WorldWideScience

Sample records for seismogram 1-d generation

  1. Programming for seismogram 1-D generation, considering the attenuation and dispersing effects; Programa para gerar sismograma 1-D, considerando os efeitos da atenuacao e dispersao

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Bruno de O.; Oliveira, Sergio A.M. de [Universidade Estadual do Norte Fluminense (UENF), Macae, RJ (Brazil). Lab. de Engenharia e Exploracao do Petroleo (LENEP)

    2004-07-01

    For a processing and an interpretation of correct seismic data, it is necessary to recognize and to know as the factors act that influence in the propagation of the seismic waves, as the attenuation and the dispersion, constituting in the biggest practical impediment for the use of seismic for targets the big depths, limiting the resolution of the method. However these phenomena little are taken in consideration in the analysis of the data, thus the necessity of its bigger agreement, because if attenuation and dispersion they confuse the application of the seismic, if convenient understood and measures, can be valuable sources of information about the constitution of the rocks. Therefore, in this work the effect of the attenuation and dispersion in the data of reflection seismic had been simulated on a program, in Mat-Lab. Being able to generate 1-D seismograms, in the domain of the time, considering the normal incidence of plain wave in a package of plain, horizontal and isotropic layers, taking in account the physical attributes of the way, being able to simulate the effects of ghost and of multiples of free surface, if considering the source in the water. (author)

  2. A constant stress-drop model for producing broadband synthetic seismograms: Comparison with the next generation attenuation relations

    Science.gov (United States)

    Frankel, A.

    2009-01-01

    Broadband (0.1-20 Hz) synthetic seismograms for finite-fault sources were produced for a model where stress drop is constant with seismic moment to see if they can match the magnitude dependence and distance decay of response spectral amplitudes found in the Next Generation Attenuation (NGA) relations recently developed from strong-motion data of crustal earthquakes in tectonically active regions. The broadband synthetics were constructed for earthquakes of M 5.5, 6.5, and 7.5 by combining deterministic synthetics for plane-layered models at low frequencies with stochastic synthetics at high frequencies. The stochastic portion used a source model where the Brune stress drop of 100 bars is constant with seismic moment. The deterministic synthetics were calculated using an average slip velocity, and hence, dynamic stress drop, on the fault that is uniform with magnitude. One novel aspect of this procedure is that the transition frequency between the deterministic and stochastic portions varied with magnitude, so that the transition frequency is inversely related to the rise time of slip on the fault. The spectral accelerations at 0.2, 1.0, and 3.0 sec periods from the synthetics generally agreed with those from the set of NGA relations for M 5.5-7.5 for distances of 2-100 km. At distances of 100-200 km some of the NGA relations for 0.2 sec spectral acceleration were substantially larger than the values of the synthetics for M 7.5 and M 6.5 earthquakes because these relations do not have a term accounting for Q. At 3 and 5 sec periods, the synthetics for M 7.5 earthquakes generally had larger spectral accelerations than the NGA relations, although there was large scatter in the results from the synthetics. The synthetics showed a sag in response spectra at close-in distances for M 5.5 between 0.3 and 0.7 sec that is not predicted from the NGA relations.

  3. Seismogram Construction to Fit the Recorded B032593c Earthquake, Japan on Observation Station Bfo, Germany

    OpenAIRE

    Bagus Jaya Santosa

    2005-01-01

    In this research the model of earth layers between earthquake's epicenter in Hokkaido Japan and observation station in Black Forest of Observatory (BFO), Germany is investigated. The earth model is 1-D that represents the average speed model. The earth model is obtained by seismogram comparison between data and synthetic seismogram in time domain and three components simultaneously. Synthetic Seismogram is calculated with the Green's function of the Earth by MINor Integration (GEMINI) program...

  4. A seismogram digitization and database management system

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper introduces a 2Seismogram Digitization and Database Management System2 (SDDMS), which is devel-oped using Delphi3, and present the key technique of automatically extracting wave data from paper seismograms. The system has various functions, such as paper seismogram digitization, database management and data analysis, etc. With this system it is possible to analyze historical paper seismograms using modern computers. Application of this system will be of help to the progress in earthquake prediction and seismological researches.

  5. Streaming Seismograms into Earth-Science Classrooms

    Science.gov (United States)

    Ammon, C. J.

    2011-12-01

    Seismograms are the fundamental observations upon which seismology is based; they are central to any course in seismology and important for any discussion of earthquake-related phenomena based on seismic observations. Advances in the collection and distribution of seismic data have made the use of research-quality seismograms in any network capable classroom feasible. The development of large, deep seismogram archives place an unprecedented quantity of high-quality data within reach of the modern classroom environment. I describe and discuss several computer tools and classroom activities that I use in introductory (general education) and advanced undergraduate courses that present near real-time research-quality seismic observations in the classroom. The Earth Motion Monitor Application (EMMA), is a MacOS application that presents a visually clear seismogram display that can be projected in classrooms with internet access. Seismic signals from thousands of station are available from the IRIS data center and the bandwidth can be tailored to the particular type of signal of interest (large event, low frequencies; small event, high frequencies). In introductory classes for non-science students, the near realtime display routinely shows magnitude 4.0-5.0 earthquake-generated signals, demonstrating to students the frequency of earthquake occurrence. Over the next few minutes as the waves travel through and across the planet, their arrival on the seismogram display provides some basic data for a qualitative estimate of the event's general location. When a major or great earthquake occurs, a broad-band display of signals from nearby stations can dramatically and dynamically illuminate the frequent activity associated with the aftershock sequence. Routine use of the display (while continuing the traditional classroom activities) provides students with a significant dose of seismogram study. Students generally find all the signals, including variations in seismic

  6. Generation and characterization of CD1d-specific single-domain antibodies with distinct functional features.

    Science.gov (United States)

    Lameris, Roeland; de Bruin, Renée C G; van Bergen En Henegouwen, Paul M P; Verheul, Henk M; Zweegman, Sonja; de Gruijl, Tanja D; van der Vliet, Hans J

    2016-09-01

    Ligation of the CD1d antigen-presenting molecule by monoclonal antibodies (mAbs) can trigger important biological functions. For therapeutic purposes camelid-derived variable domain of heavy-chain-only antibodies (VHH) have multiple advantages over mAbs because they are small, stable and have low immunogenicity. Here, we generated 21 human CD1d-specific VHH by immunizing Lama glama and subsequent phage display. Two clones induced maturation of dendritic cells, one clone induced early apoptosis in CD1d-expressing B lymphoblasts and multiple myeloma cells, and another clone blocked recognition of glycolipid-loaded CD1d by CD1d-restricted invariant natural killer T (iNKT) cells. In contrast to reported CD1d-specific mAbs, these CD1d-specific VHH have the unique characteristic that they induce specific and well-defined biological effects. This feature, combined with the above-indicated general advantages of VHH, make the CD1d-specific VHH generated here unique and useful tools to exploit both CD1d ligation as well as disruption of CD1d-iNKT interactions in the treatment of cancer or inflammatory disorders. PMID:27312006

  7. Efficient computation of NACT seismograms

    Science.gov (United States)

    Zheng, Z.; Romanowicz, B. A.

    2009-12-01

    We present a modification to the NACT formalism (Li and Romanowicz, 1995) for computing synthetic seismograms and sensitivity kernels in global seismology. In the NACT theory, the perturbed seismogram consists of an along-branch coupling term, which is computed under the well-known PAVA approximation (e.g. Woodhouse and Dziewonski, 1984), and an across-branch coupling term, which is computed under the linear Born approximation. In the classical formalism, the Born part is obtained by a double summation over all pairs of coupling modes, where the numerical cost grows as (number of sources * number of receivers) * (corner frequency)^4. Here, however, by adapting the approach of Capdeville (2005), we are able to separate the computation into two single summations, which are responsible for the “source to scatterer” and the “scatterer to receiver” contributions, respectively. As a result, the numerical cost of the new scheme grows as (number of sources + number of receivers) * (corner frequency)^2. Moreover, by expanding eigen functions on a wavelet basis, a compression factor of at least 3 (larger at lower frequency) is achieved, leading to a factor of ~10 saving in disk storage. Numerical experiments show that the synthetic seismograms computed from the new approach agree well with those from the classical mode coupling method. The new formalism is significantly more efficient when approaching higher frequencies and in cases of large numbers of sources and receivers, while the across-branch mode coupling feature is still preserved, though not explicitly.

  8. Generation of nonclassical microwave states using an artificial atom in 1D open space

    OpenAIRE

    Hoi I.-C.; Palomaki T.; Lindkvist J.; Johansson G.; Delsing P.; Wilson C.M.

    2012-01-01

    We have embedded an artificial atom, a superconducting transmon qubit, in a 1D open space and investigated the scattering properties of an incident microwave coherent state. By studying the statistics of the reflected and transmitted fields, we demonstrate that the scattered states can be nonclassical. In particular, by measuring the second-order correlation function, $g^{(2)}$, we show photon antibunching in the reflected field and superbunching in the transmitted field. We also compare the ...

  9. A new program on digitizing analog seismograms

    Science.gov (United States)

    Wang, Maofa; Jiang, Qigang; Liu, Qingjie; Huang, Meng

    2016-08-01

    Historical seismograms contain a great variety of useful information which can be used in the study of earthquakes. It is necessary for researchers to digitize analog records and extract the information just as modern computing analysis requires. Firstly, an algorithm based on color scene filed method is presented in order to digitize analog seismograms. Secondly, an interactive software program using C# has been developed to digitize seismogram traces from raster files quickly and accurately. The program can deal with gray-scale images stored in a suitable file format and it offers two different methods: manual digitization and automatic digitization. The test result of the program shows that the methods presented in this paper can lead to good performance.

  10. Bloch oscillations as generators of polarons in a 1D crystal

    Science.gov (United States)

    Nazareno, H. N.; Brito, P. E. de

    2016-08-01

    The main purpose of this work is to characterize the kind of propagation/localization of carriers in a one-dimensional crystalline structure along the tight-binding model while the electron-phonon interaction is taken into account through a deformation potential and the system is under the action of a dc electric field. The lattice was treated in the classical formalism of harmonic vibrations. A remarkable effect is obtained due to the presence of the electric field. On one side the particle performs Bloch oscillations and at the same time it interacts with the lattice and as a result at each turning point of its trajectory phonons are generated that carry with them a fraction of the electronic wave packet, it is the polaron formation. This way the Bloch oscillations pump polarons into the system. We explain why the polaron is formed at returning points of the oscillations.

  11. Time Scale Calculus - a new perspectives for synthetic seismogram calculations

    Science.gov (United States)

    Waskiewicz, Kamil; Debski, Wojciech

    2013-04-01

    Synthetic, numerically generated seismograms are one of the key factors of any interpretation of recorded seismic data. At the early stage of development, calculation of full seismic waveforms was impossible due to a limited computational resource so we were forced to used only some selected characteristics of seismic waves relatively easy for numerical calculations like first arrival times, maximum amplitude, approximate source spectra, to name a few. Continues development of computational resources as well as progress in numerical techniques has opened possibilities of generation the full, 3-component seismograms incorporating many physically important elements like wave attenuation, anisotropy or randomness of the media. Although achieved results are impressive we still need new numerical methods to tackle existing problems with the synthetic seismogram generation. In this contribution we present a novel approach to discretization of the wave equation which brings together continues and discrete numerical analysis of the seismic waves. The foundations of this new technique, called Time Scale Calculus, have been formulated by Hilger in late eighties and is very dynamically developing. The Time scale calculus, due to its universality seems to have a great potential when practical applications are considered. Thus we have decided to bring the Time Scale calculus concept closer to geophysical, or more precisely to seismological applications. This presentation is intend as a basic introduction to the time scales calculus considered from seismological point of view. We shortly present and discuss the possibility of using the Time Scales (TS) technique for solving the simplest acoustic 2D wave equation keeping in mind its particular applications for mining induced seismicity.

  12. A Multi­Discipline Approach to Digitizing Historic Seismograms

    Energy Technology Data Exchange (ETDEWEB)

    Bartlett, Andrew [Retriever Technology, Sante Fe, NM (United States)

    2016-04-07

    Retriever Technology has developed and has made available free of charge a seismogram digitization software package called SKATE (Seismogram Kit for Automatic Trace Extraction). We have developed an extensive set of algorithms that process seismogram image files, provide editing tools, and output time series data. The software is available online and free of charge at seismo.redfish.com. To demonstrate the speed and cost effectiveness of the software, we have processed over 30,000 images.

  13. Seismogram Construction to Fit the Recorded B032593c Earthquake, Japan on Observation Station Bfo, Germany

    Directory of Open Access Journals (Sweden)

    Bagus Jaya Santosa

    2005-04-01

    Full Text Available In this research the model of earth layers between earthquake's epicenter in Hokkaido Japan and observation station in Black Forest of Observatory (BFO, Germany is investigated. The earth model is 1-D that represents the average speed model. The earth model is obtained by seismogram comparison between data and synthetic seismogram in time domain and three components simultaneously. Synthetic Seismogram is calculated with the Green's function of the Earth by MINor Integration (GEMINI program, where program's input is initially the earth model IASPEI91, PREMAN and also the Centroid Moment Tensor (CMT solution of the earthquake. A Butterworth low-pass filter with corner frequency of 20 mHz is imposed to measured and synthetic seismogram. On seismogram comparison we can find unsystematic discrepancies, covering the travel time and waveform of all wave phases, namely on P, S, SS wave and surface wave of Rayleigh and Love. Solution to the above mentioned discrepancies needs correction to the earth structure, that covering the change of earth crust thickness, the gradient of βh and value of zero order coefficient in βh and βv in upper mantle, to get the fitting on the surface wave of Love and Rayleigh. Further correction to accomplish the discrepancies on body waves is conducted on layers beneath upper mantle down to depth of 630 km, where a little change at speed model of P and S wave is carried out. The number of oscillation amount especially on Love wave is influenced by earth crust depth earth. Good fitting is obtained at phase and amplitude of Love wave, but also at amplitude of some body wave too. This effect is not yet been exploited for the determination of moment tensor.

  14. The hominoid-specific gene TBC1D3 promotes generation of basal neural progenitors and induces cortical folding in mice

    Science.gov (United States)

    Ju, Xiang-Chun; Hou, Qiong-Qiong; Sheng, Ai-Li; Wu, Kong-Yan; Zhou, Yang; Jin, Ying; Wen, Tieqiao; Yang, Zhengang; Wang, Xiaoqun; Luo, Zhen-Ge

    2016-01-01

    Cortical expansion and folding are often linked to the evolution of higher intelligence, but molecular and cellular mechanisms underlying cortical folding remain poorly understood. The hominoid-specific gene TBC1D3 undergoes segmental duplications during hominoid evolution, but its role in brain development has not been explored. Here, we found that expression of TBC1D3 in ventricular cortical progenitors of mice via in utero electroporation caused delamination of ventricular radial glia cells (vRGs) and promoted generation of self-renewing basal progenitors with typical morphology of outer radial glia (oRG), which are most abundant in primates. Furthermore, down-regulation of TBC1D3 in cultured human brain slices decreased generation of oRGs. Interestingly, localized oRG proliferation resulting from either in utero electroporation or transgenic expression of TBC1D3, was often found to underlie cortical regions exhibiting folding. Thus, we have identified a hominoid gene that is required for oRG generation in regulating the cortical expansion and folding. DOI: http://dx.doi.org/10.7554/eLife.18197.001 PMID:27504805

  15. On-Demand Synthetic Seismograms and Other Data Products at the IRIS DMC

    Science.gov (United States)

    Hutko, A. R.; Trabant, C. M.; Weekly, R. T.; Bahavar, M.; Krischer, L.; van Driel, M.; Nissen-Meyer, T.; Stähler, S. C.; Hosseini, K.

    2015-12-01

    The IRIS Data Management Center (DMC) has served waveform data to the seismology community for over 25 years. This presentation highlights a new, on-demand synthetic seismogram service that will complement the time series data we have traditionally distributed. The synthetics are accessible using a straightforward web service that returns synthetics according to specified source-receiver combinations, Earth model and signal band. This new service is designed to generate synthetic seismograms extremely fast, making it feasible to request large numbers of synthetics. This capability supports studying variations in source properties, Earth models or temporal changes in instrument responses. Our collaborators have computed a global-scale database of Green's functions from which users can request synthetic seismograms for arbitrary source and receiver parameters and Earth models. This multi-terabyte database of Green's functions is computed using the spectral-element method AxiSEM (www.axisem.info) for selected common spherically symmetric Earth models (PREM, IASP91, AK135f...) with anisotropy and attenuation. Fine-scale models have resolution from 1 to about 100 sec periods with durations of 30 minutes; lower resolution models extend to a few hours duration. Behind the scenes, the web service runs Instaseis (www.instaseis.net), a system that rapidly calculates broadband synthetic seismograms from the pre-calculated Green's function. The service also provides post-processing methods, including convolution with a specified moment tensor (or GCMT id) and one of a few source-time functions with variable duration. The interface is designed to be callable by user-friendly scripts and to support automated processing workflows. The DMC will also provide a command line script to download selections of synthetics. This new dataset and related service provide a powerful tool in multiple research areas where synthetic seismograms are useful. In this presentation, we will also

  16. Fully digital 1-D, 2-D and 3-D multiscroll chaos as hardware pseudo random number generators

    KAUST Repository

    Mansingka, Abhinav S.

    2012-10-07

    This paper introduces the first fully digital implementation of 1-D, 2-D and 3-D multiscroll chaos using the sawtooth nonlinearity in a 3rd order ODE with the Euler approximation. Systems indicate chaotic behaviour through phase space boundedness and positive Lyapunov exponent. Low-significance bits form a PRNG and pass all tests in the NIST SP. 800-22 suite without post-processing. Real-time control of the number of scrolls allows distinct output streams with 2-D and 3-D multiscroll chaos enabling greater controllability. The proposed PRNGs are experimentally verified on a Xilinx Virtex 4 FPGA with logic utilization less than 1.25%, throughput up to 5.25 Gbits/s and up to 512 distinct output streams with low cross-correlation.

  17. Synthetic Seismograms in Realistic Media : A Wave-theoretical Approach

    OpenAIRE

    Kohketsu, Kazuki

    1988-01-01

    In order to interpret seismograms, we should separate the effects of source and medium, which are strongly coupled. The medium effect is usually estimated by computing synthetic seismograms for a model of the Earth. Of course, a three-dimensionally heterogeneous, arbitrarily anisotropic and attenuative medium is the most realistic model, but it requires a great deal of theoretical and numerical effort. At present one- or two-dimensionally layered, isotropic and attenuative media consisting of...

  18. Development of a 1D thermal-hydraulic analysis code for once-through steam generator in SMRs using straight tubes

    Energy Technology Data Exchange (ETDEWEB)

    Park, Youngjae; Kim, Iljin; Kim, Hyungdae [Kyung Hee University, Yongin (Korea, Republic of)

    2015-10-15

    Diverse integral/small-modular reactors (SMRs) have been developed. Once-through steam generator (OTSG) which generates superheated steam without steam separator and dryer was used in the SMRs to reduce volume of steam generator. It would be possible to design a new steam generator with best estimate thermal-hydraulic codes such as RELAP and MARS. However, it is not convenience to use the general purpose thermal-hydraulic analysis code to design a specific component of nuclear power plants. A widely used simulation tool for thermal-hydraulic analysis of drum-type steam generators is ATHOS, which allows 3D analysis. On the other hand, a simple 1D thermal-hydraulic analysis code might be accurate enough for the conceptual design of OTSG. In this study, thermal-hydraulic analysis code for conceptual design of OTSG was developed using 1D homogeneous equilibrium model (HEM). A benchmark calculation was also conducted to verify and validate the prediction accuracy of the developed code by comparing with the analysis results with MARS. Finally, conceptual design of OTSG was conducted by the developed code. A simple 1D thermal-hydraulic analysis code was developed for the purpose of conceptual design OTSG for SMRs. A set of benchmark calculations was conducted to verify and validate the analysis accuracy of the developed code by comparing results obtained with a best-estimated thermal-hydraulic analysis code, MARS. Finally, analysis of two different OTSG design concepts with superheating and recirculation was demonstrated using the developed code.

  19. Digitized Database of Old Seismograms Recorder in Romania

    Directory of Open Access Journals (Sweden)

    Paulescu Daniel

    2016-08-01

    Full Text Available The aim of this paper is to describe a managing system for a unique Romanian database of historical seismograms and complementary documentation (metadata and its dissemination and analysis procedure. For this study, 5188 historical seismograms recorded between 1903 and 1957 by the Romanian seismological observatories (Bucharest-Filaret, Focşani, Bacău, Vrincioaia, Câmpulung-Muscel, Iaşi were used. In order to reconsider the historical instrumental data, the analog seismograms are converted to digital images and digital waveforms (digitization/vectorialisation. First, we applied a careful scanning procedure of the seismograms and related material (seismic bulletins, station books, etc.. In a next step, the high resolution scanned seismograms will be processed to obtain the digital/numeric waveforms. We used a Colortrac Smartlf Cx40 scanner which provides images in TIFF or JPG format. For digitization the algorithm Teseo2 developed by the National Institute of Geophysics and Volcanology in Rome (Italy, within the framework of the SISMOS Project, will be used.

  20. A hybrid method for the computation of quasi-3D seismograms.

    Science.gov (United States)

    Masson, Yder; Romanowicz, Barbara

    2013-04-01

    The development of powerful computer clusters and efficient numerical computation methods, such as the Spectral Element Method (SEM) made possible the computation of seismic wave propagation in a heterogeneous 3D earth. However, the cost of theses computations is still problematic for global scale tomography that requires hundreds of such simulations. Part of the ongoing research effort is dedicated to the development of faster modeling methods based on the spectral element method. Capdeville et al. (2002) proposed to couple SEM simulations with normal modes calculation (C-SEM). Nissen-Meyer et al. (2007) used 2D SEM simulations to compute 3D seismograms in a 1D earth model. Thanks to these developments, and for the first time, Lekic et al. (2011) developed a 3D global model of the upper mantle using SEM simulations. At the local and continental scale, adjoint tomography that is using a lot of SEM simulation can be implemented on current computers (Tape, Liu et al. 2009). Due to their smaller size, these models offer higher resolution. They provide us with images of the crust and the upper part of the mantle. In an attempt to teleport such local adjoint tomographic inversions into the deep earth, we are developing a hybrid method where SEM computation are limited to a region of interest within the earth. That region can have an arbitrary shape and size. Outside this region, the seismic wavefield is extrapolated to obtain synthetic data at the Earth's surface. A key feature of the method is the use of a time reversal mirror to inject the wavefield induced by distant seismic source into the region of interest (Robertsson and Chapman 2000). We compute synthetic seismograms as follow: Inside the region of interest, we are using regional spectral element software RegSEM to compute wave propagation in 3D. Outside this region, the wavefield is extrapolated to the surface by convolution with the Green's functions from the mirror to the seismic stations. For now, these

  1. Full Waveform 3D Synthetic Seismic Algorithm for 1D Layered Anelastic Models

    Science.gov (United States)

    Schwaiger, H. F.; Aldridge, D. F.; Haney, M. M.

    2007-12-01

    Numerical calculation of synthetic seismograms for 1D layered earth models remains a significant aspect of amplitude-offset investigations, surface wave studies, microseismic event location approaches, and reflection interpretation or inversion processes. Compared to 3D finite-difference algorithms, memory demand and execution time are greatly reduced, enabling rapid generation of seismic data within workstation or laptop computational environments. We have developed a frequency-wavenumber forward modeling algorithm adapted to realistic 1D geologic media, for the purpose of calculating seismograms accurately and efficiently. The earth model consists of N layers bounded by two halfspaces. Each layer/halfspace is a homogeneous and isotropic anelastic (attenuative and dispersive) solid, characterized by a rectangular relaxation spectrum of absorption mechanisms. Compressional and shear phase speeds and quality factors are specified at a particular reference frequency. Solution methodology involves 3D Fourier transforming the three coupled, second- order, integro-differential equations for particle displacements to the frequency-horizontal wavenumber domain. An analytic solution of the resulting ordinary differential system is obtained. Imposition of welded interface conditions (continuity of displacement and stress) at all interfaces, as well as radiation conditions in the two halfspaces, yields a system of 6(N+1) linear algebraic equations for the coefficients in the ODE solution. An optimized inverse 2D Fourier transform to the space domain gives the seismic wavefield on a horizontal plane. Finally, three-component seismograms are obtained by accumulating frequency spectra at designated receiver positions on this plane, followed by a 1D inverse FFT from angular frequency ω to time. Stress-free conditions may be applied at the top or bottom interfaces, and seismic waves are initiated by force or moment density sources. Examples reveal that including attenuation

  2. Wavelet analysis of the seismograms for tsunami warning

    Directory of Open Access Journals (Sweden)

    A. Chamoli

    2010-10-01

    Full Text Available The complexity in the tsunami phenomenon makes the available warning systems not much effective in the practical situations. The problem arises due to the time lapsed in the data transfer, processing and modeling. The modeling and simulation needs the input fault geometry and mechanism of the earthquake. The estimation of these parameters and other aprior information increases the utilized time for making any warning. Here, the wavelet analysis is used to identify the tsunamigenesis of an earthquake. The frequency content of the seismogram in time scale domain is examined using wavelet transform. The energy content in high frequencies is calculated and gives a threshold for tsunami warnings. Only first few minutes of the seismograms of the earthquake events are used for quick estimation. The results for the earthquake events of Andaman Sumatra region and other historic events are promising.

  3. On-demand synthetic seismograms from the IRIS DMC

    Science.gov (United States)

    Hutko, A. R.; Trabant, C. M.; Karstens, R.; Nissen-Meyer, T.; Bahavar, M.

    2013-12-01

    The IRIS Data Management Center (DMC) has served waveform data to the seismology community for over 30 years. This presentation highlights a new, on-demand synthetic seismogram service that will complement the observation-based data we have traditionally distributed. We are computing a global-scale database of Green's functions from which users can request synthetic seismograms for arbitrary source and receiver parameters and Earth models. The multi-terabyte scale database of Green's functions is computed by the spectral-element method AxiSEM for a selection of spherically symmetric Earth models (PREM, IASP91, AK135) with anisotropy and attenuation. The resolution of the simulations will be between 2-8 to about 100 sec periods (final resolution to be determined by computational resources available). The synthetics are accessible using a simple web service that returns synthetics according to specified source-receiver combination, Earth model and signal band. On-the-fly post-processing such as convolution with a moment tensor (or specified Global CMT solution) and source-time function is being developed. This service is intended to return synthetic seismograms quickly, making it useful for studying variations in source properties, Earth models or temporal changes in instrument responses. It is also designed to be callable by simple scripts and works well in automated processing. The DMC will also provide a command line script to download selections of synthetics. This new dataset and related service provide a powerful tool in multiple areas of study where synthetic seismograms are useful.

  4. S-Wave Velocity Structure beneath Southwest North America from Seismogram Comparisons of the Mexico Earthquake on 22 June 1997

    Directory of Open Access Journals (Sweden)

    Bagus Jaya Santosa

    2008-09-01

    Full Text Available This research investigates earth structure beneath the Southwest North America landmass, especially between Mexico and California. Models based on S wave velocities for this area were obtained by carrying out seismogram fitting in time domain and three Cartesian components simultaneously. The data used is from an event, coded as C052297B that occurred in the state of Guerrero, Mexico and it was fitted to synthetic data computed with the GEMINI program at TS network stations. Earth model IASPEI91 and SPREM were used as input to create the synthetic data. Real and synthetic seismograms were subjected to a low-pass filter with a frequency corner of 20 mHz.Waveform analysis results show very unsystematic and strong deviations in the waveform, arrival times, amount of oscillation and the height of the wave amplitude. Discrepancies are met on S, Love, Rayleigh and ScS waves, where the stations epicentral distances are below 300. Deviation in analysis waveform because of the usage of model 1-D of SPREM and IASPEI91, because the 1-D was a kind of average value an elastic property at one particular depth of global earth. With the method of waveform analysis we can see how sensitive waveform is to structures within the layers of the Earth.To explain the discrepancies, a correction to the earth structure is essential. The corrections account for the thickness of the crust, speed gradient of bh, the coefficient for the bh and bv in the upper mantle for surface wave fitting, a small variation of the S speed structure at a layer under the upper mantle above 771 km for S wave fitting, and a small variation at the base the mantle layers for ScS wave fitting. At some stations, a correction for S speed structure have yielded P wave fitting. Results of this research indicate that the 1-D earth model obtained through seismogram fitting at every hypocenter-observation station pair is unique. The S-wave velocity on the upper mantle has strong negative anomalies. This

  5. Syngine: On-Demand Synthetic Seismograms from the IRIS DMC based on AxiSEM & Instaseis

    Science.gov (United States)

    van Driel, Martin; Hutko, Alex; Krischer, Lion; Trabant, Chad; Stähler, Simon; Nissen-Meyer, Tarje

    2016-04-01

    complete, new database, and this overall idea can thus be extended and applied quite easily to any choice of 1D model. AxiSEM is currently being extended to include local, regional and continental scale wave propagation such that regional databases (e.g. Europe or North America) are easily feasible at even higher frequencies. The enhancements resulting from the evolution of AxiSEM will be evaluated for use in Syngine and offered by IRIS as resources allow.

  6. Generation of a pseudo-2D shear-wave velocity section by inversion of a series of 1D dispersion curves

    Science.gov (United States)

    Luo, Y.; Xia, J.; Liu, J.; Xu, Y.; Liu, Q.

    2008-01-01

    Multichannel Analysis of Surface Waves utilizes a multichannel recording system to estimate near-surface shear (S)-wave velocities from high-frequency Rayleigh waves. A pseudo-2D S-wave velocity (vS) section is constructed by aligning 1D models at the midpoint of each receiver spread and using a spatial interpolation scheme. The horizontal resolution of the section is therefore most influenced by the receiver spread length and the source interval. The receiver spread length sets the theoretical lower limit and any vS structure with its lateral dimension smaller than this length will not be properly resolved in the final vS section. A source interval smaller than the spread length will not improve the horizontal resolution because spatial smearing has already been introduced by the receiver spread. In this paper, we first analyze the horizontal resolution of a pair of synthetic traces. Resolution analysis shows that (1) a pair of traces with a smaller receiver spacing achieves higher horizontal resolution of inverted S-wave velocities but results in a larger relative error; (2) the relative error of the phase velocity at a high frequency is smaller than at a low frequency; and (3) a relative error of the inverted S-wave velocity is affected by the signal-to-noise ratio of data. These results provide us with a guideline to balance the trade-off between receiver spacing (horizontal resolution) and accuracy of the inverted S-wave velocity. We then present a scheme to generate a pseudo-2D S-wave velocity section with high horizontal resolution using multichannel records by inverting high-frequency surface-wave dispersion curves calculated through cross-correlation combined with a phase-shift scanning method. This method chooses only a pair of consecutive traces within a shot gather to calculate a dispersion curve. We finally invert surface-wave dispersion curves of synthetic and real-world data. Inversion results of both synthetic and real-world data demonstrate that

  7. Imaging source process of earthquakes from back-projection of high frequency seismograms

    Science.gov (United States)

    Pulido, N.

    2007-12-01

    Standard methodologies for calculation of the earthquakes source process, are based on inversion procedures which require the calculation of complete source-stations Greens functions. On the other hand alternative procedures have been developed in order to directly retrieve an image of the rupture process from high frequency seismograms (Spudich et. al. 1984, Kao and Shan 2004, Ishii et. al. 2005). In this study we extend the Isochron- Backprojection methodology (Festa et al., 2006), to image the source process of earthquakes, by incorporating the use of high frequency seismograms around the source area. We take full advantage of the dense strong motion networks available in Japan to model the source process of recent Japanese earthquakes. The IBM method differs from conventional earthquake source inversion approaches, in that the calculation of Green's functions is not required. The idea of the procedure is to directly back-project amplitudes of seismograms envelopes around the source into a space image of the earthquake rupture (Pulido et al. 2007). The method requires the calculation of theoretical travel times between a set of grids points distributed across the fault plane, and every station. For this purpose and for simplicity we assume a multi-layered 1D model. All travel times are adjusted by a station correction factor, calculated by taking the difference between observed and theoretical travel times at each station. Next we calculate the rupture time of every grid within the fault plane by assuming some arbitrary constant rupture velocity value, and obtain the isochrones distribution across the fault plane by adding subfaults rupture times and the corresponding travel times for every station. We select waveforms that have clear P and S wavelets, which means stations located approximately between 40 km and 100km from the epicenter. We extract P-wave windows between the origin time of the earthquake and the theoretical arrival of the S-wave, and taper 1s of

  8. Simultaneous inversion of layered compressional velocity and shear velocity by using plane wave seismogram

    Institute of Scientific and Technical Information of China (English)

    宋海斌; 马在田; 张关泉

    1996-01-01

    A layer-stripping method is presented for simultaneous inversion of compressional velocity and shear velocity in layered medium from single precritical-incident-angle data of P-P and P-SV plane wave seismogram. A finite bandwidth algorithm is provided and results obviously better than previous research work are obtained by the numerical experiments for band-limited seismogram and synthetic data including noise.

  9. Advanced criteria of seismic zoning and synthetic seismograms

    International Nuclear Information System (INIS)

    A brief revision of the traditional deterministic and probabilistic methods of first order seismic zonation, outlining their limits and possibilities, indicates that they can only lead to a kind of ''post-event'' zonation, which has a limited local validity. The strong influence of laterial heterogeneities and of source properties on the spatial distribution of Peak Ground Acceleration (PGA) and of the Total Energy of ground motion (W), indicates that the traditional methods require a deep revision. The method we have developed and applied to a first-order seismic zoning of the whole Italian territory and to the microzoning of specific objects, being based on the computation of synthetic seismograms, makes it possible and necessary to take source and propagation effects into account, fully utilizing the large amount of geological and geotechnical data, already available. Even though it falls in the domain of deterministic approaches, the method is very suitable for inclusion in the definition of new integrated procedures which combine probabilistic and deterministic approaches and allow us to minimize the present drawbacks which characterise the two methods when they are considered separately. If the seismotectonic regime is well known, a very important practical aspect of our deterministic approach is the immediate capability to direct the rescue intervention of the Civil Defence where the greatest damage is expected, by drawing post-event synthetic isoseismals for the source regions. Detailed modelling of ground motion for realistic two-dimensional media is a low-cost but very powerful tool for the prevention aspects of Civil Defence since it allows the computation of realistic seismic input for important structures based on the definition of a wide set of possible scenarios, which can be immediately used in the design of new seismo-resistant constructions and in the reinforcement of existing structures. (author). 65 refs, 14 figs

  10. Ray synthetic seismograms: a useful tool in the International Data Center environment

    Directory of Open Access Journals (Sweden)

    P. Firbas

    1994-06-01

    Full Text Available In this paper some of the results of a feasibility study on ray synthetic seismograms usage are reported. A computational method, ways of composing synthetic traces, an application of the source wavelet and the radiation pattern and integration of such an approach into the Center for Seismic Studies (CSS revision 3.0 structure are outlined. Further on, results obtained for model examples, nuclear explosions, and earthquakes are presented. Conclusions of the undertaken feasibility study help to understand that ray synthetic seismograms represent a very fast tool (results in “no time” and simultaneously represent a complex tool with all needed features. The ray synthetic seismograms can be implemented in various ways: to be computed automatically and used within the Intelligent Monitoring System, to be computed automatically and provided to the analyst, to provide a database of master events, to be computed interactively by an analyst during routine daily analysis.

  11. Source mechanisms and near-source wave propagation from broadband seismograms

    Directory of Open Access Journals (Sweden)

    J. Perrot

    1994-06-01

    Full Text Available Recording seismic events at teleseismic distances with broadband and high dynamic range instruments provides new high-quality data that allow us to interpret in more detail the complexity of seismic rupture as well as the heterogeneous structure of the medium surrounding the source where waves are initially propagating. Wave propagation analysis is performed by ray tracing in a local cartesian coordinate system near the source and in a global spherical coordinate system when waves enter the mantle. Seismograms are constructed at each station for a propagation in a 2.5-D medium. Many phases can be included and separately analyzed; this is one of the major advantages of ray tracing compared to other wave propagation techniques. We have studied four earthquakes, the 1988 Spitak Armenia Earthquake (Ms = 6.9, the 1990 Iran earthquake (Ms = 7.7, the 1990 romanian earthquake (Ms = 5.8 and the 1992 Erzincan, Turkey earthquake (Ms = 6.8. These earthquakes exhibit in different ways the complexity of the rupture and the signature of the medium surrounding the source. The use of velocity seismograms, the time derivative of displacement, increases the difficulty of the fit between synthetic seismograms and real seismograms but provides clear evidence for a need of careful time delay estimations of the different converted phases. We find that understanding of the seismic rupture as well as the influence of the medium surrounding the source for teleseismically recorded earthquakes requires a multi-stop procedure: starting with ground displacement seismograms, one is able to give a first description of the rupture as well as of the first-order influence of the medium. Then, considering the ground velocity seismograms makes the fit more difficult to obtain but increases our sensitivity to the rupture process and early converted phases. With increasing number of worldwide broadband stations, a complex rupture description is possible independently of field

  12. Synthetic seismograms of ground motion near earthquake fault using simulated Green's function method

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zhixin; ZHAO Zhao; XU Jiren; Ryuji Kubota

    2006-01-01

    Seismograms near source fault were synthesized using the hybrid empirical Green's function method where he discretely simulated seismic waveforms are used for Green's functions instead of the observed waveforms of small earthquakes. The Green's function seismic waveforms for small earthquake were calculated by solving wave equation using the pseudo-spectral method with the staggered grid real FFT strategy under a detailed 2-D velocity structure in Kobe region. Magnitude and seismic moment of simulated Green's function waveforms were firstly determined by using the relationship between fault length and corner frequency of source spectrum. The simulated Green's function waveforms were employed to synthesize seismograms of strong ground motion near the earthquake fault. The synthetic seismograms of the target earthquake were performed based on the model with multiple source rupture processes. The results suggest that synthesized seismograms coincide well with observed seismic waveforms of the 1995 Hyogo-ken Nanbu earthquake. The simulated Green's function method is very useful for prediction of the strong ground motion in region without observed seismic waveforms.The present technique spreads application field of the empirical Green's function method.

  13. Fast evaluation of complete synthetic SH seismograms based on asymptotic mode theory

    NARCIS (Netherlands)

    Bastians, M.W.J.M.

    1986-01-01

    In this thesis we have developed an asymptotic mode theory with the following features. 1) Complete synthetic SH seismograms can be evaluated for both realistic models of Earth and crust. 2) The method is of practical value and can be used even on small computers wi th reasonable computation times o

  14. Digitization Procedures of Analogue Seismograms from the Adam Dziewonski Observatory (HRV) at Harvard, MA

    Science.gov (United States)

    Torpey, M.; Ishii, M.

    2010-12-01

    This project explores methods of digitization of analogue seismic recordings for better preservation and to facilitate data distribution to the community. Different techniques are investigated using seismograms from one particular station, the Adam Dziewonski Observatory (HRV) at Harvard, Massachusetts. This seismological station, still in operation as a part of the Global Seismographic Network today, is one of the oldest stations in the United States. The station was built in 1933, and since its installation, the station has produced approximately 16,000 analogue seismograms. The majority of these recordings were taken between 1933 and 1953, with some intermittent recordings between 1962 and 1998 after digital seismometers had become a standard. These analogue seismograms have the potential of expanding the database for seismological research such as identification of events previously not catalogued. Due to poor storage environment at the station, some of the records, especially those on regular type of paper, are damaged beyond repair. Nevertheless, many of the records on photographic paper are in better condition, and we have focused on a subset of these recordings that are least damaged. Even these seismograms require cleaning and, in consultation with the Weissman Preservation Center of Harvard Library, preparation techniques for the photographic records are examined. After the seismograms are cleaned and flattened, three different equipments are investigated for digitization, i.e., a copy machine, scanner, and camera. These instruments allow different imaging resolutions, ranging from 200 dots per inch (dpi) to 800 dpi. The image resolution and the bit depth have a wide range of implications that are closely linked to the digitization program one chooses to convert the image to time series. We explore three different software for this conversion, SeisDig (Bromirski and Chuang, 2003), Teseo2 (Pintore and Quintiliani, 2008), and NeuraLog (www

  15. 1D Nano materials 2012

    International Nuclear Information System (INIS)

    We witnessed an initial hyped period and enthusiasm on carbon nano tubes in the 1990s later went through a significant expansion into nano tubes of other materials (metal di chalcogenides, boron nitride, etc.) as well as various nano wires and nano rods. While much of the hype might have gone, the research on one-dimensional (1D) nano materials has matured as one of the most active research areas within the nano science and nano technology community, flourishing with ample, exciting, and new research opportunities. Just like any other research frontier, researchers working in the 1D nano materials field are constantly striving to develop new fundamental science as well as potential applications. It remains a common belief that versatility and tunability of 1D nano materials would challenge many new rising tasks coming from our resource and energy demanding modern society. The traditional semiconductor industry has produced so many devices and systems from transistors, sensors, lasers, and LEDs to more sophisticated solar panels, which are now part of our daily lives. By down sizing the core components or parts to 1D form, one might wonder how fundamentally the dimensionality and morphology would impact the device performance, this is, as always, requiring us to fully understand the structure-property relationship in 1D nano materials. It may be equally crucial in connecting discovery-driven fundamental science to market-driven technology industry concerning potentially relevant findings derived from these novel materials. The importance of a platform that allows active researchers in this field to present their new development in a timely and efficient manner is therefore self-evident. Following the success of two early special issues devoted to 1D nano materials, this is the third one in a row organized by the same group of guest editors, attesting that such a platform has been well received by the readers

  16. Study on the Method for Obtaining Acceleration Waveform Records from Velocity Type Seismograms of the Digital Seismograph Network

    Institute of Scientific and Technical Information of China (English)

    Yao Lanyu; Nie Yongan; Zhao Jinghua; Bian Zhenfu

    2004-01-01

    The authors proposed a method for obtaining high-quality acceleration seismograms from velocity type seismograms of digital Seismographic network, and took as an example the analysis and processing of the seismograms of a same earthquake that was simultaneously recorded by velocity seismograph CTS1-EDAS24 and strong motion seismograph EST-Q4128installed in Jixian Station, Tianjin. The calculation steps and the processing method have been discussed in detail. From the analysis and the comparison of the obtained results, it is concluded that the proposed method is simple and effective, and it broadens the application of digital seismographic network.

  17. Characteristics of the stress and barometric seismograms produced by the 2011 Tohoku Earthquake ( M9.0) and vertical movements derived from barometric seismograms

    Science.gov (United States)

    Ishii, Hiroshi; Asai, Yasuhiro

    2016-04-01

    High-quality data concerning the Tohoku Earthquake ( M9.0) on March 11, 2011, were obtained from the deep borehole observation network (maximum depth of 1030 m; epicentral distance of approximately 600 km) of the Tono Research Institute of Earthquake Science. In addition to data acquired via seismometers, stress meters, and strain meters, barometric seismograms were recorded by several barometers that are usually used for weather observations. We examined the characteristics of barometric and stress seismograms and compared them to the data obtained using broadband seismometers, finding a shared feature: large amplitudes and long-period waveforms began with the arrival of surface waves. We also investigated the relationship between vertical movements observed with GPS and barometric variations and discovered that the barometric variations were related to the differential of vertical movements, while the vertical movements corresponded to the integral of barometric variations. All these results demonstrate that vertical movements at observation points can be computed from the barometric variations observed at those points.

  18. Seismic moment of the 1891 Nobi, Japan, earthquake estimated from historical seismograms

    Science.gov (United States)

    Fukuyama, E.; Muramatu, I.; Mikumo, T.

    2007-06-01

    The seismic moment of the 1891 Nobi, Japan, earthquake has been evaluated from the historical seismogram recorded at the Central Meteorological Observatory in Tokyo. For this purpose, synthetic seismograms from point and finite source models with various fault parameters have been calculated by a discrete wave-number method, incorporating the instrumental response of the Gray-Milne-Ewing seismograph, and then compared with the original records. Our estimate of the seismic moment (Mo) is 1.8 × 1020 N m corresponding to a moment magnitude (Mw) 7.5. This is significantly smaller than the previous estimates from the distribution of damage, but is consistent with that inferred from geological field survey (Matsuda, 1974) of the surface faults.

  19. Seismogram Analysis of Earthquakes Around Indonesia In UGM Observational Station: S Velocity Structure.

    Directory of Open Access Journals (Sweden)

    Bagus Jaya Santosa

    2008-11-01

    Full Text Available The seismogram comparison between the measured and synthetics seismogram has been carried out in observation station of UGM, where the seismograms are excited by earthquakes that occurred at North Sumatra, Sumbawa, Sunda Strait, around North Celebes and PNG. The ray paths from earthquake's hypocenter to UGM give opportunity to understand the earth structure alongside the front area of subduction zone. The calculation of synthetic seismogram needs input in the form of earth model, the Centroid Moment Tensor (CMT solution of the earthquake and location of observation station, as well as the relevant date file response of the observation station. Waveform comparison and fitting at surface wave indicate that speed's anomalies in the lithosphere have negative character in front area of subducted zone, but become positive for northern area of subduction zone. By paying attention to waveform of Love surface wave, it is obtained, that this waveform are sensitive to the change of earth crust thickness, while Rayleigh waveform is not sensitive. Heterogeneity is not only occurred in the lithosphere, but also in deeper earth layers, until Core Mantle Boundary (CMB. Different corrections are needed to make the fitting at S secondary wave, but also at depth wave and its repetitions. The result of this research shows that the research area, which is located in the front of subduction zone has anomalies at S speed of at deeper earth layers which than the lithosphere. The earth structure as the result of this research differs from the other seismological results, where they used the methods, which are based on inversion of arrival time data of body wave and dispersion analysis on surface wave.

  20. Digital Filming of the Seismograms Held in the Jakarta Archives: A Pilot Program

    Science.gov (United States)

    Okal, E. A.; Kirby, S. H.

    2014-12-01

    Because of the long duration of most seismic cycles with respect to thehistory of seismological instrumentation,seismograms from the first half of the 20th century constitute an invaluableresource, allowing significant constraints on the regional chronologyof earthquake occurrence as well as the modern quantification of their sizethrough the calculation of seismic moments. This is especially true in theSouthern hemisphere which hosted few seismic stations before the 1930s. In this context, the preservation of seismograms in a digital format allowing their seamless exchange is an important challenge to the scientific community. Under funding from the Earth Observatory of Singapore, we initiated in July2014 a pilotproject, administered by IASPEI, to test the feasibility ofphotographically scanning records of the Wiechert and Bosch instruments operatedat the Jakarta (ex-Batavia) station since 1910 and archivedat the BMKG regional office in Ciputat. We used a 24 MP SONY alphaNEXT 7 camera with a nearly distortion-free wide angle lens mounted on a copystand with underside light-table illumination. We encounteredmany challenges, including the fragility of acidic paper,serious dark-brown age-toning of the paper, as well as many missing records.However, this pilot test showed that this inexpensive systemis effective in providing well-resolved waveforms, and reaped more than 500digital copies of seismograms of earthquakes earmarked for theirglobal or regional importance, going back to 1910.Including the compilation of metadata necessary for futuresearch capability, 15 to 20 seismograms can be scanned per hour.Following successful capacity building through on-site training of BMKG Staff,it is hoped that this project can be pursued at BMKG, and complementsimilar endeavors, especially in the critically important Southern Hemisphere,either ongoing (e.g., at Canberra, Silverton), or desirable (e.g., at Lower Hutt,La Paz).

  1. Seismogram Analysis and Fitting of Three Earthquakes, West Papua, Recorded at Stations ENH and KMI, China

    Institute of Scientific and Technical Information of China (English)

    Bagus Jaya Santosa

    2008-01-01

    The S wave velocity structure of the earth below Eastern Southeast Asia has been investigated by analyzing the seismogram from surface wave to multiple depth waves in the time domain and three Cartesian components simultaneously. The wave passes across the front area of subduction zone between the Philippine plate and the Asian plate. The main data are waveform comparisons, instead of the arrival times. The synthetic seismogram is calculated using the GEMINI method. The synthetic seismogram constructed by PREMAN global earth model deviates greatly from the measured one. To solve this problem, corrections are needed for the β speed structure. Corrections cover the gradient change of βh>, which turns from negative to positive in upper mantle layers as in the PREMAN, change of earth crust depth and change of zero order coefficients of β velocity function in all earth mantle layers. So, the fitting is obtained, as well as the arrival time or the waveform of Love and Rayleigh surface waves, the S wave and the repetitive depth waves ScS2> and ScS3. This result reveals that the Southeast Asia, being stretched due to tectonic release, has a mantle in some parts with negative anomaly of S wave velocity and vertical anisotropy in all earth mantle layers.

  2. Simulation of seismograms in a 2-D viscoelastic Earth by pseudospectral methods

    Energy Technology Data Exchange (ETDEWEB)

    Carcione, Jose M [Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Trieste (Italy); Helle, Hans B [Norsk Hydro a.s., 0 and E Research Centre, Bergen (Norway); Seriani, Geza [Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Trieste (Italy); Plasencia Linares, Milton P [Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata, La Plata (Argentina)

    2005-04-15

    Using an improved global pseudospectral modeling algorithm we synthesize seismograms generated by oceanic and continental earthquakes. Attention is given to attenuation, to explicit modeling of boundary conditions at the ocean-bottom interface, simulation of the Rayleigh window and interface-wave propagation. The algorithm is based on Fourier and Chebyshev differential operators and a domain-decomposition technique - one grid for the fluid and another grid for the solid. Wave propagation in the oceanic and continent crusts and mantle is modeled by using a viscoelastic stress-strain relation based on memory variables. The main physical phenomena associated with an ocean-crust system are modeled, including Scholte waves, leaking Rayleigh waves, dispersive modes, and the Rayleigh-window phenomenon due to a minimum in the reflection coefficient of the ocean bottom, which has not been simulated with direct methods. In particular, we model Rayleigh modes (mainly the M11 mode), and coupled Rayleigh-Scholte waves, for which the dispersion relation is solved in simple cases. Also, we model the effects of random. [Spanish] El algoritmo de modulacion seudoespectral es mejorado y aplicado a la simulacion de sismogramas generados por sismos oceanicos y continentales, como atencion a la atenuacion y a la modelacion explicita de condiciones a la frontera en el fondo oceanico y a la simulacion de la ventana de Rayleigh y la propagacion en interfases. El algoritmo se basa en los operadores diferenciales de Fourier y de Chebyshev con una tecnica de decomposicion de dominios, una malla para el fluido y otra para el solido. Para la propagacion se usa una relacion de esfuerzo-deformacion basada en variables de memoria. Entre los fenomenos modelados se incluyen las ondas de Scholte, las ondas evanescentes de Rayleigh y los modos dispersivos, asi como la ventana de Rayleigh, un minimo del coeficiente de reflexion en el fondo oceanico que nunca ha sido simulado con metodos directos. Hemos

  3. Reconstruction of 2D seismic wavefield from Long-Period Seismogram and Short-Period Seismogram Envelope by Seismic Gradiometry applied to the Hi-net Array

    Science.gov (United States)

    Maeda, Takuto; Nishida, Kiwamu; Takagi, Ryota; Obara, Kazushige

    2016-04-01

    The high-sensitive seismograph network (Hi-net) operated by National Research Institute for Earth Science and Disaster Prevention (NIED) has about 800 stations with average separation of 20 km all over the Japanese archipelago. Although it is equipped with short-period seismometers, we also can observe long-period seismic wave up to 100 s in periods for significantly large earthquakes. In this case, we may treat long-period seismic waves as a 2D wavefield with station separations shorter than wavelength rather than individual traces at stations. In this study, we attempt to reconstruct 2D wavefield and obtain its propagation properties from seismic gradiometry (SG) method. The SG estimates the wave amplitude and its spatial derivative coefficients from discrete station record by the Taylor series approximation with an inverse problem. By using spatial derivatives in horizontal directions, we can obtain properties of propagating wave packet such as the arrival direction, slowness, geometrical spreading and radiation pattern. In addition, by using spatial derivatives together with free-surface boundary condition, we may decompose the vector elastic 2D wavefield estimated by the SG into divergence and rotation components. First, we applied the seismic gradiometry to a synthetic long-period (20-50 s) seismogram dataset computed by numerical simulation in realistic 3D medium at the Hi-net station layout as a feasibility test. We confirmed that the wave amplitude and its spatial derivatives are very well reproduced with average correlation coefficients higher than 0.99 in this period range. Applications to a real large earthquakes show that the amplitude and phase of the wavefield are well reconstructed with additional information of arrival direction and its slowness. The reconstructed wavefield contained a clear contrast in slowness between body and surface waves, regional non-great-circle-path wave propagation which may be attributed to scattering. Slowness

  4. Measuring the misfit between seismograms using an optimal transport distance: application to full waveform inversion

    Science.gov (United States)

    Métivier, L.; Brossier, R.; Mérigot, Q.; Oudet, E.; Virieux, J.

    2016-04-01

    Full waveform inversion using the conventional L2 distance to measure the misfit between seismograms is known to suffer from cycle skipping. An alternative strategy is proposed in this study, based on a measure of the misfit computed with an optimal transport distance. This measure allows to account for the lateral coherency of events within the seismograms, instead of considering each seismic trace independently, as is done generally in full waveform inversion. The computation of this optimal transport distance relies on a particular mathematical formulation allowing for the non-conservation of the total energy between seismograms. The numerical solution of the optimal transport problem is performed using proximal splitting techniques. Three synthetic case studies are investigated using this strategy: the Marmousi 2 model, the BP 2004 salt model, and the Chevron 2014 benchmark data. The results emphasize interesting properties of the optimal transport distance. The associated misfit function is less prone to cycle skipping. A workflow is designed to reconstruct accurately the salt structures in the BP 2004 model, starting from an initial model containing no information about these structures. A high-resolution P-wave velocity estimation is built from the Chevron 2014 benchmark data, following a frequency continuation strategy. This estimation explains accurately the data. Using the same workflow, full waveform inversion based on the L2 distance converges towards a local minimum. These results yield encouraging perspectives regarding the use of the optimal transport distance for full waveform inversion: the sensitivity to the accuracy of the initial model is reduced, the reconstruction of complex salt structure is made possible, the method is robust to noise, and the interpretation of seismic data dominated by reflections is enhanced.

  5. Self-Adaptive Filon's Integration Method and Its Application toComputing Synthetic Seismograms

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hai-Ming; CHEN Xiao-Fei

    2001-01-01

    Based on the principle of the self-adaptive Simpson integration method, and by incorporating the ‘fifth-order'Filon's integration algorithm [Bull. Seism. Soc. Am. 73(1983)913], we have proposed a simple and efficient numerical integration method, i.e., the self-adaptive Filon's integration method (SAFIM), for computing synthetic seismograms at large epicentral distances. With numerical examples, we have demonstrated that the SAFIM is not only accurate but also very efficient. This new integration method is expected to be very useful in seismology,as well as in computing similar oscillatory integrals in other branches of physics.

  6. Data space reduction, quality assessment and searching of seismograms: autoencoder networks for waveform data

    Science.gov (United States)

    Valentine, Andrew P.; Trampert, Jeannot

    2012-05-01

    What makes a seismogram look like a seismogram? Seismic data sets generally contain waveforms sharing some set of visual characteristics and features - indeed, seismologists routinely exploit this when performing quality control 'by hand'. Understanding and harnessing these characteristics offers the prospect of a deeper understanding of seismic waveforms, and opens up many potential new techniques for processing and working with data. In addition, the fact that certain features are shared between waveforms suggests that it may be possible to transform the data away from the time domain, and represent the same information using fewer parameters. If so, this would be a significant step towards making fully non-linear tomographic inversions computationally tractable. Hinton & Salakhutdinov showed that a particular class of neural network, termed 'autoencoder networks', may be used to find lower-dimensional encodings of complex binary data sets. Here, we adapt their work to the continuous case to allow the use of autoencoders for seismic waveforms, and offer a demonstration in which we compress 512-point waveforms to 32-element encodings. We also demonstrate that the mapping from data to encoding space, and its inverse, are well behaved, as required for many applications. Finally, we sketch a number of potential applications of the technique, which we hope will be of practical interest across all seismological disciplines, and beyond.

  7. Synthetic Seismograms Derived from Oceanographic Data in the Campeche Canyon, Deepwater Gulf of Mexico

    Science.gov (United States)

    Gonzalez-Orduno, A.; Fucugauchi, J. U.; Monreal, M.; Perez-Cruz, G.; Salas de León, D. A.

    2013-05-01

    The seismic reflection method has been successfully applied worldwide to investigate subsurface conditions to support important business decisions in the oil industry. When applied in the marine environment, useful reflection information is limited to events on and below the sea floor; Information from the water column, if any, is disregarded. Seismic oceanography is emerging as a new technique that utilize the reflection information within the water column to infer thermal-density contrasts associated with oceanographic processes, such as cyclonic-anticyclonic eddies, ascending-descending water flows, and water flows related to rapid topographic changes on the sea floor. A seismic investigation to infer such oceanographic changes in one sector of the Campeche Canyon is in progress as a research matter at the Instituto de Ciencias del Mar y Limnologia from the University of Mexico (UNAM). First steps of the investigation consisted of creating synthetic seismograms based on oceanographic information (temperature and density) derived from direct observation on a series of close spaced depth points along vertical profiles. Details of the selected algorithms used for the transformation of the oceanographic data to acoustic impedances data sets and further construction of synthetic seismograms on each site and their representation as synthetic seismic sections, are presented in this work, as well as the road ahead in the investigation.

  8. The Coupled Spectral Element/Normal Mode Method: Application to the Testing of Several Approximations Based on Normal Mode Theory for the Computation of Seismograms in a Realistic 3D Earth.

    Science.gov (United States)

    Capdeville, Y.; Gung, Y.; Romanowicz, B.

    2002-12-01

    The spectral element method (SEM) has recently been adapted successfully for global spherical earth wave propagation applications. Its advantage is that it provides a way to compute exact seismograms in a 3D earth, without restrictions on the size or wavelength of lateral heterogeneity at any depth, and can handle diffraction and other interactions with major structural boundaries. Its disadvantage is that it is computationally heavy. In order to partly address this drawback, a coupled SEM/normal mode method was developed (Capdeville et al., 2000). This enables us to more efficiently compute bodywave seismograms to realistically short periods (10s or less). In particular, the coupled SEM/normal mode method is a powerful tool to test the validity of some analytical approximations that are currently used in global waveform tomography, and that are considerably faster computationally. Here, we focus on several approximations based on normal mode perturbation theory: the classical "path-average approximation" (PAVA) introduced by Woodhouse and Dziewonski (1984) and well suited for fundamental mode surface waves (1D sensitivity kernels); the non-linear asymptotic coupling theory (NACT), which introduces coupling between mode branches and 2D kernels in the vertical plane containing the source and the receiver (Li and Tanimoto, 1993; Li and Romanowicz, 1995); an extension of NACT which includes out of plane focusing terms computed asymptotically (e.g. Romanowicz, 1987) and introduces 3D kernels; we also consider first order perturbation theory without asymptotic approximations, such as developed for example by Dahlen et al. (2000). We present the results of comparisons of realistic seismograms for different models of heterogeneity, varying the strength and sharpness of the heterogeneity and its location in depth in the mantle. We discuss the consequences of different levels of approximations on our ability to resolve 3D heterogeneity in the earth's mantle.

  9. ANALISIS SEISMOGRAM TIGA KOMPONEN TERHADAP MOMENT TENSOR GEMPA BUMI DI MANOKWARI PAPUA 03 JANUARI 2009

    Directory of Open Access Journals (Sweden)

    Irwan Setyowidodo, Bagus Jaya Santosa

    2012-03-01

    Full Text Available Penelitian ini melakukan analisis inversi waveform 3 komponen terhadap data gempa bumi yang  terjadi  di  Manokwari  Papua  pada  tanggal  3  Januari  2009  pukul  19:43:55  GMT  dengan magnitude  7.1  Mw  yang  episentrumnya  berada  pada  lattitude  -0.70541,  longitude  125.8455  dan kedalaman 25 km. Data yang digunakan dalam penelitian ialah, data seismik lokal yang diunduh dari data  gempa  IA.  Selanjutnya  dilakukan  proses   inversi  data  waveform  tiga  komponen  dengan menggunakan  metode  iterasi  dekonvolusi.  Metode  ini  diimplementasikan  dalam  software  ISOLA yang  dikembangkan   untuk  mendapatkan  parameter-parameter  sumber  gempa  bumi.  Parameter- parameter  gempa ini tergambarkan dalam Centroid Moment Tensor dan parameter sesar penyebab gempa. Selanjutnya, hasil parameter-patameter  tersebut digunakan untuk  mengetahui arah  patahan yang sebenarnya (fault-plane dengan menggunakan metode H-C. Seismogram sintetik dihitung dengan ISOLA yang inputnya adalah model bumi dan data seismogram yang  direkam  oleh  stasiun  seismologi  BAK,  LBM  dan  JAY.  Hasil   interpretasi  atas  analisis seismogram   waveform   tiga   komponen   menunjukkan   bahwa   orientasi   bidang   patahan   gempa Manokwari Papua pada tanggal 3 Januari 2009 memiliki sudut dip 54o       terhadap bidang  horizontal yang menyebabkan zona patahan di daerah tersebut mudah bergeser dan mudah terjadi gempa. Hasil analisis  ini  diketahui  bahwa  sesar  penyebab  gempa  bumi  ini  ialah  sesar  strike-slip  oblique  yang bergerak dari  arah barat  laut - tenggara. Sumber  gempa  bumi  yang terjadi tersebut terjadi akibat aktivitas Sesar Sorong yang terdapat di bagian utara Manokwari.

  10. Coal-seismic, desktop computer programs in BASIC; Part 7, Display and compute shear-pair seismograms

    Science.gov (United States)

    Hasbrouck, W.P.

    1983-01-01

    Processing of geophysical data taken with the U.S. Geological Survey's coal-seismic system is done with a desk-top, stand-alone computer. Programs for this computer are written in the extended BASIC language utilized by the Tektronix 4051 Graphic System. This report discusses and presents five computer pro grams used to display and compute shear-pair seismograms.

  11. Tomography S Velocity Structure between Washington’s Earthquake C022801l and Observational Station Tuc through Seismogram Analysis

    Directory of Open Access Journals (Sweden)

    Bagus Jaya Santosa

    2005-11-01

    Full Text Available In this research the S speed structure is investigated by seismogram analysis of Washington's earthquake, C022801L using data of TUC station, Tucson, Arizona, U.S.A. The seismogram comparison between the observed and the synthetic seismogram is conducted in time domain and three components simultaneously. The initially input for the calculation of synthetic seismogram is earth model of PREMAN and CMT solution from the earthquake. A low-pass Butterworth filter with corner frequency of 20 mHz is convolved to observed and synthetic seismogram. Waveform comparison shows a real deviation when travel time and waveform of some wave phase are compared, namely on S wave, surface wave of Love and Rayleigh and wave ScS and ScS-2. This research shows, how sensitive the waveform is to the earth model, better than the method of travel time or the dispersion analysis. Research hereinafter is addressed to finish the found discrepancies at S wave, surface wave of Love and Rayleigh and ScS and ScS-2 wave, in observation station TUC. To obtain the seismogram fitting, correction for S speed structure in earth model is needed, that are changes of earth crust thickness, the speed model of β in upper mantle covering the speed gradient of βh and value of zeroeth order coefficient for the βh and βv, for accomplishing the discrepancies at surface wave of Love and Rayleigh. Further correction on S speed is conducted to accomplish the deviation at S wave at earth layering systems from Upper Mantle up to a 630 km depth. Mean while for the ScS and ScS-2 wave phase the correction is carried out on S speed in the earth layers up to CMB. Fitting Seismogram is obtained at waveform of various wave phases that is S wave, surface wave of Love and Rayleigh and ScS, ScS-2 wave, either on travel time or especially also at oscillation number in Love wave. This result indicates that the anisotropy is occurred not only in upper mantle but till deeper earth layers, till CMB.

  12. One-Dimensional (1-D) Nanoscale Heterostructures

    Institute of Scientific and Technical Information of China (English)

    Guozhen SHEN; Di CHEN; Yoshio BANDO; Dmitri GOLBERG

    2008-01-01

    One-dimensional (1-D) nanostructures have been attracted much attention as a result of their exceptional properties, which are different from bulk materials. Among 1-D nanostructures, 1-D heterostructures with modulated compositions and interfaces have recently become of particular interest with respect to potential applications in nanoscale building blocks of future optoelectronic devices and systems. Many kinds of methods have been developed for the synthesis of 1-D nanoscale heterostructures. This article reviews the most recent development, with an emphasize on our own recent efforts, on 1-D nanoscale heterostructures, especially those synthesized from the vapor deposition methods, in which all the reactive precursors are mixed together in the reaction chamber. Three types of 1-D nanoscale heterostructures, defined from their morphologies characteristics, are discussed in detail, which include 1-D co-axial core-shell heterostructures, 1-D segmented heterostructures and hierarchical heterostructures. This article begins with a brief survey of various methods that have been developed for synthesizing 1-D nanoscale heterostructures and then mainly focuses on the synthesis, structures and properties of the above three types of nanoscale heterostructures. Finally, this review concludes with personal views towards the topic of 1-D nanoscale heterostructures.

  13. Solvothermal Process Assisted Sensitization of 1D Anodized TiO2 Nanotubes with 0D Cadmium Chalcogenides (CdTe, CdS) for Efficient Solar to Clean Energy Generation

    Science.gov (United States)

    Sarker, Swagotom

    The creation of an n-n heterojunction between TiO2 nanotubes (T_NT) and CdTe nanocrystals (which mostly exist as p-type) is crucial for realizing the benefits of efficient directional charge transport in a photoanode of 1D/0D architecture. The presented one-pot solvothermal approach leverages temperature control to achieve linker-free spatial distribution of CdTe nanocrystals (NCs) on T_NT resulting in highly efficient optical and photoelectrochemical responses. As a result of this positive outcome, a comparative study between the solvothermal approach and the linker mediated approach was performed on water oxidation with CdS NC decorated T_NT. Solvothermally synthesized T_NT/CdS photoelectrode presents ˜600% higher value of short-circuit current density (Isc) than that of the plain T_NT (0.95 mA/cm2); in addition, it demonstrates 4.20-fold increased applied-bias-to photoconversion efficiency (ABPE) in comparison with the lone T_NT (0.77%). However, linker mediated T_NT/MPA-CdS photoelectrode exhibits relatively lower value of I sc (2.51 mA/cm2) and ABPE (1.79 %).

  14. Iris Feature Extraction Method Based on 1D Gabor Filter

    Institute of Scientific and Technical Information of China (English)

    XU Guang-zhu; MA Yi-de; ZHANG Zai-feng

    2008-01-01

    The normalized iris image was divided into eight sub-bands, and every column of each sub-band was averaged by rows to generate eight 1D iris signals. Then the even symmetry item of 1D Gabor filter was used to describe local characteristic blocks in 1D iris signals, and the results were quantified by their polarities to generate iris codes. In order to estimate the performance of the presented method, an iris recognition platform was produced and the Hamming distance between two iris codes was computed to measure the dissimilarity of them. The experimental results in CASIA v1 0 and Bath iris image databases show that the proposed iris feature extraction algorithm has a promising potential in iris recognition.

  15. Wavelet transform analysis of transient signals: the seismogram and the electrocardiogram

    Energy Technology Data Exchange (ETDEWEB)

    Anant, K.S.

