WorldWideScience

Sample records for seismic sections show

  1. Patterned basal seismicity shows sub-ice stream bedforms

    Science.gov (United States)

    Barcheck, C. G.; Tulaczyk, S. M.; Schwartz, S. Y.

    2017-12-01

    Patterns in seismicity emanating from the bottom of fast-moving ice streams and glaciers may indicate localized patches of higher basal resistance— sometimes called 'sticky spots', or otherwise varying basal properties. These seismogenic basal areas resist an unknown portion of the total driving stress of the Whillans Ice Plain (WIP), in West Antarctica, but may play an important role in the WIP stick-slip cycle and ice stream slowdown. To better understand the mechanism and importance of basal seismicity beneath the WIP, we analyze seismic data collected by a small aperture (micro-earthquakes in Dec 2014, and we compare the resulting map of seismicity to ice bottom depth measured by airborne radar. The number of basal earthquakes per area within the network is spatially heterogeneous, but a pattern of two 400m wide streaks of high seismicity rates is evident, with >50-500 earthquakes detected per 50x50m grid cell in 2 weeks. These seismically active streaks are elongated approximately in the ice flow direction with a spacing of 750m. Independent airborne radar measurements of ice bottom depth from Jan 2013 show a low-amplitude ( 5m) undulation in the basal topography superposed on a regional gradient in ice bottom depth. The flow-perpendicular wavelength of these low-amplitude undulations is comparable to the spacing of the high seismicity bands, and the streaks of high seismicity intersect local lows in the undulating basal topography. We interpret these seismic and radar observations as showing seismically active sub-ice stream bedforms that are low amplitude and elongated in the direction of ice flow, comparable to the morphology of mega scale glacial lineations (MSGLs), with high basal seismicity rates observed in the MSGL troughs. These results have implications for understanding the formation mechanism of MSGLS and well as understanding the interplay between basal topographic roughness, spatially varying basal till and hydrologic properties, basal

  2. Seismic analysis of the in-pile test section

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. M.; Park, K. N.; Chi, D. Y.; Park, S. K.; Sim, B. S.; Ahn, S. H.; Lee, C. Y.; Kim, Y. J. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2004-07-01

    This study gives the results of the seismic analysis of the IPS (In Pile Section) with lower bracket support. The results cover the natural frequency and seismic response of the IPS for the SSE and OBE events. An FE (Finite Element) model which includes the two vessels of the IPS and its support structure were analyzed by ABAQUS.

  3. Fault-related-folding structures and reflection seismic sections. Study by seismic modeling and balanced cross section; Danso ga kaizaisuru shukyoku kozo no keitai to jishin tansa danmen. 2. Seismic modeling oyobi balanced cross section ni yoru study

    Energy Technology Data Exchange (ETDEWEB)

    Tamagawa, T; Matsuoka, T [Japan Petroleum Exploration Corp., Tokyo (Japan); Tsukui, R [Japan National Oil Corp., Tokyo (Japan). Technology Research Center

    1997-05-27

    It occasionally happens that there exists a part where reflection near the thrust is not clearly observed in a thrust zone seismic survey cross section. For the effective interpretation of such an occurrence, the use of geological structures as well as the reflected pattern is effective. When the velocity structures for a fold structure having a listric fault caused anticline (unidirectionally inclined with a backlimb, without a forelimb) and for a fault propagation fold are involved, a wrong interpretation may be made since they look alike in reflection wave pattern despite their difference in geological structure. In the concept of balanced cross section, a check is performed, when the stratum after deformation is recovered to the time of deposition, as to whether the geologic stratum area is conserved without excess or shortage. An excess or shortage occurs if there is an error in the model, and this shows that the fault surface or fold structure is not correctly reflected. Positive application of geological knowledge is required in the processing and interpreting of data from a seismic survey. 6 refs., 6 figs.

  4. Seismic imaging of sandbox experiments – laboratory hardware setup and first reflection seismic sections

    Directory of Open Access Journals (Sweden)

    C. M. Krawczyk

    2013-02-01

    Full Text Available With the study and technical development introduced here, we combine analogue sandbox simulation techniques with seismic physical modelling of sandbox models. For that purpose, we designed and developed a new mini-seismic facility for laboratory use, comprising a seismic tank, a PC-driven control unit, a positioning system, and piezoelectric transducers used here for the first time in an array mode. To assess the possibilities and limits of seismic imaging of small-scale structures in sandbox models, different geometry setups were tested in the first 2-D experiments that also tested the proper functioning of the device and studied the seismo-elastic properties of the granular media used. Simple two-layer models of different materials and layer thicknesses as well as a more complex model comprising channels and shear zones were tested using different acquisition geometries and signal properties. We suggest using well sorted and well rounded grains with little surface roughness (glass beads. Source receiver-offsets less than 14 cm for imaging structures as small as 2.0–1.5 mm size have proven feasible. This is the best compromise between wide beam and high energy output, and is applicable with a consistent waveform. Resolution of the interfaces of layers of granular materials depends on the interface preparation rather than on the material itself. Flat grading of interfaces and powder coverage yields the clearest interface reflections. Finally, sandbox seismic sections provide images of high quality showing constant thickness layers as well as predefined channel structures and indications of the fault traces from shear zones. Since these were artificially introduced in our test models, they can be regarded as zones of disturbance rather than tectonic shear zones characterized by decompaction. The multiple-offset surveying introduced here, improves the quality with respect to S / N ratio and source signature even more; the maximum depth

  5. WheelerLab: An interactive program for sequence stratigraphic analysis of seismic sections, outcrops and well sections and the generation of chronostratigraphic sections and dynamic chronostratigraphic sections

    Science.gov (United States)

    Amosu, Adewale; Sun, Yuefeng

    WheelerLab is an interactive program that facilitates the interpretation of stratigraphic data (seismic sections, outcrop data and well sections) within a sequence stratigraphic framework and the subsequent transformation of the data into the chronostratigraphic domain. The transformation enables the identification of significant geological features, particularly erosional and non-depositional features that are not obvious in the original seismic domain. Although there are some software products that contain interactive environments for carrying out chronostratigraphic analysis, none of them are open-source codes. In addition to being open source, WheelerLab adds two important functionalities not present in currently available software: (1) WheelerLab generates a dynamic chronostratigraphic section and (2) WheelerLab enables chronostratigraphic analysis of older seismic data sets that exist only as images and not in the standard seismic file formats; it can also be used for the chronostratigraphic analysis of outcrop images and interpreted well sections. The dynamic chronostratigraphic section sequentially depicts the evolution of the chronostratigraphic chronosomes concurrently with the evolution of identified genetic stratal packages. This facilitates a better communication of the sequence-stratigraphic process. WheelerLab is designed to give the user both interactive and interpretational control over the transformation; this is most useful when determining the correct stratigraphic order for laterally separated genetic stratal packages. The program can also be used to generate synthetic sequence stratigraphic sections for chronostratigraphic analysis.

  6. WheelerLab: An interactive program for sequence stratigraphic analysis of seismic sections, outcrops and well sections and the generation of chronostratigraphic sections and dynamic chronostratigraphic sections

    Directory of Open Access Journals (Sweden)

    Adewale Amosu

    2017-01-01

    Full Text Available WheelerLab is an interactive program that facilitates the interpretation of stratigraphic data (seismic sections, outcrop data and well sections within a sequence stratigraphic framework and the subsequent transformation of the data into the chronostratigraphic domain. The transformation enables the identification of significant geological features, particularly erosional and non-depositional features that are not obvious in the original seismic domain. Although there are some software products that contain interactive environments for carrying out chronostratigraphic analysis, none of them are open-source codes. In addition to being open source, WheelerLab adds two important functionalities not present in currently available software: (1 WheelerLab generates a dynamic chronostratigraphic section and (2 WheelerLab enables chronostratigraphic analysis of older seismic data sets that exist only as images and not in the standard seismic file formats; it can also be used for the chronostratigraphic analysis of outcrop images and interpreted well sections. The dynamic chronostratigraphic section sequentially depicts the evolution of the chronostratigraphic chronosomes concurrently with the evolution of identified genetic stratal packages. This facilitates a better communication of the sequence-stratigraphic process. WheelerLab is designed to give the user both interactive and interpretational control over the transformation; this is most useful when determining the correct stratigraphic order for laterally separated genetic stratal packages. The program can also be used to generate synthetic sequence stratigraphic sections for chronostratigraphic analysis.

  7. WheelerLab: An interactive program for sequence stratigraphic analysis of seismic sections, outcrops and well sections and the generation of chronostratigraphic sections and dynamic chronostratigraphic sections

    OpenAIRE

    Adewale Amosu; Yuefeng Sun

    2017-01-01

    WheelerLab is an interactive program that facilitates the interpretation of stratigraphic data (seismic sections, outcrop data and well sections) within a sequence stratigraphic framework and the subsequent transformation of the data into the chronostratigraphic domain. The transformation enables the identification of significant geological features, particularly erosional and non-depositional features that are not obvious in the original seismic domain. Although there are some software produ...

  8. Using the automized system ''section'' to forecast velocity sections using data on borehole velocity measurement and seismic field prospecting

    Energy Technology Data Exchange (ETDEWEB)

    Dorman, M.I.; Gein, F.F.; Zubairov, F.B.

    1981-01-01

    A system of automated processing of seismic data is examined which makes it possible to set up rate functions at arbitrary points of a seismic prospecting section or at points conciding with boreholes in which rate measurements have not been completed. The basis for the forecasting method is data on seismic well logging investigations, seismic prospecting and some indirect observations on sections. The bases of a procedure realizing a forecasting method are set forth, as are those requirements which satisfy the system as a whole. The results of using the ''section'' system in a terrestrial section of Western Siberia are set forth.

  9. Seismic texture classification. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Vinther, R.

    1997-12-31

    The seismic texture classification method, is a seismic attribute that can both recognize the general reflectivity styles and locate variations from these. The seismic texture classification performs a statistic analysis for the seismic section (or volume) aiming at describing the reflectivity. Based on a set of reference reflectivities the seismic textures are classified. The result of the seismic texture classification is a display of seismic texture categories showing both the styles of reflectivity from the reference set and interpolations and extrapolations from these. The display is interpreted as statistical variations in the seismic data. The seismic texture classification is applied to seismic sections and volumes from the Danish North Sea representing both horizontal stratifications and salt diapers. The attribute succeeded in recognizing both general structure of successions and variations from these. Also, the seismic texture classification is not only able to display variations in prospective areas (1-7 sec. TWT) but can also be applied to deep seismic sections. The seismic texture classification is tested on a deep reflection seismic section (13-18 sec. TWT) from the Baltic Sea. Applied to this section the seismic texture classification succeeded in locating the Moho, which could not be located using conventional interpretation tools. The seismic texture classification is a seismic attribute which can display general reflectivity styles and deviations from these and enhance variations not found by conventional interpretation tools. (LN)

  10. Seismic performance of interior precast concrete beam-column connections with T-section steel inserts under cyclic loading

    Science.gov (United States)

    Ketiyot, Rattapon; Hansapinyo, Chayanon

    2018-04-01

    An experimental investigation was conducted to study the performance of precast beam-column concrete connections using T-section steel inserts into the concrete beam and joint core, under reversed cyclic loading. Six 2/3-scale interior beam-column subassemblies, one monolithic concrete specimen and five precast concrete specimens were tested. One precast specimen was a simple connection for a gravity load resistant design. Other precast specimens were developed with different attributes to improve their seismic performance. The test results showed that the performance of the monolithic specimen M1 represented ductile seismic behavior. Failure of columns and joints could be prevented, and the failure of the frame occurred at the flexural plastic hinge formation at the beam ends, close to the column faces. For the precast specimens, the splitting crack along the longitudinal lapped splice was a major failure. The precast P5 specimen with double steel T-section inserts showed better seismic performance compared to the other precast models. However, the dowel bars connected to the steel inserts were too short to develop a bond. The design of the precast concrete beams with lap splice is needed for longer lap lengths and should be done at the beam mid span or at the low flexural stress region.

  11. Contributions to a shallow aquifer study by reprocessed seismic sections from petroleum exploration surveys, eastern Abu Dhabi, United Arab Emirates

    Science.gov (United States)

    Woodward, D.

    1994-01-01

    The US Geological Survey, in cooperation with the National Drilling Company of Abu Dhabi, is conducting a 4-year study of the fresh and slightly saline groundwater resources of the eastern Abu Dhabi Emirate. Most of this water occurs in a shallow aquifer, generally less than 150 m deep, in the Al Ain area. A critical part of the Al Ain area coincides with a former petroleum concession area where about 2780 km of vibroseis data were collected along 94 seismic lines during 1981-1983. Field methods, acquistion parameters, and section processing were originally designed to enhance reflections expected at depths ranging from 5000 to 6000 m, and subsurface features directly associated with the shallow aquifer system were deleted from the original seismic sections. The original field tapes from the vibroseis survey were reprocessed in an attempt to extract shallow subsurface information (depths less than 550 m) for investigating the shallow aquifer. A unique sequence of reproccessing parameters was established after reviewing the results from many experimental tests. Many enhancements to the resolution of shallow seismic reflections resulted from: (1) application of a 20-Hz, low-cut filter; (2) recomputation of static corrections to a datum nearer the land surface; (3) intensive velocity analyses; and (4) near-trace muting analyses. The number, resolution, and lateral continuity of shallow reflections were greatly enhanced on the reprocessed sections, as was the delineation of shallow, major faults. Reflections on a synthetic seismogram, created from a borehole drilled to a depth of 786 m on seismic line IQS-11, matcheddprecisely with shallow reflections on the reprocessed section. The 33 reprocessed sections were instrumental in preparing a map showing the major structural features that affect the shallow aquifer system. Analysis of the map provides a better understanding of the effect of these shallow features on the regional occurrence, movement, and quality of

  12. Preliminary stratigraphic and hydrogeologic cross sections and seismic profile of the Floridan aquifer system of Broward County, Florida

    Science.gov (United States)

    Reese, Ronald S.; Cunningham, Kevin J.

    2013-01-01

    To help water-resource managers evaluate the Floridan aquifer system (FAS) as an alternative water supply, the U.S. Geological Survey initiated a study, in cooperation with the Broward County Environmental Protection and Growth Management Department, to refine the hydrogeologic framework of the FAS in the eastern part of Broward County. This report presents three preliminary cross sections illustrating stratigraphy and hydrogeology in eastern Broward County as well as an interpreted seismic profile along one of the cross sections. Marker horizons were identified using borehole geophysical data and were initially used to perform well-to-well correlation. Core sample data were integrated with the borehole geophysical data to support stratigraphic and hydrogeologic interpretations of marker horizons. Stratigraphic and hydrogeologic units were correlated across the county using borehole geophysical data from multiple wells. Seismic-reflection data were collected along the Hillsboro Canal. Borehole geophysical data were used to identify and correlate hydrogeologic units in the seismic-reflection profile. Faults and collapse structures that intersect hydrogeologic units were also identified in the seismic profile. The information provided in the cross sections and the seismic profile is preliminary and subject to revision.

  13. Astor Pass Seismic Surveys Preliminary Report

    Energy Technology Data Exchange (ETDEWEB)

    Louie, John [UNR; Pullammanappallil, Satish [Optim; Faulds, James; Eisses, Amy; Kell, Annie; Frary, Roxanna; Kent, Graham

    2011-08-05

    In collaboration with the Pyramid Lake Paiute Tribe (PLPT), the University of Nevada, Reno (UNR) and Optim re-processed, or collected and processed, over 24 miles of 2d seismic-reflection data near the northwest corner of Pyramid Lake, Nevada. The network of 2d land surveys achieved a near-3d density at the Astor Pass geothermal prospect that the PLPT drilled during Nov. 2010 to Feb. 2011. The Bureau of Indian Affairs funded additional seismic work around the Lake, and an extensive, detailed single-channel marine survey producing more than 300 miles of section, imaging more than 120 ft below the Lake bottom. Optim’s land data collection utilized multiple heavy vibrators and recorded over 200 channels live, providing a state-of-the-art reflection-refraction data set. After advanced seismic analysis including first-arrival velocity optimization and prestack depth migration, the 2d sections show clear fault-plane reflections, in some areas as deep as 4000 ft, tying to distinct terminations of the mostly volcanic stratigraphy. Some lines achieved velocity control to 3000 ft depth; all lines show reflections and terminations to 5000 ft depth. Three separate sets of normal faults appear in an initial interpretation of fault reflections and stratigraphic terminations, after loading the data into the OpendTect 3d seismic visualization system. Each preliminary fault set includes a continuous trace more than 3000 ft long, and a swarm of short fault strands. The three preliminary normal-fault sets strike northerly with westward dip, northwesterly with northeast dip, and easterly with north dip. An intersection of all three fault systems documented in the seismic sections at the end of Phase I helped to locate the APS-2 and APS-3 slimholes. The seismic sections do not show the faults connected to the Astor Pass tufa spire, suggesting that we have imaged mostly Tertiary-aged faults. We hypothesize that the Recent, active faults that produced the tufa through hotspring

  14. Seismic re-evaluation of Mochovce nuclear power plant. Seismic reevaluation of civil structures

    International Nuclear Information System (INIS)

    Podrouzek, P.

    1997-01-01

    In this contribution, an overview of seismic design procedures used for reassessment of seismic safety of civil structures at the Mochovce NPP in Slovak Republic presented. As an introduction, the objectives, history, and current status of seismic design of the NPP have been explained. General philosophy of design methods, seismic classification of buildings, seismic data, calculation methods, assumptions on structural behavior under seismic loading and reliability assessment were described in detail in the subsequent section. Examples of calculation models used for dynamic calculations of seismic response are given in the last section. (author)

  15. Toe-of-slope of a Cretaceous carbonate platform in outcrop, seismic model and offshore seismic data (Apulia, Italy)

    Science.gov (United States)

    Bracco Gartner, Guido; Morsilli, Michele; Schlager, Wolfgang; Bosellini, Alfonso

    Synthetic seismic models of outcrops in the Early Cretaceous slope of a carbonate platform on the Gargano Promontory (southern Italy) were compared to an offshore seismic section south of the Promontory. Outcrops of the same age on the promontory have the same sequence stratigraphic characteristics as their offshore equivalent, and are the only areas where the transition from platform to basin of Early Cretaceous is exposed on land. Two adjacent outcrop areas were combined into one seismic-scale lithologic model with the aid of photo mosaics, measured sections, and biostratigraphic data. Velocity, density, and porosity measurements on spot samples were used to construct the impedance model. Seismic models were generated by vertical incidence and finite difference programs. The results indicate that the reflections in the seismic model are controlled by the impedance contrast between low porous intervals rich in debris from the platform and highly porous intervals of pelagic lime mudstone, nearly devoid of debris. Finite difference seismic display showed best resemblance with the real seismic data, especially by mapping a drowning unconformity.

  16. The thin section rock physics: Modeling and measurement of seismic wave velocity on the slice of carbonates

    Energy Technology Data Exchange (ETDEWEB)

    Wardaya, P. D., E-mail: pongga.wardaya@utp.edu.my; Noh, K. A. B. M., E-mail: pongga.wardaya@utp.edu.my; Yusoff, W. I. B. W., E-mail: pongga.wardaya@utp.edu.my [Petroleum Geosciences Department, Universiti Teknologi PETRONAS, Tronoh, Perak, 31750 (Malaysia); Ridha, S. [Petroleum Engineering Department, Universiti Teknologi PETRONAS, Tronoh, Perak, 31750 (Malaysia); Nurhandoko, B. E. B. [Wave Inversion and Subsurface Fluid Imaging Research Laboratory (WISFIR), Dept. of Physics, Institute of Technology Bandung, Bandung, Indonesia and Rock Fluid Imaging Lab, Bandung (Indonesia)

    2014-09-25

    This paper discusses a new approach for investigating the seismic wave velocity of rock, specifically carbonates, as affected by their pore structures. While the conventional routine of seismic velocity measurement highly depends on the extensive laboratory experiment, the proposed approach utilizes the digital rock physics view which lies on the numerical experiment. Thus, instead of using core sample, we use the thin section image of carbonate rock to measure the effective seismic wave velocity when travelling on it. In the numerical experiment, thin section images act as the medium on which wave propagation will be simulated. For the modeling, an advanced technique based on artificial neural network was employed for building the velocity and density profile, replacing image's RGB pixel value with the seismic velocity and density of each rock constituent. Then, ultrasonic wave was simulated to propagate in the thin section image by using finite difference time domain method, based on assumption of an acoustic-isotropic medium. Effective velocities were drawn from the recorded signal and being compared to the velocity modeling from Wyllie time average model and Kuster-Toksoz rock physics model. To perform the modeling, image analysis routines were undertaken for quantifying the pore aspect ratio that is assumed to represent the rocks pore structure. In addition, porosity and mineral fraction required for velocity modeling were also quantified by using integrated neural network and image analysis technique. It was found that the Kuster-Toksoz gives the closer prediction to the measured velocity as compared to the Wyllie time average model. We also conclude that Wyllie time average that does not incorporate the pore structure parameter deviates significantly for samples having more than 40% porosity. Utilizing this approach we found a good agreement between numerical experiment and theoretically derived rock physics model for estimating the effective seismic

  17. The thin section rock physics: Modeling and measurement of seismic wave velocity on the slice of carbonates

    International Nuclear Information System (INIS)

    Wardaya, P. D.; Noh, K. A. B. M.; Yusoff, W. I. B. W.; Ridha, S.; Nurhandoko, B. E. B.

    2014-01-01

    This paper discusses a new approach for investigating the seismic wave velocity of rock, specifically carbonates, as affected by their pore structures. While the conventional routine of seismic velocity measurement highly depends on the extensive laboratory experiment, the proposed approach utilizes the digital rock physics view which lies on the numerical experiment. Thus, instead of using core sample, we use the thin section image of carbonate rock to measure the effective seismic wave velocity when travelling on it. In the numerical experiment, thin section images act as the medium on which wave propagation will be simulated. For the modeling, an advanced technique based on artificial neural network was employed for building the velocity and density profile, replacing image's RGB pixel value with the seismic velocity and density of each rock constituent. Then, ultrasonic wave was simulated to propagate in the thin section image by using finite difference time domain method, based on assumption of an acoustic-isotropic medium. Effective velocities were drawn from the recorded signal and being compared to the velocity modeling from Wyllie time average model and Kuster-Toksoz rock physics model. To perform the modeling, image analysis routines were undertaken for quantifying the pore aspect ratio that is assumed to represent the rocks pore structure. In addition, porosity and mineral fraction required for velocity modeling were also quantified by using integrated neural network and image analysis technique. It was found that the Kuster-Toksoz gives the closer prediction to the measured velocity as compared to the Wyllie time average model. We also conclude that Wyllie time average that does not incorporate the pore structure parameter deviates significantly for samples having more than 40% porosity. Utilizing this approach we found a good agreement between numerical experiment and theoretically derived rock physics model for estimating the effective seismic wave

  18. Tools for educational access to seismic data

    Science.gov (United States)

    Taber, J. J.; Welti, R.; Bravo, T. K.; Hubenthal, M.; Frechette, K.

    2017-12-01

    Student engagement can be increased both by providing easy access to real data, and by addressing newsworthy events such as recent large earthquakes. IRIS EPO has a suite of access and visualization tools that can be used for such engagement, including a set of three tools that allow students to explore global seismicity, use seismic data to determine Earth structure, and view and analyze near-real-time ground motion data in the classroom. These tools are linked to online lessons that are designed for use in middle school through introductory undergraduate classes. The IRIS Earthquake Browser allows discovery of key aspects of plate tectonics, earthquake locations (in pseudo 3D) and seismicity rates and patterns. IEB quickly displays up to 20,000 seismic events over up to 30 years, making it one of the most responsive, practical ways to visualize historical seismicity in a browser. Maps are bookmarkable and preserve state, meaning IEB map links can be shared or worked into a lesson plan. The Global Seismogram Plotter automatically creates visually clear seismic record sections from selected large earthquakes that are tablet-friendly and can also to be printed for use in a classroom without computers. The plots are designed to be appropriate for use with no parameters to set, but users can also modify the plots, such as including a recording station near a chosen location. A guided exercise is provided where students use the record section to discover the diameter of Earth's outer core. Students can pick and compare phase arrival times onscreen which is key to performing the exercise. A companion station map shows station locations and further information and is linked to the record section. jAmaSeis displays seismic data in real-time from either a local instrument and/or from remote seismic stations that stream data using standard seismic data protocols, and can be used in the classroom or as a public display. Users can filter data, fit a seismogram to travel time

  19. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Joel Walls; M.T. Taner; Gary Mavko; Jack Dvorkin

    2002-01-01

    In Section 1 of this first report we will describe the work we are doing to collect and analyze rock physics data for the purpose of modeling seismic attenuation from other measurable quantities such as porosity, water saturation, clay content and net stress. This work and other empirical methods to be presented later, will form the basis for ''Q pseudo-well modeling'' that is a key part of this project. In Section 2 of this report, we will show the fundamentals of a new method to extract Q, dispersion, and attenuation from field seismic data. The method is called Gabor-Morlet time-frequency decomposition. This technique has a number of advantages including greater stability and better time resolution than spectral ratio methods.

  20. A semi-supervised method to detect seismic random noise with fuzzy GK clustering

    International Nuclear Information System (INIS)

    Hashemi, Hosein; Javaherian, Abdolrahim; Babuska, Robert

    2008-01-01

    We present a new method to detect random noise in seismic data using fuzzy Gustafson–Kessel (GK) clustering. First, using an adaptive distance norm, a matrix is constructed from the observed seismic amplitudes. The next step is to find centres of ellipsoidal clusters and construct a partition matrix which determines the soft decision boundaries between seismic events and random noise. The GK algorithm updates the cluster centres in order to iteratively minimize the cluster variance. Multiplication of the fuzzy membership function with values of each sample yields new sections; we name them 'clustered sections'. The seismic amplitude values of the clustered sections are given in a way to decrease the level of noise in the original noisy seismic input. In pre-stack data, it is essential to study the clustered sections in a f–k domain; finding the quantitative index for weighting the post-stack data needs a similar approach. Using the knowledge of a human specialist together with the fuzzy unsupervised clustering, the method is a semi-supervised random noise detection. The efficiency of this method is investigated on synthetic and real seismic data for both pre- and post-stack data. The results show a significant improvement of the input noisy sections without harming the important amplitude and phase information of the original data. The procedure for finding the final weights of each clustered section should be carefully done in order to keep almost all the evident seismic amplitudes in the output section. The method interactively uses the knowledge of the seismic specialist in detecting the noise

  1. GPS measurements of crustal deformation across the southern Arava Valley section of the Dead Sea Fault and implications to regional seismic hazard assessment

    Science.gov (United States)

    Hamiel, Yariv; Masson, Frederic; Piatibratova, Oksana; Mizrahi, Yaakov

    2018-01-01

    Detailed analysis of crustal deformation along the southern Arava Valley section of the Dead Sea Fault is presented. Using dense GPS measurements we obtain the velocities of new near- and far-field campaign stations across the fault. We find that this section is locked with a locking depth of 19.9 ± 7.7 km and a slip rate of 5.0 ± 0.8 mm/yr. The geodetically determined locking depth is found to be highly consistent with the thickness of the seismogenic zone in this region. Analysis of instrumental seismic record suggests that only 1% of the total seismic moment accumulated since the last large event occurred about 800 years ago, was released by small to moderate earthquakes. Historical and paleo-seismic catalogs of this region together with instrumental seismic data and calculations of Coulomb stress changes induced by the 1995 Mw 7.2 Nuweiba earthquake suggest that the southern Arava Valley section of the Dead Sea Fault is in the late stage of the current interseismic period.

  2. Seismic evaluation of existing nuclear power plants

    International Nuclear Information System (INIS)

    2003-01-01

    The IAEA nuclear safety standards publications address the site evaluation and the design of new nuclear power plants (NPPs), including seismic hazard assessment and safe seismic design, at the level of the Safety Requirements as well as at the level of dedicated Safety Guides. It rapidly became apparent that the existing nuclear safety standards documents were not adequate for handling specific issues in the seismic evaluation of existing NPPs, and that a dedicated document was necessary. This is the purpose of this Safety Report, which is written in the spirit of the nuclear safety standards and can be regarded as guidance for the interpretation of their intent. Worldwide experience shows that an assessment of the seismic capacity of an existing operating facility can be prompted for the following: (a) Evidence of a greater seismic hazard at the site than expected before, owing to new or additional data and/or to new methods; (b) Regulatory requirements, such as periodic safety reviews, to ensure that the plant has adequate margins for seismic loads; (c) Lack of anti-seismic design or poor anti-seismic design; (d) New technical finding such as vulnerability of some structures (masonry walls) or equipment (relays), other feedback and new experience from real earthquakes. Post-construction evaluation programmes evaluate the current capability of the plant to withstand the seismic concern and identify any necessary upgrades or changes in operating procedures. Seismic qualification is distinguished from seismic evaluation primarily in that seismic qualification is intended to be performed at the design stage of a plant, whereas seismic evaluation is intended to be applied after a plant has been constructed. Although some guidelines do exist for the evaluation of existing NPPs, these are not established at the level of a regulatory guide or its equivalent. Nevertheless, a number of existing NPPs throughout the world have been and are being subjected to review of their

  3. Seismicity, seismic input and site effects in the Sahel-Algiers region (north Algeria)

    International Nuclear Information System (INIS)

    Harbi, A.; Maouche, S.; Oussadou, F.; Vaccari, F.; Aoudia, A.; Panza, G.F.; Benouar, D.

    2005-07-01

    Algiers city is located in a seismogenic zone. To reduce the impact of seismic risk in this capital city, a realistic modelling of the seismic ground motion using the hybrid method that combines the finite-differences method and the modal summation, is conducted. For this purpose, a complete database in terms of geological, geophysical and earthquake data is constructed. A critical re-appraisal of the seismicity of the zone (2.25 deg. E-3.50 deg. E, 36.50 deg. N-37.00 deg. N) is performed and an earthquake list, for the period 1359-2002, is compiled. The analysis of existing and newly retrieved macroseismic information allowed the definition of earthquake parameters of macroseismic events for which a degree of reliability is assigned. Geological cross-sections have been built up to model the seismic ground motion in the city, caused by the 1989 Mont-Chenoua and the 1924 Douera earthquakes; a set of synthetic seismograms and response spectral ratio is produced for Algiers. The numerical results show that the soft sediments in Algiers centre are responsible of the noticed amplification of the seismic ground motion. (author)

  4. Experimental Research on Seismic Performance of Four-Element Variable Cross-Sectional Concrete Filled Steel Tubular Laced Columns

    Science.gov (United States)

    Ou, Zhijing; Lin, Jianmao; Chen, Shengfu; Lin, Wen

    2017-10-01

    A total of 7 experimental tests were conducted to investigate seismic performance of four element variable cross-sectional Concrete Filled Steel Tubular (CFST) laced columns. The experimental parameters are longitudinal slope and arrangement type of lacing tubes. The rules on hysteresis loop, ductility, energy expenditure, and stiffness degradation of specimens are researched. Test results indicate that all specimens have good seismic performance; their hysteresis loops are full without obvious shrinkage. With the increase of longitudinal slope, the horizontal carrying capacity increases, energy dissipation capacity improve, and there is slightly increase in stiffness degradation. The influence of arrangement type of lacing tubes on displacement ductility of specimens is big.

  5. Integrated seismic interpretation of the Carlsberg Fault zone, Copenhagen, Denmark

    DEFF Research Database (Denmark)

    Nielsen, Lars; Thybo, Hans; Jørgensen, Mette Iwanouw

    2005-01-01

    the fault zone. The fault zone is a shadow zone to shots detonated outside the fault zone. Finite-difference wavefield modelling supports the interpretations of the fan recordings. Our fan recording approach facilitates cost-efficient mapping of fault zones in densely urbanized areas where seismic normal......We locate the concealed Carlsberg Fault zone along a 12-km-long trace in the Copenhagen city centre by seismic refraction, reflection and fan profiling. The Carlsberg Fault is located in a NNW-SSE striking fault system in the border zone between the Danish Basin and the Baltic Shield. Recent...... earthquakes indicate that this area is tectonically active. A seismic refraction study across the Carlsberg Fault shows that the fault zone is a low-velocity zone and marks a change in seismic velocity structure. A normal incidence reflection seismic section shows a coincident flower-like structure. We have...

  6. Establishing seismic design criteria to achieve an acceptable seismic margin

    International Nuclear Information System (INIS)

    Kennedy, R.P.

    1997-01-01

    In order to develop a risk based seismic design criteria the following four issues must be addressed: (1) What target annual probability of seismic induced unacceptable performance is acceptable? (2). What minimum seismic margin is acceptable? (3) Given the decisions made under Issues 1 and 2, at what annual frequency of exceedance should the Safe Shutdown Earthquake ground motion be defined? (4) What seismic design criteria should be established to reasonably achieve the seismic margin defined under Issue 2? The first issue is purely a policy decision and is not addressed in this paper. Each of the other three issues are addressed. Issues 2 and 3 are integrally tied together so that a very large number of possible combinations of responses to these two issues can be used to achieve the target goal defined under Issue 1. Section 2 lays out a combined approach to these two issues and presents three potentially attractive combined resolutions of these two issues which reasonably achieves the target goal. The remainder of the paper discusses an approach which can be used to develop seismic design criteria aimed at achieving the desired seismic margin defined in resolution of Issue 2. Suggestions for revising existing seismic design criteria to more consistently achieve the desired seismic margin are presented

  7. DEFORMATION WAVES AS A TRIGGER MECHANISM OF SEISMIC ACTIVITY IN SEISMIC ZONES OF THE CONTINENTAL LITHOSPHERE

    Directory of Open Access Journals (Sweden)

    S. I. Sherman

    2013-01-01

    Full Text Available Deformation waves as a trigger mechanism of seismic activity and migration of earthquake foci have been under discussion by researchers in seismology and geodynamics for over 50 years. Four sections of this article present available principal data on impacts of wave processes on seismicity and new data. The first section reviews analytical and experimental studies aimed at identification of relationships between wave processes in the lithosphere and seismic activity manifested as space-and-time migration of individual earthquake foci or clusters of earthquakes. It is concluded that with a systematic approach, instead of using a variety of terms to denote waves that trigger seismic process in the lithosphere, it is reasonable to apply the concise definition of ‘deformation waves’, which is most often used in fact.The second section contains a description of deformation waves considered as the trigger mechanism of seismic activity. It is concluded that a variety of methods are applied to identify deformation waves, and such methods are based on various research methods and concepts that naturally differ in sensitivity concerning detection of waves and/or impact of the waves on seismic process. Epicenters of strong earthquakes are grouped into specific linear or arc-shaped systems, which common criterion is the same time interval of the occurrence of events under analysis. On site the systems compose zones with similar time sequences, which correspond to the physical notion of moving waves (Fig. 9. Periods of manifestation of such waves are estimated as millions of years, and a direct consideration of the presence of waves and wave parameters is highly challenging. In the current state-of-the-art, geodynamics and seismology cannot provide any other solution yet.The third section presents a solution considering record of deformation waves in the lithosphere. With account of the fact that all the earthquakes with М≥3.0 are associated with

  8. Seismic Structural Setting of Western Farallon Basin, Southern Gulf of California, Mexico.

    Science.gov (United States)

    Pinero-Lajas, D.; Gonzalez-Fernandez, A.; Lopez-Martinez, M.; Lonsdale, P.

    2007-05-01

    Data from a number of high resolution 2D multichannel seismic (MCS) lines were used to investigate the structure and stratigraphy of the western Farallon basin in the southern Gulf of California. A Generator-Injector air gun provided a clean seismic source shooting each 12 s at a velocity of 6 kts. Each signal was recorded during 6- 8 s, at a sampling interval of 1 ms, by a 600 m long digital streamer with 48 channels and a spacing of 12.5 m. The MCS system was installed aboard CICESE's (Centro de Investigacion Cientifica y de Educacion Superior de Ensenada) 28 m research vessel Francisco de Ulloa. MCS data were conventionally processed, to obtain post- stack time-migrated seismic sections. The MCS seismic sections show a very detailed image of the sub-bottom structure up to 2-3 s two-way travel time (aprox. 2 km). We present detailed images of faulting based on the high resolution and quality of these data. Our results show distributed faulting with many active and inactive faults. Our study also constrains the depth to basement near the southern Baja California eastern coast. The acoustic basement appears as a continuous feature in the western part of the study area and can be correlated with some granite outcrops located in the southern Gulf of California islands. To the East, near the center of the Farallon basin, the acoustic basement changes, it is more discontinuous, and the seismic sections show a number of diffracted waves.

  9. Seismic evaluation of the Mors Dome

    International Nuclear Information System (INIS)

    Kreitz, E.

    1982-01-01

    The ''Seismic Case History'' of the Mors saltdome was already published in detail by ELSAM/ELKRAFT so only a few important points need to be mentioned here: (a) Processing and interpretation of the seismic material. (b) Stratigraphic classification of the most important seismic reflection horizons. (c) Construction of the depth sections and description of the saltdome model. (d) Investigations of the problematic salt overhang using interactive seismic modelling. (EG)

  10. Pushover Analysis of Steel Seismic Resistant Frames with Reduced Web Section and Reduced Beam Section Connections

    Directory of Open Access Journals (Sweden)

    Daniel Tomas Naughton

    2017-10-01

    Full Text Available The widespread brittle failure of welded beam-to-column connections caused by the 1994 Northridge and 1995 Kobe earthquakes highlighted the need for retrofitting measures effective in reducing the strength demand imposed on connections under cyclic loading. Researchers presented the reduced beam section (RBS as a viable option to create a weak zone away from the connection, aiding the prevention of brittle failure at the connection weld. More recently, an alternative connection known as a reduced web section (RWS has been developed as a potential replacement, and initial studies show ideal performance in terms of rotational capacity and ductility. This study performs a series of non-linear static pushover analyses using a modal load case on three steel moment-resisting frames of 4-, 8-, and 16-storeys. The frames are studied with three different connection arrangements; fully fixed moment connections, RBSs and RWSs, in order to compare the differences in capacity curves, inter-storey drifts, and plastic hinge formation. The seismic-resistant connections have been modeled as non-linear hinges in ETABS, and their behavior has been defined by moment-rotation curves presented in previous recent research studies. The frames are displacement controlled to the maximum displacement anticipated in an earthquake with ground motions having a 2% probability of being exceeded in 50 years. The study concludes that RWSs perform satisfactorily when compared with frames with fully fixed moment connections in terms of providing consistent inter-storey drifts without drastic changes in drift between adjacent storeys in low- to mid-rise frames, without significantly compromising the overall strength capacity of the frames. The use of RWSs in taller frames causes an increase in inter-storey drifts in the lower storeys, as well as causing a large reduction in strength capacity (33%. Frames with RWSs behave comparably to frames with RBSs and are deemed a suitable

  11. An analysis of the first-arrival times picked on the DSS and wide-angle seismic section recorded in Italy since 1968

    Directory of Open Access Journals (Sweden)

    R. Tondi

    2004-06-01

    Full Text Available We performed an analysis of refraction data recorded in Italy since 1968 in the frame of the numerous deep seismic sounding and wide-angle reflection/refraction projects. The aims of this study are to construct a parametric database including the recording geometric information relative to each profile, the phase pickings and the results of some kinematic analyses performed on the data, and to define a reference 1D velocity model for the Italian territory from all the available refraction data. As concerns the first goal, for each seismic section we picked the P-wave first-arrival-times, evaluated the uncertainties of the arrival-times pickings and determined from each travel time-offset curve the 1D velocity model. The study was performed on 419 seismic sections. Picking was carried out manually by an algorithm which includes the computation of three picking functions and the picking- error estimation. For each of the travel time-offset curves a 1D velocity model has been calculated. Actually, the 1D velocity-depth functions were estimated in three different ways which assume: a constant velocitygradient model, a varying velocity-gradient model and a layered model. As regards the second objective of this work, a mean 1D velocity model for the Italian crust was defined and compared with those used for earthquake hypocentre locations and seismic tomographic studies by different institutions operating in the Italian area, to assess the significance of the model obtained. This model can be used in future works as input for a next joint tomographic inversion of active and passive seismic data.

  12. Recent developments in seismic seabed oil reservoir monitoring applications using fibre-optic sensing networks

    International Nuclear Information System (INIS)

    De Freitas, J M

    2011-01-01

    This review looks at recent developments in seismic seabed oil reservoir monitoring techniques using fibre-optic sensing networks. After a brief introduction covering the background and scope of the review, the following section focuses on state-of-the-art fibre-optic hydrophones and accelerometers used for seismic applications. Related metrology aspects of the sensor such as measurement of sensitivity, noise and cross-axis performance are addressed. The third section focuses on interrogation systems. Two main phase-based competing systems have emerged over the past two decades for seismic applications, with a third technique showing much promise; these have been compared in terms of general performance. (topical review)

  13. Seismic Responses of Shot Span Bridge under Three Different Patterns of Earthquake Excitations

    International Nuclear Information System (INIS)

    Zhou Daochuan; Chen Guorong; Lu Yan

    2010-01-01

    This paper presents a study of the influence of three different types of seismic input methods on the longitudinal seismic response of a short, three-span, variable cross-section, reinforced concrete bridge. Research progress of the seismic model is introduced briefly. Finite element model is created for the bridge and time history analysis conducted. Three different types of illustrative excitations are considered: 1) the EI-Centro seismic wave is used as uniform excitations at all bridge supports; 2) fixed apparent wave velocity is used for response analysis of traveling wave excitations on the bridge; 3) conforming to a selected coherency model, the multiple seismic excitation time histories considering spatially variable effects are generated. The contrast study of the response analysis result under the three different seismic excitations is conducted and the influence of different seismic input methods is studied. The comparative analysis of the bridge model shows that the uniform ground motion input can not provide conservative seismic demands-in a number of cases it results in lower response than that predicted by multiple seismic excitations. The result of uniform excitation and traveling wave excitation shows very small difference. Consequently, multiple seismic excitations needs to be applied at the bridge supports for response analysis of short span bridge.

  14. A seismic fault recognition method based on ant colony optimization

    Science.gov (United States)

    Chen, Lei; Xiao, Chuangbai; Li, Xueliang; Wang, Zhenli; Huo, Shoudong

    2018-05-01

    Fault recognition is an important section in seismic interpretation and there are many methods for this technology, but no one can recognize fault exactly enough. For this problem, we proposed a new fault recognition method based on ant colony optimization which can locate fault precisely and extract fault from the seismic section. Firstly, seismic horizons are extracted by the connected component labeling algorithm; secondly, the fault location are decided according to the horizontal endpoints of each horizon; thirdly, the whole seismic section is divided into several rectangular blocks and the top and bottom endpoints of each rectangular block are considered as the nest and food respectively for the ant colony optimization algorithm. Besides that, the positive section is taken as an actual three dimensional terrain by using the seismic amplitude as a height. After that, the optimal route from nest to food calculated by the ant colony in each block is judged as a fault. Finally, extensive comparative tests were performed on the real seismic data. Availability and advancement of the proposed method were validated by the experimental results.

  15. Seismic Studies

    Energy Technology Data Exchange (ETDEWEB)

    R. Quittmeyer

    2006-09-25

    This technical work plan (TWP) describes the efforts to develop and confirm seismic ground motion inputs used for preclosure design and probabilistic safety 'analyses and to assess the postclosure performance of a repository at Yucca Mountain, Nevada. As part of the effort to develop seismic inputs, the TWP covers testing and analyses that provide the technical basis for inputs to the seismic ground-motion site-response model. The TWP also addresses preparation of a seismic methodology report for submission to the U.S. Nuclear Regulatory Commission (NRC). The activities discussed in this TWP are planned for fiscal years (FY) 2006 through 2008. Some of the work enhances the technical basis for previously developed seismic inputs and reduces uncertainties and conservatism used in previous analyses and modeling. These activities support the defense of a license application. Other activities provide new results that will support development of the preclosure, safety case; these results directly support and will be included in the license application. Table 1 indicates which activities support the license application and which support licensing defense. The activities are listed in Section 1.2; the methods and approaches used to implement them are discussed in more detail in Section 2.2. Technical and performance objectives of this work scope are: (1) For annual ground motion exceedance probabilities appropriate for preclosure design analyses, provide site-specific seismic design acceleration response spectra for a range of damping values; strain-compatible soil properties; peak motions, strains, and curvatures as a function of depth; and time histories (acceleration, velocity, and displacement). Provide seismic design inputs for the waste emplacement level and for surface sites. Results should be consistent with the probabilistic seismic hazard analysis (PSHA) for Yucca Mountain and reflect, as appropriate, available knowledge on the limits to extreme ground

  16. Seismic Studies

    International Nuclear Information System (INIS)

    R. Quittmeyer

    2006-01-01

    This technical work plan (TWP) describes the efforts to develop and confirm seismic ground motion inputs used for preclosure design and probabilistic safety 'analyses and to assess the postclosure performance of a repository at Yucca Mountain, Nevada. As part of the effort to develop seismic inputs, the TWP covers testing and analyses that provide the technical basis for inputs to the seismic ground-motion site-response model. The TWP also addresses preparation of a seismic methodology report for submission to the U.S. Nuclear Regulatory Commission (NRC). The activities discussed in this TWP are planned for fiscal years (FY) 2006 through 2008. Some of the work enhances the technical basis for previously developed seismic inputs and reduces uncertainties and conservatism used in previous analyses and modeling. These activities support the defense of a license application. Other activities provide new results that will support development of the preclosure, safety case; these results directly support and will be included in the license application. Table 1 indicates which activities support the license application and which support licensing defense. The activities are listed in Section 1.2; the methods and approaches used to implement them are discussed in more detail in Section 2.2. Technical and performance objectives of this work scope are: (1) For annual ground motion exceedance probabilities appropriate for preclosure design analyses, provide site-specific seismic design acceleration response spectra for a range of damping values; strain-compatible soil properties; peak motions, strains, and curvatures as a function of depth; and time histories (acceleration, velocity, and displacement). Provide seismic design inputs for the waste emplacement level and for surface sites. Results should be consistent with the probabilistic seismic hazard analysis (PSHA) for Yucca Mountain and reflect, as appropriate, available knowledge on the limits to extreme ground motion at

  17. Enhanced Structural Interpretation Using Multitrace Seismic Attribute For Oligo-Miocene Target at Madura Strait Offshore

    Science.gov (United States)

    Pratama Wahyu Hidayat, Putra; Hary Murti, Antonius; Sudarmaji; Shirly, Agung; Tiofan, Bani; Damayanti, Shinta

    2018-03-01

    Geometry is an important parameter for the field of hydrocarbon exploration and exploitation, it has significant effect to the amount of resources or reserves, rock spreading, and risk analysis. The existence of geological structure or fault becomes one factor affecting geometry. This study is conducted as an effort to enhance seismic image quality in faults dominated area namely offshore Madura Strait. For the past 10 years, Oligo-Miocene carbonate rock has been slightly explored on Madura Strait area, the main reason because migration and trap geometry still became risks to be concern. This study tries to determine the boundary of each fault zone as subsurface image generated by converting seismic data into variance attribute. Variance attribute is a multitrace seismic attribute as the derivative result from amplitude seismic data. The result of this study shows variance section of Madura Strait area having zero (0) value for seismic continuity and one (1) value for discontinuity of seismic data. Variance section shows the boundary of RMKS fault zone with Kendeng zone distinctly. Geological structure and subsurface geometry for Oligo-Miocene carbonate rock could be identified perfectly using this method. Generally structure interpretation to identify the boundary of fault zones could be good determined by variance attribute.

  18. 2D Seismic Reflection Data across Central Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Valerie; Leetaru, Hannes

    2014-09-30

    interpretation of the Mt. Simon and Knox sections difficult. The data quality also gradually decreased moving westward across the state. To meet evolving project objectives, in 2012 the seismic data was re-processed using different techniques to enhance the signal quality thereby rendering a more coherent seismic profile for interpreters. It is believed that the seismic degradation could be caused by shallow natural gas deposits and Quaternary sediments (which include abandoned river and stream channels, former ponds, and swamps with peat deposits) that may have complicated or changed the seismic wavelet. Where previously limited by seismic coverage, the seismic profiles have provided valuable subsurface information across central Illinois. Some of the interpretations based on this survey included, but are not limited to: - Stratigraphy generally gently dips to the east from Morgan to Douglas County. - The Knox Supergroup roughly maintains its thickness. There is little evidence for faulting in the Knox. However, at least one resolvable fault penetrates the entire Knox section. - The Eau Claire Formation, the primary seal for the Mt. Simon Sandstone, appears to be continuous across the entire seismic profile. - The Mt. Simon Sandstone thins towards the western edge of the basin. As a result, the highly porous lowermost Mt. Simon section is absent in the western part of the state. - Overall basement dip is from west to east. - Basement topography shows evidence of basement highs with on-lapping patterns by Mt. Simon sediments. - There is evidence of faults within the lower Mt. Simon Sandstone and basement rock that are contemporaneous with Mt. Simon Sandstone deposition. These faults are not active and do not penetrate the Eau Claire Shale. It is believed that these faults are associated with a possible failed rifting event 750 to 560 million years ago during the breakup of the supercontinent Rodinia.

  19. New seismic sources parameterization in El Salvador. Implications to seismic hazard.

    Science.gov (United States)

    Alonso-Henar, Jorge; Staller, Alejandra; Jesús Martínez-Díaz, José; Benito, Belén; Álvarez-Gómez, José Antonio; Canora, Carolina

    2014-05-01

    El Salvador is located at the pacific active margin of Central America, here, the subduction of the Cocos Plate under the Caribbean Plate at a rate of ~80 mm/yr is the main seismic source. Although the seismic sources located in the Central American Volcanic Arc have been responsible for some of the most damaging earthquakes in El Salvador. The El Salvador Fault Zone is the main geological structure in El Salvador and accommodates 14 mm/yr of horizontal displacement between the Caribbean Plate and the forearc sliver. The ESFZ is a right lateral strike-slip fault zone c. 150 km long and 20 km wide .This shear band distributes the deformation among strike-slip faults trending N90º-100ºE and secondary normal faults trending N120º- N170º. The ESFZ is relieved westward by the Jalpatagua Fault and becomes less clear eastward disappearing at Golfo de Fonseca. Five sections have been proposed for the whole fault zone. These fault sections are (from west to east): ESFZ Western Section, San Vicente Section, Lempa Section, Berlin Section and San Miguel Section. Paleoseismic studies carried out in the Berlin and San Vicente Segments reveal an important amount of quaternary deformation and paleoearthquakes up to Mw 7.6. In this study we present 45 capable seismic sources in El Salvador and their preliminary slip-rate from geological and GPS data. The GPS data detailled results are presented by Staller et al., 2014 in a complimentary communication. The calculated preliminary slip-rates range from 0.5 to 8 mm/yr for individualized faults within the ESFZ. We calculated maximum magnitudes from the mapped lengths and paleoseismic observations.We propose different earthquakes scenario including the potential combined rupture of different fault sections of the ESFZ, resulting in maximum earthquake magnitudes of Mw 7.6. We used deterministic models to calculate acceleration distribution related with maximum earthquakes of the different proposed scenario. The spatial distribution of

  20. Spectral Decomposition and Other Seismic Attributes for Gas Hydrate Prospecting

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, Dan

    2018-02-25

    Studying the sediments at the base of gas hydrate stability is ideal for determining the seismic response to gas hydrate saturation. First, assuming gas migration to the shallow section, this area is more likely to have concentrated gas hydrate because it encompasses the zone in which upward moving buoyant gas transitions to form immobile gas hydrate deposits. Second, this zone is interesting because these areas have the potential to show a hydrate filled zone and a gas filled zone within the same sediments. Third, the fundamental measurement within seismic data is impedance contrasts between velocity*density layers. High saturation gas hydrates and free gas inhabit opposite ends of these measurements making the study of this zone ideal for investigating the seismic characteristics of gas hydrate and, hence, the investigation of other seismic attributes that may indicate gas hydrate fill.

  1. Relating seismicity to the velocity structure of the San Andreas Fault near Parkfield, CA

    Science.gov (United States)

    Lippoldt, Rachel; Porritt, Robert W.; Sammis, Charles G.

    2017-06-01

    The central section of the San Andreas Fault (SAF) displays a range of seismic phenomena including normal earthquakes, low-frequency earthquakes (LFE), repeating microearthquakes (REQ) and aseismic creep. Although many lines of evidence suggest that LFEs are tied to the presence of fluids, their geological setting is still poorly understood. Here, we map the seismic velocity structures associated with LFEs beneath the central SAF using surface wave tomography from ambient seismic noise to provide constraints on the physical conditions that control LFE occurrence. Fault perpendicular sections show that the SAF, as revealed by lateral contrasts in relative velocities, is contiguous to depths of 50 km and appears to be relatively localized at depths between about 15 and 30 km. This is consistent with the hypothesis that LFEs are shear-slip events on a deep extension of the SAF. We find that along strike variations in seismic behaviour correspond to changes in the seismic structure, which support proposed connections between fluids and seismicity. LFEs and REQs occur within low-velocity structures, suggesting that the presence of fluids, weaker minerals, or hydrous phase minerals may play an important role in the generation of slow-slip phenomena.

  2. Coherent Waves in Seismic Researches

    Science.gov (United States)

    Emanov, A.; Seleznev, V. S.

    2013-05-01

    Development of digital processing algorithms of seismic wave fields for the purpose of useful event picking to study environment and other objects is the basis for the establishment of new seismic techniques. In the submitted paper a fundamental property of seismic wave field coherence is used. The authors extended conception of coherence types of observed wave fields and devised a technique of coherent component selection from observed wave field. Time coherence and space coherence are widely known. In this paper conception "parameter coherence" has been added. The parameter by which wave field is coherent can be the most manifold. The reason is that the wave field is a multivariate process described by a set of parameters. Coherence in the first place means independence of linear connection in wave field of parameter. In seismic wave fields, recorded in confined space, in building-blocks and stratified mediums time coherent standing waves are formed. In prospecting seismology at observation systems with multiple overlapping head waves are coherent by parallel correlation course or, in other words, by one measurement on generalized plane of observation system. For detail prospecting seismology at observation systems with multiple overlapping on basis of coherence property by one measurement of area algorithms have been developed, permitting seismic records to be converted to head wave time sections which have neither reflected nor other types of waves. Conversion in time section is executed on any specified observation base. Energy storage of head waves relative to noise on basis of multiplicity of observation system is realized within area of head wave recording. Conversion on base below the area of wave tracking is performed with lack of signal/noise ratio relative to maximum of this ratio, fit to observation system. Construction of head wave time section and dynamic plots a basis of automatic processing have been developed, similar to CDP procedure in method of

  3. Risk based seismic design criteria

    International Nuclear Information System (INIS)

    Kennedy, R.P.

    1999-01-01

    In order to develop a risk based seismic design criteria the following four issues must be addressed: (1) What target annual probability of seismic induced unacceptable performance is acceptable? (2) What minimum seismic margin is acceptable? (3) Given the decisions made under Issues 1 and 2, at what annual frequency of exceedance should the safe-shutdown-earthquake (SSE) ground motion be defined? (4) What seismic design criteria should be established to reasonably achieve the seismic margin defined under Issue 2? The first issue is purely a policy decision and is not addressed in this paper. Each of the other three issues are addressed. Issues 2 and 3 are integrally tied together so that a very large number of possible combinations of responses to these two issues can be used to achieve the target goal defined under Issue 1. Section 2 lays out a combined approach to these two issues and presents three potentially attractive combined resolutions of these two issues which reasonably achieves the target goal. The remainder of the paper discusses an approach which can be used to develop seismic design criteria aimed at achieving the desired seismic margin defined in resolution of Issue 2. Suggestions for revising existing seismic design criteria to more consistently achieve the desired seismic margin are presented. (orig.)

  4. Seismic properties of lawsonite eclogites from the southern Motagua fault zone, Guatemala

    Science.gov (United States)

    Kim, Daeyeong; Wallis, Simon; Endo, Shunsuke; Ree, Jin-Han

    2016-05-01

    We present new data on the crystal preferred orientation (CPO) and seismic properties of omphacite and lawsonite in extremely fresh eclogite from the southern Motagua fault zone, Guatemala, to discuss the seismic anisotropy of subducting oceanic crust. The CPO of omphacite is characterized by (010)[001], and it shows P-wave seismic anisotropies (AVP) of 1.4%-3.2% and S-wave seismic anisotropies (AVS) of 1.4%-2.7%. Lawsonite exhibits (001) planes parallel to the foliation and [010] axes parallel to the lineation, and seismic anisotropies of 1.7%-6.6% AVP and 3.4%-14.7% AVS. The seismic anisotropy of a rock mass consisting solely of omphacite and lawsonite is 1.2%-4.1% AVP and 1.8%-6.8% AVS. For events that propagate more or less parallel to the maximum extension direction, X, the fast S-wave velocity (VS) polarization is parallel to the Z in the Y-Z section (rotated from the X-Z section), causing trench-normal seismic anisotropy for orthogonal subduction. Based on the high modal abundance and strong fabric of lawsonite, the AVS of eclogites is estimated as ~ 11.7% in the case that lawsonite makes up ~ 75% of the rock mass. On this basis, we suggest that lawsonite in both blueschist and eclogite may play important roles in the formation of complex pattern of seismic anisotropy observed in NE Japan: weak trench-parallel anisotropy in the forearc basin domains and trench-normal anisotropy in the backarc region.

  5. Seismic hazard estimation based on the distributed seismicity in northern China

    Science.gov (United States)

    Yang, Yong; Shi, Bao-Ping; Sun, Liang

    2008-03-01

    In this paper, we have proposed an alternative seismic hazard modeling by using distributed seismicites. The distributed seismicity model does not need delineation of seismic source zones, and simplify the methodology of probabilistic seismic hazard analysis. Based on the devastating earthquake catalogue, we established three seismicity model, derived the distribution of a-value in northern China by using Gaussian smoothing function, and calculated peak ground acceleration distributions for this area with 2%, 5% and 10% probability of exceedance in a 50-year period by using three attenuation models, respectively. In general, the peak ground motion distribution patterns are consistent with current seismic hazard map of China, but in some specific seismic zones which include Shanxi Province and Shijiazhuang areas, our results indicated a little bit higher peak ground motions and zonation characters which are in agreement with seismicity distribution patterns in these areas. The hazard curves have been developed for Beijing, Tianjin, Taiyuan, Tangshan, and Ji’nan, the metropolitan cities in the northern China. The results showed that Tangshan, Taiyuan, Beijing has a higher seismic hazard than that of other cities mentioned above.

  6. Seismic Consequence Abstraction

    International Nuclear Information System (INIS)

    Gross, M.

    2004-01-01

    The primary purpose of this model report is to develop abstractions for the response of engineered barrier system (EBS) components to seismic hazards at a geologic repository at Yucca Mountain, Nevada, and to define the methodology for using these abstractions in a seismic scenario class for the Total System Performance Assessment - License Application (TSPA-LA). A secondary purpose of this model report is to provide information for criticality studies related to seismic hazards. The seismic hazards addressed herein are vibratory ground motion, fault displacement, and rockfall due to ground motion. The EBS components are the drip shield, the waste package, and the fuel cladding. The requirements for development of the abstractions and the associated algorithms for the seismic scenario class are defined in ''Technical Work Plan For: Regulatory Integration Modeling of Drift Degradation, Waste Package and Drip Shield Vibratory Motion and Seismic Consequences'' (BSC 2004 [DIRS 171520]). The development of these abstractions will provide a more complete representation of flow into and transport from the EBS under disruptive events. The results from this development will also address portions of integrated subissue ENG2, Mechanical Disruption of Engineered Barriers, including the acceptance criteria for this subissue defined in Section 2.2.1.3.2.3 of the ''Yucca Mountain Review Plan, Final Report'' (NRC 2003 [DIRS 163274])

  7. Seismic Consequence Abstraction

    Energy Technology Data Exchange (ETDEWEB)

    M. Gross

    2004-10-25

    The primary purpose of this model report is to develop abstractions for the response of engineered barrier system (EBS) components to seismic hazards at a geologic repository at Yucca Mountain, Nevada, and to define the methodology for using these abstractions in a seismic scenario class for the Total System Performance Assessment - License Application (TSPA-LA). A secondary purpose of this model report is to provide information for criticality studies related to seismic hazards. The seismic hazards addressed herein are vibratory ground motion, fault displacement, and rockfall due to ground motion. The EBS components are the drip shield, the waste package, and the fuel cladding. The requirements for development of the abstractions and the associated algorithms for the seismic scenario class are defined in ''Technical Work Plan For: Regulatory Integration Modeling of Drift Degradation, Waste Package and Drip Shield Vibratory Motion and Seismic Consequences'' (BSC 2004 [DIRS 171520]). The development of these abstractions will provide a more complete representation of flow into and transport from the EBS under disruptive events. The results from this development will also address portions of integrated subissue ENG2, Mechanical Disruption of Engineered Barriers, including the acceptance criteria for this subissue defined in Section 2.2.1.3.2.3 of the ''Yucca Mountain Review Plan, Final Report'' (NRC 2003 [DIRS 163274]).

  8. Interpretation of seismic reflection data, Central Palo Duro Basin: Technical report

    International Nuclear Information System (INIS)

    1986-11-01

    Seismic reflection data from the Central Palo Duro Basin, Texas, were studied to identify and characterize geologic structure, potential hydrocarbon traps, and anomalies suggesting adverse features such as salt dissolution or diapirism. The data included seismic reflection data, geologic and geophysical data controlled by Stone and Webster Engineering Corporation, and data from the literature. These data comprised approximately 590 line-mi of seismic profiles over approximately 4000 mi 2 , plus well logs from 308 wells. The study addressed the section from shallow reflectors down to basement. Structural contour maps were prepared for the Upper San Andres, Near Top of Glorieta, Wolfcamp, and Precambrian horizons. Isopach maps were prepared for intervals between the Upper and Lower San Andres and between the Upper San Andres and the Wolfcamp. Interpretation indicates southeasterly dips in the northwest part of the mapped area and southwesterly dips in the southwest part. Geologic structures show a generally northwest alignment. Faults at the Precambrian level and geologic structures show a generally northwest alignment. Faulting in the area is largely limited to the Precambrian, but interpretation is uncertain. Evidence of post-Wolfcampian faulting is not recognized. Seismic data delineating the San Andres section indicate a stable section throughout the area. Anomalous reflection events possibly associated with subsurface salt dissolution were seen at the 800- to 1200-ft level in Swisher County. Other anomalies include an overthickened zone northwest of Westway and carbonate buildup in the Wolfcamp and Pennsylvanian in Randall County. Mississippian to Middle Pennsylvanian diastrophism resulting in the Amarillo Uplift and Matador Arch is not manifested structurally in the central Palo Duro Basin. Subsidence or gentle uplift contributed to some structural deformation

  9. USING THE KARHUNEN-LOÈVE TRANSFORM TO SUPPRESS GROUND ROLL IN SEISMIC DATA

    Directory of Open Access Journals (Sweden)

    Kazmierczak Thaís de Souza

    2005-08-01

    Full Text Available ABSTRACTThe Sacchi's algorithm (2002 based on the Karhunen-Loève (K-L Transform was modified and implemented to suppress Ground Roll without distortion of the reflection signals, it provided better results than conventional techniques for noise removal like f-k, High-Pass and Band Pass Filters. The K-L Transform is well known in other fields as image processing (Levy and Linderbaurn, 2000, face, iris and fingerprint identification. A seismic section is an image of subsurface where the K-L can be useful in seismic processing because spatially uncorrelated signals can be removed providing a clear and coherent image. The algorithm was applied to seismic data generated with hammer, thumper and explosive sources. Conventional processing flows were used, but one replaced filters with K-L Transform, providing stacked sections. The K-L Transform recovers better the reflector amplitudes when compared with others filters, also it removes refractions that cause unreal shallow events and increases the lateral coherence of seismic events showing a more interpretable geology.

  10. Comparison of seismic sources for shallow seismic: sledgehammer and pyrotechnics

    Directory of Open Access Journals (Sweden)

    Brom Aleksander

    2015-10-01

    Full Text Available The pyrotechnic materials are one of the types of the explosives materials which produce thermal, luminous or sound effects, gas, smoke and their combination as a result of a self-sustaining chemical reaction. Therefore, pyrotechnics can be used as a seismic source that is designed to release accumulated energy in a form of seismic wave recorded by tremor sensors (geophones after its passage through the rock mass. The aim of this paper was to determine the utility of pyrotechnics for shallow seismic engineering. The work presented comparing the conventional method of seismic wave excitation for seismic refraction method like plate and hammer and activating of firecrackers on the surface. The energy released by various sources and frequency spectra was compared for the two types of sources. The obtained results did not determine which sources gave the better results but showed very interesting aspects of using pyrotechnics in seismic measurements for example the use of pyrotechnic materials in MASW.

  11. Laboratory measurements of the seismic velocities and other petrophysical properties of the Outokumpu deep drill core samples, eastern Finland

    Science.gov (United States)

    Elbra, Tiiu; Karlqvist, Ronnie; Lassila, Ilkka; Høgström, Edward; Pesonen, Lauri J.

    2011-01-01

    Petrophysical, in particular seismic velocity, measurements of the Outokumpu deep drill core (depth 2.5 km) have been carried out to characterize the geophysical nature of the Paleoproterozoic crustal section of eastern Finland and to find lithological and geophysical interpretations to the distinct crustal reflectors as observed in seismic surveys. The results show that different lithological units can be identified based on the petrophysical data. The density of the samples remained nearly constant throughout the drilled section. Only diopside-tremolite skarns and black schists exhibit higher densities. The samples are dominated by the paramagnetic behaviour with occasional ferromagnetic signature caused by serpentinitic rocks. Large variations in seismic velocities, both at ambient pressure and under in situ crustal conditions are observed. The porosity of the samples, which is extremely low, is either intrinsic by nature or caused by decompaction related to fracturing during the core retrieval. It is noteworthy that these microfractures have dramatically lowered the VP and VS values. From the measured velocities and density data we have calculated the seismic impedances, Young's modulus and Poisson's ratios for the lithological units of the Outokumpu section and from these data the reflection coefficients for the major lithological boundaries, evident in the surveyed section, were determined. The data show that the strong and distinct reflections visible in wide-angle seismic surveys are caused by interfaces between diopside-tremolite skarn and either serpentinites, mica schist or black schist.

  12. Seismic failure modes and seismic safety of Hardfill dam

    Directory of Open Access Journals (Sweden)

    Kun Xiong

    2013-04-01

    Full Text Available Based on microscopic damage theory and the finite element method, and using the Weibull distribution to characterize the random distribution of the mechanical properties of materials, the seismic response of a typical Hardfill dam was analyzed through numerical simulation during the earthquakes with intensities of 8 degrees and even greater. The seismic failure modes and failure mechanism of the dam were explored as well. Numerical results show that the Hardfill dam remains at a low stress level and undamaged or slightly damaged during an earthquake with an intensity of 8 degrees. During overload earthquakes, tensile cracks occur at the dam surfaces and extend to inside the dam body, and the upstream dam body experiences more serious damage than the downstream dam body. Therefore, under the seismic conditions, the failure pattern of the Hardfill dam is the tensile fracture of the upstream regions and the dam toe. Compared with traditional gravity dams, Hardfill dams have better seismic performance and greater seismic safety.

  13. Geological Identification of Seismic Source at Opak Fault Based on Stratigraphic Sections of the Southern Mountains

    Directory of Open Access Journals (Sweden)

    Hita Pandita

    2016-08-01

    Full Text Available Earthquake is one of the unpredicted natural disasters on our earth. Despite of the absence of high-accuracy method to precisely predict the occurrence of earthquake, numerous studies have been carried out by seismologists to find it. One of the efforts to address the vulnerability of a region to earthquakes is by recognizing the type of rock as the source of the earthquake. Opak Fault is an active fault which was thought to be the source of earthquakes in Yogyakarta and adjacent areas. This study aimed to determine the seismic source types of rocks in Yogyakarta and adjacent areas. The methods were by measuring stratigraphic sections and the layer thickness in the western part of Southern Mountains. Field study was done in 6 (six research sites. Results of stratigraphic measurement indicated the sedimentary rocks in the Southern Mountains was 3.823 km in thick, while the bedrock was more than 1.042 km in thick. Based on the result, the rock types as the seismic source were thought to originate from the continental crust rocks formed of granite and metamorphic complex.

  14. 41 CFR 128-1.8004 - Seismic Safety Coordinators.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Seismic Safety Coordinators. 128-1.8004 Section 128-1.8004 Public Contracts and Property Management Federal Property Management Regulations System (Continued) DEPARTMENT OF JUSTICE 1-INTRODUCTION 1.80-Seismic Safety Program...

  15. Review of nuclear piping seismic design requirements

    International Nuclear Information System (INIS)

    Slagis, G.C.; Moore, S.E.

    1994-01-01

    Modern-day nuclear plant piping systems are designed with a large number of seismic supports and snubbers that may be detrimental to plant reliability. Experimental tests have demonstrated the inherent ruggedness of ductile steel piping for seismic loading. Present methods to predict seismic loads on piping are based on linear-elastic analysis methods with low damping. These methods overpredict the seismic response of ductile steel pipe. Section III of the ASME Boiler and Pressure Vessel Code stresses limits for piping systems that are based on considerations of static loads and hence are overly conservative. Appropriate stress limits for seismic loads on piping should be incorporated into the code to allow more flexible piping designs. The existing requirements and methods for seismic design of piping systems, including inherent conservations, are explained to provide a technical foundation for modifications to those requirements. 30 refs., 5 figs., 3 tabs

  16. Status report on seismic re-evaluation

    International Nuclear Information System (INIS)

    1998-01-01

    re-evaluation of individual plants is typically carried out at intervals of approximately ten years. Major re-evaluations typically take 2 to 3 years to perform at a cost of approximately $US 1 million for software alone, although the majority of re-evaluations are carried out in less time and at lower cost. Methods of seismic re-evaluation include PSA, margins assessments and deterministic analysis, and a common feature of the process is a seismic walk-down, often based on SQUG principles. The input motion levels, seismic categorisation, analysis methods and assessment criteria that are applied depend on the objectives of the re-evaluation. In several responses they are indicated to be generally similar to those specified for new plant. In situ inspection of structures and plant is generally adopted, although most countries use original specifications for material properties, with some in situ evaluation where possible. More realistic criteria than would usually be adopted for new plant are often employed in the assessment of plant behaviour for severe accidents or risk estimates. The majority of countries are satisfied with the seismic re-evaluations that have been carried out to date, although there are a number of recommendations for improvements based on the experience gained so far. The process has resulted in some quite extensive physical modifications, improving the seismic robustness of structures, anchorages and restraints, particularly in older plants. Approximately half of the responding countries reported that they were engaged in active research in the specific field of seismic re-evaluation, but it is noted that there is also considerable effort taking place in the wider field of seismic research, and that this has a direct bearing on the re-evaluation process, leading to an improved understanding of failure modes and more realistic assessments of section capacity. There is also a need to identify future areas of research. It is recommended that some

  17. Evaluation of seismic hazards for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2002-01-01

    The main objective of this Safety Guide is to provide recommendations on how to determine the ground motion hazards for a plant at a particular site and the potential for surface faulting, which could affect the feasibility of construction and safe operation of a plant at that site. The guidelines and procedures presented in this Safety Guide can appropriately be used in evaluations of site suitability and seismic hazards for nuclear power plants in any seismotectonic environment. The probabilistic seismic hazard analysis recommended in this Safety Guide also addresses the needs for seismic hazard analysis of external event PSAs conducted for nuclear power plants. Many of the methods and processes described may also be applicable to nuclear facilities other than power plants. Other phenomena of permanent ground displacement (liquefaction, slope instability, subsidence and collapse) as well as the topic of seismically induced flooding are treated in Safety Guides relating to foundation safety and coastal flooding. Recommendations of a general nature are given in Section 2. Section 3 discusses the acquisition of a database containing the information needed to evaluate and address all hazards associated with earthquakes. Section 4 covers the use of this database for construction of a seismotectonic model. Sections 5 and 6 review ground motion hazards and evaluations of the potential for surface faulting, respectively. Section 7 addresses quality assurance in the evaluation of seismic hazards for nuclear power plants

  18. Seismic Structure of Perth Basin (Australia) and surroundings from Passive Seismic Deployments

    Science.gov (United States)

    Issa, N.; Saygin, E.; Lumley, D. E.; Hoskin, T. E.

    2016-12-01

    We image the subsurface structure of Perth Basin, Western Australia and surroundings by using ambient seismic noise data from 14 seismic stations recently deployed by University of Western Australia (UWA) and other available permanent stations from Geoscience Australia seismic network and the Australian Seismometers in Schools program. Each of these 14 UWA seismic stations comprises a broadband sensor and a high fidelity 3-component 10 Hz geophone, recording in tandem at 250 Hz and 1000 Hz. The other stations used in this study are equipped with short period and broadband sensors. In addition, one shallow borehole station is operated with eight 3 component geophones at depths of between 2 and 44 m. The network is deployed to characterize natural seismicity in the basin and to try and identify any microseismic activity across Darling Fault Zone (DFZ), bounding the basin to the east. The DFZ stretches to approximately 1000 km north-south in Western Australia, and is one of the longest fault zones on the earth with a limited number of detected earthquakes. We use seismic noise cross- and auto-correlation methods to map seismic velocity perturbations across the basin and the transition from DFZ to the basin. Retrieved Green's functions are stable and show clear dispersed waveforms. Travel times of the surface wave Green's functions from noise cross-correlations are inverted with a two-step probabilistic framework to map the absolute shear wave velocities as a function of depth. The single station auto-correlations from the seismic noise yields P wave reflectivity under each station, marking the major discontinuities. Resulting images show the shear velocity perturbations across the region. We also quantify the variation of ambient seismic noise at different depths in the near surface using the geophones in the shallow borehole array.

