WorldWideScience

Sample records for seismic margin assessment

  1. Comparison of seismic margin assessment and probabilistic risk assessment in seismic IPE

    International Nuclear Information System (INIS)

    Reed, J.W.; Kassawara, R.P.

    1993-01-01

    A comparison of technical requirements and managerial issues between seismic margin assessment (SMA) and seismic probabilistic risk assessment (SPRA) in a seismic Individual Plant Examination (IPE) is presented and related to requirements for an Unresolved Safety Issue (USI) A-46 review which is required for older nuclear power plants. Advantages and disadvantages are discussed for each approach. Technical requirements reviewed for a seismic IPE include: scope of plants covered, seismic input, scope of review, selection of equipment, required experience and training of engineers, walkdown procedure, evaluation of components, relay review, containment review, quality assurance, products, documentation requirements, and closure procedure. Managerial issues discussed include regulatory acceptability, compatibility with seismic IPE, compliance with seismic IPE requirements, ease of use by utilities, and relative cost

  2. Assessment of seismic margin calculation methods

    International Nuclear Information System (INIS)

    Kennedy, R.P.; Murray, R.C.; Ravindra, M.K.; Reed, J.W.; Stevenson, J.D.

    1989-03-01

    Seismic margin review of nuclear power plants requires that the High Confidence of Low Probability of Failure (HCLPF) capacity be calculated for certain components. The candidate methods for calculating the HCLPF capacity as recommended by the Expert Panel on Quantification of Seismic Margins are the Conservative Deterministic Failure Margin (CDFM) method and the Fragility Analysis (FA) method. The present study evaluated these two methods using some representative components in order to provide further guidance in conducting seismic margin reviews. It is concluded that either of the two methods could be used for calculating HCLPF capacities. 21 refs., 9 figs., 6 tabs

  3. Seismic safety margin assessment program (Annual safety research report, JFY 2010)

    International Nuclear Information System (INIS)

    Suzuki, Kenichi; Iijima, Toru; Inagaki, Masakatsu; Taoka, Hideto; Hidaka, Shinjiro

    2011-01-01

    Seismic capacity test data, analysis method and evaluation code provided by Seismic Safety Margin Assessment Program have been utilized for the support of seismic back-check evaluation of existing plants. The summary of the program in 2010 is as follows. 1. Component seismic capacity test and quantitative seismic capacity evaluation. Many seismic capacity tests of various snubbers were conducted and quantitative seismic capacities were evaluated. One of the emergency diesel generator partial-model seismic capacity tests was conducted and quantitative seismic capacity was evaluated. Some of the analytical evaluations of piping-system seismic capacities were conducted. 2. Analysis method for minute evaluation of component seismic response. The difference of seismic response of large components such as primary containment vessel and reactor pressure vessel when they were coupled with 3-dimensional FEM building model or 1-dimensional lumped mass building model, was quantitatively evaluated. 3. Evaluation code for quantitative evaluation of seismic safety margin of systems, structures and components. As the example, quantitative evaluation of seismic safety margin of systems, structures and components were conducted for the reference plant. (author)

  4. NRC Seismic Design Margins Program Plan

    International Nuclear Information System (INIS)

    Cummings, G.E.; Johnson, J.J.; Budnitz, R.J.

    1985-08-01

    Recent studies estimate that seismically induced core melt comes mainly from earthquakes in the peak ground acceleration range from 2 to 4 times the safe shutdown earthquake (SSE) acceleration used in plant design. However, from the licensing perspective of the US Nuclear Regulatory Commission, there is a continuing need for consideration of the inherent quantitative seismic margins because of, among other things, the changing perceptions of the seismic hazard. This paper discusses a Seismic Design Margins Program Plan, developed under the auspices of the US NRC, that provides the technical basis for assessing the significance of design margins in terms of overall plant safety. The Plan will also identify potential weaknesses that might have to be addressed, and will recommend technical methods for assessing margins at existing plants. For the purposes of this program, a general definition of seismic design margin is expressed in terms of how much larger that the design basis earthquake an earthquake must be to compromise plant safety. In this context, margin needs to be determined at the plant, system/function, structure, and component levels. 14 refs., 1 fig

  5. An assessment of seismic margins in nuclear plant piping

    International Nuclear Information System (INIS)

    Chen, W.P.; Jaquay, K.R.; Chokshi, N.C.; Terao, D.

    1995-01-01

    Interim results of an ongoing program to assist the U.S. Nuclear Regulatory Commission (NRC) in developing regulatory positions on the seismic analyses of piping and overall safety margins of piping systems are reported. Results of reviews of previous seismic testing, primarily the Electric Power Research Institute (EPRI)/NRC Piping and Fitting Dynamic Reliability Program, and assessments of the ASME Code, Section III, piping seismic design criteria as revised by the 1994 Addenda are reported. Major issues are identified herein only. Technical details are to be provided elsewhere. (author). 4 refs., 2 figs

  6. Seismic margin analysis technique for nuclear power plant structures

    International Nuclear Information System (INIS)

    Seo, Jeong Moon; Choi, In Kil

    2001-04-01

    In general, the Seismic Probabilistic Risk Assessment (SPRA) and the Seismic Margin Assessment(SAM) are used for the evaluation of realistic seismic capacity of nuclear power plant structures. Seismic PRA is a systematic process to evaluate the seismic safety of nuclear power plant. In our country, SPRA has been used to perform the probabilistic safety assessment for the earthquake event. SMA is a simple and cost effective manner to quantify the seismic margin of individual structural elements. This study was performed to improve the reliability of SMA results and to confirm the assessment procedure. To achieve this goal, review for the current status of the techniques and procedures was performed. Two methodologies, CDFM (Conservative Deterministic Failure Margin) sponsored by NRC and FA (Fragility Analysis) sponsored by EPRI, were developed for the seismic margin review of NPP structures. FA method was originally developed for Seismic PRA. CDFM approach is more amenable to use by experienced design engineers including utility staff design engineers. In this study, detailed review on the procedures of CDFM and FA methodology was performed

  7. Study on structural seismic margin and probabilistic seismic risk. Development of a structural capacity-seismic risk diagram

    International Nuclear Information System (INIS)

    Nakajima, Masato; Ohtori, Yasuki; Hirata, Kazuta

    2010-01-01

    Seismic margin is extremely important index and information when we evaluate and account seismic safety of critical structures, systems and components quantitatively. Therefore, it is required that electric power companies evaluate the seismic margin of each plant in back-check of nuclear power plants in Japan. The seismic margin of structures is usually defined as a structural capacity margin corresponding to design earthquake ground motion. However, there is little agreement as to the definition of the seismic margin and we have no knowledge about a relationship between the seismic margin and seismic risk (annual failure probability) which is obtained in PSA (Probabilistic Safety Assessment). The purpose of this report is to discuss a definition of structural seismic margin and to develop a diagram which can identify a relation between seismic margin and seismic risk. The main results of this paper are described as follows: (1) We develop seismic margin which is defined based on the fact that intensity of earthquake ground motion is more appropriate than the conventional definition (i.e., the response-based seismic margin) for the following reasons: -seismic margin based on earthquake ground motion is invariant where different typed structures are considered, -stakeholders can understand the seismic margin based on the earthquake ground motion better than the response-based one. (2) The developed seismic margin-risk diagram facilitates us to judge easily whether we need to perform detailed probabilistic risk analysis or only deterministic analysis, given that the reference risk level although information on the uncertainty parameter beta is not obtained. (3) We have performed numerical simulations based on the developed method for four sites in Japan. The structural capacity-risk diagram differs depending on each location because the diagram is greatly influenced by seismic hazard information for a target site. Furthermore, the required structural capacity

  8. Seismic margin assessment of spanish nuclear power plants: a perspective from industry and regulators

    International Nuclear Information System (INIS)

    Garcia-Monge, Juan; Beltran, Francisco; Sanchez-Cabanero, Jose G.

    2001-01-01

    The worldwide experience with probabilistic safety analysis (PSA) of nuclear power plants shows that the risk derived from earthquakes can be a significant contributor to core damage frequency in some instances. As a consequence, no severe accident safety assessment can be considered complete without giving, due consideration to seismic risk. This fact has been recognized by some regulators. in particular, by the U.S. Nuclear Regulatory Commission (NRC), who has included seismic risk assessment in its severe accident policy. The NRC severe accident policy was adopted by the Spanish nuclear regulator. the Consejo de Seguridad Nuclear (CSN). As a result. all plants in Spain were asked to perform a seismic risk analysis according to Supplements No. 4 and 5 of Generic Letter 88-20 and NUREG-1407, which included the containment failure analysis. At present in Spain there arc nine operating reactors at seven sites: six Westinghouse-PWR, two GE-BWR and one Siemens/KW U-PWR. The vintages are very different: the oldest plant started commercial operation in 1968 and the most recent, in 1988. In this framework, the Spanish Owners Group (SOG) proposed to CSN in 1994 to carry out the seismic risk analysis of the plants using seismic margin methodologies. This kind of methods requires, as a starting point, the definition of a seismic margin earthquake (SNIE), also called review level earthquake (RLL). For this purpose, tile SOG sponsored a general Probabilistic Seismic Hazard Analysis (PSHA) for the seven Spanish sites. The results of this PSHA were used by the SOG to define tile RLE and the scope of the study for each plant (binning of plants). The proposal was submitted to the CSN for evaluation. The CSN evaluation was based on the NRC practical experience and was helped by the technical advise of US Lawrence Livermore National Laboratory. The review showed that the uncertainties on seismic hazard had not been fully captured and that it would have been justified to consider a

  9. Pickering seismic safety margin

    International Nuclear Information System (INIS)

    Ghobarah, A.; Heidebrecht, A.C.; Tso, W.K.

    1992-06-01

    A study was conducted to recommend a methodology for the seismic safety margin review of existing Canadian CANDU nuclear generating stations such as Pickering A. The purpose of the seismic safety margin review is to determine whether the nuclear plant has sufficient seismic safety margin over its design basis to assure plant safety. In this review process, it is possible to identify the weak links which might limit the seismic performance of critical structures, systems and components. The proposed methodology is a modification the EPRI (Electric Power Research Institute) approach. The methodology includes: the characterization of the site margin earthquake, the definition of the performance criteria for the elements of a success path, and the determination of the seismic withstand capacity. It is proposed that the margin earthquake be established on the basis of using historical records and the regional seismo-tectonic and site specific evaluations. The ability of the components and systems to withstand the margin earthquake is determined by database comparisons, inspection, analysis or testing. An implementation plan for the application of the methodology to the Pickering A NGS is prepared

  10. Seismic Margin Assessment for Research Reactor using Fragility based Fault Tree Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kwag, Shinyoung; Oh, Jinho; Lee, Jong-Min; Ryu, Jeong-Soo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The research reactor has been often subjected to external hazards during the design lifetime. Especially, a seismic event can be one of significant threats to the failure of structure system of the research reactor. This failure is possibly extended to the direct core damage of the reactor. For this purpose, the fault tree for structural system failure leading to the core damage under an earthquake accident is developed. The failure probabilities of basic events are evaluated as fragility curves of log-normal distributions. Finally, the plant-level seismic margin is investigated by the fault tree analysis combining with fragility data and the critical path is identified. The plant-level probabilistic seismic margin assessment using the fragility based fault tree analysis was performed for quantifying the safety of research reactor to a seismic hazard. For this, the fault tree for structural system failure leading to the core damage of the reactor under a seismic accident was developed. The failure probabilities of basic events were evaluated as fragility curves of log-normal distributions.

  11. Systems considerations in seismic margin evaluations

    International Nuclear Information System (INIS)

    Buttermer, D.R.

    1987-01-01

    Increasing knowledge in the geoscience field has led to the understanding that, although highly unlikely, it is possible for a nuclear power plant to be subjected to earthquake ground motion greater than that for which the plant was designed. While it is recognized that there are conservatisms inherent in current design practices, interest has developed in evaluating the seismic risk of operating plants. Several plant-specific seismic probabilistic risk assessments (SPRA) have been completed to address questions related to the seismic risk of a plant. The results from such SPRAs are quite informative, but such studies may entail a considerable amount of expensive analysis of large portions of the plant. As an alternative to an SPRA, it may be more practical to select an earthquake level above the design basis for which plant survivability is to be demonstrated. The principal question to be addressed in a seismic margin evaluation is: At what ground motion levels does one have a high confidence that the probability of seismically induced core damage is sufficiently low? In a seismic margin evaluation, an earthquake level is selected (based on site-specific geoscience considerations) for which a stable, long-term safe shutdown condition is to be demonstrated. This prespecified earthquake level is commonly referred to as the seismic margin earthquake (SME). The Electric Power Research Institute is currently supporting a research project to develop procedures for use by the utilities to allow them to perform nuclear plant seismic margin evaluations. This paper describes the systems-related aspects of these procedures

  12. Use of response envelopes for seismic margin assessment of reinforced concrete walls and slabs

    Energy Technology Data Exchange (ETDEWEB)

    Ile, Nicolas; Frau, Alberto, E-mail: alberto.frau@cea.fr

    2017-04-01

    Highlights: • Proposal of a method for application of the elliptical envelope to RC shell elements. • Proposal of new algorithms for the seismic margin evaluation for RC shell elements. • Verification of a RC wall 3D structure, using the proposed assessment approach. - Abstract: Seismic safety evaluations of existing nuclear facilities are usually based on the assumption of structural linearity. For the design basis earthquake (DBE), it is reasonable to apply a conventional evaluation of the seismic safety of building structures and carry out a linear elastic analysis to assess the load effects on structural elements. Estimating the seismic capacity of a structural element requires an estimation of the critical combination of responses acting in this structural element and compare this combination with the capacity of the element. By exploiting the response-spectrum-based procedure for predicting the response envelopes in linear structures formulated by Menun and Der Kiureghian (2000a), algorithms are developed for the seismic margin assessment of reinforced concrete shell finite elements. These algorithms facilitate the comparison of the response-spectrum-based envelopes to prescribed capacity surfaces for the purpose of assessing the safety margin of this kind of structures. The practical application of elliptical response envelopes in case of shell finite elements is based on the use of layer models such as those developed by Marti (1990), which transfer the generalized stress field to three layers under the assumption that the two outer layers carry membrane forces and the internal layer carries only the out-of-plane shears. The utility of the assessment approach is discussed with reference to a case study of a 3D structure made of reinforced concrete walls.

  13. Use of response envelopes for seismic margin assessment of reinforced concrete walls and slabs

    International Nuclear Information System (INIS)

    Ile, Nicolas; Frau, Alberto

    2017-01-01

    Highlights: • Proposal of a method for application of the elliptical envelope to RC shell elements. • Proposal of new algorithms for the seismic margin evaluation for RC shell elements. • Verification of a RC wall 3D structure, using the proposed assessment approach. - Abstract: Seismic safety evaluations of existing nuclear facilities are usually based on the assumption of structural linearity. For the design basis earthquake (DBE), it is reasonable to apply a conventional evaluation of the seismic safety of building structures and carry out a linear elastic analysis to assess the load effects on structural elements. Estimating the seismic capacity of a structural element requires an estimation of the critical combination of responses acting in this structural element and compare this combination with the capacity of the element. By exploiting the response-spectrum-based procedure for predicting the response envelopes in linear structures formulated by Menun and Der Kiureghian (2000a), algorithms are developed for the seismic margin assessment of reinforced concrete shell finite elements. These algorithms facilitate the comparison of the response-spectrum-based envelopes to prescribed capacity surfaces for the purpose of assessing the safety margin of this kind of structures. The practical application of elliptical response envelopes in case of shell finite elements is based on the use of layer models such as those developed by Marti (1990), which transfer the generalized stress field to three layers under the assumption that the two outer layers carry membrane forces and the internal layer carries only the out-of-plane shears. The utility of the assessment approach is discussed with reference to a case study of a 3D structure made of reinforced concrete walls.

  14. Seismic margin review of the Maine Yankee Atomic Power Station: Fragility analysis

    International Nuclear Information System (INIS)

    Ravindra, M.K.; Hardy, G.S.; Hashimoto, P.S.; Griffin, M.J.

    1987-03-01

    This Fragility Analysis is the third of three volumes for the Seismic Margin Review of the Maine Yankee Atomic Power Station. Volume 1 is the Summary Report of the first trial seismic margin review. Volume 2, Systems Analysis, documents the results of the systems screening for the review. The three volumes are part of the Seismic Margins Program initiated in 1984 by the Nuclear Regulatory Commission (NRC) to quantify seismic margins at nuclear power plants. The overall objectives of the trial review are to assess the seismic margins of a particular pressurized water reactor, and to test the adequacy of this review approach, quantification techniques, and guidelines for performing the review. Results from the trial review will be used to revise the seismic margin methodology and guidelines so that the NRC and industry can readily apply them to assess the inherent quantitative seismic capacity of nuclear power plants

  15. Seismic margin review of the Maine Yankee Atomic Power Station: Fragility analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ravindra, M. K.; Hardy, G. S.; Hashimoto, P. S.; Griffin, M. J.

    1987-03-01

    This Fragility Analysis is the third of three volumes for the Seismic Margin Review of the Maine Yankee Atomic Power Station. Volume 1 is the Summary Report of the first trial seismic margin review. Volume 2, Systems Analysis, documents the results of the systems screening for the review. The three volumes are part of the Seismic Margins Program initiated in 1984 by the Nuclear Regulatory Commission (NRC) to quantify seismic margins at nuclear power plants. The overall objectives of the trial review are to assess the seismic margins of a particular pressurized water reactor, and to test the adequacy of this review approach, quantification techniques, and guidelines for performing the review. Results from the trial review will be used to revise the seismic margin methodology and guidelines so that the NRC and industry can readily apply them to assess the inherent quantitative seismic capacity of nuclear power plants.

  16. Seismic Margin of 500MWe PFBR Beyond Safe Shutdown Earthquake

    International Nuclear Information System (INIS)

    Sajish, S.D.; Chellapandi, P.; Chetal, S.C.

    2012-01-01

    Summary: • Seismic design aspects of safety related systems and components of PFBR is discussed with a focus on reactor assembly components. • PFBR is situated in a low seismic area with a peak ground acceleration value of 0.156 g. • The design basis ground motion parameters for the seismic design are evaluated by deterministic method and confirmed by probabilistic seismic hazard analysis. • Review of the seismic design of various safety related systems and components indicate that margin is available to meet any demand due to an earthquake beyond SSE. • Reactor assembly vessels are the most critical components w.r.t seismic loading. • Minimum safety margin is 1.41 for plastic deformation and 1.46 against buckling. • From the preliminary investigation we come to the conclusion that PFBR can withstand an earthquake up to 0.22 g without violating any safety limits. • Additional margin can be estimated by detailed fragility analysis and seismic margin assessment methods

  17. Seismic margins and calibration of piping systems

    International Nuclear Information System (INIS)

    Shieh, L.C.; Tsai, N.C.; Yang, M.S.; Wong, W.L.

    1985-01-01

    The Seismic Safety Margins Research Program (SSMRP) is a US Nuclear Regulatory Commission-funded, multiyear program conducted by Lawrence Livermore National Laboratory (LLNL). Its objective is to develop a complete, fully coupled analysis procedure for estimating the risk of earthquake-induced radioactive release from a commercial nuclear power plant and to determine major contributors to the state-of-the-art seismic and systems analysis process and explicitly includes the uncertainties in such a process. The results will be used to improve seismic licensing requirements for nuclear power plants. In Phase I of SSMRP, the overall seismic risk assessment methodology was developed and assembled. The application of this methodology to the seismic PRA (Probabilistic Risk Assessment) at the Zion Nuclear Power Plant has been documented. This report documents the method deriving response factors. The response factors, which relate design calculated responses to best estimate values, were used in the seismic response determination of piping systems for a simplified seismic probablistic risk assessment. 13 references, 31 figures, 25 tables

  18. Overview of seismic margin insights gained from seismic PRA results

    International Nuclear Information System (INIS)

    Kennedy, R.P.; Sues, R.H.; Campbell, R.D.

    1986-01-01

    This paper presents the findings of a study conducted under NRC and EPRI sponsorship in which published seismic PRAs were reviewed in order to gain insight to the seismic margins inherent in existing nuclear plants. The approach taken was to examine the fragilities of those components which have been found to be dominant contributors to seismic risk at plants in low-to-moderate seismic regions (SSE levels between 0.12g and 0.25g). It is concluded that there is significant margin inherent in the capacity of most critical components above the plant design basis. For ground motions less than about 0.3g, the predominant sources of seismic risk are loss of offsite power coupled with random failure of the emergency diesels, non-recoverable circuit breaker trip due to relay chatter, unanchored equipment, unreinforced non-load bearing block walls, vertical water storage tanks, systems interactions and possibly soil liquefaction. Recommendations as to which components should be reviewed in seismic margin studies for margin earthquakes less than 0.3g, between 0.3g and 0.5g, and greater than 0.5g, developed by the NRC expert panel on the quantification of seismic margins (based on the review of past PRA data, earthquake experience data, and their own personal experience) are presented

  19. Establishing seismic design criteria to achieve an acceptable seismic margin

    International Nuclear Information System (INIS)

    Kennedy, R.P.

    1997-01-01

    In order to develop a risk based seismic design criteria the following four issues must be addressed: (1) What target annual probability of seismic induced unacceptable performance is acceptable? (2). What minimum seismic margin is acceptable? (3) Given the decisions made under Issues 1 and 2, at what annual frequency of exceedance should the Safe Shutdown Earthquake ground motion be defined? (4) What seismic design criteria should be established to reasonably achieve the seismic margin defined under Issue 2? The first issue is purely a policy decision and is not addressed in this paper. Each of the other three issues are addressed. Issues 2 and 3 are integrally tied together so that a very large number of possible combinations of responses to these two issues can be used to achieve the target goal defined under Issue 1. Section 2 lays out a combined approach to these two issues and presents three potentially attractive combined resolutions of these two issues which reasonably achieves the target goal. The remainder of the paper discusses an approach which can be used to develop seismic design criteria aimed at achieving the desired seismic margin defined in resolution of Issue 2. Suggestions for revising existing seismic design criteria to more consistently achieve the desired seismic margin are presented

  20. A quantitative evaluation of seismic margin of typical sodium piping

    International Nuclear Information System (INIS)

    Morishita, Masaki

    1999-05-01

    It is widely recognized that the current seismic design methods for piping involve a large amount of safety margin. From this viewpoint, a series of seismic analyses and evaluations with various design codes were made on typical LMFBR main sodium piping systems. Actual capability against seismic loads were also estimated on the piping systems. Margins contained in the current codes were quantified based on these results, and potential benefits and impacts to the piping seismic design were assessed on possible mitigation of the current code allowables. From the study, the following points were clarified; 1) A combination of inelastic time history analysis and true (without margin)strength capability allows several to twenty times as large seismic load compared with the allowable load with the current methods. 2) The new rule of the ASME is relatively compatible with the results of inelastic analysis evaluation. Hence, this new rule might be a goal for the mitigation of seismic design rule. 3) With this mitigation, seismic design accommodation such as equipping with a large number of seismic supports may become unnecessary. (author)

  1. Seismic margin assessment and earthquake experience based methods for WWER-440/213 type NPPs

    International Nuclear Information System (INIS)

    Masopust, R.

    1996-01-01

    This report covers the review of the already completed studies, namely, safe shutdown system identification and classification for Bohunice NPP and the comparative study of standards and criteria. It contains a report on currently ongoing studies concerning seismic margin assessment and earthquake experience based methods in application for seismic evaluation and verification of structures and equipment components of the operating WWER-440/213 type NPPs. This is based on experiences obtained from Paks NPP. The work plan for the remaining period of Benchmark CRP and the new proposals are included. These are concerned with seismic evaluation of selected safety related mechanical equipment and pipes of Paks NPP, and the actual seismic issues of the Temelin WWER-1000 type NPP

  2. Risk insights from seismic margin reviews

    International Nuclear Information System (INIS)

    Budnitz, R.J.

    1990-01-01

    This paper discusses the information that has been derived from the three seismic-margin reviews conducted so far, and the information that is potentially available from using the seismic-margin method more generally. There are two different methodologies for conducting seismic margin reviews of nuclear power plants, one developed under NRC sponsorship and one developed under sponsorship of the Electric Power Research Institute. Both methodologies will be covered in this paper. The paper begins with a summary of the steps necessary to complete a margin review, and will then outline the key technical difficulties that need to be addressed. After this introduction, the paper covers the safety and operational insights derived from the three seismic-margin reviews already completed: the NRC-sponsored review at Maine Yankee; the EPRI-sponsored review at Catawba; and the joint EPRI/NRC/utility effort at Hatch. The emphasis is on engineering insights, with attention to the aspects of the reviews that are easiest to perform and that provide the most readily available insights

  3. The Seismicity of Two Hyperextended Margins

    Science.gov (United States)

    Redfield, Tim; Terje Osmundsen, Per

    2013-04-01

    A seismic belt marks the outermost edge of Scandinavia's proximal margin, inboard of and roughly parallel to the Taper Break. A similar near- to onshore seismic belt runs along its inner edge, roughly parallel to and outboard of the asymmetric, seaward-facing escarpment. The belts converge at both the northern and southern ends of Scandinavia, where crustal taper is sharp and the proximal margin is narrow. Very few seismic events have been recorded on the intervening, gently-tapering Trøndelag Platform. Norway's distribution of seismicity is systematically ordered with respect to 1) the structural templates of high-beta extension that shaped the thinning gradient during Late Jurassic or Early Cretaceous time, and 2) the topographically resurgent Cretaceous-Cenozoic "accommodation phase" family of escarpments that approximate the innermost limit of crustal thinning [See Redfield and Osmundsen (2012) for diagrams, definitions, discussion, and supporting citations.] Landwards from the belt of earthquake epicenters that mark the Taper Break the crust consistently thickens, and large fault arrays tend to sole out at mid crustal levels. Towards the sea the crystalline continental crust is hyperextended, pervasively faulted, and generally very thin. Also, faulting and serpentinization may have affected the uppermost parts of the distal margin's lithospheric mantle. Such contrasting structural conditions may generate a contrasting stiffness: for a given stress, more strain can be accommodated in the distal margin than in the less faulted proximal margin. By way of comparison, inboard of the Taper Break on the gently-tapered Trøndelag Platform, faulting was not penetrative. There, similar structural conditions prevail and proximal margin seismicity is negligible. Because stress concentration can occur where material properties undergo significant contrast, the necking zone may constitute a natural localization point for post-thinning phase earthquakes. In Scandinavia

  4. Seismic margin reviews of nuclear power plants: Identification of important functions and systems

    International Nuclear Information System (INIS)

    Prassinos, P.G.; Moore, D.L.; Amico, P.J.

    1987-01-01

    The results from the review of the seven utility-sponsored seismic PRAs plus the Zion SSMRP have been used to develop some insights regarding the importance of various systems and functions to seismic margins. By taking this information and combining it with the fragility insights we can develop some functional/systemic screening guideline for margin studies. This screening approach will greatly reduce the scope of the analysis. It is possible only to come to conclusions regarding the importance of plant systems and safety functions for PWRs, for which six plants were studied. For PWRs, it is possible to categorize plant safety functions as belonging to one of two groups, one of which is important to the assessment of seismic margins and one of which is not. The important functional group involves only two functions that must be considered for estimating seismic margin. These two functions are shutting down the nuclear reaction and providing cooling to the reactor core in the time period immediately following the seismic event (that is, the injection phase or pre-residual heat removal time period). It is possible to reasonably estimate the seismic margin of the plant by performing a study only involving the analysis of the plant systems and structure which are required in order to perform the two functions. Such analysis must include an assessment of a complete set of seismic initiating events. (orig./HP)

  5. Seismic safety margins research program overview

    International Nuclear Information System (INIS)

    Tokarz, F.J.; Smith, P.D.

    1978-01-01

    A multiyear seismic research program has been initiated at the Lawrence Livermore Laboratory. This program, the Seismic Safety Margins Research Program (SSMRP) is funded by the U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research. The program is designed to develop a probabilistic systems methodology for determining the seismic safety margins of nuclear power plants. Phase I, extending some 22 months, began in July 1978 at a funding level of approximately $4.3 million. Here we present an overview of the SSMRP. Included are discussions on the program objective, the approach to meet the program goal and objectives, end products, the probabilistic systems methodology, and planned activities for Phase I

  6. Seismic and tsunami safety margin assessment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    Nuclear Regulation Authority is going to establish new seismic and tsunami safety guidelines to increase the safety of NPPs. The main purpose of this research is testing structures/components important to safety and tsunami resistant structures/components, and evaluating the capacity of them against earthquake and tsunami. Those capacity data will be utilized for the seismic and tsunami back-fit review based on the new seismic and tsunami safety guidelines. The summary of the program in 2012 is as follows. 1. Component seismic capacity test and quantitative seismic capacity evaluation. PWR emergency diesel generator partial-model seismic capacity tests have been conducted and quantitative seismic capacities have been evaluated. 2. Seismic capacity evaluation of switching-station electric equipment. Existing seismic test data investigation, specification survey and seismic response analyses have been conducted. 3. Tsunami capacity evaluation of anti-inundation measure facilities. Tsunami pressure test have been conducted utilizing a small breakwater model and evaluated basic characteristics of tsunami pressure against seawall structure. (author)

  7. Seismic and tsunami safety margin assessment

    International Nuclear Information System (INIS)

    2013-01-01

    Nuclear Regulation Authority is going to establish new seismic and tsunami safety guidelines to increase the safety of NPPs. The main purpose of this research is testing structures/components important to safety and tsunami resistant structures/components, and evaluating the capacity of them against earthquake and tsunami. Those capacity data will be utilized for the seismic and tsunami back-fit review based on the new seismic and tsunami safety guidelines. The summary of the program in 2012 is as follows. 1. Component seismic capacity test and quantitative seismic capacity evaluation. PWR emergency diesel generator partial-model seismic capacity tests have been conducted and quantitative seismic capacities have been evaluated. 2. Seismic capacity evaluation of switching-station electric equipment. Existing seismic test data investigation, specification survey and seismic response analyses have been conducted. 3. Tsunami capacity evaluation of anti-inundation measure facilities. Tsunami pressure test have been conducted utilizing a small breakwater model and evaluated basic characteristics of tsunami pressure against seawall structure. (author)

  8. Seismic Safety Margins Research Program: a concluding look

    International Nuclear Information System (INIS)

    Cummings, G.E.

    1984-01-01

    The Seismic Safety Margins Research Program (SSMRP) was started in 1978 with the goal of developing tools and data bases to compute the probability of earthquake - caused radioactive release from commercial nuclear power plants. These tools and data bases were to help NRC to assess seismic safety at nuclear plants. The methodology to be used was finalized in 1982 and applied to the Zion Nuclear Power Station. The SSMRP will be completed this year with the development of a more simplified method of analysis and a demonstration of its use on Zion. This simplified method is also being applied to a boiling-water-reactor, LaSalle

  9. Evaluation of seismic margins for an in-plant piping system

    International Nuclear Information System (INIS)

    Kot, C.A.; Srinivasan, M.G.; Hsieh, B.J.

    1991-01-01

    Earthquake experience as well as experiments indicate that, in general, piping systems are quite rugged in resisting seismic loadings. Therefore there is a basis to hold that the seismic margin against pipe failure is very high for systems designed according to current practice. However, there is very little data, either from tests or from earthquake experience, on the actual margin or excess capacity (against failure from seismic loading) of in-plant piping systems. Design of nuclear power plant piping systems in the US is governed by the criteria given in the ASME Boiler and Pressure Vessel (B ampersand PV) Code, which assure that pipe stresses are within specified allowable limits. Generally linear elastic analytical methods are used to determine the stresses in the pipe and forces in pipe supports. The objective of this study is to verify that piping designed according to current practice does indeed have a large margin against failure and to quantify the excess capacity for piping and dynamic pipe supports on the basis of data obtained in a series of high-level seismic experiments (designated SHAM) on an in-plant piping system at the HDR (Heissdampfreaktor) Test Facility in Germany. Note that in the present context, seismic margin refers to the deterministic excess capacities of piping or supports compared to their design capacities. The excess seismic capacities or margins of a prototypical in-plant piping system and its components are evaluated by comparing measured inputs and responses from high-level simulated seismic experiments with design loads and allowables. Large excess capacities are clearly demonstrated against pipe and overall system failure with the lower bound being about four. For snubbers the lower bound margin is estimated at two and for rigid strut supports at five. 4 refs., 2 figs., 2 tabs

  10. Seismic safety margins research program. Phase I final report - Overview

    International Nuclear Information System (INIS)

    Smith, P.D.; Dong, R.G.; Bernreuter, D.L.; Bohn, M.P.; Chuang, T.Y.; Cummings, G.E.; Johnson, J.J.; Mensing, R.W.; Wells, J.E.

    1981-04-01

    The Seismic Safety Margins Research Program (SSMRP) is a multiyear, multiphase program whose overall objective is to develop improved methods for seismic safety assessments of nuclear power plants, using a probabilistic computational procedure. The program is being carried out at the Lawrence Livermore National Laboratory and is sponsored by the U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research. Phase I of the SSMRP was successfully completed in January 1981: A probabilistic computational procedure for the seismic risk assessment of nuclear power plants has been developed and demonstrated. The methodology is implemented by three computer programs: HAZARD, which assesses the seismic hazard at a given site, SMACS, which computes in-structure and subsystem seismic responses, and SEISIM, which calculates system failure probabilities and radioactive release probabilities, given (1) the response results of SMACS, (2) a set of event trees, (3) a family of fault trees, (4) a set of structural and component fragility descriptions, and (5) a curve describing the local seismic hazard. The practicality of this methodology was demonstrated by computing preliminary release probabilities for Unit 1 of the Zion Nuclear Power Plant north of Chicago, Illinois. Studies have begun aimed at quantifying the sources of uncertainty in these computations. Numerous side studies were undertaken to examine modeling alternatives, sources of error, and available analysis techniques. Extensive sets of data were amassed and evaluated as part of projects to establish seismic input parameters and to produce the fragility curves. (author)

  11. Seismic margins review of nuclear power plants: Fragility aspects

    International Nuclear Information System (INIS)

    Ravindra, M.K.; Hardy, G.S.; Hashimoto, P.S.

    1987-01-01

    The fragility analysis is utilised in the seismic margin review in initial screening of certain components in the plant based on their generically high seismic capacities. A detailed walkdown of the plant is conducted to confirm that the initial screening is valid i.e., the generically high seismic capacity components do not possess any potential weaknesses (e.g., inadequate bracing, inadequate anchorage and potential systems interaction). For the components that are screened in, their seismic capacities are evaluated using either a probabilistic analysis of a deterministic evaluation. Based on a system analysis, the Boolean expressions for critical accident sequences are derived. These Boolean expressions are quantified using the component fragilities and nonseismic unavailabilities of components. The final product is the High Confidence Low Probability of Failure (HCLPF) capacity of the plant and the identification of potential seismic vulnerabilities in the plant. The objective of the paper is to describe the application of fragility analysis procedures in the seismic margin review of Maine Yankee and to document the insights obtained in this trial plant review. (orig./HP)

  12. Seismic Safety Margins Research Program (Phase I). Project VII. Systems analysis specification of computational approach

    International Nuclear Information System (INIS)

    Wall, I.B.; Kaul, M.K.; Post, R.I.; Tagart, S.W. Jr.; Vinson, T.J.

    1979-02-01

    An initial specification is presented of a computation approach for a probabilistic risk assessment model for use in the Seismic Safety Margin Research Program. This model encompasses the whole seismic calculational chain from seismic input through soil-structure interaction, transfer functions to the probability of component failure, integration of these failures into a system model and thereby estimate the probability of a release of radioactive material to the environment. It is intended that the primary use of this model will be in sensitivity studies to assess the potential conservatism of different modeling elements in the chain and to provide guidance on priorities for research in seismic design of nuclear power plants

  13. Seismic analysis response factors and design margins of piping systems

    International Nuclear Information System (INIS)

    Shieh, L.C.; Tsai, N.C.; Yang, M.S.; Wong, W.L.

    1985-01-01

    The objective of the simplified methods project of the Seismic Safety Margins Research Program is to develop a simplified seismic risk methodology for general use. The goal is to reduce seismic PRA costs to roughly 60 man-months over a 6 to 8 month period, without compromising the quality of the product. To achieve the goal, it is necessary to simplify the calculational procedure of the seismic response. The response factor approach serves this purpose. The response factor relates the median level response to the design data. Through a literature survey, we identified the various seismic analysis methods adopted in the U.S. nuclear industry for the piping system. A series of seismic response calculations was performed. The response factors and their variabilities for each method of analysis were computed. A sensitivity study of the effect of piping damping, in-structure response spectra envelop method, and analysis method was conducted. In addition, design margins, which relate the best-estimate response to the design data, are also presented

  14. Seismic risk assessment of a BWR

    International Nuclear Information System (INIS)

    Wells, J.E.; Bernreuter, D.L.; Chen, J.C.; Lappa, D.A.; Chuang, T.Y.; Murray, R.C.; Johnson, J.J.

    1987-01-01

    The simplified seismic risk methodology developed in the USNRC Seismic Safety Margins Research Program (SSMRP) was demonstrated by its application to the Zion nuclear power plant (PWR). The simplified seismic risk methodology was developed to reduce the costs associated with a seismic risk analysis while providing adequate results. A detailed model of Zion, including systems analysis models (initiating events, event trees, and fault trees), SSI and structure models, and piping models, was developed and used in assessing the seismic risk of the Zion nuclear power plant (FSAR). The simplified seismic risk methodology was applied to the LaSalle County Station nuclear power plant, a BWR; to further demonstrate its applicability, and if possible, to provide a basis for comparing the seismic risk from PWRs and BWRs. (orig./HP)

  15. Seismic margin analysis for Kashiwazaki Kariwa ABWR plant considering the Niigataken Chuetsu-oki earthquake

    International Nuclear Information System (INIS)

    Matsuo, Toshihiro; Nagasawa, Kazuyuki; Kawamura, Shinichi; Ueki, Takashi; Higuchi, Tomokazu; Sakaki, Isao

    2009-01-01

    Seismic Margin Analysis (SMA) study was conducted for Kashiwazaki Kariwa (KK) ABWR representative plant (unit 6). Considering that the installation behaved in a safe manner during and after the Niigataken Chuetsu-oki (NCO) Earthquake which significantly exceeded the level of the seismic input taken into account in the design of the plant, the study to find out how much margin the ABWR plant had toward the same seismic motion was conducted. In this study fragility analyses were conducted for SSCs that were included in the accident sequences and that were considered to have relatively small margin taking EPRI margin analysis method into consideration. In order to calculate plant level seismic margin Min-Max method was adopted. As the result of this study, the plant level High Confidence Low Probability of Failure (HCLPF) acceleration for unit 6 was calculated more than tripled NCO earthquake motion. (author)

  16. Deformation patterns and seismic hazard along the eastern Sunda margin

    Science.gov (United States)

    Kopp, Heidrun; Djajadihardja, Yusuf; Flueh, Ernst R.; Hindle, David; Klaeschen, Dirk; Mueller, Christian; Planert, Lars; Reichert, Christian; Shulgin, Alexey; Wittwer, Andreas

    2010-05-01

    The eastern Sunda margin offshore Java, Bali, Lombok and Sumba is the site of oceanic subduction of the Indo-Australian plate underneath the Indonesian archipelago. Data from a suite of geophysical experiments conducted between 1997-2006 using RV SONNE as platform include seismic and seismological studies, potential field measurements and high-resolution seafloor bathymetry mapping. Tomographic inversions provide an image of the ongoing deformation of the forearc and the deep subsurface. We investigate the role of various key mechanisms that shape the first-order features characterizing the present margin architecture. Our contribution evaluates the differences in architecture and evolution along the Java forearc from a marine perspective to better understand the variation in tectonic styles and segmentation of the convergent margin, including its seismic risk potential.

  17. Seismic Risk Assessment of Italian Seaports Using GIS

    International Nuclear Information System (INIS)

    Bartolomei, Anna; Corigliano, Mirko; Lai, Carlo G.

    2008-01-01

    Seaports are crucial elements in the export and import of goods and/or on the flow of travellers in the tourism industry of many industrialised nations included Italy. Experience gained from recent earthquakes (e.g. 1989 Loma Prieta in USA, 1995 Hyogoken-Nanbu and 2003 Tokachi-Oki in Japan) have dramatically demonstrated the seismic vulnerability of seaport structures and the severe damage that can be caused by ground shaking. In Italy, the Department of Civil Protection has funded a research project to develop a methodology for the seismic design of new marginal wharves and assessment of existing structures at seaports located in areas of medium or high seismicity. This paper shows part of the results of this research project, currently underway, with particular reference to the seismic risk assessment through an interactive, geographically referenced database (GIS). Standard risk assessment have been carried out for the Gioia Tauro port in Calabria (Italy) using the empirical curves implemented by the National Institute of Building Sciences (NIBS, 2004)

  18. Seismic Risk Assessment of Italian Seaports Using GIS

    Science.gov (United States)

    Bartolomei, Anna; Corigliano, Mirko; Lai, Carlo G.

    2008-07-01

    Seaports are crucial elements in the export and import of goods and/or on the flow of travellers in the tourism industry of many industrialised nations included Italy. Experience gained from recent earthquakes (e.g. 1989 Loma Prieta in USA, 1995 Hyogoken-Nanbu and 2003 Tokachi-Oki in Japan) have dramatically demonstrated the seismic vulnerability of seaport structures and the severe damage that can be caused by ground shaking. In Italy, the Department of Civil Protection has funded a research project to develop a methodology for the seismic design of new marginal wharves and assessment of existing structures at seaports located in areas of medium or high seismicity. This paper shows part of the results of this research project, currently underway, with particular reference to the seismic risk assessment through an interactive, geographically referenced database (GIS). Standard risk assessment have been carried out for the Gioia Tauro port in Calabria (Italy) using the empirical curves implemented by the National Institute of Building Sciences (NIBS, 2004).

  19. Structure of the Gabon Margin from integrated seismic reflection and gravity data

    NARCIS (Netherlands)

    Dupre, S.; Cloetingh, S.A.P.L.; Bertotti, G.V.

    2011-01-01

    In the South Gabon Basin, deep multi-channel seismic reflection and gravity modeling analysis have shed light on key features of the structure of the margin. The thinned continental crust beneath the Gabon Margin appears to be composed of two distinct layers, separated by a clear, strong and more or

  20. Seismic evidence of Messinian salt in opposite margins of West Mediterranean

    Science.gov (United States)

    Mocnik, Arianna; Camerlenghi, Angelo; Del Ben, Anna; Geletti, Riccardo; Wardell, Nigel; Zgur, Fabrizio

    2015-04-01

    The post drift Messinian Salinity Crisis (MSC) affected the whole Mediterranean basin, with deposition of evaporitic sequences in the deep basins, in the lower continental slopes, and in several shallower marginal basins; usually, in the continental margins, the MSC originated noticeable erosional truncations that locally cause important hiatuses in the pre-Messinian sequences, covered by the Plio-Quaternary sediments. In this work we focus on the MSC seismic signature of two new seismic datasets acquired in 2010 (West Sardinia offshore) and in 2012 (within the Eurofleet project SALTFLU in the South Balearic continental margin and the northern Algero abyssal plain). The "Messinian trilogy" recognized in the West-Mediterranean abyssal plain, is characterized by different seismic facies: the Lower evaporite Unit (LU), the salt Mobile Unit (MU) and the Upper evaporite mainly gypsiferous Unit (UU). Both seismic datasets show the presence of the Messinian trilogy also if the LU is not always clearly interpretable due to the strong seismic signal absorption by the halite layers; the salt thickness of the MU is similar in both the basins as also the thickness and stratigraphy of the UU. The Upper Unit (UU) is made up of a well reflecting package of about 10 reflectors, partially deformed by salt tectonic and characterized by a thin transparent layer that we interpreted as salt sequence inner the shallower part of the UU. Below the stratified UU, the MU exhibits a transparent layer in the deep basin and also on the foot of the slope, where a negative reflector, related to the high interval velocity of salt, marks its base. The halokinetic processes are not homogeneously distributed in the region, forming a great number of diapirs on the foot of the slope (due to the pression of the slided sediments) and giant domes toward the deep basin (due to the higher thickness of the Plio-quaternary sediments). This distribution seems to be related to the amount of salt and of the

  1. Enhancing the seismic margin review methodology to obtain risk insights

    International Nuclear Information System (INIS)

    Budnitz, R.J.

    1992-01-01

    This paper discusses methods for obtaining risk insights from the seismic margin review (SMR) methodology. The SMR methodology was originally developed in 1984-1987 with the objective of analyzing an individual nuclear power plant to ascertain whether the plant has the ability to withstand earthquakes substantially beyond the design-basis earthquake without suffering a core-damage accident. Recently, in the context of Nuclear Regulatory Commission's (NRC's) Individual Plant Evaluation for External Events (IPEEE) program, the SMR methodology has been developed further by NRC to allow plants to identify plant-specific vulnerabilities (in the IPEEE sense) to seismic events. The objective of these enhancements has been to provide a methodology for IPEEE seismic review that is substantially less expensive than a full-scope seismic PRA, but that achieves the IPEEE's vulnerability-search objectives. In this paper, the steps involved in the enhanced methodology are discussed

  2. Seismic safety margin research program. Program plan, Revision II

    International Nuclear Information System (INIS)

    Smith, P.D.; Tokarz, F.J.; Bernreuter, D.L.; Cummings, G.E.; Chou, C.K.; Vagliente, V.N.; Johnson, J.J.; Dong, R.G.

    1978-01-01

    The document has been prepared pursuant to the second meeting of the Senior Research Review Group of the Seismic Safety Margin Research Program (SSMRP), which was held on June 15, 16, 1978. The major portion of the material contained in the document is descriptions of specific subtasks to be performed on the SSMRP. This is preceded by a brief discussion of the objective of the SSMRP and the approach to be used. Specific subtasks to be performed in Phase I of the SSMRP are as follows: (1) plant/site selection, (2) seismic input, (3) soil structure interaction, (4) structural building response, (5) structural sub-system response, (6) fragility, (7) system analysis, and (8) Phase II task definition

  3. Development of Seismic Safety Assessment Technology for Containment Structure

    Energy Technology Data Exchange (ETDEWEB)

    Jang, J.B.; Suh, Y.P.; Lee, J.R. [Korea Electric Power Research Institute, Taejon (Korea)

    2002-07-01

    This final report is made based on the research results of seismic analysis and seismic margin assessment field, carried out during 3rd stage ('01.4.1{approx}'02.3.31) under financial support of MOST(Ministry of Science and Technology). The objective of this research is to develop the soil - structure interaction analysis technique with high reliability, the main research subjects, performed during 3rd stage are as follows. 1) Preparation of user's guide manual for SSI analysis with high accuracy. 2) Sensitivity analysis of effective shear strain and seismic input motion. 3) Database construction of Hualien earthquake recorded data. (author). 21 refs., 27 figs., 2 tabs.

  4. Evolution of a seismic risk assessment technique

    International Nuclear Information System (INIS)

    Wells, J.E.; Cummings, G.E.

    1985-01-01

    To assist the NRC in its licensing evaluation role the Seismic Safety Margins Research Program (SSMRP) was started at LLNL in 1978. Its goal was to develop tools and data bases to evaluate the probability of earthquake caused radioactive releases from commercial nuclear power plants. The methodology was finalized in 1982 and a seismic risk assessment of the Zion Nuclear Power Plant was finished in 1983. Work continues on the study of the LaSalle Boiling Water Reactor. This paper will discuss some of the effects of the assumptions made during development of the systems analysis techniques used in SSMRP in light of the results obtained on studies to date. 5 refs

  5. Handbook of nuclear power plant seismic fragilities, Seismic Safety Margins Research Program

    International Nuclear Information System (INIS)

    Cover, L.E.; Bohn, M.P.; Campbell, R.D.; Wesley, D.A.

    1983-12-01

    The Seismic Safety Margins Research Program (SSMRP) has a gola to develop a complete fully coupled analysis procedure (including methods and computer codes) for estimating the risk of an earthquake-induced radioactive release from a commercial nuclear power plant. As part of this program, calculations of the seismic risk from a typical commercial nuclear reactor were made. These calculations required a knowledge of the probability of failure (fragility) of safety-related components in the reactor system which actively participate in the hypothesized accident scenarios. This report describes the development of the required fragility relations and the data sources and data reduction techniques upon which they are based. Both building and component fragilities are covered. The building fragilities are for the Zion Unit 1 reactor which was the specific plant used for development of methodology in the program. Some of the component fragilities are site-specific also, but most would be usable for other sites as well

  6. Study on seismic design margin based upon inelastic shaking test of the piping and support system

    International Nuclear Information System (INIS)

    Ishiguro, Takami; Eto, Kazutoshi; Ikeda, Kazutoyo; Yoshii, Toshiaki; Kondo, Masami; Tai, Koichi

    2009-01-01

    In Japan, according to the revised Regulatory Guide for Aseismic Design of Nuclear Power Reactor Facilities, September 2006, criteria of design basis earthquakes of Nuclear Power Reactor Facilities become more severe. Then, evaluating seismic design margin took on a great importance and it has been profoundly discussed. Since seismic safety is one of the major key issues of nuclear power plant safety, it has been demonstrated that nuclear piping system possesses large safety margins by various durability test reports for piping in ultimate conditions. Though the knowledge of safety margin has been accumulated from these reports, there still remain some technical uncertainties about the phenomenon when both piping and support structures show inelastic behavior in extremely high seismic excitation level. In order to obtain the influences of inelastic behavior of the support structures to the whole piping system response when both piping and support structures show inelastic behavior, we examined seismic proving tests and we conducted simulation analyses for the piping system which focused on the inelastic behavior of the support to the whole piping system response. This paper introduces major results of the seismic shaking tests of the piping and support system and the simulation analyses of these tests. (author)

  7. Insights into crustal structure of the Eastern North American Margin from community multichannel seismic and potential field data

    Science.gov (United States)

    Davis, J. K.; Becel, A.; Shillington, D. J.; Buck, W. R.

    2017-12-01

    In the fall of 2014, the R/V Marcus Langseth collected gravity, magnetic, and reflection seismic data as part of the Eastern North American Margin Community Seismic Experiment. The dataset covers a 500 km wide section of the Mid-Atlantic passive margin offshore North Carolina, which formed after the Mesozoic breakup of the supercontinent Pangaea. Using these seismic and potential field data, we present observations and interpretations along two cross margin and one along-margin profiles. Analyses and interpretations are conducted using pre-stack depth migrated reflection seismic profiles in conjunction with forward modeling of shipboard gravity and magnetic anomalies. Preliminary interpretations of the data reveal variations in basement character and structure across the entire transition between continental and oceanic domains. These interpretations help provide insight into the origin and nature of the prominent East Coast and Blake Spur magnetic anomalies, as well as the Inner Magnetic Quiet Zone which occupies the domain between the anomalies. Collectively, these observations can aid in deciphering the rift-to-drift transition during the breakup of North America and West Africa and formation of the Central Atlantic.

  8. Interim Report on Metallic Component Margins Under High Seismic Loads. Survey of Existing Practices and Status of Benchmark Work

    International Nuclear Information System (INIS)

    2015-01-01

    OECD/NEA/CSNI Working Group on Integrity and Ageing of Components and Structures (WGIAGE) has the main mission to advance the current understanding of those aspects relevant to ensuring the integrity of structures, systems and components under design and beyond design loads, to provide guidance in choosing the optimal ways of dealing with challenges to the integrity of operating as well as new nuclear power plants, and to make use of an integrated approach to design, safety and plant life management. The activity (CAPS) of the WGIAGE group, entitled 'Metallic Component Margins under High Seismic Loads (MECOS)', was initially proposed by the metal sub-group of WGIAGE and approved by the CSNI in June 2012 as a Fukushima activity (F-CAPS). The proposal is aimed to assess the consequences of external hazards on plant safety. The main objectives of the MECOS project were to quantify the existing margins in seismic analysis of safety class components for high seismic loads and assess the existing design practices within a benchmark activity. The first phase of MECOS work included a survey on the existing seismic regulations and design analysis methods in the member countries. The survey was conducted by means of a questionnaire and a total of 24 questions were asked. The questionnaire consists of three parts: Seismic Input, Seismic Design Basis, and Beyond Seismic Design Basis. The majority of the respondents use the Standard or Modified Shape Spectrum and only a few countries are using the Uniform Seismic Hazard Spectra (UHS) in their seismic design regulations. All of the respondents have minimum seismic demand in their national or adopted standards. The number of defined and used seismic levels for the design of mechanical components is one or two. Almost all of the respondents are using combined testing and analysis methods for seismic qualification and design. Some countries (e.g. Canada, Finland, USA, France, Japan and UK) have specific requirements for

  9. Seismic safety margins research program. Project I SONGS 1 AFWS Project

    International Nuclear Information System (INIS)

    Chuang, T.Y.; Smith, P.D.; Dong, R.G.; Bernreuter, D.L.; Bohn, M.P.; Cummings, G.E.; Wells, J.E.

    1981-01-01

    The seismic qualification requirements of auxiliary feedwater systems (AFWS) of Pressurized Water Reactors (PWR) were developed over a number of years. These are formalized in the publication General Design Criteria (Appendix A to 10CFR50). The full recognition of the system as an engineered safety feature did not occur until publication of the Standard Review Plan (1975). Efforts to determine how to backfit seismic requirements to earlier plants has been undertaken primarily in the Systematic Evaluation Program (SEP) for a limited number of operating reactors. Nuclear Reactor Research (RES) and NRR have requested LLNL to perform a probabilistic study on the AFWS of San Onofre Nuclear Generating Station (SONGS) Unit 1 utilizing the tools developed by the Seismic Safety Margins Research Program (SSMRP). The main objectives of this project are to: identify the weak links of AFWS; compare the failure probabilities of SONGS 1 and Zion 1 AFWS: and compare the seismic responses due to different input spectra and design values

  10. Seismic Safety Margins Research Program: Phase II program plan (FY 83-FY 84)

    International Nuclear Information System (INIS)

    Bohn, M.P.; Bernreuter, D.L.; Cover, L.E.; Johnson, J.J.; Shieh, L.C.; Shukla, S.N.; Wells, J.E.

    1982-01-01

    The Seismic Safety Margins Research Program (SSMRP) is an NRC-funded, multiyear program conducted by Lawrence Livermore National Laboratory (LLNL). Its goal is to develop a complete, fully coupled analysis procedure (including methods and computer codes) for estimating the risk of an earthquake-caused radioactive release from a commercial nuclear power plant. The analysis procedure is based upon a state-of-the-art evaluation of the current seismic analysis and design process and explicitly includes the uncertainties inherent in such a process. The results will be used to improve seismic licensing requirements for nuclear power plants. As currently planned, the SSMRP will be completed in September, 1984. This document presents the program plan for work to be done during the remainder of the program. In Phase I of the SSMRP, the necessary tools (both computer codes and data bases) for performing a detailed seismic risk analysis were identified and developed. Demonstration calculations were performed on the Zion Nuclear Power Plant. In the remainder of the program (Phase II) work will be concentrated on developing a simplified SSMRP methodology for routine probabilistic risk assessments, quantitative validation of the tools developed and application of the simplified methodology to a Boiling Water Reactor. (The Zion plant is a pressurized water reactor.) In addition, considerable effort will be devoted to making the codes and data bases easily accessible to the public

  11. Magmatic development of the outer Vøring margin from seismic data

    Science.gov (United States)

    Breivik, Asbjørn; Faleide, Jan Inge; Mjelde, Rolf; Flueh, Ernst; Murai, Yoshio

    2014-09-01

    The Vøring Plateau off mid-Norway is a volcanic passive margin, located north of the East Jan Mayen Fracture Zone (EJMFZ). Large volumes of magmatic rocks were emplaced during Early Eocene margin formation. In 2003, an ocean bottom seismometer survey was acquired over the margin. One profile crosses from the Vøring Plateau to the Vøring Spur, a bathymetric high north of the EJMFZ. The P wave data were ray traced into a 2-D crustal velocity model. The velocity structure of the Vøring Spur indicates up to 15 km igneous crustal thickness. Magmatic processes can be estimated by comparing seismic velocity (VP) with igneous thickness (H). This and two other profiles show a positive H-VP correlation at the Vøring Plateau, consistent with elevated mantle temperature at breakup. However, during the first 2 Ma magma production was augmented by a secondary process, possibly small-scale convection. From ˜51.5 Ma excess melting may be caused by elevated mantle temperature alone. Seismic stratigraphy around the Vøring Spur shows that it was created by at least two uplift events, with the main episode close to the Miocene/Pliocene boundary. Low H-VP correlation of the spur is consistent with renewed igneous growth by constant, moderate-degree mantle melting, not related to the breakup magmatism. The admittance function between bathymetry and free-air gravity shows that the high is near local isostatic equilibrium, precluding that compressional flexure at the EJMFZ uplifted the high. We find a proposed Eocene triple junction model for the margin to be inconsistent with observations.

  12. Assessment of tsunami hazard to the U.S. Atlantic margin

    Science.gov (United States)

    ten Brink, Uri S.; Chaytor, Jason; Geist, Eric L.; Brothers, Daniel S.; Andrews, Brian D.

    2014-01-01

    Tsunami hazard is a very low-probability, but potentially high-risk natural hazard, posing unique challenges to scientists and policy makers trying to mitigate its impacts. These challenges are illustrated in this assessment of tsunami hazard to the U.S. Atlantic margin. Seismic activity along the U.S. Atlantic margin in general is low, and confirmed paleo-tsunami deposits have not yet been found, suggesting a very low rate of hazard. However, the devastating 1929 Grand Banks tsunami along the Atlantic margin of Canada shows that these events continue to occur. Densely populated areas, extensive industrial and port facilities, and the presence of ten nuclear power plants along the coast, make this region highly vulnerable to flooding by tsunamis and therefore even low-probability events need to be evaluated.

  13. Seismic structural fragility investigation for the Zion Nuclear Power Plant. Seismic safety margins research program (phase 1)

    International Nuclear Information System (INIS)

    Wesley, D.A.; Hashimoto, P.S.

    1981-10-01

    An evaluation of the seismic capacity of the essential structures for the Zion Nuclear Power Plant in Zion, Illinois, was conducted as part of the Seismic Safety Margins Research Program (SSMRP). The structures included the reactor containment building, the turbine/auxiliary building, and the crib house (intake structure). The evaluation was devoted to seismically induced failures rather than those resulting from combined Loss of Coolant Accident (LOCA) or other extreme load combinations. The seismic loads used in the investigation were based on elastic analyses. The loads for the reactor containment and turbine/auxiliary buildings were developed by Lawrence Livermore Laboratory using time history analyses. The loads used for the crib house were the original seismic design loads developed by Sargent and Lundy. No non-linear seismic analyses were conducted. The seismic capacity of the structures accounted for the actual concrete and steel material properties including the aging of the concrete. Median centered properties were used throughout the evaluation including levels of damping considered appropriate for structures close to collapse as compared to the more conservative values used for design. The inelastic effects were accounted for using ductility modified response spectrum techniques based on system ductility ratios expected for structures near collapse. Sources of both inherent randomness and uncertainties resulting from lack of knowledge or approximations in analytical modelling were considered in developing the dispersion of the structural dynamic characteristics. Coefficients of variation were developed assuming lognormal distributions for all variables. The earthquake levels for many of the seismically induced failure modes are so high as to be considered physically incredible. (author)

  14. Deep seismic studies of conjugate profiles from the Nova Scotia - Moroccan and the Liguro-Provencal margin pairs

    Science.gov (United States)

    Klingelhoefer, F.; Biari, Y.; Sahabi, M.; Aslanian, D.; Philippe, S.; Schnabel, M.; Moulin, M.; Louden, K. E.; Funck, T.; Reichert, C. J.

    2014-12-01

    The structure of conjugate passive margins provides information about rifting styles, opening of an ocean and formation of it's associated sedimentary basins. In order to distinguish between tectonic inheritance and structures directly related to rifting of passive margins conjugate profiles have to be acquired on margins on diverse locations and different ages. In this study we use new and existing reflection and wide-angle seismic data from two margin pairs, the 200 Ma year old Nova-Scotia - Morocco margin pair and the only 20 Ma Gulf of Lions - Sardinia margin pair. On both margin pairs wide-angle seismic data combined with reflection seismic data were acquired on conjugate profiles on sea and extended on land. Forward modelling of the deep crustal structure along the four transects indicates that a high velocity zone (HVZ) (> 7.2 km/s) is present at the base of the lower crust on all four margins along the ocean-continental transition zone (OCT). This may represent either exhumed upper mantle material or injection of upper mantle material into proto-oceanic crust at the onset of sea-floor spreading. However the width of the HVZ might strongly differ between conjugates, which may be the result of tectonic inheritance, for example the presence of ancient subduction zones or orogens. Both margin pairs show a similar unthinned continental crustal thickness. Crustal thinning and upper-to-lower crustal thickness vary between margin pairs, but remain nearly symmetric on conjugate profiles and might therefore depend on the structure and mechanical properties of the original continental crust. For the Mediterranean margin pair, the oceanic crust is similar on both sides, with a thickness of only 4-5 km. For the Atlantic margin pair, oceanic crustal thickness is higher on the Moroccan Margin, a fact that can be explained by either asymmetric spreading or by the volcanic underplating, possibly originating from the Canary Hot Spot.

  15. Development of a seismic damage assessment program for nuclear power plant structures

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Hyun Moo; Cho, Yang Heui; Shin, Hyun Mok [Seoul National Univ., Seoul (Korea, Republic of)] (and others)

    2001-12-15

    The most part of the nuclear power plants operating currently in Korea are more than 20 years old and obviously we cannot pretend that their original performance is actually maintained. In addition, earthquake occurrences show an increasing trend all over the world, and Korea can no more be considered as a zone safe from earthquake. Therefore, need is to guarantee the safety of these power plant structures against seismic accident, to decide to maintain them operational and to obtain data relative to maintenance/repair. Such objectives can be reached by damage assessment using inelastic seismic analysis considering aging degradation. It appears to be more important particularly for the structure enclosing the nuclear reactor that must absolutely protect against any radioactive leakage. Actually, the tendency of the technical world, led by the OECD/NEA, BNL in the United States, CEA in France and IAEA, is to develop researches or programs to assess the seismic safety considering aging degradation of operating nuclear power plants. Regard to the above-mentioned international technical trend, a technology to establish inelastic seismic analysis considering aging degradation so as to assess damage level and seismic safety margin appears to be necessary. Damage assessment and prediction system to grasp in real-time the actual seismic resistance capacity and damage level by 3-dimensional graphic representations are also required.

  16. Development of a seismic damage assessment program for nuclear power plant structures

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Hyun Moo; Cho, Ho Hyun; Cho, Yang Hui [Seoul National Univ., Seoul (Korea, Republic of)] (and others)

    2000-12-15

    Some of nuclear power plants operating currently in Korea have been passed about 20 years after construction. Moreover, in the case of KORI I the service year is over 20 years, so their abilities are different from initial abilities. Also, earthquake outbreak increase, our country is not safe area for earthquake. Therefore, need is to guarantee the safety of these power plant structures against seismic accident, to decide to maintain them operational and to obtain data relative to maintenance/repair. Such objectives can be reached by damage assessment using inelastic seismic analysis considering aging degradation. It appears to be more important particularly for the structure enclosing the nuclear reactor that must absolutely protect against any radioactive leakage. Actually, the tendency of the technical world, led by the OECD/NEA, BNL in the United States, CEA in France and IAEA, is to develop researches or programs to assess the seismic safety considering aging degradation of operating nuclear power plants. Regard to the above-mentioned international technical trend, a technology to establish inelastic seismic analysis considering aging degradation so as to assess damage level and seismic safety margin appears to be necessary. Damage assessment and prediction system to grasp in real-time the actual seismic resistance capacity and damage level by 3-dimensional graphic representations are also required.

  17. Seismic Safety Margins Research Program. Phase I. Interim definition of terms

    International Nuclear Information System (INIS)

    Smith, P.D.; Dong, R.G.

    1980-01-01

    This report documents interim definitions of terms in the Seismic Safety Margins Research Program (SSMRP). Intent is to establish a common-based terminology integral to the probabilistic methods that predict more realistically the behavior of nuclear power plants during an earthquake. These definitions are a response to a request by the Nuclear Regulatory Commission Advisory Committee on Reactor Safeguards at its meeting held November 15-16, 1979

  18. Seismic analysis of clinoform depositional sequences and shelf-margin trajectories in Lower Cretaceous (Albian) strata, Alaska North Slope

    Science.gov (United States)

    Houseknecht, D.W.; Bird, K.J.; Schenk, C.J.

    2009-01-01

    Lower Cretaceous strata beneath the Alaska North Slope include clinoform depositional sequences that filled the western Colville foreland basin and overstepped the Beaufort rift shoulder. Analysis of Albian clinoform sequences with two-dimensional (2D) seismic data resulted in the recognition of seismic facies inferred to represent lowstand, transgressive and highstand systems tracts. These are stacked to produce shelf-margin trajectories that appear in low-resolution seismic data to alternate between aggradational and progradational. Higher-resolution seismic data reveal shelf-margin trajectories that are more complex, particularly in net-aggradational areas, where three patterns commonly are observed: (1) a negative (downward) step across the sequence boundary followed by mostly aggradation in the lowstand systems tract (LST), (2) a positive (upward) step across the sequence boundary followed by mostly progradation in the LST and (3) an upward backstep across a mass-failure d??collement. These different shelf-margin trajectories are interpreted as (1) fall of relative sea level below the shelf edge, (2) fall of relative sea level to above the shelf edge and (3) mass-failure removal of shelf-margin sediment. Lowstand shelf margins mapped using these criteria are oriented north-south in the foreland basin, indicating longitudinal filling from west to east. The shelf margins turn westward in the north, where the clinoform depositional system overstepped the rift shoulder, and turn eastward in the south, suggesting progradation of depositional systems from the ancestral Brooks Range into the foredeep. Lowstand shelf-margin orientations are consistently perpendicular to clinoform-foreset-dip directions. Although the Albian clinoform sequences of the Alaska North Slope are generally similar in stratal geometry to clinoform sequences elsewhere, they are significantly thicker. Clinoform-sequence thickness ranges from 600-1000 m in the north to 1700-2000 m in the south

  19. Seismic hazard assessment: Issues and alternatives

    Science.gov (United States)

    Wang, Z.

    2011-01-01

    Seismic hazard and risk are two very important concepts in engineering design and other policy considerations. Although seismic hazard and risk have often been used inter-changeably, they are fundamentally different. Furthermore, seismic risk is more important in engineering design and other policy considerations. Seismic hazard assessment is an effort by earth scientists to quantify seismic hazard and its associated uncertainty in time and space and to provide seismic hazard estimates for seismic risk assessment and other applications. Although seismic hazard assessment is more a scientific issue, it deserves special attention because of its significant implication to society. Two approaches, probabilistic seismic hazard analysis (PSHA) and deterministic seismic hazard analysis (DSHA), are commonly used for seismic hazard assessment. Although PSHA has been pro-claimed as the best approach for seismic hazard assessment, it is scientifically flawed (i.e., the physics and mathematics that PSHA is based on are not valid). Use of PSHA could lead to either unsafe or overly conservative engineering design or public policy, each of which has dire consequences to society. On the other hand, DSHA is a viable approach for seismic hazard assessment even though it has been labeled as unreliable. The biggest drawback of DSHA is that the temporal characteristics (i.e., earthquake frequency of occurrence and the associated uncertainty) are often neglected. An alternative, seismic hazard analysis (SHA), utilizes earthquake science and statistics directly and provides a seismic hazard estimate that can be readily used for seismic risk assessment and other applications. ?? 2010 Springer Basel AG.

  20. Seismic influence in the Quaternary uplift of the Central Chile coastal margin, preliminary results.

    Science.gov (United States)

    Valdivia, D.; del Valle, F.; Marquardt, C.; Elgueta, S.

    2017-12-01

    In order to quantify the influence of NW striking potentially seismogenic normal faults over the longitudinal variation of the Central Chile Coastal margin uplift, we measured Quaternary marine terraces, which represent the tectonic uplift of the coastal margin. Movement in margin oblique normal faults occurs by co-seismic extension of major subduction earthquakes and has occurred in the Pichilemu fault, generating a 7.0 Mw earthquake after the 2010 8.8 Mw Maule earthquake.The coastal area between 32° and 34° S was selected due to the presence of a well-preserved sequence of 2 to 5 Quaternary marine terraces. In particular, the margin oblique normal NW-trending, SW-dipping Laguna Verde fault, south of Valparaiso (33° S) puts in contact contrasting morphologies: to the south, a flat coast with wide marine terraces is carved in both, Jurassic plutonic rocks and Neogene semi-consolidated marine sediments; to the north, a steeper scarp with narrower marine terraces, over 120 m above the corresponding ones in the southern coast, is carved in Jurassic plutonic rocks.We have collected over 6 months microseimic data, providing information on seismic activity and underground geometry of the Laguna Verde fault. We collected ca. 100 systematic measurements of fringes at the base of paleo coastal scarps through field mapping and a 5 m digital elevation model. These fringes mark the maximum sea level during the terrace's carving.The heights of these fringes range between 0 and 250 masl. We estimate a 0.7 mm/yr slip rate for the Laguna Verde fault based on the height difference between corresponding terraces north- and southward, with an average uplift rate of 0.3 mm/yr for the whole area.NW striking normal faults, besides representing a potential seismic threat to the near population on one of the most densely populated areas of Chile, heavily controls the spatial variation of the coastal margin uplift. In Laguna Verde, the uplift rate differs more than three times northward

  1. Seismic Safety Margins Research Program. Phase 1. Project V. Structural sub-system response: subsystem response review

    International Nuclear Information System (INIS)

    Fogelquist, J.; Kaul, M.K.; Koppe, R.; Tagart, S.W. Jr.; Thailer, H.; Uffer, R.

    1980-03-01

    This project is directed toward a portion of the Seismic Safety Margins Research Program which includes one link in the seismic methodology chain. The link addressed here is the structural subsystem dynamic response which consists of those components and systems whose behavior is often determined decoupled from the major structural response. Typically the mathematical model utilized for the major structural response will include only the mass effects of the subsystem and the main model is used to produce the support motion inputs for subsystem seismic qualification. The main questions addressed in this report have to do with the seismic response uncertainty of safety-related components or equipment whose seismic qualification is performed by (a) analysis, (b) tests, or (c) combinations of analysis and tests, and where the seismic input is assumed to have no uncertainty

  2. Various types of reported seismic margins and their uses

    International Nuclear Information System (INIS)

    Kennedy, R.P.

    1985-01-01

    Nuclear power plant structures and safety-related systems have been generally designed conservatively for a safe shutdown earthquake (SSE) and more conservatively for a smaller operating basis earthquake (OBE). Depending upon the relative conservatism of the design criteria, either the SSE or the OBE will control the design. In recent years, increasing knowledge in the geoscience field has led to a better understanding that, although highly unlikely, it is possible for the nuclear power plant to be subjected to earthquake ground motion greater than the ground motion for which the plant was designed. For this reason, interest has developed in demonstrating that nuclear plant structures and safety-related systems can safely withstand earthquake ground motion larger than their design earthquake ground motions (SSE and OBE). Within this paper, this larger-than-design earthquake ground motion will be called the seismic margin earthquake (SME) to distinguish it from the design earthquakes. The goal is to determine the performance of already-designed structures, components, and systems when subjected to the SME. Different and generally more liberal criteria should be used when evaluating the performance of structures, components and systems for the SME than were used in design. Retrofit, and redesign, should only be contemplated if one cannot show a seismic margin greater than unity for the SME using these more liberal criteria. In other words, the SME is not a design earthquake. It is not a replacement for the SSE and generally has nothing to do with design. The SME is a performance-check earthquake

  3. Seismic risk assessment of a BWR: status report

    International Nuclear Information System (INIS)

    Chuang, T.Y.; Bernreuter, D.L.; Wells, J.E.; Johnson, J.J.

    1985-02-01

    The seismic risk methodology developed in the US NRC Seismic Safety Margins Research Program (SSMRP) was demonstrated by its application to the Zion nuclear power plant, a pressurized water reactor (PWR). A detailed model of Zion, including systems analysis models (initiating events, event trees, and fault trees), SSI and structure models, and piping models was developed and analyzed. The SSMRP methodology can equally be applied to a boiling water reactor (BWR). To demonstrate its applicability, to identify fundamental differences in seismic risk between a PWR and a BWR, and to provide a basis of comparison of seismic risk between a PWR and a BWR when analyzed with comparable methodology and assumptions, a seismic risk analysis is being performed on the LaSalle County Station nuclear power plant

  4. Crustal structure across the Møre margin, mid-Norway, from wide-angle seismic and gravity data

    DEFF Research Database (Denmark)

    Kvarven, Trond; Ebbing, Jörg; Mjelde, R.

    2014-01-01

    The Møre Margin in the NE Atlantic represents a dominantly passive margin with an unusual abrupt transition from alpine morphology onshore to a deep sedimentary basin offshore. In order to study this transition in detail, three ocean bottom seismometer profiles with deep seismic reflection and re...... by the Jan Mayen Lineament, suggesting that the lineament represents a pre-Caledonian structural feature in the basement....

  5. Tectonic Inversion Along the Algerian and Ligurian Margins: On the Insight Provided By Latest Seismic Processing Techniques Applied to Recent and Vintage 2D Offshore Multichannel Seismic Data

    Science.gov (United States)

    Schenini, L.; Beslier, M. O.; Sage, F.; Badji, R.; Galibert, P. Y.; Lepretre, A.; Dessa, J. X.; Aidi, C.; Watremez, L.

    2014-12-01

    Recent studies on the Algerian and the North-Ligurian margins in the Western Mediterranean have evidenced inversion-related superficial structures, such as folds and asymmetric sedimentary perched basins whose geometry hints at deep compressive structures dipping towards the continent. Deep seismic imaging of these margins is difficult due to steep slope and superficial multiples, and, in the Mediterranean context, to the highly diffractive Messinian evaporitic series in the basin. During the Algerian-French SPIRAL survey (2009, R/V Atalante), 2D marine multi-channel seismic (MCS) reflection data were collected along the Algerian Margin using a 4.5 km, 360 channel digital streamer and a 3040 cu. in. air-gun array. An advanced processing workflow has been laid out using Geocluster CGG software, which includes noise attenuation, 2D SRME multiple attenuation, surface consistent deconvolution, Kirchhoff pre-stack time migration. This processing produces satisfactory seismic images of the whole sedimentary cover, and of southward dipping reflectors in the acoustic basement along the central part of the margin offshore Great Kabylia, that are interpreted as inversion-related blind thrusts as part of flat-ramp systems. We applied this successful processing workflow to old 2D marine MCS data acquired on the North-Ligurian Margin (Malis survey, 1995, R/V Le Nadir), using a 2.5 km, 96 channel streamer and a 1140 cu. in. air-gun array. Particular attention was paid to multiple attenuation in adapting our workflow. The resulting reprocessed seismic images, interpreted with a coincident velocity model obtained by wide-angle data tomography, provide (1) enhanced imaging of the sedimentary cover down to the top of the acoustic basement, including the base of the Messinian evaporites and the sub-salt Miocene series, which appear to be tectonized as far as in the mid-basin, and (2) new evidence of deep crustal structures in the margin which the initial processing had failed to

  6. Seismic assessment of Kozloduy WWER-440, model 230 nuclear power plant

    International Nuclear Information System (INIS)

    Monette, P.; Baltus, R.; Yanev, P.; Campbell, R.

    1993-01-01

    A preliminary report is given of the findings of an IAEA sponsored walkdown of the WWER-440, model 230 at Kozloduy, in May 1991. The scope of the IAEA mission was to determine the lower bound seismic capacity of the plant and to make recommendations for improvements to increase the earthquake resistance. The methodology utilized in the assessment is that used for evaluation of the seismic margin in U.S. nuclear power plants subjected to earthquakes beyond their design basis. Included in the assessment is the establishment of a safe shutdown path which would include the capacity to mitigate a small break in the primary system, performance of a walkdown of the safe shutdown path and calculation of the high-confidence-of-low-probability-of-failure (HCLPF) of the safe shutdown path. Excluding system design deficiency relative to U.S. and Western Europe standards, it was found that the plant has many seismic vulnerabilities similar to those that existed in many of the U.S. plants prior to about 1979 when the Systematic Evaluation Program was initiated. (Z.S.) 1 tab., 1 fig

  7. Seismic studies of crustal structure and tectonic evolution across the central California margin and the Colorado Plateau margin

    Science.gov (United States)

    Howie, John Mark

    This thesis presents results from two integrated deep-crustal seismic-reflection and wide-angle-reflection/refraction studies that improve our understanding of crustal structure and tectonic evolution in two tectonically active areas of the western United States. A multi-faceted approach to the study of crustal structure includes the use of compressional and shear wave seismic data. Supplementing the controlled source seismic observations with seismicity, gravity, heat flow, laboratory measurements and available geologic information allows a much improved understanding of crustal structure and tectonic evolution than would be available from the seismic data alone. Chapter 1 introduces the data integration strategy applied to the studies completed. In Chapter 2, an integrated crustal-velocity model across the south-central California margin west of the San Adreas fault is presented. The crustal structure defines tectonostratigraphic terranes 15 to 20 km thick underlain by a 6-km-thick high-velocity layer (6.8-7.0 km/s) interpreted as tectonically underplated oceanic crust. Structures defined in the oceanic crust indicate significant compressional and strike-slip deformation within the oceanic crust that probably formed during the final stages of subduction from 24-16 Ma. In Chapter 3, the crustal model from Chapter 2 is used as a constraint for models of the tectonic evolution of the Pacific-North American transform plate boundary. By combining the crustal structure with thermal models for asthenospheric upwelling associated with a slab-free window, I find that the mantle lithosphere east of the coast beneath south-central California probably delaminated from the oceanic crust, stranding the oceanic crust beneath the margin. In Chapter 4, results from a high-resolution reflection experiment in central Arizona across the southwestern edge of the Colorado Plateau address the relationship between strength of the crust and localization of extensional tectonism. A low

  8. Seismic Safety Margins Research Program (Phase I). Project IV. Structural building response; Structural Building Response Review

    International Nuclear Information System (INIS)

    Healey, J.J.; Wu, S.T.; Murga, M.

