins].

    Science.gov (United States)

    Li, Jiabin; Zhou, Lianqi; Yan, Hui; Li, Nannan; Hao, Feiran; Tian, Fang; Zhang, Yangjun

    2014-04-01

    A novel method has been established based on metal element chelated tags coupled with high performance liquid chromatography-selected ion monitoring mass spectrometry (HPLC-SIM/MS). The labeling efficiency and stability of metal element chelated tags, the chromatographic retention behavior and MS behavior of the labeled peptides, the linear range and accuracy of this method were examined. The results showed that the metal element chelated tag method has high labeling efficiency and high labeling stability, and the labeled peptides with different kinds of metal tags have consistent chromatographic retention behavior. The method of metal tags coupled with HPLC-SIM/MS has high sensitivity with the limit of quantification (LOQ) up to 1 fmol. The linear range for the method was between 1 fmol to 500 fmol with R2 > 0.99, which means the method has a good linearity. Moreover, this method had an average recovery of 117.01%. The method was used in the absolute quantitation of a protein enolase in Thermoanaerobacter tengcongensis (TTE) with a relative standard deviation of 5.74%, which means high precision. All the results showed that this method is accurate and reliable for the absolute quantitation of proteins. This gives us an alternative for the quantitative determination of proteins in relatively simple biological samples.

  15. A microporous anionic metal-organic framework for sensing luminescence of lanthanide(III) ions and selective absorption of dyes by ionic exchange.

    Science.gov (United States)

    Qin, Jun-Sheng; Zhang, Shu-Ran; Du, Dong-Ying; Shen, Ping; Bao, Shao-Juan; Lan, Ya-Qian; Su, Zhong-Min

    2014-05-05

    Herein, a novel anionic framework with primitive centered cubic (pcu) topology, [(CH3 )2 NH2 ]4 [(Zn4 dttz6 )Zn3 ]⋅15 DMF⋅4.5 H2 O, (IFMC-2; H3 dttz=4,5-di(1H-tetrazol-5-yl)-2H-1,2,3-triazole) was solvothermally isolated. A new example of a tetranuclear zinc cluster {Zn4 dttz6 } served as a secondary building unit in IFMC-2. Furthermore, the metal cluster was connected by Zn(II) ions to give rise to a 3D open microporous structure. The lanthanide(III)-loaded metal-organic framework (MOF) materials Ln(3+) @IFMC-2, were successfully prepared by using ion-exchange experiments owing to the anionic framework of IFMC-2. Moreover, the emission spectra of the as-prepared Ln(3+) @IFMC-2 were investigated, and the results suggested that IFMC-2 could be utilized as a potential luminescent probe toward different Ln(3+) ions. Additionally, the absorption ability of IFMC-2 toward ionic dyes was also performed. Cationic dyes can be absorbed, but not neutral and anionic dyes, thus indicating that IFMC-2 exhibits selective absorption toward cationic dyes. Furthermore, the cationic dyes can be gradually released in the presence of NaCl. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Metal ions, Alzheimer's disease and chelation therapy

    National Research Council Canada - National Science Library

    Budimir, Ana

    2011-01-01

    .... In contrast to the direct chelation approach in metal ion overload disorders, in neurodegeneration the goal seems to be a better and subtle modulation of metal ion homeostasis, aimed at restoring ionic balance...

  17. Simple, Fast and Selective Detection of Adenosine Triphosphate at Physiological pH Using Unmodified Gold Nanoparticles as Colorimetric Probes and Metal Ions as Cross-Linkers

    Directory of Open Access Journals (Sweden)

    Huan Pang

    2012-11-01

    Full Text Available We report a simple, fast and selective colorimetric assay of adenosine triphosphate (ATP using unmodified gold nanoparticles (AuNPs as probes and metal ions as cross-linkers. ATP can be assembled onto the surface of AuNPs through interaction between the electron-rich nitrogen atoms and the electron-deficient surface of AuNPs. Accordingly, Cu2+ ions induce a change in the color and UV/Vis absorbance of AuNPs by coordinating to the triphosphate groups and a ring nitrogen of ATP. A detection limit of 50 nM was achieved, which is comparable to or lower than that achievable by the currently used electrochemical, spectroscopic or chromatographic methods. The theoretical simplicity and high selectivity reported herein demonstrated that AuNPs-based colorimetric assay could be applied in a wide variety of fields by rationally designing the surface chemistry of AuNPs. In addition, our results indicate that ATP-modified AuNPs are less stable in Cu2+, Cd2+ or Zn2+-containing solutions due to the formation of the corresponding dimeric metal-ATP complexes.

  18. DNA as Sensors and Imaging Agents for Metal Ions

    Science.gov (United States)

    Xiang, Yu

    2014-01-01

    Increasing interests in detecting metal ions in many chemical and biomedical fields have created demands for developing sensors and imaging agents for metal ions with high sensitivity and selectivity. This review covers recent progress in DNA-based sensors and imaging agents for metal ions. Through both combinatorial selection and rational design, a number of metal ion-dependent DNAzymes and metal ion-binding DNA structures that can selectively recognize specific metal ions have been obtained. By attaching these DNA molecules with signal reporters such as fluorophores, chromophores, electrochemical tags, and Raman tags, a number of DNA-based sensors for both diamagnetic and paramagnetic metal ions have been developed for fluorescent, colorimetric, electrochemical, and surface Raman detections. These sensors are highly sensitive (with detection limit down to 11 ppt) and selective (with selectivity up to millions-fold) toward specific metal ions. In addition, through further development to simplify the operation, such as the use of “dipstick tests”, portable fluorometers, computer-readable discs, and widely available glucose meters, these sensors have been applied for on-site and real-time environmental monitoring and point-of-care medical diagnostics. The use of these sensors for in situ cellular imaging has also been reported. The generality of the combinatorial selection to obtain DNAzymes for almost any metal ion in any oxidation state, and the ease of modification of the DNA with different signal reporters make DNA an emerging and promising class of molecules for metal ion sensing and imaging in many fields of applications. PMID:24359450

  19. Fluorescent Aromatic Tag-Functionalized MOFs for Highly Selective Sensing of Metal Ions and Small Organic Molecules.

    Science.gov (United States)

    Zhao, Si-Si; Yang, Jin; Liu, Ying-Ying; Ma, Jian-Fang

    2016-03-07

    By varying the fluorescent tags of resorcin[4]arene-based tetracarboxylic acids from phenyl to naphthyl, two highly luminescent metal-organic frameworks (MOFs), namely, [Zn2(TPC4A)(DMF)(H2O)4]·3H2O (1) and [(CH3)2NH2]2[Zn(TNC4A)]·4H2O (2), were successfully achieved (TPC4A = 2,8,14,20-tetra-phenyl-6,12,18,24-tetra-methoxy-4,10,16,22-tetra-carboxy-methoxy-resorcin[4]arene and TNC4A = 2,8,14,20-tetra-1-naphthal-6,12,18,24-tetra- methoxy-4,10,16,22-tetra-carboxy-methoxy-resorcin[4]arene). Compound 1 features a unique 2D network, while 2 exhibits a fascinating 3D framework. The highly selective detection of small organic molecules as well as Fe(2+) and Fe(3+) was performed for 1 and 2 as fluorescent sensors. Remarkably, luminescent 1 and 2 were used as sensory materials for the sensing of various amine vapors with high selectivity and rapid response. Most strikingly, clear fluorescence "on-off" switch-functions toward small organic molecules as well as amine vapors were also explored for luminescent 1 and 2.

  20. Bioaccumulation of the Selected Metal Ions in Saccharomyces cerevisiae Cells Under Treatment of the Culture with Pulsed Electric Field (PEF).

    Science.gov (United States)

    Pankiewicz, Urszula; Sujka, Monika; Jamroz, Jerzy

    2015-12-01

    The obtained results demonstrated an influence of PEF on increase in accumulation of various ions in S. cerevisiae cells. Optimization of particular PEF parameters and ions concentrations in the medium caused twofold increase in accumulation of magnesium and zinc ions and 3.5-fold higher accumulation of calcium ions in the cells. In the case of ion couple, accumulation of magnesium and zinc was, respectively, 1.5-fold and twofold higher in comparison to the control cultures. Yeast cells biomass enriched with Mg(2+), Zn(2+), Ca(2+) as well as Mg(2+) and Zn(2+) (simultaneously) may be an alternative for pharmacological supplementation applied in deficiency of these cations.

  1. Selectivity of bis(calix[4]diquinone) ionophores towards metal ions in solvent dimethylsulfoxide: a molecular mechanics and molecular dynamics study.

    Science.gov (United States)

    Felix, Vitor; Drew, Michael G B; Webber, Philip R A; Beer, Paul D

    2006-01-28

    Molecular modelling studies have been carried out on two bis(calix[4]diquinone) ionophores, each created from two (calix[4]diquinone)arenes bridged at their bottom rims via alkyl chains (CH(2))(n), 1: n = 3, 2; n = 4, in order to understand the reported selectivity of these ligands towards different sized metal ions such as Na(+), K(+), Rb(+), and Cs(+) in dmso solution. Conformational analyses have been carried out which show that in the lowest energy conformations of the two macrocycles, the individual calix[4]diquinones exhibit a combination of partial cone, 1,3-alternate and cone conformations. The interactions of these alkali metals with the macrocycles have been studied in the gas phase and in a periodic box of solvent dmso by molecular mechanics and molecular dynamics calculations. Molecular mechanics calculations have been carried out on the mode of entry of the ions into the macrocycles and suggest that this is likely to occur from the side of the central cavity, rather than through the main axis of the calix[4]diquinones. There are energy barriers of ca. 19 kcal mol(-1) for this entry path in the gas phase, but in solution no energy barrier is found. Molecular dynamics simulations show that in both 1 and 2, though particularly in the latter macrocycle, one or two solvent molecules are bonded to the metal throughout the course of the simulation, often to the exclusion of one or more of the ether oxygen atoms. By contrast the carbonyl oxygen atoms remain bonded to the metal atoms throughout with bond lengths that remain significantly less than those to the ether oxygen atoms. Free energy perturbation studies have been carried out in dmso and indicate that for 1, the selectivity follows the order Rb(+) approximately K(+) > Cs(+) > Na(+), which is partially in agreement with the experimental results. The energy differences are small and indeed the ratio between stability constants found for Cs(+) and K(+) complexes is only 0.60, showing that has only a slight

  2. Preparation of Dithizone Functionalized Polystyrene for Detecting Heavy Metal Ion

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hyeon Ho; Kim, Younghun [Kwangwoon University, Seoul (Korea, Republic of)

    2015-04-15

    Colorimetric sensors were usually used to detect specific metal ions using selective color change of solutions. While almost organic dye in colorimetric sensors detected single molecule, dithizone (DTZ) solution could be separately detected above 5 kinds of heavy metal ions by the change of clear color. Namely, DTZ could be used as multicolorimetric sensors. However, DTZ was generally used as aqueous type and paper/pellet-type DTZ was not reported yet. Therefore, in this work, polystyrene (PS) was prepared to composite with DTZ and then DTZ/PS pellet was obtained, which was used to selectively detect 10 kinds of heavy metal ions. When 10 ppm of Hg and Co ions was exposed in DTZ/PS pellets, clear color change was revealed. It is noted that DTZ/PS pellet could be used in detecting of heavy metal ion as dry type.

  3. Removal and recovery of toxic metal ions from aqueous waste sites using polymer pendant ligands

    Energy Technology Data Exchange (ETDEWEB)

    Fish, D. [Lawrence Berkeley National Lab., CA (United States)

    1996-10-01

    The purpose of this project is to investigate the use of polymer pendant ligand technology to remove and recover toxic metal ions from DOE aqueous waste sites. Polymer pendant lgiands are organic ligands, anchored to crosslinked, modified divinylbenzene-polystyrene beads, that can selectively complex metal ions. The metal ion removal step usually occurs through a complexation or ion exchange phenomena, thus recovery of the metal ions and reuse of the beads is readily accomplished.

  4. Stormwater filtration of toxic heavy metal ions using lignocellulosic materials selection process, fiberization, chemical modification, and mat formation

    Science.gov (United States)

    James S. Han

    1999-01-01

    Lignocellulosic materials were evaluated for their effectiveness in filtering toxic heavy metals from stormwater. Kenaf, alfalfa, juniper, and aspen fibers were used as models to evaluate the effectiveness and limitations of chemical modification and the extent of fiber degradation. Individual and mixed aqueous solutions of nickel, copper, zinc, and cadmium in various...

  5. METAL ION SEQUESTRATION: AN EXCITING DIMENSION FOR ...

    African Journals Online (AJOL)

    ABSTRACT. The use of a tight binding macrocyclic ligand to complex a metal ion so that this serves as receptee on the Molecularly Imprinted Polymer (MIP) receptor as described here affords a sequestration route for a targeted metal ion, with potential for environmental remediation and restoration applications. Ethylene ...

  6. Metal Ion Controlled Polymorphism of a Peptide

    DEFF Research Database (Denmark)

    Hemmingsen, Lars Bo Stegeager; Jancso, Attila; Szunyogh, Daniel

    2011-01-01

    , …) in the peptide, and the ligand and structural preferences of the metal ion (in our studies Zn2+, Cd2+, Hg2+, Cu+/2+). Simultaneously, new species such as metal ion bridged ternary complexes or even oligomers may be formed. In recent previous studies we have observed similar polymorphism of zinc finger model...

  7. Selective Single-Step Separation of a Mixture of Three Metal Ions by a Triphasic Ionic-Liquid-Water-Ionic-Liquid Solvent Extraction System.

    Science.gov (United States)

    Vander Hoogerstraete, Tom; Blockx, Jonas; De Coster, Hendrik; Binnemans, Koen

    2015-08-10

    In a conventional solvent extraction system, metal ions are distributed between two immiscible phases, typically an aqueous and an organic phase. In this paper, the proof-of-principle is given for the distribution of metal ions between three immiscible phases, two ionic liquid phases with an aqueous phase in between them. Three-liquid-phase solvent extraction allows separation of a mixture of three metal ions in a single step, whereas at least two steps are required to separate three metals in the case of two-liquid-phase solvent extraction. In the triphasic system, the lower organic phase is comprised of the ionic liquid betainium- or choline bis(trifluoromethylsulfonyl)imide, whereas the upper organic phase is comprised of the ionic liquid trihexyl(tetradecyl)phosphonium bis(trifluoromethylsulfonyl)imide. The triphasic system was used for the separation of a mixture of tin(II), yttrium(III), and scandium(III) ions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Highly Selective Bifunctional Luminescent Sensor toward Nitrobenzene and Cu2+ Ion Based on Microporous Metal-Organic Frameworks: Synthesis, Structures, and Properties.

    Science.gov (United States)

    Yang, Lirong; Lian, Chen; Li, Xuefei; Han, Yuyang; Yang, Lele; Cai, Ting; Shao, Caiyun

    2017-05-24

    Two metal-organic frameworks (MOFs), namely, [Ni(DTP)(H2O)]n (I) and [Cd2(DTP)2(bibp)1.5]n (II) (H2DPT = 4'-(4-(3,5-dicarboxylphenoxy) phenyl)-4,2':6',4″-terpyridine; bibp = 1,3-di(1H-imidazol-1-yl)propane), that present structural diversity were solvothermally prepared. Single-crystal X-ray diffraction analysis indicates that they consist of {NiN2O4} building units (for I) and {CdO4N2} and {CdO3N3} building units (for II), which are further linked by multicarboxylate H2DPT to construct microporous three-dimensional frameworks. The remarkable character of these frameworks is that coordination polymer II demonstrates highly selective and sensitive bifunctional luminescent sensor toward nitrobenzene and Cu2+ ion. The fluorescence quenching mechanism of II caused by nitrobenzene is ascribed to electron transfer from electron-rich (II) to electron-deficient nitrobenzene. The result was also evidenced by the density functional theory. Furthermore, anti-ferromagnetic as well as electrochemical characters of Ni-MOF (I) were also investigated in this paper.

  9. Bio-inspired ion selective crown-ether polymer membranes

    NARCIS (Netherlands)

    Tas, Sinem

    2016-01-01

    Development of unctional membranes that are capable of selectively recognizing and transporting ions have key importance for the recovery and separation of specific icons (e.d. K+, Li+, Na+) from multicomponent mixtures. In this thesis, new membrane materials based on crown ether-metal ion

  10. The emerging role of ion/ion reactions in biological mass spectrometry: considerations for reagent ion selection.

    Science.gov (United States)

    McLuckey, Scott A

    2010-01-01

    The advent of ionization methods that can produce multiply charged gaseous ions has enabled the development of gas-phase ion/ion reactions in analytical mass spectrometry. Ion/ion chemistry has proved to be a particularly effective means for converting ions from one type to another and allows for a decoupling of the ionization method from the nature of the ion subjected to tandem mass spectrometry. A growing array of applications has been developed based on a variety of reaction types, including electron transfer, proton transfer, charge inversion, metal transfer, etc. Most ion/ion reactions take place following the formation of a stable bound orbit between the reactants. As reactants approach closely enough for chemistry to occur, they can react by small charged particle transfer (i.e. electron transfer and proton transfer) at crossing points in the interaction potential. Alternatively, the reactants can collide to form a relatively long-lived complex. A wide range of chemical reactions can result from the long-lived complex, which include multiple charged particle transfers and covalent bond formation. For a given analyte ion, the major reaction pathway is determined by the characteristics of the reagent ion. An appreciation of the factors that underlie the partitioning of ion/ion reaction products is important in the design and selection of reagent ions to effect transformations of interest. Important considerations for reagent ion selection are discussed here within the context of a generalized scheme for ion/ion reaction dynamics.

  11. Metal Ion Modeling Using Classical Mechanics

    Science.gov (United States)

    2017-01-01

    Metal ions play significant roles in numerous fields including chemistry, geochemistry, biochemistry, and materials science. With computational tools increasingly becoming important in chemical research, methods have emerged to effectively face the challenge of modeling metal ions in the gas, aqueous, and solid phases. Herein, we review both quantum and classical modeling strategies for metal ion-containing systems that have been developed over the past few decades. This Review focuses on classical metal ion modeling based on unpolarized models (including the nonbonded, bonded, cationic dummy atom, and combined models), polarizable models (e.g., the fluctuating charge, Drude oscillator, and the induced dipole models), the angular overlap model, and valence bond-based models. Quantum mechanical studies of metal ion-containing systems at the semiempirical, ab initio, and density functional levels of theory are reviewed as well with a particular focus on how these methods inform classical modeling efforts. Finally, conclusions and future prospects and directions are offered that will further enhance the classical modeling of metal ion-containing systems. PMID:28045509

  12. Tune Metal Ion Selectivity by Changing Working Solvent: Fluorescent and Colorimetric Recognition of Cu{sup 2+} by a Known Hg{sup 2+} Selective Probe

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Lijun; Guo, Jiaojiao; Huang, Zhenlong [Bohai Univ., Jinzhou (China)

    2013-04-15

    A known Hg{sup 2+} selective rhodamine B derivatised probe 1 was reinvestigated as a colorimetric and fluorescent probe for Cu{sup 2+} through changing the applied solvent media. Probe 1 exhibited good selectivity and sensitivity to Cu{sup 2+} in CH{sub 3}CN-H{sub 2}O (7:3, v/v, HEPES 10 mM, pH 7.0) solution with a detection limit of 9.74 Χ 10{sup -7} M. The Cu{sup 2+} sensing event was proved to be irreversible through hydrolysis of 1 to release rhodamine B.

  13. Influence of heating time and metal ions on the amount of free fatty acids and formation rates of selected carbonyl compounds during the thermal oxidation of canola oil.

    Science.gov (United States)

    Bastos, Luciane Conceição Silva; Pereira, Pedro Afonso de Paula

    2010-12-22

    Canola oil was heated continuously for 8 h at a typical frying temperature (180 °C) in the presence of various concentrations of the metal ions Fe(III), Cu(II), and Al(III) (9.2, 27.5, and 46.0 μg L(-1) of oil) to evaluate changes occurring in the amount of free fatty acids, expressed as acidity index, and in the formation rates of aldehydes. The aldehydes were collected and derivatized in silica cartridges functionalized with C18 and impregnated with an acid solution of 2,4-dinitrophenylhydrazine, after which they were eluted with acetonitrile and analyzed by LC-DAD-MS. Among the substances emitted, the following were identified and quantified: formaldehyde, acetaldehyde, acrolein, propanal, butanal, hexanal, (E)-2-heptenal, and octanal. During heating of the oil, the compounds presenting the highest mean formation rates were acrolein, hexanal, and acetaldehyde. In the study of the metal ions, the addition of ions to the samples generally led to a corresponding increase in the formation rates of the eight substances. The compounds showing the highest relative increases in formation rates were formaldehyde, acetaldehyde, propanal, and heptenal. In terms of catalytic effect, copper proved to be the most efficient in promoting increased formation rates, followed by iron and aluminum.

  14. Sorption of heavy metal ions on new metal-ligand complexes chemically derived from Lycopodium clavatum

    Energy Technology Data Exchange (ETDEWEB)

    Pehlivan, E.; Ersoz, M.; Yildiz, S. [Univ. of Selcuk, Konya (Turkey); Duncan, H.J. [Univ. of Glasgow, Scotland (United Kingdom)

    1994-08-01

    Sorption of heavy metal ions from aqueous solution has been investigated as a function of pH using a novel exchanger system whereby Lycopodium clavatum is functionalized with carboxylate and glyoxime metal-ligand complexes. The new ligand exchangers were prepared using a reaction of diaminosporopollenin with various metal-ligand complexes of glyoxime and monocarboxylic acid. The sorptive behavior of these metal-ligand exchangers and the possibilities to remove and to recover selectively heavy metal cations using these systems are discussed on the basis of their chemical natures and their complexing properties.

  15. Microstructure and nanomechanical properties of single stalks from diatom Didymosphenia geminata and their change due to adsorption of selected metal ions.

    Science.gov (United States)

    Zgłobicka, Izabela; Chlanda, Adrian; Woźniak, Michał; Łojkowski, Maciej; Szoszkiewicz, Robert; Mazurkiewicz-Pawlicka, Marta; Święszkowski, Wojciech; Wyroba, Elżbieta; Kurzydłowski, Krzysztof J

    2017-08-01

    We present topographical and nanomechanical characterization of single Didymosphenia geminata stalk. We compared the samples before and after adsorption of metal ions from freshwater samples. Transmission electron microscopy studies of single stalk cross-sections have shown three distinct layers and an additional thin extra coat on the external layer (called "EL"). Using scanning electron microscopy and atomic force microscopy (AFM), we found that topography of single stalks after ionic adsorption differed significantly from topography of pristine stalks. AFM nanoindentation studies in ambient conditions yielded elastic moduli of 214 ± 170 MPa for pristine stalks and 294 ± 108 MPa for stalks after ionic adsorption. Statistical tests showed that those results were significantly different. We conducted only preliminary comparisons between ionic adsorption of several stalks in air and in water. While the stalks with ions were on average stiffer than the pristine stalks in air, they became more compliant than the pristine stalks in water. We also heated the stalks and detected EL softening at 50°C ± 15°C. AFM nanoindentation in air on the softened samples yielded elastic moduli of 26 ± 9 MPa for pristine samples and 43 ± 22 MPa for stalks with absorbed metal ions. Substantial decrease of the EL elastic moduli after heating was expected. Significantly different elastic moduli for the samples after ionic adsorption in both cases (i.e., for heated and nonheated samples), as well as behavior of the stalks immersed in water, point to permanent structural EL changes due to ions. © 2017 Phycological Society of America.

  16. Ion beam analysis of metal ion implanted surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Evans, P.J.; Chu, J.W.; Johnson, E.P.; Noorman, J.T. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Sood, D.K. [Royal Melbourne Inst. of Tech., VIC (Australia)

    1993-12-31

    Ion implantation is an established method for altering the surface properties of many materials. While a variety of analytical techniques are available for the characterisation of implanted surfaces, those based on particle accelerators such as Rutherford backscattering (RBS) and nuclear reaction analysis (NRA) provide some of the most useful and powerful for this purpose. Application of the latter techniques to metal ion implantation research at ANSTO will be described with particular reference to specific examples from recent studies. Where possible, the information obtained from ion beam analysis will be compared with that derived from other techniques such as Energy Dispersive X-ray (EDX) and Auger spectroscopies. 4 refs., 5 figs.

  17. Selective Sensing of Fe(3+) and Al(3+) Ions and Detection of 2,4,6-Trinitrophenol by a Water-Stable Terbium-Based Metal-Organic Framework.

    Science.gov (United States)

    Cao, Li-Hui; Shi, Fang; Zhang, Wen-Min; Zang, Shuang-Quan; Mak, Thomas C W

    2015-10-26

    A water-stable luminescent terbium-based metal-organic framework (MOF), {[Tb(L1 )1.5 (H2 O)]⋅3 H2 O}n (Tb-MOF), with rod-shaped secondary building units (SBUs) and honeycomb-type tubular channels has been synthesized and structurally characterized by single-crystal X-ray diffraction. The high green emission intensity and the microporous nature of the Tb-MOF indicate that it can potentially be used as a luminescent sensor. In this work, we show that Tb-MOF can selectively sense Fe(3+) and Al(3+) ions from mixed metal ions in water through different detection mechanisms. In addition, it also exhibits high sensitivity for 2,4,6-trinitrophenol (TNP) in the presence of other nitro aromatic compounds in aqueous solution by luminescence quenching experiments. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Process for the conversion of sugars to lactic acid and 2-hydroxy-3-butenoic acid or esters thereof comprising a metallo-silicate material and a metal ion

    DEFF Research Database (Denmark)

    2015-01-01

    A process for the preparation of lactic acid and 2-hydroxy- 3-butenoic acid or esters thereof from a sugar in the presence of a metallo-silicate material, a metal ion and a solvent, wherein the metal ion is selected from one or more of the group consisting of potassium ions, sodium ions, lithium...... ions, rubidium ions and caesium ions....

  19. Direct oxidation of Δ2-isoxazolines synthesis by metal ion-mediated diastereoface-selective 1,3-dipolar cycloaddition with “activated” DMSO

    OpenAIRE

    Naoufel Ben Hamadi; Moncef Msaddek

    2017-01-01

    A series of 4-hydroxyl-Δ2-isoxazol-6(6aH)-one derivatives was prepared by magnesium ion-mediated diastereoface-selective 1,3-dipolar cycloaddition of aromatic nitrile oxides with pyrrolidinone derivatives. The reaction of 4-hydroxyl-Δ2-isoxazol-6(6aH)-one derivatives with dimethylsulfoxide and oxalyl chloride under Swern conditions led to a Δ2-isoxazole-4,6(5H,6aH)-dione.

  20. Direct oxidation of Δ2-isoxazolines synthesis by metal ion-mediated diastereoface-selective 1,3-dipolar cycloaddition with “activated” DMSO

    Directory of Open Access Journals (Sweden)

    Naoufel Ben Hamadi

    2017-02-01

    Full Text Available A series of 4-hydroxyl-Δ2-isoxazol-6(6aH-one derivatives was prepared by magnesium ion-mediated diastereoface-selective 1,3-dipolar cycloaddition of aromatic nitrile oxides with pyrrolidinone derivatives. The reaction of 4-hydroxyl-Δ2-isoxazol-6(6aH-one derivatives with dimethylsulfoxide and oxalyl chloride under Swern conditions led to a Δ2-isoxazole-4,6(5H,6aH-dione.

  1. An equilibrium model for ligand-modified micellar-enhanced ultrafiltration. Selective separation of metal ions using iminoacetic substituted polyamines and a theoretical model for the titration behavior of polyamines

    Energy Technology Data Exchange (ETDEWEB)

    Dharmawardana, Udeni Rajaratna [Univ. of Oklahoma, Norman, OK (United States)

    1992-01-01

    This thesis consists of three chapters. Chapter 1, An equilibrium model for ligand-modified micellar-enhanced ultrafiltration, describes a theoretical model and experimental investigations which used the semi-equilibrium-dialysis method with N-n-dodecyl iminodiacetic acid as the ligand. In Chapter 2, Selective separation of metal ions using iminoacetic substituted polyamines, polyamines with a substituted ligand group are synthesized and used in investigating selective separation of copper ions from aqueous solution. In Chapter 3, A theoretical model for the titration behavior of polyamines, a novel approach to explain the titration behavior of polymeric amines based on the binding behavior of counterions is described. The application of this study is to the investigation of inexpensive and efficient methods of industrial waste water treatment.

  2. Metal ion levels and lymphocyte counts

    DEFF Research Database (Denmark)

    Penny, Jeannette Ø; Varmarken, Jens-Erik; Ovesen, Ole

    2013-01-01

    BACKGROUND AND PURPOSE: Wear particles from metal-on-metal arthroplasties are under suspicion for adverse effects both locally and systemically, and the DePuy ASR Hip Resurfacing System (RHA) has above-average failure rates. We compared lymphocyte counts in RHA and total hip arthroplasty (THA....../ppb. INTERPRETATION: Circulating T-lymphocyte levels may decline after surgery, regardless of implant type. Metal ions-particularly cobalt-may have a general depressive effect on T- and B-lymphocyte levels. Registered with ClinicalTrials.gov under # NCT01113762....

  3. DETERMINATION OF METAL IONS RELEASED BY STAINLESS ...

    African Journals Online (AJOL)

    Preferred Customer

    their tendency to undergo electrochemical corrosion while in contact with physiological fluids. The electrochemical reaction resulting to the release of metal ions is coupled with a corresponding reduction reaction of constituents in the aqueous environment to maintain charge neutrality [3]. The oral cavity is warm and damp, ...

  4. Metal ions and human sperm mannose receptors.

    Science.gov (United States)

    Benoff, S; Cooper, G W; Centola, G M; Jacob, A; Hershlag, A; Hurley, I R

    2000-09-01

    Zinc and lead concentrations were measured in seminal plasma from fertile donors, infertile men with varicocoele and men undergoing work-ups for in vitro fertilization. Ejaculated spermatozoa from these subjects were incubated in vitro with various metal ions and/or dibromoethane and dibromochloropropane. Mannose receptor expression was correlated with metal and toxicant levels. Sperm distributions of potassium channels were compared with lead ions and calcium channels with zinc ions. Mannose receptor expression by capacitated spermatozoa increased linearly with seminal plasma zinc levels, and correlated inversely with lead levels. Cobalt had no effect on mannose receptor expression, but nickel had a concentration-dependent biphasic effect. Mannose receptor expression was not affected by dibromoethane and dibromochloropropane if the cholesterol content of the sperm membrane was high, but mannose receptor expression was decreased in low cholesterol spermatozoa by exposures below estimated permissive exposure limits. Potassium channels and lead ions co-localized over the entire head of human spermatozoa, while both calcium channels and zinc ions were confined to the equatorial segment of the head. Mannose receptor expression on the external surface of the human sperm plasma membrane is a biomarker for the effects of transition and heavy metals and organic toxicants on sperm fertility potential.

  5. Uncoupling metallonuclease metal ion binding sites via nudge mutagenesis.

    Science.gov (United States)

    Papadakos, Grigorios A; Nastri, Horacio; Riggs, Paul; Dupureur, Cynthia M

    2007-05-01

    The hydrolysis of phosphodiester bonds by nucleases is critical to nucleic acid processing. Many nucleases utilize metal ion cofactors, and for a number of these enzymes two active-site metal ions have been detected. Testing proposed mechanistic roles for individual bound metal ions has been hampered by the similarity between the sites and cooperative behavior. In the homodimeric PvuII restriction endonuclease, the metal ion dependence of DNA binding is sigmoidal and consistent with two classes of coupled metal ion binding sites. We reasoned that a conservative active-site mutation would perturb the ligand field sufficiently to observe the titration of individual metal ion binding sites without significantly disturbing enzyme function. Indeed, mutation of a Tyr residue 5.5 A from both metal ions in the enzyme-substrate crystal structure (Y94F) renders the metal ion dependence of DNA binding biphasic: two classes of metal ion binding sites become distinct in the presence of DNA. The perturbation in metal ion coordination is supported by 1H-15N heteronuclear single quantum coherence spectra of enzyme-Ca(II) and enzyme-Ca(II)-DNA complexes. Metal ion binding by free Y94F is basically unperturbed: through multiple experiments with different metal ions, the data are consistent with two alkaline earth metal ion binding sites per subunit of low millimolar affinity, behavior which is very similar to that of the wild type. The results presented here indicate a role for the hydroxyl group of Tyr94 in the coupling of metal ion binding sites in the presence of DNA. Its removal causes the affinities for the two metal ion binding sites to be resolved in the presence of substrate. Such tuning of metal ion affinities will be invaluable to efforts to ascertain the contributions of individual bound metal ions to metallonuclease function.

  6. Smart responsive microcapsules capable of recognizing heavy metal ions.

    Science.gov (United States)

    Pi, Shuo-Wei; Ju, Xiao-Jie; Wu, Han-Guang; Xie, Rui; Chu, Liang-Yin

    2010-09-15

    Smart responsive microcapsules capable of recognizing heavy metal ions are successfully prepared with oil-in-water-in-oil double emulsions as templates for polymerization in this study. The microcapsules are featured with thin poly(N-isopropylacrylamide-co-benzo-18-crown-6-acrylamide) (P(NIPAM-co-BCAm)) membranes, and they can selectively recognize special heavy metal ions such as barium(II) or lead(II) ions very well due to the "host-guest" complexation between the BCAm receptors and barium(II) or lead(II) ions. The stable BCAm/Ba(2+) or BCAm/Pb(2+) complexes in the P(NIPAM-co-BCAm) membrane cause a positive shift of the volume phase transition temperature of the crosslinked P(NIPAM-co-BCAm) hydrogel to a higher temperature, and the repulsion among the charged BCAm/Ba(2+) or BCAm/Pb(2+) complexes and the osmotic pressure within the P(NIPAM-co-BCAm) membranes result in the swelling of microcapsules. Induced by recognizing barium(II) or lead(II) ions, the prepared microcapsules with P(NIPAM-co-BCAm) membranes exhibit isothermal and significant swelling not only in outer and inner diameters but also in the membrane thickness. The proposed microcapsules in this study are highly attractive for developing smart sensors and/or carriers for detection and/or elimination of heavy metal ions. Copyright 2010 Elsevier Inc. All rights reserved.

  7. Material Removes Heavy Metal Ions From Water

    Science.gov (United States)

    Philipp, Warren H., Jr.; Street, Kenneth W.; Hill, Carol; Savino, Joseph M.

    1995-01-01

    New high capacity ion-exchange polymer material removes toxic metal cations from contaminated water. Offers several advantages. High sensitivities for such heavy metals as lead, cadmium, and copper and capable of reducing concentrations in aqueous solutions to parts-per-billion range. Removes cations even when calcium present. Material made into variety of forms, such as thin films, coatings, pellets, and fibers. As result, adapted to many applications to purify contaminated water, usually hard wherever found, whether in wastewater-treatment systems, lakes, ponds, industrial plants, or homes. Another important feature that adsorbed metals easily reclaimed by either destructive or nondestructive process. Other tests show ion-exchange polymer made inexpensively; easy to use; strong, flexible, not easily torn; and chemically stable in storage, in aqueous solutions, and in acidic or basic solution.

  8. Metal ions affecting reproduction and development.

    Science.gov (United States)

    Apostoli, Pietro; Catalani, Simona

    2011-01-01

    Many metal ions (lead, mercury, arsenic, cadmium, chromium, nickel, vanadium, copper, lithium) exert a wide variety of adverse effects on reproduction and development, including influence on male and female subfertility or fertility, abortions, malformations, birth defects, and effects on the central nervous system. The effects produced by metal ions depend on several factors, such as timing and duration of exposure, their distribution and accumulation in various organs (e.g., the nervous system), and on the interference with specific developmental processes. Neonatal and early postnatal periods are lifespan segments during which sensitivity to metals is high; e.g., lead toxicity on the developing organism is paradigmatic of related well known and still open questions. In more recent decades, important mechanisms of action have been suggested: the endocrine disruption via impact of metal ions on reproductive hormones and the oxidative stress. While experimental data provide clear evidence of effects of many metals, human data are scant and traditionally limited to high levels of a few metal ions, like lead on male fertility. Less documented are reproductive effects for mercury, manganese, chromium, nickel, and arsenic for the same gender. More complex is the demonstration of effects on female reproduction and on pregnancy. The action of lead, arsenic, cadmium, chromium, and mercury may in fact be relevant in several stages, beginning in fetal life, during early development or maturity, and is characterized by subfertility, infertility, intrauterine growth retardation, spontaneous abortions, malformations, birth defects, postnatal death, learning and behavior deficits, and premature aging. Also, for females the evidences of specific aspects such as fertility or abortions are usually higher and clearer from animal experiments than from human studies.

  9. Fluorescence signalling of the transition metal ions: Design strategy ...

    Indian Academy of Sciences (India)

    on fluorescence signalling systems for the transition metal ions. It is shown that even simple fluorophore-spacer-receptor systems can display excellent off-on fluorescence signalling towards the quenching metal ions when the fluorophore ...

  10. Polyatomic ions from a high current ion implanter driven by a liquid metal ion source.

    Science.gov (United States)

    Pilz, W; Laufer, P; Tajmar, M; Böttger, R; Bischoff, L

    2017-12-01

    High current liquid metal ion sources are well known and found their first application as field emission electric propulsion thrusters in space technology. The aim of this work is the adaption of such kind of sources in broad ion beam technology. Surface patterning based on self-organized nano-structures on, e.g., semiconductor materials formed by heavy mono- or polyatomic ion irradiation from liquid metal (alloy) ion sources (LMAISs) is a very promising technique. LMAISs are nearly the only type of sources delivering polyatomic ions from about half of the periodic table elements. To overcome the lack of only very small treated areas by applying a focused ion beam equipped with such sources, the technology taken from space propulsion systems was transferred into a large single-end ion implanter. The main component is an ion beam injector based on high current LMAISs combined with suited ion optics allocating ion currents in the μA range in a nearly parallel beam of a few mm in diameter. Different types of LMAIS (needle, porous emitter, and capillary) are presented and characterized. The ion beam injector design is specified as well as the implementation of this module into a 200 kV high current ion implanter operating at the HZDR Ion Beam Center. Finally, the obtained results of large area surface modification of Ge using polyatomic Bi 2 + ions at room temperature from a GaBi capillary LMAIS will be presented and discussed.

  11. Heavy metal ion uptake properties of polystyrene-supported ...

    Indian Academy of Sciences (India)

    Metal ion uptake properties of polystyrene-supported chelating polymer resins functionalized with (i) glycine, (ii) hydroxy benzoic acid, (iii) Schiff base and (iv) diethanol amine have been investigated. The effects of pH, time and initial concentration on the uptake of metal ions have been studied. The uptake of metal ion ...

  12. Superheated water ion-exchange chromatography: an experimental approach for interpretation of separation selectivity in ion-exchange processes.

    Science.gov (United States)

    Shibukawa, Masami; Shimasaki, Tomomi; Saito, Shingo; Yarita, Takashi

    2009-10-01

    Cation-exchange selectivity for alkali and alkaline-earth metal ions and tetraalkylammonium ions on a strongly acidic sulfonic acid cation-exchange resin has been investigated in the temperature range of 40-175 degrees C using superheated water chromatography. Dependence of the distribution coefficient (ln KD) on the reciprocal of temperature (1/T) is not linear for most of the ions studied, and the selectivity coefficient for a pair of alkali metal ions or that of alkaline-earth metal ions approaches unity as temperature increases. On the other hand, the retention order of tetraalkylammonium ions is reversed at 160 degrees C or above when eluted with Na2SO4 aqueous solution and the larger ions are eluted faster than the smaller ones contrary to the retention order obtained at ambient temperature. The change in ion-exchange selectivity with temperature observed with superheated water chromatography has been discussed on the basis of the effect of temperature on hydration of the ions and specific adsorption or distribution of ionic species between the external solution and ion-exchange resin. In superheated water, the electrostatic interaction or association of the ions with the fixed ion becomes a predominant mechanism resulting in different separation selectivity from that obtained at ambient temperature.

  13. Microwave-assisted synthesis of HKUST-1 and functionalized HKUST-1-@H3PW12O40: selective adsorption of heavy metal ions in water analyzed with synchrotron radiation.

    Science.gov (United States)

    Zou, Fang; Yu, Runhan; Li, Rongguan; Li, Wei

    2013-08-26

    A simple, rapid and efficient synthesis of the metal-organic framework (MOF) HKUST-1 [Cu3(1,3,5-benzene-tri-carboxilic-acid)2] by microwave irradiation is described, which afforded a homogeneous and highly selective material. The unusually short time to complete the synthesis by microwave irradiation is mainly attributable to rapid nucleation rather than to crystal growth rate. Using this method, HKUST-1-MW (MW=microwave) could be prepared within 20 min, whereas by hydrothermal synthesis, involving conventional heating, the preparation time is 8 h. Work efficiency was improved by the good performance of the obtained HKUST-1-MW which exhibited good selective adsorption of heavy metal ions, as well as a remarkably high adsorption affinity and adsorption capacity, but no adsorption of Hg(2+) under the same experimental conditions. Of particular importance is the preservation of the structure after metal-ion adsorption, which remained virtually intact, with only a few changes in X-ray diffraction intensity and a moderate decline in surface area. Synthesis of the polyoxometalate-containing HKUST-1-MW@H3PW12O40 afforded a MOF with enhanced stability in water, due to the introduced Keggin-type phosphotungstate, which systematically occluded in the cavities constituting the walls between the mesopores. Different Cu/W ratios were investigated according to the extrusion rate of cooper ions concentration, without significant structural changes after adsorption. The MOFs obtained feature particle sizes between 10-20 μm and their structures were determined using synchrotron-based X-ray diffraction. The results of this study can be considered important for potentially wider future applications of MOFs, especially to attend environmental issues. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Synthesis and characterization of metal ion imprinted polymers

    Indian Academy of Sciences (India)

    57

    ABSTRACT. In this study, ion-imprinted polymeric materials to remove metal ions (M2+) like Ni2+, Co2+ etc from an aqueous solution were prepared. To prepare ion-imprinted polymers, acrylic acid derivatives. (XA) like acrylamide (AAm) and methacrylic, itaconic acid were chosen as monomer. Metal ions formed binary ...

  15. Metal ion interaction of an oligopeptide fragment representing the regulatory metal binding site of a CueR protein

    DEFF Research Database (Denmark)

    Jancsó, Attila; Szokolai, Hajnalka; Roszahegyi, Livia

    2013-01-01

    Metalloregulatory proteins of the MerR family are transcriptional activators that sense/control the concentration of various metal ions inside bacteria.1 The Cu+ efflux regulator CueR, similarly to other MerR proteins, possesses a short multiple Cys-containing metal binding loop close to the C......-terminus. CueR has a high selectivity for Cu+, Ag+ and Au+, but exhibits no transcriptional activity for the divalent ions Hg2+ and Zn2+.2 The two Cys- residues of the metal binding loop were shown to settle M+ ions into a linear coordination environment but other factors may also play a role in the recognition...... of cognate metal ions.2 Nevertheless, it is an interesting question whether the same sequence, when removed from the protein, shows a flexibility to adopt different coordination environments and may efficiently bind metal ions having preferences for larger coordination numbers....

  16. Mechanical property measurements on ion-irradiated metals

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J.; Oliver, W.C.

    1986-08-01

    A recently developed mechanical properties microprobe (MPM) has been used to investigate strength and elastic modulus changes in ion-irradiated metals. The indenter load and its displacement are simultaneously monitored while the indentation is being made and also during unloading. Microindentation hardness measurements have been performed on ion-irradiated copper and Cu-0.15% Zr (AMZIRC). The depth dependence of the ion damage has been investigated in selected specimens which were prepared using a cross-section technique. This procedure allows a direct comparison to be made of hardness data from different irradiation depths while the indent size is held constant. The displacement damage associated with ion irradiation caused either hardening or softening, depending on the irradiation conditions and the material.

  17. Hydrophilic Nb{sup 5+}-immobilized magnetic core–shell microsphere – A novel immobilized metal ion affinity chromatography material for highly selective enrichment of phosphopeptides

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xueni; Liu, Xiaodan; Feng, Jianan [Pharmaceutical Analysis Department, School of Pharmacy, Fudan University, Shanghai 201203 (China); Li, Yan, E-mail: yanli@fudan.edu.cn [Pharmaceutical Analysis Department, School of Pharmacy, Fudan University, Shanghai 201203 (China); Deng, Chunhui [Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433 (China); Duan, Gengli [Pharmaceutical Analysis Department, School of Pharmacy, Fudan University, Shanghai 201203 (China)

    2015-06-23

    Highlights: • A new IMAC material (Fe{sub 3}O{sub 4}@PD-Nb{sup 5+}) was synthesized. • The strong magnetic behaviors of the microspheres ensure fast and easy separation. • The enrichment ability was tested by human serum and nonfat milk. • The results were compared with other IMAC materials including the commercial kits. • All results proved the good enrichment ability, especially for multiphosphopeptides. - Abstract: Rapid and selective enrichment of phosphopeptides from complex biological samples is essential and challenging in phosphorylated proteomics. In this work, for the first time, niobium ions were directly immobilized on the surface of polydopamine-coated magnetic microspheres through a facile and effective synthetic route. The Fe{sub 3}O{sub 4}@polydopamine-Nb{sup 5+} (denoted as Fe{sub 3}O{sub 4}@PD-Nb{sup 5+}) microspheres possess merits of high hydrophilicity and good biological compatibility, and demonstrated low limit of detection (2 fmol). The selectivity was also basically satisfactory (β-casein:BSA = 1:500) to capture phosphopeptides. They were also successfully applied for enrichment of phosphopeptides from real biological samples such as human serum and nonfat milk. Compared with Fe{sub 3}O{sub 4}@PD-Ti{sup 4+} microspheres, the Fe{sub 3}O{sub 4}@PD-Nb{sup 5+} microspheres exhibit superior selectivity to multi-phosphorylated peptides, and thus may be complementary to the conventional IMAC materials.

  18. Improving cycle life of layered lithium transition metal oxide (LiMO2) based positive electrodes for Li ion batteries by smart selection of the electrochemical charge conditions

    Science.gov (United States)

    Kasnatscheew, Johannes; Evertz, Marco; Streipert, Benjamin; Wagner, Ralf; Nowak, Sascha; Cekic Laskovic, Isidora; Winter, Martin

    2017-08-01

    Increasing the specific energy of a lithium ion battery and maintaining its cycle life is a predominant goal and major challenge for electrochemical energy storage applications. Focusing on the positive electrode as the specific energy bottleneck, cycle life characteristics of promising layered oxide type active materials (LiMO2) has been thoroughly investigated. Comparing the variety of LiMO2 compositions, it could be shown that the ;Ni-rich; (Ni ≥ 60% for M in LiMO2) electrodes expectably revealed best performance compromises between specific energy and cycle life at 20 °C, but only LiNi0.6Mn0.2Co0.2O2 (NMC622) could also maintain sufficient cycle performance at elevated temperatures. Focusing on NMC622, it could be demonstrated that the applied electrochemical conditions (charge capacity, delithiation amount) in the formation cycles significantly influence the subsequent cycling performance. Moreover, the insignificant transition metal dissolution, demonstrated by means of total X-ray fluorescence (TXRF) technique, and unchanged lithiation degree in the discharged state, determined by the measurement of the Li+ content by means of the inductively coupled plasma optical emission spectroscopy (ICP-OES) technique, pointed to a delithiation (charge) hindrance capacity fade mechanism. Considering these insights, thoughtful modifications of the electrochemical charge conditions could significantly prolong the cycle life.

  19. Transporters of ligands for essential metal ions in plants.

    Science.gov (United States)

    Haydon, Michael J; Cobbett, Christopher S

    2007-01-01

    Essential metals are required for healthy plant growth but can be toxic when present in excess. Therefore plants have mechanisms of metal homeostasis which involve coordination of metal ion transporters for uptake, translocation and compartmentalization. However, very little metal in plants is thought to exist as free ions. A number of small, organic molecules have been implicated in metal ion homeostasis as metal ion ligands to facilitate uptake and transport of metal ions with low solubility and also as chelators implicated in sequestration for metal tolerance and storage. Ligands for a number of essential metals have been identified and proteins involved in the transport of these ligands and of metal-ligand complexes have been characterized. Here we review recent advances in understanding the role of mugineic acid, nicotianamine, organic acids (citrate and malate), histidine and phytate as ligands for iron (Fe), zinc (Zn), copper (Cu), manganese (Mn) and nickel (Ni) in plants, and the proteins identified as their transporters.

  20. Laboratory Evaluation of Ion-Selective Electrodes for Simultaneous Analysis of Macronutrients in Hydroponic Solution

    Science.gov (United States)

    Automated sensing of macronutrients in hydroponic solution would allow more efficient management of nutrients for crop growth in closed hydroponic systems. Ion-selective microelectrode technology requires an ion-selective membrane or a solid metal material that responds selectively to one analyte in...

  1. Selective Recovery of Metals from Geothermal Brines

    Energy Technology Data Exchange (ETDEWEB)

    Ventura, Susanna [SRI International, Menlo Park, CA (United States); Bhamidi, Srinivas [SRI International, Menlo Park, CA (United States); Hornbostel, Marc [SRI International, Menlo Park, CA (United States); Nagar, Anoop [SRI International, Menlo Park, CA (United States); Perea, Elisabeth [SRI International, Menlo Park, CA (United States)

    2016-12-16

    The objective of this project was to determine the feasibility of developing a new generation of highly selective low-cost ion-exchange resins based on metal-ion imprinted polymers for the separation of metals from geothermal fluids. Expansion of geothermal energy production over the entire U.S. will involve exploitation of low-to-medium temperature thermal waters. Creating value streams from the recovery of critical and near-critical metals from these thermal waters will encourage geothermal expansion. Selective extraction of metals from geothermal fluids is needed to design a cost-effective process for the recovery of lithium and manganese-two near-critical metals with well-known application in the growing lithium battery industry. We have prepared new lithium- and manganese-imprinted polymers in the form of beads by crosslinking polymerization of a metal polymerizable chelate, where the metal acts as a template. Upon leaching out the metal template, the crosslinked polymer is expected to leave cavities defined by the ligand functional group with enhanced selectivity for binding the template metal. We have demonstrated that lithium- and manganese-imprinted polymer beads can be used as selective solid sorbents for the extraction of lithium and manganese from brines. The polymers were tested both in batch extractions and packed bed lab-scale columns at temperatures of 45-100°C. Lithium-imprinted polymers were found to have Li+ adsorption capacity as high as 2.8 mg Li+/g polymer at 45°C. Manganese-imprinted polymers were found to have a Mn2+ adsorption capacity of more than 23 mg Mn2+/g polymer at 75°C. The Li+ extraction efficiency of the Li-imprinted polymer was found to be more that 95% when a brine containing 390 ppm Li+, 410 ppm Na+, and 390 ppm K+ was passed through a packed bed of the polymer in a lab-scale column at 45°C. In brines containing 360 ppm Li

  2. Ion-selective organic electrochemical transistors.

    Science.gov (United States)

    Sessolo, Michele; Rivnay, Jonathan; Bandiello, Enrico; Malliaras, George G; Bolink, Henk J

    2014-07-23

    Ion-selective organic electrochemical transistors with sensitivity to potassium approaching 50 μA dec(-1) are demonstrated. The remarkable sensitivity arises from the use of high transconductance devices, where the conducting polymer is in direct contact with a reference gel electrolyte and integrated with an ion-selective membrane. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Chromatography of metal ions with a triazine chelating resin

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.N.

    1979-05-01

    The synthesis, characterization, and some analytical applications of a new triazine resin are described. Separation of group IB, IIB, VIB, and VIIB metal ions from group VIII metal ions is achieved by this PDT-4 resin. Calcium(II) and magnesium(II) are taken up at pH = 6, 0.1 M acetate and are eluted at pH = 6, 0.1 M sodium nitrate. Copper(II) is retained at pH = 6, 0.1 M acetate and pH = 1 hydrochloric acid and is eluted subsequently by 5 M perchloric acid. Molybdenum(VI) is sorbed selectively from 0.1 N sulfuric acid or hydrochloric acid and is eluted in a tight band by 0.1 N sodium hydroxide. Numerous rapid column chromatographic separations are reported using this new resin, including analysis of NBS standard samples.

  4. Systems and methods for producing metal clusters; functionalized surfaces; and droplets including solvated metal ions

    Science.gov (United States)

    Cooks, Robert Graham; Li, Anyin; Luo, Qingjie

    2017-08-01

    The invention generally relates to systems and methods for producing metal clusters; functionalized surfaces; and droplets including solvated metal ions. In certain aspects, the invention provides methods that involve providing a metal and a solvent. The methods additionally involve applying voltage to the solvated metal to thereby produce solvent droplets including ions of the metal containing compound, and directing the solvent droplets including the metal ions to a target. In certain embodiments, once at the target, the metal ions can react directly or catalyze reactions.

  5. Nanomolar determination of Pb (II ions by selective templated electrode

    Directory of Open Access Journals (Sweden)

    Mazloum-Ardakani Mohammad

    2012-01-01

    Full Text Available Polypyrrole modified electrode, prepared by electropolymerization of pyrrole in the presence of methyl red as a dopant, was templated with respect to Pb2+ ion and applied for potentiometric and voltammetric detection of this ion. The templating process improved the analytical response characteristics of the electrode, specially their selectivity, with respect to Pb2+ ion. The improvement depends on both the incorporated ligand (dopant and the templating process, with the latter being more vital. The potentiometric response of the electrode was linear within the Pb2+ concentration range of 2.0×10-6 to 5.0×10-2 M with a near-Nernstian slope of 28.6 mV decade-1 and a detection limit of 7.0 ×10-7 M. The electrode was also used for preconcentration differential pulse anodic stripping voltammetry (DPASV and results showed that peak currents for the incorporated lead species were dependent on the metal ion concentration in the range of 1.0×10-8 to 1.0×10-3 M. The detection limit of DPASV method was 3.5 ×10-9 M. The selectivity of the electrode with respect to some transition metal ions was investigated. The modified-templated electrode was used for the successful assay of lead in two standard reference material samples.

  6. Ion selective electrodes based on chalcogenide glasses

    OpenAIRE

    Conde Garrido, Juan Manuel; Ureña, Maria Andrea; Arcondo, Bibiana Graciela

    2017-01-01

    The properties of chalcogenide glasses as sensitive membranes in ion selective electrodes (ISEs) have been investigated. It is shown that ISEs based on the AgGeSe system show sensitivity to the presence of Ag+ and Cu2+ ions in aqueous solutions and in both cases they exhibit super-nernstian responses. The analytical properties such as reproducibility, linear range, sensitivity and detection limit were studied. The response of the electrodes is apparently conditioned by the amount of Ag in the...

  7. Separation of traces of metal ions from sodium matrices

    Science.gov (United States)

    Korkisch, J.; Orlandini, K. A.

    1969-01-01

    Method for isolating metal ion traces from sodium matrices consists of two extractions and an ion exchange step. Extraction is accomplished by using 2-thenoyltrifluoracetone and dithizone followed by cation exchange.

  8. Adsorption of heavy metal ions by immobilized phytic acid

    Energy Technology Data Exchange (ETDEWEB)

    Tsao, G.T.; Zheng, Yizhou; Lu, J.; Gong, Cheng S. [Purdue Univ., West Lafayette, IN (United States)

    1997-12-31

    Phytic acid (myoinositol hexaphosphate) or its calcium salt, phytate, is an important plant constituents. It accounts for up to 85% of total phosphorus in cereals and legumes. Phytic acid has 12 replaceable protons in the phytic molecule rendering it the ability to complex with multivalent cations and positively charged proteins. Poly 4-vinyl pyridine (PVP) and other strong-based resins have the ability to adsorb phytic acid. PVP has the highest adsorption capacity of 0.51 phytic acid/resins. The PVP resin was used as the support material for the immobilization of phytic acid. The immobilized phytic acid can adsorb heavy metal ions, such as cadmium, copper, lead, nickel, and zinc ions, from aqueous solutions. Adsorption isotherms of the selected ions by immobilized phytic acid were conducted in packed-bed column at room temperature. Results from the adsorption tests showed 6.6 mg of Cd{sup 2+}, 7 mg of Cu{sup 2+}, 7.2 mg of Ni{sup 2+}, 7.4 mg of Pb{sup 2+}, and 7.7 mg of Zn{sup 2+} can be adsorbed by each gram of PVP-phytic acid complex. The use of immobilized phytic acid has the potential for removing metal ions from industrial or mining waste water. 15 refs., 7 figs., 2 tabs.

  9. Plasma immersion ion implantation for reducing metal ion release

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, C.; Garcia, J. A.; Maendl, S.; Pereiro, R.; Fernandez, B.; Rodriguez, R. J. [Centro de Ingenieria Avanzada de Superficies AIN, 31191, Cordovilla-Pamplona (Spain); Leibniz-Institut fuer Oberflaechenmodifizierung, 04318 Leipzig (Germany); Universidad de Oviedo, Departamento Quimica Fisica y Analitica (Spain); Centro de Ingenieria Avanzada de Superficies AIN, 31191, Cordovilla-Pamplona (Spain)

    2012-11-06

    Plasma immersion ion implantation of Nitrogen and Oxygen on CoCrMo alloys was carried out to improve the tribological and corrosion behaviors of these biomedical alloys. In order to optimize the implantation results we were carried experiments at different temperatures. Tribocorrosion tests in bovine serum were used to measure Co, Cr and Mo releasing by using Inductively Coupled Plasma Mass Spectrometry analysis after tests. Also, X-ray Diffraction analysis were employed in order to explain any obtained difference in wear rate and corrosion tests. Wear tests reveals important decreases in rate of more than one order of magnitude for the best treatment. Moreover decreases in metal release were found for all the implanted samples, preserving the same corrosion resistance of the unimplanted samples. Finally this paper gathers an analysis, in terms of implantation parameters and achieved properties for industrial implementation of these treatments.

  10. The charge state of hydrogen ions in metals and semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Bazhukov, S.I.; Kibardin, A.V.; Pyatkova, T.M.; Urmanov, A.R. (Urals Polytechnical Inst., Sverdlovsk (USSR))

    1991-06-01

    The charge state of hydrogen ions in metals and semiconductors has been studied based on a comparison of hydrogen ion stopping cross-sections in metal and semiconductor targets. It is shown that neutralization of the hydrogen ion in metals and semiconductors at ion speeds v{sub i} {proportional to} (1-2)v{sub 0}, where v{sub 0} = 2.2x10{sup 8} cm/s, is due to different mechanisms, i.e. to a bulk effect in metals and to a subsurface effect in semiconductors. (orig.).

  11. Phytoremediation: an overview of metallic ion decontamination from soil

    Energy Technology Data Exchange (ETDEWEB)

    Singh, O.V.; Labana, S.; Pandey, G.; Budhiraja, R.; Jain, R.K. [Inst. of Microbial Technology, Chandigarh (India)

    2003-07-01

    In recent years, phytoremediation has emerged as a promising ecoremediation technology, particularly for soil and water cleanup of large volumes of contaminated sites. The exploitation of plants to remediate soils contaminated with trace elements could provide a cheap and sustainable technology for bioremediation. Many modern tools and analytical devices have provided insight into the selection and optimization of the remediation process by plant species. This review describes certain factors for the phytoremediation of metal ion decontamination and various aspects of plant metabolism during metallic decontamination. Metal-hyperaccumulating plants, desirable for heavily polluted environments, can be developed by the introduction of novel traits into high biomass plants in a transgenic approach, which is a promising strategy for the development of effective phytoremediation technology. The genetic manipulation of a phytoremediator plant needs a number of optimization processes, including mobilization of trace elements/metal ions, their uptake into the root, stem and other viable parts of the plant and their detoxification and allocation within the plant. This upcoming science is expanding as technology continues to offer new, low-cost remediation options. (orig.)

  12. Ion imprinted polymeric nanoparticles for selective separation and sensitive determination of zinc ions in different matrices.