  19. Burar seismic station: evaluation of seismic performance

    International Nuclear Information System (INIS)

    Ghica, Daniela; Popa, Mihaela

    2005-01-01

    A new seismic monitoring system, the Bucovina Seismic Array (BURAR), has been established since July 2002, in the Northern part of Romania, in a joint effort of the Air Force Technical Applications Center, USA, and the National Institute for Earth Physics (NIEP), Romania. The small-aperture array consists of 10 seismic sensors (9 vertical short-period and one three-component broad band) located in boreholes and distributed in a 5 x 5 km 2 area. At present, the seismic data are continuously recorded by the BURAR and transmitted in real-time to the Romanian National Data Center in Bucharest and National Data Center of the USA, in Florida. Based on the BURAR seismic information gathered at the National Data Center, NIEP (ROM N DC), in the August 2002 - December 2004 time interval, analysis and statistical assessments were performed. Following the preliminary processing of the data, several observations on the global performance of the BURAR system were emphasized. Data investigation showed an excellent efficiency of the BURAR system particularly in detecting teleseismic and regional events. Also, a statistical analysis for the BURAR detection capability of the local Vrancea events was performed in terms of depth and magnitude for the year 2004. The high signal detection capability of the BURAR resulted, generally, in improving the location solutions for the Vrancea seismic events. The location solution accuracy is enhanced when adding BURAR recordings, especially in the case of low magnitude events (recorded by few stations). The location accuracy is increased, both in terms of constraining hypocenter depth and epicentral coordinates. Our analysis certifies the importance of the BURAR system in NIEP efforts to elaborate seismic bulletins. Furthermore, the specific procedures for array data processing (beam forming, f-k analysis) increase significantly the signal-to-noise ratio by summing up the coherent signals from the array components, and ensure a better accuracy

  20. Evaluation of induced seismicity forecast models in the Induced Seismicity Test Bench

    Science.gov (United States)

    Király, Eszter; Gischig, Valentin; Zechar, Jeremy; Doetsch, Joseph; Karvounis, Dimitrios; Wiemer, Stefan

    2016-04-01

    Induced earthquakes often accompany fluid injection, and the seismic hazard they pose threatens various underground engineering projects. Models to monitor and control induced seismic hazard with traffic light systems should be probabilistic, forward-looking, and updated as new data arrive. Here, we propose an Induced Seismicity Test Bench to test and rank such models. We apply the test bench to data from the Basel 2006 and Soultz-sous-Forêts 2004 geothermal stimulation projects, and we assess forecasts from two models that incorporate a different mix of physical understanding and stochastic representation of the induced sequences: Shapiro in Space (SiS) and Hydraulics and Seismics (HySei). SiS is based on three pillars: the seismicity rate is computed with help of the seismogenic index and a simple exponential decay of the seismicity; the magnitude distribution follows the Gutenberg-Richter relation; and seismicity is distributed in space based on smoothing seismicity during the learning period with 3D Gaussian kernels. The HySei model describes seismicity triggered by pressure diffusion with irreversible permeability enhancement. Our results show that neither model is fully superior to the other. HySei forecasts the seismicity rate well, but is only mediocre at forecasting the spatial distribution. On the other hand, SiS forecasts the spatial distribution well but not the seismicity rate. The shut-in phase is a difficult moment for both models in both reservoirs: the models tend to underpredict the seismicity rate around, and shortly after, shut-in. Ensemble models that combine HySei's rate forecast with SiS's spatial forecast outperform each individual model.

  1. Seismic data are rich in information about subsurface formations and fluids

    Energy Technology Data Exchange (ETDEWEB)

    Farfour, Mohammed; Yoon, Wang Jung; Kim, Dongshin [Geophysical Prospecting Lab, Energy & Resources Eng., Dept., Chonnam National University, Gwangju (Korea, Republic of); Lee, Jeong-Hwan [Petroleum Engineering Lab, Energy & Resources Eng., Dept., Chonnam National University, Gwangju (Korea, Republic of)

    2016-06-08

    Seismic attributes are defined as any measured or computed information derived from seismic data. Throughout the last decades extensive work has been done in developing variety of mathematical approaches to extract maximum information from seismic data. Nevertheless, geoscientists found that seismic is still mature and rich in information. In this paper a new seismic attribute is introduced. Instantaneous energy seismic attribute is an amplitude based attribute that has the potential to emphasize anomalous amplitude associated with hydrocarbons. Promising results have been obtained from applying the attribute on seismic section traversing hydrocarbon filled sand from Alberta, Canada.

  2. Use of the t-distribution to construct seismic hazard curves for seismic probabilistic safety assessments

    Energy Technology Data Exchange (ETDEWEB)

    Yee, Eric [KEPCO International Nuclear Graduate School, Dept. of Nuclear Power Plant Engineering, Ulsan (Korea, Republic of)

    2017-03-15

    Seismic probabilistic safety assessments are used to help understand the impact potential seismic events can have on the operation of a nuclear power plant. An important component to seismic probabilistic safety assessment is the seismic hazard curve which shows the frequency of seismic events. However, these hazard curves are estimated assuming a normal distribution of the seismic events. This may not be a strong assumption given the number of recorded events at each source-to-site distance. The use of a normal distribution makes the calculations significantly easier but may underestimate or overestimate the more rare events, which is of concern to nuclear power plants. This paper shows a preliminary exploration into the effect of using a distribution that perhaps more represents the distribution of events, such as the t-distribution to describe data. The integration of a probability distribution with potentially larger tails basically pushes the hazard curves outward, suggesting a different range of frequencies for use in seismic probabilistic safety assessments. Therefore the use of a more realistic distribution results in an increase in the frequency calculations suggesting rare events are less rare than thought in terms of seismic probabilistic safety assessment. However, the opposite was observed with the ground motion prediction equation considered.

  3. Use of the t-distribution to construct seismic hazard curves for seismic probabilistic safety assessments

    International Nuclear Information System (INIS)

    Yee, Eric

    2017-01-01

    Seismic probabilistic safety assessments are used to help understand the impact potential seismic events can have on the operation of a nuclear power plant. An important component to seismic probabilistic safety assessment is the seismic hazard curve which shows the frequency of seismic events. However, these hazard curves are estimated assuming a normal distribution of the seismic events. This may not be a strong assumption given the number of recorded events at each source-to-site distance. The use of a normal distribution makes the calculations significantly easier but may underestimate or overestimate the more rare events, which is of concern to nuclear power plants. This paper shows a preliminary exploration into the effect of using a distribution that perhaps more represents the distribution of events, such as the t-distribution to describe data. The integration of a probability distribution with potentially larger tails basically pushes the hazard curves outward, suggesting a different range of frequencies for use in seismic probabilistic safety assessments. Therefore the use of a more realistic distribution results in an increase in the frequency calculations suggesting rare events are less rare than thought in terms of seismic probabilistic safety assessment. However, the opposite was observed with the ground motion prediction equation considered

  4. Seismic data enhancement with Common Reflection Surface (CRS) stack method

    Energy Technology Data Exchange (ETDEWEB)

    Baykulov, M.; Brink, H.J.; Gajewski, D.; Yoon, Mi-Kyung [Hamburg Univ. (Germany). Inst. fuer Geophysik

    2008-10-23

    We present the results of partial stacking of prestack seismic reflection data based on the kinematic wavefield attributes computed during the automatic CRS stack. The resulting CRS supergathers are more regularised and have better signal to noise ratio compared to original CMP gathers. The improved data can be used in any conventional processing tool instead of the original data, providing enhanced images of better quality. The CRS supergather method is especially suited for low fold seismic reflection data. Application of the new method to synthetic and real low fold data shows a clear improvement of seismograms as well as time and depth-migrated sections. (orig.)

  5. Seismic hazard analysis. A methodology for the Eastern United States

    Energy Technology Data Exchange (ETDEWEB)

    Bernreuter, D L

    1980-08-01

    This report presents a probabilistic approach for estimating the seismic hazard in the Central and Eastern United States. The probabilistic model (Uniform Hazard Methodology) systematically incorporates the subjective opinion of several experts in the evaluation of seismic hazard. Subjective input, assumptions and associated hazard are kept separate for each expert so as to allow review and preserve diversity of opinion. The report is organized into five sections: Introduction, Methodology Comparison, Subjective Input, Uniform Hazard Methodology (UHM), and Uniform Hazard Spectrum. Section 2 Methodology Comparison, briefly describes the present approach and compares it with other available procedures. The remainder of the report focuses on the UHM. Specifically, Section 3 describes the elicitation of subjective input; Section 4 gives details of various mathematical models (earthquake source geometry, magnitude distribution, attenuation relationship) and how these models re combined to calculate seismic hazard. The lost section, Uniform Hazard Spectrum, highlights the main features of typical results. Specific results and sensitivity analyses are not presented in this report. (author)

  6. Identification Of Rippability And Bedrock Depth Using Seismic Refraction

    Science.gov (United States)

    Ismail, Nur Azwin; Saad, Rosli; Nawawi, M. N. M.; Muztaza, Nordiana Mohd; El Hidayah Ismail, Noer; Mohamad, Edy Tonizam

    2010-12-01

    Spatial variability of the bedrock with reference to the ground surface is vital for many applications in geotechnical engineering to decide the type of foundation of a structure. A study was done within the development area of Mutiara Damansara utilising the seismic refraction method using ABEM MK8 24 channel seismograph. The geological features of the subsurface were investigated and velocities, depth to the underlying layers were determined. The seismic velocities were correlated with rippability characteristics and borehole records. Seismic sections generally show a three layer case. The first layer with velocity 400-600 m/s predominantly consists of soil mix with gravel. The second layer with velocity 1600-2000 m/s is suggested to be saturated and weathered area. Both layers forms an overburden and generally rippable. The third layer represents granite bedrock with average depth and velocity 10-30 m and >3000 m/s respectively and it is non-rippable. Steep slope on the bedrock are probably the results of shear zones.

  7. Identification Of Rippability And Bedrock Depth Using Seismic Refraction

    International Nuclear Information System (INIS)

    Ismail, Nur Azwin; Saad, Rosli; Nawawi, M. N. M; Muztaza, Nordiana Mohd; El Hidayah Ismail, Noer; Mohamad, Edy Tonizam

    2010-01-01

    Spatial variability of the bedrock with reference to the ground surface is vital for many applications in geotechnical engineering to decide the type of foundation of a structure. A study was done within the development area of Mutiara Damansara utilising the seismic refraction method using ABEM MK8 24 channel seismograph. The geological features of the subsurface were investigated and velocities, depth to the underlying layers were determined. The seismic velocities were correlated with rippability characteristics and borehole records. Seismic sections generally show a three layer case. The first layer with velocity 400-600 m/s predominantly consists of soil mix with gravel. The second layer with velocity 1600-2000 m/s is suggested to be saturated and weathered area. Both layers forms an overburden and generally rippable. The third layer represents granite bedrock with average depth and velocity 10-30 m and >3000 m/s respectively and it is non-rippable. Steep slope on the bedrock are probably the results of shear zones.

  8. Seismic margin assessment of spanish nuclear power plants: a perspective from industry and regulators

    International Nuclear Information System (INIS)

    Garcia-Monge, Juan; Beltran, Francisco; Sanchez-Cabanero, Jose G.

    2001-01-01

    more conservative binning of Spanish plant sites. Alter some lengthy discussions between the CSN and the utilities, the CSN staff accepted. as a reasonable minimum, the seismic hazard derived in the available PSI1A for each plant site. Then, the CSN used this PSIIA to rank the plants in terms of hazard and assigned an SME and a scope for the seismic margin study at each plant. Table 1 shows the final binning of the Spanish plants to be used for SMA as an alternative option to seismic PRA. Note that all plants were assigned a RLE at the 0.3 g level, like the vast majority of American plants to the East of the Rocky Mountains. As a result of the previous process, and starting in 1996, the CSN has promoted a number of research projects in order to assess the uncertainties about seismic hazard at Spanish sites. The total budget for this projects is around 1.3 million EUR, and the results will be included in a future PSHA with expert opinion, following the guidelines in NUREG/CR-6372. At the beginning of year 2001, all Spanish plants have completed their seismic assessments and most of these assessments are being reviewed by the CSN. The purpose of this paper is to give a wide perspective of the seismic margin studies performed in Spain. The paper is organized into three main sections. The first section is devoted to the implementation of seismic margin methodologies for Spanish plants. The focus is on the main steps followed in the analysis, the level of effort, the difficulties and the main findings. The second section looks at the analyses from the Regulator standpoint. after review of most of the assessments has taken place. Finally, the last section of the paper contains a general discussion about the whole process and the usefulness of the results in the general context of probabilistic safety assessments (PSA). The conclusions could be summarized as follows: - A seismic margin assessment is a cost effective method to determine the plant state regarding seismic safety

  9. Green's function representations for seismic interferometry

    NARCIS (Netherlands)

    Wapenaar, C.P.A.; Fokkema, J.T.

    2006-01-01

    The term seismic interferometry refers to the principle of generating new seismic responses by crosscorrelating seismic observations at different receiver locations. The first version of this principle was derived by Claerbout (1968), who showed that the reflection response of a horizontally layered

  10. 78 FR 55118 - Seismic Instrumentation for Nuclear Power Plants

    Science.gov (United States)

    2013-09-09

    ... NUCLEAR REGULATORY COMMISSION [NRC-2013-0202] Seismic Instrumentation for Nuclear Power Plants... Reports for Nuclear Power Plants: LWR Edition,'' Section 3.7.4, ``Seismic Instrumentation.'' DATES: Submit... Nuclear Power Plants: LWR Edition'' (SRP, from the current Revision 2 to a new Revision 3). The proposed...

  11. Seismic design of circular-section concrete-lined underground openings: Preclosure performance considerations for the Yucca Mountain Site

    International Nuclear Information System (INIS)

    Richardson, A.M.; Blejwas, T.E.

    1992-01-01

    Yucca Mountain, the potential site of a repository for high-level radioactive waste, is situated in a region of natural and man-made seismicity. Underground openings excavated at this site must be designed for worker safety in the seismic environment anticipated for the preclosure period. This includes accesses developed for site characterization regardless of the ultimate outcome of the repository siting process. Experience with both civil and mining structures has shown that underground openings are much more resistant to seismic effects than surface structures, and that even severe dynamic strains can usually be accommodated with proper design. This paper discusses the design and performance of lined openings in the seismic environment of the potential site. The types and ranges of possible ground motions (seismic loads) are briefly discussed. Relevant historical records of underground opening performance during seismic loading are reviewed. Simple analytical methods of predicting liner performance under combined in situ, thermal, and seismic loading are presented, and results of calculations are discussed in the context of realistic performance requirements for concrete-lined openings for the preclosure period. Design features that will enhance liner stability and mitigate the impact of the potential seismic load are reviewed. The paper is limited to preclosure performance concerns involving worker safety because present decommissioning plans specify maintaining the option for liner removal at seal locations, thus decoupling liner design from repository postclosure performance issues

  12. Causality between expansion of seismic cloud and maximum magnitude of induced seismicity in geothermal field

    Science.gov (United States)

    Mukuhira, Yusuke; Asanuma, Hiroshi; Ito, Takatoshi; Häring, Markus

    2016-04-01

    is seismic moment density (Mo/m3) and V stim is stimulated rock volume (m3). Mopossible = D ∗ V stim(1) We applied this conceptual model to real microseismic data set from Basel EGS project where several induced seismicity with large magnitude occurred and brought constructive damage. Using the hypocenter location determined by the researcher of Tohoku Univ., Japan and moment magnitude estimated from Geothermal Explorers Ltd., operating company, we were able to estimate reasonable seismic moment density meaning that one representative parameter exists and can characterize seismic activity at Basel at each time step. With stimulated rock volume which was also inferred from microseismic information, we estimated possible seismic moment and assess the difference with observed value. Possible seismic moment significantly increased after shut-in when the seismic cloud (stimulated zone) mostly progressed, resulting that the difference with the observed cumulative seismic moment automatically became larger. This suggests that there is moderate seismic moment which will be released in near future. In next few hours, the largest event actually occurred. Therefore, our proposed model was successfully able to forecast occurrence of the large events. Furthermore, best forecast of maximum magnitude was Mw 3 level and the largest event was Mw 3.41, showing reasonable performance in terms of quantitative forecast in magnitude. Our attempt to assess the seismic activity from microseismic information was successful and it also suggested magnitude release can be correlate with the expansion of seismic cloud as the definition of possible seismic moment model indicates. This relationship has been observed in microseismic observational study and several previous study also suggested their correlation with stress released rock volume. Our model showed harmonic results with these studies and provide practical method having clear physical meaning to assess the seismic activity in real

  13. Regional Characteristics of Stress State of Main Seismic Active Faults in Mid-Northern Part of Sichuan-Yunnan Block

    Science.gov (United States)

    Weiwei, W.; Yaling, W.

    2017-12-01

    We restore the seismic source spectrums of 1012 earthquakes(2.0 ≤ ML ≤ 5.0) in the mid-northern part of Sichuan-Yunnan seismic block(26 ° N-33 ° N, 99 ° E-104 ° E),then calculate the source parameters.Based on the regional seismic tectonic background, the distribution of active faults and seismicity, the study area is divided into four statistical units (Z1 Jinshajiang and Litang fault zone, Z2 Xianshuihe fault zone, Z3 Anninghe-Zemuhe fault zone, Z4 Lijiang-Xiaojinhe fault zone). Seismic source stress drop results show the following, (1)The stress at the end of the Jinshajiang fault is low, strong earthquake activity rare.Stress-strain loading deceases gradually from northwest to southeast along Litang fault, the northwest section which is relatively locked is more likely to accumulate strain than southeast section. (2)Stress drop of Z2 is divided by Kangding, the southern section is low and northern section is high. Southern section (Kangding-Shimian) is difficult to accumulate higher strain in the short term, but in northern section (Garzê-Kangding), moderate and strong earthquakes have not filled the gaps of seismic moment release, there is still a high stress accumulation in partial section. (3)High stress-drop events were concentrated on Z3, strain accumulation of this unit is strong, and stress level is the highest, earthquake risk is high. (4)On Z4, stress drop characteristics of different magnitude earthquakes are not the same, which is related to complex tectonic setting, the specific reasons still need to be discussed deeply.The study also show that, (1)Stress drops display a systematic change with different faults and locations, high stress-drop events occurs mostly on the fault intersection area. Faults without locking condition and mainly creep, are mainly characterized by low stress drop. (2)Contrasting to what is commonly thought that "strike-slip faults are not easy to accumulate stress ", Z2 and Z3 all exhibit high stress levels, which

  14. 41 CFR 128-1.8006 - Seismic Safety Program requirements.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Seismic Safety Program requirements. 128-1.8006 Section 128-1.8006 Public Contracts and Property Management Federal Property Management Regulations System (Continued) DEPARTMENT OF JUSTICE 1-INTRODUCTION 1.80-Seismic Safety Program...

  15. Experiments on seismic metamaterials: molding surface waves.

    Science.gov (United States)

    Brûlé, S; Javelaud, E H; Enoch, S; Guenneau, S

    2014-04-04

    Materials engineered at the micro- and nanometer scales have had a tremendous and lasting impact in photonics and phononics. At much larger scales, natural soils civil engineered at decimeter to meter scales may interact with seismic waves when the global properties of the medium are modified, or alternatively thanks to a seismic metamaterial constituted of a mesh of vertical empty inclusions bored in the initial soil. Here, we show the experimental results of a seismic test carried out using seismic waves generated by a monochromatic vibrocompaction probe. Measurements of the particles' velocities show a modification of the seismic energy distribution in the presence of the metamaterial in agreement with numerical simulations using an approximate plate model. For complex natural materials such as soils, this large-scale experiment was needed to show the practical feasibility of seismic metamaterials and to stress their importance for applications in civil engineering. We anticipate this experiment to be a starting point for smart devices for anthropic and natural vibrations.

  16. Non color-saturated cross-sections of non-linear tomography and seismicity

    International Nuclear Information System (INIS)

    Panza, G.F.; Raykova, R.B.

    2007-11-01

    We define the structure and the rheology of the lithosphere in Italy and surrounding, combining the cellular velocity model, derived from the non-linear tomographic inversion, with the distribution versus depth of the hypocenters to assess the brittle properties of the fragile Earth. The mechanical properties, and their uncertainties, of the uppermost 60 km of the Earth crust/mantle and the seismicity, grouping hypocenter's depth with a step of 4 km, are averaged over cells of 1 deg. by 1 deg. For most of the cells the earthquake energy released has a maximum in the depth range, from 5 to 15 km, i.e. mainly in the upper crust. For some regions, where orogenic processes are in progress, the release of seismic energy is shallower and is concentrated in the uppermost 10 km of the crust. (author)

  17. Rethinking ASME III seismic analysis for piping operability evaluations

    International Nuclear Information System (INIS)

    Adams, T.M.; Stevenson, J.D.

    1994-01-01

    It has been recognized since the mid 1980's that there are very large seismic margins to failure for nuclear piping systems when designed using current industry practice, design criteria, and methods. As a result of this realization there are or have been approximately eighteen initiatives within the ASME , Boiler and Pressure Vessel Code Section III, Division 1, in the form of proposed code cases and proposed code text changes designed to reduce these failure margins to more realistic values. For the most part these initiatives have concentrated on reclassifying seismic inertia stresses in the piping as secondary and increasing the allowable stress limits permitted by Section III of the ASME, Boiler Code. This paper focuses on the application of non-linear spectral analysis methods as a method to reduce the input seismic demand determination and thereby reduce the seismic failure margins. The approach is evaluated using the ASME Boiler Pressure Vessel Code Section III Subgroup on Design benchmark procedure as proposed by the Subgroup's Special Task Group on Integrated Piping Criteria. Using this procedure, criteria are compared to current code criterion and analysis methods, and several other of the currently proposed Boiler and Pressure Vessel, Section III, changes. Finally, the applicability of the non-linear spectral analysis to continued Safe Operation Evaluations is reviewed and discussed

  18. Seismic fragility capacity of equipment

    International Nuclear Information System (INIS)

    Iijima, Toru; Abe, Hiroshi; Suzuki, Kenichi

    2006-01-01

    Seismic probabilistic safety assessment (PSA) is an available method to evaluate residual risks of nuclear plants that are designed on definitive seismic conditions. From our preliminary seismic PSA analysis, horizontal shaft pumps are important components that have significant influences on the core damage frequency (CDF). An actual horizontal shaft pump and some kinds of elements were tested to evaluate realistic fragility capacities. Our test results showed that the realistic fragility capacity of horizontal shaft pump would be at least four times as high as a current value, 1.6 x 9.8 m/s 2 , used for our seismic PSA. We are going to incorporate the fragility capacity data that were obtained from those tests into our seismic PSA analysis, and we expect that the reliability of seismic PSA should increase. (author)

  19. Seismic wave interaction with underground cavities

    Science.gov (United States)

    Schneider, Felix M.; Esterhazy, Sofi; Perugia, Ilaria; Bokelmann, Götz

    2016-04-01

    Realization of the future Comprehensive Nuclear Test Ban Treaty (CTBT) will require ensuring its compliance, making the CTBT a prime example of forensic seismology. Following indications of a nuclear explosion obtained on the basis of the (IMS) monitoring network further evidence needs to be sought at the location of the suspicious event. For such an On-Site Inspection (OSI) at a possible nuclear test site the treaty lists several techniques that can be carried out by the inspection team, including aftershock monitoring and the conduction of active seismic surveys. While those techniques are already well established, a third group of methods labeled as "resonance seismometry" is less well defined and needs further elaboration. A prime structural target that is expected to be present as a remnant of an underground nuclear explosion is a cavity at the location and depth the bomb was fired. Originally "resonance seismometry" referred to resonant seismic emission of the cavity within the medium that could be stimulated by an incident seismic wave of the right frequency and observed as peaks in the spectrum of seismic stations in the vicinity of the cavity. However, it is not yet clear which are the conditions for which resonant emissions of the cavity could be observed. In order to define distance-, frequency- and amplitude ranges at which resonant emissions could be observed we study the interaction of seismic waves with underground cavities. As a generic model for possible resonances we use a spherical acoustic cavity in an elastic full-space. To solve the forward problem for the full elastic wave field around acoustic spherical inclusions, we implemented an analytical solution (Korneev, 1993). This yields the possibility of generating scattering cross-sections, amplitude spectrums and synthetic seismograms for plane incident waves. Here, we focus on the questions whether or not we can expect resonant responses in the wave field scattered from the cavity. We show

  20. Seismic Noise Analysis and Reduction through Utilization of Collocated Seismic and Atmospheric Sensors at the GRO Chile Seismic Network

    Science.gov (United States)

    Farrell, M. E.; Russo, R. M.

    2013-12-01

    gain insight into how local atmospheric conditions couple with the ground to generate seismic noise, and to explore strategies for reducing this noise post data collection. Comparison of spectra of atmospheric data streams to the three broadband seismic channels for continuous signals recorded during May and June of 2013 shows high coherence between infrasound signals and time variation of air pressure (dP/dt) that we calculated from the air pressure data stream. Coherence between these signals is greatest for the east-west component of the seismic data in northern Chile. Although coherence between seismic, infrasound, and dP/dt is lower for all three seismic channels at other GRO Chile stations, for some of the data streams coherence can jump as much as 6 fold for certain frequency bands, with a common 3-fold increase for periods shorter than 10 seconds and the occasional 6-fold increase at long or very long periods.

  1. Development and seismic evaluation of the seismic monitoring analysis system for HANARO

    International Nuclear Information System (INIS)

    Ryu, J. S.; Youn, D. B.; Kim, H. G.; Woo, J. S.

    2003-01-01

    Since the start of operation, the seismic monitoring system has been utilized for monitoring an earthquake at the HANARO site. The existing seismic monitoring system consists of field sensors and monitoring panel. The analog-type monitoring system with magnetic tape recorder is out-of-date model. In addition, the disadvantage of the existing system is that it does not include signal-analyzing equipment. Therefore, we have improved the analog seismic monitoring system except the field sensors into a new digital Seismic Monitoring Analysis System(SMAS) that can monitor and analyze earthquake signals. To achieve this objective for HANARO, the digital type hardware of the SMAS has been developed. The seismic monitoring and analysis programs that can provide rapid and precise information for an earthquake were developed. After the installation of the SMAS, we carried out the Site Acceptance Test (SAT) to confirm the functional capability of the newly developed system. The results of the SAT satisfy the requirements of the fabrication technical specifications. In addition, the seismic characteristics and structural integrity of the SMAS were evaluated. The results show that the cabinet of SMAS can withstand the effects of seismic loads and remain functional. This new SMAS is operating in the HANARO instrument room to acquire and analyze the signal of an earthquake

  2. Dominant seismic sources for the cities in South Sumatra

    Science.gov (United States)

    Sunardi, Bambang; Sakya, Andi Eka; Masturyono, Murjaya, Jaya; Rohadi, Supriyanto; Sulastri, Putra, Ade Surya

    2017-07-01

    Subduction zone along west of Sumatra and Sumatran fault zone are active seismic sources. Seismotectonically, South Sumatra could be affected by earthquakes triggered by these seismic sources. This paper discussed contribution of each seismic source to earthquake hazards for cities of Palembang, Prabumulih, Banyuasin, OganIlir, Ogan Komering Ilir, South Oku, Musi Rawas and Empat Lawang. These hazards are presented in form of seismic hazard curves. The study was conducted by using Probabilistic Seismic Hazard Analysis (PSHA) of 2% probability of exceedance in 50 years. Seismic sources used in analysis included megathrust zone M2 of Sumatra and South Sumatra, background seismic sources and shallow crustal seismic sources consist of Ketaun, Musi, Manna and Kumering faults. The results of the study showed that for cities relatively far from the seismic sources, subduction / megathrust seismic source with a depth ≤ 50 km greatly contributed to the seismic hazard and the other areas showed deep background seismic sources with a depth of more than 100 km dominate to seismic hazard respectively.

  3. Shear-wave seismic reflection imaging and impedance inversion for a near-surface point-bar

    Science.gov (United States)

    Benton, N. W.; Morrison, M.; Lorenzo, J. M.; Odom, B.; Clift, P. D.; Olson, E.; Gostic, A.

    2017-12-01

    Imaging and inversion of SH-waves are useful to detect, map, and quantitatively characterize near-surface point-bar strata. We conduct a horizontally-polarized (SH) reflection survey across and along a near-surface (9 - 40 m) downstream point-bar. We invert for shear-impedance profiles and correlate our interpretation to electrical conductivity (EC) logs in adjacent wells to study the internal architecture and lithology of point-bars. We acquire two common-midpoint (CMP) SH-wave seismic reflection lines at False River (Point Coupee Parish, Louisiana). A 104 m long seismic line (L1) is oriented orthogonal (NW - SE) to point-bar strike. A second line (L2) is 48 m long and set parallel to point-bar strike (NE - SW). Two EC wells lie 33 m apart. Both wells are parallel with respect to the L1 survey and offset from it by 15 m. EC log measurements range from 1 - 25 m depth. Interference of Love-waves prevents seismic imaging at depths less than 9 m. The L1 and L2 data sets are inverted for shear-impedance using a model-based band-limited impedance (BLIMP) algorithm that incorporates a low-frequency velocity model. This model is also used for the depthing processing. The L1 cross-section shows coherent dipping reflection events ( 4 - 7º) from 0.15 - 0.35 s (10 - 40 m). The corresponding shear-impedance profile also reveals coherent and dipping impedance contrasts that grow in magnitude with increasing depth. The L2 cross-section shows comparatively less dip ( 1º) as well as sharper and shallower continuity of reflection events (0.1 - 0.28 s TWT or 9 - 25 m). Depth-converted (TVD) seismic amplitudes and impedance values correlate to near-surface point-bar geology via superposition of log data. The first well (W5) shows distinct EC local maxima (+50 - 70 mS/m) at 14.5 and 15.5 m depth that correlate well with the seismic amplitudes and impedance values from both L1 and L2 data sets. The second well (W7) shows comparatively lower local maxima (+40 - 60 mS/m) but at greater

  4. Seismic Evidence of Ancient Westward Residual Slab Subduction Beneath Southern Taiwan

    Directory of Open Access Journals (Sweden)

    Cheng-Horng Lin

    2015-01-01

    Full Text Available The northeastern convergence of the Philippine Sea plate toward the Eurasian plate causes the major western Philippine Sea plate boundary to subduct toward the northwest or west directions. However, this phenomenon is not clearly observed along the plate boundary between Luzon and Taiwan. Careful examination of deep seismicity in the southern Taiwan area from the earthquake catalog reported by the Central Weather Bureau shows two seismic zones dipping toward the opposing directions. The first dips toward the east from the surface down to 150 km in depth, while the second dips westward at depths between 150 and 200 km. These two seismic zones are confirmed further by seismogram observation and modeling results generated by two deep faults in the southern Taiwan area. The eastward seismic zone clearly results from the Eurasia plate subduction along the Manila trench, while a small section of the westward seismic zone might likely be a residual slab from the ancient subducted Philippine Sea plate. Based on the subduction speed obtained from GPS observations and the subducted Eurasian plate geometry, we can further estimate the eastward Eurasian plate subduction started at least 3.35 million years ago. This result is roughly consistent with the volcanic ages (3 - 4 Ma observed in the arc between Luzon and Taiwan.

  5. SUPPRESSING DIFFRACTION EFFECT USING KIRCHHOFF PRE-STACK TIME MIGRATION ON 2D SEISMIC MULTICHANNEL DATA AT FLORES SEA

    Directory of Open Access Journals (Sweden)

    Tumpal Benhard Nainggolan

    2017-07-01

    Full Text Available 2D seismic multichannel survey has been carried out by Marine Geological Institute of Indonesia to interpret imaging and sub-surface geological information in the Flores Sea. Seismic data processing starts from pre-processing until migration stage. Migration is an important stage in the seismic processing, because at this stage the effects of diffraction and oblique reflectors caused by fault, salt domes, wedging, etc. will be repositioned to the actual points. One example of diffraction effects can be seen on the seismic section of a conventional stacking that have not migrated, i.e. resulting in an apparent bowtie reflector. Geologists find difficulties in interpreting geological information from diffracted seismic section, so it needs further processing to overcome the effects. By using Kirchhoff method and carried out during the Pre-Stack Time Migration (PSTM, this method turns out to produce migrated seismic section which is much better than conventional stacked one. This is due to the Kirchhoff method suppressed the identified diffraction effects, so that the geologist can interpret geological structure of the resulting migrated seismic section of the Flores Sea.

  6. The seismic monitoring network of Mt. Vesuvius

    Directory of Open Access Journals (Sweden)

    Massimo Orazi

    2013-11-01

    Full Text Available Mt. Vesuvius (southern Italy is one of the most hazardous volcanoes in the world. Its activity is currently characterized by moderate seismicity, with hypocenters located beneath the crater zone with depth rarely exceeding 5 km and magnitudes generally less than 3. The current configuration of the seismic monitoring network of Mt. Vesuvius consists of 18 seismic stations and 7 infrasound microphones. During the period 2006-2010 a seismic array with 48 channels was also operative. The station distribution provides appropriate coverage of the area around the volcanic edifice. The current development of the network and its geometry, under conditions of low seismic noise, allows locating seismic events with M<1. Remote instruments continuously transmit data to the main acquisition center in Naples. Data transmission is realized using different technological solutions based on UHF, Wi-Fi radio links, and TCP/IP client-server applications. Data are collected in the monitoring center of the Osservatorio Vesuviano (Italian National Institute of Geophysics and Volcanology, Naples section, which is equipped with systems for displaying and analyzing signals, using both real-time automatic and manual procedures. 24-hour surveillance allows to immediately communicate any significant anomaly to the Civil Protection authorities.

  7. 41 CFR 128-1.8009 - Review of Seismic Safety Program.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Review of Seismic Safety Program. 128-1.8009 Section 128-1.8009 Public Contracts and Property Management Federal Property Management Regulations System (Continued) DEPARTMENT OF JUSTICE 1-INTRODUCTION 1.80-Seismic Safety Program...

  8. Marysville, Montana, Geothermal Project: Geological and Geophysical Exploration at Marysville Geothermal Area: 1973 Results (With a Section on ''Contemporary Seismicity in the Helena, Montana Region'')

    Energy Technology Data Exchange (ETDEWEB)

    Blackwell, D.D.; Brott, C.A.; Goforth, T.T.; Holdaway, M.J.; Morgan, P.; Friedline, R.; Smith, R.L.

    1974-04-01

    This report describes field geological and geophysical investigations of the Marysville geothermal area, including geological mapping, sample collection, a ground total field magnetic survey, gravity survey, seismic ground noise survey, microearthquake survey, and heat flow study. Although sufficient data are not available, it is likely that a magma chamber is the heat source. A second section, ''Contemporary Seismicity in the Helena, Montana, Region'' examines the coincidence of high heat flow and earthquake swarm activity in this region. (GRA)

  9. Widespread seismicity excitation following the 2011 M=9.0 Tohoku, Japan, earthquake and its implications for seismic hazard

    Science.gov (United States)

    Toda, S.; Stein, R. S.; Lin, J.

    2011-12-01

    The 11 March 2011 Tohoku-chiho Taiheiyo-oki earthquake (Tohoku earthquake) was followed by massive offshore aftershocks including 6 M≧7 and 94 M≧6 shocks during the 4.5 months (until July 26). It is also unprecedented that a broad increase in seismicity was observed over inland Japan at distances of up to 425 km from the locus of high seismic slip on the megathrust. Such an increase was not seen for the 2004 M=9.1 Sumatra or 2010 M=8.8 Chile earthquakes, but they lacked the seismic networks necessary to detect such small events. Here we explore the possibility that the rate changes are the product of static Coulomb stress transfer to small faults. We use the nodal planes of M≧3.5 earthquakes as proxies for such small active faults, and find that of fifteen regions averaging ˜80 by 80 km in size, 11 show a positive association between calculated stress changes and the observed seismicity rate change, 3 show a negative correlation, and for one the changes are too small to assess. This work demonstrates that seismicity can turn on in the nominal stress shadow of a mainshock as long as small geometrically diverse active faults exist there, which is likely quite common in areas having complex geologic background like Tohoku. In Central Japan, however, there are several regions where the usual tectonic stress has been enhanced by the Tohoku earthquake, and the moderate and large faults have been brought closer to failure, producing M˜5 to 6 shocks, including Nagano, near Mt. Fuji, Tokyo metropolitan area and its offshore. We confirmed that at least 5 of the seven large, exotic, or remote aftershocks were brought ≧0.3 bars closer to failure. Validated by such correlations, we evaluate the effects of the Tohoku event on the other subduction zones nearby and major active faults inland. The majorities of thrust faults inland Tohoku are brought farther from failure by the M9 event. However, we found that the large sections of the Japan trench megathrust, the outer

  10. Two applications of time reversal mirrors: Seismic radio and seismic radar

    KAUST Repository

    Hanafy, Sherif M.

    2011-07-08

    Two seismic applications of time reversal mirrors (TRMs) are introduced and tested with field experiments. The first one is sending, receiving, and decoding coded messages similar to a radio except seismic waves are used. The second one is, similar to radar surveillance, detecting and tracking a moving object(s) in a remote area, including the determination of the objects speed of movement. Both applications require the prior recording of calibrationGreen’s functions in the area of interest. This reference Green’s function will be used as a codebook to decrypt the coded message in the first application and as a moving sensor for the second application. Field tests show that seismicradar can detect the moving coordinates ( x(t), y(t), z(t)) of a person running through a calibration site. This information also allows for a calculation of his velocity as a function of location. Results with the seismic radio are successful in seismically detecting and decoding coded pulses produced by a hammer. Both seismic radio and radar are highly robust to signals in high noise environments due to the super-stacking property of TRMs.

  11. Seismically induced shale diapirism: the Mine d'Or section, Vilaine estuary, Southern Brittany

    Science.gov (United States)

    van Vliet-Lanoe, B.; Hibsch, C.; Csontos, L.; Jegouzo, S.; Hallégouët, B.; Laurent, M.; Maygari, A.; Mercier, D.; Voinchet, P.

    2009-07-01

    The Pénestin section (southern Brittany) presents large regular undulations, commonly interpreted as evidence of periglacial pingos. It is an upper Neogene palaeoestuary of the Vilaine River reactivated during the middle Quaternary (middle terrace). It is incised into a thick kaolinitic saprolite and deformed by saprolite diapirs. This paper presents the arguments leading to a mechanistic interpretation of the deformations at Pénestin. Neither recent transpressive tectonics nor diagnostic evidence of periglacial pingo have been found despite evidence for a late paleo-permafrost. The major deformational process is shale diapirism, initially triggered by co-seismic water supply, with further loading and lateral spreading on an already deformed and deeply weathered basement, which allowed the shale diapirism to develop. Deformations are favoured by the liquefaction of the saprolite and a seaward mass movement and recorded, rather distant, effects of an earthquake (c. 280 ka B.P.) resulting from the progressive subsidence of the southern Armorican margin. These deformations triggered by an earthquake are similar to those induced by classical shale diapirism. They are probably common in tectonically active continental environments with shallow water table.

  12. Bridging the Gap - Networking Educators using Real-Time Seismic Data

    Science.gov (United States)

    Ortiz, A. M.; Renwald, M. D.; Baldwin, T. K.; Hall, M. K.

    2004-12-01

    After nearly a decade, the seismology community has made critical advances in identifying what is effective and what is needed for success in incorporating real-time seismic data in the classroom. Today's K-16 classroom teachers have many options and opportunities for incorporating short- and long-term inquiry activities for monitoring earthquakes and analyzing seismic data in their daily instruction. Through the SpiNet program, we are providing web-based tools that support educators working with real-time seismic data (http://www.scieds.com/spinet/). Our site includes a Recent Seismicity section, which allows users to share seismic data in real-time, and provides near real-time information about global seismicity. Our Activities section provides data and lessons to assist educators who wish to integrate seismology into their classroom. The Research section, currently under development, will allow educators to share general information about how they teach seismology in their classroom through a discussion board and by posting lesson plans. In addition, we are developing a user-friendly tool for students to post results of their research projects. Designing a website which targets a range of users requires a working knowledge of both user needs and website programming and design. User needs include providing a logical navigational structure and accounting for differences in browser functionality, internet access, and users' abilities. Using website development tools, such as PHP, MySQL, RDF feeds, and specialized geoscience applications, we are automating site maintenance; incorporating databases for information storage and retrieval; and providing accessibility for users with a range of skills and physical limitations. By incorporating these features, we have built a dynamic interface for a broad range of users interested in educational seismology.

  13. Seismic isolation - efficient procedure for seismic response assessement

    International Nuclear Information System (INIS)

    Zamfir, M. A.; Androne, M.

    2016-01-01

    The aim of this analysis is to reduce the dynamic response of a structure. The seismic isolation solution must take into consideration the specific site ground motion. In this paper will be presented results obtained by applying the seismic isolation method. Based on the obtained results, important conclusions can be outlined: the seismic isolation device has the ability to reduce seismic acceleration of the seismic isolated structure to values that no longer present a danger to people and environment; the seismic isolation solution is limiting devices deformations to safety values for ensuring structural integrity and stability of the entire system; the effective seismic energy dissipation and with no side effects both for the seismic isolated building and for the devices used, and the return to the initial position before earthquake occurence are obtained with acceptable permanent displacement. (authors)

  14. Multicomponent seismic applications in coalbed methane development

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, D.; Trend, S. [Calgary Univ., AB (Canada). Dept. of Geology and Geophysics

    2004-07-01

    Seismic applications for coalbed methane (CBM) development are used to address the following challenges: lateral continuity of coal zones; vertical continuity of coal seams; permeability of cleats and fractures; coal quality and gas content; wet versus dry coal zones; and, monitoring storage of greenhouse gases. This paper presented a brief description of existing seismic programs, including 2-D and 3-D surface seismic surveys; multicomponent seismic surveys; vertical seismic profiles; cross-well seismic surveys; and, time-lapse seismic surveys. A comparative evaluation of their use in the Horseshoe Canyon Formation and the Ardley Formation was presented. The study showed that variations in reservoir properties resulting from gas production and dewatering can be effectively imaged using seismic surveys. Seismic surveys are useful in reservoir management, monitoring sweep efficiency during enhanced natural gas from coal (NGC) production, monitoring disposal of produced water and verifying storage of carbon dioxide for carbon credits. tabs., figs.

  15. An assessment of seismic margins in nuclear plant piping

    International Nuclear Information System (INIS)

    Chen, W.P.; Jaquay, K.R.; Chokshi, N.C.; Terao, D.

    1995-01-01

    Interim results of an ongoing program to assist the U.S. Nuclear Regulatory Commission (NRC) in developing regulatory positions on the seismic analyses of piping and overall safety margins of piping systems are reported. Results of reviews of previous seismic testing, primarily the Electric Power Research Institute (EPRI)/NRC Piping and Fitting Dynamic Reliability Program, and assessments of the ASME Code, Section III, piping seismic design criteria as revised by the 1994 Addenda are reported. Major issues are identified herein only. Technical details are to be provided elsewhere. (author). 4 refs., 2 figs

  16. Crosshole investigations - short and medium range seismic tomography

    International Nuclear Information System (INIS)

    Cosma, C.

    1987-02-01

    Seismic tomographic tests were conducted as a part of the Crosshole Investigations program of the Stripa Project. The aim has been to study if it is possible to detect by seismic tomography major fracture zones and determine their dimensions and orientation. The analysis was based on both compressional (P) and transversal (S) waves. The Young's modulus has been also calculated for a sub-set of measurements as a cross check for the P and S wave velocities. The experimental data was collected at the crosshole site in the Stripa mine during 1984-1985. A down-the-hole impact source was used together with triaxial detectors and a digital seismograph. Five tomographic sections were obtained. The number of records per section was appr. 250. Measurements were done down to 200 m depth in all boreholes. The main conclusion is that it is possible to detect major fracture zones by seismic tomography. Their position and orientation can also be estimated. (orig./HP)

  17. A linear motor as seismic horizontal vibrator

    NARCIS (Netherlands)

    Drijkoningen, G.; Veltman, A.; Hendrix, W.H.A.; Brouwer, J.; Hemstede, A.

    2006-01-01

    In this paper we propose to use the concept of linear synchronous motors to act as a seismic shear-wave vibratory source. We show that a linear motor, even with a design that is not focussed on application of seismic surveying, gives seismic records that are convincing and comparable with an

  18. Seismic testing

    International Nuclear Information System (INIS)

    Sollogoub, Pierre

    2001-01-01

    This lecture deals with: qualification methods for seismic testing; objectives of seismic testing; seismic testing standards including examples; main content of standard; testing means; and some important elements of seismic testing

  19. Theoretical models for crustal displacement assessment and monitoring in Vrancea-Focsani seismic zone by integrated remote sensing and local geophysical data for seismic prognosis

    International Nuclear Information System (INIS)

    Zoran, Maria; Ciobanu, Mircea; Mitrea, Marius Gabriel; Talianu, Camelia; Cotarlan, Costel; Mateciuc, Doru; Radulescu, Florin; Biter Mircea

    2002-01-01

    The majority of strong Romanian earthquakes has the origin in Vrancea region. Subduction of the Black Sea Sub-Plate under the Pannonian Plate produces faulting processes. Crustal displacement identification and monitoring is very important for a seismically active area like Vrancea-Focsani. Earthquake displacements are very well revealed by satellite remote sensing data. At the same time, geomorphologic analysis of topographic maps is carried out and particularly longitudinal and transverse profiles are constructed, as well as structural-geomorphologic maps. Faults are interpreted by specific features in nature of relief, straightness of line of river beds and their tributaries, exits of springs, etc. Remote sensing analysis and field studies of active faults can provide a geologic history that overcomes many of the shortcomings of instrumental and historic records. Our theoretical models developed in the frame of this project are presented as follows: a) Spectral Mixture Analysis model of geomorphological and topographic characteristics for Vrancea region proposed for satellite images analysis which assumes that the different classes present in a pixel (image unit) contribute independently to its reflectance. Therefore, the reflectance of a pixel at a particular frequency is the sum of the reflectances of the components at that frequency. The same test region in Vrancea area is imaged at several different frequencies (spectral bands), leading to multispectral observations for each pixel. It is useful to merge different satellite data into a hybrid image with high spatial and spectral resolution to create detailed images map of the abundance of various materials within the scene based on material spectral fingerprint. Image fusion produces a high-resolution multispectral image that is then unmixed into high-resolution material maps. b) Model of seismic cross section analysis which is applied in seismic active zones morphology. Since a seismic section can be

  20. Pattern of seismic deformation in the Western Mediterranean

    Directory of Open Access Journals (Sweden)

    S. Pondrelli

    1999-06-01

    Full Text Available The seismic deformation of the Western Mediterranean was studied with the aim of defining the strain pattern that characterizes the Africa-Eurasia plate boundary in this area. Within different sections along the boundary the cumulative moment tensor was computed over 90 years of seismological data. The results were compared with NUVELlA plate motion model and geodetic data. A stable agreement was found along Northern Africa to Sicily, where only Africa and Eurasia plates are involved. In this zone it is evident that changes in the strike of the boundary correspond to variations in the prevailing geometry of deformation, tectonic features and in the percentage of seismic with respect to total expected deformation. The geometry of deformation of periadriatic sections (Central to Southern Apennines, Eastern Alps and the Eastern Adriatic area agrees well with VLBI measurements and with regional geological features. Seismicity seems to account for low rates, from 3% to 31%, of total expected deformation. Only in the Sicily Strait, characterized by extensional to strike slip deformation, does the ratio reach a higher value (79%. If the amount of deformation deduced from seismicity seems low, because 90 years are probably not representative of the recurrence seismic cycle of the Western Mediterranean, the strain pattern we obtain from cumulative moment tensors is more representative of the kinematics of this area than global plate motion models and better identifies lower scale geodynamic features.

  1. AcquisitionFootprintAttenuationDrivenbySeismicAttributes

    Directory of Open Access Journals (Sweden)

    Cuellar-Urbano Mayra

    2014-04-01

    Full Text Available Acquisition footprint, one of the major problems that PEMEX faces in seismic imaging, is noise highly correlated to the geometric array of sources and receivers used for onshore and offshore seismic acquisitions. It prevails in spite of measures taken during acquisition and data processing. This pattern, throughout the image, is easily confused with geological features and misguides seismic attribute computation. In this work, we use seismic data from PEMEX Exploración y Producción to show the conditioning process for removing random and coherent noise using linear filters. Geometric attributes used in a workflow were computed for obtaining an acquisition footprint noise model and adaptively subtract it from the seismic data.

  2. Seismic reflection and structuring characterization of deep aquifer system in the Dakhla syncline (Cap Bon, North-Eastern Tunisia)

    Science.gov (United States)

    Bellali, Abir; Jarraya Horriche, Faten; Gabtni, Hakim; Bédir, Mourad

    2018-04-01

    The Dakhla syncline is located in the North-Eastern Tunisia. It is bounded by Abd El Rahmene anticline to the North-West, El Haouaria Graben to the North-East, Grombalia Graben to the South-West and the Mediterranean Sea to the East. The main aquifer reservoirs of Dakhla syncline are constituted by stacks of fluvial to deltaic Neogene sequences and carbonates. The interpretation of eight seismic reflection profiles, calibrated by wire line logging data of three oil wells, hydraulic wells and geologic field sections highlighted the impact of tectonics on the structuring geometry of aquifers and their distribution in elevated structures and subsurface depressions. Lithostratigraphic correlations and seismic profiles analysis through the syncline show that the principal aquifers are thickest within the central and northern part of the study area and thinnest to the southern part of the syncline. Seismic sections shows that the fracture/fault pattern in this syncline is mainly concentrated along corridors with a major direction of NW-SE and secondary directions of N-S, E-W and NE-SW with different release. This is proved by the complexity structure of Eastern Tunisia, resulted from the interaction between the African and Eurasiatic plates. Isochron maps of aquifers systems exhibited the structuring of this syncline in sub-surface characterized by important lateral and vertical geometric and thickness variations. Seismic sections L1, L2, L3, L4, L5 and petroleum wells showed an heterogeneous multilayer aquifers of Miocene formed by the arrangement of ten sandstone bodies, separated by impermeable clay packages. Oligo-Miocene deposits correspond to the most great potential aquifers, with respectively an average transmissivity estimated: Somaa aquifer 6.5 10-4 m2/s, Sandstone level aquifer 2.6 10-3 m2/s, Beglia aquifer 1.1 10-3 m2/s, Ain Ghrab aquifer 1.3 10-4 m2/s and Oligocene aquifer 2 10-3 m2/s. The interpretation of spatial variations of seismic units and the

  3. Demonstration of improved seismic source inversion method of tele-seismic body wave

    Science.gov (United States)

    Yagi, Y.; Okuwaki, R.

    2017-12-01

    Seismic rupture inversion of tele-seismic body wave has been widely applied to studies of large earthquakes. In general, tele-seismic body wave contains information of overall rupture process of large earthquake, while the tele-seismic body wave is inappropriate for analyzing a detailed rupture process of M6 7 class earthquake. Recently, the quality and quantity of tele-seismic data and the inversion method has been greatly improved. Improved data and method enable us to study a detailed rupture process of M6 7 class earthquake even if we use only tele-seismic body wave. In this study, we demonstrate the ability of the improved data and method through analyses of the 2016 Rieti, Italy earthquake (Mw 6.2) and the 2016 Kumamoto, Japan earthquake (Mw 7.0) that have been well investigated by using the InSAR data set and the field observations. We assumed the rupture occurring on a single fault plane model inferred from the moment tensor solutions and the aftershock distribution. We constructed spatiotemporal discretized slip-rate functions with patches arranged as closely as possible. We performed inversions using several fault models and found that the spatiotemporal location of large slip-rate area was robust. In the 2016 Kumamoto, Japan earthquake, the slip-rate distribution shows that the rupture propagated to southwest during the first 5 s. At 5 s after the origin time, the main rupture started to propagate toward northeast. First episode and second episode correspond to rupture propagation along the Hinagu fault and the Futagawa fault, respectively. In the 2016 Rieti, Italy earthquake, the slip-rate distribution shows that the rupture propagated to up-dip direction during the first 2 s, and then rupture propagated toward northwest. From both analyses, we propose that the spatiotemporal slip-rate distribution estimated by improved inversion method of tele-seismic body wave has enough information to study a detailed rupture process of M6 7 class earthquake.

  4. Core seismic methods verification report

    International Nuclear Information System (INIS)

    Olsen, B.E.; Shatoff, H.D.; Rakowski, J.E.; Rickard, N.D.; Thompson, R.W.; Tow, D.; Lee, T.H.

    1979-12-01

    This report presents the description and validation of the analytical methods for calculation of the seismic loads on an HTGR core and the core support structures. Analytical modeling, integration schemes, parameter assignment, parameter sensitivity, and correlation with test data are key topics which have been covered in detail. Much of the text concerns the description and the results of a series of scale model tests performed to obtain data for code correlation. A discussion of scaling laws, model properties, seismic excitation, instrumentation, and data reduction methods is also presented, including a section on the identification and calculation of statistical errors in the test data

  5. Seismicity and crustal structure at the Mendocino triple junction, Northern California

    Energy Technology Data Exchange (ETDEWEB)

    Dicke, M.

    1998-12-01

    A high level of seismicity at the Mendocino triple junction in Northern California reflects the complex active tectonics associated with the junction of the Pacific, North America, and Gorda plates. To investigate seismicity patterns and crustal structure, 6193 earthquakes recorded by the Northern California Seismic Network (NCSN) are relocated using a one-dimensional crustal velocity model. A near vertical truncation of the intense seismic activity offshore Cape Mendocino follows the strike of the Mattole Canyon fault and is interpreted to define the Pacific plate boundary. Seismicity along this boundary displays a double seismogenic layer that is attributed to interplate activity with the North America plate and Gorda plate. The interpretation of the shallow seismogenic zone as the North America - Pacific plate boundary implies that the Mendocino triple junction is situated offshore at present. Seismicity patterns and focal mechanisms for events located within the subducting Gorda pl ate are consistent with internal deformation on NE-SW and NW-SE trending rupture planes in response to north-south compression. Seismic sections indicate that the top of the Gorda plate locates at a depth of about 18 Km beneath Cape Mendocino and dips gently east-and southward. Earthquakes that are located in the Wadati-Benioff zone east of 236{sup o}E show a change to an extensional stress regime indicative of a slab pull force. This slab pull force and scattered seismicity within the contractional forearc region of the Cascadia subduction zone suggest that the subducting Gorda plate and the overriding North America plate are strongly coupled. The 1992 Cape Mendocino thrust earthquake is believed to have ruptured a blind thrust fault in the forearc region, suggesting that strain is accumulating that must ultimately be released in a potential M 8+ subduction earthquake.

  6. seismic-py: Reading seismic data with Python

    Directory of Open Access Journals (Sweden)

    2008-08-01

    Full Text Available The field of seismic exploration of the Earth has changed
    dramatically over the last half a century. The Society of Exploration
    Geophysicists (SEG has worked to create standards to store the vast
    amounts of seismic data in a way that will be portable across computer
    architectures. However, it has been impossible to predict the needs of the
    immense range of seismic data acquisition systems. As a result, vendors have
    had to bend the rules to accommodate the needs of new instruments and
    experiment types. For low level access to seismic data, there is need for a
    standard open source library to allow access to a wide range of vendor data
    files that can handle all of the variations. A new seismic software package,
    seismic-py, provides an infrastructure for creating and managing drivers for
    each particular format. Drivers can be derived from one of the known formats
    and altered to handle any slight variations. Alternatively drivers can be
    developed from scratch for formats that are very different from any previously
    defined format. Python has been the key to making driver development easy
    and efficient to implement. The goal of seismic-py is to be the base system
    that will power a wide range of experimentation with seismic data and at the
    same time provide clear documentation for the historical record of seismic
    data formats.

  7. Steep-dip seismic imaging of the shallow San Andreas fault near Parkfield.

    Science.gov (United States)

    Hole, J A; Catchings, R D; St Clair, K C; Rymer, M J; Okaya, D A; Carney, B J

    2001-11-16

    Seismic reflection and refraction images illuminate the San Andreas Fault to a depth of 1 kilometer. The prestack depth-migrated reflection image contains near-vertical reflections aligned with the active fault trace. The fault is vertical in the upper 0.5 kilometer, then dips about 70 degrees to the southwest to at least 1 kilometer subsurface. This dip reconciles the difference between the computed locations of earthquakes and the surface fault trace. The seismic velocity cross section shows strong lateral variations. Relatively low velocity (10 to 30%), high electrical conductivity, and low density indicate a 1-kilometer-wide vertical wedge of porous sediment or fractured rock immediately southwest of the active fault trace.

  8. Seismic Performance Evaluation of Reinforced Concrete Frames Subjected to Seismic Loads

    Science.gov (United States)

    Zameeruddin, Mohd.; Sangle, Keshav K.

    2017-06-01

    Ten storied-3 bays reinforced concrete bare frame designed for gravity loads following the guidelines of IS 456 and IS 13920 for ductility is subjected to seismic loads. The seismic demands on this building were calculated by following IS 1893 for response spectra of 5% damping (for hard soil type). Plastic hinges were assigned to the beam and column at both ends to represent the failure mode, when member yields. Non-linear static (pushover) analysis was performed to evaluate the performance of the building in reference to first (ATC 40), second (FEMA 356) and next-generation (FEMA 440) performance based seismic design procedures. Base shear against top displacement curve of structure, known as pushover curve was obtained for two actions of plastic hinge behavior, force-controlled (brittle) and deformation-controlled (ductile) actions. Lateral deformation corresponding to performance point proves the building capability to sustain a certain level of seismic loads. The failure is represented by a sequence of formation of plastic hinges. Deformation-controlled action of hinges showed that building behaves like strong-column-weak-beam mechanism, whereas force-controlled action showed formation of hinges in the column. The study aims to understand the first, second and next generation performance based design procedure in prediction of actual building responses and their conservatism into the acceptance criteria.

  9. PARAMETERS OF KAMCHATKA SEISMICITY IN 2008

    Directory of Open Access Journals (Sweden)

    Vadim A. Saltykov

    2010-01-01

    Full Text Available The paper describes seismicity of Kamchatka for the period of 2008 and presents 2D distribution of background seismicity parameters calculated from data published in the Regional Catalogue of Kamchatka Earthquakes. Parameters under study are total released seismic energy, seismic activity A10, slope of recurrence graph γ, parameters of RTL, ΔS and Z-function methods, and clustering of earthquakes. Estimations of seismicity are obtained for a region bordered by latitude 50.5–56.5N, longitude 156E–167E, with depths to 300 km. Earthquakes of energy classes not less than 8.5 as per the Fedotov’s classification are considered. The total seismic energy released in 2008 is estimated. According to a function of annual seismic energy distribution, an amount of seismic energy released in 2008 was close to the median level (Fig. 1. Over 2/3 of the total amount of seismic energy released in 2008 resulted from three largest earthquakes (МW ≥ 5.9. About 5 percent of the total number of seismic events are comprised of grouped earthquakes, i.e. aftershocks and swarms. A schematic map of the largest earthquakes (МW ≥ 5.9 and grouped seismic events which occurred in 2008 is given in Fig. 2; their parameters are listed in Table 1. Grouped earthquakes are excluded from the catalogue. A map showing epicenters of independent earthquakes is given in Fig. 3. The slope of recurrence graph γ and seismic activity A10 is based on the Gutenberg-Richter law stating the fundamental property of seismic process. The recurrence graph slope is calculated from continuous exponential distribution of earthquakes by energy classes. Using γ is conditioned by observations that in some cases the slope of the recurrence graph decreases prior to a large earthquake. Activity A10 is calculated from the number of earthquakes N and recurrence graph slope γ. Average slopes of recurrence graph γ and seismic activity A10 for the area under study in 2008 are calculated; our

  10. Acoustic Impedance Inversion of Seismic Data Using Genetic Algorithm

    Science.gov (United States)

    Eladj, Said; Djarfour, Noureddine; Ferahtia, Djalal; Ouadfeul, Sid-Ali

    2013-04-01

    The inversion of seismic data can be used to constrain estimates of the Earth's acoustic impedance structure. This kind of problem is usually known to be non-linear, high-dimensional, with a complex search space which may be riddled with many local minima, and results in irregular objective functions. We investigate here the performance and the application of a genetic algorithm, in the inversion of seismic data. The proposed algorithm has the advantage of being easily implemented without getting stuck in local minima. The effects of population size, Elitism strategy, uniform cross-over and lower mutation are examined. The optimum solution parameters and performance were decided as a function of the testing error convergence with respect to the generation number. To calculate the fitness function, we used L2 norm of the sample-to-sample difference between the reference and the inverted trace. The cross-over probability is of 0.9-0.95 and mutation has been tested at 0.01 probability. The application of such a genetic algorithm to synthetic data shows that the inverted acoustic impedance section was efficient. Keywords: Seismic, Inversion, acoustic impedance, genetic algorithm, fitness functions, cross-over, mutation.

  11. SHAKING TABLE TEST AND EFFECTIVE STRESS ANALYSIS ON SEISMIC PERFORMANCE WITH SEISMIC ISOLATION RUBBER TO THE INTERMEDIATE PART OF PILE FOUNDATION IN LIQUEFACTION

    Science.gov (United States)

    Uno, Kunihiko; Otsuka, Hisanori; Mitou, Masaaki

    The pile foundation is heavily damaged at the boundary division of the ground types, liquefied ground and non-liquefied ground, during an earthquake and there is a possibility of the collapse of the piles. In this study, we conduct a shaking table test and effective stress analysis of the influence of soil liquefaction and the seismic inertial force exerted on the pile foundation. When the intermediate part of the pile, there is at the boundary division, is subjected to section force, this part increases in size as compared to the pile head in certain instances. Further, we develop a seismic resistance method for a pile foundation in liquefaction using seismic isolation rubber and it is shown the middle part seismic isolation system is very effective.

  12. Analysis of EAST tokamak cryostat anti-seismic performance

    International Nuclear Information System (INIS)

    Chen Wei; Kong Xiaoling; Liu Sumei; Ni Xiaojun; Wang Zhongwei

    2014-01-01

    A 3-D finite element model for EAST tokamak cryostat is established by using ANSYS. On the basis of the modal analysis, the seismic response of the EAST tokamak cryostat structure is calculated according to an input of the design seismic response spectrum referring to code for seismic design of nuclear power plants. Calculation results show that EAST cryostat displacement and stress response is small under the action of earthquake. According to the standards, EAST tokamak cryostat structure under the action of design seismic can meet the requirements of anti-seismic design intensity, and ensure the anti-seismic safety of equipment. (authors)

  13. Research on high level radioactive waste repository seismic design criteria

    International Nuclear Information System (INIS)

    Jing Xu

    2012-01-01

    Review seismic hazard analysis principle and method in site suitable assessment process of Yucca Mountain Project, and seismic design criteria and seismic design basis in primary design process. Demonstrated spatial character of seismic hazard by calculated regional seismic hazard map. Contrasted different level seismic design basis to show their differences and relation. Discussed seismic design criteria for preclosure phrase of high level waste repository and preference goal under beyond design basis ground motion. (author)

  14. Some considerations for establishing seismic design criteria for nuclear plant piping

    International Nuclear Information System (INIS)

    Chen, W.P.; Chokshi, N.C.

    1997-01-01

    The Energy Technology Engineering Center (ETEC) is providing assistance to the U.S. NRC in developing regulatory positions on the seismic analysis of piping. As part of this effort, ETEC previously performed reviews of the ASME Code, Section III piping seismic design criteria as revised by the 1994 Addenda. These revised criteria were based on evaluations by the ASME Special Task Group on Integrated Piping Criteria (STGIPC) and the Technical Core Group (TCG) of the Advanced Reactor Corporation (ARC) of the earlier joint Electric Power Research Institute (EPRI)/NRC Piping ampersand Fitting Dynamic Reliability (PFDR) program. Previous ETEC evaluations reported at the 23rd WRSM of seismic margins associated with the revised criteria are reviewed. These evaluations had concluded, in part, that although margins for the timed PFDR tests appeared acceptable (>2), margins in detuned tests could be unacceptable (<1). This conclusion was based primarily on margin reduction factors (MRFs) developed by the ASME STGIPC and ARC/TCG from realistic analyses of PFDR test 36. This paper reports more recent results including: (1) an approach developed for establishing appropriate seismic margins based on PRA considerations, (2) independent assessments of frequency effects on margins, (3) the development of margins based on failure mode considerations, and (4) the implications of Code Section III rules for Section XI

  15. Georgia-Armenia Transboarder seismicity studies

    Science.gov (United States)

    Godoladze, T.; Tvaradze, N.; Javakishvili, Z.; Elashvili, M.; Durgaryan, R.; Arakelyan, A.; Gevorgyan, M.

    2012-12-01

    for the recent moderate size earthquakes and the results are in an agreement with paleo-trenching data showing normal fault mechanism on the south and strake slip on the northern edge of the fault. Local seismic tomography of Javakheti area has been performed in order to improve 3D structure of the region.

  16. SEISMIC ANALYSIS FOR PRECLOSURE SAFETY

    Energy Technology Data Exchange (ETDEWEB)

    E.N. Lindner

    2004-12-03

    The purpose of this seismic preclosure safety analysis is to identify the potential seismically-initiated event sequences associated with preclosure operations of the repository at Yucca Mountain and assign appropriate design bases to provide assurance of achieving the performance objectives specified in the Code of Federal Regulations (CFR) 10 CFR Part 63 for radiological consequences. This seismic preclosure safety analysis is performed in support of the License Application for the Yucca Mountain Project. In more detail, this analysis identifies the systems, structures, and components (SSCs) that are subject to seismic design bases. This analysis assigns one of two design basis ground motion (DBGM) levels, DBGM-1 or DBGM-2, to SSCs important to safety (ITS) that are credited in the prevention or mitigation of seismically-initiated event sequences. An application of seismic margins approach is also demonstrated for SSCs assigned to DBGM-2 by showing a high confidence of a low probability of failure at a higher ground acceleration value, termed a beyond-design basis ground motion (BDBGM) level. The objective of this analysis is to meet the performance requirements of 10 CFR 63.111(a) and 10 CFR 63.111(b) for offsite and worker doses. The results of this calculation are used as inputs to the following: (1) A classification analysis of SSCs ITS by identifying potential seismically-initiated failures (loss of safety function) that could lead to undesired consequences; (2) An assignment of either DBGM-1 or DBGM-2 to each SSC ITS credited in the prevention or mitigation of a seismically-initiated event sequence; and (3) A nuclear safety design basis report that will state the seismic design requirements that are credited in this analysis. The present analysis reflects the design information available as of October 2004 and is considered preliminary. The evolving design of the repository will be re-evaluated periodically to ensure that seismic hazards are properly

  17. SEISMIC ANALYSIS FOR PRECLOSURE SAFETY

    International Nuclear Information System (INIS)

    E.N. Lindner

    2004-01-01

    The purpose of this seismic preclosure safety analysis is to identify the potential seismically-initiated event sequences associated with preclosure operations of the repository at Yucca Mountain and assign appropriate design bases to provide assurance of achieving the performance objectives specified in the Code of Federal Regulations (CFR) 10 CFR Part 63 for radiological consequences. This seismic preclosure safety analysis is performed in support of the License Application for the Yucca Mountain Project. In more detail, this analysis identifies the systems, structures, and components (SSCs) that are subject to seismic design bases. This analysis assigns one of two design basis ground motion (DBGM) levels, DBGM-1 or DBGM-2, to SSCs important to safety (ITS) that are credited in the prevention or mitigation of seismically-initiated event sequences. An application of seismic margins approach is also demonstrated for SSCs assigned to DBGM-2 by showing a high confidence of a low probability of failure at a higher ground acceleration value, termed a beyond-design basis ground motion (BDBGM) level. The objective of this analysis is to meet the performance requirements of 10 CFR 63.111(a) and 10 CFR 63.111(b) for offsite and worker doses. The results of this calculation are used as inputs to the following: (1) A classification analysis of SSCs ITS by identifying potential seismically-initiated failures (loss of safety function) that could lead to undesired consequences; (2) An assignment of either DBGM-1 or DBGM-2 to each SSC ITS credited in the prevention or mitigation of a seismically-initiated event sequence; and (3) A nuclear safety design basis report that will state the seismic design requirements that are credited in this analysis. The present analysis reflects the design information available as of October 2004 and is considered preliminary. The evolving design of the repository will be re-evaluated periodically to ensure that seismic hazards are properly

  18. Study on structural seismic margin and probabilistic seismic risk. Development of a structural capacity-seismic risk diagram

    International Nuclear Information System (INIS)

    Nakajima, Masato; Ohtori, Yasuki; Hirata, Kazuta

    2010-01-01

    Seismic margin is extremely important index and information when we evaluate and account seismic safety of critical structures, systems and components quantitatively. Therefore, it is required that electric power companies evaluate the seismic margin of each plant in back-check of nuclear power plants in Japan. The seismic margin of structures is usually defined as a structural capacity margin corresponding to design earthquake ground motion. However, there is little agreement as to the definition of the seismic margin and we have no knowledge about a relationship between the seismic margin and seismic risk (annual failure probability) which is obtained in PSA (Probabilistic Safety Assessment). The purpose of this report is to discuss a definition of structural seismic margin and to develop a diagram which can identify a relation between seismic margin and seismic risk. The main results of this paper are described as follows: (1) We develop seismic margin which is defined based on the fact that intensity of earthquake ground motion is more appropriate than the conventional definition (i.e., the response-based seismic margin) for the following reasons: -seismic margin based on earthquake ground motion is invariant where different typed structures are considered, -stakeholders can understand the seismic margin based on the earthquake ground motion better than the response-based one. (2) The developed seismic margin-risk diagram facilitates us to judge easily whether we need to perform detailed probabilistic risk analysis or only deterministic analysis, given that the reference risk level although information on the uncertainty parameter beta is not obtained. (3) We have performed numerical simulations based on the developed method for four sites in Japan. The structural capacity-risk diagram differs depending on each location because the diagram is greatly influenced by seismic hazard information for a target site. Furthermore, the required structural capacity

  19. Seismic Ecology

    Science.gov (United States)

    Seleznev, V. S.; Soloviev, V. M.; Emanov, A. F.

    The paper is devoted to researches of influence of seismic actions for industrial and civil buildings and people. The seismic actions bring influence directly on the people (vibration actions, force shocks at earthquakes) or indirectly through various build- ings and the constructions and can be strong (be felt by people) and weak (be fixed by sensing devices). The great number of work is devoted to influence of violent seismic actions (first of all of earthquakes) on people and various constructions. This work is devoted to study weak, but long seismic actions on various buildings and people. There is a need to take into account seismic oscillations, acting on the territory, at construction of various buildings on urbanized territories. Essential influence, except for violent earthquakes, man-caused seismic actions: the explosions, seismic noise, emitted by plant facilities and moving transport, radiation from high-rise buildings and constructions under action of a wind, etc. can exert. Materials on increase of man- caused seismicity in a number of regions in Russia, which earlier were not seismic, are presented in the paper. Along with maps of seismic microzoning maps to be built indicating a variation of amplitude spectra of seismic noise within day, months, years. The presence of an information about amplitudes and frequencies of oscillations from possible earthquakes and man-caused oscillations in concrete regions allows carry- ing out soundly designing and construction of industrial and civil housing projects. The construction of buildings even in not seismically dangerous regions, which have one from resonance frequencies coincident on magnitude to frequency of oscillations, emitted in this place by man-caused objects, can end in failure of these buildings and heaviest consequences for the people. The practical examples of detail of engineering- seismological investigation of large industrial and civil housing projects of Siberia territory (hydro power

  20. Magma replenishment and volcanic unrest inferred from the analysis of VT micro-seismicity and seismic velocity changes at Piton de la Fournaise Volcano

    Science.gov (United States)

    Brenguier, F.; Rivemale, E.; Clarke, D. S.; Schmid, A.; Got, J.; Battaglia, J.; Taisne, B.; Staudacher, T.; Peltier, A.; Shapiro, N. M.; Tait, S.; Ferrazzini, V.; Di Muro, A.

    2011-12-01

    Piton de la Fournaise volcano (PdF) is among the most active basaltic volcanoes worldwide with more than one eruption per year on average. Also, PdF is densely instrumented with short-period and broad-band seismometers as well as with GPS receivers. Continuous seismic waveforms are available from 1999. Piton de la Fournaise volcano has a moderate inter-eruptive seismic activity with an average of five detected Volcano-Tectonic (VT) earthquakes per day with magnitudes ranging from 0.5 to 3.5. These earthquakes are shallow and located about 2.5 kilometers beneath the edifice surface. Volcanic unrest is captured on average a few weeks before eruptions by measurements of increased VT seismicity rate, inflation of the edifice summit, and decreased seismic velocities from correlations of seismic noise. Eruptions are usually preceded by seismic swarms of VT earthquakes. Recently, almost 50 % of seismic swarms were not followed by eruptions. Within this work, we aim to gather results from different groups of the UnderVolc research project in order to better understand the processes of deep magma transfer, volcanic unrest, and pre-eruptive magma transport initiation. Among our results, we show that the period 1999-2003 was characterized by a long-term increase of VT seismicity rate coupled with a long-term decrease of seismic velocities. These observations could indicate a long-term replenishment of the magma storage area. The relocation of ten years of inter-eruptive micro-seismicity shows a narrow (~300 m long) sub-vertical fault zone thus indicating a conduit rather than an extended magma reservoir as the shallow magma feeder system. Also, we focus on the processes of short-term volcanic unrest and prove that magma intrusions within the edifice leading to eruptions activate specific VT earthquakes that are distinct from magma intrusions that do not lead to eruptions. We thus propose that, among the different pathways of magma transport within the edifice, only one will

  1. Seismic waves in 3-D: from mantle asymmetries to reliable seismic hazard assessment

    Science.gov (United States)

    Panza, Giuliano F.; Romanelli, Fabio

    2014-10-01

    A global cross-section of the Earth parallel to the tectonic equator (TE) path, the great circle representing the equator of net lithosphere rotation, shows a difference in shear wave velocities between the western and eastern flanks of the three major oceanic rift basins. The low-velocity layer in the upper asthenosphere, at a depth range of 120 to 200 km, is assumed to represent the decoupling between the lithosphere and the underlying mantle. Along the TE-perturbed (TE-pert) path, a ubiquitous LVZ, about 1,000-km-wide and 100-km-thick, occurs in the asthenosphere. The existence of the TE-pert is a necessary prerequisite for the existence of a continuous global flow within the Earth. Ground-shaking scenarios were constructed using a scenario-based method for seismic hazard analysis (NDSHA), using realistic and duly validated synthetic time series, and generating a data bank of several thousands of seismograms that account for source, propagation, and site effects. Accordingly, with basic self-organized criticality concepts, NDSHA permits the integration of available information provided by the most updated seismological, geological, geophysical, and geotechnical databases for the site of interest, as well as advanced physical modeling techniques, to provide a reliable and robust background for the development of a design basis for cultural heritage and civil infrastructures. Estimates of seismic hazard obtained using the NDSHA and standard probabilistic approaches are compared for the Italian territory, and a case-study is discussed. In order to enable a reliable estimation of the ground motion response to an earthquake, three-dimensional velocity models have to be considered, resulting in a new, very efficient, analytical procedure for computing the broadband seismic wave-field in a 3-D anelastic Earth model.

  2. Probabilistic Seismic Hazard Analysis for Yemen

    Directory of Open Access Journals (Sweden)

    Rakesh Mohindra

    2012-01-01

    Full Text Available A stochastic-event probabilistic seismic hazard model, which can be used further for estimates of seismic loss and seismic risk analysis, has been developed for the territory of Yemen. An updated composite earthquake catalogue has been compiled using the databases from two basic sources and several research publications. The spatial distribution of earthquakes from the catalogue was used to define and characterize the regional earthquake source zones for Yemen. To capture all possible scenarios in the seismic hazard model, a stochastic event set has been created consisting of 15,986 events generated from 1,583 fault segments in the delineated seismic source zones. Distribution of horizontal peak ground acceleration (PGA was calculated for all stochastic events considering epistemic uncertainty in ground-motion modeling using three suitable ground motion-prediction relationships, which were applied with equal weight. The probabilistic seismic hazard maps were created showing PGA and MSK seismic intensity at 10% and 50% probability of exceedance in 50 years, considering local soil site conditions. The resulting PGA for 10% probability of exceedance in 50 years (return period 475 years ranges from 0.2 g to 0.3 g in western Yemen and generally is less than 0.05 g across central and eastern Yemen. The largest contributors to Yemen’s seismic hazard are the events from the West Arabian Shield seismic zone.