    1997-06-01

    In this dissertation I quantitatively demonstrate how the wavelet transform can be an effective mathematical tool for the analysis of transient signals. The two key signal processing applications of the wavelet transform, namely feature identification and representation (i.e., compression), are shown by solving important problems involving the seismogram and the electrocardiogram. The seismic feature identification problem involved locating in time the P and S phase arrivals. Locating these arrivals accurately (particularly the S phase) has been a constant issue in seismic signal processing. In Chapter 3, I show that the wavelet transform can be used to locate both the P as well as the S phase using only information from single station three-component seismograms. This is accomplished by using the basis function (wave-let) of the wavelet transform as a matching filter and by processing information across scales of the wavelet domain decomposition. The `pick` time results are quite promising as compared to analyst picks. The representation application involved the compression of the electrocardiogram which is a recording of the electrical activity of the heart. Compression of the electrocardiogram is an important problem in biomedical signal processing due to transmission and storage limitations. In Chapter 4, I develop an electrocardiogram compression method that applies vector quantization to the wavelet transform coefficients. The best compression results were obtained by using orthogonal wavelets, due to their ability to represent a signal efficiently. Throughout this thesis the importance of choosing wavelets based on the problem at hand is stressed. In Chapter 5, I introduce a wavelet design method that uses linear prediction in order to design wavelets that are geared to the signal or feature being analyzed. The use of these designed wavelets in a test feature identification application led to positive results. The methods developed in this thesis; the

  16. Duration of deep earthquakes determined by stacking of Global Seismograph Network seismograms

    Science.gov (United States)

    Bos, A. G.; Nolet, G.; Rubin, A.; Houston, H.; Vidale, J. E.

    1998-09-01

    The duration of each subevent of 48 earthquakes with magnitude larger than 5.5 and depth greater than 100 km was determined from stacked traces of broadband records of Global Seismograph Network stations. We fitted the source time function by one or more triangles convolved with attenuation. We found that global stacks of displacement seismograms yield reliable estimates of the rupture duration. The durations, scaled to a moment of 1019 N m, of both the subevents and the entire earthquake show a slight decrease with depth from 9 s for events at 100 km depth to about 7 s for events at 600 km depth. Assuming that the rupture velocity is a constant fraction of the shear wave speed, this decrease can be completely explained by the increase in shear velocity of 20%. In this sense, deep earthquakes are comparable to intermediate ones. For some intermediate-depth events, Vidale and Houston [1993] found durations up to twice as long. We find that almost all of their slow events have been recorded at large epicentral distances. At these distances, we conjecture that the end of the P wave train may be extended by the arrival of reflections from the D″ layer.

  17. Ratios in Higher Order Statistics (RHOS) values of Seismograms for Improved Automatic P-Phase Arrival Detection

    CERN Document Server

    Dugda, Mulugeta

    2010-01-01

    In this paper we present two new procedures for automatic detection and picking of P-wave arrivals. The first involves the application of kurtosis and skewness on the vector magnitude of three component seismograms. Customarily, P-wave arrival detection techniques use vertical component seismogram which is appropriate only for teleseismic events. The inherent weakness of those methods stems from the fact that the energy from P-wave is distributed among horizontal and vertical recording channels. Our procedure, however, uses the vector magnitude which accommodates all components. The results show that this procedure would be useful for detecting/picking of P-arrivals from local and regional earthquakes and man-made explosions. The second procedure introduces a new method called "Ratios in Higher Order Statistics (RHOS)." Unlike commonly used techniques that involve derivatives, this technique employs ratios of adjacent kurtosis and skewness values to improve the accuracy of the detection of the P onset. RHOS c...

  18. A comparison of two methods for earthquake source inversion using strong motion seismograms

    Directory of Open Access Journals (Sweden)

    G. C. Beroza

    1994-06-01

    Full Text Available In this paper we compare two time-domain inversion methods that have been widely applied to the problem of modeling earthquake rupture using strong-motion seismograms. In the multi-window method, each point on the fault is allowed to rupture multiple times. This allows flexibility in the rupture time and hence the rupture velocity. Variations in the slip-velocity function are accommodated by variations in the slip amplitude in each time-window. The single-window method assumes that each point on the fault ruptures only once, when the rupture front passes. Variations in slip amplitude are allowed and variations in rupture velocity are accommodated by allowing the rupture time to vary. Because the multi-window method allows greater flexibility, it has the potential to describe a wider range of faulting behavior; however, with this increased flexibility comes an increase in the degrees of freedom and the solutions are comparatively less stable. We demonstrate this effect using synthetic data for a test model of the Mw 7.3 1992 Landers, California earthquake, and then apply both inversion methods to the actual recordings. The two approaches yield similar fits to the strong-motion data with different seismic moments indicating that the moment is not well constrained by strong-motion data alone. The slip amplitude distribution is similar using either approach, but important differences exist in the rupture propagation models. The single-window method does a better job of recovering the true seismic moment and the average rupture velocity. The multi-window method is preferable when rise time is strongly variable, but tends to overestimate the seismic moment. Both methods work well when the rise time is constant or short compared to the periods modeled. Neither approach can recover the temporal details of rupture propagation unless the distribution of slip amplitude is constrained by independent data.

  19. 1D Josephson quantum interference grids: diffraction patterns and dynamics

    Science.gov (United States)

    Lucci, M.; Badoni, D.; Corato, V.; Merlo, V.; Ottaviani, I.; Salina, G.; Cirillo, M.; Ustinov, A. V.; Winkler, D.

    2016-02-01

    We investigate the magnetic response of transmission lines with embedded Josephson junctions and thus generating a 1D underdamped array. The measured multi-junction interference patterns are compared with the theoretical predictions for Josephson supercurrent modulations when an external magnetic field couples both to the inter-junction loops and to the junctions themselves. The results provide a striking example of the analogy between Josephson phase modulation and 1D optical diffraction grid. The Fiske resonances in the current-voltage characteristics with voltage spacing {Φ0}≤ft(\\frac{{\\bar{c}}}{2L}\\right) , where L is the total physical length of the array, {Φ0} the magnetic flux quantum and \\bar{c} the speed of light in the transmission line, demonstrate that the discrete line supports stable dynamic patterns generated by the ac Josephson effect interacting with the cavity modes of the line.

  20. Generation of 1D interference patterns of Bloch surface waves

    Science.gov (United States)

    Kadomina, E. A.; Bezus, E. A.; Doskolovich, L. L.

    2016-09-01

    Interference patterns of Bloch surface waves with a period that is significantly less than the wavelength of incident radiation are formed using dielectric diffraction gratings located on the surface of photonic crystal. The simulation based on electromagnetic diffraction theory is used to demonstrate the possibility of high-quality interference patterns due to resonant enhancement of higher evanescent diffraction orders related to the excitation of the Bloch surface waves. The contrast of the interference patterns is close to unity, and the period is less than the period of the diffraction structure by an order of magnitude.

  1. Global Scale Exploration Seismics: Mapping Mantle Discontinuities with Inverse Scattering Methods and Millions of Seismograms

    Science.gov (United States)

    van der Hilst, R. D.; de Hoop, M. V.; Shim, S. H.; Shang, X.; Wang, P.; Cao, Q.

    2012-04-01

    Over the past three decades, tremendous progress has been made with the mapping of mantle heterogeneity and with the understanding of these structures in terms of, for instance, the evolution of Earth's crust, continental lithosphere, and thermo-chemical mantle convection. Converted wave imaging (e.g., receiver functions) and reflection seismology (e.g. SS stacks) have helped constrain interfaces in crust and mantle; surface wave dispersion (from earthquake or ambient noise signals) characterizes wavespeed variations in continental and oceanic lithosphere, and body wave and multi-mode surface wave data have been used to map trajectories of mantle convection and delineate mantle regions of anomalous elastic properties. Collectively, these studies have revealed substantial ocean-continent differences and suggest that convective flow is strongly influenced by but permitted to cross the upper mantle transition zone. Many questions have remained unanswered, however, and further advances in understanding require more accurate depictions of Earth's heterogeneity at a wider range of length scales. To meet this challenge we need new observations—more, better, and different types of data—and methods that help us extract and interpret more information from the rapidly growing volumes of broadband data. The huge data volumes and the desire to extract more signal from them means that we have to go beyond 'business as usual' (that is, simplified theory, manual inspection of seismograms, …). Indeed, it inspires the development of automated full wave methods, both for tomographic delineation of smooth wavespeed variations and the imaging (for instance through inverse scattering) of medium contrasts. Adjoint tomography and reverse time migration, which are closely related wave equation methods, have begun to revolutionize seismic inversion of global and regional waveform data. In this presentation we will illustrate this development - and its promise - drawing from our work

  2. First Observation of Upsilon(1D) States

    CERN Document Server

    Csorna, S E; Bonvicini, G; Cinabro, D; Dubrovin, M; McGee, S; Bornheim, A; Lipeles, E; Pappas, S P; Shapiro, A; Sun, W M; Weinstein, A J; Mahapatra, R; Briere, R A; Chen, G P; Ferguson, T; Tatishvili, G T; Vogel, H; Adam, N E; Alexander, J P; Berkelman, K; Boisvert, V; Cassel, David G; Drell, P S; Duboscq, J E; Ecklund, K M; Ehrlich, R; Galik, R S; Gibbons, L; Gittelman, B; Gray, S W; Hartill, D L; Heltsley, B K; Hsu, L; Jones, C D; Kandaswamy, J; Kreinick, D L; Magerkurth, A; Mahlke-Krüger, H; Meyer, T O; Mistry, N B; Nordberg, E; Patterson, J R; Peterson, D; Pivarski, J; Riley, D; Sadoff, A J; Schwarthoff, H; Shepherd, M R; Thayer, J G; Urner, D; Viehhauser, G; Warburton, A; Weinberger, M; Athar, S B; Avery, P; Breva-Newell, L; Potlia, V; Stöck, H; Yelton, J; Brandenburg, G; Kim, D Y J; Wilson, R; Benslama, K; Eisenstein, B I; Ernst, J; Gollin, G D; Hans, R M; Karliner, I; Lowrey, N; Plager, C; Sedlack, C; Selen, M; Thaler, J J; Williams, J; Edwards, K W; Ammar, R; Besson, D; Zhao, X; Anderson, S; Frolov, V V; Kubota, Y; Lee, S J; Li, S Z; Poling, R A; Smith, A; Stepaniak, C J; Urheim, J; Metreveli, Z V; Seth, K K; Tomaradze, A G; Zweber, P; Ahmed, S; Alam, M S; Jian, L; Saleem, M; Wappler, F; Eckhart, E; Gan, K K; Gwon, C; Hart, T; Honscheid, K; Hufnagel, D; Kagan, H; Kass, R; Pedlar, T K; Thayer, J B; Von Törne, E; Wilksen, T; Zoeller, M M; Muramatsu, H; Richichi, S J; Severini, H; Skubic, P L; Dytman, S A; Müller, J A; Nam, S; Savinov, V; Chen, S; Hinson, J W; Lee, J; Miller, D H; Pavlunin, V; Shibata, E I; Shipsey, I P J; Cronin-Hennessy, D; Lyon, A L; Park, C S; Park, W; Thorndike, E H; Coan, T E; Gao, Y S; Liu, F; Maravin, Y; Stroynowski, R; Artuso, M; Boulahouache, C; Bukin, K; Dambasuren, E; Khroustalev, K; Mountain, R; Nandakumar, R; Skwarnicki, T; Stone, S; Wang, J C; Mahmood, A H

    2002-01-01

    The CLEO III experiment has recently accumulated a large statistics sample of 4.73 x 10^6 Upsilon(3S) decays. We present the first evidence for the production of the triplet Upsilon(1D) states in the four-photon cascade, Upslion(3S) -> gamma chi_b(2P), chi_b(2P) -> gamma Upsilon(1D), Upsilon(1D) -> gamma chi_b(1P), chi_b(1P) -> gamma Upsilon(1S), followed by the Upsilon(1S) annihilation to e+ e- or mu+ mu-. The signal has a significance of 9.7 standard deviations. The measured product branching ratio for these five decays, (3.3 +- 0.6 +- 0.5) x 10^{-5}, is consistent with the theoretical estimates. We see a 6.8 standard deviation signal for a state with a mass of 10162.2 +- 1.6 MeV/c^2, consistent with the Upsilon(1D_2) assignment. We also present improved measurements of the Upsilon(3S) -> pi0 pi0 Upsilon(1S) branching ratio and the associated di-pion mass distribution.

  3. YORP torques with 1D thermal model

    CERN Document Server

    Breiter, Slawomir; Czekaj, Maria

    2010-01-01

    A numerical model of the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect for objects defined in terms of a triangular mesh is described. The algorithm requires that each surface triangle can be handled independently, which implies the use of a 1D thermal model. Insolation of each triangle is determined by an optimized ray-triangle intersection search. Surface temperature is modeled with a spectral approach; imposing a quasi-periodic solution we replace heat conduction equation by the Helmholtz equation. Nonlinear boundary conditions are handled by an iterative, FFT based solver. The results resolve the question of the YORP effect in rotation rate independence on conductivity within the nonlinear 1D thermal model regardless of the accuracy issues and homogeneity assumptions. A seasonal YORP effect in attitude is revealed for objects moving on elliptic orbits when a nonlinear thermal model is used.

  4. 1D ferrimagnetism in homometallic chains

    OpenAIRE

    Coronado Miralles, Eugenio; Gómez García, Carlos José; Borrás Almenar, Juan José

    1990-01-01

    The magnetic properties of the cobalt zigzag chain Co(bpy)(NCS)2 (bpy=2,2′‐bipyridine) are discussed on the basis of an Ising‐chain model that takes into account alternating Landé factors. It is emphasized, for the first time, that a homometallic chain containing only one type of site can give rise to a 1D ferrimagneticlike behavior. ,

  5. Endogenous N-terminal Domain Cleavage Modulates α1D-Adrenergic Receptor Pharmacodynamics.

    Science.gov (United States)

    Kountz, Timothy S; Lee, Kyung-Soon; Aggarwal-Howarth, Stacey; Curran, Elizabeth; Park, Ji-Min; Harris, Dorathy-Ann; Stewart, Aaron; Hendrickson, Joseph; Camp, Nathan D; Wolf-Yadlin, Alejandro; Wang, Edith H; Scott, John D; Hague, Chris

    2016-08-26

    The α1D-adrenergic receptor (ADRA1D) is a key regulator of cardiovascular, prostate, and central nervous system functions. This clinically relevant G protein-coupled receptor has proven difficult to study, as it must form an obligate modular homodimer containing the PDZ proteins scribble and syntrophin or become retained in the endoplasmic reticulum as non-functional protein. We previously determined that targeted removal of the N-terminal (NT) 79 amino acids facilitates ADRA1D plasma membrane expression and agonist-stimulated functional responses. However, whether such an event occurs in physiological contexts was unknown. Herein, we report the ADRA1D is subjected to innate NT processing in cultured human cells. SNAP near-infrared imaging and tandem-affinity purification revealed the ADRA1D is expressed as both full-length and NT truncated forms in multiple human cell lines. Serial truncation mapping identified the cleavage site as Leu(90)/Val(91) in the 95-amino acid ADRA1D NT domain, suggesting human cells express a Δ1-91 ADRA1D species. Tandem-affinity purification MS/MS and co-immunoprecipitation analysis indicate NT processing of ADRA1D is not required to form scribble-syntrophin macromolecular complexes. Yet, label-free dynamic mass redistribution signaling assays demonstrate that Δ1-91 ADRA1D agonist responses were greater than WT ADRA1D. Mutagenesis of the cleavage site nullified the processing event, resulting in ADRA1D agonist responses less than the WT receptor. Thus, we propose that processing of the ADRA1D NT domain is a physiological mechanism employed by cells to generate a functional ADRA1D isoform with optimal pharmacodynamic properties. PMID:27382054

  6. 1-D EQUILIBRIUM DISCRETE DIFFUSION MONTE CARLO

    Energy Technology Data Exchange (ETDEWEB)

    T. EVANS; ET AL

    2000-08-01

    We present a new hybrid Monte Carlo method for 1-D equilibrium diffusion problems in which the radiation field coexists with matter in local thermodynamic equilibrium. This method, the Equilibrium Discrete Diffusion Monte Carlo (EqDDMC) method, combines Monte Carlo particles with spatially discrete diffusion solutions. We verify the EqDDMC method with computational results from three slab problems. The EqDDMC method represents an incremental step toward applying this hybrid methodology to non-equilibrium diffusion, where it could be simultaneously coupled to Monte Carlo transport.

  7. Scaled Energies of ML > = 5.1 Aftershocks of the 1999 Chi-Chi, Taiwan, Earthquake Measured from Local Seismograms

    Directory of Open Access Journals (Sweden)

    Ming-Wey Huang and Jeen-Hwa Wang

    2009-01-01

    Full Text Available In this study, we measure the seismic radiation energy, Es, and seismic moment, Mo, of twenty-two larger-sized after shocks with 5.1 < = ML < = 6.5 of the 1999 Ms 7.6 Chi-Chi, Taiwan, earthquake from high-quality digital strong-motion data recorded at stations with epicentral distances of less than 50 km through a method proposed by Andrews (1986. We also eliminate the effects on the measures of Es and Mo due to site amplification and finite frequency band width limitation. Comparison of the values of Mo obtained in this study and those listed in the Harvard CMT catalogue shows that _ method to measure Mo from local seismograms is acceptable. The measured values are Es = 2.0 * 10 ^18 _ 8.9 * 10^21 g cm^2 sec^-2 and Mo = 1.3 * 10^23 _ 1.4 * 10^26 g cm sec^-2 cm^-1, which give the scaled energy to be Es/Mo = 7.4 * 10^-6 _ 2.6 * 10^-4. The scaled energies of the 22 events are dependent upon earthquake magnitude, Ms, when both Es and Mo are evaluated from local seismograms; yet, independent of Ms when Mo is estimated from teleseismic data. Scaled energy slightly depends on the depth, h (in km, through the following form: Es/Mo = 1.92 * 10^-5e^0.09h. In addition, the corner frequency, fc, is also measured. Its value ranges from 0.15 to 1.34. The scaling law between Mo and fc is: Mo ~ fc-3.65.

  8. Hamming Distance and Data Compression of 1-D CA

    Directory of Open Access Journals (Sweden)

    Raied Salman

    2013-05-01

    Full Text Available In this paper an application of von Neumann correct ion technique to the output string of some chaotic rules of 1-D Cellular Automata that are uns uitable for cryptographic pseudo random number generation due to their non uniform distribu tion of the binary elements is presented. The one dimensional (1-D Cellular Automata (CA Ru le space will be classified by the time run of Hamming Distance (HD. This has the advantage of determining the rules that have short cycle lengths and therefore deemed to be unsuitable for cryptographic pseudo random number generation. The data collected from evolution of ch aotic rules that have long cycles are subjected to the original von Neumann density corre ction scheme as well as a new generalized scheme presented in this paper and tested for stati stical testing fitness using Diehard battery of tests. Results show that significant improvement in the statistical tests are obtained when the output of a balanced chaotic rule are mutually excl usive ORed with the output of unbalanced chaotic rule that have undergone von Neumann densit y correction.

  9. Diamond-based 1-D imaging arrays

    Energy Technology Data Exchange (ETDEWEB)

    Lansley, S.P.; Williams, O.A.; Ye, H. [Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Rizvi, N.; Whitfield, M.D.; Jackman, R.B. [Exitech Limited, Hanborough Park, Long Hanborough, Oxford OX8 8LH (United Kingdom); McKeag, R.D. [Centronic Ltd., Centronic House, King Henry' s Drive, New Addington, Croydon CR9 OBG (United Kingdom)

    2002-10-16

    Diamond has shown great promise for the fabrication of high sensitivity, low dark current, fast and visible-blind deep UV photodetectors. In addition to careful choice of substrate material, defect passivation treatments applied to the diamond after growth have been found to considerably enhance the detector characteristics achieved. In this paper we report on the first purposefully designed 1-D CVD diamond imaging array for the detection of nanosecond 193 nm excimer laser pulses using this approach. It is shown to perform extremely well, giving less than 2% pixel-to-pixel variation in signal response, and is fast enough to avoid any sign of charge build up during prolonged operation. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  10. Analysis list: Nr1d2 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Nr1d2 Liver + mm9 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Nr1d2.1.tsv... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Nr1d2.5.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Nr1d2....10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Nr1d2.Liver.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Liver.gml ...

  11. Coal-seismic, desktop computer programs in BASIC; Part 5, Perform X-square T-square analysis and plot normal moveout lines on seismogram overlay

    Science.gov (United States)

    Hasbrouck, W.P.

    1983-01-01

    Processing of data taken with the U.S. Geological Survey's coal-seismic system is done with a desktop, stand-alone computer. Programs for this computer are written in the extended BASIC language used by the Tektronix 4051 Graphic System. This report presents computer programs to perform X-square/T-square analyses and to plot normal moveout lines on a seismogram overlay.

  12. One-Dimensional (1D) ZnS Nanomaterials and Nanostructures

    Institute of Scientific and Technical Information of China (English)

    Xiaosheng FANG; Lide ZHANG

    2006-01-01

    One-dimensional (1D) nanomaterials and nanostructures have received much attention due to their potential interest for understanding fundamental physical concepts and for applications in constructing nanoscale electric and optoelectronic devices. Zinc sulfide (ZnS) is an important semiconductor compound of Ⅱ-Ⅵ group,and the synthesis of 1D ZnS nanomaterials and nanostructures has been of growing interest owing to their promising application in nanoscale optoelectronic devices. This paper reviews the recent progress on 1D ZnS nanomaterials and nanostructures, including nanowires, nanowire arrays, nanorods, nanobelts or nanoribbons,nanocables, and hierarchical nanostructures etc. This article begins with a survey of various methods that have been developed for generating 1D nanomaterials and nanostructures, and then mainly focuses on structures,synthesis, characterization, formation mechanisms and optical property tuning, and luminescence mechanisms of 1D ZnS nanomaterials and nanostructures. Finally, this review concludes with personal views towards future research on 1D ZnS nanomaterials and nanostructures.

  13. Interaction of environmental contaminants with zebrafish organic anion transporting polypeptide, Oatp1d1 (Slco1d1)

    International Nuclear Information System (INIS)

    Polyspecific transporters from the organic anion transporting polypeptide (OATP/Oatp) superfamily mediate the uptake of a wide range of compounds. In zebrafish, Oatp1d1 transports conjugated steroid hormones and cortisol. It is predominantly expressed in the liver, brain and testes. In this study we have characterized the transport of xenobiotics by the zebrafish Oatp1d1 transporter. We developed a novel assay for assessing Oatp1d1 interactors using the fluorescent probe Lucifer yellow and transient transfection in HEK293 cells. Our data showed that numerous environmental contaminants interact with zebrafish Oatp1d1. Oatp1d1 mediated the transport of diclofenac with very high affinity, followed by high affinity towards perfluorooctanesulfonic acid (PFOS), nonylphenol, gemfibrozil and 17α-ethinylestradiol; moderate affinity towards carbaryl, diazinon and caffeine; and low affinity towards metolachlor. Importantly, many environmental chemicals acted as strong inhibitors of Oatp1d1. A strong inhibition of Oatp1d1 transport activity was found by perfluorooctanoic acid (PFOA), chlorpyrifos-methyl, estrone (E1) and 17β-estradiol (E2), followed by moderate to low inhibition by diethyl phthalate, bisphenol A, 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4 tetrahydronapthalene and clofibrate. In this study we identified Oatp1d1 as a first Solute Carrier (SLC) transporter involved in the transport of a wide range of xenobiotics in fish. Considering that Oatps in zebrafish have not been characterized before, our work on zebrafish Oatp1d1 offers important new insights on the understanding of uptake processes of environmental contaminants, and contributes to the better characterization of zebrafish as a model species. - Highlights: • We optimized a novel assay for determination of Oatp1d1 interactors • Oatp1d1 is the first SLC characterized fish xenobiotic transporter • PFOS, nonylphenol, diclofenac, EE2, caffeine are high affinity Oatp1d1substrates • PFOA, chlorpyrifos

  14. Interaction of environmental contaminants with zebrafish organic anion transporting polypeptide, Oatp1d1 (Slco1d1)

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, Marta; Zaja, Roko [Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Rudjer Boskovic Institute, Bijenicka 54, 10 000 Zagreb (Croatia); Fent, Karl [University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz (Switzerland); Swiss Federal Institute of Technology (ETH Zürich), Department of Environmental System Sciences, Institute of Biogeochemistry and Pollution Dynamics, CH-8092 Zürich (Switzerland); Smital, Tvrtko, E-mail: smital@irb.hr [Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Rudjer Boskovic Institute, Bijenicka 54, 10 000 Zagreb (Croatia)

    2014-10-01

    Polyspecific transporters from the organic anion transporting polypeptide (OATP/Oatp) superfamily mediate the uptake of a wide range of compounds. In zebrafish, Oatp1d1 transports conjugated steroid hormones and cortisol. It is predominantly expressed in the liver, brain and testes. In this study we have characterized the transport of xenobiotics by the zebrafish Oatp1d1 transporter. We developed a novel assay for assessing Oatp1d1 interactors using the fluorescent probe Lucifer yellow and transient transfection in HEK293 cells. Our data showed that numerous environmental contaminants interact with zebrafish Oatp1d1. Oatp1d1 mediated the transport of diclofenac with very high affinity, followed by high affinity towards perfluorooctanesulfonic acid (PFOS), nonylphenol, gemfibrozil and 17α-ethinylestradiol; moderate affinity towards carbaryl, diazinon and caffeine; and low affinity towards metolachlor. Importantly, many environmental chemicals acted as strong inhibitors of Oatp1d1. A strong inhibition of Oatp1d1 transport activity was found by perfluorooctanoic acid (PFOA), chlorpyrifos-methyl, estrone (E1) and 17β-estradiol (E2), followed by moderate to low inhibition by diethyl phthalate, bisphenol A, 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4 tetrahydronapthalene and clofibrate. In this study we identified Oatp1d1 as a first Solute Carrier (SLC) transporter involved in the transport of a wide range of xenobiotics in fish. Considering that Oatps in zebrafish have not been characterized before, our work on zebrafish Oatp1d1 offers important new insights on the understanding of uptake processes of environmental contaminants, and contributes to the better characterization of zebrafish as a model species. - Highlights: • We optimized a novel assay for determination of Oatp1d1 interactors • Oatp1d1 is the first SLC characterized fish xenobiotic transporter • PFOS, nonylphenol, diclofenac, EE2, caffeine are high affinity Oatp1d1substrates • PFOA, chlorpyrifos

  15. First Observation of a Upsilon(1D) State

    CERN Document Server

    Bonvicini, G; Dubrovin, M; Bornheim, A; Lipeles, E; Pappas, S P; Shapiro, A; Weinstein, A J; Briere, R A; Chen, G P; Ferguson, T; Tatishvili, G T; Vogel, H; Watkins, M E; Adam, N E; Alexander, J P; Berkelman, K; Boisvert, V; Cassel, D G; Duboscq, J E; Ecklund, K M; Ehrlich, R; Galik, R S; Gibbons, L; Gittelman, B; Gray, S W; Hartill, D L; Heltsley, B K; Hsu, L; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Magerkurth, A; Mahlke-Krüger, H; Meyer, T O; Patterson, J R; Pedlar, T K; Peterson, D; Pivarski, J; Riley, D; Rosner, J L; Sadoff, A J; Schwarthoff, H; Shepherd, M R; Sun, W M; Thayer, J G; Urner, D; Wilksen, T; Weinberger, M; Athar, S B; Avery, P; Breva-Newell, L; Potlia, V; Stöck, H; Yelton, J; Eisenstein, B I; Gollin, G D; Karliner, I; Lowrey, N; Naik, P; Sedlack, C; Selen, M; Thaler, J J; Williams, J; Edwards, K W; Besson, D; Gao, K Y; Gong, D T; Kubota, Y; Li, S Z; Poling, R A; Scott, A W; Smith, A; Stepaniak, C J; Urheim, J; Metreveli, Z V; Seth, K K; Tomaradze, A G; Zweber, P; Ernst, J; Arms, K; Eckhart, E; Gan, K K; Gwon, C; Severini, H; Skubic, P L; Asner, D M; Dytman, S A; Mehrabyan, S S; Müller, J A; Nam, S; Savinov, V; Huang, G S; Miller, D H; Pavlunin, V; Sanghi, B; Shibata, E I; Shipsey, I P J; Adams, G S; Chasse, M; Cummings, J P; Danko, I; Napolitano, J; Cronin-Hennessy, D; Park, C S; Park, W; Thayer, J B; Thorndike, E H; Coan, T E; Gao, Y S; Liu, F; Stroynowski, R; Artuso, M; Boulahouache, C; Blusk, S; Butt, J; Dambasuren, E; Dorjkhaidav, O; Haynes, J; Menaa, N; Mountain, R; Muramatsu, H; Nandakumar, R; Redjimi, R; Sia, R; Skwarnicki, T; Stone, S; Wang, J C; Zhang, Kevin; Mahmood, A H; Csorna, S E

    2004-01-01

    We present the first evidence for the production of Upsilon(1D) states in the four-photon cascade, Upsilon(3S)-->gamma chib(2P), chib(2P)-->gamma Upsilon(1D), Upsilon(1D)-->gamma chib(1P), chib(1P)-->gamma Upsilon(1S), followed by the Upsilon(1S) annihilation into e+e- or mu+mu-. The signal has a significance of 10.2 standard deviations. The measured product branching ratio for these five decays, (2.5+-0.5+-0.5)x10^(-5), is consistent with the theoretical estimates. The data are dominated by the production of one Upsilon(1D) state consistent with the J=2 assignment. Its mass is determined to be (10161.1+-0.6+-1.6) MeV, which is consistent with the predictions from potential models and lattice QCD calculations. We also searched for Upsilon(3S)-->gammachib(2P), chib(2P)-->gammaUpsilon(1D), followed by either Upsilon(1D)-->eta Upsilon(1S) or Upsilon(1D)-->pi+pi- Upsilon(1S). We find no evidence for such decays and set upper limits on the product branching ratios.

  16. Yield and depth Estimation of Selected NTS Nuclear and SPE Chemical Explosions Using Source Equalization by modeling Local and Regional Seismograms (Invited)

    Science.gov (United States)

    Saikia, C. K.; Roman-nieves, J. I.; Woods, M. T.

    2013-12-01

    Source parameters of nuclear and chemical explosions are often estimated by matching either the corner frequency and spectral level of a single event or the spectral ratio when spectra from two events are available with known source parameters for one. In this study, we propose an alternative method in which waveforms from two or more events can be simultaneously equalized by setting the differential of the processed seismograms at one station from any two individual events to zero. The method involves convolving the equivalent Mueller-Murphy displacement source time function (MMDSTF) of one event with the seismogram of the second event and vice-versa, and then computing their difference seismogram. MMDSTF is computed at the elastic radius including both near and far-field terms. For this method to yield accurate source parameters, an inherent assumption is that green's functions for the any paired events from the source to a receiver are same. In the frequency limit of the seismic data, this is a reasonable assumption and is concluded based on the comparison of green's functions computed for flat-earth models at various source depths ranging from 100m to 1Km. Frequency domain analysis of the initial P wave is, however, sensitive to the depth phase interaction, and if tracked meticulously can help estimating the event depth. We applied this method to the local waveforms recorded from the three SPE shots and precisely determined their yields. These high-frequency seismograms exhibit significant lateral path effects in spectrogram analysis and 3D numerical computations, but the source equalization technique is independent of any variation as long as their instrument characteristics are well preserved. We are currently estimating the uncertainty in the derived source parameters assuming the yields of the SPE shots as unknown. We also collected regional waveforms from 95 NTS explosions at regional stations ALQ, ANMO, CMB, COR, JAS LON, PAS, PFO and RSSD. We are

  17. From nonfinite to finite 1D arrays of origami tiles.

    Science.gov (United States)

    Wu, Tsai Chin; Rahman, Masudur; Norton, Michael L

    2014-06-17

    average solution structures for blocks is more readily achieved using computer models than using direct imaging methods. The development of scalable 1D-origami arrays composed of uniquely addressable components is a logical, if not necessary, step in the evolution of higher order fully addressable structures. Our research into the fabrication of arrays has led us to generate a listing of several important areas of future endeavor. Of high importance is the re-enforcement of the mechanical properties of the building blocks and the organization of multiple arrays on a surface of technological importance. While addressing this short list of barriers to progress will prove challenging, coherent development along each of these lines of inquiry will accelerate the appearance of commercial scale molecular manufacturing. PMID:24803094

  18. The Gain Properties of 1-D Active Photonic Crystal

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The terminology 'ID frequency'(w ID) is proposed after analyzing the 1D active photonic crystal based on the transfer matrix method. The relationship between wID and the structure parameters of the photonic crystal is investigated.

  19. Severe Hypertriglyceridemia in Glut1D on Ketogenic Diet.

    Science.gov (United States)

    Klepper, Joerg; Leiendecker, Baerbel; Heussinger, Nicole; Lausch, Ekkehart; Bosch, Friedrich

    2016-04-01

    High-fat ketogenic diets are the only treatment available for Glut1 deficiency (Glut1D). Here, we describe an 8-year-old girl with classical Glut1D responsive to a 3:1 ketogenic diet and ethosuximide. After 3 years on the diet a gradual increase of blood lipids was followed by rapid, severe asymptomatic hypertriglyceridemia (1,910 mg/dL). Serum lipid apheresis was required to determine liver, renal, and pancreatic function. A combination of medium chain triglyceride-oil and a reduction of the ketogenic diet to 1:1 ratio normalized triglyceride levels within days but triggered severe myoclonic seizures requiring comedication with sultiam. Severe hypertriglyceridemia in children with Glut1D on ketogenic diets may be underdiagnosed and harmful. In contrast to congenital hypertriglyceridemias, children with Glut1D may be treated effectively by dietary adjustments alone. PMID:26902182

  20. TBC1D24 genotype–phenotype correlation

    Science.gov (United States)

    Balestrini, Simona; Milh, Mathieu; Castiglioni, Claudia; Lüthy, Kevin; Finelli, Mattea J.; Verstreken, Patrik; Cardon, Aaron; Stražišar, Barbara Gnidovec; Holder, J. Lloyd; Lesca, Gaetan; Mancardi, Maria M.; Poulat, Anne L.; Repetto, Gabriela M.; Banka, Siddharth; Bilo, Leonilda; Birkeland, Laura E.; Bosch, Friedrich; Brockmann, Knut; Cross, J. Helen; Doummar, Diane; Félix, Temis M.; Giuliano, Fabienne; Hori, Mutsuki; Hüning, Irina; Kayserili, Hulia; Kini, Usha; Lees, Melissa M.; Meenakshi, Girish; Mewasingh, Leena; Pagnamenta, Alistair T.; Peluso, Silvio; Mey, Antje; Rice, Gregory M.; Rosenfeld, Jill A.; Taylor, Jenny C.; Troester, Matthew M.; Stanley, Christine M.; Ville, Dorothee; Walkiewicz, Magdalena; Falace, Antonio; Fassio, Anna; Lemke, Johannes R.; Biskup, Saskia; Tardif, Jessica; Ajeawung, Norbert F.; Tolun, Aslihan; Corbett, Mark; Gecz, Jozef; Afawi, Zaid; Howell, Katherine B.; Oliver, Karen L.; Berkovic, Samuel F.; Scheffer, Ingrid E.; de Falco, Fabrizio A.; Oliver, Peter L.; Striano, Pasquale; Zara, Federico

    2016-01-01

    Objective: To evaluate the phenotypic spectrum associated with mutations in TBC1D24. Methods: We acquired new clinical, EEG, and neuroimaging data of 11 previously unreported and 37 published patients. TBC1D24 mutations, identified through various sequencing methods, can be found online (http://lovd.nl/TBC1D24). Results: Forty-eight patients were included (28 men, 20 women, average age 21 years) from 30 independent families. Eighteen patients (38%) had myoclonic epilepsies. The other patients carried diagnoses of focal (25%), multifocal (2%), generalized (4%), and unclassified epilepsy (6%), and early-onset epileptic encephalopathy (25%). Most patients had drug-resistant epilepsy. We detail EEG, neuroimaging, developmental, and cognitive features, treatment responsiveness, and physical examination. In silico evaluation revealed 7 different highly conserved motifs, with the most common pathogenic mutation located in the first. Neuronal outgrowth assays showed that some TBC1D24 mutations, associated with the most severe TBC1D24-associated disorders, are not necessarily the most disruptive to this gene function. Conclusions: TBC1D24-related epilepsy syndromes show marked phenotypic pleiotropy, with multisystem involvement and severity spectrum ranging from isolated deafness (not studied here), benign myoclonic epilepsy restricted to childhood with complete seizure control and normal intellect, to early-onset epileptic encephalopathy with severe developmental delay and early death. There is no distinct correlation with mutation type or location yet, but patterns are emerging. Given the phenotypic breadth observed, TBC1D24 mutation screening is indicated in a wide variety of epilepsies. A TBC1D24 consortium was formed to develop further research on this gene and its associated phenotypes. PMID:27281533

  1. L(d1, d2,..., dt)-Number λ(Cn; d1, d2,...,dt) of Cycles

    Institute of Scientific and Technical Information of China (English)

    GAO Zhen Bin; ZHANG Xiao Dong

    2009-01-01

    An L(d1,d2,...,dt)-labeling of a graph G is a function f from its vertex set V(G) to the set {0, 1,..., k} for some positive integer k such that {f(x) - f(y)| ≥ di, if the distance between vertices x and y in G is equal to i for i = 1,2,...,t. The L(d1,d2,...,dt)-number λ(G;d1,d2,... ,dt) of G is the smallest integer number k such that G has an L(d1,d2,... ,dt)labeling with max{f(x)|x ∈ V(G)} = k. In this paper, we obtain the exact values for λ(Cn; 2, 2,1) and λ(Cn; 3, 2, 1), and present lower and upper bounds for λ(Cn; 2,..., 2,1,..., 1)

  2. Constraining the source location of the 30 May 2015 (Mw 7.9) Bonin deep-focus earthquake using seismogram envelopes of high-frequency P waveforms: Occurrence of deep-focus earthquake at the bottom of a subducting slab

    Science.gov (United States)

    Takemura, Shunsuke; Maeda, Takuto; Furumura, Takashi; Obara, Kazushige

    2016-05-01

    In this study, the source location of the 30 May 2015 (Mw 7.9) deep-focus Bonin earthquake was constrained using P wave seismograms recorded across Japan. We focus on propagation characteristics of high-frequency P wave. Deep-focus intraslab earthquakes typically show spindle-shaped seismogram envelopes with peak delays of several seconds and subsequent long-duration coda waves; however, both the main shock and aftershock of the 2015 Bonin event exhibited pulse-like P wave propagations with high apparent velocities (~12.2 km/s). Such P wave propagation features were reproduced by finite-difference method simulations of seismic wave propagation in the case of slab-bottom source. The pulse-like P wave seismogram envelopes observed from the 2015 Bonin earthquake show that its source was located at the bottom of the Pacific slab at a depth of ~680 km, rather than within its middle or upper regions.

  3. The RabGAP TBC1D1 plays a central role in exercise-regulated glucose metabolism in skeletal muscle

    DEFF Research Database (Denmark)

    Stöckli, Jacqueline; Meoli, Christopher C; Hoffman, Nolan J;

    2015-01-01

    Insulin and exercise stimulate glucose uptake into skeletal muscle via different pathways. Both stimuli converge on the translocation of the glucose transporter GLUT4 from intracellular vesicles to the cell surface. Two Rab guanosine triphosphatases-activating proteins (GAPs) have been implicated...... in this process: AS160 for insulin stimulation and its homolog, TBC1D1, are suggested to regulate exercise-mediated glucose uptake into muscle. TBC1D1 has also been implicated in obesity in humans and mice. We investigated the role of TBC1D1 in glucose metabolism by generating TBC1D1(-/-) mice and...... analyzing body weight, insulin action, and exercise. TBC1D1(-/-) mice showed normal glucose and insulin tolerance, with no difference in body weight compared with wild-type littermates. GLUT4 protein levels were reduced by ∼40% in white TBC1D1(-/-) muscle, and TBC1D1(-/-) mice showed impaired exercise...

  4. Implementation of 1D Ground Response Analysis in Probabilistic Assessments of Ground Shaking Potential

    OpenAIRE

    Stewart, Jonathan P.; Goulet, Christine A.; Bazzurro, Paolo; Claassen, Rebecca

    2006-01-01

    Results of 1D ground response analyses are typically not incorporated into probabilistic seismic hazard analyses (PSHA) in a statistically robust way. Often ground response is incorporated into PSHA using deterministic amplification factors. This simplistic method generates results that are intrinsically arbitrary and often unconservative. The main problem in probabilistically linking PSHA and ground response lies in quantifying the dispersion that is appropriate for use with ground respon...

  5. 1D nanocrystals with precisely controlled dimensions, compositions, and architectures

    Science.gov (United States)

    Pang, Xinchang; He, Yanjie; Jung, Jaehan; Lin, Zhiqun

    2016-09-01

    The ability to synthesize a diverse spectrum of one-dimensional (1D) nanocrystals presents an enticing prospect for exploring nanoscale size- and shape-dependent properties. Here we report a general strategy to craft a variety of plain nanorods, core-shell nanorods, and nanotubes with precisely controlled dimensions and compositions by capitalizing on functional bottlebrush-like block copolymers with well-defined structures and narrow molecular weight distributions as nanoreactors. These cylindrical unimolecular nanoreactors enable a high degree of control over the size, shape, architecture, surface chemistry, and properties of 1D nanocrystals. We demonstrate the synthesis of metallic, ferroelectric, upconversion, semiconducting, and thermoelectric 1D nanocrystals, among others, as well as combinations thereof.

  6. Nonreciprocity of edge modes in 1D magnonic crystal

    International Nuclear Information System (INIS)

    Spin waves propagation in 1D magnonic crystals is investigated theoretically. Mathematical model based on plane wave expansion method is applied to different types of magnonic crystals, namely bi-component magnonic crystal with symmetric/asymmetric boundaries and ferromagnetic film with periodically corrugated top surface. It is shown that edge modes in magnonic crystals may exhibit nonreciprocal behaviour at much lower frequencies than in homogeneous films. - Highlights: • Magnetostatic surface spin waves in 1D magnonic crystals were studied theoretically. • Mathematical model is based on plane wave method. • Mathematical model was applied to different types of magnonic crystals. • Stop band formation and nonreciprocity were obtained

  7. Quantum electrodynamics with 1D arti cial atoms

    DEFF Research Database (Denmark)

    Javadi, Alisa

    A 1D atom, a single quantum emitter coupled to a single optical mode, exhibits rich quantum electrodynamic (QED) e_ects and is thought to be the key ingredient for many applications in quantuminformation processing. Single quantum dots (QD) in photonic-crystal waveguides (PCW) constitute a robust...... as expected from the theory. The value of g(2)(0) is around 1.08. The results con_rm the observation of an on-chip giant optical nonlinearity and the 1D atom behavior. Another direction in this thesis has been to investigate the e_ect of Anderson localization on the electrodynamics of QDs in PCWs. A large...

  8. 1D antiferromagnetism in spin‐alternating bimetallic chains

    OpenAIRE

    Coronado Miralles, Eugenio; Sapiña Navarro, Fernando; Drillon, M.; De Jongh, L.J.

    1990-01-01

    The magnetic and thermal properties of the ordered bimetallic chain CoNi(EDTA)⋅6H2O in the very low‐temperature range are reported. The magnetic behavior does not exhibit the characteristic features of 1D ferrimagnets, but a continuous decrease of χmT towards zero at absolute zero. This 1D antiferromagnetic behavior results from an accidental compensation between the moments located at the two sublattices. This behavior, as well as the specific‐heat results, are modeled on the basis of an Isi...

  9. GIS-BASED 1-D DIFFUSIVE WAVE OVERLAND FLOW MODEL

    Energy Technology Data Exchange (ETDEWEB)

    KALYANAPU, ALFRED [Los Alamos National Laboratory; MCPHERSON, TIMOTHY N. [Los Alamos National Laboratory; BURIAN, STEVEN J. [NON LANL

    2007-01-17

    This paper presents a GIS-based 1-d distributed overland flow model and summarizes an application to simulate a flood event. The model estimates infiltration using the Green-Ampt approach and routes excess rainfall using the 1-d diffusive wave approximation. The model was designed to use readily available topographic, soils, and land use/land cover data and rainfall predictions from a meteorological model. An assessment of model performance was performed for a small catchment and a large watershed, both in urban environments. Simulated runoff hydrographs were compared to observations for a selected set of validation events. Results confirmed the model provides reasonable predictions in a short period of time.

  10. Velocity analysis and application of synthetic seismograms in the area of the Vranovice and the Nesvačilka troughs (Bohemian Massif

    Directory of Open Access Journals (Sweden)

    Bibiana Brixová

    2016-06-01

    Full Text Available The paper presents the results of velocity analysis performed in the Nesvačilka and Vranovice troughs. The troughs extend in the south-eastern part of the Bohemian Massif (the Moravian Block. As both belong to the most promising areas of the Bohemian Massif in the search for and production of hydrocarbons, their geological and geophysical survey is very important. Therefore, one of the key points is to determine the accurate data on the depth of the significant geological and stratigraphic units, which form the Nesvačilka and the Vranovice troughs. For this purpose the velocity analysis and the application of synthetic seismograms have been defined and applied. The results indicate that the lithostratigraphic units of the studied region are characterized by a large velocity interval. Based on the data from well log measurements (check shots and synthetic seismograms the following velocities of seismic waves were determined in single lithostratigraphic units: 2.4–3.3 km/s in sediments of Flysch nappes, 2.7–3.6 km/s in the Palaeogene sediments, 3.3–4.3 km/s in the Jurassic sediments (3.7–5.1 km/s in carbonates and 3.5–4.8 km/s in pelites and conglomerates, 4–5.4 km/s in the Carboniferous sediments, and 4.6–6.6 km/s in the Devonian carbonates. Moreover, the synthetic seismograms and check shot results point to significant velocity interfaces. We discovered that: (a within the sediments of Flysch nappes velocities in Menilitic Formation are higher than in the Submenilitic and the Ždánice-Hustopeče formations, (b interface sediment of the Flysch nappes and Palaeogene deposits is characterized by a decrease of velocity, and (c big contrast of velocity reflects the boundary between the carbonates (the Devonian and the Jurassic and their surrounding rocks. The velocity analysis helps significantly for mapping of the Outer Carpathian Flysch nappes (the Pouzdřany Unit and especially the Ždánice Unit, the Neogene deposits, the

  11. Nonclassical Particle Transport in the 1-D Diffusive Limit

    CERN Document Server

    Vasques, Richard; Krycki, Kai

    2016-01-01

    This paper provides numerical results that demonstrate the validity of the nonclassical diffusion approximation to the nonclassical transport equation in certain 1-D diffusive systems. This result provides a more solid foundation in which to improve this theory for relevant nuclear applications.

  12. Simulation of Organic Solar Cells Using AMPS-1D Program

    Directory of Open Access Journals (Sweden)

    Samah G. Babiker

    2012-03-01

    Full Text Available The analysis of microelectronic and photonic structure in one dimension program [AMPS-1D] program has been successfully used to study inorganic solar cells. In this work the program has been used to optimize the performance of the organic solar cells. The cells considered consist of poly(2-methoxy-5-(3,7- dimethyloctyloxy-1,4-phenylenevinylene [MDMO-PPV

  13. A 1D wavelet filtering for ultrasound images despeckling

    Science.gov (United States)

    Dahdouh, Sonia; Dubois, Mathieu; Frenoux, Emmanuelle; Osorio, Angel

    2010-03-01

    Ultrasound images appearance is characterized by speckle, shadows, signal dropout and low contrast which make them really difficult to process and leads to a very poor signal to noise ratio. Therefore, for main imaging applications, a denoising step is necessary to apply successfully medical imaging algorithms on such images. However, due to speckle statistics, denoising and enhancing edges on these images without inducing additional blurring is a real challenging problem on which usual filters often fail. To deal with such problems, a large number of papers are working on B-mode images considering that the noise is purely multiplicative. Making such an assertion could be misleading, because of internal pre-processing such as log compression which are done in the ultrasound device. To address those questions, we designed a novel filtering method based on 1D Radiofrequency signal. Indeed, since B-mode images are initially composed of 1D signals and since the log compression made by ultrasound devices modifies noise statistics, we decided to filter directly the 1D Radiofrequency signal envelope before log compression and image reconstitution, in order to conserve as much information as possible. A bi-orthogonal wavelet transform is applied to the log transform of each signal and an adaptive 1D split and merge like algorithm is used to denoise wavelet coefficients. Experiments were carried out on synthetic data sets simulated with Field II simulator and results show that our filter outperforms classical speckle filtering methods like Lee, non-linear means or SRAD filters.

  14. Optical properties of LEDs with patterned 1D photonic crystal

    Science.gov (United States)

    Hronec, P.; Kuzma, A.; Å kriniarová, J.; Kováč, J.; Benčurová, A.; Haščík, Å.; Nemec, P.

    2015-08-01

    In this paper we focus on the application of the one-dimensional photonic crystal (1D PhC) structures on the top of Al0.295Ga0.705As/GaAs multi-quantum well light emitting diode (MQW LED). 1D PhC structures with periods of 600 nm, 700 nm, 800 nm, and 900 nm were fabricated by the E-Beam Direct Write (EBDW) Lithography. Effect of 1D PhC period on the light extraction enhancement was studied. 1D PhC LED radiation profiles were obtained from Near Surface Light Emission Images (NSLEI). Measurements showed the strongest light extraction enhancement using 800 nm period of PhC. Investigation of PhC LED radiation profiles showed strong light decoupling when light reaches PhC structure. Achieved LEE was from 22.6% for 600 nm PhC LED to 47.0% for 800 nm PhC LED. LED with PhC structure at its surface was simulated by FDTD simulation method under excitation of appropriate launch field.

  15. Scattering approach to classical quasi-1D transport

    OpenAIRE

    Kogan, Eugene

    1996-01-01

    General dynamical transport of classical particles in disordered quasi-1D samples is viewed in the framework of scattering approach. Simple equation for the transfer-matrix is obtained within this unified picture. In the case of diffusive transport the solution of this equation exactly coincides with the solution of diffusion equation.

  16. Main: 1D8U [RPSD[Archive

    Lifescience Database Archive (English)

    Full Text Available 1D8U イネ Rice Oryza sativa L. Non-Symbiotic Hemoglobin 1 Name=Hb1; Synonyms=Glb1a; O...ryza Sativa Molecule: Non-Symbiotic Hemoglobin; Chain: A, B; Engineered: Yes Oxygen Storage/Transport M.Harg

  17. Bessel Series in the Space H1(D)%H1(D)空间的Bessel级数

    Institute of Scientific and Technical Information of China (English)

    木乐华

    2001-01-01

    An identity concerning the partial sums of Bessel series and power series for H1(D) functions is given.Based on it,many of precise extimates about the deviation of the partial sums of Bessel series can be obtained.%本文给出关于H1(D)空间中函数的Bessel级数的部分和用幂级数的部分和表示的一个恒等式.基于它,可以得到Bessel级数部分和偏差的诸多精确估计.

  18. Correction of lunar seismograms for instrumental and near-surface effects and constraints on the velocity structure of the lunar interior

    Science.gov (United States)

    Horvath, P.

    1982-01-01

    Long-period lunar seismograms were studied with the aim of identifying consistent sets of direct shear and secondary wave arrivals, thus constraining the velocities in the lunar mantle and the depths of the velocity discontinuities. Two velocity models were used to locate the natural impacts and the shallow moonquakes and to obtain the travel time residuals. Seismic sections were made of the radial, transverse, and vertical components of ground motion for impacts, shallow, and deep moonquakes in order to search for consistent sets of secondary wave arrivals. No conclusive set of secondary arrivals could be recognized on the seismic sections and thus the velocities and depths of the velocity discontinuities cannot be severely constrained by secondary arrivals. It is likely that the crust is thinner than 50 km and that a first-order discontinuity separates the upper and lower crust at a depth of between 20 and 30 km.

  19. Small-aperture-array translational and rotational seismograms from distant sources - An example of the Jan Mayen Mw 6.8 of 30 August 2012 earthquake

    Science.gov (United States)

    Brokešová, Johana; Málek, Jiří

    2016-07-01

    We present the seismic rotation rate due to the earthquake of Mw 6.7 at the Jan Mayen island, obtained from broad-band seismograms at a distance of about 2740 km. The order of magnitude of the rotation rate amplitude is only 10-9 rad/s in this case. It is studied with a focus on rotation-to-translation relations. A joint analysis of the rotational and translational data allowed us to determine the true backazimuth and phase velocity of S- and Rayleigh waves. For the surface waves, we studied the frequency dependence of both the backazimuth and phase velocity (wave dispersion). The results are independently confirmed by a method based on time delays between translational records within a small-aperture array. Both methods revealed an unusual velocity drop in the dispersion curve between the periods of 18 and 22 s. This feature may be an indication of a low-velocity zone in the lower crust.

  20. Numerical simulations of heavily polluted fine-grained sediment remobilization using 1D, 1D+, and 2D channel schematization.

    Science.gov (United States)

    Kaiglová, Jana; Langhammer, Jakub; Jiřinec, Petr; Janský, Bohumír; Chalupová, Dagmar

    2015-03-01

    This article used various hydrodynamic and sediment transport models to analyze the potential and the limits of different channel schematizations. The main aim was to select and evaluate the most suitable simulation method for fine-grained sediment remobilization assessment. Three types of channel schematization were selected to study the flow potential for remobilizing fine-grained sediment in artificially modified channels. Schematization with a 1D cross-sectional horizontal plan, a 1D+ approach, splitting the riverbed into different functional zones, and full 2D mesh, adopted in MIKE by the DHI modeling suite, was applied to the study. For the case study, a 55-km stretch of the Bílina River, in the Czech Republic, Central Europe, which has been heavily polluted by the chemical and coal mining industry since the mid-twentieth century, was selected. Long-term exposure to direct emissions of toxic pollutants including heavy metals and persistent organic pollutants (POPs) resulted in deposits of pollutants in fine-grained sediments in the riverbed. Simulations, based on three hydrodynamic model schematizations, proved that for events not exceeding the extent of the riverbed profile, the 1D schematization can provide comparable results to a 2D model. The 1D+ schematization can improve accuracy while keeping the benefits of high-speed simulation and low requirements of input DEM data, but the method's suitability is limited by the channel properties. PMID:25687259

  1. Effect of the twist operator in the D1D5 CFT

    CERN Document Server

    Carson, Zaq; Mathur, Samir D; Turton, David

    2014-01-01

    The D1D5 CFT has been very useful in the study of black holes. The interaction in this theory involves a twist operator, which links together different copies of a free CFT. For the bosonic fields, we examine the action of this twist when it links together CFT copies with winding numbers M and N to produce a copy with winding M+N. Starting with the vacuum state generates a squeezed state, which we compute. Starting with an initial excitation on one of the copies gives a linear combination of excitations on the final state, which we also compute. These results generalize earlier computations where these quantities were computed for the special case M=N=1. Our results should help in understanding the thermalization process in the D1D5 CFT, which gives the dual of black hole formation in the bulk.

  2. Design, implementation and analysis of fully digital 1-D controllable multiscroll chaos

    KAUST Repository

    Mansingka, Abhinav S.

    2011-12-01

    This paper introduces the fully digital implementation of a 1-D multiscroll chaos generator based on a staircase nonlinearity in the 3rd-order jerk system using the Euler approximation. For the first time, digital design is exploited to provide real-time controllability of (i) number of scrolls, (ii) position in 1-D space, (iii) Euler step size and (iv) system parameter. The effect of variations in these fields on the maximum Lyapunov exponent (MLE) is analyzed. The system is implemented using Verilog HDL and synthesized on an Xilinx Virtex 4 FPGA, exhibiting area utilization less than 3.5% and high performance with experimentally verified throughput up to 3.33 Gbits/s. This fully digital system enables applications in modulation schemes and chaos-based cryptosystems without analog to digital conversion. © 2011 IEEE.

  3. Developing 1D nanostructure arrays for future nanophotonics

    Directory of Open Access Journals (Sweden)

    Cooke DG

    2006-01-01

    Full Text Available AbstractThere is intense and growing interest in one-dimensional (1-D nanostructures from the perspective of their synthesis and unique properties, especially with respect to their excellent optical response and an ability to form heterostructures. This review discusses alternative approaches to preparation and organization of such structures, and their potential properties. In particular, molecular-scale printing is highlighted as a method for creating organized pre-cursor structure for locating nanowires, as well as vapor–liquid–solid (VLS templated growth using nano-channel alumina (NCA, and deposition of 1-D structures with glancing angle deposition (GLAD. As regards novel optical properties, we discuss as an example, finite size photonic crystal cavity structures formed from such nanostructure arrays possessing highQand small mode volume, and being ideal for developing future nanolasers.

  4. Phase diagram of a bulk 1d lattice Coulomb gas

    Science.gov (United States)

    Démery, V.; Monsarrat, R.; Dean, D. S.; Podgornik, R.

    2016-01-01

    The exact solution, via transfer matrix, of the simple one-dimensional lattice Coulomb gas (1d LCG) model can reproduce peculiar features of ionic liquid capacitors, such as overscreening, layering, and camel- and bell-shaped capacitance curves. Using the same transfer matrix method, we now compute the bulk properties of the 1d LCG in the constant voltage ensemble. We unveil a phase diagram with rich structure exhibiting low-density disordered and high-density ordered phases, separated by a first-order phase transition at low temperature; the solid state at full packing can be ordered or not, depending on the temperature. This phase diagram, which is strikingly similar to its three-dimensional counterpart, also sheds light on the behaviour of the confined system.

  5. New D1-D5-P geometries from string amplitudes

    CERN Document Server

    Giusto, Stefano; Turton, David

    2011-01-01

    We derive the long range supergravity fields sourced by a D1-D5-P bound state from disk amplitudes for massless closed string emission. We suggest that since the parameter controlling the string perturbation expansion for this calculation decreases with distance from the bound state, the resulting asymptotic fields are valid even in the regime of parameters in which there is a classical black hole solution with the same charges. The supergravity fields differ from the black hole solution by multipole moments and are more general than those contained within known classes of solutions in the literature, whilst still preserving four supersymmetries. Our results support the conjecture that the black hole solution should be interpreted as a coarse-grained description rather than an exact description of the gravitational field sourced by D1-D5-P bound states in this regime of parameters.

  6. D1-D5-P microstates at the cap

    CERN Document Server

    Giusto, Stefano; Mathur, Samir D; Turton, David

    2012-01-01

    The geometries describing D1-D5-P bound states in string theory have three regions: flat asymptotics, an anti-de Sitter throat, and a 'cap' region at the bottom of the throat. We identify the CFT description of a known class of supersymmetric D1-D5-P microstate geometries which describe degrees of freedom in the cap region. The class includes both regular solutions and solutions with conical defects, and generalizes configurations with known CFT descriptions: a parameter related to spectral flow in the CFT is generalized from integer to fractional values. We provide strong evidence for this identification by comparing the massless scalar excitation spectrum between gravity and CFT and finding exact agreement.

  7. Morphodynamics and sediment tracers in 1-D (MAST-1D): 1-D sediment transport that includes exchange with an off-channel sediment reservoir

    Science.gov (United States)

    Lauer, J. Wesley; Viparelli, Enrica; Piégay, Hervé

    2016-07-01

    Bed material transported in geomorphically active gravel bed rivers often has a local source at nearby eroding banks and ends up sequestered in bars not far downstream. However, most 1-D numerical models for gravel transport assume that gravel originates from and deposits on the channel bed. In this paper, we present a 1-D framework for simulating morphodynamic evolution of bed elevation and size distribution in a gravel-bed river that actively exchanges sediment with its floodplain, which is represented as an off-channel sediment reservoir. The model is based on the idea that sediment enters the channel at eroding banks whose elevation depends on total floodplain sediment storage and on the average elevation of the floodplain relative to the channel bed. Lateral erosion of these banks occurs at a specified rate that can represent either net channel migration or channel widening. Transfer of material out of the channel depends on a typical bar thickness and a specified lateral exchange rate due either to net channel migration or narrowing. The model is implemented using an object oriented framework that allows users to explore relationships between bank supply, bed structure, and lateral change rates. It is applied to a ∼50-km reach of the Ain River, France, that experienced significant reduction in sediment supply due to dam construction during the 20th century. Results are strongly sensitive to lateral exchange rates, showing that in this reach, the supply of sand and gravel at eroding banks and the sequestration of gravel in point bars can have strong influence on overall reach-scale sediment budgets.

  8. Quantitative 1D saturation profiles on chalk by NMR

    DEFF Research Database (Denmark)

    Olsen, Dan; Topp, Simon; Stensgaard, Anders;

    1996-01-01

    Quantitative one-dimensional saturation profiles showing the distribution of water and oil in chalk core samples are calculated from NMR measurements utilizing a 1D CSI spectroscopy pulse sequence. Saturation profiles may be acquired under conditions of fluid flow through the sample. Results reveal...... that strong saturation gradients exist in chalk core samples after core floods, due to capillary effects. The method is useful in analysis of corefloods, e.g., for determination of capillary pressure functions...

  9. Blind Detection of Severely Blurred 1D Barcode

    OpenAIRE

    Dridi, Noura; Delignon, Yves; Sawaya, Wadih; Septier, François

    2010-01-01

    In this paper, we present a joint blind channel estimation and symbol detection for decoding a blurred and noisy 1D barcode captured image. From an information transmission point of view, we show that the channel impulse response, the noise power and the symbols can be efficiently estimated by taking into account the signal structure such as the cyclostationary property of the hidden Markov process to estimate. Based on the Expectation-Maximisation method, we show that the new algorithm offer...

  10. A study of slow light in 1D photonic crystals

    OpenAIRE

    Yudistira, D.; Hoekstra, H.J.W.M.; Hammer, M; Marpaung, D.A.I.

    2005-01-01

    Slow light (SL) states corresponding to wavelength regions near the bandgap edge of grating structure are known to show strong field enhancement. Such states may be excited efficiently by well-optimised adiabatic transitions in such structures, e.g., by slowly turning on the modulation depth. To study adiabatic excitations, a detailed research in 1D is performed to obtain insight into the relation between the device parameters and properties like enhancement and modal reflection. The results ...

  11. Theory of slow light excitation in 1D photonic crystals

    OpenAIRE

    Yudistira, D.; Marpaung, D.A.I.; Handoyo, H.P.; Hoekstra, H.J.W.M.; Hammer, M; Tjia, M.O.; Iskandar, A.A.

    2004-01-01

    Slow light (SL) states corresponding to wavelength regions near the bandgap edge of grated structures are known to show strong eld enhancement. Such states may be excited efciently by well-optimised adiabatic transitions in grating structures, e.g., by slowly turning on the modulation depth. To study adiabatic excitations, a detailed investigation in 1D is performed to obtain insight into the relation between the device parameters and properties like eld enhancement and modal reection. The re...

  12. Polaron in a quasi 1D cylindrical quantum wire

    Directory of Open Access Journals (Sweden)

    I.Nsangou

    2005-01-01

    Full Text Available Polaron states in a quasi 1D cylindrical quantum wire with a parabolic confinement potential are investigated applying the Feynman variational principle. The effect of the wire radius on the polaron ground state energy level, the mass and the Fröhlich electron-phonon-coupling constant are obtained for the case of a quasi 1D cylindrical quantum wire. The effect of anisotropy of the structure on the polaron ground state energy level and the mass are also investigated. It is observed that as the wire radius tends to zero, the polaron mass and energy diverge logarithmically. The polaron mass and energy differ from the canonical strong-coupling behavior by the Fröhlich electron-phonon coupling constant and the radius of the quasi 1D cylindrical quantum wire that are expressed through a logarithmic function. Moreover, it is observed that the polaron energy and mass for strong coupling for the case of the quasi 1D cylindrical quantum wire are greater than those for bulk crystals. It is also observed that the anisotropy of the structure considerably affects both the polaron ground state energy level and the mass. It is found that as the radius of the cylindrical wire reduces, the regimes of the weak and intermediate coupling polaron shorten while the region of the strong coupling polaron broadens and extends into those of the weak and intermediate ones. Analytic expressions for the polaron ground state energy level and mass are derived for the case of strong coupling polarons.

  13. Constructing 3D interaction maps from 1D epigenomes.

    Science.gov (United States)

    Zhu, Yun; Chen, Zhao; Zhang, Kai; Wang, Mengchi; Medovoy, David; Whitaker, John W; Ding, Bo; Li, Nan; Zheng, Lina; Wang, Wei

    2016-01-01

    The human genome is tightly packaged into chromatin whose functional output depends on both one-dimensional (1D) local chromatin states and three-dimensional (3D) genome organization. Currently, chromatin modifications and 3D genome organization are measured by distinct assays. An emerging question is whether it is possible to deduce 3D interactions by integrative analysis of 1D epigenomic data and associate 3D contacts to functionality of the interacting loci. Here we present EpiTensor, an algorithm to identify 3D spatial associations within topologically associating domains (TADs) from 1D maps of histone modifications, chromatin accessibility and RNA-seq. We demonstrate that active promoter-promoter, promoter-enhancer and enhancer-enhancer associations identified by EpiTensor are highly concordant with those detected by Hi-C, ChIA-PET and eQTL analyses at 200 bp resolution. Moreover, EpiTensor has identified a set of interaction hotspots, characterized by higher chromatin and transcriptional activity as well as enriched TF and ncRNA binding across diverse cell types, which may be critical for stabilizing the local 3D interactions. PMID:26960733

  14. Domain walls and instantons in N=1, d=4 supergravity

    CERN Document Server

    Huebscher, M; Ortin, T

    2009-01-01

    We study the supersymmetric sources of (multi-) domain-wall and (multi-) instanton solutions of generic N=1, d=4 supergravities, that is: the worldvolume effective actions for said supersymmetric topological defects. The domain-wall solutions naturally couple to the two 3-forms recently found as part of the N=1, d=4 tensor hierarchy (i.e. they have two charges in general) and their tension is the absolute value of the superpotential section L. The introduction of sources (we study sources with finite and vanishing thickness) is equivalent to the introduction of local coupling constants and results in dramatic changes of the solutions. Our results call for a democratic reformulation of N=1,d=4 supergravity in which coupling constants are, off-shell, scalar fields. The effective actions for the instantons are always proportional to the coordinate orthogonal to the twist-free embedding of the null-geodesic (in the Wick-rotated scalar manifold) describing the instanton. We show their supersymmetry and find the as...

  15. Development of 1D Liner Compression Code for IDL

    Science.gov (United States)

    Shimazu, Akihisa; Slough, John; Pancotti, Anthony

    2015-11-01

    A 1D liner compression code is developed to model liner implosion dynamics in the Inductively Driven Liner Experiment (IDL) where FRC plasmoid is compressed via inductively-driven metal liners. The driver circuit, magnetic field, joule heating, and liner dynamics calculations are performed at each time step in sequence to couple these effects in the code. To obtain more realistic magnetic field results for a given drive coil geometry, 2D and 3D effects are incorporated into the 1D field calculation through use of correction factor table lookup approach. Commercial low-frequency electromagnetic fields solver, ANSYS Maxwell 3D, is used to solve the magnetic field profile for static liner condition at various liner radius in order to derive correction factors for the 1D field calculation in the code. The liner dynamics results from the code is verified to be in good agreement with the results from commercial explicit dynamics solver, ANSYS Explicit Dynamics, and previous liner experiment. The developed code is used to optimize the capacitor bank and driver coil design for better energy transfer and coupling. FRC gain calculations are also performed using the liner compression data from the code for the conceptual design of the reactor sized system for fusion energy gains.