    Science.gov (United States)

    Shamsipur, Mojtaba; Rajabi, Hamid Reza; Pourmortazavi, Seied Mahdi; Roushani, Mahmoud

    2014-01-03

    Preparation of Zn(2+) ion-imprinted polymer (Zn-IIP) nanoparticles is presented in this report. The Zn-IIP nanoparticles are prepared by dissolving stoichiometric amounts of zinc nitrate and selected chelating ligand, 3,5,7,20,40-pentahydroxyflavone, in 15 mL ethanol-acetonitrile (2:1; v/v) mixture as a porogen solvent in the presence of ethylene glycol-dimethacrylate (EGDMA) as cross-linking, methacrylic acid (MAA) as functional monomer, and 2,2-azobisisobutyronitrile (AIBN) as initiator. After polymerization, Cavities in the polymer particles corresponding to the Zn(2+) ions were created by leaching the polymer in HCl aqueous solution. The synthesized IIPs were characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, fluorescence spectroscopy and thermal analysis techniques. Also, the pH range for rebinding of Zn(2+) ion on the IIP and equilibrium binding time were optimized, using flame atomic absorption spectrometry. In selectivity study, it was found that imprinting results increased affinity of the material toward Zn(2+) ion over other competitor metal ions with the same charge and close ionic radius. The prepared IIPs were repeatedly used and regenerated for six times without any significant decrease in polymer binding affinities. Finally, the prepared sorbent was successfully applied to the selective recognition and determination of zinc ion in different real samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Metal ion enhanced binding of AMD3100 to Asp262 in the CXCR4 receptor

    DEFF Research Database (Denmark)

    Gerlach, Lars Ole; Jakobsen, Janus S; Jensen, Kasper P

    2003-01-01

    of the bicyclam is dependent on both Asp(171) and Asp(262), the enhancing effect of the metal ion was selectively eliminated by substitution of Asp(262) located at the extracellular end of TM-VI. It is concluded that the increased binding affinity of the metal ion substituted AMD3100 is obtained through enhanced...... interaction of one of the cyclam ring systems with the carboxylate group of Asp(262). It is suggested that this occurs through a strong concomitant interaction of one of the oxygen's directly with the metal ion and the other oxygen to one of the nitrogens of the cyclam ring through a hydrogen bond....

  14. Rapid self-healable poly(ethylene glycol) hydrogels formed by selective metal-phosphate interactions.

    Science.gov (United States)

    Sato, Takeshi; Ebara, Mitsuhiro; Tanaka, Shinji; Asoh, Taka-Aki; Kikuchi, Akihiko; Aoyagi, Takao

    2013-07-14

    Rapid self-healable and biocompatible hydrogels were prepared using the selective formation of metal-ligand interactions between selected metal ions and phosphate end groups of poly(ethylene glycol) (PEG). The phosphate-terminated branch of PEG was synthesized via a substitution reaction of the hydroxyl end groups using phosphoryl chloride. The gelation and gel properties including rheological properties can be tuned by the careful selection of metal ions, branch numbers, and temperature. Especially, the gels rapidly formed by trivalent metal ions such as Fe(3+), V(3+), Al(3+), Ti(3+), and Ga(3+) have relatively small ionic radii. The ligand substitution rates also affected the repeatable autonomic healing ability. We have also demonstrated a gel-sol/sol-gel transition by switching the redox states of Fe(3+)/Fe(2+) ions. Learning from biological systems, the proposed phosphate-metal ion based self-healable hydrogels could become an attractive candidate for various biomedical and environmental applications.

  15. Heterocyclic ring based colorimetric and fluorescent chemosensor for transition metal ions in an aqueous medium

    Energy Technology Data Exchange (ETDEWEB)

    Udhayakumari, Duraisamy [Department of Chemistry, Organic and Polymer Synthesis Laboratory, National Institute of Technology, Tiruchirappalli 620015 (India); Velmathi, Sivan, E-mail: velmathis@nitt.edu [Department of Chemistry, Organic and Polymer Synthesis Laboratory, National Institute of Technology, Tiruchirappalli 620015 (India); Boobalan, Maria susai [Department of Chemistry, St. Joseph' s College (Autonomous), Tiruchirappalli 620002 (India); Venkatesan, Parthiban; Wu, Shu-Pao [Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan, ROC (China)

    2015-02-15

    Heterocyclic ring based R1–R3 have been synthesized from the simple condensation method. R1–R3 exhibit highly selective and sensitive recognition towards transition metal ions in an aqueous medium via visual color change and were further confirmed by UV–vis and fluorescent spectroscopic methods. Fluorescent turn on and turn off behavior was observed for receptors tested with transition metal ions. The interaction of transition metal ions and receptors R1–R3 was confirmed to adopt 1:1 binding stoichiometry. Micromolar detection limit was found for R1–R3 with metal ions. DFT theoretical calculations were employed to understand the sensing mechanism of the sensors towards the metal ions. R1 and R2 were also successfully demonstrated as a fluorescent probe for detecting Cu{sup 2+} ions in living cells. - highlights: • R1–R3 act as colorimetric and fluorescent sensors for metal ions. • Receptors (R1–R3) detect Cu{sup 2+} ions in aqueous solution at nanomolar levels. • R1 and R2 act as a fluorescent probe for detecting Cu{sup 2+} ions in living cells.

  16. Microfluidic Systems with Ion-Selective Membranes

    Science.gov (United States)

    Slouka, Zdenek; Senapati, Satyajyoti; Chang, Hsueh-Chia

    2014-06-01

    When integrated into microfluidic chips, ion-selective nanoporous polymer and solid-state membranes can be used for on-chip pumping, pH actuation, analyte concentration, molecular separation, reactive mixing, and molecular sensing. They offer numerous functionalities and are hence superior to paper-based devices for point-of-care biochips, with only slightly more investment in fabrication and material costs required. In this review, we first discuss the fundamentals of several nonequilibrium ion current phenomena associated with ion-selective membranes, many of them revealed by studies with fabricated single nanochannels/nanopores. We then focus on how the plethora of phenomena has been applied for transport, separation, concentration, and detection of biomolecules on biochips.

  17. Polymer-Supported Reagents: The Role of Bifunctionality in the Design of Ion-Selective Complexants

    Energy Technology Data Exchange (ETDEWEB)

    Alexandratos, S. D.

    2001-06-01

    The importance of multi-functionality in the preparation of ion-selective polymers is evident from the structure of enzymes where specific metal ions are bound through cooperative interactions among different amino acids. In synthetic polymers, ionic selectivity is enhanced when a chemical reaction is superimposed on an ion-exchange process. The concept of reactive ion exchange has been extended through the synthesis of crosslinked polymers whose metal ion selectivity is a function of reduction, coordination or precipitation reactions as determined by various covalently bound ligands. Development of three classes of dual mechanism bifunctional polymers, a new series of bifunctional diphosphonate polymers, and novel bifunctional ion-selective polymers with enhanced ionic accessibility has been accomplished.

  18. selection of biosorbents for biosorption of three heavy metals in a ...

    African Journals Online (AJOL)

    eobe

    Selective recovery of gold and other metal ions from an algal biomass. Environmental Science and Technology, 20(2): 206-210. 27. Ross. I.S., and Townsley, C.C. (1986). The uptake of heavy metals by filamentous fungi. In: Immobilization of ions by biosorption. Edited by H.H.. Eccles and S. Hunt Ellis Horwood. Chichester ...

  19. Ion mobility studies of carbohydrates as group I adducts: isomer specific collisional cross section dependence on metal ion radius.

    Science.gov (United States)

    Huang, Yuting; Dodds, Eric D

    2013-10-15

    Carbohydrates play numerous critical roles in biological systems. Characterization of oligosaccharide structures is essential to a complete understanding of their functions in biological processes; nevertheless, their structural determination remains challenging in part due to isomerism. Ion mobility spectrometry provides the means to resolve gas phase ions on the basis of their shape-to-charge ratios, thus providing significant potential for separation and differentiation of carbohydrate isomers. Here, we report on the determination of collisional cross sections for four groups of isomeric carbohydrates (including five isomeric disaccharides, four isomeric trisaccharides, two isomeric pentasaccharides, and two isomeric hexasaccharides) as their group I metal ion adducts (i.e., [M + Li](+), [M + Na](+), [M + K](+), [M + Rb](+), and [M + Cs](+)). In all, 65 collisional cross sections were measured, the great majority of which have not been previously reported. As anticipated, the collisional cross sections of the carbohydrate metal ion adducts generally increase with increasing metal ion radius; however, the collisional cross sections were found to scale with the group I cation size in isomer specific manners. Such measurements are of substantial analytical value, as they illustrate how the selection of charge carrier influences carbohydrate ion mobility determinations. For example, certain pairs of isomeric carbohydrates assume unique collisional cross sections upon binding one metal ion, but not another. On the whole, these data suggest a role for the charge carrier as a probe of carbohydrate structure and thus have significant implications for the continued development and application of ion mobility spectrometry for the distinction and resolution of isomeric carbohydrates.

  20. Development of dithizone based fibre optic evanescent wave sensor for heavy metal ion detection in aqueous environments

    Science.gov (United States)

    Bhavsar, K.; Prabhu, R.; Pollard, P.

    2013-06-01

    Detection of highly toxic heavy metal ions requires rapid, simple, sensitive and selective detection methods in the environment. Optical fibre based sensing facilitates the remote, continuous and in-situ detection approaches in the environment. Herein, we report the development of a dithizone based fibre optic sensor with a simple procedure to detect heavy metal ions in the aqueous environment using an evanescent wave sensing approach. The chromogenic ligand dithizone and its spectral specificity with metal ions has been elaborated in this work.

  1. Highly charged Arq+ ions interacting with metals

    Science.gov (United States)

    Wang, Jijin; Zhang, Jian; Gu, Jiangang; Luo, Xianwen; Hu, Bitao

    2009-12-01

    Using computer simulation, alternative methods of the interaction of highly charged ions Arq+ with metals (Au, Ag) are used and verified in the present work. Based on the classical over-barrier model, we discussed the promotion loss and peeling off processes. The simulated total potential electron yields agree well with the experiment data in incident energy ranging from 100 eV to 5 keV and all charge states of Arq+ . Based on the TRIM code, we obtain the side-feeding rate as well as the motion and charge transfer of HCI below the surface. Some results, including the array of KLx x-ray satellite lines, the respective contribution of autoionization, and side-feeding to inner shells, and the filling rates and lifetime of inner shells for Ar agree well with experiment or theory.

  2. Fluorescence signalling of the transition metal ions: Design strategy ...

    Indian Academy of Sciences (India)

    Unknown

    thus become unavailable for fluorescence quenching. In other words, in this approach, the metal ion-receptor interaction has been increased to reduce indirectly the undesired communication between the metal ion and fluorophore that leads to fluorescence quench- ing. While the above approach is indeed an elegant one, ...

  3. In vitro cytotoxicity of metallic ions released from dental alloys

    NARCIS (Netherlands)

    Milheiro, A.; Nozaki, K.; Kleverlaan, C.J.; Muris, J.; Miura, H.; Feilzer, A.J.

    2016-01-01

    The cytotoxicity of a dental alloy depends on, but is not limited to, the extent of its corrosion behavior. Individual ions may have effects on cell viability that are different from metals interacting within the alloy structure. We aimed to investigate the cytotoxicity of individual metal ions in

  4. Metal ion sequestration: An exciting dimension for molecularly ...

    African Journals Online (AJOL)

    The use of a tight binding macrocyclic ligand to complex a metal ion so that this serves as receptee on the Molecularly Imprinted Polymer (MIP) receptor as described here affords a sequestration route for a targeted metal ion, with potential for environmental remediation and restoration applications. Ethylene glycol ...

  5. Utilization of Plant Refuses as Component of Heavy Metal Ion ...

    African Journals Online (AJOL)

    Waste materials like fruit and vegetable refuses were utilized as component of sensors capable of detecting heavy metals like lead ions and mercury ions by electrochemical method. The ability of the fabricated sensors to detect the presence of heavy metals was analyzed using electrochemical methods like cyclic ...

  6. Metal ion binding to peptides: Oxygen or nitrogen sites?

    NARCIS (Netherlands)

    Dunbar, R. C.; Polfer, N. C.; G. Berden,; Oomens, J.

    2012-01-01

    Infrared multiple-photon dissociation (IRMPD) spectroscopy was used to probe the conformations of gas-phase metal-ion complexes between a series of five metal ions and six small peptide ligands. This report is presented in recognition and tribute for the Armentrout group's long and hugely

  7. Metal ion binding to peptides: oxygen or nitrogen sites?

    NARCIS (Netherlands)

    Dunbar, R.C.; Polfer, N.C.; Berden, G.; Oomens, J.

    2012-01-01

    Infrared multiple-photon dissociation (IRMPD) spectroscopy was used to probe the conformations of gas-phase metal-ion complexes between a series of five metal ions and six small peptide ligands. This report is presented in recognition and tribute for the Armentrout group's long and hugely productive

  8. Chromatography Of Metal Ions On Wood Cellulose Impregnated ...

    African Journals Online (AJOL)

    Adsorption chromatography of some heavy metal ions on wood cellulose of saw dust (wood waste dust) modified with hydrochloric acid, urea and thiourea was studied. Atomic absorption spectrophotometry (AAS) was used to determine the initial concentration of solutions of Zn2+, Cu2+, Ni2+, Pb2+, and Fe3+ metal ions.

  9. The kinetics and thermodynamics of adsorption of heavy metal ions ...

    African Journals Online (AJOL)

    A pseudo-second order kinetic model was used to characterize the metal ion transport mechanism and the correlation coefficients (r2) were high, confirming the validity of pseudosecond- order. The rate of adsorption was observed to increase with pillaring and does not only depend on the the metal ion concentration, but ...

  10. Coordination of cassava starch to metal ions and thermolysis of ...

    African Journals Online (AJOL)

    Cassava starch formed Werner-type complexes with ions of metals from the transition groups. This was proven by conductivity and electron paramagnetic resonance measurements. The coordination of starch to central metal ions influenced the thermal decomposition of starch. As a rule complexes started to decompose at ...

  11. COORDINATION OF CASSAVA STARCH TO METAL IONS AND ...

    African Journals Online (AJOL)

    a

    ABSTRACT. Cassava starch formed Werner-type complexes with ions of metals from the transition groups. This was proven by conductivity and electron paramagnetic resonance measurements. The coordination of starch to central metal ions influenced the thermal decomposition of starch. As a rule complexes started to ...

  12. Three luminescent d{sup 10} metal coordination polymers assembled from a semirigid V-shaped ligand with high selective detecting of Cu{sup 2+} ion and nitrobenzene

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wei-Ping [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorg. Chem., College of Chemistry & Materials Science, Northwest University, Xi’an 710069 (China); Institute of Functional Materials, College of Chemistry and Pharmaceutical Engineering, Sichuan University of Science & Engineering, Zigong 643000 (China); Liu, Ping; Liang, Yu-Tong; Cui, Lin; Xi, Zheng-Ping [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorg. Chem., College of Chemistry & Materials Science, Northwest University, Xi’an 710069 (China); Wang, Yao-Yu, E-mail: wyaoyu@nwu.edu.cn [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorg. Chem., College of Chemistry & Materials Science, Northwest University, Xi’an 710069 (China)

    2015-08-15

    Three 2D luminescent coordination polymers with helical frameworks, [ZnL{sub 2}]{sub n} (1) and ([ML{sub 2}]·(H{sub 2}O)){sub n} (M=Zn (2), Cd (3)) (HL=4-((2-methyl-1 H-imidazol-1-yl)methyl)benzoic acid), have been assembled under hydro(solvo)thermal conditions. Complex 1 is in chiral space group and displays a rare 2D→2D 2-fold parallel interpenetrated layer network with two types of chiral double helixes. Interestingly, the single crystal structure analyses indicate the coexistence of enantiomers la and 1b in one pot, while the bulk crystallization of 1 are racemic mixtures based on the CD measurement. 2 and 3 are isostructural, in the structure, there are two kinds of 2D chiral helical-layers which stack in an -ABAB- sequence leading to the overall structure are mesomer and achiral. All compounds display intense luminescence in solid state at room temperature with high chemical and thermal stability. More importantly, 1 has been successfully applied in the detection of Cu{sup 2+} ions in aqueous media and nitrobenzene and the probable detecting mechanism was also discussed. - Graphical abstract: Three luminescent d{sup 10} metal coordination polymers with helical-layer based on 4-((2-methyl-1H-imidazol-1-yl)methyl)benzoic acid have been obtained. Compound 1 shows high selective detecting for Cu{sup 2+} ion in aqueous and nitrobenzene. - Highlights: • Three coordination polymers with chiral helical-layer have been obtained. • 1 Can luminescent detect Cu{sup 2+} ion in aqueous media and nitrobenzene. • Racemic mixture or mesomer compounds can be obtained by controlling the reaction conditions.

  13. Neutralization by Metal Ions of the Toxicity of Sodium Selenide

    OpenAIRE

    Marc Dauplais; Myriam Lazard; Sylvain Blanquet; Pierre Plateau

    2013-01-01

    International audience; Inert metal-selenide colloids are found in animals. They are believed to afford cross-protection against the toxicities of both metals and selenocompounds. Here, the toxicities of metal salt and sodium selenide mixtures were systematically studied using the death rate of Saccharomyces cerevisiae cells as an indicator. In parallel, the abilities of these mixtures to produce colloids were assessed. Studied metal cations could be classified in three groups: (i) metal ions...

  14. Selective ion transport in functionalized carbon nanotubes

    Science.gov (United States)

    Samoylova, Olga N.; Calixte, Emvia I.; Shuford, Kevin L.

    2017-11-01

    Ion transport through functionalized carbon nanotubes in an external electric field is studied using all atom molecular dynamics simulations. The surface of carbon nanotubes has been functionalized with hydrogens and hydroxyl groups, and ionic current passing through the nanochannels has been examined with respect to the extent of surface modification. We are able to dramatically increase the ionic current passing through the nanotube via the appropriate surface modification. An analysis of the electrostatic potential within the tube shows higher ionic currents result from an increase in accessible pathways coupled with a global shift toward more direct ion passage. Moreover, through judicious choice of structure, the current can be modulated to a large degree with ion selectivity.

  15. Analysis of metal ion release from biomedical implants

    Directory of Open Access Journals (Sweden)

    Ivana Dimić

    2013-06-01

    Full Text Available Metallic biomaterials are commonly used for fixation or replacement of damaged bones in the human body due to their good combination of mechanical properties. The disadvantage of metals as implant materials is their susceptibility to corrosion and metal ion release, which can cause serious health problems. In certain concentrations metals and metal ions are toxic and their presence can cause diverse inflammatory reactions, genetic mutations or even cancer. In this paper, different approaches to metal ion release examination, from biometallic materials sample preparation to research results interpretation, will be presented. An overview of the analytical techniques, used for determination of the type and concentration of released ions from implants in simulated biofluids, is also given in the paper.

  16. Predictive factors for metal ion levels in metal-on-metal total hip arthroplasty.

    Science.gov (United States)

    Kasparek, Maximilian F; Renner, Lisa; Faschingbauer, Martin; Waldstein, Wenzel; Weber, Michael; Boettner, Friedrich

    2018-02-01

    Although metal-on-metal (MoM) total hip arthroplasty (THA) and hip resurfacings (HR) have similar bearing surfaces and comparable wear rates, metal ion levels and risk of failure are higher for MoM-THA. The mechanism behind the increased metal ion levels in large head MoM-THA is not completely understood. The current study aims to identify predictive factors for increased metal ion levels in unilateral and bilateral large head MoM-THA. 99 Birmingham modular MoM-THA in 87 patients with metal ion levels at least 36 months after index procedure were analyzed. Mean follow-up time was 61.3 months (range 37-108) and the relationship of the following variables (gender, age, BMI, follow-up time, UCLA Activity Score, cup inclination, femoral head size, bilateral surgery) on metal ion levels were analyzed with multivariate regression models. Multivariate regression analysis revealed that bilateral MoM-THA surgery (p MoM-THA (p = 0.004) were positively correlated with chromium levels. Positive independent predictors for the cobalt-chromium ratio in the multivariate analysis were overall follow-up time (p = 0.004), bilateral MoM-THA (p MoM-THA, increased patient activity levels and female gender are associated with increased chromium levels. Patients with larger component size, longer follow-up time and bilateral MoM-THAs have an increased cobalt-chromium ratio. These patients might be at increased risk for adverse local soft tissue reactions secondary to corrosion. Continuous close monitoring is recommended and bearing-surface change should be discussed if local tissue reactions occur.

  17. A novel malonamide bridged silsesquioxane precursor for enhanced dispersion of transition metal ions in hybrid silica membranes

    NARCIS (Netherlands)

    Besselink, R.; Qureshi, H.F.; Winnubst, Aloysius J.A.; ten Elshof, Johan E.

    2015-01-01

    Microporous hybrid silica membranes are known to have superior (hydro)thermal and chemical stability. By incorporating metal ions, such as Ce4+ and Ni2+ into these membranes, their affinity and selectivity towards particular gases may be altered. To promote the dispersion of metal ions within the

  18. New polymer-supported ion-complexing agents: design, preparation and metal ion affinities of immobilized ligands.

    Science.gov (United States)

    Alexandratos, Spiro D

    2007-01-31

    Polymer-supported reagents are comprised of crosslinked polymer networks that have been modified with ligands capable of selective metal ion complexation. Applications of these polymers are in environmental remediation, ion chromatography, sensor technology, and hydrometallurgy. Bifunctional polymers with diphosphonate/sulfonate ligands have a high selectivity for actinide ions. The distribution coefficient for the uranyl ion from 1 M nitric acid is 70,000, compared to 900 for the monophosphonate/sulfonate polymer and 200 for the sulfonic acid ion-exchange resin. A bifunctional trihexyl/triethylammonium polymer has a high affinity and selectivity for pertechnetate and perchlorate anions from groundwater. In one example, its distribution coefficient for perchlorate ions in the presence of competing anions is 3,300,000, compared to 203,180 for a commercially available anion-exchange resin. Polystyrene modified with N-methyl-D-glucamine ligands is capable of selectively complexing arsenate from groundwater. It complexes 99% of the arsenate present in a solution of 100 mg/L arsenate with 560 mg/L sulfate ions. Its selectivity is retained even in the presence of 400 mg/L phosphate. There is no affinity for arsenate above pH 9, allowing for the polymer to be regenerated with moderate alkali solution. In studies aimed at developing a Hg(II)-selective resin, simple amine resins were found to have a high Hg(II) affinity and that affinity is dependent upon the solution pH and the counterion.

  19. Determination of metal ions by high-performance liquid chromatographic separation of their hydroxamic acid chelates

    Energy Technology Data Exchange (ETDEWEB)

    Palmieri, M.D.; Fritz, J.S.

    1987-09-15

    Metal ions are determined by adding N-methylfurohydroxamic acid to an aqueous sample and then separating the metal chelates by direct injection onto a liquid chromatographic column. Separations on a C/sub 8/ silica column and a polystyrene-divinylbenzene column are compared, with better separations seen on the polymeric column. The complexes formed at low pH values are cationic and are separated by an ion pairing mechanism. Retention times and selectivity of the metal complexes can be varied by changing the pH. Several metal ions can be separated and quantified; separation conditions, linear calibration curve ranges, and detection limits are presented for Zr(IV), Hf(IV), Fe(III), Nb(V), Al(III), and Sb(III). Interferences due to the presence of other ions in solution are investigated. Finally, an antiperspirant sample is analyzed for zirconium by high-performance liquid chromatography.

  20. Determination of Nd3+ Ions in Solution Samples by a Coated Wire Ion-Selective Sensor

    Directory of Open Access Journals (Sweden)

    Hassan Ali Zamani

    2012-01-01

    Full Text Available A new coated wire electrode (CWE using 5-(methylsulfanyl-3-phenyl-1H-1,2,4-triazole (MPT as an ionophore has been developed as a neodymium ion-selective sensor. The sensor exhibits Nernstian response for the Nd3+ ions in the concentration range of 1.0×10−6-1.0×10−2 M with detection limit of 3.7×10−7 M. It displays a Nernstian slope of 20.2±0.2 mV/decade in the pH range of 2.7–8.1. The proposed sensor also exhibits a fast response time of ∼5 s. The sensor revealed high selectivity with respect to all common alkali, alkaline earth, transition and heavy metal ions, including members of the lanthanide family other than Nd3+. The electrode was used as an indicator electrode in the potentiometric titration of Nd(III ions with EDTA. The electrode was also employed for the determination of the Nd3+ ions concentration in water solution samples.

  1. Catalysis using hydrous metal oxide ion exchanges

    Science.gov (United States)

    Dosch, Robert G.; Stephens, Howard P.; Stohl, Frances V.

    1985-01-01

    In a process which is catalyzed by a catalyst comprising an active metal on a carrier, said metal being active as a catalyst for the process, an improvement is provided wherein the catalyst is a hydrous, alkali metal or alkaline earth metal titanate, zirconate, niobate or tantalate wherein alkali or alkaline earth metal cations have been exchanged with a catalytically effective amount of cations of said metal.

  2. Catalysis using hydrous metal oxide ion exchangers

    Science.gov (United States)

    Dosch, R.G.; Stephens, H.P.; Stohl, F.V.

    1983-07-21

    In a process which is catalyzed by a catalyst comprising an active metal on a carrier, said metal being active as a catalyst for the process, an improvement is provided wherein the catalyst is a hydrous, alkali metal or alkaline earth metal titanate, zirconate, niobate or tantalate wherein alkali or alkaline earth metal cations have been exchanged with a catalytically effective amount of cations of said metal.

  3. Metallic ion release from biocompatible cobalt-based alloy

    Directory of Open Access Journals (Sweden)

    Dimić Ivana D.

    2014-01-01

    Full Text Available Metallic biomaterials, which are mainly used for the damaged hard tissue replacements, are materials with high strength, excellent toughness and good wear resistance. The disadvantages of metals as implant materials are their susceptibility to corrosion, the elastic modulus mismatch between metals and human hard tissues, relatively high density and metallic ion release which can cause serious health problems. The aim of this study was to examine metallic ion release from Co-Cr-Mo alloy in artificial saliva. In that purpose, alloy samples were immersed into artificial saliva with different pH values (4.0, 5.5 and 7.5. After a certain immersion period (1, 3 and 6 weeks the concentrations of released ions were determined using Inductively Coupled Plasma - Mass Spectrophotometer (ICP-MS. The research findings were used in order to define the dependence between the concentration of released metallic ions, artificial saliva pH values and immersion time. The determined released metallic ions concentrations were compared with literature data in order to describe and better understand the phenomenon of metallic ion release from the biocompatible cobalt-based alloy. [Projekat Ministarstva nauke Republike Srbije, br. III 46010 i br. ON 174004

  4. Bioinorganic Chemistry of the Alkali Metal Ions.

    Science.gov (United States)

    Kim, Youngsam; Nguyen, Thuy-Tien T; Churchill, David G

    2016-01-01

    The common Group 1 alkali metals are indeed ubiquitous on earth, in the oceans and in biological systems. In this introductory chapter, concepts involving aqueous chemistry and aspects of general coordination chemistry and oxygen atom donor chemistry are introduced. Also, there are nuclear isotopes of importance. A general discussion of Group 1 begins from the prevalence of the ions, and from a comparison of their ionic radii and ionization energies. While oxygen and water molecule binding have the most relevance to biology and in forming a detailed understanding between the elements, there is a wide range of basic chemistry that is potentially important, especially with respect to biological chelation and synthetic multi-dentate ligand design. The elements are widely distributed in life forms, in the terrestrial environment and in the oceans. The details about the workings in animal, as well as plant life are presented in this volume. Important biometallic aspects of human health and medicine are introduced as well. Seeing as the elements are widely present in biology, various particular endogenous molecules and enzymatic systems can be studied. Sodium and potassium are by far the most important and central elements for consideration. Aspects of lithium, rubidium, cesium and francium chemistry are also included; they help in making important comparisons related to the coordination chemistry of Na(+) and K(+). Physical methods are also introduced.

  5. Complexes of selected transition metal ions with 4-oxo-4-{[3-(trifluoromethyl)phenyl]amino}but-2-enoic acid: Synthesis, structure and magnetic properties

    Science.gov (United States)

    Ferenc, Wiesława; Sadowski, Paweł; Tarasiuk, Bogdan; Cristóvão, Beata; Drzewiecka-Antonik, Aleksandra; Osypiuk, Dariusz; Sarzyński, Jan

    2015-07-01

    The new complexes of 4-oxo-4-{[3-(trifluoromethyl)phenyl]amino}but-2-enoic acid, HL anion with Mn(II), Co(II), Ni(II), Cu(II) and Pr(III), Nd(III), Sm(III), Gd(III), Dy(III), Ho(III), Er(III), Y(III) were synthesized and some of their physico-chemical properties investigated. The complexes form hydrates with two or three molecules of water. The carboxylate groups act as a bidentate bridging or chelating ligand. The compounds of Pr(III), Nd(III), Sm(III), Gd(III), Dy(III), Ho(III), Er(III) and Y(III) are amorphous solids while those of Cu(II), Co(II), Ni(II) and Mn(II) crystalline ones that crystallize in monoclinic system. Complex of Cu(II) is the centrosymmetric dinuclear compound. Around both Cu(II) cations the tetragonal pyramide is formed. Being heated in air at 293-1173 K the complexes are decomposed in three steps. The oxides of appropriate metals are the final products of complex decomposition. All analysed compounds obey Curie-Weiss law. They show the paramagnetic properties with the ferromagnetic interactions between molecular centres.

  6. An Animal Model Using Metallic Ions to Produce Autoimmune Nephritis

    Directory of Open Access Journals (Sweden)

    Roxana Ramírez-Sandoval

    2015-01-01

    Full Text Available Autoimmune nephritis triggered by metallic ions was assessed in a Long-Evans rat model. The parameters evaluated included antinuclear autoantibody production, kidney damage mediated by immune complexes detected by immunofluorescence, and renal function tested by retention of nitrogen waste products and proteinuria. To accomplish our goal, the animals were treated with the following ionic metals: HgCl2, CuSO4, AgNO3, and Pb(NO32. A group without ionic metals was used as the control. The results of the present investigation demonstrated that metallic ions triggered antinuclear antibody production in 60% of animals, some of them with anti-DNA specificity. Furthermore, all animals treated with heavy metals developed toxic glomerulonephritis with immune complex deposition along the mesangium and membranes. These phenomena were accompanied by proteinuria and increased concentrations of urea. Based on these results, we conclude that metallic ions may induce experimental autoimmune nephritis.

  7. Fluorescent nanoprobes for sensing and imaging of metal ions: recent advances and future perspectives.

    Science.gov (United States)

    Zhang, JingJing; Cheng, FangFang; Li, JingJing; Zhu, Jun-Jie; Lu, Yi

    2016-06-01

    Recent advances in nanoscale science and technology have generated nanomaterials with unique optical properties. Over the past decade, numerous fluorescent nanoprobes have been developed for highly sensitive and selective sensing and imaging of metal ions, both in vitro and in vivo. In this review, we provide an overview of the recent development of the design and optical properties of the different classes of fluorescent nanoprobes based on noble metal nanomaterials, upconversion nanoparticles, semiconductor quantum dots, and carbon-based nanomaterials. We further detail their application in the detection and quantification of metal ions for environmental monitoring, food safety, medical diagnostics, as well as their use in biomedical imaging in living cells and animals.

  8. A flexible zwitterion ligand based lanthanide metal-organic framework for luminescence sensing of metal ions and small molecules.

    Science.gov (United States)

    Wen, Rong-Mei; Han, Song-De; Ren, Guo-Jian; Chang, Ze; Li, Yun-Wu; Bu, Xian-He

    2015-06-28

    A new lanthanide metal-organic framework was constructed using a tripodal flexible zwitterion ligand (H3LBr3) which takes a chair-shaped configuration. The luminescence of the compound displays highly selective sensing of the Fe(3+) ion and nitrobenzene.

  9. Wastewater treatment from ions of heavy and non-ferrous metals by ion-exchange adsorption

    Directory of Open Access Journals (Sweden)

    Sevara Babazhanova

    2016-12-01

    Full Text Available This article presents the results of experimental research on wastewater treatment from ions of heavy and non-ferrous metals by ion exchange adsorption. The object of investigation was a model solution containing ions of heavy and non-ferrous metals and prepared of wastewater from Turkestan locomotive depot. As a sorbent, phosphorus–acidic cationite KRF-10P was used. The impact of the cation exchanger mass, reaction time of cationite and temperature of the solution on the degree of wastewater treatment from ions of heavy and non-ferrous metals (Zn2+, Pb2+, Cd2+ were studied. On the basis of experiments, optimal conditions of wastewater treatment from ions of heavy and non-ferrous metals were established: mKRF-10P = 2.0 g, t = 1.0 h, T = 55°C. At the optimized conditions, the degree of wastewater treatment from zinc ions reached 96.1%, the degree of removal of lead ions reached 89%, the degree of removal of cadmium ions reached 95%. Experimental results showed the possibility of wastewater treatment from ions of heavy and nonferrous metals by ion exchange adsorption using phosphorus–acidic cationite KRF-10P.

  10. Polysiloxane based CHEMFETs for the detection of heavy metal ions

    NARCIS (Netherlands)

    Lugtenberg, R.J.W.; Antonisse, M.M.G.; Egberink, Richard J.M.; Engbersen, Johannes F.J.; Reinhoudt, David

    1996-01-01

    The development of polysiloxane based chemically modified field effect transistors (CHEMFETs) for heavy metal ions is described. Different polar siloxane copolymers have been synthesized via an anionic copolymerization of hexamethylcyclotrisiloxane,

  11. An engineered palette of metal ion quenchable fluorescent proteins

    National Research Council Canada - National Science Library

    Yu, Xiaozhen; Strub, Marie-Paule; Barnard, Travis J; Noinaj, Nicholas; Piszczek, Grzegorz; Buchanan, Susan K; Taraska, Justin W

    2014-01-01

    .... With these sensors, changes in fluorescence report on chemical states in living cells. Transition metal ions such as copper, nickel, and zinc are crucial in many physiological and pathophysiological pathways...

  12. Improving Passivation Process of Si Nanocrystals Embedded in SiO2 Using Metal Ion Implantation

    Directory of Open Access Journals (Sweden)

    Jhovani Bornacelli

    2013-01-01

    Full Text Available We studied the photoluminescence (PL of Si nanocrystals (Si-NCs embedded in SiO2 obtained by ion implantation at MeV energy. The Si-NCs are formed at high depth (1-2 μm inside the SiO2 achieving a robust and better protected system. After metal ion implantation (Ag or Au, and a subsequent thermal annealing at 600°C under hydrogen-containing atmosphere, the PL signal exhibits a noticeable increase. The ion metal implantation was done at energies such that its distribution inside the silica does not overlap with the previously implanted Si ion . Under proper annealing Ag or Au nanoparticles (NPs could be nucleated, and the PL signal from Si-NCs could increase due to plasmonic interactions. However, the ion-metal-implantation-induced damage can enhance the amount of hydrogen, or nitrogen, that diffuses into the SiO2 matrix. As a result, the surface defects on Si-NCs can be better passivated, and consequently, the PL of the system is intensified. We have selected different atmospheres (air, H2/N2 and Ar to study the relevance of these annealing gases on the final PL from Si-NCs after metal ion implantation. Studies of PL and time-resolved PL indicate that passivation process of surface defects on Si-NCs is more effective when it is assisted by ion metal implantation.

  13. Ion selective electrodes in environmental analysis

    Directory of Open Access Journals (Sweden)

    Radu Aleksandar

    2013-01-01

    Full Text Available An overview is given dealing with application of ion-selective electrodes (ISEs in environmental analysis. ISEs are placed into the context of the trend of development of sensors for extensive and frequent monitoring. Discussed are the issues such as sensing platforms and their mass-production, improvement of precision, diagnostic of sensor’s functionality, and development of reference electrodes and several examples of real-life application of ISEs in environmental analysis are given. The main emphasis of this article is directed towards summarizing recent of authors’ results during the past several years.

  14. Metallic glass as a temperature sensor during ion plating

    Science.gov (United States)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1985-01-01

    The temperature of the interface and/or a superficial layer of a substrate during ion plating was investigated using a metallic glass of the composition Fe67Co18B14Si1 as the substrate and as the temperature sensor. Transmission electron microscopy and diffraction studies determined the microstructure of the ion-plated gold film and the substrate. Results indicate that crystallization occurs not only in the film, but also in the substrate. The grain size of crystals formed during ion plating was 6 to 60 nm in the gold film and 8 to 100 nm in the substrate at a depth of 10 to 15 micrometers from the ion-plated interface. The temperature rise of the substrate during ion plating was approximately 500 C. Discontinuous changes in metallurgical microstructure, and physical, chemical, and mechanical properties during the amorphous to crystalline transition in metallic glasses make metallic glasses extremely useful materials for temperature sensor applications in coating processes.

  15. Smart textile device using ion polymer metal compound.

    Science.gov (United States)

    Nakamura, Taro; Ihara, Tadashi

    2013-01-01

    We have developed a smart textile device that detects angular displacement of attached surface using ion polymer metal compound. The device was composed of ion polymer metal compound (IPMC) which was fabricated from Nafion resin by heat-press and chemical gold plating. The generated voltage from IPMC was measured as a function of bending angle. Fabricated IPMC device was weaved into a cotton cloth and multidirectional movements were detected.

  16. Metal ion sorption by untreated and chemically treated biomass

    Energy Technology Data Exchange (ETDEWEB)

    Kilbane, J.J.; Xie, J.

    1992-12-31

    The metal-binding ability of biosorbents is well known; however, in comparison with commercial ion-exchange resins the capacity of biosorbents is low. The purpose of this research was to examine chemically modified biosorbents and biosorbents prepared from microorganisms isolated from extreme environments to determine if significant improvements in metal-binding capacity or biosorbents with unique capabilities could be produced. Chemical treatments examined included acid, alkali, carbon disulfide, phosphorus oxychloride, anhydrous formamide, sodium thiosulfate, sodium chloroacetic acid, and phenylsulfonate. Biosorbents were prepared from microorganisms isolated from pristine and acid mine drainage impacted sites and included heterotrophs, methanotrophs, algae, and sulfate reducers. Chemical modification with carbon disulfide, phosphorous oxychloride, and sodium thiosulfate yielded biosorbents with such as much as 74%, 133%, and 155% improvements, respectively, in metal-binding capacity, but the performance of these chemically modified biosorbents deteriorated upon repeated use. A culture isolated from an acid mine drainage impacted site, IGTM17, exhibits about 3-fold higher metal-binding capacity in comparison with other biosorbents examined in this study. IGTM17 also exhibits superior metal-binding ability at decreased pH or in the presence of interfering common cations in comparison with other biosorbents or some commercially available cation exchange resins. Some biosorbents, such as IGTM5, can bind anions. To our knowledge this is the first demonstration of the ability of biosorbents to bind anions. Moreover, preliminary data indicate that the chemical modification of biosorbents may be capable of imparting the ability to selectively bind certain anions. Further research is needed to optimize conditions for the chemical modification and stabilization of biosorbents.

  17. Preparation of a novel potassium ion imprinted polymeric nanoparticles based on dicyclohexyl 18C6 for selective determination of K{sup +} ion in different water samples

    Energy Technology Data Exchange (ETDEWEB)

    Rajabi, Hamid Reza, E-mail: h.rajabi@mail.yu.ac.ir [Chemistry Department, Yasouj University, Yasouj, 75918-74831 (Iran, Islamic Republic of); Shamsipur, Mojtaba [Department of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Pourmortazavi, Seied Mahdi [Faculty of Material and Manufacturing Technologies, Malek-Ashtar University of Technology, Tehran (Iran, Islamic Republic of)

    2013-08-01

    This work reports the first application of the ion imprinting technology for determination of potassium ion by precipitation polymerization method. Ion imprinted polymeric (IIP) nanoparticles were prepared by using dicyclohexyl 18C6 (DC18C6) as a K{sup +} ion selective crown ether, in the acetonitrile–dimethylsulfoxide (3:1; v/v) mixture as porogen. The imprint potassium ion was removed from the polymeric matrix using 0.5 M HNO{sub 3}. The scanning electron microscopy (SEM) micrographs showed colloidal nanoparticles of 60–90 nm in diameter and slightly irregular in shape. The obtained ion-imprinted particles for K{sup +} showed selective recognition with rapid adsorption and desorption processes. It was found that imprinting results in increased affinity of the material toward K{sup +} ion over other competitor metal ions with the same charge and/or close ionic radius. The synthesized IIP nanobeads were shown to be promising for solid-phase extraction coupled with flame photometry for determination of trace K{sup +} ion in different water samples. Highlights: • Synthesis of nano-sized ion imprinted polymers for separation of potassium ions • Rapid kinetics of adsorption and desorption of K{sup +} ion on the resulting IIPs • First study on application of ion imprinting for detection of K{sup +} based on DC18C6 • An excellent selectivity toward K{sup +} ion over a range of strong competing metal ions.

  18. [Detection of metal ions in hair after metal-metal hip arthroplasty].

    Science.gov (United States)

    Hernandez-Vaquero, D; Rodríguez de la Flor, M; Fernandez-Carreira, J M; Sariego-Muñiz, C

    2014-01-01

    There is an increase in the levels of metals in the serum and urine after the implantation of some models of metal-metal hip prosthesis. It has recently been demonstrated that there is an association between these levels and the levels found in hair. The aim of this study is to determine the presence of metals in hair, and to find out whether these change over time or with the removal of the implant. The levels of chromium, cobalt and molybdenum were determined in the hair of 45 patients at 3, 4, 5, and 6 years after a hip surface replacement. The mean age was 57.5 years, and two were female. Further surgery was required to remove the replacement and implant a new model with metal-polyethylene friction in 11 patients, 5 of them due to metallosis and a periarticular cyst. The mean levels of metals in hair were chromium 163.27 ppm, cobalt 61.98 ppm, and molybdenum 31.36 ppm, much higher than the levels found in the general population. A decrease in the levels of chromium (43.8%), molybdenum (51.1%), and cobalt (91.1%) was observed at one year in the patients who had further surgery to remove the prosthesis. High concentrations of metals in the hair are observed in hip replacements with metal-metal friction, which decrease when that implant is removed. The determination of metal ions in hair could be a good marker of the metal poisoning that occurs in these arthroplasty models. Copyright © 2014 SECOT. Published by Elsevier Espana. All rights reserved.

  19. Laccase Immobilization by Chelated Metal Ion Coordination Chemistry

    Directory of Open Access Journals (Sweden)

    Qingqing Wang

    2014-09-01

    Full Text Available In this work, amidoxime polyacrylonitrile (AOPAN nanofibrous membrane was prepared by a reaction between PAN nanofibers and hydroxylamine hydrochloride. The AOPAN nanofibrous membranes were used for four metal ions (Fe3+, Cu2+, Ni2+, Cd2+ chelation under different conditions. Further, the competition of different metal ions coordinating with AOPAN nanofibrous membrane was also studied. The AOPAN chelated with individual metal ion (Fe3+, Cu2+, Ni2+, Cd2+ and also the four mixed metal ions were further used for laccase (Lac immobilization. Compared with free laccase, the immobilized laccase showed better resistance to pH and temperature changes as well as improved storage stability. Among the four individual metal ion chelated membranes, the stability of the immobilized enzymes generally followed the order as Fe–AOPAN–Lac > Cu–AOPAN–Lac > Ni–AOPAN–Lac > Cd–AOPAN–Lac. In addition, the immobilized enzyme on the carrier of AOPAN chelated with four mixed metal ions showed the best properties.

  20. Chemical Speciation of Some metal ions in Groundwaters of Yola ...

    African Journals Online (AJOL)

    Chemical speciation of some metal ions in groundwaters of Yola area using geochemical model were carried out to determine the water quality of the area using the PHREEQC speciation model. The study findings based on model calculations indicated that free Na+, Ca2+, Mg2+ and K+ ions are present and the ...

  1. Quantum ion-acoustic wave oscillations in metallic nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Moradi, Afshin, E-mail: a.moradi@kut.ac.ir [Department of Engineering Physics, Kermanshah University of Technology, Kermanshah, Iran and Department of Nano Sciences, Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran (Iran, Islamic Republic of)

    2015-05-15

    The low-frequency electrostatic waves in metallic nanowires are studied using the quantum hydrodynamic model, in which the electron and ion components of the system are regarded as a two-species quantum plasma system. The Poisson equation as well as appropriate quantum boundary conditions give the analytical expressions of dispersion relations of the surface and bulk quantum ion-acoustic wave oscillations.

  2. Carbon Nanotube-Based Ion Selective Sensors for Wearable Applications.

    Science.gov (United States)

    Roy, Soumyendu; David-Pur, Moshe; Hanein, Yael

    2017-10-11

    Wearable electronics offer new opportunities in a wide range of applications, especially sweat analysis using skin sensors. A fundamental challenge in these applications is the formation of sensitive and stable electrodes. In this article we report the development of a wearable sensor based on carbon nanotube (CNT) electrode arrays for sweat sensing. Solid-state ion selective electrodes (ISEs), sensitive to Na(+) ions, were prepared by drop coating plasticized poly(vinyl chloride) (PVC) doped with ionophore and ion exchanger on CNT electrodes. The ion selective membrane (ISM) filled the intertubular spaces of the highly porous CNT film and formed an attachment that was stronger than that achieved with flat Au, Pt, or carbon electrodes. Concentration of the ISM solution used influenced the attachment to the CNT film, the ISM surface morphology, and the overall performance of the sensor. Sensitivity of 56 ± 3 mV/decade to Na(+) ions was achieved. Optimized solid-state reference electrodes (REs), suitable for wearable applications, were prepared by coating CNT electrodes with colloidal dispersion of Ag/AgCl, agarose hydrogel with 0.5 M NaCl, and a passivation layer of PVC doped with NaCl. The CNT-based REs had low sensitivity (-1.7 ± 1.2 mV/decade) toward the NaCl solution and high repeatability and were superior to bare Ag/AgCl, metals, carbon, and CNT films, reported previously as REs. CNT-based ISEs were calibrated against CNT-based REs, and the short-term stability of the system was tested. We demonstrate that CNT-based devices implemented on a flexible support are a very attractive platform for future wearable technology devices.

  3. Sono-electrochemical recovery of metal ions from their aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Bingfeng; Fishgold, Asher [Department of Materials Science and Engineering, The University of Arizona, 1235 E. James E. Rogers Way, Tucson, AZ 85721 (United States); Lee, Paul [Department of Chemistry and Biochemistry, The University of Arizona, 1306 E. University Blvd, Tucson, AZ 85721 (United States); Runge, Keith; Deymier, Pierre [Department of Materials Science and Engineering, The University of Arizona, 1235 E. James E. Rogers Way, Tucson, AZ 85721 (United States); Keswani, Manish, E-mail: manishk@email.arizona.edu [Department of Materials Science and Engineering, The University of Arizona, 1235 E. James E. Rogers Way, Tucson, AZ 85721 (United States)

    2016-11-15

    Highlights: • Sono-electrochemical method is effective in the recovery of Pd, Ga and Pb. • Recovery efficiency depends on the type of metal ion and megasonic frequency used. • Pd is recovered mainly in metallic form while Ga and Pb show presence of oxide. - Abstract: Metal recovery from aqueous waste streams is an important goal for recycling, agriculture and mining industries. The development of more effective methods of recovery have been of increasing interest. The most common methods for metal recovery include precipitation, electrochemical, ion exchange, flocculation/coagulation and filtration. In the current work, a sono-electrochemical technique employing sound field at megasonic frequency (500 kHz or 1 MHz) in conjunction with electrochemistry is evaluated for enhanced recovery of selected metal ions (palladium, lead and gallium) with different redox potentials from their aqueous solutions. The surface morphology and elemental composition of the metal deposits were characterized using scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. The percent recovery was found to depend on the type of metal ion and the megasonic frequency used. Palladium was recovered in its metal form, while lead and gallium were oxidized during or after the recovery process.

  4. Adsorption of strontium (II) metal ions using phosphonate ...

    Indian Academy of Sciences (India)

    tium (II) metal ion recovery using diethylallylphosphonate as staring material. .... gold nanoparticles, used as an active catalyst for breaking the double bond of alkene ..... Table 2. Repetition experiments on effect of pH on strontium adsorption. Polymer. Metal. Sr recovery. Sr recovery. Sr recovery concentration concentration.

  5. Sorption of Heavy Metal Ions from Mine Wastewater by Activated ...

    African Journals Online (AJOL)

    Michael

    2016-12-02

    Dec 2, 2016 ... Buah, W. K. and Dankwah, J. R. (2016), “Sorption of Heavy Metals from Mine Wastewater by Activated. Carbons Prepared ... A study on sorption of heavy metal ions: Lead (Pb2+), Copper (Cu2+) and Cadmium (Cd2+) from mine wastewater by activated ... (Pb), having relatively high densities and are toxic.

  6. Equilibrium and kinetics studies of metal ion adsorption on dyed ...

    African Journals Online (AJOL)

    GREGO

    2007-04-02

    Apr 2, 2007 ... diffusion rate constant, Ka show that adsorption of metal ions is particle diffusion controlled. The adsorbent produced from coconut fibre can be used to remove heavy metals from aqueous solution with high efficiency. Key words: Adsorption dynamics, fractional attianment of equilibrium, intraparticle ...

  7. [Metal ions: important co-players in aseptic loosening].

    Science.gov (United States)

    Cadosch, D; Schlett, C L; Gautschi, O P; Frei, H C; Filgueira, L

    2010-08-01

    The aims of this review were to discuss the different mechanisms of biocorrosion of orthopaedic metal implants in the human body, as well as the effects of the released metal ions on bone metabolism and the immune system in regard to their involvement in the pathophysiological mechanisms of aseptic loosening and metal hypersensitivity. Implant failure due to aseptic loosening is thought to occur in about 10-15% of cases. A review of the literature (using PubMed with the search terms: biocorrosion, metal ions and bone metabolism) was performed. Additionally, we discuss our research results in the field of aseptic loosening. Despite a great effort in developing new implants, metal devices used in orthopaedic and trauma surgery remain prone to biocorrosion by several mechanisms including the direct corrosion by osteoclasts, leading to the production of significant amounts of wear particles and metal ions. In addition to the well documented increased osteolytic activity caused by large (in the nanometer range) wear particles, increasing evidence strongly suggests that the released metal ions contribute to the pathophysiological mechanism of aseptic loosening. Metal ions stimulate both the immune system and bone metabolism through a series of direct and indirect pathways leading to an increased osteolytic activity at the bone-implant interface. To date, revision surgery remains the only option for the treatment of a failed orthopaedic implant caused by aseptic loosening. A better understanding of the complex pathophysiological mechanisms (including the effects caused by the released metal ions) of aseptic loosening may have a significant potential in developing novel implants and therapies in order to reduce the incidence of this complication. Georg Thieme Verlag KG Stuttgart, New York.

  8. Heavy metal ions in wines: meta-analysis of target hazard quotients reveal health risks

    Directory of Open Access Journals (Sweden)

    Petróczi Andrea

    2008-10-01

    Full Text Available Abstract Background Metal ions such as iron and copper are among the key nutrients that must be provided by dietary sources. Numerous foodstuffs have been evaluated for their contributions to the recommended daily allowance both to guide for satisfactory intake and also to prevent over exposure. In the case of heavy metal ions, the focus is often on exposure to potentially toxic levels of ions such as lead and mercury. The aim of this study is to determine target hazard quotients (THQ from literature reports giving empirical levels of metal ions in table wines using the reference upper safe limit value. Contributions to the THQ value were calculated for seven metal ions along with total values for each wine. Results The THQ values were determined as ranges from previously reported ranges of metal ion concentrations and were frequently concerningly high. Apart from the wines selected from Italy, Brazil and Argentina, all other wines exhibited THQ values significantly greater than one indicating levels of risk. The levels of vanadium, copper and manganese had the highest impact on THQ measures. Typical potential maximum THQ values ranged from 50 to 200 with Hungarian and Slovakian wines reaching 300. THQ values for a sample of red and white wines were high for both having values ranging from 30 to 80 for females based on a 250 mL glass per day. Conclusion The THQ values calculated are concerning in that they are mainly above the safe level of THQ

  9. Investigation of metal ions sorption of brown peat moss powder

    Science.gov (United States)

    Kelus, Nadezhda; Blokhina, Elena; Novikov, Dmitry; Novikova, Yaroslavna; Chuchalin, Vladimir

    2017-11-01

    For regularities research of sorptive extraction of heavy metal ions by cellulose and its derivates from aquatic solution of electrolytes it is necessary to find possible mechanism of sorption process and to choice a model describing this process. The present article investigates the regularities of aliovalent metals sorption on brown peat moss powder. The results show that sorption isotherm of Al3+ ions is described by Freundlich isotherm and sorption isotherms of Na+ i Ni2+ are described by Langmuir isotherm. To identify the mechanisms of brown peat moss powder sorption the IR-spectra of the initial brown peat moss powder samples and brown peat moss powder samples after Ni (II) sorption were studied. Metal ion binding mechanisms by brown peat moss powder points to ion exchange, physical adsorption, and complex formation with hydroxyl and carboxyl groups.

  10. Clotrimazole-triiodide ion association as an ion exchanger for a triiodide ion-selective electrode.

    Science.gov (United States)

    Farhadi, Khalil; Maleki, Ramin

    2002-02-01

    A novel triiodide ion-selective electrode based on a clotrimazole-triiodide ion pair as a membrane carrier was prepared. It has a linear response to triiodide from 8 x 10(-6) to 5 x 10(-3) M with a slope of -68.9 mV per decade and a detection limit of 5 x 10(-6) M. The electrode response is independent of the pH of the solution in the pH range 2-9. It has a very short response time and can be used for at least 3 months without any considerable divergence in the potentials. The proposed sensor revealed very good selectivities for I3- over a variety of other anions. It was used as an indicator electrode in the potentiometric titration of triiodide ions and in an indirect potentiometric determination of clotrimazole in pharmaceutical preparations.

  11. Development of sensitive holographic devices for physiological metal ion detection

    Science.gov (United States)

    Sabad-e.-Gul; Martin, Suzanne; Cassidy, John; Naydenova, Izabela

    2017-08-01

    The development of selective alkali metal ions sensors in particular is a subject of significant interest. In this respect, the level of blood electrolytes, particularly H+, Na+, K+ and Cl- , is widely used to monitor aberrant physiologies associated with pulmonary emphysema, acute and chronic renal failure, heart failure, diabetes. The sensors reported in this paper are created by holographic recording of surface relief structures in a self-processing photopolymer material. The structures are functionalized by ionophores dibenzo-18-crown-6 (DC) and tetraethyl 4-tert-butylcalix[4]arene (TBC) in plasticised polyvinyl chloride (PVC) matrix. Interrogation of these structures by light allows indirect measurements of chemical analytes' concentration in real time. We present results on the optimisation and testing of the holographic sensor. A self-processing acrylamide-based photopolymer was used to fabricate the required photonic structures. The performance of the sensors for detection of K+ and Na+ was investigated. It was observed that the functionalisation with DC provides a selective response of the devices to K+ over Na+ and TBC coated surface structures are selectively sensitive to Na+. The sensor responds to Na+ within the physiological ranges. Normal levels of Na+ and K+ in human serum lie within the ranges 135-148mM and 3.5-5.3 mM respectively.

  12. Ion conducting fluoropolymer carbonates for alkali metal ion batteries

    Science.gov (United States)

    DeSimone, Joseph M.; Pandya, Ashish; Wong, Dominica; Balsara, Nitash P.; Thelen, Jacob; Devaux, Didier

    2017-09-05

    Liquid or solid electrolyte compositions are described that comprise a homogeneous solvent system and an alkali metal salt dissolved in said solvent system. The solvent system may comprise a fluoropolymer, having one or two terminal carbonate groups covalently coupled thereto. Batteries containing such electrolyte compositions are also described.

  13. Development of a linear-type double reflectron for focused imaging of photofragment ions from mass-selected complex ions

    Science.gov (United States)

    Okutsu, Kenichi; Nakashima, Yuji; Yamazaki, Kenichiro; Fujimoto, Keita; Nakano, Motoyoshi; Ohshimo, Keijiro; Misaizu, Fuminori

    2017-05-01

    An ion imaging apparatus with a double linear reflectron mass spectrometer has been developed, in order to measure velocity and angular distributions of mass-analyzed fragment ions produced by photodissociation of mass-selected gas phase complex ions. The 1st and the 2nd linear reflectrons were placed facing each other and controlled by high-voltage pulses in order to perform the mass-separation of precursor ions in the 1st reflectron and to observe the focused image of the photofragment ions in the 2nd reflectron. For this purpose, metal meshes were attached on all electrodes in the 1st reflectron, whereas the mesh was attached only on the last electrode in the 2nd reflectron. The performance of this apparatus was evaluated using imaging measurement of Ca+ photofragment ions from photodissociation reaction of Ca+Ar complex ions at 355 nm photoexcitation. The focused ion images were obtained experimentally with the double linear reflectron at the voltages of the reflection electrodes close to the predictions by ion trajectory simulations. The velocity and angular distributions of the produced Ca+ ([Ar] 4p1, 2P3/2) ion were analyzed from the observed images. The binding energy D0 of Ca+Ar in the ground state deduced in the present measurement was consistent with those determined theoretically and by spectroscopic measurements. The anisotropy parameter β of the transition was evaluated for the first time by this instrument.

  14. Luminescent microporous metal-organic framework with functional lewis basic sites on the pore surface: specific sensing and removal of metal ions.

    Science.gov (United States)

    Jayaramulu, Kolleboyina; Narayanan, Raghu Pradeep; George, Subi J; Maji, Tapas Kumar

    2012-10-01

    A three-dimensional luminescent metal-organic framework, {Mg(DHT)(DMF)(2)}(n) (1), based on an excited-state intramolecular proton-transfer (ESIPT) responsive linker, 2,5-dihydroxyterephthalic acid (H(2)DHT), has been synthesized, and its desolvated microporous framework with pendent -OH groups on the pore surface was exploited for the binding and specific sensing of metal ions via Lewis acid-base interactions. The luminescence intensity significantly quenches with Cu(II) among various s- and d-block metal ions, and highly selective sensing of Cu(II) ions has been realized in both solid and solution states (up to nanomolar concentration). The immobilized Cu(II) metal ions can be selectively removed by chelating agents like ethylenediaminetetraacetic acid without any structural disintegration of the framework, as revealed by the luminescence and gas-adsorption studies.

  15. High blood metal ion levels in 19 of 22 patients with metal-on-metal hinge knee replacements

    OpenAIRE

    Laitinen, Minna; Nieminen, Jyrki; Reito, Aleksi; Pakarinen, Toni-Karri; Suomalainen, Piia; Pamilo, Konsta; Parkkinen, Jyrki; Lont, Tonis; Eskelinen, Antti

    2017-01-01

    Background and purpose There has been increasing alarm regarding metal-on-metal (MoM) joint replacements leading to elevated levels of metal ions and adverse reactions to metal debris (ARMDs). There is little information available concerning the prevalence of and risk factors for these adverse reactions, except with MoM hip joint replacements. We determined the levels of metal ions in blood and the rate of revision due to ARMDs in patients treated with MoM hinge total knee arthroplasty (TKA)....

  16. Direct trace analysis of metals and alloys in a quadrupole ion-trap mass spectrometer

    CERN Document Server

    Song, K S; Yang, M; Cha, H K; Lee, J M; Lee, G H

    1999-01-01

    An ion-trap mass spectrometer adopting a quadrupole ion-trap and laser ablation/ionization method was constructed. The developed system was tested for composition analysis of some metals (Cu, stainless), and alloys (hastalloy C, mumetal) by mass spectrometry. Samples were analyzed by using laser ablation from a sample probe tip followed by a mass analysis with the quadrupole ion-trap. The quadrupole ion-trap was modified to enable laser ablation by a XeCl excimer laser pulse that passed radially through the ring electrode. A mass scan of the produced ions was performed in the mass selective instability mode wherein trapped ions were successively detected by increasing the rf voltage through the ring electrode. Factors affecting the mass resolution, such as pressure of buffer gas and ablation laser power, are discussed.

  17. Fluorescent iminodiacetamide derivatives as potential ionophores for optical zinc ion-selective sensors.

    Science.gov (United States)

    Urbanová, Nikoleta; Kádár, Mihály; Tóth, Klára; Bogáti, Botond; Andruch, Vasil; Bitter, István

    2008-06-01

    Fluorescent sensor molecules were synthesized by conjugation of iminodiacetamide derivatives with fluorescent moieties of different structures and their UV-visible and fluorescent properties were characterized in acetonitrile solvent. The fluorescent measurements revealed that the N-(2-naphthyl) and N-phenyl derivatives exhibit a distinct zinc ion-selectivity over alkali and alkaline earth metal ions, while N-(anthrylmethyl) and N-(3-methoxyphenyl) derivatives do not possess any ion-selectivities. In contrast to the fluorescent measurements, all ligands show Zn(2+) selectivity over Ca(2+) and Mg(2+) ions in plasticized PVC membranes using potentiometric signal transduction. This observation found for N-(anthrylmethyl) and N-(3-methoxyphenyl) derivatives can be ascribed to the more hindered interaction between the signalling group of the ionophore and the central metal ion in PVC membranes than in acetonitrile solution upon complexation. From the fluorescent measurements it can also be concluded that the ligands with metal ions form complexes mainly with 2:1 stoichiometry (L(2)M). On complex formation a considerable decrease in the fluorescent intensity was observed for all ligands except the N-(anthrylmethyl) derivative, where a 25 - 30 fold fluorescence enhancement was found, which is explained by the photoinduced electron transfer (PET) mechanism. All ionophores exhibited serious hydrogen ion interference, therefore complexation-induced spectral changes were measured in aprotic acetonitrile solution.