  3. A personal computer code for seismic evaluations of nuclear power plant facilities

    International Nuclear Information System (INIS)

    Xu, J.; Graves, H.

    1990-01-01

    A wide range of computer programs and modeling approaches are often used to justify the safety of nuclear power plants. It is often difficult to assess the validity and accuracy of the results submitted by various utilities without developing comparable computer solutions. Taken this into consideration, CARES is designed as an integrated computational system which can perform rapid evaluations of structural behavior and examine capability of nuclear power plant facilities, thus CARES may be used by the NRC to determine the validity and accuracy of analysis methodologies employed for structural safety evaluations of nuclear power plants. CARES has been designed to: operate on a PC, have user friendly input/output interface, and have quick turnaround. The CARES program is structured in a modular format. Each module performs a specific type of analysis. The basic modules of the system are associated with capabilities for static, seismic and nonlinear analyses. This paper describes the various features which have been implemented into the Seismic Module of CARES version 1.0. In Section 2 a description of the Seismic Module is provided. The methodologies and computational procedures thus far implemented into the Seismic Module are described in Section 3. Finally, a complete demonstration of the computational capability of CARES in a typical soil-structure interaction analysis is given in Section 4 and conclusions are presented in Section 5. 5 refs., 4 figs

  4. Upgrading of seismic design of nuclear power plant building

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, Hiroshi [Tokyo Univ. (Japan). Faculty of Engineering; Kitada, Yoshio

    1997-03-01

    In Japan seismic design methodology of nuclear power plant (NPP) structures has been established as introduced in the previous session. And yet efforts have been continued to date to upgrade the methodology, because of conservative nature given to the methodology in regard to unknown phenomena and technically-limited modeling involved in design analyses. The conservative nature tends to produce excessive safety margins, and inevitably send NPP construction cost up. Moreover, excessive seismic design can increase the burden on normal plant operation, though not necessarily contributing to overall plant safety. Therefore, seismic engineering has put to many tests and simulation analyses in hopes to rationalize seismic design and enhance reliability of seismic safety of NPPs. In this paper, we describe some studies on structural seismic design of NPP underway as part of Japan`s effort to upgrade existing seismic design methodology. Most studies described here are carried out by NUPEC (Nuclear Power Engineering Company) funded by MITI (the Ministry of International Trade and Industry Japan), though, similar studies with the same motive are also carrying out by nuclear industries such as utilities, NPP equipment and system manufacturers and building constructors. This paper consists of three sections, each introducing studies relating to NPP structural seismic design, new siting technology, and upgrading of the methodology of structural design analyses. (J.P.N.)

  5. Upgrading of seismic design of nuclear power plant building

    International Nuclear Information System (INIS)

    Akiyama, Hiroshi; Kitada, Yoshio.

    1997-01-01

    In Japan seismic design methodology of nuclear power plant (NPP) structures has been established as introduced in the previous session. And yet efforts have been continued to date to upgrade the methodology, because of conservative nature given to the methodology in regard to unknown phenomena and technically-limited modeling involved in design analyses. The conservative nature tends to produce excessive safety margins, and inevitably send NPP construction cost up. Moreover, excessive seismic design can increase the burden on normal plant operation, though not necessarily contributing to overall plant safety. Therefore, seismic engineering has put to many tests and simulation analyses in hopes to rationalize seismic design and enhance reliability of seismic safety of NPPs. In this paper, we describe some studies on structural seismic design of NPP underway as part of Japan's effort to upgrade existing seismic design methodology. Most studies described here are carried out by NUPEC (Nuclear Power Engineering Company) funded by MITI (the Ministry of International Trade and Industry Japan), though, similar studies with the same motive are also carrying out by nuclear industries such as utilities, NPP equipment and system manufacturers and building constructors. This paper consists of three sections, each introducing studies relating to NPP structural seismic design, new siting technology, and upgrading of the methodology of structural design analyses. (J.P.N.)

  6. A new seismic station in Romania the Bucovina seismic array

    International Nuclear Information System (INIS)

    Grigore, Adrian; Grecu, Bogdan; Ionescu, Constantin; Ghica, Daniela; Popa, Mihaela; Rizescu, Mihaela

    2002-01-01

    Recently, a new seismic monitoring station, the Bucovina Seismic Array, has been established in the northern part of Romania, in a joint effort of the Air Force Technical Applications Center, USA, and the National Institute for Earth Physics, Romania. The array consists of 10 seismic sensors (9 short-period and one broad band) located in boreholes and distributed in a 5 x 5 km area. On July 24, 2002 the official Opening Ceremony of Bucovina Seismic Array took place in the area near the city of Campulung Moldovenesc in the presence of Romanian Prime Minister, Adrian Nastase. Starting with this date, the new seismic monitoring system became fully operational by continuous recording and transmitting data in real-time to the National Data Center of Romania, in Bucharest and to the National Data Center of USA, in Florida. Bucovina Seismic Array, added to the present Seismic Network, will provide much better seismic monitoring coverage of Romania's territory, on-scale recording for weak-to-strong events, and will contribute to advanced seismological studies on seismic hazard and risk, local effects and microzonation, seismic source physics, Earth structure. (authors)

  7. Multi-hole seismic modeling in 3-D space and cross-hole seismic tomography analysis for boulder detection

    Science.gov (United States)

    Cheng, Fei; Liu, Jiangping; Wang, Jing; Zong, Yuquan; Yu, Mingyu

    2016-11-01

    A boulder stone, a common geological feature in south China, is referred to the remnant of a granite body which has been unevenly weathered. Undetected boulders could adversely impact the schedule and safety of subway construction when using tunnel boring machine (TBM) method. Therefore, boulder detection has always been a key issue demanded to be solved before the construction. Nowadays, cross-hole seismic tomography is a high resolution technique capable of boulder detection, however, the method can only solve for velocity in a 2-D slice between two wells, and the size and central position of the boulder are generally difficult to be accurately obtained. In this paper, the authors conduct a multi-hole wave field simulation and characteristic analysis of a boulder model based on the 3-D elastic wave staggered-grid finite difference theory, and also a 2-D imaging analysis based on first arrival travel time. The results indicate that (1) full wave field records could be obtained from multi-hole seismic wave simulations. Simulation results describe that the seismic wave propagation pattern in cross-hole high-velocity spherical geological bodies is more detailed and can serve as a basis for the wave field analysis. (2) When a cross-hole seismic section cuts through the boulder, the proposed method provides satisfactory cross-hole tomography results; however, when the section is closely positioned to the boulder, such high-velocity object in the 3-D space would impact on the surrounding wave field. The received diffracted wave interferes with the primary wave and in consequence the picked first arrival travel time is not derived from the profile, which results in a false appearance of high-velocity geology features. Finally, the results of 2-D analysis in 3-D modeling space are comparatively analyzed with the physical model test vis-a-vis the effect of high velocity body on the seismic tomographic measurements.

  8. Seismic Prediction While Drilling (SPWD): Seismic exploration ahead of the drill bit using phased array sources

    Science.gov (United States)

    Jaksch, Katrin; Giese, Rüdiger; Kopf, Matthias

    2010-05-01

    maximize the energy of the seismic source in order to reach a sufficient exploration range. The next step for focusing is to use the method of phased array. Dependent of the seismic wave velocities of the surrounding rock, the distance of the actuators to each other and the used frequencies the signal phases for each actuator can be determined. Since one year several measurements with the prototype have been realized under defined conditions at a test site in a mine. The test site consists of a rock block surrounded from three galleries with a dimension of about 100 by 200 meters. For testing the prototype two horizontal boreholes were drilled. They are directed to one of the gallery to get a strong reflector. The quality of the data of the borehole seismics in amplitude and frequency spectra show overall a good signal-to-noise ratio and correlate strongly with the fracture density along the borehole and are associated with a lower signal-to-noise ratio. Additionally, the geophones of the prototype show reflections from ahead and rearward in the seismic data. In particular, the reflections from the gallery ahead are used for the calibration of focusing. The direct seismic wave field indicates distinct compression and shear waves. The analysis of several seismic measurements with a focus on the direct seismic waves shows that the phased array technology explicit can influence the directional characteristics of the radiated seimic waves. The amplitudes of the seismic waves can be enhanced up to three times more in the desired direction and simultaneously be attenuated in the reverse direction. A major step for the directional investigation in boreholes has accomplished. But the focusing of the seismic waves has to be improved to maximize the energy in the desired direction in more measurements by calibrating the initiating seismic signals of the sources. A next step this year is the development of a wireline prototype for application in vertical boreholes with depths not

  9. Seismic qualification of multiple interconnected safety-related cabinets in a high seismic zone

    International Nuclear Information System (INIS)

    Khan, M.R.; Chen, W.H.W.; Wang, T.Y.

    1993-01-01

    Certain safety-related multiple, interconnected electrical cabinets and the devices contained therein are required to perform their intended safety functions during and after a design basis seismic event. In general, seismic testing is performed to ensure the structural integrity of the cabinets and the functionality of their associated devices. Constrained by the shake table capacity, seismic testing is usually performed only for a limited number of interconnected cabinets. Also, original shake table tests performed usually did not provide detailed response information at various locations inside the cabinets. For operational and maintenance purposes, doors and panels of some cabinets may need to be opened while the adjacent cabinets are required to remain functional. In addition, in-cabinet response spectra need to be generated for the seismic qualification of new devices and the replacement parts. Consequently, seismic analysis of safety-related multiple, interconnected cabinets is frequently required for configurations which are different from the original tested conditions. This paper presents results of seismic tests of three interconnected safety-related cabinets and finite element analyses performed to compare the analytical results with those obtained from the cabinet seismic tests. Parametric analyses are performed to determine how many panels and doors can be opened while the adjacent cabinets still remain functional. The study indicates that for cabinets located in a high seismic zone, the critical damping of the cabinet is significantly higher than 5% to 7% typically used in qualifying electrical equipment. For devices mounted on the cabinet doors to performed their intended safety function, it requires stiffening of doors and that these doors be properly bolted to the cabinet frame. It also shows that even though doors and panels bolted to the cabinet frame are the primary seismic resistant element of the cabinet, opening of a limited number of them

  10. Effects of seismic survey sound on cetaceans in the Northwest Atlantic

    Energy Technology Data Exchange (ETDEWEB)

    Moulton, Valerie D.; Holst, Meike [LGL Limited, Environmental Research Associates (Canada)

    2010-06-15

    Hydrocarbon exploration with marine seismic programs in the Canadian Beaufort Sea is expected to continue in the future. However the effect of those seismic surveys on cetaceans is a controversial subject, the sound emitted by airguns might result in hearing impairment or injury to marine mammals if they are at close range. The aim of this paper is to determine the behavior of cetaceans during seismic surveys. From 2003 to 2008, studies were conducted for 9180 hours over 8 seismic programs to observe the difference in number, sighting distance and behavior of marine mammals between seismic and non-seismic periods. Results showed that mysticetes and baleen whales tend to avoid the active airgun array while large toothed whales showed no difference in sighting rate and distances whether the airgun was active or not. This study showed that the effectiveness of ramping up the airgun to alert cetaceans of seismic operations depends on the species.

  11. The Seismic Analyzer: Interpreting and Illustrating 2D Seismic Data

    OpenAIRE

    Patel, Daniel; Giertsen, Christopher; Thurmond, John; Gjelberg, John; Gröller, Eduard

    2008-01-01

    We present a toolbox for quickly interpreting and illustrating 2D slices of seismic volumetric reflection data. Searching for oil and gas involves creating a structural overview of seismic reflection data to identify hydrocarbon reservoirs. We improve the search of seismic structures by precalculating the horizon structures of the seismic data prior to interpretation. We improve the annotation of seismic structures by applying novel illustrative rendering algorithms tailored to seism...

  12. Instrumentation qualification. Seismic qualification of C-E instrumentation equipment. Part One

    International Nuclear Information System (INIS)

    1977-05-01

    A summary of the C-E seismic qualification program utilized to demonstrate the seismic design adequacy of the instrumentation and control equipment used in C-E supplied Nuclear Steam Supply Systems (NSSS) is presented. The report is divided into two parts. Part One includes the equipment seismic requirements and a description of the qualification methods. Part Two lists the specific equipment by nuclear station in which it is used and the equipment test results are summarized in a standard data sheet format to facilitate review. The seismic requirements are based on individual contract commitments with C-E customers and the NRC Standard Review Plan, Section 3.10 ''Seismic Qualification of Category I Instrumentation and Electrical Equipment.'' Equipment is qualified for use in a seismic environment where damage potential to the equipment is less than or equal to that simulated seismic environment to which it has been qualified. The anticipated Safe Shutdown Earthquake (SSE) environment at the inservice location of equipment should be confirmed by each applicant as not exceeding that to which it is qualified

  13. Seismic Energy Generation and Partitioning into Various Regional Phases from Different Seismic Sources in the Middle East Region

    Science.gov (United States)

    2007-09-20

    a), a 3C SP seismic station (b) and a sensor BlastMateIII, Oron quarry (c)............................... 9 Figure 7. Seismic Array MMAI (AS49) of... seismic stations of Jordan network at distance range 22-285 km (a), and at IMS array MMAI (AS49) at 350 km, BP filtered 2-8 Hz (b...sites and portable stations, inserts show detailed location of the tripartite array elements (st.6) and configuration of the explosion boreholes and

  14. Estimating Fault Friction From Seismic Signals in the Laboratory

    Science.gov (United States)

    Rouet-Leduc, Bertrand; Hulbert, Claudia; Bolton, David C.; Ren, Christopher X.; Riviere, Jacques; Marone, Chris; Guyer, Robert A.; Johnson, Paul A.

    2018-02-01

    Nearly all aspects of earthquake rupture are controlled by the friction along the fault that progressively increases with tectonic forcing but in general cannot be directly measured. We show that fault friction can be determined at any time, from the continuous seismic signal. In a classic laboratory experiment of repeating earthquakes, we find that the seismic signal follows a specific pattern with respect to fault friction, allowing us to determine the fault's position within its failure cycle. Using machine learning, we show that instantaneous statistical characteristics of the seismic signal are a fingerprint of the fault zone shear stress and frictional state. Further analysis of this fingerprint leads to a simple equation of state quantitatively relating the seismic signal power and the friction on the fault. These results show that fault zone frictional characteristics and the state of stress in the surroundings of the fault can be inferred from seismic waves, at least in the laboratory.

  15. Conceptual design report: Nuclear materials storage facility renovation. Part 5, Structural/seismic investigation. Section B, Renovation calculations/supporting data

    International Nuclear Information System (INIS)

    1995-01-01

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL's weapons research, development, and testing (WRD ampersand T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL's inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This report is organized according to the sections and subsections. It is organized into seven parts. This document, Part V, Section B - Structural/Seismic Information provides a description of the seismic and structural analyses performed on the NMSF and their results

  16. Reprocessing seismic data: better results below diabase sills

    Energy Technology Data Exchange (ETDEWEB)

    Makler, Marisa [Halliburton Servicos Ltda., Rio de Janeiro, RJ (Brazil); Pellizzon, Marcela

    2008-07-01

    The effect of the diabase sills in the seismic data processing has been studied in the last twenty years. These rocks strongly influence the exploratory activities in a basin, because the diabase disturbs the sign and generates multiple and spherical divergence, increasing the exploratory risk in these areas. In the present work a method of 2D seismic reprocessing will be presented using Prestack Kirchhoff Time Migration in an older seismic data of Solimoes basin. The objective of this paper is to show the high results on the reprocessing seismic data below the diabase sills. The 2D lines processed give relevant improvement of the quality of signal, showing better the faults zones and preserving the geological structures than the older data. (author)

  17. Effect of Vertically Propagating Shear Waves on Seismic Behavior of Circular Tunnels

    Directory of Open Access Journals (Sweden)

    Tohid Akhlaghi

    2014-01-01

    Full Text Available Seismic design loads for tunnels are characterized in terms of the deformations imposed on the structure by surrounding ground. The free-field ground deformations due to a seismic event are estimated, and the tunnel is designed to accommodate these deformations. Vertically propagating shear waves are the predominant form of earthquake loading that causes the ovaling deformations of circular tunnels to develop, resulting in a distortion of the cross sectional shape of the tunnel lining. In this paper, seismic behavior of circular tunnels has been investigated due to propagation of shear waves in the vertical direction using quasi-static analytical approaches as well as numerical methods. Analytical approaches are based on the closed-form solutions which compute the forces in the lining due to equivalent static ovaling deformations, while the numerical method carries out dynamic, nonlinear soil-structure interaction analysis. Based on comparisons made, the accuracy and reliability of the analytical solutions are evaluated and discussed. The results show that the axial forces determined using the analytical approaches are in acceptable agreement with numerical analysis results, while the computed bending moments are less comparable and show significant discrepancies. The differences between the analytical approaches are also investigated and addressed.

  18. An innovative assessment of the seismic hazard from Vrancea intermediate-depth earthquakes: Case studies in Romania and Bulgaria

    International Nuclear Information System (INIS)

    Panza, G.F.; Cioflan, C.; Marmureanu, G.; Kouteva, M.; Paskaleva, I.; Romanelli, F.

    2002-02-01

    An advanced procedure for ground motion, capable of synthesizing the seismic ground motion from basic understanding of fault mechanism and seismic wave propagation, is applied to the case studies of Bucharest (Romania) and Russe, NE Bulgaria, exposed to the seismic hazard from Vrancea events. Synthetic seismic signals along representative geological cross sections in Bucharest and Russe and been computed and the energetic input spectra have been derived both from the synthetic signals and the few existing records. The theoretical signals are successfully compared with the available observations. The site response has been calculated for three recent, strong and intermediate-depth, Vrancea earthquakes: August 30, 1986 and May 30 and 31, 1990. The used approach differs significantly from today's engineering practice that relays upon rock-site hazard maps and applies the site correction at a later stage. The obtained results show that it is very useful to estimate the site effect via waveform modelling, considering simultaneously the geotechnical properties of the site, the position and geometry of the seismic source and the mechanical properties of the propagation medium. (author)

  19. Seismic Microzonation for Refinement of Seismic Load Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Savich, A. I.; Bugaevskii, A. G., E-mail: office@geodyn.ru, E-mail: bugaevskiy@geodyn.ru [Center of the Office of Geodynamic Observations in the Power Sector, an affiliate of JSC “Institut Gidroproekt” (Russian Federation)

    2016-05-15

    Functional dependencies are established for the characteristics of seismic transients recorded at various points of a studied site, which are used to propose a new approach to seismic microzonation (SMZ) that enables the creation of new SMZ maps of strong seismic motion, with due regard for dynamic parameters of recorded transients during weak earthquakes.

  20. The seismic analyzer: interpreting and illustrating 2D seismic data.

    Science.gov (United States)

    Patel, Daniel; Giertsen, Christopher; Thurmond, John; Gjelberg, John; Gröller, M Eduard

    2008-01-01

    We present a toolbox for quickly interpreting and illustrating 2D slices of seismic volumetric reflection data. Searching for oil and gas involves creating a structural overview of seismic reflection data to identify hydrocarbon reservoirs. We improve the search of seismic structures by precalculating the horizon structures of the seismic data prior to interpretation. We improve the annotation of seismic structures by applying novel illustrative rendering algorithms tailored to seismic data, such as deformed texturing and line and texture transfer functions. The illustrative rendering results in multi-attribute and scale invariant visualizations where features are represented clearly in both highly zoomed in and zoomed out views. Thumbnail views in combination with interactive appearance control allows for a quick overview of the data before detailed interpretation takes place. These techniques help reduce the work of seismic illustrators and interpreters.

  1. Seismicity and seismic monitoring in the Asse salt mine

    International Nuclear Information System (INIS)

    Flach, D.; Gommlich, G.; Hente, B.

    1987-01-01

    Seismicity analyses are made in order to assess the safety of candidate sites for ultimate disposal of hazardous wastes. The report in hand reviews the seismicity history of the Asse salt mine and presents recent results of a measuring campaign made in the area. The monitoring network installed at the site supplies data and information on the regional seismicity, on seismic amplitudes under ground and above ground, and on microseismic activities. (DG) [de

  2. IAEA establishes International Seismic Safety Centre

    International Nuclear Information System (INIS)

    2008-01-01

    Full text: The IAEA today officially inaugurated an international centre to coordinate efforts for protecting nuclear installations against the effects of earthquakes. The International Seismic Safety Centre (ISSC), which has been established within the IAEA's Department of Nuclear Safety and Security, will serve as a focal point on seismic safety for nuclear installations worldwide. ISSC will assist countries on the assessment of seismic hazards of nuclear facilities to mitigate the consequences of strong earthquakes. 'With safety as our first priority, it is vital that we pool all expert knowledge available worldwide to assist nuclear operators and regulators to be well prepared for coping with major seismic events,' said Antonio Godoy, Acting Head of the IAEA's Engineering Safety Section and leader of the ISSC. 'The creation of the ISSC represents the culmination of three decades of the IAEA's active and recognized involvement in this matter through the development of an updated set of safety standards and the assistance to Member States for their application.' To further seismic safety at nuclear installations worldwide, the ISSC will: - Promote knowledge sharing among the international community in order to avoid or mitigate the consequences of extreme seismic events on nuclear installations; - Support countries through advisory services and training courses; and - Enhance seismic safety by utilizing experience gained from previous seismic events in member states. The centre is supported by a scientific committee of high-level experts from academic, industrial and nuclear safety authorities that will advise the ISSC on implementation of its programme. Experts have been nominated from seven specialized areas, including geology and tectonics, seismology, seismic hazard, geotechnical engineering, structural engineering, equipment, and seismic risk. Japan and the United States have both contributed initial funds for creation of the centre, which will be based at

  3. Application of Post-stack migration to seismic data associated with fault structures

    Science.gov (United States)

    Koduru, Anitha; Mohanty, P. R.

    2015-06-01

    In hydrocarbon exploration, wave-equation migration techniques play an important role in imaging the complex geological structures. Usually, post-stack migration scheme is applied to the seismic data to improve the resolution with restoration of dipping reflectors to their true position. As a result, the migrated time sections are interpretable in terms of subsurface features. As a numerical study, three fault models are considered for the present study. First of all, synthetic time sections are generated corresponding to three models. Later, post stack migration schemes such as Gazdag(PS), Phase-shift with turning rays and reverse time migration (T-K) domain techniques are applied in order to judge the imaging accuracy, preservation of true amplitude and computational speed. All the three post stack time migrated sections delineate the structure with their throw.However, the reverse time migrations (T-K) clearly delineate the reflectors in restoring the throw properly with minimum computational time. In order to test the validity the numerical results, similar exercise has been undertaken using field seismic data of KG basin, India. The results indicates that the field migrated sections are imaged. But, the reverse time migration (T-K ) provides the best subsurface image with restoration of reflectors and collapse of diffracted events with least computational time. Gazdag (PS) and Phase-Shift with turning migrated section shows the reduction of amplitude whereas, the reverse time migration preserved the amplitude fully.

  4. German seismic regulations

    International Nuclear Information System (INIS)

    Danisch, Ruediger

    2002-01-01

    Rules and regulations for seismic design in Germany cover the following: seismic design of conventional buildings; and seismic design of nuclear facilities. Safety criteria for NPPs, accident guidelines, and guidelines for PWRs as well as safety standards are cited. Safety standards concerned with NPPs seismic design include basic principles, soil analysis, design of building structures, design of mechanical and electrical components, seismic instrumentation, and measures to be undertaken after the earthquake

  5. Seismic capacity of a reinforced concrete frame structure without seismic detailing and limited ductility seismic design in moderate seismicity

    International Nuclear Information System (INIS)

    Kim, J. K.; Kim, I. H.

    1999-01-01

    A four-story reinforced concrete frame building model is designed for the gravity loads only. Static nonlinear pushover analyses are performed in two orthogonal horizontal directions. The overall capacity curves are converted into ADRS spectra and compared with demand spectra. At several points the deformed shape, moment and shear distribution are calculated. Based on these results limited ductility seismic design concept is proposed as an alternative seismic design approach in moderate seismicity resign

  6. Seismic Tomography of Siyazan - Shabran Oil and Gas Region Of Azerbaijan by Data of The Seismic Stations

    Science.gov (United States)

    Yetirmishli, Gurban; Guliyev, Ibrahim; Mammadov, Nazim; Kazimova, Sabina; Ismailova, Saida

    2016-04-01

    The main purpose of the research was to build a reliable 3D model of the structure of seismic velocities in the earth crust on the territory of Siyazan-Shabran region of Azerbaijan, using the data of seismic telemetry stations spanning Siyazan-Shabran region (Siyazan, Altiagaj, Pirgulu, Guba, Khinalig, Gusar), including 7 mobile telemetry seismic stations. Interest to the problem of research seismic tomography caused by applied environmental objectives, such as the assessment of geological risks, engineering evaluation (stability and safety of wells), the task of exploration and mining operations. In the study region are being actively developed oil fields, and therefore, there is a risk of technogenic earthquakes. It was performed the calculation of first arrival travel times of P and S waves and the corresponding ray paths. Calculate 1D velocity model which is the initial model as a set of horizontal layers (velocity may be constant or changed linearly with depth on each layer, gaps are possible only at the boundaries between the layers). Have been constructed and analyzed the horizontal sections of the three-dimensional velocity model at different depths of the investigated region. By the empirical method was proposed density model of the sedimentary rocks at depths of 0-8 km.

  7. RESERVOIR CHARACTERIZATION USING SEISMIC AND WELL ...

    African Journals Online (AJOL)

    Osondu

    2012-06-19

    Jun 19, 2012 ... analysis of the entire pay zone is impractical. A typical seismic section of Niger Delta will reveal number of synsedimentary structures resulting from the deltaic tectonic. The structures include growth faults; which are normal faults characterization by a concave fault plane resulting from the decrease of dip at ...

  8. Seismic structure from multi-channel seismic reflection and wide-angle data of Transect 0E in the Southern Gulf of California

    Science.gov (United States)

    Paramo, P.; Holbrook, W.; Brown, H.; Lizarralde, D.; Fletcher, J.; Umhoefer, P.; Kent, G.; Harding, A.; Gonzalez, A.; Axen, G.

    2005-12-01

    We present a velocity model from wide-angle data along with coincident prestack depth migration sections from seismic reflection data collected in the southern Gulf of California. Transect 0E runs NE to SW from the hills of Sierra Madre in mainland Mexico near Mazatlan to approximately 115 km into Gulf of California waters. Wide-angle data were recorded by 9 ocean bottom seismometers, deployed by the R/V New Horizon and 10 Reftek seismometers located along onshore extension of the transect. The average spacing for the OBS and Refteks is ~12 km and shots were fired from the R/V Maurice Ewing at 150 m intervals. Transect 0E crosses what it is believed to be extended continental crust and lies in the initial direction of extension characteristic of the proto-gulf. Preliminary results from the velocity model show upper crustal velocities of 6.1-6.3 km/s and lower crustal velocities of 6.7-7.0 km/s along the entire transect. Seismic velocities and crustal thicknesses observed along transect 0E are characteristic of non-volcanic margins.

  9. Approaches that use seismic hazard results to address topics of nuclear power plant seismic safety, with application to the Charleston earthquake issue

    International Nuclear Information System (INIS)

    Sewell, R.T.; McGuire, R.K.; Toro, G.R.; Stepp, J.C.; Cornell, C.A.

    1990-01-01

    Plant seismic safety indicators include seismic hazard at the SSE (safe shut-down earthquake) acceleration, seismic margin, reliability against core damage, and reliability against offsite consequences. This work examines the key role of hazard analysis in evaluating these indicators and in making rational decisions regarding plant safety. The paper outlines approaches that use seismic hazard results as a basis for plant seismic safety evaluation and applies one of these approaches to the Charleston earthquake issue. This approach compares seismic hazard results that account for the Charleston tectonic interpretation, using the EPRI-Seismicity Owners Group (SOG) methodology, with hazard results that are consistent with historical tectonic interpretations accepted in regulation. Based on hazard results for a set of 21 eastern U.S. nuclear power plant sites, the comparison shows that no systematic 'plant-to-plant' increase in hazard accompanies the Charleston hypothesis; differences in mean hazards for the two interpretations are generally insignificant relative to current uncertainties in seismic hazard. (orig.)

  10. AECB workshop on seismic hazard assessment in Southern Ontario. Recorded proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    A workshop on seismic hazard assessment in southern Ontario was conducted on June 19-21, 1995. The purpose of the workshop was to review available geological and seismological data which could affect earthquake occurrence in southern Ontario and to develop a consensus on approaches that should be adopted for characterization of seismic hazard. The workshop was structured in technical sessions to focus presentations and discussions on four technical issues relevant to seismic hazard in southern Ontario, as follows: The importance of geological and geophysical observations for the determination of seismic sources; Methods and approaches which may be adopted for determining seismic sources based on integrated interpretations of geological and seismological information. Methods and data which should be used for characterizing the seismicity parameters of seismic sources. Methods for assessment of vibratory ground motion hazard. This document presents transcripts from recordings made of the presentations and discussion from the workshop. It will be noted, in some sections of the document, that the record is incomplete. This is due in part to recording equipment malfunction and in part due to the poor quality of recording obtained for certain periods.

  11. AECB workshop on seismic hazard assessment in Southern Ontario. Recorded proceedings

    International Nuclear Information System (INIS)

    1995-01-01

    A workshop on seismic hazard assessment in southern Ontario was conducted on June 19-21, 1995. The purpose of the workshop was to review available geological and seismological data which could affect earthquake occurrence in southern Ontario and to develop a consensus on approaches that should be adopted for characterization of seismic hazard. The workshop was structured in technical sessions to focus presentations and discussions on four technical issues relevant to seismic hazard in southern Ontario, as follows: The importance of geological and geophysical observations for the determination of seismic sources; Methods and approaches which may be adopted for determining seismic sources based on integrated interpretations of geological and seismological information. Methods and data which should be used for characterizing the seismicity parameters of seismic sources. Methods for assessment of vibratory ground motion hazard. This document presents transcripts from recordings made of the presentations and discussion from the workshop. It will be noted, in some sections of the document, that the record is incomplete. This is due in part to recording equipment malfunction and in part due to the poor quality of recording obtained for certain periods

  12. Seismic Risk Perception compared with seismic Risk Factors

    Science.gov (United States)

    Crescimbene, Massimo; La Longa, Federica; Pessina, Vera; Pino, Nicola Alessandro; Peruzza, Laura

    2016-04-01

    The communication of natural hazards and their consequences is one of the more relevant ethical issues faced by scientists. In the last years, social studies have provided evidence that risk communication is strongly influenced by the risk perception of people. In order to develop effective information and risk communication strategies, the perception of risks and the influencing factors should be known. A theory that offers an integrative approach to understanding and explaining risk perception is still missing. To explain risk perception, it is necessary to consider several perspectives: social, psychological and cultural perspectives and their interactions. This paper presents the results of the CATI survey on seismic risk perception in Italy, conducted by INGV researchers on funding by the DPC. We built a questionnaire to assess seismic risk perception, with a particular attention to compare hazard, vulnerability and exposure perception with the real data of the same factors. The Seismic Risk Perception Questionnaire (SRP-Q) is designed by semantic differential method, using opposite terms on a Likert scale to seven points. The questionnaire allows to obtain the scores of five risk indicators: Hazard, Exposure, Vulnerability, People and Community, Earthquake Phenomenon. The questionnaire was administered by telephone interview (C.A.T.I.) on a statistical sample at national level of over 4,000 people, in the period January -February 2015. Results show that risk perception seems be underestimated for all indicators considered. In particular scores of seismic Vulnerability factor are extremely low compared with house information data of the respondents. Other data collected by the questionnaire regard Earthquake information level, Sources of information, Earthquake occurrence with respect to other natural hazards, participation at risk reduction activities and level of involvement. Research on risk perception aims to aid risk analysis and policy-making by

  13. Seismicity and tectonics of Bangladesh

    International Nuclear Information System (INIS)

    Hossain, K.M.

    1989-05-01

    Northern and eastern Bangladesh and surrounding areas belong to a seismically active zone and are associated with the subduction of the Indian plate. The seismicity and tectonics have been studied in detail and the observations have been correlated to understand the earthquake phenomenon in the region. The morphotectonic behaviour of northern Bangladesh shows that it is deeply related to the movement of the Dauki fault system and relative upliftment of the Shillong plateau. Contemporary seismicity in the Dauki fault system is relatively quiet comparing to that in the Naga-Disang-Haflong thrust belt giving rise to the probability of sudden release of energy being accumulated in the vicinity of the Dauki fault system. This observation corresponds with the predicted average return period of a large earthquake (1897 type) and the possibility of M > 8 earthquake in the vicinity of the Dauki fault within this century should not be ruled out. The seismicity in the folded belt in the east follows the general trend of Arakan-Yoma anticlinorium and represents shallow and low-angled thrust movements in conformity with the field observation. Seismotectonic behaviour in the deep basin part of Bangladesh demonstrates that an intraplate movement in the basement rock has been taking place along the deep-seated faults causing relative upliftment and subsidence in the basin. Bangladesh has been divided into three seismic zones on the basis of morphotectonic and seismic behaviour. Zone-I has been identified as the zone of high seismic risk. (author). 43 refs, 5 figs, 3 tabs

  14. Progressive Seismic Failure, Seismic Gap, and Great Seismic Risk across the Densely Populated North China Basin

    Science.gov (United States)

    Yin, A.; Yu, X.; Shen, Z.

    2014-12-01

    Although the seismically active North China basin has the most complete written records of pre-instrumentation earthquakes in the world, this information has not been fully utilized for assessing potential earthquake hazards of this densely populated region that hosts ~200 million people. In this study, we use the historical records to document the earthquake migration pattern and the existence of a 180-km seismic gap along the 600-km long right-slip Tangshan-Hejian-Cixian (THC) fault zone that cuts across the North China basin. The newly recognized seismic gap, which is centered at Tianjin with a population of 11 million people and ~120 km from Beijing (22 million people) and Tangshan (7 million people), has not been ruptured in the past 1000 years by M≥6 earthquakes. The seismic migration pattern in the past millennium suggests that the epicenters of major earthquakes have shifted towards this seismic gap along the THC fault, which implies that the 180- km gap could be the site of the next great earthquake with M≈7.6 if it is ruptured by a single event. Alternatively, the seismic gap may be explained by aseismic creeping or seismic strain transfer between active faults.

  15. Southern Appalachian Regional Seismic Network

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, S.C.C.; Johnston, A.C.; Chiu, J.M. [Memphis State Univ., TN (United States). Center for Earthquake Research and Information

    1994-08-01

    The seismic activity in the southern Appalachian area was monitored by the Southern Appalachian Regional Seismic Network (SARSN) since late 1979 by the Center for Earthquake Research and Information (CERI) at Memphis State University. This network provides good spatial coverage for earthquake locations especially in east Tennessee. The level of activity concentrates more heavily in the Valley and Ridge province of eastern Tennessee, as opposed to the Blue Ridge or Inner Piedmont. The large majority of these events lie between New York - Alabama lineament and the Clingman/Ocoee lineament, magnetic anomalies produced by deep-seated basement structures. Therefore SARSN, even with its wide station spacing, has been able to define the essential first-order seismological characteristics of the Southern Appalachian seismic zone. The focal depths of the southeastern U.S. earthquakes concentrate between 8 and 16 km, occurring principally beneath the Appalachian overthrust. In cross-sectional views, the average seismicity is shallower to the east beneath the Blue Ridge and Piedmont provinces and deeper to the west beneath the Valley and Ridge and the North American craton. Results of recent focal mechanism studies by using the CERI digital earthquake catalog between October, 1986 and December, 1991, indicate that the basement of the Valley and Ridge province is under a horizontal, NE-SW compressive stress. Right-lateral strike-slip faulting on nearly north-south fault planes is preferred because it agrees with the trend of the regional magnetic anomaly pattern.

  16. Southern Appalachian Regional Seismic Network

    International Nuclear Information System (INIS)

    Chiu, S.C.C.; Johnston, A.C.; Chiu, J.M.

    1994-08-01

    The seismic activity in the southern Appalachian area was monitored by the Southern Appalachian Regional Seismic Network (SARSN) since late 1979 by the Center for Earthquake Research and Information (CERI) at Memphis State University. This network provides good spatial coverage for earthquake locations especially in east Tennessee. The level of activity concentrates more heavily in the Valley and Ridge province of eastern Tennessee, as opposed to the Blue Ridge or Inner Piedmont. The large majority of these events lie between New York - Alabama lineament and the Clingman/Ocoee lineament, magnetic anomalies produced by deep-seated basement structures. Therefore SARSN, even with its wide station spacing, has been able to define the essential first-order seismological characteristics of the Southern Appalachian seismic zone. The focal depths of the southeastern U.S. earthquakes concentrate between 8 and 16 km, occurring principally beneath the Appalachian overthrust. In cross-sectional views, the average seismicity is shallower to the east beneath the Blue Ridge and Piedmont provinces and deeper to the west beneath the Valley and Ridge and the North American craton. Results of recent focal mechanism studies by using the CERI digital earthquake catalog between October, 1986 and December, 1991, indicate that the basement of the Valley and Ridge province is under a horizontal, NE-SW compressive stress. Right-lateral strike-slip faulting on nearly north-south fault planes is preferred because it agrees with the trend of the regional magnetic anomaly pattern

  17. Time-Independent Annual Seismic Rates, Based on Faults and Smoothed Seismicity, Computed for Seismic Hazard Assessment in Italy

    Science.gov (United States)

    Murru, M.; Falcone, G.; Taroni, M.; Console, R.

    2017-12-01

    In 2015 the Italian Department of Civil Protection, started a project for upgrading the official Italian seismic hazard map (MPS04) inviting the Italian scientific community to participate in a joint effort for its realization. We participated providing spatially variable time-independent (Poisson) long-term annual occurrence rates of seismic events on the entire Italian territory, considering cells of 0.1°x0.1° from M4.5 up to M8.1 for magnitude bin of 0.1 units. Our final model was composed by two different models, merged in one ensemble model, each one with the same weight: the first one was realized by a smoothed seismicity approach, the second one using the seismogenic faults. The spatial smoothed seismicity was obtained using the smoothing method introduced by Frankel (1995) applied to the historical and instrumental seismicity. In this approach we adopted a tapered Gutenberg-Richter relation with a b-value fixed to 1 and a corner magnitude estimated with the bigger events in the catalogs. For each seismogenic fault provided by the Database of the Individual Seismogenic Sources (DISS), we computed the annual rate (for each cells of 0.1°x0.1°) for magnitude bin of 0.1 units, assuming that the seismic moments of the earthquakes generated by each fault are distributed according to the same tapered Gutenberg-Richter relation of the smoothed seismicity model. The annual rate for the final model was determined in the following way: if the cell falls within one of the seismic sources, we merge the respective value of rate determined by the seismic moments of the earthquakes generated by each fault and the value of the smoothed seismicity model with the same weight; if instead the cells fall outside of any seismic source we considered the rate obtained from the spatial smoothed seismicity. Here we present the final results of our study to be used for the new Italian seismic hazard map.

  18. 3-D seismic velocity and attenuation structures in the geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Nugraha, Andri Dian [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia); Syahputra, Ahmad [Geophyisical Engineering, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia); Fatkhan,; Sule, Rachmat [Applied Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)

    2013-09-09

    We conducted delay time tomography to determine 3-D seismic velocity structures (Vp, Vs, and Vp/Vs ratio) using micro-seismic events in the geothermal field. The P-and S-wave arrival times of these micro-seismic events have been used as input for the tomographic inversion. Our preliminary seismic velocity results show that the subsurface condition of geothermal field can be fairly delineated the characteristic of reservoir. We then extended our understanding of the subsurface physical properties through determining of attenuation structures (Qp, Qs, and Qs/Qp ratio) using micro-seismic waveform. We combined seismic velocities and attenuation structures to get much better interpretation of the reservoir characteristic. Our preliminary attanuation structures results show reservoir characterization can be more clearly by using the 3-D attenuation model of Qp, Qs, and Qs/Qp ratio combined with 3-D seismic velocity model of Vp, Vs, and Vp/Vs ratio.

  19. Seismic Probabilistic Risk Assessment (SPRA), approach and results

    International Nuclear Information System (INIS)

    Campbell, R.D.

    1995-01-01

    During the past 15 years there have been over 30 Seismic Probabilistic Risk Assessments (SPRAs) and Seismic Probabilistic Safety Assessments (SPSAs) conducted of Western Nuclear Power Plants, principally of US design. In this paper PRA and PSA are used interchangeably as the overall process is essentially the same. Some similar assessments have been done for reactors in Taiwan, Korea, Japan, Switzerland and Slovenia. These plants were also principally US supplied or built under US license. Since the restructuring of the governments in former Soviet Bloc countries, there has been grave concern regarding the safety of the reactors in these countries. To date there has been considerable activity in conducting partial seismic upgrades but the overall quantification of risk has not been pursued to the depth that it has in Western countries. This paper summarizes the methodology for Seismic PRA/PSA and compares results of two partially completed and two completed PRAs of soviet designed reactors to results from earlier PRAs on US Reactors. A WWER 440 and a WWER 1000 located in low seismic activity regions have completed PRAs and results show the seismic risk to be very low for both designs. For more active regions, partially completed PRAs of a WWER 440 and WWER 1000 located at the same site show the WWER 440 to have much greater seismic risk than the WWER 1000 plant. The seismic risk from the 1000 MW plant compares with the high end of seismic risk for earlier seismic PRAs in the US. Just as for most US plants, the seismic risk appears to be less than the risk from internal events if risk is measured is terms of mean core damage frequency. However, due to the lack of containment for the earlier WWER 440s, the risk to the public may be significantly greater due to the more probable scenario of an early release. The studies reported have not taken the accident sequences beyond the stage of core damage hence the public heath risk ratios are speculative. (author)

  20. Next-generation probabilistic seismicity forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Hiemer, S.

    2014-07-01

    The development of probabilistic seismicity forecasts is one of the most important tasks of seismologists at present time. Such forecasts form the basis of probabilistic seismic hazard assessment, a widely used approach to generate ground motion exceedance maps. These hazard maps guide the development of building codes, and in the absence of the ability to deterministically predict earthquakes, good building and infrastructure planning is key to prevent catastrophes. Probabilistic seismicity forecasts are models that specify the occurrence rate of earthquakes as a function of space, time and magnitude. The models presented in this thesis are time-invariant mainshock occurrence models. Accordingly, the reliable estimation of the spatial and size distribution of seismicity are of crucial importance when constructing such probabilistic forecasts. Thereby we focus on data-driven approaches to infer these distributions, circumventing the need for arbitrarily chosen external parameters and subjective expert decisions. Kernel estimation has been shown to appropriately transform discrete earthquake locations into spatially continuous probability distributions. However, we show that neglecting the information from fault networks constitutes a considerable shortcoming and thus limits the skill of these current seismicity models. We present a novel earthquake rate forecast that applies the kernel-smoothing method to both past earthquake locations and slip rates on mapped crustal faults applied to Californian and European data. Our model is independent from biases caused by commonly used non-objective seismic zonations, which impose artificial borders of activity that are not expected in nature. Studying the spatial variability of the seismicity size distribution is of great importance. The b-value of the well-established empirical Gutenberg-Richter model forecasts the rates of hazard-relevant large earthquakes based on the observed rates of abundant small events. We propose a

  1. Next-generation probabilistic seismicity forecasting

    International Nuclear Information System (INIS)

    Hiemer, S.

    2014-01-01

    The development of probabilistic seismicity forecasts is one of the most important tasks of seismologists at present time. Such forecasts form the basis of probabilistic seismic hazard assessment, a widely used approach to generate ground motion exceedance maps. These hazard maps guide the development of building codes, and in the absence of the ability to deterministically predict earthquakes, good building and infrastructure planning is key to prevent catastrophes. Probabilistic seismicity forecasts are models that specify the occurrence rate of earthquakes as a function of space, time and magnitude. The models presented in this thesis are time-invariant mainshock occurrence models. Accordingly, the reliable estimation of the spatial and size distribution of seismicity are of crucial importance when constructing such probabilistic forecasts. Thereby we focus on data-driven approaches to infer these distributions, circumventing the need for arbitrarily chosen external parameters and subjective expert decisions. Kernel estimation has been shown to appropriately transform discrete earthquake locations into spatially continuous probability distributions. However, we show that neglecting the information from fault networks constitutes a considerable shortcoming and thus limits the skill of these current seismicity models. We present a novel earthquake rate forecast that applies the kernel-smoothing method to both past earthquake locations and slip rates on mapped crustal faults applied to Californian and European data. Our model is independent from biases caused by commonly used non-objective seismic zonations, which impose artificial borders of activity that are not expected in nature. Studying the spatial variability of the seismicity size distribution is of great importance. The b-value of the well-established empirical Gutenberg-Richter model forecasts the rates of hazard-relevant large earthquakes based on the observed rates of abundant small events. We propose a

  2. Criterions for fixing regulatory seismic acceleration coefficients

    International Nuclear Information System (INIS)

    Costes, D.

    1988-03-01

    Acceleration coeffficients to be taken into account in seismic areas for calculation of structures are defined in national seismic regulations. Joined to the described qualitative requirements, these coefficients represent a balance between precaution costs and avoided damages, both in terms of material repairing costs and damage to human life. Persons in charge of fixing these coefficients must be informed of corresponding quantitative aspects. Data on seismic motions occurrencies and consequences are gathered here and convoluted to mean damage evaluations. Indications on precaution costs are joined, which shows that currently recommended levels of seismic motions are high relatively to financial profitability, and represent in fact an aethical choice about human life value [fr

  3. THK: CLB Crossed Linear Bearing Seismic Isolators

    International Nuclear Information System (INIS)

    Toniolo, Roberto

    2008-01-01

    This text highlights the new seismic isolation technology called CLB (Crossed Linear Bearing), which is made of linear guides with recirculating steel ball technology. It describes specifications and building characteristics, provides examples of seismic isolation and application functionalities and shows experimental data. Since 1994, the constant commitment by Japan to develop diversified anti-seismic systems based on the precise needs of the structures to protect and the areas where they were built has led to the creation of important synergy between the research institutions of leading Japanese companies and THK's Centre for Research and Development. Their goal has been to develop new technology and solutions to allow seismic isolation to be effective in the following cases:

  4. Multicomponent ensemble models to forecast induced seismicity

    Science.gov (United States)

    Király-Proag, E.; Gischig, V.; Zechar, J. D.; Wiemer, S.

    2018-01-01

    In recent years, human-induced seismicity has become a more and more relevant topic due to its economic and social implications. Several models and approaches have been developed to explain underlying physical processes or forecast induced seismicity. They range from simple statistical models to coupled numerical models incorporating complex physics. We advocate the need for forecast testing as currently the best method for ascertaining if models are capable to reasonably accounting for key physical governing processes—or not. Moreover, operational forecast models are of great interest to help on-site decision-making in projects entailing induced earthquakes. We previously introduced a standardized framework following the guidelines of the Collaboratory for the Study of Earthquake Predictability, the Induced Seismicity Test Bench, to test, validate, and rank induced seismicity models. In this study, we describe how to construct multicomponent ensemble models based on Bayesian weightings that deliver more accurate forecasts than individual models in the case of Basel 2006 and Soultz-sous-Forêts 2004 enhanced geothermal stimulation projects. For this, we examine five calibrated variants of two significantly different model groups: (1) Shapiro and Smoothed Seismicity based on the seismogenic index, simple modified Omori-law-type seismicity decay, and temporally weighted smoothed seismicity; (2) Hydraulics and Seismicity based on numerically modelled pore pressure evolution that triggers seismicity using the Mohr-Coulomb failure criterion. We also demonstrate how the individual and ensemble models would perform as part of an operational Adaptive Traffic Light System. Investigating seismicity forecasts based on a range of potential injection scenarios, we use forecast periods of different durations to compute the occurrence probabilities of seismic events M ≥ 3. We show that in the case of the Basel 2006 geothermal stimulation the models forecast hazardous levels

  5. Post-seismic velocity changes following the 2010 Mw 7.1 Darfield earthquake, New Zealand, revealed by ambient seismic field analysis

    Science.gov (United States)

    Heckels, R. EG; Savage, M. K.; Townend, J.

    2018-05-01

    Quantifying seismic velocity changes following large earthquakes can provide insights into fault healing and reloading processes. This study presents temporal velocity changes detected following the 2010 September Mw 7.1 Darfield event in Canterbury, New Zealand. We use continuous waveform data from several temporary seismic networks lying on and surrounding the Greendale Fault, with a maximum interstation distance of 156 km. Nine-component, day-long Green's functions were computed for frequencies between 0.1 and 1.0 Hz for continuous seismic records from immediately after the 2010 September 04 earthquake until 2011 January 10. Using the moving-window cross-spectral method, seismic velocity changes were calculated. Over the study period, an increase in seismic velocity of 0.14 ± 0.04 per cent was determined near the Greendale Fault, providing a new constraint on post-seismic relaxation rates in the region. A depth analysis further showed that velocity changes were confined to the uppermost 5 km of the subsurface. We attribute the observed changes to post-seismic relaxation via crack healing of the Greendale Fault and throughout the surrounding region.

  6. Implications of horsts and grabens on the development of canyons and seismicity on the west africa coast

    Science.gov (United States)

    Ola, Peter S.; Olabode, Solomon O.

    2018-04-01

    Subsurface basement topography in the Nigerian portion of the Benin Basin has been studied using borehole data of wells drilled to the basement and one strike line of seismic section. Two areas of a sharp drop in topography with a horst in between were observed in the study area. These features were projected to a seismic section in the offshore area of the Benin basin. The result depicts the structural features as horst and grabens coinciding with the Avon platform bounded on the right side by Ise graben, and the Orimedu graben to the left. The observed relationship of the grabens with the present day location of Avon Canyon on the seismic section also suggests an active subsidence along fractured zones. The subsidence, which probably is occurring along similar fracture zones in the Gulf of Guinea, could be responsible for the occasionally reported seismicity on the margin of West Africa. A detailed seismographic study of the fracture zones is recommended.

  7. Delineation of seismic source zones based on seismicity parameters ...

    Indian Academy of Sciences (India)

    In the present study, an attempt has been made to delineate seismic source zones in the study area (south India) based on the seismicity parameters. Seismicity parameters and the maximum probable earthquake for these source zones were evaluated and were used in the hazard evaluation. The probabilistic evaluation of ...

  8. Orbital- to Sub-Orbital-Scale Cyclicity in Seismic Reflections and Sediment Character in Early to Middle Pleistocene Mudstone, Santa Barbara Basin, California

    Science.gov (United States)

    Peterson, C. D.; Behl, R. J.; Nicholson, C.; Lisiecki, L. E.; Sorlien, C. C.

    2009-12-01

    High-resolution seismic reflection records and well logs from the Santa Barbara Channel suggest that large parts of the Pleistocene succession records climate variability on orbital to sub-orbital scales with remarkable sensitivity, much like the well-studied sediments of the last glacial cycle (ODP Site 893). Spectral analysis of seismic reflection data and gamma ray logs from stratigraphically similar Pleistocene sections finds similar cyclic character and shifts through the section. This correlation suggests that acoustic impedance and physical properties of sediment are linked by basin-scale, likely climatically-driven, oscillations in lithologic composition and fabric during deposition, and that seismic profiling can provide a method for remote identification and correlation of orbital- and sub-orbital-scale sedimentary cyclicity. Where it crops out along the northern shelf of the central Santa Barbara Channel, the early to middle Pleistocene succession (~1.8-1.2 Ma) is a bathyal hemipelagic mudstone with remarkably rhythmic planar bedding, finely laminated fabric, and well-preserved foraminifera, none of which have been significantly altered, or obscured by post-depositional diagenesis or tectonic deformation. Unlike the coarser, turbiditic successions in the central Ventura and Los Angeles basins, this sequence has the potential to record Quaternary global climate change at high resolution. Seismic reflection data (towed chirp) collected on the R/V Melville 2008 Cruise (MV08) penetrate 10's of meters below seafloor into a ~1 km-long sequence of south-dipping seismic reflectors. Sampling parallel to the seafloor permits acquisition of consistent signal amplitude for similar reflectors without spreading loss. Based on established age ranges for this section, sedimentation rates may range from 0.4 to 1.4 meters/kyr, therefore suggesting that the most powerful cycles are orbital- to sub-orbital-scale. Discrete sets of cycles with high power show an abrupt shift

  9. Development of 3-axis precise positioning seismic physical modeling system in the simulation of marine seismic exploration

    Science.gov (United States)

    Kim, D.; Shin, S.; Ha, J.; Lee, D.; Lim, Y.; Chung, W.

    2017-12-01

    Seismic physical modeling is a laboratory-scale experiment that deals with the actual and physical phenomena that may occur in the field. In seismic physical modeling, field conditions are downscaled and used. For this reason, even a small error may lead to a big error in an actual field. Accordingly, the positions of the source and the receiver must be precisely controlled in scale modeling. In this study, we have developed a seismic physical modeling system capable of precisely controlling the 3-axis position. For automatic and precise position control of an ultrasonic transducer(source and receiver) in the directions of the three axes(x, y, and z), a motor was mounted on each of the three axes. The motor can automatically and precisely control the positions with positional precision of 2''; for the x and y axes and 0.05 mm for the z axis. As it can automatically and precisely control the positions in the directions of the three axes, it has an advantage in that simulations can be carried out using the latest exploration techniques, such as OBS and Broadband Seismic. For the signal generation section, a waveform generator that can produce a maximum of two sources was used, and for the data acquisition section, which receives and stores reflected signals, an A/D converter that can receive a maximum of four signals was used. As multiple sources and receivers could be used at the same time, the system was set up in such a way that diverse exploration methods, such as single channel, multichannel, and 3-D exploration, could be realized. A computer control program based on LabVIEW was created, so that it could control the position of the transducer, determine the data acquisition parameters, and check the exploration data and progress in real time. A marine environment was simulated using a water tank 1 m wide, 1 m long, and 0.9 m high. To evaluate the performance and applicability of the seismic physical modeling system developed in this study, single channel and

  10. Russian regulatory approaches to seismic design and seismic analysis of NPP piping

    International Nuclear Information System (INIS)

    Kaliberda, Y.V.

    2003-01-01

    The paper presents an overview of Russian regulatory approaches to seismic design and seismic analysis of NPP piping. The paper is focused on categorization and seismic analysis of nuclear power plant items (piping, equipment, supports, valves, but not building structures). The paper outlines the current seismic recommendations, corresponding methods with the examples of calculation models. The paper considers calculation results of the mechanisms of dynamic behavior and the problems of developing a rational and economical approaches to seismic design and seismic protection. (author)

  11. Seismic safety of building structures of NPP Kozloduy III

    International Nuclear Information System (INIS)

    Varbanov, G.I.; Kostov, M.K.; Stefanov, D.D.; Kaneva, A.D.

    2005-01-01

    In the proposed paper is presented a general summary of the analyses carried out to evaluate the dynamic behavior and to assess the seismic safety of some safety related building structures of NPP Kozloduy. The design seismic loads for the site of Kozloduy NPP has been reevaluated and increased during and after the construction of investigated Units 5 and 6. Deterministic and probabilistic approaches are applied to assess the seismic vulnerability of the investigated structures, taking into account the newly defined seismic excitations. The presented results show sufficient seismic safety for the studied critical structures and good efficiency of the seismic upgrading. The applicability of the investigated structures at sites with some higher seismic activities is discussed. The presented study is dealing mainly with the civil structures of the Reactor building, Turbine hall, Diesel Generator Station and Water Intake Structure. (authors)

  12. Seismic fragility of ventilation stack of nuclear power plant

    International Nuclear Information System (INIS)

    Nefedov, S.S.; Yugai, T.Z.; Kalinkin, I.V.; Vizir, P.L.

    2003-01-01

    Fragility study of safety related elements is necessary step in seismic PSA of nuclear power plant (NPP). In present work fragility was analyzed after the example of the ventilation stack of NPP. Ventilation stack, considered in present work, is a separately erected construction with height of 100 m made of cast-in-place reinforced concrete. In accordance with IAEA terminology fragility of element is defined as conditional probability of its failure at given level of seismic loading. Failure of a ventilation stack was considered as development of the plastic hinge in some section of a shaft. Seismic ground acceleration a, which corresponds to failure, could be defined as limit seismic acceleration of ventilation stack [a]. Limit seismic acceleration [a] was considered as random value. Sources of its variation are connected with stochastic nature of factors determining it (properties of construction materials, soils etc.), and also with uncertainties of existing analytical techniques. Random value [a] was assumed to be distributed lognormally. Median m[a] and logarithmically standard deviation β of this distribution were defined by 'scaling method' developed by R.P. Kennedy et al. Using this values fragility curves were plotted for different levels of confidence probability. (author)

  13. Angola Seismicity MAP

    Science.gov (United States)

    Neto, F. A. P.; Franca, G.

    2014-12-01

    The purpose of this job was to study and document the Angola natural seismicity, establishment of the first database seismic data to facilitate consultation and search for information on seismic activity in the country. The study was conducted based on query reports produced by National Institute of Meteorology and Geophysics (INAMET) 1968 to 2014 with emphasis to the work presented by Moreira (1968), that defined six seismogenic zones from macro seismic data, with highlighting is Zone of Sá da Bandeira (Lubango)-Chibemba-Oncócua-Iona. This is the most important of Angola seismic zone, covering the epicentral Quihita and Iona regions, geologically characterized by transcontinental structure tectono-magmatic activation of the Mesozoic with the installation of a wide variety of intrusive rocks of ultrabasic-alkaline composition, basic and alkaline, kimberlites and carbonatites, strongly marked by intense tectonism, presenting with several faults and fractures (locally called corredor de Lucapa). The earthquake of May 9, 1948 reached intensity VI on the Mercalli-Sieberg scale (MCS) in the locality of Quihita, and seismic active of Iona January 15, 1964, the main shock hit the grade VI-VII. Although not having significant seismicity rate can not be neglected, the other five zone are: Cassongue-Ganda-Massano de Amorim; Lola-Quilengues-Caluquembe; Gago Coutinho-zone; Cuima-Cachingues-Cambândua; The Upper Zambezi zone. We also analyzed technical reports on the seismicity of the middle Kwanza produced by Hidroproekt (GAMEK) region as well as international seismic bulletins of the International Seismological Centre (ISC), United States Geological Survey (USGS), and these data served for instrumental location of the epicenters. All compiled information made possible the creation of the First datbase of seismic data for Angola, preparing the map of seismicity with the reconfirmation of the main seismic zones defined by Moreira (1968) and the identification of a new seismic

  14. Permafrost Active Layer Seismic Interferometry Experiment (PALSIE).

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Knox, Hunter Anne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); James, Stephanie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lee, Rebekah [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cole, Chris [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    We present findings from a novel field experiment conducted at Poker Flat Research Range in Fairbanks, Alaska that was designed to monitor changes in active layer thickness in real time. Results are derived primarily from seismic data streaming from seven Nanometric Trillium Posthole seismometers directly buried in the upper section of the permafrost. The data were evaluated using two analysis methods: Horizontal to Vertical Spectral Ratio (HVSR) and ambient noise seismic interferometry. Results from the HVSR conclusively illustrated the method's effectiveness at determining the active layer's thickness with a single station. Investigations with the multi-station method (ambient noise seismic interferometry) are continuing at the University of Florida and have not yet conclusively determined active layer thickness changes. Further work continues with the Bureau of Land Management (BLM) to determine if the ground based measurements can constrain satellite imagery, which provide measurements on a much larger spatial scale.

  15. France's seismic zoning

    International Nuclear Information System (INIS)

    Mohammadioun, B.

    1997-01-01

    In order to assess the seismic hazard in France in relation to nuclear plant siting, the CEA, EDF and the BRGM (Mine and Geology Bureau) have carried out a collaboration which resulted in a seismic-tectonic map of France and a data base on seismic history (SIRENE). These studies were completed with a seismic-tectonic zoning, taking into account a very long period of time, that enabled a probabilistic evaluation of the seismic hazard in France, and that may be related to adjacent country hazard maps

  16. A seismic study on cracks in crystalline rock

    International Nuclear Information System (INIS)

    Israelsson, H.

    1981-07-01

    This report summarizes results from a field study with in-situ seismic measurements in crystalline rock. It was found that among a few potential seismic techniques the so called cross hole method would probably provide the most powerful capability for detecting cracks and fracture zones. By this method the area between two holes are systematically scanned by seismic raypaths. Seismic signals are generated in one hole by micro explosions and recorded in the other at various combinations of depths. A test sample of scanning data showed a rather dramatic variation of the seismic P-wave velocity (5-6 km/s). Analysis procedures like tomographic imaging was applied to this data set primarily to illustrate the kind of structural mapping such procedures can provide. (Author)

  17. Numerical analysis on seismic behavior of reinforced concrete beam to concrete filled steel tubular column connections with ring-beam

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yi., E-mail: zhaoyi091218@163.com [School of Civil and Architectural Engineering, Zhongyuan University of Technology,Zhengzhou 450000 (China); Xu, Li. Hua. [School of Civil Engineering, Wuhan University, No.8, Donghu Road, WuHan 430072 (China)

    2016-06-08

    This paper presents numerical study of the seismic behavior of reinforced concrete beam to concrete filled steel tube column connections with ring-beam. The material stress-strain relations, element type and boundary condition are selected, which are consistent with actual situation. Then the seismic behavior of this type of joint are researched by ABAQUS, and finite element analyses are conducted under cyclic loading. Its parameters are discussed including thickness of steel tubular column wall, sectional dimension of the ring-beam and strength of the core concrete. The results show that the ultimate capacity of the connections is improved with sectional dimension of the ring-beam increased. In the meanwhile, the influence on skeleton curve of the joints is slight of which included thickness of steel tubular column wall and strength of the core concrete.

  18. The 2014, MW6.9 North Aegean earthquake: seismic and geodetic evidence for coseismic slip on persistent asperities

    Science.gov (United States)

    Konca, Ali Ozgun; Cetin, Seda; Karabulut, Hayrullah; Reilinger, Robert; Dogan, Ugur; Ergintav, Semih; Cakir, Ziyadin; Tari, Ergin

    2018-05-01

    We report that asperities with the highest coseismic slip in the 2014 MW6.9 North Aegean earthquake persisted through the interseismic, coseismic and immediate post-seismic periods. We use GPS and seismic data to obtain the source model of the 2014 earthquake, which is located on the western extension of the North Anatolian Fault (NAF). The earthquake ruptured a bilateral, 90 km strike-slip fault with three slip patches: one asperity located west of the hypocentre and two to the east with a rupture duration of 40 s. Relocated pre-earthquake seismicity and aftershocks show that zones with significant coseismic slip were relatively quiet during both the 7 yr of interseismic and the 3-month aftershock periods, while the surrounding regions generated significant seismicity during both the interseismic and post-seismic periods. We interpret the unusually long fault length and source duration, and distribution of pre- and post-main-shock seismicity as evidence for a rupture of asperities that persisted through strain accumulation and coseismic strain release in a partially coupled fault zone. We further suggest that the association of seismicity with fault creep may characterize the adjacent Izmit, Marmara Sea and Saros segments of the NAF. Similar behaviour has been reported for sections of the San Andreas Fault, and some large subduction zones, suggesting that the association of seismicity with creeping fault segments and rapid relocking of asperities may characterize many large earthquake faults.

  19. Staff technical position on investigations to identify fault displacement hazards and seismic hazards at a geologic repository

    International Nuclear Information System (INIS)

    McConnell, K.I.; Blackford, M.E.; Ibrahim, A.K.

    1992-07-01

    The purpose of this Staff Technical Position (STP) is to provide guidance to the US Department of Energy (DOE) on acceptable geologic repository investigations that can be used to identify fault displacement hazards and seismic hazards. ne staff considers that the approach this STP takes to investigations of fault displacement and seismic phenomena is appropriate for the collection of sufficient data for input to analyses of fault displacement hazards and seismic hazards, both for the preclosure and postclosure performance periods. However, detailed analyses of fault displacement and seismic data, such as those required for comprehensive assessments of repository performance, may identify the need for additional investigations. Section 2.0 of this STP describes the 10 CFR Part 60 requirements that form the basis for investigations to describe fault displacement hazards and seismic hazards at a geologic repository. Technical position statements and corresponding discussions are presented in Sections 3.0 and 4.0, respectively. Technical position topics in this STP are categorized thusly: (1) investigation considerations, (2) investigations for fault-displacement hazards, and (3) investigations for seismic hazards

  20. Automatic Seismic-Event Classification with Convolutional Neural Networks.

    Science.gov (United States)

    Bueno Rodriguez, A.; Titos Luzón, M.; Garcia Martinez, L.; Benitez, C.; Ibáñez, J. M.

    2017-12-01

    Active volcanoes exhibit a wide range of seismic signals, providing vast amounts of unlabelled volcano-seismic data that can be analyzed through the lens of artificial intelligence. However, obtaining high-quality labelled data is time-consuming and expensive. Deep neural networks can process data in their raw form, compute high-level features and provide a better representation of the input data distribution. These systems can be deployed to classify seismic data at scale, enhance current early-warning systems and build extensive seismic catalogs. In this research, we aim to classify spectrograms from seven different seismic events registered at "Volcán de Fuego" (Colima, Mexico), during four eruptive periods. Our approach is based on convolutional neural networks (CNNs), a sub-type of deep neural networks that can exploit grid structure from the data. Volcano-seismic signals can be mapped into a grid-like structure using the spectrogram: a representation of the temporal evolution in terms of time and frequency. Spectrograms were computed from the data using Hamming windows with 4 seconds length, 2.5 seconds overlapping and 128 points FFT resolution. Results are compared to deep neural networks, random forest and SVMs. Experiments show that CNNs can exploit temporal and frequency information, attaining a classification accuracy of 93%, similar to deep networks 91% but outperforming SVM and random forest. These results empirically show that CNNs are powerful models to classify a wide range of volcano-seismic signals, and achieve good generalization. Furthermore, volcano-seismic spectrograms contains useful discriminative information for the CNN, as higher layers of the network combine high-level features computed for each frequency band, helping to detect simultaneous events in time. Being at the intersection of deep learning and geophysics, this research enables future studies of how CNNs can be used in volcano monitoring to accurately determine the detection and

  1. Seismic response of a nonsymmetric nuclear reactor building with a flexible stepped foundation

    International Nuclear Information System (INIS)

    Okano, H.; Sakai, A.; Takita, H.; Fukunishi, S.; Nakatogawa, T.; Kabayama, K.

    1993-01-01

    The effect of the non symmetry of a nuclear reactor building on its seismic response was studied. The nonsymmetric natures we considered, Included the eccentricity of the superstructure and the non symmetry of the cross section of the foundation. A three-dimensional analysis which employed Green's function was applied to study the interaction between the soil and the non symmetrically sectioned foundation. The effect of a flexible foundation on its seismic response was also studied by applying the sub structuring method, which combines the finite element method and Green's function method. (author)

  2. Gas hydrate identified in sand-rich inferred sedimentary section using downhole logging and seismic data in Shenhu area, South China Sea

    Science.gov (United States)

    Wang, Xiujuan; Lee, Myung W.; Collett, Timothy S.; Yang, Shengxiong; Guo, Yiqun; Wu, Shiguo

    2014-01-01

    Downhole wireline log (DWL) data was acquired from eight drill sites during China's first gas hydrate drilling expedition (GMGS-1) in 2007. Initial analyses of the acquired well log data suggested that there were no significant gas hydrate occurrences at Site SH4. However, the re-examination of the DWL data from Site SH4 indicated that there are two intervals of high resistivity, which could be indicative of gas hydrate. One interval of high resistivity at depth of 171–175 m below seafloor (mbsf) is associated with a high compressional- wave (P-wave) velocities and low gamma ray log values, which suggests the presence of gas hydrate in a potentially sand-rich (low clay content) sedimentary section. The second high resistivity interval at depth of 175–180 mbsf is associated with low P-wave velocities and low gamma values, which suggests the presence of free gas in a potentially sand-rich (low clay content) sedimentary section. Because the occurrence of free gas is much shallower than the expected from the regional depth of the bottom simulating reflector (BSR), the free gas could be from the dissociation of gas hydrate during drilling or there may be a local anomaly in the depth to the base of the gas hydrate stability zone. In order to determine whether the low P-wave velocity with high resistivity is caused by in-situ free gas or dissociated free gas from the gas hydrate, the surface seismic data were also used in this analysis. The log analysis incorporating the surface seismic data through the construction of synthetic seismograms using various models indicated the presence of free gas directly in contact with an overlying gas hydrate-bearing section. The occurrence of the anomalous base of gas hydrate stability at Site SH4 could be caused by a local heat flow conditions. This paper documents the first observation of gas hydrate in what is believed to be a sand-rich sediment in Shenhu area of the South China Sea.

  3. Teaching seismic methods using interactive 3D Earth globe

    Science.gov (United States)

    Weeraratne, D. S.; Rogers, D. B.

    2011-12-01

    Instructional techniques for study of seismology are greatly enhanced by three dimensional (3D) visualization. Seismic rays that pass through the Earth's interior are typically viewed in 2D slices of the Earth's interior. Here we present the use of a 3D Earth globe manufactured by Real World Globes. This globe displays a dry-erase high resolution glossy topography and bathymetry from the Smith and Sandwell data archives at its surface for interactive measurements and hands-on marking of many seismic observations such as earthquake locations, source-receiver distances, surface wave propagation, great circle paths, ocean circulation patterns, airplane trajectories, etc.. A new interactive feature (designed collaboratively with geoscientists) allows cut away and disassembly of sections of the exterior shell revealing a full cross section depicting the Earth's interior layers displayed to scale with a dry-erase work board. The interior panel spins to any azimuth and provides a depth measurement scale to allow exact measurements and marking of earthquake depths, true seismic ray path propagation, ray path bottoming depths, shadow zones, and diffraction patterns. A demo of this globe and example activities will be presented.

  4. Protrusive intrusion, dehydration and polymorphism in minerals as possible reason of seismic activity, relation between ophiolite belts and seismic zonation of the territory of Armenia

    Science.gov (United States)

    Harutyunyan, A. V.; Petrosyan, H. M.

    2010-05-01

    In the basis of multiple geological and geophysical data, also on the results of investigations seismic and density properties of rocks at high termobaric conditions, we proposed the petrophisical section and model of evolution of Earth crust of the territory of Armenia. On the proposed model the following interrelated problems are debated: forming of ophiolite belts and volcanic centers, genesis of hydrocarbons by organic and inorganic ways, and also reasons of originating of seismic centers. The reasons of originating of seismic centers in different depths of Earth crust, are miscellaneous. According to the model of Earth crust evolution the ophiolite belts are formed due to permanent protrusive intrusion of serpentinized masses from the foot of the crust (35-50km) into upper horizons. It is natural to assume, that the permanent intrusion of serpentinizd masses through deep faults has drastically occurred accompanying with seismic shakings. This process encourages the development of deep faults. The protrusive intrusion of serpentinized masse accompanied with partial dehydration of serpentinites and serpentinized ultrabasites and new mineral formation. The processes was accompanied also with drastic change of seismic waves and volumes up to 30%. Experiments at high termobaric conditions show, that some minerals undergone polymorphous transformations, accompanied with phase change and drastic change of rocks volume. Particularly plastic calcite, included in the composition of metamorphic rocks to run into the cracks expends and diversifies them. The process described cause some general effects similar to those of the process of dilatancy. Therefore, the protrusive intrusion of serpentinized masses into upper horizons, it dehydrations and polymorphous transformations in different minerals, may be cause of geo-dynamic processes at different depths of Earth crust. It may be assumed, that those processes permanently occur nowadays as well. Comparing the maps of

  5. GISMO: A MATLAB toolbox for seismic research, monitoring, & education

    Science.gov (United States)

    Thompson, G.; Reyes, C. G.; Kempler, L. A.

    2017-12-01

    GISMO is an open-source MATLAB toolbox which provides an object-oriented framework to build workflows and applications that read, process, visualize and write seismic waveform, catalog and instrument response data. GISMO can retrieve data from a variety of sources (e.g. FDSN web services, Earthworm/Winston servers) and data formats (SAC, Seisan, etc.). It can handle waveform data that crosses file boundaries. All this alleviates one of the most time consuming part for scientists developing their own codes. GISMO simplifies seismic data analysis by providing a common interface for your data, regardless of its source. Several common plots are built-in to GISMO, such as record section plots, spectrograms, depth-time sections, event count per unit time, energy release per unit time, etc. Other visualizations include map views and cross-sections of hypocentral data. Several common processing methods are also included, such as an extensive set of tools for correlation analysis. Support is being added to interface GISMO with ObsPy. GISMO encourages community development of an integrated set of codes and accompanying documentation, eliminating the need for seismologists to "reinvent the wheel". By sharing code the consistency and repeatability of results can be enhanced. GISMO is hosted on GitHub with documentation both within the source code and in the project wiki. GISMO has been used at the University of South Florida and University of Alaska Fairbanks in graduate-level courses including Seismic Data Analysis, Time Series Analysis and Computational Seismology. GISMO has also been tailored to interface with the common seismic monitoring software and data formats used by volcano observatories in the US and elsewhere. As an example, toolbox training was delivered to researchers at INETER (Nicaragua). Applications built on GISMO include IceWeb (e.g. web-based spectrograms), which has been used by Alaska Volcano Observatory since 1998 and became the prototype for the USGS

  6. Combined analysis of 2-D electrical resistivity, seismic refraction and geotechnical investigations for Bukit Bunuh complex crater

    International Nuclear Information System (INIS)

    Azwin, I N; Saad, Rosli; Nordiana, M M; Bery, Andy Anderson; Hidayah, I N E; Saidin, Mokhtar

    2015-01-01

    Interest in studying impact crater on earth has increased tremendously due to its importance in geologic events, earth inhabitant history as well as economic value. The existences of few shock metamorphism and crater morphology evidences are discovered in Bukit Bunuh, Malaysia thus detailed studies are performed using geophysical and geotechnical methods to verify the type of the crater and characteristics accordingly. This paper presents the combined analysis of 2-D electrical resistivity, seismic refraction, geotechnical SPT N value, moisture content and RQD within the study area. Three stages of data acquisition are made starting with regional study followed by detailed study on West side and East side. Bulk resistivity and p-wave seismic velocity were digitized from 2-D resistivity and seismic sections at specific distance and depth for corresponding boreholes and samples taken. Generally, Bukit Bunuh shows the complex crater characteristics. Standard table of bulk resistivity and p-wave seismic velocity against SPT N value, moisture content and RQD are produce according to geological classifications of impact crater; inside crater, rim/slumped terrace and outside crater

  7. Combined analysis of 2-D electrical resistivity, seismic refraction and geotechnical investigations for Bukit Bunuh complex crater

    Science.gov (United States)

    Azwin, I. N.; Saad, Rosli; Saidin, Mokhtar; Nordiana, M. M.; Anderson Bery, Andy; Hidayah, I. N. E.