  16. Homogenization of 1D and 2D magnetoelastic lattices

    Directory of Open Access Journals (Sweden)

    Schaeffer Marshall

    2015-01-01

    Full Text Available This paper investigates the equivalent in-plane mechanical properties of one dimensional (1D and two dimensional (2D, periodic magneto-elastic lattices. A lumped parameter model describes the lattices using magnetic dipole moments in combination with axial and torsional springs. The homogenization procedure is applied to systems linearized about stable configurations, which are identified by minimizing potential energy. Simple algebraic expressions are derived for the properties of 1D structures. Results for 1D lattices show that a variety of stiffness changes are possible through reconfiguration, and that magnetization can either stiffen or soften a structure. Results for 2D hexagonal and re-entrant lattices show that both reconfigurations and magnetization have drastic effects on the mechanical properties of lattice structures. Lattices can be stiffened or softened and the Poisson’s ratio can be tuned. Furthermore for certain hexagonal lattices the sign of Poisson’s ratio can change by varying the lattice magnetization. In some cases presented, analytical and numerically estimated equivalent properties are validated through numerical simulations that also illustrate the unique characteristics of the investigated configurations.

  17. Coupling of Nod1D and HOTCHANNEL: static case

    International Nuclear Information System (INIS)

    In this work the joining of the programs Nod1D and HOTCHANNEL, developed in the National Polytechnic Institute (IPN) and in the Electrical Research Institute (IIE) respectively is described. The first one allows to study the neutronic of a nuclear reactor and the second one allows to carry out the analysis of hot channel of a Boiling Water Reactor (BWR). Nod1 D is a program that it solves by nodal methods type finite element those diffusion equations in multigroup, and it is the static part of Nod Kin that it solves the diffusion equation in their time dependent part. For another side HOTCHANNEL is based on a mathematical model constituted by four conservation equations (two of mass conservation, one of motion quantity and one of energy), which are solved applying one discretization in implicit finite differences. Both programs have been verified in independent form using diverse test problems. In this work the modifications that were necessary to carry out to both for obtaining a coupled program that it provides the axial distribution of the neutron flux, the power, the burnup and the void fraction, among others parameters as much as neutronic as thermal hydraulics are described. Those are also mentioned limitations, advantages and disadvantages of the final product to which has been designated Nod1 D-HotChn. Diverse results for the Cycle 1 of the Laguna Verde Unit 1 reactor of the Nucleo electric central comparing them with those obtained directly with the CoreMasterPresto code are provided. (Author)

  18. MARG1D: One dimensional outer region matching data code

    International Nuclear Information System (INIS)

    A code MARG1D has been developed which computes outer region matching data of the one dimensional Newcomb equation. Matching data play an important role in the resistive (and non ideal) Magneto-hydrodynamic (MHD) stability analysis in a tokamak plasma. The MARG1D code computes matching data by using the boundary value method or by the eigenvalue method. Variational principles are derived for the problems to be solved and a finite element method is applied. Except for the case of marginal stability, the eigenvalue method is equivalent to the boundary value method. However, the eigenvalue method has the several advantages: it is a new method of ideal MHD stability analysis for which the marginally stable state can be identified, and it guarantees numerical stability in computing matching data close to marginal stability. We perform detailed numerical experiments for a model equation with analytical solutions and for the Newcomb equation in the m=1 mode theory. Numerical experiments show that MARG1D code gives the matching data with numerical stability and high accuracy. (author)

  19. Examining Prebiotic Chemistry Using O(^1D) Insertion Reactions

    Science.gov (United States)

    Hays, Brian M.; Laas, Jacob C.; Weaver, Susanna L. Widicus

    2013-06-01

    Aminomethanol, methanediol, and methoxymethanol are all prebiotic molecules expected to form via photo-driven grain surface chemistry in the interstellar medium (ISM). These molecules are expected to be precursors for larger, biologically-relevant molecules in the ISM such as sugars and amino acids. These three molecules have not yet been detected in the ISM because of the lack of available rotational spectra. A high resolution (sub)millimeter spectrometer coupled to a molecular source is being used to study these molecules using O(^1D) insertion reactions. The O(^1D) chemistry is initiated using an excimer laser, and the products of the insertion reactions are adiabatically cooled using a supersonic expansion. Experimental parameters are being optimized by examination of methanol formed from O(^1D) insertion into methane. Theoretical studies of the structure and reaction energies for aminomethanol, methanediol, and methoxymethanol have been conducted to guide the laboratory studies once the methanol experiment has been optimized. The results of the calculations and initial experimental results will be presented.

  20. Molecular characterization of zebrafish Oatp1d1 (Slco1d1), a novel organic anion-transporting polypeptide.

    Science.gov (United States)

    Popovic, Marta; Zaja, Roko; Fent, Karl; Smital, Tvrtko

    2013-11-22

    The organic anion-transporting polypeptide (OATP/Oatp) superfamily includes a group of polyspecific transporters that mediate transport of large amphipathic, mostly anionic molecules across cell membranes of eukaryotes. OATPs/Oatps are involved in the disposition and elimination of numerous physiological and foreign compounds. However, in non-mammalian species, the functional properties of Oatps remain unknown. We aimed to elucidate the role of Oatp1d1 in zebrafish to gain insights into the functional and structural evolution of the OATP1/Oatp1 superfamily. We show that diversification of the OATP1/Oatp1 family occurs after the emergence of jawed fish and that the OATP1A/Oatp1a and OATP1B/Oatp1b subfamilies appeared at the root of tetrapods. The Oatp1d subfamily emerged in teleosts and is absent in tetrapods. The zebrafish Oatp1d1 is similar to mammalian OATP1A/Oatp1a and OATP1B/Oatp1b members, with the main physiological role in transport and balance of steroid hormones. Oatp1d1 activity is dependent upon pH gradient, which could indicate bicarbonate exchange as a mode of transport. Our analysis of evolutionary conservation and structural properties revealed that (i) His-79 in intracellular loop 3 is conserved within OATP1/Oatp1 family and is crucial for the transport activity; (ii) N-glycosylation impacts membrane targeting and is conserved within the OATP1/Oatp1 family with Asn-122, Asn-133, Asn-499, and Asn-512 residues involved; (iii) the evolutionarily conserved cholesterol recognition interaction amino acid consensus motif is important for membrane localization; and (iv) Oatp1d1 is present in dimeric and possibly oligomeric form in the cell membrane. In conclusion, we describe the first detailed characterization of a new Oatp transporter in zebrafish, offering important insights into the functional evolution of the OATP1/Oatp1 family and the physiological role of Oatp1d1.

  1. On the computation of long period seismograms in a 3-D earth using normal mode based approximations

    Science.gov (United States)

    Romanowicz, Barbara A.; Panning, Mark P.; Gung, Yuancheng; Capdeville, Yann

    2008-11-01

    Tomographic inversions for large-scale structure of the earth's mantle involve a forward modelling step of wave propagation through 3-D heterogeneity. Until now, most investigators have worked in the framework of the simplest theoretical assumptions, namely the infinite frequency `ray theory' in the case of body wave traveltime inversions, or the `path-average' approximation (PAVA) to normal mode perturbation theory, in the case of surface waves and long-period waveforms. As interest is shifting to mapping shorter wavelength structures, the need for a more accurate theoretical account of the interaction of seismic waves with mantle heterogeneity, coupled with improvements in path coverage, has been realized. Here we discuss different levels of approximations used in the context of normal mode perturbation theory, when modelling time domain seismic waveforms. We compare the performance of asymptotic approximations, which collapse the effects of 3-D structure onto the great circle vertical plane: the 1-D PAVA and a 2-D approximation called non-linear asymptotic coupling theory (NACT), which both are zeroth order asymptotic approximations. We then discuss how off-vertical plane effects can be introduced using higher order asymptotics. These computationally efficient approximations are compared to the linear Born formalism (BORN), which computes scattering integrals over the entire surface of the sphere. We point out some limitations of this linear formalism in the case of spatially extended anomalies, and show how that can be remedied through the introduction of a non-linear term (NBORN). All these approximations are referenced to a precise 3-D numerical computation afforded by the spectral element method. We discuss simple geometries, and explore a range of sizes of anomalies compared to the wavelength of the seismic waves considered, thus illustrating the range of validity and limitations of the various approximations considered.

  2. Coupling of Nod1D and HOTCHANNEL: static case; Acoplamiento de Nod1D y HOTCHANNEL: caso estatico

    Energy Technology Data Exchange (ETDEWEB)

    Gomez T, A.M. [IPN-ESFM, 07738 Mexico D.F. (Mexico); Ovando C, R. [IIE-Gcia. de Energia Nuclear, Cuernavaca, Morelos (Mexico)]. e-mail: rovando@iie.org.mx

    2003-07-01

    In this work the joining of the programs Nod1D and HOTCHANNEL, developed in the National Polytechnic Institute (IPN) and in the Electrical Research Institute (IIE) respectively is described. The first one allows to study the neutronic of a nuclear reactor and the second one allows to carry out the analysis of hot channel of a Boiling Water Reactor (BWR). Nod1 D is a program that it solves by nodal methods type finite element those diffusion equations in multigroup, and it is the static part of Nod Kin that it solves the diffusion equation in their time dependent part. For another side HOTCHANNEL is based on a mathematical model constituted by four conservation equations (two of mass conservation, one of motion quantity and one of energy), which are solved applying one discretization in implicit finite differences. Both programs have been verified in independent form using diverse test problems. In this work the modifications that were necessary to carry out to both for obtaining a coupled program that it provides the axial distribution of the neutron flux, the power, the burnup and the void fraction, among others parameters as much as neutronic as thermal hydraulics are described. Those are also mentioned limitations, advantages and disadvantages of the final product to which has been designated Nod1 D-HotChn. Diverse results for the Cycle 1 of the Laguna Verde Unit 1 reactor of the Nucleo electric central comparing them with those obtained directly with the CoreMasterPresto code are provided. (Author)

  3. Numerical simulation of Ge solar cells using D-AMPS-1D code

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, Marcela, E-mail: barrera@tandar.cnea.gov.ar [Comision Nacional de Energia Atomica, Avenida General Paz 1499, San Martin 1650, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); Rubinelli, Francisco [Instituto de Desarrollo Tecnologico para la Industria Quimica (INTEC)-CONICET, Gueemes 3450, Santa Fe 3000 (Argentina); Rey-Stolle, Ignacio [Instituto de Energia Solar, Universidad Politecnica de Madrid, Avenida Complutense 30, Madrid 28040 (Spain); Pla, Juan [Comision Nacional de Energia Atomica, Avenida General Paz 1499, San Martin 1650, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina)

    2012-08-15

    A solar cell is a solid state device that converts the energy of sunlight directly into electricity by the photovoltaic effect. When light with photon energies greater than the band gap is absorbed by a semiconductor material, free electrons and free holes are generated by optical excitation in the material. The main characteristic of a photovoltaic device is the presence of internal electric field able to separate the free electrons and holes so they can pass out of the material to the external circuit before they recombine. Numerical simulation of photovoltaic devices plays a crucial role in their design, performance prediction, and comprehension of the fundamental phenomena ruling their operation. The electrical transport and the optical behavior of the solar cells discussed in this work were studied with the simulation code D-AMPS-1D. This software is an updated version of the one-dimensional (1D) simulation program Analysis of Microelectronic and Photonic Devices (AMPS) that was initially developed at The Penn State University, USA. Structures such as homojunctions, heterojunctions, multijunctions, etc., resulting from stacking layers of different materials can be studied by appropriately selecting characteristic parameters. In this work, examples of cells simulation made with D-AMPS-1D are shown. Particularly, results of Ge photovoltaic devices are presented. The role of the InGaP buffer on the device was studied. Moreover, a comparison of the simulated electrical parameters with experimental results was performed.

  4. Extended-Range Ultrarefractive 1D Photonic Crystal Prisms

    Science.gov (United States)

    Ting, David Z.

    2007-01-01

    A proposal has been made to exploit the special wavelength-dispersive characteristics of devices of the type described in One-Dimensional Photonic Crystal Superprisms (NPO-30232) NASA Tech Briefs, Vol. 29, No. 4 (April 2005), page 10a. A photonic crystal is an optical component that has a periodic structure comprising two dielectric materials with high dielectric contrast (e.g., a semiconductor and air), with geometrical feature sizes comparable to or smaller than light wavelengths of interest. Experimental superprisms have been realized as photonic crystals having three-dimensional (3D) structures comprising regions of amorphous Si alternating with regions of SiO2, fabricated in a complex process that included sputtering. A photonic crystal of the type to be exploited according to the present proposal is said to be one-dimensional (1D) because its contrasting dielectric materials would be stacked in parallel planar layers; in other words, there would be spatial periodicity in one dimension only. The processes of designing and fabricating 1D photonic crystal superprisms would be simpler and, hence, would cost less than do those for 3D photonic crystal superprisms. As in 3D structures, 1D photonic crystals may be used in applications such as wavelength-division multiplexing. In the extended-range configuration, it is also suitable for spectrometry applications. As an engineered structure or artificially engineered material, a photonic crystal can exhibit optical properties not commonly found in natural substances. Prior research had revealed several classes of photonic crystal structures for which the propagation of electromagnetic radiation is forbidden in certain frequency ranges, denoted photonic bandgaps. It had also been found that in narrow frequency bands just outside the photonic bandgaps, the angular wavelength dispersion of electromagnetic waves propagating in photonic crystal superprisms is much stronger than is the angular wavelength dispersion obtained

  5. Coherent thermal conductance of 1-D photonic crystals

    Science.gov (United States)

    Tschikin, Maria; Ben-Abdallah, Philippe; Biehs, Svend-Age

    2012-10-01

    We present an exact calculation of coherent thermal conductance in 1-D multilayer photonic crystals using the S-matrix method. In particular, we study the thermal conductance in a bilayer structure of Si/vacuum or Al2O3/vacuum slabs by means of the exact radiative heat flux expression. Based on the results obtained for the Al2O3/vacuum structure we show by comparison with previous works that the material losses and (localized) surface modes supported by the inner layers play a fundamental role and cannot be omitted in the definition of thermal conductance. Our results could have significant implications in the conception of efficient thermal barriers.

  6. Spatial coherence of polaritons in a 1D channel

    Energy Technology Data Exchange (ETDEWEB)

    Savenko, I. G., E-mail: savenko.j@mail.ru [Russian Academy of Sciences, Academic University, Research and Education Center of Nanotechnologies (Russian Federation); Iorsh, I. V. [National Research University of Information Technologies, Mechanics and Optics (Russian Federation); Kaliteevski, M. A. [Russian Academy of Sciences, Academic University, Research and Education Center of Nanotechnologies (Russian Federation); Shelykh, I. A. [University of Iceland, Science Institute (Iceland)

    2013-01-15

    We analyze time evolution of spatial coherence of a polariton ensemble in a quantum wire (1D channel) under constant uniform resonant pumping. Using the theoretical approach based on the Lindblad equation for a one-particle density matrix, which takes into account the polariton-phonon and excitonexciton interactions, we study the behavior of the first-order coherence function g{sup 1} for various pump intensities and temperatures in the range of 1-20 K. Bistability and hysteresis in the dependence of the first-order coherence function on the pump intensity is demonstrated.

  7. Phthalocyanine based 1D nanowires for device applications

    Science.gov (United States)

    Saini, Rajan; Mahajan, Aman; Bedi, R. K.

    2012-06-01

    1D nanowires (NWs) of Cu (II) 1,4,8,11,15,18,22,25-octabutoxy-29H,31H-Phthalocyanine (CuPc(OBu)8) molecule have been grown on different substrates by cost effective solution processing technique. The density of NWs is found to be strongly dependent on the concentration of solution. The possible formation mechanism of these structures is π-π interaction between phthalocyanine molecules. The improved conductivity of these NWs as compared to spin coated film indicates their potential for molecular device applications.

  8. Restrained Dark $U(1)_d$ at Low Energies

    CERN Document Server

    Correia, F C

    2016-01-01

    We investigate a spontaneously broken $U(1)_d$ gauge symmetry with a muon-specific dark Higgs. Our first goal is to verify how the presence of a new dark Higgs, $\\phi$, and a dark gauge boson, $V$, can simultaneously face the anomalies from the muon magnetic moment and the proton charge radius. Secondly, by assuming that $V$ must decay to an electron-positron pair, we explore the corresponding parameter space determined with the low energy constraints coming from $ K \\to \\mu X$, electron $(g-2)_e$, $K \\to \\mu \

  9. Breakdown of 1D water wires inside Charged Carbon Nanotubes

    CERN Document Server

    Pant, Shashank

    2016-01-01

    Using Molecular Dynamics approach we investigated the structure, dynamics of water confined inside pristine and charged 6,6 carbon nanotubes (CNTs). This study reports the breakdown of 1D water wires and the emergence of triangular faced water on incorporating charges in 6,6 CNTs. Incorporation of charges results in high potential barriers to the flipping of water molecules due to the formation of a large number of hydrogen bonds. The PMF analyses show the presence of ~2 kcal/mol barrier for the movement of water inside pristine CNT and almost negligible barrier in charged CNTs.

  10. A Godunov method for Lagrangian hydrodynamics in 1D

    Energy Technology Data Exchange (ETDEWEB)

    Crowley, W.P.

    1987-01-15

    For transient problems involving strong shocks, the artificial viscosity method has been the standard in numerical hydrodynamics for many years. An alternative approach was suggested by Godunov and it is gaining acceptance. We consider a Godunov method for 1D Lagrangian calculations and show that in the case of a strong shock moving through a nonuniform mesh the Godunov solution is superior to the artificial viscosity solution. For uniform mesh shock problems in spherical geometry the two methods give comparable results. 4 refs., 9 figs.

  11. Cold beam of isotopically pure Yb atoms by deflection using 1D-optical molasses

    OpenAIRE

    Rathod, KD; Singh, PK; Natarajan, Vasant

    2014-01-01

    We demonstrate the generation of an isotopically pure beam of laser-cooled Yb atoms by deflection using 1D-optical molasses. Atoms in a collimated thermal beam are first slowed using a Zeeman slower. They are then subjected to a pair of molasses beams inclined at 45(a similar to) with respect to the slowed atomic beam. The slowed atoms are deflected and probed at a distance of 160 mm. We demonstrate the selective deflection of the bosonic isotope Yb-174 and the fermionic isotope Yb-171. Using...

  12. Cold beam of isotopically pure Yb atoms by deflection using 1D-optical molasses

    Science.gov (United States)

    Rathod, K. D.; Singh, P. K.; Natarajan, Vasant

    2014-09-01

    We demonstrate generation of an isotopically pure beam of laser-cooled Yb atoms by deflection using 1D-optical molasses. Atoms in a collimated thermal beam are first slowed using a Zeeman Slower. They are then subjected to a pair of molasses beams inclined at $45^\\circ$ with respect to the slowed atomic beam. The slowed atoms are deflected and probed at a distance of 160 mm. We demonstrate selective deflection of the bosonic isotope $^{174}$Yb, and the fermionic isotope $^{171}$Yb. Using a transient measurement after the molasses beams are turned on, we find a longitudinal temperature of 41 mK.

  13. Cold beam of isotopically pure Yb atoms by deflection using 1D-optical molasses

    CERN Document Server

    Rathod, K D; Natarajan, Vasant

    2013-01-01

    We demonstrate generation of an isotopically pure beam of laser-cooled Yb atoms by deflection using 1D-optical molasses. Atoms in a collimated thermal beam are first slowed using a Zeeman Slower. They are then subjected to a pair of molasses beams inclined at $45^\\circ$ with respect to the slowed atomic beam. The slowed atoms are deflected and probed at a distance of 160 mm. We demonstrate selective deflection of the bosonic isotope $^{174}$Yb, and the fermionic isotope $^{171}$Yb. Using a transient measurement after the molasses beams are turned on, we find a longitudinal temperature of 41 mK.

  14. Cold beam of isotopically pure Yb atoms by deflection using 1D-optical molasses

    Indian Academy of Sciences (India)

    K D Rathod; P K Singh; Vasant Natarajan

    2014-09-01

    We demonstrate the generation of an isotopically pure beam of laser-cooled Yb atoms by deflection using 1D-optical molasses. Atoms in a collimated thermal beam are first slowed using a Zeeman slower. They are then subjected to a pair of molasses beams inclined at 45° with respect to the slowed atomic beam. The slowed atoms are deflected and probed at a distance of 160 mm. We demonstrate the selective deflection of the bosonic isotope 174Yb and the fermionic isotope 171Yb. Using a transient measurement after the molasses beams are turned on, we find a longitudinal temperature of 41 mK.

  15. The Cosmological Mass Function with 1D Gravity

    CERN Document Server

    Monaco, P; Monaco, Pierluigi; Murante, Giuseppe

    1999-01-01

    The cosmological mass function problem is analyzed in full detail in the case of 1D gravity, with analytical, semi-analytical and numerical techniques. The extended Press & Schechter theory is improved by detailing the relation between smoothing radius and mass of the objects. This is done by introducing in the formalism the concept of a growth curve for the objects. The predictions of the extended Press & Schechter theory are compared to large N-body simulations of flat expanding 1D universes with scale-free power spectra of primordial perturbations. The collapsed objects in the simulations are located with a clump-finding algorithm designed to find regions that have undergone orbit crossing or that are in the multi-stream regime (these are different as an effect of the finite size of the multi-stream regions). It is found that the semi-analytical mass function theory, which has no free parameters, is able to recover the properties of collapsed objects both statistically and object by object. In part...

  16. Study of 1D Strange Charmed Meson Family Using HQET

    Directory of Open Access Journals (Sweden)

    Pallavi Gupta

    2016-01-01

    Full Text Available Recently LHCb predicted spin 1 and spin 3 states Ds1⁎(2860 and Ds3⁎(2860 which are studied through their strong decays and are assigned to fit the 13D1 and 13D3 states in the charm spectroscopy. In this paper, using the heavy quark effective theory, we state that assigning Ds1⁎(2860 as the mixing of 13D1-23S1 states is rather a better justification to its observed experimental values than a pure state. We study its decay modes variation with hadronic coupling constant gxh and the mixing angle θ. We appoint spin 3 state Ds3⁎(2860 as the missing 1D  3-JP state and also study its decay channel behavior with coupling constant gyh. To appreciate the above results, we check the variation of decay modes for their spin partners states, that is, 1D2 and 1D2′, with their masses and strong coupling constant, that is, gxh and gyh. Our calculation using HQET approach gives mixing angle of the 13D1-23S1 state for Ds1⁎(2860 to lie in the range (-1.6 radians ≤θ≤-1.2 radians. Our calculation for coupling constant values gives gxh to lie within value range of 0.17–0.20 and gyh to be 0.40. We expect from experiments to observe this mixing angle to verify our results.

  17. Modeling atrazine transport in soil columns with HYDRUS-1D

    Directory of Open Access Journals (Sweden)

    John Leju CELESTINO LADU

    2011-09-01

    Full Text Available Both physical and chemical processes affect the fate and transport of herbicides. It is useful to simulate these processes with computer programs to predict solute movement. Simulations were run with HYDRUS-1D to identify the sorption and degradation parameters of atrazine through calibration from the breakthrough curves (BTCs. Data from undisturbed and disturbed soil column experiments were compared and analyzed using the dual-porosity model. The study results show that the values of dispersivity are slightly lower in disturbed columns, suggesting that the more heterogeneous the structure is, the higher the dispersivity. Sorption parameters also show slight variability, which is attributed to the differences in soil properties, experimental conditions and methods, or other ecological factors. For both of the columns, the degradation rates were similar. Potassium bromide was used as a conservative non-reactive tracer to characterize the water movement in columns. Atrazine BTCs exhibited significant tailing and asymmetry, indicating non-equilibrium sorption during solute transport. The dual-porosity model was verified to best fit the BTCs of the column experiments. Greater or lesser concentration of atrazine spreading to the bottom of the columns indicated risk of groundwater contamination. Overall, HYDRUS-1D successfully simulated the atrazine transport in soil columns.

  18. A Framework for Low-Communication 1-D FFT

    Directory of Open Access Journals (Sweden)

    Ping Tak Peter Tang

    2013-01-01

    Full Text Available In high-performance computing on distributed-memory systems, communication often represents a significant part of the overall execution time. The relative cost of communication will certainly continue to rise as compute-density growth follows the current technology and industry trends. Design of lower-communication alternatives to fundamental computational algorithms has become an important field of research. For distributed 1-D FFT, communication cost has hitherto remained high as all industry-standard implementations perform three all-to-all internode data exchanges (also called global transposes. These communication steps indeed dominate execution time. In this paper, we present a mathematical framework from which many single-all-to-all and easy-to-implement 1-D FFT algorithms can be derived. For large-scale problems, our implementation can be twice as fast as leading FFT libraries on state-of-the-art computer clusters. Moreover, our framework allows tradeoff between accuracy and performance, further boosting performance if reduced accuracy is acceptable.

  19. A simple quasi-1D model of Fibonacci anyons

    Science.gov (United States)

    Aasen, David; Mong, Roger; Clarke, David; Alicea, Jason; Fendley, Paul

    2015-03-01

    There exists various ways of understanding the topological properties of Ising anyons--from simple free-fermion toy models to formal topological quantum field theory. For other types of anyons simple toy models rarely exist; their properties have to be obtained using formal self-consistency relations. We explore a family of gapped 1D local bosonic models that in a certain limit become trivial to solve and provide an intuitive picture for Fibonacci anyons. One can interpret this model as a quasi-1D wire that forms the building block of a 2D topological phase with Fibonacci anyons. With this interpretation all topological properties of the Fibonacci anyons become manifest including ground state degeneracy and braid relations. We conjecture that the structure of the model is protected by an emergent symmetry analogous to fermion parity. 1) NSF Grant DMR-1341822 2) Institute for Quantum Information and Matter, an NSF physics frontier center with support from the Moore Foundation. 3) NSERC-PGSD.

  20. Transformation of 1-D Chiral-chained Titanium Phosphate to 2-D Layer Structure Through a 1-D Zigzag Chain

    Institute of Scientific and Technical Information of China (English)

    CHEN Chao; YANG Yu-lin; LI Wei-sheng; LIU Yun-ling; YI Zhuo; GUO Yang-hong; PANG Wen-qin

    2005-01-01

    The transformation of titanium phosphate from 1-D chiral- chain(JTP-A) to 2-D layer(TP-J1) has been carefully investigated. Through a hydrolysis-condensation self-assembly pathway, the crystals of TP-J1 can be obtained from the JTP-A phase under hydrothermal conditions. An intermediate material with zigzag chain during the transformation was observed by XRD characterization. A hypothesis of the transformation mechanism is also described in this article. It is noteworthy that ethylenediamine plays an important role in the transformation.

  1. Simulating three-dimensional seismograms in 2.5-dimensional structures by combining two-dimensional finite difference modelling and ray tracing

    Science.gov (United States)

    Miksat, J.; Müller, T. M.; Wenzel, F.

    2008-07-01

    Finite difference (FD) simulation of elastic wave propagation is an important tool in geophysical research. As large-scale 3-D simulations are only feasible on supercomputers or clusters, and even then the simulations are limited to long periods compared to the model size, 2-D FD simulations are widespread. Whereas in generally 3-D heterogeneous structures it is not possible to infer the correct amplitude and waveform from 2-D simulations, in 2.5-D heterogeneous structures some inferences are possible. In particular, Vidale & Helmberger developed an approach that simulates 3-D waveforms using 2-D FD experiments only. However, their method requires a special FD source implementation technique that is based on a source definition which is not any longer used in nowadays FD codes. In this paper, we derive a conversion between 2-D and 3-D Green tensors that allows us to simulate 3-D displacement seismograms using 2-D FD simulations and the actual ray path determined in the geometrical optic limit. We give the conversion for a source of a certain seismic moment that is implemented by incrementing the components of the stress tensor. Therefore, we present a hybrid modelling procedure involving 2-D FD and kinematic ray-tracing techniques. The applicability is demonstrated by numerical experiments of elastic wave propagation for models of different complexity.

  2. Simplified 1D modelling of the HGA test

    International Nuclear Information System (INIS)

    Document available in extended abstract form only. The HGA test is located in the Mont Terri Rock Laboratory (Switzerland). It consists of a horizontal borehole of 1.00 m of diameter and 13.00 m of length excavated in the ultra-low permeable Opalinus clay. During the tunnel drilling, the Opalinus clay near the tunnel wall was damaged, giving rise to an EDZ (Excavation Damaged Zone) around the tunnel. A steel liner was placed along the 6.00 m close to the tunnel mouth in order to guarantee the stability. The last 4.00 m at the tunnel end were backfilled with gravel. Along the remaining 3.00 m, an inflatable rubber packer of 1.00 m in diameter, was installed and inflated, thereby compressing the EDZ that was created during the tunnel excavation. The test section was filled with de-aired water and care was taken in order to eliminate the air from this tunnel section. Subsequently, a series of water and gas injection tests were carried out with varying mega-packer pressure, whereby water or gas was injected into the test section and, due to the very low permeability of the intact Opalinus clay, forced to flow back along the EDZ. In order to model the water and gas flow through the EDZ, we have followed a two-track approach. On the one hand, a 2D axisymmetric numerical model using code-bright has been made. On the other hand, a 1D analytical-numerical model has been developed and implemented in an Excel spreadsheet, whereby the field equations defined on a 1D geometrical domain are numerically solved using the finite element method. The 1D model has been used in order to calibrate the 2D axisymmetric model. Both the Opalinus clay and the EDZ will be considered to be porous media, with an incompressible solid phase (clay), an incompressible liquid phase (water and air) and a gas phase (water and air). The properties of the liquid phase will be assumed to be independent of the concentration of dissolved air and the gas phase will be assumed to be a mixture of dry air and

  3. Data of evolutionary structure change: 1D6QA-2G4QA [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1D6QA-2G4QA 1D6Q 2G4Q A A KVFERCELARTLKRLGMDGYRGISLANWMCLAKWESGYN...GRCELAAAMKRHGLDNYRGYSLGNWVCAAKFESNFNTQATNRNTD-GSTDYGILQINSRWWCNDGRTPGSRNLCNIPCSALLSSDITASVNCAKKIVSDGNGMNAWVAWRNRCKGTDVQA...bID> A 2G4QA NRNTD-GS...> 1D6Q A 1D6QA

  4. Identification of a T1D Susceptibility Gene

    Directory of Open Access Journals (Sweden)

    Grant Morahan

    2001-01-01

    Full Text Available It is not known what causes type 1 diabetes (T1D, which affects over 1 million people in the U.S. alone. Each year, 30,000 young people in the U.S. develop this disease and depend on insulin injections thereafter. Because of the huge cost to the individual, the family, and to society in increased health care costs, it is important to find what makes these people susceptible. The disease process itself is clear: the individual’s immune system — T lymphocytes in particular — attack and destroy the body’s insulin-producing cells. But how and why this autoimmune process starts or proceeds unregulated is still not known.

  5. Axion String Dynamics I: 2+1D

    CERN Document Server

    Fleury, Leesa M

    2016-01-01

    If the axion exists and if the initial axion field value is uncorrelated at causally disconnected points, then it should be possible to predict the efficiency of cosmological axion production, relating the axionic dark matter density to the axion mass. The main obstacle to making this prediction is correctly treating the axion string cores. We develop a new algorithm for treating the axionic string cores correctly in 2+1 dimensions. When the axionic string cores are given their full physical string tension, axion production is about twice as efficient as in previous simulations. We argue that the string network in 2+1 dimensions should behave very differently than in 3+1 dimensions, so this result cannot be simply carried over to the physical case. We outline how to extend our method to 3+1D axion string dynamics.

  6. Slug modeling with 1D two-fluid model

    International Nuclear Information System (INIS)

    Simulations of condensation-induced water hammer with one-dimensional two-fluid model requires explicit modeling of slug formation, slug propagation, and in some cases slug decay. Stratified flow correlations that are more or less well known in 1D two-fluid models, are crucial for accurate description of the initial phase of the slug formation and slug propagation. Slug formation means transition to other flow regime that requires different set of correlations. To use such two-fluid model for condensation induced water hammer simulations, a single slug must be explicitly recognized and captured. In the present work two cases of condensation-induced water hammer simulations performed with WAHA code, are described and discussed: injection of cold liquid into horizontal pipe filled with steam and injection of hot steam into horizontal pipe partially filled with cold liquid. (author)

  7. Effective theory of Black Holes in the 1/D expansion

    CERN Document Server

    Emparan, Roberto; Suzuki, Ryotaku; Tanabe, Kentaro; Tanaka, Takahiro

    2015-01-01

    The gravitational field of a black hole is strongly localized near its horizon when the number of dimensions D is very large. In this limit, we can effectively replace the black hole with a surface in a background geometry (eg Minkowski or Anti-deSitter space). The Einstein equations determine the effective equations that this 'black hole surface' (or membrane) must satisfy. We obtain them up to next-to-leading order in 1/D for static black holes of the Einstein-(A)dS theory. To leading order, and also to next order in Minkowski backgrounds, the equations of the effective theory are the same as soap-film equations, possibly up to a redshift factor. In particular, the Schwarzschild black hole is recovered as a spherical soap bubble. Less trivially, we find solutions for 'black droplets', ie black holes localized at the boundary of AdS, and for non-uniform black strings.

  8. Microlens Masses from 1-D Parallaxes and Heliocentric Proper Motions

    CERN Document Server

    Gould, Andrew

    2014-01-01

    One-dimensional (1-D) microlens parallaxes can be combined with heliocentric lens-source relative proper motion measurements to derive the lens mass and distance, as suggested by Ghosh et al. (2004). Here I present the first mathematical anlysis of this procedure, which I show can be represented as a quadratic equation. Hence, it is formally subject to a two-fold degeneracy. I show that this degeneracy can be broken in many cases using the relatively crude 2-D parallax information that is often available for microlensing events. I also develop an explicit formula for the region of parameter space where it is more difficult to break this degeneracy. Although no mass/distance measurements have yet been made using this technique, it is likely to become quite common over the next decade.

  9. Phenomenological predictions of 3+1d anisotropic hydrodynamics

    CERN Document Server

    Nopoush, Mohammad; Ryblewski, Radoslaw

    2016-01-01

    We make phenomenological predictions for particle spectra and elliptic flow in heavy-ion collisions using 3+1d anisotropic hydrodynamics (aHydro) including the effects of both shear and bulk viscosities. The dynamical equations necessary are derived by taking moments of the Boltzmann equation allowing for three distinct (diagonal) momentum-space anisotropy parameters. The formulation is based on relaxation-time approximation for the collisional kernel and a lattice-QCD-based equation of state. Evolving the system to late times, we calculate particle production using THERMINATOR 2, modified to account for an ellipsoidal distribution function. We obtain particle spectra for different particle species such as pions, kaons, and protons, and elliptic flow $v_2$ as a function of centrality, transverse momentum, and rapidity. In our model, we have four free parameters, i.e. freeze-out temperature, initial central energy density, initial momentum-space anisotropies, and shear viscosity to entropy density ratio. Using...

  10. Global Control Methods for GHZ State Generation on 1-D Ising Chain

    CERN Document Server

    Wang, Xiaoting; Bose, Sougato; Schirmer, Sophie

    2010-01-01

    We discuss how to prepare an Ising chain in a GHZ state using a single global control field only. This model does not require the spins to be individually addressable and is applicable to quantum systems such as cold atoms in optical lattices, some liquid- or solid-state NMR experiments, and many nano-scale quantum structures. We show that GHZ states can always be reached asymptotically from certain easy-to-prepare initial states using adiabatic passage, and under certain conditions finite-time reachability can be ensured. To provide a reference useful for future experimental implementations three different control strategies to achieve the objective, adiabatic passage, Lyapunov control and optimal control are compared, and their advantages and disadvantages discussed, in particular in the presence of realistic imperfections such as imperfect initial state preparation, system inhomogeneity and dephasing.

  11. Towards 1D nanolines on a monolayered supramolecular network adsorbed on a silicon surface

    Science.gov (United States)

    Makoudi, Younes; Beyer, Matthieu; Lamare, Simon; Jeannoutot, Judicael; Palmino, Frank; Chérioux, Frédéric

    2016-06-01

    The growth of 3D extended periodic networks made up of π-conjugated molecules on semi-conductor surfaces is of interest for the integration of nano-components in the future generations of smart devices. In the work presented in this article, we successfully achieved the formation of bilayered networks on a silicon surface including 1D-isolated nanolines in the second layer. Firstly, we observed the formation of a 2D large-scale supramolecular network in the plane of a silicon surface through the deposition of tailored molecules. Then using the same molecules, a second-layer, based on 1D nanolines, grew above the first layer, thanks to a template effect. Mono- or bi-layered networks were found to be stable from 100 K up to room temperature. These networks were investigated by scanning tunnel microscopy imaging under an ultra-high vacuum (UHV-STM).The growth of 3D extended periodic networks made up of π-conjugated molecules on semi-conductor surfaces is of interest for the integration of nano-components in the future generations of smart devices. In the work presented in this article, we successfully achieved the formation of bilayered networks on a silicon surface including 1D-isolated nanolines in the second layer. Firstly, we observed the formation of a 2D large-scale supramolecular network in the plane of a silicon surface through the deposition of tailored molecules. Then using the same molecules, a second-layer, based on 1D nanolines, grew above the first layer, thanks to a template effect. Mono- or bi-layered networks were found to be stable from 100 K up to room temperature. These networks were investigated by scanning tunnel microscopy imaging under an ultra-high vacuum (UHV-STM). Electronic supplementary information (ESI) available: Additional STM images showing submolecular details of the adsorption of molecules on the surface. See DOI: 10.1039/c6nr01826b

  12. Nonclassical Particle Transport in 1-D Random Periodic Media

    CERN Document Server

    Vasques, Richard; Slaybaugh, Rachel N

    2016-01-01

    We investigate the accuracy of the recently proposed nonclassical transport equation. This equation contains an extra independent variable compared to the classical transport equation (the path-length $s$), and models particle transport taking place in homogenized random media in which a particle's distance-to-collision is not exponentially distributed. To solve the nonclassical equation one needs to know the $s$-dependent ensemble-averaged total cross section, $\\Sigma_t(\\mu,s)$, or its corresponding path-length distribution function, $p(\\mu,s)$. We consider a 1-D spatially periodic system consisting of alternating solid and void layers, randomly placed in the $x$-axis. We obtain an analytical expression for $p(\\mu,s)$ and use this result to compute the corresponding $\\Sigma_t(\\mu,s)$. Then, we proceed to numerically solve the nonclassical equation for different test problems in rod geometry; that is, particles can move only in the directions $\\mu=\\pm 1$. To assess the accuracy of these solutions, we produce ...

  13. Dynamics of fermionization for strongly interacting photons in 1D

    Science.gov (United States)

    Muth, Dominik; Schmidt, Bernd; Fleischhauer, Michael

    2010-03-01

    When slow-light photons are confined to one spatial dimension with strong repulsive two-photon scattering they will fermionize, i.e. they will form the analog of a Lieb-Liniger gas in the Tonks limit [1]. We here analyze the dynamics of this process both for repulsive and attractive elastic two-photon scattering using exact numerical methods. We observe that the local two-body correlation attains a steady-state value after a short time, which is however substantially above the ground-state value of the Lieb-Liniger gas but is very close to the value in a high temperature state. This can be explained as a local thermalization to a temperature corresponding to the energy input by the sudden onset of interactions. Non-local two-particle correlations approach the steady-state on a longer time scale. In the case of attractive interactions, the non local correlations indicate a relaxation to a metastable steady-state, the super Tonks-Girardeau gas, recently seen for bosons in the experiment by Haller et al. [2]. [1] D. E. Chang, V. Gritsev, G. Morigi, V. Vuletic, M. D. Lukin, and E. A. Demler, Nature Physics 4, 884 (2008) [2] E. Haller, M. Gustavsson, M. J. Mark, J. G. Danzl, R. Hart, G. Pupillo, and H. C. Naegerl, Science 325, 1224 (2009)

  14. Benchmarking of a 1D Scrape-off layer code SOLF1D with SOLPS and its use in modelling long-legged divertors

    CERN Document Server

    Havlickova, E; Subba, F; Coster, D; Wischmeier, M; Fishpool, G

    2013-01-01

    A 1D code modelling SOL transport parallel to the magnetic field (SOLF1D) is benchmarked with 2D simulations of MAST-U SOL performed via the SOLPS code for two different collisionalities. Based on this comparison, SOLF1D is then used to model the effects of divertor leg stretching in 1D, in support of the planned Super-X divertor on MAST. The aim is to separate magnetic flux expansion from volumetric power losses due to recycling neutrals by stretching the divertor leg either vertically or radially.

  15. Synthesis of 1-D ZnO nanorods and polypyrrole/1-D ZnO nanocomposites for photocatalysis and gas sensor applications

    Indian Academy of Sciences (India)

    PRITAM PATIL; GANESH GAIKWAD; D R PATIL; JITENDRA NAIK

    2016-06-01

    1-D ZnO nanorods and PPy/1-D ZnO nanocomposites were prepared by the surfactant-assisted precipitation and in situ polymerization method, respectively. The synthesized nanorods and nanocomposites were characterized by UV–Vis spectrophotometer, Fourier transform-infrared spectroscopy (FTIR), X-ray diffraction (XRD) and field emission scanning electron microscope (FE-SEM), which gave the evidence of 1-D ZnO nanorods, polymerization of pyrrole monomer and strong interaction between PPy and 1-D ZnO nanorods, respectively. Photocatalytic activity of 1-D ZnO nanorods was conducted by $3^3$ level full-factorial design to evaluate the effect of three independent process variables viz., dye concentration (crystal violet), catalyst concentration (1-D ZnO nanorods) and the reaction time on the preferred response: photodegradation efficiency (%). The PPy/1-D ZnO nanocompositeswere used for the sensing of NH$_3$, LPG, CO$_2$ and H$_2$S gases, respectively, at room temperature. It was observed that PPy/1-D ZnO nanocomposites with different 1-D ZnO nanorod weight ratios (15 and 25%) had better selectivity and sensitivity towards NH3 at room temperature.

  16. The optimization of high resolution topographic data for 1D hydrodynamic models

    Science.gov (United States)

    Ales, Ronovsky; Michal, Podhoranyi

    2016-06-01

    The main focus of our research presented in this paper is to optimize and use high resolution topographical data (HRTD) for hydrological modelling. Optimization of HRTD is done by generating adaptive mesh by measuring distance of coarse mesh and the surface of the dataset and adapting the mesh from the perspective of keeping the geometry as close to initial resolution as possible. Technique described in this paper enables computation of very accurate 1-D hydrodynamic models. In the paper, we use HEC-RAS software as a solver. For comparison, we have chosen the amount of generated cells/grid elements (in whole discretization domain and selected cross sections) with respect to preservation of the accuracy of the computational domain. Generation of the mesh for hydrodynamic modelling is strongly reliant on domain size and domain resolution. Topographical dataset used in this paper was created using LiDAR method and it captures 5.9km long section of a catchment of the river Olše. We studied crucial changes in topography for generated mesh. Assessment was done by commonly used statistical and visualization methods.

  17. Data of evolutionary structure change: 1D1SB-1QLJA [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1D1SB-1QLJA 1D1S 1QLJ B A GTAGKVIKCKAAVLWEQKQPFSIEEIEVAPPKTKEVRIK...EMTGNNVGYTFEVIGHLETMIDALASCHMNYGTSVVVGVPPSAKMLTYDPMLLFTGRTWKGCVFGGLKSRDDVPKLVTEFLAKKFDLDQL...ne>GLY CA 380 VAL CA 377 1QL...J A 1QLJA LKNDLSMPRGT

  18. Data of evolutionary structure change: 1D3AB-1LLDA [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1D3AB-1LLDA 1D3A 1LLD B A -TKVSVVGAAGTVGAAAGYNIALRDIADEVVFVDIPDKE...PNAIYMLITNPVDIATHVAQKLTGLPENQIFGSGTNLDSARLRFLIAQQTGVNVKNVHAYIAGEHGDSEVPLWESATIGGVPMSDWTPLPGHDPLDADKREEIHQEVK... 1LLD A 1LLDA...> 1 1LLD A 1LLDA

  19. Automatic spikes detection in seismogram

    Institute of Scientific and Technical Information of China (English)

    王海军; 靳平; 刘贵忠

    2003-01-01

    @@ Data processing for seismic network is very complex and fussy, because a lot of data is recorded in seismic network every day, which make it impossible to process these data all by manual work. Therefore, seismic data should be processed automatically to produce a initial results about events detection and location. Afterwards, these results are reviewed and modified by analyst. In automatic processing data quality checking is important. There are three main problem data thatexist in real seismic records, which include: spike, repeated data and dropouts. Spike is defined as isolated large amplitude point; the other two problem datahave the same features that amplitude of sample points are uniform in a interval. In data quality checking, the first step is to detect and statistic problem data in a data segment, if percent of problem data exceed a threshold, then the whole data segment is masked and not be processed in the later process.

  20. Explicit analytical wave solutions of unsteady 1D ideal gas flow with friction and heat transfer

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Several families of algebraically explicit analytical wavesolutions are derived for the unsteady 1D ideal gas flow with friction and heat-transfer, which include one family of travelling wave solutions, three families of standing wave solutions and one standing wave solution. \\{Among\\} them, the former four solution families contain arbitrary functions, so actually there are infinite analytical wave solutions having been derived. Besides their very important theoretical meaning, such analytical wave solutions can guide the development of some new equipment, and can be the benchmark solutions to promote the development of computational fluid dynamics. For example, we can use them to check the accuracy, convergence and effectiveness of various numerical computational methods and to improve the numerical computation skills such as differential schemes, grid generation ways and so on.

  1. System for Digital 1D-Image Processing with 1024 Pixel CCD Sensor

    Directory of Open Access Journals (Sweden)

    J. Misun

    1993-11-01

    Full Text Available The conception of system for digital 1D-images processing with digital CCD camera is presented. The system is created from these three basic parts: the digital CCD camera with linear image sensor CCD L133C, 8-bit interface and a personal computer. The scanning digital CCD camera generated a video signals, which are processed in the analog signal processor. The output signal is continually converted to 8-bit data words in A/D converter. This data words maybe transfer over a bus driver to the operation memory of personal computer, by setting one of the three work regimes of digital CCD camera. Some application possibilities and basic technical parameters of this system are given.

  2. Data of evolutionary structure change: 1D0GD-2RJLA [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1D0GD-2RJLA 1D0G 2RJL D A PQRVAAHITGTRGEKALGRKINSWESSRSGHSFLS-NLH...LRNGELVIHEKGFYYIYSQTYFRFQEEIKENTKNDKQMVQYIYKYTS-YPDPILLMKSARNSCWSKDAEYGLYSIYQGGIFELKENDRIFVSVTNEHLIDM-DHEASFFGAFLVG GD...KPRAHLTVVRQTPTQFPALHWEHEL--GLAFTKNRMNYTNKFLLIPESGDYFIYSQVTFRG--------MKPDSITVVITKVTDS...YPEPTQLLMGTKSVS-EVG-SNWFQPIYLGAMFSLQEGDKLMVNVSDISLVDYTKEDKTFFGAFLL- ...D0G D 1D0GD HSFLS-NLHLR

  3. Enhanced cardiac TBC1D10C expression lowers heart rate and enhances exercise capacity and survival

    Science.gov (United States)

    Volland, Cornelia; Bremer, Sebastian; Hellenkamp, Kristian; Hartmann, Nico; Dybkova, Nataliya; Khadjeh, Sara; Kutschenko, Anna; Liebetanz, David; Wagner, Stefan; Unsöld, Bernhard; Didié, Michael; Toischer, Karl; Sossalla, Samuel; Hasenfuß, Gerd; Seidler, Tim

    2016-01-01

    TBC1D10C is a protein previously demonstrated to bind and inhibit Ras and Calcineurin. In cardiomyocytes, also CaMKII is inhibited and all three targeted enzymes are known to promote maladaptive cardiomyocyte hypertrophy. Here, in accordance with lack of Calcineurin inhibition in vivo, we did not observe a relevant anti-hypertrophic effect despite inhibition of Ras and CaMKII. However, cardiomyocyte-specific TBC1D10C overexpressing transgenic mice exhibited enhanced longevity. Ejection fraction and exercise capacity were enhanced in transgenic mice, but shortening of isolated cardiomyocytes was not increased. This suggests longevity resulted from enhanced cardiac performance but independent of cardiomyocyte contractile force. In further search for mechanisms, a transcriptome-wide analysis revealed expressional changes in several genes pertinent to control of heart rate (HR) including Hcn4, Scn10a, Sema3a and Cacna2d2. Indeed, telemetric holter recordings demonstrated slower atrial conduction and significantly lower HR. Pharmacological reduction of HR was previously demonstrated to enhance survival in mice. Thus, in addition to inhibition of stress signaling, TBC1D10C economizes generation of cardiac output via HR reduction, enhancing exercise capacity and survival. TBC1D10C may be a new target for HR reduction and longevity. PMID:27667030

  4. Dynamics of the gas-liquid interfacial reaction of O(1D) with a liquid hydrocarbon.

    Science.gov (United States)

    Waring, Carla; King, Kerry L; Costen, Matthew L; McKendrick, Kenneth G

    2011-06-30

    The dynamics of the gas-liquid interfacial reaction of the first electronically excited state of the oxygen atom, O((1)D), with the surface of a liquid hydrocarbon, squalane (C(30)H(62); 2,6,10,15,19,23-hexamethyltetracosane) has been studied experimentally. Translationally hot O((1)D) atoms were generated by 193 nm photolysis of a low pressure (nominally 1 mTorr) of N(2)O a short distance (mean = 6 mm) above a continually refreshed liquid squalane surface. Nascent OH (X(2)Π, v' = 0) reaction products were detected by laser-induced fluorescence (LIF) on the OH A(2)Σ(+)-X(2)Π (1,0) band at the same distance above the surface. The speed distribution of the recoiling OH was characterized by measuring the appearance profiles as a function of photolysis-probe delay for selected rotational levels, N'. The rotational (and, partially, fine-structure) state distributions were also measured by recording LIF excitation spectra at selected photolysis-probe delays. The OH v' = 0 rotational distribution is bimodal and can be empirically decomposed into near thermal (~300 K) and much hotter (~6000 K) Boltzmann-temperature components. There is a strong positive correlation between rotational excitation and translation energy. However, the colder rotational component still represents a significant fraction (~30%) of the fastest products, which have substantially superthermal speeds. We estimate an approximate upper limit of 3% for the quantum yield of OH per O((1)D) atom that collides with the surface. By comparison with established mechanisms for the corresponding reactions in the gas phase, we conclude that the rotationally and translationally hot products are formed via a nonstatistical insertion mechanism. The rotationally cold but translationally hot component is most likely produced by direct abstraction. Secondary collisions at the liquid surface of products of either of the previous two mechanisms are most likely responsible for the rotationally and translationally cold

  5. Structural and population-based evaluations of TBC1D1 p.Arg125Trp.

    Directory of Open Access Journals (Sweden)

    Tom G Richardson

    Full Text Available Obesity is now a leading cause of preventable death in the industrialised world. Understanding its genetic influences can enhance insight into molecular pathogenesis and potential therapeutic targets. A non-synonymous polymorphism (rs35859249, p.Arg125Trp in the N-terminal TBC1D1 phosphotyrosine-binding (PTB domain has shown a replicated association with familial obesity in women. We investigated these findings in the Avon Longitudinal Study of Parents and Children (ALSPAC, a large European birth cohort of mothers and offspring, and by generating a predicted model of the structure of this domain. Structural prediction involved the use of three separate algorithms; Robetta, HHpred/MODELLER and I-TASSER. We used the transmission disequilibrium test (TDT to investigate familial association in the ALSPAC study cohort (N = 2,292 mother-offspring pairs. Linear regression models were used to examine the association of genotype with mean measurements of adiposity (Body Mass Index (BMI, waist circumference and Dual-energy X-ray absorptiometry (DXA assessed fat mass, and logistic regression was used to examine the association with odds of obesity. Modelling showed that the R125W mutation occurs in a location of the TBC1D1 PTB domain that is predicted to have a function in a putative protein:protein interaction. We did not detect an association between R125W and BMI (mean per allele difference 0.27 kg/m(2 (95% Confidence Interval: 0.00, 0.53 P = 0.05 or obesity (odds ratio 1.01 (95% Confidence Interval: 0.77, 1.31, P = 0.96 in offspring after adjusting for multiple comparisons. Furthermore, there was no evidence to suggest that there was familial association between R125W and obesity (χ(2 = 0.06, P = 0.80. Our analysis suggests that R125W in TBC1D1 plays a role in the binding of an effector protein, but we find no evidence that the R125W variant is related to mean BMI or odds of obesity in a general population sample.

  6. Comments on the Bifurcation Structure of 1D Maps

    DEFF Research Database (Denmark)

    Belykh, V.N.; Mosekilde, Erik

    1997-01-01

    The paper presents a complementary view on some of the phenomena related to the bifurcation structure of unimodal maps. An approximate renormalization theory for the period-doubling cascade is developed, and a mapping procedure is established that accounts directly for the box-within-a-box struct......The paper presents a complementary view on some of the phenomena related to the bifurcation structure of unimodal maps. An approximate renormalization theory for the period-doubling cascade is developed, and a mapping procedure is established that accounts directly for the box......-within-a-box structure of the total bifurcation set. This presents a picture in which the homoclinic orbit bifurcations act as a skeleton for the bifurcational set. At the same time, experimental results on continued subharmonic generation for piezoelectrically amplified sound waves, predating the Feigenbaum theory...

  7. Acute exercise and physiological insulin induce distinct phosphorylation signatures on TBC1D1 and TBC1D4 in human skeletal muscle

    DEFF Research Database (Denmark)

    Treebak, Jonas Thue; Pehmøller, Christian; Kristensen, Jonas Møller;

    2014-01-01

    We investigated the phosphorylation signatures of two Rab GTPase activating proteins TBC1D1 and TBC1D4 in human skeletal muscle in response to physical exercise and physiological insulin levels induced by a carbohydrate rich meal using a paired experimental design. Eight healthy male volunteers...... in response to physiological stimuli in human skeletal muscle and support the idea that Akt and AMPK are upstream kinases. TBC1D1 phosphorylation signatures were comparable between in vitro contracted mouse skeletal muscle and exercised human muscle, and we show that AMPK was regulating phosphorylation...... of these sites in mouse muscle. Contraction and exercise elicited a different phosphorylation pattern of TBC1D4 in mouse compared with human muscle, and although different circumstances in our experimental setup may contribute to this difference, the observation exemplifies that transferring findings between...

  8. 关于图的L(d1,d2)-标号问题%The L(d1, d2)-Labeling Problem on Graphs

    Institute of Scientific and Technical Information of China (English)

    邵振东; 刘家壮

    2006-01-01

    The L(2, 1)-labeling is formulated from the frequency assignment problem. We study the L(d1, d2)- labeling which is a generalization of the L(2, 1)-labeling. Vertex 2-coloring, 2-chromatic number and other related concepts are firstly defined, and the upper bound for 2-chromatic number is given; a very general relationship between λd1 ,d2 (G) and minimum degree δ(G) and maximum degree △(G) is then derived; finally, the upper bounds of L(d1, d2)-labelings of general and planar graphs are given.%图的L(2,1)-标号问题是由频率分配问题归结而来,本文研究作为L(2,1)-标号问题的推广的L(d1,d2)-标号问题.首先定义了顶点2-着色,2-色数及其它有关概念,给出了2-色数的上界.然后得出了λd1,d2(G)与δ(G)和△(G)的一般关系.最后得出了一般图与平面图的λd1,d2(G)的上界.

  9. Expression of CD1d protein in human testis showing normal and abnormal spermatogenesis.

    Science.gov (United States)

    Adly, Mohamed A; Abdelwahed Hussein, Mahmoud-Rezk

    2011-05-01

    CD1d is a member of CD1 family of transmembrane glycoproteins, which represent antigen-presenting molecules. Immunofluorescent staining methods were utilized to examine expression pattern of CD1d in human testicular specimens. In testis showing normal spermatogenesis, a strong CD1d cytoplasmic expression was seen the Sertoli cells, spermatogonia, and Leydig cells. A moderate expression was observed in the spermatocytes. In testes showing maturation arrest, CD1d expression was strong in the Sertoli cells and weak in spermatogonia and spermatocytes compared to testis with normal spermatogenesis. In Sertoli cell only syndrome, CD1d expression was strong in the Sertoli and Leydig cells. This preliminary study displayed testicular infertility-related changes in CD1d expression. The ultrastructural changes associated with with normal and abnormal spermatogenesis are open for further investigations.

  10. 1D engine simulation of a turbocharged SI engine with CFD computation on components

    OpenAIRE

    Renberg, Ulrica

    2008-01-01

    Techniques that can increase the SI- engine efficiency while keeping the emissions very low is to reduce the engine displacement volume combined with a charging system. Advanced systems are needed for an effective boosting of the engine and today 1D engine simulation tools are often used for their optimization. This thesis concerns 1D engine simulation of a turbocharged SI engine and the introduction of CFD computations on components as a way to assess inaccuracies in the 1D model. 1D engine ...

  11. Room-temperature synthesis of nanoporous 1D microrods of graphitic carbon nitride (g-C3N4) with highly enhanced photocatalytic activity and stability

    Science.gov (United States)

    Pawar, Rajendra C.; Kang, Suhee; Park, Jung Hyun; Kim, Jong-Ho; Ahn, Sunghoon; Lee, Caroline S.

    2016-08-01

    A one-dimensional (1D) nanostructure having a porous network is an exceptional photocatalytic material to generate hydrogen (H2) and decontaminate wastewater using solar energy. In this report, we synthesized nanoporous 1D microrods of graphitic carbon nitride (g-C3N4) via a facile and template-free chemical approach at room temperature. The use of concentrated acids induced etching and lift-off because of strong oxidation and protonation. Compared with the bulk g-C3N4, the porous 1D microrod structure showed five times higher photocatalytic degradation performance toward methylene blue dye (MB) under visible light irradiation. The photocatalytic H2 evolution of the 1D nanostructure (34 μmol g-1) was almost 26 times higher than that of the bulk g-C3N4 structure (1.26 μmol g-1). Additionally, the photocurrent stability of this nanoporous 1D morphology over 24 h indicated remarkable photocorrosion resistance. The improved photocatalytic activities were attributed to prolonged carrier lifetime because of its quantum confinement effect, effective separation and transport of charge carriers, and increased number of active sites from interconnected nanopores throughout the microrods. The present 1D nanostructure would be highly suited for photocatalytic water purification as well as water splitting devices. Finally, this facile and room temperature strategy to fabricate the nanostructures is very cost-effective.

  12. Significance of flow clustering and sequencing on sediment transport: 1D sediment transport modelling

    Science.gov (United States)

    Hassan, Kazi; Allen, Deonie; Haynes, Heather

    2016-04-01

    This paper considers 1D hydraulic model data on the effect of high flow clusters and sequencing on sediment transport. Using observed flow gauge data from the River Caldew, England, a novel stochastic modelling approach was developed in order to create alternative 50 year flow sequences. Whilst the observed probability density of gauge data was preserved in all sequences, the order in which those flows occurred was varied using the output from a Hidden Markov Model (HMM) with generalised Pareto distribution (GP). In total, one hundred 50 year synthetic flow series were generated and used as the inflow boundary conditions for individual flow series model runs using the 1D sediment transport model HEC-RAS. The model routed graded sediment through the case study river reach to define the long-term morphological changes. Comparison of individual simulations provided a detailed understanding of the sensitivity of channel capacity to flow sequence. Specifically, each 50 year synthetic flow sequence was analysed using a 3-month, 6-month or 12-month rolling window approach and classified for clusters in peak discharge. As a cluster is described as a temporal grouping of flow events above a specified threshold, the threshold condition used herein is considered as a morphologically active channel forming discharge event. Thus, clusters were identified for peak discharges in excess of 10%, 20%, 50%, 100% and 150% of the 1 year Return Period (RP) event. The window of above-peak flows also required cluster definition and was tested for timeframes 1, 2, 10 and 30 days. Subsequently, clusters could be described in terms of the number of events, maximum peak flow discharge, cumulative flow discharge and skewness (i.e. a description of the flow sequence). The model output for each cluster was analysed for the cumulative flow volume and cumulative sediment transport (mass). This was then compared to the total sediment transport of a single flow event of equivalent flow volume

  13. Fabrication of GaN/AlGaN 1D photonic crystals designed for nonlinear optical applications

    CERN Document Server

    Stomeo, T; Tasco, V; Tarantini, I; Campa, A; De Vittorio, M; Passaseo, A; Braccini, M; Larciprete, M C; Sibilia, C; Bovino, F A

    2011-01-01

    In this paper we present a reliable process to fabricate GaN/AlGaN one dimensional photonic crystal (1D-PhC) microcavities with nonlinear optical properties. We used a heterostructure with a GaN layer embedded between two Distributed Bragg Reflectors consisting of AlGaN/GaN multilayers, on sapphire substrate, designed to generate a {\\lambda}= 800 nm frequency down-converted signal (\\chi^(2) effect) from an incident pump signal at {\\lambda}= 400 nm. The heterostructure was epitaxially grown by metal organic chemical vapour deposition (MOCVD) and integrates a properly designed 1D-PhC grating, which amplifies the signal by exploiting the double effect of cavity resonance and non linear GaN enhancement. The integrated 1D-PhC microcavity was fabricate combing a high resolution e-beam writing with a deep etching technique. For the pattern transfer we used ~ 170 nm layer Cr metal etch mask obtained by means of high quality lift-off technique based on the use of bi-layer resist (PMMA/MMA). At the same time, plasma co...

  14. Potent neutralizing anti-CD1d antibody reduces lung cytokine release in primate asthma model.

    Science.gov (United States)

    Nambiar, Jonathan; Clarke, Adam W; Shim, Doris; Mabon, David; Tian, Chen; Windloch, Karolina; Buhmann, Chris; Corazon, Beau; Lindgren, Matilda; Pollard, Matthew; Domagala, Teresa; Poulton, Lynn; Doyle, Anthony G

    2015-01-01

    CD1d is a receptor on antigen-presenting cells involved in triggering cell populations, particularly natural killer T (NKT) cells, to release high levels of cytokines. NKT cells are implicated in asthma pathology and blockade of the CD1d/NKT cell pathway may have therapeutic potential. We developed a potent anti-human CD1d antibody (NIB.2) that possesses high affinity for human and cynomolgus macaque CD1d (KD ∼100 pM) and strong neutralizing activity in human primary cell-based assays (IC50 typically <100 pM). By epitope mapping experiments, we showed that NIB.2 binds to CD1d in close proximity to the interface of CD1d and the Type 1 NKT cell receptor β-chain. Together with data showing that NIB.2 inhibited stimulation via CD1d loaded with different glycolipids, this supports a mechanism whereby NIB.2 inhibits NKT cell activation by inhibiting Type 1 NKT cell receptor β-chain interactions with CD1d, independent of the lipid antigen in the CD1d antigen-binding cleft. The strong in vitro potency of NIB.2 was reflected in vivo in an Ascaris suum cynomolgus macaque asthma model. Compared with vehicle control, NIB.2 treatment significantly reduced bronchoalveolar lavage (BAL) levels of Ascaris-induced cytokines IL-5, IL-8 and IL-1 receptor antagonist, and significantly reduced baseline levels of GM-CSF, IL-6, IL-15, IL-12/23p40, MIP-1α, MIP-1β, and VEGF. At a cellular population level NIB.2 also reduced numbers of BAL lymphocytes and macrophages, and blood eosinophils and basophils. We demonstrate that anti-CD1d antibody blockade of the CD1d/NKT pathway modulates inflammatory parameters in vivo in a primate inflammation model, with therapeutic potential for diseases where the local cytokine milieu is critical.

  15. Potent neutralizing anti-CD1d antibody reduces lung cytokine release in primate asthma model

    Science.gov (United States)

    Nambiar, Jonathan; Clarke, Adam W; Shim, Doris; Mabon, David; Tian, Chen; Windloch, Karolina; Buhmann, Chris; Corazon, Beau; Lindgren, Matilda; Pollard, Matthew; Domagala, Teresa; Poulton, Lynn; Doyle, Anthony G

    2015-01-01

    CD1d is a receptor on antigen-presenting cells involved in triggering cell populations, particularly natural killer T (NKT) cells, to release high levels of cytokines. NKT cells are implicated in asthma pathology and blockade of the CD1d/NKT cell pathway may have therapeutic potential. We developed a potent anti-human CD1d antibody (NIB.2) that possesses high affinity for human and cynomolgus macaque CD1d (KD ∼100 pM) and strong neutralizing activity in human primary cell-based assays (IC50 typically <100 pM). By epitope mapping experiments, we showed that NIB.2 binds to CD1d in close proximity to the interface of CD1d and the Type 1 NKT cell receptor β-chain. Together with data showing that NIB.2 inhibited stimulation via CD1d loaded with different glycolipids, this supports a mechanism whereby NIB.2 inhibits NKT cell activation by inhibiting Type 1 NKT cell receptor β-chain interactions with CD1d, independent of the lipid antigen in the CD1d antigen-binding cleft. The strong in vitro potency of NIB.2 was reflected in vivo in an Ascaris suum cynomolgus macaque asthma model. Compared with vehicle control, NIB.2 treatment significantly reduced bronchoalveolar lavage (BAL) levels of Ascaris-induced cytokines IL-5, IL-8 and IL-1 receptor antagonist, and significantly reduced baseline levels of GM-CSF, IL-6, IL-15, IL-12/23p40, MIP-1α, MIP-1β, and VEGF. At a cellular population level NIB.2 also reduced numbers of BAL lymphocytes and macrophages, and blood eosinophils and basophils. We demonstrate that anti-CD1d antibody blockade of the CD1d/NKT pathway modulates inflammatory parameters in vivo in a primate inflammation model, with therapeutic potential for diseases where the local cytokine milieu is critical. PMID:25751125

  16. A Novel 1D Hybrid Chaotic Map-Based Image Compression and Encryption Using Compressed Sensing and Fibonacci-Lucas Transform

    Directory of Open Access Journals (Sweden)

    Tongfeng Zhang

    2016-01-01

    Full Text Available A one-dimensional (1D hybrid chaotic system is constructed by three different 1D chaotic maps in parallel-then-cascade fashion. The proposed chaotic map has larger key space and exhibits better uniform distribution property in some parametric range compared with existing 1D chaotic map. Meanwhile, with the combination of compressive sensing (CS and Fibonacci-Lucas transform (FLT, a novel image compression and encryption scheme is proposed with the advantages of the 1D hybrid chaotic map. The whole encryption procedure includes compression by compressed sensing (CS, scrambling with FLT, and diffusion after linear scaling. Bernoulli measurement matrix in CS is generated by the proposed 1D hybrid chaotic map due to its excellent uniform distribution. To enhance the security and complexity, transform kernel of FLT varies in each permutation round according to the generated chaotic sequences. Further, the key streams used in the diffusion process depend on the chaotic map as well as plain image, which could resist chosen plaintext attack (CPA. Experimental results and security analyses demonstrate the validity of our scheme in terms of high security and robustness against noise attack and cropping attack.

  17. Mapping of the serotonin 5-HT{sub 1D{alpha}} autoreceptor gene (HTR1D) on chromosome 1 using a silent polymorphism in the coding region

    Energy Technology Data Exchange (ETDEWEB)

    Ozaki, N.; Lappalainen, J.; Linnoila, M. [National Institute on Alcohol Abuse and Alcoholism, Rockville, MD (United States)] [and others

    1995-04-24

    Serotonin (5-HT){sub ID} receptors are 5-HT release-regulating autoreceptors in the human brain. Abnormalities in brain 5-HT function have been hypothesized in the pathophysiology of various psychiatric disorders, including obsessive-compulsive disorder, autism, mood disorders, eating disorders, impulsive violent behavior, and alcoholism. Thus, mutations occurring in 5-HT autoreceptors may cause or increase the vulnerability to any of these conditions. 5-HT{sub 1D{alpha}} and 5-HT{sub 1D{Beta}} subtypes have been previously localized to chromosomes 1p36.3-p34.3 and 6q13, respectively, using rodent-human hybrids and in situ localization. In this communication, we report the detection of a 5-HT{sub 1D{alpha}} receptor gene polymorphism by single strand conformation polymorphism (SSCP) analysis of the coding sequence. The polymorphism was used for fine scale linkage mapping of 5-HT{sub 1D{alpha}} on chromosome 1. This polymorphism should also be useful for linkage studies in populations and in families. Our analysis also demonstrates that functionally significant coding sequence variants of the 5-HT{sub 1D{alpha}} are probably not abundant either among alcoholics or in the general population. 14 refs., 1 fig., 1 tab.