  18. Large fixed-size metal-on-metal total hip arthroplasty : higher serum metal ion levels in patients with pain

    NARCIS (Netherlands)

    Smeekes, Christiaan; Ongkiehong, Bastiaan; van der Wal, Bart; Wolterbeek, Ron; Henseler, Jan Ferdinand; Nelissen, Rob

    2015-01-01

    Purpose: Recently, concerns have arisen about metal-on-metal (MoM) total hip arthroplasty (THA). Therefore, the purpose of this cross-sectional cohort study was to describe the incidence of pain, pseudotumours, revisions and the relation between elevated metal ion levels, functional outcome and

  19. In vitro and in vivo metal ion release.

    Science.gov (United States)

    Brown, S A; Farnsworth, L J; Merritt, K; Crowe, T D

    1988-04-01

    A series of experiments was conducted to study in vitro and in vivo metal ion release and the urine excretion of metal ions. Metal salts were injected and urine analyzed. Anodic potentials were applied to stainless steel and cobalt-chromium-molybdenum (CCM) specimens to cause an acceleration of corrosion rates. Corrosion experiments were done in saline, 10% serum and in a subcutaneous space in hamsters. Corrosion rates were determined by measurements of weight loss and calculations of net charge transfer. Metal ion concentrations were determined with graphite furnace atomic absorption spectroscopy, and were calculated from total charge using Faraday's law. The results with stainless steel showed that the weight loss and metal ion release from stainless steel in vitro and in vivo can be calculated using Faraday's Law, assuming release in proportion to alloy composition. The results with CCM indicated that release rates in vitro can be used to determine the proportionality of release in vivo. All the nickel and most of the cobalt was rapidly excreted, while less than 50% of the chromium was excreted. The excretion of metals following salt injection or in vivo corrosion were very similar.

  20. Fluorescent metal ion indicators based on benzoannelated crown systems: a green fluorescent indicator for intracellular sodium ions.

    Science.gov (United States)

    Martin, Vladimir V; Rothe, Anca; Gee, Kyle R

    2005-04-01

    The synthesis and metal binding properties of cation-sensitive fluorescent indicators intended for biological applications are described. The increase of the crown ether ring size enhances the affinity for larger cations, but weakens the fluorescent response and selectivity. A compound having a 15-crown-5 chelator directly attached to a 2,7-difluoroxanthenone fluorophore loads into live cells and responds to sodium ion concentration changes with large fluorescence increases in the visible wavelength range.

  1. Quantum Interference and Selectivity through Biological Ion Channels.

    Science.gov (United States)

    Salari, Vahid; Naeij, Hamidreza; Shafiee, Afshin

    2017-01-30

    The mechanism of selectivity in ion channels is still an open question in biology for more than half a century. Here, we suggest that quantum interference can be a solution to explain the selectivity mechanism in ion channels since interference happens between similar ions through the same size of ion channels. In this paper, we simulate two neighboring ion channels on a cell membrane with the famous double-slit experiment in physics to investigate whether there is any possibility of matter-wave interference of ions via movement through ion channels. Our obtained decoherence timescales indicate that the quantum states of ions can only survive for short times, i.e. ≈100 picoseconds in each channel and ≈17-53 picoseconds outside the channels, giving the result that the quantum interference of ions seems unlikely due to environmental decoherence. However, we discuss our results and raise few points, which increase the possibility of interference.

  2. Quantum Interference and Selectivity through Biological Ion Channels

    Science.gov (United States)

    Salari, Vahid; Naeij, Hamidreza; Shafiee, Afshin

    2017-01-01

    The mechanism of selectivity in ion channels is still an open question in biology for more than half a century. Here, we suggest that quantum interference can be a solution to explain the selectivity mechanism in ion channels since interference happens between similar ions through the same size of ion channels. In this paper, we simulate two neighboring ion channels on a cell membrane with the famous double-slit experiment in physics to investigate whether there is any possibility of matter-wave interference of ions via movement through ion channels. Our obtained decoherence timescales indicate that the quantum states of ions can only survive for short times, i.e. ≈100 picoseconds in each channel and ≈17–53 picoseconds outside the channels, giving the result that the quantum interference of ions seems unlikely due to environmental decoherence. However, we discuss our results and raise few points, which increase the possibility of interference. PMID:28134331

  3. Effect Of Metal Ions On Triphenylmethane Dye Decolorization By Laccase From Trametes Versicolor

    Directory of Open Access Journals (Sweden)

    Chmelová Daniela

    2015-12-01

    Full Text Available The aim of this study was investigate the influence of different metal ions on laccase activity and triphenylmethane dye decolorization by laccase from white-rot fungus Trametes versicolor. Laccase activity was inhibited by monovalent ions (Li+, Na+, K+ and Ag+ but the presence of divalent ions increased laccase activity at the concentration of 10 mmol/l. The effect of metal ions on decolorization of triphenylmethane dyes with different structures namely Bromochlorophenol Blue, Bromophenol Blue, Bromocresol Blue and Phenol Red was tested. The presence of metal ions (Na+, K+, Mg2+, Ca2+, Ba2+, Mn2+, Zn2+ slightly decreased triphenylmethane dye decolorization by laccase from T. versicolor except Na+ and Mg2+, which caused the increase of decolorization for all tested dyes. Decolorization of selected dyes showed that the presence of low-molecular-weight compounds is necessary for effective decolorization. Hydroxybenzotriazole (HBT is the most frequently used. Although HBT belongs to most frequently used redox mediator and generally increase decolorization efficiency, so its presence decreased decolorization percentage of Bromophenol Blue and Bromochlorophenol Blue, the influence of metal ions to dye decolorization by laccase has the similar course with or without presence of redox mediator HBT.

  4. Reducing hazardous heavy metal ions using mangium bark waste.

    Science.gov (United States)

    Khabibi, Jauhar; Syafii, Wasrin; Sari, Rita Kartika

    2016-08-01

    The objective of this study was to evaluate the characteristics of mangium bark and its biosorbent ability to reduce heavy metal ions in standard solutions and wastewater and to assess changes in bark characteristics after heavy metal absorption. The experiments were conducted to determine heavy metal absorption from solutions of heavy metals alone and in mixtures as well as from wastewater. The results show that mangium bark can absorb heavy metals. Absorption percentages and capacities from single heavy metal solutions showed that Cu(2+) > Ni(2+) > Pb(2+) > Hg(2+), while those from mixture solutions showed that Hg(2+) > Cu(2+) > Pb(2+) > Ni(2+). Wastewater from gold mining only contained Cu, with an absorption percentage and capacity of 42.87 % and 0.75 mg/g, respectively. The highest absorption percentage and capacity of 92.77 % and 5.18 mg/g, respectively, were found for Hg(2+) in a mixture solution and Cu(2+) in single-metal solution. The Cu(2+) absorption process in a single-metal solution changed the biosorbent characteristics of the mangium bark, yielding a decreased crystalline fraction; changed transmittance on hydroxyl, carboxyl, and carbonyl groups; and increased the presence of Cu. In conclusion, mangium bark biosorbent can reduce hazardous heavy metal ions in both standard solutions and wastewater.

  5. Study on the adsorption of heavy metal ions from aqueous solution on modified SBA-15

    Directory of Open Access Journals (Sweden)

    Liliana Giraldo

    2013-01-01

    Full Text Available Amino-functionalized SBA-15 mesoporous silica was prepared, characterized, and used as an adsorbent for heavy metal ions. The organic - inorganic hybrid material was obtained by a grafting procedure using SBA-15 silica with 3-aminopropyl-triethoxysilane and bis(2,4,4-trimethylpentyl phosphinic acid (Cyanex 272, respectively. The structure and physicochemical properties of the materials were characterized by means of elemental analysis, X-ray diffraction (XRD, nitrogen adsorption - desorption, thermogravimetric analysis, FTIR spectroscopy and immersion calorimetry. The organic functional groups were successfully grafted onto the SBA-15 surface and the ordering of the support was not affected by the chemical modification. The behavior of the grafted solids was investigated for the adsorption of heavy metal ions from aqueous solutions. The hybrid materials showed high adsorption capacity and high selectivity for zinc ions. Other ions, such as cooper and cobalt were absorbed by the modified SBA-15 material.

  6. [Electric current around dental metals as a factor producing allergenic metal ions in the oral cavity].

    Science.gov (United States)

    Nogi, N

    1989-11-01

    Allergy to dental metal alloys has been reported to occasionally cause dermatitis, stomatitis, lichen planus and pustulosis palmaris et plantaris. According to Faraday's law of electrolysis, when electric current flows into an anode, cationic metal ions dissolve in parallel with the amount of the electric current. Therefore, when patients hypersensitive to metals have suffered from the above mentioned persistent dermatoses, measurement of voltages and electric currents around the dental alloys of the patient's oral cavities was deemed necessary, in order to investigate whether or not such dental metals have been supplied causative metal ions to the patients. For the investigation of electrochemical dissolution of metal ions; firstly, voltages and electric currents between the mucous membrane and standard dental alloy tips placed in the oral cavities of each 15 healthy volunteers and patients were measured. Secondly, the same study was performed with the mucous membrane and actually installed dental metals with 158 patients who showed positive reactions to dental metal series patch test allergens composed of 19 reagents. The results were as follows: 1) Voltages between the mucous membranes and standard metal plates placed in the oral cavities varied depending on the composition of the dental metal. 2) The above-mentioned voltages changed when various food were present in the oral cavity. 3) With the dental metals actually present in the metal-hypersensitive patient's oral cavities, the voltages between the adjacent mucous membrane and dental metals varied greatly, depending on the individual patient rather than on the types of metal. Certain alloys acted as cathodes with some patients, but as anodes with others. 4) Amalgam and silver alloys showed higher voltages and more electric current with the smaller ranges of variation than other kinds of alloys. Both of these alloys tended to act as anodes, therefore, the electrochemical dissolution of metal ions was expected

  7. Complementary metal ion specificity of the metal-citrate transporters CitM and CitH of Bacillus subtilis

    NARCIS (Netherlands)

    Krom, BP; Warner, JB; Konings, WN; Lolkema, JS; Warner, Jessica B.

    2000-01-01

    Citrate uptake in Bacillus subtilis is stimulated by a wide range of divalent metal ions. The metal ions were separated into two groups based on the expression pattern of the uptake system. The two groups correlated with the metal ion specificity of two homologous B, subtilis secondary citrate

  8. Selective anion exchange with nanogated isoreticular positive metal-organic frameworks.

    Science.gov (United States)

    Zhao, Xiang; Bu, Xianhui; Wu, Tao; Zheng, Shou-Tian; Wang, Le; Feng, Pingyun

    2013-01-01

    Crystalline porous materials, especially inorganic porous solids such as zeolites, usually have negative frameworks with extra-framework mobile cations and are widely used for cation exchange. It is highly desirable to develop new materials with positive frameworks for selective anion exchange and separation or storage and delivery. Recent advances in metal-organic framework synthesis have created new opportunities in this direction. Here we report the synthesis of a series of positive indium metal-organic frameworks and their utilization as a platform for the anion exchange-based separation process. This process is capable of size- or charge-selective ion-exchange of organic dyes and may form the basis for size-selective ion chromatography. Ion-exchange dynamics of a series of organic dyes and their selective encapsulation and release are also studied, highlighting the advantages of metal-organic framework compositions for designing host materials tailored for applications in anion separation and purification.

  9. COMPARATIVE STUDY ON METAL IONS ADSORPTION ON A LOW COST CARBONACEOUS ADSORBENT KINETIC EQUILIBRIUM AND MECHANISTIC STUDIES

    Directory of Open Access Journals (Sweden)

    S. Arivoli, M. Hema, C. Barathiraja

    2008-01-01

    Full Text Available A carbonaceous adsorbent prepared from an indigenous waste and treated by acid was tested for its efficiency in removing metal ions of Fe(II, Co(II and Ni(II. The process parameters studied included agitation time, initial metal ion concentration, carbon dosage, pH, other ions and temperature. The kinetics of adsorption followed first order reaction equation and the rate was mainly controlled by intraparticle diffusion. Freundlich and Langmuir isotherm models were applied to the equilibrium data. The adsorption capacity obtained from the Langmuir isotherm plots was found around 28mg/g for all selected metal ions at an initial pH of 6. The temperature variation study showed that the metal ions adsorption is endothermic and spontaneous with increased randomness at the solid solution interface. Significant effect on adsorption was observed on varying pH of the metal ion solutions. The type I and II isotherms obtained, positive H0 values, pH dependent results and desorption of metal ions in mineral acid suggests that the adsorption of metal ions on this type of adsorbent involves both chemisorption and physical adsorption mechanisms.

  10. Formation of gels in the presence of metal ions.

    Science.gov (United States)

    Castellucci, Nicola; Falini, Giuseppe; Angelici, Gaetano; Tomasini, Claudia

    2011-08-01

    A small library of stereoisomeric pseudopeptides able to make gels in different solvents has been prepared and their attitude to make gels in the presence of several metal ions was evaluated. Four benzyl esters and four carboxylic acids, all containing a moiety of azelaic acid (a long chain dicarboxylic acid) coupled with four different pseudopeptide moieties sharing the same skeleton (a phenyl group one atom apart from the oxazolidin-2-one carboxylic group), were synthesized in solution, by standard coupling reaction. The tendency of these pseudopeptides to form gels was evaluated using the inversion test of 10 mM solutions of pure compounds and of stoichiometric mixtures of pseudopeptides and metal ions. To obtain additional information on the molecular association, the gel samples were left dry in the air to form xerogels that were further analyzed using SEM and XRD. The formation of gel containing Zn(II) or Cu(II) ions gave good results in term of incorporation of the metal ions, while the presence of Cu(I), Al(III) and Mg(II) gave less satisfactory results. This outcome is a first insight in the formation of stable LMWGs formed by stoichiometric mixtures of pseudopeptides and metal ions. Further studies will be carried out to develop similar compounds of pharmacological interest.

  11. Determination of metal ion content of beverages and estimation of target hazard quotients: a comparative study

    Directory of Open Access Journals (Sweden)

    Barker James

    2008-06-01

    Full Text Available Abstract Background Considerable research has been directed towards the roles of metal ions in nutrition with metal ion toxicity attracting particular attention. The aim of this study is to measure the levels of metal ions found in selected beverages (red wine, stout and apple juice and to determine their potential detrimental effects via calculation of the Target Hazard Quotients (THQ for 250 mL daily consumption. Results The levels (mean ± SEM and diversity of metals determined by ICP-MS were highest for red wine samples (30 metals totalling 5620.54 ± 123.86 ppb followed by apple juice (15 metals totalling 1339.87 ± 10.84 ppb and stout (14 metals totalling 464.85 ± 46.74 ppb. The combined THQ values were determined based upon levels of V, Cr, Mn, Ni, Cu, Zn and Pb which gave red wine samples the highest value (5100.96 ± 118.93 ppb followed by apple juice (666.44 ± 7.67 ppb and stout (328.41 ± 42.36 ppb. The THQ values were as follows: apple juice (male 3.11, female 3.87, stout (male 1.84, female 2.19, red wine (male 126.52, female 157.22 and ultra-filtered red wine (male 110.48, female 137.29. Conclusion This study reports relatively high levels of metal ions in red wine, which give a very high THQ value suggesting potential hazardous exposure over a lifetime for those who consume at least 250 mL daily. In addition to the known hazardous metals (e.g. Pb, many metals (e.g. Rb have not had their biological effects systematically investigated and hence the impact of sustained ingestion is not known.

  12. Functional polythiophene nanoparticles: Size-controlled electropolymerization and ion selective response

    DEFF Research Database (Denmark)

    Si, P.C.; Chi, Qijin; Li, Z.S.

    2007-01-01

    We have synthesized a thiophene derivative, (4-benzeno-15-crown-5 ether)-thiophene-3-methylene-amine (BTA), which was used as a monomer for electrochemical polymerization on metallic surfaces to prepare functional polymer films. Self-assembly of BTA monomers on Au(111) surfaces promotes ordered...... solution and organic phase on gold electrodes, displayed selective sensitivity to potassium ions with a linear dependence of ion concentration over 4 orders of magnitude....

  13. Ion-Selective Detection with Glass Nanopipette for Living Cells

    Science.gov (United States)

    Takami, T.; Son, J. W.; Kang, E. J.; Deng, X. L.; Kawai, T.; Lee, S.-W.; Park, B. H.

    2013-05-01

    We developed a method to probe local ion concentration with glass nanopipette in which poly(vinyl chloride) membrane containing ionophore for separate ion detection is prepared. Here we demonstrate how ion-selective detections are available for living cells such as HeLa cell, rat vascular myocyte, and neuron cell.

  14. Focused ion beam lithography for rapid prototyping of metallic films

    Energy Technology Data Exchange (ETDEWEB)

    Osswald, Patrick; Kiermaier, Josef; Becherer, Markus; Schmitt-Landsiedel, Doris [Lehrstuhl fuer Technische Elektronik, TU Muenchen, Munich (Germany)

    2010-07-01

    We present FIB-lithography methods for rapid and cost-effective prototyping of metal structures covering the deep-submicron- to the millimeter-range in a single lithography cycle. Focused ion beam (FIB) systems are widely used in semiconductor industry and research facilities for both analytical testing and prototyping. A typical application is to apply electrical contact to micron-sized sensors/particles by FIB induced metal deposition. However, as for E-beam lithography, patterning times for large area bonding pads are unacceptably long, resulting in cost-intensive prototyping. In this work, we optimized FIB lithography processing for negative and positive imaging mode to form metallic structures for large-areas down do the sub-100 nm range. For negative lithography features are defined by implanting Ga{sup +}-ions into a commercial photo resist, without affecting the underlying structures by impinging ions. The structures are highly suitable for following lift-off processing due to the undercut of the resist.Metallic feature size of down to 150 nm are achievable. For positive lithography a PMMA resist is exposed in FIB irradiation. Due to the very low dose (3.10{sup 12} ions/cm{sup 2}) the writing time for an e.g. 100 {mu}m x 100 {mu}m square is approx. 15 seconds. The developed resist is used for subsequent wet chemical etching, obtaining a 100 nm resolution in metal layers.

  15. Crown-Ether Derived Graphene Hybrid Composite for Membrane-Free Potentiometric Sensing of Alkali Metal Ions

    DEFF Research Database (Denmark)

    Olsen, Gunnar; Ulstrup, Jens; Chi, Qijin

    2016-01-01

    We report the design and synthesis of newly functionalized graphene hybrid material that can be used for selective membrane-free potentiometric detection of alkali metal ions, represented by potassium ions. Reduced graphene oxide (RGO) functionalized covalently by 18-crown[6] ether with a dense...

  16. Nanopolysaccharides for adsorption of heavy metal ions from water

    OpenAIRE

    Liu, Peng

    2014-01-01

    With population expansion and industrialization, heavy metal has become one of the biggest and most toxic water pollutants, which is a serious problem for human society today. The aim of this work is to explore the potential of nanopolysaccharides including nanocellulose and nanochitin to remove metal ions from contaminated water. The above nano-polysaccharides are of interest in water purification technologies due to their high surface area, high mechanical properties, and versatile surface ...

  17. Comparison of different transition metal ions for immobilized metal affinity chromatography of selenoprotein P from human plasma

    DEFF Research Database (Denmark)

    Sidenius, U; Farver, O; Jøns, O

    1999-01-01

    Cu2+, Ni2+, Zn2+, Co2+ and Cd2+ were evaluated in metal ion affinity chromatography for enrichment of selenoprotein P, and immobilized Co2+ affinity chromatography was found to be the most selective chromatographic method. The chromatography was performed by fast protein liquid chromatography and....... The purity of the protein was determined by SDS-PAGE and by sequencing from polyvinylidene difluoride blots of SDS-PAGE gels....

  18. The essential roles of metal ions in insect homeostasis and physiology.

    Science.gov (United States)

    Dow, Julian At

    2017-10-01

    Metal ions play distinct roles in living organisms, including insects. Some, like sodium and potassium, are central players in osmoregulation and 'blood and guts' transport physiology, and have been implicated in cold adaptation. Calcium is a key player as a second messenger, and as a structural element. Other metals, particularly those with multiple redox states, can be cofactors in many metalloenzymes, but can contribute to toxic oxidative stress on the organism in excess. This short review selects some examples where classical knowledge has been supplemented with recent advances, in order to emphasize the importance of metals as essential nutrients for insect survival. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Heavy metal ions adsorption from mine waters by sawdust

    OpenAIRE

    G. Bogdanović; Milan Gorgievski; Dragana Božić; Velizar Stanković

    2009-01-01

    In this work the results on the batch and column adsorption of copper and some associated ions by employing linden and poplar sawdust as a low-cost adsorbent are presented. The mine water from a local abandoned copper mine, as well as synthetic solutions of those ions which are the main constituents of the mine water were both used as a model-system in this study. The adsorption ability of the chosen sawdust to adsorb heavy metal ions is considered as a function of the initial pH of the solut...

  20. Spectroscopy of mobility-selected biomolecular ions.

    Science.gov (United States)

    Papadopoulos, Georgios; Svendsen, Annette; Boyarkin, Oleg V; Rizzo, Thomas R

    2011-01-01

    We describe here experiments that combine differential ion mobility, which separates conformational isomers of biomolecular ions, with electronic spectroscopy in a cold, radio-frequency ion trap. Although the low temperature attainable in a cold ion trap greatly simplifies the electronic spectra of large molecules, conformational heterogeneity can still be a significant source of congestion, complicating spectroscopic analysis. We demonstrate here that using differential ion mobility to separate gas-phase peptide conformers before injecting them into a cold ion trap allows one to decompose a dense spectrum into contributions from different conformational families. In the inverse sense, cold ion spectroscopy can be used as a conformation-specific detector for ion mobility, allowing one to separate an unresolved peak into contributions from different conformational families. The doubly protonated peptide bradykinin serves as a good test case for the marriage of these two techniques as it exhibits a considerable degree of conformational heterogeneity that results in a highly congested electronic spectrum. Our results demonstrate the feasibility and advantages of directly coupling ion mobility with spectroscopy and provide a diagnostic of conformational isomerization of this peptide after being produced in the gas phase by electrospray.

  1. pH- and Metal Ion- Sensitive Hydrogels based on N-[2-(dimethylaminoethylacrylamide

    Directory of Open Access Journals (Sweden)

    Leena Nebhani

    2016-06-01

    Full Text Available Smart hydrogels are promising materials for actuators and sensors, as they can respond to small changes in their environment with a large property change. Hydrogels can respond to a variety of stimuli, for example temperature, pH, metal ions, etc. In this article, the synthesis and characterization of polyampholyte hydrogels based on open chain ligands showing pH and metal ion sensitivity are described. Copolymer and terpolymer gels using different mixtures of monomers i.e., N-[2-(dimethylaminoethylacrylamide] (DMAEAAm, N,N-dimethylacrylamide (DMAAm, acrylic acid (AA and 2-acrylamido-2-methyl-1-propanesulphonic acid (AMPS, have been synthesized. The effect of copolymer composition, i.e., the ratio and amount of ionic monomers and the degree of crosslinking on the swelling characteristics, was evaluated as a function of pH. On this basis, metal ion sensitivity measurements were performed at selected pH values. The metal ion sensitivity was measured by varying the concentration of Cu2+, Zn2+ and Ag+ ions under acidic pH conditions.

  2. Neutralization by metal ions of the toxicity of sodium selenide.

    Science.gov (United States)

    Dauplais, Marc; Lazard, Myriam; Blanquet, Sylvain; Plateau, Pierre

    2013-01-01

    Inert metal-selenide colloids are found in animals. They are believed to afford cross-protection against the toxicities of both metals and selenocompounds. Here, the toxicities of metal salt and sodium selenide mixtures were systematically studied using the death rate of Saccharomyces cerevisiae cells as an indicator. In parallel, the abilities of these mixtures to produce colloids were assessed. Studied metal cations could be classified in three groups: (i) metal ions that protect cells against selenium toxicity and form insoluble colloids with selenide (Ag⁺, Cd²⁺, Cu²⁺, Hg²⁺, Pb²⁺ and Zn²⁺), (ii) metal ions which protect cells by producing insoluble metal-selenide complexes and by catalyzing hydrogen selenide oxidation in the presence of dioxygen (Co²⁺ and Ni²⁺) and, finally, (iii) metal ions which do not afford protection and do not interact (Ca²⁺, Mg²⁺, Mn²⁺) or weakly interact (Fe²⁺) with selenide under the assayed conditions. When occurring, the insoluble complexes formed from divalent metal ions and selenide contained equimolar amounts of metal and selenium atoms. With the monovalent silver ion, the complex contained two silver atoms per selenium atom. Next, because selenides are compounds prone to oxidation, the stabilities of the above colloids were evaluated under oxidizing conditions. 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB), the reduction of which can be optically followed, was used to promote selenide oxidation. Complexes with cadmium, copper, lead, mercury or silver resisted dissolution by DTNB treatment over several hours. With nickel and cobalt, partial oxidation by DTNB occurred. On the other hand, when starting from ZnSe or FeSe complexes, full decompositions were obtained within a few tens of minutes. The above properties possibly explain why ZnSe and FeSe nanoparticles were not detected in animals exposed to selenocompounds.

  3. Neutralization by metal ions of the toxicity of sodium selenide.

    Directory of Open Access Journals (Sweden)

    Marc Dauplais

    Full Text Available Inert metal-selenide colloids are found in animals. They are believed to afford cross-protection against the toxicities of both metals and selenocompounds. Here, the toxicities of metal salt and sodium selenide mixtures were systematically studied using the death rate of Saccharomyces cerevisiae cells as an indicator. In parallel, the abilities of these mixtures to produce colloids were assessed. Studied metal cations could be classified in three groups: (i metal ions that protect cells against selenium toxicity and form insoluble colloids with selenide (Ag⁺, Cd²⁺, Cu²⁺, Hg²⁺, Pb²⁺ and Zn²⁺, (ii metal ions which protect cells by producing insoluble metal-selenide complexes and by catalyzing hydrogen selenide oxidation in the presence of dioxygen (Co²⁺ and Ni²⁺ and, finally, (iii metal ions which do not afford protection and do not interact (Ca²⁺, Mg²⁺, Mn²⁺ or weakly interact (Fe²⁺ with selenide under the assayed conditions. When occurring, the insoluble complexes formed from divalent metal ions and selenide contained equimolar amounts of metal and selenium atoms. With the monovalent silver ion, the complex contained two silver atoms per selenium atom. Next, because selenides are compounds prone to oxidation, the stabilities of the above colloids were evaluated under oxidizing conditions. 5,5'-dithiobis-(2-nitrobenzoic acid (DTNB, the reduction of which can be optically followed, was used to promote selenide oxidation. Complexes with cadmium, copper, lead, mercury or silver resisted dissolution by DTNB treatment over several hours. With nickel and cobalt, partial oxidation by DTNB occurred. On the other hand, when starting from ZnSe or FeSe complexes, full decompositions were obtained within a few tens of minutes. The above properties possibly explain why ZnSe and FeSe nanoparticles were not detected in animals exposed to selenocompounds.

  4. Determination of Heavy Metal Ions in Tobacco and Tobacco Additives

    African Journals Online (AJOL)

    NJD

    high stability.1,3,5 Porphyrin reagents have therefore received increasing attention and are widely applied for the simulta- neous determination of metal ions.9–19. The determination of trace amounts of lead, cadmium, mercury, nickel, cobalt and tin in tobacco and tobacco additives is important because of the biological ...

  5. Dislocation loop formation by swift heavy ion irradiation of metals

    Science.gov (United States)

    Khara, Galvin S.; Murphy, Samuel T.; Duffy, Dorothy M.

    2017-07-01

    A coupled two-temperature, molecular dynamics methodology is used to simulate the structural evolution of bcc metals (Fe and W) and fcc metals (Cu and Ni) following irradiation by swift heavy ions. Electronic temperature dependent electronic specific heat capacities and electron-phonon coupling strengths are used to capture the full effects of the variation in the electronic density of states. Tungsten is found to be significantly more resistant to damage than iron, due both to the higher melting temperature and the higher thermal conductivity. Very interesting defect structures, quite different from defects formed in cascades, are found to be created by swift heavy ion irradiation in the bcc metals. Isolated vacancies form a halo around elongated interstitial dislocation loops that are oriented along the ion path. Such configurations are formed by rapid recrystallization of the molten cylindrical region that is created by the energetic ion. Vacancies are created at the recrystallization front, resulting in excess atoms at the core which form interstitial dislocation loops on completion of crystallization. These unique defect structures could, potentially, be used to create metal films with superior mechanical properties and interesting nanostructures.

  6. Effect of ion beam irradiation on metal particle doped polymer ...

    Indian Academy of Sciences (India)

    tural and chemical properties of the composites were studied by means of an LCR meter, X-ray diffraction, FTIR spectroscopy and SEM/AFM, ... This reveals that ion beam irradiation promotes the metal/polymer bonding and converts polymeric ... stirrer at a high speed of around 700 rpm until all polymer grains dissolved.

  7. Interaction of Hydroxyproline with Bivalent Metal Ions in Chemical ...

    African Journals Online (AJOL)

    Arecent technique involving the use of paper electrophoresis is described for the study of equilibria in binary complex systems in solution. The stability constants of the ML and ML2 complex species of some metal ions, namely beryllium(II) and cobalt(II), with hydroxyproline were determined in 0.1 mol L–1 perchloric acid ...

  8. Conformations and vibrational spectroscopy of metal-ion/polylalanine complexes

    NARCIS (Netherlands)

    Dunbar, R. C.; Steill, J. D.; Oomens, J.

    2010-01-01

    The thermochemistry and structures of complexes of dialanine and trialanine with a series of singly and doubly charged metal ions have been examined by spectroscopic and computational approaches. Complexes with Li+, K+, Cs+, Ca2+, Sr2+ and Ba2+ were formed by electrospray ionization, and studied by

  9. Equilibrium and kinetics studies of metal ion adsorption on dyed ...

    African Journals Online (AJOL)

    Batch equilibration studies were conducted to determine the nature of adsorption of Zn (II) and Cu (II) onto dyed coconut pollens. The nature of adsorption of metal ions was explained using the Langmuir equation. The calculated values of equilibrium parameter indicated favourable adsorption by the adsorbents. Also the ...

  10. Interaction of Hydroxyproline with Bivalent Metal Ions in Chemical ...

    African Journals Online (AJOL)

    NICO

    A recent technique involving the use of paper electrophoresis is described for the study of equilibria in binary complex systems in solution. The stability ... metal ions have several significant applications in biological systems.3–20 Beryllium is ... complexes and no reports on Be(II)-hydroxyproline binary complexes. In view of ...

  11. Synthesis, photophysical and metal ion signalling behaviour of mono

    Indian Academy of Sciences (India)

    Unknown

    Fluorescence decay behaviour of the systems suggests a through-space nature of PET. The systems exhi- bit off–on fluorescence signalling in the aprotic media in the presence of several metal ions, some of which are well known for their fluorescence quenching abilities. Diazacrown derivative, II, appears to be a somewhat ...

  12. Chromium and cobalt ion concentrations in blood and serum following various types of metal-on-metal hip arthroplasties

    DEFF Research Database (Denmark)

    Jantzen, Christopher; Jørgensen, Henrik L; Duus, Benn R

    2013-01-01

    Widely different metal ion concentrations in blood and serum have been reported with metal-on-metal (MoM) implants. We reviewed the literature on blood and serum ion concentrations of chromium (Cr) and cobalt (Co) following various MoM hip arthroplasties.......Widely different metal ion concentrations in blood and serum have been reported with metal-on-metal (MoM) implants. We reviewed the literature on blood and serum ion concentrations of chromium (Cr) and cobalt (Co) following various MoM hip arthroplasties....

  13. Liquid metal ion source and alloy for ion emission of multiple ionic species

    Science.gov (United States)

    Clark, Jr., William M.; Utlaut, Mark W.; Wysocki, Joseph A.; Storms, Edmund K.; Szklarz, Eugene G.; Behrens, Robert G.; Swanson, Lynwood W.; Bell, Anthony E.

    1987-06-02

    A liquid metal ion source and alloy for the simultaneous ion evaporation of arsenic and boron, arsenic and phosphorus, or arsenic, boron and phosphorus. The ionic species to be evaporated are contained in palladium-arsenic-boron and palladium-arsenic-boron-phosphorus alloys. The ion source, including an emitter means such as a needle emitter and a source means such as U-shaped heater element, is preferably constructed of rhenium and tungsten, both of which are readily fabricated. The ion sources emit continuous beams of ions having sufficiently high currents of the desired species to be useful in ion implantation of semiconductor wafers for preparing integrated circuit devices. The sources are stable in operation, experience little corrosion during operation, and have long operating lifetimes.

  14. Do soft drinks affect metal ions release from orthodontic appliances?

    Science.gov (United States)

    Mikulewicz, Marcin; Wołowiec, Paulina; Loster, Bartłomiej W; Chojnacka, Katarzyna

    2015-01-01

    The effect of orange juice and Coca Cola(®) on the release of metal ions from fixed orthodontic appliances. A continuous flow system designed for in vitro testing of orthodontic appliances was used. Orange juice/Coca Cola(®) was flowing through the system alternately with artificial saliva for 5.5 and 18.5h, respectively. The collected samples underwent a multielemental ICP-OES analysis in order to determine the metal ions release pattern in time. The total mass of ions released from the appliance into orange juice and Coca Cola(®) (respectively) during the experiment was calculated (μg): Ni (15.33; 37.75), Cr (3.604; 1.052), Fe (48.42; ≥ 156.1), Cu (57.87, 32.91), Mn (9.164; 41.16), Mo (9.999; 30.12), and Cd (0.5967; 2.173). It was found that orange juice did not intensify the release of metal ions from orthodontic appliances, whereas Coca Cola(®) caused increased release of Ni ions. Copyright © 2015 Elsevier GmbH. All rights reserved.

  15. Molecular design of the microbial cell surface toward the recovery of metal ions.

    Science.gov (United States)

    Kuroda, Kouichi; Ueda, Mitsuyoshi

    2011-06-01

    The genetic engineering of microorganisms to adsorb metal ions is an attractive method to facilitate the environmental cleanup of metal pollution and to enrich the recovery of metal ions such as rare metal ions. For the recovery of metal ions by microorganisms, cell surface design is an effective strategy for the molecular breeding of bioadsorbents as an alternative to intracellular accumulation. The cell surface display of known metal-binding proteins/peptides and the molecular design of novel metal-binding proteins/peptides have been performed using a cell surface engineering approach. The adsorption of specific metal ions is the important challenge for the practical recovery of metal ions. In this paper, we discuss the recent progress in surface-engineered bioadsorbents for the recovery of metal ions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Pesticides Curbing Soil Fertility: Effect of Complexation of Free Metal Ions

    KAUST Repository

    Kaur, Sukhmanpreet

    2017-07-04

    Researchers have suggested that the reason behind infertility is pernicious effect of broad spectrum pesticides on non target, beneficial microorganism of soil. Here, studying the chelating effect of selective organophosphate and carbamate pesticides with essential metal ions, at all possible combinations of three different pH (4 ± 0.05, 7 ± 0.05 and 9 ± 0.05) and three different temperatures (15 ± 0.5°C, 30 ± 0.5°C and 45 ± 0.5°C), shows very fast rate of reaction which further increases with increase of pH and temperature. Carbonyl oxygen of carbamate and phosphate oxygen of organophosphate were found to be common ligating sites among all the complexes. Formed metal complexes were found to be highly stable and water insoluble on interaction with essential metal ions in solvent medium as well as over silica. Density functional theory (DFT) calculations not only reinforced the experimental observations, but, after a wide computational conformational analysis, unraveled the nature of the high stable undesired species that consist of pesticides complexed by metal ions from the soil. All in all, apart from the direct toxicity of pesticides, the indirect effect by means of complexation of free metal ions impoverishes the soil.

  17. Pesticides Curbing Soil Fertility: Effect of Complexation of Free Metal Ions

    Science.gov (United States)

    Kaur, Sukhmanpreet; Kumar, Vijay; Chawla, Mohit; Cavallo, Luigi; Poater, Albert; Upadhyay, Niraj

    2017-07-01

    Researchers have suggested that the reason behind infertility is pernicious effect of broad spectrum pesticides on non target, beneficial microorganism of soil. Here, studying the chelating effect of selective organophosphate and carbamate pesticides with essential metal ions, at all possible combinations of three different pH (4±0.05, 7±0.05 and 9±0.05) and three different temperatures (15±0.5°C, 30±0.5°C and 45±0.5°C), shows very fast rate of reaction which further increases with increase of pH and temperature. Carbonyl oxygen of carbamate and phosphate oxygen of organophosphate were found to be common ligating sites among all the complexes. Formed metal complexes were found to be highly stable and water insoluble on interaction with essential metal ions in solvent medium as well as over silica. Density functional theory (DFT) calculations not only reinforced the experimental observations, but, after a wide computational conformational analysis, unraveled the nature of the high stable undesired species that consist of pesticides complexed by metal ions from the soil. All in all, apart from the direct toxicity of pesticides, the indirect effect by means of complexation of free metal ions impoverishes the soil.

  18. Chitosan removes toxic heavy metal ions from cigarette mainstream smoke

    Science.gov (United States)

    Zhou, Wen; Xu, Ying; Wang, Dongfeng; Zhou, Shilu

    2013-09-01

    This study investigated the removal of heavy metal ions from cigarette mainstream smoke using chitosan. Chitosan of various deacetylation degrees and molecular weights were manually added to cigarette filters in different dosages. The mainstream smoke particulate matter was collected by a Cambridge filter pad, digested by a microwave digestor, and then analyzed for contents of heavy metal ions, including As(III/V), Pb(II), Cd(II), Cr(III/VI) and Ni(II), by graphite furnace atomic absorption spectrometry (GFAAS). The results showed that chitosan had a removal effect on Pb(II), Cd(II), Cr(III/VI) and Ni(II). Of these, the percent removal of Ni(II) was elevated with an increasing dosage of chitosan. Chitosan of a high deace tylation degree exhibited good binding performance toward Cd(II), Cr(III/VI) and Ni(II), though with poor efficiency for Pb(II). Except As(III/V), all the tested metal ions showed similar tendencies in the growing contents with an increasing chitosan molecular weight. Nonetheless, the percent removal of Cr(III/VI) peaked with a chitosan molecular weight of 200 kDa, followed by a dramatic decrease with an increasing chitosan molecular weight. Generally, chitosan had different removal effects on four out of five tested metal ions, and the percent removal of Cd(II), Pb(II), Cr(III/VI) and Ni(II) was approximately 55%, 45%, 50%, and 16%, respectively. In a word, chitosan used in cigarette filter can remove toxic heavy metal ions in the mainstream smoke, improve cigarette safety, and reduce the harm to smokers.

  19. Metal ion influence on eumelanin fluorescence and structure

    Science.gov (United States)

    Sutter, Jens-Uwe; Birch, David J. S.

    2014-06-01

    Melanin has long been thought to have an unworkably weak and complex fluorescence, but here we study its intrinsic fluorescence in order to demonstrate how metal ions can be used to control the rate of formation, constituents and structure of eumelanin formed from the well-known laboratory auto-oxidation of 3,4-dihydroxy-L-phenylalanine (L-DOPA). The effect on eumelanin absorption and fluorescence of a range of solvated metal ions is reported including Cu, Zn, Ni, Na and K. Monovalent cations and Zn have little effect, but the effect of transition metal cations can be considerable. For example, at pH 10, copper ions are shown to accelerate the onset of eumelanin formation, but not the rate of formation once it commences, and simplify the usual complex structure and intrinsic fluorescence of eumelanin in a way that is consistent with an increased abundance of 5,5-dihydroxyindole-2-carboxylic acid (DHICA). The presence of a dominant 6 ns fluorescence decay time at 480 nm, when excited at 450 nm describes a distinct photophysical species, which we tentatively assign to small oligomers. Copper is well-known to normally quench fluorescence, but increasing amounts of copper surprisingly leads to an increase in the fluorescence decay time of eumelanin, while reducing the fluorescence intensity, suggesting copper modification of the excited state. Such results have bearing on diverse areas. The most accepted morphology for melanin is that of a graphite-like sheet structure, and one which readily binds metal ions, an interaction that is thought to have an important, though as yet unclear bearing on several areas of medicine including neurology. There is also increasing interest in bio-mimicry by preparing and labelling sheet structures with metal ions for new electronic and photonic materials.

  20. Kinetic study of heavy metal ions removal by ion exchange in batch conical air spouted bed

    Directory of Open Access Journals (Sweden)

    T.M. Zewail

    2015-03-01

    Full Text Available Spouted bed contactor is a hybrid of fixed and fluidized bed contactors, which retains the advantages of each with good hydrodynamic conditions. The aim of the present study is to investigate the performance of a batch conical air spouted vessel for heavy metal removal by strong cation exchange resins (AMBERJET 1200 Na. The effect of various parameters such as type of heavy metal ions (Ni+2 and Pb+2, contact time, superficial air velocity and initial heavy metal ion concentration on % heavy metal ion removal has been investigated. It has been found that under optimum conditions 98% and 99% removal of Ni+2 and Pb+2 were achieved respectively. Several kinetic models were used to test the experimental data and to examine the controlling mechanism of the sorption process. The present results of Ni+2 and Pb+2 well fit pseudo second order kinetic model with a high correlation coefficient. Both film diffusion and intra-particle diffusion contribute to the ion exchange process. The present study revealed that spouted bed vessel may provide an effective alternative for conducting ion exchange reactions.

  1. Ion conducting polymers and polymer blends for alkali metal ion batteries

    Science.gov (United States)

    DeSimone, Joseph M.; Pandya, Ashish; Wong, Dominica; Vitale, Alessandra

    2017-08-29

    Electrolyte compositions for batteries such as lithium ion and lithium air batteries are described. In some embodiments the compositions are liquid compositions comprising (a) a homogeneous solvent system, said solvent system comprising a perfluropolyether (PFPE) and polyethylene oxide (PEO); and (b) an alkali metal salt dissolved in said solvent system. In other embodiments the compositions are solid electrolyte compositions comprising: (a) a solid polymer, said polymer comprising a crosslinked product of a crosslinkable perfluropolyether (PFPE) and a crosslinkable polyethylene oxide (PEO); and (b) an alkali metal ion salt dissolved in said polymer. Batteries containing such compositions as electrolytes are also described.

  2. Comparison of metal ion concentrations and implant survival after total hip arthroplasty with metal-on-metal versus metal-on-polyethylene articulations

    OpenAIRE

    Dahlstrand, Henrik; Stark, André; Wick, Marius C; Anissian, Lucas; Hailer, Nils P; Weiss, Rüdiger J

    2017-01-01

    Background and purpose Large metal-on-metal (MoM) articulations are associated with metal wear and corrosion, leading to increased metal ion concentrations and unacceptable revision rates. There are few comparative studies of 28-mm MoM articulations with conventional metal-on-polyethylene (MoP) couplings. We present a long-term follow-up of a randomized controlled trial comparing MoM versus MoP 28-mm articulations, focused on metal ions and implant survival. Patients and methods 85 patients w...

  3. Liquid metal alloy ion sources—An alternative for focussed ion beam technology

    Energy Technology Data Exchange (ETDEWEB)

    Bischoff, Lothar, E-mail: l.bischoff@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden (Germany); Mazarov, Paul, E-mail: Paul.Mazarov@raith.de; Bruchhaus, Lars, E-mail: Lars.Bruchhaus@raith.de [Raith GmbH, Konrad-Adenauer-Allee 8, 44263 Dortmund (Germany); Gierak, Jacques, E-mail: jacques.gierak@lpn.cnrs.fr [LPN-CNRS, Route de Nozay, 91460 Marcoussis (France)

    2016-06-15

    Today, Focused Ion Beam (FIB) processing is nearly exclusively based on gallium Liquid Metal Ion Sources (LMIS). But, many applications in the μm- or nm range could benefit from ion species other than gallium: local ion implantation, ion beam mixing, ion beam synthesis, or Focused Ion Beam Lithography (IBL). Therefore, Liquid Metal Alloy Ion Sources (LMAIS) represent a promising alternative to expand the remarkable application fields for FIB. Especially, the IBL process shows potential advantages over, e.g., electron beam or other lithography techniques: direct, resistless, and three-dimensional patterning, enabling a simultaneous in-situ process control by cross-sectioning and inspection. Taking additionally into account that the used ion species influences significantly the physical and chemical nature of the resulting nanostructures—in particular, the electrical, optical, magnetic, and mechanic properties leading to a large potential application area which can be tuned by choosing a well suited LMAIS. Nearly half of the elements of the periodic table are recently available in the FIB technology as a result of continuous research in this area during the last forty years. Key features of a LMAIS are long life-time, high brightness, and stable ion current. Recent developments could make these sources feasible for nano patterning issues as an alternative technology more in research than in industry. The authors will review existing LMAIS, LMIS other than Ga, and binary and ternary alloys. These physical properties as well as the fabrication technology and prospective domains for modern FIB applications will similarly be reviewed. Other emerging ion sources will be also presented and their performances discussed.

  4. Microspheres aided introduction of ionophore and ion-exchanger to the ion-selective membrane.

    Science.gov (United States)

    Wojciechowski, Marcin; Kisiel, Anna; Bulska, Ewa; Michalska, Agata

    2012-01-15

    In this work a novel method for introduction of ionophore and ion-exchanger to the ion-selective polyacrylate based membrane is proposed. These compounds (and optionally primary ions) are introduced to polyacrylate microspheres, used to prepare ion-selective membrane. The approach proposed here can be used to prepare membranes containing primary ions equally distributed through the receptor phase, i.e. membranes that do not require conditioning in primary ions solution and are free from problems related to slow diffusion of primary ions. Thus obtained sensors were characterized with linear responses (also at relatively high activities) and high selectivities, despite considerable reduction of ionophore and ion-exchanger amount introduced to the membrane. To be able to prepare ion-selective membranes using this approach, a method for quantification of ionophore and ion-exchanger introduced into microspheres is required. In this work a novel method utilizing high performance liquid chromatography (HPLC) with DAD or FLD detection is proposed. Incorporation of ionophore and ion-exchanger into the microspheres was achieved either by absorption into ready spheres or in course of photopolymerization of polymeric beads. The obtained results have proven that both procedures led to incorporation of ionophore/ion-exchanger into polymeric spheres, however, the content of the compounds in the spheres post process is different from their ratio in solution from which they had been introduced. These effects need to be considered/compensated while preparing microspheres containing ion-selective membranes. As a model system poly(n-butyl acrylate) spheres, silver selective ionophore and sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate were chosen, resulting ultimately in silver-selective electrodes. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Ion beam mixing isotopic metal bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Fell, C.J. [Newcastle Univ., NSW (Australia). Dept. of Physics; Kenny, M.J. [CSIRO, Lindfield, NSW (Australia). Div. of Applied Physics

    1993-12-31

    In order to obtain an insight into the mechanisms of ion-solid interactions, bilayer targets can be prepared from two different isotopes. A mixing study SIMS is to be carried out using specially grown monocrystalline bilayers of {sup 58}Ni / {sup 60}Ni. An important aspect of the work is the preparation of high quality single-crystal thin films. The Ni layers will be grown on the (110) surface of pure Ni and verified for crystallinity using Reflection High-Energy Electron Diffraction and Rutherford Backscattering channelling analysis. The Pd bilayers will be grown on a Pd (100) surface. RHEED will be used to confirm the two-dimensional crystallinity of the surface before and after deposition of each layer, and channelling used to confirm bulk film crystallinity. Single crystal substrates are currently being prepared. Analysis of the Ni (110) surface using RHEED at 9 kV shows a streak spacing which corresponds to a lattice spacing of 2.47 {+-} 0.09 Angstroms. 9 refs., 1 fig.

  6. Metal-on-metal bearings total hip arthroplasty: the cobalt and chromium ions release concern.

    Science.gov (United States)

    Delaunay, C; Petit, I; Learmonth, I D; Oger, P; Vendittoli, P A

    2010-12-01

    With certain concerns recently reported on metal-on-metal bearing couples in total hip arthroplasty, this study's objective is to review the current knowledge concerning release of metal ions and its potential consequences. Each metal-on-metal implant presents different tribological properties. The analytical techniques for metals are accurate and the Co ion rates seem acceptable up to 2 μg/L. A delayed type IV hypersensitivity reaction (atypical lymphocytic vasculitis-associated lesion [ALVAL]) may be the source of arthroplasty failure. Idiosyncratic, it remains unpredictable even using cutaneous tests and apparently is rare (0.3%). Today, there are no scientific or epidemiologic data supporting a risk of carcinogenesis or teratogenesis related to the use of a metal-on-metal bearings couple. Solid pseudotumors nearly exclusively are observed with resurfacing procedures, carrying a high annual revision rate in women under 40 years of age, occurring particularly in cases of acetabular malposition and with use of cast molded Cr-Co alloys. Osteolysis manifests through complete and progressive radiolucent lines or through cavitary lesions stemming from ALVAL-type alterations or impingement problems or implant incompatibility. The formation of wear debris exceeding the biological tolerance is possible with implant malposition, subluxation, and jamming of the femoral head in cases of cup deformity. Moreover, each implant presents different metal ion production; assessment of their performance and safety is required before their clinical use. With the knowledge available today, metal-on-metal bearing couples are contraindicated in cases of metal allergies or end stage renal dysfunction and small size resurfacing should cautiously be used. Copyright © 2010. Published by Elsevier Masson SAS.

  7. Transition metal ions: charge carriers that mediate the electron capture dissociation pathways of peptides.

    Science.gov (United States)

    Chen, Xiangfeng; Fung, Yi Man Eva; Chan, Wai Yi Kelly; Wong, Pui Shuen; Yeung, Hoi Sze; Chan, T-W Dominic

    2011-12-01

    Electron capture dissociation (ECD) of model peptides adducted with first row divalent transition metal ions, including Mn(2+), Fe(2+), Co(2+), Ni(2+), Cu(2+), and Zn(2+), were investigated. Model peptides with general sequence of ZGGGXGGGZ were used as probes to unveil the ECD mechanism of metalated peptides, where X is either V or W; and Z is either R or N. Peptides metalated with different divalent transition metal ions were found to generate different ECD tandem mass spectra. ECD spectra of peptides metalated by Mn(2+) and Zn(2+) were similar to those generated by ECD of peptides adducted with alkaline earth metal ions. Series of c-/z-type fragment ions with and without metal ions were observed. ECD of Fe(2+), Co(2+), and Ni(2+) adducted peptides yielded abundant metalated a-/y-type fragment ions; whereas ECD of Cu(2+) adducted peptides generated predominantly metalated b-/y-type fragment ions. From the present experimental results, it was postulated that electronic configuration of metal ions is an important factor in determining the ECD behavior of the metalated peptides. Due presumably to the stability of the electronic configuration, metal ions with fully-filled (i.e., Zn(2+)) and half filled (i.e., Mn(2+)) d-orbitals might not capture the incoming electron. Dissociation of the metal ions adducted peptides would proceed through the usual ECD channel(s) via "hot-hydrogen" or "superbase" intermediates, to form series of c-/z(•)- fragments. For other transition metal ions studied, reduction of the metal ions might occur preferentially. The energy liberated by the metal ion reduction would provide enough internal energy to generate the "slow-heating" type of fragment ions, i.e., metalated a-/y- fragments and metalated b-/y- fragments. © American Society for Mass Spectrometry, 2011

  8. Polymer Catalysts Imprinted with Metal Ions as Biomimics of Metalloenzymes

    Directory of Open Access Journals (Sweden)

    Joanna Czulak

    2013-01-01

    Full Text Available This work presents the preparation and properties of molecularly imprinted polymers (MIPs with catalytic centers that mimic the active sites of metalloenzymes. The MIP synthesis was based on suspension polymerization of functional monomers (4-vinylpyridine and acrylonitrile with trimethylolpropane trimethacrylate as a crosslinker in the presence of transition metal ions and 4-methoxybenzyl alcohol as a template. Four metal ions have been chosen for imprinting from among the microelements that are the most essential in the native enzymes: Cu2+, Co2+, Mn2+, and Zn2+. To prepare catalysts, the required loading of metal ions was obtained during sorption process. The catalysts imprinted with Cu2+, Co2+, and Zn2+ were successfully used for hydroquinone oxidation in the presence of hydrogen peroxide. The Mn2+-imprinted catalyst showed no activity due to the insufficient metal loading. Cu2+ MIP showed the highest efficiency. In case of Cu- and Co-MIP catalysts, their activity was additionally increased by the use of surface imprinting technique.

  9. Biosurfactant Mediated Biosynthesis of Selected Metallic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Grażyna A. Płaza

    2014-08-01

    Full Text Available Developing a reliable experimental protocol for the synthesis of nanomaterials is one of the challenging topics in current nanotechnology particularly in the context of the recent drive to promote green technologies in their synthesis. The increasing need to develop clean, nontoxic and environmentally safe production processes for nanoparticles to reduce environmental impact, minimize waste and increase energy efficiency has become essential in this field. Consequently, recent studies on the use of microorganisms in the synthesis of selected nanoparticles are gaining increased interest as they represent an exciting area of research with considerable development potential. Microorganisms are known to be capable of synthesizing inorganic molecules that are deposited either intra- or extracellularly. This review presents a brief overview of current research on the use of biosurfactants in the biosynthesis of selected metallic nanoparticles and their potential importance.

  10. Biosurfactant Mediated Biosynthesis of Selected Metallic Nanoparticles

    Science.gov (United States)

    Płaza, Grażyna A.; Chojniak, Joanna; Banat, Ibrahim M.

    2014-01-01

    Developing a reliable experimental protocol for the synthesis of nanomaterials is one of the challenging topics in current nanotechnology particularly in the context of the recent drive to promote green technologies in their synthesis. The increasing need to develop clean, nontoxic and environmentally safe production processes for nanoparticles to reduce environmental impact, minimize waste and increase energy efficiency has become essential in this field. Consequently, recent studies on the use of microorganisms in the synthesis of selected nanoparticles are gaining increased interest as they represent an exciting area of research with considerable development potential. Microorganisms are known to be capable of synthesizing inorganic molecules that are deposited either intra- or extracellularly. This review presents a brief overview of current research on the use of biosurfactants in the biosynthesis of selected metallic nanoparticles and their potential importance. PMID:25110864

  11. Mechanisms of valence selectivity in biological ion channels.

    Science.gov (United States)

    Corry, B; Chung, S-H

    2006-02-01

    Transmembrane ion channels play a crucial role in the existence of all living organisms. They partition the exterior from the interior of the cell, maintain the proper ionic gradient across the cell membrane and facilitate signaling between cells. To perform these functions, ion channels must be highly selective, allowing some types of ions to pass while blocking the passage of others. Here we review a number of studies that have helped to elucidate the mechanisms by which ion channels discriminate between ions of differing charge, focusing on four channel families as examples: gramicidin, ClC chloride, voltage-gated calcium and potassium channels. The recent availability of high-resolution structural data has meant that the specific inter-atomic interactions responsible for valence selectivity can be pinpointed. Not surprisingly, electrostatic considerations have been shown to play an important role in ion specificity, although many details of the origins of this discrimination remain to be determined.

  12. Removal of textile dyes and metallic ions using polyelectrolytes and macroelectrolytes containing sulfonic acid groups.

    Science.gov (United States)

    Caldera Villalobos, M; Peláez Cid, A A; Herrera González, Ana M

    2016-07-15

    This work reports the removal of textile dyes and metallic ions by means of adsorption and coagulation-flocculation using two polyelectrolytes and two macroelectrolytes containing sulfonic acid groups. The adsorption of textile dyes was studied in aqueous solutions containing cationic dyes and in wastewater containing a vat dye. Also, removal of vat and naphthol dyes was studied using the process of coagulation-flocculation. The results show these materials possess elevated adsorption capacity, and they accomplished removal rates above 97% in aqueous solutions. The removal of the vat dye improved the quality of the wastewater notably, and an uncolored effluent was obtained at the end of the treatment. The treatment using adsorption decreased the values for coloration, conductivity, suspended solids, and pH. The removal of vat and naphthol dyes by means of coagulation-flocculation was studied as well, and removal rates of 90% were obtained. The polyelectrolytes and macroelectrolytes also proved effective in the adsorption of metallic ions in wastewater. The treatment using adsorption accomplished high removal rates of metallic ions, and it showed greater selectivity towards Cu(2+), Fe(3+) and Pb(2+). A decrease in the content of solids as well as the values for COD and conductivity was observed in the wastewater as well. The analyses of FT-IR indicated that cationic dyes and metallic ions were chemisorbed by means of ionic exchange. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Surface Modification of Polypropylene Membrane Using Biopolymers with Potential Applications for Metal Ion Removal

    Directory of Open Access Journals (Sweden)

    Omar Alberto Hernández-Aguirre

    2016-01-01

    Full Text Available This work aims to present the modification of polypropylene (PP membranes using three different biopolymers, chitosan (CHI, potato starch (PS, and cellulose (CEL, in order to obtain three new materials. The modified membranes may be degraded easier than polypropylene ones and could be used as selective membranes for metal ions removal, among other applications. For this purpose, the UV energy induced graft copolymerization reaction among polypropylene membrane, acrylic acid, benzophenone (as photoinitiator, and the biopolymer (CHI, PS, or CEL was conducted. The results of FT-IR-ATR, XRD, TGA, DSC, SEM, BET, and AFM analyses and mechanical properties clearly indicate the successful modification of the membrane surface. The change of surface wettability was monitored by contact angle. The grafting reaction depends on natural polymer, reaction time, and concentration. In order to prove the potential application of the modified membranes, a preliminary study of sorption of metal ion was carried out. For this purpose, the PP-CHI membrane was chosen because of the high hydrophilicity, proportionate to -OH and NH2; these groups could act as ligands of metal ions, provoking the interaction between PP-CHI and M+ (PP-CHI-M+ and therefore the metal ion removal from water.

  14. Monitoring Ion Activities In and Around Cells Using Ion-Selective Liquid-Membrane Microelectrodes

    Directory of Open Access Journals (Sweden)

    Mark D. Parker

    2013-01-01

    Full Text Available Determining the effective concentration (i.e., activity of ions in and around living cells is important to our understanding of the contribution of those ions to cellular function. Moreover, monitoring changes in ion activities in and around cells is informative about the actions of the transporters and/or channels operating in the cell membrane. The activity of an ion can be measured using a glass microelectrode that includes in its tip a liquid-membrane doped with an ion-selective ionophore. Because these electrodes can be fabricated with tip diameters that are less than 1 μm, they can be used to impale single cells in order to monitor the activities of intracellular ions. This review summarizes the history, theory, and practice of ion-selective microelectrode use and brings together a number of classic and recent examples of their usefulness in the realm of physiological study.

  15. Removal of heavy metal ions from wastewaters using dendrimer-functionalized multi-walled carbon nanotubes.

    Science.gov (United States)

    Iannazzo, Daniela; Pistone, Alessandro; Ziccarelli, Ida; Espro, Claudia; Galvagno, Signorino; Giofré, Salvatore V; Romeo, Roberto; Cicero, Nicola; Bua, Giuseppe D; Lanza, Giuseppe; Legnani, Laura; Chiacchio, Maria A

    2017-06-01

    Dendrimer-functionalized multi-walled carbon nanotubes (MWCNT) for heavy metal ion removal from wastewaters were developed. Triazole dendrimers (TD) were built directly onto the carbon nanotube surface by successive click chemistry reactions affording the zero- and first-generation dendrimer-functionalized MWCNT (MWCNT-TD1 and MWCNT-TD2). The Moedritzer-Irani reaction carried out on the amino groups present on the MWCNT-TD2 sample gave the corresponding α-aminophosphonate nanosystem MWCNT-TD2P. Both MWCNT-TD2 and MWCNT-TD2P nanosystems have been characterized by physical, chemical, and morphological analyses. Their chelating abilities towards the toxic metal ions Pb2+, Hg2+, and Ni2+ and the harmless Ca2+ ion have been experimentally evaluated in the two different sets of experiments and at the salt concentrations of 1 mg/mL or 1 μg/mL by inductively coupled plasma mass spectrometry (ICP-MS). The results of these studies pointed out the interesting chelating behavior for the phosphonated nanosystem towards the Hg2+ ion. The complexation mode of the best chelating system MWCNT-TD2P with mercury was investigated through density functional theory (DFT) calculations, suggesting a chelation mechanism involving the two oxygen atoms of the phosphate group. The synthesized dendrimers, supported on the multi-walled carbon nanotubes, have shown the potential to be used for the selective toxic metal ion removal and recovery.

  16. Is ion channel selectivity mediated by confined water?

    CERN Document Server

    Prada-Gracia, Diego

    2012-01-01

    Ion channels form pores across the lipid bilayer, selectively allowing inorganic ions to cross the membrane down their electrochemical gradient. While the study of ion desolvation free-energies have attracted much attention, the role of water inside the pore is less clear. Here, molecular dynamics simulations of a reduced model of the KcsA selectivity filter indicate that the equilibrium position of Na+, but not of K+, is strongly influenced by confined water. The latter forms a stable complex with Na+, moving the equilibrium position of the ion to the plane of the backbone carbonyls. Almost at the centre of the binding site, the water molecule is trapped by favorable electrostatic interactions and backbone hydrogen-bonds. In the absence of confined water the equilibrium position of both Na+ and K+ is identical. Our observations strongly suggest a previously unnoticed active role of confined water in the selectivity mechanism of ion channels.