    2015-01-01

    Interest in studying impact crater on earth has increased tremendously due to its importance in geologic events, earth inhabitant history as well as economic value. The existences of few shock metamorphism and crater morphology evidences are discovered in Bukit Bunuh, Malaysia thus detailed studies are performed using geophysical and geotechnical methods to verify the type of the crater and characteristics accordingly. This paper presents the combined analysis of 2-D electrical resistivity, seismic refraction, geotechnical SPT N value, moisture content and RQD within the study area. Three stages of data acquisition are made starting with regional study followed by detailed study on West side and East side. Bulk resistivity and p-wave seismic velocity were digitized from 2-D resistivity and seismic sections at specific distance and depth for corresponding boreholes and samples taken. Generally, Bukit Bunuh shows the complex crater characteristics. Standard table of bulk resistivity and p-wave seismic velocity against SPT N value, moisture content and RQD are produce according to geological classifications of impact crater; inside crater, rim/slumped terrace and outside crater.

  8. The persistent signature of tropical cyclones in ambient seismic noise

    KAUST Repository

    Gualtieri, Lucia; Camargo, Suzana J.; Pascale, Salvatore; Pons, Flavio M.E.; Ekströ m, Gö ran

    2017-01-01

    The spectrum of ambient seismic noise shows strong signals associated with tropical cyclones, yet a detailed understanding of these signals and the relationship between them and the storms is currently lacking. Through the analysis of more than a decade of seismic data recorded at several stations located in and adjacent to the northwest Pacific Ocean, here we show that there is a persistent and frequency-dependent signature of tropical cyclones in ambient seismic noise that depends on characteristics of the storm and on the detailed location of the station relative to the storm. An adaptive statistical model shows that the spectral amplitude of ambient seismic noise, and notably of the short-period secondary microseisms, has a strong relationship with tropical cyclone intensity and can be employed to extract information on the tropical cyclones.

  9. The persistent signature of tropical cyclones in ambient seismic noise

    KAUST Repository

    Gualtieri, Lucia

    2017-12-28

    The spectrum of ambient seismic noise shows strong signals associated with tropical cyclones, yet a detailed understanding of these signals and the relationship between them and the storms is currently lacking. Through the analysis of more than a decade of seismic data recorded at several stations located in and adjacent to the northwest Pacific Ocean, here we show that there is a persistent and frequency-dependent signature of tropical cyclones in ambient seismic noise that depends on characteristics of the storm and on the detailed location of the station relative to the storm. An adaptive statistical model shows that the spectral amplitude of ambient seismic noise, and notably of the short-period secondary microseisms, has a strong relationship with tropical cyclone intensity and can be employed to extract information on the tropical cyclones.

  10. Seismic functional qualification of active mechanical and electrical components based on shaking table testing

    International Nuclear Information System (INIS)

    Jurukovski, D.

    1999-01-01

    The seismic testing for qualification of one sample of the NPP Kozloduy Control Panel type YKTC was carried out under Research Contract no: 8008/Rl, entitled: 'Seismic Functional Qualification of Active Mechanical and Electrical Components Based on Shaking Table Testing'. The tested specimen was selected by the Kozloduy NPP staff, Section 'TIA-2' (Technical Instrumentation and Automatics), however the seismic input parameters were selected by the NPP Kozloduy staff, Section HTS and SC (Hydro-Technical Systems and Engineering Structures). The applied methodology was developed by the Institute of Earthquake Engineering and Engineering Seismology staff. This report presents all relevant items related to the selected specimen seismic testing for seismic qualification such as: description of the tested specimen, mounting conditions on the shaking table, selection of seismic input parameters and creation of seismic excitations, description of the testing equipment, explanation of the applied methodology, 'on line' and 'off line' monitoring of the tested specimen, functioning capabilities, discussion of the results and their presentation and finally conclusions and recommendations. In this partial project report, two items are presented. The first item presents a review of the existing and used regulations for performing of the seismic and vibratory withstand testing of electro-mechanical equipment. The selection is made based on MEA, IEEE, IEC and former Soviet Union regulations. The second item presents the abstracts of all the tests performed at the Institute of Earthquake Engineering and Engineering Seismology in Skopje. The selected regulations, the experience of the Institute that has been gathered for the last seventeen years and some theoretical and experimental research will be the basis for further investigations for development of a synthesised methodology for seismic qualification of differently categorized equipment for nuclear power plants

  11. Role of seismic PRA in seismic safety decisions of nuclear power plants

    International Nuclear Information System (INIS)

    Ravindra, M.K.; Kennedy, R.P.; Sues, R.H.

    1985-01-01

    This paper highlights the important roles that seismic probabilistic risk assessments (PRAs) can play in the seismic safety decisions of nuclear power plants. If a seismic PRA has been performed for a plant, its results can be utilized to evaluate the seismic capability beyond the safe shutdown event (SSE). Seismic fragilities of key structures and equipment, fragilities of dominant plant damage states and the frequencies of occurrence of these plant damage states are reviewed to establish the seismic safety of the plant beyond the SSE level. Guidelines for seismic margin reviews and upgrading may be developed by first identifying the generic classes of structures and equipment that have been shown to be dominant risk contributors in the completed seismic PRAs, studying the underlying causes for their contribution and examining why certain other items (e.g., piping) have not proved to be high-risk-contributors

  12. Comparison of seismic margin assessment and probabilistic risk assessment in seismic IPE

    International Nuclear Information System (INIS)

    Reed, J.W.; Kassawara, R.P.

    1993-01-01

    A comparison of technical requirements and managerial issues between seismic margin assessment (SMA) and seismic probabilistic risk assessment (SPRA) in a seismic Individual Plant Examination (IPE) is presented and related to requirements for an Unresolved Safety Issue (USI) A-46 review which is required for older nuclear power plants. Advantages and disadvantages are discussed for each approach. Technical requirements reviewed for a seismic IPE include: scope of plants covered, seismic input, scope of review, selection of equipment, required experience and training of engineers, walkdown procedure, evaluation of components, relay review, containment review, quality assurance, products, documentation requirements, and closure procedure. Managerial issues discussed include regulatory acceptability, compatibility with seismic IPE, compliance with seismic IPE requirements, ease of use by utilities, and relative cost

  13. Seismic simulation and functional performance evaluation of a safety related, seismic category I control room emergency air cleaning system

    International Nuclear Information System (INIS)

    Manley, D.K.; Porco, R.D.; Choi, S.H.

    1985-01-01

    Under a nuclear contract MSA was required to design, manufacture, seismically test and functionally test a complete Safety Related, Seismic Category I, Control Room Emergency Air Cleaning System before shipment to the Yankee Atomic Electric Company, Yankee Nuclear Station in Rowe, Massachusetts. The installation of this system was required to satisfy the NRC requirements of NUREG-0737, Section III, D.3.4, ''Control Room Habitability''. The filter system tested was approximately 3 ft. wide by 8 ft. high by 18 ft. long and weighed an estimated 8300 pounds. It had a design flow rate of 3000 SCFM and contained four stages of filtration - prefilters, upstream and downstream HEPA filters and Type II sideload charcoal adsorber cells. The filter train design followed the guidelines set forth by ANSI/ASME N509-1980. Seismic Category I Qualification Testing consisted of resonance search testing and triaxial random multifrequency testing. In addition to ANSI/ASME N510-1980 testing, triaxial response accelerometers were placed at specific locations on designated prefilters, HEPA filters, charcoal adsorbers and test canisters along with accelerometers at the corresponding filter seal face locations. The purpose of this test was to demonstrate the integrity of the filters, filter seals, and monitor seismic response levels which is directly related to the system's ability to function during a seismic occurrence. The Control Room Emergency Air Cleaning System demonstrated the ability to withstand the maximum postulated earthquake for the plant site by remaining structurally sound and functional

  14. Hydrogeological study of the Triassic series in the JeffaraDahar region (Southern part of Tunisia): Contribution of well logs data and seismic reflection

    Energy Technology Data Exchange (ETDEWEB)

    Ben Lasmar, R.; Guellala, R.; Zouhri, L.; Sarsar Naouali, B.; Garrach, M.; Inoubli, M.H.

    2016-07-01

    The present study concentrates on the interpretation of well logs and seismic reflection data in the JeffaraDahar region (Southeast part of Tunisia) for a better characterization of the Triassic aquifer, a potential target of water supply. Lithological columns and their corresponding well logs reveal that Sidi Stout, Kirchaou and Touareg. sandstones as well as Mekraneb and Rehach dolomites are the main reservoirs of the Triassic aquifer. Well log analysis highlights many permeable and fractured layers that could play an important role in the groundwater circulation. The interpreted seismic sections and the resulting isochrone maps show a tectonic influence on the Triassic aquifer geometry in the Jeffara-Dahar region. The normal faulting of E-W and NW-SE accidents created an aquifer compartmentalized by raised and tilted blocks. Seismic cross-sections reveal that this structure controls the depth of permeable formations and the circulation of groundwater. These results will be useful for rationalising the future hydrogeological research that will be undertaken in the Jeffara-Dahar area. (Author)

  15. Seismic Imaging of the Source Physics Experiment Site with the Large-N Seismic Array

    Science.gov (United States)

    Chen, T.; Snelson, C. M.; Mellors, R. J.

    2017-12-01

    The Source Physics Experiment (SPE) consists of a series of chemical explosions at the Nevada National Security Site. The goal of SPE is to understand seismic wave generation and propagation from these explosions. To achieve this goal, we need an accurate geophysical model of the SPE site. A Large-N seismic array that was deployed at the SPE site during one of the chemical explosions (SPE-5) helps us construct high-resolution local geophysical model. The Large-N seismic array consists of 996 geophones, and covers an area of approximately 2 × 2.5 km. The array is located in the northern end of the Yucca Flat basin, at a transition from Climax Stock (granite) to Yucca Flat (alluvium). In addition to the SPE-5 explosion, the Large-N array also recorded 53 weight drops. Using the Large-N seismic array recordings, we perform body wave and surface wave velocity analysis, and obtain 3D seismic imaging of the SPE site for the top crust of approximately 1 km. The imaging results show clear variation of geophysical parameter with local geological structures, including heterogeneous weathering layer and various rock types. The results of this work are being incorporated in the larger 3D modeling effort of the SPE program to validate the predictive models developed for the site.

  16. Erosion influences the seismicity of active thrust faults.

    Science.gov (United States)

    Steer, Philippe; Simoes, Martine; Cattin, Rodolphe; Shyu, J Bruce H

    2014-11-21

    Assessing seismic hazards remains one of the most challenging scientific issues in Earth sciences. Deep tectonic processes are classically considered as the only persistent mechanism driving the stress loading of active faults over a seismic cycle. Here we show via a mechanical model that erosion also significantly influences the stress loading of thrust faults at the timescale of a seismic cycle. Indeed, erosion rates of about ~0.1-20 mm yr(-1), as documented in Taiwan and in other active compressional orogens, can raise the Coulomb stress by ~0.1-10 bar on the nearby thrust faults over the inter-seismic phase. Mass transfers induced by surface processes in general, during continuous or short-lived and intense events, represent a prominent mechanism for inter-seismic stress loading of faults near the surface. Such stresses are probably sufficient to trigger shallow seismicity or promote the rupture of deep continental earthquakes up to the surface.

  17. Post-seismic relaxation from geodetic and seismic data

    Directory of Open Access Journals (Sweden)

    Mikhail V. Rodkin

    2017-01-01

    Full Text Available We have examined the aftershock sequence and the post-seismic deformation process of the Parkfield earthquake (2004, M = 6, California, USA source area using GPS data. This event was chosen because of the possibility of joint analysis of data from the rather dense local GPS network (from SOPAC Internet archive and of the availability of the rather detailed aftershock sequence data (http://www.ncedc.org/ncedc/catalog-search.html. The relaxation process of post-seismic deformation prolongs about the same 400 days as the seismic aftershock process does. Thus, the aftershock process and the relaxation process in deformation could be the different sides of the same process. It should be noted that the ratio of the released seismic energy and of the GPS obtained deformation is quite different for the main shock and for the aftershock stage. The ratio of the released seismic energy to the deformation value decreases essentially for the post-shock process. The similar change in the seismic energy/deformation value ratio is valid in a few other strong earthquakes. Thus, this decrease seems typical of aftershock sequences testifying for decrease of ratio of elastic to inelastic deformation in the process of post-shock relaxation when the source area appears to be mostly fractured after the main shock occurs, but the healing process had no yet sufficient time to develop.

  18. Tectonic history in the Fort Worth Basin, north Texas, derived from well-log integration with multiple 3D seismic reflection surveys: implications for paleo and present-day seismicity in the basin

    Science.gov (United States)

    Magnani, M. B.; Hornbach, M. J.

    2016-12-01

    Oil and gas exploration and production in the Fort Worth Basin (FWB) in north Texas have accelerated in the last 10 years due to the success of unconventional gas production. Here, hydraulic fracturing wastewater is disposed via re-injection into deep wells that penetrate Ordovician carbonate formations. The rise in wastewater injection has coincided with a marked rise in earthquake rates, suggesting a causal relationship between industry practices and seismicity. Most studies addressing this relationship in intraplate regions like the FWB focus on current seismicity, which provides an a-posteriori assessment of the processes involved. 3D seismic reflection data contribute complementary information on the existence, distribution, orientation and long-term deformation history of faults that can potentially become reactivated by the injection process. Here we present new insights into the tectonic evolution of faults in the FWB using multiple 3D seismic reflection surveys in the basin, west of the Dallas Fort-Worth Metroplex, where high-volume wastewater injection wells have increased most significantly in number in the past few years. The datasets image with remarkable clarity the 3,300 m-thick sedimentary rocks of the basin, from the crystalline basement to the Cretaceous cover, with particular detail of the Paleozoic section. The data, interpreted using coincident and nearby wells to correlate seismic reflections with stratigraphic markers, allow us to identify faults, extract their orientation, length and displacements at several geologic time intervals, and therefore, reconstruct the long-term deformation history. Throughout the basin, the data show that all seismically detectable faults were active during the Mississippian and Pennsylvanian, but that displacement amounts drop below data resolution ( 7 m) in the post-Pennsylvanian deposits. These results indicate that faults have been inactive for at least the past 300 Ma, until the recent 2008 surge in

  19. Recent Vs. Historical Seismicity Analysis For Banat Seismic Region (Western Part Of Romania)

    OpenAIRE

    Oros Eugen; Diaconescu Mihai

    2015-01-01

    The present day seismic activity from a region reflects the active tectonics and can confirm the seismic potential of the seismogenic sources as they are modelled using the historical seismicity. This paper makes a comparative analysis of the last decade seismicity recorded in the Banat Seismic Region (western part of Romania) and the historical seismicity of the region (Mw≥4.0). Four significant earthquake sequences have been recently localized in the region, three of them nearby the city of...

  20. Background noise model development for seismic stations of KMA

    Science.gov (United States)

    Jeon, Youngsoo

    2010-05-01

    The background noise recorded at seismometer is exist at any seismic signal due to the natural phenomena of the medium which the signal passed through. Reducing the seismic noise is very important to improve the data quality in seismic studies. But, the most important aspect of reducing seismic noise is to find the appropriate place before installing the seismometer. For this reason, NIMR(National Institution of Meteorological Researches) starts to develop a model of standard background noise for the broadband seismic stations of the KMA(Korea Meteorological Administration) using a continuous data set obtained from 13 broadband stations during the period of 2007 and 2008. We also developed the model using short period seismic data from 10 stations at the year of 2009. The method of Mcmara and Buland(2004) is applied to analyse background noise of Korean Peninsula. The fact that borehole seismometer records show low noise level at frequency range greater than 1 Hz compared with that of records at the surface indicate that the cultural noise of inland Korean Peninsula should be considered to process the seismic data set. Reducing Double Frequency peak also should be regarded because the Korean Peninsula surrounded by the seas from eastern, western and southern part. The development of KMA background model shows that the Peterson model(1993) is not applicable to fit the background noise signal generated from Korean Peninsula.

  1. Cokriging surface elevation and seismic refraction data for bedrock topography

    International Nuclear Information System (INIS)

    Nyquist, J.E.; Doll, W.E.; Davis, R.K.; Hopkins, R.A.

    1992-01-01

    Analysis of seismic refraction data collected at a proposed site of the Advanced Neutron Source (ANS) Facility showed a strong correlation between surface and bedrock topography. By combining seismically determined bedrock elevation data with surface elevation data using cokriging, we were able to significantly improve our map of bedrock topography without collecting additional seismic data

  2. Seismic changes industry

    International Nuclear Information System (INIS)

    Taylor, G.

    1992-01-01

    This paper discusses the growth in the seismic industry as a result of the recent increases in the foreign market. With the decline of communism and the opening of Latin America to exploration, seismic teams have moved out into these areas in support of the oil and gas industry. The paper goes on to discuss the improved technology available for seismic resolution and the subsequent use of computers to field-proof the data while the seismic team is still on-site. It also discusses the effects of new computer technology on reducing the amount of support staff that is required to both conduct and interpret seismic information

  3. The New Italian Seismic Hazard Model

    Science.gov (United States)

    Marzocchi, W.; Meletti, C.; Albarello, D.; D'Amico, V.; Luzi, L.; Martinelli, F.; Pace, B.; Pignone, M.; Rovida, A.; Visini, F.

    2017-12-01

    In 2015 the Seismic Hazard Center (Centro Pericolosità Sismica - CPS) of the National Institute of Geophysics and Volcanology was commissioned of coordinating the national scientific community with the aim to elaborate a new reference seismic hazard model, mainly finalized to the update of seismic code. The CPS designed a roadmap for releasing within three years a significantly renewed PSHA model, with regard both to the updated input elements and to the strategies to be followed. The main requirements of the model were discussed in meetings with the experts on earthquake engineering that then will participate to the revision of the building code. The activities were organized in 6 tasks: program coordination, input data, seismicity models, ground motion predictive equations (GMPEs), computation and rendering, testing. The input data task has been selecting the most updated information about seismicity (historical and instrumental), seismogenic faults, and deformation (both from seismicity and geodetic data). The seismicity models have been elaborating in terms of classic source areas, fault sources and gridded seismicity based on different approaches. The GMPEs task has selected the most recent models accounting for their tectonic suitability and forecasting performance. The testing phase has been planned to design statistical procedures to test with the available data the whole seismic hazard models, and single components such as the seismicity models and the GMPEs. In this talk we show some preliminary results, summarize the overall strategy for building the new Italian PSHA model, and discuss in detail important novelties that we put forward. Specifically, we adopt a new formal probabilistic framework to interpret the outcomes of the model and to test it meaningfully; this requires a proper definition and characterization of both aleatory variability and epistemic uncertainty that we accomplish through an ensemble modeling strategy. We use a weighting scheme

  4. National Seismic Station

    International Nuclear Information System (INIS)

    Stokes, P.A.

    1982-06-01

    The National Seismic Station was developed to meet the needs of regional or worldwide seismic monitoring of underground nuclear explosions to verify compliance with a nuclear test ban treaty. The Station acquires broadband seismic data and transmits it via satellite to a data center. It is capable of unattended operation for periods of at least a year, and will detect any tampering that could result in the transmission of unauthentic seismic data

  5. Evaluation of seismic reflection data in the Davis and Lavender Canyons study area, Paradox Basin, Utah

    International Nuclear Information System (INIS)

    Kitcho, C.A.; Wong, I.G.; Turcotte, F.T.

    1986-08-01

    Seismic reflection data purchased from petroleum industry brokers and acquired through group speculative surveys were interpreted for information on the regional subsurface geologic structure and stratigraphy within and surrounding the Davis and Lavender Canyons study area in the Paradox Basin of southeastern Utah. Structures of interest were faults, folds, joints, and collapse structures related to salt dissolution. The seismic reflection data were used to interpret stratigraphy by identifying continuous and discontinuous reflectors on the seismic profiles. Thickening and thinning of strata and possible areas of salt flowage or dissolution could be identified from the seismic data. Identifiable reflectors included the tops of the Precambrian and Mississippian, a distinctive interbed close to the middle of the Pennsylvanian Paradox salt formation (probably the interval between Salt Cycles 10 and 13), and near the top of the Paradox salt. Of the 56 faults identified from the seismic reflection interpretation, 33 trend northwest, west-northwest, or west, and most affect only the deeper part of the stratigraphic section. These faults are part of the deep structural system found throughout the Paradox Basin, including the fold and fault belt in the northeast part of the basin. The faults bound basement Precambrian blocks that experienced minor activity during Mississippian and early Pennsylvanian deposition, and showed major displacement during early Paradox salt deposition as the Paradox Basin subsided. Based on the seismic data, most of these faults appear to have an upward terminus between the top of the Mississippian and the salt interbed reflector

  6. The exponential rise of induced seismicity with increasing stress levels in the Groningen gas field and its implications for controlling seismic risk

    Science.gov (United States)

    Bourne, S. J.; Oates, S. J.; van Elk, J.

    2018-06-01

    Induced seismicity typically arises from the progressive activation of recently inactive geological faults by anthropogenic activity. Faults are mechanically and geometrically heterogeneous, so their extremes of stress and strength govern the initial evolution of induced seismicity. We derive a statistical model of Coulomb stress failures and associated aftershocks within the tail of the distribution of fault stress and strength variations to show initial induced seismicity rates will increase as an exponential function of induced stress. Our model provides operational forecasts consistent with the observed space-time-magnitude distribution of earthquakes induced by gas production from the Groningen field in the Netherlands. These probabilistic forecasts also match the observed changes in seismicity following a significant and sustained decrease in gas production rates designed to reduce seismic hazard and risk. This forecast capability allows reliable assessment of alternative control options to better inform future induced seismic risk management decisions.

  7. Overview of seismic margin insights gained from seismic PRA results

    International Nuclear Information System (INIS)

    Kennedy, R.P.; Sues, R.H.; Campbell, R.D.

    1986-01-01

    This paper presents the findings of a study conducted under NRC and EPRI sponsorship in which published seismic PRAs were reviewed in order to gain insight to the seismic margins inherent in existing nuclear plants. The approach taken was to examine the fragilities of those components which have been found to be dominant contributors to seismic risk at plants in low-to-moderate seismic regions (SSE levels between 0.12g and 0.25g). It is concluded that there is significant margin inherent in the capacity of most critical components above the plant design basis. For ground motions less than about 0.3g, the predominant sources of seismic risk are loss of offsite power coupled with random failure of the emergency diesels, non-recoverable circuit breaker trip due to relay chatter, unanchored equipment, unreinforced non-load bearing block walls, vertical water storage tanks, systems interactions and possibly soil liquefaction. Recommendations as to which components should be reviewed in seismic margin studies for margin earthquakes less than 0.3g, between 0.3g and 0.5g, and greater than 0.5g, developed by the NRC expert panel on the quantification of seismic margins (based on the review of past PRA data, earthquake experience data, and their own personal experience) are presented

  8. Earth modeling and estimation of the local seismic ground motion due to site geology in complex volcanoclastic areas

    Directory of Open Access Journals (Sweden)

    V. Di Fiore

    2002-06-01

    Full Text Available Volcanic areas often show complex behaviour as far as seismic waves propagation and seismic motion at surface are concerned. In fact, the finite lateral extent of surface layers such as lava flows, blocks, differential welding and/or zeolitization within pyroclastic deposits, introduces in the propagation of seismic waves effects such as the generation of surface waves at the edge, resonance in lateral direction, diffractions and scattering of energy, which tend to modify the amplitude as well as the duration of the ground motion. The irregular topographic surface, typical of volcanic areas, also strongly influences the seismic site response. Despite this heterogeneity, it is unfortunately a common geophysical and engineering practice to evaluate even in volcanic environments the subsurface velocity field with monodimensional investigation method (i.e. geognostic soundings, refraction survey, down-hole, etc. prior to the seismic site response computation which in a such cases is obviously also made with 1D algorithms. This approach often leads to highly inaccurate results. In this paper we use a different approach, i.e. a fully 2D P-wave Çturning rayÈ tomographic survey followed by 2D seismic site response modeling. We report here the results of this approach in three sites located at short distance from Mt. Vesuvius and Campi Flegrei and characterized by overburdens constituted by volcanoclastic deposits with large lateral and vertical variations of their elastic properties. Comparison between 1D and 2D Dynamic Amplification Factor shows in all reported cases entirely different results, both in terms of peak period and spectral contents, as expected from the clear bidimensionality of the geological section. Therefore, these studies suggest evaluating carefully the subsoil geological structures in areas characterized by possible large lateral and vertical variations of the elastic properties in order to reach correct seismic site response

  9. Adding seismic broadband analysis to characterize Andean backarc seismicity in Argentina

    Science.gov (United States)

    Alvarado, P.; Giuliano, A.; Beck, S.; Zandt, G.

    2007-05-01

    Characterization of the highly seismically active Andean backarc is crucial for assessment of earthquake hazards in western Argentina. Moderate-to-large crustal earthquakes have caused several deaths, damage and drastic economic consequences in Argentinean history. We have studied the Andean backarc crust between 30°S and 36°S using seismic broadband data available from a previous ("the CHARGE") IRIS-PASSCAL experiment. We collected more than 12 terabytes of continuous seismic data from 22 broadband instruments deployed across Chile and Argentina during 1.5 years. Using free software we modeled full regional broadband waveforms and obtained seismic moment tensor inversions of crustal earthquakes testing for the best focal depth for each event. We also mapped differences in the Andean backarc crustal structure and found a clear correlation with different types of crustal seismicity (i.e. focal depths, focal mechanisms, magnitudes and frequencies of occurrence) and previously mapped terrane boundaries. We now plan to use the same methodology to study other regions in Argentina using near-real time broadband data available from the national seismic (INPRES) network and global seismic networks operating in the region. We will re-design the national seismic network to optimize short-period and broadband seismic station coverage for different network purposes. This work is an international effort that involves researchers and students from universities and national government agencies with the goal of providing more information about earthquake hazards in western Argentina.

  10. Seismic and geodetic signatures of fault slip at the Slumgullion Landslide Natural Laboratory

    Science.gov (United States)

    Gomberg, J.; Schulz, W.; Bodin, P.; Kean, J.

    2011-01-01

    We tested the hypothesis that the Slumgullion landslide is a useful natural laboratory for observing fault slip, specifically that slip along its basal surface and side-bounding strike-slip faults occurs with comparable richness of aseismic and seismic modes as along crustal- and plate-scale boundaries. Our study provides new constraints on models governing landslide motion. We monitored landslide deformation with temporary deployments of a 29-element prism array surveyed by a robotic theodolite and an 88-station seismic network that complemented permanent extensometers and environmental instrumentation. Aseismic deformation observations show that large blocks of the landslide move steadily at approximately centimeters per day, possibly punctuated by variations of a few millimeters, while localized transient slip episodes of blocks less than a few tens of meters across occur frequently. We recorded a rich variety of seismic signals, nearly all of which originated outside the monitoring network boundaries or from the side-bounding strike-slip faults. The landslide basal surface beneath our seismic network likely slipped almost completely aseismically. Our results provide independent corroboration of previous inferences that dilatant strengthening along sections of the side-bounding strike-slip faults controls the overall landslide motion, acting as seismically radiating brakes that limit acceleration of the aseismically slipping basal surface. Dilatant strengthening has also been invoked in recent models of transient slip and tremor sources along crustal- and plate-scale faults suggesting that the landslide may indeed be a useful natural laboratory for testing predictions of specific mechanisms that control fault slip at all scales.

  11. Gabor Deconvolution as Preliminary Method to Reduce Pitfall in Deeper Target Seismic Data

    Science.gov (United States)

    Oktariena, M.; Triyoso, W.

    2018-03-01

    Anelastic attenuation process during seismic wave propagation is the trigger of seismic non-stationary characteristic. An absorption and a scattering of energy are causing the seismic energy loss as the depth increasing. A series of thin reservoir layers found in the study area is located within Talang Akar Fm. Level, showing an indication of interpretation pitfall due to attenuation effect commonly occurred in deeper level seismic data. Attenuation effect greatly influences the seismic images of deeper target level, creating pitfalls in several aspect. Seismic amplitude in deeper target level often could not represent its real subsurface character due to a low amplitude value or a chaotic event nearing the Basement. Frequency wise, the decaying could be seen as the frequency content diminishing in deeper target. Meanwhile, seismic amplitude is the simple tool to point out Direct Hydrocarbon Indicator (DHI) in preliminary Geophysical study before a further advanced interpretation method applied. A quick-look of Post-Stack Seismic Data shows the reservoir associated with a bright spot DHI while another bigger bright spot body detected in the North East area near the field edge. A horizon slice confirms a possibility that the other bright spot zone has smaller delineation; an interpretation pitfall commonly occurs in deeper level of seismic. We evaluates this pitfall by applying Gabor Deconvolution to address the attenuation problem. Gabor Deconvolution forms a Partition of Unity to factorize the trace into smaller convolution window that could be processed as stationary packets. Gabor Deconvolution estimates both the magnitudes of source signature alongside its attenuation function. The enhanced seismic shows a better imaging in the pitfall area that previously detected as a vast bright spot zone. When the enhanced seismic is used for further advanced reprocessing process, the Seismic Impedance and Vp/Vs Ratio slices show a better reservoir delineation, in which the

  12. Improving Vintage Seismic Data Quality through Implementation of Advance Processing Techniques

    Science.gov (United States)

    Latiff, A. H. Abdul; Boon Hong, P. G.; Jamaludin, S. N. F.

    2017-10-01

    It is essential in petroleum exploration to have high resolution subsurface images, both vertically and horizontally, in uncovering new geological and geophysical aspects of our subsurface. The lack of success may have been from the poor imaging quality which led to inaccurate analysis and interpretation. In this work, we re-processed the existing seismic dataset with an emphasis on two objectives. Firstly, to produce a better 3D seismic data quality with full retention of relative amplitudes and significantly reduce seismic and structural uncertainty. Secondly, to facilitate further prospect delineation through enhanced data resolution, fault definitions and events continuity, particularly in syn-rift section and basement cover contacts and in turn, better understand the geology of the subsurface especially in regard to the distribution of the fluvial and channel sands. By adding recent, state-of-the-art broadband processing techniques such as source and receiver de-ghosting, high density velocity analysis and shallow water de-multiple, the final results produced a better overall reflection detail and frequency in specific target zones, particularly in the deeper section.

  13. Linearized inversion frameworks toward high-resolution seismic imaging

    KAUST Repository

    Aldawood, Ali

    2016-09-01

    internally multiply scattered seismic waves to obtain highly resolved images delineating vertical faults that are otherwise not easily imaged by primaries. Seismic interferometry is conventionally based on the cross-correlation and convolution of seismic traces to transform seismic data from one acquisition geometry to another. The conventional interferometric transformation yields virtual data that suffers from low temporal resolution, wavelet distortion, and correlation/convolution artifacts. I therefore incorporate a least-squares datuming technique to interferometrically transform vertical-seismic-profile surface-related multiples to surface-seismic-profile primaries. This yields redatumed data with high temporal resolution and less artifacts, which are subsequently imaged to obtain highly resolved subsurface images. Tests on synthetic examples demonstrate the efficiency of the proposed techniques, yielding highly resolved migrated sections compared with images obtained by imaging conventionally redatumed data. I further advance the recently developed cost-effective Generalized Interferometric Multiple Imaging procedure, which aims to not only image first but also higher-order multiples as well. I formulate this procedure as a linearized inversion framework and solve it as a least-squares problem. Tests of the least-squares Generalized Interferometric Multiple imaging framework on synthetic datasets and demonstrate that it could provide highly resolved migrated images and delineate vertical fault planes compared with the standard procedure. The results support the assertion that this linearized inversion framework can illuminate subsurface zones that are mainly illuminated by internally scattered energy.

  14. Review of public comments on proposed seismic design criteria

    International Nuclear Information System (INIS)

    Philippacopoulos, A.J.; Shaukat, S.K.; Chokshi, N.C.; Bagchi, G.; Nuclear Regulatory Commission, Washington, DC; Nuclear Regulatory Commission, Washington, DC

    1989-01-01

    During the first quarter of 1988, the Nuclear Regulatory Commission (NRC) prepared a proposed Revision 2 to the NUREG-0800 Standard Review Plan (SRP) Sections 2.5.2 (Vibratory Ground Motion), 3.7.1 (Seismic Design Parameters), 3.7.2 (Seismic Systems Analysis) and 3.7.3 (Seismic Subsystem Analysis). The proposed Revision 2 to the SRP was a result of many years' work carried out by the NRC and the nuclear industry on the Unresolved Safety Issue (USI) A-40: ''Seismic Design Criteria.'' The background material related to NRC's efforts for resolving the A-40 issue is described in NUREG-1233. In June 1988, the proposed Revision 2 of the SRP was issued by NRC for public review and comments. Comments were received from Sargent and Lundy Engineers, Westinghouse Electric Corporation, Stevenson and Associates, Duke Power Company, General Electric Company and Electric Power Research Institute. In September 1988, Brookhaven National Laboratory (BNL) and its consultants (C.J. Costantino, R.P. Kennedy, J. Stevenson, M. Shinozuka and A.S. Veletsos) were requested to carry out a review of the comments received from the above six organizations. The objective of this review was to assist the NRC staff with the evaluation and resolution of the public comments. This review was initiated during October 1988 and it was completed on January 1989. As a result of this review, a set of modifications to the above mentioned sections of the SRP were recommended by BNL and its consultants. This paper summarizes the recommended modifications. 4 refs

  15. Evaluation of seismic characteristics and structural integrity for the cabinet of HANARO seismic monitoring analysis system

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jeong Soo; Yoon, Doo Byung

    2003-06-01

    The HANARO SMAS(Seismic Monitoring Analysis System) is classified as Non-Nuclear Safety(NNS), seismic category I, and quality class T. It is required that this system can perform required functions, which are to preserve its structural integrity during and after an OBE or SSE. In this work, the structural integrity and seismic characteristics of the cabinet of the newly developed SMAS have been estimated. The most parts of the cabinet are identically designed with those of Yonggwhang and Gori Nuclear Power Plants(NPPs), unit 1 that successfully completed the required seismic qualification tests. The structure of the cabinet of the SMAS is manufactured by the manufacturer of the cabinet of Yonggwhang and Gori NPPs. To evaluate the seismic characteristics of the SMAS, the RRS(Required Response Spectra) of the newly developed cabinet are compared with those of Yonggwhang and Gori NPPs, unit 1. In addition, natural frequencies of the cabinet of HANARO, Yonggwhang, and Gori NPPs were measured for the comparison of the seismic characteristics of the installed cabinets. In case of HANARO, the bottom of the cabinet is welded to the base plate. The base plate is fixed to the concrete foundation by using anchor bolts. For the evaluation of the structural integrity of the welding parts and the anchor bolts, the maximum stresses and forces of the welding parts and the anchor bolts due to seismic loading are estimated. The analysis results show that maximum stresses and forces are less than the allowable limits. This new SMAS is operating at HANARO instrument room to acquire and analyze the signal of earthquake.

  16. Use of seismic attributes for sediment classification

    Directory of Open Access Journals (Sweden)

    Fabio Radomille Santana

    2015-04-01

    Full Text Available A study to understand the relationships between seismic attributes extracted from 2D high-resolution seismic data and the seafloor's sediments of the surveyed area. As seismic attributes are features highly influenced by the medium through which the seismic waves are propagated, the authors can assume that it would be possible to characterise the geological nature of the seafloor by using these attributes. Herein, a survey was performed on the continental margin of the South Shetland Islands in Antarctica, where both 2D high-resolution seismic data and sediment gravity cores samples were simultaneously acquired. A computational script was written to extract the seismic attributes from the data, which have been statistically analysed with clustering analyses, such as principal components analysis, dendrograms and k-means classification. The extracted seismic attributes are the amplitude, the instantaneous phase, the instantaneous frequency, the envelope, the time derivative of the envelope, the second derivative of the envelope and the acceleration of phase. Statistical evaluation showed that geological classification of the seafloor's sediments is possible by associating these attributes according to their coherence. The methodologies here developed seem to be appropriate for glacio-marine environment and coarse-to-medium silt sediment found in the study area and may be applied to other regions in the same geological conditions.

  17. Salton Trough Post-seismic Afterslip, Viscoelastic Response, and Contribution to Regional Hazard

    Science.gov (United States)

    Parker, J. W.; Donnellan, A.; Lyzenga, G. A.

    2012-12-01

    The El Mayor-Cucapah M7.2 April 4 2010 earthquake in Baja California may have affected accumulated hazard to Southern California cities due to loading of regional faults including the Elsinore, San Jacinto and southern San Andreas, faults which already have over a century of tectonic loading. We examine changes observed via multiple seismic and geodetic techniques, including micro seismicity and proposed seismicity-based indicators of hazard, high-quality fault models, the Plate Boundary Observatory GNSS array (with 174 stations showing post-seismic transients with greater than 1 mm amplitude), and interferometric radar maps from UAVSAR (aircraft) flights, showing a network of aseismic fault slip events at distances up to 60 km from the end of the surface rupture. Finite element modeling is used to compute the expected coseismic motions at GPS stations with general agreement, including coseismic uplift at sites ~200 km north of the rupture. Postseismic response is also compared, with GNSS and also with the CIG software "RELAX." An initial examination of hazard is made comparing micro seismicity-based metrics, fault models, and changes to coulomb stress on nearby faults using the finite element model. Comparison of seismicity with interferograms and historic earthquakes show aseismic slip occurs on fault segments that have had earthquakes in the last 70 years, while other segments show no slip at the surface but do show high triggered seismicity. UAVSAR-based estimates of fault slip can be incorporated into the finite element model to correct Coloumb stress change.

  18. Early estimation of epicenter seismic intensities according to co-seismic deformation

    OpenAIRE

    Weidong, Li; Chaojun, Zhang; Dahui, Li; Jiayong, He; Huizhong, Chen; Lomnitz, Cinna

    2010-01-01

    The absolute fault displacement in co-seismic deformation is derived assuming that location, depth, faulting mechanism and magnitude of the earthquake are known. The 2008 Wenchuan earthquake (M8.0) is used as an example to determine the distribution of seismic intensities using absolute displacement and a crustal model. We fnd that an early prediction of the distribution of seismic intensities after a large earthquake may be performed from the estimated absolute co-seismic displacements using...

  19. Effects of fault heterogeneity on seismic energy and spectrum

    Science.gov (United States)

    Dragoni, Michele; Santini, Stefano

    2017-12-01

    We study the effects of friction heterogeneity on the dynamics of a seismogenic fault. To this aim, we consider a fault model containing two asperities with different static frictions and a rate-dependent dynamic friction. We consider the seismic events produced by the consecutive failure of the two asperities and study their properties as functions of the ratio between static frictions. In particular, we calculate the moment rate, the stress evolution during fault slip, the average stress drop, the partitioning of energy release, the seismic energy, the far-field waveforms and the spectrum of seismic waves. These quantities depend to various extent on the friction distribution on the fault. In particular, the stress distribution on the fault is always strongly heterogeneous at the beginning of the seismic event. Seismic energy and frictional heat decrease with increasing friction heterogeneity, while seismic efficiency is constant. We obtain an equation relating seismic efficiency to the parameters of the friction law, showing that the efficiency is maximum for smaller values of dynamic friction. The seismic spectrum depends on the friction distribution as to the positions and the values of the minima. However, under the model assumption that the slip durations are the same for both asperities, the corner frequency is independent of the friction distribution, but it depends on the friction law and on the coupling between asperities. The model provides a relation between the total radiated energy and the seismic moment that is consistent with the empirical relation between the two quantities. The fault model with one asperity is also considered as a particular case. The model is applied to the 1965 Rat Islands (Alaska) earthquake and shows the role of fault heterogeneity in controlling the spatial distribution of stress drop as well as the time dependence and the final amount of radiated energy.

  20. Seismic 2D reflection processing and interpretation of shallow refraction data

    International Nuclear Information System (INIS)

    Oehman, I.; Heikkinen, E.; Lehtimaeki, T.

    2006-12-01

    Posiva Oy takes care of the final disposal of spent nuclear fuel in Finland. In year 2001 Olkiluoto was selected for the site of final disposal. Currently construction of the underground research facility, ONKALO, is going on at the Olkiluoto site. The aim of this work was to use two-dimensional reflection seismic processing methods to refraction seismic data collected from the ONKALO area in year 2002, and to locate gently dipping reflectors from the stacked sections. Processing was done using mainly open source software Seismic Unix. After the processing, the most distinct two-dimensional reflectors were picked from seismic sections using visualization environment OpendTect. After picking the features from crossing lines were combined into three-dimensional surfaces. Special attention was given for the detection of possible faults and discontinuities. The surfaces were given coordinates and their orientation was adjusted using a geometric procedure, which corresponds roughly a 3D migration, transferred to 3D presentation utility and compared to available geological information. The advantage of this work is to be able to get three-dimensional reflection seismic results from existing data set at only processing costs. Survey lines are also partly located in ONKALO area where extensive surface seismic surveys may not be possible to perform. The applied processing method was successful in detecting the reflectors. Most significant steps were the refraction and residual statics, and deconvolution. Some distinct reflectors can be seen at times 20-200 ms (vertical depths 50-500 m). The signal gets noisier below 200 ms. Reflectors are best visible as coherent phase between the adjacent traces, but do not raise much above the surrounding noise level. Higher amount of traces to be stacked would emphasis the reflections and their continuity more. Reflectors picked on crossing lines match well to borehole observations (KR4, KR7, KR24 and KR38) of fracture zones, and get

  1. NSR&D Program Fiscal Year (FY) 2015 Call for Proposals Mitigation of Seismic Risk at Nuclear Facilities using Seismic Isolation

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-02-01

    . Figure 1: Project activities The study will consider a representative NPP reinforced concrete reactor building and representative plant safety system. This study will leverage existing research and development (R&D) activities at INL. Figure 1 shows the proposed study steps with the steps in blue representing activities already funded at INL and the steps in purple the activities that would be funded under this proposal. The following results will be documented: 1) Comparison of seismic risk for the non-seismically isolated (non-SI) and seismically isolated (SI) NPP, and 2) an estimate of construction cost savings when implementing SI at the site of the generic NPP.

  2. Longitudinal Seismic Behavior of a Single-Tower Cable-Stayed Bridge Subjected to Near-Field Earthquakes

    Directory of Open Access Journals (Sweden)

    J. Yi

    2017-01-01

    Full Text Available Cable-stayed bridges are quite sensitive to large amplitude oscillations from earthquakes and seismic damage was observed for Shipshaw Bridge and Chi-Lu Bridge during past earthquakes. In order to investigate seismic damage of cable-stayed bridges, a 1 : 20 scale model of a single-tower cable-stayed bridge with A-shaped tower was designed, constructed, and tested on shake tables at Tongji University, China. One typical near-field ground motion was used to excite the model from low to high intensity. Test result showed that severe structural damage occurred at the tower of the model including parallel concrete cracks from bottom to nearly half height of the tower, concrete spalling, and exposed bars at top tower 0.2 m above the section where two skewed legs intersect. Posttest analysis was conducted and compared with test results. It is revealed that the numerical model was able to simulate the seismic damage of the test model by modeling nonlinearity of different components for cable-stayed bridges, namely, the tower, bents, superstructure, cables, and bearings. Numerical analysis also revealed that cable relaxation, which was detected during the test, had limited influence on the overall seismic response of the bridge with maximum error of 12%.

  3. Quantitative identification and analysis of sub-seismic extensional structure system: technique schemes and processes

    International Nuclear Information System (INIS)

    Chenghua, Ou; Chen, Wei; Ma, Zhonggao

    2015-01-01

    Quantitative characterization of complex sub-seismic extensional structure system that essentially controls petroleum exploitation is difficult to implement in seismic profile interpretation. This research, based on a case study in block M of Myanmar, established a set of quantitative treatment schemes and technique processes for the identification of sub-seismic low-displacement (SSLD) extensional faults or fractures upon structural deformation restoration and geometric inversion. Firstly, the master-subsidiary inheritance relations and configuration of the seismic-scale extensional fault systems are determined by analyzing the structural pattern. Besides, three-dimensional (3D) pattern and characteristics of the seismic-scale extensional structure have been illustrated by a 3D structure model built upon seismic sections. Moreover, according to the dilatancy obtained from structural restoration on the basis of inclined shear method, as well as the fracture-flow index, potential SSLD extensional faults or fractures have been quantitatively identified. Application of the technique processes to the sub-seismic low-displacement extensional structures in block M in Myanmar is instructive to quantitatively interpret those SSLD extensional structure systems in practice. (paper)

  4. Seismic b-values and its correlation with seismic moment and Bouguer gravity anomaly over Indo-Burma ranges of northeast India: Tectonic implications

    Science.gov (United States)

    Bora, Dipok K.; Borah, Kajaljyoti; Mahanta, Rinku; Borgohain, Jayanta Madhab

    2018-03-01

    b-value is one of the most significant seismic parameters for describing the seismicity of a given region at a definite time window. In this study, high-resolution map of the Gutenberg-Richter b-value, seismic moment-release, Bouguer gravity anomaly and fault-plane solutions containing faulting styles are analyzed in the Indo-Burma ranges of northeast India using the unified and homogeneous part of the seismicity record in the region (January 1964-December 2016). The study region is subdivided into few square grids of geographical window size 1° × 1° and b-values are calculated in each square grid. Our goal is to explore the spatial correlations and anomalous patterns between the b-value and parameters like seismic moment release, Bouguer gravity anomaly and faulting styles that can help us to better understand the seismotectonics and the state of present-day crustal stress within the Indo-Burma region. Most of the areas show an inverse correlation between b-value and seismic moment release as well as convergence rates. While estimating the b-value as a function of depth, a sudden increase of b-value at a depth of 50-60 km was found out and the receiver function modeling confirms that this depth corresponds to the crust-mantle transition beneath the study region. The region is also associated with negative Bouguer gravity anomalies and an inverse relation is found between Gravity anomaly and b-value. Comparing b-values with different faulting styles, reveal that the areas containing low b-values show thrust mechanism, while the areas associated with intermediate b-values show strike-slip mechanism. Those areas, where the events show thrust mechanism but containing a strike-slip component has the highest b-value.

  5. Seismic characterization of the NPP Krsko site

    International Nuclear Information System (INIS)

    Obreza, J.

    2000-01-01

    The goal of NPP Krsko PSA Project Update was the inclusion of plant changes (i.e. configuration/operational related) through the period January 1, 1993 till the OUTAGE99 (April 1999) into the integrated Internal/External Level 1/Level 2 NPP Krsko PSA RISK SPECTRUM model. NPP Krsko is located on seismotectonic plate. Highest earthquake was recorded in 1917 with magnitude 5.8 at a distance of 7-9 km. Site (founded) on Pliocene sediments which are as deep as several hundred meters. No surface faulting at the Krsko site has been observed and thus it is not to be expected. NPP Krsko is equipped with seismic instrumentation, which allows it to complete OBE (SSE). The seismic PSA successfully showed high seismic margin at Krsko plant. NPP Krsko seismic design is based on US regulations and standards

  6. Probabilistic Seismic Hazard Assessment for Northeast India Region

    Science.gov (United States)

    Das, Ranjit; Sharma, M. L.; Wason, H. R.

    2016-08-01

    Northeast India bounded by latitudes 20°-30°N and longitudes 87°-98°E is one of the most seismically active areas in the world. This region has experienced several moderate-to-large-sized earthquakes, including the 12 June, 1897 Shillong earthquake ( M w 8.1) and the 15 August, 1950 Assam earthquake ( M w 8.7) which caused loss of human lives and significant damages to buildings highlighting the importance of seismic hazard assessment for the region. Probabilistic seismic hazard assessment of the region has been carried out using a unified moment magnitude catalog prepared by an improved General Orthogonal Regression methodology (Geophys J Int, 190:1091-1096, 2012; Probabilistic seismic hazard assessment of Northeast India region, Ph.D. Thesis, Department of Earthquake Engineering, IIT Roorkee, Roorkee, 2013) with events compiled from various databases (ISC, NEIC,GCMT, IMD) and other available catalogs. The study area has been subdivided into nine seismogenic source zones to account for local variation in tectonics and seismicity characteristics. The seismicity parameters are estimated for each of these source zones, which are input variables into seismic hazard estimation of a region. The seismic hazard analysis of the study region has been performed by dividing the area into grids of size 0.1° × 0.1°. Peak ground acceleration (PGA) and spectral acceleration ( S a) values (for periods of 0.2 and 1 s) have been evaluated at bedrock level corresponding to probability of exceedance (PE) of 50, 20, 10, 2 and 0.5 % in 50 years. These exceedance values correspond to return periods of 100, 225, 475, 2475, and 10,000 years, respectively. The seismic hazard maps have been prepared at the bedrock level, and it is observed that the seismic hazard estimates show a significant local variation in contrast to the uniform hazard value suggested by the Indian standard seismic code [Indian standard, criteria for earthquake-resistant design of structures, fifth edition, Part

  7. High resolution reflection seismic mapping of shallow coal seams

    CSIR Research Space (South Africa)

    Mngadi, SB

    2013-10-01

    Full Text Available the extent of the mine workings. Two 94 m profiles (tied to boreholes) were surveyed using a sledgehammer source. Processing was optimized to image the shallow reflections. The refraction seismic models and stacked time sections were compared and integrated...

  8. Vertical seismic profiling and integration with reflection seismic studies at Laxemar, 2000

    International Nuclear Information System (INIS)

    Juhlin, C.; Bergman, B.; Cosma, C.; Keskinen, J.; Enescu, N.

    2002-02-01

    Vertical seismic profile (VSP) data were acquired in October 2000 in the 1700 m deep KLX02 borehole, near Laxemar in southeastern Sweden. The objectives of the VSP were to image reflectors in the borehole for correlation with surface seismic and borehole data, study the signal penetration of explosive versus mechanical sources and determine the seismic velocity as a function of depth. Five principal source points were used, one located close to the KLX02 wellhead and 4 others that were offset by about 200 m to 400 m. An explosive source was only used at the wellhead and consisted of 15 grams of dynamite in 90 cm deep shot holes in bedrock. A swept impact seismic source (SIST) was also used at the wellhead, as well as at the other four offset source points. The primary SIST source consisted of a computer controlled mechanical hammer mounted on a tractor. By activating the hammer over a 15 second sweep length, the total energy transferred to the ground is on the same order as that produced by the dynamite. The recorded data are then processed to generate seismic records that are equivalent to a single impact source. A smaller hand held SIST source was also tested at the wellhead. Tests of both the tractor mounted source and dynamite were made at a location offset somewhat from the wellhead at a site containing loose sediments at the surface. Full waveform sonic, resistivity and gamma logs were also acquired in conjunction the VSP survey. A comparison between the explosive and large SIST source shows that comparable energy levels are produced by the two methods. The SIST source appears to be more stable in terms of the energy level, although the frequency content of data are somewhat lower. However, its most significant advantage is the low cost of preparation of the source points and the speed of the acquisition. Numerous reflections are observed on the VSP, as is the case on the surface seismic, implying a complex structure in the vicinity of the KLX02 borehole

  9. Vertical seismic profiling and integration with reflection seismic studies at Laxemar, 2000

    Energy Technology Data Exchange (ETDEWEB)

    Juhlin, C.; Bergman, B. [Uppsala Univ. (Sweden); Cosma, C.; Keskinen, J.; Enescu, N. [Vibrometric Oy, Helsinki (Finland)

    2002-02-01

    Vertical seismic profile (VSP) data were acquired in October 2000 in the 1700 m deep KLX02 borehole, near Laxemar in southeastern Sweden. The objectives of the VSP were to image reflectors in the borehole for correlation with surface seismic and borehole data, study the signal penetration of explosive versus mechanical sources and determine the seismic velocity as a function of depth. Five principal source points were used, one located close to the KLX02 wellhead and 4 others that were offset by about 200 m to 400 m. An explosive source was only used at the wellhead and consisted of 15 grams of dynamite in 90 cm deep shot holes in bedrock. A swept impact seismic source (SIST) was also used at the wellhead, as well as at the other four offset source points. The primary SIST source consisted of a computer controlled mechanical hammer mounted on a tractor. By activating the hammer over a 15 second sweep length, the total energy transferred to the ground is on the same order as that produced by the dynamite. The recorded data are then processed to generate seismic records that are equivalent to a single impact source. A smaller hand held SIST source was also tested at the wellhead. Tests of both the tractor mounted source and dynamite were made at a location offset somewhat from the wellhead at a site containing loose sediments at the surface. Full waveform sonic, resistivity and gamma logs were also acquired in conjunction the VSP survey. A comparison between the explosive and large SIST source shows that comparable energy levels are produced by the two methods. The SIST source appears to be more stable in terms of the energy level, although the frequency content of data are somewhat lower. However, its most significant advantage is the low cost of preparation of the source points and the speed of the acquisition. Numerous reflections are observed on the VSP, as is the case on the surface seismic, implying a complex structure in the vicinity of the KLX02 borehole

  10. Using Seismic Interferometry to Investigate Seismic Swarms

    Science.gov (United States)

    Matzel, E.; Morency, C.; Templeton, D. C.

    2017-12-01

    Seismicity provides a direct means of measuring the physical characteristics of active tectonic features such as fault zones. Hundreds of small earthquakes often occur along a fault during a seismic swarm. This seismicity helps define the tectonically active region. When processed using novel geophysical techniques, we can isolate the energy sensitive to the fault, itself. Here we focus on two methods of seismic interferometry, ambient noise correlation (ANC) and the virtual seismometer method (VSM). ANC is based on the observation that the Earth's background noise includes coherent energy, which can be recovered by observing over long time periods and allowing the incoherent energy to cancel out. The cross correlation of ambient noise between a pair of stations results in a waveform that is identical to the seismogram that would result if an impulsive source located at one of the stations was recorded at the other, the Green function (GF). The calculation of the GF is often stable after a few weeks of continuous data correlation, any perturbations to the GF after that point are directly related to changes in the subsurface and can be used for 4D monitoring.VSM is a style of seismic interferometry that provides fast, precise, high frequency estimates of the Green's function (GF) between earthquakes. VSM illuminates the subsurface precisely where the pressures are changing and has the potential to image the evolution of seismicity over time, including changes in the style of faulting. With hundreds of earthquakes, we can calculate thousands of waveforms. At the same time, VSM collapses the computational domain, often by 2-3 orders of magnitude. This allows us to do high frequency 3D modeling in the fault region. Using data from a swarm of earthquakes near the Salton Sea, we demonstrate the power of these techniques, illustrating our ability to scale from the far field, where sources are well separated, to the near field where their locations fall within each other

  11. Ensuring seismic safety of Blahutovice nuclear power plant

    International Nuclear Information System (INIS)

    Bartak, V.; David, M.; Hrabe, T.; Simunek, P.

    1989-01-01

    The results are presented of the seismic and geological survey of the Blahutovice nuclear power plant site. The variants are discussed of laying foundations and securing earthquake protection of the reactor building. The calculations made show that all variants are suitable with respect to seismic effects because the acceleration of seismic vibrations at the foundation slab level reaches the maximum intensity of 8deg MSK 64. The variant envisaging that the reactor building should be supported on spring insulators with viscous dampers is considered most advanced. (J.B.). 8 figs., 1 tab

  12. Seismic anisotropies of the Songshugou peridotites (Qinling orogen, central China) and their seismic implications

    Science.gov (United States)

    Cao, Yi; Jung, Haemyeong; Song, Shuguang

    2018-01-01

    Though extensively studied, the roles of olivine crystal preferred orientations (CPOs or fabrics) in affecting the seismic anisotropies in the Earth's upper mantle are rather complicated and still not fully known. In this study, we attempted to address this issue by analyzing the seismic anisotropies [e.g., P-wave anisotropy (AVp), S-wave polarization anisotropy (AVs), radial anisotropy (ξ), and Rayleigh wave anisotropy (G)] of the Songshugou peridotites (dunite dominated) in the Qinling orogen in central China, based on our previously reported olivine CPOs. The seismic anisotropy patterns of olivine aggregates in our studied samples are well consistent with the prediction for their olivine CPO types; and the magnitude of seismic anisotropies shows a striking positive correlation with equilibrium pressure and temperature (P-T) conditions. Significant reductions of seismic anisotropies (AVp, max. AVs, and G) are observed in porphyroclastic dunite compared to coarse- and fine-grained dunites, as the results of olivine CPO transition (from A-/D-type in coarse-grained dunite, through AG-type-like in porphyroclastic dunite, to B-type-like in fine-grained dunite) and strength variation (weakening: A-/D-type → AG-type-like; strengthening: AG-type-like → B-type-like) during dynamic recrystallization. The transition of olivine CPOs from A-/D-type to B-/AG-type-like in the forearc mantle may weaken the seismic anisotropies and deviate the fast velocity direction and the fast S-wave polarization direction from trench-perpendicular to trench-oblique direction with the cooling and aging of forearc mantle. Depending on the size and distribution of the peridotite body such as the Songshugou peridotites, B- and AG-type-like olivine CPOs can be an additional (despite minor) local contributor to the orogen-parallel fast velocity direction and fast shear-wave polarization direction in the orogenic crust such as in the Songshugou area in Qinling orogen.

  13. High-resolution seismic data regularization and wavefield separation

    Science.gov (United States)

    Cao, Aimin; Stump, Brian; DeShon, Heather

    2018-04-01

    We present a new algorithm, non-equispaced fast antileakage Fourier transform (NFALFT), for irregularly sampled seismic data regularization. Synthetic tests from 1-D to 5-D show that the algorithm may efficiently remove leaked energy in the frequency wavenumber domain, and its corresponding regularization process is accurate and fast. Taking advantage of the NFALFT algorithm, we suggest a new method (wavefield separation) for the detection of the Earth's inner core shear wave with irregularly distributed seismic arrays or networks. All interfering seismic phases that propagate along the minor arc are removed from the time window around the PKJKP arrival. The NFALFT algorithm is developed for seismic data, but may also be used for other irregularly sampled temporal or spatial data processing.

  14. Impact of mesh and DEM resolutions in SEM simulation of 3D seismic response

    NARCIS (Netherlands)

    Khan, Saad; van der Meijde, M.; van der Werff, H.M.A.; Shafique, Muhammad

    2017-01-01

    This study shows that the resolution of a digital elevation model (DEM) and model mesh strongly influences 3D simulations of seismic response. Topographic heterogeneity scatters seismic waves and causes variation in seismic response (am-plification and deamplification of seismic amplitudes) at the

  15. Seismic qualification of equipment

    International Nuclear Information System (INIS)

    Heidebrecht, A.C.; Tso, W.K.

    1983-03-01

    This report describes the results of an investigation into the seismic qualification of equipment located in CANDU nuclear power plants. It is particularly concerned with the evaluation of current seismic qualification requirements, the development of a suitable methodology for the seismic qualification of safety systems, and the evaluation of seismic qualification analysis and testing procedures

  16. Development of Vertical Cable Seismic System

    Science.gov (United States)

    Asakawa, E.; Murakami, F.; Sekino, Y.; Okamoto, T.; Ishikawa, K.; Tsukahara, H.; Shimura, T.

    2011-12-01

    In 2009, Ministry of Education, Culture, Sports, Science and Technology(MEXT) started the survey system development for Hydrothermal deposit. We proposed the Vertical Cable Seismic (VCS), the reflection seismic survey with vertical cable above seabottom. VCS has the following advantages for hydrothermal deposit survey. (1) VCS is an efficient high-resolution 3D seismic survey in limited area. (2) It achieves high-resolution image because the sensors are closely located to the target. (3) It avoids the coupling problems between sensor and seabottom that cause serious damage of seismic data quality. (4) Because of autonomous recording system on sea floor, various types of marine source are applicable with VCS such as sea-surface source (GI gun etc.) , deep-towed or ocean bottom source. Our first experiment of 2D/3D VCS surveys has been carried out in Lake Biwa, JAPAN, in November 2009. The 2D VCS data processing follows the walk-away VSP, including wave field separation and depth migration. Seismic Interferometry technique is also applied. The results give much clearer image than the conventional surface seismic. Prestack depth migration is applied to 3D data to obtain good quality 3D depth volume. Seismic Interferometry technique is applied to obtain the high resolution image in the very shallow zone. Based on the feasibility study, we have developed the autonomous recording VCS system and carried out the trial experiment in actual ocean at the water depth of about 400m to establish the procedures of deployment/recovery and to examine the VC position or fluctuation at seabottom. The result shows that the VC position is estimated with sufficient accuracy and very little fluctuation is observed. Institute of Industrial Science, the University of Tokyo took the research cruise NT11-02 on JAMSTEC R/V Natsushima in February, 2011. In the cruise NT11-02, JGI carried out the second VCS survey using the autonomous VCS recording system with the deep towed source provided by

  17. Geomorphology and seismic risk

    Science.gov (United States)

    Panizza, Mario

    1991-07-01

    The author analyses the contributions provided by geomorphology in studies suited to the assessment of seismic risk: this is defined as function of the seismic hazard, of the seismic susceptibility, and of the vulnerability. The geomorphological studies applicable to seismic risk assessment can be divided into two sectors: (a) morpho-neotectonic investigations conducted to identify active tectonic structures; (b) geomorphological and morphometric analyses aimed at identifying the particular situations that amplify or reduce seismic susceptibility. The morpho-neotectonic studies lead to the identification, selection and classification of the lineaments that can be linked with active tectonic structures. The most important geomorphological situations that can condition seismic susceptibility are: slope angle, debris, morphology, degradational slopes, paleo-landslides and underground cavities.

  18. Reassessment of seismic reflection data from the Finnsjoen study site and prospectives for future surveys

    International Nuclear Information System (INIS)

    Cosma, C.; Juhlin, C.

    1994-02-01

    Reprocessing of data from the seismic reflection survey performed at Finnsjoen in 1987 show that reflection seismics is a viable technique for mapping fracture zones in crystalline rock. Application of state of the art processing algorithms clearly image a gently dipping fracture zone located in the depth interval 200-400 m. In addition, several other reflectors were imaged in the reprocessed section, both gently and steeply dipping ones. Correlations with borehole data indicate that the origin of these reflections are also fractures zones. The data acquisition procedures used at the Finnsjoen survey were basically sound and could, with minor modifications, be applied at other sites. The results indicate that both sources and receivers in future surveys should be placed in boreholes a few meter below the ground surface. 30 refs

  19. Advances in crosshole seismic instrumentation for dam safety monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Anderlini, G.; Anderlini, C. [BC Hydro, Burnaby, BC (Canada); Taylor, R. [RST Instruments Ltd., Coquitlam, BC (Canada)

    2009-07-01

    Since 1996, crosshole shear wave velocity measurements have been performed annually at the WAC Bennett Dam in order to monitor the performance of the dam core and integrity of the 1997 sinkhole repairs. As the testing showed to be responsive to embankment conditions and capable of detecting subtle changes, the testing program was expanded to include the development of an electrical shear wave source capable of carrying out crosshole seismic testing in Mica and Revelstoke Dams over distances of 100 metres and depths of 250 metres. This paper discussed the development and capabilities of the crosshole seismic instrumentation and presented preliminary results obtained during initial testing. Specific topics that were discussed included conventional crosshole seismic equipment; design basics; description of new crosshole seismic equipment; and automated in-situ crosshole seismic system (ACSS) system description and operation. It was concluded that the ACSS and accompanying electrical shear wave source, developed as part of the project, has advanced and improved on traditional crosshole seismic equipment. 7 refs., 9 figs.

  20. Seismic analysis of steam generator and parameter sensitivity studies

    International Nuclear Information System (INIS)

    Qian Hao; Xu Dinggen; Yang Ren'an; Liang Xingyun

    2013-01-01

    Background: The steam generator (SG) serves as the primary means for removing the heat generated within the reactor core and is part of the reactor coolant system (RCS) pressure boundary. Purpose: Seismic analysis in required for SG, whose seismic category is Cat. I. Methods: The analysis model of SG is created with moisture separator assembly and tube bundle assembly herein. The seismic analysis is performed with RCS pipe and Reactor Pressure Vessel (RPV). Results: The seismic stress results of SG are obtained. In addition, parameter sensitivities of seismic analysis results are studied, such as the effect of another SG, support, anti-vibration bars (AVBs), and so on. Our results show that seismic results are sensitive to support and AVBs setting. Conclusions: The guidance and comments on these parameters are summarized for equipment design and analysis, which should be focused on in future new type NPP SG's research and design. (authors)

  1. Seismic sequences in the Sombrero Seismic Zone

    Science.gov (United States)

    Pulliam, J.; Huerfano, V. A.; ten Brink, U.; von Hillebrandt, C.

    2007-05-01

    The northeastern Caribbean, in the vicinity of Puerto Rico and the Virgin Islands, has a long and well-documented history of devastating earthquakes and tsunamis, including major events in 1670, 1787, 1867, 1916, 1918, and 1943. Recently, seismicity has been concentrated to the north and west of the British Virgin Islands, in the region referred to as the Sombrero Seismic Zone by the Puerto Rico Seismic Network (PRSN). In the combined seismicity catalog maintained by the PRSN, several hundred small to moderate magnitude events can be found in this region prior to 2006. However, beginning in 2006 and continuing to the present, the rate of seismicity in the Sombrero suddenly increased, and a new locus of activity developed to the east of the previous location. Accurate estimates of seismic hazard, and the tsunamigenic potential of seismic events, depend on an accurate and comprehensive understanding of how strain is being accommodated in this corner region. Are faults locked and accumulating strain for release in a major event? Or is strain being released via slip over a diffuse system of faults? A careful analysis of seismicity patterns in the Sombrero region has the potential to both identify faults and modes of failure, provided the aggregation scheme is tuned to properly identify related events. To this end, we experimented with a scheme to identify seismic sequences based on physical and temporal proximity, under the assumptions that (a) events occur on related fault systems as stress is refocused by immediately previous events and (b) such 'stress waves' die out with time, so that two events that occur on the same system within a relatively short time window can be said to have a similar 'trigger' in ways that two nearby events that occurred years apart cannot. Patterns that emerge from the identification, temporal sequence, and refined locations of such sequences of events carry information about stress accommodation that is obscured by large clouds of

  2. Calculation of anti-seismic design for Xi'an pulsed reactor

    International Nuclear Information System (INIS)

    Li Shuian

    2002-01-01

    The author describes the reactor safety rule, safety regulation and design code that must be observed to anti-seismic design in Xi'an pulsed reactor. It includes the classification of reactor installation, determination of seismic loads, calculate contents, program, method, results and synthetically evaluation. According to the different anti-seismic structure character of reactor installation, an appropriate method was selected to calculate the seismic response. The results were evaluated synthetically using the design code and design requirement. The evaluate results showed that the anti-seismic design function of reactor installation of Xi'an pules reactor is well, and the structure integrality and normal property of reactor installation can be protect under the designed classification of the earthquake

  3. Seismic qualification of the rotary relay for use in the solid state protection system

    International Nuclear Information System (INIS)

    Vogeding, E.L.; Jarecki, S.J.

    1976-01-01

    The seismic qualification of a rotary relay that can be used as a replacement for the type of relay located in the output section of the Solid State Protection System is described. The qualification test results indicate that the tested relays did not exhibit any contact bounce or abnormal operation; they performed satisfactorily before, during, and after the simulated seismic vibration tests

  4. The influence of the mining operation on the mine seismicity of Vorkuta coal deposit

    Science.gov (United States)

    Zmushko, T.; Turuntaev, S. B.; Kulikov, V. I.

    2012-04-01

    The mine seismicity of Vorkuta coal deposit was analyzed. Seismic network consisting of 24 seismic sensors (accelerometers) cover the area of "Komsomolskaya" and "North" mines of Vorkuta deposit. Also there is seismic station of IDG RAS with three-component seismometer near this mines for better defining energy of the seismic events. The catalogs of seismic events contain 9000 and 7000 events with maximum magnitude M=2.3 for "Komsomolskaya" and "North" mines respectively and include the period from 01.09.2008 to 01.09.2011. The b-value of the magnitude-frequency relation was -1.0 and -1.15 respectively for the mines, meanwhile b-value for the nature seismicity was -0,9. It was found, that the number of seismic events per hour during mine combine operation is higher in 2.5 times than the number of seismic events during the break in the operation. Also, the total energy of the events per hour during the operation is higher in 3-5 times than during the break. The study showed, that the number and the energy of the seismic events relate with the hours of mine combine operation. The spatial distribution of the seismic events showed, that 80% of all events and 85% of strong events (M>1.6) were located in and near the longwall under development during the mine combine operations as well asduring the breaks. The isoclines of seismic event numbers proved that the direction of motion of the boundary of seismic events extension coincides with the direction of development, the maximum number of events for any period lies within the wall under operation. The rockburst with M=2.3 occurring at the North mine at July 16, 2011 was considered. The dependences of the energy and of the number of events with different magnitudes on the time showed that the number of events with M=1 and especially M=0.5 before the rockburst decreased, which corresponds to the prognostic seismic quietness, described in the research works. The spatial distribution of the events for the 6 month before the

  5. Patterns of Seismicity Associated with USGS Identified Areas of Potentially Induced Seismicity.

    Science.gov (United States)

    Barnes, Caitlin; Halihan, Todd

    2018-03-13

    A systematic review across U.S. Geological Survey (USGS) identified potentially induced seismic locations was conducted to discover seismic distance patterns and trends over time away from injection disposal wells. Previous research indicates a 10 km (6 miles) average where the majority of induced seismicity is expected to occur within individual locations, with some areas reporting a larger radius of 35 km (22 miles) to over 70 km (43 miles). This research analyzed earthquake occurrences within nine USGS locations where specified wells were identified as contributors to induced seismicity to determine distance patterns from disposal wells or outward seismic migration over time using established principles of hydrogeology. Results indicate a radius of 31.6 km (20 miles) where 90% of felt earthquakes occur among locations, with the closest proximal felt seismic events, on average, occurring 3 km (1.9 miles) away from injection disposal wells. The results of this research found distance trends across multiple locations of potentially induced seismicity. © 2018, National Ground Water Association.

  6. Improving fault image by determination of optimum seismic survey parameters using ray-based modeling

    Science.gov (United States)

    Saffarzadeh, Sadegh; Javaherian, Abdolrahim; Hasani, Hossein; Talebi, Mohammad Ali

    2018-06-01

    In complex structures such as faults, salt domes and reefs, specifying the survey parameters is more challenging and critical owing to the complicated wave field behavior involved in such structures. In the petroleum industry, detecting faults has become crucial for reservoir potential where faults can act as traps for hydrocarbon. In this regard, seismic survey modeling is employed to construct a model close to the real structure, and obtain very realistic synthetic seismic data. Seismic modeling software, the velocity model and parameters pre-determined by conventional methods enable a seismic survey designer to run a shot-by-shot virtual survey operation. A reliable velocity model of structures can be constructed by integrating the 2D seismic data, geological reports and the well information. The effects of various survey designs can be investigated by the analysis of illumination maps and flower plots. Also, seismic processing of the synthetic data output can describe the target image using different survey parameters. Therefore, seismic modeling is one of the most economical ways to establish and test the optimum acquisition parameters to obtain the best image when dealing with complex geological structures. The primary objective of this study is to design a proper 3D seismic survey orientation to achieve fault zone structures through ray-tracing seismic modeling. The results prove that a seismic survey designer can enhance the image of fault planes in a seismic section by utilizing the proposed modeling and processing approach.

  7. A 2D nonlinear inversion of well-seismic data

    International Nuclear Information System (INIS)

    Métivier, Ludovic; Lailly, Patrick; Delprat-Jannaud, Florence; Halpern, Laurence

    2011-01-01

    Well-seismic data such as vertical seismic profiles are supposed to provide detailed information about the elastic properties of the subsurface at the vicinity of the well. Heterogeneity of sedimentary terrains can lead to far from negligible multiple scattering, one of the manifestations of the nonlinearity involved in the mapping between elastic parameters and seismic data. We present a 2D extension of an existing 1D nonlinear inversion technique in the context of acoustic wave propagation. In the case of a subsurface with gentle lateral variations, we propose a regularization technique which aims at ensuring the stability of the inversion in a context where the recorded seismic waves provide a very poor illumination of the subsurface. We deal with a huge size inverse problem. Special care has been taken for its numerical solution, regarding both the choice of the algorithms and the implementation on a cluster-based supercomputer. Our tests on synthetic data show the effectiveness of our regularization. They also show that our efforts in accounting for the nonlinearities are rewarded by an exceptional seismic resolution at distances of about 100 m from the well. They also show that the result is not very sensitive to errors in the estimation of the velocity distribution, as far as these errors remain realistic in the context of a medium with gentle lateral variations

  8. Seismic passive earth resistance using modified pseudo-dynamic method

    Science.gov (United States)

    Pain, Anindya; Choudhury, Deepankar; Bhattacharyya, S. K.

    2017-04-01

    In earthquake prone areas, understanding of the seismic passive earth resistance is very important for the design of different geotechnical earth retaining structures. In this study, the limit equilibrium method is used for estimation of critical seismic passive earth resistance for an inclined wall supporting horizontal cohesionless backfill. A composite failure surface is considered in the present analysis. Seismic forces are computed assuming the backfill soil as a viscoelastic material overlying a rigid stratum and the rigid stratum is subjected to a harmonic shaking. The present method satisfies the boundary conditions. The amplification of acceleration depends on the properties of the backfill soil and on the characteristics of the input motion. The acceleration distribution along the depth of the backfill is found to be nonlinear in nature. The present study shows that the horizontal and vertical acceleration distribution in the backfill soil is not always in-phase for the critical value of the seismic passive earth pressure coefficient. The effect of different parameters on the seismic passive earth pressure is studied in detail. A comparison of the present method with other theories is also presented, which shows the merits of the present study.

  9. Seismic proving test of process computer systems with a seismic floor isolation system

    International Nuclear Information System (INIS)

    Fujimoto, S.; Niwa, H.; Kondo, H.

    1995-01-01

    The authors have carried out seismic proving tests for process computer systems as a Nuclear Power Engineering Corporation (NUPEC) project sponsored by the Ministry of International Trade and Industry (MITI). This paper presents the seismic test results for evaluating functional capabilities of process computer systems with a seismic floor isolation system. The seismic floor isolation system to isolate the horizontal motion was composed of a floor frame (13 m x 13 m), ball bearing units, and spring-damper units. A series of seismic excitation tests was carried out using a large-scale shaking table of NUPEC. From the test results, the functional capabilities during large earthquakes of computer systems with a seismic floor isolation system were verified

  10. Seismic gaps and plate tectonics: seismic potential for major boundaries

    Energy Technology Data Exchange (ETDEWEB)

    McCann, W R; Nishenko, S P; Sykes, L R; Krause, J

    1979-01-01

    The theory of plate tectonics provides a basic framework for evaluating the potential for future great earthquakes to occur along major plate boundaries. Along most of the transform and convergent plate boundaries considered in this paper, the majority of seismic slip occurs during large earthquakes, i.e., those of magnitude 7 or greater. The concepts that rupture zones, as delineated by aftershocks, tend to abut rather than overlap, and large events occur in regions with histories of both long-and short-term seismic quiescence are used in this paper to delineate major seismic gaps. The term seismic gap is taken to refer to any region along an active plate boundary that has not experienced a large thrust or strike-slip earthquake for more than 30 years. A region of high seismic potential is a seismic gap that, for historic or tectonic reasons, is considered likely to produce a large shock during the next few decades. The seismic gap technique provides estimates of the location, size of future events and origin time to within a few tens of years at best. The accompanying map summarizes six categories of seismic potential for major plate boundaries in and around the margins of the Pacific Ocean and the Caribbean, South Sandwich and Sunda (Indonesia) regions for the next few decades. These six categories are meant to be interpreted as forecasts of the location and size of future large shocks and should not be considered to be predictions in which a precise estimate of the time of occurrence is specified. The categories of potential assigned here provide a rationale for assigning priorities for instrumentation, for future studies aimed at predicting large earthquakes and for making estimates of tsunami potential.