  18. Multiple mobility edges in a 1D Aubry chain with Hubbard interaction in presence of electric field: Controlled electron transport

    Science.gov (United States)

    Saha, Srilekha; Maiti, Santanu K.; Karmakar, S. N.

    2016-09-01

    Electronic behavior of a 1D Aubry chain with Hubbard interaction is critically analyzed in presence of electric field. Multiple energy bands are generated as a result of Hubbard correlation and Aubry potential, and, within these bands localized states are developed under the application of electric field. Within a tight-binding framework we compute electronic transmission probability and average density of states using Green's function approach where the interaction parameter is treated under Hartree-Fock mean field scheme. From our analysis we find that selective transmission can be obtained by tuning injecting electron energy, and thus, the present model can be utilized as a controlled switching device.

  19. 1D Grating structures designed by the time domain topology optimization

    DEFF Research Database (Denmark)

    Yang, Lirong; Lavrinenko, Andrei; Sigmund, Ole;

    2008-01-01

    We report on the time domain application of topology optimization to 1D photonic devices. The method is confirmed to converge to the global minimum when optimizing a Bragg grating structure.......We report on the time domain application of topology optimization to 1D photonic devices. The method is confirmed to converge to the global minimum when optimizing a Bragg grating structure....

  20. The FLO Diffusive 1D-2D Model for Simulation of River Flooding

    Directory of Open Access Journals (Sweden)

    Costanza Aricò

    2016-05-01

    Full Text Available An integrated 1D-2D model for the solution of the diffusive approximation of the shallow water equations, named FLO, is proposed in the present paper. Governing equations are solved using the MArching in Space and Time (MAST approach. The 2D floodplain domain is discretized using a triangular mesh, and standard river sections are used for modeling 1D flow inside the section width occurring with low or standard discharges. 1D elements, inside the 1D domain, are quadrilaterals bounded by the trace of two consecutive sections and by the sides connecting their extreme points. The water level is assumed to vary linearly inside each quadrilateral along the flow direction, but to remain constant along the direction normal to the flow. The computational cell can share zero, one or two nodes with triangles of the 2D domain when lateral coupling occurs and more than two nodes in the case of frontal coupling, if the corresponding section is at one end of the 1D channel. No boundary condition at the transition between the 1D-2D domain has to be solved, and no additional variable has to be introduced. Discontinuities arising between 1D and 2D domains at 1D sections with a top width smaller than the trace of the section are properly solved without any special restriction on the time step.

  1. Data of evolutionary structure change: 1B99C-2AZ1D [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available GSDS--VESAN >E --HHHHH> ATOM 316...>D 2AZ1D HGSDHEDEGANE >E HHH...pdbID>1B99 C 1B99C EELLT-EVKPN ...> - > ATOM 3319 CA GLU C 141 17.330 5.755...DChain>2AZ1D DELVDWDRDAS re>GG EEGGHcture

  2. Data of evolutionary structure change: 1D5NC-1UNFX [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available msd> 1.0891029834747314 EVID> 1 1UNF...1D5NC-1UNFX 1D5N 1UNF C X ----SYTLPSLPYAYDALEPHFDKQTMEIHHTKHHQTYV...NNANAALESL----PEFANLPVEELITKLDQLPADKKTVL---------RNNAGGHANHSLFWKGLKKGT--TLQGDLKAAIERDFGSVDNFKAEFEKAAASRFGSGW...HH EVID> 0 TRP CA 380 1UNF X 1UNF

  3. Data of evolutionary structure change: 1D5ND-1UNFX [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1.0915240049362183 EVID> 1 1UNF...1D5ND-1UNFX 1D5N 1UNF D X ----SYTLPSLPYAYDALEPHFDKQTMEIHHTKHHQTYV...NNANAALESL----PEFANLPVEELITKLDQLPADKKTVL---------RNNAGGHANHSLFWKGLKKGTT--LQGDLKAAIERDFGSVDNFKAEFEKAAASRFGSGW...H EVID> 0 TRP CA 379 1UNF X 1UNF

  4. Identification of RAPD Marker for Chromosome 1D of Common Wheat

    Directory of Open Access Journals (Sweden)

    Imtiaz Ahmad Khan

    2010-04-01

    Full Text Available Development of genetically compensating nullisomic-tetrasomic and ditelosomic lines of commonwheat (Triticum aestivum L. have been widely used to construct high density genetic maps of homoeologouswheat chromosomes. During present research, easier, cheaper and quicker procedure of Polymerase ChainReaction (PCR was used to map Randomly Amplified Polymorphic DNA primers on chromosome 1D ofcommon wheat. Genomic DNA was isolated from two genetic stocks of wheat cultivar Chinese Spring viz;NT-1D1B and NT-2A2B. PCR were conducted using RAPD primers GLC-07 and GLC-11. RAPD primerGLC-11 amplified a polymorphic allele of approximately 500 bp, which was present in NT-2A2B (used aspositive control but was absent in NT-1D1B indicating that the locus is present on chromosome 1D of commonwheat. Hence this marker (GLC-11 can reliably be used to keep track of chromosome 1D of hexaploid wheat.

  5. Alternative spliced CD1d transcripts in human bronchial epithelial cells.

    Directory of Open Access Journals (Sweden)

    Kambez Hajipouran Benam

    Full Text Available CD1d is a MHC I like molecule which presents glycolipid to natural killer T (NKT cells, a group of cells with diverse but critical immune regulatory functions in the immune system. These cells are required for optimal defence against bacterial, viral, protozoan, and fungal infections, and control of immune-pathology and autoimmune diseases. CD1d is expressed on antigen presenting cells but also found on some non-haematopoietic cells. However, it has not been observed on bronchial epithelium, a site of active host defence in the lungs. Here, we identify for the first time, CD1D mRNA variants and CD1d protein expression on human bronchial epithelial cells, describe six alternatively spliced transcripts of this gene in these cells; and show that these variants are specific to epithelial cells. These findings provide the basis for investigations into a role for CD1d in lung mucosal immunity.

  6. Approach for computing 1D fracture density: application to fracture corridor characterization

    Science.gov (United States)

    Viseur, Sophie; Chatelée, Sebastien; Akriche, Clement; Lamarche, Juliette

    2016-04-01

    Fracture density is an important parameter for characterizing fractured reservoirs. Many stochastic simulation algorithms that generate fracture networks indeed rely on the determination of a fracture density on volumes (P30) to populate the reservoir zones with individual fracture surfaces. However, only 1D fracture density (P10) are available from subsurface data and it is then important to be able to accurately estimate this entity. In this paper, a novel approach is proposed to estimate fracture density from scan-line or well data. This method relies on regression, hypothesis testing and clustering techniques. The objective of the proposed approach is to highlight zones where fracture density are statistically very different or similar. This technique has been applied on both synthetic and real case studies. These studies concern fracture corridors, which are particular tectonic features that are generally difficult to characterize from subsurface data. These tectonic features are still not well known and studies must be conducted to better understand their internal spatial organization and variability. The presented synthetic cases aim at showing the ability of the approach to extract known features. The real case study illustrates how this approach allows the internal spatial organization of fracture corridors to be characterized.

  7. Hyperbranched quasi-1D nanostructures for solid-state dye-sensitized solar cells.

    Science.gov (United States)

    Passoni, Luca; Ghods, Farbod; Docampo, Pablo; Abrusci, Agnese; Martí-Rujas, Javier; Ghidelli, Matteo; Divitini, Giorgio; Ducati, Caterina; Binda, Maddalena; Guarnera, Simone; Li Bassi, Andrea; Casari, Carlo Spartaco; Snaith, Henry J; Petrozza, Annamaria; Di Fonzo, Fabio

    2013-11-26

    In this work we demonstrate hyperbranched nanostructures, grown by pulsed laser deposition, composed of one-dimensional anatase single crystals assembled in arrays of high aspect ratio hierarchical mesostructures. The proposed growth mechanism relies on a two-step process: self-assembly from the gas phase of amorphous TiO2 clusters in a forest of tree-shaped hierarchical mesostructures with high aspect ratio; oriented crystallization of the branches upon thermal treatment. Structural and morphological characteristics can be optimized to achieve both high specific surface area for optimal dye uptake and broadband light scattering thanks to the microscopic feature size. Solid-state dye sensitized solar cells fabricated with arrays of hyperbranched TiO2 nanostructures on FTO-glass sensitized with D102 dye showed a significant 66% increase in efficiency with respect to a reference mesoporous photoanode and reached a maximum efficiency of 3.96% (among the highest reported for this system). This result was achieved mainly thanks to an increase in photogenerated current directly resulting from improved light harvesting efficiency of the hierarchical photoanode. The proposed photoanode overcomes typical limitations of 1D TiO2 nanostructures applied to ss-DSC and emerges as a promising foundation for next-generation high-efficiency solid-state devices comprosed of dyes, polymers, or quantum dots as sensitizers.

  8. Testing the Early Mars H2-CO2 Greenhouse Hypothesis with a 1-D Photochemical Model

    CERN Document Server

    Batalha, Natasha; Ramirez, Ramses; Kasting, James

    2015-01-01

    A recent study by Ramirez et al. (2014) demonstrated that an atmosphere with 1.3-4 bar of CO2 and H2O, in addition to 5-20% H2, could have raised the mean annual and global surface temperature of early Mars above the freezing point of water. Such warm temperatures appear necessary to generate the rainfall (or snowfall) amounts required to carve the ancient martian valleys. Here, we use our best estimates for early martian outgassing rates, along with a 1-D photochemical model, to assess the conversion efficiency of CO, CH4, and H2S to CO2, SO2, and H2. Our outgassing estimates assume that Mars was actively recycling volatiles between its crust and interior, as Earth does today. H2 production from serpentinization and deposition of banded iron-formations is also considered. Under these assumptions, maintaining an H2 concentration of ~1-2% by volume is achievable, but reaching 5% H2 requires additional H2 sources or a slowing of the hydrogen escape rate below the diffusion limit. If the early martian atmosphere...

  9. Comparison of 1D and 2D modelling with soil erosion model SMODERP

    Science.gov (United States)

    Kavka, Petr; Weyskrabova, Lenka; Zajicek, Jan

    2013-04-01

    The contribution presents a comparison of a runoff simulated by profile method (1D) and spatially distributed method (2D). Simulation model SMODERP is used for calculation and prediction of soil erosion and surface runoff from agricultural land. SMODERP is physically based model that includes the processes of infiltration (Phillips equation), surface runoff (kinematic wave based equation), surface retention, surface roughness and vegetation impact on runoff. 1D model was developed in past, new 2D model was developed in last two years. The model is being developed at the Department of Irrigation, Drainage and Landscape Engineering, Civil Engineering Faculty, CTU in Prague. 2D model was developed as a tool for widespread GIS software ArcGIS. The physical relations were implemented through Python script. This script uses ArcGIS system tools for raster and vectors treatment of the inputs. Flow direction is calculated by Steepest Descent algorithm in the preliminary version of 2D model. More advanced multiple flow algorithm is planned in the next version. Spatially distributed models enable to estimate not only surface runoff but also flow in the rills. Surface runoff is described in the model by kinematic wave equation. Equation uses Manning roughness coefficient for surface runoff. Parameters for five different soil textures were calibrated on the set of forty measurements performed on the laboratory rainfall simulator. For modelling of the rills a specific sub model was created. This sub model uses Manning formula for flow estimation. Numerical stability of the model is solved by Courant criterion. Spatial scale is fixed. Time step is dynamically changed depending on how flow is generated and developed. SMODERP is meant to be used not only for the research purposes, but mainly for the engineering practice. We also present how the input data can be obtained based on available resources (soil maps and data, land use, terrain models, field research, etc.) and how can

  10. Technical Note: Sensitivity of 1-D smoke plume rise models to the inclusion of environmental wind drag

    Directory of Open Access Journals (Sweden)

    S. R. Freitas

    2010-01-01

    Full Text Available Vegetation fires emit hot gases and particles which are rapidly transported upward by the positive buoyancy generated by the combustion process. In general, the final vertical height that the smoke plumes reach is controlled by the thermodynamic stability of the atmospheric environment and the surface heat flux released by the fire. However, the presence of a strong horizontal wind can enhance the lateral entrainment and induce additional drag, particularly for small fires, impacting the smoke injection height. In this paper, we revisit the parameterization of the vertical transport of hot gases and particles emitted from vegetation fires, described in Freitas et al. (2007, to include the effects of environmental wind on transport and dilution of the smoke plume at its scale. This process is quantitatively represented by introducing an additional entrainment term to account for organized inflow of a mass of cooler and drier ambient air into the plume and its drag by momentum transfer. An extended set of equations including the horizontal motion of the plume and the additional increase of the plume radius is solved to simulate the time evolution of the plume rise and the smoke injection height. One-dimensional (1-D model results are presented for two deforestation fires in the Amazon basin with sizes of 10 and 50 ha under calm and windy atmospheric environments. The results are compared to corresponding simulations generated by the complex non-hydrostatic three-dimensional (3-D Active Tracer High resolution Atmospheric Model (ATHAM. We show that the 1-D model results compare well with the full 3-D simulations. The 1-D model may thus be used in field situations where extensive computing facilities are not available, especially under conditions for which several optional cases must be studied.

  11. Light-directing chiral liquid crystal nanostructures: from 1D to 3D.

    Science.gov (United States)

    Bisoyi, Hari Krishna; Li, Quan

    2014-10-21

    Endowing external, remote, and dynamic control to self-organized superstructures with desired functionalities is a principal driving force in the bottom-up nanofabrication of molecular devices. Light-driven chiral molecular switches or motors in liquid crystal (LC) media capable of self-organizing into optically tunable one-dimensional (1D) and three-dimensional (3D) superstructures represent such an elegant system. As a consequence, photoresponsive cholesteric LCs (CLCs), i.e., self-organized 1D helical superstructures, and LC blue phases (BPs), i.e., self-organized 3D periodic cubic lattices, are emerging as a new generation of multifunctional supramolecular 1D and 3D photonic materials in their own right because of their fundamental academic interest and technological significance. These smart stimuli-responsive materials can be facilely fabricated from achiral LC hosts by the addition of a small amount of a light-driven chiral molecular switch or motor. The photoresponsiveness of these materials is a result of both molecular interaction and geometry changes in the chiral molecular switch upon light irradiation. The doped photoresponsive CLCs undergo light-driven pitch modulation and/or helix inversion, which has many applications in color filters, polarizers, all-optical displays, optical lasers, sensors, energy-saving smart devices, and so on. Recently, we have conceptualized and rationally synthesized different light-driven chiral molecular switches that have very high helical twisting powers (HTPs) and exhibit large changes in HTP in different states, thereby enabling wide phototunability of the systems by the addition of very small amounts of the molecular switches into commercially available achiral LCs. The light-driven chiral molecular switches are based on well-recognized azobenzene, dithienylcyclopentene, and spirooxazine derivatives. We have demonstrated high-resolution and lightweight photoaddressable displays without patterned electronics on

  12. Use of optimized 1D TOCSY NMR for improved quantitation and metabolomic analysis of biofluids

    Energy Technology Data Exchange (ETDEWEB)

    Sandusky, Peter [Eckerd College, Department of Chemistry (United States); Appiah-Amponsah, Emmanuel; Raftery, Daniel, E-mail: raftery@purdue.edu [Purdue University, Department of Chemistry (United States)

    2011-04-15

    One dimensional selective TOCSY experiments have been shown to be advantageous in providing improved data inputs for principle component analysis (PCA) (Sandusky and Raftery 2005a, b). Better subpopulation cluster resolution in the observed scores plots results from the ability to isolate metabolite signals of interest via the TOCSY based filtering approach. This report reexamines the quantitative aspects of this approach, first by optimizing the 1D TOCSY experiment as it relates to the measurement of biofluid constituent concentrations, and second by comparing the integration of 1D TOCSY read peaks to the bucket integration of 1D proton NMR spectra in terms of precision and accuracy. This comparison indicates that, because of the extensive peak overlap that occurs in the 1D proton NMR spectra of biofluid samples, bucket integrals are often far less accurate as measures of individual constituent concentrations than 1D TOCSY read peaks. Even spectral fitting approaches have proven difficult in the analysis of significantly overlapped spectral regions. Measurements of endogenous taurine made over a sample population of human urine demonstrates that, due to background signals from other constituents, bucket integrals of 1D proton spectra routinely overestimate the taurine concentrations and distort its variation over the sample population. As a result, PCA calculations performed using data matrices incorporating 1D TOCSY determined taurine concentrations produce better scores plot subpopulation cluster resolution.

  13. TBC1D14 regulates autophagy via the TRAPP complex and ATG9 traffic.

    Science.gov (United States)

    Lamb, Christopher A; Nühlen, Stefanie; Judith, Delphine; Frith, David; Snijders, Ambrosius P; Behrends, Christian; Tooze, Sharon A

    2016-02-01

    Macroautophagy requires membrane trafficking and remodelling to form the autophagosome and deliver its contents to lysosomes for degradation. We have previously identified the TBC domain-containing protein, TBC1D14, as a negative regulator of autophagy that controls delivery of membranes from RAB11-positive recycling endosomes to forming autophagosomes. In this study, we identify the TRAPP complex, a multi-subunit tethering complex and GEF for RAB1, as an interactor of TBC1D14. TBC1D14 binds to the TRAPP complex via an N-terminal 103 amino acid region, and overexpression of this region inhibits both autophagy and secretory traffic. TRAPPC8, the mammalian orthologue of a yeast autophagy-specific TRAPP subunit, forms part of a mammalian TRAPPIII-like complex and both this complex and TBC1D14 are needed for RAB1 activation. TRAPPC8 modulates autophagy and secretory trafficking and is required for TBC1D14 to bind TRAPPIII. Importantly, TBC1D14 and TRAPPIII regulate ATG9 trafficking independently of ULK1. We propose a model whereby TBC1D14 and TRAPPIII regulate a constitutive trafficking step from peripheral recycling endosomes to the early Golgi, maintaining the cycling pool of ATG9 required for initiation of autophagy. PMID:26711178

  14. On the Current Drive Capability of Low Dimensional Semiconductors: 1D versus 2D.

    Science.gov (United States)

    Zhu, Y; Appenzeller, J

    2015-12-01

    Low-dimensional electronic systems are at the heart of many scaling approaches currently pursuit for electronic applications. Here, we present a comparative study between an array of one-dimensional (1D) channels and its two-dimensional (2D) counterpart in terms of current drive capability. Our findings from analytical expressions derived in this article reveal that under certain conditions an array of 1D channels can outperform a 2D field-effect transistor because of the added degree of freedom to adjust the threshold voltage in an array of 1D devices.

  15. Development of a 1D neutron transport code employing the method of characteristics

    International Nuclear Information System (INIS)

    To investigate the 2D/1D fusion core analysis method, a 1D neutron transport problem solver, PEACH-ID, is developed. It is a code of method of characteristics (MOC), both the usual fiat-source step characteristics (SC) scheme and linear source (LS) approximation scheme are adopted for tracking calculation along the neutron flying trajectory. Exponential function interpolation table and fission source extrapolation are adopted as two major methods to accelerate the computational process. Numerical results demonstrate that PEACH-1D is accurate and efficient, and the proposed LS scheme is able to handle quite larger mesh division and deserves much more application in the MOC codes. (authors)

  16. TCTEX1D2 mutations underlie Jeune asphyxiating thoracic dystrophy with impaired retrograde intraflagellar transport

    Science.gov (United States)

    Schmidts, Miriam; Hou, Yuqing; Cortés, Claudio R.; Mans, Dorus A.; Huber, Celine; Boldt, Karsten; Patel, Mitali; van Reeuwijk, Jeroen; Plaza, Jean-Marc; van Beersum, Sylvia E. C.; Yap, Zhi Min; Letteboer, Stef J. F.; Taylor, S. Paige; Herridge, Warren; Johnson, Colin A.; Scambler, Peter J.; Ueffing, Marius; Kayserili, Hulya; Krakow, Deborah; King, Stephen M.; Beales, Philip L.; Al-Gazali, Lihadh; Wicking, Carol; Cormier-Daire, Valerie; Roepman, Ronald; Mitchison, Hannah M.; Witman, George B.; Al-Turki, Saeed; Anderson, Carl; Anney, Richard; Antony, Dinu; Asimit, Jennifer; Ayub, Mohammad; Barrett, Jeff; Barroso, Inês; Bentham, Jamie; Bhattacharya, Shoumo; Blackwood, Douglas; Bobrow, Martin; Bochukova, Elena; Bolton, Patrick; Boustred, Chris; Breen, Gerome; Brion, Marie-Jo; Brown, Andrew; Calissano, Mattia; Carss, Keren; Chatterjee, Krishna; Chen, Lu; Cirak, Sebhattin; Clapham, Peter; Clement, Gail; Coates, Guy; Collier, David; Cosgrove, Catherine; Cox, Tony; Craddock, Nick; Crooks, Lucy; Curran, Sarah; Daly, Allan; Danecek, Petr; Smith, George Davey; Day-Williams, Aaron; Day, Ian; Durbin, Richard; Edkins, Sarah; Ellis, Peter; Evans, David; Farooqi, I. Sadaf; Fatemifar, Ghazaleh; Fitzpatrick, David; Flicek, Paul; Floyd, Jamie; Foley, A. Reghan; Franklin, Chris; Futema, Marta; Gallagher, Louise; Gaunt, Tom; Geschwind, Daniel; Greenwood, Celia; Grozeva, Detelina; Guo, Xiaosen; Gurling, Hugh; Hart, Deborah; Hendricks, Audrey; Holmans, Peter; Huang, Jie; Humphries, Steve E.; Hurles, Matt; Hysi, Pirro; Jackson, David; Jamshidi, Yalda; Jewell, David; Chris, Joyce; Kaye, Jane; Keane, Thomas; Kemp, John; Kennedy, Karen; Kent, Alastair; Kolb-Kokocinski, Anja; Lachance, Genevieve; Langford, Cordelia; Lee, Irene; Li, Rui; Li, Yingrui; Ryan, Liu; Lönnqvist, Jouko; Lopes, Margarida; MacArthur, Daniel G.; Massimo, Mangino; Marchini, Jonathan; Maslen, John; McCarthy, Shane; McGuffin, Peter; McIntosh, Andrew; McKechanie, Andrew; McQuillin, Andrew; Memari, Yasin; Metrustry, Sarah; Min, Josine; Moayyeri, Alireza; Morris, James; Muddyman, Dawn; Muntoni, Francesco; Northstone, Kate; O'Donovan, Michael; O'Rahilly, Stephen; Onoufriadis, Alexandros; Oualkacha, Karim; Owen, Michael; Palotie, Aarno; Panoutsopoulou, Kalliope; Parker, Victoria; Parr, Jeremy; Paternoster, Lavinia; Paunio, Tiina; Payne, Felicity; Perry, John; Pietilainen, Olli; Plagnol, Vincent; Quail, Michael A.; Quaye, Lydia; Raymond, Lucy; Rehnström, Karola; Brent Richards, J.; Ring, Sue; Ritchie, Graham R S; Savage, David B.; Schoenmakers, Nadia; Semple, Robert K.; Serra, Eva; Shihab, Hashem; Shin, So-Youn; Skuse, David; Small, Kerrin; Smee, Carol; Soler, Artigas María; Soranzo, Nicole; Southam, Lorraine; Spector, Tim; St Pourcain, Beate; St. Clair, David; Stalker, Jim; Surdulescu, Gabriela; Suvisaari, Jaana; Tachmazidou, Ioanna; Tian, Jing; Timpson, Nic; Tobin, Martin; Valdes, Ana; van Kogelenberg, Margriet; Vijayarangakannan, Parthiban; Wain, Louise; Walter, Klaudia; Wang, Jun; Ward, Kirsten; Wheeler, Ellie; Whittall, Ros; Williams, Hywel; Williamson, Kathy; Wilson, Scott G.; Wong, Kim; Whyte, Tamieka; ChangJiang, Xu; Zeggini, Eleftheria; Zhang, Feng; Zheng, Hou-Feng

    2015-01-01

    The analysis of individuals with ciliary chondrodysplasias can shed light on sensitive mechanisms controlling ciliogenesis and cell signalling that are essential to embryonic development and survival. Here we identify TCTEX1D2 mutations causing Jeune asphyxiating thoracic dystrophy with partially penetrant inheritance. Loss of TCTEX1D2 impairs retrograde intraflagellar transport (IFT) in humans and the protist Chlamydomonas, accompanied by destabilization of the retrograde IFT dynein motor. We thus define TCTEX1D2 as an integral component of the evolutionarily conserved retrograde IFT machinery. In complex with several IFT dynein light chains, it is required for correct vertebrate skeletal formation but may be functionally redundant under certain conditions. PMID:26044572

  17. CD1d and invariant NKT cells at the human maternal–fetal interface

    OpenAIRE

    Boyson, Jonathan E.; Rybalov, Basya; Koopman, Louise A.; Exley, Mark; Balk, Steven P.; Racke, Frederick K.; Schatz, Frederick; Masch, Rachel; Wilson, S. Brian; Strominger, Jack L.

    2002-01-01

    Invariant CD1d-restricted natural killer T (iNKT) cells comprise a small, but significant, immunoregulatory T cell subset. Here, the presence of these cells and their CD1d ligand at the human maternal–fetal interface was investigated. Immunohistochemical staining of human decidua revealed the expression of CD1d on both villous and extravillous trophoblasts, the fetal cells that invade the maternal decidua. Decidual iNKT cells comprised 0.48% of the decidual CD3+ T cell population, a frequency...

  18. Ubiquitination and degradation of the hominoid-specific oncoprotein TBC1D3 is regulated by protein palmitoylation

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Chen; Lange, Jeffrey J.; Samovski, Dmitri [Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110 (United States); Su, Xiong [Department of Internal Medicine, Center for Human Nutrition Washington University School of Medicine, St. Louis, MO 63110 (United States); Liu, Jialiu [Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110 (United States); Sundaresan, Sinju [Department of Internal Medicine, Center for Human Nutrition Washington University School of Medicine, St. Louis, MO 63110 (United States); Stahl, Philip D., E-mail: pstahl@wustl.edu [Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110 (United States)

    2013-05-03

    Highlights: •Hominoid-specific oncogene TBC1D3 is targeted to plasma membrane by palmitoylation. •TBC1D3 is palmitoylated on two cysteine residues: 318 and 325. •TBC1D3 palmitoylation governs growth factors-induced TBC1D3 degradation. •Post-translational modifications may regulate oncogenic properties of TBC1D3. -- Abstract: Expression of the hominoid-specific oncoprotein TBC1D3 promotes enhanced cell growth and proliferation by increased activation of signal transduction through several growth factors. Recently we documented the role of CUL7 E3 ligase in growth factors-induced ubiquitination and degradation of TBC1D3. Here we expanded our study to discover additional molecular mechanisms that control TBC1D3 protein turnover. We report that TBC1D3 is palmitoylated on two cysteine residues: 318 and 325. The expression of double palmitoylation mutant TBC1D3:C318/325S resulted in protein mislocalization and enhanced growth factors-induced TBC1D3 degradation. Moreover, ubiquitination of TBC1D3 via CUL7 E3 ligase complex was increased by mutating the palmitoylation sites, suggesting that depalmitoylation of TBC1D3 makes the protein more available for ubiquitination and degradation. The results reported here provide novel insights into the molecular mechanisms that govern TBC1D3 protein degradation. Dysregulation of these mechanisms in vivo could potentially result in aberrant TBC1D3 expression and promote oncogenesis.

  19. Influence of lipid rafts on CD1d presentation by dendritic cells

    DEFF Research Database (Denmark)

    Peng, Wei; Martaresche, Cecile; Escande-Beillard, Nathalie;

    2011-01-01

    information on lipid rafts in plasma membranes and allows a dynamics follow-up of lipid rafts partitioning. Using this method, we showed that CD1d plasma membrane expression was sensitive to low concentrations of detergent. This may suggest either that CD1d is associated with lipid rafts mainly...... in intracellular membranes or that its association with the lipid rafts in the plasma membrane is weak....... corresponding to lipid rafts and we describe that alpha-GalCer enhanced CD1d amount in the low density detergent insoluble fraction. We conclude that the membrane environment of CD1d can influence antigen presentation mainly when the endocytic pathway is required. Flow cytometry analysis can provide additional...

  20. Modeling blood flow circulation in intracranial arterial networks: a comparative 3D/1D simulation study.

    Science.gov (United States)

    Grinberg, L; Cheever, E; Anor, T; Madsen, J R; Karniadakis, G E

    2011-01-01

    We compare results from numerical simulations of pulsatile blood flow in two patient-specific intracranial arterial networks using one-dimensional (1D) and three-dimensional (3D) models. Specifically, we focus on the pressure and flowrate distribution at different segments of the network computed by the two models. Results obtained with 1D and 3D models with rigid walls show good agreement in massflow distribution at tens of arterial junctions and also in pressure drop along the arteries. The 3D simulations with the rigid walls predict higher amplitude of the flowrate and pressure temporal oscillations than the 1D simulations with compliant walls at various segments even for small time-variations in the arterial cross-sectional areas. Sensitivity of the flow and pressure with respect to variation in the elasticity parameters is investigated with the 1D model. PMID:20661645

  1. TCTEX1D2 mutations underlie Jeune asphyxiating thoracic dystrophy with impaired retrograde intraflagellar transport

    OpenAIRE

    Kayserili Karabey, Hülya; Schmidts, Miriam; Hou, Yuqing; Cortes, Claudio R.; Mans, Dorus A.; Huber, Celine; Boldt, Karsten; Patel, Mitali; van Reeuwijk, Jeroen; Plaza, Jean-Marc; van Beersum, Sylvia E. C.; Yap, Zhi Min; Letteboer, Stef J. F.; Taylor, S. Paige; Herridge, Warren; Johnson, Colin A.; Scambler, Peter J.; Ueffing, Marius; Krakow, Deborah; King, Stephen M.; Beales, Philip L.; Al-Gazali, Lihadh; Wicking, Carol; Cormier-Daire, Valerie; Roepman, Ronald; Mitchison, Hannah M.; Witman, George B.

    2015-01-01

    The analysis of individuals with ciliary chondrodysplasias can shed light on sensitive mechanisms controlling ciliogenesis and cell signalling that are essential to embryonic development and survival. Here we identify TCTEX1D2 mutations causing Jeune asphyxiating thoracic dystrophy with partially penetrant inheritance. Loss of TCTEX1D2 impairs retrograde intraflagellar transport (IFT) in humans and the protist Chlamydomonas, accompanied by destabilization of the retrograde IFT dynein motor. W...

  2. Protective mucosal immunity mediated by epithelial CD1d and IL-10.

    Science.gov (United States)

    Olszak, Torsten; Neves, Joana F; Dowds, C Marie; Baker, Kristi; Glickman, Jonathan; Davidson, Nicholas O; Lin, Chyuan-Sheng; Jobin, Christian; Brand, Stephan; Sotlar, Karl; Wada, Koichiro; Katayama, Kazufumi; Nakajima, Atsushi; Mizuguchi, Hiroyuki; Kawasaki, Kunito; Nagata, Kazuhiro; Müller, Werner; Snapper, Scott B; Schreiber, Stefan; Kaser, Arthur; Zeissig, Sebastian; Blumberg, Richard S

    2014-05-22

    The mechanisms by which mucosal homeostasis is maintained are of central importance to inflammatory bowel disease. Critical to these processes is the intestinal epithelial cell (IEC), which regulates immune responses at the interface between the commensal microbiota and the host. CD1d presents self and microbial lipid antigens to natural killer T (NKT) cells, which are involved in the pathogenesis of colitis in animal models and human inflammatory bowel disease. As CD1d crosslinking on model IECs results in the production of the important regulatory cytokine interleukin (IL)-10 (ref. 9), decreased epithelial CD1d expression--as observed in inflammatory bowel disease--may contribute substantially to intestinal inflammation. Here we show in mice that whereas bone-marrow-derived CD1d signals contribute to NKT-cell-mediated intestinal inflammation, engagement of epithelial CD1d elicits protective effects through the activation of STAT3 and STAT3-dependent transcription of IL-10, heat shock protein 110 (HSP110; also known as HSP105), and CD1d itself. All of these epithelial elements are critically involved in controlling CD1d-mediated intestinal inflammation. This is demonstrated by severe NKT-cell-mediated colitis upon IEC-specific deletion of IL-10, CD1d, and its critical regulator microsomal triglyceride transfer protein (MTP), as well as deletion of HSP110 in the radioresistant compartment. Our studies thus uncover a novel pathway of IEC-dependent regulation of mucosal homeostasis and highlight a critical role of IL-10 in the intestinal epithelium, with broad implications for diseases such as inflammatory bowel disease. PMID:24717441

  3. Protective mucosal immunity mediated by epithelial CD1d and IL-10

    OpenAIRE

    Olszak, Torsten; Neves, Joana F.; Dowds, C. Marie; Baker, Kristi; Glickman, Jonathan; Davidson, Nicholas O; Lin, Chyuan-Sheng; Jobin, Christian; Brand, Stephan; Sotlar, Karl; Wada, Koichiro; Katayama, Kazufumi; Nakajima, Atsushi; Mizuguchi, Hiroyuki; Kawasaki, Kunito

    2014-01-01

    The mechanisms by which mucosal homeostasis is maintained are of central importance to inflammatory bowel disease. Critical to these processes is the intestinal epithelial cell (IEC), which regulates immune responses at the interface between the commensal microbiota and the host1,2. CD1d presents self and microbial lipid antigens to natural killer T (NKT) cells, which are involved in the pathogenesis of colitis in animal models and human inflammatory bowel disease3–8. As CD1d crosslinking on ...

  4. User's manual of the REFLA-1D/MODE4 reflood thermo-hydrodynamic analysis code

    International Nuclear Information System (INIS)

    REFLA-1D/MODE4 code has been developed by incorporating local power effect model and fuel temperature profile effect model into REFLA-1D/MODE3 code. This code can calculate the temperature transient of local rod by considering radial power profile effect in core and simulate the thermal characteristics of the nuclear fuel rod. This manual describes the outline of incorporated models, modification of the code with incorporating models and provides application information required to utilize the code. (author)

  5. Optimization of a cyclic peptide inhibitor of Ser/Thr phosphatase PPM1D (Wip1).

    Science.gov (United States)

    Hayashi, Ryo; Tanoue, Kan; Durell, Stewart R; Chatterjee, Deb K; Jenkins, Lisa M Miller; Appella, Daniel H; Appella, Ettore

    2011-05-31

    PPM1D (PP2Cδ or Wip1) was identified as a wild-type p53-induced Ser/Thr phosphatase that accumulates after DNA damage and classified into the PP2C family. It dephosphorylates and inactivates several proteins critical for cellular stress responses, including p38 MAPK, p53, and ATM. Furthermore, PPM1D is amplified and/or overexpressed in a number of human cancers. Thus, inhibition of its activity could constitute an important new strategy for therapeutic intervention to halt the progression of several different cancers. Previously, we reported the development of a cyclic thioether peptide with low micromolar inhibitory activity toward PPM1D. Here, we describe important improvements in the inhibitory activity of this class of cyclic peptides and also present a binding model based upon the results. We found that specific interaction of an aromatic ring at the X1 position and negative charge at the X5 and X6 positions significantly increased the inhibitory activity of the cyclic peptide, with the optimized molecule having a K(i) of 110 nM. To the best of our knowledge, this represents the highest inhibitory activity reported for an inhibitor of PPM1D. We further developed an inhibitor selective for PPM1D over PPM1A with a K(i) of 2.9 μM. Optimization of the cyclic peptide and mutagenesis experiments suggest that a highly basic loop unique to PPM1D is related to substrate specificity. We propose a new model for the catalytic site of PPM1D and inhibition by the cyclic peptides that will be useful both for the subsequent design of PPM1D inhibitors and for identification of new substrates. PMID:21528848

  6. HERMES Precision Results on g1p, g1d and g1n and the First Measurement of the Tensor Structure Function b1d

    CERN Document Server

    Riedl, C; Akopov, Z; Amarian, M; Ammosov, V V; Andrus, A; Aschenauer, E C; Augustyniak, W; Avakian, R; Avetisian, A; Avetissian, E; Bailey, P; Baturin, V; Baumgarten, C; Beckmann, M; Belostotskii, S; Bernreuther, S; Bianchi, N; Blok, H P; Böttcher, Helmut B; Borisov, A; Bouwhuis, M; Brack, J; Brüll, A; Bryzgalov, V V; Capitani, G P; Chiang, H C; Ciullo, G; Contalbrigo, M; Dalpiaz, P F; De Leo, R; De Nardo, L; De Sanctis, E; Devitsin, E G; Di Nezza, P; Düren, M; Ehrenfried, M; Elalaoui-Moulay, A; Elbakian, G M; Ellinghaus, F; Elschenbroich, U; Ely, J; Fabbri, R; Fantoni, A; Feshchenko, A; Felawka, L; Fox, B; Franz, J; Frullani, S; Gärber, Y; Gapienko, G; Gapienko, V; Garibaldi, F; Garrow, K; Garutti, E; Gaskell, D; Gavrilov, G E; Karibian, V; Graw, G; Grebenyuk, O; Greeniaus, L G; Hafidi, K; Hartig, M; Hasch, D; Heesbeen, D; Henoch, M; Hertenberger, R; Hesselink, W H A; Hillenbrand, A; Hoek, M; Holler, Y; Hommez, B; Iarygin, G; Ivanilov, A; Izotov, A; Jackson, H E; Jgoun, A; Kaiser, R; Kinney, E; Kiselev, A; Königsmann, K C; Kopytin, M; Korotkov, V A; Kozlov, V; Krauss, B; Krivokhizhin, V G; Lagamba, L; Lapikas, L; Laziev, A; Lenisa, P; Liebing, P; Lindemann, T; Lipka, K; Lorenzon, W; Lü, J; Maiheu, B; Makins, N C R; Marianski, B; Marukyan, H O; Masoli, F; Mexner, V; Meyners, N; Miklukho, O; Miller, C A; Miyachi, Y; Muccifora, V; Nagaitsev, A; Nappi, E; Naryshkin, Yu; Nass, A; Negodaev, M A; Nowak, Wolf-Dieter; Oganessyan, K; Ohsuga, H; Orlandi, G; Pickert, N; Potashov, S Yu; Potterveld, D H; Raithel, M; Reggiani, D; Reimer, P E; Reischl, A; Reolon, A R; Rith, K; Airapetian, A; Rosner, G; Rostomyan, A; Rubacek, L; Ryckbosch, D; Salomatin, Yu I; Sanjiev, I; Savin, I; Scarlett, C; Schäfer, A; Schill, C; Schnell, G; Schüler, K P; Schwind, A; Seele, J; Seidl, R; Seitz, B; Shanidze, R G; Shearer, C; Shibata, T A; Shutov, V B; Simani, M C; Sinram, K; Stancari, M D; Statera, M; Steffens, E; Steijger, J J M; Stewart, J; Stösslein, U; Tait, P; Tanaka, H; Taroian, S P; Tchuiko, B; Terkulov, A R; Tkabladze, A V; Trzcinski, A; Tytgat, M; Vandenbroucke, A; Van der Nat, P B; van der Steenhoven, G; Vetterli, Martin C; Vikhrov, V; Vincter, M G; Visser, J; Vogel, C; Vogt, M; Volmer, J; Weiskopf, C; Wendland, J; Wilbert, J; Ybeles-Smit, G V; Yen, S; Zihlmann, B; Zohrabyan, H G; Zupranski, P; Riedl, Caroline

    2005-01-01

    Final HERMES results on the proton, deuteron and neutron structure function g1 are presented in the kinematic range 0.00211d are presented.

  7. Stable Interacting $(2 + 1)d$ Conformal Field Theories at the Boundary of a class of $(3 + 1)d$ Symmetry Protected Topological Phases

    CERN Document Server

    Bi, Zhen; BenTov, Yoni; Xu, Cenke

    2016-01-01

    Motivated by recent studies of symmetry protected topological (SPT) phases, we explore the possible gapless quantum disordered phases in the $(2+1)d$ nonlinear sigma model defined on the Grassmannian manifold $\\frac{U(N)}{U(n)\\times U(N - n)}$ with a Wess-Zumino-Witten (WZW) term at level $k$, which is the effective low energy field theory of the boundary of certain $(3+1)d$ SPT states. With $k = 0$, this model has a well-controlled large-$N$ limit, $i.e.$ its renormalization group equations can be computed exactly with large-$N$. However, with the WZW term, the large-$N$ and large-$k$ limit alone is not sufficient for a reliable study of the nature of the quantum disordered phase. We demonstrate that at least for $n = 1$, through a combined large-$N$, large-$k$ and $3-\\epsilon$ generalization, a stable fixed point in the quantum disordered phase can be reliably located, which corresponds to a $(2+1)d$ strongly interacting conformal field theory. Extension of our method to $n > 1$ will also be discussed.

  8. Benchmarks and models for 1-D radiation transport in stochastic participating media

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D S

    2000-08-21

    Benchmark calculations for radiation transport coupled to a material temperature equation in a 1-D slab and 1-D spherical geometry binary random media are presented. The mixing statistics are taken to be homogeneous Markov statistics in the 1-D slab but only approximately Markov statistics in the 1-D sphere. The material chunk sizes are described by Poisson distribution functions. The material opacities are first taken to be constant and then allowed to vary as a strong function of material temperature. Benchmark values and variances for time evolution of the ensemble average of material temperature energy density and radiation transmission are computed via a Monte Carlo type method. These benchmarks are used as a basis for comparison with three other approximate methods of solution. One of these approximate methods is simple atomic mix. The second approximate model is an adaptation of what is commonly called the Levermore-Pomraning model and which is referred to here as the standard model. It is shown that recasting the temperature coupling as a type of effective scattering can be useful in formulating the third approximate model, an adaptation of a model due to Su and Pomraning which attempts to account for the effects of scattering in a stochastic context. This last adaptation shows consistent improvement over both the atomic mix and standard models when used in the 1-D slab geometry but shows limited improvement in the 1-D spherical geometry. Benchmark values are also computed for radiation transmission from the 1-D sphere without material heating present. This is to evaluate the performance of the standard model on this geometry--something which has never been done before. All of the various tests demonstrate the importance of stochastic structure on the solution. Also demonstrated are the range of usefulness and limitations of a simple atomic mix formulation.

  9. Exact solution of the 1D Hubbard model with NN and NNN interactions in the narrow-band limit

    Science.gov (United States)

    Mancini, Ferdinando; Plekhanov, Evgeny; Sica, Gerardo

    2013-10-01

    We present the exact solution, obtained by means of the Transfer Matrix (TM) method, of the 1D Hubbard model with nearest-neighbor (NN) and next-nearest-neighbor (NNN) Coulomb interactions in the atomic limit ( t = 0). The competition among the interactions ( U, V 1, and V 2) generates a plethora of T = 0 phases in the whole range of fillings. U, V 1, and V 2 are the intensities of the local, NN and NNN interactions, respectively. We report the T = 0 phase diagram, in which the phases are classified according to the behavior of the principal correlation functions, and reconstruct a representative electronic configuration for each phase. In order to do that, we make an analytic limit T → 0 in the transfer matrix, which allows us to obtain analytic expressions for the ground state energies even for extended transfer matrices. Such an extension of the standard TM technique can be easily applied to a wide class of 1D models with the interaction range beyond NN distance, allowing for a complete determination of the T = 0 phase diagrams.

  10. A Mathematical Model of T1D Acceleration and Delay by Viral Infection.

    Science.gov (United States)

    Moore, James R; Adler, Fred

    2016-03-01

    Type 1 diabetes (T1D) is often triggered by a viral infection, but the T1D prevalence is rising among populations that have a lower exposure to viral infection. In an animal model of T1D, the NOD mouse, viral infection at different ages may either accelerate or delay disease depending on the age of infection and the type of virus. Viral infection may affect the progression of T1D via multiple mechanisms: triggering inflammation, bystander activation of self-reactive T-cells, inducing a competitive immune response, or inducing a regulatory immune response. In this paper, we create mathematical models of the interaction of viral infection with T1D progression, incorporating each of these four mechanisms. Our goal is to understand how each viral mechanism interacts with the age of infection. The model predicts that each viral mechanism has a unique pattern of interaction with disease progression. Viral inflammation always accelerates disease, but the effect decreases with age of infection. Bystander activation has little effect at younger ages and actually decreases incidence at later ages while accelerating disease in mice that do get the disease. A competitive immune response to infection can decrease incidence at young ages and increase it at older ages, with the effect decreasing over time. Finally, an induced Treg response decreases incidence at any age of infection, but the effect decreases with age. Some of these patterns resemble those seen experimentally. PMID:27030351

  11. Deconvolution of Complex 1D NMR Spectra Using Objective Model Selection.

    Directory of Open Access Journals (Sweden)

    Travis S Hughes

    Full Text Available Fluorine (19F NMR has emerged as a useful tool for characterization of slow dynamics in 19F-labeled proteins. One-dimensional (1D 19F NMR spectra of proteins can be broad, irregular and complex, due to exchange of probe nuclei between distinct electrostatic environments; and therefore cannot be deconvoluted and analyzed in an objective way using currently available software. We have developed a Python-based deconvolution program, decon1d, which uses Bayesian information criteria (BIC to objectively determine which model (number of peaks would most likely produce the experimentally obtained data. The method also allows for fitting of intermediate exchange spectra, which is not supported by current software in the absence of a specific kinetic model. In current methods, determination of the deconvolution model best supported by the data is done manually through comparison of residual error values, which can be time consuming and requires model selection by the user. In contrast, the BIC method used by decond1d provides a quantitative method for model comparison that penalizes for model complexity helping to prevent over-fitting of the data and allows identification of the most parsimonious model. The decon1d program is freely available as a downloadable Python script at the project website (https://github.com/hughests/decon1d/.

  12. SIMULATION OF HYDRAULIC TRANSIENTS IN HYDROPOWER SYSTEMS USING THE 1-D-3-D COUPLING APPROACH

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao-xi; CHENG Yong-guang

    2012-01-01

    Although the hydraulic transients in pipe systems are usually simulated by using a one-dimensional (l-D) approach,local three-dimensional (3-D) simulations are necessary because of obvious 3-D flow features in some local regions of the hydropower systems.This paper combines the 1-D method with a 3-D fluid flow model to simulate the Multi-Dimensional (MD) hydraulic transients in hydropower systems and proposes two methods for modeling the compressible watcr with the correct wave speed,and two strategies for efficiently coupling the 1-D and 3-D computational domains.The methods are validated by simulating the water hammer waves and the oscillations of the water level in a surge tank,and comparing the results with the 1 -D solution data.An MD study is conducted for the transient flows in a realistic water conveying system that consists of a draft tube,a tailrace surge tank and a tailrace tunnel.It is shown that the 1-D-3-D coupling approach is an efficient and promising way to simulate the hydraulic transients in the hydropower systems in which the interactions between 1-D hydraulic fluctuations of the pipeline systems and the local 3-D flow patterns should be considered.

  13. Possible Dimensional Crossover to 1D of ^3He Fluid in Nanochannels Observed in Susceptibilities

    Science.gov (United States)

    Matsushita, Taku; Kurebayashi, Katsuya; Shibatsuji, Ryosuke; Hieda, Mitsunori; Wada, Nobuo

    2016-05-01

    Dimensional crossover to the one-dimensional (1D) state from higher dimensions has been studied for dilute ^3He fluid adsorbed in 2.4 nm ^4He-preplated nanochannels, by susceptibility measurements down to 70 mK using 4.29 MHz nuclear magnetic resonance. In nanochannels, since energy states of ^3He motion perpendicular to the channel axis are discrete, a genuine 1D ^3He fluid is expected when the Fermi energy is less than the first excitation Δ _{01} for azimuthal motion. The susceptibilities χ above 0.3 K show the Curie-law susceptibilities independent of the ^3He density, which are characteristic of nondegenerate fluid in higher dimensions. With decreasing the temperature, a significant reduction of χ T was observed from about 0.3 K for all ^3He densities. It is considered to be due to the dimensional crossover below Δ _{01}˜ 0.5 K to the 1D ^3He state in the semi-degenerate regime above the Fermi temperature. In the 1D state at lower temperatures, T-independent χ were observed for ^3He of 0.019 layers below 0.1 K. It suggests that the 1D ^3He fluid enters the quantum degenerate regime.

  14. DEVELOPMENT OF COUPLED 1D-2D MATHEMATICAL MODELS FOR TIDAL RIVERS

    Institute of Scientific and Technical Information of China (English)

    XU Zu-xin; YIN Hai-long

    2004-01-01

    Some coupled 1D-2D hydrodynamic and water quality models depicting tidal water bodies with complex topography were presented. For the coupled models, finite element method was used to solve the governing equations so as to study tidal rivers with complex topography. Since the 1D and 2D models were coupled, the principle of model coupling was proposed to account appropriately for the factors of water level, flow and pollutant flux and the related dynamical behavior was simulated. Specifically the models were used to probe quantitative pollution contribution of receiving water from neighboring Jiangsu and Zhejiang Provinces to the pollution in the Huangpu River passing through Shanghai City. Numerical examples indicated that the developed coupled 1D-2D models are applicable in tidal river network region of Shanghai.

  15. Transparent Conducting Electrodes based on 1D and 2D Ag Nanogratings for Organic Photovoltaics

    CERN Document Server

    Zeng, Beibei; Bartoli, Filbert J

    2014-01-01

    The optical and electrical properties of optically-thin one-dimensional (1D) Ag nanogratings and two-dimensional (2D) Ag nanogrids are studied, and their use as transparent electrodes in organic photovoltaics are explored. A large broadband and polarization-insensitive optical absorption enhancement in the organic light-harvesting layers is theoretically and numerically demonstrated using either single-layer 2D Ag nanogrids or two perpendicular 1D Ag nanogratings, and is attributed to the excitation of surface plasmon resonances and plasmonic cavity modes. Total photon absorption enhancements of 150% and 200% are achieved for the optimized single-layer 2D Ag nanogrids and double (top and bottom) perpendicular 1D Ag nanogratings, respectively.

  16. REAL-TIME FLOOD FORECASTING METHOD WITH 1-D UNSTEADY FLOW MODEL

    Institute of Scientific and Technical Information of China (English)

    MU Jin-bin; ZHANG Xiao-feng

    2007-01-01

    A real-time forecasting method coupled with the 1-D unsteady flow model with the recursive least-square method was developed. The 1-D unsteady flow model was modified by using the time-variant parameter and revising it dynamically through introducing a variable weighted forgetting factor, such that the output of the model could be adjusted for the real time forecasting of floods. The application of the new real time forecasting model in the reach from Yichang to Luoshan of the Yangtze River was demonstrated. Computational result shows that the forecasting accuracy of the new model is much higher than that of the original 1-D unsteady flow model. The method developed is effective for flood forecasting, and can be used for practical operation in the flood forecasting.

  17. 3+1D Massless Weyl Spinors from Bosonic Scalar-Tensor Duality

    Directory of Open Access Journals (Sweden)

    Andrea Amoretti

    2014-01-01

    Full Text Available We consider the fermionization of a bosonic-free theory characterized by the 3+1D scalar-tensor duality. This duality can be interpreted as the dimensional reduction, via a planar boundary, of the 4+1D topological BF theory. In this model, adopting the Sommerfield tomographic representation of quantized bosonic fields, we explicitly build a fermionic operator and its associated Klein factor such that it satisfies the correct anticommutation relations. Interestingly, we demonstrate that this operator satisfies the massless Dirac equation and that it can be identified with a 3+1D Weyl spinor. Finally, as an explicit example, we write the integrated charge density in terms of the tomographic transformed bosonic degrees of freedom.

  18. Periodic Properties of 1D FE Discrete Models in High Frequency Dynamics

    Directory of Open Access Journals (Sweden)

    A. Żak

    2016-01-01

    Full Text Available Finite element discrete models of various engineering 1D structures may be considered as structures of certain periodic characteristics. The source of this periodicity comes from the discontinuity of stress/strain field between the elements. This behaviour remains unnoticeable, when low frequency dynamics of these structures is investigated. At high frequency regimes, however, its influence may be strong enough to dominate calculated structural responses distorting or even falsifying them completely. In this paper, certain computational aspects of structural periodicity of 1D FE discrete models are discussed by the authors. In this discussion, the authors focus their attention on an exemplary problem of 1D rod modelled according to the elementary theory.

  19. PC-1D installation manual and user's guide

    Energy Technology Data Exchange (ETDEWEB)

    Basore, P.A.

    1991-05-01

    PC-1D is a software package for personal computers that uses finite-element analysis to solve the fully-coupled two-carrier semiconductor transport equations in one dimension. This program is particularly useful for analyzing the performance of optoelectronic devices such as solar cells, but can be applied to any bipolar device whose carrier flows are primarily one-dimensional. This User's Guide provides the information necessary to install PC-1D, define a problem for solution, solve the problem, and examine the results. Example problems are presented which illustrate these steps. The physical models and numerical methods utilized are presented in detail. This document supports version 3.1 of PC-1D, which incorporates faster numerical algorithms with better convergence properties than previous versions of the program. 51 refs., 17 figs., 5 tabs.

  20. 1-D Compression Behaviour of Acid Sulphate Soils Treated with Alkali-Activated Slag

    Directory of Open Access Journals (Sweden)

    Shahidul Islam

    2016-04-01

    Full Text Available Improvements of soft soils by mechanically mixing cementitious additives have been widely practised for construction of infrastructure. Mixing of additives improves strength and compressibility properties of soils through the development of soil structure. This study investigates the 1-D compression behaviour of alkali-activated slag treated acid sulphate soils (ASS cured up to 365 days. The void ratio-logarithm of pressure (e-logσ′ behaviour of treated ASS, including the destructuration behaviour, with additive contents and curing time have been analysed. X-ray diffraction (XRD and scanning electron microscopy (SEM analyses have been undertaken to explain the observed variations of the 1-D compression behaviour. This paper presents the results of these analyses in view of obtaining an insight into the 1-D compression behaviour of treated ASS with the help of mineralogical analysis.

  1. Solution to 1-D consolidation of non-homogeneous soft clay

    Institute of Scientific and Technical Information of China (English)

    XIE Kang-he; WEN Jie-bang; XIA Jian-zhong

    2005-01-01

    In this work, semi-analytical methods were used to solve the problem of 1-D consolidation of non-homogeneous soft clay with spatially varying coefficients of permeability and compressibility. The semi-analytical solution was programmed and then verified by comparison with the obtained analytical solution of a special case. Based on the results of some computations and comparisons with the 1-D homogeneous consolidation (by Terzaghi) and the 1-D non-linear consolidation theory (by Davis et al.)of soft clay, some diagrams were prepared and the relevant consolidation behavior of non-homogeneous soils is discussed. It was shown that the result obtained differs greatly from Terzaghi's theory and that of the non-linear consolidation theory when the coefficients of permeability and compressibility vary greatly.

  2. Characterisation and improvement of j(O1D) filter radiometers

    Science.gov (United States)

    Bohn, Birger; Heard, Dwayne E.; Mihalopoulos, Nikolaos; Plass-Dülmer, Christian; Schmitt, Rainer; Whalley, Lisa K.

    2016-07-01

    Atmospheric O3 → O(1D) photolysis frequencies j(O1D) are crucial parameters for atmospheric photochemistry because of their importance for primary OH formation. Filter radiometers have been used for many years for in situ field measurements of j(O1D). Typically the relationship between the output of the instruments and j(O1D) is non-linear because of changes in the shape of the solar spectrum dependent on solar zenith angles and total ozone columns. These non-linearities can be compensated for by a correction method based on laboratory measurements of the spectral sensitivity of the filter radiometer and simulated solar actinic flux density spectra. Although this correction is routinely applied, the results of a previous field comparison study of several filter radiometers revealed that some corrections were inadequate. In this work the spectral characterisations of seven instruments were revised, and the correction procedures were updated and harmonised considering recent recommendations of absorption cross sections and quantum yields of the photolysis process O3 → O(1D). Previous inconsistencies were largely removed using these procedures. In addition, optical interference filters were replaced to improve the spectral properties of the instruments. Successive determinations of spectral sensitivities and field comparisons of the modified instruments with a spectroradiometer reference confirmed the improved performance. Overall, filter radiometers remain a low-maintenance alternative of spectroradiometers for accurate measurements of j(O1D) provided their spectral properties are known and potential drifts in sensitivities are monitored by regular calibrations with standard lamps or reference instruments.

  3. Modelling turbulent vertical mixing sensitivity using a 1-D version of NEMO

    Directory of Open Access Journals (Sweden)

    G. Reffray

    2014-08-01

    Full Text Available Through two numerical experiments, a 1-D vertical model called NEMO1D was used to investigate physical and numerical turbulent-mixing behaviour. The results show that all the turbulent closures tested (k + l from Blanke and Delecluse, 1993 and two equation models: Generic Lengh Scale closures from Umlauf and Burchard, 2003 are able to correctly reproduce the classical test of Kato and Phillips (1969 under favourable numerical conditions while some solutions may diverge depending on the degradation of the spatial and time discretization. The performances of turbulence models were then compared with data measured over a one-year period (mid-2010 to mid-2011 at the PAPA station, located in the North Pacific Ocean. The modelled temperature and salinity were in good agreement with the observations, with a maximum temperature error between −2 and 2 °C during the stratified period (June to October. However the results also depend on the numerical conditions. The vertical RMSE varied, for different turbulent closures, from 0.1 to 0.3 °C during the stratified period and from 0.03 to 0.15 °C during the homogeneous period. This 1-D configuration at the PAPA station (called PAPA1D is now available in NEMO as a reference configuration including the input files and atmospheric forcing set described in this paper. Thus, all the results described can be recovered by downloading and launching PAPA1D. The configuration is described on the NEMO site (http://www.nemo-ocean.eu/Using-NEMO/Configurations/C1D_PAPA. This package is a good starting point for further investigation of vertical processes.

  4. Carboxyl terminus-truncated α1D-adrenoceptors inhibit the ERK pathway.

    Science.gov (United States)

    Alfonzo-Méndez, Marco A; Castillo-Badillo, Jean A; Romero-Ávila, M Teresa; Rivera, Richard; Chun, Jerold; García-Sáinz, J Adolfo

    2016-08-01

    Human α1D-adrenoceptors are G protein-coupled receptors that mediate adrenaline/noradrenaline actions. There is a growing interest in identifying regulatory domains in these receptors and determining how they function. In this work, we show that the absence of the human α1D-adrenoceptor carboxyl tail results in altered ERK (extracellular signal-regulated kinase) and p38 phosphorylation states. Amino terminus-truncated and both amino and carboxyl termini-truncated α1D-adrenoceptors were transfected into Rat-1, HEK293, and B103 cells, and changes in the phosphorylation state of extracellular signal-regulated kinase was assessed using biochemical and biophysical approaches. The phosphorylation state of other protein kinases (p38, MEK1, and Raf-1) was also studied. Noradrenaline-induced ERK phosphorylation in Rat-1 fibroblasts expressing amino termini-truncated α1D-adrenoceptors. However, in cells expressing receptors with both amino and carboxyl termini truncations, noradrenaline-induced activation was abrogated. Interestingly, ERK phosphorylation that normally occurs through activation of endogenous G protein-coupled receptors, EGF receptors, and protein kinase C, was also decreased, suggesting that downstream steps in the mitogen-activated protein kinase pathway were affected. A similar effect was observed in B103 cells but not in HEK 293 cells. Phosphorylation of Raf-1 and MEK1 was also diminished in Rat-1 fibroblasts expressing amino- and carboxyl-truncated α1D-adrenoceptors. Our data indicate that expression of carboxyl terminus-truncated α1D-adrenoceptors alters ERK and p38 phosphorylation state. PMID:27146292

  5. Force on a slow moving impurity due to thermal and quantum fluctuations in a 1D Bose-Einstein condensate

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, David [Los Alamos National Laboratory; Sykes, Andrew [UNIV OF QUEENSLAND

    2009-01-01

    We study the drag force acting on an impurity moving through a 1D Bose-Einstein condensate in the presence of both quantum and thermal fluctuations. We are able to find exact analytical solutions of the partial differential equations to the level of the Bogoliubov approximation. At zero temperature, we find a nonzero force is exerted on the impurity at subcritical velocities, due to the scattering of quantum fluctuations. We make the following explicit assumptions: far from the impurity the system is in a quantum state given by that of a zero (or finite) temperature Bose-Einstein condensate, and the scattering process generates only causally related reflection/transmission. The results raise unanswered questions in the quantum dynamics associated with the formation of persistent currents.

  6. A PIC simulation study on the evolution of the real and imaginary frequencies of 1D plasma waves

    Science.gov (United States)

    Grismayer, Thomas; Fahlen, Jay; Winjum, Benjamin; Tsung, Frank; Morales, George; Mori, Warren

    2009-11-01

    We use electrostatic PIC simulations to study the evolution of both the real and complex frequency of 1D plasma waves. We are considering especially the linear regime where the asymptotic damping rate is much bigger than the bounce frequency. In this regime the waves are typically very small and below the thermal noise. These waves can be studied using a subtraction technique where two simulations where identical random number generation seeds are carried out. In the first, a small amplitude wave is excited. In the second simulation no wave is excited. The results from each simulation are subtracted providing a clean linear wave that can be studied. As previously predicted, the damping is divided in two stages, an initial transient and an asymptotic decay (Landau's formula). The time-dependent resonant width measured in the simulations is compared with the theoretical prediction. In typical ICF plasmas nld^3 damping.

  7. Massive quantum vortex excitations in a pure gauge abelian theory in 2+1D

    CERN Document Server

    Marino, E C

    1996-01-01

    We introduce and study a pure gauge abelian theory in 2+1D in which massive quantum vortex states do exist in the spectrum of excitations. This theory can be mapped in a three dimensional gas of point particles with a logarithmic interaction, in the grand-canonical ensemble. We claim that this theory is the 2+1D analog of the Sine-Gordon, the massive vortices being the counterparts of Sine-Gordon solitons. We show that a symmetry breaking, order parameter, similar to the vacuum expectation value of a Higgs field does exist.

  8. Column Testing and 1D Reactive Transport Modeling to Evaluate Uranium Plume Persistence Processes

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Raymond H. [Navarro Research and Engineering, Inc.; Morrison, Stan [Navarro Research and Engineering, Inc.; Morris, Sarah [Navarro Research and Engineering, Inc.; Tigar, Aaron [Navarro Research and Engineering, Inc.; Dam, William [U.S. Department of Energy, Office of Legacy Management; Dayvault, Jalena [U.S. Department of Energy, Office of Legacy Management

    2016-04-26

    Motivation for Study: Natural flushing of contaminants at various U.S. Department of Energy Office of Legacy Management sites is not proceeding as quickly as predicted (plume persistence) Objectives: Help determine natural flushing rates using column tests. Use 1D reactive transport modeling to better understand the major processes that are creating plume persistence Approach: Core samples from under a former mill tailings area Tailings have been removed. Column leaching using lab-prepared water similar to nearby Gunnison River water. 1D reactive transport modeling to evaluate processes

  9. Refractive index sensor based on a 1D photonic crystal in a microfluidic channel

    DEFF Research Database (Denmark)

    Rodrigues de Sousa Nunes, Pedro André; Mortensen, Asger; Kutter, Jörg Peter;

    2010-01-01

    A refractive index sensor has been fabricated in silicon oxynitride by standard UV lithography and dry etching processes. The refractive index sensor consists of a 1D photonic crystal (PhC) embedded in a microfluidic channel addressed by fiber-terminated planar waveguides. Experimental demonstrat......A refractive index sensor has been fabricated in silicon oxynitride by standard UV lithography and dry etching processes. The refractive index sensor consists of a 1D photonic crystal (PhC) embedded in a microfluidic channel addressed by fiber-terminated planar waveguides. Experimental...

  10. Statistics of Eigenfunctions in 1D Tight Binding Model: Distribution of Riccati Variable

    Institute of Scientific and Technical Information of China (English)

    WANG Wen-Ge

    2001-01-01

    For energy eigenfunctions in 1D tight binding model, the distribution of ratios of the nearest components (Riccati variable), denoted by f(p), gives information on their fluctuation properties. The shape of f(p) is studied numerically for three versions of the 1D tight binding model. It is shown that when perturbation is strong the shape of f(p) is usually quite close to that of the Lorentzian distribution and in the case of weak perturbation the shape of the central part of f(p) is model-dependent while the shape of tails are still close to the Lorentzian form.``

  11. Opto-digital image encryption by using Baker mapping and 1-D fractional Fourier transform

    Science.gov (United States)

    Liu, Zhengjun; Li, She; Liu, Wei; Liu, Shutian

    2013-03-01

    We present an optical encryption method based on the Baker mapping in one-dimensional fractional Fourier transform (1D FrFT) domains. A thin cylinder lens is controlled by computer for implementing 1D FrFT at horizontal direction or vertical direction. The Baker mapping is introduced to scramble the amplitude distribution of complex function. The amplitude and phase of the output of encryption system are regarded as encrypted image and key. Numerical simulation has been performed for testing the validity of this encryption scheme.

  12. Characterization of 5-HT1D receptor binding sites in post-mortem human brain cortex.

    OpenAIRE

    Martial, J; de Montigny, C; Cecyre, D; Quirion, R

    1991-01-01

    The present study provides further evidence for the presence of serotonin1D (5-HT1D) receptors in post-mortem human brain. Receptor binding parameters in temporal cortex homogenates were assessed using [3H]5-HT in the presence of 100 nM 8-OH-DPAT, 1 microM propranolol and 1 microM mesulergine to prevent labelling of the 5-HT1A, 5-HT1B and 5-HT1C sites, respectively. Under these conditions, [3H]5-HT apparently bound to a class of high affinity (Kd = 5.0 +/- 1.0 nM) low capacity (Bmax = 96 +/- ...

  13. 1D Runoff-runon stochastic model in the light of queueing theory : heterogeneity and connectivity

    Science.gov (United States)

    Harel, M.-A.; Mouche, E.; Ledoux, E.