  17. Metal ion toxins and brain aquaporin-4 expression: an overview

    Directory of Open Access Journals (Sweden)

    Adriana eXimenes-Da-Silva

    2016-06-01

    Full Text Available Metal ions such as iron, zinc, and manganese are essential to metabolic functions, protein synthesis, neurotransmission, and antioxidant neuroprotective mechanisms. Conversely, non-essential metals such as mercury and lead are sources of human intoxication due to occupational activities or environmental contamination. Essential or non-essential metal accumulation in the central nervous system (CNS results in changes in blood-brain barrier (BBB permeability, as well as triggering microglia activation and astrocyte reactivity and changing water transport through the cells, which could result in brain swelling. Aquaporin-4 is the main water channel in the CNS, is expressed in astrocyte foot processes in brain capillaries and along the circumventricular epithelium in the ventricles, and has important physiological functions in maintaining brain osmotic homeostasis and supporting brain excitability through regulation of the extracellular space. Some evidence has pointed to a role of AQP4 during metal intoxication in the brain, where it may act in a dual form as a neuroprotector or a mediator of the development of oxidative stress in neurons and astrocytes, resulting in brain swelling and neuronal damage. This mini-review presents the way some metal ions affect changes in AQP4 expression in the CNS and discuss the ways in which water transport in brain cells can be involved in brain damage.

  18. Infrared Spectroscopy of Metal Ion Complexes: Models for Metal Ligand Interactions and Solvation

    Science.gov (United States)

    Duncan, Michael

    2006-03-01

    Weakly bound complexes of the form M^+-Lx (M=Fe, Ni, Co, etc.; L=CO2, C2H2, H2O, benzene, N2) are prepared in supersonic molecular beams by laser vaporization in a pulsed-nozzle cluster source. These species are mass analyzed and size-selected in a reflectron time-of-flight mass spectrometer. Clusters are photodissociated at infrared wavelengths with a Nd:YAG pumped infrared optical parametric oscillator/amplifier (OPO/OPA) laser or with a tunable infrared free-electron laser. M^+-(CO2)x complexes absorb near the free CO2 asymmetric stretch near 2349 cm-1 but with an interesting size dependent variation in the resonances. Small clusters have blue-shifted resonances, while larger complexes have additional bands due to surface CO2 molecules not attached to the metal. M^+(C2H2)n complexes absorb near the C-H stretches in acetylene, but resonances in metal complexes are red-shifted with repect to the isolated molecule. Ni^+ and Co^+ complexes with acetylene undergo intracluster cyclization reactions to form cyclobutadiene. Transition metal water complexes are studied in the O-H stretch region, and partial rotational structure can be measured. M^+(benzene) and M^+(benzene)2 ions (M=V, Ti, Al) represent half-sandwich and sandwich species, whose spectra are measured near the free benzene modes. These new IR spectra and their assignments will be discussed as well as other new IR spectra for similar complexes.

  19. Conversion of agonist site to metal-ion chelator site in the beta(2)-adrenergic receptor

    DEFF Research Database (Denmark)

    Elling, C E; Thirstrup, K; Holst, Birgitte

    1999-01-01

    effect of, for example Cu(2+), and in several cases increased the affinity of the ions for the agonistic site. Wash-out experiments and structure-activity analysis indicated, that the high-affinity chelators and the metal ions bind and activate the mutant receptor as metal ion guided ligand complexes...... in the mutant receptors not by normal catecholamine ligands but instead either by free zinc ions or by zinc or copper ions in complex with small hydrophobic metal-ion chelators. Chelation of the metal ions by small hydrophobic chelators such as phenanthroline or bipyridine protected the cells from the toxic....... Because of the well-understood binding geometry of the small metal ions, an important distance constraint has here been imposed between TM-III and -VII in the active, signaling conformation of 7TM receptors. It is suggested that atoxic metal-ion chelator complexes could possibly in the future be used...

  20. Kinetic modeling of metal ion transport for desorption of Pb(II) ion ...

    African Journals Online (AJOL)

    The kinetics of desorption of lead (II) ion from metal loaded adsorbent of mercaptoacetic acid modified and unmodified oil palm (Elaeis guineensis) fruit fiber was studied using different solutions, at different contact times. At the end of 25 minutes, 79.19%, 75.99%, 57.14%, 50.56% and 32.72% of Pb2+ were desorbed using ...

  1. The Corrosion Protection of Metals by Ion Vapor Deposited Aluminum

    Science.gov (United States)

    Danford, M. D.

    1993-01-01

    A study of the corrosion protection of substrate metals by ion vapor deposited aluminum (IVD Al) coats has been carried out. Corrosion protection by both anodized and unanodized IVD Al coats has been investigated. Base metals included in the study were 2219-T87 Al, 7075-T6 Al, Titanium-6 Al-4 Vanadium (Ti-6Al-4V), 4130 steel, D6AC steel, and 4340 steel. Results reveal that the anodized IVD Al coats provide excellent corrosion protection, but good protection is also achieved by IVD Al coats that have not been anodized.

  2. Selective Metallization Induced by Laser Activation: Fabricating Metallized Patterns on Polymer via Metal Oxide Composite.

    Science.gov (United States)

    Zhang, Jihai; Zhou, Tao; Wen, Liang

    2017-03-15

    Recently, metallization on polymer substrates has been given more attention due to its outstanding properties of both plastics and metals. In this study, the metal oxide composite of copper-chromium oxide (CuO·Cr 2 O 3 ) was incorporated into the polymer matrix to design a good laser direct structuring (LDS) material, and the well-defined copper pattern (thickness =10 μm) was successfully fabricated through selective metallization based on 1064 nm near-infrared pulsed laser activation and electroless copper plating. We also prepared polymer composites incorporated with CuO and Cr 2 O 3 ; however, these two polymer composites both had very poor capacity of selective metallization, which has no practical value for LDS technology. In our work, the key reasons causing the above results were systematically studied and elucidated using XPS, UV-vis-IR, optical microscopy, SEM, contact angle, ATR FTIR, and so on. The results showed that 54.0% Cu 2+ in the polymer composite of CuO·Cr 2 O 3 (the amount =5 wt %) is reduced to Cu 0 (elemental copper) after laser activation (irradiation); however, this value is only 26.8% for the polymer composite of CuO (the amount =5 wt %). It was confirmed that to achieve a successful selective metallization after laser activation, not only was the new formed Cu 0 (the catalytic seeds) the crucial factor, but the number of generated Cu 0 catalytic seeds was also important. These two factors codetermined the final results of the selective metallization. The CuO·Cr 2 O 3 is very suitable for applications of fabricating metallic patterns (e.g., metal decoration, circuit) on the inherent pure black or bright black polymer materials via LDS technology, which has a prospect of large-scale industrial applications.

  3. Nanostructured Block Polymer Membranes as High Capacity Adsorbers for the Capture of Metal Ions from Water

    Science.gov (United States)

    Boudouris, Bryan; Weidman, Jacob; Mulvenna, Ryan; Phillip, William

    The efficient removal of metal ions from aqueous streams is of significant import in applications ranging from industrial waste treatment to the purification of drinking water. An emerging paradigm associated with this separation is one that utilizes membrane adsorbers as a means by which to bind metal salt contaminants. Here, we demonstrate that the casting of an A-B-C triblock polymer using the self-assembly and non-solvent induced phase separation (SNIPS) methodology results in a nanoporous membrane geometry. The nature of the triblock polymer affords an extremely high density of binding sites within the membrane. As such, we demonstrate that the membranes with binding capacities equal to that of state-of-the-art packed bed columns. Moreover, because the affinity of the C moiety can be tuned, highly selective binding events can occur based solely on the chemistry of the block polymer and the metal ions in solution (i.e., in a manner that is independent of the size of the metal ions). Due to these combined facts, these membranes efficiently remove heavy metal (e.g., lead- and cadmium-based) salts from contaminated water streams with greater than 95% efficiency. Finally, we show that the membranes can be regenerated through a simple treatment in order to provide long-lasting adsorber systems as well. Thus, it is anticipated that these nanostructured triblock polymer membranes are a platform by which to obtain next-generation water purification processes.

  4. Synthesis of ethylenediamine modified chitosan and evaluation for removal of divalent metal ions.

    Science.gov (United States)

    Chethan, P D; Vishalakshi, B

    2013-09-12

    Selective modification of chitosan has been achieved by incorporating ethylene-1,2-diamine molecule in a regioselective manner using N-phthaloylchitosan and chloro-6-deoxy N-phthaloylchitosan as precursors. The present modification results in additional nitrogen centres which function as potential binding sites during adsorption of metal ions. The derivative ethylene-1,2-diamine-6-deoxy-chitosan and its pthaloylated precursor have been evaluated for divalent metal ion removal. The former is found to have higher capacity for adsorption due to the presence of additional NH₂ group. The samples exhibited highest affinity for Cu and least for Zn. About 80% of the adsorbed metal ions could be stripped in a solution of pH 1.2. The interaction between acidic metal centres and basic nitrogen centres on surface of the adsorbent appears to govern adsorption. Intrachain and interchain co-ordinate bonding involving NH and NH₂ groups is proposed to be the mechanism of formation of metal-adsorbent complex. The adsorption process is described by Langmuir model. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Potentiometric determination of K + ions using a K + -selective ...

    African Journals Online (AJOL)

    This paper describes analytical applications of K+-selective liquid membrane electrode. The membrane is the solution of the active complex formed by the K+ ions with dibenzo-18-crown-6 ionophore (DB-[18]-C-6) extracted in propylenecarbonate (PC). Successful application of the developed electrode for K+ ions ...

  6. Photoelectric properties in metal ion modified DNA nanostructure.

    Science.gov (United States)

    Kulkarni, Atul; Dugasani, Sreekantha Reddy; Jang Ah Kim; Kim; Sung Ha Park; Taesung Kim

    2015-08-01

    Due to specific or as designed self-assembly, DNA nanostructures gaining popularity in various nanoscale electronic applications. Herein, a novel divalent metal ion-DNA complex known as M-DNA have been investigated for its photoelectric characteristics. The increased conductivity of M-DNA thin films is attributed to the metal ion electrical and optical properties. The gate voltage effect along with illumination on the conductivity of M-DNA demonstrates that M-DNA can be used as an active element of a field-effect transistor. The Zn DNA shows maximum conductivity of 300μS/cm at 480 nm light illumination suggest that M-DNA can be utilized in nano-opto-electronics and bio-sensing applications.

  7. Selective electrodiffusion of zinc ions in a Zrt-, Irt-like protein, ZIPB

    Energy Technology Data Exchange (ETDEWEB)

    Lin, W.; Fu, D.; Chai, J.; Love, J.

    2010-12-10

    All living cells need zinc ions to support cell growth. Zrt-, Irt-like proteins (ZIPs) represent a major route for entry of zinc ions into cells, but how ZIPs promote zinc uptake has been unclear. Here we report the molecular characterization of ZIPB from Bordetella bronchiseptica, the first ZIP homolog to be purified and functionally reconstituted into proteoliposomes. Zinc flux through ZIPB was found to be nonsaturable and electrogenic, yielding membrane potentials as predicted by the Nernst equation. Conversely, membrane potentials drove zinc fluxes with a linear voltage-flux relationship. Direct measurements of metal uptake by inductively coupled plasma mass spectroscopy demonstrated that ZIPB is selective for two group 12 transition metal ions, Zn{sup 2+} and Cd{sup 2+}, whereas rejecting transition metal ions in groups 7 through 11. Our results provide the molecular basis for cellular zinc acquisition by a zinc-selective channel that exploits in vivo zinc concentration gradients to move zinc ions into the cytoplasm.

  8. Speciation of heavy metal ions as influenced by interactions with montmorillonite, Al hydroxide polymers and citrate

    NARCIS (Netherlands)

    Janssen, R.P.T.

    1995-01-01

    Clay minerals, metal-hydroxides and organic matter can bind metal ions; moreover they also interact with each other. These mutual interactions influence the metal binding to a significant extent. In this study, the speciation of the heavy metal ions Zn and Ph was investigated in model

  9. Chemical modification of Chitosan for metal ion removal

    Directory of Open Access Journals (Sweden)

    Tariq R.A. Sobahi

    2014-11-01

    Full Text Available In the current work some modification reactions have been conducted to modify Chitosan with some organic compounds, such as aldehydes and organic acids. On the other hand, different blends of Chitosan with some carbohydrates were prepared to obtain Chitosan derivatives of certain physical and chemical properties. The obtained products have been characterized with the necessary chemical and spectroscopic techniques. The efficiency of the obtained modified materials has been investigated for separation of metal ions and for water uptake.

  10. Lithium metal doped electrodes for lithium-ion rechargeable chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gao; Battaglia, Vince; Wang, Lei

    2016-09-13

    An embodiment of the invention combines the superior performance of a polyvinylidene difluoride (PVDF) or polyethyleneoxide (POE) binder, the strong binding force of a styrene-butadiene (SBR) binder, and a source of lithium ions in the form of solid lithium metal powder (SLMP) to form an electrode system that has improved performance as compared to PVDF/SBR binder based electrodes. This invention will provide a new way to achieve improved results at a much reduced cost.

  11. Facile synthesis of Fe3O4@PDA core-shell microspheres functionalized with various metal ions: A systematic comparison of commonly-used metal ions for IMAC enrichment.

    Science.gov (United States)

    Jiang, Jiebing; Sun, Xueni; Li, Yan; Deng, Chunhui; Duan, Gengli

    2018-02-01

    Metal ions differed greatly in affinity towards phosphopeptides, and thus it is essential to systematically compare the phosphopeptides enrichment ability of different metal ions usually used in the IMAC techniques. In this work, for the first time, eight metal ions, including Nb5+, Ti4+, Zr4+, Ga3+, Y3+, In3+, Ce4+, Fe3+, were immobilized on the polydopamine (PDA)-coated Fe3O4 (denoted as Fe3O4@PDA-Mn+), and systematically compared by the real biosamples, in addition to standard phosphopeptides. Fe3O4 microspheres were synthesized via the solvothermal reaction, followed by self-polymerization of dopamine on the surface. Then through taking advantage of the hydroxyl and amino group of PDA, the eight metal ions were easily adhered to the surface of Fe3O4@PDA. After characterization, the resultant Fe3O4@PDA-Mn+ microspheres were applied to phosphopeptides enrichment based on the binding affinity between metal ions and phosphopeptides. According to the results, different metal ions presented diverse phosphopeptides enrichment efficiency in terms of selectivity, sensitivity and the enrichment ability from real complex samples, and Fe3O4@PDA-Nb5+ and Fe3O4@PDA-Ti4+ showed obvious advantages of the phosphopeptides enrichment effect after the comparison. This systematic comparison may provide certain reference for the use and development of IMAC materials in the future. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Nanostructure operations by means of the liquid metal ion sources.

    Science.gov (United States)

    Gasanov, I S; Gurbanov, I I

    2012-02-01

    Characteristics of a disperse phase of liquid metal ion source on the basis of various working substances are investigated. It is revealed that generation of the charged particles occurs in the threshold image and is simultaneously accompanied by excitation of capillary instability on a surface of the emitter. The majority of particles has the size about 2 nm (Sn) and a specific charge of 5 × 10(4) C∕kg. If the working liquid possesses high viscosity (Ni), generation of nanodroplets does not occur. Gold nanoparticles are used for deposition on a surface of quartz cantilevers with the purpose of increase in sensitivity of biosensors and on an external surface of carbon nanotubes for creation pressure sensors. By means of an ion source nanostructures can be etched on a flat surface of conductive materials without difficult ion optics.

  13. Effect of π electrons on the detection of silver ions by ion-selective electrodes containing tripodal broom molecules as an ionophore.

    Science.gov (United States)

    Yamamoto, Chihiro; Seto, Hirokazu; Ohto, Keisuke; Kawakita, Hidetaka; Harada, Hiroyuki

    2011-01-01

    Tripodal "broom" molecule derivatives containing π electrons were used as ionophores of silver ion-selective electrodes. The ability of the electrodes to detect silver ions was evaluated using the Nernst equation. When allyl- and propargyl-type tripodal broom molecules, and a propargyl-type monopodal analog were used in the electrode, Nernstian responses for silver ions were observed, indicating that π electrons play an important role in the detection of silver ions. In the presence of interfering metal ions, the selectivity for silver ions was affected by the number and density of π electrons in the ionophore. The electrode containing the allyl-type tripodal broom molecule was used to accurately determine the concentration of glucosamine hydrochloride in a real sample.

  14. Electrospray Ionization Mass Spectrometry: From Cluster Ions to Toxic metal Ions in Biology

    Energy Technology Data Exchange (ETDEWEB)

    Lentz, Nicholas B. [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    This dissertation focused on using electrospray ionization mass spectrometry to study cluster ions and toxic metal ions in biology. In Chapter 2, it was shown that primary, secondary and quarternary amines exhibit different clustering characteristics under identical instrument conditions. Carbon chain length also played a role in cluster ion formation. In Chapters 3 and 4, the effects of solvent types/ratios and various instrumental parameters on cluster ion formation were examined. It was found that instrument interface design also plays a critical role in the cluster ion distribution seen in the mass spectrum. In Chapter 5, ESI-MS was used to investigate toxic metal binding to the [Gln11]-amyloid β-protein fragment (1-16). Pb and Cd bound stronger than Zn, even in the presence of excess Zn. Hg bound weaker than Zn. There are endless options for future work on cluster ions. Any molecule that is poorly ionized in positive ion mode can potentially show an increase in ionization efficiency if an appropriate anion is used to produce a net negative charge. It is possible that drug protein or drug/DNA complexes can also be stabilized by adding counter-ions. This would preserve the solution characteristics of the complex in the gas phase. Once in the gas phase, CID could determine the drug binding location on the biomolecule. There are many research projects regarding toxic metals in biology that have yet to be investigated or even discovered. This is an area of research with an almost endless future because of the changing dynamics of biological systems. What is deemed safe today may show toxic effects in the future. Evolutionary changes in protein structures may render them more susceptible to toxic metal binding. As the understanding of toxicity evolves, so does the demand for new toxic metal research. New instrumentation designs and software make it possible to perform research that could not be done in the past. What was undetectable yesterday will

  15. A novel Schiff base: Synthesis, structural characterisation and comparative sensor studies for metal ion detections.

    Science.gov (United States)

    Köse, Muhammet; Purtas, Savas; Güngör, Seyit Ali; Ceyhan, Gökhan; Akgün, Eyup; McKee, Vickie

    2015-02-05

    A novel Schiff base ligand was synthesized by the condensation reaction of 2,6-diformylpyridine and 4-aminoantipyrine in MeOH and characterised by its melting point, elemental analysis, FT-IR, (1)H, (13)C NMR and mass spectroscopic studies. Molecular structure of the ligand was determined by single crystal X-ray diffraction technique. The electrochemical properties of the Schiff base ligand were studied in different solvents at various scan rates. Sensor ability of the Schiff base ligand was investigated by colorimetric and fluorometric methods. Visual colour change of the ligand was investigated in MeOH solvent in presence of various metal ions Na(+), Mg(2+), Al(3+), K(+), Cr(3+), Mn(2+), Fe(3+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), Hg(2+) and Pb(2+). Upon addition of Al(3+) ion into a MeOH solution of the ligand, an orange colour developed which is detectable by naked eye. Fluorescence emission studies showed that the ligand showed single emission band at 630-665nm upon excitation at 560nm. Addition of metal ions Na(+), Mg(2+), K(+), Cr(3+), Mn(2+), Fe(3+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), Hg(2+) and Pb(2+) (1:1M ratio) cause fluorescence quenching, however addition of Al(+3) resulted in an increase in fluorescence intensity. No significant variation was observed in the fluorescence intensity caused by Al(3+) in presence of other metal ions. Therefore, the Schiff base ligand can be used for selective detection of Al(3+) ions in the presence of the other metal ions studied. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Recent advances in DNA-based electrochemical biosensors for heavy metal ion detection: A review.

    Science.gov (United States)

    Saidur, M R; Aziz, A R Abdul; Basirun, W J

    2017-04-15

    The presence of heavy metal in food chains due to the rapid industrialization poses a serious threat on the environment. Therefore, detection and monitoring of heavy metals contamination are gaining more attention nowadays. However, the current analytical methods (based on spectroscopy) for the detection of heavy metal contamination are often very expensive, tedious and can only be handled by trained personnel. DNA biosensors, which are based on electrochemical transduction, is a sensitive but inexpensive method of detection. The principles, sensitivity, selectivity and challenges of electrochemical biosensors are discussed in this review. This review also highlights the major advances of DNA-based electrochemical biosensors for the detection of heavy metal ions such as Hg 2+ , Ag + , Cu 2+ and Pb 2+ . Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Metal ion complexation by ionizable crown ethers. Final report, January 1, 1988--June 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Bartsch, R.A.

    1994-12-31

    During the report period a variety of new lipophilic ionizable crown ethers with pendent proton-ionizable groups has been synthesized. The ligands possess one or more ionizable group (carboxylic acid, phosphonic acid monoethyl ester, para-nitrophenol, phosphonic acid) attached to crown ether, monoazacrown ether or diazacrown ether frameworks. These novel chelating agents have either pendent or inward-facing proton-ionizable groups. Such lipophilic proton-ionizable crown ethers are designed for use in multiphase metal ion separations (solvent extraction, liquid membrane transport). In addition a series of proton-ionizable crown ethers without lipophilic groups was prepared to study how structural variations within the ligand influence metal ion complexation in homogeneous media as assessed by NMR spectroscopy or titration calorimetry. A third class of new metal ion-complexing agents is a series of lipophilic acyclic polyether dicarboxylic acids. Competitive solvent extractions of alkali metal and alkaline earth cations and of the mixed species have been conducted to reveal the influence of ring size, nature and attachment site of the lipophilic group, sidearm length, and proton-ionizable group identity and location upon the selectivity and efficiency of metal ion complexation. In addition to such studies of structural variation within the lipophilic proton-ionizable crown ether, the effect of changing the organic solvent and variation of the stripping conditions have been assessed. The influence of structural variations within lipophilic acyclic polyether dicarboxylic acids upon competitive solvent extraction of alkaline earth cations has been probed. Also a new chromogenic, di-ionizable crown ether with extremely high selectivity for Hg{sup 2+} has been discovered.

  18. The ion adsorption effect on selectivity of liquid state, O,O'-didecylodithiophosphate chelate based ion-selective electrodes.

    Science.gov (United States)

    Ren, K

    2000-09-05

    Ion-selective electrodes with liquid membranes including O,O'-didecylo-dithiophosphate complexes of Tl(I), Pb(II), Cd(II) and Ni(II) are characterised and results of the study on their selectivity are reported. A short review of problems related to determination and interpretation of selectivity coefficients of ion-selective electrodes is presented with particular emphasis on the drawbacks of the hitherto used methods. A new method is proposed, which in the experimental part is close to that of mixed solutions recommended by IUPAC but can be applied also when the latter is of no use. The method proposed for determination of selectivity coefficients simultaneously allows concluding about the mechanism of potential generation. A few examples of relations between selectivity coefficients of the electrodes and concentrations of disturbing ions in solutions, are given. An interpretation of the above relations as results of the processes of ion adsorption at the interface of the electrode membrane and water solution is proposed. The results obtained have confirmed the hypothesis given by Pungor, according to which the main role in the mechanism of generation of ion-selective electrodes potential is played by the processes of ion chemisorption at the interface of the membrane and water solution.

  19. A Novel Ion - selective Polymeric Membrane Sensor for Determining Thallium(I) With High Selectivity

    Science.gov (United States)

    Kassim, Anuar; Rezayi, Majid; Ahmadzadeh, Saeid; Rounaghi, Gholamhossein; Mohajeri, Masoomeh; Azah Yusof, Noor; Tee, Tan Wee; Yook Heng, Lee; Halim Abdullah, Abd

    2011-02-01

    Thallium is a toxic metal that introduced into the environment mainly as a waste from the production of zinc, cadmium, and lead and by combustion of coal. Thallium causes gastrointestinal irritation and nerve damage when people are exposed to it for relatively short period of time. For long term, thallium has the potential to cause the following effects: change in blood chemistry, damage to liver, kidney, intestinal and testicular tissue, and hair loss. In this work a membrane was prepared by use of 4'-nitrobenzo -18-crown-6 (4'NB18C6) as an ion carrier, polyvinylchloride (PVC) as a matrix, and diocthylphetalate (DOP) as a plasticizer for making an ion selective electrode for measurement of Tl+ cation in solutions. The amount of 4'-nitrobenzo-18C6 and polyvinylchloride were optimized in the preparation of the membrane. The response of the electrode was Nernstian within the concentration range 1.0 × 10-8 to 1.0 × 10-1M. This sensor displays a drift in Nernstian response for this cation with increasing the amount of ionophore and decreasing the amount of polyvinylchloride.The results of potentiometric measurements showed that, this electrode also responses to Cu2+ Ni2+ and Pb2+ cations, but the electrode has a wider dynamic range and a lower detection limit to Tl+ cation. The effects of various parameters such as pH, different cations interferences, effect of the amount of ionophore and polyvinylchloride and time on response of the coated ion selective electrode were investigated. Finally the constructed electrode was used in complexometric and precipitation titrations of Tl+ cation with EDTA and KBr, respectively. The response of the fabricated electrode at concentration range from 1.0 × 10-8 to 1.0 × 10-1M is linear with a Nernstian slope of 57.27 mV.

  20. The effect of counter-ions on the ion selectivity of potassium and sodium ions in nanopores.

    Science.gov (United States)

    Tang, Dai; Kim, Daejoong

    2014-01-01

    The ion selective transport plays an important role in the function of cell membranes, and promotes the application of artificial permeable membranes. This phenomenon has been studied in case for different diameters and functional groups of nanopores. In this work, we focus on the effect of anions on cation selectivity, in particular the influence of various halide ions on K+ and Na+ selectivity. We adopted molecular dynamics simulations with non-charged nanopores under constant temperature and uniform concentration. The results show K+-selectivity in the solution with Cl- and Na+-selectivity in the solution with Br- and I-. This selectivity, on the contrary, disappears in the solution with F-. We also investigate the change of the hydration shell of ions and cation-anion interactions between in the bulk region and in the nanopores, which could explain this selective phenomenon.

  1. Metal selective co-ordinative self-assembly of -donors

    Indian Academy of Sciences (India)

    ... and Ag+. With different fluorescent response for metal complexes, we essentially obtained similar 1-D assemblies suggesting similar binding modes for all of them. Supramolecular approach through which morphology of an electron donor moiety can be engineered by metal ions can be a new tool in nanoelectronics.

  2. Selective minority-ion heating in the afterglow of an electron cyclotron resonance ion source

    NARCIS (Netherlands)

    Nadzeyka, A; Meyer, D; Barzangy, F; Drentje, AG; Wiesemann, K

    We report first experimental results on selective minority-ion heating in the afterglow mode of electron cyclotron resonance ion sources in Bochum and at the KVI (Groningen) in mixtures of Ar/O/He and in pure nitrogen. In addition we measured time resolved vacuum ultraviolet-line intensities of

  3. Towards the role of metal ions in the structural variability of proteins: CdII speciation of a metal ion binding loop motif

    DEFF Research Database (Denmark)

    Jancsó, Attila; Szunyogh, Dániel; Gyurcsik, Béla

    2011-01-01

    A de novo designed dodecapeptide (HS), inspired by the metal binding loops of metal-responsive transcriptional activators, was synthesized. The aim was to create a model system for structurally promiscuous and intrinsically unstructured proteins, and explore the effect of metal ions on their stru......A de novo designed dodecapeptide (HS), inspired by the metal binding loops of metal-responsive transcriptional activators, was synthesized. The aim was to create a model system for structurally promiscuous and intrinsically unstructured proteins, and explore the effect of metal ions...

  4. Selectivity of calix[4]arene-bis(benzocrown-6) in the complexation and transport of francium ion.

    Science.gov (United States)

    Haverlock, Tamara J; Mirzadeh, Saed; Moyer, Bruce A

    2003-02-05

    It is shown for the first time that a representative member of the "cesium-selective" calix[4]arene-crown-6 family exhibits a high affinity for Fr+ ion. In the investigation, the transport of 221Fr+ and Cs+ ions by calix[4]arene-bis(benzocrown-6) from an aqueous sodium nitrate solution into the water-immiscible diluent 1,2-dichloroethane was measured and compared to address the question of selectivity of the calix-crown-6 cavity toward alkali metal ions of increasing size. Selective separation of 221Fr+ from its parent 225Ac and from the matrix Na+ ions was demonstrated. Higher distribution ratios were obtained than those for the Cs+ ion. The extraction equilibria were determined for the case of the Cs+ ion, and the same equilibria were shown to be applicable to the case of Fr+ with inclusion of additional competitive effects.

  5. Heavy metal ions adsorption from mine waters by sawdust

    Directory of Open Access Journals (Sweden)

    G. Bogdanović

    2009-10-01

    Full Text Available In this work the results on the batch and column adsorption of copper and some associated ions by employing linden and poplar sawdust as a low-cost adsorbent are presented. The mine water from a local abandoned copper mine, as well as synthetic solutions of those ions which are the main constituents of the mine water were both used as a model-system in this study. The adsorption ability of the chosen sawdust to adsorb heavy metal ions is considered as a function of the initial pH of the solution and kind of metal ions. At lower pH of solutions the adsorption percentage (AD % decreases leading to a zero AD % at pH < 1.1. Maximum AD % is achieved at 3.5 < pH < 5. It was found that poplar and linden sawdust have both almost equal adsorption capacities against copper ions. The highest AD % ( ≈80% was achieved for Cu2+, while for Fe2+ it was slightly above 10%. The other considered ions (Zn2+ and Mn2+ were within this interval. The results obtained in the batch mode were verified through the column test by using the real mine water originating from an acid mine drainage (AMD of the copper mine „Cerovo“, RTB Bor. The breakthrough curves are presented as a function of the aqueous phase volume passed through the column allowing having an insight into the column adsorption features. Breakthrough points were determined for copper, manganese and zinc ions. A very high adsorption degree – higher than 99% was achieved in these experiments for all mentioned ions. After completing the adsorption, instead of desorption, the loaded sawdust was drained, dried and burned; the copper bearing ash was then leached with a controlled volume of sulphuric acid solution to concentrate copper therein. The obtained leach solution had the concentration of copper higher than 15 g dm-3 and the amount of H2SO4 high enough to serve as a supporting electrolyte suitable to be treated by the electrowinning for recovery of copper. The technology process based on the column

  6. Sensitivity to Heavy-Metal Ions of Unfolded Fullerene Quantum Dots

    Directory of Open Access Journals (Sweden)

    Erica Ciotta

    2017-11-01

    Full Text Available A novel type of graphene-like quantum dots, synthesized by oxidation and cage-opening of C60 buckminsterfullerene, has been studied as a fluorescent and absorptive probe for heavy-metal ions. The lattice structure of such unfolded fullerene quantum dots (UFQDs is distinct from that of graphene since it includes both carbon hexagons and pentagons. The basic optical properties, however, are similar to those of regular graphene oxide quantum dots. On the other hand, UFQDs behave quite differently in the presence of heavy-metal ions, in that multiple sensitivity to Cu2+, Pb2+ and As(III was observed through comparable quenching of the fluorescent emission and different variations of the transmittance spectrum. By dynamic light scattering measurements and transmission electron microscope (TEM images we confirmed, for the first time in metal sensing, that this response is due to multiple complexation and subsequent aggregation of UFQDs. Nonetheless, the explanation of the distinct behaviour of transmittance in the presence of As(III and the formation of precipitate with Pb2+ require further studies. These differences, however, also make it possible to discriminate between the three metal ions in view of the implementation of a selective multiple sensor.

  7. Selective Ion-permeation through Strained and Charged Graphene Membranes.

    Science.gov (United States)

    Li, Kun; Tao, Yi; Li, Zhongwu; Sha, Jingjie; Chen, Yunfei

    2017-11-16

    By means of molecular dynamics (MD) simulations and density functional theory (DFT) calculations, we demonstrate that stretched and charged graphene can act as ion sieve membranes. It is observed that loading 30% strain on graphene can induce pores in the dense electron cloud to allow ions to pass through the aromatic rings. Meanwhile, charged surface is helpful to peel the hydration layers from the ions and decrease the energy barrier for ion translocation through nanopores. Our results suggest that with membrane charge density of 6.80 e/nm2, Li+ can be highly purified from the mixed solution including Li+, K+, Na+ and Cl- ions. Further increasing the charge density to 15.78 e/nm2 can obtain excellent Na+/K+ selectivity. The potential of mean force (PMF) profiles of ion permeation reveal that the potential for each ion is quite different. Fine tuning membrane charge density, pristine monolayer graphene can act as ion sieves with both high permeability and high selectivity. © 2017 IOP Publishing Ltd.

  8. Selective ion-permeation through strained and charged graphene membranes

    Science.gov (United States)

    Li, Kun; Tao, Yi; Li, Zhongwu; Sha, Jingjie; Chen, Yunfei

    2018-01-01

    By means of molecular dynamics simulations and density functional theory calculations, we demonstrate that stretched and charged graphene can act as ion sieve membranes. It is observed that loading 30% strain on graphene can induce pores in the dense electron cloud to allow ions to pass through the aromatic rings. Meanwhile, a charged surface is helpful to peel the hydration layers from the ions and decrease the energy barrier for ion translocation through nanopores. Our results suggest that with a membrane charge density of 6.80 e nm‑2, Li+ can be highly purified from the mixed solution including Li+, K+, Na+ and Cl‑ ions. Further increasing the charge density to 15.78 e nm‑2 can obtain excellent Na+/K+ selectivity. The potential of mean force profiles of ion permeation reveal that the potential for each ion is quite different. By fine tuning membrane charge density, pristine monolayer graphene can act as ion sieves with both high permeability and high selectivity.

  9. Luminescent zinc metal-organic framework (ZIF-90) for sensing metal ions, anions and small molecules.

    Science.gov (United States)

    Liu, Chang; Yan, Bing

    2015-09-26

    We synthesize a zinc zeolite-type metal-organic framework, the zeolitic imidazolate framework (ZIF-90), which exhibits an intense blue luminescence excited under visible light. Luminescent studies indicate that ZIF-90 could be an efficient multifunctional fluorescence material for high sensitivity metal ions, anions and organic small molecules, especially for Cd(2+), Cu(2+), CrO4(2-) and acetone. The luminescence intensity of ZIF-90 increases with the concentration of Cd(2+) and decreases proportionally with the concentration of Cu(2+), while the same quenched experimental phenomena appear in the sensing of CrO4(2-). With the increase of the amount of acetone, the luminescence intensity decreases gradually in the emulsions of ZIF-90. The mechanism of the sensing properties is studied in detail as well. This study shows that ZIF-90 could be a useful luminescent sensor for metal ions, anions and organic small molecules.

  10. Ion mass and energy selective hyperthermal ion-beam assisted deposition setup

    Science.gov (United States)

    Gerlach, J. W.; Schumacher, P.; Mensing, M.; Rauschenbach, S.; Cermak, I.; Rauschenbach, B.

    2017-06-01

    For the synthesis of high-quality thin films, ion-beam assisted deposition (IBAD) is a frequently used technique providing precise control over several substantial film properties. IBAD typically relies on the use of a broad-beam ion source. Such ion sources suffer from the limitation that they deliver a blend of ions with different ion masses, each of them possessing a certain distribution of kinetic energy. In this paper, a compact experimental setup is presented that enables the separate control of ion mass and ion kinetic energy in the region of hyperthermal energies (few 1 eV - few 100 eV). This ion energy region is of increasing interest not only for ion-assisted film growth but also for the wide field of preparative mass spectrometry. The setup consists of a constricted glow-discharge plasma beam source and a tailor-made, compact quadrupole system equipped with entry and exit ion optics. It is demonstrated that the separation of monoatomic and polyatomic nitrogen ions (N+ and N2+) is accomplished. For both ion species, the kinetic energy is shown to be selectable in the region of hyperthermal energies. At the sample position, ion current densities are found to be in the order of 1 μA/cm2 and the full width at half maximum of the ion beam profile is in the order of 10 mm. Thus, the requirements for homogeneous deposition processes in sufficiently short periods of time are fulfilled. Finally, employing the described setup, for the first time in practice epitaxial GaN films were deposited. This opens up the opportunity to fundamentally study the influence of the simultaneous irradiation with hyperthermal ions on the thin film growth in IBAD processes and to increase the flexibility of the technique.

  11. Portable Multispectral Colorimeter for Metallic Ion Detection and Classification

    Science.gov (United States)

    Jaimes, Ruth F. V. V.; Borysow, Walter; Gomes, Osmar F.; Salcedo, Walter J.

    2017-01-01

    This work deals with a portable device system applied to detect and classify different metallic ions as proposed and developed, aiming its application for hydrological monitoring systems such as rivers, lakes and groundwater. Considering the system features, a portable colorimetric system was developed by using a multispectral optoelectronic sensor. All the technology of quantification and classification of metallic ions using optoelectronic multispectral sensors was fully integrated in the embedded hardware FPGA ( Field Programmable Gate Array) technology and software based on virtual instrumentation (NI LabView®). The system draws on an indicative colorimeter by using the chromogen reagent of 1-(2-pyridylazo)-2-naphthol (PAN). The results obtained with the signal processing and pattern analysis using the method of the linear discriminant analysis, allows excellent results during detection and classification of Pb(II), Cd(II), Zn(II), Cu(II), Fe(III) and Ni(II) ions, with almost the same level of performance as for those obtained from the Ultravioled and visible (UV-VIS) spectrophotometers of high spectral resolution. PMID:28788082

  12. Portable Multispectral Colorimeter for Metallic Ion Detection and Classification

    Directory of Open Access Journals (Sweden)

    Mauro S. Braga

    2017-07-01

    Full Text Available This work deals with a portable device system applied to detect and classify different metallic ions as proposed and developed, aiming its application for hydrological monitoring systems such as rivers, lakes and groundwater. Considering the system features, a portable colorimetric system was developed by using a multispectral optoelectronic sensor. All the technology of quantification and classification of metallic ions using optoelectronic multispectral sensors was fully integrated in the embedded hardware FPGA ( Field Programmable Gate Array technology and software based on virtual instrumentation (NI LabView®. The system draws on an indicative colorimeter by using the chromogen reagent of 1-(2-pyridylazo-2-naphthol (PAN. The results obtained with the signal processing and pattern analysis using the method of the linear discriminant analysis, allows excellent results during detection and classification of Pb(II, Cd(II, Zn(II, Cu(II, Fe(III and Ni(II ions, with almost the same level of performance as for those obtained from the Ultravioled and visible (UV-VIS spectrophotometers of high spectral resolution.

  13. Distinct differences in metal ion specificity of RNA and DNA G-quadruplexes.

    Science.gov (United States)

    Guiset Miserachs, Helena; Donghi, Daniela; Börner, Richard; Johannsen, Silke; Sigel, Roland K O

    2016-12-01

    RNA G-quadruplexes, as their well-studied DNA analogs, require the presence of cations to fold and remain stable. This is the first comprehensive study on the interaction of RNA quadruplexes with metal ions. We investigated the formation and stability of two highly conserved and biologically relevant RNA quadruplex-forming sequences (24nt-TERRA and 18nt-NRAS) in the presence of several monovalent and divalent metal ions, namely Li + , Na + , K + , Rb + , Cs + , NH 4 + , Mg 2+ , Ca 2+ , Sr 2+ , and Ba 2+ . Circular dichroism was used to probe the influence of these metal ions on the folded fraction of the parallel G-quadruplexes, and UV thermal melting experiments allowed to assess the relative stability of the structures in each cationic condition. Our results show that the RNA quadruplexes are more stable than their DNA counterparts under the same buffer conditions. We have observed that the addition of mainly Na + , K + , Rb + , NH 4 + , as well as Sr 2+ and Ba 2+ in water, shifts the equilibrium to the folded quadruplex form, whereby the NRAS sequence responds stronger than TERRA. However, only K + and Sr 2+ lead to a significant increase in the stability of the folded structures, which is consistent with their coordination to the O6 atoms from the G-quartet guanosines. Compared to the respective DNA motives, dNRAS and htelo, the RNA sequences are not stabilized by Na + ions. Finally, the difference in response between NRAS and TERRA, as well as to the corresponding DNA sequences with respect to different metal ions, could potentially be exploited for selective targeting purposes.

  14. Industrial hygiene of selected heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Woodring, J.L.

    1993-08-01

    The industrial hygiene of heavy metals consists of recognition, evaluation, and control of exposures in the occupational environment. Several of these metals have been in use since ancient times. Reports of health effects and poisonings from overexposures also have a long history. This report discusses the industrial hygiene of the heavy metals, lead, cadmium, mercury, and manganese.

  15. Ultrasensitive and highly selective detection of Cu2 + ions based on a new carbazole-Schiff

    Science.gov (United States)

    Yin, Jun; Bing, Qijing; Wang, Lin; Wang, Guang

    2018-01-01

    A new chemosensor for Cu2 + based on Schiff base with high sensitivity and selectivity was designed and synthesized. The fluorescence intensity of the chemosensor in CH3CN solution was enhanced 160-fold after the addition of 10 equiv. Cu2 + over other metal ions. In addition, it also facilitates colorimetric detection for Cu2 + in CH3CN solution. The chemosensor displayed low detection limit and fast response time to Cu2 +.

  16. The Effect of Complex Formation upon the Redox Potentials of Metallic Ions. Cyclic Voltammetry Experiments.

    Science.gov (United States)

    Ibanez, Jorge G.; And Others

    1988-01-01

    Describes experiments in which students prepare in situ soluble complexes of metal ions with different ligands and observe and estimate the change in formal potential that the ion undergoes upon complexation. Discusses student formation and analysis of soluble complexes of two different metal ions with the same ligand. (CW)

  17. Metal-organic frameworks for lithium ion batteries and supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Ke, Fu-Sheng; Wu, Yu-Shan; Deng, Hexiang, E-mail: hdeng@whu.edu.cn

    2015-03-15

    Porous materials have been widely used in batteries and supercapacitors attribute to their large internal surface area (usually 100–1000 m{sup 2} g{sup −1}) and porosity that can favor the electrochemical reaction, interfacial charge transport, and provide short diffusion paths for ions. As a new type of porous crystalline materials, metal-organic frameworks (MOFs) have received huge attention in the past decade due to their unique properties, i.e. huge surface area (up to 7000 m{sup 2} g{sup −1}), high porosity, low density, controllable structure and tunable pore size. A wide range of applications including gas separation, storage, catalysis, and drug delivery benefit from the recent fast development of MOFs. However, their potential in electrochemical energy storage has not been fully revealed. Herein, the present mini review appraises recent and significant development of MOFs and MOF-derived materials for rechargeable lithium ion batteries and supercapacitors, to give a glimpse into these potential applications of MOFs. - Graphical abstract: MOFs with large surface area and high porosity can offer more reaction sites and charge carriers diffusion path. Thus MOFs are used as cathode, anode, electrolyte, matrix and precursor materials for lithium ion battery, and also as electrode and precursor materials for supercapacitors. - Highlights: • MOFs have potential in electrochemical area due to their high porosity and diversity. • We summarized and compared works on MOFs for lithium ion battery and supercapacitor. • We pointed out critical challenges and provided possible solutions for future study.

  18. Selective and Efficient Solvent Extraction of Copper(II Ions from Chloride Solutions by Oxime Extractants

    Directory of Open Access Journals (Sweden)

    Zahra Kaboli Tanha

    2016-06-01

    Full Text Available Oxime extractants 3-tert-butyl-2-hydroxy-5-methyl benzaldehyde oxime (HL1 and 3-tert-butyl-2-hydroxy-5-methoxy benzaldehyde oxime (HL2 were synthesized and characterized by conventional spectroscopic methods. Suitable lipophilic nature of the prepared extractants allowed examining the ability of these molecules for extraction-separation of copper from its mixture with normally associated metal ions by performing competitive extraction experiments of Cu(II, Co(II, Ni(II, Zn(II, Cd(II and Pb(II ions from chloride solutions. Both ligands transfer selectively the copper ions into dichloromethane by a cation exchange mechanism. Conventional log-log analysis and isotherm curves showed that Cu(II ions are extracted as the complexes with 1:2 metal to ligand ratio by both extractants. Verification of the effect of the organic diluent used in the extraction of copper ions by HL1 and HL2 demonstrated that the extraction efficiency varies as: dichloromethane ~ dichloroethane > toluene > xylene > ethylacetate. Time dependency investigation of the extraction processes revealed that the kinetics of the extraction of copper by HL2 is more rapid than that of HL1. The application of the ligands for extraction-separation of copper ions from leach solutions of cobalt and nickel-cadmium filter-cakes of a zinc production plants was evaluated.

  19. Metal-organic frameworks for lithium ion batteries and supercapacitors

    Science.gov (United States)

    Ke, Fu-Sheng; Wu, Yu-Shan; Deng, Hexiang

    2015-03-01

    Porous materials have been widely used in batteries and supercapacitors attribute to their large internal surface area (usually 100-1000 m2 g-1) and porosity that can favor the electrochemical reaction, interfacial charge transport, and provide short diffusion paths for ions. As a new type of porous crystalline materials, metal-organic frameworks (MOFs) have received huge attention in the past decade due to their unique properties, i.e. huge surface area (up to 7000 m2 g-1), high porosity, low density, controllable structure and tunable pore size. A wide range of applications including gas separation, storage, catalysis, and drug delivery benefit from the recent fast development of MOFs. However, their potential in electrochemical energy storage has not been fully revealed. Herein, the present mini review appraises recent and significant development of MOFs and MOF-derived materials for rechargeable lithium ion batteries and supercapacitors, to give a glimpse into these potential applications of MOFs.

  20. Removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycled coal fly ash.

    Science.gov (United States)

    Hui, K S; Chao, C Y H; Kot, S C

    2005-12-09

    The removal performance and the selectivity sequence of mixed metal ions (Co(2+), Cr(3+), Cu(2+), Zn(2+) and Ni(2+)) in aqueous solution were investigated by adsorption process on pure and chamfered-edge zeolite 4A prepared from coal fly ash (CFA), commercial grade zeolite 4A and the residual products recycled from CFA. The pure zeolite 4A (prepared from CFA) was synthesized under a novel temperature step-change method with reduced synthesis time. Batch method was employed to study the influential parameters such as initial metal ions concentration, adsorbent dose, contact time and initial pH of the solution on the adsorption process. The experimental data were well fitted by the pseudo-second-order kinetics model (for Co(2+), Cr(3+), Cu(2+) and Zn(2+) ions) and the pseudo-first-order kinetics model (for Ni(2+) ions). The equilibrium data were well fitted by the Langmuir model and showed the affinity order: Cu(2+) > Cr(3+) > Zn(2+) > Co(2+) > Ni(2+) (CFA prepared and commercial grade zeolite 4A). The adsorption process was found to be pH and concentration dependent. The sorption rate and sorption capacity of metal ions could be significantly improved by increasing pH value. The removal mechanism of metal ions was by adsorption and ion exchange processes. Compared to commercial grade zeolite 4A, the CFA prepared adsorbents could be alternative materials for the treatment of wastewater.

  1. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiangping; Chen, Yongbin; Zhou, Tao, E-mail: zhoutao@csu.edu.cn; Liu, Depei; Hu, Hang; Fan, Shaoyun

    2015-04-15

    Highlights: • Selective precipitation and solvent extraction were adopted. • Nickel, cobalt and lithium were selectively precipitated. • Co-D2EHPA was employed as high-efficiency extraction reagent for manganese. • High recovery percentages could be achieved for all metal values. - Abstract: Environmentally hazardous substances contained in spent Li-ion batteries, such as heavy metals and nocuous organics, will pose a threat to the environment and human health. On the other hand, the sustainable recycling of spent lithium-ion batteries may bring about environmental and economic benefits. In this study, a hydrometallurgical process was adopted for the comprehensive recovery of nickel, manganese, cobalt and lithium from sulfuric acid leaching liquor from waste cathode materials of spent lithium-ion batteries. First, nickel ions were selectively precipitated and recovered using dimethylglyoxime reagent. Recycled dimethylglyoxime could be re-used as precipitant for nickel and revealed similar precipitation performance compared with fresh dimethylglyoxime. Then the separation of manganese and cobalt was conducted by solvent extraction method using cobalt loaded D2EHPA. And McCabe–Thiele isotherm was employed for the prediction of the degree of separation and the number of extraction stages needed at specific experimental conditions. Finally, cobalt and lithium were sequentially precipitated and recovered as CoC{sub 2}O{sub 4}⋅2H{sub 2}O and Li{sub 2}CO{sub 3} using ammonium oxalate solution and saturated sodium carbonate solution, respectively. Recovery efficiencies could be attained as follows: 98.7% for Ni; 97.1% for Mn, 98.2% for Co and 81.0% for Li under optimized experimental conditions. This hydrometallurgical process may promise a candidate for the effective separation and recovery of metal values from the sulfuric acid leaching liquor.

  2. A water-stable lanthanide metal-organic framework for fluorimetric detection of ferric ions and tryptophan.

    Science.gov (United States)

    Abdelhamid, Hani Nasser; Bermejo-Gómez, Antonio; Martín-Matute, Belén; Zou, Xiaodong

    2017-01-01

    The preparation of a highly water stable and porous lanthanide metal-organic framework (MOF) nanoparticles (denoted SUMOF-7II; SU refers to Stockholm University) is described. SUMOF-7II was synthesized starting from the tritopic linker of 2,4,6-tri-p-carboxyphenyl pyridine (H 3 L2) and La(III) as metal clusters. SUMOF-7II forms a stable dispersion and displays high fluorescence emission with small variation over the pH range of 6 to 12. Its fluorescence is selectively quenched by Fe(III) ions compared to other metal ions. The intensity of the fluorescene emission drops drops linearly in 16.6-167 μM Fe(III) concentration range, and Stern-Volmer plots are linear. The limit of detection (LOD) is 16.6 μM (at an S/ N  ratio of >3). This indicator probe can also be used for selective detection of tryptophan among several amino acids. Compared to the free linker H 3 L2, SUMOF-7II offers improved sensitivity and selectivity of the investigated species. Graphical abstractA water-stable porous lanthanide metal-organic framework SUMOF-7II (La) has shown to be an excellent probe for the detection of ferric ions among other metal ions, and tryptophan among other amino acids in aqueous solution. The new probe displays high and stable fluorescence signal in a wide pH range (6-12).

  3. Electrolyte materials containing highly dissociated metal ion salts

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H.S.; Geng, L.; Skotheim, T.A.

    1996-07-23

    The present invention relates to metal ion salts which can be used in electrolytes for producing electrochemical devices, including both primary and secondary batteries, photoelectrochemical cells and electrochromic displays. The salts have a low energy of dissociation and may be dissolved in a suitable polymer to produce a polymer solid electrolyte or in a polar aprotic liquid solvent to produce a liquid electrolyte. The anion of the salts may be covalently attached to polymer backbones to produce polymer solid electrolytes with exclusive cation conductivity. 2 figs.

  4. Electrolyte materials containing highly dissociated metal ion salts

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hung-Sui (East Setauket, NY); Geng, Lin (Coram, NY); Skotheim, Terje A. (Shoreham, NY)

    1996-07-23

    The present invention relates to metal ion salts which can be used in electrolytes for producing electrochemical devices, including both primary and secondary batteries, photoelectrochemical cells and electrochromic displays. The salts have a low energy of dissociation and may be dissolved in a suitable polymer to produce a polymer solid electrolyte or in a polar aprotic liquid solvent to produce a liquid electrolyte. The anion of the salts may be covalently attached to polymer backbones to produce polymer solid electrolytes with exclusive cation conductivity.

  5. Clusters distributions on charges and dimensions at ion metal sputtering

    CERN Document Server

    Matveev, V I

    2001-01-01

    The theory on the metal sputtering in form of large (with the atoms number N >= 5) neutral and charged clusters under the impact of the ion bombardment is considered. The probability of the cluster emission, consisting of the N atoms, is calculated on the basis of the Einstein model. The charge state of the cluster, consisting of the N atoms, is determined. The obtained formulae agree well with the experimental results. It is noted, that the mass-spectra of the neutral clusters slightly depend on the target temperature, whereas the mass-spectra of the single charge clusters essentially depend on the target temperature

  6. Self-organized formation of metal-carbon nanostructures by hyperthermal ion deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hannstein, I.K.

    2006-04-26

    The quasi-simultaneous deposition of mass-selected hyperthermal carbon and metal ions results in a variety of interesting film morphologies, depending on the metal used and the deposition conditions. The observed features are of the order of a few nanometres and are therefore interesting for future potential applications in the various fields of nanotechnology. The present study focuses on the structural analysis of amorphous carbon films containing either copper, silver, gold, or iron using amongst others Rutherford Backscattering Spectroscopy, High Resolution Transmission Electron Microscopy, and Energy Dispersive X-Ray Spectroscopy. The film morphologies found are as follows: copper-containing films consist of copper nanoclusters with sizes ranging from about 3 to 9 nm uniformly distributed throughout the amorphous carbon matrix. The cluster size hereby rises with the copper content of the films. The silver containing films decompose into a pure amorphous carbon film with silver agglomerates at the surface. Both, the gold- and the iron-containing films show a multilayer structure of metal-rich layers with higher cluster density separated by metal-depleted amorphous carbon layers. The layer distances are of the order of up to 15 nm in the case of gold-carbon films and 7 nm in the case of iron-carbon films. The formation of theses different structures cannot be treated in the context of conventional self-organization mechanisms basing upon thermal diffusion and equilibrium thermodynamics. Instead, an ion-induced atomic transport, sputtering effects, and the stability of small metal clusters were taken into account in order to model the structure formation processes. A similar multilayer morphology was recently also reported in the literature for metal-carbon films grown by magnetron sputtering techniques. In order to investigate, whether the mechanisms are the same as in the case of the ion beam deposited films described above, first experiments were conducted

  7. Convergent Evolution of Sodium Ion Selectivity in Metazoan Neuronal Signaling

    Directory of Open Access Journals (Sweden)

    Maya Gur Barzilai

    2012-08-01

    Full Text Available Ion selectivity of metazoan voltage-gated Na+ channels is critical for neuronal signaling and has long been attributed to a ring of four conserved amino acids that constitute the ion selectivity filter (SF at the channel pore. Yet, in addition to channels with a preference for Ca2+ ions, the expression and characterization of Na+ channel homologs from the sea anemone Nematostella vectensis, a member of the early-branching metazoan phylum Cnidaria, revealed a sodium-selective channel bearing a noncanonical SF. Mutagenesis and physiological assays suggest that pore elements additional to the SF determine the preference for Na+ in this channel. Phylogenetic analysis assigns the Nematostella Na+-selective channel to a channel group unique to Cnidaria, which diverged >540 million years ago from Ca2+-conducting Na+ channel homologs. The identification of Cnidarian Na+-selective ion channels distinct from the channels of bilaterian animals indicates that selectivity for Na+ in neuronal signaling emerged independently in these two animal lineages.

  8. Novel forward osmosis process to effectively remove heavy metal ions

    KAUST Repository

    Cui, Yue

    2014-10-01

    In this study, a novel forward osmosis (FO) process for the removal of heavy metal ions from wastewater was demonstrated for the first time. The proposed FO process consists of a thin-film composite (TFC) FO membrane made from interfacial polymerization on a macrovoid-free polyimide support and a novel bulky hydroacid complex Na4[Co(C6H4O7)2]·r2H2O (Na-Co-CA) as the draw solute to minimize the reverse solute flux. The removal of six heavy metal solutions, i.e., Na2Cr2O7, Na2HAsO4, Pb(NO3)2, CdCl2, CuSO4, Hg(NO3)2, were successfully demonstrated. Water fluxes around 11L/m2/h (LMH) were harvested with heavy metals rejections of more than 99.5% when employing 1M Na-Co-CA as the draw solution to process 2000ppm(1 ppm=1 mg/L) heavy metal solutions at room temperature. This FO performance outperforms most nanofiltration (NF) processes. In addition, the high rejections were maintained at 99.5% when a more concentrated draw solution (1.5M) or feed solution (5000ppm) was utilized. Furthermore, rejections greater than 99.7% were still achieved with an enhanced water flux of 16.5LMH by operating the FO process at 60°C. The impressive heavy metal rejections and satisfactory water flux under various conditions suggest great potential of the newly developed FO system for the treatment of heavy metal wastewater. © 2014 Elsevier B.V.

  9. Tuning the ion selectivity of two-pore channels

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jiangtao; Zeng, Weizhong; Jiang, Youxing (UTSMC)

    2017-01-17

    Organellar two-pore channels (TPCs) contain two copies of a Shaker-like six-transmembrane (6-TM) domain in each subunit and are ubiquitously expressed in plants and animals. Interestingly, plant and animal TPCs share high sequence similarity in the filter region, yet exhibit drastically different ion selectivity. Plant TPC1 functions as a nonselective cation channel on the vacuole membrane, whereas mammalian TPC channels have been shown to be endo/lysosomal Na+-selective or Ca2+-release channels. In this study, we performed systematic characterization of the ion selectivity of TPC1 from Arabidopsis thaliana (AtTPC1) and compared its selectivity with the selectivity of human TPC2 (HsTPC2). We demonstrate that AtTPC1 is selective for Ca2+ over Na+, but nonselective among monovalent cations (Li+, Na+, and K+). Our results also confirm that HsTPC2 is a Na+-selective channel activated by phosphatidylinositol 3,5-bisphosphate. Guided by our recent structure of AtTPC1, we converted AtTPC1 to a Na+-selective channel by mimicking the selectivity filter of HsTPC2 and identified key residues in the TPC filters that differentiate the selectivity between AtTPC1 and HsTPC2. Furthermore, the structure of the Na+-selective AtTPC1 mutant elucidates the structural basis for Na+ selectivity in mammalian TPCs.

  10. Conducting ion tracks generated by charge-selected swift heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Srashti, E-mail: srashti.3@gmail.com [II. Physikalisches Institut, Universität Göttingen, 37077 Göttingen (Germany); Department of Physics & Astrophysics, Delhi University, New Delhi, Delhi 110007 (India); Gehrke, H.G., E-mail: h.gehrke@fz-juelich.de [II. Physikalisches Institut, Universität Göttingen, 37077 Göttingen (Germany); Forschungszentrum Jülich, 52425 Jülich (Germany); Krauser, J., E-mail: jkrauser@hs-harz.de [Harz University of Applied Sciences, 38855 Wernigerode (Germany); Trautmann, C., E-mail: C.Trautmann@gsi.de [Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt (Germany); Technische Universität Darmstadt, Alarich-Weiss-Straße2, 64287 Darmstadt (Germany); Severin, D., E-mail: D.Severin@gsi.de [Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt (Germany); Bender, M., E-mail: M.Bender@gsi.de [Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt (Germany); Rothard, H., E-mail: rothard@ganil.fr [Centre de Recherche sur les Ions, les Materiaux et la Photonique, CIMAP-CIRIL-Ganil, F-14070 Caen (France); Hofsäss, H., E-mail: hans.hofsaess@phys.uni-goettingen.de [II. Physikalisches Institut, Universität Göttingen, 37077 Göttingen (Germany)

    2016-08-15

    Conducting ion tracks in tetrahedral amorphous carbon (ta-C) thin films were generated by irradiation with swift heavy ions of well-defined charge state. The conductivity of tracks and the surface topography of the films, showing characteristic hillocks at each track position, were investigated using conductive atomic force microscopy measurements. The dependence of track conductivity and hillock size on the charge state of the ions was studied using 4.6 MeV/u Pb ions of charge state 53+, 56+ and 60+ provided by GANIL, as well as 4.8 MeV/u Bi and Au ions of charge state from 50+ to 61+ and 4.2 MeV/u {sup 238}U ions in equilibrium charge state provided by UNILAC of GSI. For the charge state selection at GSI, an additional stripper-foil system was installed at the M-branch that now allows routine irradiations with ions of selected charge states. The conductivity of tracks in ta-C increases significantly when the charge state increases from 51+ to 60+. However, the conductivity of individual tracks on the same sample still shows large variations, indicating that tracks formed in ta-C are either inhomogeneous or the conductivity is limited by the interface between ion track and Si substrate.