  11. High-resolution seismic reflection study, Vacherie Dome

    International Nuclear Information System (INIS)

    1984-06-01

    A high-resolution seismic reflection study, consisting of recording, processing, and interpreting four seismic reflection lines, was made at Vacherie Dome, Louisiana. The presumed shape of the dome, as pictured in the geologic area characterization report by Law Engineering Testing Company in 1982, was based largely on interpretation of gravity data, constrained by a few wells and exploration-type seismic profiles. The purpose of the study was to obtain refined profiles of the dome above -914 m (-3000 ft) elevation. Additional study had been recommended by Louisiana State University in 1967 and the Office of Nuclear Waste Isolation in 1981 because the interpreted size of Vacherie Dome was based on limited seismic and gravity data. Forty-eight traces of seismic data were recorded each time shots were made to generate energy. Twelve-fold, common-depth-point data were obtained using geophone stations spaced at 15-m (50-ft) intervals with shots at 30-m (100-ft) intervals. The time-sampling interval used was 1 ms. Processing intended to enhance resolution included iterative static corrections, deconvolution before stacking, and both time- and depth-migration. The locations of the steep dome sides were inferred primarily from terminations of strong reflections (migrated) from strata near the top of the upper and lower Cretaceous sections. This interpretation agrees closely with the presumed shape from the top of the dome to about -610 m (-2000 ft) elevation, but below this on three of the profiles, this interpretation indicates a steeper salt face than the presumed shape. The area reduction at -914 m (-3000 ft) elevation is estimated to be on the order of 20 percent. 10 references, 11 figures, 4 tables

  12. Recent Vs. Historical Seismicity Analysis For Banat Seismic Region (Western Part Of Romania

    Directory of Open Access Journals (Sweden)

    Oros Eugen

    2015-03-01

    Full Text Available The present day seismic activity from a region reflects the active tectonics and can confirm the seismic potential of the seismogenic sources as they are modelled using the historical seismicity. This paper makes a comparative analysis of the last decade seismicity recorded in the Banat Seismic Region (western part of Romania and the historical seismicity of the region (Mw≥4.0. Four significant earthquake sequences have been recently localized in the region, three of them nearby the city of Timisoara (January 2012 and March 2013 and the fourth within Hateg Basin, South Carpathians (October 2013. These sequences occurred within the epicentral areas of some strong historical earthquakes (Mw≥5.0. The main events had some macroseismic effects on people up to some few kilometers from the epicenters. Our results update the Romanian earthquakes catalogue and bring new information along the local seismic hazard sources models and seismotectonics.

  13. Development of seismic tomography software for hybrid supercomputers

    Science.gov (United States)

    Nikitin, Alexandr; Serdyukov, Alexandr; Duchkov, Anton

    2015-04-01

    Seismic tomography is a technique used for computing velocity model of geologic structure from first arrival travel times of seismic waves. The technique is used in processing of regional and global seismic data, in seismic exploration for prospecting and exploration of mineral and hydrocarbon deposits, and in seismic engineering for monitoring the condition of engineering structures and the surrounding host medium. As a consequence of development of seismic monitoring systems and increasing volume of seismic data, there is a growing need for new, more effective computational algorithms for use in seismic tomography applications with improved performance, accuracy and resolution. To achieve this goal, it is necessary to use modern high performance computing systems, such as supercomputers with hybrid architecture that use not only CPUs, but also accelerators and co-processors for computation. The goal of this research is the development of parallel seismic tomography algorithms and software package for such systems, to be used in processing of large volumes of seismic data (hundreds of gigabytes and more). These algorithms and software package will be optimized for the most common computing devices used in modern hybrid supercomputers, such as Intel Xeon CPUs, NVIDIA Tesla accelerators and Intel Xeon Phi co-processors. In this work, the following general scheme of seismic tomography is utilized. Using the eikonal equation solver, arrival times of seismic waves are computed based on assumed velocity model of geologic structure being analyzed. In order to solve the linearized inverse problem, tomographic matrix is computed that connects model adjustments with travel time residuals, and the resulting system of linear equations is regularized and solved to adjust the model. The effectiveness of parallel implementations of existing algorithms on target architectures is considered. During the first stage of this work, algorithms were developed for execution on

  14. High-resolution seismic reflection surveying with a land streamer

    Science.gov (United States)

    Cengiz Tapırdamaz, Mustafa; Cankurtaranlar, Ali; Ergintav, Semih; Kurt, Levent

    2013-04-01

    In this study, newly designed seismic reflection data acquisition array (land streamer) is utilized to image the shallow subsurface. Our acquisition system consist of 24 geophones screwed on iron plates with 2 m spacing, moving on the surface of the earth which are connected with fire hose. Completely original, 4.5 Kg weight iron plates provides satisfactory coupling. This land-streamer system enables rapid and cost effective acquisition of seismic reflection data due to its operational facilities. First test studies were performed using various seismic sources such as a mini-vibro truck, buffalo-gun and hammer. The final fieldwork was performed on a landslide area which was studied before. Data acquisition was carried out on the line that was previously measured by the seismic survey using 5 m geophone and shot spacing. This line was chosen in order to re-image known reflection patterns obtained from the previous field study. Taking penetration depth into consideration, a six-cartridge buffalo-gun was selected as a seismic source to achieve high vertical resolution. Each shot-point drilled 50 cm for gunshots to obtain high resolution source signature. In order to avoid surface waves, the offset distance between the source and the first channel was chosen to be 50 m and the shot spacing was 2 m. These acquisition parameters provided 12 folds at each CDP points. Spatial sampling interval was 1 m at the surface. The processing steps included standard stages such as gain recovery, editing, frequency filtering, CDP sorting, NMO correction, static correction and stacking. Furthermore, surface consistent residual static corrections were applied recursively to improve image quality. 2D F-K filter application was performed to suppress air and surface waves at relatively deep part of the seismic section. Results show that, this newly designed, high-resolution land seismic data acquisition equipment (land-streamer) can be successfully used to image subsurface. Likewise

  15. Seismic characterization of fracture properties

    International Nuclear Information System (INIS)

    Myer, L.R.; Hopkins, D.; Cook, N.G.W.; Pyrak-Nolte, L.J.

    1990-01-01

    The purpose of this paper is to show that there is a relationship, both empirical and theoretical, between the measured seismic response, the mechanical stiffness (also referred to as specific stiffness) of fractures and their hydraulic conductivity. Laboratory measurements of the mechanical stiffness, hydraulic conductivity and seismic properties of natural fractures are summarized. A theoretical model for the amplitude and group time delay for compressional and shear waves transmitted across a single fracture is presented. Predictions based on this model are compared with laboratory measurements. Finally, the results for a single fracture are extended to multiple parallel fractures. 13 refs., 6 figs

  16. Delineation of seismic source zones based on seismicity parameters ...

    Indian Academy of Sciences (India)

    these source zones were evaluated and were used in the hazard evaluation. ... seismic sources, linear and areal, were considered in the present study to model the seismic sources in the ..... taken as an authentic reference manual for iden-.

  17. Micro-seismicity and seismotectonic study in Western Himalaya-Ladakh-Karakoram using local broadband seismic data

    Science.gov (United States)

    Kanna, Nagaraju; Gupta, Sandeep; Prakasam, K. S.

    2018-02-01

    We document the seismic activity and fault plane solutions (FPSs) in the Western Himalaya, Ladakh and Karakoram using data from 16 broadband seismographs operated during June 2002 to December 2003. We locate 206 earthquakes with a local magnitude in the range of 1.5 to 4.9 and calculate FPSs of 19 selected earthquakes based on moment tensor solutions. The earthquakes are distributed throughout the study region and indicate active tectonics in this region. The observed seismicity pattern is quite different than a well-defined pattern of seismicity, along the Main Central Thrust zone, in the eastern side of the study region (i.e., Kumaon-Garhwal Himalaya). In the Himalaya region, the earthquakes are distributed in the crust and upper mantle, whereas in the Ladakh-Karakoram area the earthquakes are mostly confined up to crustal depths. The fault plane solutions show a mixture of thrust, normal and strike-slip type mechanisms, which are well corroborated with the known faults/tectonics of the region. The normal fault earthquakes are observed along the Southern Tibet Detachment, Zanskar Shear Zone, Tso-Morari dome, and Kaurik-Chango fault; and suggest E-W extension tectonics in the Higher and Tethys Himalaya. The earthquakes of thrust mechanism with the left-lateral strike-slip component are seen along the Kistwar fault. The right-lateral strike-slip faulting with thrust component along the bending of the Main Boundary Thrust and Main Central Thrust shows the transpressional tectonics in this part of the Himalaya. The observed earthquakes with right-lateral strike-slip faulting indicate seismically active nature of the Karakoram fault.

  18. Seismic calibration shots conducted in 2009 in the Imperial Valley, southern California, for the Salton Seismic Imaging Project (SSIP)

    Science.gov (United States)

    Murphy, Janice; Goldman, Mark; Fuis, Gary; Rymer, Michael; Sickler, Robert; Miller, Summer; Butcher, Lesley; Ricketts, Jason; Criley, Coyn; Stock, Joann; Hole, John; Chavez, Greg

    2011-01-01

    Rupture of the southern section of the San Andreas Fault, from the Coachella Valley to the Mojave Desert, is believed to be the greatest natural hazard facing California in the near future. With an estimated magnitude between 7.2 and 8.1, such an event would result in violent shaking, loss of life, and disruption of lifelines (freeways, aqueducts, power, petroleum, and communication lines) that would bring much of southern California to a standstill. As part of the Nation's efforts to prevent a catastrophe of this magnitude, a number of projects are underway to increase our knowledge of Earth processes in the area and to mitigate the effects of such an event. One such project is the Salton Seismic Imaging Project (SSIP), which is a collaborative venture between the United States Geological Survey (USGS), California Institute of Technology (Caltech), and Virginia Polytechnic Institute and State University (Virginia Tech). This project will generate and record seismic waves that travel through the crust and upper mantle of the Salton Trough. With these data, we will construct seismic images of the subsurface, both reflection and tomographic images. These images will contribute to the earthquake-hazard assessment in southern California by helping to constrain fault locations, sedimentary basin thickness and geometry, and sedimentary seismic velocity distributions. Data acquisition is currently scheduled for winter and spring of 2011. The design and goals of SSIP resemble those of the Los Angeles Region Seismic Experiment (LARSE) of the 1990's. LARSE focused on examining the San Andreas Fault system and associated thrust-fault systems of the Transverse Ranges. LARSE was successful in constraining the geometry of the San Andreas Fault at depth and in relating this geometry to mid-crustal, flower-structure-like decollements in the Transverse Ranges that splay upward into the network of hazardous thrust faults that caused the 1971 M 6.7 San Fernando and 1987 M 5

  19. Micro-seismicity and seismic moment release within the Coso Geothermal Field, California

    Science.gov (United States)

    Kaven, Joern; Hickman, Stephen H.; Davatzes, Nicholas C.

    2014-01-01

    We relocate 16 years of seismicity in the Coso Geothermal Field (CGF) using differential travel times and simultaneously invert for seismic velocities to improve our knowledge of the subsurface geologic and hydrologic structure. We expand on our previous results by doubling the number of relocated events from April 1996 through May 2012 using a new field-wide 3-D velocity model. Relocated micro-seismicity sharpens in many portions of the active geothermal reservoir, likely defining large-scale fault zones and fluid pressure compartment boundaries. However, a significant fraction of seismicity remains diffuse and does not cluster into sharply defined structures, suggesting that permeability is maintained within the reservoir through distributed brittle failure. The seismic velocity structure reveals heterogeneous distributions of compressional (Vp) and shear (Vs) wave speed, with Vs generally higher in the Main Field and East Flank and Vp remaining relatively uniform across the CGF, but with significant local variations. The Vp/Vs ratio appears to outline the two main producing compartments of the reservoir at depths below mean ground level of approximately 1 to 2.5 km, with a ridge of relatively high Vp/Vs separating the Main Field from the East Flank. Detailed analyses of spatial and temporal variations in earthquake relocations and cumulative seismic moment release in the East Flank reveal three regions with persistently high rates of seismic activity. Two of these regions exhibit sharp, stationary boundaries at the margins of the East Flank that likely represent barriers to fluid flow and advective heat transport. However, seismicity and moment release in a third region at the northern end of the East Flank spread over time to form an elongated NE to SW structure, roughly parallel both to an elongated cluster of seismicity at the southern end of the East Flank and to regional fault traces mapped at the surface. Our results indicate that high

  20. Microzonation of Seismic Hazard Potential in Taipei, Taiwan

    Science.gov (United States)

    Liu, K. S.; Lin, Y. P.

    2017-12-01

    The island of Taiwan lies at the boundary between the Philippine Sea plate and the Eurasia plate. Accordingly, the majority of seismic energy release near Taiwan originates from the two subduction zones. It is therefore not surprising that Taiwan has repeatedly been struck by large earthquakes such as 1986 Hualien earthquake, 1999 Chi Chi and 2002 Hualien earthquake. Microzonation of seismic hazard potential becomes necessary in Taipei City for the Central Geological Survey announced the Sanchiao active fault as Category II. In this study, a catalog of more than 2000 shallow earthquakes occurred from 1900 to 2015 with Mw magnitudes ranging from 5.0 to 8.2, and 11 disastrous earthquakes occurred from 1683-1899, as well as Sanchiao active fault in the vicinity are used to estimate the seismic hazard potential in Taipei City for seismic microzonation. Furthermore, the probabilities of seismic intensity exceeding CWB intensity 5, 6, 7 and MMI VI, VII, VIII in 10, 30, and 50-year periods in the above areas are also analyzed for the seismic microzonation. Finally, by comparing with the seismic zoning map of Taiwan in current building code that was revised after 921 earthquakes, Results of this study will show which areas with higher earthquake hazard potential in Taipei City. They provide a valuable database for the seismic design of critical facilities. It will help mitigate Taipei City earthquake disaster loss in the future, as well as provide critical information for emergency response plans.

  1. Development of Canadian seismic design approach and overview of seismic standards

    Energy Technology Data Exchange (ETDEWEB)

    Usmani, A. [Amec Foster Wheeler, Toronto, ON (Canada); Aziz, T. [TSAziz Consulting Inc., Mississauga, ON (Canada)

    2015-07-01

    Historically the Canadian seismic design approaches have evolved for CANDU® nuclear power plants to ensure that they are designed to withstand a design basis earthquake (DBE) and have margins to meet the safety requirements of beyond DBE (BDBE). While the Canadian approach differs from others, it is comparable and in some cases more conservative. The seismic requirements are captured in five CSA nuclear standards which are kept up to date and incorporate lessons learnt from recent seismic events. This paper describes the evolution of Canadian approach, comparison with others and provides an overview and salient features of CSA seismic standards. (author)

  2. Seismic quiescence in a frictional earthquake model

    Science.gov (United States)

    Braun, Oleg M.; Peyrard, Michel

    2018-04-01

    We investigate the origin of seismic quiescence with a generalized version of the Burridge-Knopoff model for earthquakes and show that it can be generated by a multipeaked probability distribution of the thresholds at which contacts break. Such a distribution is not assumed a priori but naturally results from the aging of the contacts. We show that the model can exhibit quiescence as well as enhanced foreshock activity, depending on the value of some parameters. This provides a generic understanding for seismic quiescence, which encompasses earlier specific explanations and could provide a pathway for a classification of faults.

  3. Development of Probabilistic Performance Evaluation Procedure for Umbilical Lines of Seismically Isolated NPPs

    International Nuclear Information System (INIS)

    Hahm, Daegi; Park, Junhee; Choi, Inkil

    2013-01-01

    In this study, we proposed a procedure to perform the probabilistic performance evaluation of interface piping system for seismically isolated NPPs, and carried out the preliminary performance evaluation of the target example umbilical line. For EDB level earthquakes, the target performance goal cannot be fulfilled, but we also find out that the result can be changed with respect to the variation of the assumed values, i. e., the distribution of response, and the limit state of piping system. Recently, to design the nuclear power plants (NPPs) more efficiently and safely against the strong seismic load, many researchers focus on the seismic isolation system. For the adoption of seismic isolation system to the NPPs, the seismic performance of isolation devices, structures, and components should be guaranteed firstly. Hence, some researches were performed to determine the seismic performance of such items. For the interface piping system between isolated structure and non-isolated structure, the seismic capacity should be carefully estimated since that the required displacement absorption capacity will be increased significantly by the adoption of the seismic isolation system. Nowadays, in NUREG report, the probabilistic performance criteria for isolated NPP structures and components are proposed. Hence, in this study, we developed the probabilistic performance evaluation method and procedure for interface piping system, and applied the method to an example pipe. The detailed procedure and main results are summarized in next section. For the interface piping system, the seismic capacity should be carefully estimated since that the required displacement absorption capacity will be increased significantly by the adoption of the seismic isolation system

  4. An investigation of major influences on the seismic response of APR1400 reactor vessel internals - 15145

    International Nuclear Information System (INIS)

    Byun, Y.J.; Kim, J.G.; Sung, K.K.; Lee, D.H.

    2015-01-01

    This paper deals with 3 topics concerning the APR1400 reactor vessel internals (RVI) seismic analysis: nonlinear problems, approaches to account for uncertainties of seismic model, and dynamic responses to various seismic excitations. First, the noticeable nonlinear characteristics of the RVI seismic model are discussed, and the modeling methods for properly simulating the nonlinear behaviors of RVI under seismic loads are presented. By applying these methods to the seismic model, the seismic analysis can correctly predict the dynamic response of RVI. Next, two approaches to account for the uncertainties of seismic model are evaluated: the time history broadening method, and the sensitivity analysis based on NUREG-0800, Section 4.2, Appendix A. From the evaluation results, it is confirmed that the time history broadening method employed in the seismic analysis of APR1400 RVI sufficiently accounts for the uncertainty of seismic model. Finally, the response characteristics of APR1400 RVI to various seismic excitations are investigated. The seismic excitations corresponding to various soil profiles, including the effects of cracked and un-cracked concrete stiffness on the reactor containment building structure, are used as forcing functions. From this study, the effects of various site conditions on the dynamic response of APR1400 RVI are identified. As a result, the enveloped seismic responses obtained from this study will contribute to the development of RVI seismic design that covers a wide range of potential site conditions. (authors)

  5. Fault-related-folding structure and reflection seismic sections. Construction of earth model using balanced cross section; Danso ga kaizaisuru shukyoku kozo no keitai to jishin tansa danmen. 1. Balanced cross section wo mochiita chika model no kochiku

    Energy Technology Data Exchange (ETDEWEB)

    Matsuoka, T; Tamagawa, T [Japan Petroleum Exploration Corp., Tokyo (Japan); Tsukui, R [Japan National Oil Corp., Tokyo (Japan). Technology Research Center

    1997-05-27

    Pre-stacking depth migration treatment is studied for the estimation of the fold configuration from seismic survey cross sections. The estimation of a velocity structure is necessary for the execution of such treatment, and the utilization of structural-geological knowledge is required for its interpretation. The concept of balanced cross section in relation to the fault-bend fold constructs a stratum structure model under conditions that the deformation during fold and fault formation is a planar strain, that there is no change in volume due to deformation, and that a fold is a parallel fold. In addition to the above geometric and kinetic approach, there is another fold formation process simulation model using a Newtonian fluid for study from the viewpoint of dynamics. This simulation stands on the presumption that the boundary contains a ramp that had been in presence before fold formation and that an incompressible viscous matter is mounted on the top surface. The viscous matter flows and deforms for the formation of an anticline on the ramp. Such enables the reproduction of a fault-bend fold formation process, and helpful discussion may be furthered on the dynamic aspect of this simulation. 5 refs., 4 figs.

  6. Discriminating Induced-Microearthquakes Using New Seismic Features

    Science.gov (United States)

    Mousavi, S. M.; Horton, S.

    2016-12-01

    We studied characteristics of induced-microearthquakes on the basis of the waveforms recorded on a limited number of surface receivers using machine-learning techniques. Forty features in the time, frequency, and time-frequency domains were measured on each waveform, and several techniques such as correlation-based feature selection, Artificial Neural Networks (ANNs), Logistic Regression (LR) and X-mean were used as research tools to explore the relationship between these seismic features and source parameters. The results show that spectral features have the highest correlation to source depth. Two new measurements developed as seismic features for this study, spectral centroids and 2D cross-correlations in the time-frequency domain, performed better than the common seismic measurements. These features can be used by machine learning techniques for efficient automatic classification of low energy signals recorded at one or more seismic stations. We applied the technique to 440 microearthquakes-1.7Reference: Mousavi, S.M., S.P. Horton, C. A. Langston, B. Samei, (2016) Seismic features and automatic discrimination of deep and shallow induced-microearthquakes using neural network and logistic regression, Geophys. J. Int. doi: 10.1093/gji/ggw258.

  7. Seismic scanning tunneling macroscope - Theory

    KAUST Repository

    Schuster, Gerard T.

    2012-09-01

    We propose a seismic scanning tunneling macroscope (SSTM) that can detect the presence of sub-wavelength scatterers in the near-field of either the source or the receivers. Analytic formulas for the time reverse mirror (TRM) profile associated with a single scatterer model show that the spatial resolution limit to be, unlike the Abbe limit of λ/2, independent of wavelength and linearly proportional to the source-scatterer separation as long as the point scatterer is in the near-field region; if the sub-wavelength scatterer is a spherical impedance discontinuity then the resolution will also be limited by the radius of the sphere. Therefore, superresolution imaging can be achieved as the scatterer approaches the source. This is analogous to an optical scanning tunneling microscope that has sub-wavelength resolution. Scaled to seismic frequencies, it is theoretically possible to extract 100 Hz information from 20 Hz data by imaging of near-field seismic energy.

  8. Seismic scanning tunneling macroscope - Theory

    KAUST Repository

    Schuster, Gerard T.; Hanafy, Sherif M.; Huang, Yunsong

    2012-01-01

    We propose a seismic scanning tunneling macroscope (SSTM) that can detect the presence of sub-wavelength scatterers in the near-field of either the source or the receivers. Analytic formulas for the time reverse mirror (TRM) profile associated with a single scatterer model show that the spatial resolution limit to be, unlike the Abbe limit of λ/2, independent of wavelength and linearly proportional to the source-scatterer separation as long as the point scatterer is in the near-field region; if the sub-wavelength scatterer is a spherical impedance discontinuity then the resolution will also be limited by the radius of the sphere. Therefore, superresolution imaging can be achieved as the scatterer approaches the source. This is analogous to an optical scanning tunneling microscope that has sub-wavelength resolution. Scaled to seismic frequencies, it is theoretically possible to extract 100 Hz information from 20 Hz data by imaging of near-field seismic energy.

  9. Global regionalized seismicity in view of Non-Extensive Statistical Physics

    Science.gov (United States)

    Chochlaki, Kalliopi; Vallianatos, Filippos; Michas, Georgios

    2018-03-01

    In the present work we study the distribution of Earth's shallow seismicity on different seismic zones, as occurred from 1981 to 2011 and extracted from the Centroid Moment Tensor (CMT) catalog. Our analysis is based on the subdivision of the Earth's surface into seismic zones that are homogeneous with regards to seismic activity and orientation of the predominant stress field. For this, we use the Flinn-Engdahl regionalization (FE) (Flinn and Engdahl, 1965), which consists of fifty seismic zones as modified by Lombardi and Marzocchi (2007). The latter authors grouped the 50 FE zones into larger tectonically homogeneous ones, utilizing the cumulative moment tensor method, resulting into thirty-nine seismic zones. In each one of these seismic zones we study the distribution of seismicity in terms of the frequency-magnitude distribution and the inter-event time distribution between successive earthquakes, a task that is essential for hazard assessments and to better understand the global and regional geodynamics. In our analysis we use non-extensive statistical physics (NESP), which seems to be one of the most adequate and promising methodological tools for analyzing complex systems, such as the Earth's seismicity, introducing the q-exponential formulation as the expression of probability distribution function that maximizes the Sq entropy as defined by Tsallis, (1988). The qE parameter is significantly greater than one for all the seismic regions analyzed with value range from 1.294 to 1.504, indicating that magnitude correlations are particularly strong. Furthermore, the qT parameter shows some temporal correlations but variations with cut-off magnitude show greater temporal correlations when the smaller magnitude earthquakes are included. The qT for earthquakes with magnitude greater than 5 takes values from 1.043 to 1.353 and as we increase the cut-off magnitude to 5.5 and 6 the qT value ranges from 1.001 to 1.242 and from 1.001 to 1.181 respectively, presenting

  10. Review Article: Numerical analysis of the seismic behaviour of earth dam

    Directory of Open Access Journals (Sweden)

    Y. Parish

    2009-03-01

    Full Text Available The present study concerns analysis of the seismic response of earth dams. The behaviour of both the shell and core of the dam is described using the simple and popular non associated Mohr-Coulomb criterion. The use of this constitutive model is justified by the difficulty to obtain constitutive parameters for more advanced constitutive relations including isotropic and kinematic hardening. Analyses with real earthquake records show that the seismic loading induces plasticity in a large part of the shell and in the lower part of the core. Analysis shows that plasticity should be considered in the analysis of the seismic response of the dam, because it leads to a decrease in the natural frequencies of the dam together to energy dissipation, which could significantly affect the seismic response of the dam. Plastic analysis constitutes also a good tool for the verification of the stability of the dam under seismic loading.

  11. Kinematics of active deformation across the Western Kunlun mountain range (Xinjiang, China), and potential seismic hazards within the southern Tarim Basin

    DEFF Research Database (Denmark)

    Guilbaud, Christelle; Simoes, Martine; Barrier, Laurie

    2017-01-01

    remains seismic. To quantify the rate of active deformation and the potential for major earthquakes in this region, we combine a structural and quantitative morphological analysis of the Yecheng-Pishan fold, along the topographic mountain front in the epicentral area. Using a seismic profile, we derive......The Western Kunlun mountain range is a slowly converging intra-continental orogen where deformation rates are too low to be properly quantified from geodetic techniques. This region has recorded little seismicity, but the recent July 2015 (Mw 6.4) Pishan earthquake shows that this mountain range...... a structural cross-section in which we identify the fault that broke during the Pishan earthquake, an 8-12 km deep blind ramp beneath the Yecheng-Pishan fold. Combining satellite images and DEMs, we achieve a detailed morphological analysis of the Yecheng-Pishan fold, where we find nine levels of incised...

  12. Design of fuelling machine bridge and carriage to meet seismic qualification requirements

    International Nuclear Information System (INIS)

    Ghare, A.B.; Chhatre, A.G.; Vyas, A.K.; Bhambra, H.S.

    1996-01-01

    During each refuelling operation, the boundary of Primary heat transport system is extended up to Fuelling Machines. A breach in the pressure boundary of Fuelling Machine in this condition would cause a loss of coolant accident. Fuelling Machines are also used for transit storage of spent fuel bundles till discharged to fuel transfer system. Therefore, a fuelling machine, including its support structures, is required to be seismically qualified for both on-reactor ( coupled ) mode and off-reactor (uncoupled) mode. The fuelling machine carriage used in the first generation of Indian PHWRs is a mobile equipment on wheels moving over fixed rails. As this configuration was found unsuitable for withstanding strong seismic disturbances, a bridge type design with fixed columns was evolved for the next generation of reactors. Initially, the seismic analysis of the fuelling machine bridge and carriage was done using static structural analysis and values of natural frequencies for various structures were computed. The structures were suitably modified based on the results of this analysis. Subsequently, a detailed dynamic seismic analysis using finite element model has been completed for both coupled and uncoupled conditions. The qualification of the structure has been carried out as per ASME section 111 Division 1, sub section NF. Details of the significant design features, static and dynamic analysis, results and conclusions are given in the presentation. (author). 4 refs., 4 tabs., 7 figs

  13. Design of fuelling machine bridge and carriage to meet seismic qualification requirements

    Energy Technology Data Exchange (ETDEWEB)

    Ghare, A B; Chhatre, A G; Vyas, A K; Bhambra, H S [Nuclear Power Corporation of India Ltd., Mumbai (India)

    1997-12-31

    During each refuelling operation, the boundary of Primary heat transport system is extended up to Fuelling Machines. A breach in the pressure boundary of Fuelling Machine in this condition would cause a loss of coolant accident. Fuelling Machines are also used for transit storage of spent fuel bundles till discharged to fuel transfer system. Therefore, a fuelling machine, including its support structures, is required to be seismically qualified for both on-reactor ( coupled ) mode and off-reactor (uncoupled) mode. The fuelling machine carriage used in the first generation of Indian PHWRs is a mobile equipment on wheels moving over fixed rails. As this configuration was found unsuitable for withstanding strong seismic disturbances, a bridge type design with fixed columns was evolved for the next generation of reactors. Initially, the seismic analysis of the fuelling machine bridge and carriage was done using static structural analysis and values of natural frequencies for various structures were computed. The structures were suitably modified based on the results of this analysis. Subsequently, a detailed dynamic seismic analysis using finite element model has been completed for both coupled and uncoupled conditions. The qualification of the structure has been carried out as per ASME section 111 Division 1, sub section NF. Details of the significant design features, static and dynamic analysis, results and conclusions are given in the presentation. (author). 4 refs., 4 tabs., 7 figs.

  14. Rescaled Range analysis of Induced Seismicity: rapid classification of clusters in seismic crisis

    Science.gov (United States)

    Bejar-Pizarro, M.; Perez Lopez, R.; Benito-Parejo, M.; Guardiola-Albert, C.; Herraiz, M.

    2017-12-01

    Different underground fluid operations, mainly gas storing, fracking and water pumping, can trigger Induced Seismicity (IS). This seismicity is normally featured by small-sized earthquakes (M<2.5), although particular cases reach magnitude as great as 5. It has been up for debate whether earthquakes greater than 5 can be triggered by IS or this level of magnitude only corresponds to tectonic earthquakes caused by stress change. Whatever the case, the characterization of IS for seismic clusters and seismic series recorded close but not into the gas storage, is still under discussion. Time-series of earthquakes obey non-linear patterns where the Hurst exponent describes the persistency or anti-persistency of the sequence. Natural seismic sequences have an H-exponent close to 0.7, which combined with the b-value time evolution during the time clusters, give us valuable information about the stationarity of the phenomena. Tectonic earthquakes consist in a main shock with a decay of time-occurrence of seismic shocks obeying the Omori's empirical law. On the contrary, IS does not exhibit a main shock and the time occurrence depends on the injection operations instead of on the tectonic energy released. In this context, the H-exponent can give information about the origin of the sequence. In 2013, a seismic crisis was declared from the Castor underground gas storing located off-shore in the Mediterranean Sea, close to the Northeastern Spanish cost. The greatest induced earthquake was 3.7. However, a 4.2 earthquake, probably of tectonic origin, occurred few days after the operations stopped. In this work, we have compared the H-exponent and the b-value time evolution according to the timeline of gas injection. Moreover, we have divided the seismic sequence into two groups: (1) Induced Seismicity and (2) Triggered Seismicity. The rescaled range analysis allows the differentiation between natural and induced seismicity and gives information about the persistency and long

  15. Assessment of Quantitative Aftershock Productivity Potential in Mining-Induced Seismicity

    Science.gov (United States)

    Kozłowska, Maria; Orlecka-Sikora, Beata

    2017-03-01

    Strong mining-induced earthquakes exhibit various aftershock patterns. The aftershock productivity is governed by the geomechanical properties of rock in the seismogenic zone, mining-induced stress and coseismic stress changes related to the main shock's magnitude, source geometry and focal mechanism. In order to assess the quantitative aftershock productivity potential in the mining environment we apply a forecast model based on natural seismicity properties, namely constant tectonic loading and the Gutenberg-Richter frequency-magnitude distribution. Although previous studies proved that mining-induced seismicity does not obey the simple power law, here we apply it as an approximation of seismicity distribution to resolve the number of aftershocks, not considering their magnitudes. The model used forecasts the aftershock productivity based on the background seismicity level estimated from an average seismic moment released per earthquake and static stress changes caused by a main shock. Thus it accounts only for aftershocks directly triggered by coseismic process. In this study we use data from three different mines, Mponeng (South Africa), Rudna and Bobrek (Poland), representing different geology, exploitation methods and aftershock patterns. Each studied case is treated with individual parameterization adjusted to the data specifics. We propose the modification of the original model, i.e. including the non-uniformity of M 0, resulting from spatial correlation of mining-induced seismicity with exploitation. The results show that, even when simplified seismicity distribution parameters are applied, the modified model predicts the number of aftershocks for each analyzed case well and accounts for variations between these values. Such results are thus another example showing that coseismic processes of mining-induced seismicity reflect features of natural seismicity and that similar models can be applied to study the aftershock rate in both the natural and the

  16. Broadband seismic : case study modeling and data processing

    Science.gov (United States)

    Cahyaningtyas, M. B.; Bahar, A.

    2018-03-01

    Seismic data with wide range of frequency is needed due to its close relation to resolution and the depth of the target. Low frequency provides deeper penetration for the imaging of deep target. In addition, the wider the frequency bandwidth, the sharper the wavelet. Sharp wavelet is responsible for high-resolution imaging and is very helpful to resolve thin bed. As a result, the demand for broadband seismic data is rising and it spurs the technology development of broadband seismic in oil and gas industry. An obstacle that is frequently found on marine seismic data is the existence of ghost that affects the frequency bandwidth contained on the seismic data. Ghost alters bandwidth to bandlimited. To reduce ghost effect and to acquire broadband seismic data, lots of attempts are used, both on the acquisition and on the processing of seismic data. One of the acquisition technique applied is the multi-level streamer, where some streamers are towed on some levels of depth. Multi-level streamer will yield data with varied ghost notch shown on frequency domain. If the ghost notches are not overlapping, the summation of multi-level streamer data will reduce the ghost effect. The result of the multi-level streamer data processing shows that reduction of ghost notch on frequency domain indeed takes place.

  17. Indication to distinguish the burst region of coal gas from seismic data

    Energy Technology Data Exchange (ETDEWEB)

    Jian-yuan Cheng; Hong-wei Tang; Lin Xu; Yan-fang Li [China Coal Research Institute, Xi' an (China). Xi' an Research Institute

    2009-09-15

    The velocity of an over-burst coal seam is about 1/3 compared to a normal coal seam based on laboratory test results. This can be considered as a basis to confirm the area of coal and gas burst by seismic exploration technique. Similarly, the simulation result of the theoretical seismic model shows that there is obvious distinction between over-burst coal and normal coal based on the coal reflection's travel-time, energy and frequency. The results from the actual seismic data acquired in the coal and gas over-burst cases is consistent with that of the laboratory and seismic modeling; that is, in the coal and gas burst region, seismic reflection travel time is delayed, seismic amplitude is weakened and seismic frequency is reduced. Therefore, it can be concluded that seismic exploration technique is promising for use in distinguishing coal and gas over-burst regions based on the variation of seismic reflection travel time, amplitude and frequency. 7 refs., 6 figs.

  18. Seismicity of the North of the Russian Plate: Relocation of Recent Earthquakese

    Science.gov (United States)

    Morozov, A. N.; Vaganova, N. V.; Asming, V. E.; Mikhailova, Ya. A.

    2018-03-01

    The hypocenters of the earthquakes recorded in the north of the Russian Plate from 1982 to 2013 are relocated. The relocation of the hypocenters is based on the common velocity section, common methodology, and the entire set of the initial data and bulletins available from the Russian and foreign seismic stations. The efficiency of the algorithm for calculating the hypocentral parameters and the velocity section is demonstrated by the example of two nonmilitary nuclear explosions in July 18, 1985 and September 6, 1988 in the northern part of the European Russia. For the first time, two earthquakes of July 19, 1982 and October 7, 2012, which have not been previously reported in the catalogs for the north of the Russian plate, are included in the seismic catalog.

  19. Linking ground motion measurements and macro-seismic observations in France: A case study based on the RAP (accelerometric) and BCSF (macro-seismic) databases

    International Nuclear Information System (INIS)

    Lesueur, Ch.

    2011-01-01

    Comparison between accelerometric and macro-seismic observations is made for three mw∼4.5 earthquakes of eastern France between 2003 and 2005. Scalar and spectral instrumental parameters are processed from the accelerometric data recorded by nine accelerometric stations located between 29 km and 180 km from the epicentres. Macro-seismic data are based on the French internet reports. In addition to the individual macro-seismic intensity, analysis of the internal correlation between the encoded answers highlights four predominant fields of questions, bearing different physical meanings: 1) 'vibratory motions of small objects', 2) 'displacement and fall of objects', 3) 'acoustic noise', and 4) 'personal feelings'. Best correlations between macro-seismic and instrumental observations are obtained when the macro-seismic parameters are averaged over 10 km radius circles around each station. macro-seismic intensities predicted by published pgv-intensity relationships quite agree with the observed intensities, contrary to those based on pga. The correlations between the macro-seismic and instrumental data, for intensities between ii and v (ems-98), show that pgv is the instrumental parameter presenting the best correlation with all macro-seismic parameters. The correlation with response spectra, exhibits clear frequency dependence over a limited frequency range [0.5-33 hz]. Horizontal and vertical components are significantly correlated with macro-seismic parameters between 1 and 10 hz, a range corresponding to both natural frequencies of most buildings and high energy content in the seismic ground motion. Between 10 and 25 hz, a clear lack of correlation between macro-seismic and instrumental data is observed, while beyond 25 hz the correlation coefficient increases, approaching that of the PGA correlation level. (author)

  20. Rockfall induced seismic signals: case study in Montserrat, Catalonia

    Science.gov (United States)

    Vilajosana, I.; Suriñach, E.; Abellán, A.; Khazaradze, G.; Garcia, D.; Llosa, J.

    2008-08-01

    After a rockfall event, a usual post event survey includes qualitative volume estimation, trajectory mapping and determination of departing zones. However, quantitative measurements are not usually made. Additional relevant quantitative information could be useful in determining the spatial occurrence of rockfall events and help us in quantifying their size. Seismic measurements could be suitable for detection purposes since they are non invasive methods and are relatively inexpensive. Moreover, seismic techniques could provide important information on rockfall size and location of impacts. On 14 February 2007 the Avalanche Group of the University of Barcelona obtained the seismic data generated by an artificially triggered rockfall event at the Montserrat massif (near Barcelona, Spain) carried out in order to purge a slope. Two 3 component seismic stations were deployed in the area about 200 m from the explosion point that triggered the rockfall. Seismic signals and video images were simultaneously obtained. The initial volume of the rockfall was estimated to be 75 m3 by laser scanner data analysis. After the explosion, dozens of boulders ranging from 10-4 to 5 m3 in volume impacted on the ground at different locations. The blocks fell down onto a terrace, 120 m below the release zone. The impact generated a small continuous mass movement composed of a mixture of rocks, sand and dust that ran down the slope and impacted on the road 60 m below. Time, time-frequency evolution and particle motion analysis of the seismic records and seismic energy estimation were performed. The results are as follows: 1 A rockfall event generates seismic signals with specific characteristics in the time domain; 2 the seismic signals generated by the mass movement show a time-frequency evolution different from that of other seismogenic sources (e.g. earthquakes, explosions or a single rock impact). This feature could be used for detection purposes; 3 particle motion plot analysis shows

  1. Study of Seismogenic Crust In The Eastern Province of Saudi Arabia And Its Relation To The Seismicity of The Ghawar Fields

    Science.gov (United States)

    Mogren, S. M.; Mukhopadhyay, M.

    2013-12-01

    /lineaments, four composite focal mechanism solutions as well as from the subsurface structural sections showing the pattern of basement uplift below GA. 3D computer simulation for seismicity below GA illustrates that some such attendant basement-faults are crust-penetrative. Location map of the study area showing the regularly-spaced, N-trending super-giant anticlines.

  2. Seismic intrusion detector system

    Science.gov (United States)

    Hawk, Hervey L.; Hawley, James G.; Portlock, John M.; Scheibner, James E.

    1976-01-01

    A system for monitoring man-associated seismic movements within a control area including a geophone for generating an electrical signal in response to seismic movement, a bandpass amplifier and threshold detector for eliminating unwanted signals, pulse counting system for counting and storing the number of seismic movements within the area, and a monitoring system operable on command having a variable frequency oscillator generating an audio frequency signal proportional to the number of said seismic movements.

  3. Monitoring Instrument Performance in Regional Broadband Seismic Network Using Ambient Seismic Noise

    Science.gov (United States)

    Ye, F.; Lyu, S.; Lin, J.

    2017-12-01

    In the past ten years, the number of seismic stations has increased significantly, and regional seismic networks with advanced technology have been gradually developed all over the world. The resulting broadband data help to improve the seismological research. It is important to monitor the performance of broadband instruments in a new network in a long period of time to ensure the accuracy of seismic records. Here, we propose a method that uses ambient noise data in the period range 5-25 s to monitor instrument performance and check data quality in situ. The method is based on an analysis of amplitude and phase index parameters calculated from pairwise cross-correlations of three stations, which provides multiple references for reliable error estimates. Index parameters calculated daily during a two-year observation period are evaluated to identify stations with instrument response errors in near real time. During data processing, initial instrument responses are used in place of available instrument responses to simulate instrument response errors, which are then used to verify our results. We also examine feasibility of the tailing noise using data from stations selected from USArray in different locations and analyze the possible instrumental errors resulting in time-shifts used to verify the method. Additionally, we show an application that effects of instrument response errors that experience pole-zeros variations on monitoring temporal variations in crustal properties appear statistically significant velocity perturbation larger than the standard deviation. The results indicate that monitoring seismic instrument performance helps eliminate data pollution before analysis begins.

  4. Seismic imaging of the lithospheric structure of the Zagros mountain belt (Iran)

    OpenAIRE

    Paul , Anne; Hatzfeld , Denis; KAVIANI , Ayoub; Tatar , Mohammad; Péquegnat , Catherine

    2010-01-01

    International audience; We present a synthesis and a comparison of the results of two temporary passive seismic experiments installed for a few months across Central and Northern Zagros. The receiver function analysis of teleseismic earthquake records gives a high-resolution image of the Moho beneath the seismic transects. On both cross-sections, the crust has an average thickness of 43±2 km beneath the Zagros fold-and-thrust belt and the Central domain. The crust is thicker beneath the hangi...

  5. Quantitative Seismic Amplitude Analysis

    NARCIS (Netherlands)

    Dey, A.K.

    2011-01-01

    The Seismic Value Chain quantifies the cyclic interaction between seismic acquisition, imaging and reservoir characterization. Modern seismic innovation to address the global imbalance in hydrocarbon supply and demand requires such cyclic interaction of both feed-forward and feed-back processes.

  6. Seismic Design of a Single Bored Tunnel: Longitudinal Deformations and Seismic Joints

    Science.gov (United States)

    Oh, J.; Moon, T.

    2018-03-01

    The large diameter bored tunnel passing through rock and alluvial deposits subjected to seismic loading is analyzed for estimating longitudinal deformations and member forces on the segmental tunnel liners. The project site has challenges including high hydrostatic pressure, variable ground profile and high seismic loading. To ensure the safety of segmental tunnel liner from the seismic demands, the performance-based two-level design earthquake approach, Functional Evaluation Earthquake and Safety Evaluation Earthquake, has been adopted. The longitudinal tunnel and ground response seismic analyses are performed using a three-dimensional quasi-static linear elastic and nonlinear elastic discrete beam-spring elements to represent segmental liner and ground spring, respectively. Three components (longitudinal, transverse and vertical) of free-field ground displacement-time histories evaluated from site response analyses considering wave passage effects have been applied at the end support of the strain-compatible ground springs. The result of the longitudinal seismic analyses suggests that seismic joint for the mitigation measure requiring the design deflection capacity of 5-7.5 cm is to be furnished at the transition zone between hard and soft ground condition where the maximum member forces on the segmental liner (i.e., axial, shear forces and bending moments) are induced. The paper illustrates how detailed numerical analyses can be practically applied to evaluate the axial and curvature deformations along the tunnel alignment under difficult ground conditions and to provide the seismic joints at proper locations to effectively reduce the seismic demands below the allowable levels.

  7. Density-based reflectivity in seismic exploration for coal in Alberta, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, D.C.; Lyatsky, H.V. (University of Calgary, AB (Canada). Dept. of Geology and Geophysics)

    1991-01-01

    At a coal field in central Alberta, Canada, the acoustic reflectivity of shallow coal seams was found to be dominated by the density contrast between coal and host bentonitic sediments. Sonic logs and a check-shot survey showed that the compressional-wave velocity is almost constant through the coal zone and the overlying sediments, and ranges in value between 2000 m/s and 2350 m/s over different parts of the coal field. The average coal density is 1400 kg/m{sup 3}, whereas the density of the sediments is about 2200 kg/m{sup 3}. Results are illustrated using logs from a typical drillhole in the coal field. At this location, the time reflectivity sequence based on both the density and sonic logs is very similar to that obtained when the density log only is used, with a constant velocity assumed through the coal zone. At another drillhole location in the coal field, where reflection seismic data had been acquired, a synthetic seismogram generated from the density log closely matches the stacked seismic section. 6 refs., 4 figs.

  8. Probing the internal structure of the asteriod Didymoon with a passive seismic investigation

    Science.gov (United States)

    Murdoch, N.; Hempel, S.; Pou, L.; Cadu, A.; Garcia, R. F.; Mimoun, D.; Margerin, L.; Karatekin, O.

    2017-09-01

    Understanding the internal structure of an asteroid has important implications for interpreting its evolutionary history, for understanding its continuing geological evolution, and also for asteroid deflection and in-situ space resource utilisation. Given the strong evidence that asteroids are seismically active, an in-situ passive seismic experiment could provide information about the asteroid surface and interior properties. Here, we discuss the natural seismic activity that may be present on Didymoon, the secondary component of asteroid (65803) Didymos. Our analysis of the tidal stresses in Didymoon shows that tidal quakes are likely to occur if the secondary has an eccentric orbit. Failure occurs most easily at the asteroid poles and close to the surface for both homogeneous and layered internal structures. Simulations of seismic wave propagation in Didymoon show that the seismic moment of even small meteoroid impacts can generate clearly observable body and surface waves if the asteroid's internal structure is homogeneous. The presence of a regolith layer over a consolidated core can result in the seismic energy becoming trapped in the regolith due to the strong impedance contrast at the regolith-core boundary. The inclusion of macro-porosity (voids) further complexifies the wavefield due to increased scattering. The most prominent seismic waves are always found to be those traveling along the surface of the asteroid and those focusing in the antipodal point of the seismic source. We find also that the waveforms and ground acceleration spectra allow discrimination between the different internal structure models. Although the science return of a passive seismic experiment would be enhanced by having multiple seismic stations, one single seismic station can already vastly improve our knowledge about the seismic environment and sub-surface structure of an asteroid. We describe several seismic measurement techniques that could be applied in order to study the

  9. The Great Maule earthquake: seismicity prior to and after the main shock from amphibious seismic networks

    Science.gov (United States)

    Lieser, K.; Arroyo, I. G.; Grevemeyer, I.; Flueh, E. R.; Lange, D.; Tilmann, F. J.

    2013-12-01

    the Great Maule earthquake the Collaborative Research Center SFB 574 'Volatiles and Fluids in Subduction Zones' shot several wide-angle profiles and operated a network, also consisting of OBS and land stations for six months in 2008. Both projects provide a great opportunity to study the evolution of a subduction zone within the seismic cycle of a great earthquake. The most profound features are (i) a sharp reduction in intraslab seismic activity after the Maule earthquake and (ii) a sharp increase in seismic activity at the slab interface above 50 km depth, where large parts of the rupture zone were largely aseismic prior to the Maule earthquake. Further, the aftershock seismicity shows a broader depth distribution above 50 km depth.

  10. Seismic characteristics of central Brazil crust and upper mantle: A deep seismic refraction study

    Science.gov (United States)

    Soares, J.E.; Berrocal, J.; Fuck, R.A.; Mooney, W.D.; Ventura, D.B.R.

    2006-01-01

    A two-dimensional model of the Brazilian central crust and upper mantle was obtained from the traveltime interpretation of deep seismic refraction data from the Porangatu and Cavalcante lines, each approximately 300 km long. When the lines were deployed, they overlapped by 50 km, forming an E-W transect approximately 530 km long across the Tocantins Province and western Sa??o Francisco Craton. The Tocantins Province formed during the Neoproterozoic when the Sa??o Francisco, the Paranapanema, and the Amazon cratons collided, following the subduction of the former Goia??s ocean basin. Average crustal VP and VP/VS ratios, Moho topography, and lateral discontinuities within crustal layers suggest that the crust beneath central Brazil can be associated with major geological domains recognized at the surface. The Moho is an irregular interface, between 36 and 44 km deep, that shows evidences of first-order tectonic structures. The 8.05 and 8.23 km s-1 P wave velocities identify the upper mantle beneath the Porangatu and Cavalcante lines, respectively. The observed seismic features allow for the identification of (1) the crust has largely felsic composition in the studied region, (2) the absence of the mafic-ultramafic root beneath the Goia??s magmatic arc, and (3) block tectonics in the foreland fold-and-thrust belt of the northern Brasi??lia Belt during the Neoproterozoic. Seismic data also suggested that the Bouguer gravimetric discontinuities are mainly compensated by differences in mass distribution within the lithospheric mantle. Finally, the Goia??s-Tocantins seismic belt can be interpreted as a natural seismic alignment related to the Neoproterozoic mantle domain. Copyright 2006 by the American Geophysical Union.

  11. A seismic design of nuclear reactor building structures applying seismic isolation system in a seismicity region-a feasibility case study in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Tetsuo [The University of Tokyo, Tokyo (Japan); Yamamoto, Tomofumi; Sato, Kunihiko [Mitsubishi Heavy Industries, Ltd., Kobe (Japan); Jimbo, Masakazu [Toshiba Corporation, Yokohama (Japan); Imaoka, Tetsuo [Hitachi-GE Nuclear Energy, Ltd., Hitachi (Japan); Umeki, Yoshito [Chubu Electric Power Co. Inc., Nagoya (Japan)

    2014-10-15

    A feasibility study on the seismic design of nuclear reactor buildings with application of a seismic isolation system is introduced. After the Hyogo-ken Nanbu earthquake in Japan of 1995, seismic isolation technologies have been widely employed for commercial buildings. Having become a mature technology, seismic isolation systems can be applied to NPP facilities in areas of high seismicity. Two reactor buildings are discussed, representing the PWR and BWR buildings in Japan, and the application of seismic isolation systems is discussed. The isolation system employing rubber bearings with a lead plug positioned (LRB) is examined. Through a series of seismic response analyses using the so-named standard design earthquake motions covering the design basis earthquake motions obtained for NPP sites in Japan, the responses of the seismic isolated reactor buildings are evaluated. It is revealed that for the building structures examined herein: (1) the responses of both isolated buildings and isolating LRBs fulfill the specified design criteria; (2) the responses obtained for the isolating LRBs first reach the ultimate condition when intensity of motion is 2.0 to 2.5 times as large as that of the design-basis; and (3) the responses of isolated reactor building fall below the range of the prescribed criteria.

  12. Seismic hazard assessment: Issues and alternatives

    Science.gov (United States)

    Wang, Z.

    2011-01-01

    Seismic hazard and risk are two very important concepts in engineering design and other policy considerations. Although seismic hazard and risk have often been used inter-changeably, they are fundamentally different. Furthermore, seismic risk is more important in engineering design and other policy considerations. Seismic hazard assessment is an effort by earth scientists to quantify seismic hazard and its associated uncertainty in time and space and to provide seismic hazard estimates for seismic risk assessment and other applications. Although seismic hazard assessment is more a scientific issue, it deserves special attention because of its significant implication to society. Two approaches, probabilistic seismic hazard analysis (PSHA) and deterministic seismic hazard analysis (DSHA), are commonly used for seismic hazard assessment. Although PSHA has been pro-claimed as the best approach for seismic hazard assessment, it is scientifically flawed (i.e., the physics and mathematics that PSHA is based on are not valid). Use of PSHA could lead to either unsafe or overly conservative engineering design or public policy, each of which has dire consequences to society. On the other hand, DSHA is a viable approach for seismic hazard assessment even though it has been labeled as unreliable. The biggest drawback of DSHA is that the temporal characteristics (i.e., earthquake frequency of occurrence and the associated uncertainty) are often neglected. An alternative, seismic hazard analysis (SHA), utilizes earthquake science and statistics directly and provides a seismic hazard estimate that can be readily used for seismic risk assessment and other applications. ?? 2010 Springer Basel AG.

  13. In-seam seismics for coal

    Energy Technology Data Exchange (ETDEWEB)

    Saviron Cidon, L [OCICARBON, Madrid (Spain)

    1989-11-01

    The project objective is to assess the degree of applicability of in-seam seismic technology in Spanish coal mines for use as a tool to predict the presence of irregularities in coal seams. By the very nature of coal mining, a large number of in-seam seismic research results are put directly to the test by the ensuing underground operations. The statistics from this continuous process of verification in other countries show this method to be extremely successful. Indeed, the use of the method has become habitual and it is recognised as an efficient instrument for aiding the location of faults and other irregularities in coal seams. 3 figs., 2 tabs.

  14. Seismic signatures of the Lodgepole fractured reservoir in Utah-Wyoming overthrust belt

    Energy Technology Data Exchange (ETDEWEB)

    Parra, J.; Collier, H.; Angstman, B.

    1997-08-01

    In low porosity, low permeability zones, natural fractures are the primary source of permeability which affect both production and injection of fluids. The open fractures do not contribute much to porosity, but they provide an increased drainage network to any porosity. An important approach to characterizing the fracture orientation and fracture permeability of reservoir formations is one based upon the effects of such conditions on the propagation of acoustic and seismic waves in the rock. We present the feasibility of using seismic measurement techniques to map the fracture zones between wells spaced 2400 ft at depths of about 1000 ft. For this purpose we constructed computer models (which include azimuthal anisotropy) using Lodgepole reservoir parameters to predict seismic signatures recorded at the borehole scale, crosswell scale, and 3 D seismic scale. We have integrated well logs with existing 2D surfaces seismic to produce petrophysical and geological cross sections to determine the reservoir parameters and geometry for the computer models. In particular, the model responses are used to evaluate if surface seismic and crosswell seismic measurements can capture the anisotropy due to vertical fractures. Preliminary results suggested that seismic waves transmitted between two wells will propagate in carbonate fracture reservoirs, and the signal can be received above the noise level at the distance of 2400 ft. In addition, the large velocities contrast between the main fracture zone and the underlying unfractured Boundary Ridge Member, suggested that borehole reflection imaging may be appropriate to map and fracture zone thickness variation and fracture distributions in the reservoir.

  15. Plagioclase-dominated Seismic Anisotropy in the Basin and Range Lower Crust

    Science.gov (United States)

    Bernard, R. E.; Behr, W. M.

    2017-12-01

    Observations of seismic anisotropy have the ability to provide important information on deformation and structures within the lithosphere. While the mechanisms controlling seismic anisotropy in the upper mantle are fairly well understood (i.e., olivine "lattice preferred orientation" or LPO), less is known about the minerals and structures controlling regional lower crustal anisotropy. We use lower crustal xenoliths from young cinder cones in the eastern Mojave/western Basin and Range to investigate mineral LPOs and their effect on seismic anisotropy. Lower crustal gabbros were collected from two areas roughly 80 km apart — the Cima and Deadman Lake Volcanic Fields. Lower crustal fabrics measured using EBSD are dominated by LPOs in plagioclase associated with both plastic deformation and magmatic flow. In all fabric types, plagioclase LPOs produce seismic fast axes oriented perpendicular to the foliation plane. This is in contrast to mantle peridotite xenoliths from the same locations, which preserve olivine LPOs with fast axes aligned parallel to the foliation plane. The orthogonal orientations of mantle and lower crustal fast axes relative to foliation implies that even where fabric development in both layers is coeval and kinematically compatible, their measured anisotropies can be perpendicular to each other, therefore appearing anti-correlated when measured seismically. Furthermore, our observation of plagioclase-dominated LPO and negligible concentrations of mica is at odds with the common assumption that lower crustal anisotropy is dominated by micaceous minerals, whose slow axes reliably align parallel to lineation or flow. In contrast, our data show that for plagioclase, fast axes align perpendicular to flow and the slow axes are variably aligned within the foliation plane. Therefore, for a crustal section dominated by plagioclase LPO with assumed horizontal foliation, there would be a vertical rather than a horizontal axis of symmetry, resulting in a

  16. Geophysical investigation program Northern Switzerland: Refraction-seismic measurements 84

    International Nuclear Information System (INIS)

    Fromm, G.; Driessen, L.; Lehnen, I.

    1985-01-01

    Acting on instructions from the SGPK/Nagra working group (Baden, Switzerland), PRAKLA-SEISMOS GmbH, Hanover, planned, processed and interpreted seismic refraction measurements in northern Switzerland; CGG, Massy (France) was responsible for carrying out the field work. The aim of the survey was to investigate the shape and depth of a regional, WSW-ENE striking Permocarboniferous trough which underlays the mesozoic sediments of the Tabular Jura. The crystalline basement surface and possibly other geological boundaries were to be identified on the basis of refractor velocities. The recording arrangement included a 36 km spread in the assumed trough axis and four 12 km long spreads perpendicular to the axis (broad side 'T') which covered the trough edges. The resulting good quality data indicated two refractors: horizon H5 which is attributable to the lower Permocarboniferous could only be detected in the western half of the spread with any certainty. Horizon H6 probably represents the crystalline basement surface. If anisotropy is taken into account, the refractor velocity closely corresponds to the Gneiss of the WEIACH- and the Granite 3 of the BOETTSTEIN-borehole. This horizon was clearly discernible on all recordings and allowed the approximate mapping of the trough's shape. The assumed strike direction and depth was largely confirmed. In the WSW section the trough is more than 3300 m deep, it rises to - 3000 m in the ESE section and shows only in the east of the survey area a tendency towards a narrower width and shallower depth (depth data relate to the seismic reference datum at 500 m above MSL). (author)

  17. Development of a time synchronization methodology for a wireless seismic array

    Science.gov (United States)

    Moure-García, David; Torres-González, Pedro; del Río, Joaquín; Mihai, Daniel; Domínguez Cerdeña, Itahiza

    2017-04-01

    Seismic arrays have multiple applications. In the past, the main use was nuclear tests monitoring that began in mid-twentieth century. The major difference with a seismic network is the hypocenter location procedure. With a seismic network the hypocenter's 3D coordinates are calculated while using an array, the source direction of the seismic signal is determined. Seismic arrays are used in volcanology to obtain the source azimuth of volcanic signals related to fluids movement, magma and/or gases, that do not show a clear seismic phases' onset. A key condition in the seismic array operativity is the temporal synchronization of all the sensors, better than 1 microsecond. Because of that, usually all sensors are connected to the acquisition system by cable to ensure an identical sampling time. In this work we present the design of a wireless low-cost and low-power consumption volcanic monitoring seismic array where all nodes (sensors) acquire data synchronously and transmit them to the center node where a coherent signal is pursued in near real time.

  18. Seismic and Geodetic Monitoring of the Nicoya, Costa Rica, Seismic Gap

    Science.gov (United States)

    Protti, M.; Gonzalez, V.; Schwartz, S.; Dixon, T.; Kato, T.; Kaneda, Y.; Simila, G.; Sampson, D.

    2007-05-01

    The Nicoya segment of the Middle America Trench has been recognized as a mature seismic gap with potential to generate a large earthquake in the near future (it ruptured with large earthquakes in 1853, 1900 and 1950). Low level of background seismicity and fast crustal deformation of the forearc are indicatives of strong coupling along the plate interface. Given its high seismic potential, the available data and especially the fact that the Nicoya peninsula extends over large part of the rupture area, this gap was selected as one of the two sites for a MARGINS-SEIZE experiment. With the goal of documenting the evolution of loading and stress release along this seismic gap, an international effort involving several institutions from Costa Rica, the United States and Japan is being carried out for over a decade in the region. This effort involves the installation of temporary and permanent seismic and geodetic networks. The seismic network includes short period, broad band and strong motion instruments. The seismic monitoring has provided valuable information on the geometry and characteristics of the plate interface. The geodetic network includes temporary and permanent GPS stations as well as surface and borehole tiltmeters. The geodetic networks have helped quantify the extend and degree of coupling. A continuously recording, three- station GPS network on the Nicoya Peninsula, Costa Rica, recorded what we believe is the first slow slip event observed along the plate interface of the Costa Rica subduction zone. We will present results from these monitoring networks. Collaborative international efforts are focused on expanding these seismic and geodetic networks to provide improved resolution of future creep events, to enhanced understanding of the mechanical behavior of the Nicoya subduction segment of the Middle American Trench and possibly capture the next large earthquake and its potential precursor deformation.

  19. Seismic Device UVS 1504, possibilities of its Utilization

    Directory of Open Access Journals (Sweden)

    Leššo Igor

    1996-09-01

    Full Text Available Department of Mining and Geotechnics for many years deals with questions of the technical seismicity. In the paper are given possibilities of utilizing the UVS 1504 device and results obtained from the measurement of seismic effects of blasting as well as others sources of bursts. The measurements showed that this device enables to measure parameters and to evaluate measured data quickly, reliably, and with a very high precision. The device enables evaluating individual time degrees of blasts, determining the law of attenuation of the seismic waves, and precise determination of the maximum charge permissible for futher advance of the blasting in given conditions.

  20. Design and development of digital seismic amplifier recorder

    Energy Technology Data Exchange (ETDEWEB)

    Samsidar, Siti Alaa; Afuar, Waldy; Handayani, Gunawan, E-mail: gunawanhandayani@gmail.com [Department of Physics, ITB (Indonesia)

    2015-04-16

    A digital seismic recording is a recording technique of seismic data in digital systems. This method is more convenient because it is more accurate than other methods of seismic recorders. To improve the quality of the results of seismic measurements, the signal needs to be amplified to obtain better subsurface images. The purpose of this study is to improve the accuracy of measurement by amplifying the input signal. We use seismic sensors/geophones with a frequency of 4.5 Hz. The signal is amplified by means of 12 units of non-inverting amplifier. The non-inverting amplifier using IC 741 with the resistor values 1KΩ and 1MΩ. The amplification results were 1,000 times. The results of signal amplification converted into digital by using the Analog Digital Converter (ADC). Quantitative analysis in this study was performed using the software Lab VIEW 8.6. The Lab VIEW 8.6 program was used to control the ADC. The results of qualitative analysis showed that the seismic conditioning can produce a large output, so that the data obtained is better than conventional data. This application can be used for geophysical methods that have low input voltage such as microtremor application.

  1. Seismic moment tensor for anisotropic media: implication for Non-double-couple earthquakes

    Science.gov (United States)

    Cai, X.; Chen, X.; Chen, Y.; Cai, M.

    2008-12-01

    It is often found that the inversion results of seismic moment tensor from real seismic recorded data show the trace of seismic moment tensor M is not zero, a phenomenon called non-double-couple earthquake sources mechanism. Recently we have derived the analytical expressions of M in transversely isotropic media with the titled axis of symmetry and the results shows even only pure shear-motion of fault can lead to the implosive components determined by several combined anisotropic elastic constants. Many non-double-couple earthquakes from observations often appear in volcanic and geothermal areas (Julian, 1998), where there exist a mount of stress-aligned fluid-saturated parallel vertical micro-cracks identical to transversely isotropic media (Crampin, 2008), this stress-aligned crack will modify the seismic moment tensor. In another word, non-double-couple earthquakes don't mean to have a seismic failure movement perpendicular to the fault plane, while traditional research of seismic moment tensor focus on the case of isotropy, which cannot provide correct interpretation of seismic source mechanism. Reference: Julian, B.R., Miller, A.D. and Foulger, G.R., 1998. Non-double-couple earthquakes,1. Theory, Rev. Geophys., 36, 525¨C549. Crampin,S., Peacock,S., 2008, A review of the current understanding of seismic shear-wave splitting in the Earth's crust and common fallacies in interpretation, wave motion, 45,675-722

  2. Innovations in seismic tomography, their applications and induced seismic events in carbon sequestration

    Science.gov (United States)

    Li, Peng

    This dissertation presents two innovations in seismic tomography and a new discovery of induced seismic events associated with CO2 injection at an Enhanced Oil Recovery (EOR) site. The following are brief introductions of these three works. The first innovated work is adaptive ambient seismic noise tomography (AANT). Traditional ambient noise tomography methods using regular grid nodes are often ill posed because the inversion grids do not always represent the distribution of ray paths. Large grid spacing is usually used to reduce the number of inversion parameters, which may not be able to solve for small-scale velocity structure. We present a new adaptive tomography method with irregular grids that provides a few advantages over the traditional methods. First, irregular grids with different sizes and shapes can fit the ray distribution better and the traditionally ill-posed problem can become more stable owing to the different parameterizations. Second, the data in the area with dense ray sampling will be sufficiently utilized so that the model resolution can be greatly improved. Both synthetic and real data are used to test the newly developed tomography algorithm. In synthetic data tests, we compare the resolution and stability of the traditional and adaptive methods. The results show that adaptive tomography is more stable and performs better in improving the resolution in the area with dense ray sampling. For real data, we extract the ambient noise signals of the seismic data near the Garlock Fault region, obtained from the Southern California Earthquake Data Center. The resulting group velocity of Rayleigh waves is well correlated with the geological structures. High velocity anomalies are shown in the cold southern Sierra Nevada, the Tehachapi Mountains and the Western San Gabriel Mountains. The second innovated work is local earthquake tomography with full topography (LETFT). In this work, we develop a new three-dimensional local earthquake tomography

  3. A model of characteristic earthquakes and its implications for regional seismicity

    DEFF Research Database (Denmark)

    López-Ruiz, R.; Vázquez-Prada, M.; Pacheco, A.F.

    2004-01-01

    Regional seismicity (i.e. that averaged over large enough areas over long enough periods of time) has a size-frequency relationship, the Gutenberg-Richter law, which differs from that found for some seismic faults, the Characteristic Earthquake relationship. But all seismicity comes in the end from...... active faults, so the question arises of how one seismicity pattern could emerge from the other. The recently introduced Minimalist Model of Vázquez-Prada et al. of characteristic earthquakes provides a simple representation of the seismicity originating from a single fault. Here, we show...... that a Characteristic Earthquake relationship together with a fractal distribution of fault lengths can accurately describe the total seismicity produced in a region. The resulting earthquake catalogue accounts for the addition of both all the characteristic and all the non-characteristic events triggered in the faults...

  4. Seismic behavior of a low-rise horizontal cylindrical tank

    Science.gov (United States)

    Fiore, Alessandra; Rago, Carlo; Vanzi, Ivo; Greco, Rita; Briseghella, Bruno

    2018-05-01

    Cylindrical storage tanks are widely used for various types of liquids, including hazardous contents, thus requiring suitable and careful design for seismic actions. The study herein presented deals with the dynamic analysis of a ground-based horizontal cylindrical tank containing butane and with its safety verification. The analyses are based on a detailed finite element (FE) model; a simplified one-degree-of-freedom idealization is also set up and used for verification of the FE results. Particular attention is paid to sloshing and asynchronous seismic input effects. Sloshing effects are investigated according to the current literature state of the art. An efficient methodology based on an "impulsive-convective" decomposition of the container-fluid motion is adopted for the calculation of the seismic force. The effects of asynchronous ground motion are studied by suitable pseudo-static analyses. Comparison between seismic action effects, obtained with and without consideration of sloshing and asynchronous seismic input, shows a rather important influence of these conditions on the final results.

  5. Seismic scanning tunneling macroscope - Elastic simulations and Arizona mine test

    KAUST Repository

    Hanafy, Sherif M.; Schuster, Gerard T.

    2012-01-01

    Elastic seismic simulations and field data tests are used to validate the theory of a seismic scanning tunneling macroscope (SSTM). For nearfield elastic simulation, the SSTM results show superresolution to be better than λ/8 if the only scattered data are used as input data. If the direct P and S waves are muted then the resolution of the scatterer locations are within about λ/5. Seismic data collected in an Arizona tunnel showed a superresolution limit of at least λ/19. These test results are consistent with the theory of the SSTM and suggest that the SSTM can be a tool used by geophysicists as a probe for near-field scatterers.

  6. Mathematical model of the seismic electromagnetic signals (SEMS) in non crystalline substances

    Energy Technology Data Exchange (ETDEWEB)

    Dennis, L. C. C.; Yahya, N.; Daud, H.; Shafie, A. [Electromagnetic cluster, Universiti Teknologi Petronas, 31750 Tronoh, Perak (Malaysia)

    2012-09-26

    The mathematical model of seismic electromagnetic waves in non crystalline substances is developed and the solutions are discussed to show the possibility of improving the electromagnetic waves especially the electric field. The shear stress of the medium in fourth order tensor gives the equation of motion. Analytic methods are selected for the solutions written in Hansen vector form. From the simulated SEMS, the frequency of seismic waves has significant effects to the SEMS propagating characteristics. EM waves transform into SEMS or energized seismic waves. Traveling distance increases once the frequency of the seismic waves increases from 100% to 1000%. SEMS with greater seismic frequency will give seismic alike waves but greater energy is embedded by EM waves and hence further distance the waves travel.

  7. Mathematical model of the seismic electromagnetic signals (SEMS) in non crystalline substances

    International Nuclear Information System (INIS)

    Dennis, L. C. C.; Yahya, N.; Daud, H.; Shafie, A.

    2012-01-01

    The mathematical model of seismic electromagnetic waves in non crystalline substances is developed and the solutions are discussed to show the possibility of improving the electromagnetic waves especially the electric field. The shear stress of the medium in fourth order tensor gives the equation of motion. Analytic methods are selected for the solutions written in Hansen vector form. From the simulated SEMS, the frequency of seismic waves has significant effects to the SEMS propagating characteristics. EM waves transform into SEMS or energized seismic waves. Traveling distance increases once the frequency of the seismic waves increases from 100% to 1000%. SEMS with greater seismic frequency will give seismic alike waves but greater energy is embedded by EM waves and hence further distance the waves travel.

  8. Theory and feasibility tests for a seismic scanning tunnelling macroscope

    KAUST Repository

    Schuster, Gerard T.

    2012-09-01

    We propose a seismic scanning tunnelling macroscope (SSTM) that can detect subwavelength scatterers in the near-field of either the source or the receivers. Analytic formulas for the time reverse mirror (TRM) profile associated with a single scatterer model show that the spatial resolution limit to be, unlike the Abbe limit of λ/2, independent of wavelength and linearly proportional to the source-scatterer separation as long as the scatterer is in the near-field region. This means that, as the scatterer approaches the source, imaging of the scatterer with super-resolution can be achieved. Acoustic and elastic simulations support this concept, and a seismic experiment in an Arizona tunnel shows a TRM profile with super-resolution adjacent to the fault location. The SSTM is analogous to the optical scanning tunnelling microscopes having subwavelength resolution. Scaled to seismic frequencies, it is theoretically possible to extract 100 Hz information from 20 Hz data by the imaging of near-field seismic energy.

  9. What can He II 304 Å tell us about transient seismic emission from solar flares?

    Science.gov (United States)

    Lindsey, C.; Donea, A. C.

    2017-10-01

    After neary 20 years since their discovery by Kosovichev and Zharkova, the mechanics of the release of seismic transients into the solar interior from some flares remain a mystery. Seismically emissive flares invariably show the signatures of intense chromosphere heating consistent with pressure variations sufficient to drive seismic transients commensurate with helioseismic observations-under certain conditions. Magnetic observations show the signatures of apparent magnetic changes, suggesting Lorentz-force transients that could likewise drive seismic transients-similarly subject to certain conditions. But, the diagnostic signatures of both of these prospective drivers are apparent over vast regions from which no significant seismic emission emanates. What distinguishes the source regions of transient seismic emission from the much vaster regions that show the signatures of both transient heating and magnetic variations but are acoustically unproductive? Observations of acoustically active flares in He II 304 Å by the Atomospheric Imaging Assembly (AIA) aboard the Solar Dynamics Observatory (SDO) offer a promising new resource with which to address this question.

  10. Research and development activities of the Seismology Section for the period January 1984 - December 1985

    International Nuclear Information System (INIS)

    Krishnan, C.A.; Murty, G.S.

    1987-01-01

    The Research and Development (R and D) activities during 1984-1985 of the Seismology Section of the Bhabha Atomic Research Centre, Bombay are reported in the form of individual summaries. The R and D activities of the Section are directed towards development of seismological instruments and methods of analysis of the seismic field data with the main objective of detecting underground nuclear explosions and assessing seismicity and seismic risk of sites considered for nuclear power stations. The Section has two field stations - one at Gauribidanur in the Southern part of the country and another at Delhi i.e. in the northern part of the country. During the report period, a total of 62 events out of the detected ones were identified as underground explosions. The expertise of the Section is also made available for outside organisations. (M.G.B.)

  11. New seismic source `BLASTER` for seismic survey; Hasaiyaku wo shingen to shite mochiita danseiha tansa

    Energy Technology Data Exchange (ETDEWEB)

    Koike, G; Yoshikuni, Y [OYO Corp., Tokyo (Japan)

    1996-10-01

    Built-up weight and vacuole have been conceived as seismic sources without using explosive. There have been problems that they have smaller energy to generate elastic wave than explosive, and that they have inferior working performance. Concrete crushing explosive is tried to use as a new seismic source. It is considered to possess rather large seismic generating energy, and it is easy to handle from the viewpoint of safety. Performance as seismic source and applicability to exploration works of this crushing explosive were compared with four kinds of seismic sources using dynamite, dropping weight, shot-pipe utilizing shot vacuole, and impact by wooden maul. When considered by the velocity amplitude, the seismic generating energy of the crushing explosive of 120 g is about one-fifth of dynamite of 100 g. Elastic wave generated includes less high frequency component than that by dynamite, and similar to that using seismic source without explosive, such as the weight dropping. The maximum seismic receiving distance obtained by the seismic generation was about 100 m. This was effective for the slope survey with the exploration depth between 20 m and 30 m. 1 ref., 9 figs., 2 tabs.

  12. Seismic rupture modelling, strong motion prediction and seismic hazard assessment: fundamental and applied approaches

    International Nuclear Information System (INIS)

    Berge-Thierry, C.