    1980-02-01

    As part of the Phase I effort of the Seismic Safety Margins Research Program (SSMRP) being performed by the University of California Lawrence Livermore Laboratory for the US Nuclear Regulatory Commission, the basic objective of Subtask IV.1 (Structural Building Response Review) is to review and summarize current methods and data pertaining to seismic response calculations particularly as they relate to the objectives of the SSMRP. This material forms one component in the development of the overall computational methodology involving state of the art computations including explicit consideration of uncertainty and aimed at ultimately deriving estimates of the probability of radioactive releases due to seismic effects on nuclear power plant facilities

  9. Major structural response methods used in the seismic safety margins research program

    International Nuclear Information System (INIS)

    Chou, C.K.; Lo, T.; Vagliente, V.

    1979-01-01

    In order to evaluate the conservatisms in present nuclear power plant seismic safety requirements, a probabilistic based systems model is being developed. This model will also be used to develop improved requirements. In Phase I of the Seismic Safety Margins Research Program (SSMRP), this methodology will be developed for a specific nuclear power plant and used to perform probabilistic sensitivity studies to gain engineering insights into seismic safety requirements. Random variables in the structural response analysis area, or parameters which cause uncertainty in the response, are discussed and classified into three categories; i.e., material properties, structural dynamic characteristics and related modeling techniques, and analytical methods. The sensitivity studies are grouped into two categories; deterministic and probabilistic. In a system analysis, transfer functions in simple form are needed since there are too many responses which have to be calculated in a Monte Carlo simulation to use the usual straightforward calculation approach. Therefore, the development of these simple transfer functions is one of the important tasks in SSMRP. Simplified as well as classical transfer functions are discussed

  10. Northeastern Brazilian margin: Regional tectonic evolution based on integrated analysis of seismic reflection and potential field data and modelling

    Science.gov (United States)

    Blaich, Olav A.; Tsikalas, Filippos; Faleide, Jan Inge

    2008-10-01

    Integration of regional seismic reflection and potential field data along the northeastern Brazilian margin, complemented by crustal-scale gravity modelling, is used to reveal and illustrate onshore-offshore crustal structure correlation, the character of the continent-ocean boundary, and the relationship of crustal structure to regional variation of potential field anomalies. The study reveals distinct along-margin structural and magmatic changes that are spatially related to a number of conjugate Brazil-West Africa transfer systems, governing the margin segmentation and evolution. Several conceptual tectonic models are invoked to explain the structural evolution of the different margin segments in a conjugate margin context. Furthermore, the constructed transects, the observed and modelled Moho relief, and the potential field anomalies indicate that the Recôncavo, Tucano and Jatobá rift system may reflect a polyphase deformation rifting-mode associated with a complex time-dependent thermal structure of the lithosphere. The constructed transects and available seismic reflection profiles, indicate that the northern part of the study area lacks major breakup-related magmatic activity, suggesting a rifted non-volcanic margin affinity. In contrast, the southern part of the study area is characterized by abrupt crustal thinning and evidence for breakup magmatic activity, suggesting that this region evolved, partially, with a rifted volcanic margin affinity and character.

  11. Rippability Assessment of Weathered Sedimentary Rock Mass using Seismic Refraction Methods

    Science.gov (United States)

    Ismail, M. A. M.; Kumar, N. S.; Abidin, M. H. Z.; Madun, A.

    2018-04-01

    Rippability or ease of excavation in sedimentary rocks is a significant aspect of the preliminary work of any civil engineering project. Rippability assessment was performed in this study to select an available ripping machine to rip off earth materials using the seismic velocity chart provided by Caterpillar. The research area is located at the proposed construction site for the development of a water reservoir and related infrastructure in Kampus Pauh Putra, Universiti Malaysia Perlis. The research was aimed at obtaining seismic velocity, P-wave (Vp) using a seismic refraction method to produce a 2D tomography model. A 2D seismic model was used to delineate the layers into the velocity profile. The conventional geotechnical method of using a borehole was integrated with the seismic velocity method to provide appropriate correlation. The correlated data can be used to categorize machineries for excavation activities based on the available systematic analysis procedure to predict rock rippability. The seismic velocity profile obtained was used to interpret rock layers within the ranges labelled as rippable, marginal, and non-rippable. Based on the seismic velocity method the site can be classified into loose sand stone to moderately weathered rock. Laboratory test results shows that the site’s rock material falls between low strength and high strength. Results suggest that Caterpillar’s smallest ripper, namely, D8R, can successfully excavate materials based on the test results integration from seismic velocity method and laboratory test.

  12. Long-term seismic observations along Myanmar-Sunda subduction margin: insights for 2004 M w > 9.0 earthquake

    Science.gov (United States)

    Khan, Prosanta Kumar; Banerjee, Jayashree; Shamim, Sk; Mohanty, Manoranjan

    2018-03-01

    The present study investigates the temporal variation of few seismic parameters between the Myanmar (Zone I), Andaman-Nicobar-Northwest Sumatra (Zone II), Southeast Sumatra-West Indonesia (Zone III) and East Indonesia (Zone IV) converging boundaries in reference to the generation of 26 December 2004 M w > 9.0 off-Sumatra mega-earthquake event. The four segments are distinguished based on tectonics parameters, distinct geological locations, great earthquake occurrences, and the Wadati-Benioff zone characteristics. Two important seismic parameters such as seismic energy and b values are computed over a time-window of 6-month period during the entire 1976-2013 period for these segments. The b values show a constant decrease in Zones II, III, and IV, whereas the Zone I does not show any such pattern prior to the 2004 mega-event. The release of seismic energy was also gradually decreasing in Zones II and III till the 2004 event, and little similar pattern was also noted in Zone IV. This distinct observation might be indicating that the stress accumulation was dominant near the Sumatra-Java area located towards southeast of Zone II and northwest of Zone III. The released strain energy during the 2004 event was subsequently migrated towards north, rupturing 1300 km of the boundary between the Northwest Sumatra and the North Andaman. The occurrence of 2004 mega-event was apparently concealed behind the long-term seismic quiescence existing near the Sumatra and Nicobar margin. A systematic study of the patterns of seismic energy release and b values, and the long-term observation of collective behaviour of the margin tectonics might have had given clues to the possibility of the 2004 mega-event.

  13. Role of seismic PRA in seismic safety decisions of nuclear power plants

    International Nuclear Information System (INIS)

    Ravindra, M.K.; Kennedy, R.P.; Sues, R.H.

    1985-01-01

    This paper highlights the important roles that seismic probabilistic risk assessments (PRAs) can play in the seismic safety decisions of nuclear power plants. If a seismic PRA has been performed for a plant, its results can be utilized to evaluate the seismic capability beyond the safe shutdown event (SSE). Seismic fragilities of key structures and equipment, fragilities of dominant plant damage states and the frequencies of occurrence of these plant damage states are reviewed to establish the seismic safety of the plant beyond the SSE level. Guidelines for seismic margin reviews and upgrading may be developed by first identifying the generic classes of structures and equipment that have been shown to be dominant risk contributors in the completed seismic PRAs, studying the underlying causes for their contribution and examining why certain other items (e.g., piping) have not proved to be high-risk-contributors

  14. How the structural architecture of the Eurasian continental margin affects the structure, seismicity, and topography of the south central Taiwan fold-and-thrust belt

    Science.gov (United States)

    Brown, Dennis; Alvarez-Marron, Joaquina; Biete, Cristina; Kuo-Chen, Hao; Camanni, Giovanni; Ho, Chun-Wei

    2017-07-01

    Studies of mountain belts worldwide show that along-strike changes are common in their foreland fold-and-thrust belts. These are typically caused by processes related to fault reactivation and/or fault focusing along changes in sedimentary sequences. The study of active orogens, like Taiwan, can also provide insights into how these processes influence transient features such as seismicity and topography. In this paper, we trace regional-scale features from the Eurasian continental margin in the Taiwan Strait into the south central Taiwan fold-and-thrust belt. We then present newly mapped surface geology, P wave velocity maps and sections, seismicity, and topography data to test the hypothesis of whether or not these regional-scale features of the margin are contributing to along-strike changes in structural style, and the distribution of seismicity and topography in this part of the Taiwan fold-and-thrust belt. These data show that the most important along-strike change takes place at the eastward prolongation of the upper part of the margin necking zone, where there is a causal link between fault reactivation, involvement of basement in the thrusting, concentration of seismicity, and the formation of high topography. On the area correlated with the necking zone, the strike-slip reactivation of east northeast striking extensional faults is causing sigmoidal offset of structures and topography along two main zones. Here basement is not involved in the thrusting; there is weak focusing of seismicity and localized development of topography. We also show that there are important differences in structure, seismicity, and topography between the margin shelf and its necking zone.

  15. OCT structure, COB location and magmatic type of the S Angolan & SE Brazilian margins from integrated quantitative analysis of deep seismic reflection and gravity anomaly data

    Science.gov (United States)

    Cowie, Leanne; Kusznir, Nick; Horn, Brian

    2014-05-01

    Integrated quantitative analysis using deep seismic reflection data and gravity inversion have been applied to the S Angolan and SE Brazilian margins to determine OCT structure, COB location and magmatic type. Knowledge of these margin parameters are of critical importance for understanding rifted continental margin formation processes and in evaluating petroleum systems in deep-water frontier oil and gas exploration. The OCT structure, COB location and magmatic type of the S Angolan and SE Brazilian rifted continental margins are much debated; exhumed and serpentinised mantle have been reported at these margins. Gravity anomaly inversion, incorporating a lithosphere thermal gravity anomaly correction, has been used to determine Moho depth, crustal basement thickness and continental lithosphere thinning. Residual Depth Anomaly (RDA) analysis has been used to investigate OCT bathymetric anomalies with respect to expected oceanic bathymetries and subsidence analysis has been used to determine the distribution of continental lithosphere thinning. These techniques have been validated for profiles Lusigal 12 and ISE-01 on the Iberian margin. In addition a joint inversion technique using deep seismic reflection and gravity anomaly data has been applied to the ION-GXT BS1-575 SE Brazil and ION-GXT CS1-2400 S Angola deep seismic reflection lines. The joint inversion method solves for coincident seismic and gravity Moho in the time domain and calculates the lateral variations in crustal basement densities and velocities along the seismic profiles. Gravity inversion, RDA and subsidence analysis along the ION-GXT BS1-575 profile, which crosses the Sao Paulo Plateau and Florianopolis Ridge of the SE Brazilian margin, predict the COB to be located SE of the Florianopolis Ridge. Integrated quantitative analysis shows no evidence for exhumed mantle on this margin profile. The joint inversion technique predicts oceanic crustal thicknesses of between 7 and 8 km thickness with

  16. Direct seismic detection of gas hydrates using multi-component seismology : a case study from the mid-Norwegian margin

    Energy Technology Data Exchange (ETDEWEB)

    Bunz, S.; Mienert, J. [Tromso Univ., Tromso (Norway). Dept. of Geology; Chand, S. [Norwegian Geological Survey, Trondheim (Norway)

    2008-07-01

    Gas hydrates are important as a possible future energy resource, in submarine landsliding and in global climate change as they contain more carbon than any other global reservoir and are plentiful on continental margins worldwide. It is therefore necessary to identify and map the distribution of gas hydrates in a fast and basin-wide approach. Information about the distribution of gas hydrates can be obtained using multi-component seismology. In the marine environment shear waves (S-waves) can be generated by conversion from a downward-propagating compressional wave (P-wave) upon reflection at a sedimentary interface. The upward-propagating S-wave can be recorded at the ocean floor using vertical and horizontal geophones. On the mid-Norwegian margin, a combined analysis of the independently obtained parameters, P-wave velocity and Vp/Vs-ratio, of ocean-bottom cable data enables the direct detection of gas hydrates with higher certainty and assessment of their grain-scale distribution and its controlling parameters. In order to directly image gas hydrates and to directly assess their grain-scale distribution, a model was developed to evaluate the distribution of the ratio of P- and S-wave velocities, Vp/Vs, along the ocean-bottom cable line. The study also evaluated possible controlling mechanisms for the distribution of gas hydrates. The paper provided detailed information on the distribution of gas hydrates and gas within the sediments through analyses of seismic velocities, obtained from multi-channel or ocean-bottom seismic data. It was concluded that gas hydrates are distributed both with and without affecting the shear strength of the sediments. 13 refs., 6 figs.

  17. Seismic safety margin research program. Program plan, Revision I

    International Nuclear Information System (INIS)

    Smith, P.D.; Tokarz, F.J.; Bernreuter, D.L.; Cummings, G.E.; Chou, C.K.; Vagliente, V.N.

    1978-01-01

    The overall objective of the SSMRP is to develop mathematical models that realistically predict the probability of radioactive releases from seismically induced events in nuclear power plants. These models will be used for four purposes: (1) To perform sensitivity studies to determine the weak links in seismic methodology. The weak links will then be improved by research and development. (2) To estimate the probability of release for a plant. It is believed that the major difficulty in the program will be to obtain acceptably small confidence limits on the probability of release. (3) To estimate the conservatisms in the Standard Review Plan (SRP) seismic design methodology. This will be done by comparing the results of the SRP methodology and the methodology resulting from the research and development in (1). (4) To develop an improved seismic design methodology based on probability. The Phase I objective proposed in this report is to develop mathematical models which will accomplish the purposes No. 1 and No. 2 with simplified assumptions such as linear elastic analysis, limited assessment on component fragility (considering only accident sequences leading to core melt), and simplified safety system

  18. Seismic design margin evaluation of systems and equipment required for safe shutdown of North Anna, Units 1 and 2, following an SSE (safe-shutdown earthquake) event. Technical report

    International Nuclear Information System (INIS)

    Desai, K.D.

    1981-06-01

    The Advisory Committee on Reactor Safeguards recommended that the NRC staff review in detail the capability and available seismic design margin of fluid systems and equipment used in North Anna, Units 1 and 2 to achieve safe shutdown following a site-design safe-shutdown earthquake (SSE). The staff conducted a series of plant visits and meetings with the licensee to view and discuss the seismic design methodology used for systems, equipment and their supports. The report is a description and evaluation of the seismic design criteria, design conservatisms and seismic design margin for North Anna, Units 1 and 2

  19. Seismic component fragility data base for IPEEE

    International Nuclear Information System (INIS)

    Bandyopadhyay, K.; Hofmayer, C.

    1990-01-01

    Seismic probabilistic risk assessment or a seismic margin study will require a reliable data base of seismic fragility of various equipment classes. Brookhaven National Laboratory (BNL) has selected a group of equipment and generically evaluated the seismic fragility of each equipment class by use of existing test data. This paper briefly discusses the evaluation methodology and the fragility results. The fragility analysis results when used in the Individual Plant Examination for External Events (IPEEE) Program for nuclear power plants are expected to provide insights into seismic vulnerabilities of equipment for earthquakes beyond the design basis. 3 refs., 1 fig., 1 tab

  20. Risk based seismic design criteria

    International Nuclear Information System (INIS)

    Kennedy, R.P.

    1999-01-01

    In order to develop a risk based seismic design criteria the following four issues must be addressed: (1) What target annual probability of seismic induced unacceptable performance is acceptable? (2) What minimum seismic margin is acceptable? (3) Given the decisions made under Issues 1 and 2, at what annual frequency of exceedance should the safe-shutdown-earthquake (SSE) ground motion be defined? (4) What seismic design criteria should be established to reasonably achieve the seismic margin defined under Issue 2? The first issue is purely a policy decision and is not addressed in this paper. Each of the other three issues are addressed. Issues 2 and 3 are integrally tied together so that a very large number of possible combinations of responses to these two issues can be used to achieve the target goal defined under Issue 1. Section 2 lays out a combined approach to these two issues and presents three potentially attractive combined resolutions of these two issues which reasonably achieves the target goal. The remainder of the paper discusses an approach which can be used to develop seismic design criteria aimed at achieving the desired seismic margin defined in resolution of Issue 2. Suggestions for revising existing seismic design criteria to more consistently achieve the desired seismic margin are presented. (orig.)

  1. Some considerations for establishing seismic design criteria for nuclear plant piping

    International Nuclear Information System (INIS)

    Chen, W.P.; Chokshi, N.C.

    1997-01-01

    The Energy Technology Engineering Center (ETEC) is providing assistance to the U.S. NRC in developing regulatory positions on the seismic analysis of piping. As part of this effort, ETEC previously performed reviews of the ASME Code, Section III piping seismic design criteria as revised by the 1994 Addenda. These revised criteria were based on evaluations by the ASME Special Task Group on Integrated Piping Criteria (STGIPC) and the Technical Core Group (TCG) of the Advanced Reactor Corporation (ARC) of the earlier joint Electric Power Research Institute (EPRI)/NRC Piping ampersand Fitting Dynamic Reliability (PFDR) program. Previous ETEC evaluations reported at the 23rd WRSM of seismic margins associated with the revised criteria are reviewed. These evaluations had concluded, in part, that although margins for the timed PFDR tests appeared acceptable (>2), margins in detuned tests could be unacceptable (<1). This conclusion was based primarily on margin reduction factors (MRFs) developed by the ASME STGIPC and ARC/TCG from realistic analyses of PFDR test 36. This paper reports more recent results including: (1) an approach developed for establishing appropriate seismic margins based on PRA considerations, (2) independent assessments of frequency effects on margins, (3) the development of margins based on failure mode considerations, and (4) the implications of Code Section III rules for Section XI

  2. Probabilistic seismic hazard assessment. Gentilly 2

    International Nuclear Information System (INIS)

    1996-03-01

    Results of this probabilistic seismic hazard assessment were determined using a suite of conservative assumptions. The intent of this study was to perform a limited hazard assessment that incorporated a range of technically defensible input parameters. To best achieve this goal, input selected for the hazard assessment tended to be conservative with respect to selection of attenuation modes, and seismicity parameters. Seismic hazard estimates at Gentilly 2 were most affected by selection of the attenuation model. Alternative definitions of seismic source zones had a relatively small impact on seismic hazard. A St. Lawrence Rift model including a maximum magnitude of 7.2 m b in the zone containing the site had little effect on the hazard estimate relative to other seismic source zonation models. Mean annual probabilities of exceeding the design peak ground acceleration, and the design response spectrum for the Gentilly 2 site were computed to lie in the range of 0.001 to 0.0001. This hazard result falls well within the range determined to be acceptable for nuclear reactor sites located throughout the eastern United States. (author) 34 refs., 6 tabs., 28 figs

  3. Structure across the northeastern margin of Flemish Cap, offshore Newfoundland from Erable multichannel seismic reflection profiles: evidence for a transtensional rifting environment

    Science.gov (United States)

    Welford, J. Kim; Hall, Jeremy; Sibuet, Jean-Claude; Srivastava, Shiri P.

    2010-11-01

    We present the results from processing and interpreting nine multichannel seismic reflection lines collected during the 1992 Erable experiment over the northeastern margin of Flemish Cap offshore Newfoundland. These lines, combined into five cross-sections, provide increased seismic coverage over this lightly probed section of the margin and reveal tectonically significant along-strike variations in the degree and compartmentalization of crustal thinning. Similar to the southeastern margins of Flemish Cap and the Grand Banks, a transitional zone of exhumed serpentinized mantle is interpreted between thinned continental and oceanic crust. The 25 km wide transitional zone bears similarities to the 120 km wide transitional zone interpreted as exhumed serpentinized mantle on the conjugate Irish Atlantic margin but the significant width difference is suggestive of an asymmetric conjugate pair. A 40-50 km wide zone of inferred strike-slip shearing is interpreted and observed to extend along most of the northeastern margin of Flemish Cap. Individual shear zones (SZs) may represent extensions of SZs and normal faults within the Orphan Basin providing further evidence for the rotation and displacement of Flemish Cap out of Orphan Basin. The asymmetry between the Flemish Cap and Irish conjugate pairs is likely due in large part to the rotation and displacement of Flemish Cap which resulted in the Flemish Cap margin displaying features of both a strike-slip margin and an extensional margin.

  4. Seismic investigation on the Littoral Faults Zone in the northern continental margin of South China Sea

    Science.gov (United States)

    Sun, J.; Xu, H.; Xia, S.; Cao, J.; Wan, K.

    2017-12-01

    The continental margin of the northern South China Sea (SCS) had experienced continuous evolution from an active continental margin in the late Mesozoic to a passive continental margin in the Cenozoic. The 1200km-long Littoral Faults Zone (LFZ) off the mainland South China was suggested to represent one of the sub-plate boundaries and play a key role during the evolution. Besides, four devastating earthquakes with magnitude over 7 and another 11 destructive events with M>6 were documented to have occurred along the LFZ. However, its approximity to the shoreline, the shallow water depth, and the heavy fishing activities make it hard to conduct a marine seismic investigation. As a result, understandings about the LFZ before 2000 were relatively poor and mostly descriptive. After two experiments of joint onshore-offshore wide-angle seismic surveys in the 1st decade of this century, several cruses aiming to unveil the deep structure of the LFZ were performed in the past few years, with five joint onshore-offshore wide-angle seismic survey profiles completed. Each of these profiles is perpendicular to the shoreline, with four to five seismometers of campaign mode deployed on the landside and over ten Ocean Bottom Seismometers (OBSs) spacing at 20km deployed on the seaside. Meanwhile, multi-channel seismic (MCS) data along these profiles were obtained simultaneously. Based on these data, velocity models from both forward modeling and inversion were obtained. According to these models, the LFZ was imaged to be a low-velocity fractured zone dipping to the SSE-SE at a high-angle and cutting through the thinned continental crust at some locations. Width of the fractured zone varies from 6km to more than 10km from site to site. With these results, it is suggested that the LFZ accommodates the stresses from both the east side, where the Eurasia/Philippine Sea plate converging and mountain building is ongoing, and the west side, where a strike-slip between the Indochina

  5. Probabilistic seismic hazard assessment of NW and central ...

    Indian Academy of Sciences (India)

    The Himalayan region has undergone significant development and to ensure safe and secure progress in such a seismically vulnerable region there is a need for hazard assessment. For seismic hazard assessment, it is important to assess the quality, consistency, and homogeneity of the seismicity data collected from ...

  6. Probabilistic seismic hazard assessment for the effect of vertical ground motions on seismic response of highway bridges

    Science.gov (United States)

    Yilmaz, Zeynep

    Typically, the vertical component of the ground motion is not considered explicitly in seismic design of bridges, but in some cases the vertical component can have a significant effect on the structural response. The key question of when the vertical component should be incorporated in design is answered by the probabilistic seismic hazard assessment study incorporating the probabilistic seismic demand models and ground motion models. Nonlinear simulation models with varying configurations of an existing bridge in California were considered in the analytical study. The simulation models were subjected to the set of selected ground motions in two stages: at first, only horizontal components of the motion were applied; while in the second stage the structures were subjected to both horizontal and vertical components applied simultaneously and the ground motions that produced the largest adverse effects on the bridge system were identified. Moment demand in the mid-span and at the support of the longitudinal girder and the axial force demand in the column are found to be significantly affected by the vertical excitations. These response parameters can be modeled using simple ground motion parameters such as horizontal spectral acceleration and vertical spectral acceleration within 5% to 30% error margin depending on the type of the parameter and the period of the structure. For a complete hazard assessment, both of these ground motion parameters explaining the structural behavior should also be modeled. For the horizontal spectral acceleration, Abrahamson and Silva (2008) model was used within many available standard model. A new NGA vertical ground motion model consistent with the horizontal model was constructed. These models are combined in a vector probabilistic seismic hazard analyses. Series of hazard curves developed and presented for different locations in Bay Area for soil site conditions to provide a roadmap for the prediction of these features for future

  7. NRC systematic evaluation program: seismic review

    International Nuclear Information System (INIS)

    Levin, H.A.

    1980-01-01

    The NRC Systematic Evaluation Program is currently making an assessment of the seismic design safety of 11 older nuclear power plant facilities. The general review philosophy and review criteria relative to seismic input, structural response, and equipment functionability are presented, including the rationale for the development of these guidelines considering the significant evolution of seismic design criteria since these plants were originally licensed. Technical approaches thought more realistic in light of current knowledge are utilized. Initial findings for plants designed to early seismic design procedures suggest that with minor exceptions, these plants possess adequate seismic design margins when evaluated against the intent of current criteria. However, seismic qualification of electrical equipment has been identified as a subject which requires more in-depth evaluation

  8. Summary report on the Seismic Safety Margins Research Program

    International Nuclear Information System (INIS)

    Cummings, G.E.

    1986-01-01

    The Seismic Safety Margins Research Program (SSMRP) was a program to develop a complete, fully coupled analysis procedure (including methods and computer codes) for estimating the risk of an earthquake-induced radioactive release from a commercial nuclear power plant. The SSMRP was the first effort to trace seismically induced failure modes in a reactor system down to the individual component level, and to take into account common-cause earthquake-induced failures at the component level. This report summarizes methods and results generated by SSMRP. The SSMRP method makes use of three computer codes, HAZARD, SMACS and SEISIM to calculate ground motion acceleration time histories, structure and component responses and failure, and radioactive release probabilities. To demonstrate the methodology, an analysis was done of the Zion Nuclear Power Plant. The median frequency of core melt was computed to be 3E-5 per year, with upper (90%) and lower (10%) bounds of 8E-4 and 6E-7 per year. The main contribution to risk came from earthquakes about 2 through 4 times the design basis earthquake level. Risk was dominated by structural and inter-building piping failures and loss of off-site power. Sensitivity studies were undertaken to test assumptions and modeling procedures relative to soil-structure interaction effects, feed-and-bleed cooling, and structural failures. Assumptions made could have an order-of-magnitude effect on core melt frequency. Also, guidelines were developed for simplifying the SSMRP method, and importance rankings were generated based on the Zion analysis. 56 refs., 6 figs

  9. SSI sensitivity studies and model improvements for the US NRC Seismic Safety Margins Research Program. Rev. 1

    International Nuclear Information System (INIS)

    Johnson, J.J.; Maslenikov, O.R.; Benda, B.J.

    1984-10-01

    The Seismic Safety Margins Research Program (SSMRP) is a US NRC-funded program conducted by Lawrence Livermore National Laboratory. Its goal is to develop a complete fully coupled analysis procedure for estimating the risk of an earthquake-induced radioactive release from a commercial nuclear power plant. In Phase II of the SSMRP, the methodology was applied to the Zion nuclear power plant. Three topics in the SSI analysis of Zion were investigated and reported here - flexible foundation modeling, structure-to-structure interaction, and basemat uplift. The results of these investigations were incorporated in the SSMRP seismic risk analysis. 14 references, 51 figures, 13 tables

  10. Seismic risk assessment and application in the central United States

    Science.gov (United States)

    Wang, Z.

    2011-01-01

    Seismic risk is a somewhat subjective, but important, concept in earthquake engineering and other related decision-making. Another important concept that is closely related to seismic risk is seismic hazard. Although seismic hazard and seismic risk have often been used interchangeably, they are fundamentally different: seismic hazard describes the natural phenomenon or physical property of an earthquake, whereas seismic risk describes the probability of loss or damage that could be caused by a seismic hazard. The distinction between seismic hazard and seismic risk is of practical significance because measures for seismic hazard mitigation may differ from those for seismic risk reduction. Seismic risk assessment is a complicated process and starts with seismic hazard assessment. Although probabilistic seismic hazard analysis (PSHA) is the most widely used method for seismic hazard assessment, recent studies have found that PSHA is not scientifically valid. Use of PSHA will lead to (1) artifact estimates of seismic risk, (2) misleading use of the annual probability of exccedance (i.e., the probability of exceedance in one year) as a frequency (per year), and (3) numerical creation of extremely high ground motion. An alternative approach, which is similar to those used for flood and wind hazard assessments, has been proposed. ?? 2011 ASCE.

  11. Use of the t-distribution to construct seismic hazard curves for seismic probabilistic safety assessments

    Energy Technology Data Exchange (ETDEWEB)

    Yee, Eric [KEPCO International Nuclear Graduate School, Dept. of Nuclear Power Plant Engineering, Ulsan (Korea, Republic of)

    2017-03-15

    Seismic probabilistic safety assessments are used to help understand the impact potential seismic events can have on the operation of a nuclear power plant. An important component to seismic probabilistic safety assessment is the seismic hazard curve which shows the frequency of seismic events. However, these hazard curves are estimated assuming a normal distribution of the seismic events. This may not be a strong assumption given the number of recorded events at each source-to-site distance. The use of a normal distribution makes the calculations significantly easier but may underestimate or overestimate the more rare events, which is of concern to nuclear power plants. This paper shows a preliminary exploration into the effect of using a distribution that perhaps more represents the distribution of events, such as the t-distribution to describe data. The integration of a probability distribution with potentially larger tails basically pushes the hazard curves outward, suggesting a different range of frequencies for use in seismic probabilistic safety assessments. Therefore the use of a more realistic distribution results in an increase in the frequency calculations suggesting rare events are less rare than thought in terms of seismic probabilistic safety assessment. However, the opposite was observed with the ground motion prediction equation considered.

  12. Use of the t-distribution to construct seismic hazard curves for seismic probabilistic safety assessments

    International Nuclear Information System (INIS)

    Yee, Eric

    2017-01-01

    Seismic probabilistic safety assessments are used to help understand the impact potential seismic events can have on the operation of a nuclear power plant. An important component to seismic probabilistic safety assessment is the seismic hazard curve which shows the frequency of seismic events. However, these hazard curves are estimated assuming a normal distribution of the seismic events. This may not be a strong assumption given the number of recorded events at each source-to-site distance. The use of a normal distribution makes the calculations significantly easier but may underestimate or overestimate the more rare events, which is of concern to nuclear power plants. This paper shows a preliminary exploration into the effect of using a distribution that perhaps more represents the distribution of events, such as the t-distribution to describe data. The integration of a probability distribution with potentially larger tails basically pushes the hazard curves outward, suggesting a different range of frequencies for use in seismic probabilistic safety assessments. Therefore the use of a more realistic distribution results in an increase in the frequency calculations suggesting rare events are less rare than thought in terms of seismic probabilistic safety assessment. However, the opposite was observed with the ground motion prediction equation considered

  13. Crustal structure variations along the NW-African continental margin: A comparison of new and existing models from wide-angle and reflection seismic data

    Science.gov (United States)

    Klingelhoefer, Frauke; Biari, Youssef; Sahabi, Mohamed; Aslanian, Daniel; Schnabel, Michael; Matias, Luis; Benabdellouahed, Massinissa; Funck, Thomas; Gutscher, Marc-André; Reichert, Christian; Austin, James A.

    2016-04-01

    Deep seismic data represent a key to understand the geometry and mechanism of continental rifting. The passive continental margin of NW-Africa is one of the oldest on earth, formed during the Upper Triassic-Lower Liassic rifting of the central Atlantic Ocean over 200 Ma. We present new and existing wide-angle and reflection seismic data from four study regions along the margin located in the south offshore DAKHLA, on the central continental margin offshore Safi, in the northern Moroccan salt basin, and in the Gulf of Cadiz. The thickness of unthinned continental crust decreases from 36 km in the North to about 27 km in the South. Crustal thinning takes place over a region of 150 km in the north and only 70 km in the south. The North Moroccan Basin is underlain by highly thinned continental crust of only 6-8 km thickness. The ocean-continent transition zone shows a variable width between 40 and 70 km and is characterized by seismic velocities in between those of typical oceanic and thinned continental crust. The neighbouring oceanic crust is characterized by a thickness of 7-8 km along the complete margin. Relatively high velocities of up to 7.5 km/s have been imaged between magnetic anomalies S1 and M25, and are probably related to changes in the spreading velocities at the time of the Kimmeridgian/Tithonian plate reorganization. Volcanic activity seems to be mostly confined to the region next to the Canary Islands, and is thus not related to the initial opening of the ocean, which was associated to only weak volcanism. Comparison with the conjugate margin off Nova Scotia shows comparable continental crustal structures, but 2-3 km thinner oceanic crust on the American side than on the African margin.

  14. Probabilistic Seismic Hazard Assessment for Iraq

    Energy Technology Data Exchange (ETDEWEB)

    Onur, Tuna [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gok, Rengin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Abdulnaby, Wathiq [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shakir, Ammar M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mahdi, Hanan [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Numan, Nazar M.S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Al-Shukri, Haydar [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chlaib, Hussein K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ameen, Taher H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Abd, Najah A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-05-06

    Probabilistic Seismic Hazard Assessments (PSHA) form the basis for most contemporary seismic provisions in building codes around the world. The current building code of Iraq was published in 1997. An update to this edition is in the process of being released. However, there are no national PSHA studies in Iraq for the new building code to refer to for seismic loading in terms of spectral accelerations. As an interim solution, the new draft building code was considering to refer to PSHA results produced in the late 1990s as part of the Global Seismic Hazard Assessment Program (GSHAP; Giardini et al., 1999). However these results are: a) more than 15 years outdated, b) PGA-based only, necessitating rough conversion factors to calculate spectral accelerations at 0.3s and 1.0s for seismic design, and c) at a probability level of 10% chance of exceedance in 50 years, not the 2% that the building code requires. Hence there is a pressing need for a new, updated PSHA for Iraq.

  15. Seismic analysis for the ALMR

    International Nuclear Information System (INIS)

    Tajirian, F.F.

    1992-01-01

    The Advanced Liquid Metal Reactor (ALMR) design uses seismic isolation as a cost effective approach for simplifying seismic design of the reactor module, and for enhancing margins to handle beyond design basis earthquakes (BDBE). A comprehensive seismic analysis plan has been developed to confirm the adequacy of the design and to support regulatory licensing activities. In this plan state-of-the-art computer programs are used to evaluate the system response of the ALMR. Several factors that affect seismic response will be investigated. These include variability in the input earthquake mechanism, soil-structure interaction effects, and nonlinear response of the isolators. This paper reviews the type of analyses that are planned, and discuses the approach that will be used for validating the specific features of computer programs that are required in the analysis of isolated structures. To date, different linear and nonlinear seismic analyses have been completed. The results of recently completed linear analyses have been summarized elsewhere. The findings of three-dimensional seismic nonlinear analyses are presented in this paper. These analyses were performed to evaluate the effect of changes of isolator horizontal stiffness with horizontal displacement on overall response, to develop an approach for representing BDBE events with return periods exceeding 10,000 years, and to assess margins in the design for BDBEs. From the results of these analyses and bearing test data, it can be concluded that a properly designed and constructed seismic isolation system can accommodate displacements several times the design safe shutdown earthquake (SSE) for the ALMR. (author)

  16. OCT structure, COB location and magmatic type of the SE Brazilian & S Angolan margins from integrated quantitative analysis of deep seismic reflection and gravity anomaly data

    Science.gov (United States)

    Cowie, L.; Kusznir, N. J.; Horn, B.

    2013-12-01

    Knowledge of ocean-continent transition (OCT) structure, continent-ocean boundary (COB) location and magmatic type are of critical importance for understanding rifted continental margin formation processes and in evaluating petroleum systems in deep-water frontier oil and gas exploration. The OCT structure, COB location and magmatic type of the SE Brazilian and S Angolan rifted continental margins are much debated; exhumed and serpentinised mantle have been reported at these margins. Integrated quantitative analysis using deep seismic reflection data and gravity inversion have been used to determine OCT structure, COB location and magmatic type for the SE Brazilian and S Angolan margins. Gravity inversion has been used to determine Moho depth, crustal basement thickness and continental lithosphere thinning. Residual Depth Anomaly (RDA) analysis has been used to investigate OCT bathymetric anomalies with respect to expected oceanic bathymetries and subsidence analysis has been used to determine the distribution of continental lithosphere thinning. These techniques have been validated on the Iberian margin for profiles IAM9 and ISE-01. In addition a joint inversion technique using deep seismic reflection and gravity anomaly data has been applied to the ION-GXT BS1-575 SE Brazil and ION-GXT CS1-2400 S Angola. The joint inversion method solves for coincident seismic and gravity Moho in the time domain and calculates the lateral variations in crustal basement densities and velocities along profile. Gravity inversion, RDA and subsidence analysis along the S Angolan ION-GXT CS1-2400 profile has been used to determine OCT structure and COB location. Analysis suggests that exhumed mantle, corresponding to a magma poor margin, is absent beneath the allochthonous salt. The thickness of earliest oceanic crust, derived from gravity and deep seismic reflection data is approximately 7km. The joint inversion predicts crustal basement densities and seismic velocities which are

  17. Seismic rupture modelling, strong motion prediction and seismic hazard assessment: fundamental and applied approaches

    International Nuclear Information System (INIS)

    Berge-Thierry, C.

    2007-05-01

    The defence to obtain the 'Habilitation a Diriger des Recherches' is a synthesis of the research work performed since the end of my Ph D. thesis in 1997. This synthesis covers the two years as post doctoral researcher at the Bureau d'Evaluation des Risques Sismiques at the Institut de Protection (BERSSIN), and the seven consecutive years as seismologist and head of the BERSSIN team. This work and the research project are presented in the framework of the seismic risk topic, and particularly with respect to the seismic hazard assessment. Seismic risk combines seismic hazard and vulnerability. Vulnerability combines the strength of building structures and the human and economical consequences in case of structural failure. Seismic hazard is usually defined in terms of plausible seismic motion (soil acceleration or velocity) in a site for a given time period. Either for the regulatory context or the structural specificity (conventional structure or high risk construction), seismic hazard assessment needs: to identify and locate the seismic sources (zones or faults), to characterize their activity, to evaluate the seismic motion to which the structure has to resist (including the site effects). I specialized in the field of numerical strong-motion prediction using high frequency seismic sources modelling and forming part of the IRSN allowed me to rapidly working on the different tasks of seismic hazard assessment. Thanks to the expertise practice and the participation to the regulation evolution (nuclear power plants, conventional and chemical structures), I have been able to work on empirical strong-motion prediction, including site effects. Specific questions related to the interface between seismologists and structural engineers are also presented, especially the quantification of uncertainties. This is part of the research work initiated to improve the selection of the input ground motion in designing or verifying the stability of structures. (author)

  18. Seismic assessment and upgrading of Paks nuclear power plant

    International Nuclear Information System (INIS)

    Tamas, K.

    2001-01-01

    A comprehensive programme for seismic assessment and upgrading is currently in progress at Hungary's Paks NPP. The re-evaluation of the site seismic hazard had been already completed. The technology of safe shut down and heat removal is established and the systems and structures relevant for seismic safety are identified. A seismic instrumentation is installed. The pre-earthquake preparedness and post-earthquake actions are elaborated. The methods for seismic capacity assessment are selected. The seismic capacity evaluation and the design of upgrading measures are currently in progress. The easy to perform upgrading covering the most urgent measures had been already performed. (author)

  19. Lower bound earthquake magnitude for probabilistic seismic hazard evaluation

    International Nuclear Information System (INIS)

    McCann, M.W. Jr.; Reed, J.W.

    1990-01-01

    This paper presents the results of a study that develops an engineering and seismological basis for selecting a lower-bound magnitude (LBM) for use in seismic hazard assessment. As part of a seismic hazard analysis the range of earthquake magnitudes that are included in the assessment of the probability of exceedance of ground motion must be defined. The upper-bound magnitude is established by earth science experts based on their interpretation of the maximum size of earthquakes that can be generated by a seismic source. The lower-bound or smallest earthquake that is considered in the analysis must also be specified. The LBM limits the earthquakes that are considered in assessing the probability that specified ground motion levels are exceeded. In the past there has not been a direct consideration of the appropriate LBM value that should be used in a seismic hazard assessment. This study specifically looks at the selection of a LBM for use in seismic hazard analyses that are input to the evaluation/design of nuclear power plants (NPPs). Topics addressed in the evaluation of a LBM are earthquake experience data at heavy industrial facilities, engineering characteristics of ground motions associated with small-magnitude earthquakes, probabilistic seismic risk assessments (seismic PRAs), and seismic margin evaluations. The results of this study and the recommendations concerning a LBM for use in seismic hazard assessments are discussed. (orig.)

  20. Seaward dipping reflectors along the SW continental margin of India: Evidence for volcanic passive margin

    Digital Repository Service at National Institute of Oceanography (India)

    Ajay, K.K.; Chaubey, A.K.; Krishna, K.S.; Rao, D.G.; Sar, D.

    Multi-channel seismic reflection profiles across the southwest continental margin of India (SWCMI) show presence of westerly dipping seismic reflectors beneath sedimentary strata along the western flank of the Laccadive Ridge-northernmost part...

  1. A new view for the geodynamics of Ecuador: Implication in seismogenic source definition and seismic hazard assessment

    Science.gov (United States)

    Yepes, Hugo; Audin, Laurence; Alvarado, Alexandra; Beauval, Céline; Aguilar, Jorge; Font, Yvonne; Cotton, Fabrice

    2016-05-01

    A new view of Ecuador's complex geodynamics has been developed in the course of modeling seismic source zones for probabilistic seismic hazard analysis. This study focuses on two aspects of the plates' interaction at a continental scale: (a) age-related differences in rheology between Farallon and Nazca plates—marked by the Grijalva rifted margin and its inland projection—as they subduct underneath central Ecuador, and (b) the rapidly changing convergence obliquity resulting from the convex shape of the South American northwestern continental margin. Both conditions satisfactorily explain several characteristics of the observed seismicity and of the interseismic coupling. Intermediate-depth seismicity reveals a severe flexure in the Farallon slab as it dips and contorts at depth, originating the El Puyo seismic cluster. The two slabs position and geometry below continental Ecuador also correlate with surface expressions observable in the local and regional geology and tectonics. The interseismic coupling is weak and shallow south of the Grijalva rifted margin and increases northward, with a heterogeneous pattern locally associated to the Carnegie ridge subduction. High convergence obliquity is responsible for the North Andean Block northeastward movement along localized fault systems. The Cosanga and Pallatanga fault segments of the North Andean Block-South American boundary concentrate most of the seismic moment release in continental Ecuador. Other inner block faults located along the western border of the inter-Andean Depression also show a high rate of moderate-size earthquake production. Finally, a total of 19 seismic source zones were modeled in accordance with the proposed geodynamic and neotectonic scheme.

  2. Input for seismic hazard assessment using Vrancea seismic source region

    International Nuclear Information System (INIS)

    Ivan, Iren-Adelina; Enescu, B.D.; Pantea, A.

    1998-01-01

    We use an extended and combined data base including historical and modern, qualitative and quantitative data, i.e., more than 25 events during the period 1790 - 1990 with epicentral/maximum intensities ranging from X to V degree (MSK scale), the variation interval of isoseismal curves ranging from IX th to III rd degree. The data set was analysed using both the sum phasor techniques of Ridelek and Sacks (1984) for different magnitudes and depth intervals and the Stepp's method. For the assessment of seismic hazard we need a pattern of seismic source regions including an estimation for the maximum expected magnitude and the return period for the studied regions. Another necessary step in seismic hazard assessment is to develop attenuation relationships specific to a seismogenic zone, particularly to sub-crustal earthquakes of Vrancea region. The conceptual frame involves the use of appropriate decay models and consideration of the randomness in the attenuation, taking into account the azimuthal variation of the isoseist shapes. (authors)

  3. Seismic assessment of Technical Area V (TA-V).

    Energy Technology Data Exchange (ETDEWEB)

    Medrano, Carlos S.

    2014-03-01

    The Technical Area V (TA-V) Seismic Assessment Report was commissioned as part of Sandia National Laboratories (SNL) Self Assessment Requirement per DOE O 414.1, Quality Assurance, for seismic impact on existing facilities at Technical Area-V (TA-V). SNL TA-V facilities are located on an existing Uniform Building Code (UBC) Seismic Zone IIB Site within the physical boundary of the Kirtland Air Force Base (KAFB). The document delineates a summary of the existing facilities with their safety-significant structure, system and components, identifies DOE Guidance, conceptual framework, past assessments and the present Geological and Seismic conditions. Building upon the past information and the evolution of the new seismic design criteria, the document discusses the potential impact of the new standards and provides recommendations based upon the current International Building Code (IBC) per DOE O 420.1B, Facility Safety and DOE G 420.1-2, Guide for the Mitigation of Natural Phenomena Hazards for DOE Nuclear Facilities and Non-Nuclear Facilities.

  4. Modeling the conversion of hydroacoustic to seismic energy at island and continental margins: preliminary analysis of Ascension Island data

    International Nuclear Information System (INIS)

    Harben, P.; Rodgers, A.

    1999-01-01

    Seismic stations at islands and continental margins will be an essential component of the International Monitoring System (IMS) for event location and identification in support of Comprehensive Nuclear-Test-Ban Treaty (CTBT) monitoring. Particularly important will be the detection and analysis of hydroacoustic-to-seismic converted waves (T-phases) at island or continental margins. Acoustic waves generated by sources in or near the ocean propagate for long distances very efficiently due to the ocean sound speed channel (SOFAR) and low attenuation. When ocean propagating acoustic waves strike an island or continental margin they are converted to seismic (elastic) waves. We are using a finite difference code to model the conversion of hydroacoustic T-waves at an island or continental margin. Although ray-based methods are far more efficient for modeling long-range ( and gt; 1000 km) high-frequency hydroacoustic propagation, the finite difference method has the advantage of being able to model both acoustic and elastic wave propagation for a broad range of frequencies. The method allows us to perform simulations of T-phases to relatively high frequencies (( and gt;=)10 Hz). Of particular interest is to identify factors that affect the efficiency of T-phase conversion, such as the topographic slope and roughness at the conversion point and elastic velocity structure within the island or continent. Previous studies have shown that efficient T-phase conversion occurs when the topographic slope at the conversion point is steep (Cansi and Bethoux, 1985; Talandier and Okal, 1998). Another factor impacting T-phase conversion may be the near-shore structure of the sound channel. It is well known that the depth to the sound channel axis decreases in shallow waters. This can weaken the channeled hydroacoustic wave. Elastic velocity structure within the island or continent will impact how the converted seismic wave is refracted to recording stations at the surface and thus impact

  5. Toward uniform probabilistic seismic hazard assessments for Southeast Asia

    Science.gov (United States)

    Chan, C. H.; Wang, Y.; Shi, X.; Ornthammarath, T.; Warnitchai, P.; Kosuwan, S.; Thant, M.; Nguyen, P. H.; Nguyen, L. M.; Solidum, R., Jr.; Irsyam, M.; Hidayati, S.; Sieh, K.

    2017-12-01

    Although most Southeast Asian countries have seismic hazard maps, various methodologies and quality result in appreciable mismatches at national boundaries. We aim to conduct a uniform assessment across the region by through standardized earthquake and fault databases, ground-shaking scenarios, and regional hazard maps. Our earthquake database contains earthquake parameters obtained from global and national seismic networks, harmonized by removal of duplicate events and the use of moment magnitude. Our active-fault database includes fault parameters from previous studies and from the databases implemented for national seismic hazard maps. Another crucial input for seismic hazard assessment is proper evaluation of ground-shaking attenuation. Since few ground-motion prediction equations (GMPEs) have used local observations from this region, we evaluated attenuation by comparison of instrumental observations and felt intensities for recent earthquakes with predicted ground shaking from published GMPEs. We then utilize the best-fitting GMPEs and site conditions into our seismic hazard assessments. Based on the database and proper GMPEs, we have constructed regional probabilistic seismic hazard maps. The assessment shows highest seismic hazard levels near those faults with high slip rates, including the Sagaing Fault in central Myanmar, the Sumatran Fault in Sumatra, the Palu-Koro, Matano and Lawanopo Faults in Sulawesi, and the Philippine Fault across several islands of the Philippines. In addition, our assessment demonstrates the important fact that regions with low earthquake probability may well have a higher aggregate probability of future earthquakes, since they encompass much larger areas than the areas of high probability. The significant irony then is that in areas of low to moderate probability, where building codes are usually to provide less seismic resilience, seismic risk is likely to be greater. Infrastructural damage in East Malaysia during the 2015

  6. Deep seismic profiling of the continents and their margins

    DEFF Research Database (Denmark)

    Ito, T.; Iwasaki, T.; Thybo, Hans

    2009-01-01

    , in many applications, the methods are used up-to their limits at the present technological state. Therefore, development of methods has high priority in the seismic community. This volume provides an overview of recent development of deep seismic techniques and their application to the imaging and probing......Application of deep seismic methods to studies of the crust and lithospheric mantle receives considerable interest and the methods are constantly refined and new methods are developed, which allows the extension of studies to new subjects and regions. Deep seismic methods are applied to a long...

  7. Seismic Probabilistic Risk Assessment (SPRA), approach and results

    International Nuclear Information System (INIS)

    Campbell, R.D.

    1995-01-01

    During the past 15 years there have been over 30 Seismic Probabilistic Risk Assessments (SPRAs) and Seismic Probabilistic Safety Assessments (SPSAs) conducted of Western Nuclear Power Plants, principally of US design. In this paper PRA and PSA are used interchangeably as the overall process is essentially the same. Some similar assessments have been done for reactors in Taiwan, Korea, Japan, Switzerland and Slovenia. These plants were also principally US supplied or built under US license. Since the restructuring of the governments in former Soviet Bloc countries, there has been grave concern regarding the safety of the reactors in these countries. To date there has been considerable activity in conducting partial seismic upgrades but the overall quantification of risk has not been pursued to the depth that it has in Western countries. This paper summarizes the methodology for Seismic PRA/PSA and compares results of two partially completed and two completed PRAs of soviet designed reactors to results from earlier PRAs on US Reactors. A WWER 440 and a WWER 1000 located in low seismic activity regions have completed PRAs and results show the seismic risk to be very low for both designs. For more active regions, partially completed PRAs of a WWER 440 and WWER 1000 located at the same site show the WWER 440 to have much greater seismic risk than the WWER 1000 plant. The seismic risk from the 1000 MW plant compares with the high end of seismic risk for earlier seismic PRAs in the US. Just as for most US plants, the seismic risk appears to be less than the risk from internal events if risk is measured is terms of mean core damage frequency. However, due to the lack of containment for the earlier WWER 440s, the risk to the public may be significantly greater due to the more probable scenario of an early release. The studies reported have not taken the accident sequences beyond the stage of core damage hence the public heath risk ratios are speculative. (author)

  8. Probabilistic Seismic Hazard Assessment for Northeast India Region

    Science.gov (United States)

    Das, Ranjit; Sharma, M. L.; Wason, H. R.

    2016-08-01

    Northeast India bounded by latitudes 20°-30°N and longitudes 87°-98°E is one of the most seismically active areas in the world. This region has experienced several moderate-to-large-sized earthquakes, including the 12 June, 1897 Shillong earthquake ( M w 8.1) and the 15 August, 1950 Assam earthquake ( M w 8.7) which caused loss of human lives and significant damages to buildings highlighting the importance of seismic hazard assessment for the region. Probabilistic seismic hazard assessment of the region has been carried out using a unified moment magnitude catalog prepared by an improved General Orthogonal Regression methodology (Geophys J Int, 190:1091-1096, 2012; Probabilistic seismic hazard assessment of Northeast India region, Ph.D. Thesis, Department of Earthquake Engineering, IIT Roorkee, Roorkee, 2013) with events compiled from various databases (ISC, NEIC,GCMT, IMD) and other available catalogs. The study area has been subdivided into nine seismogenic source zones to account for local variation in tectonics and seismicity characteristics. The seismicity parameters are estimated for each of these source zones, which are input variables into seismic hazard estimation of a region. The seismic hazard analysis of the study region has been performed by dividing the area into grids of size 0.1° × 0.1°. Peak ground acceleration (PGA) and spectral acceleration ( S a) values (for periods of 0.2 and 1 s) have been evaluated at bedrock level corresponding to probability of exceedance (PE) of 50, 20, 10, 2 and 0.5 % in 50 years. These exceedance values correspond to return periods of 100, 225, 475, 2475, and 10,000 years, respectively. The seismic hazard maps have been prepared at the bedrock level, and it is observed that the seismic hazard estimates show a significant local variation in contrast to the uniform hazard value suggested by the Indian standard seismic code [Indian standard, criteria for earthquake-resistant design of structures, fifth edition, Part

  9. Deep structure of the continental margin and basin off Greater Kabylia, Algeria - New insights from wide-angle seismic data modeling and multichannel seismic interpretation

    Science.gov (United States)

    Aïdi, Chafik; Beslier, Marie-Odile; Yelles-Chaouche, Abdel Karim; Klingelhoefer, Frauke; Bracene, Rabah; Galve, Audrey; Bounif, Abdallah; Schenini, Laure; Hamai, Lamine; Schnurle, Philippe; Djellit, Hamou; Sage, Françoise; Charvis, Philippe; Déverchère, Jacques

    2018-03-01

    During the Algerian-French SPIRAL survey aimed at investigating the deep structure of the Algerian margin and basin, two coincident wide-angle and reflection seismic profiles were acquired in central Algeria, offshore Greater Kabylia, together with gravimetric, bathymetric and magnetic data. This 260 km-long offshore-onshore profile spans the Balearic basin, the central Algerian margin and the Greater Kabylia block up to the southward limit of the internal zones onshore. Results are obtained from modeling and interpretation of the combined data sets. The Algerian basin offshore Greater Kabylia is floored by a thin oceanic crust ( 4 km) with P-wave velocities ranging between 5.2 and 6.8 km/s. In the northern Hannibal High region, the atypical 3-layer crustal structure is interpreted as volcanic products stacked over a thin crust similar to that bordering the margin and related to Miocene post-accretion volcanism. These results support a two-step back-arc opening of the west-Algerian basin, comprising oceanic crust accretion during the first southward stage, and a magmatic and probably tectonic reworking of this young oceanic basement during the second, westward, opening phase. The structure of the central Algerian margin is that of a narrow ( 70 km), magma-poor rifted margin, with a wider zone of distal thinned continental crust than on the other margin segments. There is no evidence for mantle exhumation in the sharp ocean-continent transition, but transcurrent movements during the second opening phase may have changed its initial geometry. The Plio-Quaternary inversion of the margin related to ongoing convergence between Africa and Eurasia is expressed by a blind thrust system under the margin rising toward the surface at the slope toe, and by an isostatic disequilibrium resulting from opposite flexures of two plates decoupled at the continental slope. This disequilibrium is likely responsible for the peculiar asymmetrical shape of the crustal neck that may thus

  10. Deep crustal structure of the northeastern margin of the Arabian plate from seismic and gravity data

    Science.gov (United States)

    Pilia, Simone; Ali, Mohammed; Watts, Anthony; Keats, Brook; Searle, Mike

    2017-04-01

    The United Arab Emirates-Oman mountains constitute a 700 km long, 50 km wide compressional orogenic belt that developed during the Cainozoic on an underlying extensional Tethyan rifted margin. It contains the world's largest and best-exposed thrust sheet of oceanic crust and upper mantle (Semail Ophiolite), which was obducted onto the Arabian rifted continental margin during the Late Cretaceous. Although the shallow structure of the UAE-Oman mountain belt is reasonably well known through the exploitation of a diverse range of techniques, information on deeper structure remains little. Moreover, the mechanisms by which dense oceanic crustal and mantle rocks are emplaced onto less dense and more buoyant continental crust are still controversial and remain poorly understood. The focus here is on an active-source seismic and gravity E-W transect extending from the UAE-mountain belt to the offshore. Seismic refraction data were acquired using the survey ship M/V Hawk Explorer, which was equipped with a large-volume airgun array (7060 cubic inches, 116 liters). About 400 air gun shots at 50-second time interval were recorded on land by eight broadband seismometers. In addition, reflection data were acquired at 20 seconds interval and recorded by a 5-km-long multichannel streamer. Results presented here include an approximately 85 km long (stretching about 35 km onshore and 50 km offshore) P-wave velocity crustal profile derived by a combination of forward modelling and inversion of both diving and reflected wave traveltimes using RAYINVR software. We employ a new robust algorithm based on a Monte Carlo approach (VMONTECARLO) to address the velocity model uncertainties. We find ophiolite seismic velocities of about 5.5 km/s and a thick sedimentary package in the offshore. Furthermore, the velocity model reveals a highly stretched crust with the Moho discontinuity lying at about 20 km. A prestack depth-migrated profile (about 50 km long) coincident with the offshore part

  11. Recent developments in seismic analysis in the code Aster

    International Nuclear Information System (INIS)

    Guihot, P.; Devesa, G.; Dumond, A.; Panet, M.; Waeckel, F.

    1996-01-01

    Progress in the field of seismic qualification and design methods made these last few years allows physical phenomena actually in play to be better considered, while cutting down the conservatism associated with some simplified design methods. So following the change in methods and developing the most advantageous ones among them contributes to the process of the seismic margins assessment and the preparation of new design tools for future series. In this paper, the main developments and improvements in methods which have been made these last two years in the Code Aster, in order to improve seismic calculation methods and seismic margin assessment are presented. The first development relates to making the MISS3D soil structure interaction code available, thanks to an interface made with the Code Aster. The second relates to the possibility of making modal basis time calculations on multi-supported structures by considering local non linearities like impact, friction or squeeze fluid forces. Recent developments in random dynamics and postprocessing devoted to earthquake designs are then mentioned. Three applications of these developments are then ut forward. The first application relates to a test case for soil structure interaction design using MISS3D-Aster coupling. The second is a test case for a multi-supported structure. The last application, more for manufacturing, refers to seismic qualification of Main Live Steam stop valves. First results of the independent validation of the Code Aster seismic design functionalities, which provide and improve the quality of software, are also recalled. (authors)

  12. The U.S. Nuclear Regulatory Commission seismic safety research program

    International Nuclear Information System (INIS)

    Kenneally, R.M.; Guzy, D.J.; Murphy, A.J.

    1988-01-01

    The seismic safety research program sponsored by the U.S. Nuclear Regulatory Commission is directed toward improving the evaluation of potential earthquake effects on nuclear power plant operations. The research has been divided into three major program areas: earth sciences, seismic design margins, and fragilities and response. A major thrust of this research is to assess plant behavior for seismic events more severe and less probable than those considered in design. However, there is also research aimed at improving the evaluation of earthquake input and plant response at plant design levels

  13. Seismic damage assessment of reinforced concrete containment structures

    International Nuclear Information System (INIS)

    Cho, HoHyun; Koh, Hyun-Moo; Hyun, Chang-Hun; Kim, Moon-Soo; Shin, Hyun Mock

    2003-01-01

    This paper presents a procedure for assessing seismic damage of concrete containment structures using the nonlinear time-history numerical analysis. For this purpose, two kinds of damage index are introduced at finite element and structural levels. Nonlinear finite element analysis for the containment structure applies PSC shell elements using a layered approach leading to damage indices at finite element and structural levels, which are then used to assess the seismic damage of the containment structure. As an example of such seismic damage assessment, seismic damages of the containment structure of Wolsong I nuclear power plant in Korea are evaluated against 30 artificial earthquakes generated with a wide range of PGA according to US NRC regulatory guide 1.60. Structural responses and corresponding damage index according to the level of PGA and nonlinearity are investigated. It is also shown that the containment structure behaves elastically for earthquakes corresponding to or lower than DBE. (author)

  14. Differences in safety margins between nuclear and conventional design standards with regards to seismic hazard definition and design criteria

    International Nuclear Information System (INIS)

    Elgohary, M.; Saudy, A.; Orbovic, N.; Dejan, D.

    2006-01-01

    With the surging interest in new build nuclear all over the world and a permanent interest in earthquake resistance of nuclear plants, there is a need to quantify the safety margins in nuclear buildings design in comparison to conventional buildings in order to increase the public confidence in the safety of nuclear power plants. Nuclear (CAN3-N289 series) and conventional (NBCC 2005) seismic standards have different approaches regarding the design of civil structures. The origin of the differences lays in the safety philosophy behind the seismic nuclear and conventional standards. Conventional seismic codes contain the minimal requirement destined primarily to safeguard against major structural failure and loss of life. It doesn't limit damage to a certain acceptable degree or maintain function. Nuclear seismic code requires that structures, systems and components important to safety, withstand the effects of earthquakes. The requirement states that for equipment important to safety, both integrity and functionality should be ascertained. The seismic hazard is generally defined on the basis of the annual probability of exceedence (return period). There is a major difference on the return period and the confidence level for design earthquakes between the conventional and the nuclear seismic standards. The seismic design criteria of conventional structures are based on the use of Force Modification Factors to take into account the energy dissipation by incursion in non-elastic domain and the reserve of strength. The use of such factors to lower intentionally the seismic input is consistent with the safety philosophy of the conventional seismic standard which is the 'non collapse' rather than the integrity and/or the operability of the structures or components. Nuclear seismic standard requires that the structure remain in the elastic domain; energy dissipation by incursion in non-elastic domain is not allowed for design basis earthquake conditions. This is

  15. Performance-based methodology for assessing seismic vulnerability and capacity of buildings

    Science.gov (United States)

    Shibin, Lin; Lili, Xie; Maosheng, Gong; Ming, Li

    2010-06-01

    This paper presents a performance-based methodology for the assessment of seismic vulnerability and capacity of buildings. The vulnerability assessment methodology is based on the HAZUS methodology and the improved capacitydemand-diagram method. The spectral displacement ( S d ) of performance points on a capacity curve is used to estimate the damage level of a building. The relationship between S d and peak ground acceleration (PGA) is established, and then a new vulnerability function is expressed in terms of PGA. Furthermore, the expected value of the seismic capacity index (SCev) is provided to estimate the seismic capacity of buildings based on the probability distribution of damage levels and the corresponding seismic capacity index. The results indicate that the proposed vulnerability methodology is able to assess seismic damage of a large number of building stock directly and quickly following an earthquake. The SCev provides an effective index to measure the seismic capacity of buildings and illustrate the relationship between the seismic capacity of buildings and seismic action. The estimated result is compared with damage surveys of the cities of Dujiangyan and Jiangyou in the M8.0 Wenchuan earthquake, revealing that the methodology is acceptable for seismic risk assessment and decision making. The primary reasons for discrepancies between the estimated results and the damage surveys are discussed.

  16. Conceptual design by analysis of KALIMER seismic isolation

    International Nuclear Information System (INIS)

    You, Bong; Koo, Kyung Hoi; Lee, Jae Han

    1996-06-01

    The objectives of this report are to preliminarily evaluate the seismic isolation performance of KALIMER (Korea Advance LIquid MEtal Reactor) by seismic analyses, investigate the design feasibility, and find the critical points of KALIMER reactor structures. The work scopes performed in this study are 1) the establishment of seismic design basis, 2) the development of seismic analysis model of KALIMER, 3) the modal analysis, 4) seismic time history analysis, 5) the evaluations of seismic isolation performance and seismic design margins, and 6) the evaluation of seismic capability of KALIMER. The horizontal fundamental frequency of KALIMER reactor structure is 8 Hz, which is far remote from the seismic isolation frequency, 0.7 Hz. The vertical first and second natural frequencies are about 2 Hz and 8 Hz respectively. These vertical natural frequencies are in a dominant ground motion frequency bands, therefore these modes will result in large vertical response amplifications. From the results of seismic time history analyses, the horizontal isolation performance is great but the large vertical amplifications are occurred in reactor structures. The RV Liner has the smallest seismic design margin as 0.18. From the results of seismic design margins evaluation, the critical design change are needed in the support barrel, separation plate, and baffle plate points. The seismic capability of KALIMER is about 0.35g. This value can be increased by the design changes of the separation plate and etc.. 11 tabs., 29 figs., 7 refs. (Author) .new

  17. Mine aftershocks and implications for seismic hazard assessment

    CSIR Research Space (South Africa)

    Kgarume, T

    2010-11-01

    Full Text Available A methodology of assessing the seismic hazard associated with aftershocks is developed by performing statistical and deterministic analysis of seismic data from two South African deep-level gold mines. A method employing stacking of aftershocks...

  18. Overview of seismic re-evaluation methodologies

    International Nuclear Information System (INIS)

    Campbell, R.D.; Johnson, J.J.

    1993-01-01

    Several seismic licensing and safety issues have emerged over the past fifteen years for commercial U.S. Nuclear Power Plants and U.S. Government research reactors, production reactors and process facilities. The methodologies for resolution of these issues have been developed in numerous government and utility sponsored research programs. The resolution criteria have included conservative deterministic design criteria, deterministic seismic margins assessments criteria (SMA) and seismic probabilistic safety assessment criteria (SPSA). The criteria for SMAs and SPSAs have been based on realistically considering the inelastic energy absorption capability of ductile structures, equipment and piping and have incorporated the use of earthquake and testing experience to evaluate the operability of complex mechanical and electrical equipment. Most of the applications to date have been confined to the U.S. but there have been several applications to Asian, Western and Eastern Europe reactors. This paper summarizes the major issues addressed, the development of reevaluation criteria and selected applications to non U.S. reactors including WWER reactors. (author)

  19. Are seismic hazard assessment errors and earthquake surprises unavoidable?

    Science.gov (United States)

    Kossobokov, Vladimir

    2013-04-01

    Why earthquake occurrences bring us so many surprises? The answer seems evident if we review the relationships that are commonly used to assess seismic hazard. The time-span of physically reliable Seismic History is yet a small portion of a rupture recurrence cycle at an earthquake-prone site, which makes premature any kind of reliable probabilistic statements about narrowly localized seismic hazard. Moreover, seismic evidences accumulated to-date demonstrate clearly that most of the empirical relations commonly accepted in the early history of instrumental seismology can be proved erroneous when testing statistical significance is applied. Seismic events, including mega-earthquakes, cluster displaying behaviors that are far from independent or periodic. Their distribution in space is possibly fractal, definitely, far from uniform even in a single segment of a fault zone. Such a situation contradicts generally accepted assumptions used for analytically tractable or computer simulations and complicates design of reliable methodologies for realistic earthquake hazard assessment, as well as search and definition of precursory behaviors to be used for forecast/prediction purposes. As a result, the conclusions drawn from such simulations and analyses can MISLEAD TO SCIENTIFICALLY GROUNDLESS APPLICATION, which is unwise and extremely dangerous in assessing expected societal risks and losses. For example, a systematic comparison of the GSHAP peak ground acceleration estimates with those related to actual strong earthquakes, unfortunately, discloses gross inadequacy of this "probabilistic" product, which appears UNACCEPTABLE FOR ANY KIND OF RESPONSIBLE SEISMIC RISK EVALUATION AND KNOWLEDGEABLE DISASTER PREVENTION. The self-evident shortcomings and failures of GSHAP appeals to all earthquake scientists and engineers for an urgent revision of the global seismic hazard maps from the first principles including background methodologies involved, such that there becomes: (a) a

  20. Seismic isolation - efficient procedure for seismic response assessement

    International Nuclear Information System (INIS)

    Zamfir, M. A.; Androne, M.

    2016-01-01

    The aim of this analysis is to reduce the dynamic response of a structure. The seismic isolation solution must take into consideration the specific site ground motion. In this paper will be presented results obtained by applying the seismic isolation method. Based on the obtained results, important conclusions can be outlined: the seismic isolation device has the ability to reduce seismic acceleration of the seismic isolated structure to values that no longer present a danger to people and environment; the seismic isolation solution is limiting devices deformations to safety values for ensuring structural integrity and stability of the entire system; the effective seismic energy dissipation and with no side effects both for the seismic isolated building and for the devices used, and the return to the initial position before earthquake occurence are obtained with acceptable permanent displacement. (authors)

  1. Crustal structure of the North Iberian continental margin from seismic refraction/wide-angle reflection profiles

    Science.gov (United States)

    Ruiz, M.; Díaz, J.; Pedreira, D.; Gallart, J.; Pulgar, J. A.

    2017-10-01

    The structure and geodynamics of the southern margin of the Bay of Biscay have been investigated from a set of 11 multichannel seismic reflection profiles, recorded also at wide angle offsets in an onshore-offshore network of 24 OBS/OBH and 46 land sites. This contribution focuses on the analysis of the wide-angle reflection/refraction data along representative profiles. The results document strong lateral variations of the crustal structure along the margin and provide an extensive test of the crustal models previously proposed for the northern part of the Iberian Peninsula. Offshore, the crust has a typical continental structure in the eastern tip of the bay, which disappears smoothly towards the NW to reach crustal thickness close to 10 km at the edge of the studied area ( 45°N, 6°W). The analysis of the velocity-depth profiles, altogether with additional information provided by the multichannel seismic data and magnetic surveys, led to the conclusion that the crust in this part of the bay should be interpreted as transitional from continental to oceanic. Typical oceanic crust has not been imaged in the investigated area. Onshore, the new results are in good agreement with previous results and document the indentation of the Bay of Biscay crust into the Iberian crust, forcing its subduction to the North. The interpreted profiles show that the extent of the southward indentation is not uniform, with an Alpine root less developed in the central and western sector of the Basque-Cantabrian Basin. N-S to NE-SW transfer structures seem to control those variations in the indentation degree.

  2. Subsystem response analysis for the Seismic Safety Margins Research Program

    International Nuclear Information System (INIS)

    Chuang, T.Y.

    1981-01-01

    A review of the state-of-the-art of seismic qualification methods of subsystem has been completed. This task assesses the accuracy of seismic analysis techniques to predict dynamic response, and also identifies and quantifies sources of random and modeling undertainty in subsystem response determination. The subsystem has been classified as two categories according to the nature of support: multiply supported subsystems (e.g., piping systems) and singly supported subsystems (e.g., pumps, turbines, electrical control panels, etc.). The mutliply supported piping systems are analyzed by multisupport input time history method. The input motions are the responses of major structures. The dynamic models of the subsystems identified by the event/fault tree are created. The responses calculated by multisupport input time history method are consistent with the fragility parameters. These responses are also coordinated with the event/fault tree description. The subsystem responses are then evaluated against the fragility curves of components and systems and incorporated in the event/fault tree analysis. (orig./HP)

  3. Seismic fragility analysis of a nuclear building based on probabilistic seismic hazard assessment and soil-structure interaction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, R.; Ni, S.; Chen, R.; Han, X.M. [CANDU Energy Inc, Mississauga, Ontario (Canada); Mullin, D. [New Brunswick Power, Point Lepreau, New Brunswick (Canada)

    2016-09-15

    Seismic fragility analyses are conducted as part of seismic probabilistic safety assessment (SPSA) for nuclear facilities. Probabilistic seismic hazard assessment (PSHA) has been undertaken for a nuclear power plant in eastern Canada. Uniform Hazard Spectra (UHS), obtained from the PSHA, is characterized by high frequency content which differs from the original plant design basis earthquake spectral shape. Seismic fragility calculations for the service building of a CANDU 6 nuclear power plant suggests that the high frequency effects of the UHS can be mitigated through site response analysis with site specific geological conditions and state-of-the-art soil-structure interaction analysis. In this paper, it is shown that by performing a detailed seismic analysis using the latest technology, the conservatism embedded in the original seismic design can be quantified and the seismic capacity of the building in terms of High Confidence of Low Probability of Failure (HCLPF) can be improved. (author)

  4. Development of Canadian seismic design approach and overview of seismic standards

    Energy Technology Data Exchange (ETDEWEB)

    Usmani, A. [Amec Foster Wheeler, Toronto, ON (Canada); Aziz, T. [TSAziz Consulting Inc., Mississauga, ON (Canada)

    2015-07-01

    Historically the Canadian seismic design approaches have evolved for CANDU® nuclear power plants to ensure that they are designed to withstand a design basis earthquake (DBE) and have margins to meet the safety requirements of beyond DBE (BDBE). While the Canadian approach differs from others, it is comparable and in some cases more conservative. The seismic requirements are captured in five CSA nuclear standards which are kept up to date and incorporate lessons learnt from recent seismic events. This paper describes the evolution of Canadian approach, comparison with others and provides an overview and salient features of CSA seismic standards. (author)

  5. Crustal structure variations along the NW-African continental margin: a comparison of new and existing models from wide angle and reflection seismic data

    Science.gov (United States)

    Biari, Y.; Klingelhoefer, F.; Sahabi, M.; Aslanian, D.; Philippe, S.; Louden, K. E.; Berglar, K.; Moulin, M.; Mehdi, K.; Graindorge, D.; Evain, M.; Benabellouahed, M.; Reichert, C. J.

    2014-12-01

    Deep seismic data represent a key to understand the geometry and mechanism of continental rifting. The passive continental margin of NW-Africa is one of the oldest on earth, formed during the Upper Triassic-Lower Liassic rifting of the central Atlantic Ocean over 200 Ma. We present new and existing wide-angle and reflection seismic data from three study regions along the margin located in the North Moroccan salt basin, on the central continental margin offshore Safi and in the south, offshore Dakhla. In each of the study areas several combined wide-angle and reflection seismic profiles perpendicular and parallel to the margin have been acquired and forward modelled using comparable methods. The thickness of unthinned continental crust decreases from 36 km in the North to about 27 km in the South. In the North Moroccan Basin continental crust thins from originally 36 km to about 8 km in a 150 km wide zone. The basin itself is underlain by highly thinned continental crust. Offshore safi thinning of the continental crust is confined to a 130 km wide zone with no neighboring sedimentary basin underlain by continental crust. In both areas the zone of crustal thinning is characterised by the presence of large blocks and abundant salt diapirs. In the south crustal thinning is more rapid in a zone of 90 km and asymmetric with the upper crust thinning more closely to the continent than the lower crust, probably due to depth-dependent stretching and the presence of the precambrian Reguibat Ridge on land. Oceanic crust is characterised by a thickness of 7-8 km along the complete margin. Relatively high velocities of up to 7.5 km/s have been imaged between magnetic anomalies S1 and M25, and are probably related to changes in the spreading velocities at the time of the Kimmeridgian/Tithonian plate reorganisation. Volcanic activity seems to be confined to the region next to the Canary Islands, and is thus not related to the initial opening of the oceanic, which was related to no

  6. Evaluation and assessment of nuclear power plant seismic methodology

    International Nuclear Information System (INIS)

    Bernreuter, D.; Tokarz, F.; Wight, L.; Smith, P.; Wells, J.; Barlow, R.

    1977-01-01

    The major emphasis of this study is to develop a methodology that can be used to assess the current methods used for assuring the seismic safety of nuclear power plants. The proposed methodology makes use of system-analysis techniques and Monte Carlo schemes. Also, in this study, we evaluate previous assessments of the current seismic-design methodology

  7. Evaluation and assessment of nuclear power plant seismic methodology

    Energy Technology Data Exchange (ETDEWEB)

    Bernreuter, D.; Tokarz, F.; Wight, L.; Smith, P.; Wells, J.; Barlow, R.

    1977-03-01

    The major emphasis of this study is to develop a methodology that can be used to assess the current methods used for assuring the seismic safety of nuclear power plants. The proposed methodology makes use of system-analysis techniques and Monte Carlo schemes. Also, in this study, we evaluate previous assessments of the current seismic-design methodology.

  8. Probabilistic seismic vulnerability and risk assessment of stone masonry structures

    Science.gov (United States)

    Abo El Ezz, Ahmad

    Earthquakes represent major natural hazards that regularly impact the built environment in seismic prone areas worldwide and cause considerable social and economic losses. The high losses incurred following the past destructive earthquakes promoted the need for assessment of the seismic vulnerability and risk of the existing buildings. Many historic buildings in the old urban centers in Eastern Canada such as Old Quebec City are built of stone masonry and represent un-measurable architectural and cultural heritage. These buildings were built to resist gravity loads only and generally offer poor resistance to lateral seismic loads. Seismic vulnerability assessment of stone masonry buildings is therefore the first necessary step in developing seismic retrofitting and pre-disaster mitigation plans. The objective of this study is to develop a set of probability-based analytical tools for efficient seismic vulnerability and uncertainty analysis of stone masonry buildings. A simplified probabilistic analytical methodology for vulnerability modelling of stone masonry building with systematic treatment of uncertainties throughout the modelling process is developed in the first part of this study. Building capacity curves are developed using a simplified mechanical model. A displacement based procedure is used to develop damage state fragility functions in terms of spectral displacement response based on drift thresholds of stone masonry walls. A simplified probabilistic seismic demand analysis is proposed to capture the combined uncertainty in capacity and demand on fragility functions. In the second part, a robust analytical procedure for the development of seismic hazard compatible fragility and vulnerability functions is proposed. The results are given by sets of seismic hazard compatible vulnerability functions in terms of structure-independent intensity measure (e.g. spectral acceleration) that can be used for seismic risk analysis. The procedure is very efficient for

  9. AECB workshop on seismic hazard assessment in southern Ontario

    International Nuclear Information System (INIS)

    Stepp, J.C.; Price, R.A.; Coppersmith, K.J.; Klimkiewicz, G.C.; McGuire, R.K.

    1995-10-01

    The purpose of the workshop was to review available geological and seismological data which could affect earthquake occurrence in southern Ontario and to develop a consensus on approaches that should be adopted for characterization of seismic hazard. The workshop was structured in technical sessions to focus presentations and discussions on four technical issues relevant to seismic hazard in southern Ontario, as follows: (1) The importance of geological and geophysical observations for the determination of seismic sources, (2) Methods and approaches which may be adopted for determining seismic sources based on integrated interpretations of geological and seismological information, (3) Methods and data which should be used for characterizing the seismicity parameters of seismic sources, and (4) Methods for assessment of vibratory ground motion hazard. The format of each session involved invited presentations of relevant data followed by open presentations by participants, a general discussion focusing on the relevance of the presented information for seismic hazard assessment in southern Ontario, then development of conclusions and recommendations. In the final session, the conclusions and recommendations were summarized and an open discussion was held to develop consensus. This report presents perspective summaries of the workshop technical sessions together with conclusions and recommendations prepared by the session chairs and the general chairman. 2 refs

  10. Structure of the Lithosphere-Asthenosphere Boundary Onshore and Offshore the California Continental Margin from Three-Dimensional Seismic Anisotropy

    Science.gov (United States)

    Gomez, C. D.; Escobar, L., Sr.; Rathnayaka, S.; Weeraratne, D. S.; Kohler, M. D.