    2012-04-01

    Runoff production on a hillslope during a rainfall event may be simplified as follows. Given a soil of constant infiltrability I, which is the maximum amount of water that the soil can infiltrate, and a constant rainfall intensity R, runoff is observed where R is greater than I. The infiltration rate equals the infiltrability when runoff is produced, R otherwise. When ponding time, topography, and overall spatial and temporal variations of physical parameters, such as R and I, are neglected, the runoff equation remains simple. In this study, we consider soils of spatially variable infiltrability. As runoff can re-infiltrate on down-slope areas of higher infiltrabilities (runon), the resulting process is highly non-linear. The stationary runoff equation is: Qn+1 = max(Qn + (R - In)*Δx , 0) where Qn is the runoff arriving on pixel n of size Δx [L2/T], R and In the rainfall intensity and infiltrability on that same pixel [L/T]. The non-linearity is due to the dependence of infiltration on R and Qn, that is runon. This re-infiltration process generates patterns of runoff along the slope, patterns that organise and connect to each other differently depending on the rainfall intensity and the nature of the soil heterogeneity. The runoff connectivity, assessed using the connectivity function of Allard (1993), affects greatly the dynamics of the runoff hillslope. Our aim is to assess, in a stochastic framework, the runoff organization on 1D slopes with random infiltrabilities (log-normal, exponential, bimodal and uniform distributions) by means of theoretical developments and numerical simulations. This means linking the nature of soil heterogeneity with the resulting runoff organisation. In term of connectivity, we investigate the relations between structural (infiltrability) and functional (runoff) connectivity. A theoretical framework based on the queueing theory is developed. We implement the idea of Jones et al. (2009), who remarked that the above formulation is

  14. CD1d-restricted peripheral T cell lymphoma in mice and humans.

    Science.gov (United States)

    Bachy, Emmanuel; Urb, Mirjam; Chandra, Shilpi; Robinot, Rémy; Bricard, Gabriel; de Bernard, Simon; Traverse-Glehen, Alexandra; Gazzo, Sophie; Blond, Olivier; Khurana, Archana; Baseggio, Lucile; Heavican, Tayla; Ffrench, Martine; Crispatzu, Giuliano; Mondière, Paul; Schrader, Alexandra; Taillardet, Morgan; Thaunat, Olivier; Martin, Nadine; Dalle, Stéphane; Le Garff-Tavernier, Magali; Salles, Gilles; Lachuer, Joel; Hermine, Olivier; Asnafi, Vahid; Roussel, Mikael; Lamy, Thierry; Herling, Marco; Iqbal, Javeed; Buffat, Laurent; Marche, Patrice N; Gaulard, Philippe; Kronenberg, Mitchell; Defrance, Thierry; Genestier, Laurent

    2016-05-01

    Peripheral T cell lymphomas (PTCLs) are a heterogeneous entity of neoplasms with poor prognosis, lack of effective therapies, and a largely unknown pathophysiology. Identifying the mechanism of lymphomagenesis and cell-of-origin from which PTCLs arise is crucial for the development of efficient treatment strategies. In addition to the well-described thymic lymphomas, we found that p53-deficient mice also developed mature PTCLs that did not originate from conventional T cells but from CD1d-restricted NKT cells. PTCLs showed phenotypic features of activated NKT cells, such as PD-1 up-regulation and loss of NK1.1 expression. Injections of heat-killed Streptococcus pneumonia, known to express glycolipid antigens activating NKT cells, increased the incidence of these PTCLs, whereas Escherichia coli injection did not. Gene expression profile analyses indicated a significant down-regulation of genes in the TCR signaling pathway in PTCL, a common feature of chronically activated T cells. Targeting TCR signaling pathway in lymphoma cells, either with cyclosporine A or anti-CD1d blocking antibody, prolonged mice survival. Importantly, we identified human CD1d-restricted lymphoma cells within Vδ1 TCR-expressing PTCL. These results define a new subtype of PTCL and pave the way for the development of blocking anti-CD1d antibody for therapeutic purposes in humans. PMID:27069116

  15. Fresnel Lenses fabricated by femtosecond laser micromachining on Polymer 1D Photonic Crystal

    Directory of Open Access Journals (Sweden)

    Guduru Surya S.K.

    2013-11-01

    Full Text Available We report the fabrication of micro Fresnel lenses by femtosecond laser surface ablation on polymer 1D photonic crystals. This device is designed to focus the transmitted wavelength of the photonic crystal and filter the wavelengths corresponding to the photonic band gap region. Integration of such devices in a wavelength selective light harvesting and filtering microchip can be achieved.

  16. Glucose sensor using periodic nanostructured hybrid 1D Au/ZnO arrays

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Pil Ho, E-mail: pilho.huh@samsung.com [Samsung Electronics Co., Ltd. Nongseo-Dong, Giheung-Gu, Yongin-City, Gyeonggi-Do 446-711 (Korea, Republic of); Kim, Myunghwan [Samsung Electronics Co., Ltd. Nongseo-Dong, Giheung-Gu, Yongin-City, Gyeonggi-Do 446-711 (Korea, Republic of); Kim, Seong-Cheol, E-mail: sckim07@ynu.ac.kr [School of Textiles, Yeungnam University, Gyeungsan Gyeungbuk 712-749 (Korea, Republic of)

    2012-07-01

    Hybrid 1D nanostructured Au/ZnO arrays were created by heat treatment of a spin-coated zinc acetate-PVA-Au(III) layer on surface relief grating and functioned as an electrochemical and optical D(+)-glucose sensor due to electrochemical oxidation between hybrid nanostructures and D(+)-glucose. The morphology and chemical composition of 1D Au/ZnO hybrid arrays were characterized by means of AFM, SEM, EDAX, and XPS. Electrochemical and optical sensitivities by the addition of D(+)-glucoses on 1D Au/ZnO arrays were investigated using Cyclic voltammetry and UV-vis-NIR spectra in the medical concentration ranges of 0.5, 2.0, and 8.0 mM. - Highlights: Black-Right-Pointing-Pointer Zinc acetate-PVA-Au(III) composites were prepared by simply mixing zinc acetate-PVA and gold(III) chloride trihydrate. Black-Right-Pointing-Pointer Hybrid 1D nanostructured Au/ZnO arrays were easily fabricated using surface relief gratings without additional process steps. Black-Right-Pointing-Pointer Redox and optical sensor to detect D(+)-glucoses.

  17. (3+1)D Anomalous Twisted Gauge Theories with Global Symmetry

    CERN Document Server

    Ye, Peng

    2016-01-01

    In (3+1)D twisted gauge theories, global symmetry may be imposed on topological currents $\\star\\frac{1}{2\\pi}db^I$ in a hydrodynamical way ($I=1,2,\\cdots$, $\\{b^I\\}$ is a set of Kalb-Ramond gauge fields). This methodology has been applied before in the Chern-Simons theory of fractional quantum Hall liquids. We find that, in some twisted gauge theories (with discrete Abelian gauge group $G_g$), implementing a global symmetry (denoted by $G_s$) is always inconsistent. There are two consequences. First, the symmetry-enriched topological order (SET) of the ground state is anomalous, which cannot exist in (3+1)D system alone. It can exist as a boundary of 4+1D topological phases. Second, if $G_s$ is fully gauged, the resulting new gauge theory has gauge anomaly. A (4+1)D topological phase is required to cancel this anomaly. We elaborate this phenomenon via a concrete example.

  18. Plasma as a tool for growth of 1D and 2D nanomaterials and their conversions

    Science.gov (United States)

    Cvelbar, Uros

    2015-09-01

    The growth of 1D and 2D nanostructures in low pressure oxygen plasma is presented with the special stress on metal-oxide nanowires and their deterministic growth mechanisms. Since the resulting nanostructures not always have required properties for applications their modifications are required. Therefore their conversions into different oxides or sulphites/nitrides are required with either molecules, atoms, electrons or photons.

  19. GLOBAL EXISTENCE AND ASYMPTOTIC BEHAVIOR OF THE SOLUTION TO 1-D ENERGY TRANSPORT MODEL FOR SEMICONDUCTORS

    Institute of Scientific and Technical Information of China (English)

    黎勇; 陈丽

    2002-01-01

    In this paper, we study the asymptotic behavior of global smooth solution to the initial boundary problem for the 1-D energy transport model in semiconductor science. We prove that the smooth solution of the problem converges to a stationary solution exponentially fast as t - ∞ when the initial data is a small perturbation of the stationary solution.

  20. 1D Cahn-Hilliard equation: Ostwald ripening and application to modulated phase systems

    OpenAIRE

    Villain-Guillot, Simon

    2008-01-01

    Using an approximate analytical solution of the Cahn-Hilliard equation describing the coalescence during a first order phase transition, we compute the characteristic time for one step of period doubling in Langer's self similar scenario for Ostwald ripening. As an application, we compute the thermodynamically stable period of a 1D modulated phase pattern.

  1. Build up An Operational Flood Simulation from Existing 1D Channel Flow Works

    Science.gov (United States)

    Chang, Che-Hao; Hsu, Chih-Tsung; Wu, Shiang-Jen; Lien, Ho-Cheng; Shen, Jhih-Cyuan; Chung, Ming-Ko

    2016-04-01

    Several 2D flood simulations will be developed for urban area in recent years in Taiwan. Original ideas focus on the static flood maps produced by the 2D flood simulation with respect to design events, which could be useful no matter for planning or disaster awareness. However, an extra bonus is expected to see if we can reuse the 2D flood simulation framework for operational use or not. Such a project goal inspire us to setup a standard operation procedure before any progress from existing 1D channel flow works. 3 key issues are taken into account in the SOP: 1. High Resolution Terrain: A 1m resolution digital terrain model (DTM) is considered as a reference. The Channels and structures should be setup in 1D channel flow works if we can identify under such high resolution. One should examine the existing 1D channel flow works consistent with the DTM or not. 2. Meteo Stations Referenced: Real time precipitation would be send to referenced location in RR models during an operational forecast. Existing 1D channels flow works are usually specifically for design events which are not necessarily equipped with such references. 3. Time Consuming: A full scale 2D flood simulation needs a lot of computation resources. A solution should be derived within practical time limits. Under the above consideration, some impacts and procedures will be analyzed and developed to setup the SOP for further model modification.

  2. The Missing Heritability in T1D and Potential New Targets for Prevention

    Directory of Open Access Journals (Sweden)

    Brian G. Pierce

    2013-01-01

    Full Text Available Type 1 diabetes (T1D is a T cell-mediated disease. It is strongly associated with susceptibility haplotypes within the major histocompatibility complex, but this association accounts for an estimated 50% of susceptibility. Other studies have identified as many as 50 additional susceptibility loci, but the effect of most is very modest (odds ratio (OR 5 and that deletion of Vβ13+ T cells prevents diabetes. A role for the TCR is also suspected in NOD mice, but TCR regions have not been associated with human T1D. To investigate this disparity, we tested the hypothesis in silico that previous studies of human T1D genetics were underpowered to detect MHC-contingent TCR susceptibility. We show that stratifying by MHC markedly increases statistical power to detect potential TCR susceptibility alleles. We suggest that the TCR regions are viable candidates for T1D susceptibility genes, could account for “missing heritability,” and could be targets for prevention.

  3. Phase structure of (2+1)d strongly coupled lattice gauge theories

    CERN Document Server

    Strouthos, C G

    2003-01-01

    We study the chiral phase transition in (2+1)d strongly coupled U(N) lattice gauge theories with staggered fermions. We show with high precision simulations performed directly in the chiral limit that these models undergo a Berezinski-Kosterlitz-Thouless (BKT) transition. We also show that this universality class is unaffected even in the large N limit.

  4. On the self-assembly of TiOx into 1D NP network nanostructures

    International Nuclear Information System (INIS)

    Here, we report for the first time a ‘ligand free’ method of designing 1D TiOx supramolecular network materials, which starts from Ti bare metal powder. Each TiOx oxidation step has been carefully investigated with different analytical techniques, including high resolution transmission electron microscopy/high resolution scanning electron microscopy (HRTEM/HRSEM), x-ray photoelectron spectroscopy (XPS), Raman spectroscopy and superconducting quantum interference device (SQUID) measurements. The self-assembly of TiOx nanoparticles (NPs) into 1D supramolecular nanoparticle networks is induced by the formation of mixed valent TiII,III species. The synthesis starts with etching a bare Ti surface, followed by a continuous oxidation of TiOx clusters and NPs, and it finally ends with the self-assembly into rigid 1D NPs chains. Today, such self-assembled 1D NP TiOx network materials are bridging the gap between the nanoscale and the macroscopic material world and will further provide interesting research opportunities. (fast track communication)

  5. Data of evolutionary structure change: 1BU1D-1QLYA [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1BU1D-1QLYA 1BU1 1QLY D A -IIVVALYDYEAIHHEDLSFQKGDQMVVLEESG-EWWKA...RSLATRKEGYIPSNYVARV- LKKVVALYDYMPMNANDLQLRKGDEYFILEESNLPWWRARDK-NGQEGYIPSNYVTEAE -...A 277 TRP CA 316 LYS CA 330 ALA CA 359 1QL...Y A 1QLYA LEESNLPWW...21347046 2.311821937561035 1 1QL

  6. Thermodynamics of 1D N-Component Bariev Model Under Open Boundary Conditions

    Institute of Scientific and Technical Information of China (English)

    WANG Chun; KE San-Min; YUE Rui-Hong

    2006-01-01

    The thermodynamic Bethe ansatz equations and free energy for 1D N-component Bariev model under open boundary conditions are derived based on the string hypothesis for both, a repulsive and an attractive interaction.These equations are discussed in some limiting cases, such as the ground state, weak and strong couplings.

  7. Exponentially long Equilibration times in a 1-D Collisional Model of a classical gas

    DEFF Research Database (Denmark)

    Hjorth, Poul; Benettin, G.

    1999-01-01

    separation between the time scale for the vibration and the time scale associated with a typical binary collision in the gas. We consider here a simple 1-D model, and show how, when these time scales are well separated, the collisional dynamics is constrained by a many-particle adiabatic invariant...

  8. Quantized 1D- and 2D optical molasses: Laser cooling and spectrum of resonance fluorescene

    International Nuclear Information System (INIS)

    We present results for laser cooling of optical molasses and the spectrum of resonance fluorescene based on a fully quantum mechanical treatment of the atomic center-of-mass motion for 1D and 2D laser configurations. Our calculations based on recently developed wave function simulations of the quantum master equation for laser cooling

  9. Experimental Conditions: SE19_S2_M1_D1 [Metabolonote[Archive

    Lifescience Database Archive (English)

    Full Text Available SE19_S2_M1_D1 SE19 Grobal triacylglycerol analysis in mouse liver and white adipose... tissue (WAT) by high resolution LC/ESI-QTOF MS/MS SE19_S2 Mouse white adipose tissue (WAT) SE19_S2_M1 20 ug

  10. Data of evolutionary structure change: 1D5IH-3FZUH [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available ntryIDChain> CKATG--YTFSS >EEEE -- GGG> 3FZU H 3FZUH CAASGFRFTFNN ...>EEEE GGGure> ATOM 1790 CA CYS H 22 34.95...SW >EEEE ---- > ATOM 2413 CA ALA...pdbChain> 1D5IH ARGHSYYFYDGDYW >EE

  11. Solvent-free porous framework resulted from 3D entanglement of 1D zigzag coordination polymer

    KAUST Repository

    Kole, Goutam Kumar Umar

    2010-01-01

    A solvent-free porous metal organic framework is constructed by the 3D entanglement of 1D zigzag coordination polymeric chains. The role of solvents and the effect of reaction conditions on such unique entanglement are addressed. © 2010 The Royal Society of Chemistry and the Centre National de la Recherche Scientifique.

  12. On time-reversal anomaly of 2+1d topological phases

    CERN Document Server

    Tachikawa, Yuji

    2016-01-01

    We describe a method to find the anomaly of the time-reversal symmetry of 2+1d topological quantum field theories, by computing the fractional anomalous momentum on the cross-cap background. This allows us, for example, to identify the parameter $\

  13. Millimeter and Submillimeter Studies of O(^1D) Insertion Reactions to Form Molecules of Astrophysical Interest

    Science.gov (United States)

    Hays, Brian; Wehres, Nadine; Deprince, Bridget Alligood; Roy, Althea A. M.; Laas, Jacob; Widicus Weaver, Susanna L.

    2015-06-01

    While both the number of detected interstellar molecules and their chemical complexity continue to increase, understanding of the processes leading to their formation is lacking. Our research group combines laboratory spectroscopy, observational astronomy, and astrochemical modeling for an interdisciplinary examination of the chemistry of star and planet formation. This talk will focus on our laboratory studies of O(^1D) insertion reactions with organic molecules to produce molecules of astrophysical interest. By employing these reactions in a supersonic expansion, we are able to produce interstellar organic reaction intermediates that are unstable under terrestrial conditions; we then probe the products using millimeter and submillimeter spectroscopy. We benchmarked this setup using the well-studied O(^1D) + methane reaction to form methanol. After optimizing methanol production, we moved on to study the O(^1D) + ethylene reaction to form vinyl alcohol (CH_2CHOH), and the O(^1D) + methyl amine reaction to form aminomethanol (NH_2CH_2OH). Vinyl alcohol measurements have now been extended up to 450 GHz, and the associated spectral analysis is complete. A possible detection of aminomethanol has also been made, and continued spectral studies and analysis are underway. We will present the results from these experiments and discuss future applications of these molecular and spectroscopic techniques.

  14. Glucose sensor using periodic nanostructured hybrid 1D Au/ZnO arrays

    International Nuclear Information System (INIS)

    Hybrid 1D nanostructured Au/ZnO arrays were created by heat treatment of a spin-coated zinc acetate-PVA-Au(III) layer on surface relief grating and functioned as an electrochemical and optical D(+)-glucose sensor due to electrochemical oxidation between hybrid nanostructures and D(+)-glucose. The morphology and chemical composition of 1D Au/ZnO hybrid arrays were characterized by means of AFM, SEM, EDAX, and XPS. Electrochemical and optical sensitivities by the addition of D(+)-glucoses on 1D Au/ZnO arrays were investigated using Cyclic voltammetry and UV–vis-NIR spectra in the medical concentration ranges of 0.5, 2.0, and 8.0 mM. - Highlights: ► Zinc acetate-PVA-Au(III) composites were prepared by simply mixing zinc acetate-PVA and gold(III) chloride trihydrate. ► Hybrid 1D nanostructured Au/ZnO arrays were easily fabricated using surface relief gratings without additional process steps. ► Redox and optical sensor to detect D(+)-glucoses.

  15. Molecular, physicochemical and rheological characteristics of introgressive Triticale/Triticum monococcum ssp. monococcum lines with wheat 1D/1A chromosome substitution.

    Science.gov (United States)

    Salmanowicz, Bolesław P; Langner, Monika; Wiśniewska, Halina; Apolinarska, Barbara; Kwiatek, Michał; Błaszczyk, Lidia

    2013-01-01

    Three sets of hexaploid introgressive triticale lines, with Triticum monococcum ssp. monococcum (cultivated einkorn wheat) genes and a bread wheat chromosome 1D substituted for chromosome 1A, and one set of secondary triticale lines were evaluated for grain and flour physicochemical and dough rheological characteristics in two generations (F7 and F8). Genomic in situ hybridization (GISH) and fluorescence in situ hybridization (FISH) confirmed the 1D/1A chromosome substitution. The presence or absence of einkorn high-molecular-weight (HMW) glutenin subunits and the wheat Glu-D1d locus encoding the 5 + 10 subunits was assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), capillary zone electrophoresis, and allele-specific molecular markers. Significant differences were found among physicochemical properties (with the exception of the Hagberg falling number) of all introgressive Triticale/T. monococcum lines and the secondary triticale lines. The wheat 1D/1A chromosome substitution also affected these properties. The results showed that in all introgressive triticale lines, the protein and gluten content, Zeleny sedimentation value, and water absorption capacity, were increased. The rheological parameters estimated using micro-farinograph, reomixer, and Kieffer dough extensibility systems also showed an appreciable increase in dough-mixing properties, maximum resistance to extension (Rmax), and dough extensibility. Introgressive Triticale/T. monococcum lines with 5 + 10 subunits have particularly favorable rheological parameters. The results obtained in this study suggest that the cultivated einkorn genome Am, in the context of hexaploid secondary triticale lines and with a wheat 1D/1A substitution, has the potential to improve gluten polymer interactions and be a valuable genetic resource for triticale quality improvement. PMID:23896593

  16. Molecular, Physicochemical and Rheological Characteristics of Introgressive Triticale/Triticum monococcum ssp. monococcum Lines with Wheat 1D/1A Chromosome Substitution

    Directory of Open Access Journals (Sweden)

    Lidia Błaszczyk

    2013-07-01

    Full Text Available Three sets of hexaploid introgressive triticale lines, with Triticum monococcum ssp. monococcum (cultivated einkorn wheat genes and a bread wheat chromosome 1D substituted for chromosome 1A, and one set of secondary triticale lines were evaluated for grain and flour physicochemical and dough rheological characteristics in two generations (F7 and F8. Genomic in situ hybridization (GISH and fluorescence in situ hybridization (FISH confirmed the 1D/1A chromosome substitution. The presence or absence of einkorn high-molecular-weight (HMW glutenin subunits and the wheat Glu-D1d locus encoding the 5 + 10 subunits was assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE, capillary zone electrophoresis, and allele-specific molecular markers. Significant differences were found among physicochemical properties (with the exception of the Hagberg falling number of all introgressive Triticale/T. monococcum lines and the secondary triticale lines. The wheat 1D/1A chromosome substitution also affected these properties. The results showed that in all introgressive triticale lines, the protein and gluten content, Zeleny sedimentation value, and water absorption capacity, were increased. The rheological parameters estimated using micro-farinograph, reomixer, and Kieffer dough extensibility systems also showed an appreciable increase in dough-mixing properties, maximum resistance to extension (Rmax, and dough extensibility. Introgressive Triticale/T. monococcum lines with 5 + 10 subunits have particularly favorable rheological parameters. The results obtained in this study suggest that the cultivated einkorn genome Am, in the context of hexaploid secondary triticale lines and with a wheat 1D/1A substitution, has the potential to improve gluten polymer interactions and be a valuable genetic resource for triticale quality improvement.

  17. 1D Ladder-like Chain and 1D Channeled 3D Supramolecular Architectures Based on Benzophenone-2,4'-dicarboxylic Acid

    Institute of Scientific and Technical Information of China (English)

    YANG Xiao-Gang; LI Dong-Sheng; FU Feng; WU Ya-Pan; WANG Ji-Jiang; WANG Yao-Yu

    2008-01-01

    The hydrothermal reactions of AgNO3, 2,2'-bipyridyl, and benzophenone-2,4'-dicarboxylic acid gave rise to two benzophenone-2,4'-dicarboxylic acid). The two compounds are extended by hydrogen bonds in two different apbonding between H2L ligands and water molecules, then extended to a 3D supramolecular architecture. Compound 2 possesses 3D supramolecular architecture containing 1D open channels, which are driven due to the strong H-bonding interactions occurring between the HL anions and water molecules; interestingly, [Ag(bpy)2]+ cations vestigated, the emission maxima for 2 exhibits red-shift compared with that of free ligand and 1 due to chelating effect of the 2,2'-bipyridine ligand to the silver ion and the presence of aromatic π-packing.

  18. Targeting PPM1D by lentivirus-mediated RNA interference inhibits the tumorigenicity of bladder cancer cells

    International Nuclear Information System (INIS)

    Protein phosphatase magnesium/manganese-dependent 1D (PPM1D) is a p53-induced phosphatase that functions as a negative regulator of stress response pathways and has oncogenic properties. However, the functional role of PPM1D in bladder cancer (BC) remains largely unknown. In the present study, lentivirus vectors carrying small hairpin RNA (shRNA) targeting PPM1D were used to explore the effects of PPM1D knockdown on BC cell proliferation and tumorigenesis. shRNA-mediated knockdown of PPM1D significantly inhibited cell growth and colony forming ability in the BC cell lines 5637 and T24. Flow cytometric analysis showed that PPM1D silencing increased the proportion of cells in the G0/G1 phase. Downregulation of PPM1D also inhibited 5637 cell tumorigenicity in nude mice. The results of the present study suggest that PPM1D plays a potentially important role in BC tumorigenicity, and lentivirus-mediated delivery of shRNA against PPM1D might be a promising therapeutic strategy for the treatment of BC

  19. Targeting PPM1D by lentivirus-mediated RNA interference inhibits the tumorigenicity of bladder cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W. [Institute of Urology, Huashan Hospital, Fudan University, Shanghai (China); Department of the Intensive Care Unit, Huashan Hospital, Fudan University, Shanghai (China); Zhu, H. [Department of the Intensive Care Unit, Huashan Hospital, Fudan University, Shanghai (China); Zhang, H.; Zhang, L. [Department of Urology, Huashan Hospital, Fudan University, Shanghai (China); Ding, Q.; Jiang, H. [Institute of Urology, Huashan Hospital, Fudan University, Shanghai (China); Department of Urology, Huashan Hospital, Fudan University, Shanghai (China)

    2014-09-23

    Protein phosphatase magnesium/manganese-dependent 1D (PPM1D) is a p53-induced phosphatase that functions as a negative regulator of stress response pathways and has oncogenic properties. However, the functional role of PPM1D in bladder cancer (BC) remains largely unknown. In the present study, lentivirus vectors carrying small hairpin RNA (shRNA) targeting PPM1D were used to explore the effects of PPM1D knockdown on BC cell proliferation and tumorigenesis. shRNA-mediated knockdown of PPM1D significantly inhibited cell growth and colony forming ability in the BC cell lines 5637 and T24. Flow cytometric analysis showed that PPM1D silencing increased the proportion of cells in the G0/G1 phase. Downregulation of PPM1D also inhibited 5637 cell tumorigenicity in nude mice. The results of the present study suggest that PPM1D plays a potentially important role in BC tumorigenicity, and lentivirus-mediated delivery of shRNA against PPM1D might be a promising therapeutic strategy for the treatment of BC.

  20. Head and Tail Deformations, Torsional Coriolis Coupling, and E(1d)-E(2d) Vibrational Mixing in Ethane-Like Molecules.

    Science.gov (United States)

    Lattanzi; di Lauro C

    1999-12-01

    The mechanism of torsional Coriolis interaction of E(1d) and E(2d) vibrational modes in ethane-like molecules is investigated, and it is shown that this coupling can drastically affect the torsional splitting in the degenerate vibrational states. A basic point of our treatment is that the sets of coordinates of head and tail which combine with the + sign to generate E(1d) normal coordinates are in general different from those which combine with the - sign to generate E(2d) normal coordinates. It is shown that the zeta(gamma) torsional Coriolis coefficients calculated by the usual methods of normal mode analysis are related to the vibrational angular momenta within head and tail referred to the internal rotor axis systems. With knowledge of the L and L(-1) matrices it is possible to transform these coefficients for reference to the molecule-fixed frame. It is peculiar that torsional Coriolis matrix elements occur between E(1d) and E(2d) vibrational components with the same x or y orientation in the molecule-fixed frame. The matrix elements of the torsional Coriolis operator and other operators responsible for the end-to-end coupling are determined, and a method for calculating vibration-torsion energies, and then torsional splittings, in degenerate vibrational states is outlined. Detailed calculations require a global model, involving all the degenerate vibrational basis states in a complex mechanism of interactions, but it is shown that useful information can be obtained by means of simplified models. Our semiempirical rule that degenerate vibrational states with a large negative value of the diagonal vibration-rotation Coriolis coefficient are likely to deviate much from the behavior of E(1d) or E(2d) vibrational states, with a sensible decrease of the torsional splittings, is confirmed. Copyright 1999 Academic Press.

  1. Mapping temporal extent of Chiang Mai floods using coupled 1-D and quasi 2-D floodplain inundation models

    Directory of Open Access Journals (Sweden)

    Kowit Boonrawd

    2015-04-01

    Full Text Available A coupling of a 1-D flood routing model and quasi 2-D floodplain inundation model is applied for mapping spacetime flood extent. The routing model is formulated based on a non-linear storage-discharge relationship which is converted from an observed and synthetic rating curve. To draw the rating curve, required parameters for each reaches are estimated from hydraulic properties, floodplain geometry and vegetation and building cover of compound channels. The shape of the floodplain is defined by using fitting exercise based on the reverse approach between past and simulated inundation flood extent, to solve the current problem of inadequate topographic input data for floodplain. Mapping of daily flood can be generated relying on flat water levels. The quasi 2-D raster model is tested and applied to generate more realistic water surface and is used to estimate flood extent. The model is applied to the floodplains of Chiang Mai, north of Thailand and used to estimate a time series of hourly flood maps. Extending from daily to hourly flood extent, mapping development provides more details of flood inundation extent and depth.

  2. Numerical Methods and Comparisons for 1D and Quasi 2D Streamer Propagation Models

    CERN Document Server

    Huang, Mengmin; Guan, Huizhe; Zeng, Rong

    2016-01-01

    In this work, we propose four different strategies to simulate the one-dimensional (1D) and quasi two-dimensional (2D) model for streamer propagation. Each strategy involves of one numerical method for solving Poisson's equation and another method for solving continuity equations in the models, and a total variation diminishing three-stage Runge-Kutta method in temporal discretization. The numerical methods for Poisson's equation include finite volume method, discontinuous Galerkin methods, mixed finite element method and least-squared finite element method. The numerical method for continuity equations is chosen from the family of discontinuous Galerkin methods. The accuracy tests and comparisons show that all of these four strategies are suitable and competitive in streamer simulations from the aspects of accuracy and efficiency. By applying any strategy in real simulations, we can study the dynamics of streamer propagations and influences due to the change of parameters in both of 1D and quasi 2D models. T...

  3. Bifurcations of families of 1D-tori in 4D symplectic maps

    Science.gov (United States)

    Onken, Franziska; Lange, Steffen; Ketzmerick, Roland; Bäcker, Arnd

    2016-06-01

    The regular structures of a generic 4d symplectic map with a mixed phase space are organized by one-parameter families of elliptic 1d-tori. Such families show prominent bends, gaps, and new branches. We explain these features in terms of bifurcations of the families when crossing a resonance. For these bifurcations, no external parameter has to be varied. Instead, the longitudinal frequency, which varies along the family, plays the role of the bifurcation parameter. As an example, we study two coupled standard maps by visualizing the elliptic and hyperbolic 1d-tori in a 3d phase-space slice, local 2d projections, and frequency space. The observed bifurcations are consistent with the analytical predictions previously obtained for quasi-periodically forced oscillators. Moreover, the new families emerging from such a bifurcation form the skeleton of the corresponding resonance channel.

  4. Analytical investigations of the magnetotelluric directionality estimation in 1-D anisotropic layered media

    Science.gov (United States)

    Okazaki, T.; Oshiman, N.; Yoshimura, R.

    2016-11-01

    Inferring geoelectric dimensionality (1D, 2D or 3D) and directionality (strike directions) from the impedance tensor is a basic procedure in magnetotelluric data processing. Given that electrical anisotropy is increasingly recognized in observations, it is valuable to understand the imprint of anisotropy in these analyses. In this paper, we analytically investigate the estimation of strike directions based on rotational invariants in 1D anisotropic layered media. We first show that if anisotropy axes are identical in all anisotropic layers, the estimated strike coincides with that direction. We then derive an analytical formula of the strike angle at long periods for general anisotropic layers with an isotropic basement. This formula shows a clear physical interpretation that the strike angle points where the conductance integrated along depth takes a maximum value.

  5. Bifurcations of families of 1D-tori in 4D symplectic maps.

    Science.gov (United States)

    Onken, Franziska; Lange, Steffen; Ketzmerick, Roland; Bäcker, Arnd

    2016-06-01

    The regular structures of a generic 4d symplectic map with a mixed phase space are organized by one-parameter families of elliptic 1d-tori. Such families show prominent bends, gaps, and new branches. We explain these features in terms of bifurcations of the families when crossing a resonance. For these bifurcations, no external parameter has to be varied. Instead, the longitudinal frequency, which varies along the family, plays the role of the bifurcation parameter. As an example, we study two coupled standard maps by visualizing the elliptic and hyperbolic 1d-tori in a 3d phase-space slice, local 2d projections, and frequency space. The observed bifurcations are consistent with the analytical predictions previously obtained for quasi-periodically forced oscillators. Moreover, the new families emerging from such a bifurcation form the skeleton of the corresponding resonance channel.

  6. 1-D seismic velocity model and hypocenter relocation using double difference method around West Papua region

    International Nuclear Information System (INIS)

    West Papua region has fairly high of seismicity activities due to tectonic setting and many inland faults. In addition, the region has a unique and complex tectonic conditions and this situation lead to high potency of seismic hazard in the region. The precise earthquake hypocenter location is very important, which could provide high quality of earthquake parameter information and the subsurface structure in this region to the society. We conducted 1-D P-wave velocity using earthquake data catalog from BMKG for April, 2009 up to March, 2014 around West Papua region. The obtained 1-D seismic velocity then was used as input for improving hypocenter location using double-difference method. The relocated hypocenter location shows fairly clearly the pattern of intraslab earthquake beneath New Guinea Trench (NGT). The relocated hypocenters related to the inland fault are also observed more focus in location around the fault

  7. Localized self-heating in large arrays of 1D nanostructures

    Science.gov (United States)

    Monereo, O.; Illera, S.; Varea, A.; Schmidt, M.; Sauerwald, T.; Schütze, A.; Cirera, A.; Prades, J. D.

    2016-02-01

    One dimensional (1D) nanostructures offer a promising path towards highly efficient heating and temperature control in integrated microsystems. The so called self-heating effect can be used to modulate the response of solid state gas sensor devices. In this work, efficient self-heating was found to occur at random networks of nanostructured systems with similar power requirements to highly ordered systems (e.g. individual nanowires, where their thermal efficiency was attributed to the small dimensions of the objects). Infrared thermography and Raman spectroscopy were used to map the temperature profiles of films based on random arrangements of carbon nanofibers during self-heating. Both the techniques demonstrate consistently that heating concentrates in small regions, the here-called ``hot-spots''. On correlating dynamic temperature mapping with electrical measurements, we also observed that these minute hot-spots rule the resistance values observed macroscopically. A physical model of a random network of 1D resistors helped us to explain this observation. The model shows that, for a given random arrangement of 1D nanowires, current spreading through the network ends up defining a set of spots that dominate both the electrical resistance and power dissipation. Such highly localized heating explains the high power savings observed in larger nanostructured systems. This understanding opens a path to design highly efficient self-heating systems, based on random or pseudo-random distributions of 1D nanostructures.One dimensional (1D) nanostructures offer a promising path towards highly efficient heating and temperature control in integrated microsystems. The so called self-heating effect can be used to modulate the response of solid state gas sensor devices. In this work, efficient self-heating was found to occur at random networks of nanostructured systems with similar power requirements to highly ordered systems (e.g. individual nanowires, where their thermal

  8. Static sign language recognition using 1D descriptors and neural networks

    Science.gov (United States)

    Solís, José F.; Toxqui, Carina; Padilla, Alfonso; Santiago, César

    2012-10-01

    A frame work for static sign language recognition using descriptors which represents 2D images in 1D data and artificial neural networks is presented in this work. The 1D descriptors were computed by two methods, first one consists in a correlation rotational operator.1 and second is based on contour analysis of hand shape. One of the main problems in sign language recognition is segmentation; most of papers report a special color in gloves or background for hand shape analysis. In order to avoid the use of gloves or special clothing, a thermal imaging camera was used to capture images. Static signs were picked up from 1 to 9 digits of American Sign Language, a multilayer perceptron reached 100% recognition with cross-validation.

  9. Positron-sensitive vacancy-type centres in the nitrides: 1D-ACAR data

    Science.gov (United States)

    Arutyunov, N. Yu.; Emtsev, V. V.; Mikhailin, A. V.; Humphreys, C. J.

    2003-12-01

    The measurements of one-dimensional angular correlation of the annihilation radiation (1D-ACAR) have been carried out for BN, AlN, and GaN as well as for some related materials that have been used as the reference samples for the analysis of results. The electron-positron ion radii reconstructed by 1D-ACAR for the cation and anion sublattices of the nitrides as well as the estimated average electron density around the positron suggest that: (a) the positron annihilates in the vacancy complexes NGaVN in GaN and NAlVN in AlN, and (b) the cation nearest neighbours are, probably, shifted inward to the VN vacancy where the electron density is sufficiently lower in comparison with that estimated for the bulk.

  10. Positron-sensitive vacancy-type centres in the nitrides: 1D-ACAR data

    International Nuclear Information System (INIS)

    The measurements of one-dimensional angular correlation of the annihilation radiation (1D-ACAR) have been carried out for BN, AlN, and GaN as well as for some related materials that have been used as the reference samples for the analysis of results. The electron-positron ion radii reconstructed by 1D-ACAR for the cation and anion sublattices of the nitrides as well as the estimated average electron density around the positron suggest that: (a) the positron annihilates in the vacancy complexes NGaVN in GaN and NAlVN in AlN, and (b) the cation nearest neighbours are, probably, shifted inward to the VN vacancy where the electron density is sufficiently lower in comparison with that estimated for the bulk

  11. Quantitative Multiscale Analysis using Different Wavelets in 1D Voice Signal and 2D Image

    CERN Document Server

    Shakhakarmi, Niraj

    2012-01-01

    Mutiscale analysis represents multiresolution scrutiny of a signal to improve its signal quality. Multiresolution analysis of 1D voice signal and 2D image is conducted using DCT, FFT and different wavelets such as Haar, Deubachies, Morlet, Cauchy, Shannon, Biorthogonal, Symmlet and Coiflet deploying the cascaded filter banks based decomposition and reconstruction. The outstanding quantitative analysis of the specified wavelets is done to investigate the signal quality, mean square error, entropy and peak-to-peak SNR at multiscale stage-4 for both 1D voice signal and 2D image. In addition, the 2D image compression performance is significantly found 93.00% in DB-4, 93.68% in bior-4.4, 93.18% in Sym-4 and 92.20% in Coif-2 during the multiscale analysis.

  12. A 1D model for the description of mixing-controlled reacting diesel sprays

    Energy Technology Data Exchange (ETDEWEB)

    Desantesa, J.M.; Pastor, J.V.; Garcia-Oliver, J.M.; Pastor, J.M. [CMT - Motores Termicos, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022, Valencia (Spain)

    2009-01-15

    The paper reports an investigation on the transient evolution of diesel flames in terms of fuel-air mixing, spray penetration and combustion rate. A one-dimensional (1D) spray model, which was previously validated for inert diesel sprays, is extended to reacting conditions. The main assumptions of the model are the mixing-controlled hypothesis and the validity of self-similarity for conservative properties. Validation is achieved by comparing model predictions with both CFD gas jet simulations and experimental diesel spray measurements. The 1D model provides valuable insight into the evolution of the flow within the spray (momentum and mass fluxes, tip penetration, etc.) when shifting from inert to reacting conditions. Results show that the transient diesel flame evolution is mainly governed by two combustion-induced effects, namely the reduction in local density and the increase in flame radial width. (author)

  13. Structurally unstable regular dynamics in 1D piecewise smooth maps, and circle maps

    International Nuclear Information System (INIS)

    Highlights: ► A discontinuous 1D map with two discontinuity points is considered. ► Dynamic behaviors are either periodic or quasiperiodic. ► Dynamics are always structurally unstable. ► Any small perturbation in one of the parameters leads to different dynamics. - Abstract: In this work we consider a simple system of piecewise linear discontinuous 1D map with two discontinuity points: X′ = aX if ∣X∣ z, where a and b can take any real value, and may have several applications. We show that its dynamic behaviors are those of a linear rotation: either periodic or quasiperiodic, and always structurally unstable. A generalization to piecewise monotone functions X′ = F(X) if ∣X∣ z is also given, proving the conditions leading to a homeomorphism of the circle.

  14. Rotating condensed-boson gases in a 1D lattice at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Ahmed S.; Soliman, Shemi S.M., E-mail: shemisoliman@yahoo.co.uk

    2015-02-15

    In this paper, we study the thermodynamic properties of a rotating boson gases in a one-dimensional (1D) optical lattice at finite temperature. Our system is formed by loading three-dimensional boson-clouds into 1D optical lattice and subjected to rotate with angular velocity Ω about the z-axis (rotating condensate in a quasi-two-dimensional trap). We employ the semiclassical approximation to calculate the condensate fraction, critical temperature and the heat capacity of the system. The calculated results show that the rotating condensates in a quasi-two-dimensional have interesting properties which are absent in both three or pure two-dimensional systems. Our results can be extended to investigate the current experiments of rotating Bose–Einstein condensation produced or transferred in one-dimensional optical lattices.

  15. Controlling Interface States in 1D Photonic Crystals by tuning Bulk Geometric Phases

    CERN Document Server

    Gao, Wensheng; Chen, Baojie; Pun, Edwin Y B; Chan, C T; Tam, Wing Yim

    2016-01-01

    Interface states in photonic crystals usually require defects or surface/interface decorations. We show here that one can control interface states in 1D photonic crystals through the engineering of geometrical phase such that interface states can be guaranteed in even or odd, or in all photonic bandgaps. We verify experimentally the designed interface states in 1D multilayered photonic crystals fabricated by electron beam vapor deposition. We also obtain the geometrical phases by measuring the reflection phases at the bandgaps of the PCs and achieve good agreement with the theory. Our approach could provide a platform for the design of using interface states in photonic crystals for nonlinear optic, sensing, and lasing applications

  16. Effect of the deformation operator in the D1D5 CFT

    CERN Document Server

    Carson, Zaq; Mathur, Samir D; Turton, David

    2014-01-01

    The D1D5 CFT gives a holographic dual description of a near-extremal black hole in string theory. The interaction in this theory is given by a marginal deformation operator, which is composed of supercharges acting on a twist operator. The twist operator links together different copies of a free CFT. We study the effect of this deformation operator when it links together CFT copies with winding numbers M and N to produce a copy with winding M+N, populated with excitations of a particular form. We compute the effect of the deformation operator in the full supersymmetric theory, firstly on a Ramond-Ramond ground state and secondly on states with an initial bosonic or fermionic excitation. Our results generalize recent work which studied only the bosonic sector of the CFT. Our findings are a step towards understanding thermalization in the D1D5 CFT, which is related to black hole formation and evaporation in the bulk.

  17. FPGA Implementation of Efficient VLSI Architecture for Fixed Point 1-D DWT Using Lifting Scheme

    Directory of Open Access Journals (Sweden)

    Durga Sowjanya

    2012-09-01

    Full Text Available In this paper, a scheme for the design of area efficient and high speed pipeline VLSI architecture for the computation of fixed point 1-d discrete wavelet transform using lifting scheme is proposed. The main focus of the scheme is to reduce the number and period of clock cycles and efficient area with little or no overhead on hardware resources. The fixed point representation requires less hardware resources compared with floating point representation. The pipelining architecture speeds up the clock rate of DWT and reduced bit precision reduces the area required for implementation. The architecture has been coded in verilog HDL on Xilinx platform and the target FPGA device used is Virtex-II Pro family, XC2VP7-7board. The proposed scheme requires the least computing time for fixed point 1-D DWT and achieves theless area for implementation, compared with other architectures. So this architecture is realizable for real time processing of DWT computation applications.

  18. Magnetic Anticrossing of 1D Subbands in Coupled Ballistic Double Quantum Wires

    International Nuclear Information System (INIS)

    We study the low-temperature in-plane magnetoconductance of vertically coupled double quantum wires. Using a novel flip-chip technique, the wires are defined by two pairs of mutually aligned split gates on opposite sides of a s 1 micron thick AlGaAs/GaAs double quantum well heterostructure. We observe quantized conductance steps due to each quantum well and demonstrate independent control of each ID wire. A broad dip in the magnetoconductance at -6 T is observed when a magnetic field is applied perpendicular to both the current and growth directions. This conductance dip is observed only when 1D subbands are populated in both the top and bottom constrictions. This data is consistent with a counting model whereby the number of subbands crossing the Fermi level changes with field due to the formation of an anticrossing in each pair of 1D subbands

  19. 1D to 3D Crossover of a Spin-Imbalanced Fermi Gas

    CERN Document Server

    Revelle, Melissa C; Olsen, Ben A; Hulet, Randall G

    2016-01-01

    We have characterized the one-dimensional (1D) to three-dimensional (3D) crossover of a two-component spin-imbalanced Fermi gas of 6-lithium atoms in a 2D optical lattice by varying the lattice tunneling and the interactions. The gas phase separates, and we detect the phase boundaries using in situ imaging of the inhomogeneous density profiles. The locations of the phases are inverted in 1D as compared to 3D, thus providing a clear signature of the crossover. By scaling the tunneling rate with respect to the pair binding energy, we observe a collapse of the data to a universal crossover point at a scaled tunneling value of 0.016(1).

  20. Membranes having aligned 1-D nanoparticles in a matrix layer for improved fluid separation

    Science.gov (United States)

    Revanur, Ravindra; Lulevich, Valentin; Roh, Il Juhn; Klare, Jennifer E.; Kim, Sangil; Noy, Aleksandr; Bakajin, Olgica

    2015-12-22

    Membranes for fluid separation are disclosed. These membranes have a matrix layer sandwiched between an active layer and a porous support layer. The matrix layer includes 1-D nanoparticles that are vertically aligned in a porous polymer matrix, and which substantially extend through the matrix layer. The active layer provides species-specific transport, while the support layer provides mechanical support. A matrix layer of this type has favorable surface morphology for forming the active layer. Furthermore, the pores that form in the matrix layer tend to be smaller and more evenly distributed as a result of the presence of aligned 1-D nanoparticles. Improved performance of separation membranes of this type is attributed to these effects.

  1. Multi-centered D1-D5 solutions at finite B-moduli

    International Nuclear Information System (INIS)

    We study the fate of two-centered D1-D5 systems on T4 away from the singular supergravity point in the moduli space. We do this by considering a background D1-D5 black hole with a self-dual B-field moduli turned on and treating the second center in the probe limit in this background. We find that in general marginal bound states at zero moduli become metastable at finite B-moduli, demonstrating a breaking of supersymmetry. However, we also find evidence that when the charges of both centers are comparable, the effects of supersymmetry breaking become negligible. We show that this effect is independent of string coupling and thus it should be possible to reproduce this in the CFT at weak coupling. We comment on the implications for the fuzzball proposal

  2. Iterative 2-D/1-D methods for the 3-D neutron diffusion calculation

    International Nuclear Information System (INIS)

    To remedy the problems arising from assembly homogenization and de-homogenization, several efforts have been made to solve directly the heterogeneous problem with a fine mesh and to reduce the computational burden by coupling 2-D planar with 1-D axial solutions using a Transverse Leakage (TL) coupling. However, the potential for a numerical instability at a small axial mesh size has been observed. Lee et al. showed that one of the two existing methods, method A, is mathematically unstable at a small mesh size while the other, method B, is always stable. They also proposed a new method for a 2-D/1-D coupling, method C, and they showed that it is always stable and it provides the best performance in terms of the convergence rate. In this paper another algorithm, method D, is proposed and its stability is also investigated

  3. 1-D seismic velocity model and hypocenter relocation using double difference method around West Papua region

    Energy Technology Data Exchange (ETDEWEB)

    Sabtaji, Agung, E-mail: sabtaji.agung@gmail.com, E-mail: agung.sabtaji@bmkg.go.id [Study Program of Earth Sciences, Faculty of Earth Sciencies and Technology, Institute of Technology Bandung, Bandung 40132 (Indonesia); Indonesia’s Agency for Meteorological, Climatological and Geophysics Region V, Jayapura 1572 (Indonesia); Nugraha, Andri Dian, E-mail: nugraha@gf.itb.ac.id [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Bandung 40132 (Indonesia)

    2015-04-24

    West Papua region has fairly high of seismicity activities due to tectonic setting and many inland faults. In addition, the region has a unique and complex tectonic conditions and this situation lead to high potency of seismic hazard in the region. The precise earthquake hypocenter location is very important, which could provide high quality of earthquake parameter information and the subsurface structure in this region to the society. We conducted 1-D P-wave velocity using earthquake data catalog from BMKG for April, 2009 up to March, 2014 around West Papua region. The obtained 1-D seismic velocity then was used as input for improving hypocenter location using double-difference method. The relocated hypocenter location shows fairly clearly the pattern of intraslab earthquake beneath New Guinea Trench (NGT). The relocated hypocenters related to the inland fault are also observed more focus in location around the fault.

  4. ZnO 1-D nanostructures: Low temperature synthesis and characterizations

    Indian Academy of Sciences (India)

    Apurba Dev; S Chaudhuri; B N Dev

    2008-06-01

    ZnO is one of the most important semiconductors having a wide variety of applications in photonic, field emission and sensing devices. In addition, it exhibits a wide variety of morphologies in the nano regime that can be grown by tuning the growth habit of the ZnO crystal. Among various nanostructures, oriented 1-D nanoforms are particularly important for applications such as UV laser, sensors, UV LED, field emission displays, piezoelectric nanogenerator etc. We have developed a soft chemical approach to fabricate well-aligned arrays of various 1-D nanoforms like nanonails, nanowires and nanorods. The microstructural and photoluminescence properties of all the structures were investigated and tuned by varying the synthesis parameters. Field emission study from the aligned nanorod arrays exhibited high current density and a low turn-on field. These arrays also exhibited very strong UV emission and week defect emission. These structures can be utilized to fabricate efficient UV LEDs.

  5. Mentor Graphics在京发布1D-3D CFD解决方案

    Institute of Scientific and Technical Information of China (English)

    杜莹

    2012-01-01

    7月10日,Mentor Graphics1D-3D CFD解决方案战略发布会在北京举行。作为领先的电子设计自动化技术和MCAE技术的领导厂商,Mentor Graphics Mechanical Analysis部门总经理Erich Buergel分享了最新的产品解决方案。

  6. 1D Cahn-Hilliard dynamics: Ostwald ripening and application to modulated phase systems

    International Nuclear Information System (INIS)

    We use a family of stationary solution of the Cahn-Hilliard dynamics in order to describe the coalescence during a first order phase transition. With this analytical ansatz, we compute the characteristic time for one step of period doubling in Langer's self similar scenario for Ostwald ripening. As an application, the same ansatz is also used to compute the thermodynamically stable period of a 1D modulated phase pattern, described by a Cahn-Hilliard dynamics with long range interaction terms

  7. Simulation of Tunnel Junction in Cascade Solar Cell (GaAs/Ge) Using AMPS-1D

    OpenAIRE

    Benmoussa Dennai; H. Ben Slimane; Helmaoui, A.

    2014-01-01

    The development of the tunnel junction interconnect was key the first two-terminal monolithic, multi-junction solar cell development. This paper describes simulation for the tunnel junction (GaAs) between top cell (GaAs) and bottom cell (Ge). This solar cell cascade was simulated when using one dimensional simulation program called analysis of microelectronic and photonic structures (AMPS-1D). In the simulation, the thickness of the tunnel junction layer was varied from 10 to 50 nm. By varyin...

  8. Piezo-semiconductive quasi-1D nanodevices with or without anti-symmetry.

    Science.gov (United States)

    Araneo, Rodolfo; Lovat, Giampiero; Burghignoli, Paolo; Falconi, Christian

    2012-09-01

    The piezopotential in floating, homogeneous, quasi-1D piezo-semiconductive nanostructures under axial stress is an anti-symmetric (i.e., odd) function of force. Here, after introducing piezo-nano-devices with floating electrodes for maximum piezo-potential, we show that breaking the anti-symmetric nature of the piezopotential-force relation, for instance by using conical nanowires, can lead to better nanogenerators, piezotronic and piezophototronic devices.

  9. Zero finite-temperature charge stiffness within the half-filled 1D Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    Carmelo, J.M.P., E-mail: carmelo@fisica.uminho.pt [Center and Department of Physics, University of Minho, Campus Gualtar, P-4710-057 Braga (Portugal); Beijing Computational Science Research Center, Beijing 100084 (China); Institut für Theoretische Physik III, Universität Stuttgart, D-70550 Stuttgart (Germany); Gu, Shi-Jian [Beijing Computational Science Research Center, Beijing 100084 (China); Department of Physics and ITP, Chinese University of Hong Kong, Hong Kong (China); Sacramento, P.D. [CFIF, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Beijing Computational Science Research Center, Beijing 100084 (China)

    2013-12-15

    Even though the one-dimensional (1D) Hubbard model is solvable by the Bethe ansatz, at half-filling its finite-temperature T>0 transport properties remain poorly understood. In this paper we combine that solution with symmetry to show that within that prominent T=0 1D insulator the charge stiffness D(T) vanishes for T>0 and finite values of the on-site repulsion U in the thermodynamic limit. This result is exact and clarifies a long-standing open problem. It rules out that at half-filling the model is an ideal conductor in the thermodynamic limit. Whether at finite T and U>0 it is an ideal insulator or a normal resistor remains an open question. That at half-filling the charge stiffness is finite at U=0 and vanishes for U>0 is found to result from a general transition from a conductor to an insulator or resistor occurring at U=U{sub c}=0 for all finite temperatures T>0. (At T=0 such a transition is the quantum metal to Mott–Hubbard-insulator transition.) The interplay of the η-spin SU(2) symmetry with the hidden U(1) symmetry beyond SO(4) is found to play a central role in the unusual finite-temperature charge transport properties of the 1D half-filled Hubbard model. -- Highlights: •The charge stiffness of the half-filled 1D Hubbard model is evaluated. •Its value is controlled by the model symmetry operator algebras. •We find that there is no charge ballistic transport at finite temperatures T>0. •The hidden U(1) symmetry controls the U=0 phase transition for T>0.

  10. Development of a hybrid deterministic/stochastic method for 1D nuclear reactor kinetics

    Science.gov (United States)

    Terlizzi, Stefano; Rahnema, Farzad; Zhang, Dingkang; Dulla, Sandra; Ravetto, Piero

    2015-12-01

    A new method has been implemented for solving the time-dependent neutron transport equation efficiently and accurately. This is accomplished by coupling the hybrid stochastic-deterministic steady-state coarse-mesh radiation transport (COMET) method [1,2] with the new predictor-corrector quasi-static method (PCQM) developed at Politecnico di Torino [3]. In this paper, the coupled method is implemented and tested in 1D slab geometry.

  11. Complex Langevin Dynamics in 1+1d QCD at Non-Zero Densities

    CERN Document Server

    Schmalzbauer, Sebastian

    2016-01-01

    We present our results obtained from gauge cooled complex Langevin simulations in 1+1d QCD at non-zero densities in the strong coupling regime with unrooted staggered fermions. For small quark masses there are regions of the chemical potential where this method fails to reproduce correct results. In these parameter ranges we studied the effect of different gauge cooling schemes on the distributions of the fermion determinant as well as of observables.

  12. Uranium(VI) coordination polymers with pyromellitate ligand: Unique 1D channel structures and diverse fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yingjie, E-mail: yzx@ansto.gov.au [Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Bhadbhade, Mohan [Mark Wainwright Analytical Centre, University of New South Wales, Kensington, NSW 2052 (Australia); Karatchevtseva, Inna [Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Price, Jason R. [Australian Synchrotron, 800 Blackburn Road, Clayton, VIC 3168 (Australia); Liu, Hao [Centre for Clean Energy Technology, School of Chemistry and Forensic Science, University of Technology Sydney, PO Box 123, Broadway, Sydney, NSW 2007 (Australia); Zhang, Zhaoming; Kong, Linggen [Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Čejka, Jiří [Department of Mineralogy, National Museum, Václavské náměstí, 68, Prague 1, 115 79-CZ (Czech Republic); Lu, Kim; Lumpkin, Gregory R. [Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia)

    2015-03-15

    Three new coordination polymers of uranium(VI) with pyromellitic acid (H{sub 4}btca) have been synthesized and structurally characterized. (ED)[(UO{sub 2})(btca)]·(DMSO)·3H{sub 2}O (1) (ED=ethylenediammonium; DMSO=dimethylsulfoxide) has a lamellar structure with intercalation of ED and DMSO. (NH{sub 4}){sub 2}[(UO{sub 2}){sub 6}O{sub 2}(OH){sub 6}(btca)]·~6H{sub 2}O (2) has a 3D framework built from 7-fold coordinated uranyl trinuclear units and btca ligands with 1D diamond-shaped channels (~8.5 Å×~8.6 Å). [(UO{sub 2}){sub 2}(H{sub 2}O)(btca)]·4H{sub 2}O (3) has a 3D network constructed by two types of 7-fold coordinated uranium polyhedron. The unique μ{sub 5}-coordination mode of btca in 3 enables the formation of 1D olive-shaped large channels (~4.5 Å×~19 Å). Vibrational modes, thermal stabilities and fluorescence properties have been investigated. - Graphical abstract: Table of content: three new uranium(VI) coordination polymers with pyromellitic acid (H{sub 4}btca) have been synthesized via room temperature and hydrothermal synthesis methods, and structurally characterized. Two to three dimensional (3D) frameworks are revealed. All 3D frameworks have unique 1D large channels. Their vibrational modes, thermal stabilities and photoluminescence properties have been investigated. - Highlights: • Three new coordination polymers of U(VI) with pyromellitic acid (H{sub 4}btca). • Structures from a 2D layer to 3D frameworks with unique 1D channels. • Unusual µ{sub 5}-(η{sub 1}:η{sub 2}:η{sub 1}:η{sub 2:}η{sub 1}) coordination mode of btca ligand. • Vibrational modes, thermal stabilities and luminescent properties reported.

  13. A Fulling-Kuchment theorem for the 1D harmonic oscillator

    CERN Document Server

    Guillemin, Victor

    2011-01-01

    We prove that there exists a pair of "non-isospectral" 1D semiclassical Schr\\"odinger operators whose spectra agree modulo h^\\infty. In particular, all their semiclassical trace invariants are the same. Our proof is based on an idea of Fulling-Kuchment and Hadamard's variational formula applied to suitable perturbations of the harmonic oscillator. Keywords: Inverse spectral problems, semiclassical Schr\\"odinger operators, trace invariants, Hadamard's variational formula, harmonic oscillator, Penrose mushroom, Sturm-Liouville theory.

  14. Application of the ''generalized Riemann problem'' method to 1-D compressible flows with material interfaces

    International Nuclear Information System (INIS)

    The ''Generalized Riemann Problem'' (GRP) method is applied to 1-D compressible flows with material interfaces and variable cross section. The resulting scheme is second-order and used a ''mixed-type'' grid, where cell boundaries can be either Lagrangian or Eulerian. In fact, using the analytic resolution of discontinuities at cell boundaries, provided by the GRP solution, one can extend the scheme presented here to include any adaptive mesh

  15. Exact electron states in 1D (quasi-) periodic arrays of delta-potentials

    OpenAIRE

    Kramer, Peter; Kramer, Tobias

    1999-01-01

    Exact one-electron eigenstates in finite parts of 1D periodic and Fibonacci chains of attractive and repulsive delta potentials are computed and analyzed. Bloch and bound state boundary conditions are related in terms of transfer matrices. Scenarios of positive and negative energy are distinguished. The dependence on the potential strength parameter is analyzed. The scattering matrix is computed. Implications for the interpretation of band germs in quasiperiodic chains are discussed.

  16. Development of a new 1D urban canopy model: coherences between surface parameterizations

    OpenAIRE

    BLOND, Nadège; Mauree, Dasaraden; Kohler, Manon; Clappier, Alain

    2015-01-01

    A 1-D Canopy Interface Model (CIM) was developed in order to better simulate the effect of urban obstacles on the atmosphere in the boundary layer. The model solves the Navier-Stokes equations on a high-resolved gridded vertical column. The effect of the surface is simulated testing a set of theories and urban parameterizations. The final proposition guarantees its coherence with past theories in any atmospheric stability and terrain configuration. Obstacle characteristics are computed using...

  17. Transfer Matrix Approach to 1d Random Band Matrices: Density of States

    Science.gov (United States)

    Shcherbina, Mariya; Shcherbina, Tatyana

    2016-09-01

    We study the special case of n× n 1D Gaussian Hermitian random band matrices, when the covariance of the elements is determined by the matrix J=(-W^2triangle +1)^{-1}. Assuming that n≥ CW log W≫ 1, we prove that the averaged density of states coincides with the Wigner semicircle law up to the correction of order W^{-1}.

  18. A positron 1D-ACAR spectrometer for the study of 60Co containing materials

    International Nuclear Information System (INIS)

    In order to study some micro-structural changes in irradiated nuclear reactor-pressure vessel steels using a positron annihilation technique, a new three-detector set-up, suitable for a positron 1-dimensional angular correlation of annihilation radiation (1D-ACAR) study of 60Co-containing materials, was developed. The design of the equipment as well as results from test measurements are described. (orig.)

  19. Periodic Solutions of the 1D Vlasov-Maxwell System with Boundary Conditions

    OpenAIRE

    Bostan, Mihai

    1998-01-01

    We study the 1D Vlasov-Maxwell system with time periodic boundary conditions in its classical and relativistic form. For small data we prove existence of weak periodic solutions. It is necessary to impose non vanishing conditions for the incoming velocities in order to control the life-time of particles in the domain. In order to preserve the periodicity, another condition of vanishing the time average of the incoming current is imposed.

  20. Scattering coefficients and gray-body factor for 1D BEC acoustic black holes: exact results

    CERN Document Server

    Fabbri, Alessandro; Anderson, Paul R

    2015-01-01

    A complete set of exact analytic solutions to the mode equation are found in the region exterior to the acoustic horizon for a class of 1D Bose-Einstein condensate (BEC) acoustic black holes. From these, analytic expressions for the scattering coefficients and gray-body factor are obtained. The results are used to verify previous predictions regarding the behaviors of the scattering coefficients and gray-body factor in the low frequency limit.

  1. Ultracold Bose Gases in 1D Disorder: From Lifshits Glass to Bose-Einstein Condensate

    OpenAIRE

    Lugan, Pierre; Clément, David; Bouyer, Philippe; Aspect, Alain; Lewenstein, Maciej; Sanchez-Palencia, Laurent

    2007-01-01

    We study an ultracold Bose gas in the presence of 1D disorder for repulsive inter-atomic interactions varying from zero to the Thomas-Fermi regime. We show that for weak interactions the Bose gas populates a finite number of localized single-particle Lifshits states, while for strong interactions a delocalized disordered Bose-Einstein condensate is formed. We discuss the schematic quantum-state diagram and derive the equations of state for various regimes.

  2. High-Resolution Radiation Hybrid Map of Wheat Chromosome 1D

    OpenAIRE

    Kalavacharla, Venu; Hossain, Khwaja; Gu, Yong; Riera-Lizarazu, Oscar; Vales, M. Isabel; Bhamidimarri, Suresh; Gonzalez-Hernandez, Jose L.; Maan, Shivcharan S; Kianian, Shahryar F

    2006-01-01

    Physical mapping methods that do not rely on meiotic recombination are necessary for complex polyploid genomes such as wheat (Triticum aestivum L.). This need is due to the uneven distribution of recombination and significant variation in genetic to physical distance ratios. One method that has proven valuable in a number of nonplant and plant systems is radiation hybrid (RH) mapping. This work presents, for the first time, a high-resolution radiation hybrid map of wheat chromosome 1D (D geno...

  3. Two Qubits Entanglement Dynamics in 1D Heisenberg Chain with Intrinsic Decoherence

    Institute of Scientific and Technical Information of China (English)

    SHAO Bin; ZHANG Li-li; ZOU Jian

    2006-01-01

    To reveal how the decoherence modifies the time evolution of the entanglement of quantum system,the intrinsic decoherence approach and the entanglement of formation are used, and the time evolution of entanglement for two-qubit 1D quantum Heisenberg model in an external uniform magnetic field is derived. It is shown that the external magnetic field can strengthen the effects of the intrinsic decoherence on the entanglement of the system.

  4. EXTENSION OF THE 1D FOUR-GROUP ANALYTIC NODAL METHOD TO FULL MULTIGROUP

    Energy Technology Data Exchange (ETDEWEB)

    B. D. Ganapol; D. W. Nigg

    2008-09-01

    In the mid 80’s, a four-group/two-region, entirely analytical 1D nodal benchmark appeared. It was readily acknowledged that this special case was as far as one could go in terms of group number and still achieve an analytical solution. In this work, we show that by decomposing the solution to the multigroup diffusion equation into homogeneous and particular solutions, extension to any number of groups is a relatively straightforward exercise using the mathematics of linear algebra.

  5. Finite difference approximation of control via the potential in a 1-D Schrodinger equation

    Directory of Open Access Journals (Sweden)

    K. Kime

    2000-04-01

    Full Text Available We consider the problem of steering given initial data to given terminal data via a time-dependent potential, the control, in a 1-D Schrodinger equation. We determine a condition for existence of a transferring potential within our approximation. Using Maple, we give equations for the control and also examples in which the potential is restricted to be centralized and to be a step potential.

  6. Insulin stimulation regulates AS160 and TBC1D1 phosphorylation sites in human skeletal muscle

    DEFF Research Database (Denmark)

    Middelbeek, R J W; Chambers, M A; Tantiwong, P;

    2013-01-01

    Individuals with obesity and type 2 diabetes (T2D) are typically insulin resistant, exhibiting impaired skeletal muscle glucose uptake. Animal and cell culture experiments have shown that site-specific phosphorylation of the Rab-GTPase-activating proteins AS160 and TBC1D1 is critical for GLUT4 tr...... translocation facilitating glucose uptake, but their regulation in human skeletal muscle is not well understood....

  7. Fragmentation and the Bose-glass phase transition of the disordered 1D Bose gas

    OpenAIRE

    Fontanesi, Luca; Wouters, Michiel; Savona, Vincenzo

    2010-01-01

    We investigate the superfluid-insulator quantum phase transition in a disordered 1D Bose gas in the mean field limit, by studying the probability distribution of the density. The superfluid phase is characterized by a vanishing probability to have zero density, whereas a nonzero probability marks the insulator phase. This relation is derived analytically, and confirmed by a numerical study. This fragmentation criterion is particularly suited for detecting the phase transition in experiments. ...

  8. Prediction of car cabin environment by means of 1D and 3D cabin model

    OpenAIRE

    Jícha M.; Pokorný J.; Fišer J.

    2012-01-01

    Thermal comfort and also reduction of energy requirements of air-conditioning system in vehicle cabins are currently very intensively investigated and up-to-date issues. The article deals with two approaches of modelling of car cabin environment; the first model was created in simulation language Modelica (typical 1D approach without cabin geometry) and the second one was created in specialized software Theseus-FE (3D approach with cabin geometry). Performance and capabilities of this t...

  9. Universality for SU(2) Yang-Mills theory in (2+1)D

    CERN Document Server

    Hamer, C J; Weihong, Z; Schütte, D R; Weihong, Zheng

    1996-01-01

    The Green's Function Monte Carlo method of Chin et al is applied to SU(2) Yang-Mills theory in (2+1)D. Accurate measurements are obtained for the ground-state energy and mean plaquette value, and for various Wilson loops. The results are compared with series expansions and coupled cluster estimates, and with the Euclidean Monte Carlo results of Teper. A striking demonstration of universality between the Hamiltonian and Euclidean formulations is obtained.

  10. Controlled Growth and Field-emission Application of 1D ZnS Nanostructures

    Institute of Scientific and Technical Information of China (English)

    X.S.Fang; Y.Bando; D.Golberg

    2007-01-01

    1 Results One-dimensional (1D) nanostructures have recently stimulated great interest due to their potential value for understanding fundamental physical concepts and for applications in constructing nanoscale electric and optoelectronic devices since the discovery of carbon nanotubes[1]. ZnS is one of the first semiconductors discovered and probably one of the most important materials in the electronics industry with a wide range of applications[2]. Controllable growth of nanostructures is a crucial is...

  11. INFIL1D: a quasi-analytical model for simulating one-dimensional, constant flux infiltration

    International Nuclear Information System (INIS)

    The program INFIL1D is designed to calculate approximate wetting-front advance into an unsaturated, uniformly moist, homogeneous soil profile, under constant surface-flux conditions. The code is based on a quasi-analytical method, which utilizes an assumed invariant functional relationship between reduced (normalized) flux and water content. The code uses general hydraulic property data in tabular form to simulate constant surface-flux infiltration. 10 references, 4 figures

  12. Generation of synthetic strong earthquake ground motions using a composite source model and synthetic green's functions

    International Nuclear Information System (INIS)

    We describe a model that generates realistic synthetic records of plausible strong ground motions, specific to the fault - station geometry. We model the slip as a superposition of randomly located sub-events. Since this source includes random parameters, we generate multiple realizations to investigate the uncertainties. In the context of the Representation Theorem, the motion is transferred to the site using synthetic Green's functions generated for a flat-layered Earth model. The Green's functions are generated using the regional velocity model, and can be modified with shallow layers to match the local site conditions. Source parameters are related energy and effective stress. Thus the parameters in the model are mostly constrained by either geological or geophysical observations. This paper also reviews several applications. The purpose of this paper is to review the method that we have been using to generate the synthetic seismograms, illustrate some applications, and discuss future directions for these studies

  13. A SPLIT-CHARACTERISTIC FINITE ELEMENT MODEL FOR 1-D UNSTEADY FLOWS

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yi-lin; TANG Hong-wu; LIU Xiao-hua

    2007-01-01

    An efficient and accurate solution algorithm was proposed for 1-D unsteady flow problems widely existing in hydraulic engineering. Based on the split-characteristic finite element method, the numerical model with the Saint-Venant equations of 1-D unsteady flows was established. The assembled finite element equations were solved with the tri-diagonal matrix algorithm. In the semi-implicit and explicit scheme, the critical time step of the method was dependent on the space step and flow velocity, not on the wave celerity. The method was used to eliminate the restriction due to the wave celerity for the computational analysis of unsteady open-channel flows. The model was verified by the experimental data and theoretical solution and also applied to the simulation of the flow in practical river networks. It shows that the numerical method has high efficiency and accuracy and can be used to simulate 1-D steady flows, and unsteady flows with shock waves or flood waves. Compared with other numerical methods, the algorithm of this method is simpler with higher accuracy, less dissipation, higher computation efficiency and less computer storage.