    2007-05-01

    The defence to obtain the 'Habilitation a Diriger des Recherches' is a synthesis of the research work performed since the end of my Ph D. thesis in 1997. This synthesis covers the two years as post doctoral researcher at the Bureau d'Evaluation des Risques Sismiques at the Institut de Protection (BERSSIN), and the seven consecutive years as seismologist and head of the BERSSIN team. This work and the research project are presented in the framework of the seismic risk topic, and particularly with respect to the seismic hazard assessment. Seismic risk combines seismic hazard and vulnerability. Vulnerability combines the strength of building structures and the human and economical consequences in case of structural failure. Seismic hazard is usually defined in terms of plausible seismic motion (soil acceleration or velocity) in a site for a given time period. Either for the regulatory context or the structural specificity (conventional structure or high risk construction), seismic hazard assessment needs: to identify and locate the seismic sources (zones or faults), to characterize their activity, to evaluate the seismic motion to which the structure has to resist (including the site effects). I specialized in the field of numerical strong-motion prediction using high frequency seismic sources modelling and forming part of the IRSN allowed me to rapidly working on the different tasks of seismic hazard assessment. Thanks to the expertise practice and the participation to the regulation evolution (nuclear power plants, conventional and chemical structures), I have been able to work on empirical strong-motion prediction, including site effects. Specific questions related to the interface between seismologists and structural engineers are also presented, especially the quantification of uncertainties. This is part of the research work initiated to improve the selection of the input ground motion in designing or verifying the stability of structures. (author)

  13. Seismic and tsunami safety margin assessment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    Nuclear Regulation Authority is going to establish new seismic and tsunami safety guidelines to increase the safety of NPPs. The main purpose of this research is testing structures/components important to safety and tsunami resistant structures/components, and evaluating the capacity of them against earthquake and tsunami. Those capacity data will be utilized for the seismic and tsunami back-fit review based on the new seismic and tsunami safety guidelines. The summary of the program in 2012 is as follows. 1. Component seismic capacity test and quantitative seismic capacity evaluation. PWR emergency diesel generator partial-model seismic capacity tests have been conducted and quantitative seismic capacities have been evaluated. 2. Seismic capacity evaluation of switching-station electric equipment. Existing seismic test data investigation, specification survey and seismic response analyses have been conducted. 3. Tsunami capacity evaluation of anti-inundation measure facilities. Tsunami pressure test have been conducted utilizing a small breakwater model and evaluated basic characteristics of tsunami pressure against seawall structure. (author)

  14. Seismic and tsunami safety margin assessment

    International Nuclear Information System (INIS)

    2013-01-01

    Nuclear Regulation Authority is going to establish new seismic and tsunami safety guidelines to increase the safety of NPPs. The main purpose of this research is testing structures/components important to safety and tsunami resistant structures/components, and evaluating the capacity of them against earthquake and tsunami. Those capacity data will be utilized for the seismic and tsunami back-fit review based on the new seismic and tsunami safety guidelines. The summary of the program in 2012 is as follows. 1. Component seismic capacity test and quantitative seismic capacity evaluation. PWR emergency diesel generator partial-model seismic capacity tests have been conducted and quantitative seismic capacities have been evaluated. 2. Seismic capacity evaluation of switching-station electric equipment. Existing seismic test data investigation, specification survey and seismic response analyses have been conducted. 3. Tsunami capacity evaluation of anti-inundation measure facilities. Tsunami pressure test have been conducted utilizing a small breakwater model and evaluated basic characteristics of tsunami pressure against seawall structure. (author)

  15. How the structural architecture of the Eurasian continental margin affects the structure, seismicity, and topography of the south central Taiwan fold-and-thrust belt

    Science.gov (United States)

    Brown, Dennis; Alvarez-Marron, Joaquina; Biete, Cristina; Kuo-Chen, Hao; Camanni, Giovanni; Ho, Chun-Wei

    2017-07-01

    Studies of mountain belts worldwide show that along-strike changes are common in their foreland fold-and-thrust belts. These are typically caused by processes related to fault reactivation and/or fault focusing along changes in sedimentary sequences. The study of active orogens, like Taiwan, can also provide insights into how these processes influence transient features such as seismicity and topography. In this paper, we trace regional-scale features from the Eurasian continental margin in the Taiwan Strait into the south central Taiwan fold-and-thrust belt. We then present newly mapped surface geology, P wave velocity maps and sections, seismicity, and topography data to test the hypothesis of whether or not these regional-scale features of the margin are contributing to along-strike changes in structural style, and the distribution of seismicity and topography in this part of the Taiwan fold-and-thrust belt. These data show that the most important along-strike change takes place at the eastward prolongation of the upper part of the margin necking zone, where there is a causal link between fault reactivation, involvement of basement in the thrusting, concentration of seismicity, and the formation of high topography. On the area correlated with the necking zone, the strike-slip reactivation of east northeast striking extensional faults is causing sigmoidal offset of structures and topography along two main zones. Here basement is not involved in the thrusting; there is weak focusing of seismicity and localized development of topography. We also show that there are important differences in structure, seismicity, and topography between the margin shelf and its necking zone.

  16. Reflection imaging of the Moon's interior using deep-moonquake seismic interferometry

    Science.gov (United States)

    Nishitsuji, Yohei; Rowe, C. A.; Wapenaar, Kees; Draganov, Deyan

    2016-04-01

    The internal structure of the Moon has been investigated over many years using a variety of seismic methods, such as travel time analysis, receiver functions, and tomography. Here we propose to apply body-wave seismic interferometry to deep moonquakes in order to retrieve zero-offset reflection responses (and thus images) beneath the Apollo stations on the nearside of the Moon from virtual sources colocated with the stations. This method is called deep-moonquake seismic interferometry (DMSI). Our results show a laterally coherent acoustic boundary around 50 km depth beneath all four Apollo stations. We interpret this boundary as the lunar seismic Moho. This depth agrees with Japan Aerospace Exploration Agency's (JAXA) SELenological and Engineering Explorer (SELENE) result and previous travel time analysis at the Apollo 12/14 sites. The deeper part of the image we obtain from DMSI shows laterally incoherent structures. Such lateral inhomogeneity we interpret as representing a zone characterized by strong scattering and constant apparent seismic velocity at our resolution scale (0.2-2.0 Hz).

  17. Proceedings of the twenty-fourth water reactor safety information meeting. Volume 3: PRA and HRA; Probabilistic seismic hazard assessment and seismic siting criteria

    Energy Technology Data Exchange (ETDEWEB)

    Monteleone, S. [comp.] [Brookhaven National Lab., Upton, NY (United States)

    1997-02-01

    This three-volume report contains papers presented at the Twenty-Fourth Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, October 21--23, 1996. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from Czech Republic, Finland, France, Japan, Norway, Russia and United Kingdom. This volume is divided into the following sections: PRA and HRA and probabilistic seismic hazard assessment and seismic siting criteria. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  18. Proceedings of the twenty-fourth water reactor safety information meeting. Volume 3: PRA and HRA; Probabilistic seismic hazard assessment and seismic siting criteria

    International Nuclear Information System (INIS)

    Monteleone, S.

    1997-02-01

    This three-volume report contains papers presented at the Twenty-Fourth Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, October 21--23, 1996. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from Czech Republic, Finland, France, Japan, Norway, Russia and United Kingdom. This volume is divided into the following sections: PRA and HRA and probabilistic seismic hazard assessment and seismic siting criteria. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  19. Seismic amplification within the Seattle Basin, Washington State: Insights from SHIPS seismic tomography experiments

    Science.gov (United States)

    Snelson, C.M.; Brocher, T.M.; Miller, K.C.; Pratt, T.L.; Trehu, A.M.

    2007-01-01

    Recent observations indicate that the Seattle sedimentary basin, underlying Seattle and other urban centers in the Puget Lowland, Washington, amplifies long-period (1-5 sec) weak ground motions by factors of 10 or more. We computed east-trending P- and S-wave velocity models across the Seattle basin from Seismic Hazard Investigations of Puget Sound (SHIPS) experiments to better characterize the seismic hazard the basin poses. The 3D tomographic models, which resolve features to a depth of 10 km, for the first time define the P- and S-wave velocity structure of the eastern end of the basin. The basin, which contains sedimentary rocks of Eocene to Holocene, is broadly symmetric in east-west section and reaches a maximum thickness of 6 km along our profile beneath north Seattle. A comparison of our velocity model with coincident amplification curves for weak ground motions produced by the 1999 Chi-Chi earthquake suggests that the distribution of Quaternary deposits and reduced velocity gradients in the upper part of the basement east of Seattle have significance in forecasting variations in seismic-wave amplification across the basin. Specifically, eastward increases in the amplification of 0.2- to 5-Hz energy correlate with locally thicker unconsolidated deposits and a change from Crescent Formation basement to pre-Tertiary Cascadia basement. These models define the extent of the Seattle basin, the Seattle fault, and the geometry of the basement contact, giving insight into the tectonic evolution of the Seattle basin and its influence on ground shaking.

  20. Seismic damage estimation for buried pipelines - challenges after three decades of progress

    Energy Technology Data Exchange (ETDEWEB)

    Pineda-porras, Omar Andrey [Los Alamos National Laboratory; Najafi, Mohammand [U. OF TEXAS

    2009-01-01

    This paper analyzes the evolution over the past three decades of seismic damage estimation for buried pipelines and identifies some challenges for future research studies on the subject. The first section of this paper presents a chronological description of the evolution since the mid-1970s of pipeline fragility relations - the most common tool for pipeline damage estimation - and follows with a careful analysis of the use of several ground motion parameters as pipeline damage indicators. In the second section of the paper, four gaps on the subject are identified and proposed as challenges for future research studies. The main conclusion of this work is that enhanced fragility relations must be developed for improving pipeline damage estimation, which must consider relevant parameters that could influence the seismic response of pipelines.

  1. Using Tectonic Tremor to Constrain Seismic-wave Attenuation in Cascadia

    Science.gov (United States)

    Littel, G.; Thomas, A.; Baltay, A.

    2017-12-01

    In addition to fast, seismic slip, many subduction zones also host slow, largely aseismic slip, accompanied by a weak seismic signal known as tectonic tremor. Tremor is a small amplitude, low-frequency seismic signal that originates at the plate interface, down-dip of where large earthquakes typically occur. The Cascadia subduction zone has not seen a large megathrust earthquake since 1700, yet its recurrence interval of 350-500 years motivates heightened interest in understanding the seismic hazard of the region. Of great importance is to understand the degree to which waves are attenuated as they leave the plate interface and travel towards populated regions of interest. Ground motion prediction equations (GMPEs) relate ground motion to a number of parameters, including earthquake magnitude, depth, style of faulting, and anelastic attenuation, and are typically determined empirically from earthquake ground motion recordings. In Cascadia, however, earthquakes of the moderate size typically used to constrain GMPEs occur relatively infrequently compared to tectonic tremor events, which, in contrast, occur periodically approximately every 10-19 months. Studies have shown that the abundant tectonic tremor in Cascadia, despite its small amplitudes, can be used to constrain seismic wave attenuation in GMPEs. Here we quantify seismic wave attenuation and determine its spatial variations in Cascadia by performing an inversion using tremor ground motion amplitudes, taken as peak ground acceleration (PGA) and peak ground velocity (PGV) from 1 min window waveforms of each individual tremor event. We estimate the anelastic attenuation parameter for varying regional sections along the Cascadia margin. Changes in seismic-wave attenuation along the Cascadia Subduction Zone could result in significantly different ground motions in the event of a very large earthquake, hence quantifying attenuation may help to better estimate the severity of shaking in densely populated

  2. Co-seismic slip, post-seismic slip, and largest aftershock associated with the 1994 Sanriku-haruka-oki, Japan, earthquake

    Science.gov (United States)

    Yagi, Yuji; Kikuchi, Masayuki; Nishimura, Takuya

    2003-11-01

    We analyzed continuous GPS data to investigate the spatio-temporal distribution of co-seismic slip, post-seismic slip, and largest aftershock associated with the 1994 Sanriku-haruka-oki, Japan, earthquake (Mw = 7.7). To get better resolution for co-seismic and post-seismic slip distribution, we imposed a weak constraint as a priori information of the co-seismic slip determined by seismic wave analyses. We found that the post-seismic slip during 100 days following the main-shock amount to as much moment release as the main-shock, and that the sites of co-seismic slip and post-seismic slip are partitioning on a plate boundary region in complimentary fashion. The major post-seismic slip was triggered by the mainshock in western side of the co-seismic slip, and the extent of the post-seismic slip is almost unchanged with time. It rapidly developed a shear stress concentration ahead of the slip area, and triggered the largest aftershock.

  3. A Percolation Perspective for Gutenburg-Richter Scaling and b-values for Fracking Assocated Seismicity

    Science.gov (United States)

    Norris, J. Q.

    2016-12-01

    Published 60 years ago, the Gutenburg-Richter law provides a universal frequency-magnitude distribution for natural and induced seismicity. The GR law is a two parameter power-law with the b-value specifying the relative frequency of small and large events. For large catalogs of natural seismicity, the observed b-values are near one, while fracking associated seismicity has observed b-values near two, indicating relatively fewer large events. We have developed a computationally inexpensive percolation model for fracking that allows us to generate large catalogs of fracking associated seismicity. Using these catalogs, we show that different power-law fitting procedures produce different b-values for the same data set. This shows that care must be taken when determining and comparing b-values for fracking associated seismicity.

  4. Recent Earthquakes Mark the Onset of Induced Seismicity in Northeastern Pennsylvania

    Science.gov (United States)

    Martone, P.; Nikulin, A.; Pietras, J.

    2017-12-01

    The link between induced seismicity and injection of hydraulic fracturing wastewater has largely been accepted and corroborated through case studies in Colorado, Arkansas, Texas, and Oklahoma. To date, induced seismicity has largely impacted hydrocarbon-producing regions in the Central United States, while the seismic response in Eastern states, like Pennsylvania, has been relatively muted. In recent years, Pennsylvania exponentially increased hydrocarbon production from the Marcellus and Utica Shales and our results indicate that this activity has triggered an onset of induced seismicity in areas of the state where no previous seismic activity was reported. Three recent earthquakes in Northeastern Pennsylvania directly correlate to hydraulic fracturing activity, though USGS NEIC earthquake catalog locations have vertical errors up to 31km. We present signal analysis results of recorded waveforms of the three identified events and results of a high-precision relocation effort and improvements to the regional velocity model aimed at constraining the horizontal and vertical error in hypocenter position. We show that at least one event is positioned directly along the wellbore track of an active well and correlate its timing to the hydraulic fracturing schedule. Results show that in the absence of wastewater disposal in this area, it is possible to confidently make the connection between the hydraulic fracturing process and induced seismicity.

  5. Seismic Base Isolators For A Silo Supporting Structure

    Directory of Open Access Journals (Sweden)

    Bîtcă Daniel

    2015-05-01

    Full Text Available A 3000 tones capacity silo, located in a seismic area with ground acceleration ag = 0,20g and TC =1,0s, was designed in a classical solution The supporting structure has an octagonal shape in planview, and columns with “Maltese cross sections”. The main lateral resisting system is made up of centric bracings with cross-section class I.

  6. Fractal behaviour of the seismicity in the Southern Iberian Peninsula

    Directory of Open Access Journals (Sweden)

    X. Lana

    2005-01-01

    Full Text Available The fractal behaviour of the seismicity in the Southern Iberian Peninsula is analysed by considering two different series of data: the distance and the elapsed time between consecutive seismic events recorded by the seismic network of the Andalusian Institute of Geophysics (AIG. The fractal analyses have been repeated by considering four threshold magnitudes of 2.5, 3.0, 3.5 and 4.0. The re-scaled analysis lets to determine if the seismicity shows strong randomness or if it is characterised by time-persistence and the cluster dimension indicates the degree of time and spatial clustering of the seismicity. Another analysis, based on the reconstruction theorem, permits to evaluate the minimum number of nonlinear equations describing the dynamical mechanism of the seismicity, its 'loss of memory', its chaotic character and the instability of a possible predicting algorithm. The results obtained depict some differences depending on distances or elapsed times and the different threshold levels of magnitude also lead to slightly different results. Additionally, only a part of the fractal tools, the re-scaled analysis, have been applied to five seismic crises in the same area.

  7. Ultra-thin clay layers facilitate seismic slip in carbonate faults.

    Science.gov (United States)

    Smeraglia, Luca; Billi, Andrea; Carminati, Eugenio; Cavallo, Andrea; Di Toro, Giulio; Spagnuolo, Elena; Zorzi, Federico

    2017-04-06

    Many earthquakes propagate up to the Earth's surface producing surface ruptures. Seismic slip propagation is facilitated by along-fault low dynamic frictional resistance, which is controlled by a number of physico-chemical lubrication mechanisms. In particular, rotary shear experiments conducted at seismic slip rates (1 ms -1 ) show that phyllosilicates can facilitate co-seismic slip along faults during earthquakes. This evidence is crucial for hazard assessment along oceanic subduction zones, where pelagic clays participate in seismic slip propagation. Conversely, the reason why, in continental domains, co-seismic slip along faults can propagate up to the Earth's surface is still poorly understood. We document the occurrence of micrometer-thick phyllosilicate-bearing layers along a carbonate-hosted seismogenic extensional fault in the central Apennines, Italy. Using friction experiments, we demonstrate that, at seismic slip rates (1 ms -1 ), similar calcite gouges with pre-existing phyllosilicate-bearing (clay content ≤3 wt.%) micro-layers weaken faster than calcite gouges or mixed calcite-phyllosilicate gouges. We thus propose that, within calcite gouge, ultra-low clay content (≤3 wt.%) localized along micrometer-thick layers can facilitate seismic slip propagation during earthquakes in continental domains, possibly enhancing surface displacement.

  8. Analysis of large concrete storage tank under seismic response

    Energy Technology Data Exchange (ETDEWEB)

    Le, Jingyuan; Cui, Hongcheng; He, Qiang; Ju, Jinsan [China Agricultural University, Beijing (China); You, Xiaochuan [Tsinghua University, Beijing (China)

    2015-01-15

    This study adopted the finite element software ABAQUS to trace the dynamic response history of large reinforced concrete storage tank during different seismic excitations. The dynamic characteristics and failure modes of the tank's structure were investigated by considering the rebar's effect. Calculation results show that the large concrete storage tank remains in safe working conditions under a seismic acceleration of 55 cm/s{sup 2}. The joint of the concrete wall and dome begins to crack when seismic acceleration reaches 250 cm/s{sup 2}. As the earthquake continues, cracks spread until the top of the wall completely fails and stops working. The maximum displacement of the concrete tank and seismic acceleration are in proportion. Peak displacement and stress of the tank always appear behind the maximum acceleration.

  9. Seismic stops vs. snubbers, a reliable alternative

    International Nuclear Information System (INIS)

    Cloud, R.L.; Anderson, P.H.; Leung, J.S.M.

    1988-01-01

    The Seismic Stops methodology has been developed to provide a reliable alternative for providing seismic support to nuclear power plant piping. The concept is based on using rigid passive supports with large clearances. These gaps permit unrestrained thermal expansion while limiting excessive seismic displacements. This type of restraint has performed successfully in fossil fueled power plants. A simplified production analysis tool has been developed which evaluates the nonlinear piping response including the effect of the gapped supports. The methodology utilizes the response spectrum approach and has been incorporated into a piping analysis computer program RLCA-GAP. Full scale shake table tests of piping specimens were performed to provide test correlation with the developed methodology. Analyses using RLCA-GAP were in good agreement with test results. A sample piping system was evaluated using the Seismic Stops methodology to replace the existing snubbers with passive gapped supports. To provide further correlation data, the sample system was also evaluated using nonlinear time history analysis. The correlation comparisons showed RLCA-GAP to be a viable methodology and a reliable alternative for snubber optimization and elimination. (orig.)

  10. Seismic isolation of two dimensional periodic foundations

    International Nuclear Information System (INIS)

    Yan, Y.; Mo, Y. L.; Laskar, A.; Cheng, Z.; Shi, Z.; Menq, F.; Tang, Y.

    2014-01-01

    Phononic crystal is now used to control acoustic waves. When the crystal goes to a larger scale, it is called periodic structure. The band gaps of the periodic structure can be reduced to range from 0.5 Hz to 50 Hz. Therefore, the periodic structure has potential applications in seismic wave reflection. In civil engineering, the periodic structure can be served as the foundation of upper structure. This type of foundation consisting of periodic structure is called periodic foundation. When the frequency of seismic waves falls into the band gaps of the periodic foundation, the seismic wave can be blocked. Field experiments of a scaled two dimensional (2D) periodic foundation with an upper structure were conducted to verify the band gap effects. Test results showed the 2D periodic foundation can effectively reduce the response of the upper structure for excitations with frequencies within the frequency band gaps. When the experimental and the finite element analysis results are compared, they agree well with each other, indicating that 2D periodic foundation is a feasible way of reducing seismic vibrations.

  11. Toward 2D Seismic Wavefield Monitoring: Seismic Gradiometry for Long-Period Seismogram and Short-Period Seismogram Envelope applied to the Hi-net Array

    Science.gov (United States)

    Maeda, T.; Nishida, K.; Takagi, R.; Obara, K.

    2015-12-01

    The high-sensitive seismograph network Japan (Hi-net) operated by National Research Institute for Earth Science and Disaster Prevention (NIED) has about 800 stations with average separation of 20 km. We can observe long-period seismic wave propagation as a 2D wavefield with station separations shorter than wavelength. In contrast, short-period waves are quite incoherent at stations, however, their envelope shapes resemble at neighbor stations. Therefore, we may be able to extract seismic wave energy propagation by seismogram envelope analysis. We attempted to characterize seismic waveform at long-period and its envelope at short-period as 2D wavefield by applying seismic gradiometry. We applied the seismic gradiometry to a synthetic long-period (20-50s) dataset prepared by numerical simulation in realistic 3D medium at the Hi-net station layout. Wave amplitude and its spatial derivatives are estimated by using data at nearby stations. The slowness vector, the radiation pattern and the geometrical spreading are extracted from estimated velocity, displacement and its spatial derivatives. For short-periods at shorter than 1 s, seismogram envelope shows temporal and spatial broadening through scattering by medium heterogeneity. It is expected that envelope shape may be coherent among nearby stations. Based on this idea, we applied the same method to the time-integration of seismogram envelope to estimate its spatial derivatives. Together with seismogram envelope, we succeeded in estimating the slowness vector from the seismogram envelope as well as long-period waveforms by synthetic test, without using phase information. Our preliminarily results show that the seismic gradiometry suits the Hi-net to extract wave propagation characteristics both at long and short periods. This method is appealing that it can estimate waves at homogeneous grid to monitor seismic wave as a wavefield. It is promising to obtain phase velocity variation from direct waves, and to grasp wave

  12. Outlines of seismic microzoning of Bucharest, Romania

    International Nuclear Information System (INIS)

    Moldoveanu, C.L.; Radulian, M.; Marmureanu, Gh.; Panza, G.F.

    2002-03-01

    During the last century Bucharest suffered heavy damage and casualties inflicted by the 1940 (M w =7.7) and 1977 (M w =7.4) Vrancea earthquakes. The statistics based on the historical records show that, in Vrancea, about 3 destructive subcrustal earthquakes (M w ≥7.0) occur each century. In these circumstances, the seismic microzonation of the city is an important information to be taken into account by the decision-makers in order to establish the appropriate level of preparedness to the earthquake threat. This paper discusses the state of the art of seismic microzonation studies in Bucharest. The main features concerning the seismicity in the Vrancea region, the city site conditions, the characterization of the building stock, and the codes of practice that regulate the antiseismic design are presented. (author)

  13. Influence of Seismic Loading on Segment Opening of a Shield Tunnel

    Science.gov (United States)

    Chun-shan, Yang; Hai-hong, Mo; Jun-sheng, Chen; Yi-zhao, Wang

    2014-01-01

    The influence of seismic loading on segment opening of a shield tunnel was explored using the dynamic finite element method to analyze the distribution of segment opening under multidirectional seismic loading, combined with a typical engineering installation. The calculation of segment opening was deduced from equivalent continuous theory and segment opening was obtained through calculations. The results show that the scope of influence of the foundation excavation on segment opening is mainly resigned to within 5 segment rings next to the diaphragm wall and 4 joints nearest the working well when the tunnel is first excavated followed by the working well in the excavation order. The effect of seismic loading on segment opening is significant, and the minimum increase of the maximal segment opening owing to seismic loading is 16%, while that of the average opening is 27%. Segment opening under bidirectional coupled seismic loading is significantly greater than that under one-dimensional seismic loading. On the basis of the numerical calculations, the seismic acceleration and segment opening caused by seismic action were normalized, and a new calculation method was proposed for predicting the maximal segment opening of a shield tunnel at different depths under conditions of seismic loading. PMID:24955398

  14. Characterization of gas hydrate distribution using conventional 3D seismic data in the Pearl River Mouth Basin, South China Sea

    Science.gov (United States)

    Wang, Xiujuan; Qiang, Jin; Collett, Timothy S.; Shi, Hesheng; Yang, Shengxiong; Yan, Chengzhi; Li, Yuanping; Wang, Zhenzhen; Chen, Duanxin

    2016-01-01

    A new 3D seismic reflection data volume acquired in 2012 has allowed for the detailed mapping and characterization of gas hydrate distribution in the Pearl River Mouth Basin in the South China Sea. Previous studies of core and logging data showed that gas hydrate occurrence at high concentrations is controlled by the presence of relatively coarse-grained sediment and the upward migration of thermogenic gas from the deeper sediment section into the overlying gas hydrate stability zone (BGHSZ); however, the spatial distribution of the gas hydrate remains poorly defined. We used a constrained sparse spike inversion technique to generate acoustic-impedance images of the hydrate-bearing sedimentary section from the newly acquired 3D seismic data volume. High-amplitude reflections just above the bottom-simulating reflectors (BSRs) were interpreted to be associated with the accumulation of gas hydrate with elevated saturations. Enhanced seismic reflections below the BSRs were interpreted to indicate the presence of free gas. The base of the BGHSZ was established using the occurrence of BSRs. In areas absent of well-developed BSRs, the BGHSZ was calculated from a model using the inverted P-wave velocity and subsurface temperature data. Seismic attributes were also extracted along the BGHSZ that indicate variations reservoir properties and inferred hydrocarbon accumulations at each site. Gas hydrate saturations estimated from the inversion of acoustic impedance of conventional 3D seismic data, along with well-log-derived rock-physics models were also used to estimate gas hydrate saturations. Our analysis determined that the gas hydrate petroleum system varies significantly across the Pearl River Mouth Basin and that variability in sedimentary properties as a product of depositional processes and the upward migration of gas from deeper thermogenic sources control the distribution of gas hydrates in this basin.

  15. Regional seismic lines reprocessed using post-stack processing techniques; National Petroleum Reserve, Alaska

    Science.gov (United States)

    Miller, John J.; Agena, W.F.; Lee, M.W.; Zihlman, F.N.; Grow, J.A.; Taylor, D.J.; Killgore, Michele; Oliver, H.L.

    2000-01-01

    This CD-ROM contains stacked, migrated, 2-Dimensional seismic reflection data and associated support information for 22 regional seismic lines (3,470 line-miles) recorded in the National Petroleum Reserve ? Alaska (NPRA) from 1974 through 1981. Together, these lines constitute about one-quarter of the seismic data collected as part of the Federal Government?s program to evaluate the petroleum potential of the Reserve. The regional lines, which form a grid covering the entire NPRA, were created by combining various individual lines recorded in different years using different recording parameters. These data were reprocessed by the USGS using modern, post-stack processing techniques, to create a data set suitable for interpretation on interactive seismic interpretation computer workstations. Reprocessing was done in support of ongoing petroleum resource studies by the USGS Energy Program. The CD-ROM contains the following files: 1) 22 files containing the digital seismic data in standard, SEG-Y format; 2) 1 file containing navigation data for the 22 lines in standard SEG-P1 format; 3) 22 small scale graphic images of each seismic line in Adobe Acrobat? PDF format; 4) a graphic image of the location map, generated from the navigation file, with hyperlinks to the graphic images of the seismic lines; 5) an ASCII text file with cross-reference information for relating the sequential trace numbers on each regional line to the line number and shotpoint number of the original component lines; and 6) an explanation of the processing used to create the final seismic sections (this document). The SEG-Y format seismic files and SEG-P1 format navigation file contain all the information necessary for loading the data onto a seismic interpretation workstation.

  16. Monitoring El Hierro submarine volcanic eruption events with a submarine seismic array

    Science.gov (United States)

    Jurado, Maria Jose; Molino, Erik; Lopez, Carmen

    2013-04-01

    A submarine volcanic eruption took place near the southernmost emerged land of the El Hierro Island (Canary Islands, Spain), from October 2011 to February 2012. The Instituto Geografico Nacional (IGN) seismic stations network evidenced seismic unrest since July 2012 and was a reference also to follow the evolution of the seismic activity associated with the volcanic eruption. From the beginning of the eruption a geophone string was installed less than 2 km away from the new volcano, next to La Restinga village shore, to record seismic activity related to the volcanic activity, continuously and with special interest on high frequency events. The seismic array was endowed with 8, high frequency, 3 component, 250 Hz, geophone cable string with a separation of 6 m between them. The analysis of the dataset using spectral techniques allows the characterization of the different phases of the eruption and the study of its dynamics. The correlation of the data analysis results with the observed sea surface activity (ash and lava emission and degassing) and also with the seismic activity recorded by the IGN field seismic monitoring system, allows the identification of different stages suggesting the existence of different signal sources during the volcanic eruption and also the posteruptive record of the degassing activity. The study shows that the high frequency capability of the geophone array allow the study of important features that cannot be registered by the standard seismic stations. The accumulative spectral amplitude show features related to eruptive changes.

  17. Enhancement of seismic resistance of buildings

    Directory of Open Access Journals (Sweden)

    Claudiu-Sorin Dragomir

    2014-03-01

    Full Text Available The objectives of the paper are both seismic instrumentation for damage assessment and enhancing of seismic resistance of buildings. In according with seismic design codes in force the buildings are designed to resist at seismic actions. Due to the time evolution of these design provisions, there are buildings that were designed decades ago, under the less stringent provisions. The conceptual conformation is nowadays provided in all Codes of seismic design. According to the Code of seismic design P100-1:2006 the asymmetric structures do not have an appropriate seismic configuration; they have disadvantageous distribution of volumes, mass and stiffness. Using results of temporary seismic instrumentation the safety condition of the building may be assessed in different phases of work. Based on this method, the strengthening solutions may be identified and the need of seismic joints may be emphasised. All the aforementioned ideas are illustrated through a case study. Therefore it will be analysed the dynamic parameter evolution of an educational building obtained in different periods. Also, structural intervention scenarios to enhance seismic resistance will be presented.

  18. Can Vrancea earthquakes be accurately predicted from unusual bio-system behavior and seismic-electromagnetic records?

    International Nuclear Information System (INIS)

    Enescu, D.; Chitaru, C.; Enescu, B.D.

    1999-01-01

    The relevance of bio-seismic research for the short-term prediction of strong Vrancea earthquakes is underscored. An unusual animal behavior before and during Vrancea earthquakes is described and illustrated in the individual case of the major earthquake of March 4, 1977. Several hypotheses to account for the uncommon behavior of bio-systems in relation to earthquakes in general and strong Vrancea earthquakes in particular are discussed in the second section. It is reminded that promising preliminary results concerning the identification of seismic-electromagnetic precursor signals have been obtained in the Vrancea seismogenic area using special, highly sensitive equipment. The need to correlate bio-seismic and seismic-electromagnetic researches is evident. Further investigations are suggested and urgent steps are proposed in order to achieve a successful short-term prediction of strong Vrancea earthquakes. (authors)

  19. Nonlinear seismic analysis of continuous RC bridge

    Directory of Open Access Journals (Sweden)

    Čokić Miloš M.

    2017-01-01

    Full Text Available Nonlinear static analysis, known as a pushover method (NSPA is oftenly used to study the behaviour of a bridge structure under the seismic action. It is shown that the Equivalent Linearization Method - ELM, recommended in FEMA 440, is appropriate for the response analysis of the bridge columns, with different geometric characteristics, quantity and distribution of steel reinforcement. The subject of analysis is a bridge structure with a carriageway plate - a continuous beam with three spans, with the 24 + 40 + 24 m range. Main girder is made of prestressed concrete and it has a box cross section of a constant height. It is important to study the behaviour, not only in the transverse, but also in the longitudinal direction of the bridge axis, when analysing the bridge columns exposed to horizontal seismic actions. The columns were designed according to EN1992, parts 1 and 2. Seismic action analysis is conducted according to EN 1998: 2004 standard. Response spectrum type 1, for the ground type B, was applied and the analysis also includes 20% of traffic load. The analysis includes the values of columns displacement and ductility. To describe the behaviour of elements under the earthquake action in both - longitudinal and transverse direction, pushover curves were formed.

  20. High Voltage Seismic Generator

    Science.gov (United States)

    Bogacz, Adrian; Pala, Damian; Knafel, Marcin

    2015-04-01

    This contribution describes the preliminary result of annual cooperation of three student research groups from AGH UST in Krakow, Poland. The aim of this cooperation was to develop and construct a high voltage seismic wave generator. Constructed device uses a high-energy electrical discharge to generate seismic wave in ground. This type of device can be applied in several different methods of seismic measurement, but because of its limited power it is mainly dedicated for engineering geophysics. The source operates on a basic physical principles. The energy is stored in capacitor bank, which is charged by two stage low to high voltage converter. Stored energy is then released in very short time through high voltage thyristor in spark gap. The whole appliance is powered from li-ion battery and controlled by ATmega microcontroller. It is possible to construct larger and more powerful device. In this contribution the structure of device with technical specifications is resented. As a part of the investigation the prototype was built and series of experiments conducted. System parameter was measured, on this basis specification of elements for the final device were chosen. First stage of the project was successful. It was possible to efficiently generate seismic waves with constructed device. Then the field test was conducted. Spark gap wasplaced in shallowborehole(0.5 m) filled with salt water. Geophones were placed on the ground in straight line. The comparison of signal registered with hammer source and sparker source was made. The results of the test measurements are presented and discussed. Analysis of the collected data shows that characteristic of generated seismic signal is very promising, thus confirms possibility of practical application of the new high voltage generator. The biggest advantage of presented device after signal characteristics is its size which is 0.5 x 0.25 x 0.2 m and weight approximately 7 kg. This features with small li-ion battery makes

  1. Long Term Seismic Observation in Mariana by OBSs : Double Seismic Zone and Upper Mantle Structure

    Science.gov (United States)

    Shiobara, H.; Sugioka, H.; Mochizuki, K.; Oki, S.; Kanazawa, T.; Fukao, Y.; Suyehiro, K.

    2005-12-01

    In order to obtain the deep arc structural image of Mariana, a large-scale seismic observation by using 58 long-term ocean bottom seismometers (LTOBS) had been performed from June 2003 until April 2004, which is a part of the MARGINS program funded by the NSF. Prior to this observation, a pilot long-term seismic array observation was conducted in the same area by using 10 LTOBSs from Oct. 2001 until Feb. 2003. At that time, 8 LTOBSs were recovered but one had no data. Recently, 2 LTOBSs, had troubles in the releasing, were recovered by the manned submersible (Shinkai 6500, Jamstec) for the research of the malfunction in July 2005. By using all 9 LTOBS's data, those are about 11 months long, hypocenter determination was performed and more than 3000 local events were found. Even with the 1D velocity structure based on the iasp91 model, double seismic zones and a systematic shift of epicenters between the PDE and this study were observed. To investigate the detail of hypocenter distribution and the 3D velocity structure, the DD inversion (tomoDD: Zhang and Thurber, 2003) was applied for this data set with the 1D structure initial model except for the crust, which has been surveyed by using a dense airgun-OBS system (Takahashi et al., 2003). The result of relocated hypocenters shows clear double seismic zones until about 200 km depth, a high activity area around the fore-arc serpentine sea-mount, the Big Blue, and a lined focuses along the current ridge axis in the back-arc basin, and the result of the tomography shows a image of subducting slab and a low-Vs region below the same sea-mount mentioned. The wedge mantle structure was not clearly resolved due to the inadequate source-receiver coverage, which will be done in the recent experiment.

  2. Seismic risk map for Southeastern Brazil

    International Nuclear Information System (INIS)

    Mioto, J.A.

    1984-01-01

    During the last few years, some studies regarding seismic risk were prepared for three regions of Brazil. They were carried on account of two basic interests: first, toward the seismic history and recurrence of Brazilian seismic events; second, in a way as to provide seismic parameters for the design and construction of hydro and nuclear power plants. The first seismic risk map prepared for the southeastern region was elaborated in 1979 by 6he Universidade de Brasilia (UnB-Brasilia Seismological Station). In 1981 another seismic risk map was completed on the basis of seismotectonic studies carried out for the design and construction of the Nuclear power plants of Itaorna Beach (Angra dos Reis, Rio de Janeiro) by IPT (Mining and Applied Geology Division). In Brazil, until 1984, seismic studies concerning hydro and nuclear power plants and other civil construction of larger size did not take into account the seismic events from the point of view of probabilities of seismic recurrences. Such analysis in design is more important than the choice of a level of intensity or magnitude, or adoption of a seismicity level ased on deterministic methods. In this way, some considerations were made, concerning the use of seisms in Brazilian designs of hydro and nuclear power plants, as far as seismic analysis is concerned, recently altered over the current seismic risk panorama. (D.J.M.) [pt

  3. Application of Rudoe’s Formula in Long Seismic Surface Wave Paths Determination

    Directory of Open Access Journals (Sweden)

    Jorge L. de Souza

    2005-12-01

    Full Text Available An algorithm to compute accurate distances over grid cells crossed by seismic surface wave paths by Rudoe’s formula is proposed. The intersection coordinates between paths and the geodetic grid are also computed, which data are exhibited in an azimuthal equidistant projection to check the results. GRS-80 is the adopted ellipsoidal Earth model. The algorithm computes the intermediate intersections, from both forward and reciprocal normal sections given by Rudoe’s method, which separation may be greater than the cell size. It was tested on a data set including 3,269 source-station paths, which seismic events were recorded at 23 IRIS stations. The epicentral distances range from 1,634 km to 16,400 km, which the grid spreads over 149°E x 21°W, and 50°N x 90°S. The results show that the estimated intersections accuracy depends on the path azimuth and latitude, which influence may be significative for very long distances as in teleseismic applications, which argues for the algorithm application.

  4. Attenuation (1/Q) estimation in reflection seismic records

    International Nuclear Information System (INIS)

    Raji, Wasiu; Rietbrock, Andreas

    2013-01-01

    Despite its numerous potential applications, the lack of a reliable method for determining attenuation (1/Q) in seismic data is an issue when utilizing attenuation for hydrocarbon exploration. In this paper, a new method for measuring attenuation in reflection seismic data is presented. The inversion process involves two key stages: computation of the centroid frequency for the individual signal using a variable window length and fast Fourier transform; and estimation of the difference in the centroid frequency and travel time for paired incident and transmitted signals. The new method introduces a shape factor and a constant which allows several spectral shapes to be used to represent a real seismic signal without altering the mathematical model. Application of the new method to synthetic data shows that it can provide reliable estimates of Q using any of the spectral shapes commonly assumed for real seismic signals. Tested against two published methods of Q measurement, the new method shows less sensitivity to interference from noise and change of frequency bandwidth. The method is also applied to a 3D data set from the Gullfaks field, North Sea, Norway. The trace length is divided into four intervals: AB, BC, CD, and DE. Results show that interval AB has the lowest 1/Q value, and that interval BC has the highest 1/Q value. The values of 1/Q measured in the CDP stack using the new method are consistent with those measured using the classical spectral ratio method. (paper)

  5. Seismic response analysis of floating nuclear power plant

    International Nuclear Information System (INIS)

    Hagiwara, Yutaka; Nakamura, Hideharu; Shiojiri, Hiroo

    1988-01-01

    Since Floating Nuclear Power Plants (FNPs) are considered to be isolated from horizontal seismic motion, it is anticipated to reduce seismic load for plant components and buildings on the barge. On the other hand, barge oscillation and sloshing in the closed basin might be excited by earthquakes, because natural periods of those motions correspond to relatively-long period component (between 2 and 20 seconds) of seismic motion. Therefore, it is necessary to evaluate seismic isolation effects and barge oscillation, for the rational design of FNPs. However, there do not exist any reasonable analytical tools which can evaluate seismic response of floating structures in closed basin. The purpose of the present report is to develop a seismic analysis method for FNPs. The proposed method is based on the finite element method, and the formulation includes fluid-structure interaction, water surface wave, buoyancy effect, and non-linear characteristics of mooring system. Response analysis can be executed in both time-domain and frequency-domain. Shaking table tests were conducted to validate the proposed method of analysis. The test results showed significant isolation effect of floating structure, and apparent interaction between the barge and the basin. And 2-D and 3-D frequency domain analyses and the 2-D linear and non-linear time-domain analyses were done and those analyses could simulate the test results well. (author)

  6. Seismic hazard assessment of the Three Gorges Project

    Directory of Open Access Journals (Sweden)

    Yao Yunsheng

    2013-05-01

    Full Text Available Seismic monitoring data for the past 50 years in the Three Gorges Reservoir area show that the reservoir head area is a typical weak seismic region with low seismicity before impoundment and that the epicenters were concentrated in the east and west sides of the Zigui Basin, most of which were natural tectonic earthquakes. After impoundment, the seismic activity shifted to the segment between Badong and Zigui along the Yangtze River, mainly within 5 km of the reservoir bank. The seismogenesis was categorized into four types; Karst collapse earthquakes, earthquakes caused by Karst gas explosion, mining tunnel collapse earthquakes, and rock (terrane slip earthquakes, all of which are related to the lithology, structure, and tectonics of near-surface geological bodies of the area. Compared with the seismicity before impoundment, the seismic frequency increase was remarkable, with most of the magnitudes below Ms2. 0. Therefore, the intensity of the earthquakes remained at a low level. On November 22, 2008, a magnitude 4. 1 earthquake, the largest earthquake recorded since impoundment, occurred in Quyuan Town, Zigui County. The intensity and PGA of reservoir-induced earthquakes are higher than those of tectonic earthquakes with equal magnitude, but the peak intensity of reservoir-induced earthquakes is not likely to go beyond that of the estimated range from earlier studies.

  7. Seismic retrofitting of Apsara reactor building

    International Nuclear Information System (INIS)

    Reddy, G.R.; Parulekar, Y.M.; Sharma, A.; Rao, K.N.; Narasimhan, Rajiv; Srinivas, K.; Basha, S.M.; Thomas, V.S.; Soma Kumar, K.

    2006-01-01

    Seismic analysis of Apsara Reactor building was carried out and was found not meeting the current seismic requirements. Due to the building not qualifying for seismic loads, a retrofit scheme using elasto-plastic dampers is proposed. Following activities have been performed in this direction: Carried out detailed seismic analysis of Apsara reactor building structure incorporating proposed seismic retrofit. Demonstrating the capability of the retrofitted structure to with stand the earth quake level for Trombay site as per the current standards by analysis and by model studies. Implementation of seismic retrofit program. This paper presents the details of above aspects related to Seismic analysis and retrofitting of Apsara reactor building. (author)

  8. Beam model for seismic analysis of complex shear wall structure based on the strain energy equivalence

    International Nuclear Information System (INIS)

    Reddy, G.R.; Mahajan, S.C.; Suzuki, Kohei

    1997-01-01

    A nuclear reactor building structure consists of shear walls with complex geometry, beams and columns. The complexity of the structure is explained in the section Introduction. Seismic analysis of the complex reactor building structure using the continuum mechanics approach may produce good results but this method is very difficult to apply. Hence, the finite element approach is found to be an useful technique for solving the dynamic equations of the reactor building structure. In this approach, the model which uses finite elements such as brick, plate and shell elements may produce accurate results. However, this model also poses some difficulties which are explained in the section Modeling Techniques. Therefore, seismic analysis of complex structures is generally carried out using a lumped mass beam model. This model is preferred because of its simplicity and economy. Nevertheless, mathematical modeling of a shear wall structure as a beam requires specialized skill and a thorough understanding of the structure. For accurate seismic analysis, it is necessary to model more realistically the stiffness, mass and damping. In linear seismic analysis, modeling of the mass and damping may pose few problems compared to modeling the stiffness. When used to represent a complex structure, the stiffness of the beam is directly related to the shear wall section properties such as area, shear area and moment of inertia. Various beam models which are classified based on the method of stiffness evaluation are also explained under the section Modeling Techniques. In the section Case Studies the accuracy and simplicity of the beam models are explained. Among various beam models, the one which evaluates the stiffness using strain energy equivalence proves to be the simplest and most accurate method for modeling the complex shear wall structure. (author)

  9. Seismic fragility analyses

    International Nuclear Information System (INIS)

    Kostov, Marin

    2000-01-01

    In the last two decades there is increasing number of probabilistic seismic risk assessments performed. The basic ideas of the procedure for performing a Probabilistic Safety Analysis (PSA) of critical structures (NUREG/CR-2300, 1983) could be used also for normal industrial and residential buildings, dams or other structures. The general formulation of the risk assessment procedure applied in this investigation is presented in Franzini, et al., 1984. The probability of failure of a structure for an expected lifetime (for example 50 years) can be obtained from the annual frequency of failure, β E determined by the relation: β E ∫[d[β(x)]/dx]P(flx)dx. β(x) is the annual frequency of exceedance of load level x (for example, the variable x may be peak ground acceleration), P(fI x) is the conditional probability of structure failure at a given seismic load level x. The problem leads to the assessment of the seismic hazard β(x) and the fragility P(fl x). The seismic hazard curves are obtained by the probabilistic seismic hazard analysis. The fragility curves are obtained after the response of the structure is defined as probabilistic and its capacity and the associated uncertainties are assessed. Finally the fragility curves are combined with the seismic loading to estimate the frequency of failure for each critical scenario. The frequency of failure due to seismic event is presented by the scenario with the highest frequency. The tools usually applied for probabilistic safety analyses of critical structures could relatively easily be adopted to ordinary structures. The key problems are the seismic hazard definitions and the fragility analyses. The fragility could be derived either based on scaling procedures or on the base of generation. Both approaches have been presented in the paper. After the seismic risk (in terms of failure probability) is assessed there are several approaches for risk reduction. Generally the methods could be classified in two groups. The

  10. Architecture and dynamic of lower Cretaceous carbonate platform in sultanate of Oman: correlations between seismic data and outcrop; Architecture et dynamique des systemes carbonates de la plate-forme Cretace inferieur du Sultanat d'Oman: correlations entre donnees de sismique et d'affleurement

    Energy Technology Data Exchange (ETDEWEB)

    Le Bec, A

    2004-12-15

    The Rayda Basin, located in northern Oman at the south-eastern passive margin of the Arabian plate, has been filled in by a pro-grading carbonate system during the Lower Cretaceous. The filling up basin realized to carbonate platform pro-gradation on 300 km. Pelagic facies represented with radiolarian chert and shallowing facies with erosive surface, mud-cracks and lagoonal mud, and displaying on seismic lines an alternation of high angle and low angle clinoforms at the 10's of kilometers scale. Detailed study of these two types of clinoforms in the nearby outcrops shows that the high angle system is dominated by high-energy, grainy facies (ooliths, rudists, stromatoporoids), while the low angle system is dominated by a low-energy, carbonate mud facies. Based on the subsurface (geometries) and outcrop (facies) data a regional depositional model is proposed for this system. The outcrop study is based on 14 measured sections (6764 meters), completed with photo panoramas, thin section analysis and geochemical analyses (carbonate and organic matter content). The subsurface dataset consists of several regional seismic lines, two high resolution 3D blocs, and is supported by core material The regional seismic lines allow to map out the position of the high and low angle clinoform belts. One high angle belt and two low angle belts are identified in the profiles. In outcrop at least one more high angle belt and one more low angle belt are present. These overall geometries probably define the large scale sequence organisation. At a smaller scale, the 3D blocs allow to show the detailed geometrical organisation of the clinoform belts. The outcrop sections provide critical sub-seismic scale data on the facies composition and depositional geometries. The high energy system of the steep clinoforms (angle estimated at several degrees), is probably a wave controlled barrier coastline system, while the muddy low angle clinoforms (angle < 0.5 degree) shows large convex and wide

  11. Detection capability of the IMS seismic network based on ambient seismic noise measurements

    Science.gov (United States)

    Gaebler, Peter J.; Ceranna, Lars

    2016-04-01

    All nuclear explosions - on the Earth's surface, underground, underwater or in the atmosphere - are banned by the Comprehensive Nuclear-Test-Ban Treaty (CTBT). As part of this treaty, a verification regime was put into place to detect, locate and characterize nuclear explosion testings at any time, by anyone and everywhere on the Earth. The International Monitoring System (IMS) plays a key role in the verification regime of the CTBT. Out of the different monitoring techniques used in the IMS, the seismic waveform approach is the most effective technology for monitoring nuclear underground testing and to identify and characterize potential nuclear events. This study introduces a method of seismic threshold monitoring to assess an upper magnitude limit of a potential seismic event in a certain given geographical region. The method is based on ambient seismic background noise measurements at the individual IMS seismic stations as well as on global distance correction terms for body wave magnitudes, which are calculated using the seismic reflectivity method. From our investigations we conclude that a global detection threshold of around mb 4.0 can be achieved using only stations from the primary seismic network, a clear latitudinal dependence for the detection threshold can be observed between northern and southern hemisphere. Including the seismic stations being part of the auxiliary seismic IMS network results in a slight improvement of global detection capability. However, including wave arrivals from distances greater than 120 degrees, mainly PKP-wave arrivals, leads to a significant improvement in average global detection capability. In special this leads to an improvement of the detection threshold on the southern hemisphere. We further investigate the dependence of the detection capability on spatial (latitude and longitude) and temporal (time) parameters, as well as on parameters such as source type and percentage of operational IMS stations.

  12. Development of Seismic Demand for Chang-Bin Offshore Wind Farm in Taiwan Strait

    Directory of Open Access Journals (Sweden)

    Yu-Kai Wang

    2016-12-01

    Full Text Available Taiwan is located on the Pacific seismic belt, and the soil conditions of Taiwan’s offshore wind farms are softer than those in Europe. To ensure safety and stability of the offshore wind turbine supporting structures, it is important to assess the offshore wind farms seismic forces reasonably. In this paper, the relevant seismic and geological data are obtained for Chang-Bin offshore wind farm in Taiwan Strait, the probabilistic seismic hazard analysis (PSHA is carried out, and the first uniform hazard response spectrum for Chang-Bin offshore wind farm is achieved. Compared with existing design response spectrum in the local regulation, this site-specific seismic hazard analysis has influence on the seismic force considered in the design of supporting structures and therefore affects the cost of the supporting structures. The results show that a site-specific seismic hazard analysis is required for high seismic area. The paper highlights the importance of seismic hazard analysis to assess the offshore wind farms seismic forces. The follow-up recommendations and research directions are given for Taiwan’s offshore wind turbine supporting structures under seismic force considerations.

  13. Seismic Risk Assessment of Italian Seaports Using GIS

    International Nuclear Information System (INIS)

    Bartolomei, Anna; Corigliano, Mirko; Lai, Carlo G.

    2008-01-01

    Seaports are crucial elements in the export and import of goods and/or on the flow of travellers in the tourism industry of many industrialised nations included Italy. Experience gained from recent earthquakes (e.g. 1989 Loma Prieta in USA, 1995 Hyogoken-Nanbu and 2003 Tokachi-Oki in Japan) have dramatically demonstrated the seismic vulnerability of seaport structures and the severe damage that can be caused by ground shaking. In Italy, the Department of Civil Protection has funded a research project to develop a methodology for the seismic design of new marginal wharves and assessment of existing structures at seaports located in areas of medium or high seismicity. This paper shows part of the results of this research project, currently underway, with particular reference to the seismic risk assessment through an interactive, geographically referenced database (GIS). Standard risk assessment have been carried out for the Gioia Tauro port in Calabria (Italy) using the empirical curves implemented by the National Institute of Building Sciences (NIBS, 2004)

  14. Seismic Risk Assessment of Italian Seaports Using GIS

    Science.gov (United States)

    Bartolomei, Anna; Corigliano, Mirko; Lai, Carlo G.

    2008-07-01

    Seaports are crucial elements in the export and import of goods and/or on the flow of travellers in the tourism industry of many industrialised nations included Italy. Experience gained from recent earthquakes (e.g. 1989 Loma Prieta in USA, 1995 Hyogoken-Nanbu and 2003 Tokachi-Oki in Japan) have dramatically demonstrated the seismic vulnerability of seaport structures and the severe damage that can be caused by ground shaking. In Italy, the Department of Civil Protection has funded a research project to develop a methodology for the seismic design of new marginal wharves and assessment of existing structures at seaports located in areas of medium or high seismicity. This paper shows part of the results of this research project, currently underway, with particular reference to the seismic risk assessment through an interactive, geographically referenced database (GIS). Standard risk assessment have been carried out for the Gioia Tauro port in Calabria (Italy) using the empirical curves implemented by the National Institute of Building Sciences (NIBS, 2004).

  15. Seismic Anisotropy of Soft Sands, Offshore Western AUstralia

    Science.gov (United States)

    Urosevic, M.; Gurevich, B.

    2007-05-01

    Seismic anisotropy is commonly measured in sand shale environment. Intrinsic polar anisotropy of the shale and its effect on seismic data processing and analysis is well established and reasonably well understood. In sandstone, azimuthal anisotropy is often detected and is typically connected to an in situ stress regime and the brittleness of the rock. This type of anisotropy, commonly referred to as fractured induced anisotropy, has been widely and extensively studied as it directly affects both permeability and the strength of the rock. Hence fracture induced anisotropy is not only important for hydrocarbon exploration but also for geotechnical studies, underground mining, etc. Interestingly, in the last few years azimuthal anisotropy has also been detected in soft, poorly consolidated clean sands, mainly by cross-dipole sonic log measurements. This is somewhat surprising as in such soft, typically highly porous and permeable rocks stress induced fractures are unlikely to be abundant. In this study we analyse the anisotropy in such sand class using well-log measurements, three-component VSP data, as well as 2D and 3D surface seismic (reflection) data. High-quality cross-dipole sonic log measurements showed significant shear wave splitting over unconsolidated, highly porous and permeable sand interval. The shear wave anisotropy was computed to be around 10-15%. This is commonly seen as an indication that the rock is fractured and that the fractures are likely to be open. However, image log data over the same sand section suggested dilute most likely non-conductive fractures. Analysis of the shear wave splitting in VSP data also suggested low fracture density. The frequency content of the direct fast and slow shear waves on the VSP data was very similar, not supporting the presence of open fluid saturated fractures. Unfortunately, the evidence from the VSP data is not very compelling because the reservoir is thin compared to the wavelength and sampling interval of

  16. Seismic scrammability of HTTR control rods

    International Nuclear Information System (INIS)

    Nishiguchi, I.; Iyoku, T.; Ito, N.; Watanabe, Y.; Araki, T.; Katagiri, S.

    1990-01-01

    Scrammability tests on HTTR (High-Temperature Engineering Test Reactor) control rods under seismic conditions have been carried out and seismic conditions influences on scram time as well as functional integrity were examined. A control rod drive located in a stand-pipe at the top of a reactor vessel, raises and lowers a pair of control rods by suspension cables. Each flexible control rod consists of 10 neutron absorber sections held together by a metal spine passing through the center. It falls into a hole in graphite blocks due to gravity at scram. In the tests, a full scale control rod drive and a pair of control rods were employed with a column of graphite blocks in which holes for rods were formed. Blocks misalignment and contact with the hole surface during earthquakes were considered as major causes of disturbance in scram time. Therefore, the following parameters were set up in the tests: excitation direction, combination or horizontal and vertical excitation, acceleration, frequency and block to block gaps. Main results obtained from tests are as follow. 1) Every scram time obtained under the design conditions was within 6 seconds. On the contrary, the scram times were 5.2 seconds when there were no vibration. Therefore, it was concluded that the seismic effects on scram time were not significant. 2) Scram time became longer with increase in both acceleration and horizontal excitation frequency, and control rods fell very smoothly without any jerkiness. This suggests that collision between control rods and hole surface is the main disturbing factor of falling motion. 3) Mechanical and functional integrity of control rod drive mechanism, control rods and graphite blocks was confirmed after 140 seismic scrammability tests. (author). 10 figs, 1 tab

  17. Technical development of seismic imaging prospecting

    International Nuclear Information System (INIS)

    Xu Guilai

    2006-01-01

    Geophysical methods and apparatus for shallow engineering geophysical prospecting and mining related in-roadway geophysical prospecting are important research fields which has been studied for long time, unfortunately, little significant advancement has been made compared with the demand of engineering geology. The seismic imaging method and its corresponding equipment are viewed as the most hopeful choice for 0-50 m depth and are studied in this research systematically. The recording equipment CSA is made and the related in-situ data processing software is also developed. Field application experiment for shallow seismic prospecting has been finished, the results show that the CSA seismic imaging and its application technology are effective and practical for the engineering geophysical prospecting of 0-50 m depth, and can meet the demand of engineering geology investigation. Hence, the geophysical method and equipment, which can meet the demand for 0-50 m depth engineering geology investigation have been formed through this research. (authors)

  18. Seismic exploration for water on Mars

    International Nuclear Information System (INIS)

    Page, T.

    1987-01-01

    It is proposed to soft-land three seismometers in the Utopia-Elysium region and three or more radio controlled explosive charges at nearby sites that can be accurately located by an orbiter. Seismic signatures of timed explosions, to be telemetered to the orbiter, will be used to detect present surface layers, including those saturated by volatiles such as water and/or ice. The Viking Landers included seismometers that showed that at present Mars is seismically quiet, and that the mean crustal thickness at the site is about 14 to 18 km. The new seismic landers must be designed to minimize wind vibration noise, and the landing sites selected so that each is well formed on the regolith, not on rock outcrops or in craters. The explosive charges might be mounted on penetrators aimed at nearby smooth areas. They must be equipped with radio emitters for accurate location and radio receivers for timed detonation

  19. Seismic anisotropy in deforming salt bodies

    Science.gov (United States)

    Prasse, P.; Wookey, J. M.; Kendall, J. M.; Dutko, M.

    2017-12-01

    Salt is often involved in forming hydrocarbon traps. Studying salt dynamics and the deformation processes is important for the exploration industry. We have performed numerical texture simulations of single halite crystals deformed by simple shear and axial extension using the visco-plastic self consistent approach (VPSC). A methodology from subduction studies to estimate strain in a geodynamic simulation is applied to a complex high-resolution salt diapir model. The salt diapir deformation is modelled with the ELFEN software by our industrial partner Rockfield, which is based on a finite-element code. High strain areas at the bottom of the head-like strctures of the salt diapir show high amount of seismic anisotropy due to LPO development of halite crystals. The results demonstrate that a significant degree of seismic anisotropy can be generated, validating the view that this should be accounted for in the treatment of seismic data in, for example, salt diapir settings.

  20. A SEISMIC DESIGN OF NUCLEAR REACTOR BUILDING STRUCTURES APPLYING SEISMIC ISOLATION SYSTEM IN A HIGH SEISMICITY REGION –A FEASIBILITY CASE STUDY IN JAPAN-

    Directory of Open Access Journals (Sweden)

    TETSUO KUBO

    2014-10-01

    Full Text Available A feasibility study on the seismic design of nuclear reactor buildings with application of a seismic isolation system is introduced. After the Hyogo-ken Nanbu earthquake in Japan of 1995, seismic isolation technologies have been widely employed for commercial buildings. Having become a mature technology, seismic isolation systems can be applied to NPP facilities in areas of high seismicity. Two reactor buildings are discussed, representing the PWR and BWR buildings in Japan, and the application of seismic isolation systems is discussed. The isolation system employing rubber bearings with a lead plug positioned (LRB is examined. Through a series of seismic response analyses using the so-named standard design earthquake motions covering the design basis earthquake motions obtained for NPP sites in Japan, the responses of the seismic isolated reactor buildings are evaluated. It is revealed that for the building structures examined herein: (1 the responses of both isolated buildings and isolating LRBs fulfill the specified design criteria; (2 the responses obtained for the isolating LRBs first reach the ultimate condition when intensity of motion is 2.0 to 2.5 times as large as that of the design-basis; and (3 the responses of isolated reactor building fall below the range of the prescribed criteria.

  1. Seismic Ground Motion Hazards with 10 Percent Probability

    Data.gov (United States)

    Department of Homeland Security — This map layer shows seismic hazard in the United States. The data represent a model showing the probability that ground motion will reach a certain level. This map...

  2. Seismic Ground Motion Hazards with 2 Percent Probability

    Data.gov (United States)

    Department of Homeland Security — This map layer shows seismic hazard in the United States. The data represent a model showing the probability that ground motion will reach a certain level. This map...

  3. Influence of LOD variations on seismic energy release

    Science.gov (United States)

    Riguzzi, F.; Krumm, F.; Wang, K.; Kiszely, M.; Varga, P.

    2009-04-01

    Tidal friction causes significant time variations of geodynamical parameters, among them geometrical flattening. The axial despinning of the Earth due to tidal friction through the change of flattening generates incremental meridional and azimuthal stresses. The stress pattern in an incompressible elastic upper mantle and crust is symmetric to the equator and has its inflection points at the critical latitude close to ±45°. Consequently the distribution of seismic energy released by strong, shallow focus earthquakes should have also sharp maxima at this latitude. To investigate the influence of length of day (LOD) variations on earthquake activity an earthquake catalogue of strongest seismic events (M>7.0) was completed for the period 1900-2007. It is shown with the use of this catalogue that for the studied time-interval the catalogue is complete and consists of the seismic events responsible for more than 90% of released seismic energy. Study of the catalogue for earthquakes M>7.0 shows that the seismic energy discharged by the strongest seismic events has significant maxima at ±45°, what renders probably that the seismic activity of our planet is influenced by an external component, i.e. by the tidal friction, which acts through the variation of the hydrostatic figure of the Earth caused by it. Distribution along the latitude of earthquake numbers and energies was investigated also for the case of global linear tectonic structures, such as mid ocean ridges and subduction zones. It can be shown that the number of the shallow focus shocks has a repartition along the latitude similar to the distribution of the linear tectonic structures. This means that the position of foci of seismic events is mainly controlled by the tectonic activity.

  4. The seismic expression and hydrocarbon potential of subsurface impact craters

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, R.; Westbroek, H.H.; Lawton, D. [Calgary Univ., AB (Canada). Dept. of Geology and Geophysics

    1995-12-31

    The seismic characteristics of meteorite impact craters and their potential as oil and gas reservoirs were discussed. Seismic data from James River, Alberta, in the Western Canada Sedimentary Basin show subsurface anomalies to be meteorite impact structures. The White Valley structure in Saskatchewan has similar features and seismic anomalies indicate that it too could be a meteorite impact structure, although other possibilities have been proposed. Other impact structures in western Canada such as the Steen River structure and the Viewfield crater have or are producing hydrocarbons. 5 refs., 2 figs.

  5. The Seismic Fragility Evaluation of an Offsite Transformer according to Aging Effects

    International Nuclear Information System (INIS)

    Kim, Min Kyu; Choi, In Kil

    2008-01-01

    A seismic fragility analysis was performed, especially for an aged electric power transmission system, in this study. A real electric transformer system for Korean Nuclear Power Plants was selected for the seismic fragility evaluation. In the case of a seismic fragility analysis we should use design material properties and conditions. However material properties and environmental conditions of most structures and equipment are changed according to a lapse of time. Aging conditions greatly affect the integrity of the structures and equipment at NPP sites, but it is very difficult to estimate them qualitatively. Integrity of an anchor bolt system was considered with the aging conditions for an electric transformer system. At first, a seismic fragility analysis was performed for a fine condition for an electric transformer system. After that, a seismic fragility analysis according to the fastener of an anchor bolt system was conducted. This study showed that a looser anchor bolt creates seismic responses and seismic fragility changes of more 10%

  6. Seismic re-evaluation of Kozloduy NPP criteria, methodology, implementation

    International Nuclear Information System (INIS)

    Kostov, M.

    2003-01-01

    The paper describes some features of the methodology applied for seismic upgrading of civil structures at the site of the Kozloduy NPP. The essence of the methodology is the use of as-build data, realistic damping and inelastic reduction factors. As an example of seismic upgrading the analyses of units 3 and 4 are presented. The analyses are showing that for effective seismic upgrading detailed investigations are needed in order to understand the significant response modes of the structures. In the presented case this is the rotation of the attached flexible structures to the stiff reactor building. Based on this an upgrading approach is applied to increase the seismic resistance for the predominant motion. The second significant approach applied is the strengthening of the prefabricated element joints. Although it is very simple it allows use of the available element capacity. (author)

  7. Integrated interpretation of seismic and resistivity images across the «Val d'Agri» graben (Italy

    Directory of Open Access Journals (Sweden)

    E. Ceragioli

    2002-06-01

    Full Text Available Val d'Agri is a «recent SSW - NNE graben» located in the middle of the Southern Apennines thrust belt «chain» and emplaced in Plio-Pleistocene.The recent sedimentation of the valley represents a local critical geophysical problem. Several strong near surface velocity anomalies and scattering degrades seismic data in different ways and compromises the seismic visibility. In 1998, ENI and Enterprise, with the contribution of the European Community (ESIT R & D project - Enhance Seismic In Thrust Belt; EU Thermie fund acquired two «experimental seismic and Resistivity lines» across the valley. The purpose of the project was to look for methods able to enhance seismic data quality and optimize the data processing flow for «thrust belt» areas. During the work, it was clear that some part of the seismic data processing flow could be used for the detailed geological interpretation of the near subsurface too. In fact, the integrated interpretation of the near surface tomography velocity/depth seismic section, built for enhancing the resolution of static corrections, with the HR resistivity profile, acquired for enhancing the seismic source coupling, allowed a quite detailed lithological interpretation of the main shallow velocity changes and the 2D reconstruction of the structural setting of the valley.

  8. 4D seismic data acquisition method during coal mining

    International Nuclear Information System (INIS)

    Du, Wen-Feng; Peng, Su-Ping

    2014-01-01

    In order to observe overburden media changes caused by mining processing, we take the fully-mechanized working face of the BLT coal mine in Shendong mine district as an example to develop a 4D seismic data acquisition methodology during coal mining. The 4D seismic data acquisition is implemented to collect 3D seismic data four times in different periods, such as before mining, during the mining process and after mining to observe the changes of the overburden layer during coal mining. The seismic data in the research area demonstrates that seismic waves are stronger in energy, higher in frequency and have better continuous reflectors before coal mining. However, all this is reversed after coal mining because the overburden layer has been mined, the seismic energy and frequency decrease, and reflections have more discontinuities. Comparing the records collected in the survey with those from newly mined areas and other records acquired in the same survey with the same geometry and with a long time for settling after mining, it clearly shows that the seismic reflections have stronger amplitudes and are more continuous because the media have recovered by overburden layer compaction after a long time of settling after mining. By 4D seismic acquisition, the original background investigation of the coal layers can be derived from the first records, then the layer structure changes can be monitored through the records of mining action and compaction action after mining. This method has laid the foundation for further research into the variation principles of the overburden layer under modern coal-mining conditions. (paper)

  9. Dark Fiber and Distributed Acoustic Sensing: Applications to Monitoring Seismicity and Near-Surface Properties

    Science.gov (United States)

    Ajo Franklin, J. B.; Lindsey, N.; Dou, S.; Freifeld, B. M.; Daley, T. M.; Tracy, C.; Monga, I.

    2017-12-01

    "Dark Fiber" refers to the large number of fiber-optic lines installed for telecommunication purposes but not currently utilized. With the advent of distributed acoustic sensing (DAS), these unused fibers have the potential to become a seismic sensing network with unparalleled spatial extent and density with applications to monitoring both natural seismicity as well as near-surface soil properties. While the utility of DAS for seismic monitoring has now been conclusively shown on built-for-purpose networks, dark fiber deployments have been challenged by the heterogeneity of fiber installation procedures in telecommunication as well as access limitations. However, the potential of telecom networks to augment existing broadband monitoring stations provides a strong incentive to explore their utilization. We present preliminary results demonstrating the application of DAS to seismic monitoring on a 20 km run of "dark" telecommunications fiber between West Sacramento, CA and Woodland CA, part of the Dark Fiber Testbed maintained by the DOE's ESnet user facility. We show a small catalog of local and regional earthquakes detected by the array and evaluate fiber coupling by using variations in recorded frequency content. Considering the low density of broadband stations across much of the Sacramento Basin, such DAS recordings could provide a crucial data source to constrain small-magnitude local events. We also demonstrate the application of ambient noise interferometry using DAS-recorded waveforms to estimate soil properties under selected sections of the dark fiber transect; the success of this test suggests that the network could be utilized for environmental monitoring at the basin scale. The combination of these two examples demonstrates the exciting potential for combining DAS with ubiquitous dark fiber to greatly extend the reach of existing seismic monitoring networks.

  10. Seismicity Structure of the Downgoing Nazca Slab in Northern Chile

    Science.gov (United States)

    Sippl, C.; Schurr, B.

    2017-12-01

    We applied an automatized earthquake detection and location algorithm to 8 years of continuous seismic data from the IPOC network in Northern Chile, located in the forearc between about 18.5°S and 24°S. The resulting seismicity catalog contains more than 113k double-difference relocated earthquake hypocenters and features a completeness magnitude around 2.8. Despite the occurrence of two megathrust earthquakes with vigorous aftershock seismicity in the studied time period (the 2007 Tocopilla and the 2014 Iquique earthquakes), >60% of the retrieved seismicity is located in a highly active band of intermediate-depth earthquakes (80-120 km deep) within the downgoing Nazca slab.We obtain a triple seismic zone in the updip part of the slab, with the three parallel dipping planes corresponding to the plate interface, the oceanic Moho (ca. 8 km below the interface) and a third band in the mantle lithosphere 26-28 km beneath the slab top. The plate interface seismicity terminates abruptly at a depth of 55 km. At about 80-90 km depth, the remaining two planes of seismicity then merge into the single, 20 km thick cluster of vigorous seismicity mentioned above, which terminates at 120 km depth. This cluster is located directly beneath the volcanic arc and shows a pronounced kink in the slab dipping angle. Intra-slab seismicity is most likely related to metamorphic dehydration reactions, hence our high-resolution earthquake distribution can be considered a map of metamorphic reactions (although a possibly incomplete one, since not all reactions necessarily invoke seismicity). By correlating this distribution with isotherms from thermal models as well as geophysical imaging results from previous studies, we attempt to get a glimpse at the processes that produce the different patches of intraslab seismicity at intermediate depths.

  11. Seismic noise level variation in South Korea

    Science.gov (United States)

    Sheen, D.; Shin, J.

    2008-12-01

    The variations of seismic background noise in South Korea have been investigated by means of power spectral analysis. The Korea Institute of Geoscience and Mineral Resources (KIGAM) and the Korea Meteorological Administation (KMA) have national wide seismic networks in South Korea, and, in the end of 2007, there are 30 broadband stations which have been operating for more than a year. In this study, we have estimated the power spectral density of seismic noise for 30 broadband stations from 2005 to 2007. Since we estimate PSDs from a large dataset of continuous waveform in this study, a robust PSD estimate of McNamara and Buland (2004) is used. In the frequency range 1-5 Hz, the diurnal variations of noise are observed at most of stations, which are especially larger at coastal stations and at insular than at inland. Some stations shows daily difference of diurnal variations, which represents that cultural activities contribute to the noise level of a station. The variation of number of triggered stations, however, shows that cultural noise has little influence on the detection capability of seismic network in South Korea. Seasonal variations are observed well in the range 0.1-0.5 Hz, while much less found in the frequency range 1-5 Hz. We observed that strong peaks in the range 0.1-0.5 Hz occur at the summer when Pacific typhoons are close to the Korean Peninsula.

  12. Two applications of time reversal mirrors: Seismic radio and seismic radar

    KAUST Repository

    Hanafy, Sherif M.; Schuster, Gerard T.

    2011-01-01

    Two seismic applications of time reversal mirrors (TRMs) are introduced and tested with field experiments. The first one is sending, receiving, and decoding coded messages similar to a radio except seismic waves are used. The second one is, similar

  13. An Investigation of Seismicity for Western Anatolia

    International Nuclear Information System (INIS)

    Sayil, N.

    2007-01-01

    In order to determine the seismicity of western Anatolia limited with the coordinates of 36degree-40degreeN, 26degree-32degreeE, Gutenberg-Richter magnitude-frequency relation, seismic risk and recurrence period have been computed. The data belonging to both the historical period before 1900 (I0 3 6.0 corresponding to MS 3 5.0) and the instrumental period until 2005 (MS 3 4.0) have been used in the analysis. The study area has been divided into 13 sub-regions due to certain seismotectonic characteristics, plate tectonic models and geology of the region. Computations from a and b parameters and seismic risk and recurrence period for each sub-regions have showed that subregions 1 and 8 (Balikesir and Izmir-Sakiz Island), where have the lowest b values, have the highest risks and the shortest recurrence periods

  14. Amplitude versus offset analysis to marine seismic data acquired in Nankai Trough, offshore Japan where methane hydrate exists

    Science.gov (United States)

    Hato, M.; Inamori, T.; Matsuoka, T.; Shimizu, S.

    2003-04-01

    Occurrence of methane hydrates in the Nankai Trough, located off the south-eastern coast of Japan, was confirmed by the exploratory test well drilling conducted by Japan’s Ministry of International Trade and Industry in 1999. Confirmation of methane hydrate has given so big impact to the Japan's future energy strategy and scientific and technological interest was derived from the information of the coring and logging results at the well. Following the above results, Japan National Oil Corporation (JNOC) launched the national project, named as MH21, for establishing the technology of methane hydrate exploration and related technologies such as production and development. As one of the research project for evaluating the total amount of the methane hydrate, Amplitude versus Offset (AVO) was applied to the seismic data acquired in the Nankai Trough area. The main purpose of the AVO application is to evaluate the validity of delineation of methane hydrate-bearing zones. Since methane hydrate is thought to accompany with free-gas in general just below the methane hydrate-bearing zones, the AVO has a possibility of describing the presence of free-gas. The free-gas is thought to be located just below the base of methane hydrate stability zone which is characterized by the Bottom Simulating Reflectors (BSRs) on the seismic section. In this sense, AVO technology, which was developed as gas delineation tools, can be utilized for methane hydrate exploration. The result of AVO analysis clearly shows gas-related anomaly below the BSRs. Appearance of the AVO anomaly has so wide variety. Some of the anomalies might not correspond to the free-gas existence, however, some of them may show free-gas. We are now going to develop methodology to clearly discriminate free-gas from non-gas zone by integrating various types of seismic methods such as seismic inversion and seismic attribute analysis.