  11. Fluorescent ion-imprinted polymers for selective Cu(II) optosensing.

    Science.gov (United States)

    Pinheiro, Silvia C Lopes; Descalzo, Ana B; Raimundo, Ivo M; Orellana, Guillermo; Moreno-Bondi, María C

    2012-04-01

    This paper describes the synthesis and characterization of a fluorescent ion-imprinted polymer (IIP) for selective determination of copper ions in aqueous samples. The IIP has been prepared using a novel functional monomer, 4-[(E)-2-(4'-methyl-2,2'-bipyridin-4-yl)vinyl]phenyl methacrylate (abbreviated as BSOMe) that has been spectroscopically characterized in methanolic solution, in the absence and in the presence of several metal ions, including Cd(II), Cu(II), Hg(II), Ni(II), Pb(II), and Zn(II). The stability constant (2.04 × 10(8) mol(-2) l(2)) and stoichiometry (L(2)M) of the BSOMe complex with Cu(II) were extracted thereof. Cu(II)-IIPs were prepared by radical polymerization using stoichiometric amounts of the fluorescent monomer and the template metal ion. The resulting cross-linked network did not show any leaching of the immobilized ligand allowing determination of Cu(II) in aqueous samples by fluorescence quenching measurements. Several parameters affecting optosensor performance have been optimized, including sample pH, ionic strength, or polymer regeneration for online analysis of water samples. The synthesized Cu(II)-IIP exhibits a detection limit of 0.04 μmol l(-1) for the determination of Cu(II) in water samples with a reproducibility of 3%, exhibiting an excellent selectivity towards the template ion over other metal ions with the same charge and close ionic radius. The IIP-based optosensor has been repeatedly used and regenerated for more than 50 cycles without a significant decrease in the luminescent properties and binding affinity of the sensing phase.

  12. Structure of the alkali-metal-atom + strontium molecular ions: Towards photoassociation and formation of cold molecular ions

    Energy Technology Data Exchange (ETDEWEB)

    Aymar, M.; Dulieu, O. [Laboratoire Aime Cotton, CNRS, UPR3321, Ba circumflex t. 505, Univ Paris-Sud, 91405 Orsay Cedex (France); Guerout, R. [Laboratoire Kastler-Brossel, CNRS, ENS, Univ Pierre et Marie Curie case 74, Campus Jussieu, F-75252 Paris Cedex 05 (France)

    2011-08-14

    The potential energy curves, permanent and transition dipole moments, and the static dipolar polarizability, of molecular ions composed of one alkali-metal atom and a strontium ion are determined with a quantum chemistry approach. The molecular ions are treated as effective two-electron systems and are treated using effective core potentials including core polarization, large gaussian basis sets, and full configuration interaction. In the perspective of upcoming experiments aiming at merging cold atom and cold ion traps, possible paths for radiative charge exchange, photoassociation of a cold lithium or rubidium atom and a strontium ion are discussed, as well as the formation of stable molecular ions.

  13. Acetabular bone density and metal ions after metal-on-metal versus metal-on-polyethylene total hip arthroplasty; short-term results

    NARCIS (Netherlands)

    Zijlstra, Wierd P.; van der Veen, Hugo C.; van den Akker-Scheek, Inge; Zee, Mark J. M.; Bulstra, Sjoerd K.; van Raay, Jos J. A. M.

    Information on periprosthetic acetabular bone density is lacking for metal-on-metal total hip arthroplasties. These bearings use cobalt-chromium instead of titanium acetabular components, which could lead to stress shielding and hence periprosthetic bone loss. Cobalt and chromium ions have

  14. Processing metallic glasses by selective laser melting

    OpenAIRE

    Pauly, Simon; Löber, Lukas; Petters, Romy; Stoica, Mihai; Scudino, Sergio; Kühn, Uta; Eckert, Jürgen

    2013-01-01

    Metallic glasses and their descendants, the so-called bulk metallic glasses (BMGs), can be regarded as frozen liquids with a high resistance to crystallization. The lack of a conventional structure turns them into a material exhibiting near-theoretical strength, low Young's modulus and large elasticity. These unique mechanical properties can be only obtained when the metallic melts are rapidly cooled to bypass the nucleation and growth of crystals. Most of the commonly known and used processi...

  15. Integrated ion imprinted polymers-paper composites for selective and sensitive detection of Cd(II) ions

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Kai [State Key Laboratory of Environment Health - Incubation, Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health Wuhan, Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Hubei, 430030, Wuhan (China); Chen, Ying [Hubei Center for Disease Control and Prevention, No. 6 ZhuoDao Quan North Road, 430079, Wuhan (China); Zhou, Feng [State Key Laboratory of Environment Health - Incubation, Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health Wuhan, Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Hubei, 430030, Wuhan (China); Zhao, Xiaoya [Hubei Entry-Exit Inspection and Quarantine Bureau of PRC, No.588 Qingtaidadao Road, Hubei, 430022, Wuhan (China); Liu, Jiafa [Hubei Center for Disease Control and Prevention, No. 6 ZhuoDao Quan North Road, 430079, Wuhan (China); Mei, Surong; Zhou, Yikai [State Key Laboratory of Environment Health - Incubation, Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health Wuhan, Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Hubei, 430030, Wuhan (China); Jing, Tao, E-mail: jingtao@hust.edu.cn [State Key Laboratory of Environment Health - Incubation, Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health Wuhan, Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Hubei, 430030, Wuhan (China)

    2017-07-05

    Highlights: • IIPs are first grafted on the low-cost A4 print paper to develop an integrated paper-based device. • As an imprinted composite, the adsorption capacity is 155.2 mg g{sup –1} and the imprinted factor is more than 3.0. • As an analytical method, the limit of detection is 0.4 ng mL{sup –1}. • Based on the water quality standards, it could be used to determine Cd(II) ions in drinking water. - Abstract: Paper-based sensor is a new alternative technology to develop a portable, low-cost, and rapid analysis system in environmental chemistry. In this study, ion imprinted polymers (IIPs) using cadmium ions as the template were directly grafted on the surface of low-cost print paper based on the reversible addition-fragmentation chain transfer polymerization. It can be applied as a recognition element to selectively capture the target ions in the complex samples. The maximum adsorption capacity of IIPs composites was 155.2 mg g{sup –1} and the imprinted factor was more than 3.0. Then, IIPs-paper platform could be also applied as a detection element for highly selective and sensitive detection of Cd(II) ions without complex sample pretreatment and expensive instrument, due to the selective recognition, formation of dithizone-cadmium complexes and light transmission ability. Under the optimized condition, the linear range was changed from 1 to 100 ng mL{sup –1} and the limit of detection was 0.4 ng mL{sup –1}. The results were in good agreement with the classic ICP-MS method. Furthermore, the proposed method can also be developed for detection of other heavy metals by designing of new IIPs.

  16. High blood metal ion levels in 19 of 22 patients with metal-on-metal hinge knee replacements.

    Science.gov (United States)

    Laitinen, Minna; Nieminen, Jyrki; Reito, Aleksi; Pakarinen, Toni-Karri; Suomalainen, Piia; Pamilo, Konsta; Parkkinen, Jyrki; Lont, Tonis; Eskelinen, Antti

    2017-06-01

    Background and purpose - There has been increasing alarm regarding metal-on-metal (MoM) joint replacements leading to elevated levels of metal ions and adverse reactions to metal debris (ARMDs). There is little information available concerning the prevalence of and risk factors for these adverse reactions, except with MoM hip joint replacements. We determined the levels of metal ions in blood and the rate of revision due to ARMDs in patients treated with MoM hinge total knee arthroplasty (TKA). Patients and methods - 22 patients with TKAs and MoM hinge connecting mechanisms were studied for whole-blood chromium and cobalt levels at 6 months, 1 year, and/or ≥2 years after surgery. Possible ARMDs were investigated by MRI. 12 patients with TKAs and metal-on-polyethylene (MoP) connecting mechanisms served as controls. Results - The cobalt levels were over 5 ppb in 19 of the 22 patients in the MoM group and in 1 of the 12 patients in the MoP group. The chromium levels were over 5 ppb in 11 of the 22 patients in the MoM group and in none of the 12 patients in the MoP group. Pseudotumors were operated in 4 of the 22 patients in the MoM group and in none of the patients in the MoP group. Interpretation - Our results clearly show that the MoM hinge TKA carries a high risk of increased levels of systemic metal ions and also local ARMD, leading to complicated knee revisions. We therefore discourage the use of MoM hinge TKA.

  17. Isotherms and thermodynamics for the sorption of heavy metal ions onto functionalized sporopollenin

    Energy Technology Data Exchange (ETDEWEB)

    Gubbuk, Ilkay Hilal, E-mail: ihilalg@gmail.com [Selcuk University, Department of Chemistry, Campus, 42031 Konya (Turkey)

    2011-02-15

    In this study, sporopollenin of Lycopodium clavatum spores was used for the sorption experiment. Glutaraldehyde (GA) immobilized sporopollenin (Sp), is employed as a sorbent in sorption of selected heavy metal ions. The sorbent prepared by sequential treatment of sporopollenin by silanazing compound and glutaraldehyde is suggested for sorption of Cu(II), Zn(II) and Co(II) from aqueous solutions. Experimental conditions for effective sorption of heavy metal ions were optimized with respect to different experimental parameters using batch method in detail. Optimum pH range of Cu(II) has occurred at pH {>=} 5.5 and Zn(II), Co(II) at pH {>=} 5.0, for the batch method. All of the metal ions can be desorbed with 10 cm{sup 3} of 0.5 mol dm{sup -3} of ethylenediaminetetraacetic acid (EDTA) solution. Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherm equations were applied to the experimental data. Thermodynamic parameters such as free energy ({Delta}G{sup o}), entropy ({Delta}S{sup o}) and enthalpy ({Delta}H{sup o}) were also calculated from the sorption results used to explain the mechanism of the sorption. The results indicated that this sorbent is successfully employed in the separation of trace Cu(II), Zn(II) and Co(II) from the aqueous solutions.

  18. Postage stamp-sized array sensor for the sensitive screening test of heavy-metal ions.

    Science.gov (United States)

    Zhang, Yu; Li, Xiao; Li, Hui; Song, Ming; Feng, Liang; Guan, Yafeng

    2014-10-07

    The sensitive determination of heavy-metal ions has been widely investigated in recent years due to their threat to the environment and to human health. Among various analytical detection techniques, inexpensive colorimetric testing papers/strips play a very important role. The limitation, however, is also clear: the sensitivity is usually low and the selectivity is poor. In this work, we have developed a postage stamp-sized array sensor composed of nine commercially available heterocyclic azo indicators. Combining filtration-based enrichment with an array of technologies-based pattern-recognition, we have obtained the discrimination capability for seven heavy-metal ions (Hg(2+), Pb(2+), Ag(+), Ni(2+), Cu(2+), Zn(2+), and Co(2+)) at their Chinese wastewater discharge standard concentrations. The allowable detection level of Hg(2+) was down to 0.05 mg L(-1). The heavy-metal ions screening test was readily achieved using a standard chemometric approach. And the array sensor applied well in real water samples.

  19. Selective Liquid-Liquid Extraction of Lead Ions Using Newly Synthesized Extractant 2-(Dibutylcarbamoylbenzoic Acid

    Directory of Open Access Journals (Sweden)

    Hossein Soltani

    2015-12-01

    Full Text Available A new carboxylic acid extractant, named 2-(dibutylcarbamoylbenzoic acid, is prepared and its potential for selective solvent extraction and recovery of lead ions from industrial samples was investigated. The slope analysis indicated that the lead ions are extracted by formation of 1:2 metal to ligand complexes. The effect of the parameters influencing the extraction efficiency including kind of the organic diluent, extractant concentration, type of the salt used for ionic strength adjustment, contact time and temperature was evaluated and discussed. Under optimized conditions (aqueous phase: 5 ml, initial lead concentration 1 × 10-4 M, pH 4, sodium chloride 0.1 M; organic phase: 5 ml dichloromethane, ligand concentration 0.05 M, a quantitative (75.2 ± 0.8% and highly selective extraction of lead ions in the presence of zinc, nickel, cobalt and cadmium ions (each 1 × 10-4 M was achieved, after 20 min. magnetically stirring of the phases, at      25 °C. The extracted lead ions were stripped from the organic phase by diluted nitric acid (0.1 M solution. The proposed method was successfully applied for separation of lead from industrial samples. The study of the effect of temperature allowed evaluating the thermodynamic parameters of the extraction process of lead ions by the studied extractant into dichloromethane.

  20. Specificity of the metalloregulator CueR for monovalent metal ions

    DEFF Research Database (Denmark)

    Szunyogh, Dániel; Szokolai, Hajnalka; Thulstrup, Peter Waaben

    2015-01-01

    Metal-ion-responsive transcriptional regulators within the MerR family effectively discriminate between mono- and divalent metal ions. Herein we address the origin of the specificity of the CueR protein for monovalent metal ions. Several spectroscopic techniques were employed to study Ag(I) , Zn...... members of the MerR family is proposed. For CueR, the mechanism relies on the protonation of Cys 112....

  1. Mutual separation of metal ions by dithizone extraction-isotachophoresis on the basis of HSAB principle

    Energy Technology Data Exchange (ETDEWEB)

    Kawamoto, Hiroshi; Itabashi, Hideyuki; Ohnuki, Tomoyuki (Gunma Univ., Kiryu (Japan). Faculty of Engineering)

    1994-09-01

    Based on the hard and soft acids and bases (HSAB) principle, a method for extraction of metal ions with dithizone was developed for preconcentration and separation of trace metal ions. The extracted metal ions in organic phase were back-extracted to EDTA solution. The resulting solution was applied to isotachophoretic analysis. The separation of zinc(II), cadmium(II) and lead(II) at the 10[sup -6] mol dm[sup -3] level could performed by the present method. (author).

  2. Electrochemical Investigation of Anthraquinone-Based Chemodosimeter for Cu2+ Metal Ion

    Directory of Open Access Journals (Sweden)

    Yeo Woon Yoon

    2013-01-01

    Full Text Available The electrochemical properties of an anthraquinone-containing Cu2+-promoted desulfurization chemodosimeter (AQCD in the presence of various metal ions were investigated by voltammetry. AQCD showed voltammetric changes toward divalent metal ions (M2+, which are similar to those of anthraquinone (AQ and 1-aminoanthraquinone (AQNH2 with the metal ions except Cu2+. This can be explained on the electrostatic interaction (AQCD-M2+ and chemodosimetric reaction (AQCD-Cu2+.

  3. MINAS-a database of Metal Ions in Nucleic AcidS

    OpenAIRE

    Joachim Schnabl; Pascal Suter; Roland K. O. Sigel

    2012-01-01

    Correctly folded into the respective native 3D structure, RNA and DNA are responsible for uncountable key functions in any viable organism. In order to exert their function, metal ion cofactors are closely involved in folding, structure formation and, e.g. in ribozymes, also the catalytic mechanism. The database MINAS, Metal Ions in Nucleic AcidS (http://www.minas.uzh.ch), compiles the detailed information on innersphere, outersphere and larger coordination environment of > 70 000 metal ions ...

  4. Facet-dependent electrochemical properties of Co3O4 nanocrystals toward heavy metal ions

    Science.gov (United States)

    Yu, Xin-Yao; Meng, Qiang-Qiang; Luo, Tao; Jia, Yong; Sun, Bai; Li, Qun-Xiang; Liu, Jin-Huai; Huang, Xing-Jiu

    2013-01-01

    We revealed an interesting facet-dependent electrochemical behavior toward heavy metal ions (HMIs) based on their adsorption behaviors. The (111) facet of Co3O4 nanoplates has better electrochemical sensing performance than that of the (001) facet of Co3O4 nanocubes. Adsorption measurements and density-functional theory (DFT) calculations reveals that adsorption of HMIs is responsible for the difference of electrochemical properties. Our combined experimental and theoretical studies provide a solid hint to explain the mechanism of electrochemical detection of HMIs using nanoscale metal oxides. Furthermore, this study not only suggests a promising new strategy for designing high performance electrochemical sensing interface through the selective synthesis of nanoscale materials exposed with different well-defined facets, but also provides a deep understanding for a more sensitive and selective electroanalysis at nanomaterials modified electrodes. PMID:24097175

  5. Redox Active Transition Metal ions Make Melanin Susceptible to Chemical Degradation Induced by Organic Peroxide.

    Science.gov (United States)

    Zadlo, Andrzej; Pilat, Anna; Sarna, Michal; Pawlak, Anna; Sarna, Tadeusz

    2017-12-01

    With aging, retinal pigment epithelium melanosomes, by fusion with the age pigment lipofuscin, form complex granules called melanolipofuscin. Lipofuscin granules may contain oxidized proteins and lipid hydroperoxides, which in melanolipofuscin could chemically modify melanin polymer, while transition metal ions present in melanin can accelerate such oxidative modifications. The aim of this research was to examine the effect of selected transition metal ions on melanin susceptibility to chemical modification induced by the water-soluble tert-butyl hydroperoxide used as an oxidizing agent. Synthetic melanin obtained by DOPA autooxidation and melanosomes isolated from bovine retinal pigment epithelium were analyzed. To monitor tert-butyl hydroperoxide-induced oxidative changes of DMa and BMs, electron paramagnetic resonance spectroscopy, UV-vis absorption spectroscopy, dynamic light scattering, atomic force microscopy and electron paramagnetic resonance oximetry were employed. These measurements revealed that both copper and iron ions accelerated chemical degradation induced by tert-butyl hydroperoxide, while zinc ions had no effect. Strong prooxidant action was detected only in the case of melanosomes and melanin degraded in the presence of iron. It can be postulated that similar chemical processes, if they occur in situ in melanolipofuscin granules of the human retinal pigment epithelium, would modify antioxidant properties of melanin and its reactivity.

  6. Synthesis and metal ion binding properties of thiaaza crown macrocycles

    Energy Technology Data Exchange (ETDEWEB)

    Alp, Hakan [Department of Chemistry, Faculty of Arts and Sciences, Giresun University, 28049 Giresun (Turkey); Goek, Halil Zeki; Kantekin, Halit [Department of Chemistry, Faculty of Arts and Sciences, KTU, 61080 Trabzon (Turkey); Ocak, Ummuehan [Department of Chemistry, Faculty of Arts and Sciences, KTU, 61080 Trabzon (Turkey)], E-mail: ummuhanocak@yahoo.com

    2008-11-30

    Two new macrocyclic ligands (3) and (4), containing nitrogen-sulfur donor atoms, were designed and synthesized in a multi-step reaction sequence. The macrocycles (3) and (4) were used in solvent extraction of metal picrates such as Ag{sup +}, Hg{sup 2+}, Cd{sup 2+}, Zn{sup 2+}, Cu{sup 2+}, Ni{sup 2+}, Mn{sup 2+}, Co{sup 2+}, and Pb{sup 2+} from aqueous phase to the organic phase. The metal picrate extractions were investigated at 25 {+-} 0.1 deg. C by using UV-visible spectrometry. The extractability and selectivity of the mentioned metal picrates were evaluated according to the organic solvents. The values of the extraction constants (log K{sub ex}) and the complex compositions were determined for the extracted complexes.

  7. Adsorption of heavy metal ion from aqueous single metal solution by chemically modified sugarcane bagasse.

    OpenAIRE

    Karnitz Júnior, Osvaldo; Gurgel, Leandro Vinicius Alves; Melo, Júlio César Perin de; Botaro, Vagner Roberto; Melo, Tânia Márcia Sacramento; Gil, Rossimiriam Pereira de Freitas; Gil, Laurent Frédéric

    2007-01-01

    This work describes the preparation of new chelating materials derived from sugarcane bagasse for adsorption of heavy metal ions in aqueous solution. The first part of this report deals with the chemical modification of sugarcane bagasse with succinic anhydride. The carboxylic acid functions introduced into the material were used to anchor polyamines, which resulted in two yet unpublished modified sugarcane bagasse materials. The obtained materials were characterized by elemental analysis and...

  8. Reflection of low energy plasma ions from metal surfaces

    Science.gov (United States)

    Cuthbertson, J. W.; Langer, W. D.; Motley, R. W.

    1992-12-01

    Reflection of low energy (beam source based on acceleration and reflection of ions from a magnetically confined coaxial rf plasma source. The beam provides a large enough ion flux (over 4 A) to allow the characteristics of the reflected neutrals to be measured despite the inefficiency of detection. The energy distributions are measured by means of an electrostatic cylindrical mirror analyzer coupled with a quadrupole mass spectrometer. Energy distributions have been measured for oxygen, nitrogen and inert gas ions incident with from 10 to 70 eV reflected from amorphous metal surfaces of several compositions. The characteristics of particle reflection are commonly predicted in plasma modelling by use of simulation codes based on data from much higher incident energies. Measurements on this beam source allow the assumptions and approximations used in such codes to be tested. The predictions of the widely used TRIM code are compared to measured reflected energy distributions at low incident energies; significant differences are observed, particularly for lower target/projectile atomic mass ratios. The adequacy of the sequential binary collision approximation (used by TRIM) for modelling a collision process which at low energies is actually a simultaneous interaction between several atoms is tested by comparison with n-body trajectory calculations.

  9. Architecture of optical sensor for recognition of multiple toxic metal ions from water.

    Science.gov (United States)

    Shenashen, M A; El-Safty, S A; Elshehy, E A

    2013-09-15

    Here, we designed novel optical sensor based on the wormhole hexagonal mesoporous core/multi-shell silica nanoparticles that enabled the selective recognition and removal of these extremely toxic metals from drinking water. The surface-coating process of a mesoporous core/double-shell silica platforms by several consequence decorations using a cationic surfactant with double alkyl tails (CS-DAT) and then a synthesized dicarboxylate 1,5-diphenyl-3-thiocarbazone (III) signaling probe enabled us to create a unique hierarchical multi-shell sensor. In this design, the high loading capacity and wrapping of the CS-DAT and III organic moieties could be achieved, leading to the formation of silica core with multi-shells that formed from double-silica, CS-DAT, and III dressing layers. In this sensing system, notable changes in color and reflectance intensity of the multi-shelled sensor for Cu(2+), Co(2+), Cd(2+), and Hg(2+) ions, were observed at pH 2, 8, 9.5 and 11.5, respectively. The multi-shelled sensor is added to enable accessibility for continuous monitoring of several different toxic metal ions and efficient multi-ion sensing and removal capabilities with respect to reversibility, selectivity, and signal stability. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Measurement of Cadmium Ion in the Presence of Metal-Binding Biopolymers in Aqueous Sample

    Directory of Open Access Journals (Sweden)

    Jian Pu

    2013-01-01

    Full Text Available In aqueous environment, water-soluble polymers are effectively used to separate free metal ions from metal-polymer complexes. The feasibilities of four different analytical techniques, cadmium ion-selective electrode, dialysis sack, chelate disk cartridge, and ultrafiltration, in distinguishing biopolymer-bound and nonbound cadmium in aqueous samples were investigated. And two different biopolymers were used, including bovine serum albumin (BSA and biopolymer solution extracted from cultivated activated sludge (ASBP. The ISE method requires relatively large amount of sample and contaminates sample during the pretreatment. After the long reaction time of dialysis, the equilibrium of cadmium in the dialysis sack would be shifted. Due to the sample nature, chelate disk cartridge could not filter within recommended time, which makes it unavailable for biopolymer use. Ultrafiltration method would not experience the difficulties mentioned above. Ultrafiltration method measuring both weakly and strongly bound cadmium was included in nominally biopolymer-cadmium complex. It had significant correlation with the Ion-selective electrode (ISE method (R2=0.989 for BSA, 0.985 for ASBP.

  11. Binary ion exchange of metal ions in Y and X zeolites

    Directory of Open Access Journals (Sweden)

    M.A.S.D. Barros

    2003-10-01

    Full Text Available The ion exchange of Na for Cr/K, Cr/Mg and Cr/Ca in Y and X zeolites was studied using breakthrough curves. It was observed that Cr3+ ions were able to remove some competitive ions that had already been exchanged at the zeolitic sites, producing a sequential ion exchange. Some mass transfer parameters such as length of unused bed, overall mass transfer coefficient, operational ratio and dimensionless variance were studied. Chromium uptake was influenced much more by the competing ion in the NaX zeolite columns. The dimensionless variance indicated that Cr/K solution produced a greater axial dispersion than the Cr/Mg and Cr/Ca systems, probably due to some interaction between Cr3+ and K+ ions. The order of dynamic selectivity, provided by the cation uptake, was Cr3+ > Ca2+, Cr3+ > Mg2+ and Cr3+ > K+ for NaY zeolite and Ca2+ ~Cr3+, Mg2+ > Cr3+ and Cr3+ > K+ for NaX zeolite. Due to the more favorable mass transfer parameters and higher affinity for Cr3+, it was concluded that NaY zeolite was more efficient at chromium uptake in competitive systems.

  12. Alkali-metal-ion-directed self-assembly of redox-active manganese(III) supramolecular boxes.

    Science.gov (United States)

    González-Riopedre, Gustavo; Bermejo, Manuel R; Fernández-García, M Isabel; González-Noya, Ana M; Pedrido, Rosa; Rodríguez-Doutón, M Jesús; Maneiro, Marcelino

    2015-03-16

    The ability to organize functional molecules into higher dimensional arrays with well-defined spatial relationships between the components is one of the major goals in supramolecular chemistry. We report here a new route for the preparation of supramolecular boxes, incorporating two types of metal ions: (i) alkali-metal ions, which induce the supramolecular architecture and essentially play a structural role in the final compounds; (ii) manganese(III) ions, which are redox-active systems and give functionality to the new cages. Our results evidence that the size of the cavity inside the box can be tuned depending on the alkali metal used, a characteristic that gives this new family of compounds the potential to act selectively against different substrates. These compounds behave as active catalysts for disproportionation of H2O2 or for water photolysis, but they catalyze neither catecholase reaction nor peroxidase action upon using bulky organic substrates.

  13. Prostate cancer outcome and tissue levels of metal ions

    Science.gov (United States)

    Sarafanov, A.G.; Todorov, T.I.; Centeno, J.A.; MacIas, V.; Gao, W.; Liang, W.-M.; Beam, C.; Gray, Marion A.; Kajdacsy-Balla, A.

    2011-01-01

    BACKGROUNDThere are several studies examining prostate cancer and exposure to cadmium, iron, selenium, and zinc. Less data are available on the possible influence of these metal ions on prostate cancer outcome. This study measured levels of these ions in prostatectomy samples in order to examine possible associations between metal concentrations and disease outcome.METHODSWe obtained formalin fixed paraffin embedded tissue blocks of prostatectomy samples of 40 patients with PSA recurrence, matched 1:1 (for year of surgery, race, age, Gleason grading, and pathology TNM classification) with tissue blocks from 40 patients without recurrence (n = 80). Case–control pairs were compared for the levels of metals in areas adjacent to tumors. Inductively coupled plasma-mass spectrometry (ICP-MS) was used for quantification of Cd, Fe, Zn, and Se.RESULTSPatients with biochemical (PSA) recurrence of disease had 12% lower median iron (95 µg/g vs. 111 µg/g; P = 0.04) and 21% lower zinc (279 µg/g vs. 346 µg/g; P = 0.04) concentrations in the normal-appearing tissue immediately adjacent to cancer areas. Differences in cadmium (0.489 µg/g vs. 0.439 µg/g; 4% higher) and selenium (1.68 µg/g vs. 1.58 µg/g; 5% higher) levels were not statistically significant in recurrence cases, when compared to non-recurrences (P = 0.40 and 0.21, respectively).CONCLUSIONSThere is an association between low zinc and low iron prostate tissue levels and biochemical recurrence in prostate cancer. Whether these novel findings are a cause or effect of more aggressive tumors, or whether low zinc and iron prostatic levels raise implications for therapy, remains to be investigated. 

  14. Ion-selective electrodes: historical, mechanism of response, selectivity and concept review

    Directory of Open Access Journals (Sweden)

    Fernandes Julio Cesar Bastos

    2001-01-01

    Full Text Available This paper presents a review of the concepts involved in the working mechanism of the ion-selective electrodes, searching a historical overview, moreover to describe the new advances in the area.

  15. Do trace metals select for darker birds in urban areas?.An experimental exposure to lead and zinc

    OpenAIRE

    Chatelain, Marion; Gasparini, Julien; Frantz, A

    2015-01-01

    International audience; Trace metals from anthropogenic activities are involved in numerous health impairments and may therefore select for detoxification mechanisms or a higher tolerance. Melanin, responsible for the black and red colourations of teguments, plays a role in metal ion chelation and its synthesis is positively linked to immunity, antioxidant capacity and stress resistance due to pleiotropic effects. Therefore, we expected darker birds to (1) store higher amounts of metals in th...

  16. Novel optical selective chromone Schiff base chemosensor for Al{sup 3+} ion

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chun-jiao; Yang, Zheng-yin, E-mail: yangzy@lzu.edu.cn; Fan, Long; Jin, Xiu-long; An, Jun-mei; Cheng, Xiao-ying; Wang, Bao-dui

    2015-02-15

    A novel Schiff-base fluorescent sensor 7-methoxychromone-3-carbaldehyde-((2′-Benzothiazolylthio)-acetyl) hydrazone (MCAH) was synthesized. The new chemosensor possesses dual PET processes simultaneously introducing by both nitrogen and sulfur donors. Upon binding Al{sup 3+}, a significant fluorescence enhancement with a turn-on ratio over 500-fold was triggered. The detection limit of MCAH for Al{sup 3+} was 3.19×10{sup −8} M. - Highlights: • A novel chemosensor based on multiple PET processes was synthesized by a facile one-step reaction. • The sensor exhibits higher sensitivity for Al{sup 3+} than other metal ions with the detection limit reaching at 10{sup −8} M level in ethanol. • The probe exhibited high selectivity for Al{sup 3+} over other metal ions with 500-fold fluorescence enhancement.

  17. PREPARATION OF A POLYMER ARTICLE FOR SELECTIVE METALLIZATION

    DEFF Research Database (Denmark)

    2008-01-01

    The present invention relates to the field of selective metallization, and in particular to preparing a polymer article for selective metallization by submerging the article in a first liquid, and while submergedirradiate the article by a laser beam the area of the article on which the metal...... is to be deposited. An activation step, prior to the selective metallization, comprises submerging the article in an activation liquid for depositing seedparticles in the selected area. The irradiation of the selected area is proportionate so as to cause a temporary meltingof the polymer in the surface...... of the selected area of the polymer article. The invention is advantageous in that the preparation may be performed with a relatively high scan rate across the polymer article, and in that a quite limited use of toxic chemicals....

  18. Wavelength-selective fluorescence in ion channels formed by ...

    Indian Academy of Sciences (India)

    TECS

    Wavelength-selective fluorescence in ion channels formed by gramicidin A in membranes. AMITABHA CHATTOPADHYAY* and SATINDER S RAWAT. #. Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007. #. Present address: 364 Plantation Street, Room 570R, Lazare Research Building,.

  19. Ionophores in polymeric membranes for selective ion recognition; impedance studies

    Energy Technology Data Exchange (ETDEWEB)

    Lisowska-Oleksiak, A. [Department of Chemical Technology, Gdansk University of Technology, ul. Narutowicza 11/12, 80-952 Gdansk (Poland)]. E-mail: alo@chem.pg.gda.pl; Lesinska, U. [Department of Chemical Technology, Gdansk University of Technology, ul. Narutowicza 11/12, 80-952 Gdansk (Poland); Nowak, A.P. [Department of Chemical Technology, Gdansk University of Technology, ul. Narutowicza 11/12, 80-952 Gdansk (Poland); Bochenska, M. [Department of Chemical Technology, Gdansk University of Technology, ul. Narutowicza 11/12, 80-952 Gdansk (Poland)]. E-mail: marboch@chem.pg.gda.pl

    2006-02-15

    Synthetic calix[4]arene-crown ionophores for selective Na{sup +} (ionophore L1) and Cs{sup +}-ions (ionophore L2) recognition find application in ion-selective membrane electrodes (ISE) for analytical purpose. Selectivity coefficients for the electrodes with compounds L1 and L2 are logK{sub Na,Cs}{sup pot}=-2.6 and logK{sub Cs,Na}{sup pot}=-2.4, respectively. Electrodes of two different construction: all-solid-state (ASS) (with conducting polymer layer on glassy carbon or platinum as ion-to-electron transducer) and conventional ion-selective electrode (ISE) (with liquid electrolyte and Ag/AgCl) are presented and their properties and lifetime are being compared. Resistance of PVC membrane with ionophores L1 and L2 were within the range 0.15-1.4M{omega} depending on the type of the outer electrolyte and its concentration. Conductivity of the membranes was in the range 0.7x10{sup -8} to 6x10{sup -8}{omega}{sup -1}cm{sup -1}. Warburg coefficients {sigma} were within 0.16x10{sup 4} to 12.7x10{sup 4}{omega}s{sup -1/2}, dielectric constant values {epsilon} were in a range 28-60 depending mainly on the type of plasticizer.

  20. Biosorption of Heavy Metal Ions to Brown Algae, Macrocystis pyrifera, Kjellmaniella crassiforia, and Undaria pinnatifida

    OpenAIRE

    Seki, Hideshi; Suzuki, Akira

    1998-01-01

    A fundamental study of the application of brown algae to the aqueous-phase separation of toxic heavy metals was carried out. The biosorption characteristics of cadmium and lead ions were determined with brown algae, Macrocystis pyrifera, Kjellmaniella crassiforia, and Undaria pinnatifida. A metal binding model proposed by the authors was used for the description of metal binding data. The results showed that the biosorption of bivalent metal ions to brown algae was due to bivalent binding to ...

  1. Ligational behavior of Schiff bases towards transition metal ion and metalation effect on their antibacterial activity

    Science.gov (United States)

    Devi, Jai; Batra, Nisha; Malhotra, Rajesh

    2012-11-01

    New Schiff bases pyrazine-2-carboxylicacid (phenyl-pyridin-2-yl-methylene)-hydrazide (Hpch-bp) HL1 and pyrazine-2-carboxylicacid (pyridin-2-ylmethylene)-hydrazide (Hpch-pc) HL2 derived from condensation of pyrazine carboxylic hydrazide (Hpch) with 2-benzoyl pyridine (bp) or pyridine 2-carbaldehyde (pc) and their transition metal complexes of type ML(1-2)2 have been synthesized, where M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II). Characterization of ligands and their metal complexes was carried out by elemental analysis, conductimetric studies, magnetic susceptibility, spectroscopic techniques (IR, UV-VIS, NMR, ESR, Mass) and thermogravimetric analysis. The physico-chemical studies revealed octahedral geometry or distorted octahedral geometry around metal ion. These azomethine Schiff base ligands acted as tridentate ? coordinating through carbonyl, azomethine and pyridine nitrogen present in the ligand. The thermodynamic and thermal properties of the complexes have been investigated and it was observed on the basis of these studies that thermal stability of complexes follows the order Mn activity at different concentrations against bacteria viz. Gram positive Bacillus subtilis, Micrococcus luteus and Gram negative Pseudomonas aeruginosa, Pseudomonas mendocina. A marked enhancement in biocidal activity of the ligands under similar experimental conditions was observed as a consequence of coordination with metal ions. The trend of growth inhibition in the complexes was found to be in the order: Cu > Mn > Ni > Co > Zn.

  2. Selective Liquid-Liquid Extraction of Lead Ions Using Newly Synthesized Extractant 2-(Dibutylcarbamoyl)benzoic Acid

    OpenAIRE

    Hossein Soltani; Mohammad Reza Yaftian; Abbasali Zamani; Massomeh Ghorbanloo

    2015-01-01

    A new carboxylic acid extractant, named 2-(dibutylcarbamoyl)benzoic acid, is prepared and its potential for selective solvent extraction and recovery of lead ions from industrial samples was investigated. The slope analysis indicated that the lead ions are extracted by formation of 1:2 metal to ligand complexes. The effect of the parameters influencing the extraction efficiency including kind of the organic diluent, extractant concentration, type of the salt used for ionic strength adjustment...

  3. Coordination kinetics of different metal ions with the amidoximated polyacrylonitrile nanofibrous membranes and catalytic behaviors of their complexes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fu; Dong, Yong Chun; Kang, Wei Min; Cheng, Bowen; Qu, Xiang; Cui, Guixin [School of Textiles, Tianjin Polytechnic University, Tianjin (China)

    2016-12-15

    Two transition metal ions (Fe{sup 3+} and Cu{sup 2+}) and a rare earth metal ion (Ce{sup 3+}) were selected to coordinate with amidoximated polyacrylonitrile (PAN) nanofibrous membrane for preparing three metal modified PAN nanofibrous membrane complexes (M-AO-n-PANs, M = Fe, Cu, or Ce) as the heterogeneous Fenton catalysts for the dye degradation in water under visible irradiation. The coordination kinetics of three metal ions with modified PAN nanofibrous membranes was studied and the catalytic properties of the resulting complexes were also compared. The results indicated that increasing metal ion concentrations in solution or higher coordination temperature led to a significant increase in metal content, particularly in Fe and Cu contents of the complexes. Their coordination process could be described using Langmuir isotherm and pseudo-second-order kinetic equations. Moreover, Fe-AO-n-PAN had the best photocatalytic efficiency for the dye degradation in acidic medium, but a lower photocatalytic activity than Cu-AO-n-PAN in alkali medium.

  4. Selective removal of chromium (VI) from sulphates and other metal ...

    African Journals Online (AJOL)

    Leaching of the chromate template from the polymer particles was achieved with successive stirring of the ion-imprinted polymer (IIP) particles in 4 M HNO3 solutions to obtain leached materials, which were then used for selective rebinding of Cr (VI) ions from aqueous solutions. Similarly, the non-imprinted polymer/control ...

  5. Real time measurement of cytoplasmic ions with ion-selective microelectrodes.

    Science.gov (United States)

    Miller, Anthony J

    2013-01-01

    Ion-selective microelectrodes can be used to report intracellular ion concentrations. The ion-selective barrels of microelectrodes are filled with a sensor cocktail containing several different components including an ion-selective molecule, sensor or exchanger, a solvent or plasticizer, lipophilic cation/anion additives, and a matrix to solidify the membrane. For many ions, the readymade membrane cocktail can be purchased, but the individual chemical components can be bought from suppliers and mixing the cocktail saves money. For commercially available liquid membrane cocktails the membrane matrix is often not included. For plants a matrix is essential for intracellular impalements because without it cell turgor will displace the liquid membrane from the electrode tip, giving decreased or even lost sensitivity. The matrix frequently used is a high molecular weight poly(vinyl chloride). This addition increases the electrical resistance of the electrode, slowing the response time of the electrode. The use of multi-barreled electrodes enables the identification of the cellular compartment. For example, the inclusion of a pH-selective electrode enables the cytoplasm and vacuole to be distinguished.

  6. EPR of transition metal ions in NZP ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Yegor`kova, O.; Kryukova-Orlova, A.I. [Univ. of Nizhnii Novgorod (Russian Federation); Stefanovsky, S.V. [SIA Radon, Moscow (Russian Federation)

    1995-12-31

    NZP-ceramics have been produced by different methods such as sol-gel, flux melting and sintering of dry salts or phosphates. Formation of NZP and related phases was confirmed by X-ray diffraction analysis. Electron paramagnetic resonance (EPR) was applied to evaluate a structure positions of paramagnetic ions and nature of radiation-induced centers. EPR responses from transition metal ions Fe{sup 3+} and Mn{sup 2+} with electron configuration 3d{sup 5} (ground state {sup 6}S{sub 5/2}) which occurred as impurities in raw materials were registered in powders of NZP-ceramics. Fine structure arising due to high spin iron complexes is well resolved. A part of Fe{sup 3+} ions substitutes for Zr{sup 4+} and another part of one substitutes for Na{sup +} ions in six-fold coordinated positions. A great value of hyperfine structure (hfs) constant (9.3 mT) shows a high ionic character of Mn-O bonds in the first coordination sphere. A coordination number is close to 6. Fine structure of Mn{sup 2+} ions are not well resolved. A comparison of the spectra of samples containing various alkali cations shows the substitution for cations in series of Li-Na-K-Rb-Cs does not result in fundamental variation in spectra except for CZP ceramics where the response with g=4.3 due to Fe{sup 3+} in strong ligand field rather than response with g=2.0 due to Fe{sup 3+} in weak field is observed. An investigation of some samples doped by 0.1...0.5 mole % of Fe{sup 3+} or Gd{sup 3+} has been carried out and principal spin-Hamiltonian parameters have been determined. The increase of Fe and Gd ions content as compared to impurity substituting for Zr and possibly Na in their own structural positions results in noticeable site distortion. Gamma irradiation of NZP ceramics results in formation of radiation-induced paramagnetic centers connected to phosphorus-oxygen. The nature and concentration of these centers depend on production method. The lowest defect concentration is in hot-pressed ceramics.

  7. Biomimetic supercontainers for size-selective electrochemical sensing of molecular ions

    Science.gov (United States)

    Netzer, Nathan L.; Must, Indrek; Qiao, Yupu; Zhang, Shi-Li; Wang, Zhenqiang; Zhang, Zhen

    2017-04-01

    New ionophores are essential for advancing the art of selective ion sensing. Metal-organic supercontainers (MOSCs), a new family of biomimetic coordination capsules designed using sulfonylcalix[4]arenes as container precursors, are known for their tunable molecular recognition capabilities towards an array of guests. Herein, we demonstrate the use of MOSCs as a new class of size-selective ionophores dedicated to electrochemical sensing of molecular ions. Specifically, a MOSC molecule with its cavities matching the size of methylene blue (MB+), a versatile organic molecule used for bio-recognition, was incorporated into a polymeric mixed-matrix membrane and used as an ion-selective electrode. This MOSC-incorporated electrode showed a near-Nernstian potentiometric response to MB+ in the nano- to micro-molar range. The exceptional size-selectivity was also evident through contrast studies. To demonstrate the practical utility of our approach, a simulated wastewater experiment was conducted using water from the Fyris River (Sweden). It not only showed a near-Nernstian response to MB+ but also revealed a possible method for potentiometric titration of the redox indicator. Our study thus represents a new paradigm for the rational design of ionophores that can rapidly and precisely monitor molecular ions relevant to environmental, biomedical, and other related areas.

  8. [Measurement of chromium and cobalt ions in metal-on-metal total hip arthroplasty].

    Science.gov (United States)

    Durazo-Villanueva, A; Benítez-Garduño, R

    2012-01-01

    New metal-on-metal hip replacement models emerged in the 1990 with modifications of the previous designs and alloys. This led to expect a lesser rate of ion and particle release in the body with the resulting decrease in wear, osteolysis and loosening. To measure blood and urine chromium and cobalt ions in a 28 mm metal-on-metal tribology during the first postoperative year. Blood and urine cobalt and chromium concentrations were measured in 10 patients (13 prostheses) with the atomic absorption method. The etiology was studied and they were functionally assessed with the Harris functional scale. Adverse metal reactions were also assessed. 8 male and 2 female patients, mean age 54.5 years; 6 had primary coxarthrosis, one was post-traumatic, and 3 had avascular necrosis. The final assessment according to the Harris scale was 92 points. Mean blood chromium was 1.26 ng/l, blood cobalt was 1.033 microg/l; (reference values: chromium 1.4 ng/l and cobalt 1.8 microg/l); only one figure, in a female patient, was found to be higher than normal (chromium 21.2 ng/l and cobalt 15.4 microg/l). Mean urine chromium was 0.95 ng/ml, urine cobalt was 0.53 microg/l (Reference values: chromium: 2.0 ng/ml and cobalt 0.5 microg/l). All patients, with the exception of a female patient, were within the normal ranges. No adverse effect was observed in patients with metal implants with a 28 mm tribology.

  9. Luminescent Metal-Organic Framework Sensor: Exceptional Cd2+Turn-On Detection and First In Situ Visualization of Cd2+Ion Diffusion into a Crystal.

    Science.gov (United States)

    Lim, Kwang Soo; Jeong, So Yeon; Kang, Dong Won; Song, Jeong Hwa; Jo, Hyuna; Lee, Woo Ram; Phang, Won Ju; Moon, Dohyun; Hong, Chang Seop

    2017-04-06

    With regard to fluorescence quenching commonly observed during metal-ion detection, "turn-on" chemical sensing has been rarely reported, but could be extremely important because it facilitates the selective recognition of target objects of interest against a dark background. A metal-organic framework (MOF) chemosensor has been prepared that serves as an efficient platform for the selective detection of Cu 2+ and Cd 2+ ions over other metal ions. In particular, this framework shows the highest fluorescence enhancement (≈60-fold relative to Cd-free MOF) for the hazardous metal ion Cd 2+ among luminescent MOFs and displays excellent reusability in repeated cycles. The direct diffusion of Cd 2+ into the crystal pores has also been visualized for the first time. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Superheated Water Ion-exchange Chromatography

    National Research Council Canada - National Science Library

    SHIBUKAWA, Masami; MORINAGA, Ryota; SAITO, Shingo

    2016-01-01

    ... superheated water chromatography. The selectivity coefficient for a pair of identically charged inorganic ions, such as alkali metal ions and halide ions, approaches unity as the temperature increases, provided that the ions...

  11. Metal is not inert: role of metal ions released by biocorrosion in aseptic loosening--current concepts.

    Science.gov (United States)

    Cadosch, Dieter; Chan, Erwin; Gautschi, Oliver P; Filgueira, Luis

    2009-12-15

    Metal implants are essential therapeutic tools for the treatment of bone fractures and joint replacements. The metals and metal alloys used in contemporary orthopedic and trauma surgery are well tolerated by the majority of patients. However, complications resulting from inflammatory and immune reactions to metal implants have been well documented. This review briefly discusses the different mechanisms of metal implant corrosion in the human body, which lead to the release of significant levels of metal ions into the peri-implant tissues and the systemic blood circulation. Additionally, this article reviews the effects of the released ions on bone metabolism and the immune system and discusses their involvement in the pathophysiological mechanisms of aseptic loosening and metal hypersensitivity in patients with metal implants.

  12. Metal cation/anion adsorption on calcium carbonate: Implications to metal ion concentrations in groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Zachara, J.M.; Cowan, C.E.; Resch, C.T.

    1990-05-01

    This chapter evaluates the sorption behavior of metallic ions on specimen calcite as a basis for determining the importance of calcite relative to other subsurface sorbents, such as layer silicates and oxides, in controlling metal ion concentration in calcareous groundwaters. A review of the literature shows the sorption of both metallic cations and anions on calcite over ranges in pH and CO{sub 2} partial pressure to be consistent with a surface-exchange process where cations exchange with surface Ca and anions exchange with surface CO{sub 3}. A general surface-exchange model was developed to account for the effects of Ca and CO{sub 3} concentrations, pH, and calcite surface area on cation and anion sorption onto calcite. The model was applied to recently developed experimental sorption data of Zn and SeO{sub 3} on specimen calcite in equilibrium CaCO{sub 3}(aq) suspensions. The surface-exchange model was able to describe the effects of pH on both cation and anion sorption, and provided good predictions of the effects of variable CO{sub 2}(g) pressure on Zn sorption and of PO{sub 4} on SeO{sub 3} sorption. The surface-exchange model, combined with sorption constants for other phases, was used to calculate Cd sorption to a hypothetical aquifer material containing a mixture of sorbents. The sorbent concentrations were fixed to those expected in groundwater zones. The multi-sorbent calculation documented the importance of calcite as a sorbent for metallic ions in groundwater.93 refs., 18 figs., 5 tabs.

  13. Metal Ions, Not Metal-Catalyzed Oxidative Stress, Cause Clay Leachate Antibacterial Activity

    Science.gov (United States)

    Otto, Caitlin C.; Koehl, Jennifer L.; Solanky, Dipesh; Haydel, Shelley E.

    2014-01-01

    Aqueous leachates prepared from natural antibacterial clays, arbitrarily designated CB-L, release metal ions into suspension, have a low pH (3.4–5), generate reactive oxygen species (ROS) and H2O2, and have a high oxidation-reduction potential. To isolate the role of pH in the antibacterial activity of CB clay mixtures, we exposed three different strains of Escherichia coli O157:H7 to 10% clay suspensions. The clay suspension completely killed acid-sensitive and acid-tolerant E. coli O157:H7 strains, whereas incubation in a low-pH buffer resulted in a minimal decrease in viability, demonstrating that low pH alone does not mediate antibacterial activity. The prevailing hypothesis is that metal ions participate in redox cycling and produce ROS, leading to oxidative damage to macromolecules and resulting in cellular death. However, E. coli cells showed no increase in DNA or protein oxidative lesions and a slight increase in lipid peroxidation following exposure to the antibacterial leachate. Further, supplementation with numerous ROS scavengers eliminated lipid peroxidation, but did not rescue the cells from CB-L-mediated killing. In contrast, supplementing CB-L with EDTA, a broad-spectrum metal chelator, reduced killing. Finally, CB-L was equally lethal to cells in an anoxic environment as compared to the aerobic environment. Thus, ROS were not required for lethal activity and did not contribute to toxicity of CB-L. We conclude that clay-mediated killing was not due to oxidative damage, but rather, was due to toxicity associated directly with released metal ions. PMID:25502790

  14. Metal ions, not metal-catalyzed oxidative stress, cause clay leachate antibacterial activity.

    Directory of Open Access Journals (Sweden)

    Caitlin C Otto

    Full Text Available Aqueous leachates prepared from natural antibacterial clays, arbitrarily designated CB-L, release metal ions into suspension, have a low pH (3.4-5, generate reactive oxygen species (ROS and H2O2, and have a high oxidation-reduction potential. To isolate the role of pH in the antibacterial activity of CB clay mixtures, we exposed three different strains of Escherichia coli O157:H7 to 10% clay suspensions. The clay suspension completely killed acid-sensitive and acid-tolerant E. coli O157:H7 strains, whereas incubation in a low-pH buffer resulted in a minimal decrease in viability, demonstrating that low pH alone does not mediate antibacterial activity. The prevailing hypothesis is that metal ions participate in redox cycling and produce ROS, leading to oxidative damage to macromolecules and resulting in cellular death. However, E. coli cells showed no increase in DNA or protein oxidative lesions and a slight increase in lipid peroxidation following exposure to the antibacterial leachate. Further, supplementation with numerous ROS scavengers eliminated lipid peroxidation, but did not rescue the cells from CB-L-mediated killing. In contrast, supplementing CB-L with EDTA, a broad-spectrum metal chelator, reduced killing. Finally, CB-L was equally lethal to cells in an anoxic environment as compared to the aerobic environment. Thus, ROS were not required for lethal activity and did not contribute to toxicity of CB-L. We conclude that clay-mediated killing was not due to oxidative damage, but rather, was due to toxicity associated directly with released metal ions.

  15. Nitrate Ion Selective Electrode Based on Ion Imprinted Poly(N-methylpyrrole

    Directory of Open Access Journals (Sweden)

    Ellen M. Bomar

    2017-01-01

    Full Text Available A poly(N-methylpyrrole based ion selective electrode (ISE has been prepared by electro-polymerization of N-methylpyrrole using potassium nitrate as the supporting electrolyte. Electrochemical and chemical variables were used to optimize the potentiometric response of the electrodes and to maximize the selectivity for nitrate over potential interferences. The selectivity, longevity and stability of the ion-imprinted polymer give this electrode advantages over traditional nitrate ISEs. The best prototype electrode exhibits a linear potential response to nitrate ion within the concentration range of 5.0 × 10−6 to 0.1 M nitrate with a near Nernstian slope of −56.3 mV per decade (R2 = 0.9998 and a strong preference for the nitrate ion over other anions. The selectivity coefficients of the electrode were evaluated by the fixed interference method. The use of N-methylpyrrole has advantages over pyrrole in terms of selectivity and pH insensitivity.

  16. The Generation of Dehydroalanine Residues in Protonated Polypeptides: Ion/Ion Reactions for Introducing Selective Cleavages

    Science.gov (United States)

    Peng, Zhou; Bu, Jiexun; McLuckey, Scott A.

    2017-09-01

    We examine a gas-phase approach for converting a subset of amino acid residues in polypeptide cations to dehydroalanine (Dha). Subsequent activation of the modified polypeptide ions gives rise to specific cleavage N-terminal to the Dha residue. This process allows for the incorporation of selective cleavages in the structural characterization of polypeptide ions. An ion/ion reaction within the mass spectrometer between a multiply protonated polypeptide and the sulfate radical anion introduces a radical site into the multiply protonated polypeptide reactant. Subsequent collisional activation of the polypeptide radical cation gives rise to radical side chain loss from one of several particular amino acid side chains (e.g., leucine, asparagine, lysine, glutamine, and glutamic acid) to yield a Dha residue. The Dha residues facilitate preferential backbone cleavages to produce signature c- and z-ions, demonstrated with cations derived from melittin, mechano growth factor (MGF), and ubiquitin. The efficiencies for radical side chain loss and for subsequent generation of specific c- and z-ions have been examined as functions of precursor ion charge state and activation conditions using cations of ubiquitin as a model for a small protein. It is noted that these efficiencies are not strongly dependent on ion trap collisional activation conditions but are sensitive to precursor ion charge state. Moderate to low charge states show the greatest overall yields for the specific Dha cleavages, whereas small molecule losses (e.g., water/ammonia) dominate at the lowest charge states and proton catalyzed amide bond cleavages that give rise to b- and y-ions tend to dominate at high charge states. [Figure not available: see fulltext.

  17. Process for the displacement of cyanide ions from metal-cyanide complexes

    Science.gov (United States)

    Smith, Barbara F.; Robinson, Thomas W.

    1997-01-01

    The present invention relates to water-soluble polymers and the use of such water-soluble polymers in a process for the displacement of the cyanide ions from the metal ions within metal-cyanide complexes. The process waste streams can include metal-cyanide containing electroplating waste streams, mining leach waste streams, mineral processing waste streams, and related metal-cyanide containing waste streams. The metal ions of interest are metals that give very strong complexes with cyanide, mostly iron, nickel, and copper. The physical separation of the water-soluble polymer-metal complex from the cyanide ions can be accomplished through the use of ultrafiltration. Once the metal-cyanide complex is disrupted, the freed cyanide ions can be recovered for reuse or destroyed using available oxidative processes rendering the cyanide nonhazardous. The metal ions are released from the polymer, using dilute acid, metal ion oxidation state adjustment, or competing chelating agents, and collected and recovered or disposed of by appropriate waste management techniques. The water-soluble polymer can then be recycled. Preferred water-soluble polymers include polyethyleneimine and polyethyleneimine having a catechol or hydroxamate group.

  18. Bioaugmentation with bacteria selected from the microbiome enhances Arthrocnemum macrostachyum metal accumulation and tolerance.

    Science.gov (United States)

    Navarro-Torre, Salvadora; Barcia-Piedras, José M; Caviedes, Miguel A; Pajuelo, Eloísa; Redondo-Gómez, Susana; Rodríguez-Llorente, Ignacio D; Mateos-Naranjo, Enrique

    2017-04-15

    A glasshouse experiment was designed to investigate the role of bacterial consortia isolated from the endosphere (CE) and rhizosphere (CR) of Arthrocnemum macrostachyum on its metal uptake capacity and tolerance in plants grown in metal polluted sediments. A. macrostachyum plants were randomly assigned to three bioaugmentation treatments (CE, CR and without inoculation) during 120days. Bioaugmentation with both bacterial consortia enhanced A. macrostachyum capacity to accumulate ions in its roots, while shoot ions concentration only increased with CE treatment. Furthermore bioaugmentation ameliorated the phytotoxicity levels, which was reflected in an increment of plant growth of 59 and 113% for shoots and 52 and 98% for roots with CE and CR treatments, respectively. This effect was supported by bacteria beneficial effect on photochemical apparatus and the modulation of its oxidative stress machinery. These findings indicated that bacteria selected from the microbiome can be claimed to improve A. macrostachyum metal remediation efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The Relationship of Culture Media Composition and Chemical Composition on Spirulina sp for Metal Ion Adsorbent

    Directory of Open Access Journals (Sweden)

    Hilda Zulkifli

    2016-12-01

    Full Text Available The analysis relationship of Spirulina sp medium with chemical composition has been conducted. Chemical analysis was performed using X-Ray Fluorescence analysis. Furthermore, potention of Spirulina sp as adsorbent of metal ions was analyzed using FTIR spectroscopy. The results showed that metals such as Zn, Fe, Mn, Ca, Cu, and Mo were mainly metals in Spirulina sp. These metals were not correlated with cultivated medium of Spirulina sp. Analysis of potention Spirulina sp as metal ions adsorbent showed that Spirulina sp has functional groups –C=O and –OH as ligand. Intercation of metal ions Cu(II and Cr(III with Spirulina sp indicated that metal ions bond to –C=O functional group.

  20. Metal ion concentrations and semen quality in patients undergoing hip arthroplasty: A prospective comparison between metal-on-metal and metal-on-polyethylene implants.

    Science.gov (United States)

    Chen, Szu-Yuan; Chang, Chih-Hsiang; Hu, Chih-Chien; Chen, Chun-Chieh; Chang, Yu-Han; Hsieh, Pang-Hsin

    2016-03-01

    The widespread usage of metal-on-metal (MoM) articulations in total hip arthroplasty (THA) has been tempered by concerns of increased metal ion production. The purpose of the study is to evaluate the influence of metal ion exposure on semen quality in young male patients undergoing THA. Male patients who were scheduled for unilateral THA and aged between 20 and 45 years were prospectively enrolled. Patients were sorted into MoM and metal-on-polyethylene (MoP) groups with equal case number. Semen and blood metal ion levels were measured and sperm analysis was performed before, 6 months after, and 1 year after surgery. Compared to preoperative baseline, patients (n = 50) in both groups had increased cobalt (Co) and chromium (Cr) concentrations in blood and seminal fluid after surgery. Between-group comparisons at 6 months and 1 year after surgery showed that patients in the MoM group both had a greater Co concentration in blood and semen and a greater Cr concentration in blood and semen. Patients receiving MoM prosthesis had a reduced percentage of morphologically normal sperm, and decreases from the preoperative level (44.7%) were significant at 6 months (36.8%, p = 0.03) and 1 year (33.8%, p = 0.004). Our data shows a significantly greater concentration of metal ion in blood and semen in patients with MoM prosthesis with a reduced percentage of morphologically normal sperm. Despite small effects on sperm quality, some concerns remain. Further studies are necessary to determine sources of metal ion and to investigate effects on male fertility. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  1. An Aqueous Metal-ion Capacitor with Oxidised Carbon Nanotubes and Metallic Zinc Electrodes

    Directory of Open Access Journals (Sweden)

    Yuheng Tian

    2016-10-01

    Full Text Available An aqueous metal ion capacitor comprising of a zinc anode, an oxidized carbon nanotubes (oCNTs cathode and a zinc sulfate electrolyte is reported. Since the shuttling cation is Zn2+, this typical metal ion capacitor is named as zinc-ion capacitor (ZIC. The ZIC integrates the divalent zinc stripping/plating chemistry with the surface-enabled pseudocapacitive cation adsorption/desorption on oCNTs. The surface chemistry and crystallographic structure of oCNTs were extensively characterized by combining X-ray photoelectron spectroscopy, Fourier-transformed infrared spectroscopy, Raman spectroscopy and X-ray powder diffraction. The function of the surface oxygen groups in surface cation storage was elucidated by a series of electrochemical measurement and the surface-enabled ZIC showed better performance than the ZIC with an un-oxidized CNT cathode. The reaction mechanism at the oCNT cathode involves the additional reversible Faradaic process, while the CNTs merely show electric double layer capacitive behavior involving a non-Faradaic process. The aqueous hybrid ZIC comprising the oCNT cathode exhibited a specific capacitance of 20 mF cm-2 (corresponding to 53 F g-1 in the range of 0-1.8 V at 10 mV s-1 and a stable cycling performance up to 5000 cycles.

  2. Synthesis and application of a highly selective copper ions fluorescent probe based on the coumarin group

    Science.gov (United States)

    He, Guangjie; Liu, Xiangli; Xu, Jinhe; Ji, Liguo; Yang, Linlin; Fan, Aiying; Wang, Songjun; Wang, Qingzhi

    2018-02-01

    A highly selective copper ions fluorescent probe based on the coumarin-type Schiff base derivative 1 (probe) was produced by condensation reaction between coumarin carbohydrazide and 1H-indazole-3-carbaldehyde. The UV-vis spectroscopy showed that the maximum absorption peak of compound 1 appeared at 439 nm. In the presence of Cu2 + ions, the maximum peak decreased remarkably compared with other physiological important metal ions and a new absorption peak at 500 nm appeared. The job's plot experiments showed that complexes of 1:2 binding mode were formed in CH3CN:HEPES (3:2, v/v) solution. Compound 1 exhibited a strong blue fluorescence. Upon addition of copper ions, the fluorescence gradually decreased and reached a plateau with the fluorescence quenching rate up to 98.73%. The detection limit for Cu2 + ions was estimated to 0.384 ppm. Fluorescent microscopy experiments demonstrated that probe 1 had potential to be used to investigate biological processes involving Cu2 + ions within living cells.

  3. Surface modification of nanoclays by catalytically active transition metal ions.

    Science.gov (United States)

    Nawani, Pranav; Gelfer, Mikhail Y; Hsiao, Benjamin S; Frenkel, Anatoly; Gilman, Jeffrey W; Khalid, Syed

    2007-09-11

    A unique class of nanoclays was prepared by modification of pristine clays or organoclays (Cloisite C20A) with transition metal ions (TMIs). The composition, structure, morphology and thermal properties of TMI-modified nanoclays were investigated by atomic absorption spectroscopy (AAS), elemental analysis (EA), scanning electron microscopy (SEM), small-angle X-ray scattering (SAXS), wide-angle X-ray diffraction (WAXD), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC) and X-ray absorption near-edge structure (XANES) spectroscopy. The content of TMIs in modified clays was found to be close to the limiting value of ion exchange capacity. SEM and X-ray results confirmed that TMIs were located between the mineral layers instead of being adsorbed on the surface of clay particles. TGA results indicated that the TMI treatment of organoclays could significantly increase the thermal stability, which was more pronounced in air than in nitrogen. Temperature-resolved SAXS measurements revealed that the presence of TMIs increased the onset temperature of structural degradation. The higher thermal stability of TMI-modified organoclays can be attributed to the change in the thermal degradation mechanism, resulting in a decrease in the yield of volatile products and the formation of char facilitated by the presence of catalytically active TMIs.