  14. Modelling activities of experimental facilities related to advanced reactors. Considerations on 1D/3D issues

    International Nuclear Information System (INIS)

    The state of art of modelling activities related to integral experimental facilities of advanced passive reactors show to date important open items. The main advantage of using 1D plant codes is the capability of simulating the full interaction between components traditionally correctly modelled (condensers, heat exchangers, pipes and vessels) and other components for which codes are not 100% suitable (pools and containments). Polytechnical University of Catalonia (UPC) and Polytechnical University of Valencia (UPV) cooperated with other European research organizations in the 'Technology Enhancement for Passive Safety Systems' (TEPSS) project, within the European Fourth Framework Programme. It was a task of both Universities to supply analytical support of PANDA tests. The paper deals with the 1D/3D discussion in the framework of modelling activities related to integral passive facilities like PANDA. It starts choosing reference tests among those corresponding to our participation in TEPSS project. The discrepancies observed in a 1D simulation of the selected tests will be shown and analyzed. An evaluation of how the 3D version can lead to a better agreement with data will be included. Disadvantages of 3D codes will be shown too. Combining the use of different codes, and considering analyst criteria, will make possible to establish suitable recommendations from both engineering and scientific point of view. (author)

  15. Surface defect inspection of TFT-LCD panels based on 1D Fourier method

    Science.gov (United States)

    Zhang, Teng-da; Lu, Rong-sheng

    2016-01-01

    Flat panel displays have been used in a wide range of electronic devices. The defects on their surfaces are an important factor affecting the product quality. Automated optical inspection (AOI) method is an important and effective means to perform the surface defection inspection. In this paper, a kind of defect extraction algorithm based on one dimensional (1D) Fourier theory for the surface defect extraction with periodic texture background is introduced. In the algorithm, the scanned surface images are firstly transformed from time domain to frequency domain by 1D Fourier transform. The periodic texture background on the surface is then removed by using filtering methods in the frequency domain. Then, a dual-threshold statistical control method is applied to separate the defects from the surface background. Traditional 1D Fourier transform scheme for detecting ordinary defects is very effective; however, the method is not where the defect direction is close to horizontal in periodic texture background. In order to tackle the problem, a mean threshold method based on faultless image is put forward. It firstly calculates the upper and lower control limits of the every reconstructed line scanned image with faultless and then computes the averages of the upper and lower limits. The averages then act as the constant double thresholds to extract the defects. The experimental results of different defects show that the method developed in the paper is very effective for TFT-LCD panel surface defect inspection even in the circumstance that the defect directions are close to horizontal.

  16. Numerical Modeling of Imploding Plasma liners Using the 1D Radiation-Hydrodynamics Code HELIOS

    Science.gov (United States)

    Davis, J. S.; Hanna, D. S.; Awe, T. J.; Hsu, S. C.; Stanic, M.; Cassibry, J. T.; Macfarlane, J. J.

    2010-11-01

    The Plasma Liner Experiment (PLX) is attempting to form imploding plasma liners to reach 0.1 Mbar upon stagnation, via 30--60 spherically convergent plasma jets. PLX is partly motivated by the desire to develop a standoff driver for magneto-inertial fusion. The liner density, atomic makeup, and implosion velocity will help determine the maximum pressure that can be achieved. This work focuses on exploring the effects of atomic physics and radiation on the 1D liner implosion and stagnation dynamics. For this reason, we are using Prism Computational Science's 1D Lagrangian rad-hydro code HELIOS, which has both equation of state (EOS) table-lookup and detailed configuration accounting (DCA) atomic physics modeling. By comparing a series of PLX-relevant cases proceeding from ideal gas, to EOS tables, to DCA treatments, we aim to identify how and when atomic physics effects are important for determining the peak achievable stagnation pressures. In addition, we present verification test results as well as brief comparisons to results obtained with RAVEN (1D radiation-MHD) and SPHC (smoothed particle hydrodynamics).

  17. A two-layer $\\alpha\\omega$ dynamo model, and its implications for 1-D dynamos

    CERN Document Server

    Roald, C B

    1999-01-01

    I will discuss an attempt at representing an interface dynamo in a simplified, essentially 1D framework. The operation of the dynamo is broken up into two 1D layers, one containing the $\\alpha$ effect and the other containing the $\\omega$ effect, and these two layers are allowed to communicate with each other by the simplest possible representation of diffusion, an analogue of Newton's law of cooling. Dynamical back-reaction of the magnetic field on them with diagrams I computed for a comparable purely 1D model. The bifurcation structure shows remarkable similarity, but a couple of subtle changes imply dramatically different physical behaviour for the model. In particular, the solar-like dynamo mode found in the 1-layer model is not stable in the 2-layer version; instead there is an (apparent) homoclinic bifurcation and a sequence of periodic, quasiperiodic, and chaotic modes. I argue that the fragility of these models makes them effectively useless as predictors or interpreters of more complex dynamos.

  18. Quantitative 3D electromagnetic field determination of 1D nanostructures from single projection.

    Science.gov (United States)

    Phatak, C; de Knoop, L; Houdellier, F; Gatel, C; Hÿtch, M J; Masseboeuf, A

    2016-05-01

    One-dimensional (1D) nanostructures have been regarded as the most promising building blocks for nanoelectronics and nanocomposite material systems as well as for alternative energy applications. Although they result in confinement of a material, their properties and interactions with other nanostructures are still very much three-dimensional (3D) in nature. In this work, we present a novel method for quantitative determination of the 3D electromagnetic fields in and around 1D nanostructures using a single electron wave phase image, thereby eliminating the cumbersome acquisition of tomographic data. Using symmetry arguments, we have reconstructed the 3D magnetic field of a nickel nanowire as well as the 3D electric field around a carbon nanotube field emitter, from one single projection. The accuracy of quantitative values determined here is shown to be a better fit to the physics at play than the value obtained by conventional analysis. Moreover the 3D reconstructions can then directly be visualized and used in the design of functional 3D architectures built using 1D nanostructures. PMID:26998702

  19. Study of 1D stranged-charm meson family using HQET

    CERN Document Server

    Gupta, Pallavi

    2015-01-01

    Recently LHCb predicted spin 1 and spin 3 states D* s1(2860) and D* s3(2860) which are studied through their strong decays, and are assigned to fit the 13D1and 13D3 states in the charm spectroscopy. In this paper,using the heavy quark effective theory, we state that assigning D*s1(2860) as the mixing of 13D1 - 23S1 states, is rather a better justification to its observed experimental values than a pure state. We study its decay modes variation with hadronic coupling constant gxh and the mixing angle . We appoint spin 3 state D* s3(2860) as the missing 1D 3- JP state, and also study its decay channel behavior with coupling constant gyh. To appreciate the above results, we check the variation of decay modes for their spin partners states i.e. 1D2 and 1D'2 with their masses and strong coupling constant i.e. gxh and gyh. Our calculation using HQET approach give mixing angle between the 13D1 - 23S1 state for D* s1(2860) to lie in the range (-1.6 radians < theta < -1.2 radians). Our calculation for coupling c...

  20. Quantitative 3D electromagnetic field determination of 1D nanostructures from single projection

    Energy Technology Data Exchange (ETDEWEB)

    Phatak, C.; Knoop, L. de; Houdellier, F.; Gatel, C.; Hÿtch, M. J.; Masseboeuf, A.

    2016-05-01

    One-dimensional (1D) nanostructures have been regarded as the most promising building blocks for nanoelectronics and nanocomposite material systems as well as for alternative energy applications. Although they result in confinement of a material, their properties and interactions with other nanostructures are still very much three-dimensional (3D) in nature. In this work, we present a novel method for quantitative determination of the 3D electromagnetic fields in and around 1D nanostructures using a single electron wave phase image, thereby eliminating the cumbersome acquisition of tomographic data. Using symmetry arguments, we have reconstructed the 3D magnetic field of a nickel nanowire as well as the 3D electric field around a carbon nanotube field emitter, from one single projection. The accuracy of quantitative values determined here is shown to be a better fit to the physics at play than the value obtained by conventional analysis. Moreover the 3D reconstructions can then directly be visualized and used in the design of functional 3D architectures built using 1D nanostructures.

  1. Neutronic analysis of the 1D and 1E banks reflux detection system

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, A.

    1999-12-21

    Two H Canyon neutron monitoring systems for early detection of postulated abnormal reflux conditions in the Second Uranium Cycle 1E and 1D Mixer-Settle Banks have been designed and built. Monte Carlo neutron transport simulations using the general purpose, general geometry, n-particle MCNP code have been performed to model expected response of the monitoring systems to varying conditions.The confirmatory studies documented herein conclude that the 1E and 1D neutron monitoring systems are able to achieve adequate neutron count rates for various neutron source and detector configurations, thereby eliminating excessive integration count time. Neutron count rate sensitivity studies are also performed. Conversely, the transport studies concluded that the neutron count rates are statistically insensitive to nitric acid content in the aqueous region and to the transition region length. These studies conclude that the 1E and 1D neutron monitoring systems are able to predict the postulated reflux conditions for all examined perturbations in the neutron source and detector configurations. In the cases examined, the relative change in the neutron count rates due to postulated transitions from normal {sup 235}U concentration levels to reflux levels remain satisfactory detectable.

  2. Determination of cellular lipids bound to human CD1d molecules.

    Directory of Open Access Journals (Sweden)

    Daryl Cox

    Full Text Available CD1 molecules are glycoproteins that present lipid antigens at the cell surface for immunological recognition by specialized populations of T lymphocytes. Prior experimental data suggest a wide variety of lipid species can bind to CD1 molecules, but little is known about the characteristics of cellular ligands that are selected for presentation. Here we have molecularly characterized lipids bound to the human CD1d isoform. Ligands were eluted from secreted CD1d molecules and separated by normal phase HPLC, then characterized by mass spectroscopy. A total of 177 lipid species were molecularly identified, comprising glycerophospholipids and sphingolipids. The glycerophospholipids included common diacylglycerol species, reduced forms known as plasmalogens, lyso-phospholipids (monoacyl species, and cardiolipins (tetraacyl species. The sphingolipids included sphingomyelins and glycosylated forms, such as the ganglioside GM3. These results demonstrate that human CD1d molecules bind a surprising diversity of lipid structures within the secretory pathway, including compounds that have been reported to play roles in cancer, autoimmune diseases, lipid signaling, and cell death.

  3. Avidity-dependent programming of autoreactive T cells in T1D.

    Directory of Open Access Journals (Sweden)

    Ivana Durinovic-Belló

    Full Text Available Fate determination for autoreactive T cells relies on a series of avidity-dependent interactions during T cell selection, represented by two general types of signals, one based on antigen expression and density during T cell development, and one based on genes that interpret the avidity of TCR interaction to guide developmental outcome. We used proinsulin-specific HLA class II tetramers to purify and determine transcriptional signatures for autoreactive T cells under differential selection in type 1 diabetes (T1D, in which insulin (INS genotypes consist of protective and susceptible alleles that regulate the level of proinsulin expression in the thymus. Upregulation of steroid nuclear receptor family 4A (NR4A and early growth response family genes in proinsulin-specific T cells was observed in individuals with susceptible INS-VNTR genotypes, suggesting a mechanism for avidity-dependent fate determination of the T cell repertoire in T1D. The NR4A genes act as translators of TCR signal strength that guide central and peripheral T cell fate decisions through transcriptional modification. We propose that maintenance of an NR4A-guided program in low avidity autoreactive T cells in T1D reflects their prior developmental experience influenced by proinsulin expression, identifying a pathway permissive for autoimmunity.

  4. Tuning the 1D-self-assembly of dicyano-functionalized helicene building-blocks

    International Nuclear Information System (INIS)

    Full text: Effective control of chirality in supramolecular systems is an important challenge towards the assembly of well-defined nano-architectures from the bottom-up. The chirality transfer from single molecules onto 3D- and 2D-crystals is well known, however chirality in case of the 1D-objects (wires) is largely unexplored. Here we present a study based on Scanning Tunnelling Microscopy (STM) and X-Ray Photoelectron Spectroscopy (XPS) measurements and Density Functional Theory (DFT) calculations to understand the formation of 1D conglomerates from enantiopure dicyano functionalized heptahelicene molecules of both chiralities at different, well defined single-crystal surfaces. We show that the main bonding motif can be switched by temperature, substrate or adatom stimuli. We discuss the key driving forces for the formation of well-ordered long-range arrays and the chirality transfer on the single molecule scale as well as onto the 1D conglomerate as a whole. In comparison of experiment and theory, we deepen the insight into the chirality transfer in competition between molecule-molecule and surface-molecule interactions. (author)

  5. Can oriented-attachment be an efficient growth mechanism for the synthesis of 1D nanocrystals via atomic layer deposition?

    Science.gov (United States)

    Wen, Kechun; He, Weidong

    2015-09-01

    One-dimensional (1D) nanocrystals, such as nanorods and nanowires, have received extensive attention in the nanomaterials field due to their large surface areas and 1D confined transport properties. Oriented attachment (OA) is now recognized as a major growth mechanism for efficiently synthesizing 1D nanocrystals. Recently, atomic layer deposition (ALD) has been modified to be a powerful vapor-phase technique with which to synthesize 1D OA nanorods/nanowires with high efficiency and quality by increasing the temperature and purging time. In this invited mini-review, we look into the advantages of OA and high-temperature ALD, and investigate the potential of employing the OA growth mechanism for the synthesis of 1D nanocrystals via modified ALD, aiming to provide guidance to researchers in the fields of both OA and ALD for efficient synthesis of 1D nanocrystals.

  6. Altered Expression Profile of Renal α1D-Adrenergic Receptor in Diabetes and Its Modulation by PPAR Agonists

    Directory of Open Access Journals (Sweden)

    Xueying Zhao

    2014-01-01

    Full Text Available Alpha1D-adrenergic receptor (α1D-AR plays important roles in regulating physiological and pathological responses mediated by catecholamines, particularly in the cardiovascular and urinary systems. The present study was designed to investigate the expression profile of α1D-AR in the diabetic kidneys and its modulation by activation of peroxisome proliferator-activated receptors (PPARs. 12-week-old Zucker lean (ZL and Zucker diabetic fatty (ZD rats were treated with fenofibrate or rosiglitazone for 8–10 weeks. Gene microarray, real-time PCR, and confocal immunofluorescence microscopy were performed to assess mRNA and protein expression of α1D-AR in rat kidney tissue. Using microarray, we found that α1D-AR gene was dramatically upregulated in 22-week-old ZD rats compared to ZL controls. Quantitative PCR analysis verified a 16-fold increase in α1D-AR mRNA in renal cortex from ZD animals compared to normal controls. Chronic treatment with fenofibrate or rosiglitazone reduced renal cortical α1D-AR gene. Immunofluorescence staining confirmed that α1D-AR protein was induced in the glomeruli and tubules of diabetic rats. Moreover, dual immunostaining for α1D-AR and kidney injury molecule-1 indicated that α1D-AR was expressed in dedifferentiated proximal tubules of diabetic Zucker rats. Taken together, our results show that α1D-AR expression is upregulated in the diabetic kidneys. PPAR activation suppressed renal expression of α1D-AR in diabetic nephropathy.

  7. Hydrothermally processed 1D hydroxyapatite: Mechanism of formation and biocompatibility studies.

    Science.gov (United States)

    Stojanović, Zoran S; Ignjatović, Nenad; Wu, Victoria; Žunič, Vojka; Veselinović, Ljiljana; Škapin, Srečo; Miljković, Miroslav; Uskoković, Vuk; Uskoković, Dragan

    2016-11-01

    Recent developments in bone tissue engineering have led to an increased interest in one-dimensional (1D) hydroxyapatite (HA) nano- and micro-structures such as wires, ribbons and tubes. They have been proposed for use as cell substrates, reinforcing phases in composites and carriers for biologically active substances. Here we demonstrate the synthesis of 1D HA structures using an optimized, urea-assisted, high-yield hydrothermal batch process. The one-pot process, yielding HA structures composed of bundles of ribbons and wires, was typified by the simultaneous occurrence of a multitude of intermediate reactions, failing to meet the uniformity criteria over particle morphology and size. To overcome these issues, the preparation procedure was divided to two stages: dicalcium phosphate platelets synthesized in the first step were used as a precursor for the synthesis of 1D HA in the second stage. Despite the elongated particle morphologies, both the precursor and the final product exhibited excellent biocompatibility and caused no reduction of viability when tested against osteoblastic MC3T3-E1 cells in 2D culture up to the concentration of 2.6mg/cm(2). X-ray powder diffraction combined with a range of electron microscopies and laser diffraction analyses was used to elucidate the formation mechanism and the microstructure of the final particles. The two-step synthesis involved a more direct transformation of DCP to 1D HA with the average diameter of 37nm and the aspect ratio exceeding 100:1. The comparison of crystalline domain sizes along different crystallographic directions showed no signs of significant anisotropy, while indicating that individual nanowires are ordered in bundles in the b crystallographic direction of the P63/m space group of HA. Intermediate processes, e.g., dehydration of dicalcium phosphate, are critical for the formation of 1D HA alongside other key aspects of this phase transformation, it must be investigated in more detail in the continuous

  8. Position error in profiles retrieved from MIPAS observations with a 1-D algorithm

    Directory of Open Access Journals (Sweden)

    M. Carlotti

    2012-09-01

    Full Text Available The information load (IL analysis, first introduced for the two-dimensional approach (Carlotti and Magnani, 2009, is applied to the inversion of MIPAS observations operated with a 1-dimensional (1-D retrieval algorithm. The IL distribution of MIPAS spectra is shown to be often asymmetrical with respect to the tangent points of the observations and permits to identify the preferential latitude where the profiles retrieved with a 1-D algorithm should be geo-located. Therefore a position error is made when the tangent points of the observations are used to assign the geo-location of the retrieved profile. We assess the amplitude of the position error for some of the MIPAS main targets and we show that the IL analysis can also be used as a tool for the selection of observations that, when analyzed, minimize the position error of the retrieved profile. When the temperature (T profiles are used for the retrieval of volume mixing ratio (VMR of atmospheric constituents, the T position error (of the order of 1.5 degrees of latitude induces a VMR error that is directly connected with the horizontal T gradients. Temperature profiles can be externally-provided or determined in a previous step of the retrieval process. In the first case, the IL analysis shows that a meaningful fraction (often exceeding 50% of the VMR error deriving from the 1-D approximation is to be attributed to the mismatch between the position assigned to the external T profile and the positions where T is required by the analyzed observations. In the second case the retrieved T values suffer by an error of 1.5–2 K due to neglecting the horizontal variability of T; however the error induced on VMRs is of minor entity because of the generally small mismatch between the IL distribution of the observations analyzed to retrieve T and those analyzed to retrieve the VMR target. An estimate of the contribution of the

  9. Hydrothermally processed 1D hydroxyapatite: Mechanism of formation and biocompatibility studies.

    Science.gov (United States)

    Stojanović, Zoran S; Ignjatović, Nenad; Wu, Victoria; Žunič, Vojka; Veselinović, Ljiljana; Škapin, Srečo; Miljković, Miroslav; Uskoković, Vuk; Uskoković, Dragan

    2016-11-01

    Recent developments in bone tissue engineering have led to an increased interest in one-dimensional (1D) hydroxyapatite (HA) nano- and micro-structures such as wires, ribbons and tubes. They have been proposed for use as cell substrates, reinforcing phases in composites and carriers for biologically active substances. Here we demonstrate the synthesis of 1D HA structures using an optimized, urea-assisted, high-yield hydrothermal batch process. The one-pot process, yielding HA structures composed of bundles of ribbons and wires, was typified by the simultaneous occurrence of a multitude of intermediate reactions, failing to meet the uniformity criteria over particle morphology and size. To overcome these issues, the preparation procedure was divided to two stages: dicalcium phosphate platelets synthesized in the first step were used as a precursor for the synthesis of 1D HA in the second stage. Despite the elongated particle morphologies, both the precursor and the final product exhibited excellent biocompatibility and caused no reduction of viability when tested against osteoblastic MC3T3-E1 cells in 2D culture up to the concentration of 2.6mg/cm(2). X-ray powder diffraction combined with a range of electron microscopies and laser diffraction analyses was used to elucidate the formation mechanism and the microstructure of the final particles. The two-step synthesis involved a more direct transformation of DCP to 1D HA with the average diameter of 37nm and the aspect ratio exceeding 100:1. The comparison of crystalline domain sizes along different crystallographic directions showed no signs of significant anisotropy, while indicating that individual nanowires are ordered in bundles in the b crystallographic direction of the P63/m space group of HA. Intermediate processes, e.g., dehydration of dicalcium phosphate, are critical for the formation of 1D HA alongside other key aspects of this phase transformation, it must be investigated in more detail in the continuous

  10. HLA class II susceptibility pattern for type 1 diabetes (T1D) in an Iranian population.

    Science.gov (United States)

    Kiani, J; Hajilooi, M; Furst, D; Rezaei, H; Shahryari-Hesami, S; Kowsarifard, S; Zamani, A; Solgi, G

    2015-08-01

    This study aimed to determine the HLA-DRB1/HLA-DQB1 susceptibility and protection pattern for type 1 diabetes (T1D) in a population from Hamadan, north-west of Iran. A total of 133 patients with T1D were tested for HLA-DRB1 and HLA-DQB1 alleles using PCR-SSP compared to 100 ethnic-matched healthy controls. Alleles and haplotypes frequencies were compared between both groups. The most susceptible alleles for disease were HLA-DRB1*03:01, DRB1*04:02, DQB1*02:01 and DQB1*03:02, and protective alleles were HLA-DRB1*07:01, *11:01, *13:01, *14:01 and DRB1*15 and HLA-DQB1*06:01, *06:02 and *06:03. Haplotype analysis revealed that patients with T1D had higher frequencies of DRB1*03:01-DQB1*02:01 (OR = 4.86, P < 10(-7) ) and DRB1*04:02-DQB1*03:02 (OR = 9.93, P < 10(-7) ) and lower frequencies of DRB1*07:01-DQB1*02:01 (P = 0.0005), DRB1*11:01-DQB1*03:01 (P = 0.001), DRB1*13:01-DQB1*06:03 (P = 0.002) and DRB1*15-DQB1*06:01 (P = 0.001) haplotypes compared to healthy controls. Heterozygote combination of both susceptible haplotypes (DR3/DR4) confers the highest risk for T1D (RR = 18.80, P = 4 × 10(-5) ). Additionally, patients with homozygote diplotype, DR3/DR3 and DR4/DR4, showed a similar risk with less extent to heterozygote combination (P = 0.0004 and P = 0.01, respectively). Our findings not only confirm earlier reports from Iranians but also are in line with Caucasians and partly with Asians and some African patients with T1D. Remarkable differences were the identification of DRB1*04:01-DQB1*03:02, DRB1*07:01-DQB1*03:03 and DRB1*16-DQB1*05:02 as neutral and DRB1*13:01-DQB1*06:03 as the most protective haplotypes in this study.

  11. Computational Study and Analysis of Structural Imperfections in 1D and 2D Photonic Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Maskaly, Karlene Rosera [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2005-06-01

    Dielectric reflectors that are periodic in one or two dimensions, also known as 1D and 2D photonic crystals, have been widely studied for many potential applications due to the presence of wavelength-tunable photonic bandgaps. However, the unique optical behavior of photonic crystals is based on theoretical models of perfect analogues. Little is known about the practical effects of dielectric imperfections on their technologically useful optical properties. In order to address this issue, a finite-difference time-domain (FDTD) code is employed to study the effect of three specific dielectric imperfections in 1D and 2D photonic crystals. The first imperfection investigated is dielectric interfacial roughness in quarter-wave tuned 1D photonic crystals at normal incidence. This study reveals that the reflectivity of some roughened photonic crystal configurations can change up to 50% at the center of the bandgap for RMS roughness values around 20% of the characteristic periodicity of the crystal. However, this reflectivity change can be mitigated by increasing the index contrast and/or the number of bilayers in the crystal. In order to explain these results, the homogenization approximation, which is usually applied to single rough surfaces, is applied to the quarter-wave stacks. The results of the homogenization approximation match the FDTD results extremely well, suggesting that the main role of the roughness features is to grade the refractive index profile of the interfaces in the photonic crystal rather than diffusely scatter the incoming light. This result also implies that the amount of incoherent reflection from the roughened quarterwave stacks is extremely small. This is confirmed through direct extraction of the amount of incoherent power from the FDTD calculations. Further FDTD studies are done on the entire normal incidence bandgap of roughened 1D photonic crystals. These results reveal a narrowing and red-shifting of the normal incidence bandgap with

  12. What causes the large extensions of red-supergiant atmospheres? Comparisons of interferometric observations with 1-D hydrostatic, 3-D convection, and 1-D pulsating model atmospheres

    CERN Document Server

    Arroyo-Torres, B; Chiavassa, A; Scholz, M; Freytag, B; Marcaide, J M; Hauschildt, P H; Wood, P R; Abellan, F J

    2015-01-01

    We present the atmospheric structure and the fundamental parameters of three red supergiants, increasing the sample of RSGs observed by near-infrared spectro-interferometry. Additionally, we test possible mechanisms that may explain the large observed atmospheric extensions of RSGs. We carried out spectro-interferometric observations of 3 RSGs in the near-infrared K-band with the VLTI/AMBER instrument at medium spectral resolution. To comprehend the extended atmospheres, we compared our observational results to predictions by available hydrostatic PHOENIX, available 3-D convection, and new 1-D self-excited pulsation models of RSGs. Our near-infrared flux spectra are well reproduced by the PHOENIX model atmospheres. The continuum visibility values are consistent with a limb-darkened disk as predicted by the PHOENIX models, allowing us to determine the angular diameter and the fundamental parameters of our sources. Nonetheless, in the case of V602 Car and HD 95686, the PHOENIX model visibilities do not predict ...

  13. Design and initial 1D radiography tests of the FANTOM mobile fast-neutron radiography and tomography system

    International Nuclear Information System (INIS)

    The FANTOM system is a tabletop sized fast-neutron radiography and tomography system newly developed at the Applied Nuclear Physics Division of Uppsala University. The main purpose of the system is to provide time-averaged steam-and-water distribution measurement capability inside the metallic structures of two-phase test loops for light water reactor thermal–hydraulic studies using a portable fusion neutron generator. The FANTOM system provides a set of 1D neutron transmission data, which may be inserted into tomographic reconstruction algorithms to achieve a 2D mapping of the steam-and-water distribution. In this paper, the selected design of FANTOM is described and motivated. The detector concept is based on plastic scintillator elements, separated for spatial resolution. Analysis of pulse heights on an event-to-event basis is used for energy discrimination. Although the concept allows for close stacking of a large number of detector elements, this demonstrator is equipped with only three elements in the detector and one additional element for monitoring the yield from the neutron generator. The first measured projections on test objects of known configurations are presented. These were collected using a Sodern Genie 16 neutron generator with an isotropic yield of about 1E8 neutrons per second, and allowed for characterization of the instrument's capabilities. At an energy threshold of 10 MeV, the detector offered a count rate of about 500 cps per detector element. The performance in terms of spatial resolution was validated by fitting a Gaussian Line Spread Function to the experimental data, a procedure that revealed a spatial unsharpness in good agreement with the predicted FWHM of 0.5 mm

  14. Design and initial 1D radiography tests of the FANTOM mobile fast-neutron radiography and tomography system

    Science.gov (United States)

    Andersson, P.; Valldor-Blücher, J.; Andersson Sundén, E.; Sjöstrand, H.; Jacobsson-Svärd, S.

    2014-08-01

    The FANTOM system is a tabletop sized fast-neutron radiography and tomography system newly developed at the Applied Nuclear Physics Division of Uppsala University. The main purpose of the system is to provide time-averaged steam-and-water distribution measurement capability inside the metallic structures of two-phase test loops for light water reactor thermal-hydraulic studies using a portable fusion neutron generator. The FANTOM system provides a set of 1D neutron transmission data, which may be inserted into tomographic reconstruction algorithms to achieve a 2D mapping of the steam-and-water distribution. In this paper, the selected design of FANTOM is described and motivated. The detector concept is based on plastic scintillator elements, separated for spatial resolution. Analysis of pulse heights on an event-to-event basis is used for energy discrimination. Although the concept allows for close stacking of a large number of detector elements, this demonstrator is equipped with only three elements in the detector and one additional element for monitoring the yield from the neutron generator. The first measured projections on test objects of known configurations are presented. These were collected using a Sodern Genie 16 neutron generator with an isotropic yield of about 1E8 neutrons per second, and allowed for characterization of the instrument's capabilities. At an energy threshold of 10 MeV, the detector offered a count rate of about 500 cps per detector element. The performance in terms of spatial resolution was validated by fitting a Gaussian Line Spread Function to the experimental data, a procedure that revealed a spatial unsharpness in good agreement with the predicted FWHM of 0.5 mm.

  15. 1D zigzag chain and 0D monomer Cd(II)/Zn(II) compounds based on flexible phenylenediacetic ligand: Synthesis, crystal structures and fluorescent properties

    Science.gov (United States)

    Yang, Fang; Ren, Yixia; Li, Dongsheng; Fu, Feng; Qi, Guangcai; Wang, Yaoyu

    2008-12-01

    Three novel Cd(II)/Zn(II) compounds, [Cd 2(poda) 2(phen) 3(H 2O)] n· nEtOH·3 nH 2O (1), [Zn(poda) 2(bpy)(H 2O)] n(2) and [Zn(Hpoda) 2(bpy)] (3) (H 2poda = 1,2-phenylenediacetic acid, phen = 1,10-phenanthroline, bpy = 2,2'-bipyridyl), have been synthesized and characterized by IR, TG, fluorescent spectrum and single-crystal X-ray diffraction techniques. In 1, poda 2- anions link the adjacent Cd(II) centers to generate a 1D zigzag chain. Furthermore, an unprecedented four-footed "8-shaped" mixed water-ethanol (H 2O) 6(C 2H 5OH) 2 cluster connects four double chains based on 1D zigzag chain into 3D supramolecular architecture. By bis(chelate-monodentate) fashion of poda 2- ligand, compound 2 exhibits 1D zigzag chains, which forming a dense zipper-like 2D structure via strong π-π stacking interactions. Differed from 1 and 2, compound 3 has a mononuclear motif, and displays a 3D 6-connected α-Po net hydrogen-bonded topology. The structure-related solid-state fluorescence spectra of compounds 1 and 2 have been determined.

  16. Nested 1D-2D approach for urban surface flood modeling

    Science.gov (United States)

    Murla, Damian; Willems, Patrick

    2015-04-01

    Floods in urban areas as a consequence of sewer capacity exceedance receive increased attention because of trends in urbanization (increased population density and impermeability of the surface) and climate change. Despite the strong recent developments in numerical modeling of water systems, urban surface flood modeling is still a major challenge. Whereas very advanced and accurate flood modeling systems are in place and operation by many river authorities in support of flood management along rivers, this is not yet the case in urban water management. Reasons include the small scale of the urban inundation processes, the need to have very high resolution topographical information available, and the huge computational demands. Urban drainage related inundation modeling requires a 1D full hydrodynamic model of the sewer network to be coupled with a 2D surface flood model. To reduce the computational times, 0D (flood cones), 1D/quasi-2D surface flood modeling approaches have been developed and applied in some case studies. In this research, a nested 1D/2D hydraulic model has been developed for an urban catchment at the city of Gent (Belgium), linking the underground sewer (minor system) with the overland surface (major system). For the overland surface flood modelling, comparison was made of 0D, 1D/quasi-2D and full 2D approaches. The approaches are advanced by considering nested 1D-2D approaches, including infiltration in the green city areas, and allowing the effects of surface storm water storage to be simulated. An optimal nested combination of three different mesh resolutions was identified; based on a compromise between precision and simulation time for further real-time flood forecasting, warning and control applications. Main streets as mesh zones together with buildings as void regions constitute one of these mesh resolution (3.75m2 - 15m2); they have been included since they channel most of the flood water from the manholes and they improve the accuracy of

  17. Membranes from nanoporous 1D and 2D materials: A review of opportunities, developments, and challenges

    KAUST Repository

    Kim, Wun-gwi

    2013-12-01

    Membranes utilizing nanoporous one-dimensional (1D) and two-dimensional (2D) materials are emerging as attractive candidates for applications in molecular separations and related areas. Such nanotubular and nanolayered materials include carbon nanotubes, metal oxide nanotubes, layered zeolites, porous layered oxides, layered aluminophosphates, and porous graphenes. By virtue of their unique shape, size, and structure, they possess transport properties that are advantageous for membrane and thin film applications. These materials also have very different chemistry from more conventional porous 3D materials, due to the existence of a large, chemically active, external surface area. This feature also necessitates the development of innovative strategies to process these materials into membranes and thin films with high performance. This work provides the first comprehensive review of this emerging area. We first discuss approaches for the synthesis and structural characterization of nanoporous 1D and 2D materials. Thereafter, we elucidate different approaches for fabrication of membranes and thin films from these materials, either as multiphase (composite/hybrid) or single-phase membranes. The influence of surface chemistry and processing techniques on the membrane morphology is highlighted. We then discuss the applications of such membranes in areas relating to molecular transport and separation, e.g. gas and liquid-phase separations, water purification, and ion-conducting membranes. The review concludes with a discussion of the present outlook and some of the key scientific challenges to be addressed on the path to industrially applicable membranes containing nanoporous 1D and 2D materials. © 2013 Elsevier Ltd.

  18. Universal low-energy physics in 1D strongly repulsive multi-component Fermi gases

    Science.gov (United States)

    Jiang, Yuzhu; He, Peng; Guan, Xi-Wen

    2016-04-01

    It has been shown (Yang and You 2011 Chin. Phys. Lett. 28 020503) that at zero temperature the ground state of the one-dimensional (1D) w-component Fermi gas coincides with that of the spinless Bose gas in the limit ω \\to ∞ . This behavior was experimentally evidenced through quasi-1D tightly trapping ultracold 173Yb atoms in a recent paper (Pagano et al 2014 Nat. Phys. 10 198). However, understanding of low-temperature behavior of Fermi gases with a repulsive interaction requires spin-charge separated conformal field theories of an effective Tomonaga-Luttinger liquid and an antiferromagnetic SU(w) Heisenberg spin chain. Here we analytically derive universal thermodynamics of 1D strongly repulsive fermionic gases with SU(w) symmetry via the Yang-Yang thermodynamic Bethe ansatz method. The analytical free energy and magnetic properties of the systems at low temperature in a weak magnetic field are obtained through the Wiener-Hopf method. In particular, the free energy essentially manifests the spin-charge separated conformal field theories for high-symmetry systems with arbitrary repulsive interaction strength. We also find that the sound velocity of the Fermi gases in the large w limit coincides with that for the spinless Bose gas, whereas the spin velocity vanishes quickly as w becomes large. This indicates strong suppression of the Fermi exclusion statistics by the commutativity feature among the w-component fermions with different spin states in the Tomonaga-Luttinger liquid phase. Moreover, the equations of state and critical behavior of physical quantities at finite temperature are analytically derived in terms of the polylogarithm functions in the quantum critical region.

  19. O(1D) Reaction with Methane Studied by State Resolved Scattering Distribution Measurements of Methyl Radicals

    Science.gov (United States)

    Suzuki, Toshinori

    2014-06-01

    The scattering distributions of state-selected methyl radicals are measured for the O(^1D_2) reaction with methane using a crossed molecular beam ion imaging method at collision energies of 0.9 - 6.8 kcal/mol. The results are compared with the reaction with deuterated methane to examine the isotope effects. The scattering distributions exhibit contributions from both the insertion and abstraction pathways respectively on the ground and excited-state potential energy surfaces. Insertion is the main pathway, and it provides a strongly forward-enhanced angular distribution of methyl radicals. Abstraction is a minor pathway, causing backward scattering of methyl radicals with a discrete speed distribution. From the collision energy dependence of the abstraction/insertion ratio, the barrier height for the abstraction pathway is estimated for O(^1D_2) with CH_4 and CD_4, respectively. The insertion pathway of the O(^1D_2) reaction with CH_4 has a narrower angular width in the forward scattering and a larger insertion/abstraction ratio than the reaction with CD_4, which indicate that the insertion reaction with CH_4 has a larger cross section and a shorter reaction time than the reaction with CD_4. Additionally, while the insertion reaction with CD_4 exhibits strong angular dependence of the CD_3 speed distribution, CH_3 exhibits considerably smaller dependence. The result suggests that, although intramolecular vibrational redistribution (IVR) within the lifetime of the methanol intermediate is restrictive in both isotopomers, relatively more extensive IVR occurs in CD_3OD than CH_3OH, presumably due to the higher vibrational state density.

  20. Anion-dependent construction of a series of fluorescent coordination polymers based on 1D zinc∩4,4‧-bis(imidazol-1-yl)-biphenyl substrates

    Science.gov (United States)

    Zou, Kang-Yu; Zou, Qian; Han, Tong; Liu, Yi-Chen; Wang, Jun-Jie; Zhang, Xue; Li, Zuo-Xi

    2016-03-01

    In this work, the rod-like ligand 4,4‧-bis(imidazol-1-yl)-biphenyl (bibp) has been utilized as a building block to carry out counterion effects on the structural diversities of coordination polymers. A series of new zinc complexes, [Zn(trans-bibp)Cl2]∞ (1), [Zn(trans-bibp)Br2]∞ (2), {[Zn(cis-bibp)(Ac)2]·(H2O)}∞ (3), [Zn(trans-bibp)SO4]∞ (4), {[Zn2(cis-bibp)2(ipa)2]·(H2O)}∞ (5, H2ipa=isophthalic acid) and {[Zn(trans-bibp)(cis-bibp)]·(ClO4)2(CHCl3)2(CH3OH)}∞ (6) have been successfully synthesized. Complexes 1 and 2 are iso-structural, which show a 1D W-type chain [Zn(trans-bibp)]∞. Complex 3 exhibits a 2D wave-like layer formed by the hydrogen bond among the 1D linear chain [Zn(cis-bibp)]∞. Complex 4 displays a 2D fish-bone lattice, which is generated from connecting the 1D W-type chain [Zn(trans-bibp)]∞ by the μ2-SO42- . Complex 5 presents an interesting 2D-3D 65·8 architecture, including two 1D chains [Zn(ipa)]∞ and [Zn(cis-bibp)]∞. Complex 6 demonstrates a 2D wave-like layer [Zn(trans-bibp)(cis-bibp)]∞. The structural diversities among 1-6 have been carefully discussed, and the role of counterion in the self-assembly of coordination polymer have also been well documented from the coordination affinity and bridging mode. Furthermore, the solid-state fluorescence properties of 1-6 at room temperature have been studied.

  1. 佳能推出EOS-1D Mark IV

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    10月20日佳能(中国)有限公司发布面向职业新闻和体育摄影师的专业数码单反相机EOS-1D Mark IV和支持有线/无线网络及USB控制功能EOS 5D Mark II无线文件传输器WFT-E4 II C为专业影像市场注入了全新的技术动力。

  2. Investigation of 1-D crustal velocity structure beneath Izmir Gulf and surroundings by using local earthquakes

    Science.gov (United States)

    Polat, Orhan; Özer, Ćaglar

    2016-04-01

    In this study; we examined one dimensional crustal velocity structure of Izmir gulf and surroundings. We used nearly one thousand high quality (A and B class) earthquake data which recorded by Disaster and Emergency Management Presidency (AFAD) [1], Bogazici University (BU-KOERI) [2] and National Observatory of Athens (NOA) [3,4]. We tried several synthetic tests to understand power of new velocity structure, and examined phase residuals, RMS values and shifting tests. After evaluating these tests; we decided one dimensional velocity structure and minimum 1-D P wave velocities, hypocentral parameter and earthquake locations from VELEST algorithm. Distribution of earthquakes was visibly improved by using new minimum velocity structure.

  3. Silva. EDF two-phase 1D annular model of a CFB boiler furnace

    Energy Technology Data Exchange (ETDEWEB)

    Montat, D.; Fauquet, Ph. [Electricite de France (EDF), 78 - Chatou (France). Researckh and Development Div.; Lafanechere, L.; Bursi, J.M. [Electricite de France (EDF) (France). Construction Div.

    1997-01-01

    SILVA computer code is used for the modelling of the thermal-hydraulics and of the combustion of a coal-fired CFBC solid loop. In a first step, only the furnace is considered. The model is based on a 1D annular two phases description of the hydrodynamics. The model is based on particle mass balances and pressure drop calculations. A basic combustion model is incorporated into this model. The coal combustion is divided in two phases, the combustion of volatile matter and the heterogeneous combustion. The model has been developed within LEGO software and can be included into the global model of the solid loop developed by EDF. (author) 26 refs.

  4. B Cells Promote Th1- Skewed NKT Cell Response by CD1d-TCR Interaction

    OpenAIRE

    Shin, Jung Hoon; Park, Se-Ho

    2013-01-01

    CD1d expressing dendritic cells (DCs) are good glyco-lipid antigen presenting cells for NKT cells. However, resting B cells are very weak stimulators for NKT cells. Although α-galactosylceramide (α-GalCer) loaded B cells can activate NKT cells, it is not well defined whether B cells interfere NKT cell stimulating activity of DCs. Unexpectedly, we found in this study that B cells can promote Th1-skewed NKT cell response, which means a increased level of IFN-γ by NKT cells, concomitant with a d...

  5. Numerical modeling of 1-D transient poroelastic waves in the low-frequency range

    CERN Document Server

    Chiavassa, Guillaume; Piraux, Joël

    2007-01-01

    Propagation of transient mechanical waves in porous media is numerically investigated in 1D. The framework is the linear Biot's model with frequency-independant coefficients. The coexistence of a propagating fast wave and a diffusive slow wave makes numerical modeling tricky. A method combining three numerical tools is proposed: a fourth-order ADER scheme with time-splitting to deal with the time-marching, a space-time mesh refinement to account for the small-scale evolution of the slow wave, and an interface method to incorporate the jump conditions at interfaces. Comparisons with analytical solutions confirm the validity of this approach.

  6. D1/D5 system and Wilson Loops in (Non-)commutative Gauge Theories

    OpenAIRE

    Takahashi, Hidenori; Nakajima, Tadahito; Suzuki, Kenji

    2002-01-01

    We study the behavior of the Wilson loop in the (5+1)-dimensional supersymmetric Yang-Mills theory with the presence of the solitonic object. Using the dual string description of the Yang-Mills theory that is given by the D1/D5 system, we estimate the Wilson loops both in the temporal and spatial cases. For the case of the temporal loop, we obtain the velocity dependent potential. For the spatial loop, we find that the area law is emerged due to the effect of the D1-branes. Further, we consid...

  7. Design for manufacturability from 1D to 4D for 90-22 nm technology nodes

    CERN Document Server

    Balasinski, Artur

    2013-01-01

    This book explains integrated circuit design for manufacturability (DfM) at the product level (packaging, applications) and applies engineering DfM principles to the latest standards of product development at 22 nm technology nodes.  It is a valuable guide for layout designers, packaging engineers and quality engineers, covering DfM development from 1D to 4D, involving IC design flow setup, best practices, links to manufacturing and product definition, for process technologies down to 22 nm node, and product families including memories, logic, system-on-chip and system-in-package.

  8. Analysis on characteristics of 1-D apodized and chirped photonic crystals containing negative refractive materials

    Institute of Scientific and Technical Information of China (English)

    TONG Kai; CUI Wei-wei; XU Xiao-hui; LI Zhi-quan

    2008-01-01

    Using transfer matrix method, the optical transmission properties of 1-D photonic crystals composed partially of negativerefraction media are analyzed. The transmission spectra of periodic photonic crystal, chirped photonic crystal and apodizedphotonic crystal are numerically simulated respectively. By contrast with optical transmission properties of ordinary photo-nic crystals made of positive refraction media, the transmission spectra of apodized photonic crystal become unregular, theBragg flat-headed area recurs but the peak of transmission does not change significantly. Futhermore, the band gap rangeof chirped photonic crystal diminishes gradually.

  9. GE SBWR stability analysis using TRAC-BF1 1-D kinetics model

    International Nuclear Information System (INIS)

    GE's simplified boiling water reactor, with its unique feature of using natural circulation to remove the heat from the reactor core, is a complicated dynamic system. Previous work by authors using the TRAC-BF1 code and a point kinetics model predicted that an SBWR may experience large amplitude power oscillation under certain low pressure and high power operating conditions. To further confirm the existence of this power oscillation and explore the dynamic spatial reactor power distribution, the TRAC-BF1 1-D kinetics model was used. The results show that an instability exists and the power oscillation starting time and maximum peak power are different from the point kinetics results

  10. Variational Formulation of 1-D Unsteady Compressible Flow in a Deforming Tube

    Institute of Scientific and Technical Information of China (English)

    Gaolian Liu; Yi Tao; Yingxue Liu

    2003-01-01

    The variational principles for 1-D unsteady compressible flow in a deforming tube derived in a previous paper are improved essentially by reconstructing the initial/final-integral terms according to a new method suggested in a recent paper. As a result, the inherent shortcoming of variational principles of being unable to admit physically rational initial/final-value conditions in initial/boundary-value problems is successfully eliminated. Thus, a new theoretical basis for the time-space finite-element analysis is provided.

  11. Monochromatic Neutron Tomography Using 1-D PSD Detector at Low Flux Research Reactor

    Science.gov (United States)

    Ashari, N. Abidin; Saleh, J. Mohamad; Abdullah, M. Zaid; Mohamed, A. Aziz; Azman, A.; Jamro, R.

    2008-03-01

    This paper describes the monochromatic neutron tomography experiment using the 1-D Position Sensitive Neutron Detector (PSD) located at Nuclear Malaysia TRIGA MARK II Research reactor. Experimental work was performed using monochromatic neutron source from beryllium filter and HOPG crystal monochromator. The principal main aim of this experiment was to test the detector efficiency, image reconstruction algorithm and the usage of 0.5 nm monochromatic neutrons for the neutron tomography setup. Other objective includes gathering important parameters and features to characterize the system.

  12. Superfluid behavior of quasi-1D p-H$_2$ inside carbon nanotube

    OpenAIRE

    Rossi, Maurizio; Ancilotto, Francesco

    2016-01-01

    We perform ab-initio Quantum Monte Carlo simulations of para-hydrogen (pH$_2$) at $T=0$ K confined in carbon nanotubes (CNT) of different radii. The radial density profiles show a strong layering of the pH$_2$ molecules which grow, with increasing number of molecules, in solid concentric cylindrical shells and eventually a central column. The central column can be considered an effective one-dimensional (1D) fluid whose properties are well captured by the Tomonaga-Luttinger liquid theory. The...

  13. Analytical solution to the Riemann problem of 1D elastodynamics with general constitutive laws

    CERN Document Server

    Berjamin, H; Chiavassa, G; Favrie, N

    2016-01-01

    Under the hypothesis of small deformations, the equations of 1D elastodynamics write as a 2 x 2 hyperbolic system of conservation laws. Here, we study the Riemann problem for convex and nonconvex constitutive laws. In the convex case, the solution can include shock waves or rarefaction waves. In the nonconvex case, compound waves must also be considered. In both convex and nonconvex cases, a new existence criterion for the initial velocity jump is obtained. Also, admissibility regions are determined. Lastly, analytical solutions are completely detailed for various constitutive laws (hyperbola, tanh and polynomial), and reference test cases are proposed.

  14. Electronic and Transport Properties of Quasi-1D Wires of Biological Molecules

    Science.gov (United States)

    Oetzel, Björn; Matthes, Lars; Tandetzky, Falk; Ortmann, Frank; Bechstedt, Friedhelm; Hannewald, Karsten

    2010-03-01

    In the search for organic materials with good charge-transport properties, artificial stacks of biological molecules are considered attractive candidates [1,2]. In this spirit, we present ab-initio DFT calculations of the structural, electronic, and quantum-transport properties of quasi-1D wires based on guanine and eumelanin molecules [3]. Hereby, a special focus is put on the results for the electronic bandwidths and the consequences for potential applications. [4pt] [1] R. di Felice et al., Phys. Rev. B 65, 045104 (2001) [0pt] [2] P. Meredith et al., Pigment Cell Res. 19, 572 (2006) [0pt] [3] B. Oetzel et al. (unpublished)

  15. Injectable composites via functionalization of 1D nanoclays and biodegradable coupling with a polysaccharide hydrogel.

    Science.gov (United States)

    Del Buffa, Stefano; Rinaldi, Elia; Carretti, Emiliano; Ridi, Francesca; Bonini, Massimo; Baglioni, Piero

    2016-09-01

    The use of injectable materials in minimally invasive surgical procedures could help in facing the bone diseases connected to the ageing of world population. To this aim, materials integrating the rheological properties of biocompatible polymers with the mechanical properties of 1D inorganic nanostructures represent promising scaffolds. Here we describe the preparation of hydrogel composites made of carboxymethyl cellulose (CMC) and halloysite nanotubes (HNT) as injectable materials for the local treatment of bone defects. The rheology and injectability of the materials reflects their structural properties, showing the possibility of successfully injecting the prepared composites over a large range of operative conditions. PMID:27281242

  16. Synthesis, Characterization, and Application of 1-D Cerium Oxide Nanomaterials: A Review

    Directory of Open Access Journals (Sweden)

    Kuen-Song Lin

    2010-09-01

    Full Text Available The present work provides a comprehensive overview of the recent progress of research work toward developing new one dimensional (1-D ceria (CeO2 nanomaterials. The review has been classified into three parts: the preparation procedures with identification of the existing different dimensional ceria nanomaterials, the formation mechanisms, and an analysis of their applications. From literature survey, it is inaugurated that the fundamental structures of the ceria nanomaterials constructively dominate their properties and applications. In addition, this work will also provide a perspective on the future technical trends for the development of different dimensional CeO2 nanomaterials.

  17. Simulation of Tunnel Junction in Cascade Solar Cell (GaAs/Ge Using AMPS-1D

    Directory of Open Access Journals (Sweden)

    Benmoussa Dennai

    2014-11-01

    Full Text Available The development of the tunnel junction interconnect was key the first two-terminal monolithic, multi-junction solar cell development. This paper describes simulation for the tunnel junction (GaAs between top cell (GaAs and bottom cell (Ge. This solar cell cascade was simulated when using one dimensional simulation program called analysis of microelectronic and photonic structures (AMPS-1D. In the simulation, the thickness of the tunnel junction layer was varied from 10 to 50 nm. By varying thickness of tunnel junction layer the simulated device performance was demonstrate in the form of current-voltage(I-V characteristics and quantum efficiency (QE.

  18. Quadratic gravity in (2+1)D with a topological Chern-Simons term

    International Nuclear Information System (INIS)

    Three-dimensional quadratic gravity, unlike general relativity in (2+1)D, is dynamically nontrivial and has a well behaved nonrelativistic potential. Here we analyse the changes that occur when a topological Chern-Simons term is added to this theory. It is found that the harmless massive scalar mode of the latter gives rise to a troublesome massive spin-0 ghost, while the massive spin-2 ghost is replaced by two massive physical particles both of spin 2. We also found that light deflection does not have the 'wrong sign' such as in the framework of three-dimensional quadratic gravity. (author)

  19. Hair on non-extremal D1-D5 bound states

    CERN Document Server

    Roy, Pratik; Virmani, Amitabh

    2016-01-01

    We consider a truncation of type IIB supergravity on four-torus where in addition to the Ramond-Ramond 2-form field, the Ramond-Ramond axion (w) and the NS-NS 2-form field (B) are also retained. In the (w, B) sector we construct a linearised perturbation carrying only left moving momentum on two-charge non-extremal D1-D5 geometries of Jejjala, Madden, Ross and Titchener. The perturbation is found to be smooth everywhere and normalizable. It is constructed by matching to leading order solutions of the perturbation equations in the inner and outer regions of the geometry.

  20. Momentum-carrying waves on D1-D5 microstate geometries

    Energy Technology Data Exchange (ETDEWEB)

    Mathur, Samir D., E-mail: mathur@mps.ohio-state.edu [Department of Physics, Ohio State University, Columbus, OH 43210 (United States); Turton, David, E-mail: turton.7@osu.edu [Department of Physics, Ohio State University, Columbus, OH 43210 (United States)

    2012-09-21

    If one attempts to add momentum-carrying waves to a black string then the solution develops a singularity at the horizon; this is a manifestation of the 'no hair theorem' for black objects. However individual microstates of a black string do not have a horizon, and so the above theorem does not apply. We construct a perturbation that adds momentum to a family of microstates of the extremal D1-D5 string. This perturbation is analogous to the 'singleton' mode localized at the boundary of AdS; to leading order it is pure gauge in the AdS interior of the geometry.

  1. Momentum-carrying waves on D1-D5 microstate geometries

    CERN Document Server

    Mathur, Samir D

    2012-01-01

    If one attempts to add momentum-carrying waves to a black string then the solution develops a singularity at the horizon; this is a manifestation of the 'no hair theorem' for black objects. However individual microstates of a black string do not have a horizon, and so the above theorem does not apply. We construct a perturbation that adds momentum to a family of microstates of the extremal D1-D5 string. This perturbation is analogous to the 'singleton' mode localized at the boundary of AdS; to leading order it is pure gauge in the AdS interior of the geometry.

  2. Multi-particle processes in $\\kappa$-Poincar\\'e inspired by 2+1D gravity

    CERN Document Server

    Kowalski-Glikman, Jerzy

    2014-01-01

    Inspired by a Chern-Simons description of 2+1D gravity coupled to point particles we propose a new Lagrangian of a multiparticle system living in $\\kappa$-Minkowski/$\\kappa$-Poincar\\'e spacetime. We derive the dynamics of interacting particles with $\\kappa$-momentum space, alternative to the one proposed in the "principle of relative locality" literature. In this construction the locality of particle processes is naturally implemented, even for distant observers. In particular each particle process is characterized by a local deformed energy-momentum conservation law. On the other hand, the relation between non-causally-connected events still reflects the effects of deformed kinematics and relativity of locality.

  3. Hair on non-extremal D1-D5 bound states

    Science.gov (United States)

    Roy, Pratik; Srivastava, Yogesh K.; Virmani, Amitabh

    2016-09-01

    We consider a truncation of type IIB supergravity on four-torus where in addition to the Ramond-Ramond 2-form field, the Ramond-Ramond axion ( w) and the NS-NS 2-form field ( B) are also retained. In the ( w, B) sector we construct a linearised perturbation carrying only left moving momentum on two-charge non-extremal D1-D5 geometries of Jejjala, Madden, Ross and Titchener. The perturbation is found to be smooth everywhere and normalisable. It is constructed by matching to leading order solutions of the perturbation equations in the inner and outer regions of the geometry.

  4. Maximizing 1D “like” implosion performance for inertial confinement fusion science

    Energy Technology Data Exchange (ETDEWEB)

    Kline, John L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-15

    While the march towards achieving indirectly driven inertial confinement fusion at the NIF has made great progress, the experiments show that multi-dimensional effects still dominate the implosion performance. Low mode implosion symmetry and hydrodynamic instabilities seed by capsule mounting features appear to be two key limiting factors for implosion performance. One reason these factors have a large impact on the performance of ICF implosions is the high convergence required to achieve high fusion gains. To tackle these problems, a predictable implosion platform is needed meaning experiments must trade-off high gain for performance. To this end, LANL has adopted three main approaches to develop a 1D implosion platform where 1D means high yield over 1D clean calculations. Taking advantage of the properties of beryllium capsules, a high adiabat, low convergence platform is being developed. The higher drive efficiency for beryllium enables larger case-to-capsule ratios to improve symmetry at the expense of drive. Smaller capsules with a high adiabat drive are expected to reduce the convergence and thus increase predictability. The second approach is liquid fuel layers using wetted foam targets. With liquid fuel layers, the initial mass in the hot spot can be controlled via the target fielding temperature which changes the liquid vapor pressure. Varying the initial hot spot mass via the vapor pressure controls the implosion convergence and minimizes the need to vaporize the dense fuel layer during the implosion to achieve ignition relevant hot spot densities. The last method is double shell targets. Unlike hot spot ignition, double shells ignite volumetrically. The inner shell houses the DT fuel and the convergence of this cavity is relatively small compared to hot spot ignition. Radiation trapping and the longer confinement times relax the conditions required to ignite the fuel. Key challenges for double shell targets are coupling the momentum of the outer shell to

  5. Editing of CD1d-Bound Lipid Antigens by Endosomal Lipid Transfer Proteins

    OpenAIRE

    Zhou, Dapeng; Cantu, Carlos; Sagiv, Yuval; Schrantz, Nicolas; Kulkarni, Ashok B.; Qi, Xiaoyang; Mahuran, Don J.; Carlos R Morales; Grabowski, Gregory A.; Benlagha, Kamel; Savage, Paul; Bendelac, Albert; Teyton, Luc

    2003-01-01

    It is now established that CD1 molecules present lipid antigens to T cells, although it is not clear how the exchange of lipids between membrane compartments and the CD1 binding groove is assisted. We report that mice deficient in prosaposin, the precursor to a family of endosomal lipid transfer proteins (LTP), exhibit specific defects in CD1d-mediated antigen presentation and lack Vα14 NKT cells. In vitro, saposins extracted monomeric lipids from membranes and from CD1, thereby promoting the...

  6. TCTEX1D2 mutations underlie Jeune asphyxiating thoracic dystrophy with impaired retrograde intraflagellar transport

    OpenAIRE

    Schmidts, M.; Hou, Y; Cortes, C.R.; Mans, D. A.; Huber, C.; Boldt, K.; M. Patel; Van Reeuwijk, J; Plaza, J.M.; Beersum, S.E.C; Yap, Z.M.; Letteboer, S.J.F.; Taylor, S. P.; Herridge, W; Johnson, C A

    2015-01-01

    ARTICLE Received 1 Oct 2014 | Accepted 31 Mar 2015 | Published 5 June 2015 TCTEX1D2 mutations underlie Jeune asphyxiating thoracic dystrophy with impaired retrograde intraflagellar transport Miriam Schmidts1,2,3,4,*, Yuqing Hou5,*, Claudio R. Corte´s6, Dorus A. Mans2,3, Celine Huber7, Karsten Boldt8, Mitali Patel1, Jeroen van Reeuwijk2,3, Jean-Marc Plaza9, Sylvia E.C. van Beersum2,3, Zhi Min Yap1, Stef J.F. Letteboer2,3, S Paige Taylor10, Warren Herridge11, Colin A. Johns...

  7. Statistical properties of 1D spin glasses from first principles of classical mechanics

    OpenAIRE

    Gevorkyan, A. S.; Sahakyan, V. V.

    2015-01-01

    We study the classical 1D Heisenberg spin glasses. Based on the Hamilton equations we obtained the system of recurrence equations which allows to perform node-by-node calculations of a spin-chain. It is shown that calculations from first principles of classical mechanics lead to NP hard problem, that however in the limit of the statistical equilibrium can be calculated by P algorithm. For the partition function of the ensemble a new representation is offered in the form of one-dimensional int...

  8. Prediction of car cabin environment by means of 1D and 3D cabin model

    Science.gov (United States)

    Fišer, J.; Pokorný, J.; Jícha, M.

    2012-04-01

    Thermal comfort and also reduction of energy requirements of air-conditioning system in vehicle cabins are currently very intensively investigated and up-to-date issues. The article deals with two approaches of modelling of car cabin environment; the first model was created in simulation language Modelica (typical 1D approach without cabin geometry) and the second one was created in specialized software Theseus-FE (3D approach with cabin geometry). Performance and capabilities of this tools are demonstrated on the example of the car cabin and the results from simulations are compared with the results from the real car cabin climate chamber measurements.

  9. Prediction of car cabin environment by means of 1D and 3D cabin model

    Directory of Open Access Journals (Sweden)

    Jícha M.

    2012-04-01

    Full Text Available Thermal comfort and also reduction of energy requirements of air-conditioning system in vehicle cabins are currently very intensively investigated and up-to-date issues. The article deals with two approaches of modelling of car cabin environment; the first model was created in simulation language Modelica (typical 1D approach without cabin geometry and the second one was created in specialized software Theseus-FE (3D approach with cabin geometry. Performance and capabilities of this tools are demonstrated on the example of the car cabin and the results from simulations are compared with the results from the real car cabin climate chamber measurements.

  10. Exact spin dynamics of inhomogeneous 1-d systems at high temperature

    Science.gov (United States)

    Danieli, E. P.; Pastawski, H. M.; Levstein, P. R.

    2002-07-01

    The evaluation of spin excitation dynamics in finite 1-d systems of spins {1}/{2} with XY exchange interaction J acquired new interest because NMR experiments at high temperature ( kBT≫ J) confirmed the predicted spin wave behavior of mesoscopic echoes. In this work, we use the Jordan-Wigner transformation to obtain the exact dynamics of inhomogeneous chains and rings where the evolution is reduced to one-body dynamics. For higher dimensions, the spin excitations manifest many-body effects that can be interpreted as a simple dynamics of non-interacting fermions plus a decoherent process.

  11. Thermal impedance at the interface of contacting bodies: 1-D examples solved by semi-derivatives

    Directory of Open Access Journals (Sweden)

    Hristov Jordan

    2012-01-01

    Full Text Available Simple 1-D semi-infinite heat conduction problems enable to demonstrate the potential of the fractional calculus in determination of transient thermal impedances of two bodies with different initial temperatures contacting at the interface ( x = 0 at t = 0 . The approach is purely analytic and uses only semi-derivatives (half-time and semi-integrals in the Riemann-Liouville sense. The example solved clearly reveals that the fractional calculus is more effective in calculation the thermal resistances than the entire domain solutions.

  12. Analysis of Flash Flood Routing by Means of 1D - Hydraulic Modelling

    OpenAIRE

    Tesfay Abraha, Zerisenay

    2013-01-01

    This study was conducted at the mountainous catchment part of Batinah Region of the Sultanate of Oman called Al-Awabi watershed which is about 260km2 in area with about 40 Km long Wadi main channel. The study paper presents a proposed modeling approach and possible scenario analysis which uses 1D - hydraulic modeling for flood routing analysis; and the main tasks of this study work are (1) Model setup for Al-Awabi watershed area, (2) Sensitivity Analysis, and (3) Scenario Analysis on impacts ...

  13. Severe hypoglycemia and diabetic ketoacidosis among youth with type 1 diabetes in the T1D Exchange clinic registry

    Science.gov (United States)

    Severe hypoglycemia (SH) and diabetic ketoacidosis (DKA) are common serious acute complications of type 1 diabetes (T1D). The aim of this study was to determine the frequency of SH and DKA and identify factors related to their occurrence in the T1D Exchange pediatric and young adult cohort. The anal...

  14. REFLA-1D/MODE3: a computer code for reflood thermo-hydrodynamic analysis during PWR-LOCA

    International Nuclear Information System (INIS)

    This manual describes the REFLA-1D/MODE3 reflood system analysis code. This code can solve the core thermo-hydrodynamics under forced flooding conditions and gravity feed conditions in a system similar to FLECHT-SET Phase A. This manual describes the REFLA-1D/MODE3 models and provides application information required to utilize the code. (author)

  15. Identification of regions critical for the integrity of the TSC1-TSC2-TBC1D7 complex.

    Directory of Open Access Journals (Sweden)

    Arthur Jorge Santiago Lima

    Full Text Available The TSC1-TSC2-TBC1D7 complex is an important negative regulator of the mechanistic target of rapamycin complex 1 that controls cell growth in response to environmental cues. Inactivating TSC1 and TSC2 mutations cause tuberous sclerosis complex (TSC, an autosomal dominant disorder characterised by the occurrence of benign tumours in various organs and tissues, notably the brain, skin and kidneys. TBC1D7 mutations have not been reported in TSC patients but homozygous inactivation of TBC1D7 causes megaencephaly and intellectual disability. Here, using an exon-specific deletion strategy, we demonstrate that some regions of TSC1 are not necessary for the core function of the TSC1-TSC2 complex. Furthermore, we show that the TBC1D7 binding site is encoded by TSC1 exon 22 and identify amino acid residues involved in the TSC1-TBC1D7 interaction.

  16. Regional airflow and particle distribution in the lung with a 3D-1D coupled subject-specific boundary condition

    Science.gov (United States)

    Choi, Jiwoong; Yin, Youbing; Hoffman, Eric; Tawhai, Merryn; Lin, Ching-Long

    2010-11-01

    Correct prediction of regional distribution of inhaled aerosol particles is vital to improve pulmonary medicine. Physiologically consistent regional ventilations of airflow and aerosol particles are simulated with a 3D-1D coupled subject-specific boundary condition (BC). In 3D CT-resolved 7-generation airways, large eddy simulations are performed to capture detailed airflow characteristics and Lagrangian particle simulations are carried to track the particle transport and deposition. Results are compared with two traditional outlet BCs: uniform velocity and uniform pressure. Proposed BC is eligible for physiologically consistent airflow distribution in the lung, while the others are not. The regional ventilation and deposition of particles reflect the regional ventilation of airflow. In this study, two traditional BCs yield up to 98% (334%) over-prediction in lobar particle ventilation (deposition) fraction. Upper to lower particle ventilation ratios of both left and right lungs read ˜0.4 with the proposed BC, while those for the other two BCs vary with the error up to 73%.

  17. A 2D/1D coupling neutron transport method based on the matrix MOC and NEM methods

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H.; Zheng, Y.; Wu, H.; Cao, L. [School of Nuclear Science and Technology, Xi' an Jiaotong University, No. 28, Xianning West Road, Xi' an, Shaanxi 710049 (China)

    2013-07-01

    A new 2D/1D coupling method based on the matrix MOC method (MMOC) and nodal expansion method (NEM) is proposed for solving the three-dimensional heterogeneous neutron transport problem. The MMOC method, used for radial two-dimensional calculation, constructs a response matrix between source and flux with only one sweep and then solves the linear system by using the restarted GMRES algorithm instead of the traditional trajectory sweeping process during within-group iteration for angular flux update. Long characteristics are generated by using the customization of commercial software AutoCAD. A one-dimensional diffusion calculation is carried out in the axial direction by employing the NEM method. The 2D and ID solutions are coupled through the transverse leakage items. The 3D CMFD method is used to ensure the global neutron balance and adjust the different convergence properties of the radial and axial solvers. A computational code is developed based on these theories. Two benchmarks are calculated to verify the coupling method and the code. It is observed that the corresponding numerical results agree well with references, which indicates that the new method is capable of solving the 3D heterogeneous neutron transport problem directly. (authors)

  18. Optimization of quasi-normal eigenvalues for 1-D wave equations in inhomogeneous media; description of optimal structures

    CERN Document Server

    Karabash, Illya M

    2011-01-01

    The paper is devoted to optimization of quasi-normal eigenvalues of a spectral problem associated with a 1-D wave equation in an inhomogeneous medium. The wave equation is equipped with a radiation boundary condition, and so the set of quasi-normal eigenvalues lies in $\\C_+$. The problem is to design for a given $\\alpha \\in \\R$ the structure of the inhomogeneous medium such that it generates a quasi-normal eigenvalue on the line $\\alpha + \\i \\R$ with a minimal possible imaginary part. We consider the problem for three admissible families of structures. Two of these families have a natural mechanical interpretation as classes of Krein strings with total mass and static moment constraints. For these two classes we find optimal quasi-normal eigenvalues explicitly. The third class of admissible structures is connected with the problem of optimal design for photonic crystals. For this class, the paper gives a wider statement of the optimization problem, proves existence of optimal structures, and study their prope...