  15. The efficiency of seismic attributes to differentiate between massive and non-massive carbonate successions for hydrocarbon exploration activity

    Science.gov (United States)

    Sarhan, Mohammad Abdelfattah

    2017-12-01

    The present work investigates the efficiency of applying volume seismic attributes to differentiate between massive and non-massive carbonate sedimentary successions on using seismic data. The main objective of this work is to provide a pre-drilling technique to recognize the porous carbonate section (probable hydrocarbon reservoirs) based on seismic data. A case study from the Upper Cretaceous - Eocene carbonate successions of Abu Gharadig Basin, northern Western Desert of Egypt has been tested in this work. The qualitative interpretations of the well-log data of four available wells distributed in the study area, namely; AG-2, AG-5, AG-6 and AG-15 wells, has confirmed that the Upper Cretaceous Khoman A Member represents the massive carbonate section whereas the Eocene Apollonia Formation represents the non-massive carbonate unit. The present work have proved that the most promising seismic attributes capable of differentiating between massive and non-massive carbonate sequences are; Root Mean Square (RMS) Amplitude, Envelope (Reflection Strength), Instantaneous Frequency, Chaos, Local Flatness and Relative Acoustic Impedance.

  16. 3D Modelling of Seismically Active Parts of Underground Faults via Seismic Data Mining

    Science.gov (United States)

    Frantzeskakis, Theofanis; Konstantaras, Anthony

    2015-04-01

    During the last few years rapid steps have been taken towards drilling for oil in the western Mediterranean sea. Since most of the countries in the region benefit mainly from tourism and considering that the Mediterranean is a closed sea only replenishing its water once every ninety years careful measures are being taken to ensure safe drilling. In that concept this research work attempts to derive a three dimensional model of the seismically active parts of the underlying underground faults in areas of petroleum interest. For that purpose seismic spatio-temporal clustering has been applied to seismic data to identify potential distinct seismic regions in the area of interest. Results have been coalesced with two dimensional maps of underground faults from past surveys and seismic epicentres, having followed careful reallocation processing, have been used to provide information regarding the vertical extent of multiple underground faults in the region of interest. The end product is a three dimensional map of the possible underground location and extent of the seismically active parts of underground faults. Indexing terms: underground faults modelling, seismic data mining, 3D visualisation, active seismic source mapping, seismic hazard evaluation, dangerous phenomena modelling Acknowledgment This research work is supported by the ESPA Operational Programme, Education and Life Long Learning, Students Practical Placement Initiative. References [1] Alves, T.M., Kokinou, E. and Zodiatis, G.: 'A three-step model to assess shoreline and offshore susceptibility to oil spills: The South Aegean (Crete) as an analogue for confined marine basins', Marine Pollution Bulletin, In Press, 2014 [2] Ciappa, A., Costabile, S.: 'Oil spill hazard assessment using a reverse trajectory method for the Egadi marine protected area (Central Mediterranean Sea)', Marine Pollution Bulletin, vol. 84 (1-2), pp. 44-55, 2014 [3] Ganas, A., Karastathis, V., Moshou, A., Valkaniotis, S., Mouzakiotis

  17. Sub-crustal seismic activity beneath Klyuchevskoy Volcano

    Science.gov (United States)

    Carr, M. J.; Droznina, S.; Levin, V. L.; Senyukov, S.

    2013-12-01

    Seismic activity is extremely vigorous beneath the Klyuchevskoy Volcanic Group (KVG). The unique aspect is the distribution in depth. In addition to upper-crustal seismicity, earthquakes take place at depths in excess of 20 km. Similar observations are known in other volcanic regions, however the KVG is unique in both the number of earthquakes and that they occur continuously. Most other instances of deep seismicity beneath volcanoes appear to be episodic or transient. Digital recording of seismic signals started at the KVG in early 2000s.The dense local network reliably locates earthquakes as small as ML~1. We selected records of 20 earthquakes located at depths over 20 km. Selection was based on the quality of the routine locations and the visual clarity of the records. Arrivals of P and S waves were re-picked, and hypocentral parameters re-established. Newl locations fell within the ranges outlined by historical seismicity, confirming the existence of two distinct seismically active regions. A shallower zone is at ~20 km depth, and all hypocenters are to the northeast of KVG, in a region between KVG and Shiveluch volcano. A deeper zone is at ~30 km, and all hypocenters cluster directly beneath the edifice of the Kyuchevskoy volcano. Examination of individual records shows that earthquakes in both zones are tectonic, with well-defined P and S waves - another distinction of the deep seismicity beneath KVG. While the upper seismic zone is unquestionably within the crust, the provenance of the deeper earthquakes is enigmatic. The crustal structure beneath KVG is highly complex, with no agreed-upon definition of the crust-mantle boundary. Rather, a range of values, from under 30 to over 40 km, exists in the literature. Similarly, a range of velocity structures has been reported. Teleseismic receiver functions (RFs) provide a way to position the earthquakes with respect to the crust-mantle boundary. We compare the differential travel times of S and P waves from deep

  18. Time dynamics in the point process modeling of seismicity of Aswan area (Egypt)

    International Nuclear Information System (INIS)

    Telesca, Luciano; Mohamed, Abuo El-Ela Amin; ElGabry, Mohamed; El-hady, Sherif; Abou Elenean, Kamal M.

    2012-01-01

    Highlights: ► Time dynamics of shallow Aswan seismic events are time-clusterized. ► Super-Poissonian behavior characterizes shallow and deep events. ► Shallow seismicity shows a cycle at about 402 days. - Abstract: The seismicity observed in the Aswan area (Egypt) between 1986 and 2003 was deeply investigated by means of time-fractal methods. The time dynamics of the aftershock-depleted seismicity, investigated by means of the Allan Factor, reveals that the time-clustering behavior for events occurred at shallow depths (down to 12.5 km from the ground) as well as for events occurred at larger depths (from 15 km down to 27.5 km) does not depend on the ordering of the interevent times but mainly on the shape of the probability density functions of the interevent intervals. Moreover, deep seismicity is more compatible with a Poissonian dynamics than shallow seismicity that is definitely more super-Poissonian. Additionally, the set of shallow events shows a periodicity at about 402 days, which could be consistent with the cyclic loading/unloading operations of the Lake Naser Dam. Such findings contribute to better characterize the seismicity of the Aswan area, which is one of the most interesting water reservoirs in the world, featured by reservoir-induced earthquakes.

  19. Effects of applying three-dimensional seismic isolation system on the seismic design of FBR

    International Nuclear Information System (INIS)

    Hirata, Kazuta; Yabana, Shuichi; Kanazawa, Kenji; Matsuda, Akihiro

    1997-01-01

    In this study conceptional three-dimensional seismic isolation system for fast breeder reactor (FBR) is proposed. Effects of applying three-dimensional seismic isolation system on the seismic design for the FBR equipment are evaluated quantitatively. From the evaluation, it is concluded following effects are expected by applying the three-dimensional seismic isolation system to the FBR and the effects are evaluated quantitatively. (1) Reduction of membrane thickness of the reactor vessel (2) Suppression of uplift of fuels by reducing vertical seismic response of the core (3) Reduction of the supports for the piping system (4) Three-dimensional base isolation system for the whole reactor building is advantageous to the combined isolation system of horizontal base isolation for the reactor building and vertical isolation for the equipment. (author)

  20. Bayesian seismic AVO inversion

    Energy Technology Data Exchange (ETDEWEB)

    Buland, Arild

    2002-07-01

    A new linearized AVO inversion technique is developed in a Bayesian framework. The objective is to obtain posterior distributions for P-wave velocity, S-wave velocity and density. Distributions for other elastic parameters can also be assessed, for example acoustic impedance, shear impedance and P-wave to S-wave velocity ratio. The inversion algorithm is based on the convolutional model and a linearized weak contrast approximation of the Zoeppritz equation. The solution is represented by a Gaussian posterior distribution with explicit expressions for the posterior expectation and covariance, hence exact prediction intervals for the inverted parameters can be computed under the specified model. The explicit analytical form of the posterior distribution provides a computationally fast inversion method. Tests on synthetic data show that all inverted parameters were almost perfectly retrieved when the noise approached zero. With realistic noise levels, acoustic impedance was the best determined parameter, while the inversion provided practically no information about the density. The inversion algorithm has also been tested on a real 3-D dataset from the Sleipner Field. The results show good agreement with well logs but the uncertainty is high. The stochastic model includes uncertainties of both the elastic parameters, the wavelet and the seismic and well log data. The posterior distribution is explored by Markov chain Monte Carlo simulation using the Gibbs sampler algorithm. The inversion algorithm has been tested on a seismic line from the Heidrun Field with two wells located on the line. The uncertainty of the estimated wavelet is low. In the Heidrun examples the effect of including uncertainty of the wavelet and the noise level was marginal with respect to the AVO inversion results. We have developed a 3-D linearized AVO inversion method with spatially coupled model parameters where the objective is to obtain posterior distributions for P-wave velocity, S

  1. Toward uniform probabilistic seismic hazard assessments for Southeast Asia

    Science.gov (United States)

    Chan, C. H.; Wang, Y.; Shi, X.; Ornthammarath, T.; Warnitchai, P.; Kosuwan, S.; Thant, M.; Nguyen, P. H.; Nguyen, L. M.; Solidum, R., Jr.; Irsyam, M.; Hidayati, S.; Sieh, K.

    2017-12-01

    Although most Southeast Asian countries have seismic hazard maps, various methodologies and quality result in appreciable mismatches at national boundaries. We aim to conduct a uniform assessment across the region by through standardized earthquake and fault databases, ground-shaking scenarios, and regional hazard maps. Our earthquake database contains earthquake parameters obtained from global and national seismic networks, harmonized by removal of duplicate events and the use of moment magnitude. Our active-fault database includes fault parameters from previous studies and from the databases implemented for national seismic hazard maps. Another crucial input for seismic hazard assessment is proper evaluation of ground-shaking attenuation. Since few ground-motion prediction equations (GMPEs) have used local observations from this region, we evaluated attenuation by comparison of instrumental observations and felt intensities for recent earthquakes with predicted ground shaking from published GMPEs. We then utilize the best-fitting GMPEs and site conditions into our seismic hazard assessments. Based on the database and proper GMPEs, we have constructed regional probabilistic seismic hazard maps. The assessment shows highest seismic hazard levels near those faults with high slip rates, including the Sagaing Fault in central Myanmar, the Sumatran Fault in Sumatra, the Palu-Koro, Matano and Lawanopo Faults in Sulawesi, and the Philippine Fault across several islands of the Philippines. In addition, our assessment demonstrates the important fact that regions with low earthquake probability may well have a higher aggregate probability of future earthquakes, since they encompass much larger areas than the areas of high probability. The significant irony then is that in areas of low to moderate probability, where building codes are usually to provide less seismic resilience, seismic risk is likely to be greater. Infrastructural damage in East Malaysia during the 2015

  2. Synchrosqueezing-based Transform and its Application in Seismic Data Analysis

    Directory of Open Access Journals (Sweden)

    Saman Gholtashi

    2015-10-01

    Full Text Available Seismic waves are non-stationary due to its propagation through the earth. Time-frequency transforms are suitable tools for analyzing non-stationary seismic signals. Spectral decomposition can reveal the non-stationary characteristics which cannot be easily observed in the time or frequency representation alone. Various types of spectral decomposition methods have been introduced by some researchers. Conventional spectral decompositions have some restrictions such as Heisenberg uncertainty principle and cross-terms which limit their applications in signal analysis. In this paper, synchrosqueezingbased transforms were used to overcome the mentioned restrictions; also, as an application of this new high resolution time-frequency analysis method, it was applied to random noise removal and the detection of low-frequency shadows in seismic data. The efficiency of this method is evaluated by applying it to both synthetic and real seismic data. The results show that the mentioned transform is a proper tool for seismic data processing and interpretation.

  3. Architecture and dynamic of lower Cretaceous carbonate platform in sultanate of Oman: correlations between seismic data and outcrop; Architecture et dynamique des systemes carbonates de la plate-forme Cretace inferieur du Sultanat d'Oman: correlations entre donnees de sismique et d'affleurement

    Energy Technology Data Exchange (ETDEWEB)

    Le Bec, A.

    2004-12-15

    The Rayda Basin, located in northern Oman at the south-eastern passive margin of the Arabian plate, has been filled in by a pro-grading carbonate system during the Lower Cretaceous. The filling up basin realized to carbonate platform pro-gradation on 300 km. Pelagic facies represented with radiolarian chert and shallowing facies with erosive surface, mud-cracks and lagoonal mud, and displaying on seismic lines an alternation of high angle and low angle clinoforms at the 10's of kilometers scale. Detailed study of these two types of clinoforms in the nearby outcrops shows that the high angle system is dominated by high-energy, grainy facies (ooliths, rudists, stromatoporoids), while the low angle system is dominated by a low-energy, carbonate mud facies. Based on the subsurface (geometries) and outcrop (facies) data a regional depositional model is proposed for this system. The outcrop study is based on 14 measured sections (6764 meters), completed with photo panoramas, thin section analysis and geochemical analyses (carbonate and organic matter content). The subsurface dataset consists of several regional seismic lines, two high resolution 3D blocs, and is supported by core material The regional seismic lines allow to map out the position of the high and low angle clinoform belts. One high angle belt and two low angle belts are identified in the profiles. In outcrop at least one more high angle belt and one more low angle belt are present. These overall geometries probably define the large scale sequence organisation. At a smaller scale, the 3D blocs allow to show the detailed geometrical organisation of the clinoform belts. The outcrop sections provide critical sub-seismic scale data on the facies composition and depositional geometries. The high energy system of the steep clinoforms (angle estimated at several degrees), is probably a wave controlled barrier coastline system, while the muddy low angle clinoforms (angle < 0.5 degree) shows large convex and

  4. Seismic Fragility Analysis of a Condensate Storage Tank with Age-Related Degradations

    Energy Technology Data Exchange (ETDEWEB)

    Nie, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Braverman, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hofmayer, C [Brookhaven National Lab. (BNL), Upton, NY (United States); Choun, Y-S [Brookhaven National Lab. (BNL), Upton, NY (United States); Kim, MK [Brookhaven National Lab. (BNL), Upton, NY (United States); Choi, I-K [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2011-04-01

    The Korea Atomic Energy Research Institute (KAERI) is conducting a five-year research project to develop a realistic seismic risk evaluation system which includes the consideration of aging of structures and components in nuclear power plants (NPPs). The KAERI research project includes three specific areas that are essential to seismic probabilistic risk assessment (PRA): (1) probabilistic seismic hazard analysis, (2) seismic fragility analysis including the effects of aging, and (3) a plant seismic risk analysis. Since 2007, Brookhaven National Laboratory (BNL) has entered into a collaboration agreement with KAERI to support its development of seismic capability evaluation technology for degraded structures and components. The collaborative research effort is intended to continue over a five year period. The goal of this collaboration endeavor is to assist KAERI to develop seismic fragility analysis methods that consider the potential effects of age-related degradation of structures, systems, and components (SSCs). The research results of this multi-year collaboration will be utilized as input to seismic PRAs. This report describes the research effort performed by BNL for the Year 4 scope of work. This report was developed as an update to the Year 3 report by incorporating a major supplement to the Year 3 fragility analysis. In the Year 4 research scope, an additional study was carried out to consider an additional degradation scenario, in which the three basic degradation scenarios, i.e., degraded tank shell, degraded anchor bolts, and cracked anchorage concrete, are combined in a non-perfect correlation manner. A representative operational water level is used for this effort. Building on the same CDFM procedure implemented for the Year 3 Tasks, a simulation method was applied using optimum Latin Hypercube samples to characterize the deterioration behavior of the fragility capacity as a function of age-related degradations. The results are summarized in Section 5

  5. Moment magnitude determination of local seismic events recorded at selected Polish seismic stations

    Science.gov (United States)

    Wiejacz, Paweł; Wiszniowski, Jan

    2006-03-01

    The paper presents the method of local magnitude determination used at Polish seismic stations to report events originating in one of the four regions of induced seismicity in Poland or its immediate vicinity. The method is based on recalculation of the seismic moment into magnitude, whereas the seismic moment is obtained from spectral analysis. The method has been introduced at Polish seismic stations in the late 1990s but as of yet had not been described in full because magnitude discrepancies have been found between the results of the individual stations. The authors have performed statistics of these differences, provide their explanation and calculate station corrections for each station and each event source region. The limitations of the method are also discussed. The method is found to be a good and reliable method of local magnitude determination provided the limitations are observed and station correction applied.

  6. Shaking table test study on seismic performance of dehydrogenation fan for nuclear power plants

    International Nuclear Information System (INIS)

    Liu Kaiyan; Shi Weixing; Cao Jialiang; Wang Yang

    2011-01-01

    Seismic performance of the dehydrogenation fan for nuclear power plants was evaluated based on the shaking table test of earthquake simulation. Dynamic characteristics including the orthogonal tri-axial fundamental frequencies and equivalent damping ratios were measured by the white noise scanning method. Artificial seismic waves were generated corresponding to the floor acceleration response spectra for nuclear power plants. Furthermore, five OBE and one SSE shaking table tests for dehydrogenation fan were performed by using the artificial seismic waves as the seismic inputs along the orthogonal axis simultaneity. Operating function of dehydrogenation fan was monitored and observed during all seismic tests, and performance indexes of dehydrogenation fan were compared before and after seismic tests. The results show that the structural integrity and operating function of the dehydrogenation fan are perfect during all seismic tests; and the performance indexes of the dehydrogenation fan can remain consistent before and after seismic tests; the seismic performance of the dehydrogenation fan can satisfy relevant technical requirements. (authors)

  7. Extraction of Pn seismic signals from air-gun shots recorded by the Cascadia Amphibious seismic experiment

    Science.gov (United States)

    Rathnayaka, S.; Gao, H.

    2017-12-01

    The goal of this study is to extract Pn (head wave) seismic waveforms recorded by both offshore and onshore (broadband and short period) seismic stations and evaluate the data quality. Two offshore active-source seismic experiments, MGL 1211 and MGL 1212, were conducted from 13th June to 24th July 2012, during the first year deployment of the Cascadia Initiative Amphibious Array. In total, we choose 110 ocean bottom seismometers and 209 inland stations that are located along the entire Cascadia subduction zone. We first remove the instrument response, and then explore the potential frequency ranges and the diurnal effect. We make the common receiver gathering for each seismic station and filter the seismic waveforms at multiple frequency bands, ranging from 3-5 Hz, 5-10 Hz, 10-20 Hz, to 20-40 Hz, respectively. To quantitatively evaluate the data quality, we calculate the signal-to-noise ratio (SNR) of the waveforms for usable stations that record clear Pn arrivals at multiple frequency bands. Our results show that most offshore stations located at deep water (>1.5 km) record clear air-gun shot signals at frequencies higher than 3 Hz and up to 550 km away from the source. For most stations located on the shallow continental shelf, the seismic recordings appear much noisier at all the frequencies compared to stations at deep water. Three general trends are observed for the SNR distribution; First, the SNR ratio increases from lower to higher frequency bands; Second, the ratio decreases with the increasing source-to-receiver distance; And third, the ratio increases from shallow to deep water. We also observe a rough negative relationship of the signal-to-noise ratio with the thickness of the marine sediment. Only 5 inland stations record clear air-gun shot arrivals up to 200 km away from the source. More detailed data quality analysis with more results will also be present.

  8. Seismic signal of near steady uniform flows

    Science.gov (United States)

    Mangeney, A.; Bachelet, V.; Toussaint, R.; de Rosny, J.

    2017-12-01

    The seismic signal generated by rockfalls, landslides or avalanches is a unique tool to detect, characterize and monitor gravitational flow activity. A major challenge in this domain is to retrieve the dynamic properties of the flow from the emitted seismic signal. In this study, we propose laboratory experiments where the dynamic properties of the flow (velocity, granular temperature, density, etc.) are measured together with the generated seismic signal. We investigate near steady uniform flows made of glass beads of 2mm diameter, flowing throughout a thin rectangular channel of 10 cm width, with tunable tilt angle and height flow, thanks to an adjustable opening gate. The flow is monitored from the spine with a fast camera (5000 fps), and the emitted waves are recorded by accelerometers (10Hz - 54 kHz), stuck on the back side of the bottom of the channel. Among others, three seismic parameters are analyzed: the power radiated by the flow, the mean frequency of the signal, and the modulation of its amplitude. We show that they are linked to three dynamical properties: the mean kinetic energy of the flow, the speed of collisions between beads and the vertical oscillation of the beads, respectively.

  9. Seismic hazard assessment of Iran

    Directory of Open Access Journals (Sweden)

    M. Ghafory-Ashtiany

    1999-06-01

    Full Text Available The development of the new seismic hazard map of Iran is based on probabilistic seismic hazard computation using the historical earthquakes data, geology, tectonics, fault activity and seismic source models in Iran. These maps have been prepared to indicate the earthquake hazard of Iran in the form of iso-acceleration contour lines, and seismic hazard zoning, by using current probabilistic procedures. They display the probabilistic estimates of Peak Ground Acceleration (PGA for the return periods of 75 and 475 years. The maps have been divided into intervals of 0.25 degrees in both latitudinal and longitudinal directions to calculate the peak ground acceleration values at each grid point and draw the seismic hazard curves. The results presented in this study will provide the basis for the preparation of seismic risk maps, the estimation of earthquake insurance premiums, and the preliminary site evaluation of critical facilities.

  10. Development of a Real-Time GPS/Seismic Displacement Meter: Seismic Component and Communications

    Science.gov (United States)

    Vernon, F.; Bock, Y.

    2002-12-01

    In two abstracts, we report on an ongoing effort to develop an Integrated Real-Time GPS/Seismic System for Orange and Western Riverside Counties, California, spanning three major strike-slip faults in southern California (San Andreas, San Jacinto, and Elsinore) and significant populations and civilian infrastructure. The system relying on existing GPS and seismic networks will collect and analyze GPS and seismic data for the purpose of estimating and disseminating real-time positions and total ground displacements (dynamic, as well as static) covering all phases of the seismic cycle, from fractions of seconds to years. Besides its intrinsic scientific use as a real-time displacement meter (transducer), the GPS/Seismic System will be a powerful tool for local and state decision makers for risk mitigation, disaster management, and structural monitoring (dams, bridges, and buildings). Furthermore, the GPS/Seismic System will become an integral part of California's spatial referencing and positioning infrastructure, which is complicated by tectonic motion, seismic displacements, and land subsidence. This development is taking place under the umbrella of the California Spatial Reference Center, in partnership with local (The Counties, Riverside County Flood and Water Conservation District, Southern California Metropolitan Water District), state (Caltrans), and Federal agencies (NGS, NASA, USGS), the geophysics community (SCEC2/SCIGN), and the private sector (RBF Consulting). The project is leveraging considerable funding, resources, and research and development from SCIGN, CSRC and two NSF-funded IT projects at UCSD and SDSU: RoadNet (Real-Time Observatories, Applications and Data Management Network) and the High Performance Wireless Research and Education Network (HPWREN). These two projects are funded to develop both the wireless networks and the integrated, seamless, and transparent information management system that will deliver seismic, geodetic, oceanographic

  11. Seismic risk assessment of a BWR

    International Nuclear Information System (INIS)

    Wells, J.E.; Bernreuter, D.L.; Chen, J.C.; Lappa, D.A.; Chuang, T.Y.; Murray, R.C.; Johnson, J.J.

    1987-01-01

    The simplified seismic risk methodology developed in the USNRC Seismic Safety Margins Research Program (SSMRP) was demonstrated by its application to the Zion nuclear power plant (PWR). The simplified seismic risk methodology was developed to reduce the costs associated with a seismic risk analysis while providing adequate results. A detailed model of Zion, including systems analysis models (initiating events, event trees, and fault trees), SSI and structure models, and piping models, was developed and used in assessing the seismic risk of the Zion nuclear power plant (FSAR). The simplified seismic risk methodology was applied to the LaSalle County Station nuclear power plant, a BWR; to further demonstrate its applicability, and if possible, to provide a basis for comparing the seismic risk from PWRs and BWRs. (orig./HP)

  12. The seismic reflection inverse problem

    International Nuclear Information System (INIS)

    Symes, W W

    2009-01-01

    The seismic reflection method seeks to extract maps of the Earth's sedimentary crust from transient near-surface recording of echoes, stimulated by explosions or other controlled sound sources positioned near the surface. Reasonably accurate models of seismic energy propagation take the form of hyperbolic systems of partial differential equations, in which the coefficients represent the spatial distribution of various mechanical characteristics of rock (density, stiffness, etc). Thus the fundamental problem of reflection seismology is an inverse problem in partial differential equations: to find the coefficients (or at least some of their properties) of a linear hyperbolic system, given the values of a family of solutions in some part of their domains. The exploration geophysics community has developed various methods for estimating the Earth's structure from seismic data and is also well aware of the inverse point of view. This article reviews mathematical developments in this subject over the last 25 years, to show how the mathematics has both illuminated innovations of practitioners and led to new directions in practice. Two themes naturally emerge: the importance of single scattering dominance and compensation for spectral incompleteness by spatial redundancy. (topical review)

  13. Seismic isolation in New Zealand

    International Nuclear Information System (INIS)

    Skinner, R.I.; Robinson, W.H.; McVerry, G.H.

    1989-01-01

    Bridges, buildings, and industrial equipment can be given increased protection from earthquake damage by limiting the earthquake attack through seismic isolation. A broad summary of the seismic responses of base-isolated structures is of considerable assistance for their preliminary design. Seismic isolation as already used in New Zealand consists of a flexible base or support combined with some form of energy-dissipating device, usually involving the hysteretic working of steel or lead. This paper presents examples of the New Zealand experience, where seismic isolation has been used for 42 bridges, 3 buildings, a tall chimney, and high-voltage capacitor banks. Additional seismic response factors, which may be important for nuclear power plants, are also discussed briefly

  14. Compressive and Shear Wave Velocity Profiles using Seismic Refraction Technique

    International Nuclear Information System (INIS)

    Aziman, M; Hazreek, Z A M; Azhar, A T S; Haimi, D S

    2016-01-01

    Seismic refraction measurement is one of the geophysics exploration techniques to determine soil profile. Meanwhile, the borehole technique is an established way to identify the changes of soil layer based on number of blows penetrating the soil. Both techniques are commonly adopted for subsurface investigation. The seismic refraction test is a non-destructive and relatively fast assessment compared to borehole technique. The soil velocities of compressive wave and shear wave derived from the seismic refraction measurements can be directly utilised to calculate soil parameters such as soil modulus and Poisson’s ratio. This study investigates the seismic refraction techniques to obtain compressive and shear wave velocity profile. Using the vertical and horizontal geophones as well as vertical and horizontal strike directions of the transient seismic source, the propagation of compressive wave and shear wave can be examined, respectively. The study was conducted at Sejagung Sri Medan. The seismic velocity profile was obtained at a depth of 20 m. The velocity of the shear wave is about half of the velocity of the compression wave. The soil profiles of compressive and shear wave velocities were verified using the borehole data and showed good agreement with the borehole data. (paper)

  15. Edge Detection on Images of Pseudoimpedance Section Supported by Context and Adaptive Transformation Model Images

    Directory of Open Access Journals (Sweden)

    Kawalec-Latała Ewa

    2014-03-01

    Full Text Available Most of underground hydrocarbon storage are located in depleted natural gas reservoirs. Seismic survey is the most economical source of detailed subsurface information. The inversion of seismic section for obtaining pseudoacoustic impedance section gives the possibility to extract detailed subsurface information. The seismic wavelet parameters and noise briefly influence the resolution. Low signal parameters, especially long signal duration time and the presence of noise decrease pseudoimpedance resolution. Drawing out from measurement or modelled seismic data approximation of distribution of acoustic pseuoimpedance leads us to visualisation and images useful to stratum homogeneity identification goal. In this paper, the improvement of geologic section image resolution by use of minimum entropy deconvolution method before inversion is applied. The author proposes context and adaptive transformation of images and edge detection methods as a way to increase the effectiveness of correct interpretation of simulated images. In the paper, the edge detection algorithms using Sobel, Prewitt, Robert, Canny operators as well as Laplacian of Gaussian method are emphasised. Wiener filtering of image transformation improving rock section structure interpretation pseudoimpedance matrix on proper acoustic pseudoimpedance value, corresponding to selected geologic stratum. The goal of the study is to develop applications of image transformation tools to inhomogeneity detection in salt deposits.

  16. Seismic Response of Tunnel Lining for Shallow-Bias Tunnel with a Small Clear Distance under Wenchuan Earthquake

    Directory of Open Access Journals (Sweden)

    Yang Hui

    2018-01-01

    Full Text Available In order to study the internal force characteristics of shallow-bias tunnel with a small clear distance in earthquake, a large-scale shaking table slope model test was designed, and the geometric scale was 1 : 10. In the model test, the Wenchuan (WC seismic wave was used as the excitation wave. Then, the three-dimensional numerical model was established by using MIDAS-NX, and the reliability of the numerical model was verified by comparing the acceleration of the test results. The axial force, bending moment, and shear force of the tunnel cross section and longitudinal direction were calculated by the numerical model under different excitation directions included the horizontal direction (X, the vertical direction (Z, and the horizontal and vertical direction (XZ. The results show the following. (1 The internal force of right arch foot of left hole and the left arch foot of right hole is larger than other part of the tunnels because the distance between the two tunnels is smaller and they interact with each other. (2 The loading direction of single direction loading method is different and the variation trend of tunnel force are different, so the loading direction of seismic wave has a significant influence on the seismic force response of the tunnel. (3 All of the internal force values of tunnel lining under the seismic wave action in bidirection are larger than those in single direction. The value is not a simple superposition of two directions and has some coupling effect. The influence of the vertical seismic wave cannot be ignored in dynamic response research. These results improve the understanding of the rock slope with small spacing tunnel under seismic action.

  17. Local Seismicity Recorded by ChilePEPPER: Implications for Dynamic Accretionary Prism Response and Long-term Prism Evolution

    Science.gov (United States)

    de Moor, A.; Trehu, A. M.; Tryon, M. D.

    2015-12-01

    To investigate the dynamic response of the outer accretionary wedge updip from the patch of greatest slip during the Mw8.8 2010 Maule earthquake, 10 Ocean Bottom Seismometers (OBS) were deployed from May 2012 to March 2013 in a small array with an inter-instrument spacing of ~12 km . Nine instruments were recovered, with 4 recording data on 3 intermediate-band 3-component seismometers and a differential pressure gauge and 5 recording data from absolute pressure gauges. [note: All instruments were also equipped with a fluid flow meter sensitive to flow rates as low as 0.0001 cm/yr in or out of the sediments. However, no flow signal was detected.] Here we present hypocenters for 569 local events that have S-P times less than 17 seconds (i.e. within ~125 km of the array) using hand-picked arrival times and a 1D velocity model derived from a 2D seismic refraction profile through the region (Moscoso et al 2011, EPSL). We analyze the distribution of seismicity in the context of published slip models, ChilePEPPER high-resolution seismic reflection data, critical taper analysis done by Cubas et al 2013 (EPSL), and offshore gravity data. The data show distinct segmentation within the outer prism. The northern section of the study area is characterized by a lack of seismicity, accretion of nearly all incoming sediment and a prism at critical taper. In contrast, abundant seismicity, significant sediment underthrusting at the deformation front and a prism below critical taper angle characterize the southern part of the study area. Both coseismic slip and post-rupture local seismicity can be related to density anomalies within the upper plate as revealed by free air gravity data corrected for the effects of bathymetry and the subducting plate. [ChilePEPPER - Project Evaluating Prism Post-Earthquake Response

  18. SH-wave reflection seismic and VSP as tools for the investigation of sinkhole areas in Germany

    Science.gov (United States)

    Wadas, Sonja; Tschache, Saskia; Polom, Ulrich; Buness, Hermann; Krawczyk, Charlotte M.

    2017-04-01

    Sinkholes can lead to damage of buildings and infrastructure and they can cause life-threatening situations, if they occur in urban areas. The process behind this phenomenon is called subrosion. Subrosion is the underground leaching of soluble rocks, e.g. anhydrite and gypsum, due to the contact with ground- and meteoric water. Depending on the leached material, and especially the dissolution rate, different kinds of subrosion structures evolve in the subsurface. The two end members are collapse and depression structures. For a better understanding of the subrosion processes a detailed characterization of the resulting structures is necessary. In Germany sinkholes are a problem in many areas. In northern Germany salt and in central and southern Germany sulfate and carbonate deposits are affected by subrosion. The study areas described here are located in Thuringia in central Germany and the underground is characterized by soluble Permian deposits. The occurrence of 20 to 50 sinkholes is reported per year. Two regions, Bad Frankenhausen and Schmalkalden, are investigated, showing a leaning church tower and a sinkhole of 30 m diameter and 20 m depth, respectively. In Bad Frankenhausen four P-wave and 16 SH-wave reflection seismic profiles were carried out, supplemented by three zero-offset VSPs. In Schmalkalden five SH-wave reflection seismic profiles and one zero-offset VSP were acquired. The 2-D seismic sections, in particular the SH-wave profiles, showed known and unknown near-surface faults in the vicinity of sinkholes and depressions. For imaging the near-surface ( 2,5, probably indicating unstable areas due to subrosion. We conclude, that SH-wave reflection seismic offer an important tool for the imaging and characterization of near-surface subrosion structures and the identification of unstable zones, especially in combination with P-wave reflection seismic and zero-offset VSP with P- and S-waves. Presumably there is a connection between the presence of large

  19. Reservoir Changes Derived from Seismic Observations at The Geysers Geothermal Field, CA, USA

    Science.gov (United States)

    Gritto, R.; Jarpre, S.

    2012-04-01

    . Vertical depth-sections indicate that these low values are co-located with production zones and production related seismicity. In contrast, the highest Vp/Vs estimates are co-located with injection zones and their associated seismicity.

  20. Intraplate seismicity across the Cape Verde swell

    Science.gov (United States)

    Vales, Dina; Matias, Luís.; Haberland, Christian; Silveira, Graça.; Weber, Michael; Carrilho, Fernando; Dias, Nuno

    2010-05-01

    The Cape Verde Archipelago ((15-17°N, 23-26°W) is located within the African plate, about 500km west of Senegal, in the African coast. The islands are located astride the Cape Verde mid-plate topographic swell, one of the largest features of its type in the world's ocean basins. The origin of this Cape Verde swell is still in debate. Previous determinations of the elastic thickness (Te) reveal a normal Te and a modest heat flow anomaly which suggest that the swell cannot be fully explained by uplift due to thermal reheating of the lithosphere by an underlying ‘‘hot spot'' and that other, deep-seated, mantle processes must be involved. The CV-PLUME (An investigation on the geometry and deep signature of the Cape Verde mantle plume) project intends to shape the geometry and deep origin of the Cape Verde mantle plume, via a combined study of seismic, magnetic, gravimetric and geochemical observations. Through this study we intend to characterize the structure beneath the archipelago from the surface down to the deep mantle. The core of this 3-year project was a temporary deployment of 39 Very Broad Band seismometers, across all the inhabited islands, to recorder local and teleseismic earthquakes. These instruments were operational from November 2007 to September 2008. In this work we report on the preliminary results obtained from the CV-PLUME network on the characterization of the local and regional seismicity. To detect the small magnitude seismic events the continuous data stream was screened using spectrograms. This proved to be a very robust technique in the face of the high short-period noise recorded by many of the stations, particularly during day time. The 10 month observation time showed that the background seismic activity in the Archipelago and surrounding area is low, with only a very few events recorded by the complete network. However, two clusters of earthquakes were detected close to the Brava Island, one to the NW and a second one, more active

  1. Management of seismic data on network

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Bu Heung [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of)

    1995-12-01

    KIGAM has managed magnetic tapes written in seismic data acquired in Korea offshore and abroad since 1979. For now, it amounts about 13,000 tapes and other documents of seismic data are reserved by KIGAM also. For handling with them, FOX-PRO database management system has been used since 1993. In case of one user, it seems useful and convenient because the program is very easy to use and many well done utility was provided. In contrast with that, it has many problems also. For example, a user who wants to query information of these magnetic tapes must go magnetic tape room where the system is installed and he must know how to use the utilities of the FOX-PRO database management system. For the reason of above, the seismic data processing team attempted to change the FOX-PRO system with other client-server system supports networking on internet. After many testing and considering, they selected like as following hardware and software( System: PC with networking, OS: Linux and Unix, Software: Just Logic/SQL). The main reasons for selecting above system, first, any kinds of personal computer are available and easy to get. Secondly, Linux and Unix OS are good for using network. Especially, Linux is free and easy to get on many internet ftp sites. Lastly Just Logic/SQL is for client-server system, supports Linux OS and the programming style is very similar to C language. The contents of this report are as follows. In chapter 2, the Just Logic/SQL system structure and existing files through the sub-directories are showed and commented. In chapter 3, the statements using in Just Logic/SQL are explained and some examples are showed. In chapter 4, shows two example programs making seismic database including rack list, optical disk table respectively. The rack list table is the database of magnetic tapes managed by KIGAM. The optical disk table is the information record about how many, what tapes are converted to optical disk. (author). 4 tabs.

  2. Demonstration of NonLinear Seismic Soil Structure Interaction and Applicability to New System Fragility Seismic Curves

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States). Nuclear Science and Technology

    2014-09-01

    Risk calculations should focus on providing best estimate results, and associated insights, for evaluation and decision-making. Specifically, seismic probabilistic risk assessments (SPRAs) are intended to provide best estimates of the various combinations of structural and equipment failures that can lead to a seismic induced core damage event. However, in general this approach has been conservative, and potentially masks other important events (for instance, it was not the seismic motions that caused the Fukushima core melt events, but the tsunami ingress into the facility). SPRAs are performed by convolving the seismic hazard (the frequency of certain magnitude events) with the seismic fragility (the conditional probability of failure of a structure, system, or component given the occurrence of earthquake ground motion). In this calculation, there are three main pieces to seismic risk quantification, 1) seismic hazard and nuclear power plants (NPPs) response to the hazard, fragility or capacity of structures, systems and components (SSC), and systems analysis. Figure 1 provides a high level overview of the risk quantification process. The focus of this research is on understanding and removing conservatism (when possible) in the quantification of seismic risk at NPPs.

  3. Comparison between seismic and domestic risk in moderate seismic hazard prone region: the Grenoble City (France test site

    Directory of Open Access Journals (Sweden)

    F. Dunand

    2012-02-01

    Full Text Available France has a moderate level of seismic activity, characterized by diffuse seismicity, sometimes experiencing earthquakes of a magnitude of more than 5 in the most active zones. In this seismicity context, Grenoble is a city of major economic and social importance. However, earthquakes being rare, public authorities and the decision makers are only vaguely committed to reducing seismic risk: return periods are long and local policy makers do not have much information available. Over the past 25 yr, a large number of studies have been conducted to improve our knowledge of seismic hazard in this region. One of the decision-making concerns of Grenoble's public authorities, as managers of a large number of public buildings, is to know not only the seismic-prone regions, the variability of seismic hazard due to site effects and the city's overall vulnerability, but also the level of seismic risk and exposure for the entire city, also compared to other natural or/and domestic hazards. Our seismic risk analysis uses a probabilistic approach for regional and local hazards and the vulnerability assessment of buildings. Its applicability to Grenoble offers the advantage of being based on knowledge acquired by previous projects conducted over the years. This paper aims to compare the level of seismic risk with that of other risks and to introduce the notion of risk acceptability in order to offer guidance in the management of seismic risk. This notion of acceptability, which is now part of seismic risk consideration for existing buildings in Switzerland, is relevant in moderately seismic-prone countries like France.

  4. Methodology for seismic PSA of NPPs

    International Nuclear Information System (INIS)

    Jirsa, P.

    1999-09-01

    A general methodology is outlined for seismic PSA (probabilistic safety assessment). The main objectives of seismic PSA include: description of the course of an event; understanding the most probable failure sequences; gaining insight into the overall probability of reactor core damage; identification of the main seismic risk contributors; identification of the range of peak ground accelerations contributing significantly to the plant risk; and comparison of the seismic risk with risks from other events. The results of seismic PSA are typically compared with those of internal PSA and of PSA of other external events. If the results of internal and external PSA are available, sensitivity studies and cost benefit analyses are performed prior to any decision regarding corrective actions. If the seismic PSA involves analysis of the containment, useful information can be gained regarding potential seismic damage of the containment. (P.A.)

  5. Time-reversibility in seismic sequences: Application to the seismicity of Mexican subduction zone

    Science.gov (United States)

    Telesca, L.; Flores-Márquez, E. L.; Ramírez-Rojas, A.

    2018-02-01

    In this paper we investigate the time-reversibility of series associated with the seismicity of five seismic areas of the subduction zone beneath the Southwest Pacific Mexican coast, applying the horizontal visibility graph method to the series of earthquake magnitudes, interevent times, interdistances and magnitude increments. We applied the Kullback-Leibler divergence D that is a metric for quantifying the degree of time-irreversibility in time series. Our findings suggest that among the five seismic areas, Jalisco-Colima is characterized by time-reversibility in all the four seismic series. Our results are consistent with the peculiar seismo-tectonic characteristics of Jalisco-Colima, which is the closest to the Middle American Trench and belongs to the Mexican volcanic arc.

  6. Effectiveness of ANN for seismic behaviour prediction considering geometric configuration effect in concrete gravity dams

    Directory of Open Access Journals (Sweden)

    Mohd. Saqib

    2016-09-01

    Full Text Available In this study, an Artificial Neural Networks (ANN model is built and verified for quick estimation of the structural parameter obtained for a concrete gravity dam section due to seismic excitation. The database of numerous inputs and outputs obtained through Abaqus which are further converted into dimensionless forms in the statistical software (MATLAB to build the ANN model. The developed model can be used for accurate estimation of this parameter. The results showed an excellent capability of the model to predict the outputs with high accuracy and reduced computational time.

  7. The misuse or misappropriation of seismic data, and what you could do to prevent it

    International Nuclear Information System (INIS)

    Stenhouse, G.; Oldani, M.

    1999-01-01

    Issues of ethics, integrity, honesty and confidentiality regarding seismic data information, and the need to educate the geophysical industry regarding the appropriate use of licensed data are addressed. The obligations of brokers and the rules of conduct of the 1989 Code of Ethics, established pursuant to section 18(1)(h) of the Engineering, Geological and Geophysical Professions Act are also reviewed. Issues regarding guidelines for seismic data brokering, and some other topics such as the ethics of seismic data transfer among owners and users, and among private parties are also highlighted. Schedule A provides the text of the Code of Ethics, and a selection of of articles relating to ethical questions affecting geophysicists

  8. The misuse or misappropriation of seismic data, and what you could do to prevent it

    Energy Technology Data Exchange (ETDEWEB)

    Stenhouse, G. [Intercontinental Seismic Surveys Ltd., Calgary, AB (Canada); Oldani, M. [Axis Geophysics, Denver, CO (United States)

    1999-07-01

    Issues of ethics, integrity, honesty and confidentiality regarding seismic data information, and the need to educate the geophysical industry regarding the appropriate use of licensed data are addressed. The obligations of brokers and the rules of conduct of the 1989 Code of Ethics, established pursuant to section 18(1)(h) of the Engineering, Geological and Geophysical Professions Act are also reviewed. Issues regarding guidelines for seismic data brokering, and some other topics such as the ethics of seismic data transfer among owners and users, and among private parties are also highlighted. Schedule A provides the text of the Code of Ethics, and a selection of of articles relating to ethical questions affecting geophysicists.

  9. Uncertainty in Seismic Capacity of Masonry Buildings

    Directory of Open Access Journals (Sweden)

    Nicola Augenti

    2012-07-01

    Full Text Available Seismic assessment of masonry structures is plagued by both inherent randomness and model uncertainty. The former is referred to as aleatory uncertainty, the latter as epistemic uncertainty because it depends on the knowledge level. Pioneering studies on reinforced concrete buildings have revealed a significant influence of modeling parameters on seismic vulnerability. However, confidence in mechanical properties of existing masonry buildings is much lower than in the case of reinforcing steel and concrete. This paper is aimed at assessing whether and how uncertainty propagates from material properties to seismic capacity of an entire masonry structure. A typical two-story unreinforced masonry building is analyzed. Based on previous statistical characterization of mechanical properties of existing masonry types, the following random variables have been considered in this study: unit weight, uniaxial compressive strength, shear strength at zero confining stress, Young’s modulus, shear modulus, and available ductility in shear. Probability density functions were implemented to generate a significant number of realizations and static pushover analysis of the case-study building was performed for each vector of realizations, load combination and lateral load pattern. Analysis results show a large dispersion in displacement capacity and lower dispersion in spectral acceleration capacity. This can directly affect decision-making because both design and retrofit solutions depend on seismic capacity predictions. Therefore, engineering judgment should always be used when assessing structural safety of existing masonry constructions against design earthquakes, based on a series of seismic analyses under uncertain parameters.

  10. Seismic response and rehabilitation of critical substation equipment

    Energy Technology Data Exchange (ETDEWEB)

    Saadeghvaziri, M.A.; Allaverdi, N.H. [New Jersey Inst. of Technology, Newark, NJ (United States); Ashrafi, A. [Columbia Univ., New York, NY (United States); Ersoy, S. [Greenman-Pedersen Inc., Babylon, NY (United States)

    2004-07-01

    Substations are one of the most important components of an electrical power system. They provide protection to transmission and distribution lines and transfer power between different voltage levels. Transformers and bushings within the substation are vulnerable to earthquake ground motion. It is extremely important that electric power systems remain functional following seismic damage. This study assessed the seismic response of critical substation equipment and described advanced technologies for rehabilitation measures such as the Friction Pendulum System (FPS). It presents the results of an extensive finite element analysis on response of transformers and bushings. The objective was to determine the seismic behaviour of transformers and bushings during an earthquake and to determine the probability of different failure modes. The response of an FPS isolated transformer to different earthquakes was also examined along with FPS radii, ground motion intensity and vertical excitations. A finite element model was developed for FPS. The study showed that seismic isolation is a viable mitigation strategy, but a modest increase in slack must be provided. 15 refs., 1 tab., 12 figs.

  11. Development of real time monitor system displaying seismic waveform data observed at seafloor seismic network, DONET, for disaster management information

    Science.gov (United States)

    Horikawa, H.; Takaesu, M.; Sueki, K.; Takahashi, N.; Sonoda, A.; Miura, S.; Tsuboi, S.

    2014-12-01

    Mega-thrust earthquakes are anticipated to occur in the Nankai Trough in southwest Japan. In the source areas, we have deployed seafloor seismic network, DONET (Dense Ocean-floor Network System for Earthquake and Tsunamis), in 2010 in order to monitor seismicity, crustal deformations, and tsunamis. DONET system consists of totally 20 stations, which is composed of six kinds of sensors, including strong-motion seismometers and quartz pressure gauges. Those stations are densely distributed with an average spatial interval of 15-20 km and cover near the trench axis to coastal areas. Observed data are transferred to a land station through a fiber-optical cable and then to JAMSTEC (Japan Agency for Marine-Earth Science and Technology) data management center through a private network in real time. After 2011 off the Pacific coast of Tohoku Earthquake, each local government close to Nankai Trough try to plan disaster prevention scheme. JAMSTEC will disseminate DONET data combined with research accomplishment so that they will be widely recognized as important earthquake information. In order to open DONET data observed for research to local government, we have developed a web application system, REIS (Real-time Earthquake Information System). REIS is providing seismic waveform data to some local governments close to Nankai Trough as a pilot study. As soon as operation of DONET is ready, REIS will start full-scale operation. REIS can display seismic waveform data of DONET in real-time, users can select strong motion and pressure data, and configure the options of trace view arrangement, time scale, and amplitude. In addition to real-time monitoring, REIS can display past seismic waveform data and show earthquake epicenters on the map. In this presentation, we briefly introduce DONET system and then show our web application system. We also discuss our future plans for further developments of REIS.

  12. A Community Seismic Experiment in the ENAM Primary Site

    Science.gov (United States)

    Van Avendonk, H. J.

    2012-12-01

    Eastern North America (ENAM) was chosen as a GeoPRISMS Rift Initiation and Evolution primary site because it represents a mature continental margin with onshore and offshore rift basins in which the record of extension and continental break-up is preserved. The degree to which syn-rift magmatism and preexisting lithospheric weaknesses controlled the evolution of the margin can be further investigated if we image its 3-D structure at small and large length scales with active-source and earthquake seismic imaging. In the Summer of 2012 we submitted a proposal to the US National Science Foundation for an ambitious plan for data acquisition on a 400 km wide section of the mid-Atlantic East Coast margin around Cape Hatteras, from unextended continental lithosphere onshore to mature oceanic lithosphere offshore. This area includes an important along-strike transition in the morphology of the margin from the Carolina Trough to the Baltimore Canyon Trough, and two major fracture zones that are associated with significant offsets at the modern Mid-Atlantic Ridge. The study area also covers several features representing the post-rift modification of the margin by slope instability and fluid flow. As the Earthscope Transportable Array reaches the East Coast of the US in 2013 and 2014, we will have an unprecedented opportunity to image the detailed structure of the rifted margin. To make effective use of the research infrastructure, including the seismic vessel R/V Marcus Langseth, the Earthscope seismic instrumentation, and US OBS Instrument Pool, we propose to collect a suite of seismic data at the mid-Atlantic margin in the context of a community-driven experiment with completely open data access. This multi-faceted seismic experiment offers an immense opportunity for education of young scientists. We propose an integrated education effort during and after acquisition. The science and field parties for data acquisition will largely consist of young scientists, who will be

  13. Seismic microzonation of Bangalore, India

    Indian Academy of Sciences (India)

    Evaluation of seismic hazards and microzonation of cities enable us to characterize the potential seismic areas which have similar exposures to haz- ards of earthquakes, and these results can be used for designing new structures or retrofitting the existing ones. Study of seismic hazard and preparation of microzonation ...

  14. Seismic and dynamic qualification methods

    International Nuclear Information System (INIS)

    Lin, C.W.

    1985-01-01

    This book presents the papers given at a conference on seismic effects on nuclear power plants. Topics considered at the conference included seismic qualification of equipment, multifrequency test methodologies, damping in piping systems, the amplification factor, thermal insulation, welded joints, and response factors for seismic risk analysis of piping

  15. Seismic safety programme at NPP Paks. Propositions for coordinated international activity in seismic safety of the WWER-440 V-213

    International Nuclear Information System (INIS)

    Katona, T.

    1995-01-01

    This paper presents the Paks NPP seismic safety program, highlighting the specifics of the WWER-440/213 type in operation, and the results of work obtained so far. It covers the following scope: establishment of the seismic safety program (original seismic design, current requirements, principles and structure of the seismic safety program); implementation of the seismic safety program (assessing the seismic hazard of the site, development of the new concept of seismic safety for the NPP, assessing the seismic resistance of the building and the technology); realization of the seismic safety of higher level (technical solutions, drawings, realization); ideas and propositions for coordinated international activity

  16. Integrated system for seismic evaluations

    International Nuclear Information System (INIS)

    Xu, J.; Philippacopoulos, A.J.; Miller, C.A.; Costantino, C.J.; Graves, H.

    1989-01-01

    This paper describes the various features of the Seismic Module of the CARES system (Computer Analysis for Rapid Evaluation of Structures). This system was developed by Brookhaven National Laboratory (BNL) for the US Nuclear Regulatory Commission to perform rapid evaluations of structural behavior and capability of nuclear power plant facilities. The CARES is structured in a modular format. Each module performs a specific type of analysis i.e., static or dynamic, linear or nonlinear, etc. This paper describes the features of the Seismic Module in particular. The development of the Seismic Module of the CARES system is based on an approach which incorporates all major aspects of seismic analysis currently employed by the industry into an integrated system that allows for carrying out interactively computations of structural response to seismic motions. The code operates on a PC computer system and has multi-graphics capabilities. It has been designed with user friendly features and it allows for interactive manipulation of various analysis phases during the seismic design process. The capabilities of the seismic module include (a) generation of artificial time histories compatible with given design ground response spectra, (b) development of Power Spectral Density (PSD) functions associated with the seismic input, (c) deconvolution analysis using vertically propagating shear waves through a given soil profile, and (d) development of in-structure response spectra or corresponding PSD's. It should be pointed out that these types of analyses can also be performed individually by using available computer codes such as FLUSH, SAP, etc. The uniqueness of the CARES, however, lies on its ability to perform all required phases of the seismic analysis in an integrated manner. 5 refs., 6 figs

  17. Seismic Symphonies

    Science.gov (United States)

    Strinna, Elisa; Ferrari, Graziano

    2015-04-01

    The project started in 2008 as a sound installation, a collaboration between an artist, a barrel organ builder and a seismologist. The work differs from other attempts of sound transposition of seismic records. In this case seismic frequencies are not converted automatically into the "sound of the earthquake." However, it has been studied a musical translation system that, based on the organ tonal scale, generates a totally unexpected sequence of sounds which is intended to evoke the emotions aroused by the earthquake. The symphonies proposed in the project have somewhat peculiar origins: they in fact come to life from the translation of graphic tracks into a sound track. The graphic tracks in question are made up by copies of seismograms recorded during some earthquakes that have taken place around the world. Seismograms are translated into music by a sculpture-instrument, half a seismograph and half a barrel organ. The organ plays through holes practiced on paper. Adapting the documents to the instrument score, holes have been drilled on the waves' peaks. The organ covers about three tonal scales, starting from heavy and deep sounds it reaches up to high and jarring notes. The translation of the seismic records is based on a criterion that does match the highest sounds to larger amplitudes with lower ones to minors. Translating the seismogram in the organ score, the larger the amplitude of recorded waves, the more the seismogram covers the full tonal scale played by the barrel organ and the notes arouse an intense emotional response in the listener. Elisa Strinna's Seismic Symphonies installation becomes an unprecedented tool for emotional involvement, through which can be revived the memory of the greatest disasters of over a century of seismic history of the Earth. A bridge between art and science. Seismic Symphonies is also a symbolic inversion: the instrument of the organ is most commonly used in churches, and its sounds are derived from the heavens and

  18. Passive Seismic for Hydrocarbon Indicator : Between Expectation and Reality

    Science.gov (United States)

    Pandito, Riky H. B.

    2018-03-01

    In between 5 – 10 years, in our country, passive seismic method became more popular to finding hydrocarbon. Low price, nondestructive acquisition and easy to mobilization is the best reason for choose the method. But in the other part, some people are pessimistically to deal with the result. Instrument specification, data condition and processing methods is several points which influence characteristic and interpretation passive seismic result. In 2010 one prospect in East Java Basin has been measurement constist of 112 objective points and several calibration points. Data measurement results indicate a positive response. Furthermore, in 2013 exploration drliing conducted on the prospect. Drill steam test showes 22 MMCFD in objective zone, upper – late oligocene. In 2015, remeasurement taken in objective area and show consistent responses with previous measurement. Passive seismic is unique method, sometimes will have difference results on dry, gas and oil area, in field production and also temporary suspend area with hidrocarbon content.

  19. Fragility analysis of a seismically-isolated emergency diesel generator

    International Nuclear Information System (INIS)

    Choun, Young Sun; Choi, In Kil; Ohtori, Yasuki

    2005-01-01

    The seismic capacity of an Emergency Diesel Generator (EDG) in nuclear power plants influences the seismic safety of the plants significantly. A recent study showed that the increase of the seismic capacity of the EDG could reduce the core damage frequency (CDF) remarkably. It is known that the major failure mode of the EDG is a concrete coning failure due to the pulling out of the anchor bolts. The use of base isolators instead of anchor bolts can increase the seismic capacity of the EDG without any major problems. The fragility curves for a base-isolated EDG should be different from those for a conventional type because the major failure mode of the base-isolated EDG will not be a concrete coning one any more. The governing failure mode of the base-isolated EDG must be the damage of the isolators. This study introduces a fragility evaluation method for an isolated EDG, and evaluates the fragilities for the isolated EDG and compares them with those for the conventional one. Evaluation of the ground motion index is also carried out to determine the governing parameter suitable for representing the seismic responses of the base isolator

  20. Comparison of seismic isolation concepts for FBR

    International Nuclear Information System (INIS)

    Shiojiri, H.; Mazda, T.; Kasai, H.; Kanda, J.N.; Kubo, T.; Madokoro, M.; Shimomura, T.; Nojima, O.

    1989-01-01

    This paper seeks to verify the reliability and effectiveness of seismic isolation for FBR. Some results of the preliminary study of the program are described. Seismic isolation concepts and corresponding seismic isolation devices were selected. Three kinds of seismically-isolated FBR plant concepts were developed by applying promising seismic isolation concepts to the non-isolated FBR plant, and by developing plant component layout plans and building structural designs. Each plant was subjected to seismic response analysis and reduction in the amount of material of components and buildings were estimated for each seismic isolation concepts. Research and development items were evaluated

  1. Pre-, Co-, and Post-Seismic Fault Slip in the Northern Chile Seismic Gap Associated with the April 1, 2014 (Mw 8.2) Pisagua Earthquake.

    Science.gov (United States)

    Simons, M.; Duputel, Z.; Fielding, E. J.; Galetzka, J.; Genrich, J. F.; Jiang, J.; Jolivet, R.; Kanamori, H.; Moore, A. W.; Ortega Culaciati, F. H.; Owen, S. E.; Riel, B. V.; Rivera, L. A.; Carrizo, D.; Cotte, N.; Jara, J.; Klotz, J.; Norabuena, E. O.; Ortega, I.; Socquet, A.; Samsonov, S. V.; Valderas Bermejo, M.

    2014-12-01

    The April 1, 2014 (Mw 8.2) Pisagua Earthquake occurred in Northern Chile, within a long recognized seismic gap in the Central Andean region that last experienced major megathrust events in 1868 and 1877. We built a continuous GPS network starting in 2005, with the ultimate goal of understanding the kinematics and dynamics of this portion of the subduction zone. Using observations from this network, as well as others in the region, combined with InSAR, seismic and tsunami observations, we obtain estimates of inter-seismic, co-seismic and initial post-seismic fault slip using an internally consistent Bayesian unregularized approach. We evaluate the extent of spatial overlap between regions of fault slip during this different time periods. Of particular interest to this event is the extent and nature of any geodetic evidence for transient slow fault slip preceding the Pisagua Earthquake mainshock. To this end, we compare daily and high rate GPS solutions, the former of which shows long period transient motion started about 15 days before the mainshock and with maximum registered amplitude of 14.2 +/- 2 [mm] at site PSGA. Contrary to published findings, we find that pre-seismic deformation seen by the GPS network can be explained as coseismic motion associated with the multiple foreshocks.

  2. Seismic source characterization for the 2014 update of the U.S. National Seismic Hazard Model

    Science.gov (United States)

    Moschetti, Morgan P.; Powers, Peter; Petersen, Mark D.; Boyd, Oliver; Chen, Rui; Field, Edward H.; Frankel, Arthur; Haller, Kathleen; Harmsen, Stephen; Mueller, Charles S.; Wheeler, Russell; Zeng, Yuehua

    2015-01-01

    We present the updated seismic source characterization (SSC) for the 2014 update of the National Seismic Hazard Model (NSHM) for the conterminous United States. Construction of the seismic source models employs the methodology that was developed for the 1996 NSHM but includes new and updated data, data types, source models, and source parameters that reflect the current state of knowledge of earthquake occurrence and state of practice for seismic hazard analyses. We review the SSC parameterization and describe the methods used to estimate earthquake rates, magnitudes, locations, and geometries for all seismic source models, with an emphasis on new source model components. We highlight the effects that two new model components—incorporation of slip rates from combined geodetic-geologic inversions and the incorporation of adaptively smoothed seismicity models—have on probabilistic ground motions, because these sources span multiple regions of the conterminous United States and provide important additional epistemic uncertainty for the 2014 NSHM.

  3. Seismic Data Gathering and Validation

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-02-01

    Three recent earthquakes in the last seven years have exceeded their design basis earthquake values (so it is implied that damage to SSC’s should have occurred). These seismic events were recorded at North Anna (August 2011, detailed information provided in [Virginia Electric and Power Company Memo]), Fukushima Daichii and Daini (March 2011 [TEPCO 1]), and Kaswazaki-Kariwa (2007, [TEPCO 2]). However, seismic walk downs at some of these plants indicate that very little damage occurred to safety class systems and components due to the seismic motion. This report presents seismic data gathered for two of the three events mentioned above and recommends a path for using that data for two purposes. One purpose is to determine what margins exist in current industry standard seismic soil-structure interaction (SSI) tools. The second purpose is the use the data to validated seismic site response tools and SSI tools. The gathered data represents free field soil and in-structure acceleration time histories data. Gathered data also includes elastic and dynamic soil properties and structural drawings. Gathering data and comparing with existing models has potential to identify areas of uncertainty that should be removed from current seismic analysis and SPRA approaches. Removing uncertainty (to the extent possible) from SPRA’s will allow NPP owners to make decisions on where to reduce risk. Once a realistic understanding of seismic response is established for a nuclear power plant (NPP) then decisions on needed protective measures, such as SI, can be made.

  4. Development and characterization of a magnetorheological elastomer based adaptive seismic isolator

    International Nuclear Information System (INIS)

    Li, Yancheng; Li, Jianchun; Samali, Bijan; Li, Weihua

    2013-01-01

    One of the main shortcomings in current base isolation design/practice is lack of adaptability. As a result, a base isolation system that is effective for one type earthquake may become ineffective or may have adverse effect for other earthquakes. The vulnerability of traditional base isolation systems can be exaggerated by two types of earthquakes, i.e. near-field earthquakes and far-field earthquakes. This paper addresses the challenge facing current base isolation design/practice by proposing a new type of seismic isolator for the base isolation system, namely an adaptive seismic isolator. The novel adaptive seismic isolator utilizes magnetorheological elastomer (MRE) for its field-sensitive material property. Traditional seismic isolator design with a unique laminated structure of steel and MRE layers has been adopted in the novel MRE seismic isolator. To evaluate and characterize the behavior of the MRE seismic isolator, experimental testing was conducted on a shake table facility under harmonic cycling loading. Experimental results show that the proposed adaptive seismic isolator can successfully alter the lateral stiffness and damping force in real time up to 37% and 45% respectively. Based on the successful development of the novel adaptive seismic isolator, a discussion is also extended to the impact and potential applications of such a device in structural control applications in civil engineering. (paper)

  5. Impacts of seismic activity on long-term repository performance at Yucca Mountain

    International Nuclear Information System (INIS)

    Gauthier, J.H.; Wilson, M.L.; Borns, D.J.; Arnold, B.W.

    1995-01-01

    Several effects of seismic activity on the release of radionuclides from a potential repository at Yucca Mountain are quantified. Future seismic events are predicted using data from the seismic hazard analysis conducted for the Exploratory Studies Facility (ESF). Phenomenological models are developed, including rockfall (thermal-mechanical and seismic) in unbackfilled emplacement drifts, container damage caused by fault displacement within the repository, and flow-path chance caused by changes in strain. Using the composite-porosity flow model (relatively large-scale, regular percolation), seismic events show little effect on total-system releases; using the weeps flow model (episodic pulses of flow in locally saturated fractures), container damage and flow-path changes cause over an order of magnitude increase in releases. In separate calculations using, more realistic representations of faulting, water-table rise caused by seismically induced changes in strain are seen to be higher than previously estimated by others, but not sufficient to reach a potential repository

  6. Seismic explosion sources on an ice cap

    DEFF Research Database (Denmark)

    Shulgin, Alexey; Thybo, Hans

    2015-01-01

    crustal model can be modelled. A crucial challenge for applying the technique is to control the sources. Here, we present data that describe the efficiency of explosive sources in the ice cover. Analysis of the data shows, that the ice cap traps a significant amount of energy, which is observed......Controlled source seismic investigation of crustal structure below ice covers is an emerging technique. We have recently conducted an explosive refraction/wide-angle reflection seismic experiment on the ice cap in east-central Greenland. The data-quality is high for all shot points and a full...

  7. Seismic protection

    International Nuclear Information System (INIS)

    Herbert, R.

    1988-01-01

    To ensure that a nuclear reactor or other damage-susceptible installation is, so far as possible, tripped and already shut down before the arrival of an earthquake shock at its location, a ring of monitoring seismic sensors is provided around it, each sensor being spaced from it by a distance (possibly several kilometres) such that (taking into account the seismic-shock propagation velocity through the intervening ground) a shock monitored by the sensor and then advancing to the installation site will arrive there later than a warning signal emitted by the sensor and received at the installation, by an interval sufficient to allow the installation to trip and shut down, or otherwise assume an optimum anti-seismic mode, in response to the warning signal. Extra sensors located in boreholes may define effectively a three-dimensional (hemispherical) sensing boundary rather than a mere two-dimensional ring. (author)

  8. Induced Seismicity

    Science.gov (United States)

    Keranen, Katie M.; Weingarten, Matthew

    2018-05-01

    The ability of fluid-generated subsurface stress changes to trigger earthquakes has long been recognized. However, the dramatic rise in the rate of human-induced earthquakes in the past decade has created abundant opportunities to study induced earthquakes and triggering processes. This review briefly summarizes early studies but focuses on results from induced earthquakes during the past 10 years related to fluid injection in petroleum fields. Study of these earthquakes has resulted in insights into physical processes and has identified knowledge gaps and future research directions. Induced earthquakes are challenging to identify using seismological methods, and faults and reefs strongly modulate spatial and temporal patterns of induced seismicity. However, the similarity of induced and natural seismicity provides an effective tool for studying earthquake processes. With continuing development of energy resources, increased interest in carbon sequestration, and construction of large dams, induced seismicity will continue to pose a hazard in coming years.

  9. Pickering seismic safety margin

    International Nuclear Information System (INIS)

    Ghobarah, A.; Heidebrecht, A.C.; Tso, W.K.

    1992-06-01

    A study was conducted to recommend a methodology for the seismic safety margin review of existing Canadian CANDU nuclear generating stations such as Pickering A. The purpose of the seismic safety margin review is to determine whether the nuclear plant has sufficient seismic safety margin over its design basis to assure plant safety. In this review process, it is possible to identify the weak links which might limit the seismic performance of critical structures, systems and components. The proposed methodology is a modification the EPRI (Electric Power Research Institute) approach. The methodology includes: the characterization of the site margin earthquake, the definition of the performance criteria for the elements of a success path, and the determination of the seismic withstand capacity. It is proposed that the margin earthquake be established on the basis of using historical records and the regional seismo-tectonic and site specific evaluations. The ability of the components and systems to withstand the margin earthquake is determined by database comparisons, inspection, analysis or testing. An implementation plan for the application of the methodology to the Pickering A NGS is prepared

  10. Seismic safety research program plan

    International Nuclear Information System (INIS)

    1987-05-01

    This document presents a plan for seismic research to be performed by the Structural and Seismic Engineering Branch in the Office of Nuclear Regulatory Research. The plan describes the regulatory needs and related research necessary to address the following issues: uncertainties in seismic hazard, earthquakes larger than the design basis, seismic vulnerabilities, shifts in building frequency, piping design, and the adequacy of current criteria and methods. In addition to presenting current and proposed research within the NRC, the plan discusses research sponsored by other domestic and foreign sources

  11. Link Between the Seismic Events and the Different Seismic Precursor Phenomena

    Directory of Open Access Journals (Sweden)

    Mirela GHEORGHITA

    2009-12-01

    Full Text Available This article presents an analysis of the earthquake prediction methods, highlighting mainly the VLF and LF electromagnetic waves seismic precursors’ monitoring method and the correlation among these in order to obtain a more precise result. It is well known the fact that there are lots of links between the seismic events occurrence and different phenomena that predict their occurrence, such as theelectromagnetic field, Earth movement, gaseous content of radon and hydrogen within the soil, or within the underground waters. This paper aims to demonstrate the close link between the seismic events and the electromagnetic wave propagation anomalies, which are recorded before the advent of an earthquake.

  12. An Analysis of Mechanical Constraints when Using Superconducting Gravimeters for Far-Field Pre-Seismic Anomaly Detection

    Directory of Open Access Journals (Sweden)

    Shyh-Chin Lan

    2011-01-01

    Full Text Available Pre-seismic gravity anomalies from records obtained at a 1 Hz sampling rate from superconducting gravimeters (SG around East Asia are analyzed. A comparison of gravity anomalies to the source parameters of associated earthquakes shows that the detection of pre-seismic gravity anomalies is constrained by several mechanical conditions of the seismic fault plane. The constraints of the far-field pre-seismic gravity amplitude perturbation were examined and the critical spatial relationship between the SG station and the epicenter precursory signal for detection was determined. The results show that: (1 the pre-seismic amplitude perturbation of gravity is inversely proportional to distance; (2 the transfer path from the epicenter to the SG station that crosses a tectonic boundary has a relatively low pre-seismic gravity anomaly amplitude; (3 the pre-seismic gravity perturbation amplitude is also affected by the attitude between the location of an SG station and the strike of the ruptured fault plane. The removal of typhoon effects and the selection of SG stations within a certain intersection angle to the strike of the fault plane are essential for obtaining reliable pre-seismic gravity anomaly results.

  13. Site response assessment using borehole seismic records

    Energy Technology Data Exchange (ETDEWEB)

    Park, Donghee; Chang, Chunjoong; Choi, Weonhack [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    In regions with high seismic activity, such as Japan, the Western United States and Taiwan, borehole seismometers installed deep underground are used to monitor seismic activity during the course of seismic wave propagation at various depths and to study the stress changes due to earthquakes and analyze the connection to fault movements. The Korea Meteorological Administration (KMA) and the Korea Institute of Geology and Mining (KIGAM) have installed and are operating borehole seismometers at a depth of 70∼100 meters for the precise determination of epicenters. Also, Korea Hydro and Nuclear Power Co., Ltd. (KHNP) has installed and is operating 2 borehole seismic stations near Weolseong area to observe at a depth of 140 meters seismic activities connected to fault activity. KHNP plans to operate in the second half of 2014 a borehole seismic station for depths less than 300 and 600 meters in order to study the seismic response characteristics in deep strata. As a basic study for analyzing ground motion response characteristics at depths of about 300 to 600 meters in connection with the deep geological disposal of spent nuclear fuel, the present study examined the background noise response characteristics of the borehole seismic station operated by KHNP. In order to analyze the depth-dependent impact of seismic waves at deeper depths than in Korea, seismic data collected by Japan's KIK-net seismic stations were used and the seismic wave characteristics analyzed by size and depth. In order to analyze the borehole seismic observation data from the seismic station operated by KHNP, this study analyzed the background noise characteristics by using a probability density function.

  14. Site response assessment using borehole seismic records

    International Nuclear Information System (INIS)

    Park, Donghee; Chang, Chunjoong; Choi, Weonhack

    2014-01-01

    In regions with high seismic activity, such as Japan, the Western United States and Taiwan, borehole seismometers installed deep underground are used to monitor seismic activity during the course of seismic wave propagation at various depths and to study the stress changes due to earthquakes and analyze the connection to fault movements. The Korea Meteorological Administration (KMA) and the Korea Institute of Geology and Mining (KIGAM) have installed and are operating borehole seismometers at a depth of 70∼100 meters for the precise determination of epicenters. Also, Korea Hydro and Nuclear Power Co., Ltd. (KHNP) has installed and is operating 2 borehole seismic stations near Weolseong area to observe at a depth of 140 meters seismic activities connected to fault activity. KHNP plans to operate in the second half of 2014 a borehole seismic station for depths less than 300 and 600 meters in order to study the seismic response characteristics in deep strata. As a basic study for analyzing ground motion response characteristics at depths of about 300 to 600 meters in connection with the deep geological disposal of spent nuclear fuel, the present study examined the background noise response characteristics of the borehole seismic station operated by KHNP. In order to analyze the depth-dependent impact of seismic waves at deeper depths than in Korea, seismic data collected by Japan's KIK-net seismic stations were used and the seismic wave characteristics analyzed by size and depth. In order to analyze the borehole seismic observation data from the seismic station operated by KHNP, this study analyzed the background noise characteristics by using a probability density function

  15. Did you smooth your well logs the right way for seismic interpretation?

    International Nuclear Information System (INIS)

    Duchesne, Mathieu J; Gaillot, Philippe

    2011-01-01

    Correlations between physical properties and seismic reflection data are useful to determine the geological nature of seismic reflections and the lateral extent of geological strata. The difference in resolution between well logs and seismic data is a major hurdle faced by seismic interpreters when tying both data sets. In general, log data have a resolution of at least two orders of magnitude greater than seismic data. Smoothing physical property logs improves correlation at the seismic scale. Three different approaches were used and compared to smooth a density log: binomial filtering, seismic wavelet filtering and discrete wavelet transform (DWT) filtering. Regression plots between the density logs and the acoustic impedance show that the data smoothed with the DWT is the only method that preserves the original relationship between the raw density data and the acoustic impedance. Smoothed logs were then used to generate synthetic seismograms that were tied to seismic data at the borehole site. Best ties were achieved using the synthetic seismogram computed with the density log processed with the DWT. The good performance of the DWT is explained by its adaptive multi-scale characteristic which preserved significant local changes of density on the high-resolution data series that were also pictured at the seismic scale. Since synthetic seismograms are generated using smoothed logs, the choice of the smoothing method impacts on the quality of seismic-to-well ties. This ultimately can have economical implications during hydrocarbon exploration or exploitation phases

  16. Epicenter Location of Regional Seismic Events Using Love Wave and Rayleigh Wave Ambient Seismic Noise Green's Functions

    Science.gov (United States)

    Levshin, A. L.; Barmin, M. P.; Moschetti, M. P.; Mendoza, C.; Ritzwoller, M. H.

    2011-12-01

    We describe a novel method to locate regional seismic events based on exploiting Empirical Green's Functions (EGF) that are produced from ambient seismic noise. Elastic EGFs between pairs of seismic stations are determined by cross-correlating long time-series of ambient noise recorded at the two stations. The EGFs principally contain Rayleigh waves on the vertical-vertical cross-correlations and Love waves on the transverse-transverse cross-correlations. Earlier work (Barmin et al., "Epicentral location based on Rayleigh wave empirical Green's functions from ambient seismic noise", Geophys. J. Int., 2011) showed that group time delays observed on Rayleigh wave EGFs can be exploited to locate to within about 1 km moderate sized earthquakes using USArray Transportable Array (TA) stations. The principal advantage of the method is that the ambient noise EGFs are affected by lateral variations in structure similarly to the earthquake signals, so the location is largely unbiased by 3-D structure. However, locations based on Rayleigh waves alone may be biased by more than 1 km if the earthquake depth is unknown but lies between 2 km and 7 km. This presentation is motivated by the fact that group time delays for Love waves are much less affected by earthquake depth than Rayleigh waves; thus exploitation of Love wave EGFs may reduce location bias caused by uncertainty in event depth. The advantage of Love waves to locate seismic events, however, is mitigated by the fact that Love wave EGFs have a smaller SNR than Rayleigh waves. Here, we test the use of Love and Rayleigh wave EGFs between 5- and 15-sec period to locate seismic events based on the USArray TA in the western US. We focus on locating aftershocks of the 2008 M 6.0 Wells earthquake, mining blasts in Wyoming and Montana, and small earthquakes near Norman, OK and Dallas, TX, some of which may be triggered by hydrofracking or injection wells.