    2016-12-01

    The California continental margin, a major transform plate boundary in continental North America, is the locus of complex tectonic stress fields that are important in interpreting both remnant and ongoing deformational strain. Ancient subduction of the East Pacific Rise spreading center, the rotation and translation of tectonic blocks and inception of the San Andreas fault all contribute to the dynamic stress fields located both onshore and offshore southern California. Data obtained by the ALBACORE (Asthenospheric and Lithospheric Broadband Architecture from the California Offshore Region Experiment) and the CISN (California Integrated Seismic Network) seismic array are analyzed for azimuthal anisotropy of Rayleigh waves from 80 teleseismic events at periods 16 - 78 s. Here we invert Rayleigh wave data for shear wave velocity structure and three-dimensional seismic anisotropy in the thee regions designated within the continental margin including the continent, seafloor and California Borderlands. Preliminary results show that seismic anisotropy is resolved in multiple layers and can be used to determine the lithosphere-asthenosphere boundary (LAB) in offshore and continental regions. The oldest seafloor in our study at age 25-35 Ma indicates that the anisotropic transition across the LAB occurs at 73 km +/- 25 km with the lithospheric fast direction oriented WNW-ESE, consistent with current Pacific plate motion direction. The continent region west of the San Andreas indicates similar WNW-ESE anisotropy and LAB depth. Regions east of the San Andreas fault indicate NW-SE anisotropy transitioning to a N-S alignment at 80 km depth north of the Garlock fault. The youngest seafloor (15 - 25 Ma) and outer Borderlands indicate a more complex three layer fabric where shallow lithospheric NE-SW fast directions are perpendicular with ancient Farallon subduction arc, a mid-layer with E-W fast directions are perpendicular to remnant fossil fabric, and the deepest layer

  11. Probabilistic seismic hazard assessment for Point Lepreau Generating Station

    Energy Technology Data Exchange (ETDEWEB)

    Mullin, D. [New Brunswick Power Corp., Point Lepreau Generating Station, Lepreau, New Brunswick (Canada); Lavine, A. [AMEC Foster Wheeler Environment and Infrastructure Americas, Oakland, California (United States); Egan, J. [SAGE Engineers, Oakland, California (United States)

    2015-09-15

    A Probabilistic Seismic Hazard Assessment (PSHA) has been performed for the Point Lepreau Generating Station (PLGS). The objective is to provide characterization of the earthquake ground shaking that will be used to evaluate seismic safety. The assessment is based on the current state of knowledge of the informed scientific and engineering community regarding earthquake hazards in the site region, and includes two primary components-a seismic source model and a ground motion model. This paper provides the methodology and results of the PLGS PSHA. The implications of the updated hazard information for site safety are discussed in a separate paper. (author)

  12. Probabilistic seismic hazard assessment for Point Lepreau Generating Station

    Energy Technology Data Exchange (ETDEWEB)

    Mullin, D., E-mail: dmullin@nbpower.com [New Brunswick Power Corporation, Point Lepreau Generating Station, Point Lepreau, NB (Canada); Lavine, A., E-mail: alexis.lavine@amecfw.com [AMEC Foster Wheeler Environment & Infrastructure Americas, Oakland, CA (United States); Egan, J., E-mail: jegan@sageengineers.com [SAGE Engineers, Oakland, CA (United States)

    2015-07-01

    A Probabilistic Seismic Hazard Assessment (PSHA) has been performed for the Point Lepreau Generating Station (PLGS). The objective is to provide characterization of the earthquake ground shaking that will be used to evaluate seismic safety. The assessment is based on the current state of knowledge of the informed scientific and engineering community regarding earthquake hazards in the site region, and includes two primary components--a seismic source model and a ground motion model. This paper provides the methodology and results of the PLGS PSHA. The implications of the updated hazard information for site safety are discussed in a separate paper. (author)

  13. Deep Structures of The Angola Margin

    Science.gov (United States)

    Moulin, M.; Contrucci, I.; Olivet, J.-L.; Aslanian, D.; Géli, L.; Sibuet, J.-C.

    1 Ifremer Centre de Brest, DRO/Géosciences Marines, B.P. 70, 29280 Plouzané cedex (France) mmoulin@ifremer.fr/Fax : 33 2 98 22 45 49 2 Université de Bretagne Occidentale, Institut Universitaire Europeen de la Mer, Place Nicolas Copernic, 29280 Plouzane (France) 3 Total Fina Elf, DGEP/GSR/PN -GEOLOGIE, 2,place de la Coupole-La Defense 6, 92078 Paris la Defense Cedex Deep reflection and refraction seismic data were collected in April 2000 on the West African margin, offshore Angola, within the framework of the Zaiango Joint Project, conducted by Ifremer and Total Fina Elf Production. Vertical multichannel reflection seismic data generated by a « single-bubble » air gun array array (Avedik et al., 1993) were recorded on a 4.5 km long, digital streamer, while refraction and wide angle reflection seismic data were acquired on OBSs (Ocean Bottom Seismometers). Despite the complexity of the margin (5 s TWT of sediment, salt tectonics), the combination of seismic reflection and refraction methods results in an image and a velocity model of the ground structures below the Aptian salt layer. Three large seismic units appear in the reflection seismic section from the deep part on the margin under the base of salt. The upper seismic unit is layered with reflectors parallel to the base of the salt ; it represents unstructured sediments, filling a basin. The middle unit is seismically transparent. The lower unit is characterized by highly energetic reflectors. According to the OBS refraction data, these two units correspond to the continental crust and the base of the high energetic unit corresponds to the Moho. The margin appears to be divided in 3 domains, from east to west : i) a domain with an unthinned, 30 km thick, continental crust ; ii) a domain located between the hinge line and the foot of the continental slope, where the crust thins sharply, from 30 km to less than 7 km, this domain is underlain by an anormal layer with velocities comprising between 7,2 and 7

  14. An assessment of seismic monitoring in the United States; requirement for an Advanced National Seismic System

    Science.gov (United States)

    ,

    1999-01-01

    This report assesses the status, needs, and associated costs of seismic monitoring in the United States. It sets down the requirement for an effective, national seismic monitoring strategy and an advanced system linking national, regional, and urban monitoring networks. Modernized seismic monitoring can provide alerts of imminent strong earthquake shaking; rapid assessment of distribution and severity of earthquake shaking (for use in emergency response); warnings of a possible tsunami from an offshore earthquake; warnings of volcanic eruptions; information for correctly characterizing earthquake hazards and for improving building codes; and data on response of buildings and structures during earthquakes, for safe, cost-effective design, engineering, and construction practices in earthquake-prone regions.

  15. A Community Seismic Experiment in the ENAM Primary Site

    Science.gov (United States)

    Van Avendonk, H. J.

    2012-12-01

    Eastern North America (ENAM) was chosen as a GeoPRISMS Rift Initiation and Evolution primary site because it represents a mature continental margin with onshore and offshore rift basins in which the record of extension and continental break-up is preserved. The degree to which syn-rift magmatism and preexisting lithospheric weaknesses controlled the evolution of the margin can be further investigated if we image its 3-D structure at small and large length scales with active-source and earthquake seismic imaging. In the Summer of 2012 we submitted a proposal to the US National Science Foundation for an ambitious plan for data acquisition on a 400 km wide section of the mid-Atlantic East Coast margin around Cape Hatteras, from unextended continental lithosphere onshore to mature oceanic lithosphere offshore. This area includes an important along-strike transition in the morphology of the margin from the Carolina Trough to the Baltimore Canyon Trough, and two major fracture zones that are associated with significant offsets at the modern Mid-Atlantic Ridge. The study area also covers several features representing the post-rift modification of the margin by slope instability and fluid flow. As the Earthscope Transportable Array reaches the East Coast of the US in 2013 and 2014, we will have an unprecedented opportunity to image the detailed structure of the rifted margin. To make effective use of the research infrastructure, including the seismic vessel R/V Marcus Langseth, the Earthscope seismic instrumentation, and US OBS Instrument Pool, we propose to collect a suite of seismic data at the mid-Atlantic margin in the context of a community-driven experiment with completely open data access. This multi-faceted seismic experiment offers an immense opportunity for education of young scientists. We propose an integrated education effort during and after acquisition. The science and field parties for data acquisition will largely consist of young scientists, who will be

  16. Seismic assessment of Kozloduy VVER 440, Model 230 nuclear power plant

    International Nuclear Information System (INIS)

    Monette, P.; Baltus, R.; Yanev, P.; Campbell, R.

    1991-01-01

    Excluding system design deficiency relative to US and Western Europe standards, it was found that the plant has many seismic vulnerabilities similar to those that existed in many of the US plants prior to about 1979 when the Systematic Evaluation Program was initiated. The primary coolant system has been substantially upgraded after the 1977 Vrancea earthquake. Other upgrades have been made to weak elements in the ECCS and electrical systems. There are still a number of components that could likely survive the currently defined Safe Shutdown Earthquake of 0.1 g but which would not meet current design standards. Many of the weakest components could be upgraded at a moderate cost to withstand a seismic event exceeding 0.1 g. Current studies of the site seismicity lean toward a higher peak ground acceleration and increased amplification of building motion, thus backfits that have been accomplished may become marginal for newly defined loads. However the proper consideration of soil structure interaction and detailed structural analysis using less conservative modeling assumptions, could mitigate the impact of increasing the seismic input and limit the amount of reinforcement required. In the interim, substantial improvements to seismic safety could be accomplished by simple, inexpensive modifications to equipment anchorage and some achievable improvements to connection detail of the precast concrete structures. (author)

  17. New interpretations based on seismic and modelled well data and their implications for the tectonic evolution of the west Greenland continental margin

    DEFF Research Database (Denmark)

    Mcgregor, E.D.; Nielsen, S.B.; Stephenson, R.A.

    Davis Strait is situated between Baffin Island and Greenland and forms part of a sedimentary basin system, linking Labrador Sea and Baffin Bay, developed during Cretaceous and Palaeocene rifting that culminated in a brief period of sea-floor spreading in the late Palaeocene and Eocene. Seismic...... reflection profiles and exploration wells along the Greenland margin of Davis Strait have been analysed in order to elucidate uplift events affecting sedimentary basin development during the Cenozoic with a focus on postulated Neogene (tectonic) uplift affecting the west Greenland continental margin...... tectonic event. An interpretation in which the inferred onshore cooling is related to erosion of pre-existing topography is more consistent with our new results from the offshore region. These results will have important implications for other continental margins developed throughout the Atlantic...

  18. Seismic and structural characterization of the fluid bypass system using 3D and partial stack seismic from passive margin: inside the plumbing system.

    Science.gov (United States)

    Iacopini, David; Maestrelli, Daniele; Jihad, Ali; Bond, Clare; Bonini, Marco

    2017-04-01

    In recent years enormous attention has been paid to the understanding of the process and mechanism controlling the gas seepage and more generally the fluid expulsion affecting the earth system from onshore to offshore environment. This is because of their demonstrated impact to our environment, climate change and during subsea drilling operation. Several example from active and paleo system has been so far characterized and proposed using subsurface exploration, geophysical and geochemical monitoring technology approaches with the aims to explore what trigger and drive the overpressure necessary maintain the fluid/gas/material expulsion and what are the structure that act as a gateway for gaseous fluid and unconsolidated rock. In this contribution we explore a series of fluid escape structure (ranging from seepage pipes to large blowout pipes structure of km length) using 3D and partial stack seismic data from two distinctive passive margin from the north sea (Loyal field, West Shetland) and the Equatorial Brazil (Ceara' Basin). We will focuses on the characterization of the plumbing system internal architecture and, for selected example, exploring the AVO response (using partial stack) of the internal fluid/unconsolidated rock. The detailed seismic mapping and seismic attributes analysis of the conduit system helped us to recover some detail from the signal response of the chimney internal structures. We observed: (1) small to medium seeps and pipes following structural or sedimentary discontinuities (2) large pipes (probably incipient mud volcanoes) and blowup structures propagating upward irrespective of pre-existing fault by hydraulic fracturing and assisted by the buoyancy of a fluidised and mobilised mud-hydrocarbon mixture. The reflector termination observed inside the main conduits, the distribution of stacked bright reflectors and the AVO analysis suggests an evolution of mechanisms (involving mixture of gas, fluid and probably mud) during pipe birth and

  19. Episodic Sediment Failure in Northern Flemish Pass, Eastern Canadian Margin: Interplay of Seismicity, Contour Current Winnowing, and Excess Pore Pressures

    Science.gov (United States)

    Piper, D.

    2015-12-01

    Episodic sediment failures are recognised on continental slopes around Flemish Pass and Orphan Basin from multibeam bathymetry, seismic reflection profiles and piston cores. Seismic stratigraphy is tied to published long cores with O-isotope data back to before MIS 6 and carbonate rich Heinrich layers in places produce marker reflections in high-resolution sparker profiles. Heinrich layers, radiocarbon dates and peaks in diatom abundance provide core chronology. Slope sedimentation was strongly influenced by the Labrador Current and the silty muds show architecture characteristic of contourites. Variation in Labrador Current strength is known from the sortable silt proxy over the past 125 ka. Large slope failures were mapped from seismic reflection profiles and their age estimated from seismic stratigraphy (3-5 ka resolution) and in some cases refined from cores (1-3 ka resolution). Large slope failures occurred apparently synchronously over margin lengths of 50-350 km. Such failures were earthquake triggered: other mechanisms for producing laterally extensive synchronous failure do not apply. Triaxial shear measurements show a Su/σ' ratio of typical slope sediment of 0.48, implying considerable stability. However, some silty muds have Atterberg limits that suggest susceptibility to liquefaction under cyclic loading, particularly in Holocene deposits and by analogy those of past full interglacials. Basal failure planes of some large failures correspond with either the last interglacial or the MIS 6 glacial maximum. Comparison with seismological models suggests that the observed slope failures represent earthquakes ranging from Mw ~5.6 to ~7.6. Mean recurrence interval of M = 7 earthquakes at any point on the margin is estimated at 30 ka from seismological models and 40 ka from the sediment failure record. In northern Flemish Pass, a spatial cluster of several failures over 30 ka preceded by a long interval with no failures suggests that some other mechanism has

  20. Probabilistic safety assessment for seismic events

    International Nuclear Information System (INIS)

    1993-10-01

    This Technical Document on Probabilistic Safety Assessment for Seismic Events is mainly associated with the Safety Practice on Treatment of External Hazards in PSA and discusses in detail one specific external hazard, i.e. earthquakes

  1. Geological constraints on the evolution of the Angolan margin based on reflection and refraction seismic data (ZaïAngo project)

    Science.gov (United States)

    Moulin, Maryline; Aslanian, Daniel; Olivet, Jean-Louis; Contrucci, Isabelle; Matias, Luis; Géli, Louis; Klingelhoefer, Frauke; Nouzé, Hervé; Réhault, Jean-Pierre; Unternehr, Patrick

    2005-09-01

    Deep penetration multichannel reflection and Ocean Bottom Seismometer wide-angle seismic data from the Congo-Angola margin were collected in 2000 during the ZaïAngo cruise. These data help constrain the deep structure of the continental margin, the geometry of the pre-salt sediment layers and the geometry of the Aptian salt layer. Dating the deposition of the salt relative to the chronology of the margin formation is an issue of fundamental importance for reconstructing the evolution of the margin and for the understanding of the crustal thinning processes. The data show that the crust thins abruptly, from a 30-40 km thickness to less than 10 km, over a lateral distance of less than 50 km. The transitional domain is a 180-km-wide basin. The pre-salt sediment layering within this basin is parallel to the base of the salt and hardly affected by tectonic deformation. In addition, the presence of a continuous salt cover, from the continental platform down to the presumed oceanic boundary, provides indications on the conditions of salt deposition that constrain the geometry of the margin at that time. These crucial observations imply shallow deposition environments during the rifting and suggest that vertical motions prevailed-compared to horizontal motions-during the formation of the basin.

  2. Seismic hazard assessment of the Hanford region, Eastern Washington State

    International Nuclear Information System (INIS)

    Youngs, R.R.; Coppersmith, K.J.; Power, M.S.; Swan, F.H. III

    1985-01-01

    A probabilistic seismic hazard assessment was made for a site within the Hanford region of eastern Washington state, which is characterized as an intraplate region having a relatively low rate of seismic activity. Probabilistic procedures, such as logic trees, were utilized to account for the uncertainties in identifying and characterizing the potential seismic sources in the region. Logic trees provide a convenient, flexible means of assessing the values and relative likelihoods of input parameters to the hazard model that may be dependent upon each other. Uncertainties accounted for in this way include the tectonic model, segmentation, capability, fault geometry, maximum earthquake magnitude, and earthquake recurrence rate. The computed hazard results are expressed as a distribution from which confidence levels are assessed. Analysis of the results show the contributions to the total hazard from various seismic sources and due to various earthquake magnitudes. In addition, the contributions of uncertainties in the various source parameters to the uncertainty in the computed hazard are assessed. For this study, the major contribution to uncertainty in the computed hazard are due to uncertainties in the applicable tectonic model and the earthquake recurrence rate. This analysis serves to illustrate some of the probabilistic tools that are available for conducting seismic hazard assessments and for analyzing the results of these studies. 5 references, 7 figures

  3. Worldwide Assessment of the Status of Seismic Zonation, Fourth International Forum on Seismic Zonation, Proceedings

    Science.gov (United States)

    Hays, W.W.

    1994-01-01

    We are pleased to provide you with information developed for the Fourth International Forum on Seismic Zonation which will be convened in two locations year in conjunction two major international meetings. The objectives are: 1) to assess the status of seismic zonation in every country of the world, 2) to evaluate the reasons for advances and new initiatives, and 3) to foster continued cooperation. Seismic zonation is the process that leads to risk reduction and sustainability of new development. It is based on the division of a geographic region into smaller areas or zones on the basis of an integrated assessment of the hazard, built, and policy environments of the region. Seismic zonation depends on hazard mapping performed on national/regional, subregional, and urban (i.e., microzonation) scales depending on the particular application. We gratefully acknowledge the written communications of many professionals who responded to our request for information. Also, we acknowledge the use of information contained in five valuable reports (see directories in the Appendices for information on where to obtain copies of the reports): 1. United Nations, 1990, Cooperative Project for Seismic Risk Reduction in the Mediterranean Region (SEISMED), proceedings, Office of the United Nations Disaster Relief Coordinator, Geneva, Switzerland, 3 vols. (Franco Maranzana -

  4. Seismic assessment of a site using the time series method

    International Nuclear Information System (INIS)

    Krutzik, N.J.; Rotaru, I.; Bobei, M.; Mingiuc, C.; Serban, V.; Androne, M.

    1997-01-01

    To increase the safety of a NPP located on a seismic site, the seismic acceleration level to which the NPP should be qualified must be as representative as possible for that site, with a conservative degree of safety but not too exaggerated. The consideration of the seismic events affecting the site as independent events and the use of statistic methods to define some safety levels with very low annual occurrence probability (10 -4 ) may lead to some exaggerations of the seismic safety level. The use of some very high value for the seismic acceleration imposed by the seismic safety levels required by the hazard analysis may lead to very costly technical solutions that can make the plant operation more difficult and increase maintenance costs. The considerations of seismic events as a time series with dependence among the events produced, may lead to a more representative assessment of a NPP site seismic activity and consequently to a prognosis on the seismic level values to which the NPP would be ensured throughout its life-span. That prognosis should consider the actual seismic activity (including small earthquakes in real time) of the focuses that affect the plant site. The paper proposes the applications of Autoregressive Time Series to issue a prognosis on the seismic activity of a focus and presents the analysis on Vrancea focus that affects NPP Cernavoda site, by this method. The paper also presents the manner to analyse the focus activity as per the new approach and it assesses the maximum seismic acceleration that may affect NPP Cernavoda throughout its life-span (∼ 30 years). Development and applications of new mathematical analysis method, both for long - and short - time intervals, may lead to important contributions in the process of foretelling the seismic events in the future. (authors)

  5. Contributions to knowledge of the continental margin of Uruguay. Uruguayan continental margin: Physiographic and seismic analysis

    International Nuclear Information System (INIS)

    Preciozzi, F

    2014-01-01

    This work is about the kind of continental margins such as a )Atlantic type passive margins which can be hard or soft b) An active or Pacific margins that because of the very frequent earthquakes develop a morphology dominated by tectonic processes. The Uruguayan continental margin belongs to a soft Atlantic margin

  6. Seismic Hazard Assessment at Esfaraen‒Bojnurd Railway, North‒East of Iran

    Science.gov (United States)

    Haerifard, S.; Jarahi, H.; Pourkermani, M.; Almasian, M.

    2018-01-01

    The objective of this study is to evaluate the seismic hazard at the Esfarayen-Bojnurd railway using the probabilistic seismic hazard assessment (PSHA) method. This method was carried out based on a recent data set to take into account the historic seismicity and updated instrumental seismicity. A homogenous earthquake catalogue was compiled and a proposed seismic sources model was presented. Attenuation equations that recently recommended by experts and developed based upon earthquake data obtained from tectonic environments similar to those in and around the studied area were weighted and used for assessment of seismic hazard in the frame of logic tree approach. Considering a grid of 1.2 × 1.2 km covering the study area, ground acceleration for every node was calculated. Hazard maps at bedrock conditions were produced for peak ground acceleration, in addition to return periods of 74, 475 and 2475 years.

  7. Seismic evaluation of existing nuclear power plants

    International Nuclear Information System (INIS)

    2003-01-01

    The IAEA nuclear safety standards publications address the site evaluation and the design of new nuclear power plants (NPPs), including seismic hazard assessment and safe seismic design, at the level of the Safety Requirements as well as at the level of dedicated Safety Guides. It rapidly became apparent that the existing nuclear safety standards documents were not adequate for handling specific issues in the seismic evaluation of existing NPPs, and that a dedicated document was necessary. This is the purpose of this Safety Report, which is written in the spirit of the nuclear safety standards and can be regarded as guidance for the interpretation of their intent. Worldwide experience shows that an assessment of the seismic capacity of an existing operating facility can be prompted for the following: (a) Evidence of a greater seismic hazard at the site than expected before, owing to new or additional data and/or to new methods; (b) Regulatory requirements, such as periodic safety reviews, to ensure that the plant has adequate margins for seismic loads; (c) Lack of anti-seismic design or poor anti-seismic design; (d) New technical finding such as vulnerability of some structures (masonry walls) or equipment (relays), other feedback and new experience from real earthquakes. Post-construction evaluation programmes evaluate the current capability of the plant to withstand the seismic concern and identify any necessary upgrades or changes in operating procedures. Seismic qualification is distinguished from seismic evaluation primarily in that seismic qualification is intended to be performed at the design stage of a plant, whereas seismic evaluation is intended to be applied after a plant has been constructed. Although some guidelines do exist for the evaluation of existing NPPs, these are not established at the level of a regulatory guide or its equivalent. Nevertheless, a number of existing NPPs throughout the world have been and are being subjected to review of their

  8. Assessing the seismic risk potential of South America

    Science.gov (United States)

    Jaiswal, Kishor; Petersen, Mark D.; Harmsen, Stephen; Smoczyk, Gregory M.

    2016-01-01

    We present here a simplified approach to quantifying regional seismic risk. The seismic risk for a given region can be inferred in terms of average annual loss (AAL) that represents long-term value of earthquake losses in any one year caused from a long-term seismic hazard. The AAL are commonly measured in the form of earthquake shaking-induced deaths, direct economic impacts or indirect losses caused due to loss of functionality. In the context of South American subcontinent, the analysis makes use of readily available public data on seismicity, population exposure, and the hazard and vulnerability models for the region. The seismic hazard model was derived using available seismic catalogs, fault databases, and the hazard methodologies that are analogous to the U.S. Geological Survey’s national seismic hazard mapping process. The Prompt Assessment of Global Earthquakes for Response (PAGER) system’s direct empirical vulnerability functions in terms of fatality and economic impact were used for performing exposure and risk analyses. The broad findings presented and the risk maps produced herein are preliminary, yet they do offer important insights into the underlying zones of high and low seismic risks in the South American subcontinent. A more detailed analysis of risk may be warranted by engaging local experts, especially in some of the high risk zones identified through the present investigation.

  9. Subsystem response review. Seismic safety margins research program

    International Nuclear Information System (INIS)

    Kennedy, R.P.; Campbell, R.D.; Wesley, D.A.; Kamil, H.; Gantayat, A.; Vasudevan, R.

    1981-07-01

    A study was conducted to document the state of the art in seismic qualification of nuclear power plant components and subsystems by analysis and testing and to identify the sources and magnitude of the uncertainties associated with analysis and testing methods. The uncertainties are defined in probabilistic terms for use in probabilistic seismic risk studies. Recommendations are made for the most appropriate subsystem response analysis methods to minimize response uncertainties. Additional studies, to further quantify testing uncertainties, are identified. Although the general effect of non-linearities on subsystem response is discussed, recommendations and conclusions are based principally on linear elastic analysis and testing models. (author)

  10. Colorado Basin Structure and Rifting, Argentine passive margin

    Science.gov (United States)

    Autin, Julia; Scheck-Wenderoth, Magdalena; Loegering, Markus; Anka, Zahie; Vallejo, Eduardo; Rodriguez, Jorge; Marchal, Denis; Reichert, Christian; di Primio, Rolando

    2010-05-01

    The Argentine margin presents a strong segmentation with considerable strike-slip movements along the fracture zones. We focus on the volcanic segment (between the Salado and Colorado transfer zones), which is characterized by seaward dipping reflectors (SDR) all along the ocean-continent transition [e.g. Franke et al., 2006; Gladczenko et al., 1997; Hinz et al., 1999]. The segment is structured by E-W trending basins, which differs from the South African margin basins and cannot be explained by classical models of rifting. Thus the study of the relationship between the basins and the Argentine margin itself will allow the understanding of their contemporary development. Moreover the comparison of the conjugate margins suggests a particular evolution of rifting and break-up. We firstly focus on the Colorado Basin, which is thought to be the conjugate of the well studied Orange Basin [Hirsch et al., 2009] at the South African margin [e.g. Franke et al., 2006]. This work presents results of a combined approach using seismic interpretation and structural, isostatic and thermal modelling highlighting the structure of the crust. The seismic interpretation shows two rift-related discordances: one intra syn-rift and the break-up unconformity. The overlying sediments of the sag phase are less deformed (no sedimentary wedges) and accumulated before the generation of oceanic crust. The axis of the Colorado Basin trends E-W in the western part, where the deepest pre-rift series are preserved. In contrast, the basin axis turns to a NW-SE direction in its eastern part, where mainly post-rift sediments accumulated. The most distal part reaches the margin slope and opens into the oceanic basin. The general basin direction is almost orthogonal to the present-day margin trend. The most frequent hypothesis explaining this geometry is that the Colorado Basin is an aborted rift resulting from a previous RRR triple junction [e.g. Franke et al., 2002]. The structural interpretation

  11. Methodology for the Seismic risk assessment in segments of fault

    International Nuclear Information System (INIS)

    1997-02-01

    The present study establishes the most adequate methods of Seismic Hazard Assessment for the Iberian Peninsula, in particular for low seismicity areas, through a review of methods used in other countries and its application to a certain area in Spain. In this area the geological context and recent activity of a specific tectonic structure is studied in detail, in order to asses its slip rate, and therefore, its capability of generating earthquakes. In the first stage of this project a review of Seismic Hazard Assessment methods used outside Spain was carried out, as well as, a study of several spanish cases. This stage also comprises a review of the spanish seismic record and a study of the general peninsular neotectonic context, this latter to select a particular fault for the next stage. (Author) 117 refs

  12. Multi scenario seismic hazard assessment for Egypt

    Science.gov (United States)

    Mostafa, Shaimaa Ismail; Abd el-aal, Abd el-aziz Khairy; El-Eraki, Mohamed Ahmed

    2018-05-01

    Egypt is located in the northeastern corner of Africa within a sensitive seismotectonic location. Earthquakes are concentrated along the active tectonic boundaries of African, Eurasian, and Arabian plates. The study area is characterized by northward increasing sediment thickness leading to more damage to structures in the north due to multiple reflections of seismic waves. Unfortunately, man-made constructions in Egypt were not designed to resist earthquake ground motions. So, it is important to evaluate the seismic hazard to reduce social and economic losses and preserve lives. The probabilistic seismic hazard assessment is used to evaluate the hazard using alternative seismotectonic models within a logic tree framework. Alternate seismotectonic models, magnitude-frequency relations, and various indigenous attenuation relationships were amended within a logic tree formulation to compute and develop the regional exposure on a set of hazard maps. Hazard contour maps are constructed for peak ground acceleration as well as 0.1-, 0.2-, 0.5-, 1-, and 2-s spectral periods for 100 and 475 years return periods for ground motion on rock. The results illustrate that Egypt is characterized by very low to high seismic activity grading from the west to the eastern part of the country. The uniform hazard spectra are estimated at some important cities distributed allover Egypt. The deaggregation of seismic hazard is estimated at some cities to identify the scenario events that contribute to a selected seismic hazard level. The results of this study can be used in seismic microzonation, risk mitigation, and earthquake engineering purposes.

  13. Seismic risk assessment of Navarre (Northern Spain)

    Science.gov (United States)

    Gaspar-Escribano, J. M.; Rivas-Medina, A.; García Rodríguez, M. J.; Benito, B.; Tsige, M.; Martínez-Díaz, J. J.; Murphy, P.

    2009-04-01

    The RISNA project, financed by the Emergency Agency of Navarre (Northern Spain), aims at assessing the seismic risk of the entire region. The final goal of the project is the definition of emergency plans for future earthquakes. With this purpose, four main topics are covered: seismic hazard characterization, geotechnical classification, vulnerability assessment and damage estimation to structures and exposed population. A geographic information system is used to integrate, analyze and represent all information colleted in the different phases of the study. Expected ground motions on rock conditions with a 90% probability of non-exceedance in an exposure time of 50 years are determined following a Probabilistic Seismic Hazard Assessment (PSHA) methodology that includes a logic tree with different ground motion and source zoning models. As the region under study is located in the boundary between Spain and France, an effort is required to collect and homogenise seismological data from different national and regional agencies. A new homogenised seismic catalogue, merging data from Spanish, French, Catalonian and international agencies and establishing correlations between different magnitude scales, is developed. In addition, a new seismic zoning model focused on the study area is proposed. Results show that the highest ground motions on rock conditions are expected in the northeastern part of the region, decreasing southwards. Seismic hazard can be expressed as low-to-moderate. A geotechnical classification of the entire region is developed based on surface geology, available borehole data and morphotectonic constraints. Frequency-dependent amplification factors, consistent with code values, are proposed. The northern and southern parts of the region are characterized by stiff and soft soils respectively, being the softest soils located along river valleys. Seismic hazard maps including soil effects are obtained by applying these factors to the seismic hazard maps

  14. Seismic fragility of reinforced concrete structures in nuclear facilities

    International Nuclear Information System (INIS)

    Gergely, P.

    1985-01-01

    The failure and fragility analyses of reinforced concrete structures and elements in nuclear reactor facilities within the Seismic Safety Margins Research Program (SSMRP) at the Lawrence Livermore National Laboratory are evaluated. Uncertainties in material modeling, behavior of low shear walls, and seismic risk assessment for nonlinear response receive special attention. Problems with ductility-based spectral deamplification and prediction of the stiffness of reinforced concrete walls at low stress levels are examined. It is recommended to use relatively low damping values in connection with ductility-based response reductions. The study of static nonlinear force-deflection curves is advocated for better nonlinear dynamic response predictions

  15. Preliminary seismic design cost-benefit assessment of the tuff repository waste-handling facilities

    International Nuclear Information System (INIS)

    Subramanian, C.V.; Abrahamson, N.; Hadjian, A.H.

    1989-02-01

    This report presents a preliminary assessment of the costs and benefits associated with changes in the seismic design basis of waste-handling facilities. The objectives of the study are to understand the capability of the current seismic design of the waste-handling facilities to mitigate seismic hazards, evaluate how different design levels and design measures might be used toward mitigating seismic hazards, assess the costs and benefits of alternative seismic design levels, and develop recommendations for possible modifications to the seismic design basis. This preliminary assessment is based primarily on expert judgment solicited in an interdisciplinary workshop environment. The estimated costs for individual attributes and the assumptions underlying these cost estimates (seismic hazard levels, fragilities, radioactive-release scenarios, etc.) are subject to large uncertainties, which are generally identified but not treated explicitly in this preliminary analysis. The major conclusions of the report do not appear to be very sensitive to these uncertainties. 41 refs., 51 figs., 35 tabs

  16. Seismic Risk Assessment for the Kyrgyz Republic

    Science.gov (United States)

    Pittore, Massimiliano; Sousa, Luis; Grant, Damian; Fleming, Kevin; Parolai, Stefano; Fourniadis, Yannis; Free, Matthew; Moldobekov, Bolot; Takeuchi, Ko

    2017-04-01

    The Kyrgyz Republic is one of the most socially and economically dynamic countries in Central Asia, and one of the most endangered by earthquake hazard in the region. In order to support the government of the Kyrgyz Republic in the development of a country-level Disaster Risk Reduction strategy, a comprehensive seismic risk study has been developed with the support of the World Bank. As part of this project, state-of-the-art hazard, exposure and vulnerability models have been developed and combined into the assessment of direct physical and economic risk on residential, educational and transportation infrastructure. The seismic hazard has been modelled with three different approaches, in order to provide a comprehensive overview of the possible consequences. A probabilistic seismic hazard assessment (PSHA) approach has been used to quantitatively evaluate the distribution of expected ground shaking intensity, as constrained by the compiled earthquake catalogue and associated seismic source model. A set of specific seismic scenarios based on events generated from known fault systems have been also considered, in order to provide insight on the expected consequences in case of strong events in proximity of densely inhabited areas. Furthermore, long-span catalogues of events have been generated stochastically and employed in the probabilistic analysis of expected losses over the territory of the Kyrgyz Republic. Damage and risk estimates have been computed by using an exposure model recently developed for the country, combined with the assignment of suitable fragility/vulnerability models. The risk estimation has been carried out with spatial aggregation at the district (rayon) level. The obtained results confirm the high level of seismic risk throughout the country, also pinpointing the location of several risk hotspots, particularly in the southern districts, in correspondence with the Ferghana valley. The outcome of this project will further support the local

  17. ASSESSMENT OF THE TSUNAMIGENIC POTENTIAL ALONG THE NORTHERN CARIBBEAN MARGIN Case Study: Earthquake and Tsunamis of 12 January 2010 in Haiti.

    Directory of Open Access Journals (Sweden)

    George Pararas-Carayannis

    2010-01-01

    Full Text Available The potential tsunami risk for Hispaniola, as well as for the other Greater Antilles Islands is assessed by reviewing the complex geotectonic processes and regimes along the Northern Caribbean margin, including the convergent, compressional and collisional tectonic activity of subduction, transition, shearing, lateral movements, accretion and crustal deformation caused by the eastward movement of the Caribbean plate in relation to the North American plate. These complex tectonic interactions have created a broad, diffuse tectonic boundary that has resulted in an extensive, internal deformational sliver slab - the Gonâve microplate – as well as further segmentation into two other microplates with similarly diffused boundary characteristics where tsunamigenic earthquakes have and will again occur. The Gonâve microplate is the most prominent along the Northern Caribbean margin and extends from the Cayman Spreading Center to Mona Pass, between Puerto Rico and the island of Hispaniola, where the 1918 destructive tsunami was generated. The northern boundary of this sliver microplate is defined by the Oriente strike-slip fault south of Cuba, which appears to be an extension of the fault system traversing the northern part of Hispaniola, while the southern boundary is defined by another major strike-slip fault zone where the Haiti earthquake of 12 January 2010 occurred. Potentially tsunamigenic regions along the Northern Caribbean margin are located not only along the boundaries of the Gonâve microplate’s dominant western transform zone but particularly within the eastern tectonic regimes of the margin where subduction is dominant - particularly along the Puerto Rico trench. The Haiti earthquake of 12 January 2010 and its focal mechanism are examined, as they provide additional clues of potential tsunami generation that can occur along transform zones and, more specifically, from interplate and intraplate seismic events and subsequently induced

  18. Seismic rupture study using near-source data: application to seismic hazard assessment

    International Nuclear Information System (INIS)

    Hernandez, Bruno

    2000-01-01

    This work presents seismic source studies using near-field data. In accordance with the quality and the quantity of available data we developed and applied various methods to characterize the seismic source. Macro-seismic data are used to verify if simple and robust methods used on recent instrumental earthquakes may provide a good tool to calibrate historical events in France. These data are often used to characterize earthquakes to be taken into account for seismic hazard assessment in moderate seismicity regions. Geodetic data (SAR, GPS) are used to estimate the slip distribution on the fault during the 1992, Landers, California earthquake. These data are also used to precise the location and the geometry of the main events of the 1997, Colfiorito, central Italy, earthquake sequence. Finally, the strong motions contain the most complete information about rupture process. These data are used to discriminate between two possible fault planes of the 1999, north India, Chamoli earthquake. The strong motions recorded close to the 1999, Mexico, Oaxaca earthquake are used to constrain the rupture history. Strong motions a.re also used in combination with geodetic data to access the rupture history of the Landers earthquake and the main events of the Colfiorito seismic sequence. For the Landers earthquake, the data quality and complementarity offered the possibility to describe the rupture development with accuracy. The large heterogeneities in both slip amplitude and rupture velocity variations suggest that the rupture propagates by breaking successive asperities rather than by propagating like a pulse at constant velocity. The rupture front slows as it encounters barriers and accelerates within main asperities. (author)

  19. Advanced Seismic Probabilistic Risk Assessment Demonstration Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    Idaho National Laboratories (INL) has an ongoing research and development (R&D) project to remove excess conservatism from seismic probabilistic risk assessments (SPRA) calculations. These risk calculations should focus on providing best estimate results, and associated insights, for evaluation and decision-making. This report presents a plan for improving our current traditional SPRA process using a seismic event recorded at a nuclear power plant site, with known outcomes, to improve the decision making process. SPRAs are intended to provide best estimates of the various combinations of structural and equipment failures that can lead to a seismic induced core damage event. However, in general this approach has been conservative, and potentially masks other important events (for instance, it was not the seismic motions that caused the Fukushima core melt events, but the tsunami ingress into the facility).

  20. Seismic design of nuclear power plants - an assessment

    International Nuclear Information System (INIS)

    Howard, G.E.; Ibanez, P.; Smith, C.B.

    1976-01-01

    This paper presents a review and evaluation of the design standards and the analytical and experimental methods used in the seismic design of nuclear power plants with emphasis on United States practice. Three major areas were investigated: (a) soils, siting, and seismic ground motion specification; (b) soil-structure interaction; and (c) the response of major nuclear power plant structures and components. The purpose of this review and evaluation program was to prepare an independent assessment of the state-of-the-art of the seismic design of nuclear power plants and to identify seismic analysis and design research areas meriting support by the various organizations comprising the 'nuclear power industry'. Criteria used for evaluating the relative importance of alternative research areas included the potential research impact on nuclear power plant siting, design, construction, cost, safety, licensing, and regulation. (Auth.)

  1. Seismic proving test of ultimate piping strength (current status of preliminary tests)

    International Nuclear Information System (INIS)

    Suzuki, K.; Namita, Y.; Abe, H.; Ichihashi, I.; Suzuki, K.; Ishiwata, M.; Fujiwaka, T.; Yokota, H.

    2001-01-01

    In 1998 Fiscal Year, the 6 year program of piping tests was initiated with the following objectives: i) to clarify the elasto-plastic response and ultimate strength of nuclear piping, ii) to ascertain the seismic safety margin of the current seismic design code for piping, and iii) to assess new allowable stress rules. In order to resolve extensive technical issues before proceeding on to the seismic proving test of a large-scale piping system, a series of preliminary tests of materials, piping components and simplified piping systems is intended. In this paper, the current status of the material tests and the piping component tests is reported. (author)

  2. Harmonizing seismic hazard assessments for nuclear power plants

    International Nuclear Information System (INIS)

    Mallard, D.J.

    1993-01-01

    Even a cursory comparison between maps of global seismicity and NPP earthquake design levels reveals many inconsistencies. While, in part, this situation reflects the evolution in understanding of seismic hazards, mismatches can also be due to ongoing differences in the way the hazards are assessed and in local regulatory requirements. So far, formal international consensus has only been able to encompass broad principles, such as those recently recommended by the International Atomic Energy Agency, and even these can raise many technical issues, particularly relating to zones of diffuse seismicity. In the future, greater harmonisation in hazard assessments and, to some extent, in earthquake design levels could emerge through the more widespread use of probabilistic methods. International collaborative ventures and joint projects will be important for resolving anomalies in the existing databases and their interpretations, and for acquiring new data, but to achieve their ideal objectives, they will need to proceed in clearly defined stages. (author)

  3. AECB workshop on seismic hazard assessment in Southern Ontario. Recorded proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    A workshop on seismic hazard assessment in southern Ontario was conducted on June 19-21, 1995. The purpose of the workshop was to review available geological and seismological data which could affect earthquake occurrence in southern Ontario and to develop a consensus on approaches that should be adopted for characterization of seismic hazard. The workshop was structured in technical sessions to focus presentations and discussions on four technical issues relevant to seismic hazard in southern Ontario, as follows: The importance of geological and geophysical observations for the determination of seismic sources; Methods and approaches which may be adopted for determining seismic sources based on integrated interpretations of geological and seismological information. Methods and data which should be used for characterizing the seismicity parameters of seismic sources. Methods for assessment of vibratory ground motion hazard. This document presents transcripts from recordings made of the presentations and discussion from the workshop. It will be noted, in some sections of the document, that the record is incomplete. This is due in part to recording equipment malfunction and in part due to the poor quality of recording obtained for certain periods.

  4. Excavatability Assessment of Weathered Sedimentary Rock Mass Using Seismic Velocity Method

    International Nuclear Information System (INIS)

    Bin Mohamad, Edy Tonnizam; Noor, Muhazian Md; Isa, Mohamed Fauzi Bin Md.; Mazlan, Ain Naadia; Saad, Rosli

    2010-01-01

    Seismic refraction method is one of the most popular methods in assessing surface excavation. The main objective of the seismic data acquisition is to delineate the subsurface into velocity profiles as different velocity can be correlated to identify different materials. The physical principal used for the determination of excavatability is that seismic waves travel faster through denser material as compared to less consolidated material. In general, a lower velocity indicates material that is soft and a higher velocity indicates more difficult to be excavated. However, a few researchers have noted that seismic velocity method alone does not correlate well with the excavatability of the material. In this study, a seismic velocity method was used in Nusajaya, Johor to assess the accuracy of this seismic velocity method with excavatability of the weathered sedimentary rock mass. A direct ripping run by monitoring the actual production of ripping has been employed at later stage and compared to the ripper manufacturer's recommendation. This paper presents the findings of the seismic velocity tests in weathered sedimentary area. The reliability of using this method with the actual rippability trials is also presented.

  5. Excavatability Assessment of Weathered Sedimentary Rock Mass Using Seismic Velocity Method

    Science.gov (United States)

    Bin Mohamad, Edy Tonnizam; Saad, Rosli; Noor, Muhazian Md; Isa, Mohamed Fauzi Bin Md.; Mazlan, Ain Naadia

    2010-12-01

    Seismic refraction method is one of the most popular methods in assessing surface excavation. The main objective of the seismic data acquisition is to delineate the subsurface into velocity profiles as different velocity can be correlated to identify different materials. The physical principal used for the determination of excavatability is that seismic waves travel faster through denser material as compared to less consolidated material. In general, a lower velocity indicates material that is soft and a higher velocity indicates more difficult to be excavated. However, a few researchers have noted that seismic velocity method alone does not correlate well with the excavatability of the material. In this study, a seismic velocity method was used in Nusajaya, Johor to assess the accuracy of this seismic velocity method with excavatability of the weathered sedimentary rock mass. A direct ripping run by monitoring the actual production of ripping has been employed at later stage and compared to the ripper manufacturer's recommendation. This paper presents the findings of the seismic velocity tests in weathered sedimentary area. The reliability of using this method with the actual rippability trials is also presented.

  6. AECB workshop on seismic hazard assessment in Southern Ontario. Recorded proceedings

    International Nuclear Information System (INIS)

    1995-01-01

    A workshop on seismic hazard assessment in southern Ontario was conducted on June 19-21, 1995. The purpose of the workshop was to review available geological and seismological data which could affect earthquake occurrence in southern Ontario and to develop a consensus on approaches that should be adopted for characterization of seismic hazard. The workshop was structured in technical sessions to focus presentations and discussions on four technical issues relevant to seismic hazard in southern Ontario, as follows: The importance of geological and geophysical observations for the determination of seismic sources; Methods and approaches which may be adopted for determining seismic sources based on integrated interpretations of geological and seismological information. Methods and data which should be used for characterizing the seismicity parameters of seismic sources. Methods for assessment of vibratory ground motion hazard. This document presents transcripts from recordings made of the presentations and discussion from the workshop. It will be noted, in some sections of the document, that the record is incomplete. This is due in part to recording equipment malfunction and in part due to the poor quality of recording obtained for certain periods

  7. Probabilistic seismic hazard assessment of southern part of Ghana

    Science.gov (United States)

    Ahulu, Sylvanus T.; Danuor, Sylvester Kojo; Asiedu, Daniel K.

    2018-05-01

    This paper presents a seismic hazard map for the southern part of Ghana prepared using the probabilistic approach, and seismic hazard assessment results for six cities. The seismic hazard map was prepared for 10% probability of exceedance for peak ground acceleration in 50 years. The input parameters used for the computations of hazard were obtained using data from a catalogue that was compiled and homogenised to moment magnitude (Mw). The catalogue covered a period of over a century (1615-2009). The hazard assessment is based on the Poisson model for earthquake occurrence, and hence, dependent events were identified and removed from the catalogue. The following attenuation relations were adopted and used in this study—Allen (for south and eastern Australia), Silva et al. (for Central and eastern North America), Campbell and Bozorgnia (for worldwide active-shallow-crust regions) and Chiou and Youngs (for worldwide active-shallow-crust regions). Logic-tree formalism was used to account for possible uncertainties associated with the attenuation relationships. OpenQuake software package was used for the hazard calculation. The highest level of seismic hazard is found in the Accra and Tema seismic zones, with estimated peak ground acceleration close to 0.2 g. The level of the seismic hazard in the southern part of Ghana diminishes with distance away from the Accra/Tema region to a value of 0.05 g at a distance of about 140 km.

  8. Probabilistic seismic hazard assessment of southern part of Ghana

    Science.gov (United States)

    Ahulu, Sylvanus T.; Danuor, Sylvester Kojo; Asiedu, Daniel K.

    2017-12-01

    This paper presents a seismic hazard map for the southern part of Ghana prepared using the probabilistic approach, and seismic hazard assessment results for six cities. The seismic hazard map was prepared for 10% probability of exceedance for peak ground acceleration in 50 years. The input parameters used for the computations of hazard were obtained using data from a catalogue that was compiled and homogenised to moment magnitude (Mw). The catalogue covered a period of over a century (1615-2009). The hazard assessment is based on the Poisson model for earthquake occurrence, and hence, dependent events were identified and removed from the catalogue. The following attenuation relations were adopted and used in this study—Allen (for south and eastern Australia), Silva et al. (for Central and eastern North America), Campbell and Bozorgnia (for worldwide active-shallow-crust regions) and Chiou and Youngs (for worldwide active-shallow-crust regions). Logic-tree formalism was used to account for possible uncertainties associated with the attenuation relationships. OpenQuake software package was used for the hazard calculation. The highest level of seismic hazard is found in the Accra and Tema seismic zones, with estimated peak ground acceleration close to 0.2 g. The level of the seismic hazard in the southern part of Ghana diminishes with distance away from the Accra/Tema region to a value of 0.05 g at a distance of about 140 km.

  9. Seismic reliability assessment methodology for CANDU concrete containment structures-phase 11

    International Nuclear Information System (INIS)

    Hong, H.P.

    1996-07-01

    This study was undertaken to verify a set of load factors for reliability-based seismic evaluation of CANDU containment structures in Eastern Canada. Here, the new, site-specific, results of probabilistic seismic hazard assessment (response spectral velocity) were applied. It was found that the previously recommended load factors are relatively insensitive to the new seismic hazard information, and are adequate for a reliability-based seismic evaluation process. (author). 4 refs., 5 tabs., 9 figs

  10. Geophysical constraints on geodynamical processes at convergent margins

    DEFF Research Database (Denmark)

    Artemieva, Irina; Thybo, Hans; Shulgin, Alexey

    2016-01-01

    Convergent margins, being the boundaries between colliding lithospheric plates, form the most disastrous areas in the world due to intensive, strong seismicity and volcanism. We review global geophysical data in order to illustrate the effects of the plate tectonic processes at convergent margins......, at least, one of the plates is oceanic. However, the oldest oceanic plate in the Pacific ocean has the smallest convergence rate. (2) The presence of an oceanic plate is, in general, required for generation of high-magnitude (M>8.0) earthquakes and for generating intermediate and deep seismicity along...... to shallow mantle levels....

  11. Mesozoic carbonate-siliciclastic platform to basin systems of a South Tethyan margin (Egypt, East Mediterranean)

    Science.gov (United States)

    Tassy, Aurélie; Crouzy, Emmanuel; Gorini, Christian; Rubino, Jean-Loup

    2015-04-01

    series (up to 3500 m) as a mixed combination of debris flows, internal preserved blocks, and/or compressively-deformed distal allochthonous masses. Transported material have proceeded from the dismantling of the Mesozoic mixed carbonate-siliciclastic platform. They can spread down slope over areas as large as 70000 of km2. According to stratigraphic correlations with global sea-level positions, platform instability would have been triggered by the gravitational collapse of the carbonate-siliciclastic platform under its own weight after successive subaerial exposures which were able to generate karstification processes. Seismic interpretation is constrained by a detailed assessment of the Egyptian margin paleogeography supported by wells. This margin segment is briefly compared to the outcropping Apulian margin in Italy.

  12. Seismic assessment of a site using the time series method

    International Nuclear Information System (INIS)

    Krutzik, N.J.; Rotaru, I.; Bobei, M.; Mingiuc, C.; Serban, V.; Androne, M.

    2001-01-01

    1. To increase the safety of a NPP located on a seismic site, the seismic acceleration level to which the NPP should be qualified must be as representative as possible for that site, with a conservative degree of safety but not too exaggerated. 2. The consideration of the seismic events affecting the site as independent events and the use of statistic methods to define some safety levels with very low annual occurrence probabilities (10 -4 ) may lead to some exaggerations of the seismic safety level. 3. The use of some very high values for the seismic accelerations imposed by the seismic safety levels required by the hazard analysis may lead to very expensive technical solutions that can make the plant operation more difficult and increase the maintenance costs. 4. The consideration of seismic events as a time series with dependence among the events produced may lead to a more representative assessment of a NPP site seismic activity and consequently to a prognosis on the seismic level values to which the NPP would be ensured throughout its life-span. That prognosis should consider the actual seismic activity (including small earthquakes in real time) of the focuses that affect the plant site. The method is useful for two purposes: a) research, i.e. homogenizing the history data basis by the generation of earthquakes during periods lacking information and correlation of the information with the existing information. The aim is to perform the hazard analysis using a homogeneous data set in order to determine the seismic design data for a site; b) operation, i.e. the performance of a prognosis on the seismic activity on a certain site and consideration of preventive measures to minimize the possible effects of an earthquake. 5. The paper proposes the application of Autoregressive Time Series to issue a prognosis on the seismic activity of a focus and presents the analysis on Vrancea focus that affects Cernavoda NPP site by this method. 6. The paper also presents the

  13. Seismic safety margins research program. Phase I final report - Plant/site selection and data collection (Project I)

    International Nuclear Information System (INIS)

    Chuang, T.Y.

    1981-07-01

    Project I of Phase I of the Seismic Safety Margins Research Program (SSMRP) comprised two parts: the selection of a representative nuclear power plant/site for study in Phase I and the collection of data needed by the other SSMRP projects. Unit 1 of the Zion Nuclear Power Plant in Zion, Illinois, was selected for the SSMRP Phase I studies. Unit 1 of the Zion plant has been validated as a good choice for the Phase I study plant. Although no single nuclear power plant can represent all such plants equally well, selection criteria were developed to maximize the generic implications of Phase I of the SSMRP. On the basis of the selection criteria, the Zion plant and its site were found to be reasonably representative of operating and future plants with regard to its nuclear steam supply system; the type of containment structure (prestressed concrete); its electrical capacity (1100 MWe); its location (the Midwest); the peak seismic acceleration used for design (0.17g); and the properties of the underlying soil (the low-strain shear-wave velocity is 1650 ft/s in a 50- to 100-ft-thick layer of soil overlying sedimentary bedrock). (author)

  14. Velocity Model for CO2 Sequestration in the Southeastern United States Atlantic Continental Margin

    Science.gov (United States)

    Ollmann, J.; Knapp, C. C.; Almutairi, K.; Almayahi, D.; Knapp, J. H.

    2017-12-01

    The sequestration of carbon dioxide (CO2) is emerging as a major player in offsetting anthropogenic greenhouse gas emissions. With 40% of the United States' anthropogenic CO2 emissions originating in the southeast, characterizing potential CO2 sequestration sites is vital to reducing the United States' emissions. The goal of this research project, funded by the Department of Energy (DOE), is to estimate the CO2 storage potential for the Southeastern United States Atlantic Continental Margin. Previous studies find storage potential in the Atlantic continental margin. Up to 16 Gt and 175 Gt of storage potential are estimated for the Upper Cretaceous and Lower Cretaceous formations, respectively. Considering 2.12 Mt of CO2 are emitted per year by the United States, substantial storage potential is present in the Southeastern United States Atlantic Continental Margin. In order to produce a time-depth relationship, a velocity model must be constructed. This velocity model is created using previously collected seismic reflection, refraction, and well data in the study area. Seismic reflection horizons were extrapolated using well log data from the COST GE-1 well. An interpolated seismic section was created using these seismic horizons. A velocity model will be made using P-wave velocities from seismic reflection data. Once the time-depth conversion is complete, the depths of stratigraphic units in the seismic refraction data will be compared to the newly assigned depths of the seismic horizons. With a lack of well control in the study area, the addition of stratigraphic unit depths from 171 seismic refraction recording stations provides adequate data to tie to the depths of picked seismic horizons. Using this velocity model, the seismic reflection data can be presented in depth in order to estimate the thickness and storage potential of CO2 reservoirs in the Southeastern United States Atlantic Continental Margin.

  15. Seismic assessment of air-cooled type emergency electric power supply system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    JNES initiated seismic assessment programs to develop seismic review criterions for the air-cooled system (diesel generator, gas turbine generator), which will be newly installed for enhancing the diversity of emergency electric power supply system. Five principal subjects are involved in the programs: two subjects for fiscal 2011 and three ones for fiscal 2012 and 2013. The summary of outcomes is as follows: 1) Past capacity test data and related technical issues (2011). Seismic capacity data obtained from past seismic shaking tests were investigated. 2) Test programs based on the investigation of system specification (2011). Design specifications for the air-cooled system were investigated. 3) Large Air Fin Cooler (AFC) one unit model seismic capacity test and quantitative seismic capacity evaluation. AFC one unit model seismic capacity tests were conducted and quantitative seismic capacities were evaluated. (author)

  16. Seismic assessment of air-cooled type emergency electric power supply system

    International Nuclear Information System (INIS)

    2013-01-01

    JNES initiated seismic assessment programs to develop seismic review criterions for the air-cooled system (diesel generator, gas turbine generator), which will be newly installed for enhancing the diversity of emergency electric power supply system. Five principal subjects are involved in the programs: two subjects for fiscal 2011 and three ones for fiscal 2012 and 2013. The summary of outcomes is as follows: 1) Past capacity test data and related technical issues (2011). Seismic capacity data obtained from past seismic shaking tests were investigated. 2) Test programs based on the investigation of system specification (2011). Design specifications for the air-cooled system were investigated. 3) Large Air Fin Cooler (AFC) one unit model seismic capacity test and quantitative seismic capacity evaluation. AFC one unit model seismic capacity tests were conducted and quantitative seismic capacities were evaluated. (author)

  17. Tectonostratigraphy of the Passive Continental Margin Offshore Indus Pakistan

    Science.gov (United States)

    Aslam, K.; Khan, M.; Liu, Y.; Farid, A.

    2017-12-01

    The tectonic evolution and structural complexities are poorly understood in the passive continental margin of the Offshore Indus of Pakistan. In the present study, an attempt has been made to interpret the structural trends and seismic stratigraphic framework in relation to the tectonics of the region. Seismic reflection data revealed tectonically controlled, distinct episodes of normal faulting representing rifting at different ages and transpression in the Late Eocene time. This transpression has resulted in the reactivation of the Pre-Cambrian basement structures. The movement of these basement structures has considerably affected the younger sedimentary succession resulting in push up structures resembling anticlines. The structural growth of the push-up structures was computed. The most remarkable tectonic setting in the region is represented by the normal faulting and by the basement uplift which divides the rifting and transpression stages. Ten mappable seismic sequences have been identified on the seismic records. A Jurassic aged paleo-shelf has also been identified on all regional seismic profiles which is indicative of Indian-African Plates separation during the Jurassic time. Furthermore, the backstripping technique was applied which has been proved to be a powerful technique to quantify subsidence/uplift history of rift-type passive continental margins. The back strip curves suggest that transition from an extensional rifted margin to transpression occurred during Eocene time (50-30 Ma). The backstripping curves show uplift had happened in the area. We infer that the uplift has occurred due to the movement of basement structures by the transpression movements of Arabian and Indian Plates. The present study suggests that the structural styles and stratigraphy of the Offshore Indus Pakistan were significantly affected by the tectonic activities during the separation of Gondwanaland in the Mesozoic and northward movement of the Indian Plate, post

  18. Induced seismicity and carbon storage: Risk assessment and mitigation strategies

    Energy Technology Data Exchange (ETDEWEB)

    White, Joshua A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Foxall, William [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bachmann, Corinne [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chiaramonte, Laura [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Daley, Thomas M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-01-28

    Geologic carbon storage (GCS) is widely recognized as an important strategy to reduce atmospheric carbon dioxide (CO2) emissions. Like all technologies, however, sequestration projects create a number of potential environmental and safety hazards that must be addressed. These include earthquakes—from microseismicity to large, damaging events—that can be triggered by altering pore-pressure conditions in the subsurface. To date, measured seismicity due to CO2 injection has been limited to a few modest events, but the hazard exists and must be considered. There are important similarities between CO2 injection and fluid injection from other applications that have induced significant events—e.g. geothermal systems, waste-fluid injection, hydrocarbon extraction, and others. There are also important distinctions among these technologies that should be considered in a discussion of seismic hazard. This report focuses on strategies for assessing and mitigating risk during each phase of a CO2 storage project. Four key risks related to fault reactivation and induced seismicity were considered. Induced slip on faults could potentially lead to: (1) infrastructure damage, (2) a public nuisance, (3) brine-contaminated drinking water, and (4) CO2-contaminated drinking water. These scenarios lead to different types of damage—to property, to drinking water quality, or to the public welfare. Given these four risks, this report focuses on strategies for assessing (and altering) their likelihoods of occurrence and the damage that may result. This report begins with an overview of the basic physical mechanisms behind induced seismicity. This science basis—and its gaps—is crucial because it forms the foundation for risk assessment and mitigation. Available techniques for characterizing and monitoring seismic behavior are also described. Again, this technical basis—and its limitations—must be factored into the risk

  19. Proceedings of the OECD/NEA workshop on seismic risk - Summary and conclusions - Committee on the Safety of Nuclear Installations PWG3 and PWG5

    International Nuclear Information System (INIS)

    2001-01-01

    The objectives of the Workshop were: - To provide a forum to review the recent advances in methodology and application of seismic probabilistic safety assessment and seismic margin analysis of nuclear installations, - To discuss the effective uses of the seismic PSA/margin analysis with consideration of merits and limitations of probabilistic methods, - To review the state of the art methodology to provide guidance for conducting seismic PSA, and - To discuss methodological issues and identify areas in which further research is needed for enhancing the usefulness of seismic PSA. The emphasis of the Workshop was placed on the exchange of ideas on effective ways of using seismic PSA rather than the numerical PSA results for specific plants such as core damage frequencies or seismic hazard. From the presentations and discussions in this workshop, it can be concluded that the seismic PSA/Margin methods have been and are being used world-wide, providing useful information for safety improvement or decision making, and great amount of experience has been accumulated, although the status of programs in member countries vary widely. The objectives of such studies include the following: - To examine whether there are cost effective ways to improve safety from ALARP point of view - To assist in decision making in backfitting by identifying cost effective improvements - To demonstrate the seismic margin of existing or future plants - To examine the vulnerabilities in protection against severe accident - To improve design of future reactors by identifying relatively weak points - To assist in selection of new sites for NPPs. Although numerical results from seismic PSA have not been directly used in seismic design as an alternate or supplement to current deterministic analysis methods, some countries have already adopted the use of probabilistic seismic hazard analysis for determining design basis earthquakes (SSE in USA) and some activities are ongoing to develop methods for

  20. How does continental lithosphere break-apart? A 3D seismic view on the transition from magma-poor rifted margin to magmatic oceanic lithosphere

    Science.gov (United States)

    Emmanuel, M.; Lescanne, M.; Picazo, S.; Tomasi, S.

    2017-12-01

    In the last decade, high-quality seismic data and drilling results drastically challenged our ideas about how continents break apart. New models address their observed variability and are presently redefining basics of rifting as well as exploration potential along deepwater rifted margins. Seafloor spreading is even more constrained by decades of scientific exploration along Mid Oceanic Ridges. By contrast, the transition between rifting and drifting remains a debated subject. This lithospheric breakup "event" is geologically recorded along Ocean-Continent Transitions (OCT) at the most distal part of margins before indubitable oceanic crust. Often lying along ultra-deepwater margin domains and buried beneath a thick sedimentary pile, high-quality images of these domains are rare but mandatory to get strong insights on the processes responsible for lithospheric break up and what are the consequences for the overlying basins. We intend to answer these questions by studying a world-class 3D seismic survey in a segment of a rifted margin exposed in the Atlantic. Through these data, we can show in details the OCT architecture between a magma-poor hyper-extended margin (with exhumed mantle) and a classical layered oceanic crust. It is characterized by 1- the development of out-of-sequence detachment systems with a landward-dipping geometry and 2- the increasing magmatic additions oceanwards (intrusives and extrusives). Geometry of these faults suggests that they may be decoupled at a mantle brittle-ductile interface what may be an indicator on thermicity. Furthermore, magmatism increases as deformation migrates to the future first indubitable oceanic crust what controls a progressive magmatic crustal thickening below, above and across a tapering rest of margin. As the magmatic budget increases oceanwards, full-rate divergence is less and less accommodated by faulting. Magmatic-sedimentary architectures of OCT is therefore changing from supra-detachment to magmatic

  1. Geophysical constraints on geodynamic processes at convergent margins: A global perspective

    Science.gov (United States)

    Artemieva, Irina; Thybo, Hans; Shulgin, Alexey

    2016-04-01

    Convergent margins, being the boundaries between colliding lithospheric plates, form the most disastrous areas in the world due to intensive, strong seismicity and volcanism. We review global geophysical data in order to illustrate the effects of the plate tectonic processes at convergent margins on the crustal and upper mantle structure, seismicity, and geometry of subducting slab. We present global maps of free-air and Bouguer gravity anomalies, heat flow, seismicity, seismic Vs anomalies in the upper mantle, and plate convergence rate, as well as 20 profiles across different convergent margins. A global analysis of these data for three types of convergent margins, formed by ocean-ocean, ocean-continent, and continent-continent collisions, allows us to recognize the following patterns. (1) Plate convergence rate depends on the type of convergent margins and it is significantly larger when, at least, one of the plates is oceanic. However, the oldest oceanic plate in the Pacific ocean has the smallest convergence rate. (2) The presence of an oceanic plate is, in general, required for generation of high-magnitude (M N 8.0) earthquakes and for generating intermediate and deep seismicity along the convergent margins. When oceanic slabs subduct beneath a continent, a gap in the seismogenic zone exists at depths between ca. 250 km and 500 km. Given that the seismogenic zone terminates at ca. 200 km depth in case of continent-continent collision, we propose oceanic origin of subducting slabs beneath the Zagros, the Pamir, and the Vrancea zone. (3) Dip angle of the subducting slab in continent-ocean collision does not correlate neither with the age of subducting oceanic slab, nor with the convergence rate. For ocean-ocean subduction, clear trends are recognized: steeply dipping slabs are characteristic of young subducting plates and of oceanic plates with high convergence rate, with slab rotation towards a near-vertical dip angle at depths below ca. 500 km at very high

  2. Corroborating a new probabilistic seismic hazard assessment for greater Tokyo from historical intensity observations

    Science.gov (United States)

    Bozkurt, S.; Stein, R.; Toda, S.

    2006-12-01

    The long recorded history of earthquakes in Japan affords an opportunity to forecast seismic shaking exclusively from past observations of shaking. For this we analyzed 10,000 intensity observations recorded during AD 1600-2000 in a 350 x 350 km area centered on Tokyo in a Geographic Information System. A frequency-intensity curve is found for each 5 x 5 km cell, and from this the probability of exceeding any intensity level can be estimated. The principal benefits of this approach is that it builds the fewest possible assumptions into a probabilistic seismic forecast, it includes site and source effects without imposing this behavior, and we do not need to know the size or location of any earthquake or the location and slip rate of any fault. The cost is that we must abandon any attempt to make a time-dependent forecast, which could be quite different. We believe the method is suitable to many applications of probabilistic seismic hazard assessment, and to other regions. The two key assumptions are that the slope of the observed frequency-intensity relation at every site is the same, and that the 400-year record is long enough to encompass the full range of seismic behavior. Tests we conduct suggest that both assumptions are sound. The resulting 30-year probability of IJMA>=6 shaking (roughly equivalent to PGA>=0.9 g or MMI=IX-X) is 30-40% in Tokyo, Kawasaki, and Yokohama, and 10-15% in Chiba and Tsukuba, the range reflecting spatial variability and curve-fitting alternatives. The strongest shaking is forecast along the margins of Tokyo Bay, within the river sediments extending northwest from Tokyo, and at coastal sites near the plate boundary faults. We also produce long- term exceedance maps of peak ground acceleration for building code regulations, and short-term hazard maps associated with hypothetical catastrophe bonds. Our results for greater Tokyo resemble our independent Poisson probability developed from conventional seismic hazard analysis, as well as

  3. Geological Constraints on the Evolution of the Angolan Margin Based on Reflection and Refraction Seismic Data (ZaïAngo project)

    Science.gov (United States)

    Moulin, M.; Aslanian, D.; Olivet, J.; Contrucci, I.; Matias, L.; Geli, L.; Klingelhoefer, F.; Nouze, H.; Rabineau, M.; Labails, C.; Rehault, J.; Unternehr, P.

    2005-05-01

    Deep penetration multi-channel reflection and OBS wide-angle seismic data from the Congo-Angola margin were collected in 2000 during the ZaiAngo cruise (Ifremer and Total). These data help constrain the deep structure of the non-volcanic continental margin, the geometry of the pre-salt sediment layers and the geometry of the Aptian salt layer. Dating the deposition of the salt relative to the chronology of the margin formation is an issue of fundamental importance for reconstructing the evolution of the margin and for the understanding of the crustal thinning processes. The data show that the crust thins abruptly, from a 30 - 40km thickness to less than 10km, over a lateral distance of less than 50km. The transitional domain is a 180km wide basin with a thickness lower than 7 km. The pre-salt sediment layering within this basin is parallel to the base of the salt and hardly affected by tectonic deformation. In addition, the presence of a continuous salt cover, from the continental platform down to the presumed oceanic boundary, provides indications on the conditions of salt deposition that constrain the geometry of the margin at that time. These crucial observations imply shallow deposition environments during the rifting and suggest that vertical motions prevailed - compared to horizontal motions - during the formation of the basin.

  4. Assessment of Seismic Vulnerability of Reinforced Concrete Frame buildings

    Directory of Open Access Journals (Sweden)

    Fatiha Cherifi

    2018-01-01

    Full Text Available The seismic activity remains strong in the north of Algeria since no less than 30 earthquakes per month are recorded. The large number of structures built before the introduction of the seismic standards represents a high seismic risk. Analysis of damage suffered during the last earthquakes highlighted the vulnerability of the existing structures. In this study the seismic behavior of the existing buildings in Tizi-Ouzou city, located in the north of Algeria, is investigated. To make this assessment, a database was created following a building inventory based on a set of technical folders and field visits. The listed buildings have been classified into different typologies. Only reinforced concrete frame buildings are considered in this paper. The approach adopted to estimate structures damage is based on four main steps: 1 construction of capacity curves using static nonlinear method “push-over”, 2 estimate of seismic hazard, 3 determination of performance points, and finally 4 deduction of damage levels.

  5. Material presented to advisory committee on reactor safeguards, subcommittee on extreme external phenomena, January 29-30, 1981, Los Angeles, California. Seismic safety margins research program

    International Nuclear Information System (INIS)

    Smith, P.D.; Bernreuter, D.L.; Bohn, M.P.; Chuang, T.Y.; Cummings, G.E.; Dong, R.G.; Johnson, J.J.; Wells, J.E.

    1981-01-01

    The January 29-30, 1981, meeting of the Advisory Committee on Reactor Safeguards (ACRS), Subcommittee on Extreme External Phenomena, mark the close of Phase I efforts on the Seismic Safety Margins Research Program (SSMRP). Presentations at the meeting focused on results produced. These included computer codes, response computations, failure and release probabilities, data bases, and fragilities and parameter characteristics

  6. A basis for standardized seismic design (SSD) for nuclear power plants/critical facilities

    International Nuclear Information System (INIS)

    O'Hara, T.F.; Jacobson, J.P.; Bellini, F.X.

    1991-01-01

    US Nuclear Power Plants (NPP's) are designed, engineered and constructed to stringent standards. Their seismic adequacy is assured by compliance with regulatory standards and demonstrated by both probabilistic risk assessments (PRAs) and seismic margin studies. However, present seismic siting criteria requires improvement. Proposed changes to siting criteria discussed here will provide a predictable licensing process and a stable regulatory environment. Two recent state-of-the-art studies evaluate the seismic design for all eastern US (EUS) NPP'S: a Lawrence Livermore National Labs study (LLNL, 1989) funded by the NRC and similar research by the Electric Power Research Institute (EPRI, 1989) supported by the utilities. Both confirm that Appendix A 10CFR Part 100 has not provided consistent seismic design levels for all sites. Standardized Seismic Design (SSD) uses a probabilistic framework to accommodate alternative deterministic interpretations. It uses seismic hazard input from EPRI or LLNL to produce consistent bases for future seismic design. SSD combines deterministic and probabilistic insights to provide a comprehensive approach for determining a future site's acceptable seismic design basis

  7. Development of seismic damage assessment system for nuclear power plant structures in Korea

    International Nuclear Information System (INIS)

    Hyun, Chang-Hun; Lee, Sung-Kyu; Choi, Kang-Ryoung; Koh, Hyun-Moo; Cho, HoHyun

    2003-01-01

    A seismic damage assessment system that analyses in real-time the actual seismic resistance capacity and the damage level of power plant structures has been developed. The system consists of three parts: a 3-D inelastic seismic analysis, a damage assessment using a damage index based on the previous 3-D analysis, and a 3-D graphic representation. PSC containment structures are modelled by finite shell elements using layered method and analysis is performed by means of time history inelastic seismic analysis method, which takes into account material nonlinearities. HHT-α, one kind of direct integration method, is adopted for the seismic analysis. Two damage indices at finite element and structural levels are applied for the seismic damage assessment. 3-D graphical representation of dynamic responses and damage index expedites procedure for evaluating the damage level. The developed system is now being installed at the Earthquake Monitoring Center of KINS (Korea Institute of Nuclear Safety) to support site inspections after an earthquake occurrence, and decisions about effective emergency measures, repair and operations of the plant. (author)

  8. Crustal Structure of the Ionian Basin and Eastern Sicily Margin: Results From a Wide-Angle Seismic Survey

    Science.gov (United States)

    Dellong, David; Klingelhoefer, Frauke; Kopp, Heidrun; Graindorge, David; Margheriti, Lucia; Moretti, Milena; Murphy, Shane; Gutscher, Marc-Andre

    2018-03-01

    In the Ionian Sea (central Mediterranean) the slow convergence between Africa and Eurasia results in the formation of a narrow subduction zone. The nature of the crust of the subducting plate remains debated and could represent the last remnants of the Neo-Tethys ocean. The origin of the Ionian basin is also under discussion, especially concerning the rifting mechanisms as the Malta Escarpment could represent a remnant of this opening. This subduction retreats toward the south-east (motion occurring since the last 35 Ma) but is confined to the narrow Ionian basin. A major lateral slab tear fault is required to accommodate the slab roll-back. This fault is thought to propagate along the eastern Sicily margin but its precise location remains controversial. This study focuses on the deep crustal structure of the eastern Sicily margin and the Malta Escarpment. We present two two-dimensional P wave velocity models obtained from forward modeling of wide-angle seismic data acquired onboard the R/V Meteor during the DIONYSUS cruise in 2014. The results image an oceanic crust within the Ionian basin as well as the deep structure of the Malta Escarpment, which presents characteristics of a transform margin. A deep and asymmetrical sedimentary basin is imaged south of the Messina strait and seems to have opened between the Calabrian and Peloritan continental terranes. The interpretation of the velocity models suggests that the tear fault is located east of the Malta Escarpment, along the Alfeo fault system.

  9. Recent achievements of the neo-deterministic seismic hazard assessment in the CEI region

    International Nuclear Information System (INIS)

    Panza, G.F.; Vaccari, F.; Kouteva, M.

    2008-03-01

    A review of the recent achievements of the innovative neo-deterministic approach for seismic hazard assessment through realistic earthquake scenarios has been performed. The procedure provides strong ground motion parameters for the purpose of earthquake engineering, based on the deterministic seismic wave propagation modelling at different scales - regional, national and metropolitan. The main advantage of this neo-deterministic procedure is the simultaneous treatment of the contribution of the earthquake source and seismic wave propagation media to the strong motion at the target site/region, as required by basic physical principles. The neo-deterministic seismic microzonation procedure has been successfully applied to numerous metropolitan areas all over the world in the framework of several international projects. In this study some examples focused on CEI region concerning both regional seismic hazard assessment and seismic microzonation of the selected metropolitan areas are shown. (author)

  10. Seismic hazard assessment of Iran

    Directory of Open Access Journals (Sweden)

    M. Ghafory-Ashtiany

    1999-06-01

    Full Text Available The development of the new seismic hazard map of Iran is based on probabilistic seismic hazard computation using the historical earthquakes data, geology, tectonics, fault activity and seismic source models in Iran. These maps have been prepared to indicate the earthquake hazard of Iran in the form of iso-acceleration contour lines, and seismic hazard zoning, by using current probabilistic procedures. They display the probabilistic estimates of Peak Ground Acceleration (PGA for the return periods of 75 and 475 years. The maps have been divided into intervals of 0.25 degrees in both latitudinal and longitudinal directions to calculate the peak ground acceleration values at each grid point and draw the seismic hazard curves. The results presented in this study will provide the basis for the preparation of seismic risk maps, the estimation of earthquake insurance premiums, and the preliminary site evaluation of critical facilities.

  11. The Spatial Assessment of the Current Seismic Hazard State for Hard Rock Underground Mines

    Science.gov (United States)

    Wesseloo, Johan

    2018-06-01

    Mining-induced seismic hazard assessment is an important component in the management of safety and financial risk in mines. As the seismic hazard is a response to the mining activity, it is non-stationary and variable both in space and time. This paper presents an approach for implementing a probabilistic seismic hazard assessment to assess the current hazard state of a mine. Each of the components of the probabilistic seismic hazard assessment is considered within the context of hard rock underground mines. The focus of this paper is the assessment of the in-mine hazard distribution and does not consider the hazard to nearby public or structures. A rating system and methodologies to present hazard maps, for the purpose of communicating to different stakeholders in the mine, i.e. mine managers, technical personnel and the work force, are developed. The approach allows one to update the assessment with relative ease and within short time periods as new data become available, enabling the monitoring of the spatial and temporal change in the seismic hazard.

  12. New seismic sources parameterization in El Salvador. Implications to seismic hazard.

    OpenAIRE

    Alonso-Henar, Jorge; Staller, A.; Martínez Díaz, José J.; Benito, Belén; Álvarez Gómez, José Antonio; Canora Catalán, Carolina

    2014-01-01

    El Salvador is located at the pacific active margin of Central America, here, the subduction of the Cocos Plate under the Caribbean Plate at a rate of 80 mm/yr is the main seismic source. Although the seismic sources located in the Central American Volcanic Arc have been responsible for some of the most damaging earthquakes in El Salvador. The El Salvador Fault Zone is the main geological structure in El Salvador and accommodates 14 mm/yr of horizontal displacement between the Caribbean Plate...

  13. The impact of seismically-induced relay chatter on nuclear plant risk

    International Nuclear Information System (INIS)

    Bley, D.C.; McIntyre, T.J.; Smith, B.; Kassawara, R.P.

    1987-01-01

    This paper describes a systematic scheme for analyzing the impact of relay chatter that is amenable to both PRA analysis and seismic margins analysis. It uses knowledge of the systems engineering of the plant to bound the scope of the problem to a tractable size and has been applied to both the Diablo Canyon PRA and the EPRI seismic margines program trial evaluation at the Catawba Nuclear Power Plant. It has also been coordinated with similar EPRI-sponsored work on relay functionality for the Seismic Qualification Utility Group. (orig./HP)

  14. Seismic assessment and performance of nonstructural components affected by structural modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hur, Jieun; Althoff, Eric; Sezen, Halil; Denning, Richard; Aldemir, Tunc [Ohio State University, Columbus (United States)

    2017-03-15

    Seismic probabilistic risk assessment (SPRA) requires a large number of simulations to evaluate the seismic vulnerability of structural and nonstructural components in nuclear power plants. The effect of structural modeling and analysis assumptions on dynamic analysis of 3D and simplified 2D stick models of auxiliary buildings and the attached nonstructural components is investigated. Dynamic characteristics and seismic performance of building models are also evaluated, as well as the computational accuracy of the models. The presented results provide a better understanding of the dynamic behavior and seismic performance of auxiliary buildings. The results also help to quantify the impact of uncertainties associated with modeling and analysis of simplified numerical models of structural and nonstructural components subjected to seismic shaking on the predicted seismic failure probabilities of these systems.

  15. Impact of ground motion characterization on conservatism and variability in seismic risk estimates

    International Nuclear Information System (INIS)

    Sewell, R.T.; Toro, G.R.; McGuire, R.K.