  19. A 2D/1D coupling neutron transport method based on the matrix MOC and NEM methods

    International Nuclear Information System (INIS)

    A new 2D/1D coupling method based on the matrix MOC method (MMOC) and nodal expansion method (NEM) is proposed for solving the three-dimensional heterogeneous neutron transport problem. The MMOC method, used for radial two-dimensional calculation, constructs a response matrix between source and flux with only one sweep and then solves the linear system by using the restarted GMRES algorithm instead of the traditional trajectory sweeping process during within-group iteration for angular flux update. Long characteristics are generated by using the customization of commercial software AutoCAD. A one-dimensional diffusion calculation is carried out in the axial direction by employing the NEM method. The 2D and ID solutions are coupled through the transverse leakage items. The 3D CMFD method is used to ensure the global neutron balance and adjust the different convergence properties of the radial and axial solvers. A computational code is developed based on these theories. Two benchmarks are calculated to verify the coupling method and the code. It is observed that the corresponding numerical results agree well with references, which indicates that the new method is capable of solving the 3D heterogeneous neutron transport problem directly. (authors)

  20. Interfaces Supporting Surface Gap Soliton Ground States in the 1D Nonlinear Schroedinger Equation

    CERN Document Server

    Dohnal, Tomas; Plum, Michael; Reichel, Wolfgang

    2012-01-01

    We consider the problem of verifying the existence of $H^1$ ground states of the 1D nonlinear Schr\\"odinger equation for an interface of two periodic structures: $$-u" +V(x)u -\\lambda u = \\Gamma(x) |u|^{p-1}u \\ {on} \\R$$ with $V(x) = V_1(x), \\Gamma(x)=\\Gamma_1(x)$ for $x\\geq 0$ and $V(x) = V_2(x), \\Gamma(x)=\\Gamma_2(x)$ for $x1$. The article [T. Dohnal, M. Plum and W. Reichel, "Surface Gap Soliton Ground States for the Nonlinear Schr\\"odinger Equation," \\textit{Comm. Math. Phys.} \\textbf{308}, 511-542 (2011)] provides in the 1D case an existence criterion in the form of an integral inequality involving the linear potentials $V_{1},V_2$ and the Bloch waves of the operators $-\\tfrac{d^2}{dx^2}+V_{1,2}-\\lambda$. We choose here the classes of piecewise constant and piecewise linear potentials $V_{1,2}$ and check this criterion for a set of parameter values. In the piecewise constant case the Bloch waves are calculated explicitly and in the piecewise linear case verified enclosures of the Bloch waves are computed ...

  1. Simulation of hetero-junction silicon solar cells with AMPS-1D

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Como, Norberto; Morales-Acevedo, Arturo [Centro de Investigacion y de Estudios Avanzados del IPN, Electrical Engineering Department, Avenida IPN No. 2508, 07360 Mexico, D. F. (Mexico)

    2010-01-15

    Mono- and poly-crystalline silicon solar cell modules currently represent between 80% and 90% of the PV world market. The reasons are the stability, robustness and reliability of this kind of solar cells as compared to those of emerging technologies. Then, in the mid-term, silicon solar cells will continue playing an important role for their massive terrestrial application. One important approach is the development of silicon solar cells processed at low temperatures (less than 300 C) by depositing amorphous silicon layers with the purpose of passivating the silicon surface, and avoiding the degradation suffered by silicon when processed at temperatures above 800 C. This kind of solar cells is known as HIT cells (hetero-junction with an intrinsic thin amorphous layer) and are already produced commercially (Sanyo Ltd.), reaching efficiencies above 20%. In this work, HIT solar cells are simulated by means of AMPS-1D, which is a program developed at Pennsylvania State University. We shall discuss the modifications required by AMPS-1D for simulating this kind of structures since this program explicitly does not take into account interfaces with high interfacial density of states as occurs at amorphous-crystalline silicon hetero-junctions. (author)

  2. Reciprocating Compressor 1D Thermofluid Dynamic Simulation: Problems and Comparison with Experimental Data

    Directory of Open Access Journals (Sweden)

    A. Gimelli

    2012-01-01

    Full Text Available The authors here extend a 0D-1D thermofluid dynamic simulation approach to describe the phenomena internal to the volumetric machines, reproducing pressure waves’ propagation in the ducts. This paper reports the first analysis of these phenomena in a reciprocating compressor. The first part presents a detailed experimental analysis of an open-type reciprocating compressor equipped with internal sensors. The second part describes a 0D-1D thermofluid dynamic simulation of the compressor. Comparison of computed and measured values of discharge mass flow rate shows a good agreement between results for compression ratio <5. Then, to improve the model fitting at higher pressures, a new scheme has been developed to predict the blow-by through the ring pack volumes. This model is based on a series of volumes and links which simulate the rings’ motions inside the grooves, while the ring dynamics are imposed using data from the literature about blow-by in internal combustion engines. The validation is obtained comparing experimental and computing data of the two cylinder engine blowby. After the validation, a new comparison of mass flow rate on the compressor shows a better fitting of the curves at higher compression ratio.

  3. CD1d expression and invariant NKT cell responses in herpesvirus infections

    Directory of Open Access Journals (Sweden)

    Rusung eTan

    2015-06-01

    Full Text Available Invariant natural killer T (iNKT cells are a highly conserved subset of unconventional T lymphocytes that express a canonical, semi-invariant T cell receptor (TCR and surface markers shared with the natural killer cell lineage. iNKT cells recognize exogenous and endogenous glycolipid antigens restricted by non-polymorphic CD1d molecules, and are highly responsive to the prototypical agonist, α-galactosylceramide. Upon activation, iNKT cells rapidly coordinate signaling between innate and adaptive immune cells through the secretion of proinflammatory cytokines, leading to the maturation of antigen-presenting cells and expansion of antigen-specific CD4+ and CD8+ T cells. Because of their potent immunoregulatory properties, iNKT cells have been extensively studied and are known to play a pivotal role in mediating immune responses against microbial pathogens including viruses. Here, we review evidence that herpesviruses manipulate CD1d expression to escape iNKT cell surveillance and establish lifelong latency in humans. Collectively, published findings suggest that iNKT cells play critical roles in anti-herpesvirus immune responses and could be harnessed therapeutically to limit viral infection and viral-associated disease.

  4. Unveiling the Role of CNTs on the Phase Formation of 1D Ferroelectrics

    KAUST Repository

    Mahajan, Amit

    2015-05-21

    Carbon nanotubes (CNTs) have the potential to act as templates or bottom electrodes for three dimension (3D) capacitor arrays, which utilise one dimension (1D) ferroelectric nanostructures to increase memory size and density. However, growing a ferroelectric on the surface of CNTs is non-trivial. Here, we demonstrate that multi-walled (MW) CNTs decrease the time and temperature for formation of lead zirconium titanate Pb(Zr1-xTix)O3 (PZT) by ~100 ºC commensurate with a decrease in activation energy from 68±15 kJ/mol to 27±2 kJ/mol. As a consequence, monophasic PZT was obtained at 575 ºC for MWCNTs/PZT whereas for pure PZT traces of pyrochlore were still present at 650 ºC, where PZT phase formed due to homogeneous nucleation. The piezoelectric nature of MWCNT/PZT synthesised at 500 ºC for 1 h was proved. Although further work is required to prove the concept of 3D capacitor arrays, our result suggests that it is feasible to utilise MWCNTs as templates/electrodes for the formation of 1D PZT nano ferroelectrics.

  5. 1D self-assembly of chemisorbed thymine on Cu(110) driven by dispersion forces.

    Science.gov (United States)

    Temprano, I; Thomas, G; Haq, S; Dyer, M S; Latter, E G; Darling, G R; Uvdal, P; Raval, R

    2015-03-14

    Adsorption of thymine on a defined Cu(110) surface was studied using reflection-absorption infrared spectroscopy (RAIRS), temperature programmed desorption (TPD), and scanning tunnelling microscopy (STM). In addition, density functional theory (DFT) calculations were undertaken in order to further understand the energetics of adsorption and self-assembly. The combination of RAIRS, TPD, and DFT results indicates that an upright, three-point-bonded adsorption configuration is adopted by the deprotonated thymine at room temperature. DFT calculations show that the upright configuration adopted by individual molecules arises as a direct result of strong O-Cu and N-Cu bonds between the molecule and the surface. STM data reveal that this upright thymine motif self-assembles into 1D chains, which are surprisingly oriented along the open-packed [001] direction of the metal surface and orthogonal to the alignment of the functional groups that are normally implicated in H-bonding interactions. DFT modelling of this system reveals that the molecular organisation is actually driven by dispersion interactions, which cause a slight tilt of the molecule and provide the major driving force for assembly into dimers and 1D chains. The relative orientations and distances of neighbouring molecules are amenable for π-π stacking, suggesting that this is an important contributor in the self-assembly process. PMID:25770505

  6. A Review of Swarm-Based 1D/2D Signal Processing

    Directory of Open Access Journals (Sweden)

    Horia Mihail Teodorescu

    2012-10-01

    Full Text Available While swarming behavior, widely encountered in nature, has recently sparked numerous models and interest in domains as optimization, data clustering, and control, their application to signal processing remains sporadic. In this paper I provide a unitary treatment and a review of former results obtained in signal filtering and enhancement using swarms. General equations are presented for these procedures and stability issues are considered, with examples. The paper overviews several swarming model I introduced in previous papers and provides new evidence of the applicability of these models in signal processing. In all the models for 1D signal processing, the key idea is that the swarm hunts a prey that impersonates the filtered signal. In the 2D models, the signal (image represents the “landscape” over which the swarm moves at a distance, while the swarm interacts with the signal (landscape. I provide and discuss details of the underlying theory of the models for processing time-domain signals and images. While this paper partly follows and summarizes previous papers, it nevertheless includes supplementary theoretical and algorithmic considerations and new results for both 1D and 2D signal processing. Although following either biological models or physical models in swarm algorithms is not generally accepted for technical applications, we prefer to emphasize the analogies established by our biomimetic approach with these two groups of models.

  7. Structure, electrochemical properties and capacitance performance of polypyrrole electrodeposited onto 1-D crystals of iridium complex

    Science.gov (United States)

    Wysocka-Żołopa, Monika; Winkler, Krzysztof

    2015-12-01

    Composites of polypyrrole and one-dimensional iridium complex crystals [(C2H5)4N]0.55[IrCl2(CO)2] were prepared by in situ two-step electrodeposition. Initially, iridium complex crystals were formed during [IrCl2(CO)2]- complex oxidation. Next, pyrrole was electropolymerized on the surface of the iridium needles. The morphology of the composite was investigated by scanning and transmission electron microscopy. At positive potentials, the iridium complex crystals and the polypyrrole were oxidized. In aprotic solvents, oxidation of the iridium complex crystals resulted in their dissolution. In water containing tetra(n-butyl)ammonium chlorides, the 1-D iridium complex crystals were reversibly oxidized. The product of the iridium complex oxidation remained on the electrode surface in crystalline form. The iridium complex needles significantly influenced the redox properties of the polymer. The polypyrrole involved electrode processes become more reversible in presence of crystals of iridium complex. The current of polypyrrole oxidation was higher compared to that of pure polypyrrole and the capacitance properties of the polymer were significantly enhanced. A specific capacitance as high as 590 F g-1 was obtained for a composite of polypyrrole and 1-D crystals of the iridium complex in water containing tetra(n-butyl)ammonium chloride. This value is approximately twice as high as the capacitance of the pure polymer deposited onto the electrode surface.

  8. Transient 1D transport equation simulated by a mixed Green element formulation

    Science.gov (United States)

    Taigbenu, Akpofure Efemena; Onyejekwe, Okey Oseloka

    1997-08-01

    New discrete element equations or coefficients are derived for the transient 1D diffusion-advection or transport equation based on the Green element replication of the differential equation using linear elements. The Green element method (GEM), which solves the singular boundary integral theory (a Fredholm integral equation of the second kind) on a typical element, gives rise to a banded global coefficient matrix which is amenable to efficient matrix solvers. It is herein derived for the transient 1D transport equation with uniform and non-uniform ambient flow conditions and in which first-order decay of the containment is allowed to take place. Because the GEM implements the singular boundary integral theory within each element at a time, the integrations are carried out in exact fashion, thereby making the application of the boundary integral theory more utilitarian. This system of discrete equations, presented herein for the first time, using linear interpolating functions in the spatial dimensions shows promising stable characteristics for advection-dominant transport. Three numerical examples are used to demonstrate the capabilities of the method. The second-order-correct Crank-Nicolson scheme and the modified fully implicit scheme with a difference weighting value of two give superior solutions in all simulated examples.

  9. Ident 1D - a novel software tool for an easy identification of material constitutive parameters

    International Nuclear Information System (INIS)

    Non-linear finite element computations make use of very sophisticated constitutive equations for description of materials behaviour. The first difficulty encountered by potential users is the gap existing between raw material characterisation on uniaxial specimens and the knowledge of the required equation's parameters. There are very few software for this particular task. IDENT 1D is a special software developed under Matlab language in our laboratory, which is able to provide a complete optimised parameters set for implemented models. The originality of IDENT 1D is that no initial estimation of the material parameters is requested of the user. Two main examples are described in this article: the Lemaitre and Chaboche creep law coupled with damage and a non unified cyclic law proposed by Contesti and Cailletaud with a separation of plastic and viscous strain terms which is called DDI model. For both laws, the identification method is completely described. Each method is then applied to a set of experimental data. In both cases, the results of the parameters identification show a very good agreement with experimental data. (authors)

  10. Superdescendants of the D1D5 CFT and their dual 3-charge geometries

    Energy Technology Data Exchange (ETDEWEB)

    Giusto, Stefano [Dipartimento di Fisica ed Astronomia “Galileo Galilei”, Università di Padova,Via Marzolo 8, 35131 Padova (Italy); I.N.F.N. Sezione di Padova,Via Marzolo 8, 35131 Padova (Italy); Russo, Rodolfo [Centre for Research in String Theory, School of Physics and Astronomy,Queen Mary University of London, Mile End Road, London, E1 4NS (United Kingdom); Laboratoire de Physique Théorique de L’Ecole Normale Supérieure,24 rue Lhomond, 75231 Paris cedex (France)

    2014-03-03

    We describe how to obtain the gravity duals of semiclassical states in the D1-D5 CFT that are superdescendants of a class of RR ground states. On the gravity side, the configurations we construct are regular and asymptotically reproduce the 3-charge D1-D5-P black hole compactified on S{sup 1}×T{sup 4}. The geometries depend trivially on the T{sup 4} directions but non-trivially on the remaining 6D space. In the decoupling limit, they reduce to asymptotically AdS{sub 3}×S{sup 3}×T{sup 4} spaces that are dual to CFT states obtained by acting with (exponentials of) the operators of the superconformal algebra. As explicit examples, we generalise the solution first constructed in arXiv:1306.1745 and discuss another class of states that have a more complicated dual geometry. By using the free orbifold description of the CFT we calculate the average values for momentum and the angular momenta of these configurations. Finally we compare the CFT results with those obtained in the bulk from the asymptotically M{sup 1,4}×S{sup 1}×T{sup 4} region.

  11. Performance studies on high pressure 1-D position sensitive neutron detectors

    Indian Academy of Sciences (India)

    S S Desai; A M Shaikh

    2008-11-01

    The powder diffractometer and Hi-Q diffractometer at Dhruva reactor make use of five identical 1-D position sensitive detectors (PSDs) to scan scattering angles in the range 3° to 140°. In order to improve the overall throughput of these spectrometers, it is planned to install a bank of 15 high-efficiency and high-resolution PSDs arranged in three layers with five PSDs in each layer. With each high pressure PSD (3He 10 bar + Kr 2 bar) showing the efficiency gain of 1.8 at 1.2 Å, detector bank is expected to show overall gain of 5.5 times the present detection efficiency and reduction in data collection time by equivalent factor. The 1-D PSDs are developed in batches of five, and are characterized so that all PSDs operate at uniform parameters such as position resolution, uniformity of efficiency and linearity of response. Position spectrum indicates the differential position resolution to be ∼ 1 mm and integral position resolution to be 3–4 mm. Broadening of position spectrum at the extreme end of sensitive length of PSD is analysed using fine shift of the beam. Dependence of position resolution and dynamic range of output pulse on the input impedance of pre-amplifier is also presented.

  12. 1-D Air-snowpack modeling of atmospheric nitrous acid at South Pole during ANTCI 2003

    Directory of Open Access Journals (Sweden)

    W. Liao

    2008-12-01

    Full Text Available A 1-D air-snowpack model of HONO has been developed and constrained by observed chemistry and meteorology data. The 1-D model includes molecular diffusion and mechanical dispersion, windpumping in snow, gas phase to quasi-liquid layer phase HONO transfer and quasi-liquid layer nitrate and interstitial air HONO photolysis. Photolysis of nitrate is important as a dominant HONO source inside the snowpack, however, the observed HONO emission from the snowpack was triggered mainly by the equilibrium between quasi liquid layer nitrite and firn air HONO deep down the snow surface (i.e. 30 cm below snow surface. The high concentration of HONO in the firn air is subsequently transported above the snowpack by diffusion and windpumping. The model uncertainties come mainly from lack of measurements and the interpretation of the QLL properties based on the bulk snow measurements. One critical factor is the ionic strength of QLL nitrite, which is estimated here by the bulk snow pH, nitrite concentration, and QLL to bulk snow volume ratio.

  13. Bogoliubov coefficients for the twist operator in the D1D5 CFT

    Energy Technology Data Exchange (ETDEWEB)

    Carson, Zaq, E-mail: carson.231@osu.edu; Mathur, Samir D., E-mail: mathur.16@osu.edu; Turton, David, E-mail: turton.7@osu.edu

    2014-12-15

    The D1D5 CFT is a holographic dual of a near-extremal black hole in string theory. The interaction in this theory involves a twist operator which joins together different copies of a free CFT. Given a large number of D1 and D5 branes, the effective length of the circle on which the CFT lives is very large. We develop a technique to study the effect of the twist operator in the limit where the wavelengths of excitations are short compared to this effective length, which we call the ‘continuum limit’. The method uses Bogoliubov coefficients to compute the effect of the twist operator in this limit. For bosonic fields, we use the method to reproduce recent results describing the effect of the twist operator when it links together CFT copies with windings M and N, producing a copy of winding M+N. We also comment on possible generalizations of our results. The methods developed here may help in understanding the twist interaction at higher orders. This in turn should provide insight into the thermalization process in the D1D5 CFT, which gives a holographic description of black hole formation.

  14. Thermodynamics of Large N Gauge Theories with Chemical Potentials in a 1/D Expansion

    CERN Document Server

    Morita, Takeshi

    2010-01-01

    In order to understand thermodynamical properties of N D-branes with chemical potentials associated with R-symmetry charges, we study a one dimensional large N gauge theory (bosonic BFSS type model) as a first step. This model is obtained through a dimensional reduction of a 1+D dimensional SU(N) Yang-Mills theory and we use a 1/D expansion to investigate the phase structure. We find three phases in the \\mu-T plane. We also show that all the adjoint scalars condense at large D and obtain a mass dynamically. This dynamical mass protects our model from the usual perturbative instability of massless scalars in a non-zero chemical potential. We find that the system is at least meta-stable for arbitrary large values of the chemical potentials in D \\to \\infty limit. We also explore the existence of similar condensation in higher dimensional gauge theories in a high temperature limit. In 2 and 3 dimensions, the condensation always happens as in one dimensional case. On the other hand, if the dimension is higher than...

  15. Thermodynamics of large N gauge theories with chemical potentials in a 1/ D expansion

    Science.gov (United States)

    Morita, Takeshi

    2010-08-01

    In order to understand thermodynamical properties of N D-branes with chemical potentials associated with R-symmetry charges, we study a one dimensional large N gauge theory (bosonic BFSS type model) as a first step. This model is obtained through a dimensional reduction of a 1 + D dimensional SU( N) Yang-Mills theory and we use a 1 /D expansion to investigate the phase structure. We find three phases in the μ - T plane. We also show that all the adjoint scalars condense at large D and obtain a mass dynamically. This dynamical mass protects our model from the usual perturbative instability of massless scalars in a non-zero chemical potential. We find that the system is at least meta-stable for arbitrary large values of the chemical potentials in D → ∞ limit. We also explore the existence of similar condensation in higher dimensional gauge theories in a high temperature limit. In 2 and 3 dimensions, the condensation always happens as in one dimensional case. On the other hand, if the dimension is higher than 4, there is a critical chemical potential and the condensation happens only if the chemical potentials are below it.

  16. Dynamical compactification of D-dimensional gravity coupled to antisymmetric tensors in a 1/D expansion

    International Nuclear Information System (INIS)

    The effective potential of components of the curl of an antisymmetric tensor coupled to gravity in D dimensions is evaluated in a 1/D expansion. For large D, only highest-rank propagators contribute to leading order, while multiloop diagrams are suppressed by phase-space factors. Divergences are regulated by a cut-off LAMBDA, that we interpret as the mass-breaking scale of a larger theory that is finite. As an application we consider the bosonic sector of D=11, N=1 supergravity. If the full theory is finite, then LAMBDA is msub(SUSY): the scale below which the fermion sector decouples. For m9sub(SUSY)>1/akappa2, (kappa2: the D=11 Newton's coupling, a approx.= O(1)) the 11-dimensional symmetric vacuum is unstable under compactification. For m9sub(SUSY)2, it is metastable. To leading order in 1/D, all gauge dependence cancels identically, while ghosts as well as the graviton decouple. (author)

  17. A world-line framework for 1D Topological Conformal sigma-models

    CERN Document Server

    Baulieu, L; Toppan, F

    2015-01-01

    We use world-line methods for pseudo-supersymmetry to construct $sl(2|1)$-invariant actions for the $(2,2,0)$ chiral and ($1,2,1)$ real supermultiplets of the twisted $D$-module representations of the $sl(2|1)$ superalgebra. The derived one-dimensional topological conformal $\\sigma$-models are invariant under nilpotent operators. The actions are constructed for both parabolic and hyperbolic/trigonometric realizations (with extra potential terms in the latter case). The scaling dimension $\\lambda$ of the supermultiplets defines a coupling constant, $2\\lambda+1$, the free theories being recovered at $\\lambda=-\\frac{1}{2}$. We also present, generalizing previous works, the $D$-module representations of one-dimensional superconformal algebras induced by ${\\cal N}=(p,q)$ pseudo-supersymmetry acting on $(k,n,n-k)$ supermultiplets. Besides $sl(2|1)$, we obtain the superalgebras $A(1,1)$, $D(2,1;\\alpha)$, $D(3,1)$, $D(4,1)$, $A(2,1)$ from $(p,q)= (1,1), (2,2), (3,3), (4,4), (5,1)$, at given $k,n$ and critical values ...

  18. A world-line framework for 1D topological conformal σ-models

    Science.gov (United States)

    Baulieu, L.; Holanda, N. L.; Toppan, F.

    2015-11-01

    We use world-line methods for pseudo-supersymmetry to construct sl(2|1)-invariant actions for the (2, 2, 0) chiral and (1, 2, 1) real supermultiplets of the twisted D-module representations of the sl(2|1) superalgebra. The derived one-dimensional topological conformal σ-models are invariant under nilpotent operators. The actions are constructed for both parabolic and hyperbolic/trigonometric realizations (with extra potential terms in the latter case). The scaling dimension λ of the supermultiplets defines a coupling constant, 2λ + 1, the free theories being recovered at λ = - /1 2 . We also present, generalizing previous works, the D-module representations of one-dimensional superconformal algebras induced by N = ( p , q ) pseudo-supersymmetry acting on (k, n, n - k) supermultiplets. Besides sl(2|1), we obtain the superalgebras A(1, 1), D(2, 1; α), D(3, 1), D(4, 1), A(2, 1) from (p, q) = (1, 1), (2, 2), (3, 3), (4, 4), (5, 1), at given k, n and critical values of λ.

  19. Quasi-1D physics in metal-organic frameworks: MIL-47(V from first principles

    Directory of Open Access Journals (Sweden)

    Danny E. P. Vanpoucke

    2014-10-01

    Full Text Available The geometric and electronic structure of the MIL-47(V metal-organic framework (MOF is investigated by using ab initio density functional theory (DFT calculations. Special focus is placed on the relation between the spin configuration and the properties of the MOF. The ground state is found to be antiferromagnetic, with an equilibrium volume of 1554.70 Å3. The transition pressure of the pressure-induced large-pore-to-narrow-pore phase transition is calculated to be 82 MPa and 124 MPa for systems with ferromagnetic and antiferromagnetic chains, respectively. For a mixed system, the transition pressure is found to be a weighted average of the ferromagnetic and antiferromagnetic transition pressures. Mapping DFT energies onto a simple-spin Hamiltonian shows both the intra- and inter-chain coupling to be antiferromagnetic, with the latter coupling constant being two orders of magnitude smaller than the former, suggesting the MIL-47(V to present quasi-1D behavior. The electronic structure of the different spin configurations is investigated and it shows that the band gap position varies strongly with the spin configuration. The valence and conduction bands show a clear V d-character. In addition, these bands are flat in directions orthogonal to VO6 chains, while showing dispersion along the the direction of the VO6 chains, similar as for other quasi-1D materials.

  20. Adipocyte-specific CD1d-deficiency mitigates diet-induced obesity and insulin resistance in mice.

    Science.gov (United States)

    Satoh, Masashi; Hoshino, Miyuki; Fujita, Koki; Iizuka, Misao; Fujii, Satoshi; Clingan, Christopher S; Van Kaer, Luc; Iwabuchi, Kazuya

    2016-01-01

    It has been shown that CD1d expression and glycolipid-reactive, CD1d-restricted NKT cells exacerbate the development of obesity and insulin resistance in mice. However, the relevant CD1d-expressing cells that influence the effects of NKT cells on the progression of obesity remain incompletely defined. In this study, we have demonstrated that 3T3-L1 adipocytes can present endogenous ligands to NKT cells, leading to IFN-γ production, which in turn, stimulated 3T3-L1 adipocytes to enhance expression of CD1d and CCL2, and decrease expression of adiponectin. Furthermore, adipocyte-specific CD1d deletion decreased the size of the visceral adipose tissue mass and enhanced insulin sensitivity in mice fed a high-fat diet (HFD). Accordingly, NKT cells were less activated, IFN-γ production was significantly reduced, and levels of adiponectin were increased in these animals as compared with control mice on HFD. Importantly, macrophage recruitment into the adipose tissue of adipocyte-specific CD1d-deficient mice was significantly blunted. These findings indicate that interactions between NKT cells and CD1d-expressing adipocytes producing endogenous NKT cell ligands play a critical role in the induction of inflammation and functional modulation of adipose tissue that leads to obesity. PMID:27329323

  1. Retinoic acid regulates CD1d gene expression at the transcriptional level in human and rodent monocytic cells.

    Science.gov (United States)

    Chen, Qiuyan; Ross, A Catharine

    2007-04-01

    CD1d belongs to a group of nonclassical antigen-presenting molecules that present glycolipid antigens and thereby activate natural killer T (NKT) cells, a subset of bifunctional T cells. Little is known so far regarding the expression and physiologic regulation of CD1d. Here we show that all-trans-retinoic acid (RA), the active metabolite of vitamin A, rapidly (1 hr after treatment) increases CD1d mRNA in human and rodent monocytic cells at a physiologic dose (10 nM). The induction is RA specific and RA receptor (RAR) dependent-RA and an RARalpha agonist, Am580, both had a pronounced positive effect, whereas the addition of RARalpha antagonist partially blocked the increase in CD1d mRNA induced by RA and Am580. The induction was also completely blocked by the presence of actinomycin D. A putative RA-response element was identified in the distal 5' flanking region of the CD1d gene, which binds nuclear retinoid receptors and was responsive to RA in both gel mobility shift assay and transient transfection assay in THP-1 cells. These results further confirmed the transcriptional regulation of RA in CD1d gene expression. Moreover, RA significantly increased alpha-galactosylceramide-induced spleen cell proliferation. These studies together provide evidence for a previously unknown mechanism of CD1d gene expression regulation by RA and suggest that RA is a significant modulator of NKT cell activation.

  2. Lysophospholipid presentation by CD1d and recognition by a human Natural Killer T-cell receptor

    Energy Technology Data Exchange (ETDEWEB)

    López-Sagaseta, Jacinto; Sibener, Leah V.; Kung, Jennifer E.; Gumperz, Jenny; Adams, Erin J. (UC); (UW-MED)

    2014-10-02

    Invariant Natural Killer T (iNKT) cells use highly restricted {alpha}{beta} T cell receptors (TCRs) to probe the repertoire of lipids presented by CD1d molecules. Here, we describe our studies of lysophosphatidylcholine (LPC) presentation by human CD1d and its recognition by a native, LPC-specific iNKT TCR. Human CD1d presenting LPC adopts an altered conformation from that of CD1d presenting glycolipid antigens, with a shifted {alpha}1 helix resulting in an open A pocket. Binding of the iNKT TCR requires a 7-{angstrom} displacement of the LPC headgroup but stabilizes the CD1d-LPC complex in a closed conformation. The iNKT TCR CDR loop footprint on CD1d-LPC is anchored by the conserved positioning of the CDR3{alpha} loop, whereas the remaining CDR loops are shifted, due in part to amino-acid differences in the CDR3{beta} and J{beta} segment used by this iNKT TCR. These findings provide insight into how lysophospholipids are presented by human CD1d molecules and how this complex is recognized by some, but not all, human iNKT cells.

  3. Assessing the impact of different sources of topographic data on 1-D hydraulic modelling of floods

    Science.gov (United States)

    Ali, A. Md; Solomatine, D. P.; Di Baldassarre, G.

    2015-01-01

    Topographic data, such as digital elevation models (DEMs), are essential input in flood inundation modelling. DEMs can be derived from several sources either through remote sensing techniques (spaceborne or airborne imagery) or from traditional methods (ground survey). The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), the Shuttle Radar Topography Mission (SRTM), the light detection and ranging (lidar), and topographic contour maps are some of the most commonly used sources of data for DEMs. These DEMs are characterized by different precision and accuracy. On the one hand, the spatial resolution of low-cost DEMs from satellite imagery, such as ASTER and SRTM, is rather coarse (around 30 to 90 m). On the other hand, the lidar technique is able to produce high-resolution DEMs (at around 1 m), but at a much higher cost. Lastly, contour mapping based on ground survey is time consuming, particularly for higher scales, and may not be possible for some remote areas. The use of these different sources of DEM obviously affects the results of flood inundation models. This paper shows and compares a number of 1-D hydraulic models developed using HEC-RAS as model code and the aforementioned sources of DEM as geometric input. To test model selection, the outcomes of the 1-D models were also compared, in terms of flood water levels, to the results of 2-D models (LISFLOOD-FP). The study was carried out on a reach of the Johor River, in Malaysia. The effect of the different sources of DEMs (and different resolutions) was investigated by considering the performance of the hydraulic models in simulating flood water levels as well as inundation maps. The outcomes of our study show that the use of different DEMs has serious implications to the results of hydraulic models. The outcomes also indicate that the loss of model accuracy due to re-sampling the highest resolution DEM (i.e. lidar 1 m) to lower resolution is much less than the loss of model accuracy due

  4. Higher-order local and non-local correlations for 1D strongly interacting Bose gas

    Science.gov (United States)

    Nandani, EJKP; Römer, Rudolf A.; Tan, Shina; Guan, Xi-Wen

    2016-05-01

    The correlation function is an important quantity in the physics of ultracold quantum gases because it provides information about the quantum many-body wave function beyond the simple density profile. In this paper we first study the M-body local correlation functions, g M , of the one-dimensional (1D) strongly repulsive Bose gas within the Lieb-Liniger model using the analytical method proposed by Gangardt and Shlyapnikov (2003 Phys. Rev. Lett. 90 010401; 2003 New J. Phys. 5 79). In the strong repulsion regime the 1D Bose gas at low temperatures is equivalent to a gas of ideal particles obeying the non-mutual generalized exclusion statistics with a statistical parameter α =1-2/γ , i.e. the quasimomenta of N strongly interacting bosons map to the momenta of N free fermions via {k}i≈ α {k}iF with i=1,\\ldots ,N. Here γ is the dimensionless interaction strength within the Lieb-Liniger model. We rigorously prove that such a statistical parameter α solely determines the sub-leading order contribution to the M-body local correlation function of the gas at strong but finite interaction strengths. We explicitly calculate the correlation functions g M in terms of γ and α at zero, low, and intermediate temperatures. For M = 2 and 3 our results reproduce the known expressions for g 2 and g 3 with sub-leading terms (see for instance (Vadim et al 2006 Phys. Rev. A 73 051604(R); Kormos et al 2009 Phys. Rev. Lett. 103 210404; Wang et al 2013 Phys. Rev. A 87 043634). We also express the leading order of the short distance non-local correlation functions x}1)\\cdots {{{\\Psi }}}\\dagger ({x}M){{\\Psi }}({y}M)\\cdots {{\\Psi }}({y}1)> of the strongly repulsive Bose gas in terms of the wave function of M bosons at zero collision energy and zero total momentum. Here {{\\Psi }}(x) is the boson annihilation operator. These general formulas of the higher-order local and non-local correlation functions of the 1D Bose gas provide new insights into the many-body physics.

  5. Advanced Nodal P3/SP3 Axial Transport Solvers for the MPACT 2D/1D Scheme

    Energy Technology Data Exchange (ETDEWEB)

    Stimpson, Shane G [ORNL; Collins, Benjamin S [ORNL

    2015-01-01

    As part of its initiative to provide multiphysics simulations of nuclear reactor cores, the Consortium for Advanced Simulation of Light Water Reactors (CASL) is developing the Virtual Environment for Reactor Applications Core Simulator (VERA-CS). The MPACT code, which is the primary neutron transport solver of VERA-CS, employs the two-dimensional/one-dimensional (2D/1D) method to solve 3-dimensional neutron transport problems and provide sub-pin-level resolution of the power distribution. While 2D method of characteristics is used to solve for the transport effects within each plane, 1D-nodal methods are used axially. There have been extensive studies of the 2D/1D method with a variety nodal methods, and the P3/SP3 solver has proved to be an effective method of providing higher-fidelity solutions while maintaining a low computational burden.The current implementation in MPACT wraps a one-node nodal expansion method (NEM) kernel for each moment, iterating between them and performing multiple sweeps to resolve flux distributions. However, it has been observed that this approach is more sensitive to convergence problems. This paper documents the theory and application two new nodal P3/SP3 approaches to be used within the 2D/1D method in MPACT. These two approaches aim to provide enhanced stability compared with the pre-existing one-node approach. Results from the HY-NEM-SP3 solver show that the accuracy is consistent with the one-node formulations and provides improved convergence for some problems; but the solver has issues with cases in thin planes. Although the 2N-SENM-SP3 solver is still under development, it is intended to resolve the issues with HY-NEM-SP3 but it will incur some additional computational burden by necessitating an additional 1D-CMFD-P3 solver to generate the second moment cell-averaged scalar flux.

  6. 新闻和体育摄影尖端武器 佳能EOS-1D Mark Ⅳ

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    一个月前佳能刚刚发布了APS-C规格旗舰单反EOS 7D,一个月后,佳能再次为我们带来了惊喜,全球同步发布采用APS-H规格的高端数码单反——EOS-1D Mark Ⅳ。作为2007年5月发布的EOS-1D Mark Ⅲ的继任机型,新推出的EOS-1D Mark Ⅳ采用全新的CMOS感光元件。

  7. EOS-1D系列全新机型EOS-1D Mark IV登场

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    日前,佳能(中国)有限公司发布面向专业摄影师的数码单反相机EOS-1D Mark IV。EOS-1D Mark IV为EOS-1D/1Ds系列的第八款产品,是在新闻报道和体育摄影领域广受专业摄影师好评的EOS-1D Mark Ⅲ后继机型。

  8. Synthesis and Crystal Structure of a 1-D Copper(Ⅱ) Polymer with 1-Hexylimidazole and Oxalate

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A novel Cu(Ⅱ) complex has been prepared by means of self-assembly of CuCl2, 1-hexylimidazole L and oxalic acid (H2OX) in the presence of triethylamine, and structurally characterized by X-ray diffraction analysis. In complex 1, 1-D polymer chains are formed through pentacoordinated Cu(Ⅱ), oxalate and bridging chlorine atoms. In the crystal packing of 1, the imidazole ring head-to-tailπ-πstacking interactions exist between 1-D polymer chains and extend the 1-D polymer chains into 2-D supramolecular layers. The fluorescence emission spectra of L and 1 were described.

  9. Quantum Diffusion on Molecular Tubes: Universal Scaling of the 1D to 2D Transition

    Science.gov (United States)

    Chuang, Chern; Lee, Chee Kong; Moix, Jeremy M.; Knoester, Jasper; Cao, Jianshu

    2016-05-01

    The transport properties of disordered systems are known to depend critically on dimensionality. We study the diffusion coefficient of a quantum particle confined to a lattice on the surface of a tube, where it scales between the 1D and 2D limits. It is found that the scaling relation is universal and independent of the temperature, disorder, and noise parameters, and the essential order parameter is the ratio between the localization length in 2D and the circumference of the tube. Phenomenological and quantitative expressions for transport properties as functions of disorder and noise are obtained and applied to real systems: In the natural chlorosomes found in light-harvesting bacteria the exciton transfer dynamics is predicted to be in the 2D limit, whereas a family of synthetic molecular aggregates is found to be in the homogeneous limit and is independent of dimensionality.

  10. Staggered grid leap-frog scheme for the (2+1)D Dirac equation

    CERN Document Server

    Hammer, René

    2013-01-01

    A numerical scheme utilizing a grid which is staggered in both space and time is proposed for the numerical solution of the (2+1)D Dirac equation in presence of an external electromagnetic potential. It preserves the linear dispersion relation of the free Weyl equation for wave vectors aligned with the grid and facilitates the implementation of open (absorbing) boundary conditions via an imaginary potential term. This explicit scheme has second order accuracy in space and time. A functional for the norm is derived and shown to be conserved. Stability conditions are derived. Several numerical examples, ranging from generic to specific to textured topological insulator surfaces, demonstrate the properties of the scheme which can handle general electromagnetic potential landscapes.

  11. Hamiltonian formalism for N=1, D=10 Yang--Mills coupled supergravity

    International Nuclear Information System (INIS)

    The canonical convariant formalism for N=1 D=10 matter-coupled supergravity is constructed and applied in both cases, when the Lagrangian density contains linear terms in the Riemann curvature, or the quadratic one. When in this coupled system the canonical formalism for higher curvature supergravities is considered, it is possible to show that the propagation torsion mechanism takes place. Starting from the first-order formalism with the Hamiltonian that contains a finite number of terms including higher curvature ones, the nonpolynomial structure of the second-order formalism of the supersymmetric transformation rules, as well as of the rheonomic equation, can be shown. This fact allows us to relate the higher curvature Hamiltonian formalism with the massless sector of effective superstring theories. copyright 1989 Academic Press, Inc

  12. Fluid friction and wall viscosity of the 1D blood flow model.

    Science.gov (United States)

    Wang, Xiao-Fei; Nishi, Shohei; Matsukawa, Mami; Ghigo, Arthur; Lagrée, Pierre-Yves; Fullana, Jose-Maria

    2016-02-29

    We study the behavior of the pulse waves of water into a flexible tube for application to blood flow simulations. In pulse waves both fluid friction and wall viscosity are damping factors, and difficult to evaluate separately. In this paper, the coefficients of fluid friction and wall viscosity are estimated by fitting a nonlinear 1D flow model to experimental data. In the experimental setup, a distensible tube is connected to a piston pump at one end and closed at another end. The pressure and wall displacements are measured simultaneously. A good agreement between model predictions and experiments was achieved. For amplitude decrease, the effect of wall viscosity on the pulse wave has been shown as important as that of fluid viscosity. PMID:26862041

  13. Analytical solution for 1D consolidation of unsaturated soil with mixed boundary condition

    Institute of Scientific and Technical Information of China (English)

    Zhen-dong SHAN; Dao-sheng LING; Hao-jiang DING

    2013-01-01

    Based on consolidation equations proposed for unsaturated soil,an analytical solution for 1D consolidation of an unsaturated single-layer soil with nonhomogeneous mixed boundary condition is developed.The mixed boundary condition can be used for special applications,such as tests occur in laboratory.The analytical solution is obtained by assuming all material parameters remain constant during consolidation.In the derivation of the analytical solution,the nonhomogeneous boundary condition is first transformed into a homogeneous boundary condition.Then,the eigenfunction and eigenvalue are derived according to the consolidation equations and the new boundary condition.Finally,using the method of undetermined coefficients and the orthogonal relation of the eigenfunction,the analytical solution for the new boundary condition is obtained.The present method is applicable to various types of boundary conditions.Several numerical examples are provided to investigate the consolidation behavior of an unsaturated single-layer soil with mixed boundary condition.

  14. MOL1D: a general purpose subroutine package for the numerical solution of partial differential equations

    International Nuclear Information System (INIS)

    MOL1D is a FORTRAN subroutine package for the method of lines solution for systems of initial-boundary-value partial differential equations in one space dimension. Using the package, a programer with limited experience in numerical analysis can accurately solve linear and nonlinear hyperbolic equations with or without discontinuities, linear and nonlinear parabolic equations (including those arising in reaction-diffusion equations), and elliptic boundary-value problems when posed as the stable time-independent solution of a parabolic equation. Systems are handled as easily as single equations, and a wide variety of boundary conditions can be accommodated, including most that arise in applications. The major advantage of the package is that initial-value problems can be solved accurately with a minimum of programing effort and with moderate computer cost. 4 figures, 1 table

  15. Directed electromagnetic wave propagation in 1D metamaterial: Projecting operators method

    Science.gov (United States)

    Ampilogov, Dmitrii; Leble, Sergey

    2016-07-01

    We consider a boundary problem for 1D electrodynamics modeling of a pulse propagation in a metamaterial medium. We build and apply projecting operators to a Maxwell system in time domain that allows to split the linear propagation problem to directed waves for a material relations with general dispersion. Matrix elements of the projectors act as convolution integral operators. For a weak nonlinearity we generalize the linear results still for arbitrary dispersion and derive the system of interacting right/left waves with combined (hybrid) amplitudes. The result is specified for the popular metamaterial model with Drude formula for both permittivity and permeability coefficients. We also discuss and investigate stationary solutions of the system related to some boundary regimes.

  16. Initial Stage of the Microwave Ionization Wave Within a 1D Model

    Science.gov (United States)

    Semenov, V. E.; Rakova, E. I.; Glyavin, M. Yu.; Nusinovich, G. S.

    2016-06-01

    The dynamics of the microwave breakdown in a gas is simulated numerically within a simple 1D model which takes into account such processes as the impact ionization of gas molecules, the attachment of electrons to neutral molecules, and plasma diffusion. Calculations are carried out for different spatial distributions of seed electrons with account for reflection of the incident electromagnetic wave from the plasma. The results reveal considerable dependence of the ionization wave evolution on the relation between the field frequency and gas pressure, as well as on the existence of extended rarefied halo of seed electrons. At relatively low gas pressures (or high field frequencies), the breakdown process is accompanied by the stationary ionization wave moving towards the incident electromagnetic wave. In the case of a high gas pressure (or a relatively low field frequency), the peculiarities of the breakdown are associated with the formation of repetitive jumps of the ionization front.

  17. A 1-D evolutionary model for icy satellites, applied to Enceladus

    CERN Document Server

    Prialnik, Uri Malamud Dina

    2015-01-01

    We develop a long-term 1-D evolution model for icy satellites that couples multiple processes: water migration and differentiation, geochemical reactions and silicate phase transitions, compaction by self-gravity, and ablation. The model further considers the following energy sources and sinks: tidal heating, radiogenic heating, geochemical energy released by serpentinization or absorbed by mineral dehydration, gravitational energy and insolation, and heat transport by conduction, convection, and advection. We apply the model to Enceladus, by guessing the initial conditions that would render a structure compatible with present-day observations, assuming the initial structure to have been homogeneous. Assuming the satellite has been losing water continually along its evolution, we postulate that it was formed as a more massive, more icy and more porous satellite, and gradually transformed into its present day state due to sustained long-term tidal heating. We consider several initial compositions and evolution...

  18. Fep1d: a script for the analysis of reaction coordinates.

    Science.gov (United States)

    Banushkina, Polina V; Krivov, Sergei V

    2015-05-01

    The dynamics of complex systems with many degrees of freedom can be analyzed by projecting it onto one or few coordinates (collective variables). The dynamics is often described then as diffusion on a free energy landscape associated with the coordinates. Fep1d is a script for the analysis of such one-dimensional coordinates. The script allows one to construct conventional and cut-based free energy profiles, to assess the optimality of a reaction coordinate, to inspect whether the dynamics projected on the coordinate is diffusive, to transform (rescale) the reaction coordinate to more convenient ones, and to compute such quantities as the mean first passage time, the transition path times, the coordinate dependent diffusion coefficient, and so forth. Here, we describe the implemented functionality together with the underlying theoretical framework.

  19. Facile hydrothermal route to the controlled synthesis of -Fe2O3 1-D nanostructures

    Indian Academy of Sciences (India)

    Lixia Yang; Ying Liang; Hou Chen; Lingyan Kong; Wei Jiang

    2008-12-01

    Single-crystalline -Fe2O3 1-D nanostructures can be obtained via a facile one-step hydrothermal synthetic route. It was found that the introduction of SnCl4 played a key role in determining the composition and morphology of -Fe2O3. The addition of SnCl4 favours the formation of Fe2O3 rather than FeOOH, and the morphology can be tuned from nanorod to double-shuttle as the increase of SnCl4 concentration. The products were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and selectedarea electron diffraction (SAED). This simple method does not need any seed, catalyst, or template, thus is promising for large-scale and low-cost production.

  20. Exact solutions for correlation functions in some 1+1 D field theories with boundary

    CERN Document Server

    Freed, D E

    1995-01-01

    We consider 1+1 D theories which are free everywhere except for cosine and magnetic interactions on the boundary. These theories arise in dissipative quantum systems, open string theory, and, in special cases, tunneling in quantum Hall systems. These boundary systems satisfy an approximate SL(2,Z) symmetry as a function of flux per unit cell and dissipation. At special multicritical points, they also satisfy a set of reparametrization Ward identities and have homogeneous, piecewise-linear correlation functions in momentum space. In this paper, we use these symmetries to find exact solutions for some of the correlation functions. We also comment on the form of the correlation functions in general, and verify that the SL(2,Z) duality transformation between different critical points is satisfied exactly in all cases where the full solution is known.

  1. Fluid friction and wall viscosity of the 1D blood flow model

    CERN Document Server

    Wang, Xiao-Fei; Matsukawa, Mami; Ghigo, Arthur; Lagrée, Pierre-Yves; Fullana, Jose-Maria

    2015-01-01

    We study the behavior of the pulse waves of water into a flexible tube for application to blood flow simulations. In pulse waves both fluid friction and wall viscosity are damping factors, and difficult to evaluate separately. In this paper, the coefficients of fluid friction and wall viscosity are estimated by fitting a nonlinear 1D flow model to experimental data. In the experimental setup, a distensible tube is connected to a piston pump at one end and closed at another end. The pressure and wall displacements are measured simultaneously. A good agreement between model predictions and experiments was achieved. For amplitude decrease, the effect of wall viscosity on the pulse wave has been shown as important as that of fluid viscosity.

  2. A 1-D modelling of streaming potential dependence on water content during drainage experiment in sand

    CERN Document Server

    Allègre, Vincent; Ackerer, Philippe; Jouniaux, Laurence; Sailhac, Pascal; 10.1111/j.1365-246X.2012.05371.x

    2012-01-01

    The understanding of electrokinetics for unsaturated conditions is crucial for numerous of geophysical data interpretation. Nevertheless, the behaviour of the streaming potential coefficient C as a function of the water saturation Sw is still discussed. We propose here to model both the Richards' equation for hydrodynamics and the Poisson's equation for electrical potential for unsaturated conditions using 1-D finite element method. The equations are first presented and the numerical scheme is then detailed for the Poisson's equation. Then, computed streaming potentials (SPs) are compared to recently published SP measurements carried out during drainage experiment in a sand column. We show that the apparent measurement of DV / DP for the dipoles can provide the SP coefficient in these conditions. Two tests have been performed using existing models for the SP coefficient and a third one using a new relation. The results show that existing models of unsaturated SP coefficients C(Sw) provide poor results in term...

  3. Statistics of scattered photons from a driven three-level emitter in 1D open space

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Dibyendu [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Div. and Center for Nonlinear Studies; Bondyopadhaya, Nilanjan [Visva-Bharati University, Santiniketan (India). Integrated Science Education and Research Centre

    2014-01-07

    We derive the statistics of scattered photons from a Λ- or ladder-type three-level emitter (3LE) embedded in a 1D open waveguide. The weak probe photons in the waveguide are coupled to one of the two allowed transitions of the 3LE, and the other transition is driven by a control beam. This system shows electromagnetically induced transparency (EIT) which is accompanied with the Autler-Townes splitting (ATS) at a strong driving by the control beam, and some of these effects have been observed recently. We show that the nature of second-order coherence of the transmitted probe photons near two-photon resonance changes from bunching to antibunching to constant as strength of the control beam is ramped up from zero to a higher value where the ATS appears.

  4. Experimental investigations of heat transport dynamics in a 1D porous medium column

    Science.gov (United States)

    Pastore, Nicola; Cherubini, Claudia; Giasi, Concetta I.; Allegretti, Nicoletta Maria

    2016-04-01

    A laboratory physical model has been set up to analyse the forced convective flow and the related heat transport dynamics through a 1d porous medium column. In particular, the experiments regard the observation of thermal breakthrough curves obtained through a continuous flow injection in correspondence of eight thermocouple positioned uniformly along a thermally isolated column of porous medium. The experiment has been conducted for different flow rates in order to investigate the critical issues regarding heat transport phenomena such as the influence of non-linear flow regime, the relationship between the thermal dispersion with the flow velocity and the validity of the local thermal equilibrium assumption between the fluid and solid phase. The results emphasize the magnitude of the errors of the commonly used assumptions in the numerical modelling of heat transport.

  5. Experimental demonstration of an efficient number diagnostic for long 1D ion chains

    CERN Document Server

    Kamsap, Marius Romuald; Pedregosa-Gutierrez, J; Houssin, Marie; Knoop, Martina

    2016-01-01

    Very long, one-dimensional (1D) ion chains are the basis for many applications, in particular in quantum information processing and reliable diagnostics are needed to quantify them. To that purpose, we have experimentally validated Dubin's model for very long ion chains [Phys. Rev. Lett. 71, 2753 (1993)]. This diagnostic allows to precisely determine the number of trapped ion with an accuracy of almost 1\\% without counting them, by measuring the ion-ion distance of the innermost particles, as well as the trapping potential along the ion chain direction. In our experiment, based on a 155 ion chain, the central 30 ions are measured to be equidistant to better than 2\\%, and we can determine the total number of trapped ions with a 4.5\\% uncertainty, completely dominated by a conservative estimation of the experimental characterisation of the trap.

  6. Wavelength modulated SERS hot spot distribution in 1D nanostructures on metal film

    Science.gov (United States)

    Wang, Lili; Zeng, Xiping; Liu, Ting; Zhang, Xuemei; Wei, Hua; Huang, Yingzhou; Liu, Anping; Wang, Shuxia; Wen, Weijia

    2016-10-01

    Surface plasmons confining strong electromagnetic fields near metal surfaces, well-known as hot spots, provide an extremely efficient platform for surface-enhanced Raman scattering (SERS). In this work, SERS spectra of probing molecules in a silver particle-wire 1D nanostructure on a thin gold film are investigated. The Raman features of SERS spectra collected at the particle-wire joints exhibit an obvious wavelength dependence phenomenon. This result is confirmed electromagnetic field simulation, revealing that hot spot distribution is sensitively influenced by the wavelength of incident light at the joints. Further studies indicate this wavelength dependence of hot spot distribution is immune to influence from the geometric shape of the particle or the angle between wire and particle, which improves fabrication tolerance. This technology may have promising applications in surface plasmon related fields, such as ultrasensors, solar energy and selective surface catalysis.

  7. Optical properties in 1D photonic crystal structure using Si/C{sub 60} multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Chen Jing; Tang Jiyu; Chen Junfang [College of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Han Peide, E-mail: chenjing1002972@sina.co, E-mail: tangjy@scnu.edu.c [College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China)

    2009-04-15

    The feasibility of using Si/C{sub 60} multilayer films as one-dimensional (1D) photonic band gap crystals was investigated by theoretical calculations using a transfer matrix method (TMM). The response has been studied both within and out of the periodic plane of Si/C{sub 60} multilayers. It is found that Si/C{sub 60} multilayer films show incomplete photonic band gap (PBG) behavior in the visible frequency range. The fabricated Si/C{sub 60} multilayers with two pairs of 70 nm C{sub 60} and 30 nm Si layers exhibit a PBG at central wavelength of about 600 nm, and the highest reflectivity can reach 99%. As a consequence, this photonic crystal may be important for fabricating a photonic crystal with an incomplete band gap in the visible frequency range.

  8. Mechanisms and Kinetics of Radical Reaction of O(1D,3P) + HCN System

    Institute of Scientific and Technical Information of China (English)

    HUANG Yu-Cheng; DU Jin-Yan; JU Xue-Hai; YE Shi-Yong; ZHOU Tao

    2008-01-01

    The reaction of HCN with O(1D, 3P) radical has been investigated by density functional theory (DFT) and ab initio methods. The stationary points on the reaction paths(reactants, intermediates and products) were optimized at the (U)B3LYP/aug-cc-pVTZ level.Single-point calculations were performed at the (U)QCISD(T)/aug-cc-pVTZ level for the optimized structures and all the total energies were corrected by zero-point energy. It is shown that there exist three competing mechanisms of oxygen attacking nitrogen O→N, oxygen attacking carbon O→C and oxygen attacking hydrogen O→H. The rate constants were obtained via Eyring transition-state theory in the temperature range of 600~2000 K. The linear relationship between lnk and 1/T was presented. The results show that path 1 is the main reaction channel and the product of NCO + H is predominant.

  9. Statistical investigation and thermal properties for a 1-D impact system with dissipation

    Science.gov (United States)

    Díaz I., Gabriel; Livorati, André L. P.; Leonel, Edson D.

    2016-05-01

    The behavior of the average velocity, its deviation and average squared velocity are characterized using three techniques for a 1-D dissipative impact system. The system - a particle, or an ensemble of non-interacting particles, moving in a constant gravitation field and colliding with a varying platform - is described by a nonlinear mapping. The average squared velocity allows to describe the temperature for an ensemble of particles as a function of the parameters using: (i) straightforward numerical simulations; (ii) analytically from the dynamical equations; (iii) using the probability distribution function. Comparing analytical and numerical results for the three techniques, one can check the robustness of the developed formalism, where we are able to estimate numerical values for the statistical variables, without doing extensive numerical simulations. Also, extension to other dynamical systems is immediate, including time dependent billiards.

  10. Smooth non-extremal D1-D5-P solutions as charged gravitational instantons

    CERN Document Server

    Chakrabarty, Bidisha; Virmani, Amitabh

    2016-01-01

    We present an alternative and more direct construction of the non-supersymmetric D1-D5-P supergravity solutions found by Jejjala, Madden, Ross and Titchener. We show that these solutions --- with all three charges and both rotations turned on --- can be viewed as a charged version of the Myers-Perry instanton. We present an inverse scattering construction of the Myers-Perry instanton metric in Euclidean five-dimensional gravity. The angular momentum bounds in this construction turn out to be precisely the ones necessary for the smooth microstate geometries. We add charges on the Myers-Perry instanton using appropriate SO(4,4) hidden symmetry transformations. The full construction can be viewed as an extension and simplification of a previous work by Katsimpouri, Kleinschmidt and Virmani.

  11. Dynamical Diffraction of Light from 1D Photonic Crystals with Sinusoidal Profile of Permittivity

    International Nuclear Information System (INIS)

    Bragg reflection and transmission spectra of the 1D photonic crystals characterized by a spatially sinusoidal profile of permittivity are studied as a function of the crystal-plate thickness. Applicability of the dynamical theory of diffraction in describing such spectra is considered. In the framework of the dynamical theory, we (i) calculated and analysed the reflection and transmission spectra for oblique incidence of polarized light, (ii) computed the spectra making use of the transfer matrix technique, and (iii) compared quantitatively the results of the two approaches. As a result, the analytical dynamical theory of diffraction is found to be correct in calculating the Bragg spectra in the vicinity of single photonic band-gap when the plate thickness is equal to the integer number of the spatial periods, or the permittivity is symmetric about the middle plane of the structure

  12. Surface-modified Wannier-Stark states in a 1D optical lattice

    CERN Document Server

    Maury, A; Gorza, M -P; Lambrecht, A; Guérout, R

    2016-01-01

    We study the energy spectrum of atoms trapped in a vertical 1D optical lattice in close proximity to a reflective surface. We propose an effective model to describe the interaction between the atoms and the surface at any distance. Our model includes the long-range Casimir-Polder potential together with a short-range Lennard-Jones potential, which are considered non-perturbatively with respect to the optical lattice potential. We find an intricate energy spectrum which contains a pair of loosely-bound states localized close to the surface in addition to a surface-modified Wannier-Stark ladder at long distances. Atomic interferometry involving those loosely-bound atom-surface states is proposed to probe the adsorption dynamics of atoms on mirrors.

  13. Magnetodielectric and Metalomagnetic 1D Photonic Crystals Homogenization: ε-μ Local Behavior

    Directory of Open Access Journals (Sweden)

    J. I. Rodríguez Mora

    2016-01-01

    Full Text Available A theory for calculating the effective optic response of photonic crystals with metallic and magnetic inclusions is reported, for the case when the wavelength of the electromagnetic fields is much larger than the lattice constant. The theory is valid for any type of Bravais lattice and arbitrary form of inclusions in the unitary cell. An equations system is obtained for macroscopic magnetic field and magnetic induction components expanding microscopic electromagnetic fields in Bloch waves. Permittivity and permeability effective tensors are obtained comparing the equations system with an anisotropic nonlocal homogenous medium. In comparison with other homogenization theories, this work uses only two tensors: nonlocal permeability and permittivity. The proposal showed here is based on the use of permeability equations, which are exact and very simple. We present the explicit form of these tensors in the case of binary 1D photonic crystals.

  14. DC voltage profile of a 1D pumped wire with two dynamical and one static impurities

    International Nuclear Information System (INIS)

    In this work we study the behavior of the voltage profile of a 1D quantum wire with an impurity when transport is induced by two ac voltages that oscillating with a phase lag define a quantum pump. The voltage profile sensed along the wire by the voltage probe, that we assume weakly coupled to the system, exhibits a Friedel's oscillations structure inside the region delimited by the position of the two ac voltages that induce transport. On the other hand, outside this region the oscillations are suppressed. Using perturbation theory in the coupling constant of the voltage probe we derived analytical expressions for the DC current valid for the adiabatic regime. We also compare our analytical results with the exact numerical calculations using Keldysh non-equilibrium Green's functions formalism.

  15. Pressure Sensor via Optical Detection Based on a 1D Spin Transition Coordination Polymer

    Directory of Open Access Journals (Sweden)

    Cătălin M. Jureschi

    2015-01-01

    Full Text Available We have investigated the suitability of using the 1D spin crossover coordination polymer [Fe(4-(2’-hydroxyethyl-1,2,4-triazole3]I2∙H2O, known to crossover around room temperature, as a pressure sensor via optical detection using various contact pressures up to 250 MPa. A dramatic persistent colour change is observed. The experimental data, obtained by calorimetric and Mössbauer measurements, have been used for a theoretical analysis, in the framework of the Ising-like model, of the thermal and pressure induced spin state switching. The pressure (P-temperature (T phase diagram calculated for this compound has been used to obtain the P-T bistability region.

  16. Quantum propagation and confinement in 1D systems using the transfer-matrix method

    International Nuclear Information System (INIS)

    The aim of this article is to provide some Matlab scripts to the teaching community in quantum physics. The scripts are based on the transfer-matrix formalism and offer a very efficient and versatile tool to solve problems of a physical object (electron, proton, neutron, etc) with one-dimensional (1D) stationary potential energy. Resonant tunnelling through a multiple-barrier or confinement in wells of various shapes is particularly analysed. The results are quantitatively discussed with semiconductor heterostructures, harmonic and anharmonic molecular vibrations, or neutrons in a gravity field. Scripts and other examples (hydrogen-like ions and transmission by a smooth variation of potential energy) are available freely at http://www-loa.univ-lille1.fr/~pujol in three languages: English, French and Spanish. (paper)

  17. Analysis of silicon solar cell degradation in space using PC-1D

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, E.G. (IMEC, Leuven (Belgium) DEE (UPC), Barcelona (Spain)); Demesmaeker, E.; Ghannam, M.; Nijs, J. (DEE (UPC), Barcelona (Spain))

    1992-04-01

    This work presents a computation method to evaluate the life expectance of cells in space. The effects of the radiation environment are taken into account as a reduction of carrier lifetime. This reduction is calculated for each particle type as a function of the incident energy and the traveled depth inside the cell. Afterwards the calculated lifetimes are supplied to the PC-1D in order to obtain the electrical characteristics of the cell. The method allows one to calculate the equivalent damage relative to 1 MeV electrons of the different particles in the space environment. But its main feature lies in the direct calculation of the cell degradation by adding the contribution to lifetime reduction of each particle type. Results on efficiency degradation versus time in a circular orbit of 4630 km and 90deg inclination are shown for different cover glass thicknesses. (orig.).

  18. Classification of phases of 1D spin chains with commuting Hamiltonians

    CERN Document Server

    Beigi, Salman

    2011-01-01

    We consider the class of spin Hamiltonians on a 1D chain with periodic boundary conditions that are (i) translational invariant, (ii) commuting and (iii) scale invariant, where by the latter we mean that the ground state degeneracy is independent of the system size. We show that the ground state degeneracy is the only parameter that determines the phases of these Hamiltonians. We then characterize the low energy excitations by first making the assumption that there is no excitation of unit energy, and consequently show that all elementary excitations (of energy 2) come from the action of some string-type operator on the ground state which creates two quasi-particle excitations at the endpoints of the string. Our main tool in this paper is the idea of Bravyi and Vyalyi (2003) in using the representation theory of finite dimensional C*-algebras to study commuting Hamiltonians.

  19. Quantum propagation and confinement in 1D systems using the transfer-matrix method

    Science.gov (United States)

    Pujol, Olivier; Carles, Robert; Pérez, José-Philippe

    2014-05-01

    The aim of this article is to provide some Matlab scripts to the teaching community in quantum physics. The scripts are based on the transfer-matrix formalism and offer a very efficient and versatile tool to solve problems of a physical object (electron, proton, neutron, etc) with one-dimensional (1D) stationary potential energy. Resonant tunnelling through a multiple-barrier or confinement in wells of various shapes is particularly analysed. The results are quantitatively discussed with semiconductor heterostructures, harmonic and anharmonic molecular vibrations, or neutrons in a gravity field. Scripts and other examples (hydrogen-like ions and transmission by a smooth variation of potential energy) are available freely at http://www-loa.univ-lille1.fr/˜pujol in three languages: English, French and Spanish.

  20. Holographic description of non-supersymmetric orbifolded D1-D5-P solutions

    CERN Document Server

    Chakrabarty, Bidisha; Virmani, Amitabh

    2015-01-01

    Non-supersymmetric black hole microstates are of great interest in the context of the black hole information paradox. We identify the holographic description of the general class of non-supersymmetric orbifolded D1-D5-P supergravity solutions found by Jejjala, Madden, Ross and Titchener. This class includes both completely smooth solutions and solutions with conical defects, and in the near-decoupling limit these solutions describe degrees of freedom in the cap region. The CFT description involves a general class of states obtained by fractional spectral flow in both left-moving and right-moving sectors, generalizing previous work which studied special cases in this class. We compute the massless scalar emission spectrum and emission rates in both gravity and CFT and find perfect agreement, thereby providing strong evidence for our proposed identification. We also investigate the physics of ergoregion emission as pair creation for these orbifolded solutions. Our results represent the largest class of non-supe...

  1. Computing 1-D atomic densities in macromolecular simulations: the Density Profile Tool for VMD

    CERN Document Server

    Giorgino, Toni

    2013-01-01

    Molecular dynamics simulations have a prominent role in biophysics and drug discovery due to the atomistic information they provide on the structure, energetics and dynamics of biomolecules. Specialized software packages are required to analyze simulated trajectories, either interactively or via scripts, to derive quantities of interest and provide insight for further experiments. This paper presents the Density Profile Tool, a package that enhances the Visual Molecular Dynamics environment with the ability to interactively compute and visualize 1-D projections of various density functions of molecular models. We describe how the plugin is used to perform computations both via a graphical interface and programmatically. Results are presented for realistic examples, all-atom bilayer models, showing how mass and electron densities readily provide measurements such as membrane thickness, location of structural elements, and how they compare to X-ray diffraction experiments.

  2. Recursive Estimation of Gauss-Markov Random Fields Indexed over 1-D Space

    CERN Document Server

    Vats, Divyanshu

    2009-01-01

    This paper presents optimal recursive estimators for vector valued Gauss-Markov random \\emph{fields} taking values in $\\R^M$ and indexed by (intervals of) $\\R$ or $\\Z$. These 1-D fields are often called reciprocal processes. They correspond to two point boundary value fields, i.e., they have boundary conditions given at the end points of the indexing interval. To obtain the recursive estimators, we derive two classes of recursive representations for reciprocal processes. The first class transforms the Gaussian reciprocal process into a Gauss-Markov \\emph{process}, from which we derive forward and backwards recursive representations. The second representation folds the index set and transforms the original \\emph{field} taking values in $\\R^M$ into a Markov \\emph{process} taking values in $\\R^{2M}$. The folding corresponds to recursing the reciprocal process from the boundary points and telescoping inwards. From these recursive representations, Kalman filters and recursive smoothers are promptly derived.

  3. Optimal modeling of 1D azimuth correlations in the context of Bayesian inference

    CERN Document Server

    De Kock, Michiel B; Trainor, Thomas A

    2015-01-01

    Analysis and interpretation of spectrum and correlation data from high-energy nuclear collisions is currently controversial because two opposing physics narratives derive contradictory implications from the same data-one narrative claiming collision dynamics is dominated by dijet production and projectile-nucleon fragmentation, the other claiming collision dynamics is dominated by a dense, flowing QCD medium. Opposing interpretations seem to be supported by alternative data models, and current model-comparison schemes are unable to distinguish between them. There is clearly need for a convincing new methodology to break the deadlock. In this study we introduce Bayesian Inference (BI) methods applied to angular correlation data as a basis to evaluate competing data models. For simplicity the data considered are projections of 2D angular correlations onto 1D azimuth from three centrality classes of 200 GeV Au-Au collisions. We consider several data models typical of current model choices, including Fourier seri...

  4. A Stochastic Wavelet Finite Element Method for 1D and 2D Structures Analysis

    Directory of Open Access Journals (Sweden)

    Xingwu Zhang

    2014-01-01

    Full Text Available A stochastic finite element method based on B-spline wavelet on the interval (BSWI-SFEM is presented for static analysis of 1D and 2D structures in this paper. Instead of conventional polynomial interpolation, the scaling functions of BSWI are employed to construct the displacement field. By means of virtual work principle and BSWI, the wavelet finite elements of beam, plate, and plane rigid frame are obtained. Combining the Monte Carlo method and the constructed BSWI elements together, the BSWI-SFEM is formulated. The constructed BSWI-SFEM can deal with the problems of structural response uncertainty caused by the variability of the material properties, static load amplitudes, and so on. Taking the widely used Timoshenko beam, the Mindlin plate, and the plane rigid frame as examples, numerical results have demonstrated that the proposed method can give a higher accuracy and a better constringency than the conventional stochastic finite element methods.