  4. Surface Modification of Nanoclays by Catalytically Active Transition Metal Ions

    Energy Technology Data Exchange (ETDEWEB)

    Nawani,P.; Gelfer, M.; Hsiao, B.; Frenkel, A.; Gilman, J.; Khalid, S.

    2007-01-01

    A unique class of nanoclays was prepared by modification of pristine clays or organoclays (Cloisite C20A) with transition metal ions (TMIs). The composition, structure, morphology and thermal properties of TMI-modified nanoclays were investigated by atomic absorption spectroscopy (AAS), elemental analysis (EA), scanning electron microscopy (SEM), small-angle X-ray scattering (SAXS), wide-angle X-ray diffraction (WAXD), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC) and X-ray absorption near-edge structure (XANES) spectroscopy. The content of TMIs in modified clays was found to be close to the limiting value of ion exchange capacity. SEM and X-ray results confirmed that TMIs were located between the mineral layers instead of being adsorbed on the surface of clay particles. TGA results indicated that the TMI treatment of organoclays could significantly increase the thermal stability, which was more pronounced in air than in nitrogen. Temperature-resolved SAXS measurements revealed that the presence of TMIs increased the onset temperature of structural degradation. The higher thermal stability of TMI-modified organoclays can be attributed to the change in the thermal degradation mechanism, resulting in a decrease in the yield of volatile products and the formation of char facilitated by the presence of catalytically active TMIs.

  5. Metal Ions Removal Using Nano Oxide Pyrolox™ Material

    Science.gov (United States)

    Gładysz-Płaska, A.; Skwarek, E.; Budnyak, T. M.; Kołodyńska, D.

    2017-02-01

    The paper presents the use of Pyrolox™ containing manganese nano oxides used for the removal of Cu(II), Zn(II), Cd(II), and Pb(II) as well as U(VI) ions. Their concentrations were analyzed using the atomic absorption spectrometer SpectrAA 240 FS (Varian) as well as UV-vis method. For this purpose the static kinetic and equilibrium studies were carried out using the batch technique. The effect of solution pH, shaking time, initial metal ion concentrations, sorbent dosage, and temperature was investigated. The equilibrium data were analyzed using the sorption isotherm models proposed by Freundlich, Langmuir-Freundlich, Temkin, and Dubinin-Radushkevich. The kinetic results showed that the pseudo second order kinetic model was found to correlate the experimental data well. The results indicate that adsorption of Cu(II), Zn(II), Cd(II), and Pb(II) as well as U(VI) ions is strongly dependent on pH. The value of pH 4-7 was optimal adsorption. The time to reach the equilibrium was found to be 24 h, and after this time, the sorption percentage reached about 70%. Kinetics of Cu(II), Zn(II), Cd(II), Pb(II), and U(VI) adsorption on the adsorbent can be described by the pseudo second order rate equation. Nitrogen adsorption/desorption, infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) measurements for adsorbent characterization were performed. Characteristic points of the double layer determined for the studied Pyrolox™ sample in 0.001 mol/dm3 NaCl solution are pHPZC = 4 and pHIEP < 2.

  6. High performance ion chromatography of transition metal chelate complexes and aminopolycarboxylate ligands.

    Science.gov (United States)

    Tófalvi, Renáta; Horváth, Krisztián; Hajós, Péter

    2013-01-11

    A simple ion chromatographic method was developed for the separation of transition metal chelates (CuEDTA, CuDCTA, ZnEDTA, ZnDCTA) and free anionic complexing ligands (EDTA, DCTA) using alkaline carbonate eluents and conductivity detection. The complex equilibria and kinetic process of separations were studied in order to understand major factors in the control of selectivity and retention order of complex anions. A systematic study was applied to identify the additional peaks of the system as NaEDTA(3-), NaHEDTA(2-), Na(2)EDTA(2-), EDTA(4-)/HEDTA(3-), DCTA(4-)/HDCTA(-3). On the basis of microequilibrium considerations of chelating ligand, it was shown that one should expect the peaks of sodium chelates when the ligand is in excess in the sample solution. The probability density function was introduced for calculation of complex chromatograms, because complexing ligands can exist in at least two different interconvertible forms in the presence of metal ion. The chromatogram of interconverting chelate species can be given as the sum of probability density functions (P) weighed by the molar fractions of complexed (Φ(ML)) and dissociated (Φ(L)) forms. The influences of kinetic rate of complex formation and dissociation on the distribution of components between eluents and ion exchange stationary phases were quantitatively described and demonstrated by elution profiles. The applicability of the developed method is represented by the simultaneous analysis of transition metal chelates and inorganic anions. ICP-AES analysis and FTIR-ATR technique were used for confirmation of IC results for metals and ligands, respectively. Collection protocols for the heart-cutting procedure of chromatograms were applied in the analysis of target components. The limit of detection and linearity of the method in the range of 0.01-0.25 mM sample concentration were also presented. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. The removal of heavy metal ions from aqueous solutions using sour ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-17

    Dec 17, 2008 ... Key words: Toxic, heavy metal, ions, synthetic, adsorption, biosorption. INTRODUCTION ... heavy metal ions by sour sop seeds from synthetic waste .... Freeland GN, Hoskinson RN, Mayfield RJ (1974). Adsorption of mercury from aqueous solutions by polyethylenamine - modified wood fibers. Environ. Sci.

  8. Alzheimer’s disease: How metal ions define β-amyloid function

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2017-01-01

    Alzheimer’s disease is increasingly recognized to be linked to the function and status of metal ions, and recently, the amyloid hypothesis has been strongly intertwined with the metal ion hypothesis; in fact, these two hypotheses fit well together and are not mutually contradictory. This review...

  9. Metal-ion dependent catalytic properties of Sulfolobus solfataricus class II α-mannosidase

    DEFF Research Database (Denmark)

    Nielsen, Jonas Willum; Poulsen, Nina Rødtness; Johnsson, Anna Margit Susanne

    2012-01-01

    The active site for the family GH38 class II α-mannosidase is constituted in part by a divalent metal ion, mostly Zn(2+), as revealed in the crystal structures of enzymes from both animal and bacterial sources. The metal ion coordinates to the bound substrate and side chains of conserved amino ac...

  10. Effects of Lability of Metal Complex on Free Ion Measurement Using DMT

    NARCIS (Netherlands)

    Weng, L.P.; Riemsdijk, van W.H.; Temminghoff, E.J.M.

    2010-01-01

    Very low concentrations of free metal ion in natural samples can be measured using the Donnan membrane technique (DMT) based on ion transport kinetics. In this paper, the possible effects of slow dissociation of metal complexes on the interpretation of kinetic DMT are investigated both theoretically

  11. Measuring free metal ion concentrations in multicomponent solutions using Donnan Membrane Technique

    NARCIS (Netherlands)

    Kalis, E.J.J.; Temminghoff, E.J.M.; Weng, L.P.; Riemsdijk, van W.H.

    2007-01-01

    Among speciation techniques that are able to measure free metal ion concentrations, the Donnan membrane technique (DMT) has the advantage that it can measure many different free metal ion concentrations simultaneously in a multicomponent sample. Even though the DMT has been applied to several

  12. Indirect ultraviolet detection of alkaline earth metal ions using an imidazolium ionic liquid as an ultraviolet absorption reagent in ion chromatography.

    Science.gov (United States)

    Liu, Yong-Qiang; Yu, Hong

    2017-04-01

    A convenient and versatile method was developed for the separation and detection of alkaline earth metal ions by ion chromatography with indirect UV detection. The chromatographic separation of Mg2+ , Ca2+ , and Sr2+ was performed on a carboxylic acid base cation exchange column using imidazolium ionic liquid/acid as the mobile phase, in which the imidazolium ionic liquid acted as an UV-absorption reagent. The effects of imidazolium ionic liquids, detection wavelength, acids in the mobile phase, and column temperature on the retention of Mg2+ , Ca2+ , and Sr2+ were investigated. The main factors influencing the separation and detection were the background UV absorption reagent and the concentration of hydrogen ion in ion chromatography with indirect UV detection. The successful separation and detection of Mg2+ , Ca2+ , and Sr2+ within 14 min were achieved using the selected chromatographic conditions, and the detection limits (S/N = 3) were 0.06, 0.12, and 0.23 mg/L, respectively. A new separation and detection method of alkaline earth metal ions by ion chromatography with indirect UV detection was developed, and the application range of ionic liquids was expanded. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Electromigration study of focused ion beam modified metal lines

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.L.; Yao, D.H. [IBM Microelectronics Div., Essex Junction, VT (United States)

    1995-12-31

    Focus ion beam (FIB) technology is a commonly used tool for integrated circuit device modification, failure analysis, and a variety of other applications. However, limited reliability data of FIB altered circuit is available. This study describes the electromigration mechanism of FIB-altered Al(Cu-Si)/Ti-layered metal lines. The electromigration failures encountered resulted in Al voids at the anode end of FIB-deposited W and Al{sub 2}Cu precipitates at the cathode end. A higher frequency of Al extrusions was also observed on samples stressed at higher temperatures. These observations indicated that FIB-W was an effective blocking boundary for Al and Cu, and confirmed that Cu does electromigrate before Al. The electromigration mechanism of the FIB-altered line closely resembles the published results from two-level Al/W-line/stud interconnect studies. An activation energy of 0.66 eV, with a current exponent of 1.9 and a lognormal sigma of 0.55, was determined from the kinetic analysis of the FIB-altered metal line.

  14. Polyazulene based materials for heavy metal ions detection

    Science.gov (United States)

    Oprisanu, A.; Ungureanu, E. M.; Isopescu, R.; Birzan, L.; Mihai, M.; Vasiliu, C.

    2017-06-01

    Azulene is a special monomer used to functionalize electrodes, due to its spontaneous electron drift from the seven-membered ring to the five-membered ring. The seven-membered ring of the molecule may act as electron acceptor, while the five-membered ring - as electron donor. This leads to very attractive properties for the synthesis of functional advanced materials like: materials with nonlinear optical and photorefractive properties, cathode materials for lithium batteries, or light emitting diodes based on organic materials. Azulene derivatives have been used rarely to the metal ions electroanalysis. Our study concerns the synthesis and electrochemical characterization of a new azulene based monomer 4-(azulen-1-yl)-2,6-bis((E)-2-(thiophen-3-yl)vinyl)pyridine (L). L has been used to obtain modified electrodes by electrochemical polymerization. PolyL films modified electrodes have been characterized by cyclic voltammetry in ferrocene solutions. The complexing properties of polyL based functional materials have been investigated towards heavy metals (Pb, Cd Hg, Cu) by preconcentration - anodic stripping technique in order to analyze the content of these cations from water samples.

  15. Effect of metal ions on Trichophyton rubrum culture

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, A.K.; Banerjee, A.B.

    1975-01-01

    The mycelial growth of Trichophyton rubrum in a synthetic medium comprised of glucose, glutamic acid and salt mixture, could be correlated with the concentration of Fe/sup + +/, Zn/sup + +/, and Mn/sup + +/ up to the concentration 2.5 ..mu..g, 0.5 ..mu..g, and 0.05 ..mu..g/ml respectively. At higher concentrations these metal ions are growth inhibitory. In Zn/sup + +/ and Mn/sup + +/ deficient media, pH was reduced during the growth of the organism. Lactic acid was identified and found responsible for this shift. The culture of the organism under mineral deficiency is characteristically devoid of differentiated reproductive bodies. Ag/sup +/, Bi/sup + + +/, Ba/sup + +/ and Hg/sup + +/ are not growth inhibitory for T. rubrum in complex medium up to a dose level of 20 ppm. The organism is very sensitive to the toxic action of Pb/sup + +/, Cu/sup + +/ and Cd/sup + +/. The culture characteristics of the organism are changed in the presence of heavy metals even at subtoxic dose. 7 references, 2 figures, 2 tables.

  16. Porous metal oxide microspheres from ion exchange resin

    Science.gov (United States)

    Picart, S.; Parant, P.; Caisso, M.; Remy, E.; Mokhtari, H.; Jobelin, I.; Bayle, J. P.; Martin, C. L.; Blanchart, P.; Ayral, A.; Delahaye, T.

    2015-07-01

    This study is devoted to the synthesis and the characterization of porous metal oxide microsphere from metal loaded ion exchange resin. Their application concerns the fabrication of uranium-americium oxide pellets using the powder-free process called Calcined Resin Microsphere Pelletization (CRMP). Those mixed oxide ceramics are one of the materials envisaged for americium transmutation in sodium fast neutron reactors. The advantage of such microsphere precursor compared to classical oxide powder is the diminution of the risk of fine dissemination which can be critical for the handling of highly radioactive powders such as americium based oxides and the improvement of flowability for the filling of compaction chamber. Those millimetric oxide microspheres incorporating uranium and americium were synthesized and characterizations showed a very porous microstructure very brittle in nature which occurred to be adapted to shaping by compaction. Studies allowed to determine an optimal heat treatment with calcination temperature comprised between 700-800 °C and temperature rate lower than 2 °C/min. Oxide Precursors were die-pressed into pellets and then sintered under air to form regular ceramic pellets of 95% of theoretical density (TD) and of homogeneous microstructure. This study validated thus the scientific feasibility of the CRMP process to prepare bearing americium target in a powder free manner.

  17. Energy use in selected metal casting facilities - 2003

    Energy Technology Data Exchange (ETDEWEB)

    Eppich, Robert E. [Eppich Technologies, Syracuse, IN (United States)

    2004-05-01

    This report represents an energy benchmark for various metal casting processes. It describes process flows and energy use by fuel type and processes for selected casting operations. It also provides recommendations for improving energy efficiency in casting.

  18. Role of metal ions in the destruction of TATP: theoretical considerations.

    Science.gov (United States)

    Dubnikova, Faina; Kosloff, Ronnie; Oxley, Jimmie C; Smith, James L; Zeiri, Yehuda

    2011-09-29

    The safe decomposition of solid TATP (triacetone triperoxide) explosive is examined theoretically. The route to destruction starts with formation of metal complexes between a metal ion and the TATP molecule. The second step is decomposition of the molecules into stable final products. We examined the structure and stability of both metal ion (including Na(+), Cu(+), Cu(2+), Co(2+), and Zn(2+)) and proton complexes with TATP using quantum chemical calculations at the DFT-PBE0 level of theory. In addition, for each ion complex, we determined the initial steps in the pathway to decomposition together with the associated transition states. We find that the products of decomposition, in particular, acetone, are also stabilized by ion metal complexes. In agreement with experiment, we find the best candidates for metal ion induced decomposition are Cu(2+) and Zn(2+).

  19. Sunflower stalks as adsorbents for the removal of metal ions from wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Sun, G.; Shi, W. [Univ. of California, Davis, CA (United States). Div. of Textiles and Clothing

    1998-04-01

    Sunflower stalks as adsorbents for the removal of metal ions such as copper, cadmium, zinc, and chromium ions in aqueous solutions were studied with equilibrium isotherms and kinetic adsorptions. The maximum adsorptions of four heavy metals are 29.3 mg/g (Cu{sup 2+}), 30.73 mg/g (Zn{sup 2+}), 42.18 mg/g (Cd{sup 2+}), and 25.07 mg/g (Cr{sup 3+}), respectively. Particle sizes of sunflower stalks affected the adsorption of metal ions; the finer size of particles showed better adsorption to the ions. Temperature also plays an interesting role in the adsorption of different metal ions. Copper, zinc, and cadmium exhibited lower adsorption on sunflower stalks at higher temperature, while chromium showed the opposite phenomenon. The adsorption rates of copper, cadmium, and chromium are quite rapid. Within 60 min of operation about 60--80% of these ions were removed from the solutions.

  20. Pre-combustion CO2 capture by transition metal ions embedded in phthalocyanine sheets.

    Science.gov (United States)

    Lü, Kun; Zhou, Jian; Zhou, Le; Chen, X S; Chan, Siew Hwa; Sun, Qiang

    2012-06-21

    Transition metal (TM) embedded two-dimensional phthalocyanine (Pc) sheets have been recently synthesized in experiments [M. Abel, S. Clair, O. Ourdjini, M. Mossoyan, and L. Porte, J. Am. Chem. Soc. 133, 1203 (2010)], where the transition metal ions are uniformly distributed in porous structures, providing the possibility of capturing gas molecules. Using first principles and grand canonical Monte Carlo simulations, TMPc sheets (TM = Sc, Ti, and Fe) are studied for pre-combustion CO(2) capture by considering the adsorptions of H(2)/CO(2) gas mixtures. It is found that ScPc sheet shows a good selectivity for CO(2), and the excess uptake capacity of single-component CO(2) on ScPc sheet at 298 K and 50 bar is found to be 2949 mg/g, larger than that of any other reported porous materials. Furthermore, electrostatic potential and natural bond orbital analyses are performed to reveal the underlying interaction mechanisms, showing that electrostatic interactions as well as the donation and back donation of electrons between the transition metal ions and the CO(2) molecules play a key role in the capture.

  1. Barcoded materials based on photoluminescent hybrid system of lanthanide ions-doped metal organic framework and silica via ion exchange.

    Science.gov (United States)

    Shen, Xiang; Yan, Bing

    2016-04-15

    A multicolored photoluminescent hybrid system based on lanthanide ions-doped metal organic frameworks/silica composite host has potential in display and barcode applications. By controlling the stoichiometry of the lanthanides via cation exchange, proportional various lanthanide ions are successfully introduced into metal organic frameworks, whose emission intensity is correspondingly proportional to its amount. The resulting luminescent barcodes depend on the lanthanide ions ratios and compositions. Subsequently, the lanthanide ions located in the channels of metal organic frameworks are protected from any interaction with the environment after the modification of silica on the surface. The optical and thermal stability of the hybrid materials are improved for technological application. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Spent lithium-ion battery recycling - Reductive ammonia leaching of metals from cathode scrap by sodium sulphite.

    Science.gov (United States)

    Zheng, Xiaohong; Gao, Wenfang; Zhang, Xihua; He, Mingming; Lin, Xiao; Cao, Hongbin; Zhang, Yi; Sun, Zhi

    2017-02-01

    Recycling of spent lithium-ion batteries has attracted wide attention because of their high content of valuable and hazardous metals. One of the difficulties for effective metal recovery is the separation of different metals from the solution after leaching. In this research, a full hydrometallurgical process is developed to selectively recover valuable metals (Ni, Co and Li) from cathode scrap of spent lithium ion batteries. By introducing ammonia-ammonium sulphate as the leaching solution and sodium sulphite as the reductant, the total selectivity of Ni, Co and Li in the first-step leaching solution is more than 98.6% while it for Mn is only 1.36%. In detail understanding of the selective leaching process is carried out by investigating the effects of parameters such as leaching reagent composition, leaching time (0-480min), agitation speed (200-700rpm), pulp density (10-50g/L) and temperature (323-353K). It was found that Mn is primarily reduced from Mn4+ into Mn2+ into the solution as [Formula: see text] while it subsequently precipitates out into the residue in the form of (NH4)2Mn(SO3)2·H2O. Ni, Co and Li are leached and remain in the solution either as metallic ion or amine complexes. The optimised leaching conditions can be further obtained and the leaching kinetics is found to be chemical reaction control under current leaching conditions. As a result, this research is potentially beneficial for further optimisation of the spent lithium ion battery recycling process after incorporating with metal extraction from the leaching solution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Effect of the formation of EDTA complexes on the diffusion of metal ions in water

    Science.gov (United States)

    Furukawa, Kenji; Takahashi, Yoshio; Sato, Haruo

    2007-09-01

    The diffusion coefficients of aquo metal ions (M z+ ) and their EDTA complexes (M-EDTA ( z-4)+ ) were compared to understand the effect of EDTA complexation on the diffusion of metal ions by the diffusion cell method for Co 2+, Ga 3+, Rb +, Sr 2+, Ag +, Cd 2+, Cs +, Th 4+, UO22+, and trivalent lanthanides. Most studies about ionic diffusion in water have dealt with free ion (hydrated ion). In many cases, however, polyvalent ions are dissolved as complexed species in natural waters. Hence, we need to study the diffusion behavior of complexes in order to understand the diffusion phenomenon in natural aquifer and to measure speciation by diffusive gradient in thin films (DGT), which requires the diffusion coefficients of the species examined. For many ions, the diffusion coefficients of M-EDTA ( z-4)+ are smaller than those of hydrated ions, but the diffusion coefficients of M-EDTA ( z-4)+ are larger than those of hydrated ions for ions with high ionic potentials (Ga 3+ and Th 4+). As a result, the diffusion coefficients of EDTA complexes are similar among various metal ions. In other words, the diffusion of each ion loses its characteristics by the complexation with EDTA. Although the difference is subtle, it was also found that the diffusion coefficients of EDTA complexes increase as the ionic potential increases, which can be explained by the size of the EDTA complex of each metal ion.

  4. Multidiagnostics analysis of ion dynamics in ultrafast laser ablation of metals over a large fluence range

    Energy Technology Data Exchange (ETDEWEB)

    Anoop, K. K.; Polek, M. P.; Bruzzese, R.; Amoruso, S.; Harilal, Sivanandan S.

    2015-02-28

    The ions dynamics in ultrafast laser ablation of metals is studied over a fluence range spanning from the ablation threshold up to ~75 J/cm2 by means of three established diagnostic techniques. Langmuir probe, Faraday cup and spectrally resolved ICCD imaging simultaneously monitor the laser-produced plasma ions produced during ultrafast laser ablation of a copper target. The fluence dependence of ion yield is analyzed observing the occurrence of three different regimes. Moreover, the specific ion yield shows a maximum at about 4-5 J/cm2, followed by a gradual reduction and a transition to a high-fluence regime above ~50 J/cm2. The fluence variation of the copper ions angular distribution is also analyzed, observing a gradual increase of forward peaking of Cu ions for fluences up to ~10 J/cm2. Then, a broader ion component is observed at larger angles for fluences larger than ~10 J/cm2. Finally, an experimental characterization of the ions angular distribution for several metallic targets (Mg, Al, Cr, Fe, Cu, and W) is carried out at a relatively high fluence of ~66 J/cm2. Interestingly, the ion emission from the volatile metals show a narrow forward peaked distribution and a high peak ion yield compared to the refractory metals. Moreover, the width of ion angular distributions presents a striking correlation with the peak ion yield.

  5. Stimuli-responsive nucleic acid-functionalized metal-organic framework nanoparticles using pH- and metal-ion-dependent DNAzymes as locks.

    Science.gov (United States)

    Chen, Wei-Hai; Yu, Xu; Cecconello, Alessandro; Sohn, Yang Sung; Nechushtai, Rachel; Willner, Itamar

    2017-08-01

    A versatile approach to modify metal-organic framework nanoparticles (NMOFs) with nucleic acid tethers, using the "click chemistry" method is introduced. The nucleic acid-functionalized NMOFs are used to prepare stimuli-responsive carriers of loads (fluorescence probes or anti-cancer drugs). Two different stimuli-responsive nucleic acid-based NMOFs are presented. One system involves the preparation of pH-responsive NMOFs. The NMOFs are loaded with fluorophores or doxorubicin anti-cancer drug and locked in the NMOFs by pH-responsive DNA duplex capping units. At pH = 5.0 the capping units are unlocked, leading to the release of the loads. The AS1411 aptamer is conjugated to the locking units as the targeting unit for the nucleolin biomarker present in cancer cells. The pH-responsive doxorubicin-loaded NMOFs and, in particular, the AS1411 aptamer-modified pH-responsive NMOFs reveal selective, targeted, cytotoxicity toward MDA-MB-231 breast cancer cells. A second system involves the synthesis of NMOFs that are loaded with fluorophores or doxorubicin and capped with metal-ion-dependent DNAzyme/substrate complexes as locking units (metal ion = Mg(2+) or Pb(2+) ions). In the presence of the respective metal ions, the nucleic acid locking units are cleaved off, resulting in the release of the loads. Also, "smart" Mg(2+)-ion-dependent DNAzyme capped doxorubicin-loaded NMOFs are synthesized via the integration of the ATP aptamer sequence in the loop domain of the Mg(2+)-dependent DNAzyme. The unlocking of these NMOFs proceeds effectively only in the presence of ATP and Mg(2+) ions, acting as cooperative triggers. As ATP is over-expressed in cancer cells, the "smart" carrier provides sense-and-treat functions. The "smart" ATP/Mg(2+)-triggered doxorubicin-loaded NMOFs reveal selective cytotoxicity toward MDA-MB-231 cancer cells. Beyond the use of the metal-ion-dependent DNAzymes as ion-responsive locks of drug-loaded NMOF carriers, the DNAzyme-capped fluorophore-loaded NMOFs

  6. Effect of pH, various divalent metal ion and different substrates on ...

    African Journals Online (AJOL)

    EZUGWU ARINZE LINUS

    Key words: Glucoamylase, pH, metal ions, Aspergillus niger, tiger nut starch, amylopectin. ... formation of a nucleophilic hydroxide ion at neutral pH by .... sodium acetate. Each of the reaction mixtures contains 0.5 ml of enzyme solution, 0.5 ml of starch solution (1%) and 1 ml of metal ion solutions (Ca2+, Mg2+, Mn2+, Fe2+, ...

  7. Effects of mixing metal ions on oxidative DNA damage mediated by a Fenton-type reduction.

    Science.gov (United States)

    Moriwaki, Hiroshi; Osborne, Martin R; Phillips, David H

    2008-02-01

    The formation of 8-hydroxy-deoxyguanosine (8-OHdG) and strand breaks in DNA by Fenton-type reactions by mixtures of two of five metal ions, iron (II), cadmium (II), nickel (II), chromium (III) or copper (II), has been investigated and compared to their formation by each single metal ion. Salmon sperm DNA and pBluescript K+ plasmid were each incubated with hydrogen peroxide and metal ions. The formation of 8-OHdG declined in the Fe (II) or Cu (II) Fenton reaction upon addition of Cd (II) or Ni (II) ion. In contrast, the Fe (II) reaction upon addition of Cr (III) ion showed an additive influence on the formation of 8-OHdG. Furthermore, the Cu (II) plus Cr (III) reaction showed a synergistic effect. These influences relate to the interaction of metal ions with DNA, the potentials of the metal ions to generate activated oxygen and electron transfer between metal ions. The formation of DNA strand breaks was investigated in plasmid DNA by agarose gel electrophoresis and subsequent densitometry. The formation of DNA strand breaks in the Fe (II) or Cu (II) Fenton reaction decreased upon the addition of Ni (II) ion, as with the formation of 8-OHdG mediated by these metal ions. On the other hand, the formation of DNA strand breaks in the Fe (II) reaction decreased upon addition of Cr (III) ion, and the Cu (II) plus Cr (III) reaction did not show the synergistic influence on DNA strand breaks. These results suggest that interactions between two metal ions can influence the generation of 8-OHdG and the formation of DNA strand breaks and demonstrate that these lesions can arise by different mechanisms.

  8. The Use of Coordination Chemistry Principles to Control Aggregation Processes of Metal Ions

    OpenAIRE

    Nayak, Sanjit

    2008-01-01

    The research presented in this thesis is based on the use coordination chemistry principles to control aggregation process of metal ions. Two important areas, which are currently being intensely researched, were chosen. Firstly, controlled aggregation of paramagnetic metal ions to produce cooperatively coupled molecule-based magnets was studied. In Chapter 3, the potential ways of producing single-molecule magnets (SMMs) using polyols as ligands and manganese and iron ions as the paramagnetic...

  9. Preparation and evaluation adsorption capacity of cellulose xanthate of sugarcane bagasse for removal heavy metal ion from aqueous solutions

    Science.gov (United States)

    Iryani, D. A.; Risthy, N. M.; Resagian, D. A.; Yuwono, S. D.; Hasanudin, U.

    2017-05-01

    The discharge of heavy metals from industrial effluents into aquatic system in surrounding area of Lampung bay become a serious problem today. The data shows that the concentrations of heavy metals in this area are above allowable limits for the discharge of toxic heavy metals in the aquatic systems. The most common of heavy metal pollutant is divalent metal ions. Cellulose xanthate is one of the selective adsorbent to solve this problem, since xanthate contains two negative sulfur atoms that is capable to catch divalent metal ions. Preparation of cellulose xanthate was conducted by reacting carbon disulfide (CS2) and cellulose from sugarcane bagasse. The morphological characteristics of cellulose xanthate were visualized via Scanning Electron Microscope (SEM) and the presence of sulfur groups on sugarcane bagasse xanthate were identified by FTIR spectroscopic study. The degree of substitution (DS), degree of polymerization (DP), and adsorption capacities of cellulose xanthate for Cu2+ and Pb2+ metal were studied. The results of study reveals that the maximum adsorption capacities of Cu2+ and Pb2+ metal on cellulose xanthate are 54.226 mg Cu2+/g, and 51.776 mg Pb2+/g, respectively. This study reveals that cellulose xanthate could be a solution to reduce environmental pollution caused by industrial wastewater.

  10. Highly Sensitive and Selective Detection of Nanomolar Ferric Ions Using Dopamine Functionalized Graphene Quantum Dots.

    Science.gov (United States)

    Dutta Chowdhury, Ankan; Doong, Ruey-An

    2016-08-17

    The good stability, low cytotoxicity, and excellent photoluminescence property of graphene quantum dots (GQDs) make them an emerging class of promising materials in various application fields ranging from sensor to drug delivery. In the present work, the dopamine-functionalized GQDs (DA-GQDs) with stably bright blue fluorescence were successfully synthesized for low level Fe(3+) ions detection. The as-synthesized GQDs are uniform in size with narrow-distributed particle size of 4.5 ± 0.6 nm and high quantum yield of 10.2%. The amide linkage of GQDs with dopamine, confirmed by using XPS and FTIR spectra, results in the specific interaction between Fe(3+) and catechol moiety of dopamine at the interfaces for highly sensitive and selective detection of Fe(3+). A linear range of 20 nM to 2 μM with a detection limit of 7.6 nM is obtained for Fe(3+) detection by DA-GQDs. The selectivity of DA-GQDs sensing probe is significantly excellent in the presence of other interfering metal ions. In addition, the reaction mechanism for Fe(3+) detection based on the complexation and oxidation of dopamine has been proposed and validated. Results obtained in this study clearly demonstrate the superiority of surface functionalized GQDs to Fe(3+) detection, which can pave an avenue for the development of high performance and robust sensing probes for detection of metal ions and other organic metabolites in environmental and biomedical applications.

  11. Micelles entrapped Cresyl Violet can selectively detect copper and mercury ions in solution: A fluorescence Correlation Spectroscopy investigation

    Science.gov (United States)

    Das, Nirmal Kumar; Ghosh, Subhadip; Jaiswal, Sunidhi; Tewary, Anu; Mukherjee, Saptarshi

    2017-08-01

    The dynamic interaction of Cresyl Violet (CV) in different micellar systems has been demonstrated in single molecular level by FCS studies. The SDS micelle entrapped CV efficiently detected Cu2+ ions in solution with a limit of detection (LOD) of 70 nM, which is further substantiated with the gradual enhancement of the translational motion. The CV entrapped in the DTAB micelles could selectively detect Hg2+ ions in solution with a LOD of 35 nM. The micelle encapsulated CV was effective in detecting these metal ions in real water samples from different sources.

  12. Importance of diffuse metal ion binding to RNA.

    Science.gov (United States)

    Tan, Zhi-Jie; Chen, Shi-Jie

    2011-01-01

    RNAs are highly charged polyanionic molecules. RNA structure and function are strongly correlated with the ionic condition of the solution. The primary focus of this article is on the role of diffusive ions in RNA folding. Due to the long-range nature of electrostatic interactions, the diffuse ions can contribute significantly to RNA structural stability and folding kinetics. We present an overview of the experimental findings as well as the theoretical developments on the diffuse ion effects in RNA folding. This review places heavy emphasis on the effect of magnesium ions. Magnesium ions play a highly efficient role in stabilizing RNA tertiary structures and promoting tertiary structural folding. The highly efficient role goes beyond the mean-field effect such as the ionic strength. In addition to the effects of specific ion binding and ion dehydration, ion-ion correlation for the diffuse ions can contribute to the efficient role of the multivalent ions such as the magnesium ions in RNA folding.

  13. Ultrasmall fluorescent ion-exchanging nanospheres containing selective ionophores.

    Science.gov (United States)

    Xie, Xiaojiang; Mistlberger, Günter; Bakker, Eric

    2013-10-15

    We present a convenient precipitation procedure to fabricate ultrasmall fluorescent ion-selective nanosensors that operate on the basis of bulk ion-exchange sensing principles. The nanosphere matrix is composed of bis(2-ethylhexyl) sebacate (DOS) and a triblock copolymer Pluronic(®) F-127, which also functions as a surfactant to stabilize the nanoparticle. The particles can be prepared easily in large quantity without resorting to further complicated purification. Dynamic light scattering shows that these particles have a monodisperse size distribution with an average diameter of ∼40 nm, suggesting that the nanoparticles are among the smallest ionophore-based ion-selective nanosensors reported to date. A newly reported oxazinoindoline (Ox) as well as a Nile blue derivative (chromoionophore I) was used as a chromoionophore. Na(+)- and H(+)-selective nanospheres were characterized by absorbance and fluorescence spectroscopy. Owing to the very small size of the nanospheres, the suspension containing the particles is transparent. In the additional presence of the pH indicator HPTS, spectroscopic interrogation of pH and Na(+) in the same sample was demonstrated. As an example, the nanospheres were used to measure the Na(+) level in commercial mineral waters, and the results showed good agreement with atomic absorption spectroscopy (AAS).

  14. Selective transport of ions and molecules across layer-by-layer assembled membranes of polyelectrolytes, p-sulfonato-calix[n]arenes and Prussian Blue-type complex salts.

    Science.gov (United States)

    Tieke, Bernd; Toutianoush, Ali; Jin, Wanqin

    2005-11-30

    Our recent studies in the field of ultrathin membranes prepared upon layer-by-layer assembly of various polyionic compounds such as polyelectrolytes, calixarenes and polyelectrolytes, and metal hexacyanoferrate salts such as Prussian Blue are reviewed. It is demonstrated that polyelectrolyte multilayers can be used (a) as nanofiltration and reverse osmosis membranes suitable for water softening and seawater desalination and (b) as molecular sieves and ion sieves for size-selective separation of neutral and charged aromatic compounds. Furthermore, hybrid membranes of p-sulfonato-calixarenes and cationic polyelectrolytes showing specific host-guest interactions with permeating ions are described. The membranes exhibit high selectivities for distinct metal ions. Finally, it is demonstrated that purely inorganic membranes of Prussian Blue (PB) and analogues can be prepared upon multiple sequential adsorption of transition metal cations and hexacyanoferrate anions. Due to the porous lattice of PB, the membranes are useful as ion filters able to separate cesium from sodium ions, for example.

  15. Comparison of different transition metal ions for immobilized metal affinity chromatography of selenoprotein P from human plasma

    DEFF Research Database (Denmark)

    Sidenius, U; Farver, O; Jøns, O

    1999-01-01

    Cu2+, Ni2+, Zn2+, Co2+ and Cd2+ were evaluated in metal ion affinity chromatography for enrichment of selenoprotein P, and immobilized Co2+ affinity chromatography was found to be the most selective chromatographic method. The chromatography was performed by fast protein liquid chromatography...... and the fractionation was followed by analysis of the collected fractions for selenium by inductively coupled plasma mass spectrometry. By the combination of immobilized Co2+ affinity chromatography and heparin affinity chromatography a simple method was developed yielding a 14,800-fold enrichment of selenoprotein P....... The purity of the protein was determined by SDS-PAGE and by sequencing from polyvinylidene difluoride blots of SDS-PAGE gels....

  16. Selective micro metallization of polymers for biomedical and medical application

    DEFF Research Database (Denmark)

    Islam, Mohammad Aminul; Hansen, Hans Nørgaard; Tang, Peter Torben

    Integration of micro/nano metallic structures in polymer devices is a broad multi-disciplinary research field, consisting of various combinations of mechanical, chemical and physical fabrication methods. Some of these combinations have been known for years and other combinations or methods are ve......-on-a-chip devices, bioelectronics etc. are also potential application areas for metallized plastic parts. This paper shows various methods used in selective micro metallization of polymers.......Integration of micro/nano metallic structures in polymer devices is a broad multi-disciplinary research field, consisting of various combinations of mechanical, chemical and physical fabrication methods. Some of these combinations have been known for years and other combinations or methods are very...... new and developing. Metallized plastic parts have many application in micro electro-mechanical devices. Injection moulded plastic parts combined with micro metallic structures (with nanosized features) can be used in the bio-sensing devices like plasmon resonance sensors. Hearing aids, lab...

  17. Metal-on-metal bearings in total hip arthroplasties : Influence of cobalt chromium ions on bacterial growth and biofilm formation

    NARCIS (Netherlands)

    Hosman, Anton H.; van der Mei, Henny C.; Bulstra, Sjoerd K.; Busscher, Henk J.; Neut, Danielle

    2009-01-01

    Metal-on-metal (MOM) bearings involving cobalt-chromium (Co-Cr) alloys in total hip arthroplasties are becoming more and more popular due to their low wear. Consequences of corrosion products of Co-Cr alloys are for the most part unclear, and the influence of cobalt and chromium ions on biofilm

  18. Electrochemical, optical and metal ion sensing properties of dithizone derivatised electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Mirkhalaf, F

    1998-07-01

    Derivatisation of electrode surfaces with ultra-thin films of organic molecules has been extensively studied for many applications in recent years. The present study is based on a new approach in the preparation and use of these electrodes for metal ion sensing. Modification of electrode surfaces with a ligand specific to heavy metal ions has been described. A new derivative of dithizone (DDz) and its secondary metal complexes have been synthesised and attached onto indium tin oxide (ITO) and gold electrodes. This was achieved by covalent bonding between carboxyl groups in DDz and terminal amine groups of molecules self-assembled on the electrode surfaces. These monolayer films were characterised by cyclic voltammetry, by in situ and ex situ surface spectroscopies and by their response to some transition metal ions. Mechanisms for the electrochemical and spectroscopic observations have been proposed. The coordination of heavy metal ions by the DDz film attached on electrode surfaces have been studied for its application as a metal ion sensing element. The uptake and release of metal ions by the ligand on the gold surface were followed by surface techniques and film characterisation was carried out by ellipsometry, Raman and in situ FTIR spectroscopy. A surface plasmon resonance (SPR) device with in situ electrochemical control was designed and constructed. The use of gold electrodes modified with DDz as a sensing element for metal ion detection in the SPR device was studied. Possible applications of these modified electrodes with potential control in metal ion detection are described. The electrochemical and SPR responses for the metal ion sensing by the monolayer films were compared with those of polymer films containing the same ligand. (author)

  19. Metal ions in biological catalysis: from enzyme databases to general principles.

    Science.gov (United States)

    Andreini, Claudia; Bertini, Ivano; Cavallaro, Gabriele; Holliday, Gemma L; Thornton, Janet M

    2008-11-01

    We analysed the roles and distribution of metal ions in enzymatic catalysis using available public databases and our new resource Metal-MACiE (http://www.ebi.ac.uk/thornton-srv/databases/Metal_MACiE/home.html). In Metal-MACiE, a database of metal-based reaction mechanisms, 116 entries covering 21% of the metal-dependent enzymes and 70% of the types of enzyme-catalysed chemical transformations are annotated according to metal function. We used Metal-MACiE to assess the functions performed by metals in biological catalysis and the relative frequencies of different metals in different roles, which can be related to their individual chemical properties and availability in the environment. The overall picture emerging from the overview of Metal-MACiE is that redox-inert metal ions are used in enzymes to stabilize negative charges and to activate substrates by virtue of their Lewis acid properties, whereas redox-active metal ions can be used both as Lewis acids and as redox centres. Magnesium and zinc are by far the most common ions of the first type, while calcium is relatively less used. Magnesium, however, is most often bound to phosphate groups of substrates and interacts with the enzyme only transiently, whereas the other metals are stably bound to the enzyme. The most common metal of the second type is iron, which is prevalent in the catalysis of redox reactions, followed by manganese, cobalt, molybdenum, copper and nickel. The control of the reactivity of redox-active metal ions may involve their association with organic cofactors to form stable units. This occurs sometimes for iron and nickel, and quite often for cobalt and molybdenum.

  20. Synthesis of ion-exchange resin for selective thorium and uranyl ions sorption

    Science.gov (United States)

    Konovalov, Konstantin; Sachkov, Victor

    2017-11-01

    In this work, the method of ion-exchange resin synthesis selective to radionuclides (uranium and thorium) is presented. The method includes synthesis of polymeric styrene-divinylbenzene macroporous matrix with size of 0.1-0.2 mm, and its subsequent transformation by nitration and then reduction by tin (II) chloride. For passivation of active primary amines partially oxidation by oxygen from air is used. Obtained ion-exchange resin has ratio of sorption sum U+Th to sorption sum of other total rare-earth elements as 1:1.88 at ratio of solid to liquid phase 1:200. The proposed method of ion-exchange resin synthesis is scaled-up for laboratory reactors with volume of 5 and 50 liters.

  1. Histidine–dialkoxyanthracene dyad for selective and sensitive detection of mercury ions

    KAUST Repository

    Patil, Sachin

    2017-12-18

    Histidine-dialkoxyanthracene (HDA) was synthesised as a turn off type fluorescent sensor for fast and sensitive detection of mercury ions (Hg2+) in aqueous media. The two histidine moieties act as ‘claws’ to selectively complex Hg2+. The binding ratio of HDA to Hg2+ was 1:1 (metal-to-ligand ratio). The association constant for Hg2+ towards the receptor HDA obtained from Benesi–Hildebrand plot was found to be 3.22 × 104 M−1 with detection limit as low as 4.7 nM (0.94 μg/L).

  2. Recovery of metals from simulant spent lithium-ion battery as organophosphonate coordination polymers in aqueous media.

    Science.gov (United States)

    Perez, Emilie; Andre, Marie-Laure; Navarro Amador, Ricardo; Hyvrard, François; Borrini, Julien; Carboni, Michaël; Meyer, Daniel

    2016-11-05

    An innovative approach is proposed for the recycling of metals from a simulant lithium-ion battery (LIBs) waste aqueous solution. Phosphonate organic linkers are introduced as precipitating agents to selectively react with the metals to form coordination polymers from an aqueous solution containing Ni, Mn and Co in a hydrothermal process. The supernatant is analyzed by ICP-AES to quantify the efficiency and the selectivity of the precipitation and the materials are characterized by Scanning Electron Microscopy (SEM), Powder X-Ray Diffraction (PXRD), Thermogravimetric Analyses (TGA) and nitrogen gas sorption (BET). Conditions have been achieved to selectively precipitate Manganese or Manganese/Cobalt from this solution with a high efficiency. This work describes a novel method to obtain potentially valuable coordination polymers from a waste metal solution that can be generalized on any waste solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Ion imprinted activated carbon solid-phase extraction coupled to flame atomic absorption spectrometry for selective determination of lead ions in environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Naraghi, Kiyana; Panahi, Homayon Ahmad; Hassani, Amir Hesam [Islamic Azad University, Tehran (Korea, Republic of); Moniri, Elham [Islamic Azad University, Varamin (Iran, Islamic Republic of)

    2014-10-15

    A simple lead ion imprinted sorbent was synthesized by coupling activated carbon with a known metal chelating compound, iminodiacetic acid. The ion imprinted sorbent has been characterized using Fourier transform infrared spectroscopy, elemental analysis and thermogravimetric analysis and subjected for the extraction and determination of trace Pb(II) in environmental water samples. The optimum pH value for sorption of the lead ion was 6.5. The sorption capacity of lead imprinted sorbent was 42.2 mg g{sup −1}. The chelating imprinted sorbent can be reused for five cycles of sorption-desorption without any significant change in sorption capacity. Compared with non-imprinted polymer particles, the lead ion imprinted sorbent showed high adsorption capacity, significant selectivity, good site accessibility for Pb(II). The equilibrium adsorption data of Pb(II) by modified resin were analyzed by Langmuir, Freundlich, Temkin and Redlich-Peterson models.

  4. Characterization of All Solid State Hydrogen Ion Selective Electrode Based on PVC-SR Hybrid Membranes

    Directory of Open Access Journals (Sweden)

    Yoon-Bo Shim

    2003-06-01

    Full Text Available Hydrogen ion selective membranes formulated with 3140 RTV silicone rubber (SR in PVC were studied to extend the life time of solid state ion sensors through improved membrane adhesion. All solid state hydrogen ion selective electrodes were prepared by incorporation of tridodecyl amine (TDDA as an ionophore, potassium tetrakis[3.5-bis(p-chlorophenylborate (KTpClPB as a lipophilic additive, bis(2-ethylhexyladipate (DOA as a plasticizer. Their linear dynamic range was pH 2.0-11.0 and showed the near Nernstian slope of 55.1±0.2 mV/pH (r=0.999. The ifluences from alkali and alkaline earth metal ions were studied for the response of the final ISE membrane composition. Impedance spectroscopic data showed that the resistance was increased by increasing SR content in PVC. Brewster Angle Microscopy (BAM image showed clear differences according to the SR compositions in PVC. Life time of the all solid state membrane electrode was extended to about 2 months by preparing the membrane with PVC and SR. The standard reference material from NIST (2181 HEPES Free acid and 2182 NaHEPESate was tested for the ISE and it gave good result.

  5. Selective Transport of Silver(I Ion Through Polymer Membranes Containing Thioether Donor Macrocycles as Carriers

    Directory of Open Access Journals (Sweden)

    A. Nezhadali

    2008-01-01

    Full Text Available The Preparation of polymer membrane and it's selectivity to silver(I ion from an aqueous solution containing seven metal cations, Co(II, Ni(II, Cu(II, Zn(II, Ag(I, Cd(II and Pb(II, was studied. The source phase contained equimolar concentrations of the above mentioned cations with the source and receiving phases being buffered at pH 5.0 and 3.0 respectively. The effect of variation in the number of the macrocyclic sulfur atom donor set anssd the size of ring 9 and 16 member macrocycles on transport efficiency is presented. Silver(I ion transport occurred (at 25°C from the aqueous source phase across the polymer membrane (derived from cellulos triacetate containing ligands 9-membered, S3-donor and16-membered S4-donor macrocycles as the ionophors in separate experiments into the aqueous receiving phase. Clear transport selectivity for silver(I ion was observed using both thioether donor macrocycles. The efficiency of transport rate for silver(I ion with using 9-membered S3-donor macrocycle as carrier was better than 16-membered S4-donor .

  6. A Water-Stable Dual-Channel Luminescence Sensor for UO22+Ions Based on an Anionic Terbium(III) Metal-Organic Framework.

    Science.gov (United States)

    Ye, Junwei; Bogale, Raji F; Shi, Yangwei; Chen, Yanzhen; Liu, Xigang; Zhang, Siqi; Yang, Yaoyao; Zhao, Jianzhang; Ning, Guiling

    2017-06-07

    A stable 3D Tb III -based metal-organic framework [Tb(BPDC) 2 ]⋅(CH 3 ) 2 NH 2 (DUT-101) was synthesized, and it is the first efficient dual-channel luminescence sensor for aqueous UO 2 2+ ions. DUT-101 contains an anionic three-dimensional framework and protonated dimethylamine molecules embedded within the channels. The intense green emission of DUT-101 could be highly selectively and sensitively quenched by UO 2 2+ ions even in the presence of other competing metal ions. A possible sensing mechanism was proposed based on both suppression of luminescence resonance energy transfer and enhancement of intermolecular electron transfer. Furthermore, visual green fluorescent test papers based on DUT-101 were fabricated and could be used to discriminate UO 2 2+ ions among various metal ions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. based 2D dynamic metal-organic framework showing selective ...

    Indian Academy of Sciences (India)

    The selective water uptake over alcohols along with visible colour change demonstrates the potential of the present compound in bio-alcohol purification. Keywords. Metal-organic frameworks; coordination polymers; selective uptake; dynamic framework. 1. Introduction. The limited natural resources like gas and oil have.

  8. A polyamide receptor based benzothiazole derivative: highly selective and sensitive fluorescent sensor for Hg{sup 2+} ion in aqueous medium

    Energy Technology Data Exchange (ETDEWEB)

    Maity, Shubhra Bikash; Bharadwaj, Parimal K., E-mail: pkb@iitk.ac.in

    2015-05-15

    A water soluble benzothiazole derivative having polyamide arms has been designed and synthesized. The sensor selectively detects Hg{sup 2+} ion in aqueous medium in presence of alkali, alkaline earth, first row transition metal and heavy metal ions. The reversible behaviour of the sensor can be achieved in presence of iodide ion. - Highlights: • A benzothiazole derivative having polyamide arms has been designed and synthesized. • It selectively detects Hg{sup 2+} ion in presence of host of monovalent, divalent and trivalent ions in aqueous medium. • It works through a reversible way. • The detection limit for Hg{sup 2+} ion was found to be 7.15×10{sup −7} M.

  9. An Electrochemical Sensor Based on Novel Ion Imprinted Polymeric Nanoparticles for Selective Detection of Lead Ions

    Directory of Open Access Journals (Sweden)

    Masoud Ghanei-Motlagh

    1999-11-01

    Full Text Available In this study, the novel surface ion-imprinted polymer (IIP particles were prepared and applied as a electrode modifier in stripping voltammetric detection of lead(II ion. A carbon paste electrode (CPE modified with IIP nanoparticles and multi-walled carbon nanotubes (MWCNTs was used for accumulation of toxic lead ions. Various factors that govern on electrochemical signals including carbon paste composition, pH of the preconcentration solution, supporting electrolyte, stirring time, reduction potential and time were studied in detail. The best electrochemical response for Pb(II ions was obtained with a paste composition of 7% (w/w of lead IIP, 10% MWCNTs, 53% (w/w of graphite powder and 30% (w/w of paraffin oil using a solution of 0.1 mol L-1 acetat buffer solution (pH=4.5 with a extraction time of 15 min. A sensitive response for Pb(II ions in the concentration range of 3 to 55 µg L-1 was achived. The proposed electrochemical sensor showed low detection limit (0.5 µg L-1, remarkable selectivity and good reproducibility (RSD = 3.1%. Determination of lead(II content in different environmental water samples was also realized adopting graphite furnace atomic absorptions spectrometry (GF-AAS and the obtained results were satisfactory.

  10. Electrochemical, optical and metal ion sensing properties of dithizone derivatised electrodes

    CERN Document Server

    Mirkhalaf, F

    1998-01-01

    studied. Possible applications of these modified electrodes with potential control in metal ion detection are described. The electrochemical and SPR responses for the metal ion sensing by the monolayer films were compared with those of polymer films containing the same ligand. Derivatisation of electrode surfaces with ultra-thin films of organic molecules has been extensively studied for many applications in recent years. The present study is based on a new approach in the preparation and use of these electrodes for metal ion sensing. Modification of electrode surfaces with a ligand specific to heavy metal ions has been described. A new derivative of dithizone (DDz) and its secondary metal complexes have been synthesised and attached onto indium tin oxide (ITO) and gold electrodes. This was achieved by covalent bonding between carboxyl groups in DDz and terminal amine groups of molecules self-assembled on the electrode surfaces. These monolayer films were characterised by cyclic voltammetry, by in situ and ex...

  11. Protein C production: metal ion/protein interfacial interaction in immobilized metal affinity chromatography.

    Science.gov (United States)

    Lee, James J; Thiessen, Eileen; Bruley, Duane F

    2005-01-01

    Protein C (PC) is an essential blood factor in the human blood coagulation cascade. PC can help achieve blood hemostasis in many deadly disease conditions such as sepsis, cancer, HIV, etc.; reduced oxygen transport due to blood agglutination within the body can cause tissue death and organ failure as a result of low oxygen transport. Our goal is to produce large quantities of low cost zymogen PC for the treatment and prevention of blood clotting resulting from many disease states, as well as provide an effective therapy for PC deficiency. Current studies show that Immobilized Metal Affinity Chromatography (IMAC) has high specificity and can be used for difficult separations among homologous proteins at relatively low cost compared to current methods, such as Immunoaffinity Chromatography. Thus, we are investigating the optimization of IMAC for the separation and purification of PC from Cohn fraction IV-I. Molecular interactions within the chromatography column involve many parameters that include: the use and type of chromatographic gel and buffer solution, the pH, temperature, metal ion, chelator, and the sequence and structure of the protein itself. These parameters all influence the protein's interaction with the column. Experimental equilibrium isotherms show that PC has primary and secondary binding characteristics, demonstrating that the interaction is not just a simple process of one protein binding to one metal ion. Understanding the thermodynamics of interfacial interaction between proteins and surface-bound Cu2+ is essential to optimizing IMAC for PC purification, as well as for separation of other proteins in general. Hence we are undertaking theoretical and experimental studies of IDA-Cu/PC adsorption. The differences in structures of PC and other critical homologous blood factors are examined using the protein visualization program Cn3D. A better understanding of the interfacial phenomena will help determine the most effective conditions to achieve our

  12. Ion transport through lipid bilayers by synthetic ionophores: modulation of activity and selectivity.

    Science.gov (United States)

    De Riccardis, Francesco; Izzo, Irene; Montesarchio, Daniela; Tecilla, Paolo

    2013-12-17

    platform to obtain 3D-structures that can form unimolecular channels in membranes. In these systems, the selection of proper donor groups allows us to control the ion selectivity of the process. We can switch from cation to anion transport by substituting protonated amines for the oxygen donors. Large and stable tubular structures with nanometric sized transmembrane nanopores that provide ample internal space represent a different approach for the preparation of synthetic ion channels. We used the metal-mediated self-assembly of porphyrin ligands with Re(I) corners as a new method for producing to robust channel-like structures. Such structures can survive in the complex membrane environment and show interesting ionophoric behavior. In addition to the development of new design principles, the selective modification of the biological membrane permeability could lead to important developments in medicine and technology.

  13. Characterization of Anthraquinone-DerivedRedox Switchable Ionophores and Their Complexes with Li+, Na+, K+, Ca+, and Mg+ Metal Ions

    Directory of Open Access Journals (Sweden)

    Vaishali Vyas

    2011-01-01

    Full Text Available Anthraquinone derived redox switchable ionophores 1,5 bis (2-(2-(2-ethoxy ethoxy ethoxyanthracene-9,10-dione (V1 and 1,8-bis(2-(2-(2-ethoxyethoxyethoxy anthracene—9,10-dione (V2 have been used for isolation, extraction and liquid membrane transport studies of Li+, Na+, K+, Ca2+ and Mg2+ metal ions. These isolated complexes were characterized by melting point determination, CV and IR, 1H NMR spectral analysis. Ionophore V2 shows maximum shift in reduction potential (ΔE with Ca(Pic2. The observed sequence for the shifting in reduction potential (ΔE between V2 and their complexes is V2 calcium picrate (42 mV > V2 potassium picrate (33 mV > V2 lithium picrate (25 mV > V2 sodium picrate (18 mV > V2 magnesium picrate (15 mV. These findings are also supported by results of extraction, back extraction and transport studies. Ionophore V2 complexed with KPic and showed much higher extractability and selectivity towards K+ than V1. These synthetic ionophores show positive and negative cooperativity towards alkali and alkaline earth metal ions in reduced and oxidized state. Hence, this property can be used in selective separation and enrichment of metal ions using electrochemically driven ion transport.

  14. Selective adsorption of Pb (II) over the zinc-based MOFs in aqueous solution-kinetics, isotherms, and the ion exchange mechanism.

    Science.gov (United States)

    Wang, Lei; Zhao, Xinhua; Zhang, Jinmiao; Xiong, Zhenhu

    2017-06-01

    Two series of metal-organic frameworks (MOFs) with similar formula units but different central metal ions (M) or organic linkers (L), M-BDC (BDC = terephthalate, M = Zn, Zr, Cr, or Fe), or Zn-L (L = imidazolate-2-methyl, BDC, BDC-NH 2 ), were prepared and employed as the receptors for adsorption lead ions. It was found that the Zn-BDC exhibited a much higher adsorption capacity than the other M-BDC series with various metal ions which have very closely low capacities at same conditions. Furthermore, the Zn-L (L = imidazolate-2-methyl, BDC, BDC-NH 2 ) still have highly efficient adsorption capacity of lead ions, although the adsorption capacity varies with different ligand, as well as the adsorption rate and the equilibrium pH of the solution. This significant high adsorption over Zn-L, different from other M-BDC series with various metal ions (Zr, Cr, or Fe), can be explained by ion exchange between the central metal ions of Zn-L and lead ion in solution. Based on the analysis of FT-IR, X-ray diffraction pattern, the nitrogen adsorption isotherms, the zeta potentials, and the results, a plausible adsorption mechanism is proposed. When equivalent Zn-L were added to equal volume of aqueous solution with different concentration of lead ion, the content of zinc ion in the solution increases with the increase of the initial concentration of lead ions. The new findings could provide a potential way to fabricate new metal organic frameworks with high and selective capacities of the heavy metal ions.

  15. Synthesis, spectral characterization, thermal investigation and electrochemical evaluation of benzilbis(carbohydrazone as Cd(II ion selective electrode

    Directory of Open Access Journals (Sweden)

    Sulekh Chandra

    2017-02-01

    Full Text Available Benzil bis(carbohydrazone (BBC has been synthesized and structurally characterized on the basis of IR, 1H NMR, mass, UV spectra and thermogravimetric analyses. BBC has been analysed electrochemically and explored as new N, N Schiff base. It plays the role of an excellent ion carrier in the construction of cadmium(II ion selective membrane sensor. This sensor shows very good selectivity and sensitivity towards cadmium ion over a wide variety of cations, including alkali, alkaline earth, transition and heavy metal ions. The response mechanism was discussed in the view of UV-spectroscopy and Electrochemical impedance spectroscopy (EIS. The proposed sensor was successfully used for the determination of cadmium in different chocolate samples.

  16. Multidiagnostic analysis of ion dynamics in ultrafast laser ablation of metals over a large fluence range

    Science.gov (United States)

    Anoop, K. K.; Polek, M. P.; Bruzzese, R.; Amoruso, S.; Harilal, S. S.

    2015-02-01

    The dynamics of ions in ultrafast laser ablation of metals is studied over fluences ranging from the ablation threshold up to ≈75 J/cm2 by means of three well-established diagnostic techniques. Langmuir probe, Faraday cup, and spectrally resolved intensified charge coupled device imaging simultaneously monitored the ions produced during ultrafast laser ablation of a pure copper target with 800 nm, ≈50 fs, Ti: Sapphire laser pulses. The fluence dependence of ion yield is analyzed, resulting in the observance of three different regimes. The specific ion yield shows a maximum at about 4-5 J/cm2, followed by a gradual reduction and a transition to a high-fluence regime above ≈50 J/cm2. The fluence dependence of the copper ions angular distribution is also analyzed, observing a gradual increase in forward-peaking of Cu ions for fluences up to ≈10 J/cm2. A broader ion component is observed at larger angles for fluences larger than ≈10 J/cm2. Finally, an experimental characterization of the ionic angular distribution for several metallic targets (Mg, Al, Cr, Fe, Cu, and W) is carried out at a relatively high fluence of ≈66 J/cm2. Interestingly, the ion emission from the volatile metals shows a narrow, forward-peaked distribution, and a high peak ion yield compared to the refractory metals. Moreover, the width of ionic angular distributions presents a striking correlation with the peak ion yield.