    1996-07-01

    This study evaluates the impact, on estimates of seismic risk and its uncertainty, of alternative methods in treatment and characterization of earthquake ground motions. The objective of this study is to delineate specific procedures and characterizations that may lead to less biased and more precise seismic risk results. This report focuses on sources of conservatism and variability in risk that may be introduced through the analytical processes and ground-motion descriptions which are commonly implemented at the interface of seismic hazard and fragility assessments. In particular, implication of the common practice of using a single, composite spectral shape to characterize motions of different magnitudes is investigated. Also, the impact of parameterization of ground motion on fragility and hazard assessments is shown. Examination of these results demonstrates the following. (1) There exists significant conservatism in the review spectra (usually, spectra characteristic of western U.S. earthquakes) that have been used in conducting past seismic risk assessments and seismic margin assessments for eastern U.S. nuclear power plants. (2) There is a strong dependence of seismic fragility on earthquake magnitude when PGA is used as the ground-motion characterization. When, however, magnitude-dependent spectra are anchored to a common measure of elastic spectral acceleration averaged over the appropriate frequency range, seismic fragility shows no important nor consistent dependence on either magnitude or strong-motion duration. Use of inelastic spectral acceleration (at the proper frequency) as the ground spectrum anchor demonstrates a very similar result. This study concludes that a single, composite-magnitude spectrum can generally be used to characterize ground motion for fragility assessment without introducing significant bias or uncertainty in seismic risk estimates

  16. Impact of ground motion characterization on conservatism and variability in seismic risk estimates

    Energy Technology Data Exchange (ETDEWEB)

    Sewell, R.T.; Toro, G.R.; McGuire, R.K.

    1996-07-01

    This study evaluates the impact, on estimates of seismic risk and its uncertainty, of alternative methods in treatment and characterization of earthquake ground motions. The objective of this study is to delineate specific procedures and characterizations that may lead to less biased and more precise seismic risk results. This report focuses on sources of conservatism and variability in risk that may be introduced through the analytical processes and ground-motion descriptions which are commonly implemented at the interface of seismic hazard and fragility assessments. In particular, implication of the common practice of using a single, composite spectral shape to characterize motions of different magnitudes is investigated. Also, the impact of parameterization of ground motion on fragility and hazard assessments is shown. Examination of these results demonstrates the following. (1) There exists significant conservatism in the review spectra (usually, spectra characteristic of western U.S. earthquakes) that have been used in conducting past seismic risk assessments and seismic margin assessments for eastern U.S. nuclear power plants. (2) There is a strong dependence of seismic fragility on earthquake magnitude when PGA is used as the ground-motion characterization. When, however, magnitude-dependent spectra are anchored to a common measure of elastic spectral acceleration averaged over the appropriate frequency range, seismic fragility shows no important nor consistent dependence on either magnitude or strong-motion duration. Use of inelastic spectral acceleration (at the proper frequency) as the ground spectrum anchor demonstrates a very similar result. This study concludes that a single, composite-magnitude spectrum can generally be used to characterize ground motion for fragility assessment without introducing significant bias or uncertainty in seismic risk estimates.

  17. SHC, Seismic Hazard Assessment for Eastern US

    International Nuclear Information System (INIS)

    Savy, J.; Davis, B.

    2001-01-01

    1 - Description of program or function: SHC was developed as part of the Eastern United States (EUS) Seismic Hazard Characterization (SHC) Project to design an SHC methodology for the region east of the Rocky Mountains in a form suitable for probabilistic risk assessment and to apply that methodology to 69 site locations, some of them with local soil conditions. The method developed uses expert opinions to obtain the input to the analysis. SHC contains four modules which calculate the seismic hazard at a site located in a region of diffuse seismicity, where the seismicity is modeled by area sources. SHC integrates the opinions of 11 seismicity and five ground-motion experts. The PRDS model generates the discrete probability density function of the distances to the site for the various seismic source zones. These probability distributions are used by the COMAP module to generate the set of all alternative maps and the discrete probability density of the seismic zonation maps for each expert. The third module, ALEAS, uses these maps and their weights to calculate the best estimate and constant percentile hazard distribution resulting from the choice of a given seismicity expert for all ground-motion experts. This module can be used alone to perform a seismic hazard analysis as well as in conjunction with the other modules. The fourth module, COMB, combines the best- estimate and constant-percentile hazard over all seismicity experts, using the set of weights calculated by ALEAS, to produce the final probability distribution of the hazard for the site under consideration so that the hazard analysis can be performed for any location in the EUS. Local geological-site characteristics are incorporated in a generic fashion, and the data are developed in a generic manner. 2 - Method of solution: SHC uses a seismic-source approach utilizing statistical and geological evidence to define geographical regions with homogeneous Poisson activity throughout the zone, described by a

  18. Proceedings of the Specialist Meeting on the Seismic Probabilistic Safety Assessment of Nuclear Facilities

    International Nuclear Information System (INIS)

    2007-01-01

    The main objectives of the Meeting were to review recent advances in the methodology of Seismic Probabilistic Safety Assessment (SPSA), to discuss practical applications, to review the current state of the art, and to identify methodological issues where further research would be beneficial in enhancing the usefulness of the methodology. Applications of the Seismic Margin Assessment methodology (SMA), a methodology related to SPSA, were also discussed. One specific objective was to compare the situation today with the situation at the time of the 1999 Tokyo workshop, and to develop a set of findings and recommendations that would update those from that earlier workshop. There was a consensus at the Specialists Meeting that SPSA is now in widespread use throughout the nuclear-power industry worldwide, by the operating nuclear power plants (NPPs) themselves, by the various national regulatory agencies, and by the designers of new NPPs. It was also widely agreed that it can systematically accomplish several very important objectives; specifically, it can contribute: - To understanding the seismic risk arising from NPPs. - To understanding the safety significance of seismic design shortfalls. - To prioritizing seismic safety improvements. - To evaluating and improving seismic regulations. - To modifying the seismic regulatory/licensing basis of an individual NPP. Compared to the situation in 1999, when the first Workshop was held in Tokyo, there have been significant expansions in the use of SPSA in many different areas. Some countries provided detailed information on their regulatory framework for using seismic PSA. Many other countries also provided some information in their papers as background for conducting SPSA. During the Meeting, a small number of important weaknesses in SPSA methodology were identified. None of these are new, all having been widely recognized for many years. However, for some of the weaknesses, extensive discussions during the Meeting provided

  19. Proceedings of the Specialist Meeting on the Seismic Probabilistic Safety Assessment of Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-11-14

    The main objectives of the Meeting were to review recent advances in the methodology of Seismic Probabilistic Safety Assessment (SPSA), to discuss practical applications, to review the current state of the art, and to identify methodological issues where further research would be beneficial in enhancing the usefulness of the methodology. Applications of the Seismic Margin Assessment methodology (SMA), a methodology related to SPSA, were also discussed. One specific objective was to compare the situation today with the situation at the time of the 1999 Tokyo workshop, and to develop a set of findings and recommendations that would update those from that earlier workshop. There was a consensus at the Specialists Meeting that SPSA is now in widespread use throughout the nuclear-power industry worldwide, by the operating nuclear power plants (NPPs) themselves, by the various national regulatory agencies, and by the designers of new NPPs. It was also widely agreed that it can systematically accomplish several very important objectives; specifically, it can contribute: - To understanding the seismic risk arising from NPPs. - To understanding the safety significance of seismic design shortfalls. - To prioritizing seismic safety improvements. - To evaluating and improving seismic regulations. - To modifying the seismic regulatory/licensing basis of an individual NPP. Compared to the situation in 1999, when the first Workshop was held in Tokyo, there have been significant expansions in the use of SPSA in many different areas. Some countries provided detailed information on their regulatory framework for using seismic PSA. Many other countries also provided some information in their papers as background for conducting SPSA. During the Meeting, a small number of important weaknesses in SPSA methodology were identified. None of these are new, all having been widely recognized for many years. However, for some of the weaknesses, extensive discussions during the Meeting provided

  20. Seismic evaluation of existing nuclear facilities. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    Programmes for re-evaluation and upgrading of safety of existing nuclear facilities are presently under way in a number of countries around the world. An important component of these programmes is the re-evaluation of the seismic safety through definition of new seismic parameters at the site and evaluation of seismic capacity of structures, equipment and distribution systems following updated information and criteria. The Seminar is intended to provide a forum for the exchange of information and discussion of the state-of-the-art on seismic safety of nuclear facilities in operation or under construction. Both analytical and experimental techniques for the evaluation of seismic capacity of structures, equipment and distribution systems are discussed. Full scale and field tests of structures and components using shaking tables, mechanical exciters, explosive and shock tests, and ambient vibrations are included in the seminar programme with emphasis on recent case histories. Presentations at the Seminar also include analytical techniques for the determination of dynamic properties of soil-structure systems from experiments as well as calibration of numerical models. Methods and criteria for seismic margin assessment based on experience data obtained from the behaviour of structures and components in real earthquakes are discussed. Guidelines for defining technical requirements for capacity re-evaluation (i.e. acceptable behaviour limits and design and implementation of structure and components upgrades are also presented and discussed. The following topics were covered during 7 sessions: earthquake experience and seismic re-evaluation; country experience in seismic re-evaluation programme; generic WWER studies; analytical methods for seismic capacity re-evaluation; experimental methods for seismic capacity re-evaluation; case studies.

  1. Seismic evaluation of existing nuclear facilities. Proceedings

    International Nuclear Information System (INIS)

    1995-01-01

    Programmes for re-evaluation and upgrading of safety of existing nuclear facilities are presently under way in a number of countries around the world. An important component of these programmes is the re-evaluation of the seismic safety through definition of new seismic parameters at the site and evaluation of seismic capacity of structures, equipment and distribution systems following updated information and criteria. The Seminar is intended to provide a forum for the exchange of information and discussion of the state-of-the-art on seismic safety of nuclear facilities in operation or under construction. Both analytical and experimental techniques for the evaluation of seismic capacity of structures, equipment and distribution systems are discussed. Full scale and field tests of structures and components using shaking tables, mechanical exciters, explosive and shock tests, and ambient vibrations are included in the seminar programme with emphasis on recent case histories. Presentations at the Seminar also include analytical techniques for the determination of dynamic properties of soil-structure systems from experiments as well as calibration of numerical models. Methods and criteria for seismic margin assessment based on experience data obtained from the behaviour of structures and components in real earthquakes are discussed. Guidelines for defining technical requirements for capacity re-evaluation (i.e. acceptable behaviour limits and design and implementation of structure and components upgrades are also presented and discussed. The following topics were covered during 7 sessions: earthquake experience and seismic re-evaluation; country experience in seismic re-evaluation programme; generic WWER studies; analytical methods for seismic capacity re-evaluation; experimental methods for seismic capacity re-evaluation; case studies

  2. Review of Seismic Evaluation Methodologies for Nuclear Power Plants Based on a Benchmark Exercise

    International Nuclear Information System (INIS)

    2013-11-01

    Niigataken-chuetsu-oki (NCO) earthquake (Mw = 6.6) occurred on 16 July 2007 and affected the Kashiwazaki-Kariwa (K-K) NPP in Japan. Although there was significant loss of main shock data due to transmission problems, a significant number of instruments were still able to measure the acceleration at different locations in soil (boreholes) and in structures at the K-K NPP during the main shock and the aftershocks. The availability of all these instrumental data provided an excellent background for initiating a benchmarking exercise known as the KAshiwazaki-Kariwa Research Initiative for Seismic Margin Assessment (KARISMA). The main objective of the KARISMA benchmark exercise is to study a comparison between analytical seismic response versus real response of selected structure, system and components (SSCs) of K-K NPP Unit 7. The KARISMA benchmark exercise includes benchmarking the analytical tools and numerical simulation techniques used for predicting seismic response of NPP structures (in linear and non-linear ranges), site response, soil-structure interaction phenomena, seismic response of piping systems, 'sloshing' in the spent fuel pool and buckling of tanks. The benchmark is primarily based on data provided by Tokyo Electric Power Company (TEPCO). It is not linked to the seismic re-evaluation of K-K NPP carried out by TEPCO. Twenty-one organizations, comprising researchers, operating organizations, regulatory authorities, vendors and technical support organizations from 14 countries, participated in the benchmarking exercises. This publication, including a CD-ROM, summarizes the analyses of the main results of the benchmarking exercise for the K-K NPP reactor building (including static and modal analyses of the fixed base model, soil column analyses, analyses of the soil-structure models and margin assessment of the K-K NPP reactor building), the analyses of the main results of the benchmarking exercise for the residual heat removal piping system (including

  3. Seismic fragility of reinforced concrete structures and components for application to nuclear facilities

    International Nuclear Information System (INIS)

    Gergely, P.

    1984-09-01

    The failure and fragility analyses of reinforced concrete structures and elements in nuclear reactor facilities within the Seismic Safety Margins Research Program (SSMRP) at the Lawrence Livermore National Laboratory are evaluated. Uncertainties in material modeling, behavior of low shear walls, and seismic risk assessment for nonlinear response receive special attention. Problems with ductility-based spectral deamplification and prediction of the stiffness of reinforced concrete walls at low stress levels are examined. It is recommended to use relatively low damping values in connection with ductility-based response reductions. The study of static nonlinear force-deflection curves is advocated for better nonlinear dynamic response predictions. Several details of the seismic risk analysis of the Zion plant are also evaluated. 73 references

  4. Seismic and Restoration Assessment of Monumental Masonry Structures

    Directory of Open Access Journals (Sweden)

    Panagiotis G. Asteris

    2017-08-01

    Full Text Available Masonry structures are complex systems that require detailed knowledge and information regarding their response under seismic excitations. Appropriate modelling of a masonry structure is a prerequisite for a reliable earthquake-resistant design and/or assessment. However, modelling a real structure with a robust quantitative (mathematical representation is a very difficult, complex and computationally-demanding task. The paper herein presents a new stochastic computational framework for earthquake-resistant design of masonry structural systems. The proposed framework is based on the probabilistic behavior of crucial parameters, such as material strength and seismic characteristics, and utilizes fragility analysis based on different failure criteria for the masonry material. The application of the proposed methodology is illustrated in the case of a historical and monumental masonry structure, namely the assessment of the seismic vulnerability of the Kaisariani Monastery, a byzantine church that was built in Athens, Greece, at the end of the 11th to the beginning of the 12th century. Useful conclusions are drawn regarding the effectiveness of the intervention techniques used for the reduction of the vulnerability of the case-study structure, by means of comparison of the results obtained.

  5. Seismic and Restoration Assessment of Monumental Masonry Structures

    Science.gov (United States)

    Asteris, Panagiotis G.; Douvika, Maria G.; Apostolopoulou, Maria; Moropoulou, Antonia

    2017-01-01

    Masonry structures are complex systems that require detailed knowledge and information regarding their response under seismic excitations. Appropriate modelling of a masonry structure is a prerequisite for a reliable earthquake-resistant design and/or assessment. However, modelling a real structure with a robust quantitative (mathematical) representation is a very difficult, complex and computationally-demanding task. The paper herein presents a new stochastic computational framework for earthquake-resistant design of masonry structural systems. The proposed framework is based on the probabilistic behavior of crucial parameters, such as material strength and seismic characteristics, and utilizes fragility analysis based on different failure criteria for the masonry material. The application of the proposed methodology is illustrated in the case of a historical and monumental masonry structure, namely the assessment of the seismic vulnerability of the Kaisariani Monastery, a byzantine church that was built in Athens, Greece, at the end of the 11th to the beginning of the 12th century. Useful conclusions are drawn regarding the effectiveness of the intervention techniques used for the reduction of the vulnerability of the case-study structure, by means of comparison of the results obtained. PMID:28767073

  6. Seismic performance assessment of base-isolated safety-related nuclear structures

    Science.gov (United States)

    Huang, Y.-N.; Whittaker, A.S.; Luco, N.

    2010-01-01

    Seismic or base isolation is a proven technology for reducing the effects of earthquake shaking on buildings, bridges and infrastructure. The benefit of base isolation has been presented in terms of reduced accelerations and drifts on superstructure components but never quantified in terms of either a percentage reduction in seismic loss (or percentage increase in safety) or the probability of an unacceptable performance. Herein, we quantify the benefits of base isolation in terms of increased safety (or smaller loss) by comparing the safety of a sample conventional and base-isolated nuclear power plant (NPP) located in the Eastern U.S. Scenario- and time-based assessments are performed using a new methodology. Three base isolation systems are considered, namely, (1) Friction Pendulum??? bearings, (2) lead-rubber bearings and (3) low-damping rubber bearings together with linear viscous dampers. Unacceptable performance is defined by the failure of key secondary systems because these systems represent much of the investment in a new build power plant and ensure the safe operation of the plant. For the scenario-based assessments, the probability of unacceptable performance is computed for an earthquake with a magnitude of 5.3 at a distance 7.5 km from the plant. For the time-based assessments, the annual frequency of unacceptable performance is computed considering all potential earthquakes that may occur. For both assessments, the implementation of base isolation reduces the probability of unacceptable performance by approximately four orders of magnitude for the same NPP superstructure and secondary systems. The increase in NPP construction cost associated with the installation of seismic isolators can be offset by substantially reducing the required seismic strength of secondary components and systems and potentially eliminating the need to seismically qualify many secondary components and systems. ?? 2010 John Wiley & Sons, Ltd.

  7. FSI-based Overflow Assessment of the Seismically-Isolated SFP with Fuel Racks

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Gil Y.; Park, Hyun T.; Chang, Soo-Hyuk [Korea Maintenance Co., Seoul (Korea, Republic of); Lee, Sang-Hoon [KEPCO E-C, Yongin (Korea, Republic of)

    2014-10-15

    To date, effectiveness of the seismic isolation systems for reducing seismic force effectively has been well demonstrated. In this context, practical application of the technology in nuclear engineering fields has become an important issue more and more. This is because fluid motion can be rather amplified due to the increased relative displacement between the base and superstructures by a long-period shift. Therefore, overflow assessment and prediction of the seismically-isolated SFP have to be conducted in design phase. For performing sloshing-induced overflow of the seismically-isolated SFP, a fluid-structure interaction(FSI) approach making a two-way coupling process between structural and fluid solvers is herein employed. In this study, fuel racks inside the SFP are included in FSI modeling to investigate effect of fuel-cell assemblies on SFP overflow. Accordingly, three different assembly sets of fuel cells are assumed to be inserted in fuel racks. In addition, floor acceleration time-histories produced from three different amplitudes of peak ground acceleration (PGA) are applied to the SFP base to investigate load effect on liquid overflow. An approach for the liquid overflow assessment of the seismically-isolated nuclear SFP with fuel storage racks based on FSI analysis was addressed. From the results of the identified cases, the following conclusions are drawn: (i) FSI technique can be effectively used to assess the seismically-isolated SFP overflow, (ii) In a conservative way, the isolated SFP without fuel racks can be used to assess its sloshing-induced overflow under earthquake since effect of fuel-cell assemblies on the SFP overflow is not significant, (iii) for given same conditions (e.g., constant design free surface, same fuel-cell assembly) except seismic loading, the higher PGA is, the more liquid overflow increases.

  8. A GIS approach to seismic risk assessment with an application to mining-related seismicity in Johannesburg, South Africa

    Science.gov (United States)

    Liebenberg, Keagen; Smit, Ansie; Coetzee, Serena; Kijko, Andrzej

    2017-08-01

    The majority of seismic activity in South Africa is related to extensive mining operations, usually in close proximity to densely populated areas where a relatively weak seismic event could cause damage. Despite a significant decrease in mining operations in the Witwatersrand area, the number of seismic events appears to be increasing and is attributed to the acid mine drainage problem. The increased seismicity is raising concern amongst disaster management centres and in the insurance industry. A better understanding is required of the vulnerability and the size of the potential loss of people and infrastructure in densely populated Johannesburg and its surrounding areas. Results of a deterministic seismic risk, vulnerability, and loss assessment are presented by making use of a geographic information system (GIS). The results illustrate the benefits of using GIS and contribute to a better understanding of the risk, which can assist in improving disaster preparedness.

  9. Seismic safety margins research program. Phase I final report - Major structure response (Project IV)

    International Nuclear Information System (INIS)

    Benda, B.J.; Johnson, J.J.; Lo, T.Y.

    1981-08-01

    The primary task of the Major Structure Response Project within the Seismic Safety Margins Research Program (SSMRP) was to develop detailed finite element models of the Zion Nuclear Power Plant's containment building and auxiliary-fuel-turbine (AFT) complex. The resulting models served as input to the seismic methodology analysis chain. The containment shell was modeled as a series of beam elements with the shear and bending characteristics of a circular cylindrical shell. Masses and rotary inertias were lumped at nodal points; thirteen modes were included in the analysis. The internal structure was modeled with three-dimensional finite elements, with masses again lumped at selected nodes; sixty modes were included in the analysis. The model of the AFT complex employed thin plate and shell elements to represent the concrete shear walls and floor diaphragms, and beam and truss elements to model the braced frames. Because of the size and complexity of the model, and the potentially large number of degrees of freedom, masses were lumped at a limited number of node points. These points were selected so as to minimize the effect of the discrete mass distribution on structural response. One hundred and thirteen modes were extracted. A second objective of Project IV was to investigate the effects of uncertainty and variability on structural response. To this end, four side studies were conducted. Three of them, briefly summarized in this volume, addressed themselves respectively to an investigation of sources of random variability in the dynamic response of nuclear power plant structures; formulation of a methodology for modeling and evaluating the effects of structural uncertainty on predicted modal characteristics of major nuclear power plant structures and substructures; and a preliminary evaluation of nonlinear responses in shear-wall structures. A fourth side study, reported in detail in this volume, quantified variations in dynamic characteristics and seismic

  10. Assessing seismic adequacy of existing nuclear power plant structures

    International Nuclear Information System (INIS)

    Belyaev, V.; Vinogradov, V.; Privalov, S.; Shishenin, V.

    2003-01-01

    Nowadays Russia's specialists perform a huge amount of works to revaluate the NPP safety. These works are certain to include refinement of NPP safety assessment under the effects of specific dynamic loads, earthquake effects included. It should be noted, that a number of Russian NPPs now in operation had been designed either with no account of these loads, or under the requirements which are underestimated as compared with the modern requirements on the external load composition and rate. Revaluation of NPP seismic safety is based on the results of the works taken under orderly sequence on assessment of (1) seismic input and ground effects; (2) structure response and state; (3) equipment and pipelines response and state. The paper considers the methods of NPP structures response and state assessment. Therewith we assume that ground motion predicted behavior at the construction basement has been preset for the SSE and OBE conditions and the effects of soil-structure interaction, including the situation of possible soft soil liquefaction. Necessity to determine both the reaction of a construction and its state as a whole as well as its elements reaction, to evaluate their bearing capacity and destruction zones formation makes it necessary to make up a detailed structural model, which is usually a finite element one. Since seismic revaluation is to be performed for the existing structures, characteristics of which can substantially differ from the design ones, revealing the actual state of this structures becomes critical. If the real values of physical and mechanical properties of the structure materials, connections of elements etc. are used as initial data in a structural model this permits to increase the design assessment credibility and reliability substantially. The paper analyzes the results of determining these initial assessments while inspecting several Russian NPPs on the basis of a 'combined' method. This method is realized at two consecutive stages. The

  11. Assessment of the Metrological Performance of Seismic Tables for a QMS Recognition

    International Nuclear Information System (INIS)

    Ribeiro, A Silva; Costa, A Campos; Candeias, P; Martins, L Lages; Martins, A C Freitas; Ferreira, A C; Sousa, J Alves e

    2016-01-01

    Seismic testing and analysis using large infrastructures, such as shaking tables and reaction walls, is performed worldwide requiring the use of complex instrumentation systems. To assure the accuracy of these systems, conformity assessment is needed to verify the compliance with standards and applications, and the Quality Management Systems (QMS) is being increasingly applied to domains where risk analysis is critical as a way to provide a formal recognition. This paper describes an approach to the assessment of the metrological performance of seismic shake tables as part of a QMS recognition, with the analysis of a case study of LNEC Seismic shake table. (paper)

  12. Assessment of the Metrological Performance of Seismic Tables for a QMS Recognition

    Science.gov (United States)

    Silva Ribeiro, A.; Campos Costa, A.; Candeias, P.; Sousa, J. Alves e.; Lages Martins, L.; Freitas Martins, A. C.; Ferreira, A. C.

    2016-11-01

    Seismic testing and analysis using large infrastructures, such as shaking tables and reaction walls, is performed worldwide requiring the use of complex instrumentation systems. To assure the accuracy of these systems, conformity assessment is needed to verify the compliance with standards and applications, and the Quality Management Systems (QMS) is being increasingly applied to domains where risk analysis is critical as a way to provide a formal recognition. This paper describes an approach to the assessment of the metrological performance of seismic shake tables as part of a QMS recognition, with the analysis of a case study of LNEC Seismic shake table.

  13. The Contribution of Palaeoseismology to Seismic Hazard Assessment in Site Evaluation for Nuclear Installations

    International Nuclear Information System (INIS)

    2015-06-01

    IAEA Safety Standards Series No. SSG-9, Seismic Hazards in Site Evaluation for Nuclear Installations, published in 2010, covers all aspects of site evaluation relating to seismic hazards and recommends the use of prehistoric, historical and instrumental earthquake data in seismic hazard assessments. Prehistoric data on earthquakes cover a much longer period than do historical and instrumental data. However, gathering such data is generally difficult in most regions of the world, owing to an absence of human records. Prehistoric data on earthquakes can be obtained through the use of palaeoseismic techniques. This publication describes the current status and practices of palaeoseismology, in order to support Member States in meeting the recommendations of SSG-9 and in establishing the necessary earthquake related database for seismic hazard assessment and reassessment. At a donors’ meeting of the International Seismic Safety Centre Extrabudgetary Project in January 2011, it was suggested to develop detailed guidelines on seismic hazards. Soon after the meeting, the disastrous Great East Japan Earthquake and Tsunami of 11 March 2011 and the consequent accident at the Fukushima Daiichi nuclear power plant occurred. The importance of palaeoseismology for seismic hazard assessment in site evaluation was highlighted by the lessons learned from the Fukushima Daiichi nuclear power plant accident. However, no methodology for performing investigations using palaeoseismic techniques has so far been available in an IAEA publication. The detailed guidelines and practical tools provided here will be of value to nuclear power plant operating organizations, regulatory bodies, vendors, technical support organizations and researchers in the area of seismic hazard assessment in site evaluation for nuclear installations, and the information will be of importance in support of hazard assessments in the future

  14. Subsystem response determination for the US NRC Seismic Safety Margins Research Program

    International Nuclear Information System (INIS)

    Johnson, J.J.

    1979-01-01

    The initial portion of the task described deals with a definition of the state-of-the-art of seismic qualification methods for subsystems. Too facilitate treatment of this broad class of subsystems, three classifications have been identified: multiply supported subsystems (e.g., piping systems); mechanical components (e.g., valves, pumps, control rod drives, hydraulic systems, etc.); and electrical components (e.g., electrical control panels). Descriptions of the available analysis and/or testing techniques for the above classifications are sought. The results of this assessment will be applied to the development of structural subsystem transfer functions

  15. Seismic characterization of fluid migration and Pockmarks in the Estremadura Spur, West Iberian Margin, Portugal

    Science.gov (United States)

    Duarte, Débora; Magalhães, Vitor Hugo; Terrinha, Pedro; Ribeiro, Carlos; Madureira, Pedro; Menezes Pinheiro, Luís; Benazzouz, Omar; Kim, Jung-Hyun; Duarte, Henrique

    2017-04-01

    Recently a field with more than 70 pockmarks was discovered in the NW region of the Estremadura Spur outer shelf (West Iberian margin), a trapezoidal promontory elongated in an east-west direction, between Cabo Carvoeiro and Cabo da Roca, extending until the Tore seamount. Pockmarks are the seabed culminations of fluid migration through the sedimentary column and their characteristic seabed morphologies correspond to cone-shaped circular or elliptical depressions. These features and the associated fluid escape process are the main objectives of this work. Here we characterize these structures to understand their structural and stratigraphic control based on: 1) Seismic processing and interpretation of the high resolution 2D single-channel sparker seismic dataset, 2) Bathymetric and Backscatter interpretation and 3) ROV direct observation of the seafloor. The analysis of the seismic profiles allowed the identification of six seismic units, disturbed by the migration and accumulation of fluids. The Estremadura Spur outer shelf has been affected by several episodes of fluid migration and fluid escape during the Pliocene-Quaternary that are expressed by a vast number of seabed and buried pockmarks. At present, the pockmarks are mainly inactive, as the seabed pockmarks are covered by recent sediments. The stacking of various pockmarks suggests a cyclical fluid flow activity that can possibly be the result of the eustatic sea level variations and the subsequent changes of the hydrostatic pressure. The origin of the seep fluids is still under debate but considering the low-sedimentation rate of the area and the low productivity a deep source for the fluids is most probable, possibly related with the Jurassic hydrocarbon system. It was concluded that the migration of fluids to the seabed occurred over the Pliocene-Quaternary in several episodes, as indicated by the buried pockmarks at different depths. Acknowledgements: This work was carried out in the framework of the PES

  16. BNL NONLINEAR PRE TEST SEISMIC ANALYSIS FOR THE NUPEC ULTIMATE STRENGTH PIPING TEST PROGRAM

    International Nuclear Information System (INIS)

    DEGRASSI, G.; HOFMAYER, C.; MURPHY, C.; SUZUKI, K.; NAMITA, Y.

    2003-01-01

    The Nuclear Power Engineering Corporation (NUPEC) of Japan has been conducting a multi-year research program to investigate the behavior of nuclear power plant piping systems under large seismic loads. The objectives of the program are: to develop a better understanding of the elasto-plastic response and ultimate strength of nuclear piping; to ascertain the seismic safety margin of current piping design codes; and to assess new piping code allowable stress rules. Under this program, NUPEC has performed a large-scale seismic proving test of a representative nuclear power plant piping system. In support of the proving test, a series of materials tests, static and dynamic piping component tests, and seismic tests of simplified piping systems have also been performed. As part of collaborative efforts between the United States and Japan on seismic issues, the US Nuclear Regulatory Commission (USNRC) and its contractor, the Brookhaven National Laboratory (BNL), are participating in this research program by performing pre-test and post-test analyses, and by evaluating the significance of the program results with regard to safety margins. This paper describes BNL's pre-test analysis to predict the elasto-plastic response for one of NUPEC's simplified piping system seismic tests. The capability to simulate the anticipated ratcheting response of the system was of particular interest. Analyses were performed using classical bilinear and multilinear kinematic hardening models as well as a nonlinear kinematic hardening model. Comparisons of analysis results for each plasticity model against test results for a static cycling elbow component test and for a simplified piping system seismic test are presented in the paper

  17. Preliminary Seismic Performance Evaluation of RPS Cabinet in a Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kwag, Shinyoung; Oh, Jinho; Lee, Jongmin; Kim, Youngki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    This RPS cabinet mainly provides the operators with the physical interface to monitor and handle the RPS. The objective of this paper is to perform seismic analyses and evaluate the preliminary structural integrity and seismic capacity of the RPS cabinet. For this purpose, a 3-D finite element model of the RPS cabinet is developed and its modal analyses are carried out for analyzing the dynamic characteristics. Response time history analyses and related safety evaluation are performed for the RPS cabinet subjected to seismic loads. Finally, the seismic margin and seismic fragility of the RPS cabinet are investigated. The seismic analysis, and preliminary structural integrity and seismic margin of the RPS cabinet under self weight and seismic load have been evaluated. For this purpose, 3-D finite element models of the RPS cabinet were developed. A modal analysis, response time history analysis, and seismic fragility analysis were then performed. From the structural analysis results, the RPS cabinet is below the structural design limit under PGA 0.3g (hor.) and 0.2g (ver.) and structurally withstands until PGA 3g (hor.) and 2g (ver.)

  18. Assessment of seismic design response factors of concrete wall buildings

    Science.gov (United States)

    Mwafy, Aman

    2011-03-01

    To verify the seismic design response factors of high-rise buildings, five reference structures, varying in height from 20- to 60-stories, were selected and designed according to modern design codes to represent a wide range of concrete wall structures. Verified fiber-based analytical models for inelastic simulation were developed, considering the geometric nonlinearity and material inelasticity of the structural members. The ground motion uncertainty was accounted for by employing 20 earthquake records representing two seismic scenarios, consistent with the latest understanding of the tectonic setting and seismicity of the selected reference region (UAE). A large number of Inelastic Pushover Analyses (IPAs) and Incremental Dynamic Collapse Analyses (IDCAs) were deployed for the reference structures to estimate the seismic design response factors. It is concluded that the factors adopted by the design code are adequately conservative. The results of this systematic assessment of seismic design response factors apply to a wide variety of contemporary concrete wall buildings with various characteristics.

  19. Constraints Imposed by Rift Inheritance on the Compressional Reactivation of a Hyperextended Margin: Mapping Rift Domains in the North Iberian Margin and in the Cantabrian Mountains

    Science.gov (United States)

    Cadenas, P.; Fernández-Viejo, G.; Pulgar, J. A.; Tugend, J.; Manatschal, G.; Minshull, T. A.

    2018-03-01

    The Alpine Pyrenean-Cantabrian orogen developed along the plate boundary between Iberia and Europe, involving the inversion of Mesozoic hyperextended basins along the southern Biscay margin. Thus, this margin represents a natural laboratory to analyze the control of structural rift inheritance on the compressional reactivation of a continental margin. With the aim to identify former rift domains and investigate their role during the subsequent compression, we performed a structural analysis of the central and western North Iberian margin, based on the interpretation of seismic reflection profiles and local constraints from drill-hole data. Seismic interpretations and published seismic velocity models enabled the development of crustal thickness maps that helped to constrain further the offshore and onshore segmentation. Based on all these constraints, we present a rift domain map across the central and western North Iberian margin, as far as the adjacent western Cantabrian Mountains. Furthermore, we provide a first-order description of the margin segmentation resulting from its polyphase tectonic evolution. The most striking result is the presence of a hyperthinned domain (e.g., Asturian Basin) along the central continental platform that is bounded to the north by the Le Danois High, interpreted as a rift-related continental block separating two distinctive hyperextended domains. From the analysis of the rift domain map and the distribution of reactivation structures, we conclude that the landward limit of the necking domain and the hyperextended domains, respectively, guide and localize the compressional overprint. The Le Danois block acted as a local buttress, conditioning the inversion of the Asturian Basin.

  20. Rapid Assessment of Seismic Vulnerability in Palestinian Refugee Camps

    Science.gov (United States)

    Al-Dabbeek, Jalal N.; El-Kelani, Radwan J.

    Studies of historical and recorded earthquakes in Palestine demonstrate that damaging earthquakes are occurring frequently along the Dead Sea Transform: Earthquake of 11 July 1927 (ML 6.2), Earthquake of 11 February 2004 (ML 5.2). In order to reduce seismic vulnerability of buildings, losses in lives, properties and infrastructures, an attempt was made to estimate the percentage of damage degrees and losses at selected refugee camps: Al Ama`ri, Balata and Dhaishe. Assessing the vulnerability classes of building structures was carried out according to the European Macro-Seismic Scale 1998 (EMS-98) and the Fedral Emergency Management Agency (FEMA). The rapid assessment results showed that very heavy structural and non structural damages will occur in the common buildings of the investigated Refugee Camps (many buildings will suffer from damages grades 4 and 5). Bad quality of buildings in terms of design and construction, lack of uniformity, absence of spaces between the building and the limited width of roads will definitely increase the seismic vulnerability under the influence of moderate-strong (M 6-7) earthquakes in the future.

  1. Overview of seismic probabilistic risk assessment for structural analysis in nuclear facilities

    International Nuclear Information System (INIS)

    Reed, J.W.

    1989-01-01

    Probabilistic Risk Assessment (PRA) for seismic events is currently being performed for nuclear and DOE facilities. The background on seismic PRA is presented along with a basic description of the method. The seismic PRA technique is applicable to other critical facilities besides nuclear plants. The different approaches for obtained structure fragility curves are discussed and their applications to structures and equipment, in general, are addressed. It is concluded that seismic PRA is a useful technique for conducting probability analysis for a wide range of classes of structures and equipment

  2. Assessing submarine gas hydrate at active seeps on the Hikurangi Margin, New Zealand, using controlled source electromagnetic data with constraints from seismic, geochemistry, and heatflow data

    Science.gov (United States)

    Schwalenberg, K.; Haeckel, M.; Pecher, I. A.; Toulmin, S. J.; Hamdan, L. J.; Netzeband, G.; Wood, W.; Poort, J.; Jegen, M. D.; Coffin, R. B.

    2009-12-01

    Electrical resistivity is one of the key properties useful for evaluating submarine gas hydrate deposits. Gas hydrates are electrically insulating in contrast to the conductive pore fluid. Where they form in sufficient quantities the bulk resistivity of the sub-seafloor is elevated. CSEM data were collected in 2007 as part of the German - International “New Vents” project on R/V Sonne, cruise SO191, at three target areas on the Hikurangi subduction margin, New Zealand. The margin is characterized by widespread bottom simulating reflectors (BSR), seep structures, and active methane and fluid venting indicating the potential for gas hydrate formation. Opouawe Bank is one of the ridge and basin systems on the accretionary wedge and is located off the Wairarapa coast at water depths of 1000-1100 m. The first observed seep sites (North Tower, South Tower, Pukeko, Takahe, and Tui) were identified from individual gas flares in hydro-acoustic data and video observations during voyages on R/V Tangaroa. Seismic reflection data collected during SO191 subsequently identified more than 25 new seep structures. Two intersecting CSEM profiles have been surveyed across North Tower, South Tower, and Takahe. 1-D inversion of the data reveals anomalously high resistivities at North Tower and South Tower, moderately elevated resistivities at Takahe, and normal background resistivities away from the seeps. The high resistivities are attributed to gas hydrate layers at intermediate depths beneath the seeps. At South Tower the hydrate concentration could be possibly as much as 25% of the total sediment volume within a 50m thick layer. This conforms with geochemical pore water analyses which show a trend of increased methane flux towards South Tower. At Takahe, gas pockets and patchy gas hydrate, as well as sediment heterogeneities and carbonates, or temperature driven upward fluid flow indicated by the observed higher heat flow at this site may explain the resistivity pattern

  3. Coordinated experimental/analytical program for investigating margins to failure of Category I reinforced concrete structures

    International Nuclear Information System (INIS)

    Endebrock, E.; Dove, R.; Anderson, C.A.

    1981-01-01

    The material presented in this paper deals with a coordinated experimental/analytical program designed to provide information needed for making margins to failure assessments of seismic Category I reinforced concrete structures. The experimental program is emphasized and background information that lead to this particular experimental approach is presented. Analytical tools being developed to supplement the experimental program are discussed. 16 figures

  4. Deep continental margin reflectors

    Science.gov (United States)

    Ewing, J.; Heirtzler, J.; Purdy, M.; Klitgord, Kim D.

    1985-01-01

    In contrast to the rarity of such observations a decade ago, seismic reflecting and refracting horizons are now being observed to Moho depths under continental shelves in a number of places. These observations provide knowledge of the entire crustal thickness from the shoreline to the oceanic crust on passive margins and supplement Consortium for Continental Reflection Profiling (COCORP)-type measurements on land.

  5. A methodology for the quantitative risk assessment of major accidents triggered by seismic events

    International Nuclear Information System (INIS)

    Antonioni, Giacomo; Spadoni, Gigliola; Cozzani, Valerio

    2007-01-01

    A procedure for the quantitative risk assessment of accidents triggered by seismic events in industrial facilities was developed. The starting point of the procedure was the use of available historical data to assess the expected frequencies and the severity of seismic events. Available equipment-dependant failure probability models (vulnerability or fragility curves) were used to assess the damage probability of equipment items due to a seismic event. An analytic procedure was subsequently developed to identify, evaluate the credibility and finally assess the expected consequences of all the possible scenarios that may follow the seismic events. The procedure was implemented in a GIS-based software tool in order to manage the high number of event sequences that are likely to be generated in large industrial facilities. The developed methodology requires a limited amount of additional data with respect to those used in a conventional QRA, and yields with a limited effort a preliminary quantitative assessment of the contribution of the scenarios triggered by earthquakes to the individual and societal risk indexes. The application of the methodology to several case-studies evidenced that the scenarios initiated by seismic events may have a relevant influence on industrial risk, both raising the overall expected frequency of single scenarios and causing specific severe scenarios simultaneously involving several plant units

  6. Re-assessment of seismic loads in conjunction with periodic safety review

    International Nuclear Information System (INIS)

    Jonczyk, Josef

    2002-01-01

    The objective of this paper is the fundamental consideration of a safeguard-aim-oriented approach for use in the re-assessment of seismic events with regard to the periodic safety review (PSR) of nuclear power plants (NPP). The re-assessment aspects of site-specific design earthquakes (DEQ), specially the procedure for seismic hazard analysis, will not, however, be considered in detail here. The proposed assessment concept clearly presents a general approach for safety assessments. The approach is based on a successive screening review of components that are considered sufficiently earthquake-resistant. In this respect, the principle of maximum practical application of the design documentation has been considered in the re-assessment process. On the other hand, the safeguard-aim-oriented evaluation will also be applied with regard to whether the requirements of the safety regulations are fulfilled with respect to the safety goals. The review in conjunction with PSR does not, however, attempt to perform this under all technical aspects. Moreover, it is possible to make extensive use of experimental knowledge and engineering judgement with regard to the structural capacity behaviour in case of a seismic event. Compared with design procedures, however, this proposed approach differs from the one applied in licensing procedures, in which such assessment freedom will not usually be exhausted. (author)

  7. Recent developments in seismic analysis in the code Aster; Les developpements recents en analyse sismique dans le code aster

    Energy Technology Data Exchange (ETDEWEB)

    Guihot, P.; Devesa, G.; Dumond, A.; Panet, M.; Waeckel, F.

    1996-12-31

    Progress in the field of seismic qualification and design methods made these last few years allows physical phenomena actually in play to be better considered, while cutting down the conservatism associated with some simplified design methods. So following the change in methods and developing the most advantageous ones among them contributes to the process of the seismic margins assessment and the preparation of new design tools for future series. In this paper, the main developments and improvements in methods which have been made these last two years in the Code Aster, in order to improve seismic calculation methods and seismic margin assessment are presented. The first development relates to making the MISS3D soil structure interaction code available, thanks to an interface made with the Code Aster. The second relates to the possibility of making modal basis time calculations on multi-supported structures by considering local non linearities like impact, friction or squeeze fluid forces. Recent developments in random dynamics and postprocessing devoted to earthquake designs are then mentioned. Three applications of these developments are then ut forward. The first application relates to a test case for soil structure interaction design using MISS3D-Aster coupling. The second is a test case for a multi-supported structure. The last application, more for manufacturing, refers to seismic qualification of Main Live Steam stop valves. First results of the independent validation of the Code Aster seismic design functionalities, which provide and improve the quality of software, are also recalled. (authors). 11 refs.

  8. The Global Seismic Hazard Assessment Program (GSHAP - 1992/1999

    Directory of Open Access Journals (Sweden)

    D. Giardini

    1999-06-01

    Full Text Available The United Nations, recognizing natural disasters as a major threat to human life and development, designed the 1990-1999 period as the International Decade for Natural Disaster Reduction (UN/IDNDR; UN Res. 42/169/ 1987. Among the IDNDR Demonstration Projects is the Global Seismic Hazard Assessment Program (GSHAP, launched in 1992 by the International Lithosphere Program (ILP and implemented in the 1992-1999 period. In order to mitigate the risk associated to the recurrence of earthquakes, the GSHAP promoted a regionally coordinated, homogeneous approach to seismic hazard evaluation. To achieve a global dimension, the GSHAP established initially a mosaic of regions and multinational test areas, then expanded to cover whole continents and finally the globe. The GSHAP Global Map of Seismic Hazard integrates the results obtained in the regional areas and depicts Peak-Ground-Acceleration (PGA with 10% chance of exceedance in 50 years, corresponding to a return period of 475 years. All regional results and the Global Map of Seismic Hazard are published in 1999 and available on the GSHAP homepage on http://seismo.ethz.ch/GSHAP/.

  9. Site response assessment using borehole seismic records

    Energy Technology Data Exchange (ETDEWEB)

    Park, Donghee; Chang, Chunjoong; Choi, Weonhack [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    In regions with high seismic activity, such as Japan, the Western United States and Taiwan, borehole seismometers installed deep underground are used to monitor seismic activity during the course of seismic wave propagation at various depths and to study the stress changes due to earthquakes and analyze the connection to fault movements. The Korea Meteorological Administration (KMA) and the Korea Institute of Geology and Mining (KIGAM) have installed and are operating borehole seismometers at a depth of 70∼100 meters for the precise determination of epicenters. Also, Korea Hydro and Nuclear Power Co., Ltd. (KHNP) has installed and is operating 2 borehole seismic stations near Weolseong area to observe at a depth of 140 meters seismic activities connected to fault activity. KHNP plans to operate in the second half of 2014 a borehole seismic station for depths less than 300 and 600 meters in order to study the seismic response characteristics in deep strata. As a basic study for analyzing ground motion response characteristics at depths of about 300 to 600 meters in connection with the deep geological disposal of spent nuclear fuel, the present study examined the background noise response characteristics of the borehole seismic station operated by KHNP. In order to analyze the depth-dependent impact of seismic waves at deeper depths than in Korea, seismic data collected by Japan's KIK-net seismic stations were used and the seismic wave characteristics analyzed by size and depth. In order to analyze the borehole seismic observation data from the seismic station operated by KHNP, this study analyzed the background noise characteristics by using a probability density function.

  10. Site response assessment using borehole seismic records

    International Nuclear Information System (INIS)

    Park, Donghee; Chang, Chunjoong; Choi, Weonhack

    2014-01-01

    In regions with high seismic activity, such as Japan, the Western United States and Taiwan, borehole seismometers installed deep underground are used to monitor seismic activity during the course of seismic wave propagation at various depths and to study the stress changes due to earthquakes and analyze the connection to fault movements. The Korea Meteorological Administration (KMA) and the Korea Institute of Geology and Mining (KIGAM) have installed and are operating borehole seismometers at a depth of 70∼100 meters for the precise determination of epicenters. Also, Korea Hydro and Nuclear Power Co., Ltd. (KHNP) has installed and is operating 2 borehole seismic stations near Weolseong area to observe at a depth of 140 meters seismic activities connected to fault activity. KHNP plans to operate in the second half of 2014 a borehole seismic station for depths less than 300 and 600 meters in order to study the seismic response characteristics in deep strata. As a basic study for analyzing ground motion response characteristics at depths of about 300 to 600 meters in connection with the deep geological disposal of spent nuclear fuel, the present study examined the background noise response characteristics of the borehole seismic station operated by KHNP. In order to analyze the depth-dependent impact of seismic waves at deeper depths than in Korea, seismic data collected by Japan's KIK-net seismic stations were used and the seismic wave characteristics analyzed by size and depth. In order to analyze the borehole seismic observation data from the seismic station operated by KHNP, this study analyzed the background noise characteristics by using a probability density function

  11. Seismic Risk Assessment and Loss Estimation for Tbilisi City

    Science.gov (United States)

    Tsereteli, Nino; Alania, Victor; Varazanashvili, Otar; Gugeshashvili, Tengiz; Arabidze, Vakhtang; Arevadze, Nika; Tsereteli, Emili; Gaphrindashvili, Giorgi; Gventcadze, Alexander; Goguadze, Nino; Vephkhvadze, Sophio

    2013-04-01

    The proper assessment of seismic risk is of crucial importance for society protection and city sustainable economic development, as it is the essential part to seismic hazard reduction. Estimation of seismic risk and losses is complicated tasks. There is always knowledge deficiency on real seismic hazard, local site effects, inventory on elements at risk, infrastructure vulnerability, especially for developing countries. Lately great efforts was done in the frame of EMME (earthquake Model for Middle East Region) project, where in the work packages WP1, WP2 , WP3 and WP4 where improved gaps related to seismic hazard assessment and vulnerability analysis. Finely in the frame of work package wp5 "City Scenario" additional work to this direction and detail investigation of local site conditions, active fault (3D) beneath Tbilisi were done. For estimation economic losses the algorithm was prepared taking into account obtained inventory. The long term usage of building is very complex. It relates to the reliability and durability of buildings. The long term usage and durability of a building is determined by the concept of depreciation. Depreciation of an entire building is calculated by summing the products of individual construction unit' depreciation rates and the corresponding value of these units within the building. This method of calculation is based on an assumption that depreciation is proportional to the building's (constructions) useful life. We used this methodology to create a matrix, which provides a way to evaluate the depreciation rates of buildings with different type and construction period and to determine their corresponding value. Finally loss was estimated resulting from shaking 10%, 5% and 2% exceedance probability in 50 years. Loss resulting from scenario earthquake (earthquake with possible maximum magnitude) also where estimated.

  12. Crustal structure of the southeast Greenland margin from joint refraction and reflection seismic tomography

    Science.gov (United States)

    Korenaga, J.; Holbrook, W. S.; Kent, G. M.; Kelemen, P. B.; Detrick, R. S.; Larsen, H.-C.; Hopper, J. R.; Dahl-Jensen, T.

    2000-09-01

    We present results from a combined multichannel seismic reflection (MCS) and wideangle onshore/offshore seismic experiment conducted in 1996 across the southeast Greenland continental margin. A new seismic tomographic method is developed to jointly invert refraction and reflection travel times for a two-dimensional velocity structure. We employ a hybrid ray-tracing scheme based on the graph method and the local ray-bending refinement to efficiently obtain an accurate forward solution, and we employ smoothing and optional damping constraints to regularize an iterative inversion. We invert 2318 Pg and 2078 PmP travel times to construct a compressional velocity model for the 350-km-long transect, and a long-wavelength structure with strong lateral heterogeneity is recovered, including (1) ˜30-km-thick, undeformed continental crust with a velocity of 6.0 to 7.0 km/s near the landward end, (2) 30- to 15-km-thick igneous crust within a 150-km-wide continent-ocean transition zone, and (3) 15- to 9-km-thick oceanic crust toward the seaward end. The thickness of the igneous upper crust characterized by a high-velocity gradient also varies from 6 km within the transition zone to ˜3 km seaward. The bottom half of the lower crust generally has a velocity higher than 7.0 km/s, reaching a maximum of 7.2 to 7.5 km/s at the Moho. A nonlinear Monte Carlo uncertainty analysis is performed to estimate the a posteriori model variance, showing that most velocity and depth nodes are well determined with one standard deviation of 0.05-0.10 km/s and 0.25-1.5 km, respectively. Despite significant variation in crustal thickness, the mean velocity of the igneous crust, which serves as a proxy for the bulk crustal composition, is surprisingly constant (˜7.0 km/s) along the transect. On the basis of a mantle melting model incorporating the effect of active mantle upwelling, this velocity-thickness relationship is used to constrain the mantle melting process during the breakup of Greenland

  13. Seismic testing of the base-isolated PWR spent-fuel storage rack

    International Nuclear Information System (INIS)

    Fujita, Katsuhisa; Tanaka, Mamoru; Nakamura, Masaaki; Tsujikura, Yonezo.

    1990-01-01

    The present paper aims to verify the seismic safety of the base-isolated spent-fuel storage rack. A series of seismic tests has been conducted using a three-dimensional shaking table. A sliding-type base-isolation system was employed for the prototype rack considering environmental conditions in an actual plant. A non linear seismic response analysis was also performed, and it is verified that the prototype of a base-isolated spent-fuel storage rack has a sufficient seismic safety margin for design seismic conditions from the viewpoint of seismic response. (author)

  14. Generalized Fragility Relationships with Local Site Conditions for Probabilistic Performance-based Seismic Risk Assessment of Bridge Inventories

    Directory of Open Access Journals (Sweden)

    Sivathayalan S.

    2012-01-01

    Full Text Available The current practice of detailed seismic risk assessment cannot be easily applied to all the bridges in a large transportation networks due to limited resources. This paper presents a new approach for seismic risk assessment of large bridge inventories in a city or national bridge network based on the framework of probabilistic performance based seismic risk assessment. To account for the influences of local site effects, a procedure to generate site-specific hazard curves that includes seismic hazard microzonation information has been developed for seismic risk assessment of bridge inventories. Simulated ground motions compatible with the site specific seismic hazard are used as input excitations in nonlinear time history analysis of representative bridges for calibration. A normalizing procedure to obtain generalized fragility relationships in terms of structural characteristic parameters of bridge span and size and longitudinal and transverse reinforcement ratios is presented. The seismic risk of bridges in a large inventory can then be easily evaluated using the normalized fragility relationships without the requirement of carrying out detailed nonlinear time history analysis.

  15. Structure and Evolution of the Accretionary Margin of Java-Sumatra. Seismic Data and Numerical Modeling Comparisons.

    Science.gov (United States)

    Kopp, H.; Hindle, D.

    2007-12-01

    We present a numerical model for the evolution of an accretionary prism along a subduction margin. We find the mechanical partitioning of the growing prism into active region, abutting against a deformable backstop, and a relatively undeformed forearc basin is a function of the double tapered basal geometry, where the dip of the detachment is assumed to be opposite above oceanic or continental lithopshere. Varying properties of both materials and detachment can be used to adjust the surface slope and hence geometry of the system, but mechanical partitioning remains essentially the same with the regions becoming broader or narrower. The model appears to closely reproduce the geometry of the Sumatra-Java prism, where a high accretion margin has produced the same distinct mechanical units. Newly prestack depth-migrated marine seismic data reveal the extent and geometry of the active deformation of the deformable backstop, and give indications of some material passing into a subduction channel below the accretionary complex. The deformable backstop appears to be composed of multiple duplex structures, but present day tectonic activity is mostly in the form of transtensive or transpressive deformation, possibly reactivating older dip-slip, accretionary structures. The numerical approach used in the simulation (distinct elements) shows great promise in modelling large deformation in situations such as accretionary prisms, and has also been adapted to incorporate the role of fluid pressure and migration in tandem with large deformation (shortening of the order of 100's of kilometres).

  16. Setting the Stage for Harmonized Risk Assessment by Seismic Hazard Harmonization in Europe (SHARE)

    Science.gov (United States)

    Woessner, Jochen; Giardini, Domenico; SHARE Consortium

    2010-05-01

    Probabilistic seismic hazard assessment (PSHA) is arguably one of the most useful products that seismology can offer to society. PSHA characterizes the best available knowledge on the seismic hazard of a study area, ideally taking into account all sources of uncertainty. Results form the baseline for informed decision making, such as building codes or insurance rates and provide essential input to each risk assessment application. Several large scale national and international projects have recently been launched aimed at improving and harmonizing PSHA standards around the globe. SHARE (www.share-eu.org) is the European Commission funded project in the Framework Programme 7 (FP-7) that will create an updated, living seismic hazard model for the Euro-Mediterranean region. SHARE is a regional component of the Global Earthquake Model (GEM, www.globalquakemodel.org), a public/private partnership initiated and approved by the Global Science Forum of the OECD-GSF. GEM aims to be the uniform, independent and open access standard to calculate and communicate earthquake hazard and risk worldwide. SHARE itself will deliver measurable progress in all steps leading to a harmonized assessment of seismic hazard - in the definition of engineering requirements, in the collection of input data, in procedures for hazard assessment, and in engineering applications. SHARE scientists will create a unified framework and computational infrastructure for seismic hazard assessment and produce an integrated European probabilistic seismic hazard assessment (PSHA) model and specific scenario based modeling tools. The results will deliver long-lasting structural impact in areas of societal and economic relevance, they will serve as reference for the Eurocode 8 (EC8) application, and will provide homogeneous input for the correct seismic safety assessment for critical industry, such as the energy infrastructures and the re-insurance sector. SHARE will cover the whole European territory, the

  17. Seismic and wind vulnerability assessment for the GAR-13 global risk assessment

    OpenAIRE

    Yamín Lacouture, Luis Eduardo; Hurtado Chaparro, Alvaro Ivan; Barbat Barbat, Horia Alejandro; Cardona Arboleda, Omar Dario

    2014-01-01

    A general methodology to evaluate vulnerability functions suitable for a probabilistic global risk assessment is proposed. The methodology is partially based in the methodological approach of the Multi-hazard Loss Estimation Methodology (Hazus) developed by the Federal Emergency Management Agency (FEMA). The vulnerability assessment process considers the resolution, information and limitations established for both the hazard and exposure models adopted. Seismic and wind vulnerability function...

  18. Experimental study of seismic behaviour of electric equipment

    International Nuclear Information System (INIS)

    Buland, P.; Henry, J.Y.; Simon, D.

    1992-02-01

    Safety analysis of a nuclear power plant imposes taking into account a number of impacts both internal and external, seismic events being one of them. Approach taken for seismicity is deterministic and is based on keeping the safety margin on a high enough level concerning the impact. The objective is to ensure the integrity and proper functioning of the utility in spite of a seismic event. In order to achieve these objectives, design, construction and operation regulations are analysed. Seismic behaviour related to design and construction regulations is validated, in order to maintain the proposed approach

  19. Transparent Global Seismic Hazard and Risk Assessment

    Science.gov (United States)

    Smolka, Anselm; Schneider, John; Pinho, Rui; Crowley, Helen

    2013-04-01

    Vulnerability to earthquakes is increasing, yet advanced reliable risk assessment tools and data are inaccessible to most, despite being a critical basis for managing risk. Also, there are few, if any, global standards that allow us to compare risk between various locations. The Global Earthquake Model (GEM) is a unique collaborative effort that aims to provide organizations and individuals with tools and resources for transparent assessment of earthquake risk anywhere in the world. By pooling data, knowledge and people, GEM acts as an international forum for collaboration and exchange, and leverages the knowledge of leading experts for the benefit of society. Sharing of data and risk information, best practices, and approaches across the globe is key to assessing risk more effectively. Through global projects, open-source IT development and collaborations with more than 10 regions, leading experts are collaboratively developing unique global datasets, best practice, open tools and models for seismic hazard and risk assessment. Guided by the needs and experiences of governments, companies and citizens at large, they work in continuous interaction with the wider community. A continuously expanding public-private partnership constitutes the GEM Foundation, which drives the collaborative GEM effort. An integrated and holistic approach to risk is key to GEM's risk assessment platform, OpenQuake, that integrates all above-mentioned contributions and will become available towards the end of 2014. Stakeholders worldwide will be able to calculate, visualise and investigate earthquake risk, capture new data and to share their findings for joint learning. Homogenized information on hazard can be combined with data on exposure (buildings, population) and data on their vulnerability, for loss assessment around the globe. Furthermore, for a true integrated view of seismic risk, users can add social vulnerability and resilience indices to maps and estimate the costs and benefits

  20. Seismic hazard assessment for the Caucasus test area

    Czech Academy of Sciences Publication Activity Database

    Balassanian, S.; Ashirov, T.; Chelidze, T.; Gassanov, A.; Kondorskaya, N.; Molchan, G.; Pustovitenko, B.; Trifonov, V.; Ulomov, V.; Giardini, D.; Erdik, M.; Ghafory-Ashtiany, M.; Grunthal, G.; Mayer-Rosa, D.; Schenk, Vladimír; Stucchi, M.

    1999-01-01

    Roč. 42, č. 6 (1999), s. 1139-1151 ISSN 0365-2556 R&D Projects: GA AV ČR Global Seismic Hazard Assessment Program (GSHAP) - project of the UN International Decade of Natural Disaster Reduction and International Litosphere Program. Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  1. Assessment of Quantitative Aftershock Productivity Potential in Mining-Induced Seismicity

    Science.gov (United States)

    Kozłowska, Maria; Orlecka-Sikora, Beata

    2017-03-01

    Strong mining-induced earthquakes exhibit various aftershock patterns. The aftershock productivity is governed by the geomechanical properties of rock in the seismogenic zone, mining-induced stress and coseismic stress changes related to the main shock's magnitude, source geometry and focal mechanism. In order to assess the quantitative aftershock productivity potential in the mining environment we apply a forecast model based on natural seismicity properties, namely constant tectonic loading and the Gutenberg-Richter frequency-magnitude distribution. Although previous studies proved that mining-induced seismicity does not obey the simple power law, here we apply it as an approximation of seismicity distribution to resolve the number of aftershocks, not considering their magnitudes. The model used forecasts the aftershock productivity based on the background seismicity level estimated from an average seismic moment released per earthquake and static stress changes caused by a main shock. Thus it accounts only for aftershocks directly triggered by coseismic process. In this study we use data from three different mines, Mponeng (South Africa), Rudna and Bobrek (Poland), representing different geology, exploitation methods and aftershock patterns. Each studied case is treated with individual parameterization adjusted to the data specifics. We propose the modification of the original model, i.e. including the non-uniformity of M 0, resulting from spatial correlation of mining-induced seismicity with exploitation. The results show that, even when simplified seismicity distribution parameters are applied, the modified model predicts the number of aftershocks for each analyzed case well and accounts for variations between these values. Such results are thus another example showing that coseismic processes of mining-induced seismicity reflect features of natural seismicity and that similar models can be applied to study the aftershock rate in both the natural and the

  2. Requirements and possible upgrading concept for the WWER-440/213: Mochovce NPP structures under seismic conditions

    International Nuclear Information System (INIS)

    Freiman, M.

    1993-01-01

    The Mochovce-Nuclear Power Plant is one of the WWER-440/213 plants which has been designed against earthquake. Nevertheless, the design earthquake has not been assessed adequately to the seismic hazard at the site. A new seismic design shall include an increased seismic input and assure an acceptable standard of safety. This contribution is related to some design aspects of civil structures for this nearly finished plant, such as: existing design and its margins with regard to the employed codes; requirements for a new design concept; effects to be expected by an increased design earthquake; applicable design methods; use of inelastic design spectra, behavior factors and capacity design; feasible upgrading measures. (author)

  3. Historical seismicity in France. Its role in the assessment of seismic risk on French nuclear sites

    International Nuclear Information System (INIS)

    Levret, A.

    1987-11-01

    Since 1975 in order to be in conformity with the requirements of the French nuclear program, a review of historical seismicity was undertaken in France. The assessment of seismic hazard for the safety of nuclear plants is in fact based upon a seismotectonic approach which needs to take into account the seismic activity over as long a period of time as possible. The method adopted for reviewing historical earthquakes entails a systematic consultation of the original sources and a critical analysis there of in the light of the historical, geographical and political contexts of the time. The same standards apply where the acquisition of new elements of information is involved. Each item of information is assigned a degree of reliability, then compiled in a computer file, up-dated annually; this file currently contains more than 4.500 events covering a period of time of about a millenary

  4. Probabilistic Assessment of Structural Seismic Damage for Buildings in Mid-America

    International Nuclear Information System (INIS)

    Bai, Jong-Wha; Hueste, Mary Beth D.; Gardoni, Paolo

    2008-01-01

    This paper provides an approach to conduct a probabilistic assessment of structural damage due to seismic events with an application to typical building structures in Mid-America. The developed methodology includes modified damage state classifications based on the ATC-13 and ATC-38 damage states and the ATC-38 database of building damage. Damage factors are assigned to each damage state to quantify structural damage as a percentage of structural replacement cost. To account for the inherent uncertainties, these factors are expressed as random variables with a Beta distribution. A set of fragility curves, quantifying the structural vulnerability of a building, is mapped onto the developed methodology to determine the expected structural damage. The total structural damage factor for a given seismic intensity is then calculated using a probabilistic approach. Prediction and confidence bands are also constructed to account for the prevailing uncertainties. The expected seismic structural damage is assessed for a typical building structure in the Mid-America region using the developed methodology. The developed methodology provides a transparent procedure, where the structural damage factors can be updated as additional seismic damage data becomes available

  5. Seismic hazard assessment in the Ibero-Maghreb region

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, M.J.; Garcia fernandez, M. [Consejo Superior de Investigaciones Cientifcas, Barcelona (Spain). Inst. of Earth Sciences; GSAHP Ibero-Maghreb Working Group

    1999-12-01

    The paper illustrates the contribution of the Ibero-Maghreb region to the global GSHAP (Global Seismic Hazard Assessment Program) map: for the first time, a map of regional hazard source zones is presented and agreement on a common procedure for hazard computation in the region has been achieved.

  6. Seismic hazard and risk assessment for large Romanian dams situated in the Moldavian Platform

    Science.gov (United States)

    Moldovan, Iren-Adelina; Popescu, Emilia; Otilia Placinta, Anica; Petruta Constantin, Angela; Toma Danila, Dragos; Borleanu, Felix; Emilian Toader, Victorin; Moldoveanu, Traian

    2016-04-01

    Besides periodical technical inspections, the monitoring and the surveillance of dams' related structures and infrastructures, there are some more seismic specific requirements towards dams' safety. The most important one is the seismic risk assessment that can be accomplished by rating the dams into seismic risk classes using the theory of Bureau and Ballentine (2002), and Bureau (2003), taking into account the maximum expected peak ground motions at the dams site - values obtained using probabilistic hazard assessment approaches (Moldovan et al., 2008), the structures vulnerability and the downstream risk characteristics (human, economical, historic and cultural heritage, etc) in the areas that might be flooded in the case of a dam failure. Probabilistic seismic hazard (PSH), vulnerability and risk studies for dams situated in the Moldavian Platform, starting from Izvorul Muntelui Dam, down on Bistrita and following on Siret River and theirs affluent will be realized. The most vulnerable dams will be studied in detail and flooding maps will be drawn to find the most exposed downstream localities both for risk assessment studies and warnings. GIS maps that clearly indicate areas that are potentially flooded are enough for these studies, thus giving information on the number of inhabitants and goods that may be destroyed. Geospatial servers included topography is sufficient to achieve them, all other further studies are not necessary for downstream risk assessment. The results will consist of local and regional seismic information, dams specific characteristics and locations, seismic hazard maps and risk classes, for all dams sites (for more than 30 dams), inundation maps (for the most vulnerable dams from the region) and possible affected localities. The studies realized in this paper have as final goal to provide the local emergency services with warnings of a potential dam failure and ensuing flood as a result of an large earthquake occurrence, allowing further

  7. Rethinking ASME III seismic analysis for piping operability evaluations

    International Nuclear Information System (INIS)

    Adams, T.M.; Stevenson, J.D.

    1994-01-01

    It has been recognized since the mid 1980's that there are very large seismic margins to failure for nuclear piping systems when designed using current industry practice, design criteria, and methods. As a result of this realization there are or have been approximately eighteen initiatives within the ASME , Boiler and Pressure Vessel Code Section III, Division 1, in the form of proposed code cases and proposed code text changes designed to reduce these failure margins to more realistic values. For the most part these initiatives have concentrated on reclassifying seismic inertia stresses in the piping as secondary and increasing the allowable stress limits permitted by Section III of the ASME, Boiler Code. This paper focuses on the application of non-linear spectral analysis methods as a method to reduce the input seismic demand determination and thereby reduce the seismic failure margins. The approach is evaluated using the ASME Boiler Pressure Vessel Code Section III Subgroup on Design benchmark procedure as proposed by the Subgroup's Special Task Group on Integrated Piping Criteria. Using this procedure, criteria are compared to current code criterion and analysis methods, and several other of the currently proposed Boiler and Pressure Vessel, Section III, changes. Finally, the applicability of the non-linear spectral analysis to continued Safe Operation Evaluations is reviewed and discussed

  8. Assessment of bioenergy potential on marginal land in China

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Dafang; Jiang, Dong; Liu, Lei; Huang, Yaohuan [Data Center for Resources and Environmental Sciences, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A Datun Road, Chaoyang District, Beijing 100101 (China)

    2011-02-15

    Bioenergy developed from energy plants will play a more and more important role in future energy supply. Much attention has been paid to energy plants in recent years. As China has fairly limited cultivated land resources, the bioenergy development may mainly rely on the exploitation of marginal land. This study focused on the assessment of marginal land resources and bio-fuel potential in China using newly acquired data and Geographic Information System (GIS) techniques. A multi-factor analysis method was adopted to identify marginal lands for bioenergy development in China, with data of several main types of energy plants on the eco-environmental requirements and natural habits employed. A combined planting zonation strategy was proposed, which was targeted for five species of energy plants including Helianthus tuberous L., Pistacia chinensis, Jatropha curcas L., Cassava and Vernicia fordii. The results indicated that total area of marginal land exploitable for development of energy plants on a large scale was about 43.75 million ha. If 10% of this marginal land was fully utilized for growing the energy plants, the production of bio-fuel would be 13.39 million tons. (author)

  9. Multi-Hazard Advanced Seismic Probabilistic Risk Assessment Tools and Applications

    International Nuclear Information System (INIS)

    Coleman, Justin L.; Bolisetti, Chandu; Veeraraghavan, Swetha; Parisi, Carlo; Prescott, Steven R.; Gupta, Abhinav

    2016-01-01

    Design of nuclear power plant (NPP) facilities to resist natural hazards has been a part of the regulatory process from the beginning of the NPP industry in the United States (US), but has evolved substantially over time. The original set of approaches and methods was entirely deterministic in nature and focused on a traditional engineering margins-based approach. However, over time probabilistic and risk-informed approaches were also developed and implemented in US Nuclear Regulatory Commission (NRC) guidance and regulation. A defense-in-depth framework has also been incorporated into US regulatory guidance over time. As a result, today, the US regulatory framework incorporates deterministic and probabilistic approaches for a range of different applications and for a range of natural hazard considerations. This framework will continue to evolve as a result of improved knowledge and newly identified regulatory needs and objectives, most notably in response to the NRC activities developed in response to the 2011 Fukushima accident in Japan. Although the US regulatory framework has continued to evolve over time, the tools, methods and data available to the US nuclear industry to meet the changing requirements have not kept pace. Notably, there is significant room for improvement in the tools and methods available for external event probabilistic risk assessment (PRA), which is the principal assessment approach used in risk-informed regulations and risk-informed decision-making applied to natural hazard assessment and design. This is particularly true if PRA is applied to natural hazards other than seismic loading. Development of a new set of tools and methods that incorporate current knowledge, modern best practice, and state-of-the-art computational resources would lead to more reliable assessment of facility risk and risk insights (e.g., the SSCs and accident sequences that are most risk-significant), with less uncertainty and reduced conservatisms.

  10. Multi-Hazard Advanced Seismic Probabilistic Risk Assessment Tools and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Justin L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bolisetti, Chandu [Idaho National Lab. (INL), Idaho Falls, ID (United States); Veeraraghavan, Swetha [Idaho National Lab. (INL), Idaho Falls, ID (United States); Parisi, Carlo [Idaho National Lab. (INL), Idaho Falls, ID (United States); Prescott, Steven R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gupta, Abhinav [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    Design of nuclear power plant (NPP) facilities to resist natural hazards has been a part of the regulatory process from the beginning of the NPP industry in the United States (US), but has evolved substantially over time. The original set of approaches and methods was entirely deterministic in nature and focused on a traditional engineering margins-based approach. However, over time probabilistic and risk-informed approaches were also developed and implemented in US Nuclear Regulatory Commission (NRC) guidance and regulation. A defense-in-depth framework has also been incorporated into US regulatory guidance over time. As a result, today, the US regulatory framework incorporates deterministic and probabilistic approaches for a range of different applications and for a range of natural hazard considerations. This framework will continue to evolve as a result of improved knowledge and newly identified regulatory needs and objectives, most notably in response to the NRC activities developed in response to the 2011 Fukushima accident in Japan. Although the US regulatory framework has continued to evolve over time, the tools, methods and data available to the US nuclear industry to meet the changing requirements have not kept pace. Notably, there is significant room for improvement in the tools and methods available for external event probabilistic risk assessment (PRA), which is the principal assessment approach used in risk-informed regulations and risk-informed decision-making applied to natural hazard assessment and design. This is particularly true if PRA is applied to natural hazards other than seismic loading. Development of a new set of tools and methods that incorporate current knowledge, modern best practice, and state-of-the-art computational resources would lead to more reliable assessment of facility risk and risk insights (e.g., the SSCs and accident sequences that are most risk-significant), with less uncertainty and reduced conservatisms.

  11. Time-Independent Annual Seismic Rates, Based on Faults and Smoothed Seismicity, Computed for Seismic Hazard Assessment in Italy

    Science.gov (United States)

    Murru, M.; Falcone, G.; Taroni, M.; Console, R.

    2017-12-01

    In 2015 the Italian Department of Civil Protection, started a project for upgrading the official Italian seismic hazard map (MPS04) inviting the Italian scientific community to participate in a joint effort for its realization. We participated providing spatially variable time-independent (Poisson) long-term annual occurrence rates of seismic events on the entire Italian territory, considering cells of 0.1°x0.1° from M4.5 up to M8.1 for magnitude bin of 0.1 units. Our final model was composed by two different models, merged in one ensemble model, each one with the same weight: the first one was realized by a smoothed seismicity approach, the second one using the seismogenic faults. The spatial smoothed seismicity was obtained using the smoothing method introduced by Frankel (1995) applied to the historical and instrumental seismicity. In this approach we adopted a tapered Gutenberg-Richter relation with a b-value fixed to 1 and a corner magnitude estimated with the bigger events in the catalogs. For each seismogenic fault provided by the Database of the Individual Seismogenic Sources (DISS), we computed the annual rate (for each cells of 0.1°x0.1°) for magnitude bin of 0.1 units, assuming that the seismic moments of the earthquakes generated by each fault are distributed according to the same tapered Gutenberg-Richter relation of the smoothed seismicity model. The annual rate for the final model was determined in the following way: if the cell falls within one of the seismic sources, we merge the respective value of rate determined by the seismic moments of the earthquakes generated by each fault and the value of the smoothed seismicity model with the same weight; if instead the cells fall outside of any seismic source we considered the rate obtained from the spatial smoothed seismicity. Here we present the final results of our study to be used for the new Italian seismic hazard map.

  12. A methodology for assessment seismic risk in PSAs

    International Nuclear Information System (INIS)

    Jae, Moo Sung

    2001-01-01

    This paper suggested a new framework for assessing seismic risk in PSAs. The framework used the concepts of requirement and achievement in the reliability physics. The quantified correlation which is a function of the requirement variable (hazard curve) and the achievement variable (fragility curve) results in a quantity, the unconditional frequency of exceeding a damage lelvel. This framework can be applied to any other external safety assessment, such as Fire and Flood Risk in PSAs

  13. Crustal Deformation In the Northwestern Margin of the South China Sea: Results From Wide-angle Seismic Modeling

    Science.gov (United States)

    Huang, H.; Klingelhoefer, F.

    2017-12-01

    The South China Sea (SCS) has undergone episodic spreading during the Cenozoic Era. The long-term extension has shaped the continental margins of the SCS, leading to a progressive breakup of the lithosphere. Separated blocks and rift troughs, as controlled by tectonic stretching, contains key information about the deforming mechanism of the crust. In this work, we present a P-wave velocity model of a wide-angle seismic profile OBS2013-1 which passes through the NW margin of the SCS. Modeling of 25 ocean bottom seismometers (OBS) data revealed a detailed crustal structure and shallow complexities along the profile (Figure 1). The crust thins symmetrically across the Xisha Trough, from more than 20 km on flanks to 10 km in the central valley where the sediments thickens over 5 km; A volcano is situated on top of the centre basement high where the Moho drops slightly. At the distal margin around the Zhongsha Trough, the upper crust was detached and accordingly made the middle crust exhumed in a narrow area ( 20 km wide). Meanwhile, materials from the lower crust rises asymmetrically, increasing the crustal velocity by 0.3 km/s and may also giving rise to volcanisms along the hanging side. A 40 km wide hyper-stretched crust (with thickness of 5 km) was identified next to the Zhongsha Trough and covered by overflowing magma and post-rift sediments on the top. These observations argue for a depth-related and asymmetrically extension of the crust, including (1) detachment fault controls the deformation of the upper crust, leading to exhumation of the middle crust and asymmetrically rising of the lower crust, (2) The region adjacent to the exhumation region and with highly thinned crust can be considered as extinct OCT due to magma-starved supplying.

  14. Seismic risk assessment of architectural heritages in Gyeongju considering local site effects

    Science.gov (United States)

    Park, H.-J.; Kim, D.-S.; Kim, D.-M.

    2013-02-01

    A seismic risk assessment is conducted for cultural heritage sites in Gyeongju, the capital of Korea's ancient Silla Kingdom. Gyeongju, home to UNESCO World Heritage sites, contains remarkable artifacts of Korean Buddhist art. An extensive geotechnical survey including a series of in situ tests is presented, providing pertinent soil profiles for site response analyses on thirty cultural heritage sites. After the shear wave velocity profiles and dynamic material properties were obtained, site response analyses were carried out at each historical site and the amplification characteristics, site period, and response spectrum of the site were determined for the earthquake levels of 2400 yr and 1000 yr return periods based on the Korean seismic hazard map. Response spectrum and corresponding site coefficients obtained from site response analyses considering geologic conditions differ significantly from the current Korean seismic code. This study confirms the importance of site-specific ground response analyses considering local geological conditions. Results are given in the form of the spatial distribution of bedrock depth, site period, and site amplification coefficients, which are particularly valuable in the context of a seismic vulnerability study. This study presents the potential amplification of hazard maps and provides primary data on the seismic risk assessment of each cultural heritage.

  15. Validation of seismic probabilistic risk assessments of nuclear power plants

    International Nuclear Information System (INIS)

    Ellingwood, B.

    1994-01-01

    A seismic probabilistic risk assessment (PRA) of a nuclear plant requires identification and information regarding the seismic hazard at the plant site, dominant accident sequences leading to core damage, and structure and equipment fragilities. Uncertainties are associated with each of these ingredients of a PRA. Sources of uncertainty due to seismic hazard and assumptions underlying the component fragility modeling may be significant contributors to uncertainty in estimates of core damage probability. Design and construction errors also may be important in some instances. When these uncertainties are propagated through the PRA, the frequency distribution of core damage probability may span three orders of magnitude or more. This large variability brings into question the credibility of PRA methods and the usefulness of insights to be gained from a PRA. The sensitivity of accident sequence probabilities and high-confidence, low probability of failure (HCLPF) plant fragilities to seismic hazard and fragility modeling assumptions was examined for three nuclear power plants. Mean accident sequence probabilities were found to be relatively insensitive (by a factor of two or less) to: uncertainty in the coefficient of variation (logarithmic standard deviation) describing inherent randomness in component fragility; truncation of lower tail of fragility; uncertainty in random (non-seismic) equipment failures (e.g., diesel generators); correlation between component capacities; and functional form of fragility family. On the other hand, the accident sequence probabilities, expressed in the form of a frequency distribution, are affected significantly by the seismic hazard modeling, including slopes of seismic hazard curves and likelihoods assigned to those curves

  16. Seismic Hazard Assessment for a Characteristic Earthquake Scenario: Probabilistic-Deterministic Method

    Science.gov (United States)

    mouloud, Hamidatou

    2016-04-01

    The objective of this paper is to analyze the seismic activity and the statistical treatment of seismicity catalog the Constantine region between 1357 and 2014 with 7007 seismic event. Our research is a contribution to improving the seismic risk management by evaluating the seismic hazard in the North-East Algeria. In the present study, Earthquake hazard maps for the Constantine region are calculated. Probabilistic seismic hazard analysis (PSHA) is classically performed through the Cornell approach by using a uniform earthquake distribution over the source area and a given magnitude range. This study aims at extending the PSHA approach to the case of a characteristic earthquake scenario associated with an active fault. The approach integrates PSHA with a high-frequency deterministic technique for the prediction of peak and spectral ground motion parameters in a characteristic earthquake. The method is based on the site-dependent evaluation of the probability of exceedance for the chosen strong-motion parameter. We proposed five sismotectonique zones. Four steps are necessary: (i) identification of potential sources of future earthquakes, (ii) assessment of their geological, geophysical and geometric, (iii) identification of the attenuation pattern of seismic motion, (iv) calculation of the hazard at a site and finally (v) hazard mapping for a region. In this study, the procedure of the earthquake hazard evaluation recently developed by Kijko and Sellevoll (1992) is used to estimate seismic hazard parameters in the northern part of Algeria.