  5. Evolution of Matter Wave Interference of Bose-Condensed Gas in a 1D Optical Lattice

    Institute of Scientific and Technical Information of China (English)

    XU Zhi-Jun; ZHANG Dong-Mei

    2007-01-01

    For a Bose-condensed gas in a combined potential consisting of an axially-symmetric harmonic magnetic trap and one-dimensional (1D) optical lattice, using the mean-field Gross-Pitaevskii (G-P) equation and the propagator method, we obtain the analytical result of the order parameter for matter wave interference at any time. The evolution of the interference pattern under a variation of the relative phase △φ between successive subcondensates trapped on an optical lattices is also studied. For △φ = π, the interference pattern is symmetric with two sharp peaks, which are symmetrically located on a straight line on both sides of a vacant central peak and moving apart from each other. This work is in agreement with available experimental results.

  6. General equation for directed Electromagnetic Pulse Propagation in 1D metamaterial: Projecting Operators Method

    CERN Document Server

    Ampilogov, Dmitrii

    2015-01-01

    We consider a boundary problem for 1D electrodynamics modeling of a pulse propagation in a metamaterial medium. We build and apply projecting operators to a Maxwell system in time domain that allows to split the linear propagation problem to directed waves for a material relations with general dispersion. Matrix elements of the projectors act as convolution integral operators. For a weak nonlinearity we generalize the linear results still for arbitrary dispersion and derive the system of interacting right/left waves with combined (hybrid) amplitudes. The result is specified for the popular metamaterial model with Drude formula for both permittivity and permeability coefficients. We also discuss and investigate stationary solutions of the system related to some boundary regimes.

  7. Light transport behaviours in quasi-1D disordered waveguides composed of random photonic lattices

    CERN Document Server

    Xu, Yuchen; Lin, Yujun; Zhu, Heyuan

    2015-01-01

    We present a numerical study on the light transport properties which are modulated by the disorder strength in quasi-one-dimensional disordered waveguide which consists of periodically arranged scatterers with random dielectric constant. The transport mean free path is found to stay inversely proportional to the square of the relative fluctuation of the dielectric constant as in the 1D and 2D cases but with . The transport properties of light through a sample with a fixed size can be modulated from ballistic to localized regime as well, and a generalized scaling function is defined to determine the light transport status in such a sample. The calculation of the diffusion coefficient and the energy density profile of the most transmitted eigenchannel clearly exhibits the transition of transport behaviour from diffusion to localization.

  8. REAL-TIME FLOOD FORECASTING MODELING OF 1D UNSTEADY CHANNEL FLOW AND KALMAN FILTER

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The model of 1D unsteady channel flow combined with the Kalmanfilter for real-time channel flood forecasting was attempted in this study. The suitable upstream and downstream boundary conditions were suggested. The system equation was given by the linearization of the finitedifference equations of the mass conservation and momentum equations as well as the boundary conditions. In the Kalman filter updating model, because the number of measurement variable is less then that of state-space variables, the measurement error covariance matrix could be estimated in real time through the innovation sequence, and the system error covariance matrix needs to be estimated preliminarily. A real example of flood forecasting in the Huaihe River was given to explain how the method works. The results show that the model is reasonable and effective.

  9. Mt Response of a 1d Earth Model Employing the Born Approximation with Variable Background Conductivities

    Science.gov (United States)

    Tejero, A.; Chavez, R. E.

    2001-12-01

    The Born approximation method has been commonly employed to study the electromagnetic field response. Other interpretative techniques have benn employed based upon the Born Approximation, like the extended Born approximation (EBA). This method employs the total field, instead of the primary field. Also, the Quasi Linear Approximation method (QLA) is an extension of EVA. In the present work, we propose an alternative technique, which employs the Born Approximation using variable background conductivities (BAVBC). The Green function is represented as a Born perturbation of zero order. Such that, the reference medium conductivity is a parameter selected according the working frequency. A similar procedure has been reported for stratified 1D-earth seismic models. This technique (BAVBC) has been applied to model computational models with reasonable results, as compared with available computational packages in the market. This method permits variations in the conductivity contrast of up to 80%, which provides solutions with 30% error, with respect of the analytical solution.

  10. Quantum phase transition of light in a 1-D photon-hopping-controllable resonator array

    CERN Document Server

    Wu, Chun-Wang; Deng, Zhi-Jiao; Dai, Hong-Yi; Chen, Ping-Xing; Li, Cheng-Zu

    2011-01-01

    We give a concrete experimental scheme for engineering the insulator-superfluid transition of light in a one-dimensional (1-D) array of coupled superconducting stripline resonators. In our proposed architecture, the on-site interaction and the photon hopping rate can be tuned independently by adjusting the transition frequencies of the charge qubits inside the resonators and at the resonator junctions, respectively, which permits us to systematically study the quantum phase transition of light in a complete parameter space. By combining the techniques of photon-number-dependent qubit transition and fast read-out of the qubit state using a separate low-Q resonator mode, the statistical property of the excitations in each resonator can be obtained with a high efficiency. An analysis of the various decoherence sources and disorders shows that our scheme can serve as a guide to coming experiments involving a small number of coupled resonators.

  11. Forward Compton scattering by /sup 2//sub 1/D and /sup 4//sub 2/He nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Avakyan, V.S.; Aleksanyan, A.S.; Gasparyan, A.O.; Gevorkyan, S.R.; Pikhtelev, R.N.

    1981-06-01

    Experimental values of differential cross sections for forward Compton scattering by /sup 2//sub 1/D and /sup 4//sub 2/He nuclei are given. They are obtained from analysis of data on Compton scattering by nucleons and nuclei. Taking into account the Glauber corrections, estimates for Ref /sub 1//sup 0/ and the ratio Vertical Barf /sup 0//sub 2/Vertical Bar/sup 2//Vertical Barf /sub 1//sup 0/Vertical Bar/sup 2/ are obtained from experimental data in the energy range k = 2--6 GeV. Within the experimental errors the values for Ref/sup 0//sub 1/ coincide with theoretical values obtained by means of dispersion relations. Contribution from the spin-flip amplitude in the energy range considered is < or =5%.

  12. Survey of Multi-Material Closure Models in 1D Lagrangian Hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Maeng, Jungyeoul Brad [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hyde, David Andrew Bulloch [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-07-28

    Accurately treating the coupled sub-cell thermodynamics of computational cells containing multiple materials is an inevitable problem in hydrodynamics simulations, whether due to initial configurations or evolutions of the materials and computational mesh. When solving the hydrodynamics equations within a multi-material cell, we make the assumption of a single velocity field for the entire computational domain, which necessitates the addition of a closure model to attempt to resolve the behavior of the multi-material cells’ constituents. In conjunction with a 1D Lagrangian hydrodynamics code, we present a variety of both the popular as well as more recently proposed multi-material closure models and survey their performances across a spectrum of examples. We consider standard verification tests as well as practical examples using combinations of fluid, solid, and composite constituents within multi-material mixtures. Our survey provides insights into the advantages and disadvantages of various multi-material closure models in different problem configurations.

  13. Canonical quantization of nonlocal theories related to bosonization in 2 + 1D

    International Nuclear Information System (INIS)

    We present a canonical formulation for theories whose actions contain non-integer powers of the d'Alembertian operator and which were recently shown to play a central role in 2 + 1D bosonization. We show that these theories possess an infinite number of constraints and use the Dirac method in order to obtain the classical brackets. The casual and classical Green functions are obtained and their meaning in terms of field expectation values is discussed. The Wightman functions are introduced and shown to lead to the microcausality principle. A mode expansion for the field is obtained. This permits the reobtention of the Wightman functions as vacuum expectation values of products of the basic fields. Creation and annihilation operators are naturally introduced but, as shown, they are not related to definite mass particle states. This is also confirmed by the spectral decomposition of the Wightman functions. (author). 16 refs, 1 fig

  14. A new subgenotype 2.1d isolates of classical swine fever virus in China, 2014.

    Science.gov (United States)

    Zhang, Hongliang; Leng, Chaoliang; Feng, Liping; Zhai, Hongyue; Chen, Jiazeng; Liu, Chunxiao; Bai, Yun; Ye, Chao; Peng, Jinmei; An, Tongqing; Kan, Yunchao; Cai, Xuehui; Tian, Zhijun; Tong, Guangzhi

    2015-08-01

    The lapinized attenuated vaccine against classical swine fever (CSF) has been used in China for over half a century and has generally prevented large-scale outbreaks in recent years. However, since late 2014, a large number of new cases of CSF were detected in many immunized pig farms in China. Several of these CSV viruses were isolated and characterized. Phylogenetic and genomic sequence analyses indicate that these new isolates, as well as some reference isolates, form a new subgenotype named 2.1d, and share several consistent molecular characteristics. Since these new isolates emerged in disparate geographic regions within 5 months, this suggests that these isolates may be widespread. Given that current vaccines do not appear to provide effective protection against this new subgenotype, further investigation of these strains is urgently needed. PMID:26031602

  15. Simulation of CIGS Thin Film Solar Cells Using AMPS-1D

    Directory of Open Access Journals (Sweden)

    J.R. Ray

    2011-01-01

    Full Text Available The solar cell structure based on copper indium gallium diselenide (CIGS as the absorber layer, cadmium sulfide (CdS as a buffer layer un-doped (i and Aluminium (Al doped zinc oxide (ZnO as a window layer was simulated using the one dimensional simulation program called analysis of microelectronic and photonic structures (AMPS-1D. In the simulation, the thickness of CIGS layer was varied from 300 to 3000 nm. The rest of layer’s thicknesses were kept constant, viz. 60 nm for CdS, and 80 nm and 500 nm for i- and Al-ZnO, respectively. By varying thickness of CIGS layer the simulated device performance was demonstrate in the form of current-voltage (I-V characteristics and quantum efficiency (QE.

  16. 1-D and 2-D Probabilistic Inversions of Fault Zone Guided Waves

    Science.gov (United States)

    Gulley, A.; Eccles, J. D.; Kaipio, J. P.; Malin, P. E.

    2015-12-01

    Fault Zone Guided Waves (FZGWs) are seismic coda that are trapped by the low velocity damage zone of faults. Inversions of these phases can be carried out using their measured dispersion and a Bayesian probability approach. This method utilises a Markov chain Monte Carlo which allows uncertainties and trade-offs to be quantified. Accordingly we have developed a scheme that estimates the dispersion curve and amplitude response variability from a FZGW record. This method allows the computation of both the point estimates and the covariance of the dispersion curve. The subsequent estimation of fault zone parameters is then based on a Gaussian model for the dispersion curve. We then show that inversions using FZGW dispersion data can only resolve fault zone velocity contrast and fault zone width - it leaves densities, absolute country rock velocities and the earthquake location unresolved. We show that they do however significantly affect the estimated fault zone velocities and widths. As these parameters cannot be resolved, we allow for their effects on the estimates of fault zone width and velocity contrast by using the Bayesian approximation error method. We show that using this method reduces computational time from days to minutes and the associated loss of accuracy is insignificant compared to carrying out the inversion on all parameters. We have extended our scheme to 2-D using 1-D slices. The Bayesian approximation error methodology is further employed to provide a 'correction term' with uncertainty for the 1-D slice approximation. We investigate these features with both synthetic data and FZGW data from the Alpine Fault of New Zealand.

  17. Analytical solutions for some defect problems in 1D hexagonal and 2D octagonal quasicrystals

    Indian Academy of Sciences (India)

    X Wang; E Pan

    2008-05-01

    We study some typical defect problems in one-dimensional (1D) hexagonal and two-dimensional (2D) octagonal quasicrystals. The first part of this investigation addresses in detail a uniformly moving screw dislocation in a 1D hexagonal piezoelectric quasicrystal with point group 6. A general solution is derived in terms of two functions 1, 2, which satisfy wave equations, and another harmonic function 3. Elementary expressions for the phonon and phason displacements, strains, stresses, electric potential, electric fields and electric displacements induced by the moving screw dislocation are then arrived at by employing the obtained general solution. The derived solution is verified by comparison with existing solutions. Also obtained in this part of the investigation is the total energy of the moving screw dislocation. The second part of this investigation is devoted to the study of the interaction of a straight dislocation with a semi-infinite crack in an octagonal quasicrystal. Here the crack penetrates through the solid along the period direction and the dislocation line is parallel to the period direction. We first derive a general solution in terms of four analytic functions for plane strain problem in octagonal quasicrystals by means of differential operator theory and the complex variable method. All the phonon and phason displacements and stresses can be expressed in terms of the four analytic functions. Then we derive the exact solution for a straight dislocation near a semi-infinite crack in an octagonal quasicrystal, and also present the phonon and phason stress intensity factors induced by the straight dislocation and remote loads.

  18. Cocaine inhibits dopamine D2 receptor signaling via sigma-1-D2 receptor heteromers.

    Directory of Open Access Journals (Sweden)

    Gemma Navarro

    Full Text Available Under normal conditions the brain maintains a delicate balance between inputs of reward seeking controlled by neurons containing the D1-like family of dopamine receptors and inputs of aversion coming from neurons containing the D2-like family of dopamine receptors. Cocaine is able to subvert these balanced inputs by altering the cell signaling of these two pathways such that D1 reward seeking pathway dominates. Here, we provide an explanation at the cellular and biochemical level how cocaine may achieve this. Exploring the effect of cocaine on dopamine D2 receptors function, we present evidence of σ1 receptor molecular and functional interaction with dopamine D2 receptors. Using biophysical, biochemical, and cell biology approaches, we discovered that D2 receptors (the long isoform of the D2 receptor can complex with σ1 receptors, a result that is specific to D2 receptors, as D3 and D4 receptors did not form heteromers. We demonstrate that the σ1-D2 receptor heteromers consist of higher order oligomers, are found in mouse striatum and that cocaine, by binding to σ1 -D2 receptor heteromers, inhibits downstream signaling in both cultured cells and in mouse striatum. In contrast, in striatum from σ1 knockout animals these complexes are not found and this inhibition is not seen. Taken together, these data illuminate the mechanism by which the initial exposure to cocaine can inhibit signaling via D2 receptor containing neurons, destabilizing the delicate signaling balance influencing drug seeking that emanates from the D1 and D2 receptor containing neurons in the brain.

  19. Evaluation of the Transport of Natural Radioactive Materials in Large Lysimeters Using Hydrus-1D

    Science.gov (United States)

    Pontedeiro, E.; Cipriani, M.; van Genuchten, M.; Simunek, J.

    2007-12-01

    The mining industry in Brazil often uses raw materials that contain relatively high concentrations of naturally occurring radioactive materials (referred to as NORM). Ores of relatively low grade typically are used to produce refined metals of high purity (e.g., Nb, Ta, Sn, and Au) using pyrometallurgic processes. The final waste is a slag rich in natural radioactive contaminants (the U and Th decay series), which are then usually deposited in industrial landfills. To study the long-term fate and transport of radionuclides leached from the NORM wastes, several large (3 m deep) lysimeters were constructed at the Pocos de Caldas Laboratory of the Brazilian Nuclear Energy Commision (CNEN). The lysimeters were packed with surface soils and slags from one of the mining sites in South East Brazil. Main purpose of our lysimeter experiments was to follow the dissolution and transport of radionuclides from the slags under natural climatic conditions. Leaching rates and radionuclide concentrations of the effluent were observed during a three-year time period. A variety of physical and chemical properties of the soils and slags (including laboratory batch equilibrium sorption values) were also determined. The data were analyzed using several computer software packages, including the STANMOD code for analytical modeling of decay chain transport during steady flow, the HYDRUS-1D code for variably-saturated flow and the transport of multiple solutes, and the HP1 code for a more comprehensive analysis of the geochemistry involved. In this presentation we describe the experimental setup and provide preliminary results of the theoretical analyses, especially those using HYDRUS-1D.

  20. Effects of GWAS-associated genetic variants on lncRNAs within IBD and T1D candidate loci

    DEFF Research Database (Denmark)

    Mirza, Aashiq H; Kaur, Simranjeet; Brorsson, Caroline A;

    2014-01-01

    Long non-coding RNAs are a new class of non-coding RNAs that are at the crosshairs in many human diseases such as cancers, cardiovascular disorders, inflammatory and autoimmune disease like Inflammatory Bowel Disease (IBD) and Type 1 Diabetes (T1D). Nearly 90% of the phenotype-associated single......, we systemically identified all annotated IBD and T1D loci-associated lncRNAs, and mapped nominally significant GWAS/ImmunoChip SNPs for IBD and T1D within these lncRNAs. Additionally, we identified tissue-specific cis-eQTLs, and strong linkage disequilibrium (LD) signals associated with these SNPs....... We explored sequence and structure based attributes of these lncRNAs, and also predicted the structural effects of mapped SNPs within them. We also identified lncRNAs in IBD and T1D that are under recent positive selection. Our analysis identified putative lncRNA secondary structure-disruptive SNPs...

  1. Nanoscale stabilization of zintl compounds: 1D ionic Li-P double helix confined inside a carbon nanotube.

    Science.gov (United States)

    Ivanov, Alexander S; Kar, Tapas; Boldyrev, Alexander I

    2016-02-14

    One-dimensional (1D) ionic nanowires are extremely rare materials due to the difficulty in stabilizing 1D chains of ions under ambient conditions. We demonstrate here a theoretical prediction of a novel hybrid material, a nanotube encapsulated 1D ionic lithium monophosphide (LiP) chain, featuring a unique double-helix structure, which is very unusual in inorganic chemistry. This nanocomposite has been investigated with density functional theory, including molecular dynamics simulations and electronic structure calculations. We find that the formation of the LiP double-helical nanowire is facilitated by strong interactions between LiP and CNTs resulting in a charge transfer. This work suggests that nanostructured confinement may be used to stabilize other polyphosphide 1D chains, thus opening new ways to study the chemistry of zintl compounds at the nanoscale.

  2. 明导电子推出1D-3D CFD解决方案

    Institute of Scientific and Technical Information of China (English)

    龚淑娟

    2012-01-01

    FloEFD与Flowmaster结合起来可以作为一个1D-3D CFD应用的最佳组合,帮助设计工程师更加快速地实现更完美的产品设计开发。除了FloEFD,其他3D CFD工具也可通过MCPPI接口转移到Flowmaster进行1D CFD分析。

  3. Identification of T1D susceptibility genes within the MHC region by combining protein interaction networks and SNP genotyping data

    DEFF Research Database (Denmark)

    Brorsson, C.; Hansen, Niclas Tue; Hansen, Kasper Lage;

    2009-01-01

    genes. We have developed a novel method that combines single nucleotide polymorphism (SNP) genotyping data with protein-protein interaction (ppi) networks to identify disease-associated network modules enriched for proteins encoded from the MHC region. Approximately 2500 SNPs located in the 4 Mb MHC...... of additional risk genes for T1D. Combining genetic data with knowledge about functional pathways provides new insight into mechanisms underlying T1D....

  4. Ordered 1-D and 2-D InAs/InP quantum dot arrays at telecom wavelength

    International Nuclear Information System (INIS)

    Lateral one-dimensional (1-D) and two-dimensional (2-D) InAs/InP quantum dot (QD) arrangements are created by the concept of self-organized anisotropic strain engineering of InAs/InGaAsP superlattice (SL) templates on InP (100) and (311)B substrates by chemical-beam epitaxy (CBE). The SL templates comprise several-periods of an InAs QD layer plus a thin cap layer, post-growth annealing, and a separation layer. QDs order on top of the templates due to local strain recognition. Distinct preferential In adatom surface migration during annealing and substrate miscut lead to linear QD arrays along [001] for InP (100) substrates and a periodic square lattice aligned ±450 off [-233] for InP (311)B substrates. Optimization of the growth parameters balances In desorption and leads to well-separated and highly uniform QD arrays. Importantly, strong photoluminescence (PL) of defect-free InAs QD arrays is observed with the wavelength tuned into the 1.55-μim telecom region at room temperature through the insertion of GaAs interlayer beneath the QDs. Finally, the concept of self-organized anisotropic strain engineering for QD ordering is extended for formation of more complex architectures by combining it with step-engineering on shallow- and deep-patterned substrates. On the sidewall areas, the steps generated by the artificial patterns play the major role in determination of the In adatom surface migration during annealing, altering the QD arrays direction away from [001] on stripe-patterned InP (100) substrates. On the contrary, the sidewalls on patterned InP (311)B are faceted, not affecting the orientation of the 2-D InAs QD arrays.

  5. Dosimetric comparisons of carbon ion treatment plans for 1D and 2D ripple filters with variable thicknesses

    Science.gov (United States)

    Printz Ringbæk, Toke; Weber, Uli; Santiago, Alina; Simeonov, Yuri; Fritz, Peter; Krämer, Michael; Wittig, Andrea; Bassler, Niels; Engenhart-Cabillic, Rita; Zink, Klemens

    2016-06-01

    A ripple filter (RiFi)—also called mini-ridge filter—is a passive energy modulator used in particle beam treatments that broadens the Bragg peak (BP) as a function of its maximum thickness. The number of different energies requested from the accelerator can thus be reduced, which significantly reduces the treatment time. A new second generation RiFi with 2D groove shapes was developed using rapid prototyping, which optimizes the beam-modulating material and enables RiFi thicknesses of up to 6 mm. Carbon ion treatment plans were calculated using the standard 1D 3 mm thick RiFi and the new 4 and 6 mm 2D RiFis for spherical planning target volumes (PTVs) in water, eight stage I non-small cell lung cancer cases, four skull base chordoma cases and three prostate cancer cases. TRiP98 was used for treatment planning with facility-specific base data calculated with the Monte Carlo code SHIELD-HIT12A. Dose-volume-histograms, spatial dose distributions and dosimetric indexes were used for plan evaluation. Plan homogeneity and conformity of thinner RiFis were slightly superior to thicker RiFis but satisfactory results were obtained for all RiFis investigated. For the 6 mm RiFi, fine structures in the dose distribution caused by the larger energy steps were observed at the PTV edges, in particular for superficial and/or very small PTVs but performances for all RiFis increased with penetration depth due to straggling and scattering effects. Plans with the new RiFi design yielded for the studied cases comparable dosimetric results to the standard RiFi while the 4 and 6 mm RiFis lowered the irradiation time by 25-30% and 45-49%, respectively.

  6. Fast electron propagation in high-density plasmas created by 1D shock wave compression: Experiments and simulations

    Energy Technology Data Exchange (ETDEWEB)

    Santos, J J; Dorchies, F; Dubrouil, A; Fourment, C; Hulin, S; D' Humieres, E; Nicolai, P H; Tikhonchuk, V [Universite Bordeaux 1, CELIA, Talence (France); Batani, D; Carpeggiani, P; Veltcheva, M [Dipartimento di Fisica ' G. Occhialini' , University degli Studi di Milano-Bicocca, Milan (Italy); McKenna, P; Quinn, M N [SUPA, Department of Physics, University of Strathclyde, Glasgow (United Kingdom); Baton, S D; Brambrink, E [LULI, Ecole Poly technique - CNRS - CEA, Palaiseau (France); Gremillet, L [CEA-DPTA, Bruyeres-le-Chatel (France); Debayle, A; Honrubia, J J, E-mail: Santos.Joao@celia.u-bordeauxl.f [GIFI, Universidad Politecnica, Madrid (Spain)

    2010-08-01

    We present results from an experimental characterization of fast electron transport in high density plasmas created by 1D shock wave compression. The K{alpha} fluorescence from a Cu layer embedded in Al or CH foil targets is measured. We use long laser pulses (LP) with 180 J, 1.5 ns, 0.53{mu}m to compress the foils by shock wave propagation to 2-3 times their solid density and heat them to {approx} 4eV (close to the Fermi temperature). A counter-propagating high-intensity short laser pulse (SP), with 40 J, 1 ps, 57x10{sup 19} Wcm{sup -2}, generates intense currents of fast electrons which propagate through the deep regions of the target just before shock breakthrough. The results are compared to the uncompressed, solid density case (without the LP beam). The complete set of measurements is compared to numerical results, including a 2D hydrodynamic description of the compression and pre-pulse effects, 2D PIC simulations of the SP beam interaction and both hybrid and PIC simulations of the electron transport in the target depth and sheaths. In the case of the non-compressed targets we need to take fast electron refluxing into account to reproduce the experimental results. By exploring the domain of warm temperatures, we identify a regime for the incident fast electron current density, 10{sup 10} < jh < 10{sup 12} Acm{sup -2}, for which the collective mechanisms of electron transport differs appreciably between solid density and compressed matter.

  7. Dosimetric comparisons of carbon ion treatment plans for 1D and 2D ripple filters with variable thicknesses.

    Science.gov (United States)

    Ringbæk, Toke Printz; Weber, Uli; Santiago, Alina; Simeonov, Yuri; Fritz, Peter; Krämer, Michael; Wittig, Andrea; Bassler, Niels; Engenhart-Cabillic, Rita; Zink, Klemens

    2016-06-01

    A ripple filter (RiFi)-also called mini-ridge filter-is a passive energy modulator used in particle beam treatments that broadens the Bragg peak (BP) as a function of its maximum thickness. The number of different energies requested from the accelerator can thus be reduced, which significantly reduces the treatment time. A new second generation RiFi with 2D groove shapes was developed using rapid prototyping, which optimizes the beam-modulating material and enables RiFi thicknesses of up to 6 mm. Carbon ion treatment plans were calculated using the standard 1D 3 mm thick RiFi and the new 4 and 6 mm 2D RiFis for spherical planning target volumes (PTVs) in water, eight stage I non-small cell lung cancer cases, four skull base chordoma cases and three prostate cancer cases. TRiP98 was used for treatment planning with facility-specific base data calculated with the Monte Carlo code SHIELD-HIT12A. Dose-volume-histograms, spatial dose distributions and dosimetric indexes were used for plan evaluation. Plan homogeneity and conformity of thinner RiFis were slightly superior to thicker RiFis but satisfactory results were obtained for all RiFis investigated. For the 6 mm RiFi, fine structures in the dose distribution caused by the larger energy steps were observed at the PTV edges, in particular for superficial and/or very small PTVs but performances for all RiFis increased with penetration depth due to straggling and scattering effects. Plans with the new RiFi design yielded for the studied cases comparable dosimetric results to the standard RiFi while the 4 and 6 mm RiFis lowered the irradiation time by 25-30% and 45-49%, respectively.

  8. APPswe/PS1 dE9/TAU 三转基因阿尔兹海默病大鼠模型的建立%Establishment of APPswe/PS1 dE9/TAU triple transgenic rat model of alzheimer disease

    Institute of Scientific and Technical Information of China (English)

    张丽; 陈炜; 张旭; 孙彩显; 张连峰

    2014-01-01

    目的:大鼠的大脑比小鼠更大,是研究神经系统的重要模型。建立APPswe/PS1dE9/TAU三转基因大鼠,发展能更全面表现人类阿尔兹海默病表型的动物模型。方法构建人PrP-hAPP695 K595N/M596L、PrP-hPS1dE9和PDGF-TAU转基因表达载体,显微注射法制备转基因大鼠。 PCR法鉴定转基因首建鼠及其子代基因型。 Western blot检测转基因大鼠脑组织中人APP、PS1和TAU蛋白的表达。 Morris水迷宫检测6月龄三转基因大鼠学习记忆能力改变。 APP、PHF-TAU免疫组织化学染色观察三转基因大鼠脑组织APP及TAU的表达。结果得到1个同时高表达人APP、PS1和TAU三个基因的转基因大鼠品系。转基因大鼠6月龄已经出现显著的行为学改变:学习记忆能力下降,病理学改变表现为过度磷酸化TAU增多和神经元胞浆内Aβ表达异常增加。结论成功建立了APPswe/PS1dE9/TAU三转AD大鼠,可做为新一代工具动物模型用于基础医学和AD转化医学研究。%Objective To develop a model that could roundly show the phenotypes of human alzheimer disease (AD), the triple-transgenic rat model harboring APP(Swe), PS1dE9, and TAU transgenes was established in view of the advantage of rat as an important animal model on the research of nerve system .Methods APPswe/PS1dE9/TAU triple transgenic rat AD rats were generated on a SD background by co-injecting rat pronuclei with two human genes driven by the mouse prion promoter:‘Swedish’ mutant human APP (APPsw) and exon 9 mutant human presenilin-1 (PS1dE9) and human microtubule-associated protein tau gene under the control of PDGF promoter .Transgene integration was confirmed by genotyping and expression levels were evaluated by western blot ( WB ) of brain homogenates .The pathological changes were detected by human Abeta, TAU and Phospho-PHF-TAU immunohistochemistry staining (IHC).The behavioral and cognitive changes were evaluated by Morris water maze .Results

  9. Optical bullets in (2+1)D photonic structures and their interaction with localized defects

    Science.gov (United States)

    Dohnal, Tomas

    2005-11-01

    This dissertation studies light propagation in Kerr-nonlinear two dimensional waveguides with a Bragg resonant, periodic structure in the propagation direction. The model describing evolution of the electric field envelopes is the system of 2D Nonlinear Coupled Mode Equations (2D CME). The periodic structure induces a range of frequencies (frequency gap) in which linear waves do not propagate. It is shown that, similarly to the ID case of a fiber grating, the 2D nonlinear system supports localized solitary wave solutions, referred to as 2D gap solitons, which have frequencies inside the linear gap and can travel at, any speed smaller than or equal to the speed of light in the corresponding homogeneous medium. Such solutions are constructed numerically via Newton's iteration. Convergence is obtained only near the upper edge of the gap. Gap solitons with a nonzero velocity are constructed by numerically following a bifurcation curve parameterized by the velocity v. It is shown that gap solitons are saddle points of the corresponding Hamiltonian functional and that no (constrained) local minima of the Hamiltonian exist. The linear stability problem is formulated and reasons for the failure of the standard Hamiltonian PDE approach for determining linear stability are discussed. In the second part of the dissertation interaction of 2D gap solitons with localized defects is studied and trapping of slow enough 2D gap solitons is demonstrated. This study builds on [JOSA B 19, 1635 (2002)], where such trapping of 1D gap solitons is considered. Analogously to this 1D problem trapping in the 2D model is explained as a resonant energy transfer into one or more defect modes existent for the particular defect. For special localized defects exact linear modes are found explicitly via the separation of variables. Numerical computation of linear defect modes is used for more general defects. Corresponding nonlinear modes are then constructed via Newton's iteration by following a

  10. Assessing the habitability of planets with Earth-like atmospheres with 1D and 3D climate modeling

    Science.gov (United States)

    Godolt, M.; Grenfell, J. L.; Kitzmann, D.; Kunze, M.; Langematz, U.; Patzer, A. B. C.; Rauer, H.; Stracke, B.

    2016-07-01

    Context. The habitable zone (HZ) describes the range of orbital distances around a star where the existence of liquid water on the surface of an Earth-like planet is in principle possible. The applicability of one-dimensional (1D) climate models for the estimation of the HZ boundaries has been questioned by recent three-dimensional (3D) climate studies. While 3D studies can calculate the water vapor, ice albedo, and cloud feedback self-consistently and therefore allow for a deeper understanding and the identification of relevant climate processes, 1D model studies rely on fewer model assumptions and can be more easily applied to the large parameter space possible for extrasolar planets. Aims: We evaluate the applicability of 1D climate models to estimate the potential habitability of Earth-like extrasolar planets by comparing our 1D model results to those of 3D climate studies in the literature. We vary the two important planetary properties, surface albedo and relative humidity, in the 1D model. These depend on climate feedbacks that are not treated self-consistently in most 1D models. Methods: We applied a cloud-free 1D radiative-convective climate model to calculate the climate of Earth-like planets around different types of main-sequence stars with varying surface albedo and relative humidity profile. We compared the results to those of 3D model calculations available in the literature and investigated to what extent the 1D model can approximate the surface temperatures calculated by the 3D models. Results: The 1D parameter study results in a large range of climates possible for an Earth-sized planet with an Earth-like atmosphere and water reservoir at a certain stellar insolation. At some stellar insolations the full spectrum of climate states could be realized, i.e., uninhabitable conditions due to surface temperatures that are too high or too low as well as habitable surface conditions, depending only on the relative humidity and surface albedo assumed. When

  11. Intra-chain superexchange couplings in quasi-1D 3d transition-metal magnetic compounds

    Science.gov (United States)

    Xiang, Hongping; Tang, Yingying; Zhang, Suyun; He, Zhangzhen

    2016-07-01

    The electronic structure and magnetic properties of the quasi-1D transition-metal borates PbMBO4 (M  =  Ti, V, Cr, Mn, Fe, Co) have been investigated by density functional theory, including electronic correlation. The results evidence PbCrBO4 and PbFeBO4 as antiferromagnetic (AFM) semiconductors (intra-chain AFM and inter-chain FM) and PbMnBO4 as a ferromagnetic (FM) semiconductor (both intra- and inter-chain FM) in accordance with experimental observations. For non-synthesized PbTiBO4, PbVBO4, and PbCoBO4, the ground-state magnetic structures are paramagnetic, FM, and paramagnetic, respectively. In this series of compounds, there are two kinds of superexchange couplings dominating their magnetic properties, i.e. the direction M–M delocalization superexchange and indirect M–O–M correlation superexchange. For PbMBO4 with M 3+ d  n , n  ⩽  3 (M  =  V and Cr), the main intra-chain spin coupling is the M–M t 2g–t 2g direct delocalization superexchange, while for PbMBO4 with M 3+ d  n , n  >  3 (M  =  Mn and Fe), the main intra-chain spin coupling is the near 90° M–O–M e g–p–e g indirect correlation superexchange.

  12. Symmetric discontinuous Galerkin methods for 1-D waves Fourier analysis, propagation, observability and applications

    CERN Document Server

    Marica, Aurora

    2014-01-01

    This work describes the propagation properties of the so-called symmetric interior penalty discontinuous Galerkin (SIPG) approximations of the 1-d wave equation. This is done by means of linear approximations on uniform meshes. First, a careful Fourier analysis is constructed, highlighting the coexistence of two Fourier spectral branches or spectral diagrams (physical and spurious) related to the two components of the numerical solution (averages and jumps). Efficient filtering mechanisms are also developed by means of techniques previously proved to be appropriate for classical schemes like finite differences or P1-classical finite elements. In particular, the work presents a proof that the uniform observability property is recovered uniformly by considering initial data with null jumps and averages given by a bi-grid filtering algorithm. Finally, the book explains how these results can be extended to other more sophisticated conforming and non-conforming finite element methods, in particular to quad...

  13. A grid of 1D low-mass star formation collapse models

    CERN Document Server

    Vaytet, Neil

    2016-01-01

    The current study was developed to provide a database of relatively simple numerical simulations of protostellar collapse, as a template library for observations of cores and very young protostars, and for researchers who wish to test their chemical modeling under dynamic astrophysical conditions. It was also designed to identify statistical trends that may appear when running many models of the formation of low-mass stars by varying the initial conditions. A large set of 143 calculations of the gravitational collapse of an isolated sphere of gas with uniform temperature and a Bonnor-Ebert like density profile was undertaken using a 1D fully implicit Lagrangian radiation hydrodynamics code. The parameter space covered initial masses from 0.2 to 8 Msun, temperatures of 5-30 K and radii between 3000 and 30,000 AU. A spread in the thermal evolutionary tracks of the runs was found, due to differing initial conditions and optical depths. Within less than an order of magnitude, all first and second Larson cores had...

  14. Self-assembling morphologies in a 1D model of two-inclusion-containing lipid membranes

    Science.gov (United States)

    Zhou, Ling; Cheng, Mingfei; Fang, Jinghuai; Peng, Ju

    2016-08-01

    The self-assembling morphologies in a 1D model of two-inclusion-containing lipid membranes are investigated by using self-consistent field theory. It is found that the shape and overall volume fraction of lipids, the hydrophobic strength and the distance of inclusions play important roles in the morphology of lipid membrane. The membrane consisting of cylindrical lipids with a symmetrical head and tail only forms the well-known normal morphology. However, for the membrane consisting of cone-like lipids with a relatively big head, the increase of the hydrophobic strength of inclusions can realize the membrane transition from the normal morphology to the pore morphologies. With increasing distance between two inclusions, two pores, three pores and four pores appear in turn. Conversely, the increase of the overall volume fraction of lipids can make the membrane undergo a reentrant transition from pore morphologies to normal morphologies. The results may be helpful in our understanding of the pore-forming mechanism.

  15. Label-free optical detection of bacteria on a 1-D photonic crystal of porous silicon

    Science.gov (United States)

    Wu, Chia-Chen; Alvarez, Sara D.; Rang, Camilla U.; Chao, Lin; Sailor, Michael J.

    2009-02-01

    The construction of a specific, label-free, bacteria biosensor using porous silicon 1-D photonic crystals will be described. Bacteria resident on the surface of porous silicon act as scattering centers for light resonant with the photonic crystal; the diffusely scattered light possesses the optical spectrum of the underlying photonic crystal. Using a spectrometer fitted to a light microscope, the bacteria are imaged without using exogenous dyes or labels and are quantified by measuring the intensity of scattered light. In order to selectively bind and identify bacteria using porous Si, we use surface modifications to reduce nonspecific binding to the surface and to engineer bacteria specificity onto the surface. Bovine serum albumin (BSA) was adsorbed to the porous Si surface to reduce nonspecific binding of bacteria. The coatings were then chemically activated to immobilize polyclonal antibodies specific to Escherichia coli. Two E. coli strains were used in our study, E. coli DH5α and non-pathogenic enterohemorrhagic Escherichia coli (EHEC) strain. The nonpathogenic Vibrio cholerae O1 strain was used to test for antibody specificity. Successful attachment of antibodies was measured using fluorescence microscopy and the scattering method was used to test for bacteria binding specificity.

  16. Modelling hydrology of a single bioretention system with HYDRUS-1D.

    Science.gov (United States)

    Meng, Yingying; Wang, Huixiao; Chen, Jiangang; Zhang, Shuhan

    2014-01-01

    A study was carried out on the effectiveness of bioretention systems to abate stormwater using computer simulation. The hydrologic performance was simulated for two bioretention cells using HYDRUS-1D, and the simulation results were verified by field data of nearly four years. Using the validated model, the optimization of design parameters of rainfall return period, filter media depth and type, and surface area was discussed. And the annual hydrologic performance of bioretention systems was further analyzed under the optimized parameters. The study reveals that bioretention systems with underdrains and impervious boundaries do have some detention capability, while their total water retention capability is extremely limited. Better detention capability is noted for smaller rainfall events, deeper filter media, and design storms with a return period smaller than 2 years, and a cost-effective filter media depth is recommended in bioretention design. Better hydrologic effectiveness is achieved with a higher hydraulic conductivity and ratio of the bioretention surface area to the catchment area, and filter media whose conductivity is between the conductivity of loamy sand and sandy loam, and a surface area of 10% of the catchment area is recommended. In the long-term simulation, both infiltration volume and evapotranspiration are critical for the total rainfall treatment in bioretention systems.

  17. Rapid Formation of 1D Titanate Nanotubes Using Alkaline Hydrothermal Treatment and Its Photocatalytic Performance

    Directory of Open Access Journals (Sweden)

    Chin Wei Lai

    2015-01-01

    Full Text Available One-dimensional (1D titanate nanotubes (TNT were successfully synthesized using alkaline hydrothermal treatment of commercial TiO2 nanopowders in a Teflon lined stainless steel autoclave at 150°C. The minimum time required for the formation of the titanate nanotubes was 9 h significantly. After the hydrothermal processing, the layered titanate was washed with acid and water in order to control the amount of Na+ ions remaining in the sample solutions. In this study, the effect of different reaction durations in a range of 3 h to 24 h on the formation of nanotubes was carried out. As the reaction duration is extended, the changes in structure from particle to tubular shapes of alkaline treated TiO2 were obtained via scanning electron microscope (SEM. Also, the significant impact on the phase transformation and crystal structure of TNT was characterized through XRD and Raman analysis. Indeed, the photocatalytic activity of TNT was investigated through the degradation of methyl orange aqueous solution under the ultraviolet light irradiation. As a result, TNT with reaction duration at 6 h has a better photocatalytic performance than other samples which was correlated to the higher crystallinity of the samples as shown in XRD patterns.

  18. An enriched 1D finite element for the buckling analysis of sandwich beam-columns

    Science.gov (United States)

    Sad Saoud, Kahina; Le Grognec, Philippe

    2016-06-01

    Sandwich constructions have been widely used during the last few decades in various practical applications, especially thanks to the attractive compromise between a lightweight and high mechanical properties. Nevertheless, despite the advances achieved to date, buckling still remains a major failure mode for sandwich materials which often fatally leads to collapse. Recently, one of the authors derived closed-form analytical solutions for the buckling analysis of sandwich beam-columns under compression or pure bending. These solutions are based on a specific hybrid formulation where the faces are represented by Euler-Bernoulli beams and the core layer is described as a 2D continuous medium. When considering more complex loadings or non-trivial boundary conditions, closed-form solutions are no more available and one must resort to numerical models. Instead of using a 2D computationally expensive model, the present paper aims at developing an original enriched beam finite element. It is based on the previous analytical formulation, insofar as the skin layers are modeled by Timoshenko beams whereas the displacement fields in the core layer are described by means of hyperbolic functions, in accordance with the modal displacement fields obtained analytically. By using this 1D finite element, linearized buckling analyses are performed for various loading cases, whose results are confronted to either analytical or numerical reference solutions, for validation purposes.

  19. Monitoring heat-induced changes in soft tissues with 1D transient elastography

    Energy Technology Data Exchange (ETDEWEB)

    Benech, Nicolas; Negreira, Carlos A [Laboratorio de Acustica Ultrasonora, Facultad de Ciencias, Igua 4225, 11400, Montevideo (Uruguay)

    2010-03-21

    In this paper 1D transient elastography was employed in fresh bovine skeletal muscle samples to assess the shear elastic modulus {mu} while the tissue was locally heated by means of an electrical resistance. The investigation is based on the study of the time shift of the shear wave propagation produced by the local temperature variation. The experiments show that the thermal expansion contribution to the time shift is negligible when compared with the shear wave speed variation. In such a case, the quantification of {mu} as a function of temperature becomes possible. Repeated experiments in different samples lead to a reproducible behavior of {mu} as a function of temperature. Irreversible elasticity changes are produced when the temperature exceeds a certain critical value T{sub c}. The proposed method allows estimating this value as well as the spatial extension of the resulting thermal lesion. This point is important when considering applications in monitoring focused ultrasound surgery (FUS) because the surrounding normal tissue should remain unaffected.

  20. One-Loop Transition Amplitudes in the D1D5 CFT

    CERN Document Server

    Carson, Zaq; Mathur, Samir D

    2016-01-01

    We consider the issue of thermalization in the D1D5 CFT. Thermalization is expected to correspond to the formation of a black hole in the dual gravity theory. We start from the orbifold point, where the theory is essentially free, and does not thermalize. In earlier work it was noted that there was no clear thermalization effect when the theory was deformed off the orbifold point to first order in the relevant twist perturbation. In this paper we consider the deformation to second order in the twist, where we do find effects that can cause thermalization of an initial perturbation. We consider a 1-loop process where two untwisted copies of the CFT are twisted to one copy and then again untwisted to two copies. We start with a single oscillator excitation on the initial CFT, and compute the effect of the two twists on this state. We find simple approximate expressions for the Bogoliubov coefficients and the behavior of the single oscillator excitation in the continuum limit, where the mode numbers involved are...

  1. A tiny gas-sensor system based on 1D photonic crystal

    Science.gov (United States)

    Bouzidi, A.; Bria, D.; Akjouj, A.; Pennec, Y.; Djafari-Rouhani, B.

    2015-12-01

    We present a gas monitoring system for detecting the gas concentration in ambient air. This sensor is based on a 1D photonic crystal formed by alternating layers of magnesium fluoride (MgF2) and silicon (Si) with an empty layer in the middle. The lamellar cavity (defect layer) will be filled with polluted air that has a refractive index close to that of pure air, varying between n 0  =  1.00 to n 0  =  1.01. The transmission spectrum of this sensor is calculated by the Green function approach. The numerical results show that the transmission peak, which appears in the gap, is caused by the infiltration of impure air into the empty middle layer. This transmission peak can be used for detection purposes in real-time environmental monitoring. The peak frequency is sensitive to the air-gas mixture, and a variation in the refractive index as small as Δn  =  10-5 can be detected. A sensitivity, Δλ/Δn, of 700 nm per refractive index unit (RIU) is achieved with this sensor.

  2. 1D Tight-Binding Models Render Quantum First Passage Time "Speakable"

    Science.gov (United States)

    Ranjith, V.; Kumar, N.

    2015-12-01

    The calculation of First Passage Time (moreover, even its probability density in time) has so far been generally viewed as an ill-posed problem in the domain of quantum mechanics. The reasons can be summarily seen in the fact that the quantum probabilities in general do not satisfy the Kolmogorov sum rule: the probabilities for entering and non-entering of Feynman paths into a given region of space-time do not in general add up to unity, much owing to the interference of alternative paths. In the present work, it is pointed out that a special case exists (within quantum framework), in which, by design, there exists one and only one available path (i.e., door-way) to mediate the (first) passage -no alternative path to interfere with. Further, it is identified that a popular family of quantum systems - namely the 1d tight binding Hamiltonian systems - falls under this special category. For these model quantum systems, the first passage time distributions are obtained analytically by suitably applying a method originally devised for classical (stochastic) mechanics (by Schroedinger in 1915). This result is interesting especially given the fact that the tight binding models are extensively used in describing everyday phenomena in condense matter physics.

  3. Method of coupling 1-D unsaturated flow with 3-D saturated flow on large scale

    Directory of Open Access Journals (Sweden)

    Yan ZHU

    2011-12-01

    Full Text Available A coupled unsaturated-saturated water flow numerical model was developed. The water flow in the unsaturated zone is considered the one-dimensional vertical flow, which changes in the horizontal direction according to the groundwater table and the atmospheric boundary conditions. The groundwater flow is treated as the three-dimensional water flow. The recharge flux to groundwater from soil water is considered the bottom flux for the numerical simulation in the unsaturated zone, and the upper flux for the groundwater simulation. It connects and unites the two separated water flow systems. The soil water equation is solved based on the assumed groundwater table and the subsequent predicted recharge flux. Then, the groundwater equation is solved with the predicted recharge flux as the upper boundary condition. Iteration continues until the discrepancy between the assumed and calculated groundwater nodal heads have a certain accuracy. Illustrative examples with different water flow scenarios regarding the Dirichlet boundary condition, the Neumann boundary condition, the atmospheric boundary condition, and the source or sink term were calculated by the coupled model. The results are compared with those of other models, including Hydrus-1D, SWMS-2D, and FEFLOW, which demonstrate that the coupled model is effective and accurate and can significantly reduce the computational time for the large number of nodes in saturated-unsaturated water flow simulation.

  4. Interior volumes of extremal and ($1+D$) dimensional Schwarzschild black holes

    CERN Document Server

    Bhaumik, Nilanjandev

    2016-01-01

    It has already been shown for the Reissner-Nordstr{\\"o}m and Kerr black holes that the maximum interior volume enclosed by the event horizon ceases to zero in the extremal limit. We show here that if we start with an extremal black hole at the beginning, corresponding volume is non-zero. Interestingly, both for the extremal Reissner-Nordstr{\\"o}m and Kerr, this value comes out to be equal to one quarter of the horizon area, which is the entropy of the black hole. Next the same quantity is calculated for the ($1+D$)-dimensional Schwarzschild case. Taking into account the mass change due to Hawking radiation, we show that the volume increases towards the end of the evaporation. This fact is not new as it has been observed earlier for four dimensional case. The interesting point we observe is that this increase rate decreases towards the higher value of space dimensions $D$; i.e. it is a decelerated expansion of volume with the increase of spacial dimensions. This implies that for a sufficiently large $D$, the m...

  5. Monte Carlo Uncertainty Quantification Using Quasi-1D SRM Ballistic Model

    Directory of Open Access Journals (Sweden)

    Davide Viganò

    2016-01-01

    Full Text Available Compactness, reliability, readiness, and construction simplicity of solid rocket motors make them very appealing for commercial launcher missions and embarked systems. Solid propulsion grants high thrust-to-weight ratio, high volumetric specific impulse, and a Technology Readiness Level of 9. However, solid rocket systems are missing any throttling capability at run-time, since pressure-time evolution is defined at the design phase. This lack of mission flexibility makes their missions sensitive to deviations of performance from nominal behavior. For this reason, the reliability of predictions and reproducibility of performances represent a primary goal in this field. This paper presents an analysis of SRM performance uncertainties throughout the implementation of a quasi-1D numerical model of motor internal ballistics based on Shapiro’s equations. The code is coupled with a Monte Carlo algorithm to evaluate statistics and propagation of some peculiar uncertainties from design data to rocker performance parameters. The model has been set for the reproduction of a small-scale rocket motor, discussing a set of parametric investigations on uncertainty propagation across the ballistic model.

  6. Bogoliubov coefficients for the twist operator in the D1D5 CFT

    CERN Document Server

    Carson, Zaq; Turton, David

    2014-01-01

    The D1D5 CFT is a holographic dual of a near-extremal black hole in string theory. The interaction in this theory involves a twist operator which joins together different copies of a free CFT. Given a large number of D1 and D5 branes, the effective length of the circle on which the CFT lives is very large. We develop a technique to study the effect of the twist operator in the limit where the wavelengths of excitations are short compared to this effective length, which we call the 'continuum limit'. The method uses Bogoliubov coefficients to compute the effect of the twist operator in this limit. For bosonic fields, we use the method to reproduce recent results describing the effect of the twist operator when it links together CFT copies with windings M and N, producing a copy of winding M+N. We also comment on possible generalizations of our results. The methods developed here may help in understanding the twist interaction at higher orders. This in turn should provide insight into the thermalization process...

  7. Specifications of ZnO growth for heterostructure solar cell and PC1D based simulations

    Directory of Open Access Journals (Sweden)

    Babar Hussain

    2015-12-01

    Full Text Available This data article is related to our recently published article (Hussain et al., in press [1] where we have proposed a new solar cell model based on n-ZnO as front layer and p-Si as rear region. The ZnO layer will act as an active n-layer as well as antireflection (AR coating saving considerable processing cost. There are several reports presenting use of ZnO as window/antireflection coating in solar cells (Mansoor et al., 2015; Haq et al., 2014; Hussain et al., 2014; Matsui et al., 2014; Ding et al., 2014 [2–6] but, here, we provide data specifically related to simultaneous use of ZnO as n-layer and AR coating. Apart from the information we already published, we provide additional data related to growth of ZnO (with and without Ga incorporation layers using MOCVD. The data related to PC1D based simulation of internal and external quantum efficiencies with and without antireflection effects of ZnO as well as the effects of doping level in p-Si on current–voltage characteristics have been provided.

  8. Application of HYDRUS 1D model for assessment of phenol-soil adsorption dynamics.

    Science.gov (United States)

    Pal, Supriya; Mukherjee, Somnath; Ghosh, Sudipta

    2014-04-01

    Laboratory-scale batch, vertical, and horizontal column experiments were conducted to investigate the attenuative capacity of a fine-grained clayey soil of local origin in the surrounding of a steel plant wastewater discharge site in West Bengal, India, for removal of phenol. Linear, Langmuir, and Freundlich isotherm plots from batch experimental data revealed that Freundlich isotherm model was reasonably fitted (R (2) = 0.94). The breakthrough column experiments were also carried out with different soil bed heights (5, 10, and 15 cm) under uniform flow to study the hydraulic movements of phenol by evaluating time concentration flow behavior using bromide as a tracer. The horizontal migration test was also conducted in the laboratory using adsorptive phenol and nonreactive bromide tracer to explore the movement of solute in a horizontal distance. The hydrodynamic dispersion coefficients (D) in the vertical and horizontal directions in the soil were estimated using nonlinear least-square parameter optimization method in CXTFIT model. In addition, the equilibrium convection dispersion model in HYDRUS 1D was also examined to simulate the fate and transport of phenol in vertical and horizontal directions using Freundlich isotherm constants and estimated hydrodynamic parameters as input in the model. The model efficacy and validation were examined through statistical parameters such as the coefficient of determination (R (2)), root mean square error and design of index (d). PMID:24407784

  9. Computer Simulation Study of Thermal Conduction in 1D Chains of Anharmonic Oscillators

    Institute of Scientific and Technical Information of China (English)

    Tejal N.Shah; P.N.Gajjar

    2013-01-01

    In this work thermal conduction in one-dimensional (1D) chains of anharmonic oscillators are studied using computer simulation.The temperature profile,heat flux and thermal conductivity are investigated for chain length N =100,200,400,800 and 1600.In the computer simulation anharmonicity is introduced due to Fermi-Pasta-Ulam-β (FPU-β) model For substrate interaction,an onsite potential due to Frenkel-Kontorova (FK) model has been used.Numerical simulations demonstrate that temperature gradient scales behave as N-1 linearly with the relation J =0.1765/N.For the thermal conductivity K,KN to N obey the linear relation of the type KN =0.8805N.It is shown that thermal transport is dependent on phonon-phonon interaction as well as phonon-lattice interaction.The thermal conductivity increaseslinearly with increase inanharmonicity and predicts relation κ =0.133 + 0.804β.It is also concluded that for higher value of the strength of the onsite potential system tends to a thermal insulator.

  10. A New 2D-Transport, 1D-Diffusion Approximation of the Boltzmann Transport equation

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Edward

    2013-06-17

    The work performed in this project consisted of the derivation, implementation, and testing of a new, computationally advantageous approximation to the 3D Boltz- mann transport equation. The solution of the Boltzmann equation is the neutron flux in nuclear reactor cores and shields, but solving this equation is difficult and costly. The new “2D/1D” approximation takes advantage of a special geometric feature of typical 3D reactors to approximate the neutron transport physics in a specific (ax- ial) direction, but not in the other two (radial) directions. The resulting equation is much less expensive to solve computationally, and its solutions are expected to be sufficiently accurate for many practical problems. In this project we formulated the new equation, discretized it using standard methods, developed a stable itera- tion scheme for solving the equation, implemented the new numerical scheme in the MPACT code, and tested the method on several realistic problems. All the hoped- for features of this new approximation were seen. For large, difficult problems, the resulting 2D/1D solution is highly accurate, and is calculated about 100 times faster than a 3D discrete ordinates simulation.

  11. A 1-D Study of the Ignition Space for Magnetic Indirect (X-ray) Drive Targets

    Energy Technology Data Exchange (ETDEWEB)

    Cobble, James Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sinars, Daniel Brian [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-06-02

    The ICF program today is investigating three approaches to achieving multi-MJ fusion yields and ignition: (1) laser indirect (x-ray) drive on the National Ignition Facility (NIF), (2) laser direct drive (primarily on the Omega laser facility at the University of Rochester), and (3) magnetic direct drive on the Z pulsed power facility. In this white paper we briefly consider a fourth approach, magnetic indirect drive, in which pulsedpower- driven x-ray sources are used in place of laser driven sources. We first look at some of the x-ray sources studied on Z prior to 2007 before the pulsed power ICF program shifted to magnetic direct drive. We then show results from a series of 1D Helios calculations of double-shell capsules that suggest that these sources, scaled to higher temperatures, could be a promising path to achieving multi-MJ fusion yields and ignition. We advocate here that more detailed design calculations with widely accepted 2D/3D ICF codes should be conducted for a better assessment of the prospects.

  12. Steady-state propagation speed of rupture fronts along 1D frictional interfaces

    CERN Document Server

    Amundsen, David Skålid; Thøgersen, Kjetil; Katzav, Eytan; Malthe-Sørenssen, Anders; Scheibert, Julien

    2015-01-01

    The rupture of dry frictional interfaces occurs through the propagation of fronts breaking the contacts at the interface. Recent experiments have shown that the velocities of these rupture fronts range from quasi-static velocities proportional to the external loading rate to velocities larger than the shear wave speed. The way system parameters influence front speed is still poorly understood. Here we study steady-state rupture propagation in a 1D spring-block model of an extended frictional interface, for various friction laws. With the classical Amontons--Coulomb friction law, we derive a closed-form expression for the steady-state rupture velocity as a function of the interfacial shear stress just prior to rupture. We then consider an additional shear stiffness of the interface and show that the softer the interface, the slower the rupture fronts. We provide an approximate closed form expression for this effect. We finally show that adding a bulk viscosity on the relative motion of blocks accelerates stead...

  13. Results and limits in the 1-D analytical modeling for the asymmetric DG SOI MOSFET

    Directory of Open Access Journals (Sweden)

    O. Cobianu

    2008-05-01

    Full Text Available This paper presents the results and the limits of 1-D analytical modeling of electrostatic potential in the low-doped p type silicon body of the asymmetric n-channel DG SOI MOSFET, where the contribution to the asymmetry comes only from p- and n-type doping of polysilicon used as the gate electrodes. Solving Poisson's equation with boundary conditions based on the continuity of normal electrical displacement at interfaces and the presence of a minimum electrostatic potential by using the Matlab code we have obtained a minimum potential with a slow variation in the central zone of silicon with the value pinned around 0.46 V, where the applied VGS voltage varies from 0.45 V to 0.95 V. The paper states clearly the validity domain of the analytical solution and the important effect of the localization of the minimum electrostatic potential value on the potential variation at interfaces as a function of the applied VGS voltage.

  14. Study of aging in oil paintings by 1D and 2D NMR spectroscopy.

    Science.gov (United States)

    Spyros, Apostolos; Anglos, Demetrios

    2004-09-01

    Nuclear magnetic resonance spectroscopy is proposed as an efficient analytical tool in the study of painted artworks. The binding medium from two original oil paintings, dated from the early 20th and the late 17th century, was studied via high-resolution 1D and 2D NMR, establishing the advanced state of hydrolysis and oxidation of the oil paint. Studies of the solvent-extractable component from model samples of various drying oils, raw oil paints, and aged oil paints allowed the definition of several markers based on the integral ratios of various chemical species present in the 1H and 13C NMR spectra. These markers are sensitive to hydrolytic and oxidative processes that reflect the extent of aging in oil paintings. The rapidity, simplicity, and nondestructive nature of the proposed analytical NMR methodology represents a great advantage, since the usually minute sample quantities available from original artwork can be subsequently analyzed further by other analytical techniques, if necessary. PMID:15373425

  15. Estimation of future groundwater recharge using climatic analogues and Hydrus-1D

    Directory of Open Access Journals (Sweden)

    B. Leterme

    2012-01-01

    Full Text Available The impact of climate change on groundwater recharge is simulated using climatic analogue stations, i.e. stations presently under climatic conditions corresponding to a given climate state. The study was conducted in the context of a safety assessment of a future near-surface disposal facility for low and intermediate level short-lived radioactive waste in Belgium; this includes estimating groundwater recharge for the next millennia. Groundwater recharge was simulated using the Richard's based soil water balance model Hydrus-1D and meteorological time series from analogue stations. Water balance calculations showed that transition from a temperate oceanic to a warmer subtropical climate without rainfall seasonality is expected to yield a decrease in groundwater recharge (−12% for the chosen representative analogue station of Gijon, Northern Spain. Based on a time series of 24 yr of daily climate data, the long-term average annual recharge decreased from 314 to 276 mm, although total rainfall was higher (947 mm in the warmer climate compared to the current temperate climate (899 mm. This is due to a higher soil evaporation (233 mm versus 206 mm and higher plant transpiration (350 versus 285 mm under the warmer climate.

  16. Sensitivity of groundwater recharge using climatic analogues and HYDRUS-1D

    Directory of Open Access Journals (Sweden)

    B. Leterme

    2012-08-01

    Full Text Available The sensitivity of groundwater recharge to different climate conditions was simulated using the approach of climatic analogue stations, i.e. stations presently experiencing climatic conditions corresponding to a possible future climate state. The study was conducted in the context of a safety assessment of a future near-surface disposal facility for low and intermediate level short-lived radioactive waste in Belgium; this includes estimation of groundwater recharge for the next millennia. Groundwater recharge was simulated using the Richards based soil water balance model HYDRUS-1D and meteorological time series from analogue stations. This study used four analogue stations for a warmer subtropical climate with changes of average annual precipitation and potential evapotranspiration from −42% to +5% and from +8% to +82%, respectively, compared to the present-day climate. Resulting water balance calculations yielded a change in groundwater recharge ranging from a decrease of 72% to an increase of 3% for the four different analogue stations. The Gijon analogue station (Northern Spain, considered as the most representative for the near future climate state in the study area, shows an increase of 3% of groundwater recharge for a 5% increase of annual precipitation. Calculations for a colder (tundra climate showed a change in groundwater recharge ranging from a decrease of 97% to an increase of 32% for four different analogue stations, with an annual precipitation change from −69% to −14% compared to the present-day climate.

  17. ANISN-E, 1-D Transport Program ANISN with Exponential Model. ANISN-JR, 1-D Transport Program ANISN with ZZ JSD Data and Flux Plot

    International Nuclear Information System (INIS)

    A - Nature of physical problem solved: The ANISN system treats neutron and gamma transport in one- dimensional plane, spherical and cylinder geometry. The multigroup cross sections prepared by the programs LIANE and SUPERTOG are processed by the program RETTOG, which produces a binary library with Legendre expansions. The binary library can be updated and edited with the program LGR/B. The photon multigroup cross sections are created with the program GAMLEG/A. If the bulk of the data is too large, the program TAPEMA produces a special group-by-group library. The volume sources are calculated from a reduced set of input data and punched in a format suitable for input to ANISN, using the program PRESOU. ANISN calculates fluxes by groups, space intervals, angle and any number of reaction rates. The energy and space dependent fluxes are stored on tape and can be reprocessed, edited and plotted with the program ANISEX, which also permits to calculate supplementary reaction rates. The program ANISN can condense cross sections into a reduced number of groups. The ANISN system is used as a reference system for the evaluation of approximation methods (space-diffusion or point kernel) or for the preparation of multigroup libraries for two-dimensional transport codes (DOT). In particular it is used for shielding problems with high attenuation in water reactors and fast reactors. ANISN-E solves the same problems as the original ANISN code. Some modifications concern weighted cross sections output and fixed distributed sources input/output. ANISN-E (CCC-0082/09): The CYBER 175 version of ANISN-E also contains the free-format input capability. ANISN-JR extends the applicability of the original ANISN code for shielding analyses by adding options of calculating the reaction rates distributions from detector response, generating the volume- flux weighted cross sections in arbitrary regions or zones and plotting the neutron or gamma-ray spectra and the reaction rates distributions

  18. Mutations in TBC1D24, a gene associated with epilepsy, also cause nonsyndromic deafness DFNB86.

    Science.gov (United States)

    Rehman, Atteeq U; Santos-Cortez, Regie Lyn P; Morell, Robert J; Drummond, Meghan C; Ito, Taku; Lee, Kwanghyuk; Khan, Asma A; Basra, Muhammad Asim R; Wasif, Naveed; Ayub, Muhammad; Ali, Rana A; Raza, Syed I; Nickerson, Deborah A; Shendure, Jay; Bamshad, Michael; Riazuddin, Saima; Billington, Neil; Khan, Shaheen N; Friedman, Penelope L; Griffith, Andrew J; Ahmad, Wasim; Riazuddin, Sheikh; Leal, Suzanne M; Friedman, Thomas B

    2014-01-01

    Inherited deafness is clinically and genetically heterogeneous. We recently mapped DFNB86, a locus associated with nonsyndromic deafness, to chromosome 16p. In this study, whole-exome sequencing was performed with genomic DNA from affected individuals from three large consanguineous families in which markers linked to DFNB86 segregate with profound deafness. Analyses of these data revealed homozygous mutation c.208G>T (p.Asp70Tyr) or c.878G>C (p.Arg293Pro) in TBC1D24 as the underlying cause of deafness in the three families. Sanger sequence analysis of TBC1D24 in an additional large family in which deafness segregates with DFNB86 identified the c.208G>T (p.Asp70Tyr) substitution. These mutations affect TBC1D24 amino acid residues that are conserved in orthologs ranging from fruit fly to human. Neither variant was observed in databases of single-nucleotide variants or in 634 chromosomes from ethnically matched control subjects. TBC1D24 in the mouse inner ear was immunolocalized predominantly to spiral ganglion neurons, indicating that DFNB86 deafness might be an auditory neuropathy spectrum disorder. Previously, six recessive mutations in TBC1D24 were reported to cause seizures (hearing loss was not reported) ranging in severity from epilepsy with otherwise normal development to epileptic encephalopathy resulting in childhood death. Two of our four families in which deafness segregates with mutant alleles of TBC1D24 were available for neurological examination. Cosegregation of epilepsy and deafness was not observed in these two families. Although the causal relationship between genotype and phenotype is not presently understood, our findings, combined with published data, indicate that recessive alleles of TBC1D24 can cause either epilepsy or nonsyndromic deafness.

  19. Data Assimilation of Lightning using 1D+3D/4D WRF Var Assimilation Schemes with Non-Linear Observation Operators

    Science.gov (United States)

    Navon, M. I.; Stefanescu, R.; Fuelberg, H. E.; Marchand, M.

    2012-12-01

    NASA's launch of the GOES-R Lightning Mapper (GLM) in 2015 will provide continuous, full disc, high resolution total lightning (IC + CG) data. The data will be available at a horizontal resolution of approximately 9 km. Compared to other types of data, the assimilation of lightning data into operational numerical models has received relatively little attention. Previous efforts of lightning assimilation mostly have employed nudging. This paper will describe the implementation of 1D+3D/4D Var assimilation schemes of existing ground-based WTLN (Worldwide Total Lightning Network) lightning observations using non-linear observation operators in the incremental WRFDA system. To mimic the expected output of GLM, the WTLN data were used to generate lightning super-observations characterized by flash rates/81 km2/20 min. A major difficulty associated with variational approaches is the complexity of the observation operator that defines the model equivalent of lightning. We use Convective Available Potential Energy (CAPE) as a proxy between lightning data and model variables. This operator is highly nonlinear. Marecal and Mahfouf (2003) have shown that nonlinearities can prevent direct assimilation of rainfall rates in the ECMWF 4D-VAR (using the incremental formulation proposed by Courtier et al. (1994)) from being successful. Using data from the 2011 Tuscaloosa, AL tornado outbreak, we have proved that the direct assimilation of lightning data into the WRF 3D/4D - Var systems is limited due to this incremental approach. Severe threshold limits must be imposed on the innovation vectors to obtain an improved analysis. We have implemented 1D+3D/4D Var schemes to assimilate lightning observations into the WRF model. Their use avoids innovation vector constrains from preventing the inclusion of a greater number of lightning observations Their use also minimizes the problem that nonlinearities in the moist convective scheme can introduce discontinuities in the cost function

  20. Organization and expression of the Co1D-CA23 plasmid genes associated with colicin synthesis

    International Nuclear Information System (INIS)

    The authors have investigated the organization and regulation of the functioning of colicin genes, the immunity protein, and lysis protein of the colicinogenic plasmid Co1D-CA23. In addition they have analyzed the polypeptides synthesized in minicells carrying plasmid Co1D, its Th5 mutants, and the recombinant plasmids obtained on cloning of the EcoRV fragments of Co1D on vector BR325. They have determined the position of the promoter of the colicin gene and the direction of its transcription. Furthermore they were able to show that the gene determining cell immunity to colicin D is transcribed independently of the colicin gene from its own SOS-independent promoter. Treatment of the cells carrying plasmid Co1D with mitomycin C leads to the induction of synthesis of not only colicin but also of a protein with a molecular weight of 10 kdalton, causing under these conditions the death and lysis of the cells. Together with colicin, this protein is detected in the culture liquid on lysis of the cells. Plasmid mutations impairing the synthesis of the lysis protein inhibit the release of colicin into the medium. They have shown that the genes of colicin and the lysis protein are arranged into one operon, the lysis gene being transcribed after the colicin gene. They have proposed a genetic map for plasmid Co1D-CA23