  17. MCTBI: a web server for predicting metal ion effects in RNA structures.

    Science.gov (United States)

    Sun, Li-Zhen; Zhang, Jing-Xiang; Chen, Shi-Jie

    2017-08-01

    Metal ions play critical roles in RNA structure and function. However, web servers and software packages for predicting ion effects in RNA structures are notably scarce. Furthermore, the existing web servers and software packages mainly neglect ion correlation and fluctuation effects, which are potentially important for RNAs. We here report a new web server, the MCTBI server (http://rna.physics.missouri.edu/MCTBI), for the prediction of ion effects for RNA structures. This server is based on the recently developed MCTBI, a model that can account for ion correlation and fluctuation effects for nucleic acid structures and can provide improved predictions for the effects of metal ions, especially for multivalent ions such as Mg2+ effects, as shown by extensive theory-experiment test results. The MCTBI web server predicts metal ion binding fractions, the most probable bound ion distribution, the electrostatic free energy of the system, and the free energy components. The results provide mechanistic insights into the role of metal ions in RNA structure formation and folding stability, which is important for understanding RNA functions and the rational design of RNA structures. © 2017 Sun et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  18. Metal-organic frameworks as selectivity regulators for hydrogenation reactions

    Science.gov (United States)

    Zhao, Meiting; Yuan, Kuo; Wang, Yun; Li, Guodong; Guo, Jun; Gu, Lin; Hu, Wenping; Zhao, Huijun; Tang, Zhiyong

    2016-11-01

    Owing to the limited availability of natural sources, the widespread demand of the flavouring, perfume and pharmaceutical industries for unsaturated alcohols is met by producing them from α,β-unsaturated aldehydes, through the selective hydrogenation of the carbon-oxygen group (in preference to the carbon-carbon group). However, developing effective catalysts for this transformation is challenging, because hydrogenation of the carbon-carbon group is thermodynamically favoured. This difficulty is particularly relevant for one major category of heterogeneous catalyst: metal nanoparticles supported on metal oxides. These systems are generally incapable of significantly enhancing the selectivity towards thermodynamically unfavoured reactions, because only the edges of nanoparticles that are in direct contact with the metal-oxide support possess selective catalytic properties; most of the exposed nanoparticle surfaces do not. This has inspired the use of metal-organic frameworks (MOFs) to encapsulate metal nanoparticles within their layers or inside their channels, to influence the activity of the entire nanoparticle surface while maintaining efficient reactant and product transport owing to the porous nature of the material. Here we show that MOFs can also serve as effective selectivity regulators for the hydrogenation of α,β-unsaturated aldehydes. Sandwiching platinum nanoparticles between an inner core and an outer shell composed of an MOF with metal nodes of Fe3+, Cr3+ or both (known as MIL-101; refs 19, 20, 21) results in stable catalysts that convert a range of α,β-unsaturated aldehydes with high efficiency and with significantly enhanced selectivity towards unsaturated alcohols. Calculations reveal that preferential interaction of MOF metal sites with the carbon-oxygen rather than the carbon-carbon group renders hydrogenation of the former by the embedded platinum nanoparticles a thermodynamically favoured reaction. We anticipate that our basic design

  19. Interfacial synthesis of hollow metal-organic framework capsules demonstrating selective permeability

    Science.gov (United States)

    Ameloot, Rob; Vermoortele, Frederik; Vanhove, Wim; Roeffaers, Maarten B. J.; Sels, Bert F.; de Vos, Dirk E.

    2011-05-01

    Metal-organic frameworks (MOFs) are a class of crystalline materials that consist of metal ions and organic ligands linked together by coordination bonds. Because of their porosity and the possibility of combining large surface areas with pore characteristics that can be tailored, these solids show great promise for a wide range of applications. Although most applications currently under investigation are based on powdered solids, developing synthetic methods to prepare defect-free MOF layers will also enable applications based on selective permeation. Here, we demonstrate how the intrinsically hybrid nature of MOFs enables the self-completing growth of thin MOF layers. Moreover, these layers can be shaped as hollow capsules that demonstrate selective permeability directly related to the micropore size of the MOF crystallites forming the capsule wall. Such capsules effectively entrap guest species, and, in the future, could be applied in the development of selective microreactors containing molecular catalysts.

  20. A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms.

    Science.gov (United States)

    Bansod, BabanKumar; Kumar, Tejinder; Thakur, Ritula; Rana, Shakshi; Singh, Inderbir

    2017-08-15

    Heavy metal ions are non-biodegradable and contaminate most of the natural resources occurring in the environment including water. Some of the heavy metals including Lead (Pb), Mercury (Hg), Arsenic (As), Chromium (Cr) and Cadmium (Cd) are considered to be highly toxic and hazardous to human health even at trace levels. This leads to the requirement of fast, accurate and reliable techniques for the detection of heavy metal ions. This review presents various electrochemical detection techniques for heavy metal ions those are user friendly, low cost, provides on-site and real time monitoring as compared to other spectroscopic and optical techniques. The categorization of different electrochemical techniques is done on the basis of different types of detection signals generated due to presence of heavy metal ions in the solution matrix like current, potential, conductivity, electrochemical impedance, and electrochemiluminescence. Also, the recent trends in electrochemical detection of heavy metal ions with various types of sensing platforms including metals, metal films, metal oxides, nanomaterials, carbon nano tubes, polymers, microspheres and biomaterials have been evoked. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Studies on calcium phosphate precipitation: effects of metal ions used in dental materials.

    Science.gov (United States)

    Okamoto, Y; Hidaka, S

    1994-12-01

    The effects of 26 metal ions, of which 23 are used in dental materials, on the conversion of amorphous calcium phosphate (ACP) to hydroxyapatite (HAP) in vitro were studied. From the effects on both the rate of HAP transformation and induction time, effects of metal ions were classified into three types; inhibitory (in the order: nickel, tin, cobalt, manganese, copper, zinc, gallium, thallium, molybdenum, cadmium, antimony, magnesium, and mercury); ineffective (cesium, titanium, chromium, iron [ferrous], iridium, palladium, platinum, silver, gold, aluminum, and lead); and stimulatory (iron [ferric] and indium). These results suggest that metal ions used in dental materials may modify the precipitation of oral calcium phosphate.

  2. Ion exchange system design for removal of heavy metals from acid mine drainage wastewater

    Directory of Open Access Journals (Sweden)

    R. S. Sapkal

    2010-11-01

    Full Text Available This paper discusses the methodology used to determine the optimal ion-exchange column size to process all separate batchesof feeds from acid mine drainage wastewater.The optimal design ensures the best utilization of resin material and therefore results in a minimum amount of spent resins.Ion exchanger materials have been studied for removing heavy metals from a metal bearing wastes. For the current treatment,a facility has been designed for the removal of heavy metals from the acid mine drainage (AMD waste by the ion-exchange technology.

  3. A stable porous anionic metal-organic framework for luminescence sensing of ln(3+) ions and detection of nitrobenzene.

    Science.gov (United States)

    Qin, Jun-Sheng; Bao, Shao-Juan; Li, Peng; Xie, Wei; Du, Dong-Ying; Zhao, Liang; Lan, Ya-Qian; Su, Zhong-Min

    2014-03-01

    A hexagonal channel-based porous anionic metal-organic framework was successfully constructed. IFMC-3 is stable in air and acidic/basic aqueous solutions at room temperature, and constitutes a selective luminescent sensing material for Ln(3+) ions and a recyclable probe for the sensitive detection of nitrobenzene. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Studies on adsorptions of metallic ions in water by zirconium glyphosate (ZrGP): Behaviors and mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Jia Yunjie; Zhang Yuejuan [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Box. 98, No.15, Beisanhuan donglu, Beijing 100029 (China); Wang Runwei [State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012 (China); Fan Faying [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Box. 98, No.15, Beisanhuan donglu, Beijing 100029 (China); Xu Qinghong, E-mail: xuqh@mail.buct.edu.cn [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Box. 98, No.15, Beisanhuan donglu, Beijing 100029 (China)

    2012-01-15

    A new adsorbent named zirconium glyphosate [Zr(O{sub 3}PCH{sub 2}NHCH{sub 2}COOH){sub 2}{center_dot}0.5H{sub 2}O, denoted as ZrGP] and its selective adsorptions to Pb{sup 2+}, Cd{sup 2+}, Mg{sup 2+} and Ca{sup 2+} ions in water were reported in this paper. Compared to other zirconium adsorbents, such as zirconium phosphate [Zr(HPO{sub 4}){sub 2}], ZrGP exhibited highly selective adsorption to Pb{sup 2+} in solution which contained Pb{sup 2+}, Cd{sup 2+}, Mg{sup 2+} and Ca{sup 2+} ions. The loaded ZrGP with metallic ions can be efficaciously regenerated by aqueous solution of HCl (1.0 M) without any noticeable capacity loss, and almost all of it can be reused and recycled. The memory effect on structural regeneration of ZrGP was also found when Mg{sup 2+} and Ca{sup 2+} were adsorbed. To be specific, the structure of ZrGP was destroyed due to adsorbing these two ions, but it could be regenerated after the loaded materials were dipped in HCl solution (1.0 M) for several minutes to remove metallic ions.

  5. On the single-ion Magnetic Anisotropy of the Rare-Earth Metals

    DEFF Research Database (Denmark)

    Kolmakova, N.P.; Tishin, A.M.; Bohr, Jakob

    1996-01-01

    The temperature dependences of the single-ion magnetic anisotropy constants for Tb and Dy metals are calculated in terms of the multipole moments of the rare-earth ions utilizing the available crystal-field parameters. The results are compared with the existing experimental data.......The temperature dependences of the single-ion magnetic anisotropy constants for Tb and Dy metals are calculated in terms of the multipole moments of the rare-earth ions utilizing the available crystal-field parameters. The results are compared with the existing experimental data....

  6. Nanodiamonds act as Trojan horse for intracellular delivery of metal ions to trigger cytotoxicity.

    Science.gov (United States)

    Zhu, Ying; Zhang, Yu; Shi, Guosheng; Yang, Jinrong; Zhang, Jichao; Li, Wenxin; Li, Aiguo; Tai, Renzhong; Fang, Haiping; Fan, Chunhai; Huang, Qing

    2015-02-05

    Nanomaterials hold great promise for applications in the delivery of various molecules with poor cell penetration, yet its potential for delivery of metal ions is rarely considered. Particularly, there is limited insight about the cytotoxicity triggered by nanoparticle-ion interactions. Oxidative stress is one of the major toxicological mechanisms for nanomaterials, and we propose that it may also contribute to nanoparticle-ion complexes induced cytotoxicity. To explore the potential of nanodiamonds (NDs) as vehicles for metal ion delivery, we used a broad range of experimental techniques that aimed at getting a comprehensive assessment of cell responses after exposure of NDs, metal ions, or ND-ion mixture: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, Trypan blue exclusion text, optical microscope observation, synchrotron-based scanning transmission X-ray microscopy (STXM) and micro X-ray fluorescence (μXRF) microscopy, inductively coupled plasma-mass spectrometry (ICP-MS), reactive oxygen species (ROS) assay and transmission electron microscopy (TEM) observation. In addition, theoretical calculation and molecular dynamics (MD) computation were used to illustrate the adsorption properties of different metal ion on NDs as well as release profile of ion from ND-ion complexes at different pH values. The adsorption capacity of NDs for different metal ions was different, and the adsorption for Cu2+ was the most strong among divalent metal ions. These different ND-ion complexes then had different cytotoxicity by influencing the subsequent cellular responses. Detailed investigation of ND-Cu2+ interaction showed that the amount of released Cu2+ from ND-Cu2+ complexes at acidic lysosomal conditions was much higher than that at neutral conditions, leading to the elevation of intracellular ROS level, which triggered cytotoxicity. By theoretical approaches, we demonstrated that the functional carbon surface and cluster structures of NDs made them

  7. Metal ion concentrations in body fluids after implantation of hip replacements with metal-on-metal bearing--systematic review of clinical and epidemiological studies.

    Directory of Open Access Journals (Sweden)

    Albrecht Hartmann

    Full Text Available INTRODUCTION: The use of metal-on-metal (MoM total hip arthroplasty (THA increased in the last decades. A release of metal products (i.e. particles, ions, metallo-organic compounds in these implants may cause local and/or systemic adverse reactions. Metal ion concentrations in body fluids are surrogate measures of metal exposure. OBJECTIVE: To systematically summarize and critically appraise published studies concerning metal ion concentrations after MoM THA. METHODS: Systematic review of clinical trials (RCTs and epidemiological studies with assessment of metal ion levels (cobalt, chromium, titanium, nickel, molybdenum in body fluids after implantation of metalliferous hip replacements. Systematic search in PubMed and Embase in January 2012 supplemented by hand search. Standardized abstraction of pre- and postoperative metal ion concentrations stratified by type of bearing (primary explanatory factor, patient characteristics as well as study quality characteristics (secondary explanatory factors. RESULTS: Overall, 104 studies (11 RCTs, 93 epidemiological studies totaling 9.957 patients with measurement of metal ions in body fluids were identified and analyzed. Consistently, median metal ion concentrations were persistently elevated after implantation of MoM-bearings in all investigated mediums (whole blood, serum, plasma, erythrocytes, urine irrespective of patient characteristics and study characteristics. In several studies very high serum cobalt concentrations above 50 µg/L were measured (detection limit typically 0.3 µg/L. Highest metal ion concentrations were observed after treatment with stemmed large-head MoM-implants and hip resurfacing arthroplasty. DISCUSSION: Due to the risk of local and systemic accumulation of metallic products after treatment with MoM-bearing, risk and benefits should be carefully balanced preoperatively. The authors support a proposed "time out" for stemmed large-head MoM-THA and recommend a restricted

  8. Cross-Reactive Sensor Array for Metal Ion Sensing Based on Fluorescent SAMs

    Directory of Open Access Journals (Sweden)

    Mercedes Crego-Calama

    2007-09-01

    Full Text Available Fluorescent self assembled monolayers (SAMs on glass were previouslydeveloped in our group as new sensing materials for metal ions. These fluorescent SAMs arecomprised by fluorophores and small molecules sequentially deposited on a monolayer onglass. The preorganization provided by the surface avoids the need for complex receptordesign, allowing for a combinatorial approach to sensing systems based on small molecules.Now we show the fabrication of an effective microarray for the screening of metal ions andthe properties of the sensing SAMs. A collection of fluorescent sensing SAMs wasgenerated by combinatorial methods and immobilized on the glass surfaces of a custom-made 140 well microtiter-plate. The resulting libraries are easily measured and show variedresponses to a series cations such as Cu2+ , Co2+ , Pb2+ , Ca2+ and Zn2+ . These surfaces are notdesigned to complex selectively a unique analyte but rather they are intended to producefingerprint type responses to a range of analytes by less specific interactions. The unselectiveresponses of the library to the presence of different cations generate a characteristic patternfor each analyte, a “finger print” response.

  9. Fatigue Characteristics of Selected Light Metal Alloys

    Directory of Open Access Journals (Sweden)

    Cieśla M.

    2016-03-01

    Full Text Available The paper addresses results of fatigue testing of light metal alloys used in the automotive as well as aerospace and aviation industries, among others. The material subject to testing comprised hot-worked rods made of the AZ31 alloy, the Ti-6Al-4V two-phase titanium alloy and the 2017A (T451 aluminium alloy. Both low- and high-cycle fatigue tests were conducted at room temperature on the cycle asymmetry ratio of R=-1. The low-cycle fatigue tests were performed using the MTS-810 machine on two levels of total strain, i.e.Δεc= 1.0% and 1.2%. The high-cycle fatigue tests, on the other hand, were performed using a machine from VEB Werkstoffprufmaschinen-Leipzig under conditions of rotary bending. Based on the results thus obtained, one could develop fatigue life characteristics of the materials examined (expressed as the number of cycles until failure of sample Nf as well as characteristics of cyclic material strain σa=f(N under the conditions of low-cycle fatigue testing. The Ti-6Al-4V titanium alloy was found to be characterised by the highest value of fatigue life Nf, both in lowand high-cycle tests. The lowest fatigue life, on the other hand, was established for the aluminium alloys examined. Under the high-cycle fatigue tests, the life of the 2017A aluminium and the AZ31 magnesium alloy studied was determined by the value of stress amplitude σa. With the stress exceeding 150 MPa, it was the aluminium alloy which displayed higher fatigue life, whereas the magnesium alloy proved better on lower stress.

  10. MINAS--a database of Metal Ions in Nucleic AcidS.

    Science.gov (United States)

    Schnabl, Joachim; Suter, Pascal; Sigel, Roland K O

    2012-01-01

    Correctly folded into the respective native 3D structure, RNA and DNA are responsible for uncountable key functions in any viable organism. In order to exert their function, metal ion cofactors are closely involved in folding, structure formation and, e.g. in ribozymes, also the catalytic mechanism. The database MINAS, Metal Ions in Nucleic AcidS (http://www.minas.uzh.ch), compiles the detailed information on innersphere, outersphere and larger coordination environment of >70,000 metal ions of 36 elements found in >2000 structures of nucleic acids contained today in the PDB and NDB. MINAS is updated monthly with new structures and offers a multitude of search functions, e.g. the kind of metal ion, metal-ligand distance, innersphere and outersphere ligands defined by element or functional group, residue, experimental method, as well as PDB entry-related information. The results of each search can be saved individually for later use with so-called miniPDB files containing the respective metal ion together with the coordination environment within a 15 Å radius. MINAS thus offers a unique way to explore the coordination geometries and ligands of metal ions together with the respective binding pockets in nucleic acids.

  11. Effects of metal ions on proliferation of aortic smooth muscle cells and myoblastic cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Vorpahl, M.; Wiemann, M.; Bingmann, D. [Essen Univ. (Germany). Inst. fuer Physiologie; Brauer, H. [Werkstofftechnik, Univ. Essen (Germany)

    2001-12-01

    Metal ions released from implanted stents into the surrounding tissue may contribute to vascular reactions which cause restenosis in about 30%. This assumption prompted us to investigate short term effects of metal ions (Ag, Al, Cr, Fe, Mo, Ni, V, all applied as chloride salts) on proliferation of swine aortic smooth muscle cells (SMC) and a myoblastic cell line (C2C12). Cell confluence was 30 or 50% when metal ions were added and cell growth was monitored with the MTT-test after 2 days. A clear concentration dependence of acute toxicity of the different metal ions was found for both cell types. The order of toxicity indicated by IC50 values was V > Ni > Fe > Mo > Al > Cr. The nearly insoluble silverchloride exerted unclear effects. In experiments starting at high confluence, the apparent toxicity of Fe, Ni, and V was reduced. Al, which to our knowledge is not a major constituent in medical stents, was the only metal ion found here to cause a slightly increased proliferation, but this effect was restricted to the low concentration range (16-250 {mu}mol/l). In general, results for both cell types, C2C12 and SMC, were very similar. We conclude that short term effects of metal ions, which may be released in the interface of stent and vessel wall tissue, comprise a reduction rather than a stimulation of cell proliferation. However, restenosis may be initiated as a complex tissue reaction to primary toxic metal effects. (orig.)

  12. Further insights into the metal ion binding abilities and the metalation pathway of a plant metallothionein from Musa acuminata.

    Science.gov (United States)

    Cabral, Augusto C S; Jakovleska, Jovana; Deb, Aniruddha; Penner-Hahn, James E; Pecoraro, Vincent L; Freisinger, Eva

    2017-12-07

    The superfamily of metallothioneins (MTs) combines a diverse group of metalloproteins, sharing the characteristics of rather low molecular weight and high cysteine content. The latter provides MTs with the capability to coordinate thiophilic metal ions, in particular those with a d 10 electron configuration. The sub-family of plant MT3 proteins is only poorly characterized and there is a complete lack of three-dimensional structure information. Building upon our previous results on the Musa acuminata MT3 (musMT3) protein, the focus of the present work is to understand the metal cluster formation process, the role of the single histidine residue present in musMT3, and the metal ion binding affinity. We concentrate our efforts on the coordination of ZnII and CdII ions, using CoII as a spectroscopic probe for ZnII binding. The overall protein-fold is analysed with a combination of limited proteolytic digestion, mass spectrometry, and dynamic light scattering. Histidine coordination of metal ions is probed with extended X-ray absorption fine structure spectroscopy and CoII titration experiments. Initial experiments with isothermal titration calorimetry provide insights into the thermodynamics of metal ion binding.

  13. Heavy-metal-ion capture, ion-exchange, and exceptional acid stability of the open-framework chalcogenide (NH(4))(4)In(12)Se(20).

    Science.gov (United States)

    Manos, Manolis J; Malliakas, Christos D; Kanatzidis, Mercouri G

    2007-01-01

    The hydrothermal synthesis of the purely inorganic open-framework indium selenide (NH(4))(4)In(12)Se(20) (1) is reported. Compound 1 exhibits a unique three-dimensional open-framework structure. The framework of 1 shows an unusual, for a chalcogenide compound, rigidity arising from the unprecedented connection mode of its building blocks. Compound 1 possesses ion exchange capacity for Cs(+), Rb(+), NH(4) (+), but it has selectivity against Na(+) and Li(+). It also showed exceptional stability in relatively concentrated hydrochloric acid. Ion exchange of 1 with hydrochloric water solutions can produce its solid acid analogue H(2)(NH(4))(2)In(12)Se(20). The maximum cation-exchange capacity of 1 was found equal to two equivalents per mol, which is consistent with an exchange mechanism taking place in the 1D-channels formed by the largest cavities. In addition, 1 can do ion-exchange with heavy-metal ions like Hg(2+), Pb(2+), and Ag(+). The capacity of 1 to clean water solutions from heavy-metal ions was preliminarily investigated and found very high. Specifically, 1 can remove 99.9 % of Hg(2+), 99.8 % of Ag(+), and 94.9 % of Pb(2+) from aqueous solutions of each of these ions. Using different synthetic conditions, we isolated compound (NH(4))(2)In(12)Se(19) (2), which also has as good an acid stability as 1, but no ion-exchange properties. Overall, this work provides new hydrothermal synthetic approaches for isolation of all-inorganic open-framework chalcogenides.

  14. A new ion-selective electrode based on aluminium tungstate for Fe ...

    Indian Academy of Sciences (India)

    An inorganic cation exchanger, aluminum tungstate (AT), has been synthesized by adding 0.1 M sodium tungstate gradually into 0.1 M aluminium nitrate at pH 1.2 with continuous stirring. The ion exchange capacity for Na+ ion and distribution coefficients of various metal ions was determined on the column of aluminium ...

  15. Selective observation of charge storing ions in supercapacitor electrode materials.

    Science.gov (United States)

    Forse, Alexander C; Griffin, John M; Grey, Clare P

    2017-11-04

    Nuclear magnetic resonance (NMR) spectroscopy has emerged as a useful technique for probing the structure and dynamics of the electrode-electrolyte interface in supercapacitors, as ions inside the pores of the carbon electrodes can be studied separately from bulk electrolyte. However, in some cases spectral resolution can limit the information that can be obtained. In this study we address this issue by showing how cross polarisation (CP) NMR experiments can be used to selectively observe the in-pore ions in supercapacitor electrode materials. We do this by transferring magnetisation from 13C nuclei in porous carbons to nearby nuclei in the cations (1H) or anions (19F) of an ionic liquid. Two-dimensional NMR experiments and CP kinetics measurements confirm that in-pore ions are located within Ångströms of sp2-hybridised carbon surfaces. Multinuclear NMR experiments hold promise for future NMR studies of supercapacitor systems where spectral resolution is limited. Copyright © 2017 University of Cambridge. Published by Elsevier Inc. All rights reserved.

  16. Importance of Diffuse Metal Ion Binding to RNA

    Science.gov (United States)

    Tan, Zhi-Jie; Chen, Shi-Jie

    2016-01-01

    RNAs are highly charged polyanionic molecules. RNA structure and function are strongly correlated with the ionic condition of the solution. The primary focus of this article is on the role of diffusive ions in RNA folding. Due to the long-range nature of electrostatic interactions, the diffuse ions can contribute significantly to RNA structural stability and folding kinetics. We present an overview of the experimental findings as well as the theoretical developments on the diffuse ion effects in RNA folding. This review places heavy emphasis on the effect of magnesium ions. Magnesium ions play a highly efficient role in stabilizing RNA tertiary structures and promoting tertiary structural folding. The highly efficient role goes beyond the mean-field effect such as the ionic strength. In addition to the effects of specific ion binding and ion dehydration, ion-ion correlation for the diffuse ions can contribute to the efficient role of the multivalent ions such as the magnesium ions in RNA folding. PMID:22010269

  17. The impacts of common ions on the adsorption of heavy metal

    Science.gov (United States)

    He, Jiang; Xue, Hong-Xi; Lü, Chang-Wei; Fan, Qing-Yun; Liang, Ying; Sun, Ying; Shen, Li-Li; Bai, Saruli

    2009-10-01

    Researches on the impact of common ions onto sediments are of great importance for the study of the heavy metal adsorption mechanisms. Considering the surface sediments from the relatively clean reach in the Baotou section of the Yellow River as the adsorbent, this work presents the impacts of common ions (Na+, Mg2+, K+, Ca2+, Cl-, SO4 2-, and NH4 +) on heavy metals (Cu2+, Zn2+, Cd2+, and Pb2+) adsorption. The experimental results reveal that the adsorptive capacities of the heavy metals are controlled by different adsorption mechanisms in different ion concentration ranges. With the increase of the ionic strength, the adsorption of the heavy metals increases for the compression of the electric double layer, whereas decreases for the decreasing of the ionic activities of the heavy metals. The competitive adsorption and complexations between the heavy metals and common ions are also important factors controlling the heavy metal adsorption. According to the experimental results and the real concentration of common ions in the Baotou section of the Yellow River, the increase of the concentrations of Na+, Mg2+, K+, and Ca2+ would cause the increase of Zn2+ adsorption and reduce the Zn pollution. The NH4 + from the industrial discharge of the tributaries has a strong impact on the heavy metal adsorption.

  18. Harnessing Aggregation-Induced Emission (aie) of Tetraphenylethylenes in Metal Ion Sensing and Luminescent Metal-Organic Frameworks

    Science.gov (United States)

    Pigge, F. Christopher

    2013-08-01

    Tetraphenylethylene derivatives have emerged as valuable building blocks for construction of luminescent molecular sensor materials based on their ability to display aggregation induced emission. This paper summarizes recent efforts aimed at combining the luminescent properties of tetraphenylethylenes with metal ligating capability as a means to achieve metal ion detection. Research describing the incorporation of tetraphenylethylene ligands in metal-organic frameworks is also discussed. Though these areas of investigation have not received a great deal of attention, metal coordination complexes of tetraphenylethylenes show tremendous promise as switchable fluorescent sensors/indicators with a variety of potential applications.

  19. Factors controlling the reactivity of divalent metal ions towards pheophytin a.

    Science.gov (United States)

    Orzeł, Ł; Waś, J; Kania, A; Susz, A; Rutkowska-Zbik, D; Staroń, J; Witko, M; Stochel, G; Fiedor, L

    2017-08-01

    In this study, we evaluate the factors which determine the reactivity of divalent metal ions in the spontaneous formation of metallochlorophylls, using experimental and computational approaches. Kinetic studies were carried out using pheophytin a in reactions with various divalent metal ions combined with non- or weakly-coordinative counter ions in a series of organic solvents. To obtain detailed insights into the solvent effect, the metalations with the whole set of cations were investigated in three solvents and with Zn2+ in seven solvents. The reactions were monitored using electronic absorption spectroscopy and the stopped-flow technique. DFT calculations were employed to shed light on the role of solvent in activating the metal ions towards porphyrinoids. This experimental and computational analysis gives detailed information regarding how the solvent and the counter ion assist/hinder the metalation reaction as activators/inhibitors. The metalation course is dictated to a large extent by the reaction medium, via either the activation or deactivation of the incoming metal ion. The solvent may affect the metalation in several ways, mainly via H-bonding with pyrrolenine nitrogens and the activation/deactivation of the incoming cation. It also seems to affect the activation enthalpy by causing slight conformational changes in the macrocyclic ligand. These new mechanistic insights contribute to a better understanding of the "metal-counterion-solvent" interplay in the metalation of porphyrinoids. In addition, they are highly relevant to the mechanisms of metalation reactions catalyzed by chelatases and explain the differences between the insertion of Mg2+ and other divalent cations.

  20. Cross-Reactive Sensor Array for Metal Ion Sensing Based on Fluorescent SAMs

    NARCIS (Netherlands)

    Basabe Desmonts, M.L.; van der Baan, Frederieke; Zimmerman, R.S.; Reinhoudt, David; Crego Calama, Mercedes

    2007-01-01

    Fluorescent self assembled monolayers (SAMs) on glass were previouslydeveloped in our group as new sensing materials for metal ions. These fluorescent SAMs arecomprised by fluorophores and small molecules sequentially deposited on a monolayer onglass. The preorganization provided by the surface

  1. Occurrence of metal ions in rice produced in Uruguay

    Directory of Open Access Journals (Sweden)

    Mario Rivero

    2011-04-01

    Full Text Available The United Nations General Assembly declared the year 2004 the International Year of Rice under the concept "Rice is Life". The largest nutritional problems occurring globally are protein-energy malnutrition, Ca, Fe, I, Zn and vitamin A deficiencies. Being rice the staple food more consumed worldwide, outstanding care is taken on its composition levels.Uruguay has emerged as medium-size rice producer and Latin America's major rice exporter, and is now amongst the world's top ten. Thus, the knowledge of toxic as well as micronutrient elements is very important. Here is reported the determination in forty nine samples of rice (Oryza sativa L. of As, Cd, Cr, and Pb by ET AAS in samples digested by dry ashing, and Ca, Co, Cu, Fe, K, Mg, Mo, Mn, Na, Ni and Zn by FAAS and Hg by CV AAS using microwave-assisted decomposition.The amount of all the metal ions studied in this work fall within the range typical of rice around the world. All the rice samples tested showed lower levels of As, Cd, Hg and Pb than the maximum limit permitted by governmental and international organizations.Potassium was the most abundant mineral followed by Mg and Ca and amongst microelements the presence of Cu, Fe, Mo, Mn, Na and Zn was outstanding.The milling process highly affects the contents of K, Mg, Mn, Na and Zn while little influence has on Ca, Co, Cu and Fe concentrations.Unexpected loss of Ca, Fe and Mn during parboiling process was detected. 

  2. Influence of additives on the retention of metal ions in a soil of Bangalore, India

    Directory of Open Access Journals (Sweden)

    Dr Maya Naik

    2009-04-01

    Full Text Available Liners play an important role in minimizing migration of contaminants and are frequently constructed with natural materials serving as the primary barrier to contain chemicals and potentially harmful pollutants from municipal toxic waste leachates. To improve the performance of liners, additives like lime and cement at low percentages were added to Red Soil of Bangalore. Heavy metals like hexavalent chromium, copper and zinc and alkali metals like sodium and potassium were taken as contaminants. Batch leaching tests on 50 samples were performed according to ASTM D 3987 – 85 for soil and soil mixtures with contaminants. The heavy metals were potentiometrically monitored using ion selective mercury and platinum electrodes. The alkali metals were determined using a Flame Photometry. It has been observed that the retention of heavy metals elements followed the order copper> zinc>chromium over a period of 7 to 28 days. Chromium, zinc and copper attained equilibrium in this period as confirmed based on conductivity and pH data. Cement and lime had significant effect on copper and zinc. Specific adsorption of Cu onto CaCO3 surfaces may control Cu concentration in solution. Zn adsorption increases with pH; Zinc hydrolysed at pH > 7.7 and these hydrolyzed species are strongly adsorbed to soil surfaces. Cr was retained only by 50% and additives did not have much effect as it is subjected to nonspecific adsorption (temporary. Cr was found to be highly mobile in alkaline soils. It was observed that the retention of alkali metals follows the order: K > Na. Cement and lime had positive effect on the retention of Na and K. Sodium ion retarded immediately due to the removal of exchangeable cations, whereas potassium retarded more than sodium due to the lower hydrated radius of potassium. Scanning Electron Microscopy (SEM characterization tests were performed to understand the soil mineral structure. Regular porous, sponge like, particles were detected in

  3. Silica coated magnetite nanoparticles for removal of heavy metal ions from polluted waters

    CERN Document Server

    Dash, Monika

    2013-01-01

    Magnetic removal of Hg2+ and other heavy metal ions like Cd2+, Pb2+ etc. using silica coated magnetite particles from polluted waters is a current topic of active research to provide efficient water recycling and long term high quality water. The technique used to study the bonding characteristics of such kind of nanoparticles with the heavy metal ions is a very sensitive hyperfine specroscopy technique called the perturbed angular correlation technique (PAC).

  4. High-energy metal ion implantation for reduction of surface resistivity of alumina ceramica)

    Science.gov (United States)

    Gushenets, V. I.; Nikolaev, A. G.; Oks, E. M.; Savkin, K. P.; Yushkov, G. Yu.; Brown, I. G.

    2012-02-01

    In this work, the possibility to increase the surface conductivity of ceramic insulators through their treatment with accelerated metal ion beams produced by a MevvaV.Ru vacuum arc source is demonstrated. The increase in surface conductivity is made possible due to experimental conditions in which an insulated collector is charged by beam ions to a potential many times lower than the accelerating voltage, and hence, than the average beam ion energy. The observed effect of charge neutralization of the accelerated ion beam is presumably associated with electrons knocked out of the electrodes of the accelerating system of the source and of the walls of the vacuum chamber by the accelerated ions.

  5. Characteristics of flows of energetic atoms reflected from metal targets during ion bombardment

    Science.gov (United States)

    Kuzmichev, A.; Perevertaylo, V.; Tsybulsky, L.; Volpian, O.

    2016-07-01

    Particle number and energy reflection coefficients for energetic neutralized gas ions (Ar and O atoms) backscattered from metal targets during ion bombardment have been calculated using TRIM code. The energy distributions of reflected atoms are computed, too, and their dependence on the primary ion energy and the angle of ion incidence is determined. The obtained data confirm the possibility of employing energetic atoms reflection for generation of high energy neutral beams and point out to take this phenomenon into account under analysis of the ion technology for coating deposition.

  6. Comparison of metal ion concentrations and implant survival after total hip arthroplasty with metal-on-metal versus metal-on-polyethylene articulations.

    Science.gov (United States)

    Dahlstrand, Henrik; Stark, André; Wick, Marius C; Anissian, Lucas; Hailer, Nils P; Weiss, Rüdiger J

    2017-10-01

    Background and purpose - Large metal-on-metal (MoM) articulations are associated with metal wear and corrosion, leading to increased metal ion concentrations and unacceptable revision rates. There are few comparative studies of 28-mm MoM articulations with conventional metal-on-polyethylene (MoP) couplings. We present a long-term follow-up of a randomized controlled trial comparing MoM versus MoP 28-mm articulations, focused on metal ions and implant survival. Patients and methods - 85 patients with a mean age of 65 years at surgery were randomized to a MoM (Metasul) or a MoP (Protasul) bearing. After 16 years, 38 patients had died and 4 had undergone revision surgery. 13 patients were unavailable for clinical follow-up, leaving 30 patients (n = 14 MoM and n = 16 MoP) for analysis of metal ion concentrations and clinical outcome. Results - 15-year implant survival was similar in both groups (MoM 96% [95% CI 88-100] versus MoP 97% [95% CI 91-100]). The mean serum cobalt concentration was 4-fold higher in the MoM (1.5 μg/L) compared with the MoP cohort (0.4 μg/L, p MoM (2.2 μg/L) compared with the MoP cohort (1.0 μg/L, p = 0.05). Mean creatinine levels were similar in both groups (MoM 93 μmol/L versus MoP 92 μmol/L). Harris hip scores differed only marginally between the MoM and MoP cohorts. Interpretation - This is the longest follow-up of a randomized trial on 28-mm MoM articulations, and although implant survival in the 2 groups was similar, metal ion concentrations remained elevated in the MoM cohort even in the long term.

  7. In Vitro Selection of a DNAzyme Cooperatively Binding Two Lanthanide Ions for RNA Cleavage.

    Science.gov (United States)

    Huang, Po-Jung Jimmy; Vazin, Mahsa; Liu, Juewen

    2016-05-03

    Trivalent lanthanide ions (Ln(3+)) were recently employed to select RNA-cleaving DNAzymes, and three new DNAzymes have been reported so far. In this work, dysprosium (Dy(3+)) was used with a library containing 50 random nucleotides. After six rounds of in vitro selection, a new DNAzyme named Dy10a was obtained and characterized. Dy10a has a bulged hairpin structure cleaving a RNA/DNA chimeric substrate. Dy10a is highly active in the presence of the five Ln(3+) ions in the middle of the lanthanide series (Sm(3+), Eu(3+), Gd(3+), Tb(3+), and Dy(3+)), while its activity descends on the two sides. The cleavage rate reaches 0.6 min(-1) at pH 6 with just 200 nM Sm(3+), which is the fastest among all known Ln(3+)-dependent enzymes. Dy10a binds two Ln(3+) ions cooperatively. When a phosphorothioate (PS) modification is introduced at the cleavage junction, the activity decreases by >2500-fold for both the Rp and Sp diastereomers, and thiophilic Cd(2+) cannot rescue the activity. The pH-rate profile has a slope of 0.37 between pH 4.2 and 5.2, and the slope was even lower at higher pH. On the basis of these data, a model of metal binding is proposed. Finally, a catalytic beacon sensor that can detect Ho(3+) down to 1.7 nM is constructed.

  8. Sorption of toxic metal ions in aqueous environment using ...

    African Journals Online (AJOL)

    carbodithioate and imidazole-1-carbodithioate were employed as sorbents for heavy metals from aqueous environments. The equilibrating time, initial metal concentrations and sorbent mass for optimal adsorption were 40 min, 5 mg/ℓ and 8 mg, ...

  9. Development of a 10 GHz “Multi-Mode” ECR, Ion Source for the Production of Multiply Charged Ions from Metallic Elements

    Science.gov (United States)

    Trassl, R.; Thompson, W. R.; Broetz, F.; Pawlowsky, M.; McCullough, R. W.; Salzborn, E.

    An all-permanent magnet ECR “multi-mode” ion source with emphasis on the production of metallic ions has been built. The main feature of this ion source is a stepped plasma chamber with a larger diameter in the resonance region in order to allow the propagation of higher microwave modes than the ground mode. Ions from metallic elements can be produced using both the insertion technique and an evaporation oven. First spectra obtained for Oxygen and Bismuth are shown.

  10. Metal ion release from silver soldering and laser welding caused by different types of mouthwash.

    Science.gov (United States)

    Erdogan, Ayse Tuygun; Nalbantgil, Didem; Ulkur, Feyza; Sahin, Fikrettin

    2015-07-01

    To compare metal ion release from samples welded with silver soldering and laser welding when immersed into mouthwashes with different ingredients. A total of 72 samples were prepared: 36 laser welded and 36 silver soldered. Four samples were chosen from each subgroup to study the morphologic changes on their surfaces via scanning electron microscopy (SEM). Each group was further divided into four groups where the samples were submerged into mouthwash containing sodium fluoride (NaF), mouthwash containing sodium fluoride + alcohol (NaF + alcohol), mouthwash containing chlorhexidine (CHX), or artificial saliva (AS) for 24 hours and removed thereafter. Subsequently, the metal ion release from the samples was measured with inductively coupled plasma mass spectrometry (ICP-MS). The metal ion release among the solutions and the welding methods were compared. The Kruskal-Wallis and analysis of variance (ANOVA) tests were used for the group comparisons, and post hoc Dunn multiple comparison test was utilized for the two group comparisons. The level of metal ion release from samples of silver soldering was higher than from samples of laser welding. Furthermore, greater amounts of nickel, chrome, and iron were released from silver soldering. With regard to the mouthwash solutions, the lowest amounts of metal ions were released in CHX, and the highest amounts of metal ions were released in NaF + alcohol. SEM images were in accord with these findings. The laser welding should be preferred over silver soldering. CHX can be recommended for patients who have welded appliances for orthodontic reasons.

  11. Biosorption of heavy metal ions from aqueous solution by red macroalgae.

    Science.gov (United States)

    Ibrahim, Wael M

    2011-09-15

    Biosorption is an effective process for the removal and recovery of heavy metal ions from aqueous solutions. The biomass of marine algae has been reported to have high biosorption capacities for a number of heavy metal ions. In this study, four species of red seaweeds Corallina mediterranea, Galaxaura oblongata, Jania rubens and Pterocladia capillacea were examined to remove Co(II), Cd(II), Cr(III) and Pb(II) ions from aqueous solution. The experimental parameters that affect the biosorption process such as pH, contact time and biomass dosage were studied. The maximum biosorption capacity of metal ions was 105.2mg/g at biomass dosage 10 g/L, pH 5 and contact time 60 min. The biosorption efficiency of algal biomass for the removal of heavy metal ions from industrial wastewater was evaluated for two successive cycles. Galaxaura oblongata biomass was relatively more efficient to remove metal ions with mean biosorption efficiency of 84%. This study demonstrated that these seaweeds constitute a promising, efficient, cheap and biodegradable sorbent biomaterial for lowering the heavy metal pollution in the environment. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Electrochemical evidences and consequences of significant differences in ions diffusion rate in polyacrylate-based ion-selective membranes.

    Science.gov (United States)

    Woźnica, Emilia; Mieczkowski, Józef; Michalska, Agata

    2011-11-21

    The origin and effect of surface accumulation of primary ions within the ion-selective poly(n-butyl acrylate)-based membrane, obtained by thermal polymerization, is discussed. Using a new method, based on the relation between the shape of a potentiometric plot and preconditioning time, the diffusion of copper ions in the membrane was found to be slow (the diffusion coefficient estimated to be close to 10(-11) cm(2) s(-1)), especially when compared to ion-exchanger counter ions--sodium cations diffusion (a diffusion coefficient above 10(-9) cm(2) s(-1)). The higher mobility of sodium ions than those of the copper-ionophore complex results in exposed ion-exchanger role leading to undesirably exposed sensitivity to sodium or potassium ions.

  13. Production of multicharged metal ion beams on the first stage of tandem-type ECRIS

    Energy Technology Data Exchange (ETDEWEB)

    Hagino, Shogo, E-mail: hagino@nf.eie.eng.osaka-u.ac.jp; Nagaya, Tomoki; Nishiokada, Takuya; Otsuka, Takuro; Sato, Fuminobu; Kato, Yushi [Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita-shi, Osaka 565-0871 (Japan); Muramatsu, Masayuki; Kitagawa, Atsushi [National Institute of Radiological Sciences (NIRS), 4-9-1, Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555 (Japan)

    2016-02-15

    Multicharged metal ion beams are required to be applied in a wide range of fields. We aim at synthesizing iron-endohedral fullerene by transporting iron ion beams from the first stage into the fullerene plasma in the second stage of the tandem-type electron cyclotron resonance ion source (ECRIS). We developed new evaporators by using a direct ohmic heating method and a radiation heating method from solid state pure metal materials. We investigate their properties in the test chamber and produce iron ions on the first stage of the tandem-type ECRIS. As a result, we were successful in extracting Fe{sup +} ion beams from the first stage and introducing Fe{sup +} ion beams to the second stage. We will try synthesizing iron-endohedral fullerene on the tandem-type ECRIS by using these evaporators.

  14. Heavy ion time-of-flight ERDA of high dose metal implanted germanium

    Energy Technology Data Exchange (ETDEWEB)

    Dytlewski, N.; Evans, P.J.; Noorman, J.T. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Wielunski, L.S. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Div. of Applied Physics; Bunder, J. [New South Wales Univ., Wollongong, NSW (Australia). Wollongong Univ. Coll

    1996-12-31

    With the thick Ge substrates used in ion implantation, RBS can have difficulty in resolving the mass-depth ambiguities when analysing materials composed of mixtures of elements with nearly equal masses. Additional, and complimentary techniques are thus required. This paper reports the use of heavy ion time-of-flight elastic recoil detection analysis (ToF- ERDA), and conventional RBS in the analysis of Ge(100) implanted with high dose Ti and Cu ions from a MEWA ion source . Heavy ion ToF ERDA has been used to resolve, and profile the implanted transition metal species, and also to study any oxygen incorporation into the sample resulting from the implantation, or subsequential reactions with air or moisture. This work is part of a study on high dose metal ion implantation of medium atomic weight semiconductor materials. 13 refs., 6 figs.

  15. Effect of transition metal ions on the conductivity and stability of stabilized zirconia

    DEFF Research Database (Denmark)

    Lybye, D.; Mogensen, Mogens Bjerg

    2007-01-01

    Zirconia compounds stabilised with rare-earth metal oxides like yttria, ytterbia and scandia are known to be good oxide ion conductors suitable as electrolyte material in solid oxide fuel cells. However. stabilised zirconia with high oxide ion conductivity is often only metastable at fuel cell...

  16. Metal Cation Binding to Gas-Phase Pentaalanine: Divalent Ions Restructure the Complex

    NARCIS (Netherlands)

    Dunbar, R.C.; Steill, J.D.; Polfer, N.C.; Oomens, J.

    2013-01-01

    Ion-neutral complexes of pentaalalanine with several singly- and doubly charged metal ions are examined using conformation analysis by infrared multiple photon dissociation (IRMPD) spectroscopy and density functional theory (DFT) computations. The infrared spectroscopy in the 1500-1800 cm(-1) region

  17. The effects of metal ion contaminants on the double stranded DNA helix and diseases.

    Science.gov (United States)

    Theophanides, T; Anastassopoulou, J

    2017-08-24

    Mineral metal ions are essential for the maintenance of the reactions that regulate homeostasis and the functions of our body. It is known that the regulation of the neurodegenerative system depends directly on life metal ions, such as Na, K, Mg, Ca, Fe, Mo, Cu, Co, Zn, Cr, Mn, while the toxic metals Cd, Pb, Hg, etc disturb homeostasis, leading to diseases. Particularly significant is the effect of toxic metals on the double stranded forms of DNA and conformations. It was found that the toxic metal ions by reacting specifically with the nucleic bases and electrostatically with the negatively phosphate groups of the DNA backbone cause changes in the structure of the DNA double helix, leading to breaks of single or double strands. Accumulation of these defects affects the protecting systems of the body and induces mutations, eventually leading to serious diseases. There are many metal ions, such as Cr, Al, Cd, Cu, Ni, which by binding directly to DNA molecule or by developing oxidative stress increase the instability of DNA, promoting epigenetic changes that lead to DNA damage. Toxic metal ions induce indirect DNA damage and influence the gene stability by inactivating encoding proteins or by changing the redox potential and the signaling of metalloenzymes.

  18. Enhanced highly charged ion production using a metal-dielectric liner in the KVI 14 GHz ECR ion source

    NARCIS (Netherlands)

    Schachter, L; Dobrescu, S; Rodrigues, G; Drentje, AG

    Forming on an aluminum surface a dielectric layer of alumina (aluminum oxide) in order to create a metal-dielectric (MD) structure increases the secondary-electron emission properties. The idea of using this material as a MD (Al-Al2O3) cylindrical liner inside an ECR ion source was previously tested

  19. Scalable process for application of stabilized lithium metal powder in Li-ion batteries

    Science.gov (United States)

    Ai, Guo; Wang, Zhihui; Zhao, Hui; Mao, Wenfeng; Fu, Yanbao; Yi, Ran; Gao, Yue; Battaglia, Vincent; Wang, Donghai; Lopatin, Sergey; Liu, Gao

    2016-03-01

    A simple solution processing method is developed to achieve a uniform and scalable stabilized lithium metal powder (SLMP) coating on a Li-ion negative electrode. A solvent and binder system for the SLMP coating is developed, including the selection of solvent, polymer binder, and optimization of polymer concentration. The optimized binder solution is a 1% concentration of polymer binder in xylene; a mixture of poly(styrene-co-butadiene) rubber (SBR) and polystyrene (PS) is chosen as the polymer binder. Results show that long-sustained, uniformly dispersed SLMP suspension can be achieved with the optimized binder solution. The uniform SLMP coating can be achieved using a simple "doctor blade" coating method, and the resulting SLMP coating can be firmly glued on the anode surface. By using SLMP to prelithiate the negative electrode, improvements in electrochemical performances are demonstrated in both graphite/NMC and SiO/NMC full cells.

  20. Selection of ectomycorrhizal willow genotype in phytoextraction of heavy metals.

    Science.gov (United States)

    Hrynkiewicz, Katarzyna; Baum, Christel

    2013-01-01

    Willow clones are used for the phytoextraction of heavy metals from contaminated soils and are usually mycorrhizal. The receptiveness of willow clones for mycorrhizal inoculum varies specific to genotype; however, it is unknown if this might have a significant impact on their efficiency in phytoextraction of heavy metals. Therefore, a model system with mycorrhizal and non-mycorrhizal willows of two different genotypes--one with usually stronger natural mycorrhizal colonization (Salix dasyclados), and one with lower natural mycorrhizal colonization (S. viminalis)--was investigated for its efficiency of phytoextraction of heavy metals (Cd, Pb, Cu, Zn) from contaminated soil. Inoculation with the ectomycorrhizal fungus Amanita muscaria significantly decreased the biomass of leaves of both inoculated willow clones, and increased or had no effect on the biomass of trunks and roots of S. dasyclados and S. viminalis, respectively. The concentrations of heavy metals in the biomass of S. dasyclados were in general higher than in S. viminalis irrespective of inoculation with the ectomycorrhizal fungus. Inoculation with A. muscaria significantly decreased the concentration of Cu in the trunks of both Salix taxa, but did not affected the concentrations of other heavy metals in the biomass. In conclusion, stronger receptiveness of willow clones for mycorrhizal inoculum was correlated with an increased total extraction of heavy metals from contaminated soils. Therefore, this seems to be a suitable criterion for effective willow clone selection for phytoremediation. Increased biomass production with relatively constant metal concentrations seems to be a major advantage of mycorrhizal formation of willows in phytoremediation of contaminated soils.

  1. Determination of Some Heavy Metals in Selected Beauty and ...

    African Journals Online (AJOL)

    Determination of Some Heavy Metals in Selected Beauty and African Black Soaps Commonly Used in Kano – Nigeria. ... HNO3 and HCl (5:5:1 ratio) and analyzed for Ni, Cu, Fe, Co, Pb and Mn contents using air-acetylene flame atomic absorption spectrophotometer (Alpha 4) model by the standard calibration technique.

  2. Determination of Some Heavy Metals in Selected Poultry Feeds ...

    African Journals Online (AJOL)

    Determination of Some Heavy Metals in Selected Poultry Feeds Available in Kano Metropolis, Nigeria. ... The levels of Zinc, Iron, Manganese and Copper were found to be below the requirement set by SON. Cadmium levels were found in all samples to exceed the permissible limits FAO/WHO which both are 1mg/kg; with ...

  3. Ion exchange during heavy metal bio-sorption from aqueous solution by dried biomass of macrophytes.

    Science.gov (United States)

    Verma, V K; Tewari, Saumyata; Rai, J P N

    2008-04-01

    In this study, potentials of oven dried biomass of Eichhornia crassipes, Valisneria spiralis and Pistia stratiotes, were examined in terms of their heavy metal (Cd, Ni, Zn, Cu, Cr and Pb) sorption capacity, from individual-metal and multi-metal aqueous solutions at pH 6.0+/-0.1 (a popular pH of industrial effluent). V. spiralis was the most and E. crassipes was the least efficient for removal of all the metals. Cd, Pb and Zn were efficiently removed by all the three biomass. Cd was removed up to 98% by V. spiralis. Sorption data for Cr, Ni and Cd fitted better to Langmuir isotherm equation, while, the sorption data for Pb, Zn and Cu fitted better to Freundlich isotherm equation. In general, the presence of other metal ions did not influence significantly the targeted metal sorption capacity of the test plant biomasses. Ion exchange was proven the main mechanism involved in bio-sorption and there was a strong ionic balance between adsorbed (H(+) and M(2+)) to the released ions (Na(+) and K(+)) to and from the biomass. No significant difference was observed in the metal exchanged amount, by doubling of metal concentration (15-30 mg/l) in the solution and employing individual-metal and multi-metal solutions.

  4. Effects of complexing compounds on sorption of metal ions to cement

    Energy Technology Data Exchange (ETDEWEB)

    Loevgren, Lars [Umeaa Univ. (Sweden). Inorganic chemistry

    2005-12-15

    This present report is a literature review addressing the effects of complexing ligands on the sorption of radionuclides to solid materials of importance for repositories of radioactive waste. Focus is put on laboratory studies of metal ion adsorption to cement in presence of chelating agents under strongly alkaline conditions. As background information, metal sorption to different mineral and cement phases in ligand free systems is described. Furthermore, surface complexation model (SCM) theories are introduced. According to surface complexation theories these interactions occur at specific binding sites at the particle/water interface. Adsorption of cationic metals is stronger at high pH, and the adsorption of anions occurs preferentially at low pH. The adsorption of ions to mineral surfaces is a result of both chemical bonding and electrostatic attraction between the ions and charged mineral surfaces. By combining uptake data with spectroscopic information the sorption can be explained on a molecular level by structurally sound surface complexation models. Most of the metal sorption studies reviewed are dealing with minerals exhibiting oxygen atoms at their surfaces, mainly oxides of Fe(II,III) and Al(III), and aluminosilicates. Investigations of radionuclides are focused on clay minerals, above all montmorillonite and illite. Which mechanism that is governing the metal ion adsorption to a given mineral is to a large extent depending on the metal adsorbed. For instance, sorption of Ni to montmorillonite can occur by formation of inner-sphere mononuclear surface complexes located at the edges of montmorillonite platelets and by formation of a Ni phyllosilicate phase parallel to montmorillonite layers. Also metal uptake to cement materials can occur by different mechanisms. Cationic metals can both be attached to cement (calcium silicate hydrate, CSH) and hardened cement paste (HCP) by formation of inner-sphere complexes at specific surface sites and by

  5. Label-free histamine detection with nanofluidic diodes through metal ion displacement mechanism.

    Science.gov (United States)

    Ali, Mubarak; Ramirez, Patricio; Duznovic, Ivana; Nasir, Saima; Mafe, Salvador; Ensinger, Wolfgang

    2017-02-01

    We design and characterize a nanofluidic device for the label-free specific detection of histamine neurotransmitter based on a metal ion displacement mechanism. The sensor consists of an asymmetric polymer nanopore fabricated via ion track-etching technique. The nanopore sensor surface having metal-nitrilotriacetic (NTA-Ni2+) chelates is obtained by covalent coupling of native carboxylic acid groups with Nα,Nα-bis(carboxymethyl)-l-lysine (BCML), followed by exposure to Ni2+ ion solution. The BCML immobilization and subsequent Ni2+ ion complexation with NTA moieties change the surface charge concentration, which has a significant impact on the current-voltage (I-V) curve after chemical modification of the nanopore. The sensing mechanism is based on the displacement of the metal ion from the NTA-Ni2+ chelates. When the modified pore is exposed to histamine solution, the Ni2+ ion in NTA-Ni2+ chelate recognizes histamine through a metal ion coordination displacement process and formation of stable Ni-histamine complexes, leading to the regeneration of metal-free NTA groups on the pore surface, as shown in the current-voltage characteristics. Nanomolar concentrations of the histamine in the working electrolyte can be detected. On the contrary, other neurotransmitters such as glycine, serotonin, gamma-aminobutyric acid, and dopamine do not provoke significant changes in the nanopore electronic signal due to their inability to displace the metal ion and form a stable complex with Ni2+ ion. The nanofluidic sensor exhibits high sensitivity, specificity and reusability towards histamine detection and can then be used to monitor the concentration of biological important neurotransmitters. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Poultry litter-based activated carbon for removing heavy metal ions in water.

    Science.gov (United States)

    Guo, Mingxin; Qiu, Guannan; Song, Weiping

    2010-02-01

    Utilization of poultry litter as a precursor material to manufacture activated carbon for treating heavy metal-contaminated water is a value-added strategy for recycling the organic waste. Batch adsorption experiments were conducted to investigate kinetics, isotherms, and capacity of poultry litter-based activated carbon for removing heavy metal ions in water. It was revealed that poultry litter-based activated carbon possessed significantly higher adsorption affinity and capacity for heavy metals than commercial activated carbons derived from bituminous coal and coconut shell. Adsorption of metal ions onto poultry litter-based carbon was rapid and followed Sigmoidal Chapman patterns as a function of contact time. Adsorption isotherms could be described by different models such as Langmuir and Freundlich equations, depending on the metal species and the coexistence of other metal ions. Potentially 404 mmol of Cu2+, 945 mmol of Pb2+, 236 mmol of Zn2+, and 250-300 mmol of Cd2+ would be adsorbed per kg of poultry litter-derived activated carbon. Releases of nutrients and metal ions from litter-derived carbon did not pose secondary water contamination risks. The study suggests that poultry litter can be utilized as a precursor material for economically manufacturing granular activated carbon that is to be used in wastewater treatment for removing heavy metals.

  7. Removal of toxic heavy metal ions in runoffs by modified alfalfa and juniper

    Science.gov (United States)

    J.S. Han; J.K. Park; S.H. Min

    2000-01-01

    A series of batch isotherm tests was performed with alfalfa and juniper fibers to evaluate the effectiveness in filtering toxic heavy metals from stormwater. The adsorption of the heavy metal ions on the alfalfa and juniper fibers was strongly dependent on the equilibrium pH value of the solution. The change in sorption rate over time showed that two different sorption...

  8. Platinum metals-solution chemistry and separation methods (ion-exchange and solvent extraction)

    Energy Technology Data Exchange (ETDEWEB)

    Al-Bazi, S.J.; Chow, A. (Manitoba Univ., Winnipeg (Canada). Dept. of Chemistry)

    1984-10-01

    The effects of knowledge of the solution chemistry of the platinum metals on their separation by solvent extraction and ion-exchange methods are reviewed, for the period 1950 to 1983. The review concentrates on the chloro-complexes of these metals and indicates those areas which need more investigation or interpretation to provide adequate separational methods.

  9. Examining metallic glass formation in LaCe:Nb by ion implantation

    Directory of Open Access Journals (Sweden)

    Sisson Richard

    2017-01-01

    Full Text Available In order to combine niobium (Nb with lanthanum (La and cerium (Ce, Nb ions were deposited within a thin film of these two elements. According to the Hume-Rothery rules, these elements cannot be combined into a traditional crystalline metallic solid. The creation of an amorphous metallic glass consisting of Nb, La, and Ce is then investigated. Amorphous metallic glasses are traditionally made using fast cooling of a solution of molten metals. In this paper, we show the results of an experiment carried out to form a metallic glass by implanting 9 MeV Nb 3+ atoms into a thin film of La and Ce. Prior to implantation, the ion volume distribution is calculated by Monte Carlo simulation using the SRIM tool suite. Using multiple methods of electron microscopy and material characterization, small quantities of amorphous metallic glass are indeed identified.

  10. A Typical Metal-Ion-Responsive Color-Tunable Emitting Insulated π-Conjugated Polymer Film.

    Science.gov (United States)

    Hosomi, Takuro; Masai, Hiroshi; Fujihara, Tetsuaki; Tsuji, Yasushi; Terao, Jun

    2016-10-17

    We report the synthesis of an insulated π-conjugated polymer containing 2,2'-bipyridine moieties as metal coordination sites. Metal coordination to the polymer enabled easy and reversible tuning of the luminescent color without changes to the main chain skeleton. The permethylated α-cyclodextrin (PM α-CD)-based insulation structure allowed the metalated polymers to demonstrate efficient emission even in the solid state, with identical spectral shapes to the dilute solutions. In addition, the coordination ability of the metal-free polymer was maintained in the solid state, resulting in reversible changes in the luminescent color in response to the metal ions. The synthesized polymer is expected to be suitable for application in recyclable luminescent sensors to distinguish different metal ions. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Effective and Selective Recovery of Precious Metals by Thiourea Modified Magnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Hsing-Lung Lien

    2013-05-01

    Full Text Available Adsorption of precious metals in acidic aqueous solutions using thiourea modified magnetic magnetite nanoparticle (MNP-Tu was examined. The MNP-Tu was synthesized, characterized and examined as a reusable adsorbent for the recovery of precious metals. The adsorption kinetics were well fitted with pseudo second-order equation while the adsorption isotherms were fitted with both Langmuir and Freundlich equations. The maximum adsorption capacity of precious metals for MNP-Tu determined by Langmuir model was 43.34, 118.46 and 111.58 mg/g for Pt(IV, Au(III and Pd(II, respectively at pH 2 and 25 °C. MNP-Tu has high adsorption selectivity towards precious metals even in the presence of competing ions (Cu(II at high concentrations. In addition, the MNP-Tu can be regenerated using an aqueous solution containing 0.7 M thiourea and 2% HCl where precious metals can be recovered in a concentrated form. It was found that the MNP-Tu undergoing seven consecutive adsorption-desorption cycles still retained the original adsorption capacity of precious metals. A reductive adsorption resulting in the formation of elemental gold and palladium at the surface of MNP-Tu was observed.

  12. Enhanced O-2 Selectivity versus N-2 by Partial Metal Substitution in Cu-BTC

    Energy Technology Data Exchange (ETDEWEB)

    Sava Gallis, Dorina F.; Parkes, Marie V.; Greathouse, Jeffery A.; Zhang, Xiaoyi; Nenoff, Tina M.

    2015-03-24

    Here, we describe the homogeneous substitution of Mn, Fe, and Co at various levels into a prototypical metal organic framework (MOP), namely Cu-BTC (HKUST-1), and the effect of that substitution on preferential gas sorption. Using a combination of density functional theory (DFT) calculations, postsynthetic metal substitutions, materials characterization, and gas sorption testing, we demonstrate that the identity of the metal ion has a quantifiable effect on their oxygen and nitrogen sorption properties at cryogenic temperatures. An excellent correlation is found between O-2/N-2 selectivities determined experimentally at 77 K and the difference in O-2 and N-2 binding energies calculated from DFT modeling data: Mn > Fe Co >> Cu. Room temperature gas sorption studies were also performed and correlated with metal substitution. The Fe-exchanged sample shows a significantly higher nitrogen isosteric heat of adsorption at temperatures close to ambient conditions (273-298 K) as compared to all other metals studied, indicative of favorable interactions between N-2 and coordinatively unsaturated Fe metal centers. Interestingly, differences in gas adsorption results at cryogenic and room temperatures are evident; they are explained by comparing experimental results with DFT binding energies (0 K) and room temperature Grand Canonical Monte Carlo simulations.