  17. Neo-Deterministic and Probabilistic Seismic Hazard Assessments: a Comparative Analysis

    Science.gov (United States)

    Peresan, Antonella; Magrin, Andrea; Nekrasova, Anastasia; Kossobokov, Vladimir; Panza, Giuliano F.

    2016-04-01

    Objective testing is the key issue towards any reliable seismic hazard assessment (SHA). Different earthquake hazard maps must demonstrate their capability in anticipating ground shaking from future strong earthquakes before an appropriate use for different purposes - such as engineering design, insurance, and emergency management. Quantitative assessment of maps performances is an essential step also in scientific process of their revision and possible improvement. Cross-checking of probabilistic models with available observations and independent physics based models is recognized as major validation procedure. The existing maps from the classical probabilistic seismic hazard analysis (PSHA), as well as those from the neo-deterministic analysis (NDSHA), which have been already developed for several regions worldwide (including Italy, India and North Africa), are considered to exemplify the possibilities of the cross-comparative analysis in spotting out limits and advantages of different methods. Where the data permit, a comparative analysis versus the documented seismic activity observed in reality is carried out, showing how available observations about past earthquakes can contribute to assess performances of the different methods. Neo-deterministic refers to a scenario-based approach, which allows for consideration of a wide range of possible earthquake sources as the starting point for scenarios constructed via full waveforms modeling. The method does not make use of empirical attenuation models (i.e. Ground Motion Prediction Equations, GMPE) and naturally supplies realistic time series of ground shaking (i.e. complete synthetic seismograms), readily applicable to complete engineering analysis and other mitigation actions. The standard NDSHA maps provide reliable envelope estimates of maximum seismic ground motion from a wide set of possible scenario earthquakes, including the largest deterministically or historically defined credible earthquake. In addition

  18. Seismic Hazard and risk assessment for Romania -Bulgaria cross-border region

    Science.gov (United States)

    Simeonova, Stela; Solakov, Dimcho; Alexandrova, Irena; Vaseva, Elena; Trifonova, Petya; Raykova, Plamena

    2016-04-01

    Among the many kinds of natural and man-made disasters, earthquakes dominate with regard to their social and economical impact on the urban environment. Global seismic hazard and vulnerability to earthquakes are steadily increasing as urbanization and development occupy more areas that are prone to effects of strong earthquakes. The assessment of the seismic hazard and risk is particularly important, because it provides valuable information for seismic safety and disaster mitigation, and it supports decision making for the benefit of society. Romania and Bulgaria, situated in the Balkan Region as a part of the Alpine-Himalayan seismic belt, are characterized by high seismicity, and are exposed to a high seismic risk. Over the centuries, both countries have experienced strong earthquakes. The cross-border region encompassing the northern Bulgaria and southern Romania is a territory prone to effects of strong earthquakes. The area is significantly affected by earthquakes occurred in both countries, on the one hand the events generated by the Vrancea intermediate-depth seismic source in Romania, and on the other hand by the crustal seismicity originated in the seismic sources: Shabla (SHB), Dulovo, Gorna Orjahovitza (GO) in Bulgaria. The Vrancea seismogenic zone of Romania is a very peculiar seismic source, often described as unique in the world, and it represents a major concern for most of the northern part of Bulgaria as well. In the present study the seismic hazard for Romania-Bulgaria cross-border region on the basis of integrated basic geo-datasets is assessed. The hazard results are obtained by applying two alternative approaches - probabilistic and deterministic. The MSK64 intensity (MSK64 scale is practically equal to the new EMS98) is used as output parameter for the hazard maps. We prefer to use here the macroseismic intensity instead of PGA, because it is directly related to the degree of damages and, moreover, the epicentral intensity is the original

  19. Advancing Understanding of Earthquakes by Drilling an Eroding Convergent Margin

    Science.gov (United States)

    von Huene, R.; Vannucchi, P.; Ranero, C. R.

    2010-12-01

    A program of IODP with great societal relevance is sampling and instrumenting the seismogenic zone. The zone generates great earthquakes that trigger tsunamis, and submarine slides thereby endangering coastal communities containing over sixty percent of the earth’s population. To asses and mitigate this endangerment it is urgent to advance understanding of fault dynamics that allows more timely anticipation of hazardous seismicity. Seismogenesis on accreting and eroding convergent plate boundaries apparently differ because of dissimilar materials along the interplate fault. As the history of instrumentally recorded earthquakes expands the difference becomes clearer. The more homogeneous clay, silt and sand subducted at accreting margins is associated with great earthquakes (M 9) whereas the fragmented upper plate rock that can dominate subducted material along an eroding margin plate interface is associated with many tsunamigenic earthquakes (Bilek, 2010). Few areas have been identified where the seismogenic zone can be reached with scientific drilling. In IODP accreting margins are studied on the NanTroSeize drill transect off Japan where the ultimate drilling of the seismogenic interface may occur by the end of IODP. The eroding Costa Rica margin will be studied in CRISP where a drill program will begin in 2011. The Costa Rican geophysical site survey will be complete with acquisition and processing of 3D seismic data in 2011 but the entire drilling will not be accomplished in IODP. It is appropriate that the accreting margin study be accomplished soon considering the indications of a pending great earthquake that will affect a country that has devoted enormous resources to IODP. However, understanding the erosional end-member is scientifically as important to an understanding of fault mechanics. Transoceanic tsunamis affect the entire Pacific rim where most subduction zones are eroding margins. The Costa Rican subduction zone is less complex operationally and

  20. Final Report: Seismic Hazard Assessment at the PGDP

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhinmeng [KY Geological Survey, Univ of KY

    2007-06-01

    Selecting a level of seismic hazard at the Paducah Gaseous Diffusion Plant for policy considerations and engineering design is not an easy task because it not only depends on seismic hazard, but also on seismic risk and other related environmental, social, and economic issues. Seismic hazard is the main focus. There is no question that there are seismic hazards at the Paducah Gaseous Diffusion Plant because of its proximity to several known seismic zones, particularly the New Madrid Seismic Zone. The issues in estimating seismic hazard are (1) the methods being used and (2) difficulty in characterizing the uncertainties of seismic sources, earthquake occurrence frequencies, and ground-motion attenuation relationships. This report summarizes how input data were derived, which methodologies were used, and what the hazard estimates at the Paducah Gaseous Diffusion Plant are.

  1. Seismic hazard assessment based on the Unified Scaling Law for Earthquakes: the Greater Caucasus

    Science.gov (United States)

    Nekrasova, A.; Kossobokov, V. G.

    2015-12-01

    Losses from natural disasters continue to increase mainly due to poor understanding by majority of scientific community, decision makers and public, the three components of Risk, i.e., Hazard, Exposure, and Vulnerability. Contemporary Science is responsible for not coping with challenging changes of Exposures and their Vulnerability inflicted by growing population, its concentration, etc., which result in a steady increase of Losses from Natural Hazards. Scientists owe to Society for lack of knowledge, education, and communication. In fact, Contemporary Science can do a better job in disclosing Natural Hazards, assessing Risks, and delivering such knowledge in advance catastrophic events. We continue applying the general concept of seismic risk analysis in a number of seismic regions worldwide by constructing regional seismic hazard maps based on the Unified Scaling Law for Earthquakes (USLE), i.e. log N(M,L) = A - B•(M-6) + C•log L, where N(M,L) is the expected annual number of earthquakes of a certain magnitude M within an seismically prone area of linear dimension L. The parameters A, B, and C of USLE are used to estimate, first, the expected maximum magnitude in a time interval at a seismically prone cell of a uniform grid that cover the region of interest, and then the corresponding expected ground shaking parameters including macro-seismic intensity. After a rigorous testing against the available seismic evidences in the past (e.g., the historically reported macro-seismic intensity), such a seismic hazard map is used to generate maps of specific earthquake risks (e.g., those based on the density of exposed population). The methodology of seismic hazard and risks assessment based on USLE is illustrated by application to the seismic region of Greater Caucasus.

  2. A Multimode Adaptive Pushover Procedure for Seismic Assessment of Integral Bridges

    Directory of Open Access Journals (Sweden)

    Ehsan Mohtashami

    2013-01-01

    Full Text Available This paper presents a new adaptive pushover procedure to account for the effect of higher modes in order to accurately estimate the seismic response of bridges. The effect of higher modes is considered by introducing a minimum value for the total effective modal mass. The proposed method employs enough number of modes to ensure that the defined total effective modal mass participates in all increments of the pushover loading. An adaptive demand curve is also developed for assessment of the seismic demand. The efficiency and robustness of the proposed method are demonstrated by conducting a parametric study. The analysis includes 18 four-span integral bridges with various heights of piers. The inelastic response history analysis is employed as reference solution in this study. Numerical results indicate excellent accuracy of the proposed method in assessment of the seismic response. For most bridges investigated in this study, the difference between the estimated response of the proposed method and the inelastic response history analysis is less than 25% for displacements and 10% for internal forces. This indicates a very good accuracy compared to available pushover procedures in the literature. The proposed method is therefore recommended to be applied to the seismic performance evaluation of integral bridges for engineering applications.

  3. Margins in high temperature leak-before-break assessments

    Energy Technology Data Exchange (ETDEWEB)

    Budden, P.J.; Hooton, D.G.

    1997-04-01

    Developments in the defect assessment procedure R6 to include high-temperature mechanisms in Leak-before-Break arguments are described. In particular, the effect of creep on the time available to detect a leak and on the crack opening area, and hence leak rate, is discussed. The competing influence of these two effects is emphasized by an example. The application to Leak-before-Break of the time-dependent failure assessment diagram approach for high temperature defect assessment is then outlined. The approach is shown to be of use in assessing the erosion of margins by creep.

  4. Margins in high temperature leak-before-break assessments

    International Nuclear Information System (INIS)

    Budden, P.J.; Hooton, D.G.

    1997-01-01

    Developments in the defect assessment procedure R6 to include high-temperature mechanisms in Leak-before-Break arguments are described. In particular, the effect of creep on the time available to detect a leak and on the crack opening area, and hence leak rate, is discussed. The competing influence of these two effects is emphasized by an example. The application to Leak-before-Break of the time-dependent failure assessment diagram approach for high temperature defect assessment is then outlined. The approach is shown to be of use in assessing the erosion of margins by creep

  5. A transparent and data-driven global tectonic regionalization model for seismic hazard assessment

    Science.gov (United States)

    Chen, Yen-Shin; Weatherill, Graeme; Pagani, Marco; Cotton, Fabrice

    2018-05-01

    A key concept that is common to many assumptions inherent within seismic hazard assessment is that of tectonic similarity. This recognizes that certain regions of the globe may display similar geophysical characteristics, such as in the attenuation of seismic waves, the magnitude scaling properties of seismogenic sources or the seismic coupling of the lithosphere. Previous attempts at tectonic regionalization, particularly within a seismic hazard assessment context, have often been based on expert judgements; in most of these cases, the process for delineating tectonic regions is neither reproducible nor consistent from location to location. In this work, the regionalization process is implemented in a scheme that is reproducible, comprehensible from a geophysical rationale, and revisable when new relevant data are published. A spatial classification-scheme is developed based on fuzzy logic, enabling the quantification of concepts that are approximate rather than precise. Using the proposed methodology, we obtain a transparent and data-driven global tectonic regionalization model for seismic hazard applications as well as the subjective probabilities (e.g. degree of being active/degree of being cratonic) that indicate the degree to which a site belongs in a tectonic category.

  6. Reanalysis and evaluation of seismic response of reactor building

    International Nuclear Information System (INIS)

    Li Zhongcheng; Li Zhongxian

    2005-01-01

    For the Ling Ao phase-I (LA-I) Nuclear Power Plant (NPP), its' seismic analysis of nuclear island was in accordance with the approaches in RCC-G standard for the model M310 in France, in which the Simplified impedance method was employed for the consideration of SSI. Thanks to the rapid progress being made in upgrading the evaluation technology and the capability of data processing systems, methods and software tools for the SSI analysis have experienced significant development all over the world. Focused on the model of reactor building of the LA-I NPP, in this paper the more sophisticated 3D half-space continuum impedance method based on the Green functions is used to analyze the functions of the soil, and then the seismic responses of the coupled SSI system are calculated and compared with the corresponding design values. It demonstrates that the design method provides a set of conservatively safe results. The conclusions from the study are hopefully to provide some important references to the assessment of seismic safety margin for LA-I NPP. (authors)

  7. Marginal Assessment of Crowns by the Aid of Parallel Radiography

    Directory of Open Access Journals (Sweden)

    Farnaz Fattahi

    2015-03-01

    Full Text Available Introduction: Marginal adaptation is the most critical item in long-term prognosis of single crowns. This study aimed to assess the marginal quality as well asthe discrepancies in marginal integrity of some PFM single crowns of posterior teeth by employing parallel radiography in Shiraz Dental School, Shiraz, Iran. Methods: In this descriptive study, parallel radiographies were taken from 200 fabricated PFM single crowns of posterior teeth after cementation and before discharging the patient. To calculate the magnification of the images, a metallic sphere with the thickness of 4 mm was placed in the direction of the crown margin on the occlusal surface. Thereafter, the horizontal and vertical space between the crown margins, the margin of preparations and also the vertical space between the crown margin and the bone crest were measured by using digital radiological software. Results: Analysis of data by descriptive statistics revealed that 75.5% and 60% of the cases had more than the acceptable space (50µm in the vertical (130±20µm and horizontal (90±15µm dimensions, respectively. Moreover, 85% of patients were found to have either horizontal or vertical gap. In 77% of cases, the margins of crowns invaded the biologic width in the mesial and 70% in distal surfaces. Conclusion: Parallel radiography can be expedient in the stage of framework try-in to yield some important information that cannot be obtained by routine clinical evaluations and may improve the treatment prognosis

  8. Status report on seismic re-evaluation

    International Nuclear Information System (INIS)

    1998-01-01

    re-evaluation of individual plants is typically carried out at intervals of approximately ten years. Major re-evaluations typically take 2 to 3 years to perform at a cost of approximately $US 1 million for software alone, although the majority of re-evaluations are carried out in less time and at lower cost. Methods of seismic re-evaluation include PSA, margins assessments and deterministic analysis, and a common feature of the process is a seismic walk-down, often based on SQUG principles. The input motion levels, seismic categorisation, analysis methods and assessment criteria that are applied depend on the objectives of the re-evaluation. In several responses they are indicated to be generally similar to those specified for new plant. In situ inspection of structures and plant is generally adopted, although most countries use original specifications for material properties, with some in situ evaluation where possible. More realistic criteria than would usually be adopted for new plant are often employed in the assessment of plant behaviour for severe accidents or risk estimates. The majority of countries are satisfied with the seismic re-evaluations that have been carried out to date, although there are a number of recommendations for improvements based on the experience gained so far. The process has resulted in some quite extensive physical modifications, improving the seismic robustness of structures, anchorages and restraints, particularly in older plants. Approximately half of the responding countries reported that they were engaged in active research in the specific field of seismic re-evaluation, but it is noted that there is also considerable effort taking place in the wider field of seismic research, and that this has a direct bearing on the re-evaluation process, leading to an improved understanding of failure modes and more realistic assessments of section capacity. There is also a need to identify future areas of research. It is recommended that some

  9. Scenario for a Short-Term Probabilistic Seismic Hazard Assessment (PSHA in Chiayi, Taiwan

    Directory of Open Access Journals (Sweden)

    Chung-Han Chan

    2013-01-01

    Full Text Available Using seismic activity and the Meishan earthquake sequence that occurred from 1904 to 1906, a scenario for short-term probabilistic seismic hazards in the Chiayi region of Taiwan is assessed. The long-term earthquake occurrence rate in Taiwan was evaluated using a smoothing kernel. The highest seismicity rate was calculated around the Chiayi region. To consider earthquake interactions, the rate-and-state friction model was introduced to estimate the seismicity rate evolution due to the Coulomb stress change. As imparted by the 1904 Touliu earthquake, stress changes near the 1906 Meishan and Yangshuigang epicenters was higher than the magnitude of tidal triggering. With regard to the impact of the Meishan earthquake, the region close to the Yangshuigang earthquake epicenter had a +0.75 bar stress increase. The results indicated significant interaction between the three damage events. Considering the path and site effect using ground motion prediction equations, a probabilistic seismic hazard in the form of a hazard evolution and a hazard map was assessed. A significant elevation in hazards following the three earthquakes in the sequence was determined. The results illustrate a possible scenario for seismic hazards in the Chiayi region which may take place repeatly in the future. Such scenario provides essential information on earthquake preparation, devastation estimations, emergency sheltering, utility restoration, and structure reconstruction.

  10. Cracking pattern and seismic performance assessment of the Orvieto cathedral

    International Nuclear Information System (INIS)

    De Canio, G.

    2015-01-01

    In this paper are described the in situ cracking pattern measurement and ambient vibration monitoring for the seismic performance evaluation of the Orvieto Cathedral Italy, according the deplacement based safety assessment. This requires, as a first step, the direct measurement of the cracking pattern and dynamic response of the structural macro elements of the cathedral due to weak vibrations induced by traffic and seismic micro tremors. Seismic assessment for this type of structure require also the proper limit states definitions. In fact, in the case historic monuments like churches, due to the presence of specific typology of macro elements: rigid blocks, complex vault systems, slenderness of the walls, presence of wide halls, domes and drums with particular geometry, is necessary to define the proper assessment procedures which are slightly different with respect those required for conventional civil industrial buildings. Regarding the Ambient vibration monitoring, a new approach to estimate the participating masses associated to the macro element kinematics is defined: it is based on the frequency contribution to the Root Main Square Acceleration, obtained by numerical integration of the Power Spectral Density (PSD) function. This information, when associated to the analysis of the Real and Imaginary part of the Cross Spectral Density (CSD) function between the acceleration time histories at different points, allow to identify the principal (at least first and second) mode shapes of the structure.

  11. A Methodology for Assessing the Seismic Vulnerability of Highway Systems

    International Nuclear Information System (INIS)

    Cirianni, Francis; Leonardi, Giovanni; Scopelliti, Francesco

    2008-01-01

    Modern society is totally dependent on a complex and articulated infrastructure network of vital importance for the existence of the urban settlements scattered on the territory. On these infrastructure systems, usually indicated with the term lifelines, are entrusted numerous services and indispensable functions of the normal urban and human activity.The systems of the lifelines represent an essential element in all the urbanised areas which are subject to seismic risk. It is important that, in these zones, they are planned according to opportune criteria based on two fundamental assumptions: a) determination of the best territorial localization, avoiding, within limits, the places of higher dangerousness; b) application of constructive technologies finalized to the reduction of the vulnerability.Therefore it is indispensable that in any modern process of seismic risk assessment the study of the networks is taken in the rightful consideration, to be integrated with the traditional analyses of the buildings.The present paper moves in this direction, dedicating particular attention to one kind of lifeline: the highway system, proposing a methodology of analysis finalized to the assessment of the seismic vulnerability of the system

  12. Seismic gaps and plate tectonics: seismic potential for major boundaries

    Energy Technology Data Exchange (ETDEWEB)

    McCann, W R; Nishenko, S P; Sykes, L R; Krause, J

    1979-01-01

    The theory of plate tectonics provides a basic framework for evaluating the potential for future great earthquakes to occur along major plate boundaries. Along most of the transform and convergent plate boundaries considered in this paper, the majority of seismic slip occurs during large earthquakes, i.e., those of magnitude 7 or greater. The concepts that rupture zones, as delineated by aftershocks, tend to abut rather than overlap, and large events occur in regions with histories of both long-and short-term seismic quiescence are used in this paper to delineate major seismic gaps. The term seismic gap is taken to refer to any region along an active plate boundary that has not experienced a large thrust or strike-slip earthquake for more than 30 years. A region of high seismic potential is a seismic gap that, for historic or tectonic reasons, is considered likely to produce a large shock during the next few decades. The seismic gap technique provides estimates of the location, size of future events and origin time to within a few tens of years at best. The accompanying map summarizes six categories of seismic potential for major plate boundaries in and around the margins of the Pacific Ocean and the Caribbean, South Sandwich and Sunda (Indonesia) regions for the next few decades. These six categories are meant to be interpreted as forecasts of the location and size of future large shocks and should not be considered to be predictions in which a precise estimate of the time of occurrence is specified. The categories of potential assigned here provide a rationale for assigning priorities for instrumentation, for future studies aimed at predicting large earthquakes and for making estimates of tsunami potential.

  13. A probabilistic seismic risk assessment procedure for nuclear power plants: (II) Application

    Science.gov (United States)

    Huang, Y.-N.; Whittaker, A.S.; Luco, N.

    2011-01-01

    This paper presents the procedures and results of intensity- and time-based seismic risk assessments of a sample nuclear power plant (NPP) to demonstrate the risk-assessment methodology proposed in its companion paper. The intensity-based assessments include three sets of sensitivity studies to identify the impact of the following factors on the seismic vulnerability of the sample NPP, namely: (1) the description of fragility curves for primary and secondary components of NPPs, (2) the number of simulations of NPP response required for risk assessment, and (3) the correlation in responses between NPP components. The time-based assessment is performed as a series of intensity-based assessments. The studies illustrate the utility of the response-based fragility curves and the inclusion of the correlation in the responses of NPP components directly in the risk computation. ?? 2011 Published by Elsevier B.V.

  14. Importance and sensitivity of parameters affecting the Zion Seismic Risk

    International Nuclear Information System (INIS)

    George, L.L.; O'Connell, W.J.

    1985-06-01

    This report presents the results of a study on the importance and sensitivity of structures, systems, equipment, components and design parameters used in the Zion Seismic Risk Calculations. This study is part of the Seismic Safety Margins Research Program (SSMRP) supported by the NRC Office of Nuclear Regulatory Research. The objective of this study is to provide the NRC with results on the importance and sensitivity of parameters used to evaluate seismic risk. These results can assist the NRC in making decisions dealing with the allocation of research resources on seismic issues. This study uses marginal analysis in addition to importance and sensitivity analysis to identify subject areas (input parameter areas) for improvements that reduce risk, estimate how much the improvement dfforts reduce risk, and rank the subject areas for improvements. Importance analysis identifies the systems, components, and parameters that are important to risk. Sensitivity analysis estimates the change in risk per unit improvement. Marginal analysis indicates the reduction in risk or uncertainty for improvement effort made in each subject area. The results described in this study were generated using the SEISIM (Systematic Evaluation of Important Safety Improvement Measures) and CHAIN computer codes. Part 1 of the SEISIM computer code generated the failure probabilities and risk values. Part 2 of SEISIM, along with the CHAIN computer code, generated the importance and sensitivity measures

  15. Importance and sensitivity of parameters affecting the Zion Seismic Risk

    Energy Technology Data Exchange (ETDEWEB)

    George, L.L.; O' Connell, W.J.

    1985-06-01

    This report presents the results of a study on the importance and sensitivity of structures, systems, equipment, components and design parameters used in the Zion Seismic Risk Calculations. This study is part of the Seismic Safety Margins Research Program (SSMRP) supported by the NRC Office of Nuclear Regulatory Research. The objective of this study is to provide the NRC with results on the importance and sensitivity of parameters used to evaluate seismic risk. These results can assist the NRC in making decisions dealing with the allocation of research resources on seismic issues. This study uses marginal analysis in addition to importance and sensitivity analysis to identify subject areas (input parameter areas) for improvements that reduce risk, estimate how much the improvement dfforts reduce risk, and rank the subject areas for improvements. Importance analysis identifies the systems, components, and parameters that are important to risk. Sensitivity analysis estimates the change in risk per unit improvement. Marginal analysis indicates the reduction in risk or uncertainty for improvement effort made in each subject area. The results described in this study were generated using the SEISIM (Systematic Evaluation of Important Safety Improvement Measures) and CHAIN computer codes. Part 1 of the SEISIM computer code generated the failure probabilities and risk values. Part 2 of SEISIM, along with the CHAIN computer code, generated the importance and sensitivity measures.

  16. Methodology and results of the seismic probabilistic safety assessment of Krsko nuclear power plant

    International Nuclear Information System (INIS)

    Vermaut, M.K.; Monette, P.; Campbell, R.D.

    1995-01-01

    A seismic IPEEE (Individual Plant Examination for External Events) was performed for the Krsko plant. The methodology adopted is the seismic PSA (Probabilistic Safety Assessment). The Krsko NPP is located on a medium to high seismicity site. The PSA study described here includes all the steps in the PSA sequence, i.e. reassessment of the site hazard, calculation of plant structures response including soil-structure interaction, seismic plant walkdowns, probabilistic seismic fragility analysis of plant structures and components, and quantification of seismic core damage frequency (CDF). Also relay chatter analysis and soil stability studies were performed. The seismic PSA described here is limited to the analysis of CDF (level I PSA). The subsequent determination and quantification of plant damage states, containment behaviour and radioactive releases to the outside (level 2 PSA) have been performed for the Krsko NPP but are not further described in this paper. The results of the seismic PSA study indicate that, with some upgrades suggested by the PSA team, the seismic induced CDF is comparable to that of most US and Western Europe NPPs. (author)

  17. Influence of obliquely subducting slab on Pacific-North America shear motion inferred from seismic anisotropy along the Queen Charlotte margin

    Science.gov (United States)

    Cao, L.; Kao, H.; Wang, K.; Wang, Z.

    2016-12-01

    Haida Gwaii is located along the transpressive Queen Charlotte margin between the Pacific (PA) and North America (NA) plates. The highly oblique relative plate motion is partitioned, with the strike-slip component accommodated by the Queen Charlotte Fault (QCF) and the convergent component by a thrust fault offshore. To understand how the presence of a obliquely subducting slab influences shear deformation of the plate boundary, we investigate mantle anisotropy by analyzing shear-wave splitting of teleseismic SKS phases recorded at 17 seismic stations in and around Haida Gwaii. We used the MFAST program to determine the polarization direction of the fast wave (φ) and the delay time (δt) between the fast and slow phases. The fast directions derived from stations on Haida Gwaii and two stations to the north on the Alaska Panhandle are predominantly margin-parallel (NNW). However, away from the plate boundary, the fast direction transitions to WSW-trending, very oblique or perpendicular to the plate boundary. Because the average delay time of 0.6-2.45 s is much larger than values based on an associated local S phase splitting analysis in the same study area, it is reasonable to infer that most of the anisotropy from our SKS analysis originates from the upper mantle and is associated with lattice-preferred orientation of anisotropic minerals. The margin-parallel fast direction within about 100 km of the QCF (average φ = -40º and δt = 1.2 s) is likely induced by the PA-NA shear motion. The roughly margin-normal fast directions farther away, although more scatterd, are consistent with that previously observed in the NA continent and are attributed to the absolute motion of the NA plate. However, the transition between the two regimes based on our SKS analysis appears to be gradual, suggesting that the plate boundary shear influences a much broader region at mantle depths than would be inferred from the surface trace of the QCF. We think this is due to the presence

  18. Subsea ice-bearing permafrost on the U.S. Beaufort Margin: 1. Minimum seaward extent defined from multichannel seismic reflection data

    Science.gov (United States)

    Brothers, Laura; Herman, Bruce M.; Hart, Patrick E.; Ruppel, Carolyn D.

    2016-01-01

    Subsea ice-bearing permafrost (IBPF) and associated gas hydrate in the Arctic have been subject to a warming climate and saline intrusion since the last transgression at the end of the Pleistocene. The consequent degradation of IBPF is potentially associated with significant degassing of dissociating gas hydrate deposits. Previous studies interpreted the distribution of subsea permafrost on the U.S. Beaufort continental shelf based on geographically sparse data sets and modeling of expected thermal history. The most cited work projects subsea permafrost to the shelf edge (∼100 m isobath). This study uses a compilation of stacking velocity analyses from ∼100,000 line-km of industry-collected multichannel seismic reflection data acquired over 57,000 km2 of the U.S. Beaufort shelf to delineate continuous subsea IBPF. Gridded average velocities of the uppermost 750 ms two-way travel time range from 1475 to 3110 m s−1. The monotonic, cross-shore pattern in velocity distribution suggests that the seaward extent of continuous IBPF is within 37 km of the modern shoreline at water depths < 25 m. These interpretations corroborate recent Beaufort seismic refraction studies and provide the best, margin-scale evidence that continuous subsea IBPF does not currently extend to the northern limits of the continental shelf.

  19. Seismic hazard assessment; Valutazione della pericolosita` sismica

    Energy Technology Data Exchange (ETDEWEB)

    Paciello, A. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dip. Ambiente

    1998-12-31

    This paper presents a brief summary of the most commonly used methodologies for seismic hazard assessment. The interest is focused on the probabilistic approach, which can take into account the uncertainties of input data and provides results better comparable with those obtained from hazard analyses of other natural phenomena. Calculation methods, input data and treatment of variability are examined. Some examples of probabilistic seismic hazard maps are moreover presented. [Italiano] Questo lavoro presenta un breve sommario delle piu` comuni metodologie utilizzate per la valutazione della pericolosita` sismica di un sito. Una particolare attenzione e` rivolta all`approccio probabilistico, che permette di tener conto delle incertezze legate ai dati iniziali e fornisce risultati piu` facilmente confrontabili con quelli ottenuti da analisi di pericolosita` di altri fenomeni naturali. Vengono presi in esame i metodi di calcolo, i dati di base e il trattamento delle incertezze. Vengono inoltre presentati alcuni esempi di carte di pericolosita` sismica di tipo probabilistico.

  20. Assessment of seismic damages in nuclear power plant buildings

    International Nuclear Information System (INIS)

    Corsanego, A.; DelGrosso, A.; Ferro, G.

    1987-01-01

    Performance of nuclear power plant sites, buildings and components is in today's practice continuously evaluated by means of monitoring systems composed by a variety of instruments, allowing records of the most significant behavioral parameters to be gathered by electronic data acquisition equipment. A great emphasis has been devoted in recent years to the development of ''intelligent'' monitoring systems able to perform interpretation of the response of structures and components automatically, only requiring human intervention and sophisticated data processing techniques when degradation of the safety margins is likely to have been produced. Such computerized procedures can be formulated through logic or algorithmic processes and normally are consistently based upon simplified, heuristic behavioral models and probabilistic reasoning schemes. This paper is devoted to discuss the development of an algorithmic procedure intended for automatic, real-time interpretation of the recorded response of nuclear power plant buildings and foundations during seismic events

  1. Development of a shelf margin delta due to uplift of Munkagrunnur Ridge at the margin of Faroe-Shetland Basin: a seismic sequence stratigraphic study

    DEFF Research Database (Denmark)

    Òlavsdóttir, Jana; Boldreel, Lars Ole; Andersen, Moretn S

    2010-01-01

    During the last decade several 3D digital reflection seismic datasets have been acquired in the Faroese sector of the Faroe-Shetland Basin which allow detailed seismic interpretation and mapping of parts of the area. This study presents mapping and seismic sequence stratigraphic interpretation of...

  2. Seismic assessment of existing nuclear chemical plants

    International Nuclear Information System (INIS)

    Merriman, P.A.

    1997-01-01

    This paper outlines the generic approach to the seismic assessment of existing structures. It describes the role of the safety case in determining the studies carried out by the functional departments on individual projects. There is an emphasis on the role of existing information and material tests to provide realistic properties for analysis to account for possible degradation effects. Finally, a case study of a concrete containment cell is shown to illustrate the approach. (author)

  3. Approaches that use seismic hazard results to address topics of nuclear power plant seismic safety, with application to the Charleston earthquake issue

    International Nuclear Information System (INIS)

    Sewell, R.T.; McGuire, R.K.; Toro, G.R.; Stepp, J.C.; Cornell, C.A.

    1990-01-01

    Plant seismic safety indicators include seismic hazard at the SSE (safe shut-down earthquake) acceleration, seismic margin, reliability against core damage, and reliability against offsite consequences. This work examines the key role of hazard analysis in evaluating these indicators and in making rational decisions regarding plant safety. The paper outlines approaches that use seismic hazard results as a basis for plant seismic safety evaluation and applies one of these approaches to the Charleston earthquake issue. This approach compares seismic hazard results that account for the Charleston tectonic interpretation, using the EPRI-Seismicity Owners Group (SOG) methodology, with hazard results that are consistent with historical tectonic interpretations accepted in regulation. Based on hazard results for a set of 21 eastern U.S. nuclear power plant sites, the comparison shows that no systematic 'plant-to-plant' increase in hazard accompanies the Charleston hypothesis; differences in mean hazards for the two interpretations are generally insignificant relative to current uncertainties in seismic hazard. (orig.)

  4. Preliminary Seismic Response and Fragility Analysis for DACS Cabinet

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jinho; Kwag, Shinyoung; Lee, Jongmin; Kim, Youngki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    A DACS cabinet is installed in the main control room. The objective of this paper is to perform seismic analyses and evaluate the preliminary structural integrity and seismic capacity of the DACS cabinet. For this purpose, a 3-D finite element model of the DACS cabinet was developed and its modal analyses are carried out to analyze the dynamic characteristics. The response spectrum analyses and the related safety evaluation are then performed for the DACS cabinet subject to seismic loads. Finally, the seismic margin and seismic fragility of the DACS cabinet are investigated. A seismic analysis and preliminary structural integrity of the DACS cabinet under self weight and SSE load have been evaluated. For this purpose, 3-D finite element models of the DACS cabinet were developed. A modal analysis, response spectrum analysis, and seismic fragility analysis were then performed. From the structural analysis results, the DACS cabinet is below the structural design limit of under SSE 0.3g, and can structurally withstand until less than SSE 3g based on an evaluation of the maximum effective stresses. The HCLPF capacity for the DGRS of the SSE 0.3g is 0.55g. A modal analysis, response spectrum analysis, and seismic fragility analysis were then performed. From the structural analysis results, the DACS cabinet is below the structural design limit of under SSE 0.3g, and can structurally withstand until less than SSE 3g based on an evaluation of the maximum effective stresses. The HCLPF capacity for the DGRS of the SSE 0.3g is 0.55g. Therefore, it is concluded that the DACS cabinet was safely designed in that no damage to the preliminary structural integrity and sufficient seismic margin is expected.

  5. Preliminary Seismic Response and Fragility Analysis for DACS Cabinet

    International Nuclear Information System (INIS)

    Oh, Jinho; Kwag, Shinyoung; Lee, Jongmin; Kim, Youngki

    2013-01-01

    A DACS cabinet is installed in the main control room. The objective of this paper is to perform seismic analyses and evaluate the preliminary structural integrity and seismic capacity of the DACS cabinet. For this purpose, a 3-D finite element model of the DACS cabinet was developed and its modal analyses are carried out to analyze the dynamic characteristics. The response spectrum analyses and the related safety evaluation are then performed for the DACS cabinet subject to seismic loads. Finally, the seismic margin and seismic fragility of the DACS cabinet are investigated. A seismic analysis and preliminary structural integrity of the DACS cabinet under self weight and SSE load have been evaluated. For this purpose, 3-D finite element models of the DACS cabinet were developed. A modal analysis, response spectrum analysis, and seismic fragility analysis were then performed. From the structural analysis results, the DACS cabinet is below the structural design limit of under SSE 0.3g, and can structurally withstand until less than SSE 3g based on an evaluation of the maximum effective stresses. The HCLPF capacity for the DGRS of the SSE 0.3g is 0.55g. A modal analysis, response spectrum analysis, and seismic fragility analysis were then performed. From the structural analysis results, the DACS cabinet is below the structural design limit of under SSE 0.3g, and can structurally withstand until less than SSE 3g based on an evaluation of the maximum effective stresses. The HCLPF capacity for the DGRS of the SSE 0.3g is 0.55g. Therefore, it is concluded that the DACS cabinet was safely designed in that no damage to the preliminary structural integrity and sufficient seismic margin is expected

  6. Base Isolation for Seismic Retrofitting of a Multiple Building Structure: Design, Construction, and Assessment

    Directory of Open Access Journals (Sweden)

    Massimiliano Ferraioli

    2017-01-01

    Full Text Available The paper deals with the seismic retrofit of a multiple building structure belonging to the Hospital Centre of Avellino (Italy. At first, the paper presents the preliminary investigations, the in situ measurements and laboratory tests, and the seismic assessment of the existing fixed-base structures. Having studied different strategies, base isolation proved to be the more appropriate, also for the possibility offered by the geometry of the building to easily create an isolation interface at the ground level. The paper presents the design project, the construction process, and the details of the isolation intervention. Some specific issues of base isolation for seismic retrofitting of multiple building structures were lightened. Finally, the seismic assessment of the base-isolated building was carried out. The seismic response was evaluated through nonlinear time-history analysis, using the well-known Bouc-Wen model as the constitutive law of the isolation bearings. For reliable dynamic analyses, a suite of natural accelerograms compatible with acceleration spectra of Italian Code was first selected and then applied along both horizontal directions. The results were finally used to address some of the critical issues of the seismic response of the base-isolated multiple building structure: accidental torsional effects and potential poundings during strong earthquakes.

  7. Component fragility analysis methodology for seismic risk assessment projects. Proven PSA safety document processing and assessment procedures

    International Nuclear Information System (INIS)

    Kolar, Ladislav

    2013-03-01

    The seismic risk task assessment task should be structured as follows: (i) Define all reactor unit building structures, components and equipment involved in the creation of an initiating event (IE) induced by an seismic event or contributing to the reliability of reactor unit response to an IE; (ii) construct and estimate of the fragility curves for the building and component groups sub (i); (iii) determine the HCLPF for each group of buildings, components or equipment; (iv) determine the nuclear source's seismic resistance (SME) as the minimum HCLPF from the group of equipment in the risk-dominant scenarios; (v) define the risk-limiting group of components, equipment and building structures to the SME value; (vi) based on the fragility levels, identify component groups for which a more detailed fragility analysis is needed; and (vii) recommend groups of equipment or building structures that should be taken into account with respect to the seismic risk, i.e. such groups of equipment or building structures as exhibit a low seismic resistance (HCLPF) and, at the same time, are involved to a significant extent in the reactor unit's seismic risk (are present in the dominant risk scenarios). (P.A.)

  8. Seismic and Geodetic Monitoring of the Nicoya, Costa Rica, Seismic Gap

    Science.gov (United States)

    Protti, M.; Gonzalez, V.; Schwartz, S.; Dixon, T.; Kato, T.; Kaneda, Y.; Simila, G.; Sampson, D.

    2007-05-01

    The Nicoya segment of the Middle America Trench has been recognized as a mature seismic gap with potential to generate a large earthquake in the near future (it ruptured with large earthquakes in 1853, 1900 and 1950). Low level of background seismicity and fast crustal deformation of the forearc are indicatives of strong coupling along the plate interface. Given its high seismic potential, the available data and especially the fact that the Nicoya peninsula extends over large part of the rupture area, this gap was selected as one of the two sites for a MARGINS-SEIZE experiment. With the goal of documenting the evolution of loading and stress release along this seismic gap, an international effort involving several institutions from Costa Rica, the United States and Japan is being carried out for over a decade in the region. This effort involves the installation of temporary and permanent seismic and geodetic networks. The seismic network includes short period, broad band and strong motion instruments. The seismic monitoring has provided valuable information on the geometry and characteristics of the plate interface. The geodetic network includes temporary and permanent GPS stations as well as surface and borehole tiltmeters. The geodetic networks have helped quantify the extend and degree of coupling. A continuously recording, three- station GPS network on the Nicoya Peninsula, Costa Rica, recorded what we believe is the first slow slip event observed along the plate interface of the Costa Rica subduction zone. We will present results from these monitoring networks. Collaborative international efforts are focused on expanding these seismic and geodetic networks to provide improved resolution of future creep events, to enhanced understanding of the mechanical behavior of the Nicoya subduction segment of the Middle American Trench and possibly capture the next large earthquake and its potential precursor deformation.

  9. Study on seismic reliability for foundation grounds and surrounding slopes of nuclear power plants. Proposal of evaluation methodology and integration of seismic reliability evaluation system

    International Nuclear Information System (INIS)

    Ohtori, Yasuki; Kanatani, Mamoru

    2006-01-01

    This paper proposes an evaluation methodology of annual probability of failure for soil structures subjected to earthquakes and integrates the analysis system for seismic reliability of soil structures. The method is based on margin analysis, that evaluates the ground motion level at which structure is damaged. First, ground motion index that is strongly correlated with damage or response of the specific structure, is selected. The ultimate strength in terms of selected ground motion index is then evaluated. Next, variation of soil properties is taken into account for the evaluation of seismic stability of structures. The variation of the safety factor (SF) is evaluated and then the variation is converted into the variation of the specific ground motion index. Finally, the fragility curve is developed and then the annual probability of failure is evaluated combined with seismic hazard curve. The system facilitates the assessment of seismic reliability. A generator of random numbers, dynamic analysis program and stability analysis program are incorporated into one package. Once we define a structural model, distribution of the soil properties, input ground motions and so forth, list of safety factors for each sliding line is obtained. Monte Carlo Simulation (MCS), Latin Hypercube Sampling (LHS), point estimation method (PEM) and first order second moment (FOSM) implemented in this system are also introduced. As numerical examples, a ground foundation and a surrounding slope are assessed using the proposed method and the integrated system. (author)

  10. Micro-seismicity and seismic moment release within the Coso Geothermal Field, California

    Science.gov (United States)

    Kaven, Joern; Hickman, Stephen H.; Davatzes, Nicholas C.

    2014-01-01

    We relocate 16 years of seismicity in the Coso Geothermal Field (CGF) using differential travel times and simultaneously invert for seismic velocities to improve our knowledge of the subsurface geologic and hydrologic structure. We expand on our previous results by doubling the number of relocated events from April 1996 through May 2012 using a new field-wide 3-D velocity model. Relocated micro-seismicity sharpens in many portions of the active geothermal reservoir, likely defining large-scale fault zones and fluid pressure compartment boundaries. However, a significant fraction of seismicity remains diffuse and does not cluster into sharply defined structures, suggesting that permeability is maintained within the reservoir through distributed brittle failure. The seismic velocity structure reveals heterogeneous distributions of compressional (Vp) and shear (Vs) wave speed, with Vs generally higher in the Main Field and East Flank and Vp remaining relatively uniform across the CGF, but with significant local variations. The Vp/Vs ratio appears to outline the two main producing compartments of the reservoir at depths below mean ground level of approximately 1 to 2.5 km, with a ridge of relatively high Vp/Vs separating the Main Field from the East Flank. Detailed analyses of spatial and temporal variations in earthquake relocations and cumulative seismic moment release in the East Flank reveal three regions with persistently high rates of seismic activity. Two of these regions exhibit sharp, stationary boundaries at the margins of the East Flank that likely represent barriers to fluid flow and advective heat transport. However, seismicity and moment release in a third region at the northern end of the East Flank spread over time to form an elongated NE to SW structure, roughly parallel both to an elongated cluster of seismicity at the southern end of the East Flank and to regional fault traces mapped at the surface. Our results indicate that high

  11. Seismicity and seismic monitoring in the Asse salt mine

    International Nuclear Information System (INIS)

    Flach, D.; Gommlich, G.; Hente, B.

    1987-01-01

    Seismicity analyses are made in order to assess the safety of candidate sites for ultimate disposal of hazardous wastes. The report in hand reviews the seismicity history of the Asse salt mine and presents recent results of a measuring campaign made in the area. The monitoring network installed at the site supplies data and information on the regional seismicity, on seismic amplitudes under ground and above ground, and on microseismic activities. (DG) [de

  12. The role of IAEA in the seismic assessment and upgrading of existing NPPs. Seismic safety of nuclear power plants in Eastern Europe

    Energy Technology Data Exchange (ETDEWEB)

    Guerpinar, A; Godoy, A [International Atomic Energy Agency, Vienna (IAEA). Div. of Nuclear Installation Safety

    1997-03-01

    This paper summarizes the work performed by the International Atomic Energy Agency in the areas of safety reviews and applied research in support of programmes for the assessment and enhancement of seismic safety in Eastern Europe and in particular WWER type nuclear power plants during the past seven years. Three major topics are discussed; engineering safety review services in relation to external events, technical guidelines for the assessment and upgrading of WWER type nuclear power plants, and the Coordinated Research Programme on `Benchmark study for the seismic analysis and testing of WWER type nuclear power plants`. These topics are summarized in a way to provide an overview of the past and present safety situation in selected WWER type plants which are all located in Eastern European countries. Main conclusion of the paper is that although there is now a thorough understanding of the seismic safety issues in these operating nuclear power plants, the implementation of seismic upgrades to structures, systems and components are lagging behind, particularly for those cases in which the re-evaluation indicated the necessity to strengthen the safety related structures or install new safety systems. (author)

  13. The role of IAEA in the seismic assessment and upgrading of existing NPPs. Seismic safety of nuclear power plants in Eastern Europe

    International Nuclear Information System (INIS)

    Guerpinar, A.; Godoy, A.; . Div. of Nuclear Installation Safety)

    1997-01-01

    This paper summarizes the work performed by the International Atomic Energy Agency in the areas of safety reviews and applied research in support of programmes for the assessment and enhancement of seismic safety in Eastern Europe and in particular WWER type nuclear power plants during the past seven years. Three major topics are discussed; engineering safety review services in relation to external events, technical guidelines for the assessment and upgrading of WWER type nuclear power plants, and the Coordinated Research Programme on 'Benchmark study for the seismic analysis and testing of WWER type nuclear power plants'. These topics are summarized in a way to provide an overview of the past and present safety situation in selected WWER type plants which are all located in Eastern European countries. Main conclusion of the paper is that although there is now a thorough understanding of the seismic safety issues in these operating nuclear power plants, the implementation of seismic upgrades to structures, systems and components are lagging behind, particularly for those cases in which the re-evaluation indicated the necessity to strengthen the safety related structures or install new safety systems. (author)

  14. Seismic fragility levels of nuclear power plant equipment

    International Nuclear Information System (INIS)

    Bandyopadhyay, K.K.; Hofmayer, C.H.

    1987-01-01

    Seismic fragility levels of safety-related electrical and mechanical equipment used in nuclear power plants are discussed. The fragility level is defined as the vibration level corresponding to initiation of equipment malfunctions. The test response spectrum is used as a measure of this vibration level. The fragility phenomenon of an equipment is represented by a number of response spectra corresponding to various failure modes. Analysis methods are described for determination of the fragility level by use of existing test data. Useful conversion factors are tabulated to transform test response spectra from one damping value to another. Results are presented for switch-gears and motor control centers. The capacity levels of these equipment assemblies are observed to be limited by malfunctioning of contactors, motor starters, relays and/or switches. The applicability of the fragility levels, determined in terms of test response spectra, to Seismic Margin Studies and Probabilistic Risk Assessments is discussed and specific recommendations are provided

  15. Seismic risk assessment in the Mexican Nuclear Center applying the Gumbel-I distribution

    International Nuclear Information System (INIS)

    Flores R, J.H.; Arguelles F, R.; Camacho L, M.E.; Urrutia F, J.

    1997-01-01

    A licensing requirement for the operation of nuclear facilities is the performance of different kinds of studies, one of which is seismic risk assessment. This study is useful for the validation of the seismic coefficient applied in the structural design of the facilities. Thus, for the construction of a pilot nuclear fuel plant at Mexico Nuclear Centre of the Instituto Nacional de Investigaciones Nucleares (ININ), was necessary to make such study. The seismicity data for the period between 1912 and 1990 were used and the extreme values Gumbel-I distribution was applied to them. With this, ground acceleration seismic risk maps for recurrence periods of 1, 25 and 50 years were drawn up, showing maximum values of 1.2, 4.25, and 5.0 gales, respectively. (Author)

  16. A Framework for Understanding Uncertainty in Seismic Risk Assessment.

    Science.gov (United States)

    Foulser-Piggott, Roxane; Bowman, Gary; Hughes, Martin

    2017-10-11

    A better understanding of the uncertainty that exists in models used for seismic risk assessment is critical to improving risk-based decisions pertaining to earthquake safety. Current models estimating the probability of collapse of a building do not consider comprehensively the nature and impact of uncertainty. This article presents a model framework to enhance seismic risk assessment and thus gives decisionmakers a fuller understanding of the nature and limitations of the estimates. This can help ensure that risks are not over- or underestimated and the value of acquiring accurate data is appreciated fully. The methodology presented provides a novel treatment of uncertainties in input variables, their propagation through the model, and their effect on the results. The study presents ranges of possible annual collapse probabilities for different case studies on buildings in different parts of the world, exposed to different levels of seismicity, and with different vulnerabilities. A global sensitivity analysis was conducted to determine the significance of uncertain variables. Two key outcomes are (1) that the uncertainty in ground-motion conversion equations has the largest effect on the uncertainty in the calculation of annual collapse probability; and (2) the vulnerability of a building appears to have an effect on the range of annual collapse probabilities produced, i.e., the level of uncertainty in the estimate of annual collapse probability, with less vulnerable buildings having a smaller uncertainty. © 2017 Society for Risk Analysis.

  17. Seismic Data Gathering and Validation

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-02-01

    Three recent earthquakes in the last seven years have exceeded their design basis earthquake values (so it is implied that damage to SSC’s should have occurred). These seismic events were recorded at North Anna (August 2011, detailed information provided in [Virginia Electric and Power Company Memo]), Fukushima Daichii and Daini (March 2011 [TEPCO 1]), and Kaswazaki-Kariwa (2007, [TEPCO 2]). However, seismic walk downs at some of these plants indicate that very little damage occurred to safety class systems and components due to the seismic motion. This report presents seismic data gathered for two of the three events mentioned above and recommends a path for using that data for two purposes. One purpose is to determine what margins exist in current industry standard seismic soil-structure interaction (SSI) tools. The second purpose is the use the data to validated seismic site response tools and SSI tools. The gathered data represents free field soil and in-structure acceleration time histories data. Gathered data also includes elastic and dynamic soil properties and structural drawings. Gathering data and comparing with existing models has potential to identify areas of uncertainty that should be removed from current seismic analysis and SPRA approaches. Removing uncertainty (to the extent possible) from SPRA’s will allow NPP owners to make decisions on where to reduce risk. Once a realistic understanding of seismic response is established for a nuclear power plant (NPP) then decisions on needed protective measures, such as SI, can be made.

  18. Correspondence between conventional and digitised radiographs for assessment of marginal bone.

    Science.gov (United States)

    Bahrami, Golnosh; Isidor, Flemming; Wenzel, Ann; Vaeth, Michael

    2013-01-01

    To compare reproducibility of marginal bone measurements in conventional film and digitised radiographs and to assess whether variations in reproducibility occurred in measurements taken in a longitudinal, epidemiological survey. Triplicate measurements of the marginal bone level and of remaining bone were obtained from film and digitised full-mouth radiographic surveys from 20 individuals who were examined three times at five-year intervals in a longitudinal study design. The digitalisation of the films was conducted by scanning the film with a flatbed scanner. The standard deviation (SD) of the triplicate measurements served as the statistic for reproducibility. The time spent for recording one radiographic survey, which consisted of 14 periapicals and 2 bitewings, was documented. Statistically significant differences existed in the reproducibility of marginal bone level measurements obtained at the first examination and the two subsequent examinations both for film and digitised radiographs (P < 0.05). The difference in marginal bone level measurements (film vs digitised) was 0.16 mm (SD = 0.45 mm). Similarly, the overall difference in measurements of the remaining bone was 0.12 mm (SD = 0.61 mm). Recording of a digitised survey lasted on average 5 min (SD = 1.5 min), while the recording of a film survey lasted on average 14 min (SD = 1 min). Digitising film is an acceptable method for the purpose of assessing the marginal bone level and will save time in longitudinal, epidemiological studies.

  19. Seismic evaluation of reinforced masonry walls

    International Nuclear Information System (INIS)

    Kelly, T.E.; Button, M.R.; Mayes, R.L.

    1984-01-01

    Masonry walls in operating nuclear plants are in many cases found to be overstressed in terms of allowable stresses when evaluated using current seismic design criteria. However, experimental evidence exists indicating that reinforced masonry walls have a considerable margin between the load levels at which allowable stresses are exceeded and the load levels at which structural distress and loss of function occurs. This paper presents a methodology which allows the actual capacity of reinforced masonry walls under seismic loading to be quantified. The methodology is based on the use of non-linear dynamic analyses and incorporates observed hysteretic behavior for both in-plane and out-of-plane response. Experimental data is used to develop response parameters and to validate the results predicted by the models. Criteria have been concurrently developed to evaluate the deformations and material performance in the walls to ensure adequate margins of safety for the required function. An example of the application of these procedures is provided

  20. Value chain and marketing margins of cassava: An assessment of ...

    African Journals Online (AJOL)

    Value chain and marketing margins of cassava: An assessment of cassava marketing in ... African Journal of Food, Agriculture, Nutrition and Development ... Cassava is one of the emerging market oriented agricultural commodities with ...

  1. Assessment of wind turbine seismic risk : existing literature and simple study of tower moment demand.

    Energy Technology Data Exchange (ETDEWEB)

    Prowell, Ian (University of California, San Diego, CA); Veers, Paul S.

    2009-03-01

    Various sources of risk exist for all civil structures, one of which is seismic risk. As structures change in scale, the magnitude of seismic risk changes relative to risk from other sources. This paper presents an introduction to seismic hazard as applied to wind turbine structures. The existing design methods and research regarding seismic risk for wind turbines is then summarized. Finally a preliminary assessment is made based on current guidelines to understand how tower moment demand scales as rated power increases. Potential areas of uncertainty in the application of the current guidelines are summarized.

  2. Seismic Hazard and Risk Assessments for Beijing-Tianjin-Tangshan, China, Area

    Science.gov (United States)

    Xie, Furen; Wang, Zhenming; Liu, Jingwei

    2011-03-01

    Seismic hazard and risk in the Beijing-Tianjin-Tangshan, China, area were estimated from 500-year intensity observations. First, we digitized the intensity observations (maps) using ArcGIS with a cell size of 0.1 × 0.1°. Second, we performed a statistical analysis on the digitized intensity data, determined an average b value (0.39), and derived the intensity-frequency relationship (hazard curve) for each cell. Finally, based on a Poisson model for earthquake occurrence, we calculated seismic risk in terms of a probability of I ≥ 7, 8, or 9 in 50 years. We also calculated the corresponding 10 percent probability of exceedance of these intensities in 50 years. The advantages of assessing seismic hazard and risk from intensity records are that (1) fewer assumptions (i.e., earthquake source and ground motion attenuation) are made, and (2) site-effect is included. Our study shows that the area has high seismic hazard and risk. Our study also suggests that current design peak ground acceleration or intensity for the area may not be adequate.

  3. Geomorphology and seismic risk

    Science.gov (United States)

    Panizza, Mario

    1991-07-01

    The author analyses the contributions provided by geomorphology in studies suited to the assessment of seismic risk: this is defined as function of the seismic hazard, of the seismic susceptibility, and of the vulnerability. The geomorphological studies applicable to seismic risk assessment can be divided into two sectors: (a) morpho-neotectonic investigations conducted to identify active tectonic structures; (b) geomorphological and morphometric analyses aimed at identifying the particular situations that amplify or reduce seismic susceptibility. The morpho-neotectonic studies lead to the identification, selection and classification of the lineaments that can be linked with active tectonic structures. The most important geomorphological situations that can condition seismic susceptibility are: slope angle, debris, morphology, degradational slopes, paleo-landslides and underground cavities.

  4. Mapping basin-wide subaquatic slope failure susceptibility as a tool to assess regional seismic and tsunami hazards

    Science.gov (United States)

    Strasser, Michael; Hilbe, Michael; Anselmetti, Flavio S.

    2010-05-01

    occurred. Comparison of reconstructed critical stability conditions with the known distribution of landslide deposits reveals minimum and maximum threshold conditions for slopes that failed or remained stable, respectively. The resulting correlations reveal good agreements and suggest that the slope stability model generally succeeds in reproducing past events. The basin-wide mapping of subaquatic slope failure susceptibility through time thus can also be considered as a promising paleoseismologic tool that allows quantification of past earthquake ground shaking intensities. Furthermore, it can be used to assess the present-day slope failure susceptibility allowing for identification of location and estimation of size of future, potentially tsunamigenic subaquatic landslides. The new approach presented in our comprehensive lake study and resulting conceptual ideas can be vital to improve our understanding of larger marine slope instabilities and related seismic and oceanic geohazards along formerly glaciated ocean margins and closed basins worldwide.

  5. Continental margin of Andhra Pradesh: Some new problems and perspectives

    Digital Repository Service at National Institute of Oceanography (India)

    Murthy, K.S.R.

    the Krishna - Godavari basin and the Nizampatnam Bay. Extensive bathymetric, magnetic, high resolution seismic reflection and gravity data were collected over the margin by the National Institute of Oceanography for the last one decade. Analysis of the data...

  6. Energy system analyses of the marginal energy technology in life cycle assessments

    DEFF Research Database (Denmark)

    Mathiesen, B.V.; Münster, Marie; Fruergaard, Thilde

    2007-01-01

    in historical and potential future energy systems. Subsequently, key LCA studies of products and different waste flows are analysed in relation to the recom- mendations in consequential LCA. Finally, a case of increased waste used for incineration is examined using an energy system analysis model......In life cycle assessments consequential LCA is used as the “state-of-the-art” methodology, which focuses on the consequences of decisions made in terms of system boundaries, allocation and selection of data, simple and dynamic marginal technology, etc.(Ekvall & Weidema 2004). In many LCA studies...... marginal technology? How is the marginal technology identified and used today? What is the consequence of not using energy system analy- sis for identifying the marginal energy technologies? The use of the methodology is examined from three angles. First, the marginal electricity technology is identified...

  7. On elastic limit margins for earthquake design

    International Nuclear Information System (INIS)

    Buchhardt, F.; Matthees, W.; Magiera, G.

    1987-01-01

    In the Federal Republic of Germany KTA rule 2201 being the basis for the design of nuclear power plants against seismic events is now under discussion for revisions. One of the main demands to modify KTA rule 2201 consists in cancelling the existing design philosophy, i.e. design against an operating basis earthquake (AEB) as well as against a safe shutdown earthquake (SEB). When using the present rule the 'lower' earthquake (AEB) can become design-predominant, since for AEB and SEB different types of load cases are to be superimposed with different safety factors. The scope of this study is to quantify by parametric analyses so-called 'elastic bearing capacity limit margins' for seismic events; hereby different seismic input criteria - conventional as well as recently proposed are taken into account to investigate the influence of eventual modifications in seismic design philosophy. This way a relation between AEB and SEB has to be defined so that SEB is just still predominant for the design while AEB still will yield to elastic behaviour. The study covers all German site conditions

  8. Seismic characterization of the NPP Krsko site

    International Nuclear Information System (INIS)

    Obreza, J.

    2000-01-01

    The goal of NPP Krsko PSA Project Update was the inclusion of plant changes (i.e. configuration/operational related) through the period January 1, 1993 till the OUTAGE99 (April 1999) into the integrated Internal/External Level 1/Level 2 NPP Krsko PSA RISK SPECTRUM model. NPP Krsko is located on seismotectonic plate. Highest earthquake was recorded in 1917 with magnitude 5.8 at a distance of 7-9 km. Site (founded) on Pliocene sediments which are as deep as several hundred meters. No surface faulting at the Krsko site has been observed and thus it is not to be expected. NPP Krsko is equipped with seismic instrumentation, which allows it to complete OBE (SSE). The seismic PSA successfully showed high seismic margin at Krsko plant. NPP Krsko seismic design is based on US regulations and standards

  9. Continental Margins and the Law of the Sea - an `Arranged Marriage' with Huge Research Potential

    Science.gov (United States)

    Parson, L.

    2005-12-01

    The United Nations Convention on the Law of the Sea (UNCLOS) requires coastal states intending to secure sovereignty over continental shelf territory extending beyond 200 nautical miles to submit geological/geophysical data, along with their analysis and synthesis of the relevant continental margin in support of their claim. These submissions are scrutinised and assessed by a UN Commission of experts who decide if the claim is justified, and thereby ultimately allowing the exploitation of non-living resources into this extended maritime space. The amount of data required to support the case will vary from margin to margin, depending on the local geological evolution, but typically will involve the running of new, dedicated marine surveys, mostly bathymetric and seismic. Key geological/geophysical issues revolve around proof of `naturalness' of the prolongation of land mass (cue - wide-angle seismics, deep drilling and sampling programmes) and shelf and slope morphology and sediment section thickness (cue - swath bathymetry and multichannel seismics programmes). These surveys, probably primarily funded by government agencies anxious not to lose out on the `land grab', will generate datasets which will inevitably boost not only the research effort leading to increased understanding of margin evolution in academic terms, but also contribute to wider applied aspects of the work such as those leading to refinement of deepwater hydrocarbon resource potential. It is conservatively estimated that in the region of fifty coastal states world-wide have a significant potential for claiming continental shelf beyond 200 nautical miles, and that the total area available as extended shelf could easily exceed 7 million square kilometres. However, while for the vast majority of these states a UNCLOS deadline of 2009 exists for submitting a claim - to date only four have done so (Russia, Brazil, Australia and Ireland). It is therefore predictable, if not inevitable, that within the

  10. Seismic resistance design of nuclear power plant building structures in Japan

    International Nuclear Information System (INIS)

    Kitano, Takehito

    1997-01-01

    Japan is one of the countries where earthquakes occur most frequently in the world and has incurred a lot of disasters in the past. Therefore, the seismic resistance design of a nuclear power plant plays a very important role in Japan. This report describes the general method of seismic resistance design of a nuclear power plant giving examples of PWR and BWR type reactor buildings in Japan. Nuclear facilities are classified into three seismic classes and is designed according to the corresponding seismic class in Japan. Concerning reactor buildings, the short-term allowable stress design is applied for the S1 seismic load and it is confirmed that the structures have a safety margin against the S2 seismic load. (J.P.N.)

  11. Seismic resistance design of nuclear power plant building structures in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kitano, Takehito [Kansai Electric Power Co., Inc., Osaka (Japan)

    1997-03-01

    Japan is one of the countries where earthquakes occur most frequently in the world and has incurred a lot of disasters in the past. Therefore, the seismic resistance design of a nuclear power plant plays a very important role in Japan. This report describes the general method of seismic resistance design of a nuclear power plant giving examples of PWR and BWR type reactor buildings in Japan. Nuclear facilities are classified into three seismic classes and is designed according to the corresponding seismic class in Japan. Concerning reactor buildings, the short-term allowable stress design is applied for the S1 seismic load and it is confirmed that the structures have a safety margin against the S2 seismic load. (J.P.N.)

  12. High resolution seismic stratigraphy and Mass Transport Deposits of the proximal continental margin, offshore Quarteira, South Portugal: Preliminary Results.

    Science.gov (United States)

    Duarte, Débora; Santos, Joana; Terrinha, Pedro; Brito, Pedro; Noiva, João; Ribeiro, Carlos; Roque, Cristina

    2017-04-01

    More than 300 nautical miles of multichannel seismic reflection data were acquired in the scope of the ASTARTE project (Assessment Strategy and Risk Reduction for Tsunamis in Europe), off Quarteira, Algarve, South Portugal. The main goal of this very high resolution multichannel seismic survey was to obtain high-resolution images of the sedimentary record to try to discern the existence of high energy events, possibly tsunami backwash deposits associated with large magnitude earthquakes generated at the Africa-Eurasia plate boundary This seismic dataset was processed at the Instituto Português do Mar e da Atmosfera (IPMA), with the SeisSpace PROMAX Seismic Processing software. A tailor-made processing flow was applied, focusing in the removal of the seafloor multiple and in the enhancement of the superficial layers. A sparker source, using with 300 J of energy and a fire rate of 0,5 s was used onboard Xunauta, an 18 m long vessel. The preliminary seismostratigraphic interpretation of the Algarve ASTARTE seismic dataset allowed the identification of a complex sequence seismic units of progradational and agradational bodies as well as Mass Transported Deposits (MTD). The MTD package of sediments has a very complex internal structure, 20m of thickness, is apparently spatially controlled by an escarpment probably associated to past sea level low stands. The MTD covers across an area, approximately parallel to an ancient coastline, with >30 km (length) x 5 km (across). Acknowledgements: This work was developed as part of the project ASTARTE (603839 FP7) supported by the grant agreement No 603839 of the European Union's Seventh. The Instituto Portugues do Mar e da Atmosfera acknowledges support by Landmark Graphics (SeisWorks) via the Landmark University Grant Program.

  13. Seismic Hazard Assessment in Site Evaluation for Nuclear Installations: Ground Motion Prediction Equations and Site Response

    International Nuclear Information System (INIS)

    2016-07-01

    The objective of this publication is to provide the state-of-the-art practice and detailed technical elements related to ground motion evaluation by ground motion prediction equations (GMPEs) and site response in the context of seismic hazard assessments as recommended in IAEA Safety Standards Series No. SSG-9, Seismic Hazards in Site Evaluation for Nuclear Installations. The publication includes the basics of GMPEs, ground motion simulation, selection and adjustment of GMPEs, site characterization, and modelling of site response in order to improve seismic hazard assessment. The text aims at delineating the most important aspects of these topics (including current practices, criticalities and open problems) within a coherent framework. In particular, attention has been devoted to filling conceptual gaps. It is written as a reference text for trained users who are responsible for planning preparatory seismic hazard analyses for siting of all nuclear installations and/or providing constraints for anti-seismic design and retrofitting of existing structures

  14. Coupling mode-destination accessibility with seismic risk assessment to identify at-risk communities

    International Nuclear Information System (INIS)

    Miller, Mahalia; Baker, Jack W.

    2016-01-01

    In this paper, we develop a framework for coupling mode-destination accessibility with quantitative seismic risk assessment to identify communities at high risk for travel disruptions after an earthquake. Mode-destination accessibility measures the ability of people to reach destinations they desire. We use a probabilistic seismic risk assessment procedure, including a stochastic set of earthquake events, ground-motion intensity maps, damage maps, and realizations of traffic and accessibility impacts. For a case study of the San Francisco Bay Area, we couple our seismic risk framework with a practical activity-based traffic model. As a result, we quantify accessibility risk probabilistically by community and household type. We find that accessibility varies more strongly as a function of travelers' geographic location than as a function of their income class, and we identify particularly at-risk communities. We also observe that communities more conducive to local trips by foot or bike are predicted to be less impacted by losses in accessibility. This work shows the potential to link quantitative risk assessment methodologies with high-resolution travel models used by transportation planners. Quantitative risk metrics of this type should have great utility for planners working to reduce risk to a region's infrastructure systems. - Highlights: • We couple mode-destination accessibility with probabilistic seismic risk assessment. • Results identify communities at high risk for post-earthquake travel disruptions. • Accessibility varies more as a function of home location than by income. • Our model predicts reduced accessibility risk for more walking-friendly communities.

  15. Seismic qualification of equipment in operating nuclear power plants: Unresolved Safety Issue A-46

    International Nuclear Information System (INIS)

    Chang, T.Y.

    1987-02-01

    The margin of safety provided in existing nuclear power plant equipment to resist seismically induced loads and perform their intended safety functions may vary considerably, because of significant changes in design criteria and methods for the seismic qualification of equipment over the years. Therefore, the seismic qualification of equipment in operating plants must be reassessed to determine whether requalification is necessary. The objective of technical studies performed under the Task Action Plan A-46 was to establish an explicit set of guidelines and acceptance criteria to judge the adequacy of equipment under seismic loading at all operating plants, in lieu of requiring qualification to the current criteria that are applied to new plants. This report summarizes the work accomplished on USI A-46. In addition, the collection and review of seismic experience data and existing seismic test data are presented. Staff assessment of work accomplished under USI A-46 leads to the conclusion that the use of seismic experience data provides the most reasonable alternative to current qualification criteria. Consideration of seismic qualification by use of experience data was a specific task in USI A-46. Several other A-46 tasks serve to support the use of an experienced data base. The principal technical finding of USI A-46 is that seismic experience data, supplemented by existing seismic test data, applied in accordance with the guidelines developed, can be used to verify the seismic adequacy of mechanical and electrical equipment in operating nuclear plants. Explicit seismic qualification should be required only if seismic experience data or existing test data on similar components cannot be shown to apply

  16. Simplified Assessment of R3 Nominal Assurance Degree to Seismic Action of the Existing Masonry Dwellings

    Directory of Open Access Journals (Sweden)

    Teodor Broşteanu

    2008-01-01

    Full Text Available This paper refers to the assessment of the performance level of a building for a given seismic hazard level. Building performance level describes the expected seismic performance given by the computation of R3 Nominal Assurance Degree to Seismic Action of the Existing Masonry Dwellings and Monumental Buildings according to the Romanian Norm P100:1992 [1], modified on 1996 with the chapters 11 and 12, until the Part 3 of P100-1:2006 [2], will be performed for the Assessment and Strengthening Structural Design of the Seismic Vulnerable, Existing Buildings, in the frame of SR EN 1998-1:2004 EC8 [3]. The framing of damages into the potential risk degrees has a social and economic impact. Assessment and retrofitting of the existing buildings have represented a huge engineering challenge as a distinct problem versus a new building design. The performance level of a vulnerable existing building shows us the expected seismic performance level due to the classified damages, the pattern of cracks, the interruption of function, the economic losses and the needed interventions, all in function of the importance class of building on next life span of use. On recommends the computation of R (R3 Nominal Assurance Degree to Seismic Action of the Vulnerable Dwellings for the assessing and strengthening design, in comparison to both norms because of the bearing conventional seismic load computed by [1], will result less than the value which will be computed by the Part 3 of P100-1:2006, i.e. the norm P100:1992 is more severe. In the case of the breakable fracture probability of the existing structural masonry members, one recommends a bigger value of ? – reduction factor unless the given values by [1] for a new structure with a high ductility, especially for the deflections calibration on the same limit state.

  17. Level-1 seismic probabilistic risk assessment for a PWR plant

    International Nuclear Information System (INIS)

    Kondo, Keisuke; Nishio, Masahide; Fujimoto, Haruo; Ichitsuka, Akihiro

    2014-01-01

    In Japan, revised Seismic Design Guidelines for the domestic light water reactors was published on September 19, 2006. These new guidelines have introduced the purpose to confirm that residual risk resulting from earthquake that exceeds the design limit seismic ground motion (Ss) is sufficiently small, based on the probabilistic risk assessment (PRA) method, in addition to conventional deterministic design base methodology. In response to this situation, JNES had been working to improve seismic PRA (SPRA) models for individual domestic light water reactors. In case of PWR in Japan, total of 24 plants were grouped into 11 categories to develop individual SPRA model. The new regulatory rules against the Fukushima dai-ichi nuclear power plants' severe accidents occurred on March 11, 2011, are going to be enforced in July 2013 and utilities are necessary to implement additional safety measures to avoid and mitigate severe accident occurrence due to external events such as earthquake and tsunami, by referring to the results of severe accident study including SPRA. In this paper a SPRA model development for a domestic 3-loop PWR plant as part of the above-mentioned 11 categories is described. We paid special attention to how to categorize initiating events that are specific to seismic phenomena and how to confirm the effect of the simultaneous failure probability calculation model for the multiple components on the result of core damage frequency evaluation. Simultaneous failure probability for multiple components has been evaluated by power multiplier method. Then tentative level-1 seismic probabilistic risk assessment (SPRA) has been performed by the developed SPSA model with seismic hazard and fragility data. The base case was evaluated under the condition with calculated fragility data and conventional power multiplier. The difference in CDF between the case of conventional power multiplier and that of power multiplier=1 (complete dependence) was estimated to be

  18. Performance-based seismic assessment of vulnerability of dam using time history analysis

    Directory of Open Access Journals (Sweden)

    Elmrabet Oumnia

    2018-01-01

    Full Text Available The current performance-based seismic assessment procedure can be computationally intensive as it requires many time history analyses (THA each requiring time intensive post-processing of results. Time history analysis is a part of structural analysis and is the calculation of the response of a structure to any earthquake. It is one of the main processes of structural design in regions where earthquakes are prevalent. The objective of this study is to evaluate the seismic performance of embankment dam located on the Oued RHISS in the Province of AL HOCEIMA using the THA method. To monitor structural behavior, the seismic vulnerability of structure is evaluated under real earthquake records with considering the soil-structure-fluide interaction. In this study, a simple assistant program is developed for implementing earthquake analyses of structure with ANSYS, ground acceleration–time history data are used for seismic analysis and dynamic numerical simulations were conducted to study and identify the total response of the soil-structure system.

  19. Seismic reflections associated with submarine gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Andreassen, K

    1996-12-31

    Gas hydrates are often suggested as a future energy resource. This doctoral thesis improves the understanding of the concentration and distribution of natural submarine gas hydrates. The presence of these hydrates are commonly inferred from strong bottom simulating reflection (BSR). To investigate the nature of BSR, this work uses seismic studies of hydrate-related BSRs at two different locations, one where gas hydrates are accepted to exist and interpreted to be very extensive (in the Beaufort Sea), the other with good velocity data and downhole logs available (offshore Oregon). To ascertain the presence of free gas under the BSR, prestack offset data must supplement near-vertical incidence seismic data. A tentative model for physical properties of sediments partially saturated with gas hydrate and free gas is presented. This model, together with drilling information and seismic data containing the BSR beneath the Oregon margin and the Beaufort Sea, made it possible to better understand when to apply the amplitude-versus-offset (AVO) method to constrain BSR gas hydrate and gas models. Distribution of natural gas hydrates offshore Norway and Svalbard is discussed and interpreted as reflections from the base of gas hydrate-bearing sediments, overlying sediments containing free gas. Gas hydrates inferred to exist at the Norwegian-Svalbard continental margin correlate well with Cenozoic depocenters, and the associated gas is assumed to be mainly biogenic. Parts of that margin have a high potential for natural gas hydrates of both biogenic and thermogenic origin. 235 refs., 86 figs., 4 tabs.

  20. Seismic reflections associated with submarine gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Andreassen, K.

    1995-12-31

    Gas hydrates are often suggested as a future energy resource. This doctoral thesis improves the understanding of the concentration and distribution of natural submarine gas hydrates. The presence of these hydrates are commonly inferred from strong bottom simulating reflection (BSR). To investigate the nature of BSR, this work uses seismic studies of hydrate-related BSRs at two different locations, one where gas hydrates are accepted to exist and interpreted to be very extensive (in the Beaufort Sea), the other with good velocity data and downhole logs available (offshore Oregon). To ascertain the presence of free gas under the BSR, prestack offset data must supplement near-vertical incidence seismic data. A tentative model for physical properties of sediments partially saturated with gas hydrate and free gas is presented. This model, together with drilling information and seismic data containing the BSR beneath the Oregon margin and the Beaufort Sea, made it possible to better understand when to apply the amplitude-versus-offset (AVO) method to constrain BSR gas hydrate and gas models. Distribution of natural gas hydrates offshore Norway and Svalbard is discussed and interpreted as reflections from the base of gas hydrate-bearing sediments, overlying sediments containing free gas. Gas hydrates inferred to exist at the Norwegian-Svalbard continental margin correlate well with Cenozoic depocenters, and the associated gas is assumed to be mainly biogenic. Parts of that margin have a high potential for natural gas hydrates of both biogenic and thermogenic origin. 235 refs., 86 figs., 4 tabs.

  1. 3D modeling of stratigraphic units and simulation of seismic facies in the Lion gulf margin; Modelisation 3D des unites stratigraphiques et simulation des facies sismiques dans la marge du golfe du Lion

    Energy Technology Data Exchange (ETDEWEB)

    Chihi, H.

    1997-05-12

    This work aims at providing a contribution to the studies carried out on reservoir characterization by use of seismic data. The study mainly consisted in the use of geostatistical methods in order to model the geometry of stratigraphic units of the Golfe du Lion margin and to simulate the seismic facies from high resolution seismic data. We propose, for the geometric modelling, a methodology based on the estimation of the surfaces and calculation afterwards of the thicknesses, if the modelling of the depth is possible. On the other hand the method consists in estimating the thickness variable directly and in deducing the boundary surfaces afterwards. In order to simulate the distribution of seismic facies within the units of the western domain, we used the truncated Gaussian method. The used approach gave a satisfactory results, when the seismic facies present slightly dipping reflectors with respect to the reference level. Otherwise the method reaches its limits because of the problems of definition of a reference level which allows to follow the clino-forms. In spite of these difficulties, this simulation allows us to estimate the distribution of seismic facies within the units and then to deduce their probable extension. (author) 150 refs.

  2. The Great Maule earthquake: seismicity prior to and after the main shock from amphibious seismic networks

    Science.gov (United States)

    Lieser, K.; Arroyo, I. G.; Grevemeyer, I.; Flueh, E. R.; Lange, D.; Tilmann, F. J.