  17. An application of the baseline correction technique for correcting distorted seismic acceleration time histories

    International Nuclear Information System (INIS)

    Lee, Gyu Mahn; Kim, Jong Wook; Jeoung, Kyeong Hoon; Kim, Tae Wan; Park, Keun Bae; Kim, Keung Koo

    2008-03-01

    Three kinds of baseline correction techniques named as 'Newmark', 'Zero-VD' and 'Newmark and Zero-VD' were introduced to correct the distorted physical characteristics of a seismic time history accelogram. The corrected seismic accelerations and distorted raw acceleration showed an identical response spectra in frequency domains, but showed various time history profiles in velocity and displacement domains. The referred correction techniques were programmed with UNIX-HP Fortran. The verification of the baseline corrected seismic data in terms of frequency response spectrum were performed by ANSYS of a commerical FEM software

  18. Two types of SDR recognised in pre-stack velocity analysis of ultra-long-offset seismic reflection data in the South Atlantic

    Science.gov (United States)

    Collier, J.; McDermott, C.; Lonergan, L.; McDermott, K.; Bellingham, P.

    2017-12-01

    Our understanding of continental breakup at volcanic margins has lagged behind that of non-volcanic margins in recent years. This is largely due to seismic imaging problems caused by the presence of thick packages of Seaward-Dipping Reflectors (SDRs) in the continent-ocean transition zone. These packages consist of interbedded tholeiitic lava flows, volcanic tuffs and terrestrial sediment that results in scattering, peg-leg multiples and defocusing of seismic energy. Here we analyse three ultra-long-offset (10.2 km), wide-bandwidth (5-100 Hz) seismic reflection profiles acquired by ION-GXT offshore South America during 2009-12 to gain new insights into the velocity structure of the SDRs and hence pattern of magmatism during continental breakup. We observe two seismic velocity patterns within the SDRs. The most landward packages show high velocity anomaly "bulls-eyes" of up to 1 km s-1. These highs occur where the stacked section shows them to thicken at the down-dip end of individual packages that are bounded by faults. All lines show 5-6 velocity highs spaced approximately 10 km apart. We interpret the velocity bulls-eyes as depleted mafic or ultramafic bodies that fed the sub-aerial tholeiitic lava flows during continental stretching. Similar relationships have been observed in outcrop onshore but have not been previously demonstrated in seismic data. The bulls-eye packages pass laterally into SDR packages that show no velocity highs. These packages are not associated with faulting and become more extensive going north towards the impact point of the Tristan da Cunha hotspot. This second type of SDR coincides with linear magnetic anomalies. We interpret these SDRs as the products of sub-aerial oceanic spreading similar to those seen on Iceland and described in the classic "Hinz model" and marine geophysical literature. Our work demonstrates that these SDRs are preceded by ones generated during an earlier phase of mechanical thinning of the continental crust. The

  19. NRC systematic evaluation program: seismic review

    International Nuclear Information System (INIS)

    Levin, H.A.

    1980-01-01

    The NRC Systematic Evaluation Program is currently making an assessment of the seismic design safety of 11 older nuclear power plant facilities. The general review philosophy and review criteria relative to seismic input, structural response, and equipment functionability are presented, including the rationale for the development of these guidelines considering the significant evolution of seismic design criteria since these plants were originally licensed. Technical approaches thought more realistic in light of current knowledge are utilized. Initial findings for plants designed to early seismic design procedures suggest that with minor exceptions, these plants possess adequate seismic design margins when evaluated against the intent of current criteria. However, seismic qualification of electrical equipment has been identified as a subject which requires more in-depth evaluation

  20. Integrated system for seismic evaluations

    International Nuclear Information System (INIS)

    Xu, J.; Philippacopoulos, A.J.; Miller, C.A.; Costantino, C.J.; Graves, H.

    1989-01-01

    This paper describes the various features of the seismic module of the CARES system (computer analysis for rapid evaluation of structures). This system was developed to perform rapid evaluations of structural behavior and capability of nuclear power plant facilities. The CARES is structural in a modular format. Each module performs a specific type of analysis i.e., static or dynamic, linear or nonlinear, etc. This paper describes the features of the seismic module in particular. The development of the seismic modules of the CARES system is based on an approach which incorporates major aspects of seismic analysis currently employed by the industry into an integrated system that allows for carrying out interactively computations of structural response to seismic motions. The code operates on a PC computer system and has multi-graphics capabilities

  1. MASW Seismic Method in Brebu Landslide Area, Romania

    Science.gov (United States)

    Mihai, Marinescu; Paul, Cristea; Cristian, Marunteanu; Matei, Mezincescu

    2017-12-01

    This paper is focused on assessing the possibility of enhancing the geotechnical information in perimeters with landslides, especially through applications of the Multichannel Analysis of Surface Waves (MASW) method. The technology enables the determination of the phase velocities of Rayleigh waves and, recursively, the evaluation of shear wave velocities (Vs) related to depth. Finally, using longitudinal wave velocities (Vp), derived from the seismic refraction measurements, in situ dynamic elastic properties in a shallow section can be obtained. The investigation was carried out in the Brebu landslide (3-5 m depth of bedrock), located on the southern flank of the Slanic Syncline (110 km North of Bucharest) and included a drilling program and geotechnical laboratory observations. The seismic refraction records (seismic sources placed at the centre, ends and outside of the geophone spread) have been undertaken on two lines, 23 m and 46 m long respectively) approximately perpendicular to the downslope direction of the landslide and on different local morpho-structures. A Geode Geometrics seismograph was set for 1 ms sampling rate and pulse summations in real-time for five blows. Twenty-four vertical Geometrics SpaceTech geophones (14 Hz resonance frequency) were disposed at 1 m spacing. The seismic source was represented by the impact of an 8kg weight sledge hammer on a metal plate. Regarding seismic data processing, the distinctive feature is related to performing more detailed analyses of MASW records. The proposed procedure consists of the spread split in groups with fewer receivers and several interval-geophones superposed. 2D Fourier analysis, f-k (frequency-wave number) spectrum, for each of these groups assures the information continuity and, all the more, accuracy to pick out the amplitude maximums of the f-k spectra. Finally, combining both values VS (calculated from 2D spectral analyses of Rayleigh waves) and VP (obtained from seismic refraction records

  2. Seismic facies; Facies sismicas

    Energy Technology Data Exchange (ETDEWEB)

    Johann, Paulo Roberto Schroeder [PETROBRAS, Rio de Janeiro, RJ (Brazil). Exploracao e Producao Corporativo. Gerencia de Reservas e Reservatorios]. E-mail: johann@petrobras.com.br

    2004-11-01

    The method presented herein describes the seismic facies as representations of curves and vertical matrixes of the lithotypes proportions. The seismic facies are greatly interested in capturing the spatial distributions (3D) of regionalized variables, as for example, lithotypes, sedimentary facies groups and/ or porosity and/or other properties of the reservoirs and integrate them into the 3D geological modeling (Johann, 1997). Thus when interpreted as curves or vertical matrixes of proportions, seismic facies allow us to build a very important tool for structural analysis of regionalized variables. The matrixes have an important application in geostatistical modeling. In addition, this approach provides results about the depth and scale of the wells profiles, that is, seismic data is integrated to the characterization of reservoirs in depth maps and in high resolution maps. The link between the different necessary technical phases involved in the classification of the segments of seismic traces is described herein in groups of predefined traces of two approaches: a) not supervised and b) supervised by the geological knowledge available on the studied reservoir. The multivariate statistical methods used to obtain the maps of the seismic facies units are interesting tools to be used to provide a lithostratigraphic and petrophysical understanding of a petroleum reservoir. In the case studied these seismic facies units are interpreted as representative of the depositional system as a part of the Namorado Turbiditic System, Namorado Field, Campos Basin.Within the scope of PRAVAP 19 (Programa Estrategico de Recuperacao Avancada de Petroleo - Strategic Program of Advanced Petroleum Recovery) some research work on algorithms is underway to select new optimized attributes to apply seismic facies. One example is the extraction of attributes based on the wavelet transformation and on the time-frequency analysis methodology. PRAVAP is also carrying out research work on an

  3. Research on performance-based seismic design criteria

    Institute of Scientific and Technical Information of China (English)

    谢礼立; 马玉宏

    2002-01-01

    The seismic design criterion adopted in the existing seismic design codes is reviewed. It is pointed out that the presently used seismic design criterion is not satisfied with the requirements of nowadays social and economic development. A new performance-based seismic design criterion that is composed of three components is presented in this paper. It can not only effectively control the economic losses and casualty, but also ensure the building(s function in proper operation during earthquakes. The three components are: classification of seismic design for buildings, determination of seismic design intensity and/or seismic design ground motion for controlling seismic economic losses and casualties, and determination of the importance factors in terms of service periods of buildings. For controlling the seismic human losses, the idea of socially acceptable casualty level is presented and the (Optimal Economic Decision Model( and (Optimal Safe Decision Model( are established. Finally, a new method is recommended for calculating the importance factors of structures by adjusting structures service period on the base of more important structure with longer service period than the conventional ones. Therefore, the more important structure with longer service periods will be designed for higher seismic loads, in case the exceedance probability of seismic hazard in different service period is same.

  4. Seismic isolation of Advanced LIGO: Review of strategy, instrumentation and performance

    International Nuclear Information System (INIS)

    Matichard, F; Mittleman, R; Mason, K; Biscans, S; Barnum, S; Evans, M; Foley, S; Lantz, B; Celerier, C; Clark, D; DeBra, D; Kissel, J; Allwine, E; Abbott, B; Abbott, R; Abbott, S; Coyne, D; McIver, J; Birch, J; DeRosa, R

    2015-01-01

    The new generation of gravitational waves detectors require unprecedented levels of isolation from seismic noise. This article reviews the seismic isolation strategy and instrumentation developed for the Advanced LIGO observatories. It summarizes over a decade of research on active inertial isolation and shows the performance recently achieved at the Advanced LIGO observatories. The paper emphasizes the scientific and technical challenges of this endeavor and how they have been addressed. An overview of the isolation strategy is given. It combines multiple layers of passive and active inertial isolation to provide suitable rejection of seismic noise at all frequencies. A detailed presentation of the three active platforms that have been developed is given. They are the hydraulic pre-isolator, the single-stage internal isolator and the two-stage internal isolator. The architecture, instrumentation, control scheme and isolation results are presented for each of the three systems. Results show that the seismic isolation sub-system meets Advanced LIGO’s stringent requirements and robustly supports the operation of the two detectors. (paper)

  5. Seismic data acquisition systems

    International Nuclear Information System (INIS)

    Kolvankar, V.G.; Nadre, V.N.; Rao, D.S.

    1989-01-01

    Details of seismic data acquisition systems developed at the Bhabha Atomic Research Centre, Bombay are reported. The seismic signals acquired belong to different signal bandwidths in the band from 0.02 Hz to 250 Hz. All these acquisition systems are built around a unique technique of recording multichannel data on to a single track of an audio tape and in digital form. Techniques of how these signals in different bands of frequencies were acquired and recorded are described. Method of detecting seismic signals and its performance is also discussed. Seismic signals acquired in different set-ups are illustrated. Time indexing systems for different set-ups and multichannel waveform display systems which form essential part of the data acquisition systems are also discussed. (author). 13 refs., 6 figs., 1 tab

  6. Shortcomings of the Winkler Model in the Assessment of Sectioned Tunnels under Seismic Loading

    DEFF Research Database (Denmark)

    Andersen, Lars; Lyngs, J. H.

    2009-01-01

    A Winkler-type model is often applied in the design of tunnels subject to seismic loading. Since the subgrade stiffness is modelled by disjoint springs, distributed continuously along the tunnel, the model does not account for retroaction via the soil. This may not be a problem in the design......-element solution, using a planned tunnel at Thessaloniki, Greece, as a case study. The aim of the analysis is to quantify the inaccuracy of the Winkler model in the prediction of damage at a gasket between two tunnel elements....

  7. Shortcomings of the Winkler Model in the Assessment of Sectioned Tunnels under Seismic Loading

    DEFF Research Database (Denmark)

    Andersen, Lars; Lyngs, Jakob Hausgaard

    A Winkler-type model is often applied in the design of tunnels subject to seismic loading. Since the subgrade stiffness is modelled by disjoint springs, distributed continuously along the tunnel, the model does not account for retroaction via the soil. This may not be a problem in the design......-element solution, using a planned tunnel at Thessaloniki, Greece, as a case study. The aim of the analysis is to quantify the inaccuracy of the Winkler model in the prediction of damage at a gasket between two tunnel elements....

  8. Seismic isolation of small modular reactors using metamaterials

    Directory of Open Access Journals (Sweden)

    Witarto Witarto

    2018-04-01

    Full Text Available Adaptation of metamaterials at micro- to nanometer scales to metastructures at much larger scales offers a new alternative for seismic isolation systems. These new isolation systems, known as periodic foundations, function both as a structural foundation to support gravitational weight of the superstructure and also as a seismic isolator to isolate the superstructure from incoming seismic waves. Here we describe the application of periodic foundations for the seismic protection of nuclear power plants, in particular small modular reactors (SMR. For this purpose, a large-scale shake table test on a one-dimensional (1D periodic foundation supporting an SMR building model was conducted. The 1D periodic foundation was designed and fabricated using reinforced concrete and synthetic rubber (polyurethane materials. The 1D periodic foundation structural system was tested under various input waves, which include white noise, stepped sine and seismic waves in the horizontal and vertical directions as well as in the torsional mode. The shake table test results show that the 1D periodic foundation can reduce the acceleration response (transmissibility of the SMR building up to 90%. In addition, the periodic foundation-isolated structure also exhibited smaller displacement than the non-isolated SMR building. This study indicates that the challenge faced in developing metastructures can be overcome and the periodic foundations can be applied to isolating vibration response of engineering structures.

  9. Toward predicting clay landslide with ambient seismic noise

    Science.gov (United States)

    Larose, E. F.; Mainsant, G.; Carriere, S.; Chambon, G.; Michoud, C.; Jongmans, D.; Jaboyedoff, M.

    2013-12-01

    Clay-rich pose critical problems in risk management worldwide. The most widely proposed mechanism leading to such flow-like movements is the increase in water pore pressure in the sliding mass, generating partial or complete liquefaction. This solid-to-liquid transition results in a dramatic reduction of mechanical rigidity, which could be detected by monitoring shear wave velocity variations, The ambient seismic noise correlation technique has been applied to measure the variation in the seismic surface wave velocity in the Pont Bourquin landslide (Swiss Alps). This small but active composite earthslide-earthflow was equipped with continuously recording seismic sensors during spring and summer 2010, and then again from fall 2011 on. An earthslide of a few thousand cubic meters was triggered in mid-August 2010, after a rainy period. This article shows that the seismic velocity of the sliding material, measured from daily noise correlograms, decreased continuously and rapidly for several days prior to the catastrophic event. From a spectral analysis of the velocity decrease, it was possible to determine the location of the change at the base of the sliding layer. These results are confirmed by analogous small-scale experiments in the laboratory. These results demonstrate that ambient seismic noise can be used to detect rigidity variations before failure and could potentially be used to predict landslides.

  10. Seismic isolation of small modular reactors using metamaterials

    Science.gov (United States)

    Witarto, Witarto; Wang, S. J.; Yang, C. Y.; Nie, Xin; Mo, Y. L.; Chang, K. C.; Tang, Yu; Kassawara, Robert

    2018-04-01

    Adaptation of metamaterials at micro- to nanometer scales to metastructures at much larger scales offers a new alternative for seismic isolation systems. These new isolation systems, known as periodic foundations, function both as a structural foundation to support gravitational weight of the superstructure and also as a seismic isolator to isolate the superstructure from incoming seismic waves. Here we describe the application of periodic foundations for the seismic protection of nuclear power plants, in particular small modular reactors (SMR). For this purpose, a large-scale shake table test on a one-dimensional (1D) periodic foundation supporting an SMR building model was conducted. The 1D periodic foundation was designed and fabricated using reinforced concrete and synthetic rubber (polyurethane) materials. The 1D periodic foundation structural system was tested under various input waves, which include white noise, stepped sine and seismic waves in the horizontal and vertical directions as well as in the torsional mode. The shake table test results show that the 1D periodic foundation can reduce the acceleration response (transmissibility) of the SMR building up to 90%. In addition, the periodic foundation-isolated structure also exhibited smaller displacement than the non-isolated SMR building. This study indicates that the challenge faced in developing metastructures can be overcome and the periodic foundations can be applied to isolating vibration response of engineering structures.

  11. Reliability of lifeline networks under seismic hazard

    International Nuclear Information System (INIS)

    Selcuk, A. Sevtap; Yuecemen, M. Semih

    1999-01-01

    Lifelines, such as pipelines, transportation, communication and power transmission systems, are networks which extend spatially over large geographical regions. The quantification of the reliability (survival probability) of a lifeline under seismic threat requires attention, as the proper functioning of these systems during or after a destructive earthquake is vital. In this study, a lifeline is idealized as an equivalent network with the capacity of its elements being random and spatially correlated and a comprehensive probabilistic model for the assessment of the reliability of lifelines under earthquake loads is developed. The seismic hazard that the network is exposed to is described by a probability distribution derived by using the past earthquake occurrence data. The seismic hazard analysis is based on the 'classical' seismic hazard analysis model with some modifications. An efficient algorithm developed by Yoo and Deo (Yoo YB, Deo N. A comparison of algorithms for terminal pair reliability. IEEE Transactions on Reliability 1988; 37: 210-215) is utilized for the evaluation of the network reliability. This algorithm eliminates the CPU time and memory capacity problems for large networks. A comprehensive computer program, called LIFEPACK is coded in Fortran language in order to carry out the numerical computations. Two detailed case studies are presented to show the implementation of the proposed model

  12. Seismic Responses of an Added-Story Frame Structure with Viscous Dampers

    Directory of Open Access Journals (Sweden)

    Xuansheng Cheng

    2014-01-01

    Full Text Available The damping ratio of an added-story frame structure is established based on complex damping theory to determine the structure seismic response. The viscous dampers are selected and arranged through target function method. A significant damping effect is obtained when a small velocity index is selected. The seismic responses of a five-floor reinforced concrete frame structure with directly added light steel layers and light steel layers with viscous dampers are compared with the finite element software SAP2000. Calculation results show that, after adding the layers, the structure becomes flexible and the shear in the bottom layer decreases. However, the interlaminar shear of the other layers increases. The seismic response of the added layers is very significant and exhibits obvious whiplash effect. The interstory displacement angles of some layers do not meet the requirements. The seismic response of the structure decreases after the adoption of viscous dampers; thereby seismic requirements are satisfied.

  13. Siting of nuclear desalination plants in Saudi Arabia: A seismic study

    International Nuclear Information System (INIS)

    Aljohani, M.S.; Abdul-Fattah, A.F.; Almarshad, A.I.

    2005-01-01

    This paper presents the selection criteria generally and seismic criteria specifically to select a suitable site in Saudi Arabia for a nuclear desalination plant. These criteria include geological, meteorological, cooling water supply discharge, transport infrastructure, population, electric grid, water network capacity, environmental impact and airport movement. The seismicity of the Arabian peninsula for the locations of seismic activity along the Red Sea and the Arabian Gulf coastlines from 1973 to 2000 was studied carefully. This study included towns and locations along the east and west coastlines and their distances from the seismic event site. The results showed that Rabigh City along the west coast of Saudi Arabia is a good site to build a nuclear desalination plant. This is because of the following reasons: good seismic stability; good weather statistics; no flooding; mild wave conditions; good supply and discharge; good transportation infrastructure; low population area; very close to the huge electric grid. (author)

  14. The influence of backfill on seismicity

    CSIR Research Space (South Africa)

    Hemp, DA

    1990-09-01

    Full Text Available , that the seismicity has been reduced in areas where backfill had been placed. A factor complicating the evaluation of backfill on seismicity is the effect of geological structures on seismicity....

  15. Automatic interpretation of seismic micro facies using the fuzzy mathematics method

    Energy Technology Data Exchange (ETDEWEB)

    Dongrun, G.; Gardner, G.H.F.

    1988-01-01

    The interpretation of seismic micro facies concentrates on changes involving single reflection or several reflections, and endeavors to explain the relations between these changes and stratigraphic variation or hydrocarbon accumulation. In most cases, one can not determine the geological significance of reflection character anomalies on single or several seismic sections. But when one maps them on a plane, their distribution may on the whole indicate the geological significance. It is stated how the fuzzy method is used on a VAX computer to automatically construct a plane map of the reflection character changes in a time window. What an interpreter needs to do for whole interpretation is only to provide some parameters, such as time window, threshold, weight coefficients etc.

  16. Research and development activities of the Seismology Section for the period January 1988-December 1989

    International Nuclear Information System (INIS)

    Kumar, Vijay; Murty, G.S.

    1990-01-01

    This report summarises the research and development activities of the Seismology Section during the periods from January 1988 to December 1989. Apart from the ongoing work on forensic seismology, seismicity studies, rock burst monitoring, elastic wave propagation, a new field system became operational at Bhatsa, located about 100 km from Bombay, comprising 11 station radio-telemetered seismic network with a central recording laboratory to study the reservoir induced seismicity. (author). figs., tabs

  17. Interpretation of reflection seismics in the area North of Laegeren - Zurich Weinland

    International Nuclear Information System (INIS)

    Naef, H.; Birkhaeuser, P.; Roth, P.

    1995-05-01

    The investigations of potential siting areas for a repository for high-level radioactive waste which are concentrated in the crystalline basement of Northern Switzerland have been expanded since the late 1980s to include suitable sedimentary units. After extensive desk study evaluation, the approximately 100 m thick Opalinus Clay of the Tabular Jura east of the Aare river was chosen as the most promising sedimentary option. In this area not only the Opalinus Clay but also the over- and underlying units are clay-rich, in contrast to the tabular Jura west of the Aare river. In the area North of Laegeren - Zurich Weinland, where the Opalinus Clay is situated in the optimum depth range of 400 to 1000 m below surface, approximately 220 km of new high-resolution seismic profiles were recorded and interpreted together with existing seismic lines. Due to thorough field work and data processing, a very good quality of seismic lines was obtained. This allowed precise mapping of the marker horizons in general and the Opalinus Clay in detail. The goal of this study was to determine and delineate the most important tectonic units as well as to describe the potential host rocks in these units. By way of interactive interpretation of all available seismic lines, borehole data and surface data from the investigation area, depth maps of the most prominent marker horizons have been calculated and geological cross-sections constructed along the new seismic lines. The regional seismic character of the Middle Mesozoic units was modelled using borehole data from Weiach and Herdern. From this model the thickness of the Opalinus Clay along the new seismic lines was determined. The results indicate a relatively constant thickness of 95 to 120 m in the investigation area. (author) figs., tabs., refs

  18. Seismic soil-structure interaction with consideration of spatial incoherence of seismic ground motions: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Wen S., E-mail: wen.tseng@rizzoassoc.com [Paul C. Rizzo Associates, Inc., Western Region, 2201 Broadway, Suite 400, Oakland, CA 94612 (United States); Lilhanand, Kiat; Hamasaki, Don; Garcia, Julio A. [Paul C. Rizzo Associates, Inc., Western Region, 2201 Broadway, Suite 400, Oakland, CA 94612 (United States); Srinivasan, Ram [AREVA, NP, Inc., 6399 San Ignacio Avenue, San Jose, CA 95119 (United States)

    2014-04-01

    This paper presents a case study of seismic soil-structure interaction (SSI) analysis with consideration of spatial incoherence of seismic input ground motions. The SSI analyses were performed using the SASSI computer program for the Auxiliary Control Building (ACB) structure of an existing nuclear power plant on a hard rock site located in the Center and Eastern United States (CEUS) region. The incoherent seismic input motions for the hard rock site used for the analyses were generated using the computer program INCOH that works together with SASSI. The objective of the analyses was to generate maximum seismic response parameters for assessment of potential impact of newly developed site-specific (ground motion) response spectra (SSRS) on the seismic design of the ACB and potential benefits that could be gained by considering spatial incoherence of seismic input motions. Maximum seismic response values for selected response parameters of interest were generated with both SSRS-compatible coherent and incoherent seismic input motions. Comparisons were made of the corresponding maximum response parameter values and in-structure (acceleration) response spectra (ISRS) generated for both the coherent and incoherent motion inputs. These comparisons indicate that, by incorporating incoherence of ground motions in the seismic input, the maximum response values reduces and the ISRS peak amplitudes in the high frequency range (>10 Hz) also reduce from the corresponding response values resulting from the coherent motion input. The amount of ISRS-amplitude reduction increases as the spectral frequency increases, as expected. Such reductions can be as much as 20–50%. This case study demonstrates that, for a CEUS hard rock site where relatively high high-frequency in the seismic input response spectra exist, consideration of spatial incoherence of input motions would result in substantial benefits in reducing the high-frequency seismic responses. Such benefits are especially

  19. Field test investigation of high sensitivity fiber optic seismic geophone

    Science.gov (United States)

    Wang, Meng; Min, Li; Zhang, Xiaolei; Zhang, Faxiang; Sun, Zhihui; Li, Shujuan; Wang, Chang; Zhao, Zhong; Hao, Guanghu

    2017-10-01

    Seismic reflection, whose measured signal is the artificial seismic waves ,is the most effective method and widely used in the geophysical prospecting. And this method can be used for exploration of oil, gas and coal. When a seismic wave travelling through the Earth encounters an interface between two materials with different acoustic impedances, some of the wave energy will reflect off the interface and some will refract through the interface. At its most basic, the seismic reflection technique consists of generating seismic waves and measuring the time taken for the waves to travel from the source, reflect off an interface and be detected by an array of geophones at the surface. Compared to traditional geophones such as electric, magnetic, mechanical and gas geophone, optical fiber geophones have many advantages. Optical fiber geophones can achieve sensing and signal transmission simultaneously. With the development of fiber grating sensor technology, fiber bragg grating (FBG) is being applied in seismic exploration and draws more and more attention to its advantage of anti-electromagnetic interference, high sensitivity and insensitivity to meteorological conditions. In this paper, we designed a high sensitivity geophone and tested its sensitivity, based on the theory of FBG sensing. The frequency response range is from 10 Hz to 100 Hz and the acceleration of the fiber optic seismic geophone is over 1000pm/g. sixteen-element fiber optic seismic geophone array system is presented and the field test is performed in Shengli oilfield of China. The field test shows that: (1) the fiber optic seismic geophone has a higher sensitivity than the traditional geophone between 1-100 Hz;(2) The low frequency reflection wave continuity of fiber Bragg grating geophone is better.

  20. Seismicity and seismic hazard in Sabah, East Malaysia from earthquake and geodetic data

    Science.gov (United States)

    Gilligan, A.; Rawlinson, N.; Tongkul, F.; Stephenson, R.

    2017-12-01

    While the levels of seismicity are low in most of Malaysia, the state of Sabah in northern Borneo has moderate levels of seismicity. Notable earthquakes in the region include the 1976 M6.2 Lahad Datu earthquake and the 2015 M6 Ranau earthquake. The recent Ranau earthquake resulted in the deaths of 18 people on Mt Kinabalu, an estimated 100 million RM ( US$23 million) damage to buildings, roads, and infrastructure from shaking, and flooding, reduced water quality, and damage to farms from landslides. Over the last 40 years the population of Sabah has increased to over four times what it was in 1976, yet seismic hazard in Sabah remains poorly understood. Using seismic and geodetic data we hope to better quantify the hazards posed by earthquakes in Sabah, and thus help to minimize risk. In order to do this we need to know about the locations of earthquakes, types of earthquakes that occur, and faults that are generating them. We use data from 15 MetMalaysia seismic stations currently operating in Sabah to develop a region-specific velocity model from receiver functions and a pre-existing surface wave model. We use this new velocity model to (re)locate earthquakes that occurred in Sabah from 2005-2016, including a large number of aftershocks from the 2015 Ranau earthquake. We use a probabilistic nonlinear earthquake location program to locate the earthquakes and then refine their relative locations using a double difference method. The recorded waveforms are further used to obtain moment tensor solutions for these earthquakes. Earthquake locations and moment tensor solutions are then compared with the locations of faults throughout Sabah. Faults are identified from high-resolution IFSAR images and subsequent fieldwork, with a particular focus on the Lahad Datau and Ranau areas. Used together, these seismic and geodetic data can help us to develop a new seismic hazard model for Sabah, as well as aiding in the delivery of outreach activities regarding seismic hazard

  1. Seismic design practices for power systems

    International Nuclear Information System (INIS)

    Schiff, A.J.

    1991-01-01

    In this paper, the evolution of seismic design practices in electric power systems is reviewed. In California the evolution had led to many installation practices that are directed at improving the seismic ruggedness of power system facilities, particularly high voltage substation equipment. The primary means for substantiating the seismic ruggedness of important, hard to analyze substation equipment is through vibration testing. Current activities include system evaluations, development of emergency response plans and their exercise, and review elements that impact the entire system, such as energy control centers and communication systems. From a national perspective there is a need to standardize seismic specifications, identify a seismic specialist within each utility and enhance communications among these specialists. There is a general need to incorporate good seismic design practices on a national basis emphasizing new construction

  2. The historical seismicity in Spain. Analysis. Incidence over the nuclear sites

    International Nuclear Information System (INIS)

    Lopez Marinas, J.M.

    1985-01-01

    The lack of good instrumental registers till very recently and the great documental richness existing in Spain emphasize the importance of the historical seismicity. In the present report, the Spanish catalogues of earthquakes and the necessity of their revision are analyzed showing several examples. Finally the incidence of a historical seismicity datum over a nuclear site is discussed. (author)

  3. Man-caused seismicity of Kuzbass

    Science.gov (United States)

    Emanov, Alexandr; Emanov, Alexey; Leskova, Ekaterina; Fateyev, Alexandr

    2010-05-01

    A natural seismicity of Kuznetsk Basin is confined in the main to mountain frame of Kuznetsk hollow. In this paper materials of experimental work with local station networks within sediment basin are presented. Two types of seismicity display within Kuznetsk hollow have been understood: first, man-caused seismic processes, confined to mine working and concentrated on depths up to one and a half of km; secondly, seismic activations on depths of 2-56 km, not coordinated in plan with coal mines. Every of studied seismic activations consists of large quantity of earthquakes of small powers (Ms=1-3). From one to first tens of earthquakes were recorded in a day. The earthquakes near mine working shift in space along with mine working, and seismic process become stronger at the instant a coal-plough machine is operated, and slacken at the instant the preventive works are executed. The seismic processes near three lavas in Kuznetsk Basin have been studied in detail. Uplift is the most typical focal mechanism. Activated zone near mine working reach in diameter 1-1,5 km. Seismic activations not linked with mine working testify that the subsoil of Kuznetsk hollow remain in stress state in whole. The most probable causes of man-caused action on hollow are processes, coupled with change of physical state of rocks at loss of methane from large volume or change by mine working of rock watering in large volume. In this case condensed rocks, lost gas and water, can press out upwards, realizing the reverse fault mechanism of earthquakes. A combination of stress state of hollow with man-caused action at deep mining may account for incipient activations in Kuznetsk Basin. Today earthquakes happen mainly under mine workings, though damages of workings themselves do not happen, but intensive shaking on surface calls for intent study of so dangerous phenomena. In 2009 replicates of the experiment on research of seismic activations in area of before investigated lavas have been conducted

  4. Combined GPS and seismic monitoring of a 12-story structure in a region of induced seismicity in Oklahoma

    Science.gov (United States)

    Haase, J. S.; Soliman, M.; Kim, H.; Jaiswal, P.; Saunders, J. K.; Vernon, F.; Zhang, W.

    2017-12-01

    This work focuses on quantifying ground motions and their effects in Oklahoma near the location of the 2016 Mw 5.8 Pawnee earthquake, where seismicity has been increasing due to wastewater injection related to oil and natural gas production. Much of the building inventory in Oklahoma was constructed before the increase in seismicity and before the implementation of earthquake design and detailing provisions for reinforced concrete (RC) structures. We will use combined GPS/seismic monitoring techniques to measure ground motion in the field and the response of structures to this ground motion. Several Oklahoma State University buildings experienced damage due to the Pawnee earthquake. The USGS Shake Map product estimated peak ground acceleration (PGA) ranging from 0.12g to 0.15g at campus locations. We are deploying a high-rate GPS sensor and accelerometer on the roof and another accelerometer at ground level of a 12-story RC structure and at selected field sites in order to collect ambient noise data and nearby seismicity. The longer period recording characteristics of the GPS/seismic system are particularly well adapted to monitoring these large structures in the event of a significant earthquake. Gross characteristics of the structural system are described, which consists of RC columns and RC slabs in all stories. We conducted a preliminary structural analysis including modal analysis and response spectrum analysis based on a finite element (FE) simulation, which indicated that the period associated with the first X-axis bending, first torsional, and first Y-axis bending modes are 2.2 s, 2.1 s, and 1.8 s, respectively. Next, a preliminary analysis was conducted to estimate the range of expected deformation at the roof level for various earthquake excitations. The earthquake analysis shows a maximum roof displacement of 5 and 7 cm in the horizontal directions resulting from earthquake loads with PGA of 0.2g, well above the noise level of the combined GPS/seismic

  5. Advances in Rotational Seismic Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Pierson, Robert [Applied Technology Associates, Albuquerque, NM (United States); Laughlin, Darren [Applied Technology Associates, Albuquerque, NM (United States); Brune, Robert [Applied Technology Associates, Albuquerque, NM (United States)

    2016-10-19

    Rotational motion is increasingly understood to be a significant part of seismic wave motion. Rotations can be important in earthquake strong motion and in Induced Seismicity Monitoring. Rotational seismic data can also enable shear selectivity and improve wavefield sampling for vertical geophones in 3D surveys, among other applications. However, sensor technology has been a limiting factor to date. The US Department of Energy (DOE) and Applied Technology Associates (ATA) are funding a multi-year project that is now entering Phase 2 to develop and deploy a new generation of rotational sensors for validation of rotational seismic applications. Initial focus is on induced seismicity monitoring, particularly for Enhanced Geothermal Systems (EGS) with fracturing. The sensors employ Magnetohydrodynamic (MHD) principles with broadband response, improved noise floors, robustness, and repeatability. This paper presents a summary of Phase 1 results and Phase 2 status.

  6. Seismic shear wall ISP NUPEC's seismic ultimate dynamic response test. Comparison report

    International Nuclear Information System (INIS)

    1996-01-01

    In the seismic design of a nuclear power plant, evaluation of the ultimate strength of the nuclear reactor building is an important subject for assessment of seismic reliability of the plant. In order to carry out the evaluation, the response characteristics of reinforced concrete seismic shear walls up to their ultimate state have to be understood. For this purpose, there is a need to develop reliable non-linear response analysis methods which enables the reliable ultimate strength evaluation of nuclear reactor buildings. Along with this need, many computer codes have been developed. These computer codes are compared. (K.A.)

  7. Seismic risk map of Korea

    International Nuclear Information System (INIS)

    Lee, S.H.; Lee, Y.K.; Eum, S.H.; Yang, S.J.; Chun, M.S.

    1983-01-01

    A study on seismic hazard level in Korea has been performed and the main results of the study are summarized as follows: 1. Historians suggest that the quality of historical earthquake data may be accurate in some degree and the data should be used in seismic risk analysis. 2. The historical damage events are conformed in historical literatures and their intensities are re-evaluated by joint researchers. The maximum MM intensity of them is VIII evaluated for 17 events. 3. The relation of earthquakes to surface fault is not clear. It seems resonable to related them to tectonic provinces. 4. Statistical seismic risk analysis shows that the acceleration expected within 50O year return period is less than 0.25G when only instrumental earthquakes are used and less than 0.10G if all of instrumental and historical earthquakes are used. The acceleration in Western Coast and Kyungsang area is higher than the other regions in Korea. 5. The maximum horizontal acceleration determined by conservative method is 0.26G when historical earthquake data are used and less than 0.20G if only instrumental earthquakes are used. The return period of 0.26G is 240 years in Kyungsang province and longer in other provinces. (Author)

  8. Integrated Seismic Survey for Detecting Landslide Effects on High Speed Rail Line at Istanbul–Turkey

    Directory of Open Access Journals (Sweden)

    Grit Mert

    2016-02-01

    Full Text Available In this study, Multichannel Analysis of Surface Waves Method (MASW, seismic refraction tomography and seismic reflection methods are used together at Silivri district in Istanbul – a district with a landslide problem because of the high speed rail line project crossing through the area. The landslide structure, border and depth of the slip plane are investigated and correlated within the local geology. According to the obtained 2D seismic sections, the landslide occurs through the East-West direction in the study area and the landslide slip plane with its border are clearly obtained under the subsurface. The results prove that the study area is suitable enough for the landslide development and this evolution also affects the high speed rail line project.

  9. Contribution à l'étude d'une partie du bassin d'Essaouira (Maroc) par sismique réflexionContribution to part of the Essaouira Basin (Morocco) by seismic reflection

    Science.gov (United States)

    Jaffal, Mohammed; Kchikach, Azzouz; Lefort, Jean-Pierre; Hanich, Lahoucine

    A large number of seismic reflection lines and boreholes have been carried out in the Essaouira Basin by the oil industry. The present study concentrates on the reinterpretation of these data in the restricted area of Khemis Meskala, in order to better characterise the structure of the Cretaceous aquiferous system. The reflector corresponding to the bottom of the Vraconian formation has been identified on the different seismic sections. This horizon, which marks the base of the aquiferous system, was first digitised on time migration sections and then converted to depth sections using a suitable linear velocity law. The isobath map of the bottom of the Vraconian resulting from this study images the 3D geometrical structure of this horizon and shows that it is slightly folded in domes and basins. This document will be useful for rationalising the future hydrogeological researches that will be undertaken in the Khemis Meskala area. To cite this article: M. Jaffal et al., C. R. Geoscience 334 (2002) 229-234.

  10. Mine-induced seismicity at East-Rand proprietary mines

    CSIR Research Space (South Africa)

    Milev, AM

    1995-09-01

    Full Text Available Mining results in seismic activity of varying intensity, from small micro seismic events to larger seismic events, often associated with significant seismic induced damages. This work deals with the understanding of the present seismicity...

  11. Rippability Assessment of Weathered Sedimentary Rock Mass using Seismic Refraction Methods

    Science.gov (United States)

    Ismail, M. A. M.; Kumar, N. S.; Abidin, M. H. Z.; Madun, A.

    2018-04-01

    Rippability or ease of excavation in sedimentary rocks is a significant aspect of the preliminary work of any civil engineering project. Rippability assessment was performed in this study to select an available ripping machine to rip off earth materials using the seismic velocity chart provided by Caterpillar. The research area is located at the proposed construction site for the development of a water reservoir and related infrastructure in Kampus Pauh Putra, Universiti Malaysia Perlis. The research was aimed at obtaining seismic velocity, P-wave (Vp) using a seismic refraction method to produce a 2D tomography model. A 2D seismic model was used to delineate the layers into the velocity profile. The conventional geotechnical method of using a borehole was integrated with the seismic velocity method to provide appropriate correlation. The correlated data can be used to categorize machineries for excavation activities based on the available systematic analysis procedure to predict rock rippability. The seismic velocity profile obtained was used to interpret rock layers within the ranges labelled as rippable, marginal, and non-rippable. Based on the seismic velocity method the site can be classified into loose sand stone to moderately weathered rock. Laboratory test results shows that the site’s rock material falls between low strength and high strength. Results suggest that Caterpillar’s smallest ripper, namely, D8R, can successfully excavate materials based on the test results integration from seismic velocity method and laboratory test.

  12. Seismic forecast using geostatistics

    International Nuclear Information System (INIS)

    Grecu, Valeriu; Mateiciuc, Doru

    2007-01-01

    The main idea of this research direction consists in the special way of constructing a new type of mathematical function as being a correlation between a computed statistical quantity and another physical quantity. This type of function called 'position function' was taken over by the authors of this study in the field of seismology with the hope of solving - at least partially - the difficult problem of seismic forecast. The geostatistic method of analysis focuses on the process of energy accumulation in a given seismic area, completing this analysis by a so-called loading function. This function - in fact a temporal function - describes the process of energy accumulation during a seismic cycle from a given seismic area. It was possible to discover a law of evolution of the seismic cycles that was materialized in a so-called characteristic function. This special function will help us to forecast the magnitude and the occurrence moment of the largest earthquake in the analysed area. Since 2000, the authors have been evolving to a new stage of testing: real - time analysis, in order to verify the quality of the method. There were five large earthquakes forecasts. (authors)

  13. Annual Hanford seismic report - fiscal year 1996

    International Nuclear Information System (INIS)

    Hartshorn, D.C.; Reidel, S.P.

    1996-12-01

    Seismic monitoring (SM) at the Hanford Site was established in 1969 by the US Geological Survey (USGS) under a contract with the US Atomic Energy Commission. Since 1980, the program has been managed by several contractors under the US Department of Energy (USDOE). Effective October 1, 1996, the Seismic Monitoring workscope, personnel, and associated contracts were transferred to the USDOE Pacific Northwest National Laboratory (PNNL). SM is tasked to provide an uninterrupted collection and archives of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) located on and encircling the Hanford Site. SM is also tasked to locate and identify sources of seismic activity and monitor changes in the historical pattern of seismic activity at the Hanford Site. The data compiled are used by SM, Waste Management, and engineering activities at the Hanford Site to evaluate seismic hazards and seismic design for the Site

  14. Design experience on seismically isolated buildings

    International Nuclear Information System (INIS)

    Giuliani, G.C.

    1991-01-01

    This paper describes the practical problems associated with the structural design of seismically isolated buildings now under construction in Ancona, Italy. These structures are the first seismically isolated buildings in Italy. The Ancona region is in zone 2 of the Italian Seismic Code. It has a design acceleration of 0.07 g which corresponds to a ground surface acceleration of 0.25 g. The last significant earthquake was recorded on June 14, 1972, having a single shock-type wave with a peak acceleration of 0.53 g. Taking into account the aforesaid earthquake, the structural design of these new buildings was performed according to an acceleration spectrum which was different from the zone 2 seismic code and which provided protection for stronger ground motions. To minimize the cost of the structure, the buildings used ribbed plate decks, thus reducing the amount of material and the mass of the structures to be isolated. The design requirements, dynamic analysis performed, structural design, and practical engineering employed are reported in this paper. A comparison between the costs of a conventionally designed and a base-isolated structure is also reported. It shows a net savings of 7% for the base-isolated structure. The tests undertaken for certifying the mechanical properties of the isolators for both static and dynamic loads are also described, as is the full-scale dynamic test which is scheduled for next year (1990) for one of the completed buildings. (orig.)

  15. Seismic fragility capacity of equipment--horizontal shaft pump test

    International Nuclear Information System (INIS)

    Iijima, T.; Abe, H.; Suzuki, K.

    2005-01-01

    The current seismic fragility capacity of horizontal shaft pump is 1.6 x 9.8 m/s 2 (1.6 g), which was decided from previous vibration tests and we believe that it must have sufficient margin. The purpose of fragility capacity test is to obtain realistic seismic fragility capacity of horizontal shaft pump by vibration tests. Reactor Building Closed Cooling Water (RCW) Pump was tested as a typical horizontal shaft pump, and then bearings and liner rings were tested as important parts to evaluate critical acceleration and dispersion. Regarding RCW pump test, no damage was found, though maximum input acceleration level was 6 x 9.8 m/s 2 (6 g). Some kinds of bearings and liner rings were tested on the element test. Input load was based on seismic motion which was same with the RCW pump test, and maximum load was equivalent to over 20 times of design seismic acceleration. There was not significant damage that caused emergency stop of pump but degradation of surface roughness was found on some kinds of bearings. It would cause reduction of pump life, but such damage on bearings occurred under large seismic load condition that was equivalent to over 10 to 20 g force. Test results show that realistic fragility capacity of horizontal shaft pump would be at least four times as higher as current value which has been used for our seismic PSA. (authors)

  16. Advanced Seismic While Drilling System

    Energy Technology Data Exchange (ETDEWEB)

    Robert Radtke; John Fontenot; David Glowka; Robert Stokes; Jeffery Sutherland; Ron Evans; Jim Musser

    2008-06-30

    A breakthrough has been discovered for controlling seismic sources to generate selectable low frequencies. Conventional seismic sources, including sparkers, rotary mechanical, hydraulic, air guns, and explosives, by their very nature produce high-frequencies. This is counter to the need for long signal transmission through rock. The patent pending SeismicPULSER{trademark} methodology has been developed for controlling otherwise high-frequency seismic sources to generate selectable low-frequency peak spectra applicable to many seismic applications. Specifically, we have demonstrated the application of a low-frequency sparker source which can be incorporated into a drill bit for Drill Bit Seismic While Drilling (SWD). To create the methodology of a controllable low-frequency sparker seismic source, it was necessary to learn how to maximize sparker efficiencies to couple to, and transmit through, rock with the study of sparker designs and mechanisms for (a) coupling the sparker-generated gas bubble expansion and contraction to the rock, (b) the effects of fluid properties and dynamics, (c) linear and non-linear acoustics, and (d) imparted force directionality. After extensive seismic modeling, the design of high-efficiency sparkers, laboratory high frequency sparker testing, and field tests were performed at the University of Texas Devine seismic test site. The conclusion of the field test was that extremely high power levels would be required to have the range required for deep, 15,000+ ft, high-temperature, high-pressure (HTHP) wells. Thereafter, more modeling and laboratory testing led to the discovery of a method to control a sparker that could generate low frequencies required for deep wells. The low frequency sparker was successfully tested at the Department of Energy Rocky Mountain Oilfield Test Center (DOE RMOTC) field test site in Casper, Wyoming. An 8-in diameter by 26-ft long SeismicPULSER{trademark} drill string tool was designed and manufactured by TII

  17. Seismic analysis and testing of nuclear power plants

    International Nuclear Information System (INIS)

    1979-01-01

    The following subjects are discussed in this guide: General Recommendations for seismic classification, loading combinations and allowable limits; seismic analysis methods; implications for seismic design; seismic testing and qualification; seismic instrumentation; modelling techniques; material property characterization; seismic response of soil deposits and earth structures; liquefaction and ground failure; slope stability; sloshing effects in water pools; qualification testing by means of the transport vehicle

  18. Seismicity within the Irpinia Fault System As Monitored By Isnet (Irpinia Seismic Network) and Its Possible Relation with Fluid Storage

    Science.gov (United States)

    Festa, G.; Zollo, A.; Amoroso, O.; Ascione, A.; Colombelli, S.; Elia, L.; Emolo, A.; Martino, C.; Mazzoli, S.; Orefice, A.; Russo, G.

    2014-12-01

    ISNet (http://isnet.fisica.unina.it) is deployed in Southern Apennines along the active fault system responsible for the 1980, M 6.9 Irpinia earthquake. ISNet consists of 32 seismic stations equipped with both strong motion and velocimetric instruments (either broadband or short-period), with the aim of capture a broad set of seismic signals, from ambient noise to strong motion. Real time and near real time procedures run at ISNet with the goal of monitoring the seismicity, check possible space-time anomalies, detect seismic sequences and launch an earthquake early warning in the case of potential significant ground shaking in the area. To understand the role of fluids on the seismicity of the area, we investigated velocity and attenuation models. The former is built from accurate cross-correlation picking and S wave detection based onto polarization analysis. Joint inversion of both P and S arrival times is then based on a linearized multi-scale tomographic approach. Attenuation is instead obtained from inversion of displacement spectra, deconvolving for the source effect. High VP/VS and QS/QP >1 were found within a ~15 km wide rock volume where intense microseismicity is located. This indicates that concentration of seismicity is possibly controlled by high pore fluid pressure. This earthquake reservoir may come from a positive feedback between the seismic pumping that controls the fluid transmission through the fractured damage zone and the low permeability of cross fault barrier, increasing the fluid pore pressure within the fault bounded block. In this picture, sequences mostly occur at the base of this fluid rich layer. They show an anomalous pattern in the earthquake occurrence per magnitude classes; main events evolve with a complex source kinematics, as obtained from backprojection of apparent source time functions, indicating possible directivity effects. In this area sequences might be the key for understanding the transition between the deep

  19. Visualization of volumetric seismic data

    Science.gov (United States)

    Spickermann, Dela; Böttinger, Michael; Ashfaq Ahmed, Khawar; Gajewski, Dirk

    2015-04-01

    Mostly driven by demands of high quality subsurface imaging, highly specialized tools and methods have been developed to support the processing, visualization and interpretation of seismic data. 3D seismic data acquisition and 4D time-lapse seismic monitoring are well-established techniques in academia and industry, producing large amounts of data to be processed, visualized and interpreted. In this context, interactive 3D visualization methods proved to be valuable for the analysis of 3D seismic data cubes - especially for sedimentary environments with continuous horizons. In crystalline and hard rock environments, where hydraulic stimulation techniques may be applied to produce geothermal energy, interpretation of the seismic data is a more challenging problem. Instead of continuous reflection horizons, the imaging targets are often steep dipping faults, causing a lot of diffractions. Without further preprocessing these geological structures are often hidden behind the noise in the data. In this PICO presentation we will present a workflow consisting of data processing steps, which enhance the signal-to-noise ratio, followed by a visualization step based on the use the commercially available general purpose 3D visualization system Avizo. Specifically, we have used Avizo Earth, an extension to Avizo, which supports the import of seismic data in SEG-Y format and offers easy access to state-of-the-art 3D visualization methods at interactive frame rates, even for large seismic data cubes. In seismic interpretation using visualization, interactivity is a key requirement for understanding complex 3D structures. In order to enable an easy communication of the insights gained during the interactive visualization process, animations of the visualized data were created which support the spatial understanding of the data.

  20. Fault Mechanics and Post-seismic Deformation at Bam, SE Iran

    Science.gov (United States)

    Wimpenny, S. E.; Copley, A.

    2017-12-01

    The extent to which aseismic deformation relaxes co-seismic stress changes on a fault zone is fundamental to assessing the future seismic hazard following any earthquake, and in understanding the mechanical behaviour of faults. We used models of stress-driven afterslip and visco-elastic relaxation, in conjunction with a dense time series of post-seismic InSAR measurements, to show that there has been minimal release of co-seismic stress changes through post-seismic deformation following the 2003 Mw 6.6 Bam earthquake. Our modelling indicates that the faults at Bam may remain predominantly locked, and that the co- plus inter-seismically accumulated elastic strain stored down-dip of the 2003 rupture patch may be released in a future Mw 6 earthquake. Modelling also suggests parts of the fault that experienced post-seismic creep between 2003-2009 overlapped with areas that also slipped co-seismically. Our observations and models also provide an opportunity to probe how aseismic fault slip leads to the growth of topography at Bam. We find that, for our modelled afterslip distribution to be consistent with forming the sharp step in the local topography at Bam over repeated earthquake cycles, and also to be consistent with the geodetic observations, requires either (1) far-field tectonic loading equivalent to a 2-10 MPa deviatoric stress acting across the fault system, which suggests it supports stresses 60-100 times less than classical views of static fault strength, or (2) that the fault surface has some form of mechanical anisotropy, potentially related to corrugations on the fault plane, that controls the sense of slip.

  1. In-situ measurements of seismic velocities in the San Francisco Bay region...part II

    Science.gov (United States)

    Gibbs, James F.; Fumal, Thomas E.; Borcherdt, Roger D.

    1976-01-01

    Seismic wave velocities (compressional and shear) are important parameters for determining the seismic response characteristics of various geologic units when subjected to strong earthquake ground shaking. Seismic velocities of various units often show a strong correlation with the amounts of damage following large earthquakes and have been used as a basis for certain types of seismic zonation studies. Currently a program is in progress to measure seismic velocities in the San Francisco Bay region at an estimated 150 sites. At each site seismic travel times are measured in drill holes, normally at 2.5-m intervals to a depth of 30 m. Geologic logs are determined from drill hole cuttings, undisturbed samples, and penetrometer samples. The data provide a detailed comparison of geologic and seismic characteristics and provide parameters for estimating strong earthquake ground motions quantitatively at each of the site. A major emphasis of this program is to obtain a detailed comparison of geologic and seismic data on a regional scale for use in seismic zonation. The broad data base available in the San Francisco Bay region suggests using the area as a pilot area for the development of general techniques applicable to other areas.

  2. Seismic Record Processing Program (SRP), Version 1.03

    International Nuclear Information System (INIS)

    Karabalis, D.L.; Cokkinides, G.J.; Rizos, D.C.

    1992-04-01

    The Seismic Record Processing Program (SRP) is an interactive computer code developed for the calculation of artificial earthquake records that comply with the US Nuclear Regulatory Commission Standard Review Plan. The basic objective of SRP is the calculation of artificial seismic time histories that correspond to Design Response Spectra specified in the US Atomic Energy Commission Regulatory Guide 1.60 and/or the Power Spectral Density (PSD) requirements of the NRC Standard Review Plan. However, SRP is a general computer code and can accommodate any arbitrarily specified Target Response Spectra (TRS) or PSD requirements. In addition, among its other futures, SRP performs quadratic baseline correction and calculates correlations factors for a set of up to three earthquake records. This manual is prepared in two parts. The first part describes the methodologies and criteria used while the second is a user's manual. In section 1 of the first part, the techniques used for the adjustment of a given earthquake record to a required TRS family of curves for a set of specified damping ratios are presented. Similarly, in section 2 of the first part, the PSD of an earthquake record is compared to a target PSD and adjusted accordingly. Sections 3 and 4 of the first part deal with the subjects of baseline correction and correlation of earthquake records, respectively. The second part is the user's manual. The user's manual contains a list of the computer hardware requirements, instructions for the program installation, a description of the user generated input files, and a description of all the program menus and commands

  3. Optimization of the seismic pit of the Tokamak building of ITER

    International Nuclear Information System (INIS)

    Beltran, F.; Combescure, D.; Hanna, G.; Ezeberry, J.

    2010-01-01

    The Tokamak Complex of ITER is the structure housing the Tokamak machine, the Tritium building and the Diagnostic building. This structure, with a plan of about 120 x 80 m, will be built with a base isolation system formed with over 500 steel reinforced neoprene pads. The pads will be mounted on top of short columns or plinths, supported by a bottom basemat resting directly on rock. Foundation level is about 20 m below grade level. Consequently, a ground supporting system, such as retaining walls, is required to protect the structure. The walls, together with the basemat, form the seismic pit of the Tokamak Complex. After the initial design of the seismic pit walls and basemat was closed, a new report on the water table levels to be expected for different return periods was issued. The report introduced a substantial reduction of ground water levels with respect to the previous design basis. Following this reduction, a new design for the seismic pit walls and basemat was developed. The goal was to introduce the new optimized design as an alternative in the Call for Tenders related to the construction of the seismic pit. The design of the seismic pit is governed by the seismic action, even though the whole pit is embedded in a limestone rock of medium to good quality. For optimizing the design, a review of geotechnical parameters has been carried out first, using the huge body of information generated after more than 20 years of site investigation. Afterwards, seismic thrusts on the walls have been computed using different procedures, from conventional rock wedged equilibrium analyses to more sophisticated techniques based on the interaction of discrete blocks configuring the rock massif. In addition, internal forces and moments have been determined at the basemat from the ground deformation parameters, using finite element models. Finally, steel reinforcement has been obtained for the several sections of the retaining walls and the basemat, complying with the

  4. Seismic modelling of shallow coalfields

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, D.C. (University of Calgary, Calgary, Alberta (Canada). Dept. of Geology and Geophysics.)

    1987-01-01

    This study was undertaken in order to determine whether reflection seismic surveys can be used to map stratigraphic and structural detail of shallow Plains-type coal deposits. Two coalfields in central Alberta were used to examine and determine optimum acquisition parameters for reflection seismic surveys in such settings. The study was based on 1-D and 2-D numerical seismic modelling using sonic and density well logs to formulate a layered earth model. Additional objectives were to interpret the reflection seismic data in terms of geologic features in the study area, and to investigate the relationship between vertical resolution and field acquisition geometry. 27 refs., 41 figs.

  5. Complex researches on substantiation of construction and seismic stability of large dams in seismic region

    International Nuclear Information System (INIS)

    Negmatullaev, S.Kh.; Yasunov, P.A.

    2001-01-01

    This article is devoted to complex researches on substantiation of construction and seismic stability of large dams (Nurec hydroelectric power station) in seismic region. Geological, seismological, model, and engineering investigations are discussed in this work. At construction of Nurec hydroelectric power station the rich experience is accumulated. This experience can be used in analogous seismically active regions at construction similar hydroelectric power stations.

  6. Development of seismic hazard analysis in Japan

    International Nuclear Information System (INIS)

    Itoh, T.; Ishii, K.; Ishikawa, Y.; Okumura, T.

    1987-01-01

    In recent years, seismic risk assessment of the nuclear power plant have been conducted increasingly in various countries, particularly in the United States to evaluate probabilistically the safety of existing plants under earthquake loading. The first step of the seismic risk assessment is the seismic hazard analysis, in which the relationship between the maximum earthquake ground motions at the plant site and their annual probability of exceedance, i.e. the seismic hazard curve, is estimated. In this paper, seismic hazard curves are evaluated and examined based on historical earthquake records model, in which seismic sources are modeled with area-sources, for several different sites in Japan. A new evaluation method is also proposed to compute the response spectra of the earthquake ground motions in connection with estimating the probabilistic structural response. Finally the numerical result of probabilistic risk assessment for a base-isolated three story RC structure, in which the frequency of seismic induced structural failure is evaluated combining the seismic hazard analysis, is described briefly

  7. Seismic rupture study using near-source data: application to seismic hazard assessment

    International Nuclear Information System (INIS)

    Hernandez, Bruno

    2000-01-01

    This work presents seismic source studies using near-field data. In accordance with the quality and the quantity of available data we developed and applied various methods to characterize the seismic source. Macro-seismic data are used to verify if simple and robust methods used on recent instrumental earthquakes may provide a good tool to calibrate historical events in France. These data are often used to characterize earthquakes to be taken into account for seismic hazard assessment in moderate seismicity regions. Geodetic data (SAR, GPS) are used to estimate the slip distribution on the fault during the 1992, Landers, California earthquake. These data are also used to precise the location and the geometry of the main events of the 1997, Colfiorito, central Italy, earthquake sequence. Finally, the strong motions contain the most complete information about rupture process. These data are used to discriminate between two possible fault planes of the 1999, north India, Chamoli earthquake. The strong motions recorded close to the 1999, Mexico, Oaxaca earthquake are used to constrain the rupture history. Strong motions a.re also used in combination with geodetic data to access the rupture history of the Landers earthquake and the main events of the Colfiorito seismic sequence. For the Landers earthquake, the data quality and complementarity offered the possibility to describe the rupture development with accuracy. The large heterogeneities in both slip amplitude and rupture velocity variations suggest that the rupture propagates by breaking successive asperities rather than by propagating like a pulse at constant velocity. The rupture front slows as it encounters barriers and accelerates within main asperities. (author)

  8. Seismic fragility analysis of a nuclear building based on probabilistic seismic hazard assessment and soil-structure interaction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, R.; Ni, S.; Chen, R.; Han, X.M. [CANDU Energy Inc, Mississauga, Ontario (Canada); Mullin, D. [New Brunswick Power, Point Lepreau, New Brunswick (Canada)

    2016-09-15

    Seismic fragility analyses are conducted as part of seismic probabilistic safety assessment (SPSA) for nuclear facilities. Probabilistic seismic hazard assessment (PSHA) has been undertaken for a nuclear power plant in eastern Canada. Uniform Hazard Spectra (UHS), obtained from the PSHA, is characterized by high frequency content which differs from the original plant design basis earthquake spectral shape. Seismic fragility calculations for the service building of a CANDU 6 nuclear power plant suggests that the high frequency effects of the UHS can be mitigated through site response analysis with site specific geological conditions and state-of-the-art soil-structure interaction analysis. In this paper, it is shown that by performing a detailed seismic analysis using the latest technology, the conservatism embedded in the original seismic design can be quantified and the seismic capacity of the building in terms of High Confidence of Low Probability of Failure (HCLPF) can be improved. (author)

  9. Ambient Seismic Noise Interferometry on the Island of Hawai`i

    Science.gov (United States)

    Ballmer, Silke

    Ambient seismic noise interferometry has been successfully applied in a variety of tectonic settings to gain information about the subsurface. As a passive seismic technique, it extracts the coherent part of ambient seismic noise in-between pairs of seismic receivers. Measurements of subtle temporal changes in seismic velocities, and high-resolution tomographic imaging are then possible - two applications of particular interest for volcano monitoring. Promising results from other volcanic settings motivate its application in Hawai'i, with this work being the first to explore its potential. The dataset used for this purpose was recorded by the Hawaiian Volcano Observatory's permanent seismic network on the Island of Hawai'i. It spans 2.5 years from 5/2007 to 12/2009 and covers two distinct sources of volcanic tremor. After applying standard processing for ambient seismic noise interferometry, we find that volcanic tremor strongly affects the extracted noise information not only close to the tremor source, but unexpectedly, throughout the island-wide network. Besides demonstrating how this long-range observability of volcanic tremor can be used to monitor volcanic activity in the absence of a dense seismic array, our results suggest that care must be taken when applying ambient seismic noise interferometry in volcanic settings. In a second step, we thus exclude days that show signs of volcanic tremor, reducing the dataset to three months, and perform ambient seismic noise tomography. The resulting two-dimensional Rayleigh wave group velocity maps for 0.1 - 0.9 Hz compare very well with images from previous travel time tomography, both, for the main volcanic structures at low frequencies as well as for smaller features at mid-to-high frequencies - a remarkable observation for the temporally truncated dataset. These robust results suggest that ambient seismic noise tomography in Hawai'i is suitable 1) to provide a three-dimensional S-wave model for the volcanoes and 2

  10. Seismic appraisal test of control rod drive mechanism of China experiment fast reactor

    International Nuclear Information System (INIS)

    Song Qing; Yang Hongyi; Jing Yueqing; Wen Jing; Liu Guijuan; Sun Lei

    2008-01-01

    The structure of the control rod drive mechanism in pool type sodium-cooled fast reactor is the characterized by long, thin, and geometric nonlinearity, and the seismic load is multiple activation. The anti-seismic evaluation is always paid great attention by the countries developing the technology worldwide. This article introduces the seismic appraisal test of the control rod drive mechanism of China Experimental Fast Reactor (CEFR) performed on a seismic platform which is vertical shaft style and multiple activation. The result of the test shows the structural integrity and the function of the control rod drive mechanism could meet the design requirements of the earthquake intensity. (authors)

  11. Spots of Seismic Danger Extracted by Properties of Low-Frequency Seismic Noise

    Science.gov (United States)

    Lyubushin, Alexey

    2013-04-01

    A new method of seismic danger estimate is presented which is based on using properties of low-frequency seismic noise from broadband networks. Two statistics of noise waveforms are considered: multi-fractal singularity spectrum support width D and minimum normalized entropy En of squared orthogonal wavelet coefficients. The maps of D and En are plotted in the moving time window. Let us call the regions extracted by low values of D and high values of En as "spots of seismic danger" - SSD. Mean values of D and En are strongly anti-correlated - that is why statistics D and En extract the same SSD. Nevertheless their mutual considering is expedient because these parameters are based on different approaches. The physical mechanism which underlies the method is consolidation of small blocks of the Earth's crust into the large one before the strong earthquake. This effect has a consequence that seismic noise does not include spikes which are connected with mutual movements of small blocks. The absence of irregular spikes in the noise follows the decreasing of D and increasing of entropy En. The stability in space and size of the SSD provides estimates of the place and energy of the probable future earthquake. The increasing or decreasing of SSD size and minimum or maximum values of D and En within SSD allows estimate the trend of seismic danger. The method is illustrating by the analysis of seismic noise from broadband seismic network F-net in Japan [1-5]. Statistically significant decreasing of D allowed a hypothesis about approaching Japan to a future seismic catastrophe to be formulated at the middle of 2008. The peculiarities of correlation coefficient estimate within 1 year time window between median values of D and generalized Hurst exponent allowed to make a decision that starting from July of 2010 Japan come to the state of waiting strong earthquake [3]. The method extracted a huge SSD near Japan which includes the region of future Tohoku mega-earthquake and the

  12. Induced Seismicity Monitoring System

    Science.gov (United States)

    Taylor, S. R.; Jarpe, S.; Harben, P.

    2014-12-01

    There are many seismological aspects associated with monitoring of permanent storage of carbon dioxide (CO2) in geologic formations. Many of these include monitoring underground gas migration through detailed tomographic studies of rock properties, integrity of the cap rock and micro seismicity with time. These types of studies require expensive deployments of surface and borehole sensors in the vicinity of the CO2 injection wells. Another problem that may exist in CO2 sequestration fields is the potential for damaging induced seismicity associated with fluid injection into the geologic reservoir. Seismic hazard monitoring in CO2 sequestration fields requires a seismic network over a spatially larger region possibly having stations in remote settings. Expensive observatory-grade seismic systems are not necessary for seismic hazard deployments or small-scale tomographic studies. Hazard monitoring requires accurate location of induced seismicity to magnitude levels only slightly less than that which can be felt at the surface (e.g. magnitude 1), and the frequencies of interest for tomographic analysis are ~1 Hz and greater. We have developed a seismo/acoustic smart sensor system that can achieve the goals necessary for induced seismicity monitoring in CO2 sequestration fields. The unit is inexpensive, lightweight, easy to deploy, can operate remotely under harsh conditions and features 9 channels of recording (currently 3C 4.5 Hz geophone, MEMS accelerometer and microphone). An on-board processor allows for satellite transmission of parameter data to a processing center. Continuous or event-detected data is kept on two removable flash SD cards of up to 64+ Gbytes each. If available, data can be transmitted via cell phone modem or picked up via site visits. Low-power consumption allows for autonomous operation using only a 10 watt solar panel and a gel-cell battery. The system has been successfully tested for long-term (> 6 months) remote operations over a wide range

  13. Final Report: Seismic Hazard Assessment at the PGDP

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhinmeng [KY Geological Survey, Univ of KY

    2007-06-01

    Selecting a level of seismic hazard at the Paducah Gaseous Diffusion Plant for policy considerations and engineering design is not an easy task because it not only depends on seismic hazard, but also on seismic risk and other related environmental, social, and economic issues. Seismic hazard is the main focus. There is no question that there are seismic hazards at the Paducah Gaseous Diffusion Plant because of its proximity to several known seismic zones, particularly the New Madrid Seismic Zone. The issues in estimating seismic hazard are (1) the methods being used and (2) difficulty in characterizing the uncertainties of seismic sources, earthquake occurrence frequencies, and ground-motion attenuation relationships. This report summarizes how input data were derived, which methodologies were used, and what the hazard estimates at the Paducah Gaseous Diffusion Plant are.

  14. Automated seismic waveform location using Multichannel Coherency Migration (MCM)-I. Theory

    Science.gov (United States)

    Shi, Peidong; Angus, Doug; Rost, Sebastian; Nowacki, Andy; Yuan, Sanyi

    2018-03-01

    With the proliferation of dense seismic networks sampling the full seismic wavefield, recorded seismic data volumes are getting bigger and automated analysis tools to locate seismic events are essential. Here, we propose a novel Multichannel Coherency Migration (MCM) method to locate earthquakes in continuous seismic data and reveal the location and origin time of seismic events directly from recorded waveforms. By continuously calculating the coherency between waveforms from different receiver pairs, MCM greatly expands the available information which can be used for event location. MCM does not require phase picking or phase identification, which allows fully automated waveform analysis. By migrating the coherency between waveforms, MCM leads to improved source energy focusing. We have tested and compared MCM to other migration-based methods in noise-free and noisy synthetic data. The tests and analysis show that MCM is noise resistant and can achieve more accurate results compared with other migration-based methods. MCM is able to suppress strong interference from other seismic sources occurring at a similar time and location. It can be used with arbitrary 3D velocity models and is able to obtain reasonable location results with smooth but inaccurate velocity models. MCM exhibits excellent location performance and can be easily parallelized giving it large potential to be developed as a real-time location method for very large datasets.

  15. Seismic site evaluation practice and seismic design guide for NPP in Continent of China

    Energy Technology Data Exchange (ETDEWEB)

    Yuxian, Hu [State Seismological Bureau, Beijing, BJ (China). Inst. of Geophysics

    1997-03-01

    Energy resources, seismicity, NPP and related regulations of the Continent of China are briefly introduced in the beginning and two codes related to the seismic design of NPP, one on siting and another on design, are discussed in some detail. The one on siting is an official code of the State Seismological Bureau, which specifies the seismic safety evaluation requirements of various kinds of structures, from the most critic and important structures such as NPP to ordinary buildings, and including also engineering works in big cities. The one on seismic design of NPP is a draft subjected to publication now, which will be an official national code. The first one is somewhat unique but the second one is quite similar to those in the world. (author)

  16. Seismic site evaluation practice and seismic design guide for NPP in Continent of China

    International Nuclear Information System (INIS)

    Hu Yuxian

    1997-01-01

    Energy resources, seismicity, NPP and related regulations of the Continent of China are briefly introduced in the beginning and two codes related to the seismic design of NPP, one on siting and another on design, are discussed in some detail. The one on siting is an official code of the State Seismological Bureau, which specifies the seismic safety evaluation requirements of various kinds of structures, from the most critic and important structures such as NPP to ordinary buildings, and including also engineering works in big cities. The one on seismic design of NPP is a draft subjected to publication now, which will be an official national code. The first one is somewhat unique but the second one is quite similar to those in the world. (author)

  17. Preliminary consideration on the seismic actions recorded during the 2016 Central Italy seismic sequence

    Science.gov (United States)

    Carlo Ponzo, Felice; Ditommaso, Rocco; Nigro, Antonella; Nigro, Domenico S.; Iacovino, Chiara

    2017-04-01

    After the Mw 6.0 mainshock of August 24, 2016 at 03.36 a.m. (local time), with the epicenter located between the towns of Accumoli (province of Rieti), Amatrice (province of Rieti) and Arquata del Tronto (province of Ascoli Piceno), several activities were started in order to perform some preliminary evaluations on the characteristics of the recent seismic sequence in the areas affected by the earthquake. Ambient vibration acquisitions have been performed using two three-directional velocimetric synchronized stations, with a natural frequency equal to 0.5Hz and a digitizer resolution of equal to 24bit. The activities are continuing after the events of the seismic sequence of October 26 and October 30, 2016. In this paper, in order to compare recorded and code provision values in terms of peak (PGA, PGV and PGD), spectral and integral (Housner Intensity) seismic parameters, several preliminary analyses have been performed on accelerometric time-histories acquired by three near fault station of the RAN (Italian Accelerometric Network): Amatrice station (station code AMT), Norcia station (station code NRC) and Castelsantangelo sul Nera station (station code CNE). Several comparisons between the elastic response spectra derived from accelerometric recordings and the elastic demand spectra provided by the Italian seismic code (NTC 2008) have been performed. Preliminary results retrieved from these analyses highlight several apparent difference between experimental data and conventional code provision. Then, the ongoing seismic sequence appears compatible with the historical seismicity in terms of integral parameters, but not in terms of peak and spectral values. It seems appropriate to reconsider the necessity to revise the simplified design approach based on the conventional spectral values. Acknowledgements This study was partially funded by the Italian Department of Civil Protection within the project DPC-RELUIS 2016 - RS4 ''Seismic observatory of structures and

  18. Time-lapse seismic analysis of the North Sea Fulmar Field

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, David H.; McKenny, Robert S.; Burkhart, Tucker D.

    1998-12-31

    Time-lapse seismic analysis has been applied to two 3-D seismic surveys acquired over the central North Sea Fulmar field in a pre-production survey shot in 1977, reprocessed in 1987, and a survey in 1992. The Upper Jurassic reservoirs in the field have been under production since 1982. Differences in averaged impedance between the 1977 and 1992 surveys clearly show the effects of water influx and pressure decline. The changes observed in the seismic data are overall consistent with predictions obtained from a full-field, history-matched simulation. Differences in details may suggest areas of bypassed oil. Dta quality is not sufficient to serve as the sole basis for drilling decisions. 1 ref., 6 figs.

  19. Seismic re-evaluation of piping systems of heavy water plant, Kota

    International Nuclear Information System (INIS)

    Mishra, Rajesh; Soni, R.S.; Kushwaha, H.S.; Venkat Raj, V.

    2002-05-01

    Heavy Water Plant, Kota is the first indigenous heavy water plant built in India. The plant started operation in the year 1985 and it is approaching the completion of its originally stipulated design life. In view of the excellent record of plant operation for the past so many years, it has been planned to carry out various exercises for the life extension of the plant. In the first stage, evaluation of operation stresses was carried out for the process critical piping layouts and equipment, which are connected with 25 process critical nozzle locations, identified based on past history of the plant performance. Fatigue life evaluation has been carried out to fmd out the Cumulative Usage Factor, which helps in arriving at a decision regarding the life extension of the plant. The results of these exercises have been already reported separately vide BARC/200I /E/O04. In the second stage, seismic reevaluation of the plant has been carried out to assess its ability to maintain its integ:rity in case of a seismic event. The aim of this exercise is to assess the effects of the maximum probable earthquake at the plant site on the various systems and components of the plant. This exercise is further aimed at ensuring the adequacy of seismic supports to maintain the integrity of the system in case of a seismic event and to suggest some retrofitting measures, if required. Seismic re-evaluation of the piping of Heavy Water Plant, Kota has been performed taking into account the interaction effects from the connected equipment. Each layout has been qualified using the latest provisions of ASME Code Section III, Subsection ND wherein the earthquake loading has been considered as a reversing dynamic load. The maximum combined stresses for all the layouts due to pressure, weight and seismic loadings have been found to be well within the code allowable limit. Therefore, it has been concluded that during a maximum probable seismic event, the possibility of pipe rupture can be safely

  20. Requalification analysis of a circular composite slab for seismic load

    International Nuclear Information System (INIS)

    Srinivasan, M.G.; Kot, C.A.

    1993-01-01

    The circular roof slab of an existing facility was analyzed to requalify the structure for supporting a significant seismic load that it was not originally designed for. The slab has a clear span of 66 ft and consists of a 48 in. thick reinforced concrete member and a steel liner plate. Besides a number of smaller penetrations, the slab contains two significant cutouts. The dominant load for the slab came from seismic excitation. It was characterized by a response spectrum with a peak spectral acceleration of 0.72 g in the vertical direction. The first part of the analysis showed that the nature of attachment between the liner plate and the reinforced concrete (RC) slab would justify assuming composite action between the two. A finite clement analysis, with the ANSYS code, was made to investigate the region surrounding the openings. As the reinforcement in the slab was quite inhomogeneous, it was necessary to determine the stresses in other areas of the slab also. These were obtained with closed form expressions. Finally it is shown that the strength design provisions of the Code Requirements for Nuclear Safety Related Concrete Structures were met by the reinforced concrete slab and the allowable stress provisions of the American National Standard for safety related steel structures in nuclear facilities were met by the liner plate. The composite action between the RC slab and the liner plate provides for the additional strength required to support the enhanced seismic load. The issues that complicated the analysis of this nontypical structure, i.e., composite action and nonlinear stiffness of RC sections, are discussed. It was possible to circumvent the difficulties by making conservative and simplifying assumptions. If design codes incorporate guidelines on practical methods for dynamic analysis of RC structures, some of the unneeded conservatism could be eliminated in future designs