  13. Effect of metal ions doping (M = Ti4+, Sn4+) on the catalytic performance of MnOx/CeO2 catalyst for low temperature selective catalytic reduction of NO with NH3

    Science.gov (United States)

    Xiong, Yan; Tang, Changjin; Dong, Lin

    2015-04-01

    Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, PR China The abatement of nitrogen oxides (NOx) emission from exhaust gases of diesel and stationary sources is a significant challenge for economic and social development. Ceria-based solid solutions were synthesized and used as supports to prepare MnOx/Ce0.8Ti0.2O2 and MnOx/Ce0.8Sn0.2O2 catalysts (Mn/CeTi and Mn/CeSn) for low temperature selective catalytic reduction of NO by NH3 (NH3-SCR). The effects of Ti or Sn doping on the catalytic performance of MnOx/CeO2 catalyst were investigated. Experimental results show that doping of Ti or Sn increases the NO removal efficiency of MnOx/CeO2. The NO conversion of Mn/CeTi catalyst is more than 90 % at temperature window of 175 ~ 300 °C under a gas hour space velocity of 60,000 mL.g-1.h-1. Modified catalysts are also found to exhibit greatly improved resistance to sulfur-poisoning. NH3-TPD results suggest that NH3 desorption on the catalysts is observed over a wide temperature range, due to the variability of adsorbed NH3 species with different thermal stabilities. Doping of Ti and Sn into Mn/CeO2 greatly increased the NH3 adsorption ability of the composites which could promote the SCR reaction. Characterization results also indicate that doping of Ti or Sn brings about catalysts with higher BET surface area, enhanced oxygen storage capacity and increased surface acidity.

  14. Generation of oxygen, carbon and metallic ion beams by a compact microwave source

    Energy Technology Data Exchange (ETDEWEB)

    Walther, S.R.; Leung, K.N.; Ehlers, K.W.; Kunkel, W.B.

    1986-07-01

    A small microwave ion source fabricated from a quartz tube and enclosed externally by a cavity has been operated with different geometries and for various gases in a cw mode. This source has been used to generate oxygen ion beams with energy as low as 5.5 eV. Beam energy spread has been measured to be less than 1 eV. By installing different metal plates on the front extraction electrode, metallic ion beams such as (Be, Cu, Al, etc.) can be produced.

  15. Photoinduced charge accumulation by metal ion-coupled electron transfer.

    Science.gov (United States)

    Bonn, Annabell G; Wenger, Oliver S

    2015-10-07

    An oligotriarylamine (OTA) unit, a Ru(bpy)3(2+) photosensitizer moiety (Ru), and an anthraquinone (AQ) entity were combined to a molecular dyad (Ru-OTA) and a molecular triad (AQ-Ru-OTA). Pulsed laser excitation at 532 nm led to the formation of charge-separated states of the type Ru(-)-OTA(+) and AQ(-)-Ru-OTA(+) with lifetimes of ≤10 ns and 2.4 μs, respectively, in de-aerated CH3CN at 25 °C. Upon addition of Sc(OTf)3, very long-lived photoproducts were observed. Under steady-state irradiation conditions using a flux of (6.74 ± 0.21) × 10(15) photons per second at 450 nm, the formation of twofold oxidized oligotriarylamine (OTA(2+)) was detected in aerated CH3CN containing 0.02 M Sc(3+), as demonstrated unambiguously by comparison with UV-Vis absorption spectra obtained in the course of chemical oxidation with Cu(2+). Photodriven charge accumulation on the OTA unit of Ru-OTA and AQ-Ru-OTA is possible due to the lowering of the O2 reduction potential caused by the interaction of superoxide with the strong Lewis acid Sc(3+). The presence of the anthraquinone unit in AQ-Ru-OTA accelerates the rate-determining reaction step for charge accumulation by a factor of 10 compared to the Ru-OTA dyad. This is attributed to the formation of Sc(3+)-stabilized anthraquinone radical anion intermediates in the triad. Possible mechanistic pathways leading to charge accumulation are discussed. Photodriven charge accumulation is of key importance for solar fuels because their production will have to rely on multi-electron chemistry rather than single-electron reaction steps. Our study is the first to demonstrate that metal ion-coupled electron transfer (MCET) can be exploited to accumulate charges on a given molecular unit using visible light as an energy input. The approach of using a combination of intra- and intermolecular electron transfer reactions which are enabled by MCET is conceptually novel, and the fundamental insights gained from our study are relevant in the greater

  16. Highly sensitive and selective detection of mercury (II) based on a zirconium metal-organic framework in aqueous media

    Science.gov (United States)

    Zhang, Xin; Xia, Tifeng; Jiang, Ke; Cui, Yuanjing; Yang, Yu; Qian, Guodong

    2017-09-01

    A novel metal-organic framework (MOF) fluorescent probe UiO-66-PSM is obtained by the copper-catalyzed azide-alkyne click (CuAAC) reaction of UiO-66-N3 with phenylacetylene. The click-generated triazole unit can act as the metal binding site to coordinate with Hg2+, which exhibits the most pronounced fluorescence response (rapid response, excellent selectivity, and high sensitivity) over other metal ions. Moreover, it is capable of detecting Hg2+ in environmental water samples without any structural disintegration of the framework, indicating its high potential in practical applications.

  17. A novel ion selective sensor for promethium determination

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Vinod K., E-mail: vinodfcy@iitr.ernet.in [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667 (India); Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Jain, Rajeev [School of Studies in Chemistry, Jiwaji University, Gwalior 474011 (India); Hamdan, A.J. [Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Agarwal, Shilpi [School of Studies in Chemistry, Jiwaji University, Gwalior 474011 (India); Bharti, Arvind K. [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667 (India)

    2010-11-29

    This is a first promethium{sup 145} ion-selective sensor based on the comparative study of two Schiff base ligands (X{sub 1} and X{sub 2}) as neutral ionophores. Effect of various plasticizers: 2-nitrophenyloctylether (o-NPOE), dibutyl phosphonate (DBP), dioctylphthalate (DOP), tri-(2-ethylhexyl) phosphate (TEHP), dibutyl butylphosphonate (DBBP), chloronaphthalene (CN) and anion excluders: potassium tetrakis (p-chloropheny1) borate (KTpClPB), sodiumtetraphenylborate (NaTPB) and oleic acid (OA) have been studied. The membrane with a composition of ionophore (X{sub 1}/X{sub 2}):KTpClPB:PVC:o-NPOE (w/w, %) in the ratio of 5:5:30:60 exhibited best performance. The best responsive membrane sensors (8 and 21) exhibited working concentration range of 4.5 x 10{sup -7}-1.0 x 10{sup -2} M and 3.5 x 10{sup -6}-1.0 x 10{sup -2} M with a detection limits of 3.2 x 10{sup -7} M and 2.3 x 10{sup -6} M and Nernstian slopes of 20.0 {+-} 0.5, 19.5 {+-} 0.5 mV decade{sup -1} of activity, respectively. The sensor no. 8 works satisfactorily in partially non-aqueous media up to 10% (v/v) content of methanol, ethanol and acetonitrile. Analytical application of the proposed sensor has been demonstrated in determination of promethium (III) ions in spiked water samples.

  18. Transport of Alkali Metal Ions through a Liquid Membrane System ...

    African Journals Online (AJOL)

    crown-6, [K(MF18C6)](picrate) was determined by X-ray crystallography and showed that each potassium ion is eight-coordinate; each K+ ion is coordinated to the six oxygen atoms of the crown, to the phenolate oxygen atom and to one of the ...

  19. Effect of ion beam irradiation on metal particle doped polymer ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 34; Issue 1. Effect of ion beam ... Keywords. Composite materials; ion beam irradiation; dielectric properties; X-ray diffraction. ... Different concentrations (10, 20 and 40%) of Ni powder were dispersed in PMMA and the composite films were prepared by casting method.

  20. Study of interactions between metal ions and protein model compounds by energy decomposition analyses and the AMOEBA force field

    Science.gov (United States)

    Jing, Zhifeng; Qi, Rui; Liu, Chengwen; Ren, Pengyu

    2017-10-01

    The interactions between metal ions and proteins are ubiquitous in biology. The selective binding of metal ions has a variety of regulatory functions. Therefore, there is a need to understand the mechanism of protein-ion binding. The interactions involving metal ions are complicated in nature, where short-range charge-penetration, charge transfer, polarization, and many-body effects all contribute significantly, and a quantitative description of all these interactions is lacking. In addition, it is unclear how well current polarizable force fields can capture these energy terms and whether these polarization models are good enough to describe the many-body effects. In this work, two energy decomposition methods, absolutely localized molecular orbitals and symmetry-adapted perturbation theory, were utilized to study the interactions between Mg2+/Ca2+ and model compounds for amino acids. Comparison of individual interaction components revealed that while there are significant charge-penetration and charge-transfer effects in Ca complexes, these effects can be captured by the van der Waals (vdW) term in the AMOEBA force field. The electrostatic interaction in Mg complexes is well described by AMOEBA since the charge penetration is small, but the distance-dependent polarization energy is problematic. Many-body effects were shown to be important for protein-ion binding. In the absence of many-body effects, highly charged binding pockets will be over-stabilized, and the pockets will always favor Mg and thus lose selectivity. Therefore, many-body effects must be incorporated in the force field in order to predict the structure and energetics of metalloproteins. Also, the many-body effects of charge transfer in Ca complexes were found to be non-negligible. The absorption of charge-transfer energy into the additive vdW term was a main source of error for the AMOEBA many-body interaction energies.

  1. Bis(sulfonamide) transmembrane carriers allow pH-gated inversion of ion selectivity.

    Science.gov (United States)

    Roy, Arundhati; Biswas, Oindrila; Talukdar, Pinaki

    2017-03-09

    Bis(sulfonamide) based synthetic carriers are reported for inversion of ion selectivity upon deviation of pH within a narrow window. A liposomal membrane potential is also generated when potassium ions are passively transported by these carriers.

  2. Selective recovery of Pd(II) from extremely acidic solution using ion-imprinted chitosan fiber: Adsorption performance and mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Shuo [School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Wei, Wei [School of Chemical Engineering, Chonbuk National University, Jeonbuk 561-756 (Korea, Republic of); Wu, Xiaohui; Zhou, Tao [School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Mao, Juan, E-mail: monicamao45@hust.edu.cn [School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Yun, Yeoung-Sang, E-mail: ysyun@jbnu.ac.kr [School of Chemical Engineering, Chonbuk National University, Jeonbuk 561-756 (Korea, Republic of)

    2015-12-15

    Highlights: • An acid-resisting chitosan fiber was prepared by ion-imprinting technique. • Pd(II) and ECH were as template and two-step crosslinking agent, respectively. • IIF showed a good adsorption and selectivity performance on Pd(II) solutions. • Selectivity was due to the electrostatic attraction between −NH{sub 3}{sup +} and [PdCl{sub 4}]{sup 2−}. • Stable sorption/desorption performance shows a potential in further application. - Abstract: A novel, selective and acid-resisting chitosan fiber adsorbent was prepared by the ion-imprinting technique using Pd(II) and epichlorohydrin as the template and two-step crosslinking agent, respectively. The resulting ion-imprinted chitosan fibers (IIF) were used to selectively adsorb Pd(II) under extremely acidic synthetic metal solutions. The adsorption and selectivity performances of IIF including kinetics, isotherms, pH effects, and regeneration were investigated. Pd(II) rapidly adsorbed on the IIF within 100 min, achieving the adsorption equilibrium. The isotherm results showed that the maximum Pd(II) uptake on the IIF was maintained as 324.6–326.4 mg g{sup −1} in solutions containing single and multiple metals, whereas the Pd(II) uptake on non-imprinted fibers (NIF) decreased from 313.7 to 235.3 mg g{sup −1} in solution containing multiple metals. Higher selectivity coefficients values were obtained from the adsorption on the IIF, indicating a better Pd(II) selectivity. The amine group, supposedly the predominant adsorption site for Pd(II), was confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The pH value played a significant role on the mechanism of the selective adsorption in the extremely acidic conditions. Furthermore, the stabilized performance for three cycles of sorption/desorption shows a potential for further large-scale applications.

  3. Histamine selectively potentiates acid-sensing ion channel 1a.

    Science.gov (United States)

    Nagaeva, Elina I; Tikhonova, Tatiana B; Magazanik, Lev G; Tikhonov, Denis B

    2016-10-06

    Although acid-sensitive ion channels (ASICs) play an important role in brain functions, the exact mechanism of their physiological activation remain unclear. A possible answer to the intriguing question is that some presently unknown endogenous ligand(s) positively modulate ASICs and enhance their responses to physiologically significant level. In the present work we found that histamine selectively potentiates ASIC1a homomers in CHO cells. Action of histamine was particularly pronounced at modest acidifications, which cause minor response. At these conditions micromolar concentrations of histamine have provided significant potentiation of ASIC1a response. We proposed that histamine and possibly some other endogenous amines can positively modulate ASICs functions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Removal of Heavy Metal Ions from Polluted Waters by Using of Low Cost Adsorbents: Review

    Directory of Open Access Journals (Sweden)

    M. Ghaedi

    2013-06-01

    Full Text Available Adsorption is a fundamental process in the physicochemical treatment of wastewaters which industries employ to reduce hazardous organic and inorganic wastes in effluents. In recent years the use of low-cost adsorbents has been widely investigated as a replacement for the currently costly methods of removing heavy metal ions from wastewater. It is well-known that cellulosic waste materials can be obtained and employed as cheap adsorbents and their performance to remove heavy metal ions can be affected upon chemical treatment. In this study, the use of some of low cost adsorbents for the removal of heavy metals from wastewater has been reviewed.

  5. Synthesis, Characterization and Metal Ion Detection of Novel Fluoroionophores Based on Heterocyclic Substituted Alanines

    Directory of Open Access Journals (Sweden)

    M. Manuela M Raposo

    2007-10-01

    Full Text Available The synthesis of new fluorescent probes containing the thiophene andbenzoxazole moieties combined with an alanine residue is described. The resulting highlyfluorescent heterocyclic alanine derivatives respond via a quenching effect, withparamagnetic Cu(II and Ni(II metal ions and with diamagnetic Hg(II, as shown by theabsorption and steady-state fluorescence spectroscopy studies. The formation ofmononuclear or dinuclear metal complexes was postulated based on the presence of thefree carboxylic acid as binding site and also with the interaction with the donor atoms inthe chromophore. Interaction with other important biological metal ions such as Zn(II,Ca(II and Na(I was also explored.

  6. Thin layer coulometry with ionophore based ion-selective membranes.

    Science.gov (United States)

    Grygolowicz-Pawlak, Ewa; Bakker, Eric

    2010-06-01

    We are demonstrating here for the first time a thin layer coulometric detection mode for ionophore based liquid ion-selective membranes. Coulometry promises to achieve the design of robust, calibration free sensors that are especially attractive for applications where recalibration in situ is difficult or undesirable. This readout principle is here achieved with porous polypropylene tubing doped with the membrane material and which contains a chlorinated silver wire in the inner compartment, together with the fluidically delivered sample solution. The membrane material consists of the lipophilic plasticizer dodecyl 2-nitrophenyl ether, the lipophilic electrolyte ETH 500, and the calcium ionophore ETH 5234. Importantly and in contrast to earlier work on voltammetric liquid membrane electrodes, the membrane also contains a cation-exchanger salt, KTFPB. This renders the membrane permselective and allows one to observe open circuit potentiometric responses for the device, which is confirmed to follow the expected Nernstian equation. Moreover, as the same cationic species is now potential determining at both interfaces of the membrane, it is possible to use rapidly diffusing and/or thin membrane systems where transport processes at the inner and outer interface of the membrane do not perturb each other or the overall composition of the membrane. The tubing is immersed in an electrolyte solution where the counter and working electrode are placed, and the potentials are applied relative to the measured open circuit potentials. Exhaustive current decays are observed in the range of 10 to 100 muM calcium chloride. The observed charge, calculated as integrated currents, is linearly dependent on concentration and forms the basis for the coulometric readout of ion-selective membrane electrodes.

  7. Adaptation of intertidal biofilm communities is driven by metal ion and oxidative stresses

    KAUST Repository

    Zhang, Weipeng

    2013-11-11

    Marine organisms in intertidal zones are subjected to periodical fluctuations and wave activities. To understand how microbes in intertidal biofilms adapt to the stresses, the microbial metagenomes of biofilms from intertidal and subtidal zones were compared. The genes responsible for resistance to metal ion and oxidative stresses were enriched in both 6-day and 12-day intertidal biofilms, including genes associated with secondary metabolism, inorganic ion transport and metabolism, signal transduction and extracellular polymeric substance metabolism. In addition, these genes were more enriched in 12-day than 6-day intertidal biofilms. We hypothesize that a complex signaling network is used for stress tolerance and propose a model illustrating the relationships between these functions and environmental metal ion concentrations and oxidative stresses. These findings show that bacteria use diverse mechanisms to adapt to intertidal zones and indicate that the community structures of intertidal biofilms are modulated by metal ion and oxidative stresses.

  8. Influence of the inert and active ion bombardment on structure of the transition metal thin films

    CERN Document Server

    Blazhevich, S; Martynov, I; Neklyudov, I

    2002-01-01

    The results of the experimental research of the inert (He, Ne, Ar, Kr, Xe) and active (O, N) ion impact on the transition metal structure are presented. Thin high-purity (99.999 at.%) films of nickel, chrome and iron were used in the experiment. The bombardment was realized under room temperature at high vacuum (P<1x10 sup - sup 7 Pa) by a separated ion beam of 10-10 sup 3 keV. As a main result of the experiment, the full absence of crystal matrix changes was ascertained for all the transition metals irradiated by inert gas ions. The chemical nature of the crystal structure changes observed in transition metals being under active ion bombardment was found out too.

  9. Recent Progress in Graphite Intercalation Compounds for Rechargeable Metal (Li, Na, K, Al)-Ion Batteries.

    Science.gov (United States)

    Xu, Jiantie; Dou, Yuhai; Wei, Zengxi; Ma, Jianmin; Deng, Yonghong; Li, Yutao; Liu, Huakun; Dou, Shixue

    2017-10-01

    Lithium-ion batteries (LIBs) with higher energy density are very necessary to meet the increasing demand for devices with better performance. With the commercial success of lithiated graphite, other graphite intercalation compounds (GICs) have also been intensively reported, not only for LIBs, but also for other metal (Na, K, Al) ion batteries. In this Progress Report, we briefly review the application of GICs as anodes and cathodes in metal (Li, Na, K, Al) ion batteries. After a brief introduction on the development history of GICs, the electrochemistry of cationic GICs and anionic GICs is summarized. We further briefly summarize the use of cationic GICs and anionic GICs in alkali ion batteries and the use of anionic GICs in aluminium-ion batteries. Finally, we reach some conclusions on the drawbacks, major progress, emerging challenges, and some perspectives on the development of GICs for metal (Li, Na, K, Al) ion batteries. Further development of GICs for metal (Li, Na, K, Al) ion batteries is not only a strong supplement to the commercialized success of lithiated-graphite for LIBs, but also an effective strategy to develop diverse high-energy batteries for stationary energy storage in the future.

  10. Highly ordered three-dimensional macroporous carbon spheres for determination of heavy metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuxiao; Zhang, Jianming [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China); Liu, Yang, E-mail: yangl@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China); Huang, Hui [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China); Kang, Zhenhui, E-mail: zhkang@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Highly ordered three dimensional macroporous carbon spheres (MPCSs) were prepared. Black-Right-Pointing-Pointer MPCS was covalently modified by cysteine (MPCS-CO-Cys). Black-Right-Pointing-Pointer MPCS-CO-Cys was first time used in electrochemical detection of heavy metal ions. Black-Right-Pointing-Pointer Heavy metal ions such as Pb{sup 2+} and Cd{sup 2+} can be simultaneously determined. -- Abstract: An effective voltammetric method for detection of trace heavy metal ions using chemically modified highly ordered three dimensional macroporous carbon spheres electrode surfaces is described. The highly ordered three dimensional macroporous carbon spheres were prepared by carbonization of glucose in silica crystal bead template, followed by removal of the template. The highly ordered three dimensional macroporous carbon spheres were covalently modified by cysteine, an amino acid with high affinities towards some heavy metals. The materials were characterized by physical adsorption of nitrogen, scanning electron microscopy, and transmission electron microscopy techniques. While the Fourier-transform infrared spectroscopy was used to characterize the functional groups on the surface of carbon spheres. High sensitivity was exhibited when this material was used in electrochemical detection (square wave anodic stripping voltammetry) of heavy metal ions due to the porous structure. And the potential application for simultaneous detection of heavy metal ions was also investigated.

  11. Structure simulation into a lamellar supramolecular network and calculation of the metal ions/ligands ratio

    Directory of Open Access Journals (Sweden)

    Visa Aurelia

    2012-08-01

    Full Text Available Abstract Background Research interest in phosphonates metal organic frameworks (MOF has increased extremely in the last two decades, because of theirs fascinating and complex topology and structural flexibility. In this paper we present a mathematical model for ligand/metal ion ratio of an octahedral (Oh network of cobalt vinylphosphonate (Co(vP·H2O. Results A recurrent relationship of the ratio between the number of ligands and the number of metal ions in a lamellar octahedral (Oh network Co(vP·H2O, has been deducted by building the 3D network step by step using HyperChem 7.52 package. The mathematical relationship has been validated using X ray analysis, experimental thermogravimetric and elemental analysis data. Conclusions Based on deducted recurrence relationship, we can conclude prior to perform X ray analysis, that in the case of a thermogravimetric analysis pointing a ratio between the number of metal ions and ligands number around 1, the 3D network will have a central metal ion that corresponds to a single ligand. This relation is valid for every type of supramolecular network with divalent metal central ion Oh coordinated and bring valuable information with low effort and cost.

  12. Synthesis and kinetics of growth of metal nanoparticles inside ion-exchange polymers

    Energy Technology Data Exchange (ETDEWEB)

    Zolotukhina, Ekaterina V., E-mail: ks-chem@mail.r [Voronezh State University of Technology, Moskovsky pr., 14, Voronezh 394026 (Russian Federation); Kravchenko, Tamara A. [Voronezh State University, Universitetskaya pl., 1, Voronezh 394006 (Russian Federation)

    2011-04-01

    Copper and silver nanoparticles have been obtained by means of saturation of a sulfostyrene-divinylbenzene cation-exchange polymer with metal ions and their subsequent chemical reduction. This procedure was repeated several times up to formation of a long-range conducting network (percolating cluster). Another system under study was an ensemble of Ag nanoparticles of various sizes on the silver electrode surface obtained by reduction of anodically formed layers of silver oxide. Recrystallization of deposited metal crystals inside the polymer matrix in contact with metal-ion containing solution is very slow for electrically separated particles. Formation of the electric network results in an enormous acceleration of this process via electron-ion mechanism, with growth of the average particle size, so that their potential will approach that of the compact metal with time. The initial period of the particle growth is well described by the parabolic law (Burke and Turnbull). The values of the particle-growth coefficient in this law, k, are drastically different for particles inside the matrix and on the electrode surface. Particle-to-particle electron transfer is impeded by insulating areas inside the polymer matrix. Besides, ionogenic centers of the matrix restrict the mobility of metal cations, thus slowing down the ion transfer within the recrystallization circuit. These observations have allowed us to establish the conditions resulting in long-term stabilization of metal nanoparticles inside the ion-exchange matrix with respect to their recrystallization.

  13. Selected heavy metals speciation in chemically stabilised sewage sludge

    Science.gov (United States)

    Wiśniowska, Ewa; Włodarczyk-Makuła, Marła

    2017-11-01

    Selected heavy metals (Pb, Ni, Cd) were analysed in soil, digested sewage sludge as well as in the sludge stabilised with CaO or Fenton's reagent. The dose of Fenton's reagent was as follows: Fe2+ = 1g.L-1, Fe2+/H2O2=1:100; stabilisation lasted for 2 h. Dose of CaO was equal to 1 g CaO.g d.m.-1 Total concentration of all metals in the digested sewage sludge was higher than in the soil. Chemical stabilisation of sludge with Fenton's reagent increased total metal content in the sludge as a result of total solids removal. Opposite effect was stated when the sludge was mixed with CaO. Also chemical fractions of heavy metals were identified (exchangeable, carbonate bound, iron oxides bound, organic and residual). The results indicate that stabilisation of the sludge with Fenton's reagent increased mobility of heavy metals compared to the digested sludge. Amendment of CaO increased percent share of examined metals in residual fraction, thus immobilised them and decreased their bioavailability.

  14. Preferential solvation, ion pairing, and dynamics of concentrated aqueous solutions of divalent metal nitrate salts

    Science.gov (United States)

    Yadav, Sushma; Chandra, Amalendu

    2017-12-01

    We have investigated the characteristics of preferential solvation of ions, structure of solvation shells, ion pairing, and dynamics of aqueous solutions of divalent alkaline-earth metal nitrate salts at varying concentration by means of molecular dynamics simulations. Hydration shell structures and the extent of preferential solvation of the metal and nitrate ions in the solutions are investigated through calculations of radial distribution functions, tetrahedral ordering, and also spatial distribution functions. The Mg2+ ions are found to form solvent separated ion-pairs while the Ca2+ and Sr2+ ions form contact ion pairs with the nitrate ions. These findings are further corroborated by excess coordination numbers calculated through Kirkwood-Buff G factors for different ion-ion and ion-water pairs. The ion-pairing propensity is found to be in the order of Mg(NO3) 2 coefficients. It is found that proper modeling of these solutions requires the inclusion of electronic polarization of the ions which is achieved in the current study through electronic continuum correction force fields. A detailed analysis of the effects of ion-pairs on the structure and dynamics of water around the hydrated ions is done through classification of water into different subspecies based on their locations around the cations or anions only or bridged between them. We have looked at the diffusion coefficients, relaxation of orientational correlation functions, and also the residence times of different subspecies of water to explore the dynamics of water in different structural environments in the solutions. The current results show that the water molecules are incorporated into fairly well-structured hydration shells of the ions, thus decreasing the single-particle diffusivities and increasing the orientational relaxation times of water with an increase in salt concentration. The different structural motifs also lead to the presence of substantial dynamical heterogeneity in these solutions

  15. Selective detection of Mg2+ ions via enhanced fluorescence emission using Au–DNA nanocomposites

    Directory of Open Access Journals (Sweden)

    Tanushree Basu

    2017-04-01

    Full Text Available The biophysical properties of DNA-modified Au nanoparticles (AuNPs have attracted a great deal of research interest for various applications in biosensing. AuNPs have strong binding capability to the phosphate and sugar groups in DNA, rendering unique physicochemical properties for detection of metal ions. The formation of Au–DNA nanocomposites is evident from the observed changes in the optical absorption, plasmon band, zeta potential, DLS particle size distribution, as well as TEM and AFM surface morphology analysis. Circular dichroism studies also revealed that DNA-functionalized AuNP binding caused a conformational change in the DNA structure. Due to the size and shape dependent plasmonic interactions of AuNPs (33–78 nm with DNA, the resultant Au–DNA nanocomposites (NCs exhibit superior fluorescence emission due to chemical binding with Ca2+, Fe2+ and Mg2+ ions. A significant increase in fluorescence emission (λex = 260 nm of Au–DNA NCs was observed after selectively binding with Mg2+ ions (20–800 ppm in an aqueous solution where a minimum of 100 ppm Mg2+ ions was detected based on the linearity of concentration versus fluorescence intensity curve (λem = 400 nm. The effectiveness of Au–DNA nanocomposites was further verified by comparing the known concentration (50–120 ppm of Mg2+ ions in synthetic tap water and a real life sample of Gelusil (300–360 ppm Mg2+, a widely used antacid medicine. Therefore, this method could be a sensitive tool for the estimation of water hardness after careful preparation of a suitably designed Au–DNA nanostructure.

  16. Selective detection of Mg2+ions via enhanced fluorescence emission using Au-DNA nanocomposites.

    Science.gov (United States)

    Basu, Tanushree; Rana, Khyati; Das, Niranjan; Pal, Bonamali

    2017-01-01

    The biophysical properties of DNA-modified Au nanoparticles (AuNPs) have attracted a great deal of research interest for various applications in biosensing. AuNPs have strong binding capability to the phosphate and sugar groups in DNA, rendering unique physicochemical properties for detection of metal ions. The formation of Au-DNA nanocomposites is evident from the observed changes in the optical absorption, plasmon band, zeta potential, DLS particle size distribution, as well as TEM and AFM surface morphology analysis. Circular dichroism studies also revealed that DNA-functionalized AuNP binding caused a conformational change in the DNA structure. Due to the size and shape dependent plasmonic interactions of AuNPs (33-78 nm) with DNA, the resultant Au-DNA nanocomposites (NCs) exhibit superior fluorescence emission due to chemical binding with Ca 2+ , Fe 2+ and Mg 2+ ions. A significant increase in fluorescence emission (λ ex = 260 nm) of Au-DNA NCs was observed after selectively binding with Mg 2+ ions (20-800 ppm) in an aqueous solution where a minimum of 100 ppm Mg 2+ ions was detected based on the linearity of concentration versus fluorescence intensity curve (λ em = 400 nm). The effectiveness of Au-DNA nanocomposites was further verified by comparing the known concentration (50-120 ppm) of Mg 2+ ions in synthetic tap water and a real life sample of Gelusil (300-360 ppm Mg 2+ ), a widely used antacid medicine. Therefore, this method could be a sensitive tool for the estimation of water hardness after careful preparation of a suitably designed Au-DNA nanostructure.

  17. Lead ion-selective electrodes based on polyphenylenediamine as unique solid ionophores.

    Science.gov (United States)

    Huang, Mei-Rong; Rao, Xue-Wu; Li, Xin-Gui; Ding, Yong-Bo

    2011-09-15

    A novel membrane electrode for Pb(II) ion detection based on semi-conducting poly(m-phenylenediamine) microparticles as a unique solid ionophore was fabricated. The electrode exhibited significantly enhanced response towards Pb(II) over the concentration range from 3.16×10(-6) to 0.0316 M at pH 3.0-5.0 with a low detection limit of 6.31×10(-7) M, a high sensitivity displaying a near-Nernstian slope of 29.8 mV decade(-1) for Pb(II). The electrode showed a long lifetime of 5 months and a short response time of 14s. A systematical investigation on the effect of anion excluder and various foreign ions on the selectivity of the electrode by a fixed interference method suggests that all other metal ions hardly ever interfere with the determination of Pb(II) except high concentration Hg(II). The electrode was successfully used as an indicator electrode in the potentiometric titration of Pb(II) with EDTA. Furthermore, the electrode has been used to satisfactorily analyze four types of real-world samples like spiked human urine, spiked tap water, and river water containing interfering ions like Na(I), Ca(II), Mg(II), Zn(II), Pd(II), Fe(III), K(I), Cu(II) and Hg(II) up to 8.04×10(-4) M, demonstrating fast response, high selectivity, good recovery (96.6-121.4%), good repeatability (RSD 0.31-6.45%), and small relative error (5.0%). Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Designing antimicrobial bioactive glass materials with embedded metal ions synthesized by the sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Palza, Humberto, E-mail: hpalza@ing.uchile.cl [Departamento de Ingeniería Química y Biotecnología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago (Chile); Escobar, Blanca; Bejarano, Julian [Departamento de Ingeniería Química y Biotecnología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago (Chile); Bravo, Denisse [Departamento de Patología, Facultad de Odontología, Universidad de Chile, Santiago (Chile); Diaz-Dosque, Mario [Departamento de Ciencias Básicas y Comunitarias, Facultad de Odontología, Universidad de Chile, Santiago (Chile); Perez, Javier [Departamento de Ingeniería Química y Biotecnología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago (Chile)

    2013-10-15

    Bioactive glasses (SiO{sub 2}–P{sub 2}O{sub 5}–CaO) having tailored concentrations of different biocide metal ions (copper or silver) were produced by the sol–gel method. All the particles release phosphorous ions when immersed in water and simulated body fluid (SBF). Moreover, a surface layer of polycrystalline hydroxy-carbonate apatite was formed on the particle surfaces after 10 day immersion in SBF as confirmed by X-ray diffraction and scanning electron microscopy (SEM) showing the bioactive materials. Samples with embedded either copper or silver ions were able to further release the biocide ions with a release rate that depends on the metal embedded and the dissolution medium: water or SBF. This biocide ion release from the samples explains the antimicrobial effect of our active particles against Escherichia coli DH5α ampicillin-resistant (Gram-negative) and Streptococcus mutans (Gram-positive) as determined by the Minimum Bactericidal Concentration (MBC) method. The antimicrobial behavior of the particles depends on the bacteria and the biocide ion used. Noteworthy, although samples with copper are able to release more metal ion than samples with silver, they present higher MBC showing the high effect of silver against these bacteria. - Highlights: • Copper and silver act as antimicrobial additives in bioactive glass materials. • Silver is more toxic than copper ions in these bioactive materials. • Sol–gel method allows the synthesis of antimicrobial bioactive materials.

  19. Hydration number of alkali metal ions determined by insertion in a conducting polymer

    DEFF Research Database (Denmark)

    Skaarup, Steen

    2008-01-01

    of all other water molecules whose properties are still influenced significantly by the cation. Knowing the hydration number is important when considering, for instance, the transport of Na+ and K+ in biological cell membranes, since their different behavior may depend on the details of ion hydration....... The solvation of alkali metal ions has been discussed for many years without a clear consensus. This work presents a systematic study of the hydration numbers of the 5 alkali metal ions, using the electrochemical insertion of the ions in a conducting polymer (polypyrrole containing the large immobile anion DBS...... direct calculation of the number of M+ ions entering the film, and therefore the inserted M+ mass. The mass of the water molecules is calculated as a difference. The results yield the following primary hydration numbers: Li+: 5.5-5.6; Na+: 4.0-4.1; K+: 2.0-2.5; Rb+: 0.6-1.2; Cs+: ~0. The most important...

  20. Kinetics of metal ion binding by polysaccharide colloids

    NARCIS (Netherlands)

    Rotureau, E.; Leeuwen, van H.P.

    2008-01-01

    The dynamics of metal sorption by a gel-like polysaccharide is investigated by means of the electrochemical technique of stripping chronopotentiometry (SCP). The measured response reflects the diffusive flux properties of the metallic species in the dispersion. The colloidal ligand studied here is a

  1. Removal of some metal ions from aqueous solution using orange ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-09-03

    Sep 3, 2008 ... 1Department of Pure and Industrial Chemistry, University of Port Harcourt, P.M.B. 5323, Port Harcourt, Rivers State,. Nigeria. 2 Department ... removal of heavy metals from contaminated soil and waste water. A number of technologies have been deve- loped over the years to remove toxic metals from water.

  2. Recovery of metals from simulant spent lithium-ion battery as organophosphonate coordination polymers in aqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Emilie; Andre, Marie-Laure; Navarro Amador, Ricardo [ICSM, Institut de Chimie Séparative de Marcoule, UMR 5257, CEA/CNRS/ENSCM/UM, Bât 426, BP 17171, 30207 Bagnols-sur-Cèze cedex (France); Hyvrard, François; Borrini, Julien [SARPI VEOLIA, Direction Technique et Innovations, Zone portuaire de Limay-Porcheville, 427 route du Hazay, 78520 Limay (France); Carboni, Michaël, E-mail: michael.carboni@cea.fr [ICSM, Institut de Chimie Séparative de Marcoule, UMR 5257, CEA/CNRS/ENSCM/UM, Bât 426, BP 17171, 30207 Bagnols-sur-Cèze cedex (France); Meyer, Daniel [ICSM, Institut de Chimie Séparative de Marcoule, UMR 5257, CEA/CNRS/ENSCM/UM, Bât 426, BP 17171, 30207 Bagnols-sur-Cèze cedex (France)

    2016-11-05

    Highlights: • Original waste disposal strategies for battery. • Precipitation of metals as coordination polymers. • Organo-phosphonate coordination polymers. • Selective extraction of manganese or co-precipitation of manganese/cobalt. • The recycling process give a promising application on any waste solution. - Abstract: An innovative approach is proposed for the recycling of metals from a simulant lithium-ion battery (LIBs) waste aqueous solution. Phosphonate organic linkers are introduced as precipitating agents to selectively react with the metals to form coordination polymers from an aqueous solution containing Ni, Mn and Co in a hydrothermal process. The supernatant is analyzed by ICP-AES to quantify the efficiency and the selectivity of the precipitation and the materials are characterized by Scanning Electron Microscopy (SEM), Powder X-Ray Diffraction (PXRD), Thermogravimetric Analyses (TGA) and nitrogen gas sorption (BET). Conditions have been achieved to selectively precipitate Manganese or Manganese/Cobalt from this solution with a high efficiency. This work describes a novel method to obtain potentially valuable coordination polymers from a waste metal solution that can be generalized on any waste solution.

  3. Metallic Sn-Based Anode Materials: Application in High-Performance Lithium-Ion and Sodium-Ion Batteries.

    Science.gov (United States)

    Ying, Hangjun; Han, Wei-Qiang

    2017-11-01

    With the fast-growing demand for green and safe energy sources, rechargeable ion batteries have gradually occupied the major current market of energy storage devices due to their advantages of high capacities, long cycling life, superior rate ability, and so on. Metallic Sn-based anodes are perceived as one of the most promising alternatives to the conventional graphite anode and have attracted great attention due to the high theoretical capacities of Sn in both lithium-ion batteries (LIBs) (994 mA h g-1) and sodium-ion batteries (847 mA h g-1). Though Sony has used Sn-Co-C nanocomposites as its commercial LIB anodes, to develop even better batteries using metallic Sn-based anodes there are still two main obstacles that must be overcome: poor cycling stability and low coulombic efficiency. In this review, the latest and most outstanding developments in metallic Sn-based anodes for LIBs and SIBs are summarized. And it covers the modification strategies including size control, alloying, and structure design to effectually improve the electrochemical properties. The superiorities and limitations are analyzed and discussed, aiming to provide an in-depth understanding of the theoretical works and practical developments of metallic Sn-based anode materials.

  4. Kinetics of metal ion binding by polysaccharide colloids.

    Science.gov (United States)

    Rotureau, Elise; van Leeuwen, Herman P

    2008-08-07

    The dynamics of metal sorption by a gel-like polysaccharide is investigated by means of the electrochemical technique of stripping chronopotentiometry (SCP). The measured response reflects the diffusive flux properties of the metallic species in the dispersion. The colloidal ligand studied here is a functionalized carboxymethyldextran. Its complexation with Pb(II) reveals a time dependence that identifies strong differences in the dynamic nature of the successive metal complexes formed. Apparently, the formation of intramolecular bidentate complexes requires a slow conformational reorganization of the macromolecule that becomes the rate-limiting step in the complexation reaction. The relevant parameters for metal binding and release kinetics are computed and thus provide knowledge of the time-dependent stability and lability of metal polysaccharide complexes.

  5. Pyrene-Phosphonate Conjugate: Aggregation-Induced Enhanced Emission, and Selective Fe3+Ions Sensing Properties.

    Science.gov (United States)

    Padghan, Sachin D; Bhosale, Rajesh S; Bhosale, Sidhanath V; Antolasic, Frank; Al Kobaisi, Mohammad; Bhosale, Sheshanath V

    2017-08-29

    A new pyrene-phosphonate colorimetric receptor 1 has been designed and synthesized in a one-step process via amide bond formation between pyrene butyric acid chloride and phosphonate-appended aniline. The pyrene-phosphonate receptor 1 showed aggregation-induced enhanced emission (AIEE) properties in water/acetonitrile (ACN) solutions. Dynamic light scattering (DLS) characterization revealed that the aggregates of receptor 1 at 80% water fraction have an average size of ≈142 nm. Field emission scanning electron microscopy (FE-SEM) analysis confirmed the formation of spherical aggregates upon solvent evaporation. The sensing properties of receptor 1 were investigated by UV-vis, fluorescence emission spectroscopy, and other optical methods. Among the tested metal ions, receptor 1 is capable of recognizing the Fe 3+ ion selectively. The changes in spectral measurements were explained on the basis of complex formation. The composition of receptor 1 and Fe 3+ ions was determined by using Job's plot and found to be 1:1. The receptor 1 -Fe 3 + complex showed a reversible UV-vis response in the presence of EDTA.

  6. Multidiagnostic analysis of ion dynamics in ultrafast laser ablation of metals over a large fluence range

    Energy Technology Data Exchange (ETDEWEB)

    Anoop, K. K., E-mail: anoop.kiliyanamkandy@unina.it; Bruzzese, R.; Amoruso, S. [CNR-SPIN and Dipartimento di Fisica, Universita degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, Napoli 80126 (Italy); Polek, M. P. [Center for Materials Under Extreme Environment, School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Harilal, S. S. [Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352 (United States)

    2015-02-28

    The dynamics of ions in ultrafast laser ablation of metals is studied over fluences ranging from the ablation threshold up to ≈75 J/cm{sup 2} by means of three well-established diagnostic techniques. Langmuir probe, Faraday cup, and spectrally resolved intensified charge coupled device imaging simultaneously monitored the ions produced during ultrafast laser ablation of a pure copper target with 800 nm, ≈50 fs, Ti: Sapphire laser pulses. The fluence dependence of ion yield is analyzed, resulting in the observance of three different regimes. The specific ion yield shows a maximum at about 4–5 J/cm{sup 2}, followed by a gradual reduction and a transition to a high-fluence regime above ≈50 J/cm{sup 2}. The fluence dependence of the copper ions angular distribution is also analyzed, observing a gradual increase in forward-peaking of Cu ions for fluences up to ≈10 J/cm{sup 2}. A broader ion component is observed at larger angles for fluences larger than ≈10 J/cm{sup 2}. Finally, an experimental characterization of the ionic angular distribution for several metallic targets (Mg, Al, Cr, Fe, Cu, and W) is carried out at a relatively high fluence of ≈66 J/cm{sup 2}. Interestingly, the ion emission from the volatile metals shows a narrow, forward-peaked distribution, and a high peak ion yield compared to the refractory metals. Moreover, the width of ionic angular distributions presents a striking correlation with the peak ion yield.

  7. DFT study of the interaction between DOTA chelator and competitive alkali metal ions.

    Science.gov (United States)

    Frimpong, E; Skelton, A A; Honarparvar, B

    2017-09-01

    1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetracetic acid (DOTA) is an important chelator for radiolabeling of pharmaceuticals. The ability of alkali metals found in the body to complex with DOTA and compete with radio metal ions can alter the radiolabeling process. Non-covalent interactions between DOTA complexed with alkali metals Li + , Na + , K + and Rb + , are investigated with density functional theory using B3LYP and ωB97XD functionals. Conformational possibilities of DOTA were explored with a varying number of carboxylic pendant arms of DOTA in close proximity to the ions. It is found that the case in which four arms of DOTA are interacting with ions is more stable than other conformations. The objective of this study is to explore the electronic structure properties upon complexation of alkali metals Li + Na + , K + and Rb + with a DOTA chelator. Interaction energies, relaxation energies, entropies, Gibbs free energies and enthalpies show that the stability of DOTA, complexed with alkali metals decreases down the group of the periodic table. Implicit water solvation affects the complexation of DOTA-ions leading to decreases in the stability of the complexes. NBO analysis through the natural population charges and the second order perturbation theory, revealed a charge transfer between DOTA and alkali metals. Conceptual DFT-based properties such as HOMO/LUMO energies, ΔE HOMO-LUMO and chemical hardness and softness indicated a decrease in the chemical stability of DOTA-alkali metal complexes down the alkali metal series. This study serves as a guide to researchers in the field of organometallic chelators, particularly, radiopharmaceuticals in finding the efficient optimal match between chelators and various metal ions. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Development of chitosan-based granular adsorbents for enhanced and selective adsorption performance in heavy metal removal.

    Science.gov (United States)

    Li, N; Bai, R

    2006-01-01

    Novel chitosan-based granular adsorbents were developed for enhanced and selective separation of heavy metal ions. The research included the synthesis of chitosan hydrogel beads, the cross-linking of the hydrogel beads with ethylene glycol diglycidyl ether (EGDE) in a conventional and a novel amine-shielded method, the functionalization of the chitosan beads through surface grafting of polyacrylamide via a surfaceinitiated atom transfer radical polymerization (ATRP) method, and the examination of the adsorption performance of the various types of chitosan beads in the removal of heavy metal ions. It was found that chitosan beads were effective in heavy metal adsorption, the conventional cross-linking method improved the acidic stability of the beads but reduced their adsorption capacity, the novel amine-shielded cross-linking method retained the good adsorption capacity while it improved the acidic stability of the beads, and the grafting of polyacrylamide on chitosan beads not only enhanced the adsorption capacity but also provided the beads with excellent selectivity for mercury over lead ions. XPS analyses indicated that the adsorption of metal ions on chitosan beads was mainly attributed to the amine groups of chitosan, the novel amine-shielded cross-linking method preserved most of the amine groups from being consumed by the cross-linking process and hence improved the adsorption capacity of the cross-linked chitosan beads, and the many amide groups from the polyacrylamide grafted on the chitosan beads increased the adsorption capacity and also made possible selective adsorption of mercury ions because the amide groups can form covalent bonds with mercury ions.

  9. Visual detection of trace lead ion based on aptamer and silver staining nano-metal composite.

    Science.gov (United States)

    Ma, Li-Hong; Wang, Hai-Bo; Fang, Bi-Yun; Tan, Fang; Cao, Yuan-Cheng; Zhao, Yuan-Di

    2017-12-11

    In this paper, visual detection of trace lead ion was established by aptamer and silver staining. The basic strategy was that aminated PS2.M aptamer was immobilized onto slide and formed stable G-quadruplex structure. PbS was generated by adding S2-, and it catalyzed subsequent silver staining reaction, through the silver staining amplification effect, the slide presented visible ash black. The gray value of slide after silver staining was analyzed and the semi-quantitative detection of Pb2+ in solution was realized. The results showed that optical darkness ratio (ODR) and logarithmic value of Pb2+ concentration had a good linear relationship (R2 = 0.951) over the range of 0.5-10 μM. In addition, there was no obvious interference of other common metal ions for the detection, indicating that this method presented outstanding selectivity. And it was also used for qualitative and semi-quantitative determination of Pb2+ in soil sample successfully. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Supercharging with Trivalent Metal Ions in Native Mass Spectrometry

    Science.gov (United States)

    Flick, Tawnya G.; Williams, Evan R.

    2012-11-01

    Addition of 1.0 mM LaCl3 to aqueous ammonium acetate solutions containing proteins in their folded native forms can result in a significant increase in the molecular ion charging obtained with electrospray ionization as a result of cation adduction. In combination with m-nitrobenzyl alcohol, molecular ion charge states that are greater than the number of basic sites in the protein can be produced from these native solutions, even for lysozyme, which is conformationally constrained by four intramolecular disulfide bonds. Circular dichroism spectroscopy indicates that the conformation of ubiquitin is not measurably affected with up to 1.0 M LaCl3, but ion mobility data indicate that the high charge states that are formed when 1.0 mM LaCl3 is present are more unfolded than the low charge states formed without this reagent. These and other results indicate that the increased charging is a result of La3+ preferentially adducting onto compact or more native-like conformers during ESI and the gas-phase ions subsequently unfolding as a result of increased Coulomb repulsion. Electron capture dissociation of these high charge-state ions formed from these native solutions results in comparable sequence coverage to that obtained for ions formed from denaturing solutions without supercharging reagents, making this method a potentially powerful tool for obtaining structural information in native mass spectrometry.

  11. Simultaneous Counter-Ion Co-Deposition a Technique Enabling Matrix Isolation Spectroscopy Studies Using Low-Energy Beams of Mass-Selected Ions

    Science.gov (United States)

    Ludwig, Ryan M.; Moore, David T.

    2014-06-01

    Matrix isolation spectroscopy was first developed in Pimentel's group during the 1950's to facilitate spectroscopic studies of transient species. Cryogenic matrices of condensed rare gases provide an inert chemical environment with facile energy dissipation and are transparent at all wavelengths longer than vacuum UV, making them ideal for studying labile and reactive species such as radicals, weakly bound complexes, and ions. Since frozen rare gases are poor electrolytes, studies of ions require near-equal populations of anions and cations in order to stabilize the number densities required for spectroscopic experiments. Many techniques for generation of ions for using in matrix isolation studies satisfy this criterion intrinsically, however when ion beams generated in external sources are deposited, the counter-ions typically arise via secondary processes that are at best loosely controlled. It has long been recognized that it would be desirable to stabilize deposition of mass-selected ions generated in an external source using simultaneous co-deposition of a beam of counter-ions, however previous attempts to achieve this have been reported as unsuccessful. The Moore group at Lehigh has demonstrated successful experiments of this type, using mass-selected anions generated from a metal cluster source, co-deposited with a balanced current of cations generated in a separate electron ionization source. This talk will focus on the details of the technique, and present some results from proof-of-concept studies on anionic copper carbonyl complexes formed in argon matrices following co-deposition of Cu- with Ar+ or Kr+. Funding support from NSF CAREER Award CHE-0955637 is gratefully acknowledged. Whittle et al., J. Chem. Phys. 22, p.1943 (1954); Becker et al., J. Chem. Phys. 25, p.224 (1956). Godbout et al., J. Chem. Phys. 96, p.2892 (1996). Sabo et al., Appl. Spectrosc. 45, p. 535 (1991).

  12. Selective electrochemical sensor for copper (II) ion based on chelating ionophores

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Ashok Kumar [Department of Chemistry, Indian Institute of Technology at Roorkee, Roorkee 247667 (India)]. E-mail: akscyfcy@iitr.ernet.in; Mehtab, Sameena [Department of Chemistry, Indian Institute of Technology at Roorkee, Roorkee 247667 (India); Jain, Ajay Kumar [Department of Chemistry, Indian Institute of Technology at Roorkee, Roorkee 247667 (India)

    2006-08-04

    Plasticized membranes using 3-(2-pyridinyl)-2H-pyrido[1,2,-a]-1,3,5-triazine-2,4(3H)-dithione (L {sub 1}) and acetoacetanilide (L {sub 2}) have been prepared and explored as Cu{sup 2+}-selective sensors. Effect of various plasticizers, viz. chloronaphthalene (China), benzyl acetate (BA), o-nitrophenyloctyl ether (o-NPOE), and anion excluders, sodium tetraphenylborate (NaTPB) and oleic acid (OA) was studied in detail and improved performance was observed at several instances. Optimum performance was observed with dithione derivative (L {sub 1}) having a membrane composition of L {sub 1} (5):PVC (120):o-NPOE (240):OA (10). The sensor works satisfactorily in the concentration range 5.0 x 10{sup -8} to 1.0 x 10{sup -2} M (detection limit 4.0 x 10{sup -8} M) with a Nernstian slope of 29.5 mV decade{sup -1} of activity. Wide pH range (3.0-9.5), fast response time (12 s), non-aqueous tolerance (up to 20%) and adequate shelf life (4 months) indicate the vital utility of the proposed sensor. The potentiometric selectivity coefficient values as determined by match potential method (MPM) indicate good response for Cu{sup 2+} in presence of interfering ions. The proposed electrode comparatively shows good selectivity with respect to alkali, alkaline earth, transition and some rare earth metals ions. The electrode was used for the determination of copper in different milk powder, water samples and as indicator electrode in potentiometric titration of copper ion with EDTA.

  13. In Situ SIMS and IR Spectroscopy of Well-Defined Surfaces Prepared by Soft Landing of Mass-Selected Ions

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Grant E.; Gunaratne, Kalupathirannehelage Don D.; Laskin, Julia

    2014-06-16

    Soft landing of mass-selected ions onto surfaces is a powerful approach for the highly-controlled preparation of materials that are inaccessible using conventional synthesis techniques. Coupling soft landing with in situ characterization using secondary ion mass spectrometry (SIMS) and infrared reflection absorption spectroscopy (IRRAS) enables analysis of well-defined surfaces under clean vacuum conditions. The capabilities of three soft-landing instruments constructed in our laboratory are illustrated for the representative system of surface-bound organometallics prepared by soft landing of mass-selected ruthenium tris(bipyridine) dications, [Ru(bpy)3]2+, onto carboxylic acid terminated self-assembled monolayer surfaces on gold (COOH-SAMs). In situ time-of-flight (TOF)-SIMS provides insight into the reactivity of the soft-landed ions. In addition, the kinetics of charge reduction, neutralization and desorption occurring on the COOH-SAM both during and after ion soft landing are studied using in situ Fourier transform ion cyclotron resonance (FT-ICR)-SIMS measurements. In situ IRRAS experiments provide insight into how the structure of organic ligands surrounding metal centers is perturbed through immobilization of organometallic ions on COOH-SAM surfaces by soft landing. Collectively, the three instruments provide complementary information about the chemical composition, reactivity and structure of well-defined species supported on surfaces.

  14. Dynamic electrochemistry with ionophore based ion-selective membranes

    OpenAIRE

    Crespo Paravano, Gaston Adrian; Bakker, Eric

    2013-01-01

    This review outlines key principles and recent advances in the use of dynamic electrochemistry with polymeric liquid membranes. Ideally polarizable membranes are most attractive in fundamental studies of ion transfer and when the accumulation of the ion in the receiving phase is of key interest, for example in stripping ion transfer voltammetry. All solid-state membranes doped with conducting polymers have exhibited attractive low detection limit for hydrophilic ions. On the other hand, initi...

  15. Dynamic electrochemistry with ionophore based ion-selective membranes

    OpenAIRE

    Crespo Gastón Adrián; Bakker Eric

    2013-01-01

    This review outlines key principles and recent advances in the use of dynamic electrochemistry with polymeric liquid membranes. Ideally polarizable membranes are most attractive in fundamental studies of ion transfer and when the accumulation of the ion in the receiving phase is of key interest for example in stripping ion transfer voltammetry. All solid state membranes doped with conducting polymers have exhibited attractive low detection limit for hydrophilic ions. On the other hand initial...

  16. Physicochemical studies on Ciclopirox olamine complexes with divalent metal ions.

    Science.gov (United States)

    Tarawneh, Ruba T; Hamdan, Imad I; Bani-Jaber, Ahmad; Darwish, Rula M

    2005-01-31

    Ciclopirox olamine (CPO) metal complexes have been prepared and characterized using elemental analysis, infra red (IR), melting point and differential scanning calorimetry (DSC). Spectroscopic titration using molar ratio method indicated the occurrence of 1:1 complexes for CPO with almost all the examined metals. Physicochemical properties were also studied including aqueous solubility and apparent partition coefficient. Results showed that generally complex formation dramatically decreased the solubility and increased apparent partition coefficient. However, some metal complexes exhibited opposite effect. It could be concluded that complex formation can modify the solubility and apparent partition coefficient, which may suggest the use of complexes to manipulate the physicochemical properties of the drug.

  17. FTIR spectroscopy structural analysis of the interaction between Lactobacillus kefir S-layers and metal ions

    Science.gov (United States)

    Gerbino, E.; Mobili, P.; Tymczyszyn, E.; Fausto, R.; Gómez-Zavaglia, A.

    2011-02-01

    FTIR spectroscopy was used to structurally characterize the interaction of S-layer proteins extracted from two strains of Lactobacillus kefir (the aggregating CIDCA 8348 and the non-aggregating JCM 5818) with metal ions (Cd +2, Zn +2, Pb +2 and Ni +2). The infrared spectra indicate that the metal/protein interaction occurs mainly through the carboxylate groups of the side chains of Asp and Glut residues, with some contribution of the NH groups belonging to the peptide backbone. The frequency separation between the νCOO - anti-symmetric and symmetric stretching vibrations in the spectra of the S-layers in presence of the metal ions was found to be ca. 190 cm -1 for S-layer CIDCA 8348 and ca. 170 cm -1 for JCM 5818, denoting an unidentate coordination in both cases. Changes in the secondary structures of the S-layers induced by the interaction with the metal ions were also noticed: a general trend to increase the amount of β-sheet structures and to reduce the amount of α-helices was observed. These changes allow the proteins to adjust their structure to the presence of the metal ions at minimum energy expense, and accordingly, these adjustments were found to be more important for the bigger ions.

  18. Removal of some metal ions by activated carbon prepared from Phaseolus aureus hulls

    Energy Technology Data Exchange (ETDEWEB)

    Rao, M. Madhava; Ramana, D.K.; Seshaiah, K. [Analytical and Environmental Chemistry Division, Department of Chemistry, Sri Venkateswara University, Tirupati 517 502 (India); Wang, M.C., E-mail: mcwang@cyut.edu.tw [Department of Environmental Engineering and Management, Chaoyang University of Technology, Wufong Township 41349, Taichung County, Taiwan (China); Chien, S.W. Chang [Department of Environmental Engineering and Management, Chaoyang University of Technology, Wufong Township 41349, Taichung County, Taiwan (China)

    2009-07-30

    Removal of lead [Pb(II)], zinc [Zn(II)], copper [Cu(II)], and cadmium [Cd(II)] from aqueous solutions using activated carbon prepared from Phaseolus aureus hulls (ACPAH), an agricultural waste was studied. The influence of various parameters such as effect of pH, contact time, adsorbent dose, and initial concentration of metal ions on the removal was evaluated by batch method. The removal of metal ions by ACPAH was pH dependent and the optimum pH values were 7.0, 8.0, 7.0 and 6.0 for Cu(II), Cd(II), Zn(II), and Pb(II), respectively. The sorption isotherms were studied using Langmuir, Freundlich, Dubinin-Radushkevich (D-R), and Temkin isotherm models. The maximum adsorption capacity values of ACPAH for metal ions were 21.8 mg g{sup -1} for Pb(II), 21.2 mg g{sup -1} for Zn(II), 19.5 mg g{sup -1} for Cu(II), and 15.7 mg g{sup -1} for Cd(II). The experiments demonstrated that the removal of metal ions followed the pseudo-second-order kinetic model. Desorption experiments were carried out using HCl solution with a view to regenerate the spent adsorbent and to recover the adsorbed metal ions.

  19. A mononuclear non-heme manganese(IV)-oxo complex binding redox-inactive metal ions.

    Science.gov (United States)

    Chen, Junying; Lee, Yong-Min; Davis, Katherine M; Wu, Xiujuan; Seo, Mi Sook; Cho, Kyung-Bin; Yoon, Heejung; Park, Young Jun; Fukuzumi, Shunichi; Pushkar, Yulia N; Nam, Wonwoo

    2013-05-01

    Redox-inactive metal ions play pivotal roles in regulating the reactivities of high-valent metal-oxo species in a variety of enzymatic and chemical reactions. A mononuclear non-heme Mn(IV)-oxo complex bearing a pentadentate N5 ligand has been synthesized and used in the synthesis of a Mn(IV)-oxo complex binding scandium ions. The Mn(IV)-oxo complexes were characterized with various spectroscopic methods. The reactivities of the Mn(IV)-oxo complex are markedly influenced by binding of Sc(3+) ions in oxidation reactions, such as a ~2200-fold increase in the rate of oxidation of thioanisole (i.e., oxygen atom transfer) but a ~180-fold decrease in the rate of C-H bond activation of 1,4-cyclohexadiene (i.e., hydrogen atom transfer). The present results provide the first example of a non-heme Mn(IV)-oxo complex binding redox-inactive metal ions that shows a contrasting effect of the redox-inactive metal ions on the reactivities of metal-oxo species in the oxygen atom transfer and hydrogen atom transfer reactions.

  20. Metal Ions-Stimulated Iron Oxidation in Hydroxylases Facilitates Stabilization of HIF-1α Protein

    Science.gov (United States)

    Kaczmarek, Monika; Cachau, Raul E.; Topol, Igor A.; Kasprzak, Kazimierz S.; Ghio, Andy; Salnikow, Konstantin

    2009-01-01

    The exposure of cells to several metal ions stabilizes HIF-1α protein. However, the molecular mechanisms are not completely understood. They may involve inhibition of hydroxylation by either substitution of iron by metal ions or by iron oxidation in the hydroxylases. Here we provide evidence supporting the latter mechanism. We show that HIF-1α stabilization in human lung epithelial cells occurred following exposure to various metal and metalloid ions, including those that cannot substitute for iron in the hydroxylases. In each case addition of the reducing agent ascorbic acid (AA)* abolished HIF-1α protein stabilization. To better understand the role of iron oxidation in hydroxylase inhibition and to define the role of AA in the enzyme recovery we applied molecular modeling techniques. Our results indicate that the energy required for iron substitution by Ni(II) in the enzyme is high and unlikely to be achieved in a biological system. Additionally, computer modeling allowed us to identify a tridentate coordination of AA with the enzyme-bound iron, which explains the specific demand for AA as the iron reductant. Thus, the stabilization of HIF-1α by numerous metal ions that cannot substitute for iron in the enzyme, the alleviation of this effect by AA, and our computer modeling data support the hypothesis of iron oxidation in the hydroxylases following exposure to metal ions. PMID:19074761