    2013-12-01

    The Chilean subduction zone is among the seismically most active plate boundaries in the world and its coastal ranges suffer from a magnitude 8 or larger megathrust earthquake every 10-20 years. The Constitución-Concepción or Maule segment in central Chile between ~35.5°S and 37°S was considered to be a mature seismic gap, rupturing last in 1835 and being seismically quiet without any magnitude 4.5 or larger earthquakes reported in global catalogues. It is located to the north of the nucleation area of the 1960 magnitude 9.5 Valdivia earthquake and to the south of the 1928 magnitude 8 Talca earthquake. On 27 February 2010 this segment ruptured in a Mw=8.8 earthquake, nucleating near 36°S and affecting a 500-600 km long segment of the margin between 34°S and 38.5°S. Aftershocks occurred along a roughly 600 km long portion of the central Chilean margin, most of them offshore. Therefore, a network of 30 ocean-bottom-seismometers was deployed in the northern portion of the rupture area for a three month period, recording local offshore aftershocks between 20 September 2010 and 25 December 2010. In addition, data of a network consisting of 33 landstations of the GeoForschungsZentrum Potsdam were included into the network, providing an ideal coverage of both the rupture plane and areas affected by post-seismic slip as deduced from geodetic data. Aftershock locations are based on automatically detected P wave onsets and a 2.5D velocity model of the combined on- and offshore network. Aftershock seismicity analysis in the northern part of the survey area reveals a well resolved seismically active splay fault in the accretionary prism of the Chilean forearc. Our findings imply that in the northernmost part of the rupture zone, co-seismic slip most likely propagated along the splay fault and not the subduction thrust fault. In addition, the updip limit of aftershocks along the plate interface can be verified to about 40 km landwards from the deformation front. Prior to

  3. Seismic fragility analyses

    International Nuclear Information System (INIS)

    Kostov, Marin

    2000-01-01

    In the last two decades there is increasing number of probabilistic seismic risk assessments performed. The basic ideas of the procedure for performing a Probabilistic Safety Analysis (PSA) of critical structures (NUREG/CR-2300, 1983) could be used also for normal industrial and residential buildings, dams or other structures. The general formulation of the risk assessment procedure applied in this investigation is presented in Franzini, et al., 1984. The probability of failure of a structure for an expected lifetime (for example 50 years) can be obtained from the annual frequency of failure, β E determined by the relation: β E ∫[d[β(x)]/dx]P(flx)dx. β(x) is the annual frequency of exceedance of load level x (for example, the variable x may be peak ground acceleration), P(fI x) is the conditional probability of structure failure at a given seismic load level x. The problem leads to the assessment of the seismic hazard β(x) and the fragility P(fl x). The seismic hazard curves are obtained by the probabilistic seismic hazard analysis. The fragility curves are obtained after the response of the structure is defined as probabilistic and its capacity and the associated uncertainties are assessed. Finally the fragility curves are combined with the seismic loading to estimate the frequency of failure for each critical scenario. The frequency of failure due to seismic event is presented by the scenario with the highest frequency. The tools usually applied for probabilistic safety analyses of critical structures could relatively easily be adopted to ordinary structures. The key problems are the seismic hazard definitions and the fragility analyses. The fragility could be derived either based on scaling procedures or on the base of generation. Both approaches have been presented in the paper. After the seismic risk (in terms of failure probability) is assessed there are several approaches for risk reduction. Generally the methods could be classified in two groups. The

  4. Developing tools to identify marginal lands and assess their potential for bioenergy production

    Science.gov (United States)

    Galatsidas, Spyridon; Gounaris, Nikolaos; Dimitriadis, Elias; Rettenmaier, Nils; Schmidt, Tobias; Vlachaki, Despoina

    2017-04-01

    The term "marginal land" is currently intertwined in discussions about bioenergy although its definition is neither specific nor firm. The uncertainty arising from marginal land classification and quantification is one of the major constraining factors for its potential use. The clarification of political aims, i.e. "what should be supported?" is also an important constraining factor. Many approaches have been developed to identify marginal lands, based on various definitions according to the management goals. Concerns have been frequently raised regarding the impacts of marginal land use on environment, ecosystem services and sustainability. Current tools of soil quality and land potentials assessment fail to meet the needs of marginal land identification and exploitation for biomass production, due to the lack of comprehensive analysis of interrelated land functions and their quantitative evaluation. Land marginality is determined by dynamic characteristics in many cases and may therefore constitute a transitional state, which requires reassessment in due time. Also, marginal land should not be considered simply a dormant natural resource waiting to be used, since it may already provide multiple benefits and services to society relating to wildlife, biodiversity, carbon sequestration, etc. The consequences of cultivating such lands need to be fully addressed to present a balanced view of their sustainable potential for bioenergy. This framework is the basis for the development of the SEEMLA tools, which aim at supporting the identification, assessment, management of marginal lands in Europe and the decision-making for sustainable biomass production of them using appropriate bioenergy crops. The tools comprise two applications, a web-based one (independent of spatial data) and a GIS-based application (land regionalization on the basis of spatial data), which both incorporate: - Land resource characteristics, restricting the cultivation of agricultural crops but

  5. Input parameters for the statistical seismic hazard assessment in central part of Romania territory using crustal earthquakes

    International Nuclear Information System (INIS)

    Moldovan, A.I.; Bazacliu, O.; Popescu, E.

    2004-01-01

    The seismic hazard assessment in dense-populated geographical regions and subsequently the design of the strategic objectives (dams, nuclear power plants, etc.) are based on the knowledge of the seismicity parameters of the seismic sources which can generate ground motion amplitudes above the minimum level considered risky at the specific site and the way the seismic waves propagate between the focus and the site. The purpose of this paper is to provide a set of information required for a probabilistic assessment of the seismic hazard in the central Romanian territory relative to the following seismic sources: Fagaras zone (FC), Campulung zone (CP), and Transilvania zone (TD) all of them in the crust domain. Extremely vulnerable objectives are present in the central part of Romania, including cities of Pitesti and Sibiu and the 'Vidraru' dam. The analysis that we propose implies: (1) geometrical definition of the seismic sources, (2) estimation of the maximum possible magnitude, (3) estimation of the frequency - magnitude relationship and (4) estimation of the attenuation laws. As an example, the obtained input parameters are used to evaluate the seismic hazard distribution due to the crustal earthquakes applying the McGuire's procedure (1976). These preliminary results are in good agreement with the previous research based on deterministic approach (Radulian et al., 2000). (authors)

  6. Preliminary seismic hazard assessment, shallow seismic refraction and resistivity sounding studies for future urban planning at the Gebel Umm Baraqa area, Egypt

    International Nuclear Information System (INIS)

    Khalil, Mohamed H; Hanafy, Sherif M; Gamal, Mohamed A

    2008-01-01

    Gebel Umm Baraqa Fan, west Gulf of Aqaba, Sinai, is one of the most important tourism areas in Egypt. However, it is located on the active Dead Sea-Gulf of Aqaba Levant transform fault system. Geophysical studies, including fresh water aquifer delineation, shallow seismic refraction, soil characterization and preliminary seismic hazard assessment, were conducted to help in future city planning. A total of 11 vertical electrical soundings (1000–3000 m maximum AB/2) and three bore-holes were drilled in the site for the analysis of ground water, total dissolved solids (TDS) and fresh water aquifer properties. The interpretation of the one-dimensional (1D) inversion of the resistivity data delineated the fresh water aquifer and determined its hydro-geologic parameters. Eleven shallow seismic refraction profiles (125 m in length) have been collected and interpreted using the generalized reciprocal method, and the resulting depth–velocity models were verified using an advanced finite difference (FD) technique. Shallow seismic refraction effectively delineates two subsurface layers (VP ∼ 450 m s −1 and VP ∼ 1000 m s −1 ). A preliminary seismic hazard assessment in Umm Baraqa has produced an estimate of the probabilistic peak ground acceleration hazard in the study area. A recent and historical earthquake catalog for the time period 2200 BC to 2006 has been compiled for the area. New accurate seismic source zoning is considered because such details affect the degree of hazard in the city. The estimated amount of PGA reveals values ranging from 250 to 260 cm s −2 in the bedrock of the Umm Baraqa area during a 100 year interval (a suitable time window for buildings). Recommendations as to suitable types of buildings, considering the amount of shaking and the aquifer properties given in this study, are expected to be helpful for the Umm Baraqa area

  7. New Insights into Passive Margin Development from a Global Deep Seismic Reflection Dataset

    Science.gov (United States)

    Bellingham, Paul; Pindell, James; Graham, Rod; Horn, Brian

    2014-05-01

    The kinematic and dynamic evolution of the world's passive margins is still poorly understood. Yet the need to replace reserves, a high oil price and advances in drilling technology have pushed the international oil and gas industry to explore in the deep and ultra-deep waters of the continental margins. To support this exploration and help understand these margins, ION-GXT has acquired, processed and interpreted BasinSPAN surveys across many of the world's passive margins. Observations from these data lead us to consider the modes of subsidence and uplift at both volcanic and non-volcanic margins. At non-volcanic margins, it appears that frequently much of the subsidence post-dates major rifting and is not thermal in origin. Rather the subsidence is associated with extensional displacement on a major fault or shear zone running at least as deep as the continental Moho. We believe that the subsidence is structural and is probably associated with the pinching out (boudinage) of the Lower Crust so that the Upper crust effectively collapses onto the mantle. Eventually this will lead to the exhumation of the sub-continental mantle at the sea bed. Volcanic margins present more complex challenges both in terms of imaging and interpretation. The addition of volcanic and plutonic material into the system and dynamic effects all impact subsidence and uplift. However, we will show some fundamental observations regarding the kinematic development of volcanic margins and especially SDRs which demonstate that the process of collapse and the development of shear zones within and below the crust are also in existence at this type of margin. A model is presented of 'magma welds' whereby packages of SDRs collapse onto an emerging sub-crustal shear zone and it is this collapse which creates the commonly observed SDR geometry. Examples will be shown from East India, Newfoundland, Brazil, Argentina and the Gulf of Mexico.

  8. France's seismic zoning

    International Nuclear Information System (INIS)

    Mohammadioun, B.

    1997-01-01

    In order to assess the seismic hazard in France in relation to nuclear plant siting, the CEA, EDF and the BRGM (Mine and Geology Bureau) have carried out a collaboration which resulted in a seismic-tectonic map of France and a data base on seismic history (SIRENE). These studies were completed with a seismic-tectonic zoning, taking into account a very long period of time, that enabled a probabilistic evaluation of the seismic hazard in France, and that may be related to adjacent country hazard maps

  9. WSEAT Shock Testing Margin Assessment Using Energy Spectra Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Sisemore, Carl; Babuska, Vit; Booher, Jason

    2018-02-01

    Several programs at Sandia National Laboratories have adopted energy spectra as a metric to relate the severity of mechanical insults to structural capacity. The purpose being to gain insight into the system's capability, reliability, and to quantify the ultimate margin between the normal operating envelope and the likely system failure point -- a system margin assessment. The fundamental concern with the use of energy metrics was that the applicability domain and implementation details were not completely defined for many problems of interest. The goal of this WSEAT project was to examine that domain of applicability and work out the necessary implementation details. The goal of this project was to provide experimental validation for the energy spectra based methods in the context of margin assessment as they relate to shock environments. The extensive test results concluded that failure predictions using energy methods did not agree with failure predictions using S-N data. As a result, a modification to the energy methods was developed following the form of Basquin's equation to incorporate the power law exponent for fatigue damage. This update to the energy-based framework brings the energy based metrics into agreement with experimental data and historical S-N data.

  10. ACED devices and SECAF supports for the control of structure, pipe network and equipment behaviour at seismic movements in order to enhance the safety margin

    International Nuclear Information System (INIS)

    Serban, Viorel; Prisecaru, I.; Cretu, D.; Moldoveanu, T.

    2002-01-01

    In order to enhance the safety margin of structure, pipe networks and equipment associated to the existing NPPs, the classic consolidation solutions are very expensive and many times, impossible to be implemented. Structures, pipe networks, systems and equipment have geometries imposed by the basic construction requirements, operating and safety requirements and their modifications is not always possible. In order to enhance the strength capacity of (new or old) structures, systems and equipment mechanical devices with controlled elasticity and damping (ACED) have been designed, constructed and experimented. These devices are capable to support very large static loads over which dynamic loads (shock, vibration and seismic movements) overlap (which are damped). To increase the strength capacity of (new or existing) pipe networks and equipment connecting with pipes, SECAF supports that allow displacements from thermal expansions with low reaction force have been designed, constructed and experimented. SECAF supports are capable elastically to take permanent loads over which shocks, vibrations and seismic movements (which are damp) overlap. ACED devices and SECAF supports can be used to rehabilitate the existing NPPs with law financial costs and an increase of their strength capacity up to 100% under seismic movements, shocks and vibrations. ACED devices and SECAF supports do not require maintenance, are not affected by presence of a radiation field and their estimated service-life is similar to the NPPs

  11. On the importance of uncertain factors in seismic fragility assessment

    International Nuclear Information System (INIS)

    Borgonovo, E.; Zentner, I.; Pellegri, A.; Tarantola, S.; Rocquigny, E. de

    2013-01-01

    This paper addresses the definition of importance measures for helping the modeller to detect the factors on which to focus modelling activity and data collection in seismic fragility analysis. We study sensitivity measures consistent with the decision-support criteria of interest, namely, the (mean) fragility curve and the “High Confidence of Low Probability of Failure” (HCLPF) value. The importance measures are obtained analytically for the EPRI safety factor method, which is nowadays used worldwide for seismic risk assessment of nuclear plants. We illustrate and discuss the use of both variance-based and CDF-based importance measures in the application to two case studies, the first analytical and based on the EPRI method, the second numerical.

  12. The ocean-continent transition along the NW Moroccan margin - A new insight

    Science.gov (United States)

    Block, M.; Reichert, C.; Berglar, K.; Schnabel, M.; Klingelhoefer, F.; Schnurle, P.

    2012-04-01

    In a joint effort a marine geoscientific survey off Morocco was conducted by BGR and Ifremer onboard the French R/V L'ATALANTE (MIRROR cruise in 2011) providing two grids of seismic profiles. In this paper we refer to the multi-channel seismic (MCS) reflection data of leg 2 (southern grid) between the latitudes of 30.5° and 33° N with a total length of 1,391 km. Basic objectives included to image the structure of the crust and to test rifting models in order to understand the nature of the continental margin of Morocco as well as the opening process of the Atlantic Ocean between NW Africa and Canada. Already an initial interpretation of the MCS data enabled the identification of major seismic unconformities and sequences, and their correlation with the two existing DSDP wells 415 and 416 revealing more details about the continent-ocean transition and its function in the plate tectonic history. Two main MCS profiles of the southern grid, which are spanning 300 km each, are running perpendicular to the slope, and traverse the shelf edge/break, the slope, the Essaouira Rise, and the Agadir Canyon, ending just over the abyssal plain. They are crossing three different structural units, a zone of rifted continental margin (Zone 1), a zone of initial seafloor spreading (Zone 2), and a zone of regular seafloor spreading as well as post-Cretaceous igneous activity (Zone 3). Zone 1 is composed (i) of huge rotated basement blocks located under the shelf and the uppermost slope, and (ii) of striking salt domes at the lowermost slope. Zone 2 is characterized by a sub-basement reflector with overlying tilted basement blocks. The sub-basement reflector trends generally horizontal and appears to be a detachment fault. At the seaward end of the profiles a Zone 3 can be distinguished. Its basement is imaged by reflectors typical for oceanic crust though they are only locally recognizable. In this zone volcanic remnants dominate the sedimentary record expressed by seismic images of

  13. Shear-wave velocity of marine sediments offshore Taiwan using ambient seismic noise

    Science.gov (United States)

    Lin, Yu-Tse; Lin, Jing-Yi; Kuo-Chen, Hao; Yeh, Yi-Chin; Cheng, Win-Bin

    2017-04-01

    Seismic ambient noise technology has many advantages over the traditional two-station method. The most important one is that noise is happening all the time and it can be widely and evenly distributed. Thus, the Green's Function of any station pair can be obtained through the data cross-correlation process. Many related studies have been performed to estimate the velocity structures based on the inland area. Only a few studies were reported for the marine area due to the relatively shorter recording time of ocean bottom seismometers (OBS) deployment and the high cost of the marine experiment. However, the understanding about the shear-wave velocity (Vs) of the marine sediments is very crucial for the hazard assessment related to submarine landslides, particularly with the growing of submarine resources exploration. In this study, we applied the ambient noise technique to four OBS seismic networks located offshore Taiwan in the aim of getting more information about the noise sources and having the preliminary estimation for the Vs of the marine sediments. Two of the seismic networks were deployed in the NE part of Taiwan, near the Ryukyu subduction system, whereas the others were in the SW area, on the continental margin rich in gas hydrate. Generally, ambient seismic noise could be associated with wind, ocean waves, rock fracturing and anthropogenic activity. In the southwestern Taiwan, the cross-correlation function obtained from two seismic networks indicate similar direction, suggestion that the source from the south part of the network could be the origin of the noise. However, the two networks in the northeastern Taiwan show various source direction, which could be caused by the abrupt change of bathymetry or the volcanic degassing effect frequently observed by the marine geophysical method in the area. The Vs determined from the dispersion curve shows a relatively higher value for the networks in the Okinawa Trough (OT) off NE Taiwan than that in the

  14. Structural inversion in the northern South China Sea continental margin and its tectonic implications

    Directory of Open Access Journals (Sweden)

    Chin-Da Huang

    2017-01-01

    Full Text Available The northern South China Sea (SCS continental margin was proposed to be an active margin during the Mesozoic. However, only a few papers discussed the Mesozoic structural evolution in this region. Here, we provide information based on the seismic profile interpretations with age control from biostratigraphic studies and detrital zircon U-Pb dates of well MZ-1-1 in the western Dongsha-Penghu Uplift of the northern SCS continental margin. The industrial seismic profiles reveal evidence for structural inversion as represented by folds and high-angle reverse faults, formed by reactivation of pre-existing normal faults. The inversion event likely started after the Early Cretaceous, and developed in Late Cretaceous, but ceased before the Cenozoic. The areal extent of the structural inversion was restricted in the western Dongsha-Penghu Uplift and was approximately 100 km in width. Based on the paleogeographic reconstruction of SCS, the structural inversion was likely formed by a collision between the seamount (volcanic islands swarm of the current North Palawan block (mainly the Calamian Islands and the northern SCS continental margin around Late Cretaceous.

  15. Application-driven ground motion prediction equation for seismic hazard assessments in non-cratonic moderate-seismicity areas

    Science.gov (United States)

    Bindi, D.; Cotton, F.; Kotha, S. R.; Bosse, C.; Stromeyer, D.; Grünthal, G.

    2017-09-01

    We present a ground motion prediction equation (GMPE) for probabilistic seismic hazard assessments (PSHA) in low-to-moderate seismicity areas, such as Germany. Starting from the NGA-West2 flat-file (Ancheta et al. in Earthquake Spectra 30:989-1005, 2014), we develop a model tailored to the hazard application in terms of data selection and implemented functional form. In light of such hazard application, the GMPE is derived for hypocentral distance (along with the Joyner-Boore one), selecting recordings at sites with vs30 ≥ 360 m/s, distances within 300 km, and magnitudes in the range 3 to 8 (being 7.4 the maximum magnitude for the PSHA in the target area). Moreover, the complexity of the considered functional form is reflecting the availability of information in the target area. The median predictions are compared with those from the NGA-West2 models and with one recent European model, using the Sammon's map constructed for different scenarios. Despite the simplification in the functional form, the assessed epistemic uncertainty in the GMPE median is of the order of those affecting the NGA-West2 models for the magnitude range of interest of the hazard application. On the other hand, the simplification of the functional form led to an increment of the apparent aleatory variability. In conclusion, the GMPE developed in this study is tailored to the needs for applications in low-to-moderate seismic areas and for short return periods (e.g., 475 years); its application in studies where the hazard is involving magnitudes above 7.4 and for long return periods is not advised.

  16. Seismic reliability assessment of RC structures including soil–structure interaction using wavelet weighted least squares support vector machine

    International Nuclear Information System (INIS)

    Khatibinia, Mohsen; Javad Fadaee, Mohammad; Salajegheh, Javad; Salajegheh, Eysa

    2013-01-01

    An efficient metamodeling framework in conjunction with the Monte-Carlo Simulation (MCS) is introduced to reduce the computational cost in seismic reliability assessment of existing RC structures. In order to achieve this purpose, the metamodel is designed by combining weighted least squares support vector machine (WLS-SVM) and a wavelet kernel function, called wavelet weighted least squares support vector machine (WWLS-SVM). In this study, the seismic reliability assessment of existing RC structures with consideration of soil–structure interaction (SSI) effects is investigated in accordance with Performance-Based Design (PBD). This study aims to incorporate the acceptable performance levels of PBD into reliability theory for comparing the obtained annual probability of non-performance with the target values for each performance level. The MCS method as the most reliable method is utilized to estimate the annual probability of failure associated with a given performance level in this study. In WWLS-SVM-based MCS, the structural seismic responses are accurately predicted by WWLS-SVM for reducing the computational cost. To show the efficiency and robustness of the proposed metamodel, two RC structures are studied. Numerical results demonstrate the efficiency and computational advantages of the proposed metamodel for the seismic reliability assessment of structures. Furthermore, the consideration of the SSI effects in the seismic reliability assessment of existing RC structures is compared to the fixed base model. It shows which SSI has the significant influence on the seismic reliability assessment of structures.

  17. The Maule, 2010, earthquake - geophysical and kinematic observations of the South American margin prior to the earthquake (Invited)

    Science.gov (United States)

    Oncken, O.; Haberland, C. A.; Moreno, M.; Melnick, D.; Tilmann, F.; Tipteq Research Groups

    2010-12-01

    Accumulation of deformation at convergent plate margins is recently identified to be highly discontinuous and transient in nature: silent slip events, non-volcanic tremors, afterslip, fault coupling and complex response patterns of the upper plate during a single event as well as across several seismic cycles have all been observed in various settings and combinations. Segments of convergent plate margins with high recurrence rates and at different stages of the rupture cycle like the Chilean margin offer an exceptional opportunity to study these features and their interaction resolving behaviour during the seismic cycle and over repeated cycles. A past (TIPTEQ) and several active international initiatives (Integrated Plate Boundary Observatory Chile; IPOC-network.org) address these goals with research groups from IPG Paris, Seismological Survey of Chile, Free University Berlin, Potsdam University, Hamburg University, IFM-GEOMAR Kiel, GFZ Potsdam, and Caltech (USA) employing an integrated plate boundary observatory and associated projects. Results from these studies allow us to define the preseismic state - with respect to the Maule eartghquake - of the margin system at the south Central Chilean convergent margin. Here, two major seismic events have occurred in adjoining segments (Valdivia 1960, Mw = 9.5; Maule 2010, Mw = 8.8) yielding observations from critical time windows of the seismic cycle in the same region. Seismic imaging and seismological data have allowed us to relocate major rupture hypocentres and to locate the geometry and properties of the seismogenic zone. The reflection seismic data exhibit well defined changes of reflectivity and Vp/Vs ratio along the plate interface that can be correlated with different parts of the coupling zone and its hanging wall as well as with changes during the seismic cycle. Observations suggest an important role of the hydraulic system, and of lateral variation of locking degree on subsequent rupture and aftershock

  18. Refer to AP1000 for discussing the betterment of seismic design of internal nuclear power plant

    International Nuclear Information System (INIS)

    Gong Zhenbang; Zhang Renyan

    2014-01-01

    As a reference technique of AP1000, This paper discussed the betterment of seismic design of nuclear power plant in three ways. (1) Establish design criteria and guidelines for protection from seismic interaction; (2) Nuclear power plant seismic design of eliminating or weaken operation-basis earthquake; (3) Develop the seismic margin analysis (SMA) of the nuclear power plant. These three aspect are frontier technology in internal seismic design of internal nuclear power plant, and also these three technology are related intimately. (authors)

  19. SEISMIC ANALYSIS FOR PRECLOSURE SAFETY

    Energy Technology Data Exchange (ETDEWEB)

    E.N. Lindner

    2004-12-03

    The purpose of this seismic preclosure safety analysis is to identify the potential seismically-initiated event sequences associated with preclosure operations of the repository at Yucca Mountain and assign appropriate design bases to provide assurance of achieving the performance objectives specified in the Code of Federal Regulations (CFR) 10 CFR Part 63 for radiological consequences. This seismic preclosure safety analysis is performed in support of the License Application for the Yucca Mountain Project. In more detail, this analysis identifies the systems, structures, and components (SSCs) that are subject to seismic design bases. This analysis assigns one of two design basis ground motion (DBGM) levels, DBGM-1 or DBGM-2, to SSCs important to safety (ITS) that are credited in the prevention or mitigation of seismically-initiated event sequences. An application of seismic margins approach is also demonstrated for SSCs assigned to DBGM-2 by showing a high confidence of a low probability of failure at a higher ground acceleration value, termed a beyond-design basis ground motion (BDBGM) level. The objective of this analysis is to meet the performance requirements of 10 CFR 63.111(a) and 10 CFR 63.111(b) for offsite and worker doses. The results of this calculation are used as inputs to the following: (1) A classification analysis of SSCs ITS by identifying potential seismically-initiated failures (loss of safety function) that could lead to undesired consequences; (2) An assignment of either DBGM-1 or DBGM-2 to each SSC ITS credited in the prevention or mitigation of a seismically-initiated event sequence; and (3) A nuclear safety design basis report that will state the seismic design requirements that are credited in this analysis. The present analysis reflects the design information available as of October 2004 and is considered preliminary. The evolving design of the repository will be re-evaluated periodically to ensure that seismic hazards are properly

  20. SEISMIC ANALYSIS FOR PRECLOSURE SAFETY

    International Nuclear Information System (INIS)

    E.N. Lindner

    2004-01-01

    The purpose of this seismic preclosure safety analysis is to identify the potential seismically-initiated event sequences associated with preclosure operations of the repository at Yucca Mountain and assign appropriate design bases to provide assurance of achieving the performance objectives specified in the Code of Federal Regulations (CFR) 10 CFR Part 63 for radiological consequences. This seismic preclosure safety analysis is performed in support of the License Application for the Yucca Mountain Project. In more detail, this analysis identifies the systems, structures, and components (SSCs) that are subject to seismic design bases. This analysis assigns one of two design basis ground motion (DBGM) levels, DBGM-1 or DBGM-2, to SSCs important to safety (ITS) that are credited in the prevention or mitigation of seismically-initiated event sequences. An application of seismic margins approach is also demonstrated for SSCs assigned to DBGM-2 by showing a high confidence of a low probability of failure at a higher ground acceleration value, termed a beyond-design basis ground motion (BDBGM) level. The objective of this analysis is to meet the performance requirements of 10 CFR 63.111(a) and 10 CFR 63.111(b) for offsite and worker doses. The results of this calculation are used as inputs to the following: (1) A classification analysis of SSCs ITS by identifying potential seismically-initiated failures (loss of safety function) that could lead to undesired consequences; (2) An assignment of either DBGM-1 or DBGM-2 to each SSC ITS credited in the prevention or mitigation of a seismically-initiated event sequence; and (3) A nuclear safety design basis report that will state the seismic design requirements that are credited in this analysis. The present analysis reflects the design information available as of October 2004 and is considered preliminary. The evolving design of the repository will be re-evaluated periodically to ensure that seismic hazards are properly

  1. Geomorphology and Neogene tectonic evolution of the Palomares continental margin (Western Mediterranean)

    Science.gov (United States)

    Gómez de la Peña, Laura; Gràcia, Eulàlia; Muñoz, Araceli; Acosta, Juan; Gómez-Ballesteros, María; R. Ranero, César; Uchupi, Elazar

    2016-10-01

    The Palomares continental margin is located in the southeastern part of Spain. The margin main structure was formed during Miocene times, and it is currently part of the wide deformation zone characterizing the region between the Iberian and African plates, where no well-defined plate boundary occurs. The convergence between these two plates is here accommodated by several structures, including the left lateral strike-slip Palomares Fault. The region is characterized by sparse, low to moderate magnitude (Mw shallow instrumental earthquakes, although large historical events have also occurred. To understand the recent tectonic history of the margin we analyze new high-resolution multibeam bathymetry data and re-processed three multichannel seismic reflection profiles crossing the main structures. The analysis of seafloor morphology and associated subsurface structure provides new insights of the active tectonic features of the area. In contrast to other segments of the southeastern Iberian margin, the Palomares margin contains numerous large and comparatively closely spaced canyons with heads that reach near the coast. The margin relief is also characterized by the presence of three prominent igneous submarine ridges that include the Aguilas, Abubacer and Maimonides highs. Erosive processes evidenced by a number of scars, slope failures, gullies and canyon incisions shape the present-day relief of the Palomares margin. Seismic images reveal the deep structure distinguishing between Miocene structures related to the formation of the margin and currently active features, some of which may reactivate inherited structures. The structure of the margin started with an extensional phase accompanied by volcanic accretion during the Serravallian, followed by a compressional pulse that started during the Latemost Tortonian. Nowadays, tectonic activity offshore is subdued and limited to few, minor faults, in comparison with the activity recorded onshore. The deep Algero

  2. Seismic re-evaluation of Mochovce nuclear power plant. Seismic reevaluation of civil structures

    International Nuclear Information System (INIS)

    Podrouzek, P.

    1997-01-01

    In this contribution, an overview of seismic design procedures used for reassessment of seismic safety of civil structures at the Mochovce NPP in Slovak Republic presented. As an introduction, the objectives, history, and current status of seismic design of the NPP have been explained. General philosophy of design methods, seismic classification of buildings, seismic data, calculation methods, assumptions on structural behavior under seismic loading and reliability assessment were described in detail in the subsequent section. Examples of calculation models used for dynamic calculations of seismic response are given in the last section. (author)

  3. Causality between expansion of seismic cloud and maximum magnitude of induced seismicity in geothermal field

    Science.gov (United States)

    Mukuhira, Yusuke; Asanuma, Hiroshi; Ito, Takatoshi; Häring, Markus

    2016-04-01

    Occurrence of induced seismicity with large magnitude is critical environmental issues associated with fluid injection for shale gas/oil extraction, waste water disposal, carbon capture and storage, and engineered geothermal systems (EGS). Studies for prediction of the hazardous seismicity and risk assessment of induced seismicity has been activated recently. Many of these studies are based on the seismological statistics and these models use the information of the occurrence time and event magnitude. We have originally developed physics based model named "possible seismic moment model" to evaluate seismic activity and assess seismic moment which can be ready to release. This model is totally based on microseismic information of occurrence time, hypocenter location and magnitude (seismic moment). This model assumes existence of representative parameter having physical meaning that release-able seismic moment per rock volume (seismic moment density) at given field. Seismic moment density is to be estimated from microseismic distribution and their seismic moment. In addition to this, stimulated rock volume is also inferred by progress of microseismic cloud at given time and this quantity can be interpreted as the rock volume which can release seismic energy due to weakening effect of normal stress by injected fluid. Product of these two parameters (equation (1)) provide possible seismic moment which can be released from current stimulated zone as a model output. Difference between output of this model and observed cumulative seismic moment corresponds the seismic moment which will be released in future, based on current stimulation conditions. This value can be translated into possible maximum magnitude of induced seismicity in future. As this way, possible seismic moment can be used to have feedback to hydraulic stimulation operation in real time as an index which can be interpreted easily and intuitively. Possible seismic moment is defined as equation (1), where D

  4. Crustal structure and tectonic deformation of the southern Ecuadorian margin

    Science.gov (United States)

    Calahorrano, Alcinoe; Collot, Jean-Yves; Sage, Françoise; Ranero, César R.

    2010-05-01

    Multichannel seismic lines acquired during the SISTEUR cruise (2000) provide new constraints on the structure and deformation of the subduction zone at the southern Ecuadorian margin, from the deformation front to the continental shelf of the Gulf of Guayaquil. The pre-stack depth migrated images allows to characterise the main structures of the downgoing and overriding plates and to map the margin stratigraphy in order to propose a chronology of the deformation, by means of integrating commercial well data and industry seismic lines located in the gulf area. The 100-km-long seismic lines show the oceanic Nazca plate underthrusting the South American plate, as well as the subduction channel and inter-plate contact from the deformation front to about 90 km landward and ~20 km depth. Based on seismic structure we identify four upper-plate units, consisting of basement and overlaying sedimentary sequences A, B and C. The sedimentary cover varies along the margin, being few hundreds of meters thick in the lower and middle slope, and ~2-3 km thick in the upper slope. Exceptionally, a ~10-km -thick basin, here named Banco Peru basin, is located on the upper slope at the southernmost part of the gulf. This basin seems to be the first evidence of the Gulf of Guayaquil opening resulting from the NE escaping of the North Andean Block. Below the continental shelf, thick sedimentary basins of ~6 to 8 km occupy most of the gulf area. Tectonic deformation across most of the upper-plate is dominated by extensional regime, locally disturbed by diapirism. Compression evidences are restricted to the deformation front and surrounding areas. Well data calibrating the seismic profiles indicate that an important portion of the total thickness of the sedimentary coverage of the overriding plate are Miocene or older. The data indicate the extensional deformation resulting from the NE motion of the North Andean Block and the opening of the Gulf of Guayaquil, evolves progressively in age

  5. Potential seismic structural failure modes associated with the Zion Nuclear Plant. Seismic safety margins research program (Phase I). Project VI. Fragilities

    International Nuclear Information System (INIS)

    1979-10-01

    The Zion 1 and 2 Nuclear Power Plant consists of a number of structures. The most important of these from the viewpoint of safety are the containment buildings, the auxiliary building, the turbine building, and the crib house (or intake structure). The evaluation of the potential seismic failure modes and determination of the ultimate seismic capacity of the structures is a complex undertaking which will require a large number of detailed calculations. As the first step in this evaluation, a number of potential modes of structural failure have been determined and are discussed. The report is principally directed towards seismically induced failure of structures. To some extent, modes involving soil foundation failures are discussed in so far as they affect the buildings. However, failure modes involving soil liquefaction, surface faulting, tsunamis, etc., are considered outside the scope of this evaluation

  6. On-line fatigue monitoring and margins probabilistic assessment

    International Nuclear Information System (INIS)

    Fournier, I.; Morilhat, P.

    1993-01-01

    An on-line computer aided system has been developed by Electricite de France, the French utility, for a fatigue monitoring of critical locations in the nuclear steam supply system. This tool, called fatiguemeter, includes as input data only existing plant parameters and is based on some conservative assumptions at several steps of the damage assessment (thermal boundary conditions, stress computation...). This paper presents recent developments performed toward a better assessing of margins involved in the complete analysis. The methodology is enlightened with an example showing the influence of plant parameters incertitude on the final stress computed at a PWR 900 MW unit pressurizer surge line nozzle. (author)

  7. Seismic fragility of nuclear power plant components. Phase I

    International Nuclear Information System (INIS)

    Bandyopadhyay, K.K.; Hofmayer, C.H.

    1986-06-01

    As part of the Component Fragility Research Program, sponsored by the US Nuclear Regulatory Commission, BNL is involved in establishing seismic fragility levels for various nuclear power plant equipment by identifying, collecting and analyzing existing test data from various sources. In Phase I of this program, BNL has reviewed approximately seventy test reports to collect fragility or high level test data for switchgears, motor control centers and similar electrical cabinets, valve actuators and numerous electrical devices of various manufacturers and models. This report provides an assessment and evaluation of the data collected in Phase I. The fragility data for medium voltage and low voltage switchgears and motor control centers are analyzed using the test response spectra (TRS) as a measure of the fragility level. The analysis reveals that fragility levels can best be described by a group of TRS curves corresponding to various failure modes. The lower-bound curve indicates the initiation of malfunctioning or structural damage; whereas, the upper-bound curve corresponds to overall failure of the equipment based on known failure modes. High level test data for some components are included in the report. These data indicate that some components are inherently strong and do not exhibit any failure mode even when tested at the vibration limit of a shake table. The common failure modes are identified in the report. The fragility levels determined in this report have been compared with those used in the PRA and Seismic Margin Studies. It appears that the BNL data better correlate with the HCLPF (High Confidence of a Low Probability of Failure) level used in Seismic Margin Studies and can improve this level as high as 60% for certain applications. Specific recommendations are provided for proper application of BNL fragility data to other studies

  8. Probabilistic seismic hazard assessments of Sabah, east Malaysia: accounting for local earthquake activity near Ranau

    Science.gov (United States)

    Khalil, Amin E.; Abir, Ismail A.; Ginsos, Hanteh; Abdel Hafiez, Hesham E.; Khan, Sohail

    2018-02-01

    Sabah state in eastern Malaysia, unlike most of the other Malaysian states, is characterized by common seismological activity; generally an earthquake of moderate magnitude is experienced at an interval of roughly every 20 years, originating mainly from two major sources, either a local source (e.g. Ranau and Lahad Dato) or a regional source (e.g. Kalimantan and South Philippines subductions). The seismicity map of Sabah shows the presence of two zones of distinctive seismicity, these zones are near Ranau (near Kota Kinabalu) and Lahad Datu in the southeast of Sabah. The seismicity record of Ranau begins in 1991, according to the international seismicity bulletins (e.g. United States Geological Survey and the International Seismological Center), and this short record is not sufficient for seismic source characterization. Fortunately, active Quaternary fault systems are delineated in the area. Henceforth, the seismicity of the area is thus determined as line sources referring to these faults. Two main fault systems are believed to be the source of such activities; namely, the Mensaban fault zone and the Crocker fault zone in addition to some other faults in their vicinity. Seismic hazard assessments became a very important and needed study for the extensive developing projects in Sabah especially with the presence of earthquake activities. Probabilistic seismic hazard assessments are adopted for the present work since it can provide the probability of various ground motion levels during expected from future large earthquakes. The output results are presented in terms of spectral acceleration curves and uniform hazard curves for periods of 500, 1000 and 2500 years. Since this is the first time that a complete hazard study has been done for the area, the output will be a base and standard for any future strategic plans in the area.

  9. Risk assessment and early warning systems for industrial facilities in seismic zones

    International Nuclear Information System (INIS)

    Salzano, Ernesto; Garcia Agreda, Anita; Di Carluccio, Antonio; Fabbrocino, Giovanni

    2009-01-01

    Industrial equipments and systems can suffer structural damage when hit by earthquakes, so that accidental scenarios as fire, explosion and dispersion of toxic substances can take place. As a result, overall damage to people, environment and properties increases. The present paper deals with seismic risk analysis of industrial facilities where atmospheric storage tanks (anchored or unanchored to ground), horizontal pressurised tanks, reactors and pumps are installed. Simplified procedures and methodologies based on historical database and literature data on natural-technological (Na-Tech) accidents for seismic risk assessment are discussed. Equipment-specific fragility curves have been thus derived depending on a single earthquake measure, peak ground acceleration (PGA). Fragility parameters have been then transformed to linear probit coefficients in order to obtain reliable threshold values for earthquake intensity measure, both for structural damage and loss of containment. These threshold values are of great interest when development of active and passive mitigation actions and systems, safety management, and the implementation of early warning system are concerned. The approach is general and can be implemented in any available code or procedure for risk assessment. Some results of seismic analysis of atmospheric storage tanks are also presented for validation.

  10. Critical assessment of seismic and geomechanics literature related to a high-level nuclear waste underground repository

    Energy Technology Data Exchange (ETDEWEB)

    Kana, D.D.; Vanzant, B.W.; Nair, P.K. [Southwest Research Inst., San Antonio, TX (USA). Center for Nuclear Waste Regulatory Analyses; Brady, B.H.G. [ITASCA Consulting Group, Inc., Minneapolis, MN (USA)

    1991-06-01

    A comprehensive literature assessment has been conducted to determine the nature and scope of technical information available to characterize the seismic performance of an underground repository and associated facilities. Significant deficiencies were identified in current practices for prediction of seismic response of underground excavations in jointed rock. Conventional analytical methods are based on a continuum representation of the host rock mass. Field observations and laboratory experiments indicate that, in jointed rock, the behavior of the joints controls the overall performance of underground excavations. Further, under repetitive seismic loading, shear displacement develops progressively at block boundaries. Field observations correlating seismicity and groundwater conditions have provided significant information on hydrological response to seismic events. However, lack of a comprehensive model of geohydrological response to seismicity has limited the transportability conclusions from field observations. Based on the literature study, matters requiring further research in relation to the Yucca Mountain repository are identified. The report focuses on understanding seismic processes in fractured tuff, and provides a basis for work on the geohydrologic response of a seismically disturbed rock mass. 220 refs., 43 figs., 11 tabs.

  11. Critical assessment of seismic and geomechanics literature related to a high-level nuclear waste underground repository

    International Nuclear Information System (INIS)

    Kana, D.D.; Vanzant, B.W.; Nair, P.K.

    1991-06-01

    A comprehensive literature assessment has been conducted to determine the nature and scope of technical information available to characterize the seismic performance of an underground repository and associated facilities. Significant deficiencies were identified in current practices for prediction of seismic response of underground excavations in jointed rock. Conventional analytical methods are based on a continuum representation of the host rock mass. Field observations and laboratory experiments indicate that, in jointed rock, the behavior of the joints controls the overall performance of underground excavations. Further, under repetitive seismic loading, shear displacement develops progressively at block boundaries. Field observations correlating seismicity and groundwater conditions have provided significant information on hydrological response to seismic events. However, lack of a comprehensive model of geohydrological response to seismicity has limited the transportability conclusions from field observations. Based on the literature study, matters requiring further research in relation to the Yucca Mountain repository are identified. The report focuses on understanding seismic processes in fractured tuff, and provides a basis for work on the geohydrologic response of a seismically disturbed rock mass. 220 refs., 43 figs., 11 tabs

  12. Crustal architecture of the eastern margin of Japan Sea: back-arc basin opening and contraction

    Science.gov (United States)

    No, T.; Sato, T.; Takahashi, N.; Kodaira, S.; Kaneda, Y.; Ishiyama, T.; Sato, H.

    2012-12-01

    Although large earthquakes such as the 1964 Niigata earthquake (M 7.5), 1983 Nihonkai-Chubu earthquake (M 7.8), and 1993 Hokkaido Nansei-Oki earthquake (M 7.8) have caused large amounts of damage to the eastern margin of the Japan Sea, a substantial number of seismic studies have been conducted for the seismogenic zone on the Pacific Ocean side of Japan. In addition, the detail of the source fault model for the eastern margin of the Japan Sea is not well defined for all cases. This highlights the need for further studies to investigate seismic imaging. Therefore, we have collaborated with other Japanese research institutions for a project titled "Priority Investigations of Strain Concentration Areas" (which is funded by Special Coordination Funds for Promoting Science and Technology, Japan). This project has conducted seismic surveys from 2009 to 2012 using the deep-sea research vessel, Kairei, from the Japan Agency for Marine-Earth Science and Technology. There is a strain concentration area in the eastern part of the survey area (Okamura et al., 1995). The western part of the survey area includes the Yamato Basin and Japan Basin. It is very important to study the crustal structure in the seismotectonic studies of the eastern margin of the Japan Sea. We conducted a marine seismic survey by using a multichannel seismic (MCS) system and ocean bottom seismographs (OBSs) along the eastern margin of the Japan Sea. Seismic data were acquired along 42 lines with a total length of approximately 9,000 km. The following results were obtained from seismic imaging. On the basis of the results of the MCS imaging, active reverse faults and folds were observed in the margin of the Toyama Trough; however, the sedimentary layers in the trough were flat. In the sedimentary layers and crusts of the Sado Ridge, Mogami Trough, and source area of the 1964 Niigata earthquake located north of the Sado Island, greater deformation was observed. The deformation weakened toward the Yamato

  13. Interpretation of shallow crustal structure of the Imperial Valley, California, from seismic reflection profiles

    Energy Technology Data Exchange (ETDEWEB)

    Severson, L.K.

    1987-05-01

    Eight seismic reflection profiles (285 km total length) from the Imperial Valley, California, were provided to CALCRUST for reprocessing and interpretation. Two profiles were located along the western margin of the valley, five profiles were situated along the eastern margin and one traversed the deepest portion of the basin. These data reveal that the central basin contains a wedge of highly faulted sediments that thins to the east. Most of the faulting is strike-slip but there is evidence for block rotations on the scale of 5 to 10 kilometers within the Brawley Seismic Zone. These lines provide insight into the nature of the east and west edges of the Imperial Valley. The basement at the northwestern margin of the valley, to the north of the Superstition Hills, has been normal-faulted and blocks of basement material have ''calved'' into the trough. A blanket of sediments has been deposited on this margin. To the south of the Superstition Hills and Superstition Mountain, the top of the basement is a detachment surface that dips gently into the basin. This margin is also covered by a thick sequence sediments. The basement of the eastern margin consists of metamorphic rocks of the upper plate of the Chocolate Mountain Thrust system underlain by the Orocopia Schist. These rocks dip to the southeast and extend westward to the Sand Hills Fault but do not appear to cross it. Thus, the Sand Hills Fault is interpreted to be the southern extension of the San Andreas Fault. North of the Sand Hills Fault the East Highline Canal seismicity lineament is associated with a strike-slip fault and is probably linked to the Sand Hills Fault. Six geothermal areas crossed by these lines, in agreement with previous studies of geothermal reservoirs, are associated with ''faded'' zones, Bouguer gravity and heat flow maxima, and with higher seismic velocities than surrounding terranes.

  14. Seismicity and seismogenic structures of Central Apennines (Italy): constraints on the present-day stress field from focal mechanisms - The SLAM (Seismicity of Lazio-Abruzzo and Molise) project

    Science.gov (United States)

    Frepoli, Alberto; Battista Cimini, Giovanni; De Gori, Pasquale; De Luca, Gaetano; Marchetti, Alessandro; Montuori, Caterina; Pagliuca, Nicola

    2016-04-01

    We present new results for the microseismic activity in the Central Apennines recorded from a total of 81seismic stations. The large number of recording sites derives from the combination of temporary and permanent seismic networks operating in the study region. Between January 2009 and October 2013 we recorded 6923 earthquakes with local magnitudes ML ranging from 0.1 to 4.8. We located hypocentres by using a refined 1D crustal velocity model. The majority of the hypocenters are located beneath the axes of the Apenninic chain, while the seismic activity observed along the peri-Tyrrhenian margin is lower. The seismicity extends to a depth of 32 km; the hypocentral depth distribution exhibits a pronounced peak of seismic energy release in the depth range between 8 and 20 km. During the observation period we recorded two major seismic swarms and one seismic sequence in the Marsica-Sorano area in which we have had the largest detected magnitude (ML = 4.8). Fault plane solutions for a total of 600 earthquakes were derived from P-polarities. This new data set consists of a number of focal plane solutions that is about four times the data so far available for regional stress field study. The majority of the focal mechanisms show predominantly normal fault solutions. T-axis trends are oriented NE-SW confirming that the area is in extension. We also derived the azimuths of the principal stress axes by inverting the fault plane solutions and calculated the direction of the maximum horizontal stress, which is mainly sub-vertical oriented. The study region has been historically affected by many strong earthquakes, some of them very destructive. This work can give an important contribution to the seismic hazard assessment in an area densely populated as the city of Rome which is distant around 60 km from the main seismogenic structures of Central Apennine.

  15. Magmatic development of the outer Vøring Margin

    Science.gov (United States)

    Breivik, Asbjorn; Faleide, Jan Inge; Mjelde, Rolf; Flueh, Ernst; Murai, Yoshio

    2013-04-01

    The Vøring Plateau off mid-Norway is a volcanic passive margin, located north of the East Jan Mayen Fracture Zone (EJMFZ). Large volumes of magmatic rocks were emplaced during Early Eocene margin formation. In 2003, an ocean bottom seismometer survey was acquired on the Vøring and Lofoten margins. One profile crosses from the Vøring Plateau to the Vøring Spur, an oceanic plateau north of the EJMFZ. The P-wave data were modeled by ray-tracing in a 2D velocity model of the crust. The process behind the excess magmatism can be estimated by comparing seismic velocity (VP) with igneous thickness (H). This profile and two other profiles farther north show a positive H-VP correlation, consistent with a hot mantle reservoir of finite extent under the margin at breakup. However, during the first two million years, magma production appears to be augmented by a secondary process. By 51-51.5 Ma melting may be caused by elevated mantle temperature alone. Seismic stratigraphy around the Vøring Spur shows at least two inversion events, with the main episode tentatively in the Upper Miocene, apparently through igneous growth to create the up to 15 km crustal thickness. The H-VP correlation of the spur is low, indicating constant and moderate-degree mantle melting not tied to the breakup magmatism. The admittance function between bathymetry and free-air gravity shows that the high is near local isostatic equilibrium, discounting that compressional flexure at the EJMFZ shaped the high. We also find no evidence for the proposed Early Eocene triple junction in the area.

  16. Seismic hazard assessment for Guam and the Northern Mariana Islands

    Science.gov (United States)

    Mueller, Charles S.; Haller, Kathleen M.; Luco, Nicholas; Petersen, Mark D.; Frankel, Arthur D.

    2012-01-01

    We present the results of a new probabilistic seismic hazard assessment for Guam and the Northern Mariana Islands. The Mariana island arc has formed in response to northwestward subduction of the Pacific plate beneath the Philippine Sea plate, and this process controls seismic activity in the region. Historical seismicity, the Mariana megathrust, and two crustal faults on Guam were modeled as seismic sources, and ground motions were estimated by using published relations for a firm-rock site condition. Maps of peak ground acceleration, 0.2-second spectral acceleration for 5 percent critical damping, and 1.0-second spectral acceleration for 5 percent critical damping were computed for exceedance probabilities of 2 percent and 10 percent in 50 years. For 2 percent probability of exceedance in 50 years, probabilistic peak ground acceleration is 0.94 gravitational acceleration at Guam and 0.57 gravitational acceleration at Saipan, 0.2-second spectral acceleration is 2.86 gravitational acceleration at Guam and 1.75 gravitational acceleration at Saipan, and 1.0-second spectral acceleration is 0.61 gravitational acceleration at Guam and 0.37 gravitational acceleration at Saipan. For 10 percent probability of exceedance in 50 years, probabilistic peak ground acceleration is 0.49 gravitational acceleration at Guam and 0.29 gravitational acceleration at Saipan, 0.2-second spectral acceleration is 1.43 gravitational acceleration at Guam and 0.83 gravitational acceleration at Saipan, and 1.0-second spectral acceleration is 0.30 gravitational acceleration at Guam and 0.18 gravitational acceleration at Saipan. The dominant hazard source at the islands is upper Benioff-zone seismicity (depth 40–160 kilometers). The large probabilistic ground motions reflect the strong concentrations of this activity below the arc, especially near Guam.

  17. Probabilistic tsunami hazard assessment considering time-lag of seismic event on Nankai trough

    International Nuclear Information System (INIS)

    Sugino, Hideharu; Sakagami, Masaharu; Ebisawa, Katsumi; Korenaga, Mariko

    2011-01-01

    In the area in front of Nankai trough, tsunami wave height may increase if tsunamis attacking from some wave sources overlap because of time-lag of seismic event on Nankai trough. To evaluation tsunami risk of the important facilities located in front of Nankai trough, we proposed the probabilistic tsunami hazard assessment considering uncertainty on time-lag of seismic event on Nankai trough and we evaluated the influence that the time-lag gave to tsunami hazard at the some representative points. (author)

  18. Challenges Ahead for Nuclear Facility Site-Specific Seismic Hazard Assessment in France: The Alternative Energies and the Atomic Energy Commission (CEA) Vision

    Science.gov (United States)

    Berge-Thierry, C.; Hollender, F.; Guyonnet-Benaize, C.; Baumont, D.; Ameri, G.; Bollinger, L.

    2017-09-01

    Seismic analysis in the context of nuclear safety in France is currently guided by a pure deterministic approach based on Basic Safety Rule ( Règle Fondamentale de Sûreté) RFS 2001-01 for seismic hazard assessment, and on the ASN/2/01 Guide that provides design rules for nuclear civil engineering structures. After the 2011 Tohohu earthquake, nuclear operators worldwide were asked to estimate the ability of their facilities to sustain extreme seismic loads. The French licensees then defined the `hard core seismic levels', which are higher than those considered for design or re-assessment of the safety of a facility. These were initially established on a deterministic basis, and they have been finally justified through state-of-the-art probabilistic seismic hazard assessments. The appreciation and propagation of uncertainties when assessing seismic hazard in France have changed considerably over the past 15 years. This evolution provided the motivation for the present article, the objectives of which are threefold: (1) to provide a description of the current practices in France to assess seismic hazard in terms of nuclear safety; (2) to discuss and highlight the sources of uncertainties and their treatment; and (3) to use a specific case study to illustrate how extended source modeling can help to constrain the key assumptions or parameters that impact upon seismic hazard assessment. This article discusses in particular seismic source characterization, strong ground motion prediction, and maximal magnitude constraints, according to the practice of the French Atomic Energy Commission. Due to increases in strong motion databases in terms of the number and quality of the records in their metadata and the uncertainty characterization, several recently published empirical ground motion prediction models are eligible for seismic hazard assessment in France. We show that propagation of epistemic and aleatory uncertainties is feasible in a deterministic approach, as in a

  19. Seismic rupture modelling, strong motion prediction and seismic hazard assessment: fundamental and applied approaches; Modelisation de la rupture sismique, prediction du mouvement fort, et evaluation de l'alea sismique: approches fondamentale et appliquee

    Energy Technology Data Exchange (ETDEWEB)

    Berge-Thierry, C

    2007-05-15

    The defence to obtain the 'Habilitation a Diriger des Recherches' is a synthesis of the research work performed since the end of my Ph D. thesis in 1997. This synthesis covers the two years as post doctoral researcher at the Bureau d'Evaluation des Risques Sismiques at the Institut de Protection (BERSSIN), and the seven consecutive years as seismologist and head of the BERSSIN team. This work and the research project are presented in the framework of the seismic risk topic, and particularly with respect to the seismic hazard assessment. Seismic risk combines seismic hazard and vulnerability. Vulnerability combines the strength of building structures and the human and economical consequences in case of structural failure. Seismic hazard is usually defined in terms of plausible seismic motion (soil acceleration or velocity) in a site for a given time period. Either for the regulatory context or the structural specificity (conventional structure or high risk construction), seismic hazard assessment needs: to identify and locate the seismic sources (zones or faults), to characterize their activity, to evaluate the seismic motion to which the structure has to resist (including the site effects). I specialized in the field of numerical strong-motion prediction using high frequency seismic sources modelling and forming part of the IRSN allowed me to rapidly working on the different tasks of seismic hazard assessment. Thanks to the expertise practice and the participation to the regulation evolution (nuclear power plants, conventional and chemical structures), I have been able to work on empirical strong-motion prediction, including site effects. Specific questions related to the interface between seismologists and structural engineers are also presented, especially the quantification of uncertainties. This is part of the research work initiated to improve the selection of the input ground motion in designing or verifying the stability of structures. (author)

  20. Development of system design and seismic performance evaluation for reactor pool working platform of a research reactor

    International Nuclear Information System (INIS)

    Kwag, Shinyoung; Lee, Jong-Min; Oh, Jinho; Ryu, Jeong-Soo

    2014-01-01

    Highlights: • Design of reactor pool working platform (RPWP) is newly proposed for an open-tank-in-pool type research reactor. • Main concept of RPWP is to minimize the pool top radiation level. • Framework for seismic performance evaluation of nuclear SSCs in a deterministic and a probabilistic manner is proposed. • Structural integrity, serviceability, and seismic margin of the RPWP are evaluated during and after seismic events. -- Abstract: The reactor pool working platform (RPWP) has been newly designed for an open-tank-in-pool type research reactor, and its seismic response, structural integrity, serviceability, and seismic margin have been evaluated during and after seismic events in this paper. The main important concept of the RPWP is to minimize the pool top radiation level by physically covering the reactor pool of the open-tank-in-pool type research reactor and suppressing the rise of flow induced by the primary cooling system. It is also to provide easy handling of the irradiated objects under the pool water by providing guide tubes and refueling cover to make the radioisotopes irradiated and protect the reactor structure assembly. For this concept, the new three dimensional design model of the RPWP is established for manufacturing, installation and operation, and the analytical model is developed to analyze the seismic performance. Since it is submerged under and influenced by water, the hydrodynamic effect is taken into account by using the hydrodynamic added mass method. To investigate the dynamic characteristics of the RPWP, a modal analysis of the developed analytical model is performed. To evaluate the structural integrity and serviceability of the RPWP, the response spectrum analysis and response time history analysis have been performed under the static load and the seismic load of a safe shutdown earthquake (SSE). Their stresses are analyzed for the structural integrity. The possibility of an impact between the RPWP and the most

  1. Market modeling for assessment of demand side programs using the marginal cost

    International Nuclear Information System (INIS)

    Papastamatiou, Panagiotis; Psarras, John

    2000-01-01

    Demand side management is nowadays considered as a functional step in the energy planning process. The criteria proposed for the assessment of the demand side programs (DSPs) are usually based on the balance between the marginal supply cost and the mean DSP cost. These criteria could not support the allotting of the invested capital to incentives for the consumers and advertising. This paper presents a methodology to support the utility planning at this point with more reliability. It proposes the expansion of the assessment criteria with the use of the marginal cost of the DSP. For the calculation of the DSP marginal cost, a dynamic model is developed and it is used for the simulation of the penetration of a DS Program. Using the 'least-cost' criterion as the decision rule for the simulation, the planner has a distribution of the available investment capital throughout the whole planning period. The use of the 'most-value' criterion supports the separation of the invested capital between incentives for the consumers and supportive expenses, e.g. advertising, marketing cost, etc. (Author)

  2. Seismic Isolation Studies and Applications for Nuclear Facilities

    International Nuclear Information System (INIS)

    Choun, Young Sun

    2005-01-01

    Seismic isolation, which is being used worldwide for buildings, is a well-known technology to protect structures from destructive earthquakes. In spite of the many potential advantages of a seismic isolation, however, the applications of a seismic isolation to nuclear facilities have been very limited because of a lack of sufficient knowledge about the isolation practices. The most important advantage of seismic isolation applications in nuclear power plants is that the safety and reliability of the plants can be remarkably improved through the standardization of the structures and equipment regardless of the seismic conditions of the sites. The standardization of structures and equipment will reduce the capital cost and design/construction schedule for future plants. Also, a seismic isolation can facilitate decoupling of the design and development for equipment, piping, and components due to the use of the generic in-structure response spectra associated with the standardized plant. Moreover, a seismic isolation will improve the plant safety margin against the design basis earthquake (DBE) as well as a beyond design basis seismic event due to its superior seismic performance. A number of seismic isolation systems have been developed and tested since 1970s, and some of them have been applied to conventional structures in several countries of high seismicity. In the nuclear field, there have been many studies on the applicability of such seismic isolation systems, but the application of a seismic isolation is very limited. Currently, there are some discussions on the application of seismic isolation systems to nuclear facilities between the nuclear industries and the regulatory agencies in the U.S.. In the future, a seismic isolation for nuclear facilities will be one of the important issues in the nuclear industry. This paper summarizes the past studies and applications of a seismic isolation in the nuclear industry

  3. AECB workshop on seismic hazard assessment in Southern Ontario. Program, list of participants and abstracts

    International Nuclear Information System (INIS)

    1995-01-01

    The purpose of the workshop was to review available geological and seismological data which could affect earthquake occurrence in southern Ontario and to develop a consensus on approaches that should be adopted for characterization of seismic hazard. The workshop was structured in technical sessions to focus presentations and discussions on four technical issues relevant to seismic hazard in southern Ontario, as follows: (1) The importance of geological and geophysical observations for the determination of seismic sources, (2) Methods and approaches which may be adopted for determining seismic sources based on integrated interpretations of geological and seismological information, (3) Methods and data which should be used for characterizing the seismicity parameters of seismic sources, and (4) Methods for assessment of vibratory ground motion hazard. This document presents a copy of the workshop program, the list of participants and extended abstracts received from speakers. It was distributed to the participants prior to the workshop. The abstracts were intended to provide advance information and to afford some basis for meaningful discussion and exchange of information

  4. AECB workshop on seismic hazard assessment in Southern Ontario. Program, list of participants and abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The purpose of the workshop was to review available geological and seismological data which could affect earthquake occurrence in southern Ontario and to develop a consensus on approaches that should be adopted for characterization of seismic hazard. The workshop was structured in technical sessions to focus presentations and discussions on four technical issues relevant to seismic hazard in southern Ontario, as follows: (1) The importance of geological and geophysical observations for the determination of seismic sources, (2) Methods and approaches which may be adopted for determining seismic sources based on integrated interpretations of geological and seismological information, (3) Methods and data which should be used for characterizing the seismicity parameters of seismic sources, and (4) Methods for assessment of vibratory ground motion hazard. This document presents a copy of the workshop program, the list of participants and extended abstracts received from speakers. It was distributed to the participants prior to the workshop. The abstracts were intended to provide advance information and to afford some basis for meaningful discussion and exchange of information.

  5. Development of fragility descriptions of equipment for seismic risk assessment of nuclear power plants

    International Nuclear Information System (INIS)

    Hardy, G.S.; Campbell, R.D.

    1983-01-01

    Probabilistic risk assessment (PRA) of a nuclear power plant for postulated hazard requires the development of fragility relationships for the plants' safety related equipment. The objective of this paper is to present some general results and conclusions concerning the development of these seismic fragility levels. Participation in fragility-related research and experience gained from the completion of several PRA studies of a variety of nuclear power plants have provided much insight as to the most vulnerable equipment and the most efficient use of resources for development of fragilities. Plants studied had seismic design bases ranging from very simple equivalent static analysis for some of the earlier plants to state-of-the-art complex multimode dyanamic analyses for plants currently under construction. Increased sophistication and rigor in seismic qualification of equipment has resulted for the most part in increased seismic resistance. The majority of equipment has been found, however, to possess more than adequate resistance to seismic loading regardless of the degree of sophistication utilized in design as long as seismic loading was included in the design process. This paper presents conclusions of the authors as to which items of equipment typically require an individual ''plant-specific'' fragility analysis and which can be treated in a generic fashion. In addition, general conclusions on the relative seismic capacity levels and most frequent failure modes are summarized for generic equipment groups

  6. Use of seismic attributes for sediment classification

    Directory of Open Access Journals (Sweden)

    Fabio Radomille Santana

    2015-04-01

    Full Text Available A study to understand the relationships between seismic attributes extracted from 2D high-resolution seismic data and the seafloor's sediments of the surveyed area. As seismic attributes are features highly influenced by the medium through which the seismic waves are propagated, the authors can assume that it would be possible to characterise the geological nature of the seafloor by using these attributes. Herein, a survey was performed on the continental margin of the South Shetland Islands in Antarctica, where both 2D high-resolution seismic data and sediment gravity cores samples were simultaneously acquired. A computational script was written to extract the seismic attributes from the data, which have been statistically analysed with clustering analyses, such as principal components analysis, dendrograms and k-means classification. The extracted seismic attributes are the amplitude, the instantaneous phase, the instantaneous frequency, the envelope, the time derivative of the envelope, the second derivative of the envelope and the acceleration of phase. Statistical evaluation showed that geological classification of the seafloor's sediments is possible by associating these attributes according to their coherence. The methodologies here developed seem to be appropriate for glacio-marine environment and coarse-to-medium silt sediment found in the study area and may be applied to other regions in the same geological conditions.

  7. Application of Gumbel I and Monte Carlo methods to assess seismic hazard in and around Pakistan

    Science.gov (United States)

    Rehman, Khaista; Burton, Paul W.; Weatherill, Graeme A.

    2018-05-01

    A proper assessment of seismic hazard is of considerable importance in order to achieve suitable building construction criteria. This paper presents probabilistic seismic hazard assessment in and around Pakistan (23° N-39° N; 59° E-80° E) in terms of peak ground acceleration (PGA). Ground motion is calculated in terms of PGA for a return period of 475 years using a seismogenic-free zone method of Gumbel's first asymptotic distribution of extreme values and Monte Carlo simulation. Appropriate attenuation relations of universal and local types have been used in this study. The results show that for many parts of Pakistan, the expected seismic hazard is relatively comparable with the level specified in the existing PGA maps.

  8. Seismic qualification of equipment in operating nuclear power plants. Unresolved safety issue A-46, draft report for comment

    International Nuclear Information System (INIS)

    Chang, T.Y.

    1985-08-01

    The margin of safety provided in existing nuclear power plant equipment to resist seismically induced loads and perform their intended safety functions may vary considerably, because of significant changes in design criteria and methods for the seismic qualification of equipment over the years. Therefore, the seismic qualification of equipment in operating plants should be reassessed to determine whether requalification is necessary. The objective of technical studies performed under the Task Action Plan A-46 was to establish an explicit set of guidelines and acceptance criteria to judge the adequacy of equipment under seismic loading at all operating plants, in lieu of requiring qualification to the current criteria that are applied to new plants. This report summarizes the work accomplished on USI A-46 by the Nuclear Regulatory Commission staff and its contractors, Idaho National Engineering Laboratory, Southwest Research Institute, Brookhaven National Laboratory, and Lawrence Livermore National Laboratory. In addition, the collection and review of seismic experience data by the Seismic Qualification Utility Group and the review and recommendations of a group of seismic consultants, the Senior Seismic Review Advisory Panel, are presented. Staff assessment of work accomplished under USI A-46 leads to the conclusion that the use of seismic experience data provides the most reasonable alternative to current qualification criteria. Consideration of seismic qualification by use of experience data was a specific task in USI A-46. Several other A-46 tasks serve to support the use of an experience data base

  9. Resolving the fine-scale velocity structure of continental hyperextension at the Deep Galicia Margin using full-waveform inversion

    Science.gov (United States)

    Davy, R. G.; Morgan, J. V.; Minshull, T. A.; Bayrakci, G.; Bull, J. M.; Klaeschen, D.; Reston, T. J.; Sawyer, D. S.; Lymer, G.; Cresswell, D.

    2018-01-01

    Continental hyperextension during magma-poor rifting at the Deep Galicia Margin is characterized by a complex pattern of faulting, thin continental fault blocks and the serpentinization, with local exhumation, of mantle peridotites along the S-reflector, interpreted as a detachment surface. In order to understand fully the evolution of these features, it is important to image seismically the structure and to model the velocity structure to the greatest resolution possible. Traveltime tomography models have revealed the long-wavelength velocity structure of this hyperextended domain, but are often insufficient to match accurately the short-wavelength structure observed in reflection seismic imaging. Here, we demonstrate the application of 2-D time-domain acoustic full-waveform inversion (FWI) to deep-water seismic data collected at the Deep Galicia Margin, in order to attain a high-resolution velocity model of continental hyperextension. We have used several quality assurance procedures to assess the velocity model, including comparison of the observed and modeled waveforms, checkerboard tests, testing of parameter and inversion strategy and comparison with the migrated reflection image. Our final model exhibits an increase in the resolution of subsurface velocities, with particular improvement observed in the westernmost continental fault blocks, with a clear rotation of the velocity field to match steeply dipping reflectors. Across the S-reflector, there is a sharpening in the velocity contrast, with lower velocities beneath S indicative of preferential mantle serpentinization. This study supports the hypothesis that normal faulting acts to hydrate the upper-mantle peridotite, observed as a systematic decrease in seismic velocities, consistent with increased serpentinization. Our results confirm the feasibility of applying the FWI method to sparse, deep-water crustal data sets.

  10. Fracture mechanics characteristics and associated safety margins for integrity assessment; Bruchmechanische Kennwerte und zugeordnete Sicherheitsfaktoren bei Integritaetsanalysen

    Energy Technology Data Exchange (ETDEWEB)

    Roos, E.; Schuler, X.; Stumpfrock, L.; Silcher, H. [Stuttgart Univ. (DE). Materialpruefungsanstalt (MPA)

    2008-07-01

    Within the integrity assessment of components and structural members of plants safety margins have to be applied, whose magnitude depend on several factors. Important factors influencing the magnitude of the safety margins are as for instance: Material behaviour (ductile / brittle behaviour), the event to be considered (local deformation / fracture), possible consequences of failure (human health, environmental damage, economic consequences) and many others. One important factor also is the fact, how precisely and reliably the appropriate material characteristics can be determined and how precisely and reliably the components behaviour can be predicted and assessed by means of this material characteristic. In contemporary safety assessment procedures by means of fracture mechanics evaluation tools (e.g. [1]) a concept of partial safety margins is proposed for application. The basic idea with this procedure is that only those sources of uncertainty have to be considered, which are relevant or may be relevant for the structure to be considered. For this purpose each source of possible uncertainty has to be quantified individually, finally only those singular safety margins are superimposed to a total safety margin which are relevant. The more the uncertainties have to be taken into account, the total safety margin to be applied, consequently will be larger. If some sources of uncertainty can be eliminated totally or can be minimized (for instance by a more reliable calculational procedure of the component loading or by more precise material characteristics), the total safety margin can be reduced. In this contribution the different procedures for the definition of safety margins within the integrity assessment by means of fracture mechanics procedures will be discussed. (orig.)

  11. A preliminary regional assessment of earthquake-induced landslide susceptibility for Vrancea Seismic Region

    Science.gov (United States)

    Micu, Mihai; Balteanu, Dan; Ionescu, Constantin; Havenith, Hans; Radulian, Mircea; van Westen, Cees; Damen, Michiel; Jurchescu, Marta

    2015-04-01

    In seismically-active regions, earthquakes may trigger landslides enhancing the short-to-long term slope denudation and sediment delivery and conditioning the general landscape evolution. Co-seismic slope failures present in general a low frequency - high magnitude pattern which should be addressed accordingly by landslide hazard assessment, with respect to the generally more frequent precipitation-triggered landslides. The Vrancea Seismic Region, corresponding to the curvature sector of the Eastern Romanian Carpathians, represents the most active sub-crustal (focal depth > 50 km) earthquake province of Europe. It represents the main seismic energy source throughout Romania with significant transboundary effects recorded as far as Ukraine and Bulgaria. During the last 300 years, the region featured 14 earthquakes with M>7, among which seven events with magnitude above 7.5 and three between 7.7 and 7.9. Apart from the direct damages, the Vrancea earthquakes are also responsible for causing numerous other geohazards, such as ground fracturing, groundwater level disturbances and possible deep-seated landslide occurrences (rock slumps, rock-block slides, rock falls, rock avalanches). The older deep-seated landslides (assumed to have been) triggered by earthquakes usually affect the entire slope profile. They often formed landslide dams strongly influencing the river morphology and representing potential threats (through flash-floods) in case of lake outburst. Despite the large potential of this research issue, the correlation between the region's seismotectonic context and landslide predisposing factors has not yet been entirely understood. Presently, there is a lack of information provided by the geohazards databases of Vrancea that does not allow us to outline the seismic influence on the triggering of slope failures in this region. We only know that the morphology of numerous large, deep-seated and dormant landslides (which can possibly be reactivated in future

  12. Seismic safety programme at NPP Paks. Propositions for coordinated international activity in seismic safety of the WWER-440 V-213

    International Nuclear Information System (INIS)

    Katona, T.

    1995-01-01

    This paper presents the Paks NPP seismic safety program, highlighting the specifics of the WWER-440/213 type in operation, and the results of work obtained so far. It covers the following scope: establishment of the seismic safety program (original seismic design, current requirements, principles and structure of the seismic safety program); implementation of the seismic safety program (assessing the seismic hazard of the site, development of the new concept of seismic safety for the NPP, assessing the seismic resistance of the building and the technology); realization of the seismic safety of higher level (technical solutions, drawings, realization); ideas and propositions for coordinated international activity

  13. Seismic risk assessment of Trani's Cathedral bell tower in Apulia, Italy

    Science.gov (United States)

    Diaferio, Mariella; Foti, Dora

    2017-09-01

    The present paper deals with the evaluation of the seismic vulnerability of slender historical buildings; these structures, in fact, may manifest a high risk with respect to seismic actions as usually they have been designed to resist to gravitational loads only, and are characterized by a high flexibility. To evaluate this behavior, the bell tower of the Trani's Cathedral is investigated. The tower is 57 m tall and is characterized by an unusual building typology, i.e., the walls are composed of a concrete core coupled with external masonry stones. The dynamic parameters and the mechanical properties of the tower have been evaluated on the basis of an extensive experimental campaign that made use of ambient vibration tests and ground penetrating radar tests. Such data have been utilized to calibrate a numerical model of the examined tower. A linear static analysis, a dynamic analysis and a nonlinear static analysis have been carried out on such model to evaluate the displacement capacity of the tower and the seismic risk assessment in accordance with the Italian guidelines.

  14. Seismic source zone characterization for the seismic hazard assessment project PEGASOS by the Expert Group 2 (EG1b)

    International Nuclear Information System (INIS)

    Burkhard, M.; Gruenthal, G.

    2009-01-01

    A comprehensive study of the seismic hazard related to the four NNP sites in NW Switzerland was performed within the project PEGASOS. To account for the epistemic uncertainties involved in the process of the characterization of seismic source zones in the frame of probabilistic seismic hazard assessments, four different expert teams have developed and defended their models in the frame of an intensive elicitation process. Here, the results of one out of four expert groups are presented. The model of this team is based first of all on considerations regarding the large scale tectonics in the context of the Alpine collision, and neotectonic constraints for defining seismic source zones. This leads to a large scale subdivision based on the structural 'architectural' considerations with little input from the present seismicity. Each of the eight large zones was characterized by the style of present-day faulting, fault orientation, and hypo central depth distribution. A further subdivision of the larger zones is performed based on information provided by the seismicity patterns. 58 small source zones have been defined in this way, each of them characterized by the available tectonic constrains, as well as the pros and cons of different existing geologic views connected to them. Of special concern in this respect were the discussion regarding thin skinned vs. thick skinned tectonics, the tectonic origin of the 1356 Basel earthquake, the role of the Permo-Carboniferous graben structures, and finally the seismogenic orientation of faults with respect to the recent crustal stress field. The uncertainties connected to the delimitations of the small source zones have been handled in form of their regrouping, formalized by the logic tree technique. The maximum magnitudes were estimated as discretized probability distribution functions. After de-clustering the used ECOS earthquake catalogue and an analysis of data completeness as a function of time the parameters of the

  15. Seismicity and Seismic Hazard along the Western part of the Eurasia-Nubia plate boundary

    Science.gov (United States)

    Bezzeghoud, Mourad; Fontiela, João; Ferrão, Celia; Borges, José Fernando; Caldeira, Bento; Dib, Assia; Ousadou, Farida

    2016-04-01

    The seismic phenomenon is the most damaging natural hazard known in the Mediterranean area. The western part of the Eurasia-Nubia plate boundary extends from the Azores to the Mediterranean region. The oceanic part of the plate boundary is well delimited from the Azores Islands, along the Azores-Gibraltar fault to approximately 12°W (west of the Strait of Gibraltar). From 12°W to 3.5°E, including the Iberia-Nubia region and extending to the western part of Algeria, the boundary is more diffuse and forms a wider area of deformation. The boundary between the Iberia and Nubia plates is the most complex part of the margin. This region corresponds to the transition from an oceanic boundary to a continental boundary, where Iberia and Nubia collide. Although most earthquakes along this plate boundary are shallow and generally have magnitudes less than 5.5, there have been several high-magnitude events. Many devastating earthquakes, some of them tsunami-triggering, inflicted heavy loss and considerable economic damage to the region. From 1920 to present, three earthquakes with magnitudes of about 8.0 (Mw 8.2, 25 November 1941; Ms 8.0, 25 February 1969; and Mw 7.9, 26 May 1975) occurred in the oceanic region, and four earthquakes with magnitudes of about 7.0 (Mw 7.1, 8 May 1939, Santa Maria Island and Mw 7.1, January 1980, Terceira and Graciosa Islands, both in the Azores; Ms 7.1, 20 May 1931, Azores-Gibraltar fracture zone; and Mw 7.3, 10 October 1980, El Asnam, Algeria) occurred along the western part of the Eurasia-Nubia plate boundary. In general, large earthquakes (M ≥7) occur within the oceanic region, with the exception of the El Asnam (Algeria) earthquakes. Some of these events caused extensive damage. The 1755 Lisbon earthquake (˜Mw 9) on the Portugal Atlantic margin, about 200 km W-SW of Cape St. Vincent, was followed by a tsunami and fires that caused the near-total destruction of Lisbon and adjacent areas. Estimates of the death toll in Lisbon alone (~70

  16. The Sunda-Banda Arc Transition: New Insights From Marine Wide-Angle Seismic Data

    Science.gov (United States)

    Planert, L.; Shulgin, A.; Kopp, H.; Mueller, C.; Flueh, E.; Lueschen, E.; Engels, M.; Dayuf Jusuf, M.

    2007-12-01

    End of 2006, RV SONNE cruise SO190 SINDBAD (Seismic and Geoacoustic Investigations along the Sunda- Banda Arc Transition) went south of the Indonesian archipelago to acquire various geophysical datasets between 112 °E and 122 °E. The main goal of the project is to investigate the modifications of the lower plate (variability in the plate roughness, transition from oceanic to continental lower plate) and their effects on the tectonics of the upper plate (development of an outer high and forearc basin, accretionary and erosive processes). The tectonic style changes in neighboring margin segments from an oceanic plate-island arc subduction along the eastern Sunda margin to a continental plate-island arc collision along the Banda margin. Moreover, the character of the incoming oceanic plate varies from the rough topography in the area where the Roo Rise is subducting off eastern Java, to the smooth oceanic seafloor of the Argo- Abyssal Plain subducting off Bali, Lombok, and Sumbawa. In order to cover the entire variations of the lower plate, seven seismic refraction profiles were conducted along four major north-south oriented corridors of the margin, at 113 °E, 116 °E, 119 °E, and 121 °E, as well as three profiles running perpendicular to the major corridors. A total of 239 ocean bottom hydrophone and seismometer deployments were successfully recovered. Shooting was conducted along 1020 nm of seismic profiles using a G-gun cluster of 64 l. Here, we present velocity models obtained by applying a tomographic approach which jointly inverts for refracted and reflected phases. Additional geometry and velocity information for the uppermost layers, obtained by prestack depth migration of multichannel seismic reflection data (see poster of Mueller et al. in this session), is incorporated into our models and held fixed during the iterations. geomar.de/index.php?id=sindbad

  17. The use of Web-based GIS data technologies in the construction of geoscience instructional materials: examples from the MARGINS Data in the Classroom project

    Science.gov (United States)

    Ryan, J. G.; McIlrath, J. A.

    2008-12-01

    Web-accessible geospatial information system (GIS) technologies have advanced in concert with an expansion of data resources that can be accessed and used by researchers, educators and students. These resources facilitate the development of data-rich instructional resources and activities that can be used to transition seamlessly into undergraduate research projects. MARGINS Data in the Classroom (http://serc.carleton.edu/ margins/index.html) seeks to engage MARGINS researchers and educators in using the images, datasets, and visualizations produced by NSF-MARGINS Program-funded research and related efforts to create Web-deliverable instructional materials for use in undergraduate-level geoscience courses (MARGINS Mini-Lessons). MARGINS science data is managed by the Marine Geosciences Data System (MGDS), and these and all other MGDS-hosted data can be accessed, manipulated and visualized using GeoMapApp (www.geomapapp.org; Carbotte et al, 2004), a freely available geographic information system focused on the marine environment. Both "packaged" MGDS datasets (i.e., global earthquake foci, volcanoes, bathymetry) and "raw" data (seismic surveys, magnetics, gravity) are accessible via GeoMapApp, with WFS linkages to other resources (geodesy from UNAVCO; seismic profiles from IRIS; geochemical and drillsite data from EarthChem, IODP, and others), permitting the comprehensive characterization of many regions of the ocean basins. Geospatially controlled datasets can be imported into GeoMapApp visualizations, and these visualizations can be exported into Google Earth as .kmz image files. Many of the MARGINS Mini-Lessons thus far produced use (or have studentss use the varied capabilities of GeoMapApp (i.e., constructing topographic profiles, overlaying varied geophysical and bathymetric datasets, characterizing geochemical data). These materials are available for use and testing from the project webpage (http://serc.carleton.edu/margins/). Classroom testing and assessment

  18. Seismic rupture modelling, strong motion prediction and seismic hazard assessment: fundamental and applied approaches; Modelisation de la rupture sismique, prediction du mouvement fort, et evaluation de l'alea sismique: approches fondamentale et appliquee

    Energy Technology Data Exchange (ETDEWEB)

    Berge-Thierry, C

    2007-05-15

    The defence to obtain the 'Habilitation a Diriger des Recherches' is a synthesis of the research work performed since the end of my Ph D. thesis in 1997. This synthesis covers the two years as post doctoral researcher at the Bureau d'Evaluation des Risques Sismiques at the Institut de Protection (BERSSIN), and the seven consecutive years as seismologist and head of the BERSSIN team. This work and the research project are presented in the framework of the seismic risk topic, and particularly with respect to the seismic hazard assessment. Seismic risk combines seismic hazard and vulnerability. Vulnerability combines the strength of building structures and the human and economical consequences in case of structural failure. Seismic hazard is usually defined in terms of plausible seismic motion (soil acceleration or velocity) in a site for a given time period. Either for the regulatory context or the structural specificity (conventional structure or high risk construction), seismic hazard assessment needs: to identify and locate the seismic sources (zones or faults), to characterize their activity, to evaluate the seismic motion to which the structure has to resist (including the site effects). I specialized in the field of numerical strong-motion prediction using high frequency seismic sources modelling and forming part of the IRSN allowed me to rapidly working on the different tasks of seismic hazard assessment. Thanks to the expertise practice and the participation to the regulation evolution (nuclear power plants, conventional and chemical structures), I have been able to work on empirical strong-motion prediction, including site effects. Specific questions related to the interface between seismologists and structural engineers are also presented, especially the quantification of uncertainties. This is part of the research work initiated to improve the selection of the input ground motion in designing or verifying the stability of structures. (author)

  19. Application of Nonlinear Seismic Soil-Structure Interaction Analysis for Identification of Seismic Margins at Nuclear Power Plants

    International Nuclear Information System (INIS)

    Varma, Amit H.; Seo, Jungil; Coleman, Justin Leigh

    2015-01-01

    Seismic probabilistic risk assessment (SPRA) methods and approaches at nuclear power plants (NPP) were first developed in the 1970s and aspects of them have matured over time as they were applied and incrementally improved. SPRA provides information on risk and risk insights and allows for some accounting for uncertainty and variability. As a result, SPRA is now used as an important basis for risk-informed decision making for both new and operating NPPs in the US and in an increasing number of countries globally. SPRAs are intended to provide best estimates of the various combinations of structural and equipment failures that can lead to a seismic induced core damage event. However, in some instances the current SPRA approach contains large uncertainties, and potentially masks other important events (for instance, it was not the seismic motions that caused the Fukushima core melt events, but the tsunami ingress into the facility). INL has an advanced SPRA research and development (R&D) activity that will identify areas in the calculation process that contain significant uncertainties. One current area of focus is the use of nonlinear soil-structure interaction (NLSSI) analysis methods to accurately capture: 1) nonlinear soil behavior and 2) gapping and sliding between the NPP and soil. The goal of this study is to compare numerical NLSSI analysis results with recorded earthquake ground motions at Fukushima Daichii (Great Tohuku Earthquake) and evaluate the sources of nonlinearity contributing to the observed reduction in peak acceleration. Comparisons are made using recorded data in the free-field (soil column with no structural influence) and recorded data on the NPP basemat (in-structure response). Results presented in this study should identify areas of focus for future R&D activities with the goal of minimizing uncertainty in SPRA calculations. This is not a validation activity since there are too many sources of uncertainty that a numerical analysis would need

  20. Towards intraoperative assessment of tumor margins in breast surgery using optical coherence elastography (Conference Presentation)

    Science.gov (United States)

    Kennedy, Brendan F.; Wijesinghe, Philip; Allen, Wes M.; Chin, Lixin; Latham, Bruce; Saunders, Christobel M.; Sampson, David D.

    2016-03-01

    Surgical excision of tumor is a critical factor in the management of breast cancer. The most common surgical procedure is breast-conserving surgery. The surgeon's goal is to remove the tumor and a rim of healthy tissue surrounding the tumor: the surgical margin. A major issue in breast-conserving surgery is the absence of a reliable tool to guide the surgeon in intraoperatively assessing the margin. A number of techniques have been proposed; however, the re-excision rate remains high and has been reported to be in the range 30-60%. New tools are needed to address this issue. Optical coherence elastography (OCE) shows promise as a tool for intraoperative tumor margin assessment in breast-conserving surgery. Further advances towards clinical translation are limited by long scan times and small fields of view. In particular, scanning over sufficient areas to assess the entire margin in an intraoperative timeframe has not been shown to be feasible. Here, we present a protocol allowing ~75% of the surgical margins to be assessed within 30 minutes. To achieve this, we have incorporated a 65 mm-diameter (internal), wide-aperture annular piezoelectric transducer, allowing the entire surface of the excised tumor mass to be automatically imaged in an OCT mosaic comprised of 10 × 10 mm tiles. As OCT is effective in identifying adipose tissue, our protocol uses the wide-field OCT to selectively guide subsequent local OCE scanning to regions of solid tissue which often present low contrast in OCT images. We present promising examples from freshly excised human breast tissue.

  1. Seismic hazard assessment of the Three Gorges Project

    Directory of Open Access Journals (Sweden)

    Yao Yunsheng

    2013-05-01

    Full Text Available Seismic monitoring data for the past 50 years in the Three Gorges Reservoir area show that the reservoir head area is a typical weak seismic region with low seismicity before impoundment and that the epicenters were concentrated in the east and west sides of the Zigui Basin, most of which were natural tectonic earthquakes. After impoundment, the seismic activity shifted to the segment between Badong and Zigui along the Yangtze River, mainly within 5 km of the reservoir bank. The seismogenesis was categorized into four types; Karst collapse earthquakes, earthquakes caused by Karst gas explosion, mining tunnel collapse earthquakes, and rock (terrane slip earthquakes, all of which are related to the lithology, structure, and tectonics of near-surface geological bodies of the area. Compared with the seismicity before impoundment, the seismic frequency increase was remarkable, with most of the magnitudes below Ms2. 0. Therefore, the intensity of the earthquakes remained at a low level. On November 22, 2008, a magnitude 4. 1 earthquake, the largest earthquake recorded since impoundment, occurred in Quyuan Town, Zigui County. The intensity and PGA of reservoir-induced earthquakes are higher than those of tectonic earthquakes with equal magnitude, but the peak intensity of reservoir-induced earthquakes is not likely to go beyond that of the estimated range from earlier studies.

  2. Is Fuel Assembly Fine at BDBA Seismic Load?

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Heung Seok; Lee, Kang Hee; Yoon, Kyung Ho [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    After Fukushima accident, IAEA and OECD/NEA speak aloud recommendation on Design Extension Condition (DEC) for some of current BDBA accidents, and thus, some of the current BDBA to be obviously included in design conditions. In this study, 1) we will review on 2011 Fukushima accident from the earthquake point of view, before great tsunami, 2) on the analysis procedure for seismic accidents, of which the main frame was established several decades ago, 3) on possible issue on current design method, and 4) on practical way to solve the design issues and to reflect a beyond design basis seismic accident in DEC. In this study, we have reviewed seismic analysis procedure and tests for FA mechanical integrity. We may give some recommendation to incorporate BDB seismic accident into DEC as follows: 1) FA characteristic test considering realistic boundary conditions 2) Implementation of FSI into analysis models 3) Verification test to confirm design and safety margin.

  3. Seismic Safety Margins Research Program. Phase I final report - Subsystem response (Project V)

    International Nuclear Information System (INIS)

    Shieh, L.C.; Chuang, T.Y.; O'Connell, W.J.

    1981-10-01

    This document reports on (1) the computation of the responses of subsystems, given the input subsystem support motion for components and systems whose failure can lead to an accident sequence (radioactive release), and (2) the results of a sensitivity study undertaken to determine the contributions of the several links in the seismic methodology chain (SMC) - seismic input (SI), soil-structure interaction (SSI), structure response (STR), and subsystem response (SUB) - to the uncertainty in subsystem response. For the singly supported subsystems (e.g., pumps, turbines, electrical control panels, etc.), we used the spectral acceleration response of the structure at the point where the subsystem components were mounted. For the multiple supported subsystems, we developed 13 piping models of five safety-related systems, and then used the pseudostatic-mode method with multisupport input motion to compute the response parameters in terms of the parameters used in the fragility descriptions (i.e., peak resultant accelerations for valves and peak resultant moments for piping). Damping and frequency were varied to represent the sources of modeling and random uncertainty. Two codes were developed: a modified version of SAPIV which assembles the piping supports into groups depending on the support's location relative to the attached structure, and SAPPAC a stand-alone modular program from which the time-history analysis module is extracted. On the basis of our sensitivity study, we determined that the variability in the combined soil-structure interaction, structural response, and subsystem response areas contribute more to uncertainty in subsystem response than does the variability in the seismic input area, assuming an earthquake within the limited peak ground acceleration range, i.e., 0.15 to 0.30g. The seismic input variations were in terms of different earthquake time histories. (author)

  4. Development of seismic hazard analysis in Japan

    International Nuclear Information System (INIS)

    Itoh, T.; Ishii, K.; Ishikawa, Y.; Okumura, T.

    1987-01-01

    In recent years, seismic risk assessment of the nuclear power plant have been conducted increasingly in various countries, particularly in the United States to evaluate probabilistically the safety of existing plants under earthquake loading. The first step of the seismic risk assessment is the seismic hazard analysis, in which the relationship between the maximum earthquake ground motions at the plant site and their annual probability of exceedance, i.e. the seismic hazard curve, is estimated. In this paper, seismic hazard curves are evaluated and examined based on historical earthquake records model, in which seismic sources are modeled with area-sources, for several different sites in Japan. A new evaluation method is also proposed to compute the response spectra of the earthquake ground motions in connection with estimating the probabilistic structural response. Finally the numerical result of probabilistic risk assessment for a base-isolated three story RC structure, in which the frequency of seismic induced structural failure is evaluated combining the seismic hazard analysis, is described briefly

  5. Enhancement of seismic resistance of buildings

    Directory of Open Access Journals (Sweden)

    Claudiu-Sorin Dragomir

    2014-03-01

    Full Text Available The objectives of the paper are both seismic instrumentation for damage assessment and enhancing of seismic resistance of buildings. In according with seismic design codes in force the buildings are designed to resist at seismic actions. Due to the time evolution of these design provisions, there are buildings that were designed decades ago, under the less stringent provisions. The conceptual conformation is nowadays provided in all Codes of seismic design. According to the Code of seismic design P100-1:2006 the asymmetric structures do not have an appropriate seismic configuration; they have disadvantageous distribution of volumes, mass and stiffness. Using results of temporary seismic instrumentation the safety condition of the building may be assessed in different phases of work. Based on this method, the strengthening solutions may be identified and the need of seismic joints may be emphasised. All the aforementioned ideas are illustrated through a case study. Therefore it will be analysed the dynamic parameter evolution of an educational building obtained in different periods. Also, structural intervention scenarios to enhance seismic resistance will be presented.

  6. Comparing the New Madrid Seismic Zone with the Osning Thrust: implications for GIA-induced intraplate tectonics in northern Germany

    Science.gov (United States)

    Brandes, Christian; Steffen, Holger; Wu, Patrick; Tanner, David; Winsemann, Jutta

    2013-04-01

    Continental intraplate tectonics is a widespread phenomenon that causes significant earthquakes. These earthquakes even occur in areas that are characterized by low strain rates and there are often long intervals between the individual seismic events (Gangopadhyay & Talwani, 2003) that result in a hazard potential. To better understand the controlling factors of intraplate plate earthquakes in northern Germany, we compare the Osning Thrust with the intensively-studied New Madrid Seismic Zone in the Midwest USA. Both areas share major similarities such as a failed rift-basin setting, the presence of intrusive magmatic bodies in the subsurface, tectonic reactivation during the Late Cretaceous, paleo- and historic seismicity and comparable fault parameters. In addition, both areas have a very similar Late Pleistocene deglaciation history. New Madrid was c. 340 km south of the Laurentide ice sheet and ice retreat started around 21 ka and was completed by 8.5 ka (Grollimund & Zoback, 2001). The Osning Thrust was c. 310 km south of the Scandinavian ice sheet and deglaciation began at 24 ka. Both areas show historic seismicity in a similar time frame (New Madrid Seismic Zone: 1811-1812, Johnston & Schweig, 1996); Osning Thrust: 1612 and 1767, Grünthal & Bosse, 1997). We use numerical simulations to identify the timing of potentially GIA-induced fault activity, which are based on the fault stability margin concept of Wu & Hasegawa (1996). From our modelling results it is evident that the fault stability margin changed to negative between 16 and 13 ka for the Osning Thrust, which matches the OSL data of fault-related growth strata (Brandes et al., 2012). For the New Madrid Seismic Zone, the fault stability margin becomes zero between 2.5 ka BP (before 1812) to about 2 ka after the 1812 event, depending on the parameters of the model. This indicates that for both seismic zones, seismicity due to deglaciation was and still is very likely. From this study it can be derived

  7. State of the Art in Input Ground Motions for Seismic Fragility and Risk Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Han; Choi, In Kil; Kim, Min Kyu [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The purpose of a Seismic Probabilistic Safety Analysis (SPSA) is to determine the probability distribution of core damage due to the potential effects of earthquakes. The SPSA is performed based on four steps, a seismic hazard analysis, a component fragility evaluation, a plant system and accident sequence analysis, and a consequence analysis. There are very different spectrum shapes in every ground motions. The structural response and the seismic load applied to equipment are greatly influenced by a spectral shape of the input ground motion. Therefore the input ground motion need to be determined under the same assumption in risk calculation. Several technic for the determination of input ground motions has developed and reviewed in this study. In this research, the methodologies of the determination of input ground motion for the seismic risk assessment are reviewed and discussed. It has developed to reduce the uncertainty in fragility curves and to remove the conservatism in risk values.

  8. Assessing the cost-effectiveness of seismic risk reduction options in oil industry

    International Nuclear Information System (INIS)

    Nasserasadi, K.; Ghafory-Ashtiany, M.

    2007-01-01

    An integrated probabilistic methodology for cost-efficiency estimation of different sort of seismic risk management measures are introduced by adding Cost Benefit Analysis (CBA) module to an integrated seismic risk assessment model. An oil refinery in Iran has been selected for case study and cost-efficiency of software and hardware mitigation measures are evaluated. The results have shown that: (1) software mitigation measures have more benefit than hardware ones, (2) considering indirect loss in CBA lead to more benefit-cost ratio and (3) although increase of discount ratio decreases the benefit-cost ratio, the arrangement of mitigation measures from benefit-cost viewpoint are constant. (authors)

  9. Seismic investigation of an ocean-continent transition zone in the northern South China Sea

    Science.gov (United States)

    Zhu, J.; Qiu, X.; Xu, H.; Zhan, W.; Sun, Z.

    2011-12-01

    Rifted continental margins and basins are mainly formed by the lithospheric extension. Thined lithosphere of passive continental margins results in decompression melt of magma and created oceanic crust and thined ocean-continent transition (OCT) zone. Two refraction profiles used ocean bottom seismometers deployed in the broad continental shelf and three multi-channel seismic reflection lines in the northern South China Sea, acquired by the ship "Shiyan 2" of the South China Sea Institute of Oceanology, Chinese Academy of Sciences in 2010, are processed and interpreted in this study. Seismic reflection lines cut through the Dongsha rise, Zhu-1 and Zhu-2 depression within a Tertiary basin, Pear River Mouth basin (called as Zhujiangkou basin). These tectonic features are clear imaged in the seismic reflection records. Numerous normal faults, cutted through the basement and related to the stretch of the northern South China Sea margin, are imaged and interpreted. Reflection characteristics of the ocean-continent transition (OCT) zone are summaried and outlined. The COT zone is mainly divided into the northern syn-rift subsidence zone, central volcano or buried volcano uplift zone and tilt faulted block near the South Chia Sea basin. Compared to the previous seismic reflection data and refraction velocity models, the segmentation range of the OCT zone is outlined, from width of about 225 km in the northeastern South China Sea , of 160 km in the central to of 110 km in the north-central South China Sea. Based on the epicenter distribution of sporadic and large than 6 magnitude earthquakes, it suggests the OCT zone in the northern South China Sea at present is still an active seismic zone.

  10. Scenario-based resilience assessment framework for critical infrastructure systems: Case study for seismic resilience of seaports

    International Nuclear Information System (INIS)

    Shafieezadeh, Abdollah; Ivey Burden, Lindsay

    2014-01-01

    A number of metrics in the past have been proposed and numerically implemented to assess the overall performance of large systems during natural disasters and their recovery in the aftermath of the events. Among such performance measures, resilience is a reliable metric. This paper proposes a probabilistic framework for scenario-based resilience assessment of infrastructure systems. The method accounts for uncertainties in the process including the correlation of the earthquake intensity measures, fragility assessment of structural components, estimation of repair requirements, the repair process, and finally the service demands. The proposed method is applied to a hypothetical seaport terminal and the system level performance of the seaport is assessed using various performance metrics. Results of this analysis have shown that medium to large seismic events may significantly disrupt the operation of seaports right after the event and the recovery process may take months. The proposed framework will enable port stakeholders to systematically assess the most-likely performance of the system during expected future earthquake events. - Highlights: • A scenario-based framework for seismic resilience assessment of systems is presented. • Seismic resilience of a hypothetical seaport with realistic settings is studied. • Berth availability is found to govern seaport functionality following earthquakes

  11. Earthquake experience and seismic qualification by indirect methods in nuclear installations

    International Nuclear Information System (INIS)

    2003-01-01

    In recent years, many operational nuclear power plants around the world have conducted seismic re-evaluation programmes either as part of a review of seismic hazards or to comply with best international nuclear safety practices. In this connection, Member States have called on the IAEA to carry out several seismic review missions at their plants, primarily those of WWER and RBMK design. One of the critical safety issues that arose during these missions was that of seismic qualification (determination of fitness for service) of already installed plant distribution systems, equipment and components. The qualification of new components, equipment and distribution systems cannot be replicated for equipment that is already installed and operational in plants, as this process is neither feasible nor appropriate. For this reason, seismic safety experts have developed new procedures for the qualification of installed equipment: these procedures seek to demonstrate that installed equipment, through a process of comparison with new equipment, is apt for service. However, these procedures require large sets of criteria and qualification databases and call for the use of engineering judgement and experience, all of which open the door to wide margins of interpretation. In order to guarantee a sound technical basis for the qualification of in-plant equipment, currently applied to 70% to 80% of all plant equipment, the regulatory review of this type of qualification process calls for a detailed assessment of the technical procedures applied. Such an assessment is the first step towards eliminating the risk of large differences in qualification results between different plants, operators and countries, and guaranteeing the reliability of seismic re-evaluation programmes. Bearing this in mind, in 1999, the IAEA convened a seminar and technical meeting on seismic qualification under the auspices of the IAEA Technical Co-operation programme. Altogether 66 senior experts attended the

  12. Progressive Seismic Failure, Seismic Gap, and Great Seismic Risk across the Densely Populated North China Basin

    Science.gov (United States)

    Yin, A.; Yu, X.; Shen, Z.

    2014-12-01

    Although the seismically active North China basin has the most complete written records of pre-instrumentation earthquakes in the world, this information has not been fully utilized for assessing potential earthquake hazards of this densely populated region that hosts ~200 million people. In this study, we use the historical records to document the earthquake migration pattern and the existence of a 180-km seismic gap along the 600-km long right-slip Tangshan-Hejian-Cixian (THC) fault zone that cuts across the North China basin. The newly recognized seismic gap, which is centered at Tianjin with a population of 11 million people and ~120 km from Beijing (22 million people) and Tangshan (7 million people), has not been ruptured in the past 1000 years by M≥6 earthquakes. The seismic migration pattern in the past millennium suggests that the epicenters of major earthquakes have shifted towards this seismic gap along the THC fault, which implies that the 180- km gap could be the site of the next great earthquake with M≈7.6 if it is ruptured by a single event. Alternatively, the seismic gap may be explained by aseismic creeping or seismic strain transfer between active faults.

  13. Seismic fragility analysis of the block masonry wall in nuclear power plants

    International Nuclear Information System (INIS)

    Wang, Z-L.; Pandey, M.D.; Xie, X-C.

    2014-01-01

    The evaluation of seismic fragility of a structure is an integral part in the Seismic Probabilistic Risk Analysis (SPRA). The block masonry wall, a commonly used barrier in nuclear power plants, is fairly vulnerable to failure under an earthquake. In practice, the seismic fragility of block walls is commonly evaluated using a simple deterministic approach called Conservative Deterministic Failure Margin (CDFM) method. This paper presents a more formal fragility analysis of a block wall based on rigorous probabilistic methods and the accuracy of the CDFM method is evaluated by comparison to the more rigorous FA method. (author)

  14. Seismic assessment of selected buildings and equipment contents of a DOE facility in UBC zone 2A

    International Nuclear Information System (INIS)

    Tong, W.H.; Deneff, C.; Griffin, M.J.

    1991-01-01

    A preliminary seismic risk assessment for selected buildings and representative equipment contents in Allied-Signal Kansas City Division was performed to identify potential seismic hazard and weakness. The site is located in the Uniform Building Code Zone 2A. The selected building structures were constructed between 1940s to 1980s. The performance goal was to qualitatively assess the potential for loss of toxic or hazardous materials and injury to plant personnel due to an earthquake event

  15. Shallow gas in the Iberian continental margin; Gas somero en el margen continental Iberico

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Gil, S.; Cartelle, V.; Blas, E. de; Carlos, A. de; Diez, R.; Duran, R.; Ferrin, A.; Garcia-Moreiras, I.; Garcia-Garcia, A.; Iglesias, J.; Martinez-Carreno, N.; Munoz Sobrino, C.; Ramirez-Perez, A. M.

    2015-07-01

    The shallow gas reservoirs in marine sediments from the Iberian margin or their escapes can be detected by using direct methods: (1) the measurement of high concentrations of methane or other hydrocarbons in the water column or sediment cores, (2) the identification of chemosynthetic communities and/or authigenic car- bonates in the seafloor, and (3) identification (using underwater videos) of pockmarks or carbonate mounds and mud volcanoes associated with the fluid escapes; or by indirect technical characterization of anomalies in acoustic records such as: (1) the presence of acoustic plumes in echo-sounders records, (2) the identification of acoustic blanking and/or acoustic turbidity in the high resolution seismic records, (3) the interpretation of reflectivity and (4) morphologies of pockmarks or seamounts in sidescan sonar and multibeam echo sounder records. This article is a compilation of acoustic-seismic, sedimentologic and morphologic evidence associated to the presence of shallow gas (accumulations or escapes) that appear in the Iberian margin and hat have been published in various papers. The description is divided into geographical sectors, beginning in the north-eastern end of the Mediterranean margin and ending at the easternmost area of the Cantabrian margin, following a clockwise direction around the Iberian Peninsula. (Author)

  16. Review on Rapid Seismic Vulnerability Assessment for Bulk of Buildings

    Science.gov (United States)

    Nanda, R. P.; Majhi, D. R.

    2013-09-01

    This paper provides a brief overview of rapid visual screening (RVS) procedures available in different countries with a comparison among all the methods. Seismic evaluation guidelines from, USA, Canada, Japan, New Zealand, India, Europe, Italy, UNDP, with other methods are reviewed from the perspective of their applicability to developing countries. The review shows clearly that some of the RVS procedures are unsuited for potential use in developing countries. It is expected that this comparative assessment of various evaluation schemes will help to identify the most essential components of such a procedure for use in India and other developing countries, which is not only robust, reliable but also easy to use with available resources. It appears that Federal Emergency Management Agency (FEMA) 154 and New Zealand Draft Code approaches can be suitably combined to develop a transparent, reasonably rigorous and generalized procedure for seismic evaluation of buildings in developing countries.

  17. Seismic hazard assessment for Central, North and Northwest Europe: GSHAP Region 3

    Czech Academy of Sciences Publication Activity Database

    Grunthal, G.; Bosse, Ch.; Camelbeeck, T.; de Crook, T.; Gariel, J. C.; Gregersen, S.; Guterch, B.; Halldorsson, P.; Labák, P.; Lindholm, C.; Lenhardt, W.; Mantyniemi, P.; Mayer-Rosa, D.; Musson, R. M. W.; Schenk, Vladimír; Schenková, Zdeňka; Slejko, D.; Verbeiren, R.; Wahlstrom, R.; Zabukovec, B.; Ziros, T.

    1999-01-01

    Roč. 42, č. 6 (1999), s. 999-1011 ISSN 0365-2556 R&D Projects: GA AV ČR Global Seismic Hazard Assessment Program (GSHAP) - project of the UN International Decade of Natural Disaster Reduction and International Litosphere Program. Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  18. Upgrading of seismic design of nuclear power plant building

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, Hiroshi [Tokyo Univ. (Japan). Faculty of Engineering; Kitada, Yoshio

    1997-03-01

    In Japan seismic design methodology of nuclear power plant (NPP) structures has been established as introduced in the previous session. And yet efforts have been continued to date to upgrade the methodology, because of conservative nature given to the methodology in regard to unknown phenomena and technically-limited modeling involved in design analyses. The conservative nature tends to produce excessive safety margins, and inevitably send NPP construction cost up. Moreover, excessive seismic design can increase the burden on normal plant operation, though not necessarily contributing to overall plant safety. Therefore, seismic engineering has put to many tests and simulation analyses in hopes to rationalize seismic design and enhance reliability of seismic safety of NPPs. In this paper, we describe some studies on structural seismic design of NPP underway as part of Japan`s effort to upgrade existing seismic design methodology. Most studies described here are carried out by NUPEC (Nuclear Power Engineering Company) funded by MITI (the Ministry of International Trade and Industry Japan), though, similar studies with the same motive are also carrying out by nuclear industries such as utilities, NPP equipment and system manufacturers and building constructors. This paper consists of three sections, each introducing studies relating to NPP structural seismic design, new siting technology, and upgrading of the methodology of structural design analyses. (J.P.N.)

  19. Upgrading of seismic design of nuclear power plant building

    International Nuclear Information System (INIS)

    Akiyama, Hiroshi; Kitada, Yoshio.

    1997-01-01

    In Japan seismic design methodology of nuclear power plant (NPP) structures has been established as introduced in the previous session. And yet efforts have been continued to date to upgrade the methodology, because of conservative nature given to the methodology in regard to unknown phenomena and technically-limited modeling involved in design analyses. The conservative nature tends to produce excessive safety margins, and inevitably send NPP construction cost up. Moreover, excessive seismic design can increase the burden on normal plant operation, though not necessarily contributing to overall plant safety. Therefore, seismic engineering has put to many tests and simulation analyses in hopes to rationalize seismic design and enhance reliability of seismic safety of NPPs. In this paper, we describe some studies on structural seismic design of NPP underway as part of Japan's effort to upgrade existing seismic design methodology. Most studies described here are carried out by NUPEC (Nuclear Power Engineering Company) funded by MITI (the Ministry of International Trade and Industry Japan), though, similar studies with the same motive are also carrying out by nuclear industries such as utilities, NPP equipment and system manufacturers and building constructors. This paper consists of three sections, each introducing studies relating to NPP structural seismic design, new siting technology, and upgrading of the methodology of structural design analyses. (J.P.N.)

  20. A probabilistic seismic risk assessment procedure for nuclear power plants: (I) Methodology

    Science.gov (United States)

    Huang, Y.-N.; Whittaker, A.S.; Luco, N.

    2011-01-01

    A new procedure for probabilistic seismic risk assessment of nuclear power plants (NPPs) is proposed. This procedure modifies the current procedures using tools developed recently for performance-based earthquake engineering of buildings. The proposed procedure uses (a) response-based fragility curves to represent the capacity of structural and nonstructural components of NPPs, (b) nonlinear response-history analysis to characterize the demands on those components, and (c) Monte Carlo simulations to determine the damage state of the components. The use of response-rather than ground-motion-based fragility curves enables the curves to be independent of seismic hazard and closely related to component capacity. The use of Monte Carlo procedure enables the correlation in the responses of components to be directly included in the risk assessment. An example of the methodology is presented in a companion paper to demonstrate its use and provide the technical basis for aspects of the methodology. ?? 2011 Published by Elsevier B.V.

  1. Analysis and evaluation of seismic response of reactor building for Daya Bay Nuclear Power Plant

    International Nuclear Information System (INIS)

    Li Zhongcheng; China Guangdong Nuclear Power Company, Shenzhen; Li Zhongxian

    2005-01-01

    Daya Bay NPP has been operating safely and stably over 10 years since 1994, and its' seismic analysis of nuclear island was in accordance with the approaches in RCC-G standard for the model M310, in which the Simplified Impedance Matrix Method (SIMM) was employed for the consideration of SSI. Thanks to the rapid progress being made in upgrading the evaluation technology and the capability of data processing systems, methods and software tools for the SSI analysis have experienced significant development all over the world. Focused on the model of reactor building of the Daya Bay NPP, in his paper the more sophisticated 3D half-space continuum impedance method based on the Green functions is used to analyze the functions of the soil, and then the seismic responses of the coupled SSI system are calculated and compared with the corresponding design values. It demonstrates that the design method provides a set of conservatively safe results. The conclusions from the study is hopefully to provide some important references to the assessment of seismic safety margin for the operating NPPs. (authors)

  2. Assessment of Submarine Slope Stability on the Continental Margin off SW Taiwan

    Science.gov (United States)

    Hsu, Huai-Houh; Dong, Jia-Jyun; Cheng, Win-Bin; Su, Chih-Chieh

    2017-04-01

    The abundant gas hydrate reservoirs are distributed in the southwest (SW) off Taiwan. To explore this new energy, geological methods were systematically used and mainly emphasized on the storage potential evaluation. On the other hand, the correlation between gas hydrate dissociation and submarine slope stability is also an important issue. In this study, three submarine profiles on the active and passive continental margin were selected and assessed their slope stabilities by considering two influence factors (seismic forces and number of sedimentary layers). The gravity corers obtained from these three sites (Xiaoliuqiu, Yuan-An Ridge, and Pointer Ridge) to conduct soil laboratory tests. The physical property tests and isotropically consolidated undrained (CIU) triaxial tests were carried out to establish reference properties and shear strength parameters. Before the stability analysis is performed, it is also necessary to construct the seabed profile. For each submarine profile, data from P-waves and from S-waves generated by P-S conversion on reflection from airgun shots recorded along one line of ocean bottom seismometers were used to construct 2-D velocity sections. The seabed strata could be simplified to be only one sedimentary layer or to be multilayer in accordance with the velocity structure profile. Results show the safety factors (FS) of stability analysis are obviously different in considering the number of sedimentary layers, especially for a very thin layer of sediments on a steep slope. The simplified strata condition which treated all seabed strata as only one sedimentary layer might result in the FS lower than 1 and the slope was in an unstable state. On the contrary, the FS could be higher than 10 in a multilayer condition.

  3. The revaluation of the macroseismic effects of March 4, 1977 earthquake in the frame of the new seismic hazard assessment methodologies

    International Nuclear Information System (INIS)

    Pantea, A.; Constantin, Angela; Anghel, M.

    2002-01-01

    To increase the earthquakes resistance of structure the design norms and construction require the best knowledge of seismic hazard parameters and using the new methodologies of seismic hazard assessment. One of these parameters is seismic intensity of the earthquakes occurred on the whole territory analyzed during as long as possible time interval for which data are available, especially for the strongest of them. For Romanian territory the strongest and the best known from the point of view of the macroseismic effects is the March 4, 1977 earthquake. Seismology by itself, without geophysics (solid earth physics), geology, geography, and geodesy, cannot fully, comprehensively, validly assess seismic hazards. Among those who have understood seismic hazard assessment as the result of cooperation between geosciences as a whole and seismology, one may quote Bune, 1978; Pantea et al., 2002, etc. Assessing seismic hazards is a complex undertaking, for it draws on a vast amount of knowledge in numerous sectors of geosciences, particularly solid earth physics as a branch of geophysics that also includes seismology, tectonic physics, gravimetry, geomagnetism, geochronology, etc.. It involves processing the results of complex geophysical, seismologic, tectonic, and geologic studies. To get a picture of, and understand, the laws that govern seismogenesis, one has to know what the relations are among the measured physical quantities indicating the properties of the rocks (whether gravimetric, magnetometric, electrometric, seismometric, or others), the dynamics of tectonic structures, as well as the nature and geological characteristics. Geophysics can be relied upon to determine the deep internal structure of the earth that geological methods are unable to reveal. Geophysics, and implicitly seismology, can help resolve the problem by: 1. Identifying the areas of the seismic sources and their characteristics, including focal depth, M max [Bune, 1978], and the recurrence chart

  4. Additional safety assessment of ITER - Addition safety investigation of the INB ITER

    International Nuclear Information System (INIS)

    2012-01-01

    This assessment aims at re-assessing safety margins in the light of events which occurred in Fukushima Daiichi, i.e. extreme natural events challenging the safety of installations. After a presentation of some characteristics of the ITER installation (location, activities, buildings, premise detritiation systems, electric supply, handling means, radioactive materials, chemical products, nuclear risks, specific risks), the report addresses the installation robustness by identifying cliff-edge effect risks which can be related to a loss of confinement of radioactive materials, explosions, a significant increase of exposure level, a possible effect on water sheets, and so on. The next part addresses the various aspects related to a seismic risk: installation sizing (assessment methodology, seismic risk characterization in Cadarache), sizing protection measures, installation compliance, and margin assessment. External flooding is the next addressed risk: installation sizing with respect to this specific risk, protection measures, installation compliance, margin assessment, and studied additional measures. Other extreme natural phenomena are considered (meteorological conditions, earthquake and flood) which may have effects on other installations (dam, canal). Then, the report addresses technical risks like the loss of electric supplies and cooling systems, the way a crisis is managed in terms of technical and human means and organization in different typical accidental cases. Subcontracting practices are also discussed. A synthesis proposes an overview of this additional safety assessment and discusses the impact which could have additional measures which could be implemented

  5. The T-Reflection and the deep crustal structure of the Vøring Margin offshore Mid-Norway

    Science.gov (United States)

    Abdelmalak, M. M.; Faleide, J. I.; Planke, S.; Gernigon, L.; Zastrozhnov, D.; Shephard, G. E.; Myklebust, R.

    2017-12-01

    Volcanic passive margins are characterized by massive occurrence of mafic extrusive and intrusive rocks, before and during plate breakup, playing major role in determining the evolution pattern and the deep structure of magma-rich margins. Deep seismic reflection data frequently provide imaging of strong continuous reflections in the middle/lower crust. In this context, we have completed a detailed 2D seismic interpretation of the deep crustal structure of the Vøring volcanic margin, offshore mid-Norway, where high-quality seismic data allow the identification of high-amplitude reflections, locally referred to as the T-Reflection (TR). Using the dense seismic grid we have mapped the top of the TR in order to compare it with filtered Bouguer gravity anomalies and seismic refraction data. The TR is identified between 7 and 10 s. Sometimes it consists of one single smooth reflection. However, it is frequently associated with a set of rough multiple reflections displaying discontinuous segments with varying geometries, amplitude and contact relationships. The TR seems to be connected to deep sill networks and locally located at the continuation of basement high structures or terminates over fractures and faults. The spatial correlation between the filtered positive Bouguer gravity anomalies and the TR indicates that the latter represents a high impedance boundary contrast associated with a high-density/velocity body. Within an uncertainty of ± 2.5 km, the depth of the mapped TR is found to correspond to the depth of the top of the Lower Crustal Body (LCB), characterized by high P-wave velocities (>7 km/s), in 50% of the outer Vøring Margin areas, whereas different depths between the TR and the top LCB are estimated for the remaining areas. We present a tectonic scenario, where a large part of the deep structure could be composed of preserved upper continental basement and middle to lower crustal lenses of inherited and intruded high-grade metamorphic rocks. Deep

  6. Seismic design and analysis of nuclear fuel cycle facilities in France

    International Nuclear Information System (INIS)

    Sollogoub, P.

    2001-01-01

    Methodology for seismic design of nuclear fuel facilities and power plants in France is described. After the description of regulatory and normative texts for seismic design, different elements are examined: definition of ground motion, analysis methods, new trends, reevaluation and specificity of Fuel Cycle Facilities. R/D developments are explicated in each part. Their final objective are to better quantify the margins of each step which, in relation with safety analysis,lead to balanced design, analysis and retrofit rules. (author)

  7. Use of raster-based data layers to model spatial variation of seismotectonic data in probabilistic seismic hazard assessment

    Science.gov (United States)

    Zolfaghari, Mohammad R.

    2009-07-01

    Recent achievements in computer and information technology have provided the necessary tools to extend the application of probabilistic seismic hazard mapping from its traditional engineering use to many other applications. Examples for such applications are risk mitigation, disaster management, post disaster recovery planning and catastrophe loss estimation and risk management. Due to the lack of proper knowledge with regard to factors controlling seismic hazards, there are always uncertainties associated with all steps involved in developing and using seismic hazard models. While some of these uncertainties can be controlled by more accurate and reliable input data, the majority of the data and assumptions used in seismic hazard studies remain with high uncertainties that contribute to the uncertainty of the final results. In this paper a new methodology for the assessment of seismic hazard is described. The proposed approach provides practical facility for better capture of spatial variations of seismological and tectonic characteristics, which allows better treatment of their uncertainties. In the proposed approach, GIS raster-based data models are used in order to model geographical features in a cell-based system. The cell-based source model proposed in this paper provides a framework for implementing many geographically referenced seismotectonic factors into seismic hazard modelling. Examples for such components are seismic source boundaries, rupture geometry, seismic activity rate, focal depth and the choice of attenuation functions. The proposed methodology provides improvements in several aspects of the standard analytical tools currently being used for assessment and mapping of regional seismic hazard. The proposed methodology makes the best use of the recent advancements in computer technology in both software and hardware. The proposed approach is well structured to be implemented using conventional GIS tools.

  8. Probabilistic Seismic Risk Assessment in Manizales, Colombia:Quantifying Losses for Insurance Purposes

    Institute of Scientific and Technical Information of China (English)

    Mario A.Salgado-Gálvez; Gabriel A.Bernal; Daniela Zuloaga; Mabel C.Marulanda; Omar-Darío Cardona; Sebastián Henao

    2017-01-01

    A fully probabilistic seismic risk assessment was developed in Manizales,Colombia,considering assets of different types.The first type includes elements that are part of the water and sewage network,and the second type includes public and private buildings.This assessment required the development of a probabilistic seismic hazard analysis that accounts for the dynamic soil response,assembling high resolution exposure databases,and the development of damage models for different types of elements.The economic appraisal of the exposed assets was developed together with specialists of the water utilities company of Manizales and the city administration.The risk assessment was performed using several Comprehensive Approach to Probabilistic Risk Assessment modules as well as the R-System,obtaining results in terms of traditional metrics such as loss exceedance curve,average annual loss,and probable maximum loss.For the case of pipelines,repair rates were also estimated.The results for the water and sewage network were used in activities related to the expansion and maintenance strategies,as well as for the exploration of financial retention and transfer alternatives using insurance schemes based on technical,probabilistic,and prospective damage and loss estimations.In the case of the buildings,the results were used in the update of the technical premium values of the existing collective insurance scheme.

  9. IAEA specialists' meeting on seismic isolation technology. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-07-01

    The objective of the Meeting on Seismic Isolation Technology was to provide a forum for review and discussion of seismic isolation technology applicable to thermal and fast reactors. The meeting was conducted consistent with the recommendations of the IAEA Working Group Meeting on Fast Breeder Reactor-Block Antiseismic Design and Verification in October 1987, to augment a coordinated research program with specific recommendations and an assessment of technology in the area of seismic isolation. Seismic isolation has become an attractive means for mitigating the consequences of severe earthquakes. Although the general idea of seismic isolation has been considered since the turn of the century, real practical applications have evolved, at an accelerating pace, over the last fifteen years aided by several key developments: (1) recent advances in hardware developments in the form of reliable elastomer bearings, (2) development of reliable analytical methods for the prediction of dynamic responses of structures (3) construction of large bearing test machines and large shake tables to simulate earthquake effects on structures for validation analytical models and demonstration of performance characteristics, and (4) advances in seismological engineering. Although the applications and developments of seismic isolation technology have mainly benefited commercial facilities and structures, including office buildings, research laboratories, hospitals, museums, bridges, ship loaders, etc., several seismically isolated nuclear facilities were implemented: the four 900 MWe pressurized water reactor units of the Cruas plant in France, the two Framatome units in Koeberg, South Africa, a nuclear waste storage facility in France and a nuclear fuel reprocessing plant in England. The scope of this specialists' meeting was to review the state-of-the-art technology related to the performance of seismic isolator elements and systems, performance limits and margins, criteria for the

  10. IAEA specialists' meeting on seismic isolation technology. Proceedings

    International Nuclear Information System (INIS)

    1992-01-01

    The objective of the Meeting on Seismic Isolation Technology was to provide a forum for review and discussion of seismic isolation technology applicable to thermal and fast reactors. The meeting was conducted consistent with the recommendations of the IAEA Working Group Meeting on Fast Breeder Reactor-Block Antiseismic Design and Verification in October 1987, to augment a coordinated research program with specific recommendations and an assessment of technology in the area of seismic isolation. Seismic isolation has become an attractive means for mitigating the consequences of severe earthquakes. Although the general idea of seismic isolation has been considered since the turn of the century, real practical applications have evolved, at an accelerating pace, over the last fifteen years aided by several key developments: (1) recent advances in hardware developments in the form of reliable elastomer bearings, (2) development of reliable analytical methods for the prediction of dynamic responses of structures (3) construction of large bearing test machines and large shake tables to simulate earthquake effects on structures for validation analytical models and demonstration of performance characteristics, and (4) advances in seismological engineering. Although the applications and developments of seismic isolation technology have mainly benefited commercial facilities and structures, including office buildings, research laboratories, hospitals, museums, bridges, ship loaders, etc., several seismically isolated nuclear facilities were implemented: the four 900 MWe pressurized water reactor units of the Cruas plant in France, the two Framatome units in Koeberg, South Africa, a nuclear waste storage facility in France and a nuclear fuel reprocessing plant in England. The scope of this specialists' meeting was to review the state-of-the-art technology related to the performance of seismic isolator elements and systems, performance limits and margins, criteria for the

  11. Seismic reliability assessment methodology for CANDU concrete containment structures

    International Nuclear Information System (INIS)

    Stephens, M.J.; Nessim, M.A.; Hong, H.P.

    1995-05-01

    A study was undertaken to develop a reliability-based methodology for the assessment of existing CANDU concrete containment structures with respect to seismic loading. The focus of the study was on defining appropriate specified values and partial safety factors for earthquake loading and resistance parameters. Key issues addressed in the work were the identification of an approach to select design earthquake spectra that satisfy consistent safety levels, and the use of structure-specific data in the evaluation of structural resistance. (author). 23 refs., 9 tabs., 15 figs

  12. Damage assessment for seismic response of recycled concrete filled steel tube columns

    Science.gov (United States)

    Huang, Yijie; Xiao, Jianzhuang; Shen, Luming

    2016-09-01

    A model for evaluating structural damage of recycled aggregate concrete filled steel tube (RCFST) columns under seismic effects is proposed in this paper. The proposed model takes the lateral deformation and the effect of repeated cyclic loading into account. Available test results were collected and utilized to calibrate the parameters of the proposed model. A seismic test for six RCFST columns was also performed to validate the proposed damage assessment model. The main test parameters were the recycled coarse aggregate (RCA) replacement percentage and the bond-slip property. The test results indicated that the seismic performance of the RCFST member depends on the RCA contents and their damage index increases as the RCA replacement percentage increases. It is also indicated that the damage degree of RCFST changes with the variation of the RCA replacement percentage. Finally, comparisons between the RCA contents, lateral deformation ratio and damage degree were implemented. It is suggested that an improvement procedure should be implemented in order to compensate for the performance difference between the RCFST and normal concrete filled steel tubes (CFST).

  13. Seismic assessment of existing RC buildings under alternative ground motion ensembles compatible to EC8 and NTC 2008

    NARCIS (Netherlands)

    Tanganelli, Marco; Viti, Stefania; Mariani, V.; Pianigiani, Maria

    2017-01-01

    This work investigates the effects of the choice of different ensembles of ground motions on the seismic assessment of existing RC buildings through nonlinear dynamic analysis. Nowadays indeed, all the main International Seismic Codes provide a soil classification which is based on the shear wave

  14. Extensional Fault Evolution and its Flexural Isostatic Response During Iberia-Newfoundland Rifted Margin Formation

    Science.gov (United States)

    Gómez-Romeu, J.; Kusznir, N.; Manatschal, G.; Roberts, A.

    2017-12-01

    During the formation of magma-poor rifted margins, upper lithosphere thinning and stretching is achieved by extensional faulting, however, there is still debate and uncertainty how faults evolve during rifting leading to breakup. Seismic data provides an image of the present-day structural and stratigraphic configuration and thus initial fault geometry is unknown. To understand the geometric evolution of extensional faults at rifted margins it is extremely important to also consider the flexural response of the lithosphere produced by fault displacement resulting in footwall uplift and hangingwall subsidence. We investigate how the flexural isostatic response to extensional faulting controls the structural development of rifted margins. To achieve our aim, we use a kinematic forward model (RIFTER) which incorporates the flexural isostatic response to extensional faulting, crustal thinning, lithosphere thermal loads, sedimentation and erosion. Inputs for RIFTER are derived from seismic reflection interpretation and outputs of RIFTER are the prediction of the structural and stratigraphic consequences of recursive sequential faulting and sedimentation. Using RIFTER we model the simultaneous tectonic development of the Iberia-Newfoundland conjugate rifted margins along the ISE01-SCREECH1 and TGS/LG12-SCREECH2 seismic lines. We quantitatively test and calibrate the model against observed target data restored to breakup time. Two quantitative methods are used to obtain this target data: (i) gravity anomaly inversion which predicts Moho depth and continental lithosphere thinning and (ii) reverse post-rift subsidence modelling to give water and Moho depths at breakup time. We show that extensional faulting occurs on steep ( 60°) normal faults in both proximal and distal parts of rifted margins. Extensional faults together with their flexural isostatic response produce not only sub-horizontal exhumed footwall surfaces (i.e. the rolling hinge model) and highly rotated (60

  15. Life-cycle cost assessment of seismically base-isolated structures in nuclear power plants

    International Nuclear Information System (INIS)

    Wang, Hao; Weng, Dagen; Lu, Xilin; Lu, Liang

    2013-01-01

    Highlights: • The life-cycle cost of seismic base-isolated nuclear power plants is modeled. • The change law of life-cycle cost with seismic fortification intensity is studied. • The initial cost of laminated lead rubber bearings can be expressed as the function of volume. • The initial cost of a damper can be expressed as the function of its maximum displacement and tonnage. • The use of base-isolation can greatly reduce the expected damage cost, which leads to the reduction of the life-cycle cost. -- Abstract: Evaluation of seismically base-isolated structural life-cycle cost is the key problem in performance based seismic design. A method is being introduced to address the life-cycle cost of base-isolated reinforced concrete structures in nuclear power plants. Each composition of life-cycle cost is analyzed including the initial construction cost, the isolators cost and the excepted damage cost over life-cycle of the structure. The concept of seismic intensity is being used to estimate the expected damage cost, greatly simplifying the calculation. Moreover, French Cruas nuclear power plant is employed as an example to assess its life-cycle cost, compared to the cost of non-isolated plant at the same time. The results show that the proposed method is efficient and the expected damage cost is enormously reduced because of the application of isolators, which leads to the reduction of the life-cycle cost of nuclear power plants

  16. Task force activity to take the effect of elastic-plastic behaviour into account on the seismic safety evaluation of nuclear piping systems

    International Nuclear Information System (INIS)

    Nakamura, Izumi; Shiratori, Masaki; Morishita, Masaki; Otani, Akihito; Shibutani, Tadahito

    2015-01-01

    According to investigations of several nuclear power plants (NPPs) hit by actual seismic events and a number of experimental researches on the failure behavior of piping systems under seismic loads, it is recognized that piping systems used in NPPs include a large seismic safety margin until boundary failure. Since the stress assessment based on the elastic analysis does not reflect actual seismic capability of piping systems including plastic region, it is necessary to develop a rational procedures to estimate the elastic-plastic behavior of piping systems under a large seismic load. With the aim of establishing a procedure that takes into account the elastic-plastic behavior effect in the seismic safety estimation of nuclear piping systems, a task force activity has been planned. Through the activity, the authors intend to establish guidelines to estimate the elastic-plastic behavior of piping systems rationally and conservatively, and to provide new rational seismic safety criteria taking the effect of elastic-plastic behavior into account. As the first step of making out the analysis guideline, benchmark analyses are conducted for a pipe element test and a piping system test. In this paper, the outline of the research activity and the preliminary results of benchmark analyses are described. (author)

  17. Correlation between seismicity and geomorphology in Dingxi Basin, Gansu Province, China

    Directory of Open Access Journals (Sweden)

    Li Xue

    2013-01-01

    Full Text Available A M6.6 earthquake occurred on July 22, 2013 at Dingxi Basin in Gansu Province within the tectonially expanding northeastern margin of the Qinghai-Tibet Plateau. We analyzed the geomorphological features of the Dingxi Basin by using remote sensing technology and compared them with local seismic activity. We found that most of the river basins are at the robust stage of development and that the major local rivers and the development of some basins boundaries are controlled by the seismic faults. Among four zones identified to have significant tectonic activities, the northwestly-oriented one located in the south has the highest seismic activity, and it is where the M6. 6 earthquake occurrred.

  18. Testing of seismic isolation bearings for advanced liquid metal reactor prism

    International Nuclear Information System (INIS)

    Tajirian, F.F.; Kelly, J.M.

    1988-01-01

    Seismic isolation can significantly mitigate earthquake loads on liquid metal reactors (LMR), thus reducing the impact of seismic loads on design. This improves plant safety margins for beyond-design basis seismic events and enhances adaptability of a standardized design to a variety of sites, with potential cost benefits. The PRISM (Power Reactor Inherently Safe Module) LMR incorporates a horizontal isolation system which consists of high damping steel laminated rubber bearings. The results of an experimental program to determine the mechanical properties of the rubber compound and the bearing performance under different loading conditions are presented. The test results demonstrate the excellent performance of the bearings and their suitability for isolating compact LMR plants

  19. Seismic response analysis and upgrading design of pump houses of Kozloduy NPP units 5 and 6

    International Nuclear Information System (INIS)

    Jordanov, M.; Marinov, M.; Krutzik, N.

    2001-01-01

    The main objective of the presented project was to perform a feasibility study for seismic/structural evaluation of the safety related structures at Kozloduy NPP Units 5 and 6 for the new site seismicity and determine if they satisfy current international safety standards. The evaluation of the Pump House 3 (PH3) building is addressed in this paper, which was carried out by applying appropriate modeling techniques combined with failure mode and seismic margin analyses. The scope of the work defined was to present the required enhancement of the seismic capacity of the Pump House structures.(author)

  20. Seismic Performance Assessment and Strengthening of a Multi-Story RC Building through a Case Study of “Seaside Hotel”

    OpenAIRE

    Rasol, Mezgeen Abdulrahman

    2014-01-01

    ABSTRACT: In recent years great developments have been made in the assessment of existing buildings and their performance in resistance to earthquake loading, potential seismic risk, vulnerability and lateral loads. Existing buildings can be repaired and strengthened to include new developments and methods to resist earthquake and seismic loads, which is the most economical way to safeguard against the economic and social catastrophe affected by severe seismic activity in urban environments. ...

  1. Seismic qualification of equipment by means of probabilistic risk assessment

    International Nuclear Information System (INIS)

    Azarm, M.A.; Farahzad, P.; Boccio, J.L.

    1982-01-01

    Upon the sponsorship of the Equipment Qualification Branch (EQB) of NRC, Brookhaven National Laboratory (BNL) has utilized a risk-based approach for identifying, in a generic fashion, seismically risk-sensitive equipment. It is anticipated that the conclusions drawn therefrom and the methodology employed will, in part, reconcile some of the concerns dealing with the seismic qualification of equipment in operating plants. The approach taken augments an existing sensitivity analysis, based upon the WASH-1400 Reactor Safety Study (RSS), by accounting for seismicity and component fragility with the Kennedy model and by essentially including the requisite seismic data presented in the Zion Probabilistic Safety Study (ZPSS). Parametrically adjusting the seismic-related variables and ascertaining their effects on overall plant risk, core-melt probability, accident sequence probability, etc., allows one to identify those seismically risk-sensitive systems and equipment. This paper describes the approach taken and highlights the results obtained thus far for a hypothetical pressurized water reactor

  2. Scenario of gas-charged sediments and gas hydrates in the western continental margin of India

    Digital Repository Service at National Institute of Oceanography (India)

    Karisiddaiah, S.M.; SubbaRaju, L.V.

    Echosounding, high-resolution shallow seismic data were collected along track lines spaced at 20 km interval across the western continental margin of India. A detailed analysis of the underway data revealed the occurrence of methane-bearing gas...

  3. Orogenic structural inheritance and rifted passive margin formation

    Science.gov (United States)

    Salazar Mora, Claudio A.; Huismans, Ritske S.

    2016-04-01

    Structural inheritance is related to mechanical weaknesses in the lithosphere due to previous tectonic events, e.g. rifting, subduction and collision. The North and South Atlantic rifted passive margins that formed during the breakup of Western Gondwana, are parallel to the older Caledonide and the Brasiliano-Pan-African orogenic belts. In the South Atlantic, 'old' mantle lithospheric fabric resulting from crystallographic preferred orientation of olivine is suggested to play a role during rifted margin formation (Tommasi and Vauchez, 2001). Magnetometric and gravimetric mapping of onshore structures in the Camamu and Almada basins suggest that extensional faults are controlled by two different directions of inherited older Brasiliano structures in the upper lithosphere (Ferreira et al., 2009). In the South Atlantic Campos Basin, 3D seismic data indicate that inherited basement structures provide a first order control on basin structure (Fetter, 2009). Here we investigate the role of structural inheritance on the formation of rifted passive margins with high-resolution 2D thermo-mechanical numerical experiments. The numerical domain is 1200 km long and 600 km deep and represents the lithosphere and the sublithospheric mantle. Model experiments were carried out by creating self-consistent orogenic inheritance where a first phase of orogen formation is followed by extension. We focus in particular on the role of varying amount of orogenic shortening, crustal rheology, contrasting styles of orogen formation on rifted margin style, and the time delay between orogeny and subsequent rifted passive formation. Model results are compared to contrasting structural styles of rifted passive margin formation as observed in the South Atlantic. Ferreira, T.S., Caixeta, J.M., Lima, F.D., 2009. Basement control in Camamu and Almada rift basins. Boletim de Geociências da Petrobrás 17, 69-88. Fetter, M., 2009. The role of basement tectonic reactivation on the structural evolution

  4. Re-appraisal of the Magma-rich versus Magma-poor Paradigm at Rifted Margins: consequences for breakup processes

    Science.gov (United States)

    Tugend, J.; Gillard, M.; Manatschal, G.; Nirrengarten, M.; Harkin, C. J.; Epin, M. E.; Sauter, D.; Autin, J.; Kusznir, N. J.; McDermott, K.

    2017-12-01

    Rifted margins are often classified based on their magmatic budget only. Magma-rich margins are commonly considered to have excess decompression melting at lithospheric breakup compared with steady state seafloor spreading while magma-poor margins have suppressed melting. New observations derived from high quality geophysical data sets and drill-hole data have revealed the diversity of rifted margin architecture and variable distribution of magmatism. Recent studies suggest, however, that rifted margins have more complex and polyphase tectono-magmatic evolutions than previously assumed and cannot be characterized based on the observed volume of magma alone. We compare the magmatic budget related to lithospheric breakup along two high-resolution long-offset deep reflection seismic profiles across the SE-Indian (magma-poor) and Uruguayan (magma-rich) rifted margins. Resolving the volume of magmatic additions is difficult. Interpretations are non-unique and several of them appear plausible for each case involving variable magmatic volumes and mechanisms to achieve lithospheric breakup. A supposedly 'magma-poor' rifted margin (SE-India) may show a 'magma-rich' lithospheric breakup whereas a 'magma-rich' rifted margin (Uruguay) does not necessarily show excess magmatism at lithospheric breakup compared with steady-state seafloor spreading. This questions the paradigm that rifted margins can be subdivided in either magma-poor or magma-rich margins. The Uruguayan and other magma-rich rifted margins appear characterized by an early onset of decompression melting relative to crustal breakup. For the converse, where the onset of decompression melting is late compared with the timing of crustal breakup, mantle exhumation can occur (e.g. SE-India). Our work highlights the difficulty in determining a magmatic budget at rifted margins based on seismic reflection data alone, showing the limitations of margin classification based solely on magmatic volumes. The timing of

  5. OVERVIEW ON BNL ASSESSMENT OF SEISMIC ANALYSIS METHODS FOR DEEPLY EMBEDDED NPP STRUCTURES

    International Nuclear Information System (INIS)

    XU, J.; COSTANTINO, C.; HOFMAYER, C.; GRAVES, H.

    2007-01-01

    A study was performed by Brookhaven National Laboratory (BNL) under the sponsorship of the U. S. Nuclear Regulatory Commission (USNRC), to determine the applicability of established soil-structure interaction analysis methods and computer programs to deeply embedded and/or buried (DEB) nuclear power plant (NPP) structures. This paper provides an overview of the BNL study including a description and discussions of analyses performed to assess relative performance of various SSI analysis methods typically applied to NPP structures, as well as the importance of interface modeling for DEB structures. There are four main elements contained in the BNL study: (1) Review and evaluation of existing seismic design practice, (2) Assessment of simplified vs. detailed methods for SSI in-structure response spectrum analysis of DEB structures, (3) Assessment of methods for computing seismic induced earth pressures on DEB structures, and (4) Development of the criteria for benchmark problems which could be used for validating computer programs for computing seismic responses of DEB NPP structures. The BNL study concluded that the equivalent linear SSI methods, including both simplified and detailed approaches, can be extended to DEB structures and produce acceptable SSI response calculations, provided that the SSI response induced by the ground motion is very much within the linear regime or the non-linear effect is not anticipated to control the SSI response parameters. The BNL study also revealed that the response calculation is sensitive to the modeling assumptions made for the soil/structure interface and application of a particular material model for the soil

  6. Risk assessment to determine the advisability of seismic trip systems

    International Nuclear Information System (INIS)

    Cummings, G.E.; Wells, J.E.

    1977-01-01

    Seismic trip (scram) systems have been used for many years on certain research, test, and production reactors, but not on commercial power reactors. An assessment is made of the risks associated with the presence and absence of such trip systems on power reactors. An attempt was made to go beyond the reactor per se and to consider the risks to society as a whole; for example, the advantages of tripping to avoid an earthquake-caused accident were weighed against the disadvantages associated with interrupting electric power in a time when it would be needed for emergency services. The comparative risk assessment was performed by means of fault tree analysis

  7. Seismic investigations of the Earth's lithosphere and asthenosphere in two unique convergent margin settings: The Carpathians, Romania, and U.S. Cordillera, Idaho-Oregon

    Science.gov (United States)

    Stanciu, Adrian Christian

    Proposed mechanisms for the unusual seismicity ~100 km southeast of the contact between the Transylvanian Basin and the Eastern Carpathians in Romania have included tearing and rollback of a subducted slab of oceanic lithosphere and gravitational instability and delamination of continental lithosphere. We examined the upper mantle fabrics using shear wave splitting of SK(K)S phases recorded at four broadband seismic stations in the Transylvanian Basin. Our results indicate a regional NW-SE splitting trend, with measurements that reflect an abrupt change from this regional flow field in the vicinity of the Vrancea body to a NE-SW trend that is consistent with redirection of mantle flow. Crustal thickness measurements show 28-30 km in the western part of the Transylvanian Basin, 34-39 km at the contact with the Eastern Carpathians, and 40-45 km further east. These results, along with previous estimates, constrain the locus of the inferred Miocene suture between the southeastern-most portion of the Tisza-Dacia terrane and the East European Platform. The second convergent margin system represented here is in the North American Cordillera in Idaho and Oregon, where subduction and accretion of exotic terranes have modified the western margin of North America. We used teleseismic receiver functions from 85 broadband stations to analyze the geometry of the Salmon River suture zone, the western Idaho shear zone, and the Grouse Creek-Farmington zone boundary. Results show a clear break in crustal thickness from ~28 km beneath the accreted terranes to 36 km east of the surface expression of the WISZ. A strong mid-crustal converter at ~20 km depth is consistent with tectonic wedging during accretion of the Blue Mountains terranes. An eastern Moho offset of ~6 km is consistent with the Archean Grouse Creek-Farmington zone boundary. We used deep converted phases generated beneath the study area to image the mantle transition zone. We observe a continuous high amplitude P410s

  8. On-line fatigue monitoring and probabilistic assessment of margins

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, I. [Electricite de France, 93 - Saint-Denis (France). Direction des Etudes et Recherches; Morilhat, P. [Electricite de France, 93 - Saint-Denis (France). Direction des Etudes et Recherches

    1995-01-01

    An on-line computer-aided system has been developed by Electricite de France, the French utility, for fatigue monitoring of critical locations in the nuclear steam supply system. This tool, called a fatigue meter, includes as input data plant parameters and is based on some conservative assumptions at several steps of the damage assessment (thermal boundary conditions, stress computation,..). In this paper we present recent developments performed towards a better assessment of margins involved in the complete analysis. The methodology is illustrated with an example showing the influence of uncertainty in plant parameters on the final stress computed at a pressurized water reactor 900MW unit pressurizer surge line nozzle. A second example is shown to illustrate the possibility of defining some transient archetypes. ((orig.)).

  9. Probabilistic seismic safety assessment of a CANDU 6 nuclear power plant including ambient vibration tests: Case study

    Energy Technology Data Exchange (ETDEWEB)

    Nour, Ali [Hydro Québec, Montréal, Québec H2L4P5 (Canada); École Polytechnique de Montréal, Montréal, Québec H3C3A7 (Canada); Cherfaoui, Abdelhalim; Gocevski, Vladimir [Hydro Québec, Montréal, Québec H2L4P5 (Canada); Léger, Pierre [École Polytechnique de Montréal, Montréal, Québec H3C3A7 (Canada)

    2016-08-01

    Highlights: • In this case study, the seismic PSA methodology adopted for a CANDU 6 is presented. • Ambient vibrations testing to calibrate a 3D FEM and to reduce uncertainties is performed. • Procedure for the development of FRS for the RB considering wave incoherency effect is proposed. • Seismic fragility analysis for the RB is presented. - Abstract: Following the 2011 Fukushima Daiichi nuclear accident in Japan there is a worldwide interest in reducing uncertainties in seismic safety assessment of existing nuclear power plant (NPP). Within the scope of a Canadian refurbishment project of a CANDU 6 (NPP) put in service in 1983, structures and equipment must sustain a new seismic demand characterised by the uniform hazard spectrum (UHS) obtained from a site specific study defined for a return period of 1/10,000 years. This UHS exhibits larger spectral ordinates in the high-frequency range than those used in design. To reduce modeling uncertainties as part of a seismic probabilistic safety assessment (PSA), Hydro-Québec developed a procedure using ambient vibrations testing to calibrate a detailed 3D finite element model (FEM) of the containment and reactor building (RB). This calibrated FE model is then used for generating floor response spectra (FRS) based on ground motion time histories compatible with the UHS. Seismic fragility analyses of the reactor building (RB) and structural components are also performed in the context of a case study. Because the RB is founded on a large circular raft, it is possible to consider the effect of the seismic wave incoherency to filter out the high-frequency content, mainly above 10 Hz, using the incoherency transfer function (ITF) method. This allows reducing significantly the non-necessary conservatism in resulting FRS, an important issue for an existing NPP. The proposed case study, and related methodology using ambient vibration testing, is particularly useful to engineers involved in seismic re-evaluation of

  10. Review of seismic probabilistic risk assessment and the use of sensitivity analysis

    International Nuclear Information System (INIS)

    Shiu, K.K.; Reed, J.W.; McCann, M.W. Jr.

    1985-01-01

    This paper presents results of sensitivity reviews performed to address a range of questions which arise in the context of seismic probabilistic risk assessment (PRA). In a seismic PRA, sensitivity evaluations can be divided into three areas: hazard, fragility, and system modeling. As a part of the review of standard boiling water reactor seismic PRA which was performed by General Electric (GE), a reassessment of the plant damage states frequency and a detailed sensitivity analysis were conducted at Brookhaven National Laboratory. The rationale for such an undertaking is that in this case: (1) the standard plant may be sited anywhere in the eastern US (i.e., in regions with safety shutdown earthquake (SSE) values equal to or less than 0.3g peak ground acceleration), (2) it may have equipment whose fragility values could vary over a wide range; and (3) there are variations in system designs outside the original defined scope. Seismic event trees and fault trees were developed to model the different system and plant accident sequences. Hazard curves which represent various sites on the east coast were obtained; alternate structure and equipment fragility data were postulated. Various combinations of hazard and fragility data were analyzed. In addition, system modeling was perturbed to examine the impact upon the final results. Orders of magnitude variation were observed in the plant damage state frequency among the different cases. 7 references, 3 figures, 2 tables

  11. Seismic Vulnerability Assessment of a Shallow Two-Story Underground RC Box Structure

    Directory of Open Access Journals (Sweden)

    Jungwon Huh

    2017-07-01

    Full Text Available Tunnels, culverts, and subway stations are the main parts of an integrated infrastructure system. Most of them are constructed by the cut-and-cover method at shallow depths (mainly lower than 30 m of soil deposits, where large-scale seismic ground deformation can occur with lower stiffness and strength of the soil. Therefore, the transverse racking deformation (one of the major seismic ground deformation due to soil shear deformations should be included in the seismic design of underground structures using cost- and time-efficient methods that can achieve robustness of design and are easily understood by engineers. This paper aims to develop a simplified but comprehensive approach relating to vulnerability assessment in the form of fragility curves on a shallow two-story reinforced concrete underground box structure constructed in a highly-weathered soil. In addition, a comparison of the results of earthquakes per peak ground acceleration (PGA is conducted to determine the effective and appropriate number for cost- and time-benefit analysis. The ground response acceleration method for buried structures (GRAMBS is used to analyze the behavior of the structure subjected to transverse seismic loading under quasi-static conditions. Furthermore, the damage states that indicate the exceedance level of the structural strength capacity are described by the results of nonlinear static analyses (or so-called pushover analyses. The Latin hypercube sampling technique is employed to consider the uncertainties associated with the material properties and concrete cover owing to the variation in construction conditions. Finally, a large number of artificial ground shakings satisfying the design spectrum are generated in order to develop the seismic fragility curves based on the defined damage states. It is worth noting that the number of ground motions per PGA, which is equal to or larger than 20, is a reasonable value to perform a structural analysis that

  12. Combined Gravimetric-Seismic Crustal Model for Antarctica

    Science.gov (United States)

    Baranov, Alexey; Tenzer, Robert; Bagherbandi, Mohammad

    2018-01-01

    The latest seismic data and improved information about the subglacial bedrock relief are used in this study to estimate the sediment and crustal thickness under the Antarctic continent. Since large parts of Antarctica are not yet covered by seismic surveys, the gravity and crustal structure models are used to interpolate the Moho information where seismic data are missing. The gravity information is also extended offshore to detect the Moho under continental margins and neighboring oceanic crust. The processing strategy involves the solution to the Vening Meinesz-Moritz's inverse problem of isostasy constrained on seismic data. A comparison of our new results with existing studies indicates a substantial improvement in the sediment and crustal models. The seismic data analysis shows significant sediment accumulations in Antarctica, with broad sedimentary basins. According to our result, the maximum sediment thickness in Antarctica is about 15 km under Filchner-Ronne Ice Shelf. The Moho relief closely resembles major geological and tectonic features. A rather thick continental crust of East Antarctic Craton is separated from a complex geological/tectonic structure of West Antarctica by the Transantarctic Mountains. The average Moho depth of 34.1 km under the Antarctic continent slightly differs from previous estimates. A maximum Moho deepening of 58.2 km under the Gamburtsev Subglacial Mountains in East Antarctica confirmed the presence of deep and compact orogenic roots. Another large Moho depth in East Antarctica is detected under Dronning Maud Land with two orogenic roots under Wohlthat Massif (48-50 km) and the Kottas Mountains (48-50 km) that are separated by a relatively thin crust along Jutulstraumen Rift. The Moho depth under central parts of the Transantarctic Mountains reaches 46 km. The maximum Moho deepening (34-38 km) in West Antarctica is under the Antarctic Peninsula. The Moho depth minima in East Antarctica are found under the Lambert Trench (24

  13. The rifted margin of Saudi Arabia

    Science.gov (United States)

    McClain, J. S.; Orcutt, J. A.

    The structure of rifted continental margins has always been of great scientific interest, and now, with dwindling economic oil deposits, these complex geological features assume practical importance as well. The ocean-continent transition is, by definition, laterally heterogeneous and likely to be extremely complicated. The southernmost shotpoints (4, 5, and 6) in the U.S. Geological Survey seismic refraction profile in the Kingdom of Saudi Arabia lie within a transition region and thus provide a testing ground for methods that treat wave propagation in laterally heterogeneous media. This portion of the profile runs from the Farasan Islands in the Red Sea across the coast line and the Hijaz-Asir escarpment into the Hijaz-Asir tectonic province. Because the southernmost shotpoint is within the margin of the Saudi sub-continent, the full transition region is not sampled. Furthermore, such an experiment is precluded by the narrowness of the purely oceanic portion of the Red Sea.

  14. Seismic Oceanography's Failure to Flourish: A Possible Solution

    Science.gov (United States)

    Ruddick, B. R.

    2018-01-01

    A recent paper in Journal of Geophysical Research: Oceans used multichannel seismic observations to map estimates of internal wave mixing in the Gulf of Mexico, finding greatly enhanced mixing over the slope region. These results suggest that the ocean margins may supply the mixing required to close the global thermohaline circulation, and the techniques demonstrated here might be used to map mixing over much of the world's continental shelves. The use of multichannel seismics to image ocean phenomena is nearly 15 years old, and despite the initial promise, the techniques have not become as broadly used as initially expected. We discuss possible reasons for this, and suggest an alternative approach that might gain broader success.

  15. Assessment of effectiveness of anti-seismic measures in stabilization project of ChNPP shelter object

    International Nuclear Information System (INIS)

    Kondrat'ev, S.N.; Kritskij, V.B.; Ryzhov, D.I.; Shugajlo, A.P.; Shugajlo, Al.P.; Prabkhakara, M.

    2004-01-01

    The major factors, which may lead to the collapse of the Shelter object (SO) civil structures, are extreme natural phenomena and among them earthquake. In order to raise the resistance of the SO civil structure to seismic and other significant loads and to reduce the risk of their collapse ChNPP requested KSK Consortium to develop the SO Detailed Design for stabilization. At the present work the results of assessment of anti-seismic measures are given based on results of a technical review of the Detailed Design

  16. Extensional fault geometry and its flexural isostatic response during the formation of the Iberia - Newfoundland conjugate rifted margins

    Science.gov (United States)

    Gómez-Romeu, Júlia; Kusznir, Nick; Manatschal, Gianreto; Roberts, Alan

    2017-04-01

    Despite magma-poor rifted margins having been extensively studied for the last 20 years, the evolution of extensional fault geometry and the flexural isostatic response to faulting remain still debated topics. We investigate how the flexural isostatic response to faulting controls the structural development of the distal part of rifted margins in the hyper-extended domain and the resulting sedimentary record. In particular we address an important question concerning the geometry and evolution of extensional faults within distal hyper-extended continental crust; are the seismically observed extensional fault blocks in this region allochthons from the upper plate or are they autochthons of the lower plate? In order to achieve our aim we focus on the west Iberian rifted continental margin along the TGS and LG12 seismic profiles. Our strategy is to use a kinematic forward model (RIFTER) to model the tectonic and stratigraphic development of the west Iberia margin along TGS-LG12 and quantitatively test and calibrate the model against breakup paleo-bathymetry, crustal basement thickness and well data. RIFTER incorporates the flexural isostatic response to extensional faulting, crustal thinning, lithosphere thermal loads, sedimentation and erosion. The model predicts the structural and stratigraphic consequences of recursive sequential faulting and sedimentation. The target data used to constrain model predictions consists of two components: (i) gravity anomaly inversion is used to determine Moho depth, crustal basement thickness and continental lithosphere thinning and (ii) reverse post-rift subsidence modelling consisting of flexural backstripping, decompaction and reverse post-rift thermal subsidence modelling is used to give paleo-bathymetry at breakup time. We show that successful modelling of the structural and stratigraphic development of the TGS-LG12 Iberian margin transect also requires the simultaneous modelling of the Newfoundland conjugate margin, which we

  17. Evaluation of induced seismicity forecast models in the Induced Seismicity Test Bench

    Science.gov (United States)

    Király, Eszter; Gischig, Valentin; Zechar, Jeremy; Doetsch, Joseph; Karvounis, Dimitrios; Wiemer, Stefan

    2016-04-01

    Induced earthquakes often accompany fluid injection, and the seismic hazard they pose threatens various underground engineering projects. Models to monitor and control induced seismic hazard with traffic light systems should be probabilistic, forward-looking, and updated as new data arrive. Here, we propose an Induced Seismicity Test Bench to test and rank such models. We apply the test bench to data from the Basel 2006 and Soultz-sous-Forêts 2004 geothermal stimulation projects, and we assess forecasts from two models that incorporate a different mix of physical understanding and stochastic representation of the induced sequences: Shapiro in Space (SiS) and Hydraulics and Seismics (HySei). SiS is based on three pillars: the seismicity rate is computed with help of the seismogenic index and a simple exponential decay of the seismicity; the magnitude distribution follows the Gutenberg-Richter relation; and seismicity is distributed in space based on smoothing seismicity during the learning period with 3D Gaussian kernels. The HySei model describes seismicity triggered by pressure diffusion with irreversible permeability enhancement. Our results show that neither model is fully superior to the other. HySei forecasts the seismicity rate well, but is only mediocre at forecasting the spatial distribution. On the other hand, SiS forecasts the spatial distribution well but not the seismicity rate. The shut-in phase is a difficult moment for both models in both reservoirs: the models tend to underpredict the seismicity rate around, and shortly after, shut-in. Ensemble models that combine HySei's rate forecast with SiS's spatial forecast outperform each individual model.

  18. Seismic assessment of a multi-span steel railway bridge in Turkey based on nonlinear time history

    Science.gov (United States)

    Yılmaz, Mehmet F.; Çağlayan, Barlas Ö.

    2018-01-01

    Many research studies have shown that bridges are vulnerable to earthquakes, graphically confirmed by incidents such as the San Fernando (1971 USA), Northridge (1994 USA), Great Hanshin (1995 Japan), and Chi-Chi (1999 Taiwan) earthquakes, amongst many others. The studies show that fragility curves are useful tools for bridge seismic risk assessments, which can be generated empirically or analytically. Empirical fragility curves can be generated where damage reports from past earthquakes are available, but otherwise, analytical fragility curves can be generated from structural seismic response analysis. Earthquake damage data in Turkey are very limited, hence this study employed an analytical method to generate fragility curves for the Alasehir bridge. The Alasehir bridge is part of the Manisa-Uşak-Dumlupınar-Afyon railway line, which is very important for human and freight transportation, and since most of the country is seismically active, it is essential to assess the bridge's vulnerability. The bridge consists of six 30 m truss spans with a total span 189 m supported by 2 abutments and 5 truss piers, 12.5, 19, 26, 33, and 40 m. Sap2000 software was used to model the Alasehir bridge, which was refined using field measurements, and the effect of 60 selected real earthquake data analyzed using the refined model, considering material and geometry nonlinearity. Thus, the seismic behavior of Alasehir railway bridge was determined and truss pier reaction and displacements were used to determine its seismic performance. Different intensity measures were compared for efficiency, practicality, and sufficiency and their component and system fragility curves derived.

  19. Finite element analyses for seismic shear wall international standard problem

    International Nuclear Information System (INIS)

    Park, Y.J.; Hofmayer, C.H.

    1998-04-01

    Two identical reinforced concrete (RC) shear walls, which consist of web, flanges and massive top and bottom slabs, were tested up to ultimate failure under earthquake motions at the Nuclear Power Engineering Corporation's (NUPEC) Tadotsu Engineering Laboratory, Japan. NUPEC provided the dynamic test results to the OECD (Organization for Economic Cooperation and Development), Nuclear Energy Agency (NEA) for use as an International Standard Problem (ISP). The shear walls were intended to be part of a typical reactor building. One of the major objectives of the Seismic Shear Wall ISP (SSWISP) was to evaluate various seismic analysis methods for concrete structures used for design and seismic margin assessment. It also offered a unique opportunity to assess the state-of-the-art in nonlinear dynamic analysis of reinforced concrete shear wall structures under severe earthquake loadings. As a participant of the SSWISP workshops, Brookhaven National Laboratory (BNL) performed finite element analyses under the sponsorship of the U.S. Nuclear Regulatory Commission (USNRC). Three types of analysis were performed, i.e., monotonic static (push-over), cyclic static and dynamic analyses. Additional monotonic static analyses were performed by two consultants, F. Vecchio of the University of Toronto (UT) and F. Filippou of the University of California at Berkeley (UCB). The analysis results by BNL and the consultants were presented during the second workshop in Yokohama, Japan in 1996. A total of 55 analyses were presented during the workshop by 30 participants from 11 different countries. The major findings on the presented analysis methods, as well as engineering insights regarding the applicability and reliability of the FEM codes are described in detail in this report. 16 refs., 60 figs., 16 tabs

  20. Intra-arc Seismicity: Geometry and Kinematic Constraints of Active Faulting along Northern Liquiñe-Ofqui and Andean Transverse Fault Systems [38º and 40ºS, Southern Andes

    Science.gov (United States)

    Sielfeld, G.; Lange, D.; Cembrano, J. M.

    2017-12-01

    Intra-arc crustal seismicity documents the schizosphere tectonic state along active magmatic arcs. At oblique-convergent margins, a significant portion of bulk transpressional deformation is accommodated in intra-arc regions, as a consequence of stress and strain partitioning. Simultaneously, crustal fluid migration mechanisms may be controlled by the geometry and kinematics of crustal high strain domains. In such domains shallow earthquakes have been associated with either margin-parallel strike-slip faults or to volcano-tectonic activity. However, very little is known on the nature and kinematics of Southern Andes intra-arc crustal seismicity and its relation with crustal faults. Here we present results of a passive seismicity study based on 16 months of data collected from 33 seismometers deployed along the intra-arc region of Southern Andes between 38˚S and 40˚S. This region is characterized by a long-lived interplay among margin-parallel strike-slip faults (Liquiñe-Ofqui Fault System, LOFS), second order Andean-transverse-faults (ATF), volcanism and hydrothermal activity. Seismic signals recorded by our network document small magnitude (0.2P and 2,796 S phase arrival times have been located with NonLinLoc. First arrival polarities and amplitude ratios of well-constrained events, were used for focal mechanism inversion. Local seismicity occurs at shallow levels down to depth of ca. 16 km, associated either with stratovolcanoes or to master, N10˚E, and subsidiary, NE to ENE, striking branches of the LOFS. Strike-slip focal mechanisms are consistent with the long-term kinematics documented by field structural-geology studies. Unexpected, well-defined NW-SE elongated clusters are also reported. In particular, a 72-hour-long, N60˚W-oriented seismicity swarm took place at Caburgua Lake area, describing a ca. 36x12x1km3 faulting crustal volume. Results imply a unique snapshot on shallow crustal tectonics, contributing to the understanding of faulting processes

  1. Geophysical Signatures of cold vents on the northern Cascadia margin

    Science.gov (United States)

    Riedel, M.; Paull, C. K.; Spence, G.; Hyndman, R. D.; Caress, D. W.; Thomas, H.; Lundsten, E.; Ussler, W.; Schwalenberg, K.

    2009-12-01

    The accretionary prism of the northern Cascadia margin is a classic gas hydrate research area. Ocean Drilling Program Leg 146 and Integrated Ocean Drilling Program (IODP) Expedition 311 documented that gas hydrate is widely distributed across the margin. In recent years an increased research focus has been on cold vents, where methane gas is actively released. Two recent expeditions funded by the Monterey Bay Aquarium Research Institute (MBARI) were conducted in the area of IODP Sites U1327 and U1328. An autonomous underwater vehicle (AUV) was used to map the seafloor bathymetry followed by dives with the ROV Doc Ricketts for ground truth information of various seafloor morphological features identified. The two cruises revealed many new seafloor features indicative of methane venting that were previously unknown. Bullseye Vent (BV) has been extensively studied using seismic imaging, piston coring, heat-flow, controlled-source EM, and deep drilling. BV is seismically defined by a circular wipe-out zone but the new AUV data show that BV is rather an elongated depression. BV is associated with a shoaling in the BSR, but lacks evidence for the existence of an underlying fault in the previous data. Although a massive gas-hydrate plug was encountered within the top 40 mbsf in the IODP holes, the ROV observations only revealed some platy methane derived carbonate outcrops at the outer-most rim of the depressions, a few beds of Vesicomya clams, and no observed gas vents, which together do not indicate that BV is especially active now. Further northeast of BV, but along the same trend, active gas venting was found associated with seafloor blistering and bacterial mats suggesting that there is an underlying fault system providing a fluid flow conduit. The newly discovered vent area has few seismic line crossings; however the available seismic data surprisingly are not associated with wipe-out zones. Another prominent fault-related gas vent also was investigated during the

  2. Determination of the Antarctic region active margin basement by using integration of the information coming from the multichannel seismic analysis and the magnetometry; Determinacao do embasamento da margen ativa da regiao Antartica pela integracao de informacoes provenientes da sismica multicanal e da magnetometria

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Luiz Carlos [Diretoria de Hidrografia e Navegacao, XX (Brazil); Gomes, Benedito Souza [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Gamboa, Luiz Antonio P. [Universidade Federal Fluminense, Niteroi, RJ (Brazil)

    1999-07-01

    Geophysical measurements were carried out in the Western Margin of the Antarctic Peninsula and Bransfield Strait by the Brazilian Antarctic Program during the summers of 1987 and 1988. The present work, using a continued seismic multi channel and magnetometry data profile crossing the area, intends to present a two-dimensional model of the interface sediment/basement and contribute to the understanding of the complex geology verified in the studying area. By this model, the main provinces of the are (Deep Ocean, South Shetland Trench, Accretionary Prism, Volcanic Arc South Shetland Islands and Bransfield Basin) could be determined. The seismic and magnetic measurements information when superposed can attribute more consistencies to the interpreted basement; although each method has its particular resolution. This way, when the seismic interpretation was not possible due to complex structures disposition, magnetic measurements could offer good estimation about basement depth. The fit between both methods (seismic and magnetic measurements) was reasonable both on the oceanic basin and in the region of Bransfield Strait. The magnetometry, as as well seismic, was sensible to the dip of Drake Plate at South Shetland Trench and the Intrusive occurrence at Bransfield Basin axis. (author)

  3. Seismic Hazard Assessment and Uncertainties Treatment: Discussion on the current French regulation, practices and open issues

    International Nuclear Information System (INIS)

    Berge-Thierry, Catherine

    2014-01-01

    Taking into account the seismic risk in the context of nuclear safety in France is guided by the Fundamental Safety Rule (RFS2001-01) for the assessment of seismic hazard, and by the Guide ASN/2/01 for the design rules of civil engineering structures. These two references have been updated respectively in 2001 and 2006 and validated by the Nuclear Safety Authority. The French approach is anchored on a deterministic approach. We propose to recall the principles of the methodology recommended by the RFS 2001-01, and to illustrate the advantages and limitations highlighted in recent years. Indeed, this regulatory framework is used both in the design stage and for safety reassessment of all nuclear facilities, power reactors and experimental laboratories and factories. We focus on: (i) key parameters of the approach, and their level of knowledge, (ii) key steps and principles that lead to a non-homogeneous approach between various geographic sites, depending on the seismic activity and / or knowledge, (iii) on physical phenomena (such as the geometric extension of the seismic source, the complexity of earthquake rupture on the fault plane) that are not taken into account, or for which (2D and 3D site effects, and non-linear soil behavior under strong motions), the RFS 2001-01 approach does not provide any guidance, (iv) consideration of epistemic and random uncertainties. We discuss also the probabilistic approaches widely implemented both in France as recently to establish the seismic zoning (reference for the regulation of conventional building and classified installations for the environment), used worldwide and strongly supported by the international Atomic Energy Agency references (safety guides and guidelines). The Tohoku earthquake that occurred in Japan on March 11, 2011, triggering the tsunami that itself caused the nuclear accident at Fukushima Daiichi site has resulted in the realization in France of the Complementary Safety Studies as a request of the

  4. A Pareto analysis approach to assess relevant marginal CO{sub 2} footprint for petroleum products

    Energy Technology Data Exchange (ETDEWEB)

    Tehrani, Nejad M. Alireza, E-mail: alireza.tehraninejad@gmail.com

    2015-07-15

    Recently, linear programing (LP) models have been extended to track the marginal CO{sub 2} intensity of automotive fuels at the refinery gate. The obtained CO{sub 2} data are recommended for policy making because they capture the economic and environmental tensions as well as the processing effects related to oil products. However, they are proven to be extremely sensitive to small perturbations and therefore useless in practice. In this paper, we first investigate the theoretical reasons of this drawback. Then, we develop a multiple objective LP framework to assess relevant marginal CO{sub 2} footprints that preserve both defensibility and stability at a satisfactory level of acceptance. A case study illustrates this new methodology. - Highlights: • Refining LP models have limitations to provide useful marginal CO{sub 2} footprints. • A multi objective optimization framework is developed to assess relevant CO{sub 2} data. • Within a European Refinig industry, diesel is more CO{sub 2} intensive than gasoline.

  5. Adding seismic broadband analysis to characterize Andean backarc seismicity in Argentina

    Science.gov (United States)

    Alvarado, P.; Giuliano, A.; Beck, S.; Zandt, G.

    2007-05-01

    Characterization of the highly seismically active Andean backarc is crucial for assessment of earthquake hazards in western Argentina. Moderate-to-large crustal earthquakes have caused several deaths, damage and drastic economic consequences in Argentinean history. We have studied the Andean backarc crust between 30°S and 36°S using seismic broadband data available from a previous ("the CHARGE") IRIS-PASSCAL experiment. We collected more than 12 terabytes of continuous seismic data from 22 broadband instruments deployed across Chile and Argentina during 1.5 years. Using free software we modeled full regional broadband waveforms and obtained seismic moment tensor inversions of crustal earthquakes testing for the best focal depth for each event. We also mapped differences in the Andean backarc crustal structure and found a clear correlation with different types of crustal seismicity (i.e. focal depths, focal mechanisms, magnitudes and frequencies of occurrence) and previously mapped terrane boundaries. We now plan to use the same methodology to study other regions in Argentina using near-real time broadband data available from the national seismic (INPRES) network and global seismic networks operating in the region. We will re-design the national seismic network to optimize short-period and broadband seismic station coverage for different network purposes. This work is an international effort that involves researchers and students from universities and national government agencies with the goal of providing more information about earthquake hazards in western Argentina.

  6. Proceedings of third Indo-German workshop and theme meeting on seismic safety of structures, risk assessment and disaster mitigation

    International Nuclear Information System (INIS)

    Reddy, G.R.; Parulekar, Y.M.

    2007-01-01

    This Indo-German workshop focuses and emphasises the current research and development activities in both the countries. Themes of this meeting are Earthquake Hazard and Vulnerability Assessment, Risk Assessment Techniques, Seismic Risk to Mega Cities, Testing and Evaluation of Structures and Components, Base Isolation and other Control Techniques, Seismic Strengthening of Structures, Design Practices and Specifications, Remote Sensing and GIS Applications, Structural Materials and Composites, Containment and Other Special Structures. Papers relevant to INIS are indexed separately

  7. Seismic hazard assessment in intra-plate areas and backfitting

    International Nuclear Information System (INIS)

    Asmis, G.J.K.; Eng, P.

    2001-01-01

    Typically, fuel cycle facilities have been constructed over a 40 year time period incorporating various ages of seismic design provisions ranging from no specific seismic requirements to the life safety provisions normally incorporated in national building codes through to the latest seismic nuclear codes that provide not only for structural robustness but also include operational requirements for continued operation of essential safety functions. The task is to ensure uniform seismic risk in all facilities. Since the majority of the fuel cycle infrastructure has been built the emphasis is on re-evaluation and backfitting. The wide range of facilities included in the fuel cycle and the vastly varying hazard to safety, health and the environment suggest a performance based approach. This paper presents such an approach, placed in an intra-plate setting of a Stable Continental Region (SCR) typical to that found in Eastern Canada. (author)

  8. Seismic Refraction & Wide-angle Reflection Experiment on the Northern Margin of North China Craton -Data Acquisition and Preliminary Processing Result

    Science.gov (United States)

    Li, W.; Gao, R.; Keller, G. R.; Hou, H.; Li, Q.; Cox, C. M.; Chang, J. C.; Zhang, J.; Guan, Y.

    2010-12-01

    The evolution history of Central Asian Orogen Belt (CAOB) is still the main tectonic problems in northeastern Asia. The Siberia Craton (NC), North China Craton (NCC) and several blocks collided, and the resulting tectonic collage formed as the Paleo-Asian Ocean disappeared. Concerning the northern margin of North China Craton, many different geological questions remain unanswered, such as: the intracontinental orogenic process in the Yanshan orogen and the nature and location of the suture between the southern NC and the northern NCC. In Dec 2009, a 400 km long seismic refraction and wide-angle reflection profile was completed jointly by Institute of Geology, CAGS and University of Oklahoma. The survey line extended from the west end of the Yanshan orogen, across a granitoid belt to the Solonker suture zone. The recording of seismic waves from 8 explosions (500~1500 kg each) was conducted in four deployments of 300 Reftek125 (Texan) seismic recorders, with an average spacing of 1 km. For the calculations, we used the Rayinvr, Vmed and Zplot programs for ray tracing, model modification and phase picking. The initial result show that: 1)the depth of low velocity sediment cover ranges from 0.6 to 2.7 km (velocity: 2.8~5.6 km/s); 2)the depth of basement is 5.6~10 km (the depth of basement under the granitoid belt deepens to 10 km and velocity increases to 6.2 km/s); 3)the upper crust extends to a depth of 15.5~21 km and has the P-wave velocities between 5.6 and 6.4 km/s; 4)the thickness of the lower crust ranges from 22~28 km(velocity: 6.4~6.9 km/s); and 5)the depth of Moho varies from 39.5 km under the granitoid belt to 49 km under the Yanshan orogen. Based on these results, we can preliminarily deduce that: 1) the concave depression of the Moho observed represents the root of the Yanshan orogen, and it may prove that the orogen is dominated by thick-skinned tectonics; 2) the shape of velocity variations under the granitoid belt is suggestive of a magma conduit. It

  9. Late differentiation of proximal and distal margins in the Gulf of Aden

    Science.gov (United States)

    Bache, F.; Leroy, S.; D'Acremont, E.; Autin, J.; Watremez, L.; Rouzo, S.

    2009-04-01

    Non-volcanic passive margins are usually described in three different domains (Boillot et al., 1988), namely (1) the continental domain, where the basement is structured in a series of basins and basement rises, (2) the true oceanic domain, where the bathymetry is relatively smooth, and (3) in between them, a transitional domain referred to as the oceanic-continental transition (OCT), where the basement is partly composed of exhumed mantle. The Gulf of Aden is a young and narrow oceanic basin formed in Oligo-Miocene time between the rifted margins of the Arabian and Somalian plates. The distal margin and particularly the OCT domain were previously studied considering a large set of data (Leroy et al., 2004; d'Acremont et al., 2005; d'Acremont et al., 2006; Autin, 2008). This study focalises on the sedimentary cover identified on seismic reflexion profiles acquired during Encens-Sheba (2000) and Encens (2006) cruises. Sedimentary stratal pattern and seismic facies succession suggest that the differentiation between the proximal and the distal margins occurred very late in the formation of the margin, after the deposition of ~2 km of "syn-OCT" sediments which filled the distal margin grabens. A high position of the proximal and distal margins during rifting and "syn-OCT" sediments deposition could be proposed. The major implication of this evolution should be a shallow nature of "syn-OCT" deposits. The lack of boreholes doesn't permit to affirm this last point. Comparable observations have been described on other passive margins (Moulin, 2003; Moulin et al., 2005; Labails, 2007; Aslanian et al., 2008; Bache, 2008). For some authors, it shows the persistence of a deep thermal anomaly during the early history of the margin (Steckler et al., 1988; Dupré et al., 2007). These observations could be a common characteristic of passive margins evolution and are of major interest for petroleum exploration. Aslanian, D., M. Moulin, O. J.L., P. Unternehr, F. Bache, I. Contrucci

  10. Seismic response analysis of Wolsung NPP structure and equipment subjected to scenario earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Choi, In Kil; Ahn, Seong Moon; Choun, Young Sun; Seo, Jeong Moon

    2005-03-15

    The standard response spectrum proposed by US NRC has been used as a design earthquake for the design of Korean nuclear power plant structures. However, it does not reflect the characteristic of seismological and geological of Korea. In this study, the seismic response analysis of Wolsung NPP structure and equipment were performed. Three types of input motions, artificial time histories that envelop the US NRC Regulatory Guide 1.60 spectrum and the probability based scenario earthquake spectra developed for the Korean NPP site and a typical near-fault earthquake recorded at thirty sites, were used as input motions. The acceleration, displacement and shear force responses of Wolsung containment structure due to the design earthquake were larger than those due to the other input earthquakes. But, considering displacement response increases abruptly as Wolsung NPP structure does nonlinear behavior, the reassessment of the seismic safety margin based on the displacement is necessary if the structure does nonlinear behavior; although it has adequate the seismic safety margin within elastic limit. Among the main safety-related devices, electrical cabinet and pump showed the large responses on the scenario earthquake which has the high frequency characteristic. This has great effects of the seismic capacity of the main devices installed inside of the building. This means that the design earthquake is not so conservative for the safety of the safety related nuclear power plant equipments.

  11. Seismic response analysis of Wolsung NPP structure and equipment subjected to scenario earthquakes

    International Nuclear Information System (INIS)

    Choi, In Kil; Ahn, Seong Moon; Choun, Young Sun; Seo, Jeong Moon

    2005-03-01

    The standard response spectrum proposed by US NRC has been used as a design earthquake for the design of Korean nuclear power plant structures. However, it does not reflect the characteristic of seismological and geological of Korea. In this study, the seismic response analysis of Wolsung NPP structure and equipment were performed. Three types of input motions, artificial time histories that envelop the US NRC Regulatory Guide 1.60 spectrum and the probability based scenario earthquake spectra developed for the Korean NPP site and a typical near-fault earthquake recorded at thirty sites, were used as input motions. The acceleration, displacement and shear force responses of Wolsung containment structure due to the design earthquake were larger than those due to the other input earthquakes. But, considering displacement response increases abruptly as Wolsung NPP structure does nonlinear behavior, the reassessment of the seismic safety margin based on the displacement is necessary if the structure does nonlinear behavior; although it has adequate the seismic safety margin within elastic limit. Among the main safety-related devices, electrical cabinet and pump showed the large responses on the scenario earthquake which has the high frequency characteristic. This has great effects of the seismic capacity of the main devices installed inside of the building. This means that the design earthquake is not so conservative for the safety of the safety related nuclear power plant equipments

  12. Burar seismic station: evaluation of seismic performance

    International Nuclear Information System (INIS)

    Ghica, Daniela; Popa, Mihaela

    2005-01-01

    A new seismic monitoring system, the Bucovina Seismic Array (BURAR), has been established since July 2002, in the Northern part of Romania, in a joint effort of the Air Force Technical Applications Center, USA, and the National Institute for Earth Physics (NIEP), Romania. The small-aperture array consists of 10 seismic sensors (9 vertical short-period and one three-component broad band) located in boreholes and distributed in a 5 x 5 km 2 area. At present, the seismic data are continuously recorded by the BURAR and transmitted in real-time to the Romanian National Data Center in Bucharest and National Data Center of the USA, in Florida. Based on the BURAR seismic information gathered at the National Data Center, NIEP (ROM N DC), in the August 2002 - December 2004 time interval, analysis and statistical assessments were performed. Following the preliminary processing of the data, several observations on the global performance of the BURAR system were emphasized. Data investigation showed an excellent efficiency of the BURAR system particularly in detecting teleseismic and regional events. Also, a statistical analysis for the BURAR detection capability of the local Vrancea events was performed in terms of depth and magnitude for the year 2004. The high signal detection capability of the BURAR resulted, generally, in improving the location solutions for the Vrancea seismic events. The location solution accuracy is enhanced when adding BURAR recordings, especially in the case of low magnitude events (recorded by few stations). The location accuracy is increased, both in terms of constraining hypocenter depth and epicentral coordinates. Our analysis certifies the importance of the BURAR system in NIEP efforts to elaborate seismic bulletins. Furthermore, the specific procedures for array data processing (beam forming, f-k analysis) increase significantly the signal-to-noise ratio by summing up the coherent signals from the array components, and ensure a better accuracy

  13. Use of a viscoelastic model for the seismic response of base-isolated buildings

    International Nuclear Information System (INIS)

    Uras, R.A.

    1994-01-01

    Due to recent developments in elastomer technology, seismic isolation using elastomer bearings is rapidly becoming an acceptable design tool to enhance structural seismic margins and to protect people and equipment from earthquake damage. With proper design of isolators, high-energy seismic input motions are transformed into low-frequency, low energy harmonic motions and the accelerations acting on the isolated building are significantly reduced. Several alternatives exist for the modeling of the isolators. This study is concerned with the use of a viscoelastic model to predict the seismic response of base-isolated buildings. The in-house finite element computer code has been modified to incorporate a viscoelastic spring element, and several simulations are performed. Then, the computed results have been compared with the corresponding observed data recorded at the test facility

  14. Evaluation of response factors for seismic probabilistic safety assessment of nuclear power plants

    International Nuclear Information System (INIS)

    Ebisawa, K.; Abe, K.; Muramatsu, K.; Itoh, M.; Kohno, K.; Tanaka, T.

    1994-01-01

    This paper presents a method for evaluating 'response factors' of components in nuclear power plants for use in a seismic probabilistic safety assessment (PSA). The response factor here is a measure of conservatism included in response calculations in seismic design analysis of components and is defined as a ratio of conservative design resonse to actual response. This method has the following characteristic features: (1) The components are classified into several groups based on the differences in their location and in the vibration models used in design response analyses; (2) the response factors are decomposed into subfactors corresponding to the stages of the seismic response analyses in the design practices; (3) the response factors for components are calculated as products of subfactors; (4) the subfactors are expressed either as a single value or as a function of parameters that influence the response of components. This paper describes the outline of this method and results from an application to a sample problem in which response factors were quantified for examples of components selected from the groups. (orig.)

  15. Cenozoic evolution of the Vietnamese coastal margin

    Energy Technology Data Exchange (ETDEWEB)

    Fyhn, M.B.W.; Nielsen, Lars Henrik; Boldreel, L.O. (Geological Survey of Denmark and Greenland, Copenhagen (DK))

    2007-10-15

    One of the main risk factors regarding petroleum exploration in the Vietnamese offshore basins is the presence of adequate source rock intervals. Onshore data from the ENRECA-1 core through the Song Ba Trough in central Vietnam show, however, that thick intervals of excellent oil- and gas-prone lacustrine mudstone and humic coals may develop even in small basins characterised by high sediment input. Although the Song Ba Trough is an order of magnitude smaller than the Vietnamese offshore basins, seismic data in the latter show apparent depositional similarities suggesting the presence of similar high-quality source rocks in the offshore basins. In addition, seismic facies analysis as well as oil and gas compositions indicate that other source rock types, such as Neogene fluvio-deltaic coals, carbonaceous shales and fore-reef marls are present in some of the basins and thus testify to the great petroleum potential of the Vietnamese margin. (LN)

  16. Is the Gop rift oceanic? A reevaluation of the Seychelles-India conjugate margins

    Science.gov (United States)

    Guan, Huixin; Werner, Philippe; Geoffroy, Laurent

    2016-04-01

    Recent studies reevaluated the timing and evolution of the breakup process between the Seychelles continental ridge and India, and the relationship between this evolution and mantle melting associated with the Deccan Igneous Province1,2,3. Those studies, mainly based on gravity and seismic refraction surveys, point that the oceanic domain located between the Seychelles and the Laxmi Ridge (here designed as the Carlsberg Basin) is the youngest oceanic domain between India and the Seychelles. To the East of the Laxmi Ridge, the aborted Gop Rift is considered as an older highly magmatic extensional continental system with magmatism, breakup and oceanic spreading being coeval with or even predating the emplacement of the major pulse of the Deccan trapps. This interpretation on the oceanic nature of the Gop Rift conflicts with other extensive surveys based on magnetic and seismic reflection data4 which suggest that the Gop Rift is an extended syn-magmatic continental domain. In our work based (a) on the existing data, (b) on new deep-seismic reflection surveys (already published by Misra5) down to the Moho and underlying mantle and (c) on new concepts on the geometry of volcanic passive margins, we propose a distinct interpretation of the Seychelles-India system. As proposed by former authors6,7, the Indian margin suffered some continental stretching and thinning before the onset of the Deccan traps during the Mesozoic. Thus continental crust thickness cannot be used easily as a proxy of syn-magmatic stretching-thinning processes or even to infer the presence or not of oceanic-type crust based, solely, on crustal thickness. However, some remarkable features appear on some of the deep penetration seismic lines we studied. We illustrate that the whole Seychelles/India system, before the opening of the present-day "Carlsberg Basin" may simply be regarded as a pair of sub-symmetric conjugate volcanic passive margins (VPMs) with inner and outer SDR wedges dipping towards the

  17. Proceedings of the twenty-fourth water reactor safety information meeting. Volume 3: PRA and HRA; Probabilistic seismic hazard assessment and seismic siting criteria

    Energy Technology Data Exchange (ETDEWEB)

    Monteleone, S. [comp.] [Brookhaven National Lab., Upton, NY (United States)

    1997-02-01

    This three-volume report contains papers presented at the Twenty-Fourth Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, October 21--23, 1996. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from Czech Republic, Finland, France, Japan, Norway, Russia and United Kingdom. This volume is divided into the following sections: PRA and HRA and probabilistic seismic hazard assessment and seismic siting criteria. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  18. Proceedings of the twenty-fourth water reactor safety information meeting. Volume 3: PRA and HRA; Probabilistic seismic hazard assessment and seismic siting criteria

    International Nuclear Information System (INIS)

    Monteleone, S.

    1997-02-01

    This three-volume report contains papers presented at the Twenty-Fourth Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, October 21--23, 1996. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from Czech Republic, Finland, France, Japan, Norway, Russia and United Kingdom. This volume is divided into the following sections: PRA and HRA and probabilistic seismic hazard assessment and seismic siting criteria. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  19. Seismic velocity structure of the crust and upper mantle beneath the Texas-Gulf of Mexico margin from joint inversion of Ps and Sp receiver functions and surface wave dispersion

    Science.gov (United States)

    Agrawal, M.; Pulliam, J.; Sen, M. K.

    2013-12-01

    The seismic structure beneath Texas Gulf Coast Plain (GCP) is determined via velocity analysis of stacked common conversion point (CCP) Ps and Sp receiver functions and surface wave dispersion. The GCP is a portion of a ocean-continental transition zone, or 'passive margin', where seismic imaging of lithospheric Earth structure via passive seismic techniques has been rare. Seismic data from a temporary array of 22 broadband stations, spaced 16-20 km apart, on a ~380-km-long profile from Matagorda Island, a barrier island in the Gulf of Mexico, to Johnson City, Texas were employed to construct a coherent image of the crust and uppermost mantle. CCP stacking was applied to data from teleseismic earthquakes to enhance the signal-to-noise ratios of converted phases, such as Ps phases. An inaccurate velocity model, used for time-to-depth conversion in CCP stacking, may produce higher errors, especially in a region of substantial lateral velocity variations. An accurate velocity model is therefore essential to constructing high quality depth-domain images. To find accurate velocity P- and S-wave models, we applied a joint modeling approach that searches for best-fitting models via simulated annealing. This joint inversion approach, which we call 'multi objective optimization in seismology' (MOOS), simultaneously models Ps receiver functions, Sp receiver functions and group velocity surface wave dispersion curves after assigning relative weights for each objective function. Weights are computed from the standard deviations of the data. Statistical tools such as the posterior parameter correlation matrix and posterior probability density (PPD) function are used to evaluate the constraints that each data type places on model parameters. They allow us to identify portions of the model that are well or poorly constrained.

  20. Seismic Isolation of Liquefied Natural Gas Tanks: a Compartive Assessment

    OpenAIRE

    Marti Rodriguez, Joaquin; Crespo Álvarez, María José; Martinez Cutillas, Francisco J.

    2010-01-01

    In severe seismic environments, tanks for storage of liquefied natural gas may benefit from seismic isolation. As the design accelerations increase, the inner tank undergoes progressively greater demands and may suffer from corner uplift, elephant’s foot buckling, gross sliding, shell thickness requirements beyond what can be reliably welded and, eventually, global uplift. Some of these problems cause extra costs while others make the construction impossible. The seismic environments at which...

  1. Life-cycle cost assessment of optimally designed reinforced concrete buildings under seismic actions

    International Nuclear Information System (INIS)

    Mitropoulou, Chara Ch.; Lagaros, Nikos D.; Papadrakakis, Manolis

    2011-01-01

    Life-cycle cost analysis (LCCA) is an assessment tool for studying the performance of systems in many fields of engineering. In earthquake engineering LCCA demands the calculation of the cost components that are related to the performance of the structure in multiple earthquake hazard levels. Incremental static and dynamic analyses are two procedures that can be used for estimating the seismic capacity of a structural system and can therefore be incorporated into the LCCA methodology. In this work the effect of the analysis procedure, the number of seismic records imposed, the performance criterion used and the structural type (regular or irregular) is investigated, on the life-cycle cost analysis of 3D reinforced concrete structures. Furthermore, the influence of uncertainties on the seismic response of structural systems and their impact on LCCA is examined. The uncertainty on the material properties, the cross-section dimensions and the record-incident angle is taking into account with the incorporation of the Latin hypercube sampling method into the incremental dynamic analysis procedure. In addition, the LCCA methodology is used as an assessment tool for the designs obtained by means of prescriptive and performance-based optimum design methodologies. The first one is obtained from a single-objective optimization problem, where the initial construction cost was the objective to be minimized, while the second one as a two-objective optimization problem where the life-cycle cost was the additional objective also to be minimized.

  2. Margins for an in-plant piping system under dynamic loading

    International Nuclear Information System (INIS)

    Kot, C.A.; Srinivasan, M.G.; Hsieh, B.J.

    1991-01-01

    The objective of this study is to verify that piping designed according to current practice does indeed have a large margin against failure and to quantify the excess capacity for piping and dynamic pipe supports on the basis of data obtained in a series of high-level seismic experiments (designated SHAM) on an in-plant piping system at the HDR (Heissdampfreaktor) Test Facility in Germany. 4 refs., 6 tabs

  3. Seismic fragility capacity of equipment

    International Nuclear Information System (INIS)

    Iijima, Toru; Abe, Hiroshi; Suzuki, Kenichi

    2006-01-01

    Seismic probabilistic safety assessment (PSA) is an available method to evaluate residual risks of nuclear plants that are designed on definitive seismic conditions. From our preliminary seismic PSA analysis, horizontal shaft pumps are important components that have significant influences on the core damage frequency (CDF). An actual horizontal shaft pump and some kinds of elements were tested to evaluate realistic fragility capacities. Our test results showed that the realistic fragility capacity of horizontal shaft pump would be at least four times as high as a current value, 1.6 x 9.8 m/s 2 , used for our seismic PSA. We are going to incorporate the fragility capacity data that were obtained from those tests into our seismic PSA analysis, and we expect that the reliability of seismic PSA should increase. (author)

  4. Crustal structure and inferred extension mode in the northern margin of the South China Sea

    Science.gov (United States)

    Gao, J.; Wu, S.; McIntosh, K. D.; Mi, L.; Spence, G.

    2016-12-01

    Combining multi-channel seismic reflection and satellite gravity data, this study has investigated the crustal structure and magmatic activities of the northern South China Sea (SCS) margin. Results show that a broad continent-ocean transition zone (COT) with more than 140 km wide is characterized by extensive igneous intrusion/extrusion and hyper-extended continental crust in the northeastern SCS margin, a broader COT with 220-265 km wide is characterized by crustal thinning, rift depression, structural highs with igneous rock and perhaps a volcanic zone or a zone of tilted fault blocks at the distal edge in the mid-northern SCS margin, and a narrow COT with 65 km wide bounded seawards by a volcanic buried seamount is characterized by extremely hyper-extended continental crust in the northwestern SCS margin, where the remnant crust with less than 3 km thick is bounded by basin-bounding faults corresponding to an aborted rift below the Xisha Trough with a sub-parallel fossil ridge in the adjacent Northwest Sub-basin. Results from gravity modeling and seismic refraction data show that a high velocity layer (HVL) is present in the outer shelf and slope below extended continental crust in the eastern portion of the northern SCS margin and is thickest (up to 10 km) in the Dongsha Uplift where the HVL gradually thins to east and west below the lower slope and finally terminates at the Manila Trench and Baiyun sag of the Pearl River Mouth Basin. The magmatic intrusions/extrusions and HVL may be related to partial melting caused by decompression of passive, upwelling asthenosphere which resulted primarily in post-rifting underplating and magmatic emplacement or modification of the crust. The northern SCS margin is closer to those of the magma-poor margins than those of volcanic margins, but the aborted rift near the northwestern continental margin shows that there may be no obvious detachment fault like that in the Iberia-Newfoundland type margin. The symmetric aborted

  5. Crustal anisotropy from Moho converted Ps wave splitting and geodynamic implications in Northeastern margin of Tibetan Plateau

    Science.gov (United States)

    Xie, Z.; Wu, Q.; Zhang, R.

    2017-12-01

    Collision between Indian and Eurasian result in intense deformation and crustal shortening in the Tibetan Plateau. NE margin of Tibetan Plateau experienced complex deformation between Qilian orogen and its adjacent blocks, Alxa Block in the north and Ordos Block in the east. We focus on if there any evidences exist in the NE margin of Tibetan Plateau, which can support crustal channel flow model. China Earthquake Administration had deployed temporary seismic array which is called ChinaArray Phase Ⅱ, dense seismic stations covered NE margin of Tibetan Plateau. Seismic data recorded by 81 seismic stations is applied in this research. We calculated receiver functions with time-domain deconvolution. We selected RFs which have clear Ps phase both in radial and transverse components to measure Ps splitting owing to crustal anisotropy, and 130 pairs of anisotropy parameters of 51 seismic stations were obtained. We would like to discuss about dynamic mechanism of this area using crustal anisotropy associated with the result of SKS-splitting and surface constrains like GPS velocity. The result can be summarized as follows. The large scale of delay time imply that the crustal anisotropy mainly derives from middle to lower crust rather than upper crust. In the southeastern part of the research area, crustal anisotropy is well agree with the result computed form SKS-splitting and GPS velocity directions trending NWW-SEE or E-W direction. This result imply a vertically coherent deformation in the area as the directions of crustal anisotropy trend to be perpendicular to the direction of normal stress. In the middle and north part of the research area, the fast polarization direction of crustal anisotropy is NEE-SWW or E-W direction, parallels with direction of GPS velocity, but differ to the direction of the result of SKS-splitting. This result may imply that decoupled deformation in this area associated with middle to lower crustal flow.

  6. Seismic assessment of a multi-span steel railway bridge in Turkey based on nonlinear time history

    Directory of Open Access Journals (Sweden)

    M. F. Yılmaz

    2018-01-01

    Full Text Available Many research studies have shown that bridges are vulnerable to earthquakes, graphically confirmed by incidents such as the San Fernando (1971 USA, Northridge (1994 USA, Great Hanshin (1995 Japan, and Chi-Chi (1999 Taiwan earthquakes, amongst many others. The studies show that fragility curves are useful tools for bridge seismic risk assessments, which can be generated empirically or analytically. Empirical fragility curves can be generated where damage reports from past earthquakes are available, but otherwise, analytical fragility curves can be generated from structural seismic response analysis. Earthquake damage data in Turkey are very limited, hence this study employed an analytical method to generate fragility curves for the Alasehir bridge. The Alasehir bridge is part of the Manisa–Uşak–Dumlupınar–Afyon railway line, which is very important for human and freight transportation, and since most of the country is seismically active, it is essential to assess the bridge's vulnerability. The bridge consists of six 30 m truss spans with a total span 189 m supported by 2 abutments and 5 truss piers, 12.5, 19, 26, 33, and 40 m. Sap2000 software was used to model the Alasehir bridge, which was refined using field measurements, and the effect of 60 selected real earthquake data analyzed using the refined model, considering material and geometry nonlinearity. Thus, the seismic behavior of Alasehir railway bridge was determined and truss pier reaction and displacements were used to determine its seismic performance. Different intensity measures were compared for efficiency, practicality, and sufficiency and their component and system fragility curves derived.

  7. Seismic isolation of plants at risk of a severe accident

    International Nuclear Information System (INIS)

    Forni, Massimo

    2015-01-01

    More and more devastating earthquakes struck every year our planet. Many of these, though occurring in areas considered at high risk of earthquakes, far exceed the levels required by law. The industrial plants subjected to risk of severe accident, in particular petrochemical and nuclear power plants, are particularly exposed to this risk because of the number and the complexity of the structures and critical components of which they are composed. For this type of structures, anti-seismic techniques able to provide complete protection, even in case of unforeseen events, are needed. Seismic isolation is certainly the most promising technology of modern antiseismic as it allows not only to significantly reduce the dynamic load acting on the structures in case of seismic attack, but to provide safety margins against violent earthquakes, exceeding the assumed maximum design limit. [it

  8. Polyphase Rifting and Breakup of the Central Mozambique Margin

    Science.gov (United States)

    Senkans, Andrew; Leroy, Sylvie; d'Acremont, Elia; Castilla, Raymi

    2017-04-01

    The breakup of the Gondwana supercontinent resulted in the formation of the Central Mozambique passive margin as Africa and Antarctica were separated during the mid-Jurassic period. The identification of magnetic anomalies in the Mozambique Basin and Riiser Larsen Sea means that post-oceanisation plate kinematics are well-constrained. Unresolved questions remain, however, regarding the initial fit, continental breakup process, and the first relative movements of Africa and Antarctica. This study uses high quality multi-channel seismic reflection profiles in an effort to identify the major crustal domains in the Angoche and Beira regions of the Central Mozambique margin. This work is part of the integrated pluri-disciplinary PAMELA project*. Our results show that the Central Mozambique passive margin is characterised by intense but localised magmatic activity, evidenced by the existence of seaward dipping reflectors (SDR) in the Angoche region, as well as magmatic sills and volcanoclastic material which mark the Beira High. The Angoche region is defined by a faulted upper-continental crust, with the possible exhumation of lower crustal material forming an extended ocean-continent transition (OCT). The profiles studied across the Beira high reveal an offshore continental fragment, which is overlain by a pre-rift sedimentary unit likely to belong to the Karoo Group. Faulting of the crust and overlying sedimentary unit reveals that the Beira High has recorded several phases of deformation. The combination of our seismic interpretation with existing geophysical and geological results have allowed us to propose a breakup model which supports the idea that the Central Mozambique margin was affected by polyphase rifting. The analysis of both along-dip and along-strike profiles shows that the Beira High initially experienced extension in a direction approximately parallel to the Mozambique coastline onshore of the Beira High. Our results suggest that the Beira High results

  9. Oligocene to Holocene sediment drifts and bottom currents on the slope of Gabon continental margin (west Africa). Consequences for sedimentation and southeast Atlantic upwelling

    Science.gov (United States)

    Séranne, Michel; Nzé Abeigne, César-Rostand

    1999-10-01

    Seismic reflection profiles on the slope of the south Gabon continental margin display furrows 2 km wide and some 200 m deep, that develop normal to the margin in 500-1500 m water depth. Furrows are characterised by an aggradation/progradation pattern which leads to margin-parallel, northwestward migration of their axes through time. These structures, previously interpreted as turbidity current channels, display the distinctive seismic image and internal organisation of sediment drifts, constructed by the activity of bottom currents. Sediment drifts were initiated above a major Oligocene unconformity, and they developed within a Oligocene to Present megasequence of general progradation of the margin, whilst they are markedly absent from the underlying Late Cretaceous-Eocene aggradation megasequence. The presence of upslope migrating sediment waves, and the northwest migration of the sediment drifts indicate deposition by bottom current flowing upslope, under the influence of the Coriolis force. Such landwards-directed bottom currents on the slope probably represent coastal upwelling, which has been active along the west Africa margin throughout the Neogene.

  10. Bayesian seismic AVO inversion

    Energy Technology Data Exchange (ETDEWEB)

    Buland, Arild

    2002-07-01

    A new linearized AVO inversion technique is developed in a Bayesian framework. The objective is to obtain posterior distributions for P-wave velocity, S-wave velocity and density. Distributions for other elastic parameters can also be assessed, for example acoustic impedance, shear impedance and P-wave to S-wave velocity ratio. The inversion algorithm is based on the convolutional model and a linearized weak contrast approximation of the Zoeppritz equation. The solution is represented by a Gaussian posterior distribution with explicit expressions for the posterior expectation and covariance, hence exact prediction intervals for the inverted parameters can be computed under the specified model. The explicit analytical form of the posterior distribution provides a computationally fast inversion method. Tests on synthetic data show that all inverted parameters were almost perfectly retrieved when the noise approached zero. With realistic noise levels, acoustic impedance was the best determined parameter, while the inversion provided practically no information about the density. The inversion algorithm has also been tested on a real 3-D dataset from the Sleipner Field. The results show good agreement with well logs but the uncertainty is high. The stochastic model includes uncertainties of both the elastic parameters, the wavelet and the seismic and well log data. The posterior distribution is explored by Markov chain Monte Carlo simulation using the Gibbs sampler algorithm. The inversion algorithm has been tested on a seismic line from the Heidrun Field with two wells located on the line. The uncertainty of the estimated wavelet is low. In the Heidrun examples the effect of including uncertainty of the wavelet and the noise level was marginal with respect to the AVO inversion results. We have developed a 3-D linearized AVO inversion method with spatially coupled model parameters where the objective is to obtain posterior distributions for P-wave velocity, S

  11. The seismic assessment of fast reactor cores in the UK

    International Nuclear Information System (INIS)

    Duthie, J.C.; Dostal, M.

    1988-01-01

    The design of the UK Commercial Demonstration Fast Reactor (CDFR) has evolved over a number of years. The design has to meet two seismic requirements: (i) the reactor must cause no hazard to the public during or after the Safe Shutdown Earthquake (SSE); (ii) there must be no sudden reduction in safety for an earthquake exceeding the SSE. The core is a complicated component in the whole reactor. It is usually represented in a very simplified manner in the seismic assessment of the whole reactor station. From this calculation, a time history or response spectrum can be generated for the diagrid, which supports the core, and for the above core structure, which supports the main absorber rods. These data may then be used to perform a detailed assessment of the reactor core. A new simplified model of the core response may then be made and used in a further calculation of the whole reactor. The calculation of the core response only, is considered in the remainder of this paper. One important feature of the fast reactor core, compared with other reactors, is that the components are relatively thin and flexible to promote neutron economy and heat transfer. A further important feature is that there are very small gaps between the wrapper tubes. This leads to very strong fluid-coupling effects. These effects are likely to be beneficial, but adequate techniques to calculate them are only just being developed. 9 refs, figs

  12. Seismic Performance Assessment and Strengthening of Gazimagusa Namik Kemal Lisesi

    OpenAIRE

    Yardımcı, Temuçin

    2009-01-01

    ABSTRACT: Many destructive earthquakes occurred in Cyprus. However, the potential seismic risk of the buildings in Cyprus is not known well since vulnerability is unknown. Especially in the Northern part of the Island building inventory has variation regarding seismic performance. On the other hand, in Northern Cyprus there are more than 150 school buildings with different ages. Most of these buildings have been constructed before the use of modern seismic codes. In other words, only gravity...

  13. Indigenous women's voices: marginalization and health.

    Science.gov (United States)

    Dodgson, Joan E; Struthers, Roxanne

    2005-10-01

    Marginalization may affect health care delivery. Ways in which indigenous women experienced marginalization were examined. Data from 57 indigenous women (18 to 65 years) were analyzed for themes. Three themes emerged: historical trauma as lived marginalization, biculturalism experienced as marginalization, and interacting within a complex health care system. Experienced marginalization reflected participants' unique perspective and were congruent with previous research. It is necessary for health care providers to assess the detrimental impact of marginalization on the health status of individuals and/or communities.

  14. Urban MEMS based seismic network for post-earthquakes rapid disaster assessment

    Science.gov (United States)

    D'Alessandro, Antonino; Luzio, Dario; D'Anna, Giuseppe

    2014-05-01

    Life losses following disastrous earthquake depends mainly by the building vulnerability, intensity of shaking and timeliness of rescue operations. In recent decades, the increase in population and industrial density has significantly increased the exposure to earthquakes of urban areas. The potential impact of a strong earthquake on a town center can be reduced by timely and correct actions of the emergency management centers. A real time urban seismic network can drastically reduce casualties immediately following a strong earthquake, by timely providing information about the distribution of the ground shaking level. Emergency management centers, with functions in the immediate post-earthquake period, could be use this information to allocate and prioritize resources to minimize loss of human life. However, due to the high charges of the seismological instrumentation, the realization of an urban seismic network, which may allow reducing the rate of fatalities, has not been achieved. Recent technological developments in MEMS (Micro Electro-Mechanical Systems) technology could allow today the realization of a high-density urban seismic network for post-earthquakes rapid disaster assessment, suitable for the earthquake effects mitigation. In the 1990s, MEMS accelerometers revolutionized the automotive-airbag system industry and are today widely used in laptops, games controllers and mobile phones. Due to their great commercial successes, the research into and development of MEMS accelerometers are actively pursued around the world. Nowadays, the sensitivity and dynamics of these sensors are such to allow accurate recording of earthquakes with moderate to strong magnitude. Due to their low cost and small size, the MEMS accelerometers may be employed for the realization of high-density seismic networks. The MEMS accelerometers could be installed inside sensitive places (high vulnerability and exposure), such as schools, hospitals, public buildings and places of

  15. SSHAC Level 1 Probabilistic Seismic Hazard Analysis for the Idaho National Laboratory

    International Nuclear Information System (INIS)

    Payne, Suzette Jackson; Coppersmith, Ryan; Coppersmith, Kevin; Rodriguez-Marek, Adrian; Falero, Valentina Montaldo; Youngs, Robert

    2016-01-01

    A Probabilistic Seismic Hazard Analysis (PSHA) was completed for the Materials and Fuels Complex (MFC), Advanced Test Reactor (ATR), and Naval Reactors Facility (NRF) at the Idaho National Laboratory (INL). The PSHA followed the approaches and procedures for Senior Seismic Hazard Analysis Committee (SSHAC) Level 1 study and included a Participatory Peer Review Panel (PPRP) to provide the confident technical basis and mean-centered estimates of the ground motions. A new risk-informed methodology for evaluating the need for an update of an existing PSHA was developed as part of the Seismic Risk Assessment (SRA) project. To develop and implement the new methodology, the SRA project elected to perform two SSHAC Level 1 PSHAs. The first was for the Fuel Manufacturing Facility (FMF), which is classified as a Seismic Design Category (SDC) 3 nuclear facility. The second was for the ATR Complex, which has facilities classified as SDC-4. The new methodology requires defensible estimates of ground motion levels (mean and full distribution of uncertainty) for its criteria and evaluation process. The INL SSHAC Level 1 PSHA demonstrates the use of the PPRP, evaluation and integration through utilization of a small team with multiple roles and responsibilities (four team members and one specialty contractor), and the feasibility of a short duration schedule (10 months). Additionally, a SSHAC Level 1 PSHA was conducted for NRF to provide guidance on the potential use of a design margin above rock hazard levels for the Spent Fuel Handling Recapitalization Project (SFHP) process facility.

  16. SSHAC Level 1 Probabilistic Seismic Hazard Analysis for the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Payne, Suzette Jackson [Idaho National Lab. (INL), Idaho Falls, ID (United States); Coppersmith, Ryan [Idaho National Lab. (INL), Idaho Falls, ID (United States); Coppersmith, Kevin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rodriguez-Marek, Adrian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Falero, Valentina Montaldo [Idaho National Lab. (INL), Idaho Falls, ID (United States); Youngs, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    A Probabilistic Seismic Hazard Analysis (PSHA) was completed for the Materials and Fuels Complex (MFC), Advanced Test Reactor (ATR), and Naval Reactors Facility (NRF) at the Idaho National Laboratory (INL). The PSHA followed the approaches and procedures for Senior Seismic Hazard Analysis Committee (SSHAC) Level 1 study and included a Participatory Peer Review Panel (PPRP) to provide the confident technical basis and mean-centered estimates of the ground motions. A new risk-informed methodology for evaluating the need for an update of an existing PSHA was developed as part of the Seismic Risk Assessment (SRA) project. To develop and implement the new methodology, the SRA project elected to perform two SSHAC Level 1 PSHAs. The first was for the Fuel Manufacturing Facility (FMF), which is classified as a Seismic Design Category (SDC) 3 nuclear facility. The second was for the ATR Complex, which has facilities classified as SDC-4. The new methodology requires defensible estimates of ground motion levels (mean and full distribution of uncertainty) for its criteria and evaluation process. The INL SSHAC Level 1 PSHA demonstrates the use of the PPRP, evaluation and integration through utilization of a small team with multiple roles and responsibilities (four team members and one specialty contractor), and the feasibility of a short duration schedule (10 months). Additionally, a SSHAC Level 1 PSHA was conducted for NRF to provide guidance on the potential use of a design margin above rock hazard levels for the Spent Fuel Handling Recapitalization Project (SFHP) process facility.

  17. Origin, Composition and Relative Timing of Seaward Dipping Reflectors on the Pelotas Rifted Margin, South Atlantic

    Science.gov (United States)

    Harkin, C. J.; Kusznir, N.; Roberts, A.; Manatschal, G.; McDermott, K.

    2017-12-01

    Deep-seismic reflection data from the Pelotas Basin, offshore Brazil displays a large package of seaward dipping reflectors (SDRs) with an approximate width of 200 km and a varying thickness of 10km to 17km. These have previously been interpreted as volcanic SDRs, a common feature of magma-rich rifted margins. Detailed observations show a change in seismic character within the SDR package possibly indicating a change depositional environments as the package evolved. Using gravity anomaly inversion, we examine the SDRs to investigate whether they are likely to be composed predominantly of massive basaltic flows or sedimentary-volcaniclastic material through the use of gravity inversion. By matching the Moho in depth and two-way travel time from gravity and seismic data, we test the likely proportion of sediments to basalt (the basalt fraction). The results are used to determine the lateral variation in basalt fraction within the SDRs. In addition, we use 2D flexural-backstripping and reverse thermal-subsidence modelling for palaeobathymetric analysis, investigating whether each sub-package was deposited in a sub-aerial or marine environment. Our analysis suggests that the overall SDR basalt fraction and bulk density decrease oceanwards, possibly due to increasing sediment content or perhaps resulting from a change in basalt flows to hyaloclastites as water depth increases. Additionally, we find that the SDRs can be split into two major sub-packages. The inner SDR package consists of lava flows from syn-tectonic eruptions in a sub-aerial environment, associated with the onshore Paraná Large Igneous Province, flowing eastwards into an extensional basin. The outer SDR package has reflectors that appear to progressively offlap oceanwards in a similar fashion to those described previously, inferring extrusion within a marine environment sourced from an eastwards migrating ocean ridge. We are able to determine that two separate and independently-sourced SDR packages

  18. Seismic shear wall ISP NUPEC's seismic ultimate dynamic response test. Comparison report

    International Nuclear Information System (INIS)

    1996-01-01

    In the seismic design of a nuclear power plant, evaluation of the ultimate strength of the nuclear reactor building is an important subject for assessment of seismic reliability of the plant. In order to carry out the evaluation, the response characteristics of reinforced concrete seismic shear walls up to their ultimate state have to be understood. For this purpose, there is a need to develop reliable non-linear response analysis methods which enables the reliable ultimate strength evaluation of nuclear reactor buildings. Along with this need, many computer codes have been developed. These computer codes are compared. (K.A.)

  19. Assessment of the impact of degraded shear wall stiffnesses on seismic plant risk and seismic design loads

    International Nuclear Information System (INIS)

    Klamerus, E.W.; Bohn, M.P.; Johnson, J.J.; Asfura, A.P.; Doyle, D.J.

    1994-02-01

    Test results sponsored by the USNRC have shown that reinforced shear wall (Seismic Category I) structures exhibit stiffnesses and natural frequencies which are smaller than those calculated in the design process. The USNRC has sponsored Sandia National Labs to perform an evaluation of the effects of the reduced frequencies on several existing seismic PRAs in order to determine the seismic risk implications inherent in these test results. This report presents the results for the re-evaluation of the seismic risk for three nuclear power plants: the Peach Bottom Atomic Power Station, the Zion Nuclear Power Plant, and Arkansas Nuclear One -- Unit 1 (ANO-1). Increases in core damage frequencies for seismic initiated events at Peach Bottom were 25 to 30 percent (depending on whether LLNL or EPRI hazard curves were used). At the ANO-1 site, the corresponding increases in plant risk were 10 percent (for each set of hazard curves). Finally, at Zion, there was essentially no change in the computed core damage frequency when the reduction in shear wall stiffness was included. In addition, an evaluation of deterministic ''design-like'' structural dynamic calculations with and without the shear stiffness reductions was made. Deterministic loads calculated for these two cases typically increased on the order of 10 to 20 percent for the affected structures

  20. Regional versus detailed velocity analysis to quantify hydrate and free gas in marine sediments : the south Shetland margin case study

    Energy Technology Data Exchange (ETDEWEB)

    Tinivella, U.; Loreto, M.F.; Accaino, F. [Inst. Nazionale di Oceanografia di Geofisica Sperimentale, Trieste (Italy)

    2008-07-01

    The presence of gas hydrate and free gas within marine sediments, deposited along the South Shetland margin, offshore the Antarctic Peninsula, was confirmed by low and high resolution geophysical data, acquired during three research cruises in 1989-1990. Seismic data analysis has demonstrated the presence of a bottom simulating reflector that is very strong and continuous in the eastern part of the margin. This seismic dataset was used in the past to extract detailed velocity information of the shallow structures by using traditional tomographic inversion and jointly tomographic inversion and pre-stack depth migration tool. This paper presented a method to obtain a regional seismic velocity field and information about hydrate and free gas presence in the marine sediments, by using an improved method of the standard analysis of the pre-stack depth migration output. The velocity field was obtained with a layer stripping approach and tomographic inversion of the reflections observed in common image gathering. The paper presented the seismic data and regional and detailed velocity analysis. The results of residual semblance analyses were also presented. Gas phase concentrations were then discussed. The velocity analysis revealed the presence of three main layers characterizing the first kilometer of sediments below the sea floor. In addition, velocity models and related gas-phase sections showed that gas was concentrated in different parts of the profile than where the hydrate was concentrated. This observation confirmed that geological structures and sedimentary processes controlled the gas and hydrate distribution, as observed along other margins. 7 refs., 5 figs.

  1. Method for evaluation of risk due to seismic related design and construction errors based on past reactor experience

    International Nuclear Information System (INIS)

    Gonzalez Cuesta, M.; Okrent, D.

    1985-01-01

    This paper proposes a methodology for quantification of risk due to seismic related design and construction errors in nuclear power plants, based on information available on errors discovered in the past. For the purposes of this paper, an error is defined as any event that causes the seismic safety margins of a nuclear power plant to be smaller than implied by current regulatory requirements and industry common practice. Also, the actual reduction in the safety margins caused by the error will be called a deficiency. The method is based on a theoretical model of errors, called a deficiency logic diagram. First, an ultimate cause is present. This ultimate cause is consumated as a specific instance, called originating error. As originating errors may occur in actions to be applied a number of times, a deficiency generation system may be involved. Quality assurance activities will hopefully identify most of these deficiencies, requesting their disposition. However, the quality assurance program is not perfect and some operating plant deficiencies may persist, causing different levels of impact to the plant logic. The paper provides a way of extrapolating information about errors discovered in plants under construction in order to assess the risk due to errors that have not been discovered

  2. Seismic hazard for the Savannah River Site: A comparative evaluation of the EPRI and LLNL assessments

    International Nuclear Information System (INIS)

    Wingo, H.E.

    1992-01-01

    This report was conducted to: (1) develop an understanding of causes for the vast differences between the two comprehensive studies, and (2) using a methodology consistent with the reconciled methods employed in the two studies, develop a single seismic hazard for the Savannah River Site suitable for use in seismic probabilistic risk assessments with emphasis on the K Reactor. Results are presented for a rock site which is a typical because detailed evaluations of soil characteristics at the K Reactor are still in progress that account for the effects of a soil stablizing grouting program. However when the soils analysis is completed, the effects of soils can be included with this analysis with the addition of a single factor that will decrease slightly the seismic hazard for a rock site

  3. Safety Margin Assessment (SM2A): Stimulation for Further Development of BEPU Approaches?

    International Nuclear Information System (INIS)

    Zimmermann, Martin A.

    2013-01-01

    During recent years, many nuclear power plants underwent significant modifications, e.g. power up-rating. While compliance with all the deterministic acceptance criteria must be shown during the licensing process, the larger core inventory and the facts that the plant response might get closer to the limits after a power up-rate, suggest an increase of the core damage frequency (CDF) and other possible risk indicators. Hence, a framework to quantitatively assess a change in plant safety margin becomes very desirable. The Committee on the Safety of Nuclear Installations (CSNI) mandated the Safety Margin Action Plan expert group (SMAP) to develop a framework for the assessment of such changes to safety margin. This framework combines PSA and the analytical techniques developed in BEPU. CSNI then mandated the SM2A expert group to especially explore the practicability of the SMAP framework. This pilot study was completed end of 2010. An increase of the (conditional) probability of exceedance for a surrogate acceptance limit (PCT) indicating core damage was successfully evaluated for the selected sequences from several initiating event trees, and it was found that only a restricted number of sequences need to be analyzed. Based on the insights gained from this study, areas of methodology improvement have been identified and related proposals for further R and D work will be discussed. (authors)

  4. Firn thickness variations across the Northeast Greenland Ice Stream margins indicating nonlinear densification rates

    Science.gov (United States)

    Riverman, K. L.; Anandakrishnan, S.; Alley, R. B.; Peters, L. E.; Christianson, K. A.; Muto, A.

    2013-12-01

    Northeast Greenland Ice Stream (NEGIS) is the largest ice stream in Greenland, draining approximately 8.4% of the ice sheet's area. The flow pattern and stability mechanism of this ice stream are unique to others in Greenland and Antarctica, and merit further study to ascertain the sensitivity of this ice stream to future climate change. Geophysical methods are valuable tools for this application, but their results are sensitive to the structure of the firn and any spatial variations in firn properties across a given study region. Here we present firn data from a 40-km-long seismic profile across the upper reaches of NEGIS, collected in the summer of 2012 as part of an integrated ground-based geophysical survey. We find considerable variations in firn thickness that are coincident with the ice stream shear margins, where a thinner firn layer is present within the margins, and a thicker, more uniform firn layer is present elsewhere in our study region. Higher accumulation rates in the marginal surface troughs due to drift-snow trapping can account for some of this increased densification; however, our seismic results also highlight enhanced anisotropy within the firn and upper ice column that is confined to narrow bands within the shear margins. We thus interpret these large firn thickness variations and abrupt changes in anisotropy as indicators of firn densification dependent on the effective stress state as well as the overburden pressure, suggesting that the strain rate increases nonlinearly with stress across the shear margins. A GPS strain grid maintained for three weeks across both margins observed strong side shearing, with rapid stretching and then compression along particle paths, indicating large deviatoric stresses in the margins. This work demonstrates the importance of developing a high-resolution firn densification model when conducting geophysical field work in regions possessing a complex ice flow history; it also motivates the need for a more

  5. Second Quarter Hanford Seismic Report for Fiscal Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2008-06-26

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The Hanford Seismic Assessment Team locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. For the Hanford Seismic Network, seven local earthquakes were recorded during the second quarter of fiscal year 2008. The largest event recorded by the network during the second quarter (February 3, 2008 - magnitude 2.3 Mc) was located northeast of Richland in Franklin County at a depth of 22.5 km. With regard to the depth distribution, two earthquakes occurred at shallow depths (less than 4 km, most likely in the Columbia River basalts), three earthquakes at intermediate depths (between 4 and 9 km, most likely in the pre-basalt sediments), and two earthquakes were located at depths greater than 9 km, within the crystalline basement. Geographically, five earthquakes occurred in swarm areas and two earthquakes were classified as random events.

  6. Active fault and other geological studies for seismic assessment: present state and problems

    International Nuclear Information System (INIS)

    Kakimi, Toshihiro

    1997-01-01

    Evaluation system of earthquakes from an active fault is, in Japan, based on the characteristic earthquake model of a wide sense that postulates essentially the same (nearly the maximum) magnitude and recurrence interval during the recent geological times. Earthquake magnitude M is estimated by empirical relations among M, surface rupture length L, and surface fault displacement D per event of the earthquake faults on land in Japan. Recurrence interval R of faulting/earthquake is calculated from D and the long-term slip rate S of a fault as R=D/S. Grouping or segmentation of complicatedly distributed faults is an important, but difficult problem in order to distinguish a seismogenic fault unit corresponding to an individual characteristic earthquake. If the time t of the latest event is obtained, the 'cautiousness' of a fault can be judged from R-t or t/R. According to this idea, several faults whose t/R exceed 0.5 have been designated as the 'precaution faults' having higher probability of earthquake occurrence than the others. A part of above evaluation has been introduced at first into the seismic-safety examination system of NPPs in 1978. According to the progress of research on active faults, the weight of interest in respect to the seismic hazard assessment shifted gradually from the historic data to the fault data. Most of recent seismic hazard maps have been prepared in consideration with active faults on land in Japan. Since the occurrence of the 1995 Hyogoken-Nanbu earthquake, social attention has been concentrated upon the seismic hazard due to active faults, because this event was generated from a well-known active fault zone that had been warned as a 'precaution fault'. In this paper, a few recent topics on other geological and geotechnical researches aiming at improving the seismic safety of NPPs in Japan were also introduced. (J.P.N.)

  7. Active fault and other geological studies for seismic assessment: present state and problems

    Energy Technology Data Exchange (ETDEWEB)

    Kakimi, Toshihiro [Nuclear Power Engineering Corp., Tokyo (Japan)

    1997-03-01

    Evaluation system of earthquakes from an active fault is, in Japan, based on the characteristic earthquake model of a wide sense that postulates essentially the same (nearly the maximum) magnitude and recurrence interval during the recent geological times. Earthquake magnitude M is estimated by empirical relations among M, surface rupture length L, and surface fault displacement D per event of the earthquake faults on land in Japan. Recurrence interval R of faulting/earthquake is calculated from D and the long-term slip rate S of a fault as R=D/S. Grouping or segmentation of complicatedly distributed faults is an important, but difficult problem in order to distinguish a seismogenic fault unit corresponding to an individual characteristic earthquake. If the time t of the latest event is obtained, the `cautiousness` of a fault can be judged from R-t or t/R. According to this idea, several faults whose t/R exceed 0.5 have been designated as the `precaution faults` having higher probability of earthquake occurrence than the others. A part of above evaluation has been introduced at first into the seismic-safety examination system of NPPs in 1978. According to the progress of research on active faults, the weight of interest in respect to the seismic hazard assessment shifted gradually from the historic data to the fault data. Most of recent seismic hazard maps have been prepared in consideration with active faults on land in Japan. Since the occurrence of the 1995 Hyogoken-Nanbu earthquake, social attention has been concentrated upon the seismic hazard due to active faults, because this event was generated from a well-known active fault zone that had been warned as a `precaution fault`. In this paper, a few recent topics on other geological and geotechnical researches aiming at improving the seismic safety of NPPs in Japan were also introduced. (J.P.N.)

  8. Methodology for the Assessment of Confidence in Safety Margin for Small Break Loss of Coolant Accident Sequences

    Energy Technology Data Exchange (ETDEWEB)

    Nagrale, D. B.; Prasad, M.; Rao, R. S.; Gaikwad, A.J., E-mail: avinashg@aerb.gov.in [Nuclear Safety Analysis Division, Atomic Energy Regulatory Board, Mumbai (India)

    2014-10-15

    Deterministic Safety Analysis and Probabilistic Safety Assessment (PSA) analyses are used concurrently to assess the Nuclear Power Plant (NPP) safety. The conventional deterministic analysis is conservative. The best estimate plus uncertainty analysis is increasingly being used for deterministic calculation in NPPs. The PSA methodology aims to be as realistic as possible while integrating information about accident phenomena, plant design, operating practices, component reliability and human behaviour. The peak clad temperature (PCT) distribution provides an insight into the confidence in safety margin for an initiating event. The paper deals with the concept of calculating the peak clad temperature with 95 percent confidence and 95 percent probability (PCT{sub 95/95}) in small break loss of coolant accident (SBLOCA) and methodologies for assessing safety margin. Five input parameters mainly, nominal power level, decay power, fuel clad gap conductivity, fuel thermal conductivity and discharge coefficient, were selected. A Uniform probability density function was assigned to the uncertain parameters and these uncertainties are propagated using Latin Hypercube Sampling (LHS) technique. The sampled data for 5 parameters were randomly mixed by LHS to obtain 25 input sets. A non-core damage accident sequence was selected from the SBLOCA event tree of a typical VVER study to estimate the PCTs and safety margin. A Kolmogorov– Smirnov goodness-of-fit test was carried out for PCTs. The smallest value of safety margin would indicate the robustness of the system with 95% confidence and 95% probability. Regression analysis was also carried out using 1000 sample size for the estimating PCTs. Mean, variance and finally safety margin were analysed. (author)

  9. Local seismic hazard assessment in explosive volcanic settings by 3D numerical analyses

    Science.gov (United States)

    Razzano, Roberto; Pagliaroli, Alessandro; Moscatelli, Massimiliano; Gaudiosi, Iolanda; Avalle, Alessandra; Giallini, Silvia; Marcini, Marco; Polpetta, Federica; Simionato, Maurizio; Sirianni, Pietro; Sottili, Gianluca; Vignaroli, Gianluca; Bellanova, Jessica; Calamita, Giuseppe; Perrone, Angela; Piscitelli, Sabatino

    2017-04-01

    This work deals with the assessment of local seismic response in the explosive volcanic settings by reconstructing the subsoil model of the Stracciacappa maar (Sabatini Volcanic District, central Italy), whose pyroclastic succession records eruptive phases ended about 0.09 Ma ago. Heterogeneous characteristics of the Stracciacappa maar (stratification, structural setting, lithotypes, and thickness variation of depositional units) make it an ideal case history for understanding mechanisms and processes leading to modifications of amplitude-frequency-duration of seismic waves generated at earthquake sources and propagating through volcanic settings. New geological map and cross sections, constrained with recently acquired geotechnical and geophysical data, illustrate the complex geometric relationships among different depositional units forming the maar. A composite interfingering between internal lacustrine sediments and epiclastic debris, sourced from the rim, fills the crater floor; a 45 meters thick continuous coring borehole was drilled in the maar with sampling of undisturbed samples. Electrical Resistivity Tomography surveys and 2D passive seismic arrays were also carried out for constraining the geological model and the velocity profile of the S-waves, respectively. Single station noise measurements were collected in order to define natural amplification frequencies. Finally, the nonlinear cyclic soil behaviour was investigated through simple shear tests on the undisturbed samples. The collected dataset was used to define the subsoil model for 3D finite difference site response numerical analyses by using FLAC 3D software (ITASCA). Moreover, 1D and 2D numerical analyses were carried out for comparison purposes. Two different scenarios were selected as input motions: a moderate magnitude (volcanic event) and a high magnitude (tectonic event). Both earthquake scenarios revealed significant ground motion amplification (up to 15 in terms of spectral acceleration

  10. Variability of Shelf Growth Patterns along the Iberian Mediterranean Margin: Sediment Supply and Tectonic Influences

    Directory of Open Access Journals (Sweden)

    Ruth Durán

    2018-05-01

    Full Text Available Clinoform depositional features along the Iberian Mediterranean margin are investigated in this study, with the aim of establishing the causes of their varied shapes and other characteristics. We have analyzed the broad-scale margin physiography and seismic stratigraphic patterns based on high-resolution bathymetric data and previously interpreted seismic data. In addition, we have evaluated regional supply conditions and the uplift-subsidence regime of the different shelf sectors. The upper Quaternary record is strongly dominated by shelf-margin regressive wedges affected by the prevailing 100 ka cyclicity. However, the margins exhibit considerable lateral variability, as the result of the balance between the amount of sediment supply and the uplift-subsidence relationship. Three major shelf sectors with distinct morpho-sedimentary features have been defined. The relatively narrow northern shelves (Roses, La Planassa and Barcelona are supplied by discrete river outlets that collectively constitute a linear source and are mainly affected by tectonic tilting. The wide middle shelves (Ebro Shelf, the Gulf of Valencia, and the Northern Arc receive the sediment supply from the large Ebro River and other medium rivers. Although the tectonic regime changes laterally (strong subsidence in the north and uplift in the south, shelf growth is maintained by lateral advection of sediments. The southern shelves (the Southern Arc and the northern Alboran Shelf are very abrupt and narrow because of the uplifting Betic Cordillera, and the torrential fluvial regimes that determine a very efficient sediment by-pass toward the deep basin. Submarine canyons deeply incised in the continental margin constitute a key physiographic feature that may enhance the transport of sediment to the deep sea or individualize shelf sectors with specific sedimentation patterns, as occurs in the Catalan margin.

  11. The 1994 Forum on Appropriate Criteria and Methods for Seismic Design of Nuclear Piping

    International Nuclear Information System (INIS)

    Slagis, G.C.

    1995-01-01

    A record of the 1994 Forum on Appropriate Criteria and Methods for Seismic Design of Nuclear Piping is provided. The focus of the forum was the design-by-rule method for seismic design of piping. Issues such as acceptance criteria, ductility considerations, demonstration of margin, training, verification and costs were discussed. The use of earthquake experience data, including the recent Northridge earthquake, to justify a design-by-rule method was explored. The majority of the participants felt there are not significant advantages to developing a design-by-rule approach for new plant design. One major disadvantage was considered by many to be training. Extensive training will be required to properly implement a design-by-rule approach. Verification of designs was considered by the majority to be equally important for design-by-rule as for design-by-analysis. If a design-by-rule method is going to be effective, the method will have to be based on ductility considerations (UBC approach). A significant issue will be justification of seismic margins with liberal rules. The UBC approach is being questioned by some because of the recent structural cracking problems in the Northridge earthquake

  12. Seismic hazard assessment of the Province of Murcia (SE Spain): analysis of source contribution to hazard

    Science.gov (United States)

    García-Mayordomo, J.; Gaspar-Escribano, J. M.; Benito, B.

    2007-10-01

    A probabilistic seismic hazard assessment of the Province of Murcia in terms of peak ground acceleration (PGA) and spectral accelerations [SA( T)] is presented in this paper. In contrast to most of the previous studies in the region, which were performed for PGA making use of intensity-to-PGA relationships, hazard is here calculated in terms of magnitude and using European spectral ground-motion models. Moreover, we have considered the most important faults in the region as specific seismic sources, and also comprehensively reviewed the earthquake catalogue. Hazard calculations are performed following the Probabilistic Seismic Hazard Assessment (PSHA) methodology using a logic tree, which accounts for three different seismic source zonings and three different ground-motion models. Hazard maps in terms of PGA and SA(0.1, 0.2, 0.5, 1.0 and 2.0 s) and coefficient of variation (COV) for the 475-year return period are shown. Subsequent analysis is focused on three sites of the province, namely, the cities of Murcia, Lorca and Cartagena, which are important industrial and tourism centres. Results at these sites have been analysed to evaluate the influence of the different input options. The most important factor affecting the results is the choice of the attenuation relationship, whereas the influence of the selected seismic source zonings appears strongly site dependant. Finally, we have performed an analysis of source contribution to hazard at each of these cities to provide preliminary guidance in devising specific risk scenarios. We have found that local source zones control the hazard for PGA and SA( T ≤ 1.0 s), although contribution from specific fault sources and long-distance north Algerian sources becomes significant from SA(0.5 s) onwards.

  13. Seismic risk assessment for road in Indonesia

    Science.gov (United States)

    Toyfur, Mona Foralisa; Pribadi, Krishna S.

    2016-05-01

    Road networks in Indonesia consist of 446,000 km of national, provincial and local roads as well as toll highways. Indonesia is one of countries that exposed to various natural hazards, such as earthquakes, floods, landslides, etc. Within the Indonesian archipelago, several global tectonic plates interact, such as the Indo-Australian, Pacific, Eurasian, resulting in a complex geological setting, characterized by the existence of seismically active faults and subduction zones and a chain of more than one hundred active volcanoes. Roads in Indonesia are vital infrastructure needed for people and goods movement, thus supporting community life and economic activities, including promoting regional economic development. Road damages and losses due to earthquakes have not been studied widely, whereas road disruption caused enormous economic damage. The aim of this research is to develop a method to analyse risk caused by seismic hazard to roads. The seismic risk level of road segment is defined using an earthquake risk index, adopting the method of Earthquake Disaster Risk Index model developed by Davidson (1997). Using this method, road segments' risk level can be defined and compared, and road risk map can be developed as a tool for prioritizing risk mitigation programs for road networks in Indonesia.

  14. Assessing Mediation Using Marginal Structural Models in the Presence of Confounding and Moderation

    Science.gov (United States)

    Coffman, Donna L.; Zhong, Wei

    2012-01-01

    This article presents marginal structural models with inverse propensity weighting (IPW) for assessing mediation. Generally, individuals are not randomly assigned to levels of the mediator. Therefore, confounders of the mediator and outcome may exist that limit causal inferences, a goal of mediation analysis. Either regression adjustment or IPW…

  15. Damage Identification and Seismic Vulnerability Assessment of a Historic Masonry Chimney

    Directory of Open Access Journals (Sweden)

    Maria-Giovanna Masciotta

    2017-07-01

    Full Text Available The present paper deals with the dynamic characterisation of a historical masonry chimney aimed at identifying the structural damage and assessing its seismic performance. The structure was severely damaged by a lightning accident and in-depth repair works were executed to re-instate its sound configuration. The case study is fully detailed, including the aspects of survey, inspection, diagnosis, and evolution of the dynamic properties of the system throughout the structural intervention. Considering the explicit dependence of the power spectral densities of measured nodal processes on their frequency content, a spectrum-driven algorithm is used to detect and locate the damage. The paper shows that the eigenparameters obtained from the decomposition of the response power spectrum matrix are sensitive to system’s changes caused by evolutionary damage scenarios, thereby resulting excellent indicators for assessing both the presence and position of structural vulnerabilities. The results are compared with the ones from other modal-based damage identification methods and the strengths/limitations of the tools currently available in literature are extensively discussed. Finally, based on the crack pattern surveyed before the repair works, the weakest links of the chimney are identified and the most meaningful collapse mechanisms are analysed to verify the seismic capacity of the structure. According to the results of the kinematic analysis, the chimney does withstand the maximum site peak ground acceleration.

  16. A method to establish seismic noise baselines for automated station assessment

    Science.gov (United States)

    McNamara, D.E.; Hutt, C.R.; Gee, L.S.; Benz, H.M.; Buland, R.P.

    2009-01-01

    We present a method for quantifying station noise baselines and characterizing the spectral shape of out-of-nominal noise sources. Our intent is to automate this method in order to ensure that only the highest-quality data are used in rapid earthquake products at NEIC. In addition, the station noise baselines provide a valuable tool to support the quality control of GSN and ANSS backbone data and metadata. The procedures addressed here are currently in development at the NEIC, and work is underway to understand how quickly changes from nominal can be observed and used within the NEIC processing framework. The spectral methods and software used to compute station baselines and described herein (PQLX) can be useful to both permanent and portable seismic stations operators. Applications include: general seismic station and data quality control (QC), evaluation of instrument responses, assessment of near real-time communication system performance, characterization of site cultural noise conditions, and evaluation of sensor vault design, as well as assessment of gross network capabilities (McNamara et al. 2005). Future PQLX development plans include incorporating station baselines for automated QC methods and automating station status report generation and notification based on user-defined QC parameters. The PQLX software is available through the USGS (http://earthquake. usgs.gov/research/software/pqlx.php) and IRIS (http://www.iris.edu/software/ pqlx/).

  17. Seismicity pattern: an indicator of source region of volcanism at convergent plate margins

    Czech Academy of Sciences Publication Activity Database

    Špičák, Aleš; Hanuš, Václav; Vaněk, Jiří

    2004-01-01

    Roč. 141, č. 4 (2004), s. 303-326 ISSN 0031-9201 R&D Projects: GA AV ČR IAA3012002; GA AV ČR IAA3012303; GA AV ČR KSK3012103 Institutional research plan: CEZ:AV0Z3012916 Keywords : seismicity pattern * volcanism * aseismic gap Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.370, year: 2004

  18. TREATING UNCERTAINTIES IN A NUCLEAR SEISMIC PROBABILISTIC RISK ASSESSMENT BY MEANS OF THE DEMPSTER-SHAFER THEORY OF EVIDENCE

    OpenAIRE

    Lo , Chung-Kung; Pedroni , N.; Zio , Enrico

    2014-01-01

    International audience; The analyses carried out within the Seismic Probabilistic Risk Assessments (SPRAs) of Nuclear Power Plants (NPPs) are affected by significant aleatory and epistemic uncertainties. These uncertainties have to be represented and quantified coherently with the data, information and knowledge available, to provide reasonable assurance that related decisions can be taken robustly and with confidence. The amount of data, information and knowledge available for seismic risk a...

  19. Seismic fragility capacity of equipment--horizontal shaft pump test

    International Nuclear Information System (INIS)

    Iijima, T.; Abe, H.; Suzuki, K.

    2005-01-01

    The current seismic fragility capacity of horizontal shaft pump is 1.6 x 9.8 m/s 2 (1.6 g), which was decided from previous vibration tests and we believe that it must have sufficient margin. The purpose of fragility capacity test is to obtain realistic seismic fragility capacity of horizontal shaft pump by vibration tests. Reactor Building Closed Cooling Water (RCW) Pump was tested as a typical horizontal shaft pump, and then bearings and liner rings were tested as important parts to evaluate critical acceleration and dispersion. Regarding RCW pump test, no damage was found, though maximum input acceleration level was 6 x 9.8 m/s 2 (6 g). Some kinds of bearings and liner rings were tested on the element test. Input load was based on seismic motion which was same with the RCW pump test, and maximum load was equivalent to over 20 times of design seismic acceleration. There was not significant damage that caused emergency stop of pump but degradation of surface roughness was found on some kinds of bearings. It would cause reduction of pump life, but such damage on bearings occurred under large seismic load condition that was equivalent to over 10 to 20 g force. Test results show that realistic fragility capacity of horizontal shaft pump would be at least four times as higher as current value which has been used for our seismic PSA. (authors)

  20. An investigation of elastic-plastic seismic analysis of piping systems under high level of earthquake motion

    International Nuclear Information System (INIS)

    Liu, T.H.; Patel, R.B.; Condrac, R.

    1993-01-01

    The current design by rules of the ASME Section III Code for the nuclear power plant piping system is principally based on the elastic design concept Such design often results in a more rigid piping system, structurally, that may not be so desirable from the viewpoint of long term plant operation. The so called 'elastic design' approach has failed to utilize the ductility that steel pipe exhibits, and therefore, the resulting system maintains a great deal of reserve margin in seismic design. This study does not attempt to assess the amount of this reserve margin but provides some findings and discussions with respect to dynamic inelastic analysis results in the piping system design. Using a test correlation analysis it was found that, while the analytical tools that exist are conservative for low strain levels, further studies with loadings at high strain levels are recommended for a more reasonable design. (author)